

FICHA IDENTIFICATIVA

Datos de la Asignatura		
Código	46498	
Nombre	Biotransformación y metabolismo de fármacos en el organismo humano	
Ciclo	Máster	
Créditos ECTS	3.0	
Curso académico	2023 - 2024	

Titulación(es)

Titulación	Centro	Curso	Periodo
2254 - M.U. en Aproximaciones	Facultad de Medicina y Odontología	1	Primer
Moleculares CC Salud 23_V3			cuatrimestre

Materias	terias			
Titulación	Materia	Caracter		
2254 - M.U. en Aproximaciones	3 - Biotransformación, metabolismo	Obligatoria		
Moleculares CC Salud 23_V3	de fármacos y xenobióticos			

Coordinación

Nombre	Departamento
JOVER ATIENZA, RAMIRO	30 - Bioquímica y Biología Molecular
LOPEZ GARCIA, MARIA PILAR	30 - Bioquímica y Biología Molecular
O'CONNOR BLASCO, JOSE ENRIQUE	30 - Bioquímica y Biología Molecular

RESUMEN

Entre los principales retos de la investigación biomédica y la práctica clínica actuales en el camino hacia una medicina personalizada, está el optimizar la respuesta farmaco-terapéutica, maximizando a un tiempo efectividad y seguridad en el tratamiento farmacológico de la enfermedad.

La experiencia actual demuestra que la respuesta farmacológica varia muy significativamente entre pacientes: alrededor de 1 de cada 3 no responde adecuadamente a la terapia, bien porque esta no es efectiva, bien porque provoca efectos adversos inesperados -y a veces muy graves. La variabilidad humana en la respuesta farmacológica está determinada en gran medida por diferencias interindividuales cuali- y cuantitativas en el procesamiento del fármaco por nuestro propio organismo, esto es, en su absorción y distribución a tejidos diana, su metabolismo y su excreción (ADME). El estudio específico de estos procesos es por tanto una etapa esencial durante la investigación y desarrollo de todo nuevo fármaco.

La asignatura Biotrasformación de fármacos y xenobióticos en el organismo humano, aporta una visión rigurosa, completa e integrada, de los procesos bioquímicos que definen el ADME de un compuesto, de los elementos clave (enzimas de metabolismo y transportadores) que participan/median dichos procesos, y del significado biológico de la biotransformación. Con perspectiva multidisciplinar, serevisarán los tejidos y sistemas responsables de metabolismo/transporte, sus características y requerimientos funcionales, los métodos de estudio, y los mecanismos que modulan su actividad en condiciones fisiológicas y patológicas.

Analizaremos los factores genéticos y no genéticos que explican a nivel molecular la variabilidad interindividual e intraindividual en biotranformación, las consecuencias clínicas de estas diferencias, y su significativo impacto en la I+D biomédica y la práctica clínica actuales (desarrollo de nuevos fármacos y métodos diagnósticos, estudios clínicos, etc).

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

No hay

COMPETENCIAS

2254 - M.U. en Aproximaciones Moleculares CC Salud 23_V3

- Que los/las estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- Que los/las estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- Que los/las estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- Que los/las estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

- Conocer en profundidad y comprender la organización a nivel molecular de células, sistemas y procesos de relevancia en las Ciencias de la Salud.
- Conocer en profundidad y comprender las bases moleculares de la enfermedad.
- Conocer en profundidad y comprender las metodologías de investigación básica aplicables a las Ciencias de la Salud.
- Tener capacidad de analizar y sintetizar un problema.
- Tener capacidad de comunicación oral y escrita en una segunda lengua científica.
- Tener capacidad de localizar información.
- Tener capacidad de desarrollar un trabajo interdisciplinar.
- Conocer y comprender los mecanismos y sistemas enzimáticos responsables de la biotransformación de farmacos y otros xenobióticos en el organismo humano, su significado biológico y sus implicaciones clínicas.
- Conocer y comprender el mecanismo molecular subyacente en las interacciones medicamentosas, así como las bases bioquímicas y moleculares de la variabilidad interindividual humana en relación al metabolismo de fármacos, y ser capaz de aplicar estos conceptos en casos prácticos representativos.
- Aprender a identificar, manejar y presentar adecuadamente en informes y exposición pública, los conocimientos existentes (clínicos y/o experimentales) en relación a biotransformación, usando como vehículo la lengua inglesa.

RESULTADOS DE APRENDIZAJE

- 1. Conocer y comprender los mecanismos y sistemas enzimáticos responsables de la biotransformación de fármacos y otros xenobióticos en el organismo humano, su significado biológico y sus implicaciones clínicas.
- 2. Conocer y comprender el mecanismo molecular subyacente en las interacciones medicamentosas, así como las bases bioquímicas y moleculares de la variabilidad interindividual humana en relación al metabolismo de fármacos, y ser capaz de aplicar estos conceptos en casos prácticos representativos.
- 3. Aprender a identificar, integrar y presentar adecuadamente en informes y exposiciones públicas, los conocimientos existentes (clínicos y/o experimentales) en relación a biotransformación, usando como vehículo la lengua inglesa.

DESCRIPCIÓN DE CONTENIDOS

1. INTRODUCCIÓN. Fundamentos, terminología específica y conceptos básicos

- 1.1. De qué depende la respuesta farmacológica: Farmacocinética y Farmacodinamia
- 1.2. Diferencias interindividuales en la respuesta a fármacos: Eficacia, tolerancia y ADRs; Evidencias fenotípicas y métodos de estudio de la variabilidad PK y PD
- 1.3. Determinantes genéticos y no genéticos de variabilidad farmacocinética. Implicaciones y relevancia biomédica.

