

FICHA IDENTIFICATIVA

Datos de la Asignatura		
Código	43826	
Nombre	SIG y teledetección	
Ciclo	Máster	
Créditos ECTS	3.0	
Curso académico	2022 - 2023	

2227 - Máster Universitario Ingeniería Ambiental

Centro

Escuela Técnica Superior de Ingeniería

Curso Periodo

2 Primer cuatrimestre

Materias

Titulación(es)

TitulaciónMateriaCaracter2227 - Máster Universitario Ingeniería8 - Optativas ComunesOptativaAmbiental

Coordinación

Nombre Departamento

SECO TORRECILLAS, MARIA AURORA 245 - Ingeniería Química

RESUMEN

Profesores UPV: Jorge Abel Recio Recio, Luis Ángel Ruiz Fernández

La asignatura aporta conocimientos y destrezas para el manejo y uso de datos de observación de la Tierra y su integración con otros datos y productos georreferenciados para resolver problemas medioambientales y para la gestión sostenible de los recursos naturales. En particular, se contribuirá a los objetivos de desarrollo sostenible siguientes:13. Acción por el clima: se utilizarán datos, productos y métodos para gestionar la evolución del clima (indicadores climáticos), a través del conocimiento de programas como Copernicus que proporcionan productos de variables climáticas esenciales y misiones espaciales y datos para la extracción de variables de monitorización.15. Vida de ecosistemas terrestres: Se utilizarán datos de observación terrestre (imágenes de satélite y modelos digitales del terreno) y analizarán sus aplicaciones, entre ellas la gestión sostenible de los bosques, la caracterización y evolución de los usos y coberturas del suelo y la monitorización de la biodiversidad en los diversos espacios naturales.

TEORÍA:

Análisis espacial y modelos digitales del terreno.

Estudio de las propiedades espectrales de la superficie terrestre.

Sensores y plataformas de observación de la Tierra.

Técnicas de preprocesado y realce de imágenes.

Análisis de imágenes multiespectrales y clasificación de imágenes aplicado a estudios de medio ambiente.

Técnicas de análisis de cambios ambientales mediante teledetección.

Integración de SIG e imágenes en aplicaciones ambientales.

PRÁCTICAS:

- 1. Ejercicios de análisis espacial
- 2. Modelos digitales del terreno
- 3.Interpretación, realce y ajuste radiométrico de imágenes
- 4. Correcciones geométricas
- 5. Técnicas de análisis multiespectral
- 6. Clasificación de imágenes para la obtención de mapas temáticos

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

No hay requisitos previos. Se recomiendan conocimientos básicos de cartografía.

COMPETENCIAS (RD 1393/2007) // RESULTADOS DEL APRENDIZAJE (RD 822/2021)

2227 - Máster Universitario Ingeniería Ambiental

- Que los/las estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- Que los/las estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- Que los/las estudiantes sepan comunicar sus conclusiones ?y los conocimientos y razones últimas que las sustentan? a públicos especializados y no especializados de un modo claro y sin ambigüedades.

- Que los/las estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- Identificar y aplicar las tecnologías, herramientas y técnicas en el campo de la ingeniería ambiental.
- Adaptarse a los cambios, siendo capaz de aplicar los fundamentos de la Ingeniería Ambiental a casos no conocidos y utilizar tecnologías nuevas y avanzadas y otros progresos relevantes, con iniciativa y espíritu emprendedor.
- Organizar su propio trabajo así como los medios materiales y humanos necesarios para alcanzar los objetivos planteados.
- Identificar, enunciar y analizar integralmente problemas ambientales.
- Diseñar y calcular soluciones ingenieriles a problemas ambientales, comparando y seleccionando alternativas técnicas e identificando tecnologías emergentes.
- Aplicar herramientas y sistemas de gestión ambiental.
- Evaluar de forma integral la calidad ambiental del agua, especialmente cuando existe riesgo para la salud pública.
- Evaluar de forma integral la calidad ambiental del aire, especialmente cuando existe riesgo para la salud pública.
- Evaluar de forma integral la calidad ambiental del suelo, especialmente cuando existe riesgo para la salud pública.
- Aplicar técnicas para el análisis y resolución de problemas de ordenación del territorio.

RESULTADOS DE APRENDIZAJE (RD 1393/2007) // SIN CONTENIDO (RD 822/2021)

- 1 Comprender el concepto de un SIG, adquirir los conocimientos básicos para su diseño y su aplicación en la gestión ambiental.
- 2 Aprender a identificar los elementos del paisaje, su alteración y evolución mediante la interpretación de imágenes multiespectrales.
- 3 Establecer criterios técnicos para la selección adecuada de imágenes espaciales en aplicaciones ambientales, e identificación de las fuentes de adquisición y distribución.
- 4 Conocer y saber aplicar las técnicas básicas para el preprocesado geométrico y radiométrico de las imágenes satelitales y áreas.
- 5 Capacidad de aplica metodologías de tratamiento digital de imágenes para el análisis y cuantificación de fenómenos naturales.

6 Aprender a integrar y procesar imágenes y datos cartográficos para la generación de mapas de riesgos, ocupación de suelo y estimación de daños por desastres naturales.

7 Conocer metodologías de tratamiento de imágenes para cuantificar procesos de evolución y degradación del paisaje y territorio.

