

FICHA IDENTIFICATIVA

Datos de la Asignatura			
Código	44422		
Nombre	Nanomateriales moleculares: Métodos de preparación, propiedades y aplicaciones		
Ciclo	Máster		
Créditos ECTS	6.0		
Curso académico	2023 - 2024		

		,	
		$\alpha n i$	001
Titu	ati	OH	6.51
		ш	

Titulación	Centro	Curso Periodo
2208 - M.U. en Nanociencia y	Facultad de Química	1 Primer
Nanotecnología Molecular		cuatrimestre

_	_		4					
П	M	а	٠	Δ	r	П	2	C
ı	и	ч		G		п	ч	г.

Titulación	Materia	Caracter
2208 - M.U. en Nanociencia y	6 - Nanomateriales moleculares:	Obligatoria
Nanotecnología Molecular	Métodos de preparación,	
	propiedades y aplicaciones	

Coordinación

Nombre	Departamento
CORONADO MIRALLES, EUGENIO	320 - Química Inorgánica

RESUMEN

Se pretende dotar a los alumnos de los conocimientos necesarios en aspectos básicos de la Nanociencia y sus implicaciones en el diseño y desarrollo de nuevos materiales basados en moléculas con propiedades no convencionales.

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

COMPETENCIAS

2208 - M.U. en Nanociencia y Nanotecnología Molecular

- Que los/las estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- Que los/las estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- Que los/las estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- Que los/las estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- Que los estudiantes hayan adquirido los conocimientos y habilidades necesarias para seguir futuros estudios de doctorado en Nanociencia y Nanotecnología
- Que los estudiantes de un área de conocimiento (p.e. física) sean capaces de comunicarse e interaccionar científicamente con colegas de otras áreas de conocimiento (p.e. química en la resolución de problemas planteados por la Nanociencia y la Nanotecnología Molecular.
- Conocer las aproximaciones metodológicas utilizadas en Nanociencia.
- Adquirir los conocimientos conceptuales de la química supramolecular que sean necesarios para el diseño de nuevos nanomateriales y nanoestructuras.
- Conocer el "state of the art" en nanomateriales moleculares con propiedades ópticas, eléctricas o magnéticas.
- Evaluar las relaciones y diferencias entre las propiedades macroscópicas de los materiales y las propiedades de los sistemas unimoleculares y los nanomateriales.
- Conocer las principales aplicaciones tecnológicas de los nanomateriales moleculares y ser capaz de situarlas en el contexto general de la Ciencia de Materiales.
- Conocer las principales aplicaciones de las nanopartículas y de los materiales nanoestructurados obtenidos o funcionalizados mediante una aproximación molecular- en magnetismo, electrónica
 molecular y biomedicina.

RESULTADOS DE APRENDIZAJE

Se pretende dotar a los alumnos de los conocimientos necesarios en aspectos básicos de la Nanociencia y sus implicaciones en el diseño y desarrollo de nuevos materiales basados en moléculas con propiedades no convencionales.

DESCRIPCIÓN DE CONTENIDOS

1. Nanomateriales moleculares: métodos de preparación, propiedades y aplicaciones.

- 1. Materiales Magnéticos Moleculares: Diseño, síntesis, caracterización y aplicaciones de i) nanoimanes moleculares; ii) nanopartículas magnéticas obtenidas por aproximación molecular; iii) moléculas y materiales magnéticos conmutables (e.g. compuestos de spin-crossover) iv) materiales magnéticos multifuncionales, v) materiales magnéticos de baja dimensionalidad.
- 2. Materiales con propiedades ópticas: cristales líquidos, clasificación, caracterización, propiedades y aplicaciones; materiales para óptica no lineal (NLO): efectos NLO, moléculas para segundo y tercer orden, limitadores ópticos, técnicas para la determinación de coeficientes NLO.
- 3. Materiales con propiedades eléctricas: conductores y superconductores moleculares: estructura electrónica, organización en superficies e interfaces, propiedades y aplicaciones (sensores químicos, transistores de efecto campo (FETs), etc.).
- Polímeros conductores: propiedades y aplicaciones.
- 5. Nanoformas de carbono: Fullerenos, Nanotubos de Carbono y Grafeno. Estructura, funcionalización, propiedades, métodos de producción, organización y aplicaciones.
- Cristales 2D.
- 7. Aplicaciones de nanomateriales en biomedicina (agentes de contraste, transporte y dosificación de fármacos; sistemas para terapia fotodinámica, sistemas teragnósticos).

