

FICHA IDENTIFICATIVA

Datos de la Asignatura			
Código	44002		
Nombre	Sólidos		
Ciclo	Máster		
Créditos ECTS	5.0		
Curso académico	2022 - 2023		

Titulación(es)

TitulaciónCentroCurso Periodo2184 - M.U. en Química Teórica yFacultad de Química1 PrimerModelización Computacional 13-V.1cuatrimestre

Materias

TitulaciónMateriaCaracter2184 - M.U. en Química Teórica y5 - OptatividadOptativaModelización Computacional 13-V.1

Coordinación

Nombre Departamento
SANCHEZ MARIN, JOSE 315 - Química Física
TUÑON GARCIA DE VICUÑA, IGNACIO NILO 315 - Química Física

RESUMEN

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

COMPETENCIAS

2184 - M.U. en Química Teórica y Modelización Computacional 13-V.1

- Que los/las estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- Que los/las estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- Que los/las estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- Que los/las estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- Los estudiantes deben ser capaces de fomentar, en contextos académicos y profesionales, el avance tecnológico y científico dentro de una sociedad basada en el conocimiento y en el respeto a: a) los derechos fundamentales y de igualdad de oportunidades entre hombres y mujeres, b) los principios de igualdad de oportunidades y accesibilidad universal de las personas con discapacidad y c) los valores propios de una cultura de paz y de valores democráticos.
- El estudiante es capaz de adaptarse a diferentes entornos culturales.
- El estudiante posee capacidad de análisis y síntesis.
- Adquirir una visión global de las distintas aplicaciones de la Química Teórica y modelización en campos de la Química, Bioquímica, Ciencias de Materiales, Astrofísica y Catálisis.
- Comprender los fundamentos teóricos y prácticos de técnicas con las que puede analizar la estructura electrónica, morfológica y estructural de un compuesto.

RESULTADOS DE APRENDIZAJE

Proporcionar al alumno la metodología básica para el tratamiento en sistemas condensados periódicos puros y con defectos de los siguientes aspectos: Cristalografía; Estructura electrónica; Termodinámica; Transiciones de fase; Superficies; Catálisis heterogénea; Propiedades estructurales, ópticas y magnéticas de impurezas; Magnetismo. En el curso los estudiantes recibirán una introducción intensiva a la modelización y tratamiento de estos problemas en el estado sólido.

DESCRIPCIÓN DE CONTENIDOS

1. Temas y subtemas

- 1. CRISTALOGRAFÍA
- 1.1 Simetría en cristales.
- 1.2 Cálculos cristalográficos
- 2. ESTRUCTURA ELECTRÓNICA
- 2.1 Modelos de clúster y modelos periódicos
- 2.2 Metodologías de cálculo
- 3. TERMODINÁMICA
- 3.1 Aproximación estática y modelos térmicos
- 3.2 Transiciones de fase
- 4. ENLACE QUÍMICO
- 4.1 Topologías inducidas por campos escalares en cristales
- 4.2 Caracterización del enlace químico en sólidos y relación con propiedades macroscópicas
- 5. CÁLCULOS AB INITIO DE ESTRUCTURA ELECTRÓNICA EN SÓLIDOS
- 5.1 Comparación de métodos basados en la función de onda y en el funcional de la densidad
- 5.2 De las bases de datos cristalográficas a los cálculos de estructura electrónica
- 6. PROPIEDADES TERMODINÁMICAS DE SÓLIDOS CRISTALINOS
- 6.1 Curva E(V) y modelo estático
- 6.2 Fonones en cristales
- 7. SIMULACIÓN AB INITIO DE LA ESTRUCTURA, PROPIEDADES TERMODINAMICAS Y REACTIVIDAD EN SUPERFICIES
- 7.1 Modelos de cluster y modelos periódicos
- 7.2 Adsorción y reactividad en superficies
- 8. PROPIEDADES ÓPTICAS
- 8.1 Química cuántica y las ecuaciones de Maxwell macrocópicas
- 8.2 Aplicaciones
- 9. ELEMENTOS DE MAGNETISMO MOLECULAR Y CRISTALINO
- 9.1 Hamiltonianos modelo y efectivos
- 9.2 Aplicaciones

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Clases de teoría	50,00	100
Elaboración de trabajos individuales	30,00	0
Estudio y trabajo autónomo	45,00	0
TOTAL	125,00	

METODOLOGÍA DOCENTE

Lección Magistral: El profesor expondrá los contenidos del curso en sesiones presenciales de dos horas basándose en los materiales docentes publicados en la plataforma Moodle.

Docencia en red. Se utilizará las distintas herramientas que ofrece la plataforma moodle (http://www.uam.es/moodle). Publicación de contenidos de la asignatura, herramientas de trabajo en grupo: foros de discusión y wiki, correo electrónico

Resolución de ejercicios prácticos: Problemas numéricos, cuestiones tipo test, interpretación y procesamiento de la información, evaluación de publicaciones científicas, etc.

Informes o memorias escritas: Orientación y supervisión en la preparación de informes o memorias escritas.

EVALUACIÓN

Convocatoria ordinaria

Los conocimientos adquiridos por el estudiante serán evaluados a lo largo de todo el curso, intentando que el estudiante avance de forma regular y constante en la asimilación de los contenidos de la asignatura.