DESCRIPCIÓN DE CONTENIDOS

1. Análisis espacial y modelos digitales del terreno

Los Sistemas de Información Geográfica. Definiciones. Funciones de los SIG en el contexto de la gestión ambiental.

Propiedades de la información geográfica. Representación cartográfica y bases de datos. Modelos y estructuras de datos.

Modelos digitales del terreno

Análisis geográficos. Consultas espaciales y de atributos. Modelización de procesos

2. Propiedades espectrales de la superficie terrestre

El espectro electromagnético. Leyes de radiación. Influencia de la atmósfera en la energía electromagnética

Respuesta espectral del agua, el suelo y la vegetación

Interpretación de imágenes y fenómenos naturales

3. Sensores y plataformas de observación de la Tierra

Resolución de un sistema sensor

Tipos de órbitas, plataformas espaciales y sensores de observación de la Tierra

Bases de datos de distribución de imágenes. Criterios de selección de imágenes para aplicaciones ambientales

Programas nacionales e internacionales: Plan Nacional de Teledetección (PNT), PNOA, Copernicus)

4. Preprocesado y realce de imágenes

Distorsiones y errores geométricos de las imágenes

Modelos de corrección radiométrica de imágenes

Métodos de modificación del histograma y mejora del contraste

5. Análisis multiespectral y clasificación de imágenes

Análisis de componentes principales: concepto y aplicaciones

Indices de vegetación y componentes tasseled cap: análisis de biomasa, densidad y estado de la vegetación

Clasificación de imágenes: Aplicación a la elaboración de mapas de usos y coberturas del suelo

6. Análisis de cambios ambientales

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial	
Clases de teoría	18,00	100	
Prácticas en aula informática	8,00	100	
Clases teórico-prácticas	2,00	100	
Prácticas en aula	2,00	100	
Elaboración de trabajos en grupo	10,00	0	
Estudio y trabajo autónomo	5,00	0	
Preparación de actividades de evaluación	10,00	0	
Preparación de clases de teoría	5,00	0	
Preparación de clases prácticas y de problemas	5,00	0	
Resolución de casos prácticos	10,00	0	
TOTAL	_ 75,00		

METODOLOGÍA DOCENTE

Las actividades formativas se desarrollarán de acuerdo con la siguiente distribución:

· Actividades teóricas.

Descripción: En las clases teóricas se desarrollarán los temas proporcionando una visión global e integradora, analizando con mayor detalle los aspectos clave y de mayor complejidad, fomentando, en todo momento, la participación del estudiante.

· Actividades prácticas.

Descripción: Complementan las actividades teóricas con el objetivo de aplicar los conceptos básicos y ampliarlos con el conocimiento y la experiencia que vayan adquiriendo durante la realización de los trabajos propuestos. Comprenden los siguientes tipos de actividades presenciales:

- o Clases de problemas y cuestiones en aula
- o Sesiones de discusión y resolución de problemas y ejercicios previamente trabajados por los/las estudiantes
- o Tutorías programadas (individualizadas o en grupo)

· Trabajo personal del estudiante.

Descripción: Realización (fuera del aula) de trabajos monográficos, búsqueda bibliográfica dirigida, resolución de cuestiones y problemas, así como la preparación de clases y exámenes (estudio). Esta tarea se realizará de manera individual e intenta potenciar el trabajo autónomo.

· Trabajo en pequeños grupos.

Descripción: Realización, por parte de pequeños grupos de estudiantes (2-4) de trabajos y resolución de problemas fuera del aula. Esta tarea complementa el trabajo individual y fomenta la capacidad de integración en grupos de trabajo.

· Evaluación.

Descripción: Realización de cuestionarios individuales de evaluación en el aula con la presencia del profesor/a.

Se utilizará la plataforma de *e-learning* (Aula Virtual de la Universitat de València y/o PoliformaT de la Universidad Politécnica de Valencia) como soporte de comunicación con el alumnado. A través de ella se tendrá acceso al material didáctico utilizado en clase, así como los problemas y ejercicios a resolver.

EVALUACIÓN

Descripción	Nº de actos	Peso (%)
Pruebas objetivas (tipo test)	2	50
Observación	5000	7
Caso	1	8
Trabajo académico	5	35

2 pruebas objetivas con preguntas cortas de evaluación de conceptos teóricos (50%). El alumno deberá obtener un mínimo de 4/10 en cada prueba.

Informes o memoria de los ejercicios realizados en las prácticas (35%)

Otras actividades de evaluación continua (4 presentaciones orales, discusión y trabajo en grupos, metodologías de clase inversa) (15%).

Porcentaje máximo de ausencia

Actividad	Porcentaje	Observaciones
Teoría Aula	20	

Teoría Seminario	0	
Práctica Aula	0	ALES
Práctica Laboratorio	20	
Práctica Informática	0	
Práctica Campo	0	

REFERENCIAS

Básicas

Moreno Jiménez, A. (2005, coord.): Sistemas y análisis de la información geográfica. Manual de autoaprendizaje con ArcGIS. (Cocero Matesanz, David)

Teledetección ambiental : la observación de la tierra desde el espacio (Emilio Chuvieco Salinero)

Remote sensing: models and methods for image processing (Robert A. Schowengerdt)

Remote sensing and image interpretation (Thomas M. Lillesand)

Prácticas de teledetección : (Idrisi, Erdas, Envi) (*)