

FICHA IDENTIFICATIVA

Datos de la Asignatura		
Código	43466	
Nombre	Biología molecular y celular de la interacción patógeno-hospedador	
Ciclo	Máster	
Créditos ECTS	3.0	
Curso académico	2023 - 2024	

lación(

Titulación	Centro	Curso	Periodo
2210 - M.U. en Investig. Biología	Facultad de Ciencias Biológicas	1	Primer
Molecular, Celular Genética			cuatrimestre

Materias		
Titulación	Materia	Caracter
2210 - M.U. en Investig. Biología Molecular, Celular Genética	11 - Biología molecular y celular de la interacción patógeno-hospedador	Optativa

Coordinación

Nombre	Departamento		
GONZALEZ BIOSCA, ELENA	275 - Microbiología y Ecología		

RESUMEN

Asignatura de 3 créditos de la rama de conocimiento Microbiología. Su objeto es el estudio de la relación de los patógenos con sus hospedadores bajo un punto de vista celular y molecular. La asignatura se divide en dos partes.

Parte I

Mecanismos moleculares de patogenicidad bacteriana en humanos: Principales patógenos bacterianos según su modo de vida y las estrategias que han desarrollado para colonizar los tejidos, residir intracelularmente, causar lesiones tisulares, inducir la muerte celular y resistir las defensas inmunitarias innatas.

Parte III

Patógenos y plantas: Interacción patógeno-hospedador en plantas; modelo Ag*robacterium* spp. Principales factores de virulencia; Plásmidos e interacción del patógeno con la planta; Reservorios y rutas de transmisión; Medidas preventivas y control de las enfermedades en plantas.

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

COMPETENCIAS

2210 - M.U. en Investig. Biología Molecular, Celular Genética

- Que los/las estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- Que los/las estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- Que los/las estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- Que los/las estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- Ser capaces de realizar una toma rápida y eficaz de decisiones en su labor profesional o investigadora.
- Ser capaces de acceder a la información necesaria (bases de datos, artículos científicos, etc.) y tener suficiente criterio para su interpretación y empleo.
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- Ser capaces de acceder a herramientas de información en otras áreas del conocimiento y utilizarlas apropiadamente.
- Ser capaces de valorar la necesidad de completar su formación científica, histórica, en lenguas, en informática, en literatura, en ética, social y humana en general, asistiendo a conferencias o cursos y/o realizando actividades complementarias, autoevaluando la aportación que la realización de estas actividades supone para su formación integral.

RESULTADOS DE APRENDIZAJE

- 1. Conocer y aplicar correctamente el vocabulario y la terminología específica de la Microbiología y la patogénesis molecular.
- 2. Comprender el papel de las bacterias como agentes infecciosos.
- **3.** Adquirir los conocimientos básicos sobre los mecanismos de patogenicidad bacteriana, factores de virulencia, su expresión y regulación.
- **4.** Conocer la importancia de los elementos genéticos móviles en la interacción microorganismohospedador.
- **5.** Comprender el funcionamiento global del sistema inmunitario de un animal frente a una infección bacteriana.
- **6.** Adquirir una visión global de los mecanismos moleculares implicados en la interacción entre el patógeno y las células del hospedador (en especial las células de defensa).
- 7. Conocer los medidas generales de prevención y control de algunas de las enfermedades infecciosas de plantas y humanas.
- **8.** Conocer los campos de aplicación y la proyección social presente y futura de la investigación en microbiología y patogénesis molecular.
- 9. Comprender que el estudio de la interacción patógeno-hospedador es un área de investigación actual que se encuentra en plena expansión y desarrollo con repercusiones en Sanidad Pública y en Agricultura

DESCRIPCIÓN DE CONTENIDOS

1. Tema 1

Revisión del funcionamiento del sistema inmunitario en humanos. Inmunidad innata: complemento y fagocitosis. Inmunidad adquirida: inmunidad celular y humoral. Vacunas e inmunoestimulantes.

2. Tema 2

Patógenos intracelulares estrictos: Chlamidia, Coxiella, Ehrlichia, Rickettsia, Mycobacterium leprae.

