

Guía Docente 43992 Métodos de la química teórica l

FICHA IDENTIFICATIVA

Datos de la Asignatur	a
Código	43992
Nombre	Métodos de la química teórica I
Ciclo	Máster
Créditos ECTS	5.0
Curso académico	2021 - 2022

Titulación(es)	

Titulación	Centro	Curso Periodo
2184 - M.U. en Química Teórica y Modelización Computacional 13-V.1	Facultad de Química	1 Anual
3156 - Química Teórica y Modelización Computacional	Escuela de Doctorado	0 Primer cuatrimestre

Materias

Titulación	Materia	Caracter
2184 - M.U. en Química Teórica y Modelización Computacional 13-V.1	2 - Métodos	Obligatoria
3156 - Química Teórica y Modelización Computacional	1 - Complementos de Formación	Optativa

Coordinación

Nombre	Departamento
SANCHEZ MARIN, JOSE	315 - Química Física

RESUMEN

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Guía Docente 43992 Métodos de la química teórica I

Otros tipos de requisitos

No hay requisitos previos.

COMPETENCIAS

2184 - M.U. en Química Teórica y Modelización Computacional 13-V.1

- Que los/las estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- Que los/las estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- Que los/las estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- Que los/las estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- Los estudiantes deben ser capaces de fomentar, en contextos académicos y profesionales, el avance tecnológico y científico dentro de una sociedad basada en el conocimiento y en el respeto a: a) los derechos fundamentales y de igualdad de oportunidades entre hombres y mujeres, b) los principios de igualdad de oportunidades y accesibilidad universal de las personas con discapacidad y c) los valores propios de una cultura de paz y de valores democráticos.
- El estudiante es capaz de adaptarse a diferentes entornos culturales.
- El estudiante es capaz de resolver problemas y tomar decisiones.
- El estudiante demuestra su conocimiento y comprensión de los hechos aplicando conceptos, principios y teorías relacionadas con la Química Teórica y Modelización Computacional.
- Comprender los fundamentos teóricos y prácticos de técnicas con las que puede analizar la estructura electrónica, morfológica y estructural de un compuesto.
- El estudiante entiende los principios básicos de las metodologías "ab initio" y Teoría de los Funcionales de la Densidad.
- El estudiante es capaz de discernir entre los diferentes métodos existentes y cómo seleccionar el más adecuado para cada problema.

Guía Docente 43992 Métodos de la química teórica I

RESULTADOS DE APRENDIZAJE

Después de cursar la asignatura los alumnos deberán estar en capacidad de:

- Comprender los fundamentos teóricos y prácticos de técnicas computacionales con las que puede analizar la estructura electrónica, morfológica y estructural de un compuesto e interpreta adecuadamente los resultados.
- Entender los principios básicos de las metodologías "ab initio" y Teoría de los Funcionales de la Densidad.
- Discernir entre los diferentes métodos existentes y cómo seleccionar el más adecuado para cada problema.
- Demostrar su conocimiento y comprensión de los hechos aplicando conceptos, principios y teorías relacionadas con la Química Teórica y Modelización Computacional.

DESCRIPCIÓN DE CONTENIDOS

1. Métodos Ab-initio

- Método de Hartree-Fock: RHF y UHF
- Funciones de base, pseudopotenciales y potenciales efectivos.
- Visón general de métodos no perturbacionales basados en función de onda: Métodos de interacción de configuraciones y Métodos Multiconfiguracionales.
- Teoría de perturbaciones Moller-Plesset.
- Introducción a los métodos Coupled Cluster

En la parte de Métodos de la Química Cuántica se cubre los teoremas fundamentales en los que se basan los métodos y la formulación de los principales métodos "ab initio".

2. Teoría del Funcional de la Densidad

- Conceptos preliminares. Teoremas de Hohenberg-Kohn.
- Método de Kohn-Sham.
- Aproximaciones al potencial de intercambio-correlación (DFAs)

En el apartado correspondiente a la Teoría del Funcional de la Densidad se pretende que el alumno entienda los principios básicos de la teoríay comprenda cómo se desarrollan los principales tipos de funcionales de intercambio-correlación y sus características. El alumno debe ser capaz de discernir entre los diferentes métodos existentes cómo seleccionar el más adecuado para cada problema.

Guía Docente 43992 Métodos de la química teórica I

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Clases de teoría	20,00	100
Seminarios	15,00	100
Elaboración de trabajos individuales	30,00	0
Estudio y trabajo autónomo	40,00	0
Preparación de clases prácticas y de problemas	20,00	0
TOTAL	125,00	

METODOLOGÍA DOCENTE

Lección Magistral: El profesor expondrá los contenidos del curso en sesiones presenciales de dos horas basándose en los materiales docentes publicados en la plataforma Moodle.

Docencia en red. Se utilizará las distintas herramientas que ofrece la plataforma moodle (http://www.uam.es/moodle). Publicación de contenidos de la asignatura, herramientas de trabajo en grupo: foros de discusión y wiki, correo electrónico

Tutorías. El profesor realizará tutorías individuales o con grupos reducidos sobre cuestiones puntuales que los estudiantes puedan plantear.

Seminarios online. Con posterioridad a las clases expositivas, se realizarán seminarios online para discutir los resultados obtenidos en los trabajos propuestos, las dudas sobre las metodologías empleadas, y supervisar la preparación de los informes elaborados por los estudiantes.

EVALUACIÓN

Convocatoria ordinaria

Los conocimientos adquiridos por el estudiante serán evaluados a lo largo de todo el curso, intentando que el estudiante avance de forma regular y constante en la asimilación de los contenidos de la asignatura.

La nota final de la asignatura se basará en los ejercicios, trabajos y discusión de los mismos que se irá realizando durante el curso. Dichos trabajos se puntuarán en base a los siguientes porcentajes:

- 70 % Realización de un informe crítico de las prácticas realizadas o de ejercicios relacionados con la asignatura,
- 30 % la discusión que sobre la misma se realice con el profesor en tutorías y seminarios.

Guía Docente 43992 Métodos de la química teórica l

Convocatoria extraordinaria

Se realizará un examen final único que será de carácter teórico y que abarcará los contenidos de toda la asignatura. La puntuación en la convocatoria extraordinaria se realizará en base a los siguientes porcentajes:

- 70% el examen final,
- 30 % Realización de un informe crítico de las prácticas realizadas o de ejercicios relacionados con la asignatura.

REFERENCIAS

Básicas

- - Helgaker, T., Jørgensen, P., Olsen, J.; Molecular Electronic-Structure Theory. John Wiley & Sons Ltd, 2000.
 - Szabo, A., Ostlund, N. S.; Modern Quantum Chemistry. Introduction to Advanced Electronic Structure Theory. McGraw-Hill, 1989
 - Roos, B. Editor; Lecture notes in quantum chemistry: European summer school in quantum chemistry. Springer-Verlag 1994. Chapters on CC, CI, MCSCF, calibration.
 - Linear-Scaling Techniques in Computational Chemistry and Physics. Zaleny, R.; Papadopoulos, M.G.; Mezey, P.G.; Leszczynski, J. (Eds.). Springer (Berlin) 2011.
 - A Chemist's Guide to Density Functional Theory. W. Koch and M.C. Holthausen, Wiley-VCH, 2001
 - Density-Functional Theory of Atoms and Molecules. R.G. Parr and W. Yang, Oxford University Press, New York, 1989
 - Electronic Structure. R.M. Martin, Cambridge University Press, Cambridge, 2004

ADENDA COVID-19

Esta adenda solo se activará si la situación sanitaria lo requiere y previo acuerdo del Consejo de Gobierno