

Guía Docente 44076 Fundamentos de matemática avanzada

FICHA IDENTIFICATIVA

Datos de la Asignatura				
Código	44076			
Nombre	Fundamentos de matemática avanzada			
Ciclo	Máster			
Créditos ECTS	6.0			
Curso académico	2021 - 2022			

ı	Itu	ıacı	on((es)	

Titulación	Centro	Curso	Periodo
2183 - M.U. en Investigación Matemática	Facultad de Ciencias Matemáticas	1	Primer
13-V.1			cuatrimestre

Materias			
Titulación	Materia	Caracter	
2183 - M.U. en Investigación Matemática 13-V.1	7 - Fundamentos de matemática avanzada	Obligatoria	

Coordinación

Nombre	Departamento

FALCO BENAVENT, FRANCISCO JAVIER 15 - Análisis Matemático

RESUMEN

El curso se dedica a Teoría de la medida y aplicaciones. Tras un desarrollo de las nociones de medida sobre una sigma-álgebra y los procesos de construcción de medidas a partir de medidas exteriores, se construirán como casos particulares la medida de Lebesgue en Rn y las medidas de Borel-Stieltjes sobre intervalos.

Se repasarán las nociones conocidas por el alumno de funciones medibles e integrables y los teoremas clásicos (convergencia monótona, dominada de Lebesgue, teorema de Fubini) en el contexto general de medidas abstractas. El resultado fundamental del curso será el Teorema de Radon-Nikodym y algunas de sus aplicaciones.

Guia Docente 44076 Fundamentos de matemática avanzada

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

El estudiante deberá conocer las herramientas básicas de integración en una y varias variables.

COMPETENCIAS

2183 - M.U. en Investigación Matemática 13-V.1

- Que los/las estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- Que los/las estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- Que los estudiantes comprendan los conceptos y las demostraciones rigurosas de teoremas fundamentales de alguna de las áreas específicas de las Matemáticas.
- Que los estudiantes sean capaces de aplicar los resultados y técnicas aprendidas para la resolución de problemas complejos de alguna de las áreas de las Matemáticas, en contextos académicos o profesionales.
- Que los estudiantes tengan capacidad para elaborar y desarrollar razonamientos lógico-matemáticos e identificar errores en razonamientos incorrectos.
- Que los estudiantes sean capaces de construir, interpretar, analizar y validar modelos matemáticos avanzados que simulen situaciones reales.
- Que los estudiantes sean capaces de comprender de manera autónoma artículos de investigación o innovación en alguna de las áreas de las Matemáticas.

RESULTADOS DE APRENDIZAJE

- Justificar y construir de manera rigurosa la medida de Lebesgue en varias dimensiones, así como la medida de Lebesgue-Stieltjes, desde la formalización general de las nociones de sigma-álgebra de conjuntos y medidas definidas en sigma-álgebras abstractas,
- Realizar el estudio de las funciones medibles e integrables respecto a medidas generales en el contexto general,

Guía Docente 44076 Fundamentos de matemática avanzada

■ Demostrar, como objetivo final, el importante teorema de Radon-Nikodym de representación de medidas absolutamente continuas respecto a una dada.

DESCRIPCIÓN DE CONTENIDOS

1. Medida abstracta

1. Medidas exteriores. Extensión de medidas. Medidas de Fourier-Stieltjes. Conjuntos medibles y no medibles.

2. Funciones medibles y funciones integrables

1. Funciones medibles. Algunos tipos de convergencia, Funciones integrables.

3. Medida producto y teorema de Fubini

1. La medida producto. El teorema de Fubini. Aplicaciones.

4. El teorema de Radon-Nikodym

Medidas complejas y reales. El teorema de Radon-Nikodym. Aplicaciones.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Clases de teoría	60,00	100
Elaboración de trabajos individuales	30,00	0
Estudio y trabajo autónomo	30,00	0
Lecturas de material complementario	30,00	0
TC	OTAL 150,00	CI

METODOLOGÍA DOCENTE

Combinación de clase magistral y exposiciones por parte de los alumnos de algunas partes seleccionadas. En las clases presenciales se introducirá y se desarrollará progresivamente el contenido teórico de cada tema y las herramientas adecuadas para la resolución de problemas. Se propondrán una serie de resultados, cuestiones y problemas para su estudio aplicando los conceptos expuestos en las clases teóricas. Los alumnos deberán exponer sus soluciones.

Guía Docente 44076 Fundamentos de matemática avanzada

EVALUACIÓN

La asignatura se evaluará mediante la presentación de problemas y cuestiones relativos a la materia propuestos de manera individualizada, o bien mediante la exposición en pizarra de una parte del curso por parte del alumno. También se propondrán trabajos realizados individualmente o en grupo y su correspondiente exposición en clase.

REFERENCIAS

Básicas

- Bartle, R. The elements of integration and Lebesgue measure. Wiley classics Library.
 Edition 1995.
- M. de Guzmán; B Rubio. Integración, Teoría y Técnicas. Ed. Alhambra, 1979.
- M. Valdivia Ureña, Análisis Matemático V. UNED. Edición 2002.
- Mukherjea, A.; Pothoven, K. Real and functional analysis. Part A. Real analysis. Second edition. Mathematical Concepts and Methods in Science and Engineering, 27. Plenum Press, New York, 1984.

Complementarias

- George, C. Exercises et problems of integration. Gauthier-Villars, Paris, 1980.
- W. Rudin, Analisis real y complejo. Mac Graw-Hill, 1988.

ADENDA COVID-19

Esta adenda solo se activará si la situación sanitaria lo requiere y previo acuerdo del Consejo de Gobierno