

FICHA IDENTIFICATIVA

Datos de la Asignatura		
Código	44381	
Nombre	La cultura material de la ciencia	
Ciclo	Máster	
Créditos ECTS	6.0	
Curso académico	2021 - 2022	

liti	IIIa	CIC	m	es)
	чна	CIC	ЯΝ	C3 1

Titulación	Centro	Curso	Periodo
2198 - M.U. en Historia de la Ciencia y	Facultad de Medicina y Odontología	1	Segundo
Comunic. Científica			cuatrimestre

Materias		
Titulación	Materia	Caracter
2198 - M.U. en Historia de la Ciencia y Comunic. Científica	12 - La cultura material de la ciencia	Optativa

Coordinación

Nombre	Departamento		
BERTOMEU SANCHEZ, JOSE RAMON	225 - Historia de la Ciencia y Documentación		

RESUMEN

Se aprenderá la noción de cultura material de la ciencia y patrimonio científico, médico e industrial. También se conocerá la historia de los instrumentos científicos, las tendencias principales en museos de la ciencia y la gestión del patrimonio científico.

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

COMPETENCIAS

2198 - M.U. en Historia de la Ciencia y Comunic. Científica

- Que los/las estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- Conocer las diversas formas de popularización de la ciencia.
- Identificar las principales fuentes de información relacionadas con la comunicación científica, así como otras herramientas de recuperación de información (principales repertorios bibliográficos y bases de datos).
- Comprender las diversas tareas comunicativas e informativas destinadas a concebir, articular y dirigir todo tipo de productos en cualquier soporte técnico, medio, sistema o ámbito en el área de la comunicación científica.
- Conocer y analizar críticamente los procesos de divulgación de la ciencia considerando sus diversos protagonistas, contextos, medios, prácticas, finalidades y resultados.
- Identificar y analizar críticamente textos de divulgación de la ciencia en sus diversas modalidades.
- Identificar los principales rasgos de la cultura material de la ciencia, la medicina y la tecnología.
- Discutir y valorar las perspectivas, las controversias y los métodos de trabajo de las principales líneas de la investigación en el área de la información y la comunicación social de la ciencia.
- Conocer y utilizar con destreza las principales fuentes de información relacionadas con la historia de la ciencia, la medicina y la tecnología así como las herramientas de recuperación de esta información (repertorios bibliográficos y bases de datos).
- Conocer las tendencias museológicas actuales y los problemas relacionados con la elaboración de exposiciones relacionadas con la medicina, la ciencia y la tecnología.

RESULTADOS DE APRENDIZAJE

Se aprenderá la noción de cultura material de la ciencia y patrimonio científico, médico e industrial. También se conocerá la historia de los instrumentos científicos, las tendencias principales en museos de la ciencia y la gestión del patrimonio científico.

DESCRIPCIÓN DE CONTENIDOS

6. La Cultura Material de la Ciencia

- 1. Introducción: la cultura material de la ciencia. Ciencia, medicina y patrimonio cultural. Patrimonio industrial. Fuentes de información sobre la cultura material de la ciencia. Principales publicaciones y revistas especializadas. Sociedades académicas.
- 2. Instrumentos científicos y médicos. Definiciones y tipologías. Fabricantes, diseñadores, espacios, usos y usuarios.
- 3. Historia, historiografía e instrumentos científicos: La historia de la ciencia y el patrimonio científico. Los orígenes de las colecciones científicas. De los instrumentos matemáticos y ópticos a los instrumentos de filosofía natural. Los fabricantes y la industria de instrumentos. El papel de los instrumentos en la ciencia contemporánea. Los instrumentos científicos y médicos como fuentes materiales para la historia de la medicina, la ciencia y la tecnología.
- 4. Museos de ciencia, medicina y tecnología. Introducción a la museología de las ciencias. Breve historia de los museos de ciencia, medicina y tecnología. Recursos y tendencias en museología. Tipos de museos.
- 5. Introducción al diseño de exposiciones relacionadas con la ciencia, la medicina y la tecnología. Los usos didácticos del patrimonio científico. Exposiciones virtuales y nuevas tecnologías de la información.
- 6. Introducción a la gestión del patrimonio científico. Inventarios y catálogos. Bases de datos. Técnicas de conservación y restauración.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Seminarios	18,00	100
Clases de teoría	18,00	100
Tutorías regladas	6,00	100
Trabajos en grupo	3,00	100
Elaboración de trabajos en grupo	15,00	0
Elaboración de trabajos individuales	30,00	0
Lecturas de material complementario	30,00	0
Preparación de actividades de evaluación	30,00	0
Resolución de cuestionarios on-line	45,00	0
ТОТ	TAL 195,00	

METODOLOGÍA DOCENTE

Metodología docente

Clases magistrales: Se presentarán los contenidos básicos de cada tema, se indicarán las lecturas obligatorias necesarias y se ofrecerá una bibliografía orientativa que permita ampliar la información sobre los temas tratados. La asistencia es obligatoria, permitiéndose un 20% de faltas como máximo.

