

# FICHA IDENTIFICATIVA

| Datos de la Asignatura |                                                                            |  |  |  |
|------------------------|----------------------------------------------------------------------------|--|--|--|
| Código                 | 43817                                                                      |  |  |  |
| Nombre                 | Simulación y diseño avanzado de estaciones depuradoras de aguas residuales |  |  |  |
| Ciclo                  | Máster                                                                     |  |  |  |
| Créditos ECTS          | 3.0                                                                        |  |  |  |
| Curso académico        | 2023 - 2024                                                                |  |  |  |

| Titulación(es)                      |                                                                                 |                       |  |  |
|-------------------------------------|---------------------------------------------------------------------------------|-----------------------|--|--|
| Titulación                          | Centro                                                                          | Curso Periodo         |  |  |
| 2227 - M.U. en Ingeniería Ambiental | Escuela Técnica Superior de<br>Ingeniería                                       | 2 Primer cuatrimestre |  |  |
| 2250 - M.U. en Ingeniería Ambiental | Escuela Técnica Superior de<br>Ingeniería                                       | 2 Primer cuatrimestre |  |  |
| Materias                            |                                                                                 |                       |  |  |
| Titulación                          | Materia                                                                         | Caracter              |  |  |
| 2227 - M.U. en Ingeniería Ambiental | 5 - Optatividad para Especialización                                            | Optativa              |  |  |
| 2250 - M.U. en Ingeniería Ambiental | 22 - Simulación y diseño avanzado de estaciones depuradoras de aguas residuales | Optativa              |  |  |

| _ |                     |   |   |   |   |   |   |          | , |   |
|---|---------------------|---|---|---|---|---|---|----------|---|---|
| C | $\boldsymbol{\cap}$ | ^ | r | М | п | n | 2 | $\sim$ 1 | 1 | n |
| • | v                   | v |   | u | ш |   | а | u        | v | ш |

Nombre Departamento

SECO TORRECILLAS, AURORA 245 - Ingeniería Química

## RESUMEN

Profesores UPV: Enrique Asensi Dasí y Joaquín Serralta Sevilla

La asignatura pretende aportar al alumno los conocimientos y habilidadesnecesarios para el diseño y simulación de instalaciones de tratamiento deaguas residuales. Los principales objetivos específicos de la asignaturason:

- Profundizar en la aplicación de modelos matemáticos para el diseño y lasimulación de Estaciones Depuradoras de Aguas Residuales



- Manejar la herramienta informática DESASS (DEsign and Simulation ofActivated Sludge Systems)
- Diseñar Estaciones Depuradoras de Aguas Residuales con eliminaciónbiológica de materia orgánica y nutrientes, y con digestión biológica de fangos

La asignatura de Simulación y Diseño Avanzado de Estaciones Depuradoras de Aguas Residuales es una asignatura de carácter optativo perteneciente al bloque de intensificación en dirección de estaciones depuradoras de aguas residuales. En esta asignatura los alumnos profundizarán en la aplicación de modelos matemáticos para el diseño y la simulación de Estaciones Depuradoras de Aguas Residuales y se familiarizarán con la herramienta informática DESASS (DEsign and Simulation of Activated Sludge Systems.

Esta asignatura se fundamenta en los conceptos adquiridos en las asignaturas de Tratamiento de Aguas y Modelación Avanzada de Tratamiento de Aguas que se imparten durante el primer curso.

## **CONOCIMIENTOS PREVIOS**

## Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

## Otros tipos de requisitos

Se recomiendan conocimientos de las asignaturas:

Tratamiento de aguas Modelación avanzada de tratamiento de aguas

## COMPETENCIAS

## **RESULTADOS DE APRENDIZAJE**

- 1 Utilizar la herramienta informática DESASS.
- 2 Caracterizar el agua residual influente y comprender su importancia para el diseño y simulación de una EDAR
- 3 Conocer las principales variables de diseño y operación de una EDAR así como su efecto sobre la calidad del efluente
- 4 Evaluar y analizar críticamente distintas alternativas de diseño y operación de una EDAR
- 5 Ser capaz de diseñar un esquema de tratamiento que cumpla los requisitos legales de vertido



# **DESCRIPCIÓN DE CONTENIDOS**

- 1. Introducción
- 2. Eliminación de materia orgánica y nitrificación
- 3. Eliminación de materia orgánica y nitrógeno
- 4. Eliminación de materia orgánica y fósforo
- 5. Elimación de materia orgánica, nitrógeno y fósforo
- 6. Sedimentación
- 7. Digestión de fangos
- 8. Diseño de una planta completa

# **VOLUMEN DE TRABAJO**

| ACTIVIDAD                                | Horas | % Presencial |
|------------------------------------------|-------|--------------|
| Prácticas en aula informática            | 21,00 | 100          |
| Clases de teoría                         | 6,00  | 100          |
| Clases teórico-prácticas                 | 3,00  | 100          |
| Elaboración de trabajos individuales     | 20,00 | 0            |
| Estudio y trabajo autónomo               | 15,00 | 0            |
| Preparación de actividades de evaluación | 10,00 | 0            |
| тс                                       | 75,00 |              |



## **METODOLOGÍA DOCENTE**

Las actividades formativas se desarrollarán de acuerdo con la siguiente distribución:

#### · Actividades teóricas.

Desarrollo expositivo de la materia con la participación del estudiante en la resolución de cuestiones puntuales. Realización de cuestionarios individuales de evaluación

## • Actividades prácticas.

Aprendizaje mediante resolución de problemas, ejercicios y casos de estudio a través de los cuales se adquieren competencias sobre los diferentes aspectos de la materia.

## • Trabajos en laboratorio y/o aula informática

Aprendizaje mediante la realización de actividades desarrolladas de forma individual o en grupos reducidos y llevadas a cabo en laboratorios y/o aulas de ordenador.

Se utilizará la plataforma de *e-learning* (Aula Virtual de la Universitat de València y/o PoliformaT de la Universidad Politécnica de Valencia) como soporte de comunicación con el alumnado. A través de ella se tendrá acceso al material didáctico utilizado en clase, así como los problemas y ejercicios a resolver.

## **EVALUACIÓN**

La evaluación de los alumnos se efectuará a partir de un examen y un trabajo académico. El examen consiste en la resolución de un caso de eliminación biológica de nutrientes con el programa DESASS. El trabajo académico consiste en el diseño de una estación depuradora completa de forma que se cumplan los requisitos de vertido exigidos. El examen tiene un peso del 30% y el trabajo académico del 70% sobre la nota final.

La ausencia máxima es del 20 %.

Los alumnos que no superen el examen o el trabajo académico podrán recuperarlos al final del cuatrimestre.

Para aprobar la asignatura es necesario sacar una nota media de 5 con una nota mínima de 4 puntos en el examen y en el trabajo académico.



# **REFERENCIAS**

## **Básicas**

- Tratamientos biológicos de aguas residuales (Ferrer Polo, José | Seco Torrecillas, Aurora)
  - -Tratamientos físicos y químicos de aguas residuales (Ferrer Polo, José | Seco Torrecillas, Aurora | Universidad Politécnica de Valencia Departamento de Ingeniería Hidráulica y Medio Ambiente)
  - -DESASS: A software tool for designing, simulating and optimising WWTPs (Ferrer, J. | Seco, A. | Serralta, J. | Ribes, J. | Manga, J. | Asensi, E.|Morenilla, J.J. | Llavador, F.)