La nota final de la asignatura se basará en los ejercicios, trabajos y discusión de los mismos que se irá realizando durante el curso. Dichos trabajos se puntuarán en base a los siguientes porcentajes:

- 60% Realización de un examen práctico sobre la teoría y las prácticas de la asignatura.
- 20% la discusión que sobre la misma se realice con el profesor en tutorías y seminarios.

- 20% la realización de un informe sobre un artículo científico.

Convocatoria extraordinaria

Se realizará un examen final único que será de carácter teórico y que abarcará los contenidos de toda la asignatura. La puntuación en la convocatoria extraordinaria se realizará en base a los siguientes porcentajes:

- 70% el examen final,
- 30% la realización de un informe crítico de las prácticas realizadas o de ejercicios relacionados con la asignatura.

REFERENCIAS

Básicas

- [01] L. Kantorovich, "Quantum Theory of the Solid State" (Kluwer, Dordrecht, The Netherlands, 2004). [02] R. M. Martin, "Electronic Structure: Basic theory and practical methods" (Cambridge UP, Cambridge, UK, 2004).
 - [03] E. Kaxiras, "Atomic and Electronic Structure of Solids" (Cambridge UP, Cambridge, UK, 2003).
 - [04] O. Anderson, "Equations of State for Solids in Geophysics and Ceramic Science" (Oxford UP, Oxford, UK, 1995).
 - [05] A. Otero-de-la-Roza and V. Luaña, "Equations of state and thermodynamics of solids using empirical corrections in the quasiharmonic approximation", Phys. Rev. B 84 (2011) 024109.
 - [06] A. R. Oganov, Ed, "Modern methods of crystal structure prediction" (Wiley-VCH, 2011).
 - [07] J. P. Poirier, "Introduction to the Physics of the Earth's Interior" (Cambridge UP, Cambridge, UK, 2000).
 - [08] B. Bersuker, "The Jahn-Teller effect" (Cambridge UP, Cambridge, UK, 2006).
 - [09] E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen, and W. Yang, Revealing Noncovalent Interactions, J. Am. Chem. Soc. 132, 6498 (2010)
 - [10] B. Silvi, A. Savin, Classification of chemical bonds based on the topological analysis of electron localization functions, Nature 371, 683 (1994)
- [11] J. Contreras-Garcia, A. M. Pendas, B. Silvi, J. M. Recio, Computation of local and global properties of the ELF topology in crystals, J. Theor. Chem. Comp. 113, 1068 (2009)
 - [12] A. Otero-de-la-Roza, J. Contreras-Garcia, E. R. Johnson, Revealing non-covalent interactions in solids, NCI plots revisited Phys. Chem. Phys. 14, 12165 (2012)
 - [13] P. García-Fernández, J. Wojdel, J. Iñiguez and J. Junquera Second-principles method for materials simulations including electron and lattice degrees of freedom Phys. Rev. B 93, 195137 (2016)
 - [14] M. S. Dresselhaus, G. Dresselhaus, A. Jorio Group Theory: Applications to the Physics of Condensed Matter (Springer, 2007)
 - [15] J.L. Whitten and H. Yang, Theory of Chemisorption and reactions on metal surfaces Surf. Sci. rep.

24, 59 (1996)

- [16] A. R. Leach, "Molecular modeling" (Prentice Hall, 2001).
- [17] T. Schlick, "Molecular modeling and simulation" (Springer, 2002).
- [18] D. Marx and J. Hutter, "Ab initio molecular dynamics: Theory and implementation", in "Modern methods and algorithms on quantum chemistry" by J. Grotendorst (Ed.), (John von Neumann Institute, NIC series vol. 1 \& 3, 2000).
- [19] C. Fiolhais, F. Nogueira and M. A. L. Marques, Eds. "A Primer in Density Functional Theory", (Springer, Heidelberg, 2003).
- [20] R. Dronskowski "Computational Chemistry of Solid State Materials" (Wiley-VCH, 2005).
- [21] P. Huang, and E. A. Carter, "Advances in Correlated Electronic Structure Methods for Solids, Surfaces and Nanostructures", Ann. Rev. Phys. Chem. 59 (2008) 261.
 - [22] G. Pacchioni, A. M. Ferrari, A. M. Márquez, and F. Illas, "Importance of Madelung Potential in Quantum Chemical Modeling of Ionic Surfaces", J. Comput. Chem. 18 (1997) 617.
 - [23] J. N. Norskov, F. Abild-Pedersen, F. Studt, and T. Bligaard "Density functional theory in surface chemistry and catalysis" PNAS 108 (2011) 937-943.
 - [24] F. Yang, J. Graciani, J. Evans, P. Liu, J. Hrbek, J. Fernández. Sanz, and J. A. Rodríguez, "CO oxidation on inverse CeOx/Cu(111) Catalysts: High catalytic activity and ceria-promoted dissociation of O2", J. Am. Chem. Soc. 133 (2011) 3444.
 - [25] C. de Graaf, R. Broer, Magnetic Interactions in Molecules and Solids Second volume of the textbooks of the TCCM Master. (Springer 2015).
 - [26] J. P. Malrieu, R. Caballol, C. J. Calzado, C. de Graaf, N. Guihéry Magnetic Interactions in Molecules and Highly Correlated Materials: Physical Content, Analytical Derivation, and Rigorous Extraction of Magnetic Hamiltonians, Chemical Reviews 114, 429-492 (2014).