

FICHA IDENTIFICATIVA

Datos de la Asignatura				
Código	43298			
Nombre	Relatividad General			
Ciclo	Máster			
Créditos ECTS	6.0			
Curso académico	2023 - 2024			

_						
	111	ПВ	20	\mathbf{a}	n	(es)
_		AIC		ıv		

TitulaciónCentroCurso Periodo2150 - M.U. en Física Avanzada 12-V.2Facultad de Física1 Primer
cuatrimestre

Materias		
Titulación	Materia	Caracter
2150 - M.U. en Física Avanzada 12-V.2	3 - Astrofísica avanzada	Optativa

Coordinación

Nombre	Departamento
CERDA DURAN, PABLO	16 - Astronomía y Astrofísica
SANCHIS GUAL, NICOLAS	16 - Astronomía y Astrofísica

RESUMEN

Fundamentos de Relatividad. Observadores en un campo gravitatorio. Formulación de las leyes físicas en espacios curvos. Tensores de energía. Hidrodinámica relativista. Ecuaciones de Maxwell. Ecuaciones de Einstein. Linealización. Isometrías y campos de Killing. Simetría esférica. Soluciones exactas. La geometría de Schwarzschild: extensiones y generalizaciones. Colapso gravitatorio esférico. Formación de agujeros negros: propiedades características. Formalismo evolutivo de la Relatividad. Formulación 3+1 de las ecuaciones fundamentales. Relatividad Numérica: aplicaciones en Astrofísica Relativista. Radiación gravitatoria.

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

Haber cursado la asignatura "Relatividad y Cosmología" del grado de Física, u otra con contenidos similares.

COMPETENCIAS

2150 - M.U. en Física Avanzada 12-V.2

- Que los/las estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- Que los/las estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- Ser capaces de obtener y de seleccionar la información y las fuentes relevantes para la resolución de problemas, elaboración de estrategias y asesoramiento a clientes.
- Comprender de una forma sistemática el campo de estudio de la Física y el dominio de las habilidades y métodos de investigación relacionados con dicho campo.
- Concebir, diseñar, poner en práctica y adoptar un proceso sustancial de investigación con seriedad académica.
- Realizar un análisis crítico, evaluación y síntesis de ideas nuevas y complejas en el área de la Física.
- Analizar una situación compleja extrayendo cuales son las cantidades físicas relevantes y ser capaz de reducirla a un modelo parametrizado.
- Evaluar la validez de un modelo o teoría propuesto por otros miembros de la comunidad científica.
- Saber modelizar matemáticamente los problemas físicos sencillos nuevos, conectados con problemas conocidos. Ser capaz de expresar en términos matemáticos nuevas ideas.
- Elaborar una memoria clara y concisa de los resultados de su trabajo y de las conclusiones obtenidas en el área de la Física.
- Exponer y defender públicamente el desarrollo, resultados y conclusiones de su trabajo en el área de la Física.
- Comprender los aspectos formales y el aparato matemático de la relatividad general, y desarrollar la capacidad de intuición espaciotemporal en cuatro dimensiones.

RESULTADOS DE APRENDIZAJE

Al finalizar el proceso de enseñanza-aprendizaje el estudiante de la especialidad de "Astofísica" habrá aprendido a

- 1. Seleccionar y utilizar correctamente distintas fuentes de información tanto en formato tradicional como electrónico. Conocer las bases de archivos propias del campo: inspire, spires, arXiv.
- 2. Manejar e interpretar correctamente datos físicos cuantitativos y cualitativos que dan validez a las teorías conocidas en el campo.
- 3. Analizar información de los sistemas físicos.
- 4. Preparar documentos e informes presentados en un texto escrito de forma comprensible organizada, documentada e ilustrada.
- 5. Articular un discurso oral, estructurado, coherente, con buena dicción y empleo de vocabulario técnico.
- 6. Comprender los argumentos utilizados en el campo de la Astronomía y Astrofísica.
- 7. Comprender la descripción matemática de los procesos físicos que gobiernan la formación y evolución de los objetos celestes tanto a escala estelar como cosmológica.
- 8. Utilizar a nivel básico instrumentación astronómica profesional. Aproximación al hecho observacional.
- 9. Comprender la metodología de la elaboración, interpretación y utilización de catálogos de objetos celestes.
- 10. Ser capaz de desarrollar y manejar las técnicas matemáticas para la aplicación, en casos sencillos, de las ecuaciones de Einstein de la gravitación.

DESCRIPCIÓN DE CONTENIDOS

1. Introducción a la relatividad general

Introducción. Relatividad especial. Principio de equivalencia. Variedades curvadas. Observadores en un espacio-tiempo curvado. Tensor energía-momento. Ecuaciones de Einstein. Formalismo de la tétrada de Cartan.

2. Agujeros negros

Isometrías y campos de Killing. Métricas de Schwarzschild y Kerr. Otras métricas.