2. BIOTRANSFORMACIÓN: Metabolismo de fármacos y otros xenobióticos en el organismo humano

- 2.2 Sistemas enzimáticos responsables de la biotransformación. Enzimas de metabolismo, proteínas de transporte, y etapas implicadas. Distribución tisular y localización subcelular. Métodos de estudio.
- 2.3 Características particulares de los enzimas de biotransfomación. Polimorfismo genético y su expresión fenotípica. Diferencias interespecie e interétnicas.
- 2.4 Significado biológico de la biotransformación: Visión integrada.

3. LA SUPERFAMILIA GÉNICA CITOCROMO P450

- 3.1 El CYP en la biosfera. Nomenclatura y relaciones evolutivas.
- 3.2 El CYP en el ser humano. Principales isoformas en metabolismo de xenobióticos y metabolismo de sustratos endógenos.
- 3.3. El CYP como sistema enzimático. Componentes del CYP funcional, estructura 3D y relación estructura-función. Ciclo catalítico y sistemas auxiliares de transferencia electrónica. Métodos de estudio. El CYP como fuente de estrés oxidativo.
- 3.4 Relación de la actividad CYP con otras rutas metabólicas

4. VARIABILIDAD INTERINDIVIDUAL EN BIOTRANSFORMACIÓN: Bases moleculares

- 4.1. Modulación del nivel de expresión: Mecanismos de inducción enzimática.
- 4.2. Modulación de la actividad funcional: Inhibición, modulación alostérica y modificación covalente. Significado biológico y aplicaciones
- 4.3. Polimorfismo genético: Variaciones que afectan a estructura/función o nivel de expresión del gen.Relación fenotipo/genotipo

5. 5. CONSECUENCIAS CLÍNICAS de la VARIABILIDAD EN BIOTRANSFORMACIÓN

Seminarios monográficos presentando ejemplos relevantes seleccionados

- 5.1. Interacciones medicamentosas (fármaco-fármaco, fármaco-gen)
- 5.2. Alteración en eficacia terapéutica (on-target).
- 5.3. Interacciones con dianas tisulares secundarias (off-target).
- 5.4. Interacciones fármaco-dieta,
- 5.5. Interacción con metabolismo endógeno, etc.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Clases de teoría	15,00	100
Trabajos en grupo	10,00	100
Tutorías regladas	5,00	100
TOTAL	30,00	

METODOLOGÍA DOCENTE

La asignatura combina trabajo presencial y no presencial de modo equilibrado. La docencia presencial se realizará mediante clases magistrales, interacción profesor-alumno en tutorias, y sesiones de seminarios monográficos con participación activa de alumno-profesor y alumno-alumno en la posterior discusión supervisada.

Las clases de teoría proporcionarán el marco conceptual necesario: en ellas el profesor presentará una visión actualizada de cada tema específico, con el apoyo de ejemplos representativos que ilustren conceptos clave e implicaciones prácticas. El profesor indicará los recursos mas adecuados para profundizar en el tema, de forma que el alumno pueda completar por si mismo suformación.

Los trabajos asignados y seminarios se orientarán a desarrollar y potenciar la competencia del alumno para aplicar los conocimientos teóricos adquiridos a la I+D biomédica y práctica clínica actuales, en el contexto de la investigación traslacional (bench to bedside); así, los seminarios/sesionesmonográficas presentarán terapias o contextos clínicos específicos en los que la particular capacidad debiotransformación del paciente, o la alteración del perfil de biotransformación del fármaco, presentan especial relevancia y/o consecuencias clínicas significativas.

Se potenciará particularmente la formación interactiva y el intercambio de conocimientos entre estudiantes, facilitando el aprendizaje colaborativo, el dialogo interdisciplinar, y la capacidad de análisis, síntesis y transmisión de conocimientos en lenguaje científico y divulgativo.

EVALUACIÓN

Para superar la asignatura será obligatoria la asistencia al menos al 80% de las actividades presenciales. Se propone un sistema de evaluación continua del aprendizaje, con la valoración de los siguientes apartados:

- 1. Valoración de los conocimientos adquiridos mediante una prueba escrita, que se realizará al final del cuatrimestre y supondrá el 40% de la nota final.
- 2. Valoración del seminario presentado atendiendo a su calidad científica, su presentación formal y la competencia demostrada en la interpretación y transferencia de los conceptos teóricos a la práctica actual clínica/biomédica. Representará el 30% de la nota final.

3. Interés del estudiante en la materia y participación activa en todas las actividades realizadas durante el curso; expresado por la asistencia continuada/regular a clases, la actitud y aportaciones en las discusiones en aula y seminarios, y la calidad de la presentación oral individual. Representará el 30% de la calificación final.

REFERENCIAS

Básicas

- Handbook of Drug Metabolism, 3rd edition, P.G Pearson y L.C. Wienkers, CRC Press, 2021

The Biochemistry of Drug Metabolism (2 vols). B. Testa y S. Krämer, Willey, 2010.

Cytochrome P450. Structure, Mechanism, and Biochemistry 4rd edition. Ed.: P.R. Ortiz de Montellano, Springer, New York, 2015.

Rapid Review Phayrmacology (en especial los capítulos iniciales), 3rd edition. Ed: T.L. Pazdernik y L. Kerecsen, Mosby, 2010.

Handbook of Drug-Nutrient interactions, 2nd edition, Eds: J.L. Boulloto y U.T. Armenti. Humana Press (Springer), 2010

Pharmacogenomics. Eds.: W. Karlow, U.A. Meyer y R.F. Tyndale, Taylor & Francis, New York, 2005.