Seminarios o foros: Permitirán discutir algunos de los puntos tratados en la clase magistral a través de actividades sugeridas a los estudiantes que deberán presentar y debatir las conclusiones de los trabajos realizados. **La asistencia es obligatoria, permitiéndose un 20% de faltas como máximo.**

Tutorías: Se realizarán periódicamente para realizar un seguimiento de las actividades, especialmente las encaminadas a la preparación del trabajo de módulo. Además de las tutorías presenciales, existirá la posibilidad de tutelar a los estudiantes a través de sistemas online.

Conferencias: Impartidas por personas de prestigio en el campo de la historia de la ciencia y la comunicación científica. Los estudiantes podrán realizar, en los casos que así se decida, pequeños trabajos relacionados con la conferencia o colaborar en su preparación y presentación.

E-learning. Videoconferencia. Aula virtual. Se hará amplio uso de estos métodos para evitar el desplazamiento de los estudiantes que no puedan asistir a alguna o algunas de las actividades docentes programadas. Se elaborarán materiales de trabajo en línea, con el concurso de las nuevas tecnologías de la información, para todo el alumnado.

EVALUACIÓN

Sistema general de evaluación

Los estudiantes serán evaluados de acuerdo con su participación en las clases, en los debates de los foros, con el cuaderno de actividades elaborado a lo largo del curso (comentarios de texto, reflexiones, informes por escrito, etc.), siempre de acuerdo con las indicaciones de los profesores.

Instrumentos y Criterios de Evaluación

- Entrega y presentación del trabajo de módulo (porfolio) convenientemente rellenado con las actividades que se desarrollan durante la clase o las que el profesor / a encargue, dentro de los plazos establecidos y a través de sistemas informáticos online. [70%]
- Trabajos escritos y participación en los seminarios de debate (foros) abiertos durante la semana y los ciclos de conferencias del programa [30%]. Esta actividad **no será recuperable** en las pruebas de evaluación extraordinarias.

REFERENCIAS

Básicas

- A. Van Helden, T. L. Hankins (eds.), Osiris [Instruments], 9 (1994).
- L. Taub et al., Focus: The History of Scientific Instruments, Isis, 102 (2011), 689729.
- S. J. M. M. Alberti et al., Focus: Museums and the History of Science, Isis, 96 (2005), 559608.

Complementarias

- R. Bud, D. J. Warner, S. Johnston (eds.), Instruments of Science: An Historical Encyclopedia (London: Science Museum; Washington: National Museum of American History, Smithsonian Institution, 1998).
- J. R. Bertomeu Sánchez, A. García Belmar, Abriendo las cajas negras: colección de instrumentos científicos de la Universitat de València (València: Universitat de València, 2002).
- G. LE. Turner, Nineteenth-Century Scientific Instruments (London: Sothebys Publications; Berkeley and Los Angeles: University of California Press, 1983).
- P. Galison, Image and Logic: a Material Culture of Microphysics (Chicago: Chicago University Press, 1997).
- A. Turner, Early Scientific Instruments. Europe 1400-1800 (London: Sothebys, 1987).
- P. Vergo (ed.), The New Museology (London: Reaktion Books, 1991).
- S. M. Pearce (ed.), Objects of Knowledge (London: Athlone Press, 1990).
- E. Hooper-Greenhill, Museums and the Shaping of Knowledge (London: Routledge, 1992)
- S. Macdonald (ed.), The politics of Display: Museums, Science, Culture (London and New York: Routledge, 1998).
- R. Miles, L. Zavala (eds.), Towards the Museum of the Future. New European Perspectives (London: Routledge, 1994).

ADENDA COVID-19

Esta adenda solo se activará si la situación sanitaria lo requiere y previo acuerdo del Consejo de Gobierno