3. Formalismo evolutivo de las ecuaciones de Einstein

Formalismo evolutivo. Formulación 3+1. Formulaciones de las ecuaciones de Einstein: ADM, BSSN y FCF. Masa, energía y momento angular. Otras formulaciones: formulación característica y formulación armónica. Ejemplos de relatividad numérica: punctures y excisión. Colapso crítico de Choptuik.

4. Hidrodinámica y electrodinámica en un espacio-tiempo curvado

Formulación de las leyes físicas en espacios tiempos curvos. Tensor de energía-momento. Hidrodinámica relativista. Colapso gravitatorio esférico y formación de agujeros negros. Electrodinámica relativista. Magneto-hidrodinámica relativista. Ejemplos de relatividad numérica.

5. Radiación gravitatoria

Ecuaciones de Einstein linealizadas. Soluciones de vacío. Generación de ondas gravitatorias. Fuentes de radiación gravitatoria. Detección de ondas gravitatorias.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Clases de teoría	39,50	100
Otras actividades	4,00	100
Seminarios	2,50	100
Preparación de clases de teoría	52,00	0
Preparación de clases prácticas y de problemas	52,00	0
TOTAL	150,00	

METODOLOGÍA DOCENTE

MD1 - Clases teóricas lección magistral participativa.

MD5 – Seminarios.

MD6 – Visita a instalaciones científicas externas y empresas

MD8 – Conferencias de expertos.

EVALUACIÓN

- 1) Examen escrito sobre los contenidos de la asignatura y las prácticas propuestas (50%).
- 2) Asistencia a las clases presenciales y realización de las prácticas propuestas en horas no presenciales (50%).

Para obtener una evaluación global positiva (mayor o igual que 5 sobre 10) se requiere que cada una de las calificaciones anteriores sea mayor o igual que 3 sobre 10.

REFERENCIAS

Básicas

- N. Straumann, General Relativity and Relativistic Astrophysics, Springer-Verlag, Berlin (1984)
- H. Stephani, General Relativity, Cambridge University Press, Cambridge (1982)
- R. d'Inverno, Introducing Einstein's Relativity, Clarendon Press, Oxford (1998)
- W. Rindler, Relativity, Special, General, and Cosmological, Oxford University Press, 2a ed. (2006)
- R. M. Wald, General Relativity, The University of Chicago Press, Chicago (1984)
- E. Gourgoulhon, 3+1 Formalism and bases of Numerical Relativity, Lecture Notes in Physics 846, Springer (2012) [arXiv: gr-qc/0703035]
- M. Alcubierre, Introduction to 3+1 Numerical Relativity, Oxford University Press (2008).
- T. W. Baumgarte and S. L. Shapiro, Numerical Relativity. Solving Einstein's Equations on the Computer, Cambridge Univ. Press (2010)
- L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics, Oxford University Press, (2013)

Complementarias

- E. Gourgoulhon, 3+1 Formalism in General Relativity, Springer-Verlag, Berlin (2012)
- S. Weinberg, Gravitation and Cosmology, Wiley, New York (1972)
- F. de Felice, C. J. S. Clarke, Relativity on Curved Manifolds, Cambridge U.P., Cambridge (1990)
- L. P. Hughston, K. P. Tod, An Introduction to General Relativity, Cambridge U. P. (1990)
- J. Plebanski, A. Krasinski, An Introduction to General Relativity and Cosmology, Cambridge U. P. (2006)
- H. Stephani, D. Kramer, M. Maccallum, C. Hoenselaers and E. Herlt, Exact Solutions to Einstein's Field Equations, Second edition, Cambridge Univ. Press (2003)
- L. P. Eisenhart, Riemannian Geometry, Princeton U.P., Princeton (1949)
- Y. Choquet Bruhat, General Relativity and the Einstein Equations, Oxford University Press (2008).
- J. A. Font, Numerical hydrodynamics and magneto-hydrodynamics in general relativity, Living Reviews in Relativity, 7 (2008) [http://www.livingreviews.org/lrr-2008-7]

- L. Smarr and J.W. York, Jr., Kinematical conditions in the construction of spacetime., Phys. Rev. D. 17, 2529-2551 (1978).
- J.W. York, Jr. The initial value problem and dynamics, en Sources of Gravitational Radiation" edited by L. Smarr, Cambridge Univ. Press: Cambridge (1979) pp. 175-201.
- J. Winicour, Characteristic evolution and matching, Living Reviews in Relativity, 3 (2009)[http://www.livingreviews.org/lrr-2009-3]
- New frontiers in Numerical Relativity, M. Campanelli and L. Rezzolla Eds., Classical and Quantum Gravity, 24 12 (2007)
- C. Heinicke and F. Hehl, Schwarzschild and Kerr solutions of Einstein's field equation: An Introduction, International Journal of Modern Physics D, Vol. 24, No 2 1530006 (2015)
- J. D. Norton, General covariance and the foundations of general relativity: eigth decades of dispute, Rep. Prog. Phys. 56, 791-858(1993)
- L. Landau and E. M. Lifshitz, The Classical Theory of Fields, (Elsevier, Amsterdam, Fourth ed., 1975. Reprinted (2007)

