

FICHA IDENTIFICATIVA

Datos de la Asignatura		
Código	44005	
Nombre	Láseres	
Ciclo	Máster	
Créditos ECTS	5.0	
Curso académico	2022 - 2023	

Titulación(es)

TitulaciónCentroCurso Periodo2184 - M.U. en Química Teórica yFacultad de Química1 PrimerModelización Computacional 13-V.1cuatrimestre

Materias

TitulaciónMateriaCaracter2184 - M.U. en Química Teórica y5 - OptatividadOptativaModelización Computacional 13-V.1

Coordinación

Nombre Departamento
SANCHEZ MARIN, JOSE 315 - Química Física
TUÑON GARCIA DE VICUÑA, IGNACIO NILO 315 - Química Física

RESUMEN

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

COMPETENCIAS

2184 - M.U. en Química Teórica y Modelización Computacional 13-V.1

- Que los/las estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- Que los/las estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- Que los/las estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- Que los/las estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- Los estudiantes deben ser capaces de fomentar, en contextos académicos y profesionales, el avance tecnológico y científico dentro de una sociedad basada en el conocimiento y en el respeto a: a) los derechos fundamentales y de igualdad de oportunidades entre hombres y mujeres, b) los principios de igualdad de oportunidades y accesibilidad universal de las personas con discapacidad y c) los valores propios de una cultura de paz y de valores democráticos.
- El estudiante posee capacidad de análisis y síntesis.
- El estudiante demuestra su conocimiento y comprensión de los hechos aplicando conceptos, principios y teorías relacionadas con la Química Teórica y Modelización Computacional.
- El estudiante tiene capacidad de generar nuevas ideas.

RESULTADOS DE APRENDIZAJE

Conocer los fundamentos de la luz láser y sus principales aplicaciones en química cuántica y física atómica y molecular. Familiarizarse con la resolución de problemas dependientes del tiempo y el tratamiento de estados del continuo.

DESCRIPCIÓN DE CONTENIDOS

1. Temas y sub-temas

- 1. Introducción. ¿Qué es un láser? ¿Para qué se usa? Características de la luz láser.
- 2. Propiedades del láser. Niveles de energía. Formación de líneas espectrales: coeficientes de Einstein. Emisión espontánea y estimulada. Inversión de población y saturación. Ensanchamiento de líneas espectrales. Ejemplos prácticos de láseres.
- 3. Láseres de onda continua (cw) y láseres pulsados. Generación de láseres de onda continua. Reducción del ancho de banda. Formación de láseres pulsados por Q switching y por modelocking.
- 4. Interacción láser-materia. Descripción clásica y cuántica. Procesos multifotónicos y efecto túnel. Modelo de los tres pasos. Generación de armónicos altos. Pulsos láseres de attosegundos y trenes de pulsos de attosegundos.
- 5. Efectos de campo intenso. Frecuencias de Rabi. Desplazamiento Stark. Ionización por encima del umbral (ATI). Estados vestidos. Estados de Volkov y de Floquet. Aproximación de campo intenso.
- 6. Tratamientos teóricos. Bases de estados en el continuo electrónico: Bsplines. Integración directa de la ecuación de Schrödinger dependiente del tiempo. Métodos híbridos.
- 7. Espectroscopía resuelta en el tiempo. Esquemas de pump-probe con pulsos láser. Usos en femtoquímica y attofísica. Attoquímica.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas 34,00	% Presencial
Clases de teoría		
Seminarios	10,00	100
Tutorías regladas	6,00	100
Elaboración de trabajos individuales	20,00	0
Estudio y trabajo autónomo	35,00	0
Preparación de clases prácticas y de problemas	20,00	0
TOTAL	125,00	

METODOLOGÍA DOCENTE

Lección Magistral: El profesor expondrá los contenidos del curso en sesiones presenciales de dos horas basándose en los materiales docentes publicados en la plataforma Moodle.

Docencia en red. Se utilizará las distintas herramientas que ofrece la plataforma moodle (http://www.uam.es/moodle). Publicación de contenidos de la asignatura, herramientas de trabajo en grupo: foros de discusión y wiki, correo electrónico

Tutorías. El profesor realizará tutorías individuales o con grupos reducidos sobre cuestiones puntuales que los estudiantes puedan plantear.

EVALUACIÓN

Convocatoria ordinaria

Los conocimientos adquiridos por el estudiante serán evaluados a lo largo de todo el curso, intentando que el estudiante avance de forma regular y constante en la asimilación de los contenidos de la asignatura.

La nota final de la asignatura se basará en los ejercicios, trabajos y discusión de los mismos que se irá realizando durante el curso. Dichos trabajos se puntuarán en base a los siguientes porcentajes:

- 70% Examen al final del curso
- 30% Realización de un informe crítico de las prácticas realizadas o de ejercicios relacionados con la asignatura.

Convocatoria extraordinaria

Se realizará un examen final único que será de carácter teórico y que abarcará los contenidos de toda la asignatura. La puntuación en la convocatoria extraordinaria se realizará en base a los siguientes porcentajes:

- 70% el examen final,
- 30% la realización de un informe crítico de las prácticas realizadas o de ejercicios relacionados con la asignatura.

REFERENCIAS

Básicas

- 1. Introduction to Laser Technology. B. Hitz, J. J. Swing and J. Hecht. IEEE Press, New York, 2001.
 - 2. Introduction to Quantum Optics. G. Grynberg, A. Aspect and C. Fabre. Cambridge University Press. Cambridge, 2010.
 - 3. Principles of Lasers. O. Svelto. Plenum Press, New York. 1998.
 - 4. Laser Fundamentals. W. T. Silfvast. Cambridge University Press, Cambridge, 2004.
 - 5. Quantum Optics. M. O. Scully. Cambridge University Press. Cambridge, 1997.
 - 6. Lasers. A. E. Siegman. University Science Books. 1986.
 - 7. Bachau H, Cormier E, Decleva P, Hansen J E and Martín F 2001 Rep. Prog. Phys. 64 1815.

8. Martín F 1999 J. Phys. B (Topical Review) 32 R197