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Clases de teoría	30,00	100
Seminarios	9,00	100
Tutorías regladas	8,00	100
Otras actividades	2,00	100
Preparación de actividades de evaluación	80,00	0
Preparación de clases de teoría	21,00	0
тот	AL 150,00	

METODOLOGÍA DOCENTE

- Clases teóricas lección magistral participativa
- Discusión de artículos.
- Debate o discusión dirigida.
- Discusión de casos prácticos o problemas en seminario.
- · Seminarios.
- Problemas.
- Prácticas y demostraciones de laboratorio y visitas a instalaciones.
- Conferencias de expertos.
- Asistencia a cursos, conferencias o mesas redondas.

EVALUACIÓN

Examen escrito sobre contenidos básicos de la materia	70-90%
Asistencia y participación activa en los seminarios.	0-10%
Resolución de cuestiones.	10-20%

REFERENCIAS

Básicas

- - G.A. Ozin, A.C. Arsenault: Nanochemistry. The Royal Society of Chemistry, 2005.
 - H.S. Nalwa Ed.: Handbook of Avanced Electronic and Photonic Materials and Devices, Academic Press, 2001.
 - D.M. Guldi, N. Martín Eds.: Fullerenes: From Synthesis to Optoelectronic Properties. Kluwer Academic Press, Dordrecht, Netherland, 2002.
 - P.J. Collings, Liquid Crystals: Natuers delicate of Mater. 2^a Ed., Princenton University Press, 2002.
 - M.C. Petty, M.R. Bryce, D. Bloor, Eds.: Introdction to Molecular Electronics, Oxford University Press, NY, 1995.
 - Ulman, An Introduction to Ultrathin Organic Films: from Langmuir-Blodgett to Self-Assembly, Academic Press, San Diego, 1991
 - Supramolecular Chemistry: From Molecules to Nanomaterials, ed. P. Gale and J. Steed, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012
 - Nanomedicine, in Nanotechnology, ed. H. Fuchs, M. Grätzel, H. Krug, G.
 - Schmid, V. Vogel and R. Waser, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010, vol. 5
- "Liquid Crystals: Fundamentals and Applications" by Lekshmi C. Pillai, Sudhindra Rayaprol, and Surajit Dhara. CRC Press. 2017.
- "Nonlinear Optics: Principles and Applications" by Karsten Rottwitt and Peter T. Rakich. CRC Press. 2018.
- "Nanomedicine: Principles and Perspectives" by Raffaele Vecchione, Joshua Reineke, and Veerle Bloemen. CRC Press. 2018.
- "Photodynamic Therapy: From Theory to Application" by Michael R. Hamblin. CRC Press. 2016.
- Fullerenes: principles and applications; F. Langa and J.-F. Nierengarten (Eds.), RSC (Nanoscience and Nanotechnology Series) 2012
 - Fullerenes, A. Hirsch, M. Brettreich Wiley-VCH2005
 - Carbon Nanotubes. Jorio, Ado; Dresselhaus, Gene; Dresselhaus, Mildred S. (Eds.) Springer (2008)
 - Graphene: Synthesis, Properties, and Phenomena C.N.R. Rao, A.K. Sood. Wiley-VCH 2013.
 - Molecular Magnetism O. Kahn, VCH, New York, 1993
 - Solids and Surfaces: A Chemists View of Bonding in Extended Structures R. Hoffmann, VCH Publishers, 1988.

Complementarias

- - Carbon Nanotubes: Present and Future Commercial Applications. Michael F. L. De Volder, Sameh H. Tawfick, Ray H. Baughman, A. John Hart Science, 2013, 339, 535.
 - Molecular magnetism: from chemical design to spin control in molecules, materials and devices, E. Coronado, Nature Reviews Materials 5(2), 87-104 (2020)