3. Tema 3

Patógenos intracelulares facultativos que parasitan células fagocíticas: Legionella y Mycobacterium tuberculosis

5. Tema 5

Patógenos extracelulares no esporulantes: Bordetella, Borrelia, Treponema, Corynebacterium, Haemophilus, Escherichia coli, Helicobacter, Neisseria

6. Tema 6

Staphylococcus, Streptococcus, Vibrio cholerae, Yersinia

7. Tema 7

Patógenos extracelulares esporulantes: Bacillus anthracis, Clostridium

8. Tema 8.

Introducción al Microbioma Humano: Qué es el microbioma y cuáles son sus funciones. Formas de estudio y tipos de muestra. Comunidades microbianas: enterotipos y neumotipos. Transmisión y desarrollo de la microbiota. Microbiota de los distintos nichos humanos. Bacteroima, micobioma y viroma.

9. Tema 9

Aplicaciones del Microbioma: Descifrando la etiología de diversas enfermedades. Búsqueda de nuevas sustancias bioactivas. Búsqueda y desarrollo de nuevos probióticos. El microbioma como biomarcador para el diagnóstico. Tests de microbioma. Prebióticos, probióticos, simbióticos y postbióticos.

10. Tema 10

Interacción del Microbioma con el Hospedador humano: Prevención de infecciones mediante efectos antagonistas. Human Milk Oligosaccharides como prebióticos. Papel de la microbiota en la modulación inmunitaria. Hipótesis de la tolerancia inmunológica. Microbioma y cáncer. Microbioma y enfermedades metabólicas. Perspectivas futuras

11. Tema 11

Interacción patógeno-hospedador en plantas.

12. Tema 12

Bacterias fitopatógenas: mecanismos de patogénesis: Agrobacterium tumefaciens, Erwinia amylovora, Ralstonia solanacerum, Xylella fastidiosa.

13. Tema 13

Agrobacterium y su interacción con plantas: importancia del plásmido Ti.

14. Tema 14

Reservorios y rutas de transmisión de bacterias fitopatógenas. Estrategias de supervivencia:Erwinia amylovora, Ralstonia solanacerum, Xylella fastidiosa.

15. Tema 15

Prevención y control de las enfermedades en plantas: cuarentenas, tratamientos y control integrado: Agrobacterium tumefaciens, Erwinia amylovora, Ralstonia solanacerum, Xylella fastidiosa.

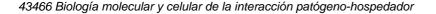
VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial	
Clases de teoría	26,00	100	
Otras actividades	4,00	100	
Elaboración de trabajos en grupo	10,00	0	
Estudio y trabajo autónomo	25,00	0	
Lecturas de material complementario	10,00	0	
TOTAL	75,00		

METODOLOGÍA DOCENTE

- 1. Clases teóricas. Basadas en el método expositivo /lección magistral y en el estudio y resolución de cuestiones relacionadas con la materia expuesta.
- 2. Seminario/comentarios de artículos de investigación: realización y exposición en clase de un trabajo/artículo de investigación sobre temas de actualidad relacionados con la asignatura. Esta actividad será optativa.
- 3. Tutorías de grupo. Ayudar y guiar a los estudiantes en relación con los problemas que surjan durante el desarrollo de las actividades presenciales y no presenciales
- 4. Conferencias impartidas por especialistas en la materia. Esta actividad también será optativa

EVALUACIÓN



No habrá examen como tal, los y las estudiantes presentarán un trabajo que se evaluará en función de los contenidos, la exposición y la defensa. También se evaluará la participación en la sesión de discusión de los seminarios de los demás estudiantes.

REFERENCIAS

Básicas

- Cossart, P., P. Boquet, S. Normark, R. Rappuoli. 2004. Cellular Microbiology, 2nd Edition. ASM, Washington D.C.
- Persing D.H. et al., (ed.) 2011. Molecular Microbiology: diagnostic, principles and practice. ASM, Washington D.C.
- Locht, C. and M. Simonet. 2012. Bacterial pathogenesis: molecular and cellular mechanisms. Caister Academic Press. London.
- Seifert H.S. and V. J. Rita. 2006. Evolution of microbial pathogens. ASM, Washington D.C.
- Gnanamanickam, S. S. (ed.) 2007. Plant-associated bacteria. Springer, Dordrecht, the Netherlands.
- Jackson, R.W. (ed.). 2009. Plant Pathogenic Bacteria. Genomics and Molecular Biology. Caister Academic Press

