

FICHA IDENTIFICATIVA

Datos de la Asignatura				
Código	43279			
Nombre	Limnología			
Ciclo	Máster			
Créditos ECTS	3.0			
Curso académico	2023 - 2024			

lación(

TitulaciónCentroCurso Periodo2148 - M.U. en Biodiversidad:Facultad de Ciencias Biológicas1 PrimerConservación y Evolución 12-V.2cuatrimestre

MateriasMateriaCaracter2148 - M.U. en Biodiversidad:13 - Optativas transversales 3OptativaConservación y Evolución 12-V.2

Coordinación

Nombre Departamento

ARMENGOL DIAZ, JAVIER 275 - Microbiología y Ecología

RESUMEN

El "Master en Biodiversidad: conservación y evolución" se constituye como programa de postgrado dirigido a la formación de profesionales e investigadores dedicados al mantenimiento de la diversidad biológica. La formación previa de los ingresados les debe haber proporcionado los conocimientos, habilidades y destrezas que sirven como base a los desarrollos más especializados que se realizan en este Master.

La asignatura LIMNOLOGÍA pretende facilitar a los estudiantes información que le permita conocer la estructura y el funcionamiento de los ecosistemas acuáticos de aguas epicontinentales (ríos, lagos, embalses, humedales), y así entender los principales procesos ecológicos que se dan en ese entorno. Del mismo modo se pretende inducir una actitud crítica frente a las actividades que no sean respetuosas con la calidad ambiental de estos sistemas favoreciendo el uso sostenible de los mismos compatible con su conservación y el mantenimiento de su biodiversidad.

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

Los conocimientos previos del alumno deben incluir una amplia base sobre Biología, incluyendo los conocimientos básicos de Ecología impartidos en estudios de grado o de adaptación desde una titulación de grado distinta a la de C. Biológicas o C. Ambientales.

COMPETENCIAS

2148 - M.U. en Biodiversidad: Conservación y Evolución 12-V.2

- Que los/las estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- Que los/las estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- Que los/las estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- Ser capaces de trabajar en equipo con eficiencia en su labor profesional o investigadora.
- Ser capaces de acceder a la información necesaria (bases de datos, artículos científicos, etc.) y tener suficiente criterio para su interpretación y empleo.
- Estimular la capacidad para el razonamiento crítico y para la argumentación desde criterios racionales.
- Favorecer la inquietud intelectual y fomentar la responsabilidad del propio aprendizaje.

RESULTADOS DE APRENDIZAJE

- Conocer las características generales de los sistemas acuáticos epicontinentales.
- Conocer las variables importantes en su funcionamiento.
- Conocer los ciclos de los principales elementos que intervienen en su funcionamiento.
- Identificar los principales grupos de organismos existentes en estos sistemas.
- Conocer los procesos ecológicos que tienen lugar en estos ecosistemas.
- Conocer los elementos físico-químicos y biológicos que perturban el medio ambiente acuático.

DESCRIPCIÓN DE CONTENIDOS

1. LIMNOLOGÍA I: Variables ambientales.

Ciclo hidrológico. Cuenca hidrográfica. Morfometría. Luz. Temperatura. Oxígeno. Conductividad. Salinidad. pH. Alcalinidad. Carbono. Nutrientes disueltos (N-P) y totales. Sedimento (materia orgánica, nutrientes).

2. LIMNOLOGÍA II: Comunidades biológicas.

Tipología y diversidad de los organismos acuáticos. Consumidores: Zooplancton, Zoobentos. Vertebrados acuáticos. Productores primarios: Fitoplancton, perifiton. y macrófitos.

3. LIMNOLOGÍA III: Modelos de redes tróficas y Sucesión.

Modelos de redes tróficas. Equilibrio alternativo en lagos someros. Periodicidad y sucesión en el plancton.

4. LIMNOLOGÍA IV: Sistemas lóticos, embalses y humedales.

Ríos: Modelo de río continúo. Espiral de nutrientes. Bosque de ribera. Bioindicadores. Embalses. Características y zonación. Colonización, efecto de llenado y edad de los embalses. Impacto ambiental. Humedales naturales y artificiales. Caracterización y tipología. Ecología de los ecosistemas fluctuantes, temporales y permanentes.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Clases de teoría	20,00	100
Prácticas en laboratorio	10,00	100
Asistencia a eventos y actividades externas	6,00	0
Elaboración de trabajos en grupo	6,00	0
Estudio y trabajo autónomo	15,00	0
Lecturas de material complementario	5,00	0
Preparación de actividades de evaluación	4,00	0
Preparación de clases prácticas y de problemas	4,00	0
Resolución de casos prácticos	5,00	0
TOTAL	_ 75,00	

METODOLOGÍA DOCENTE

La metodología a utilizar incluirá:

- Clases magistrales impartidas por el profesor para suministrar los conocimientos fundamentales y la metodología a utilizar.
- Toma de muestras en el campo y prácticas de laboratorio para el estudio y análisis de muestras.
- Elaboración de seminarios sobre aspectos teórico-prácticos del temario.

EVALUACIÓN

TIPO DE EVALUACIÓN

- Ejercicio escrito en una proporción no definida de cuestiones con contestación cerrada tipo test, cuestiones de contestación breve, y/o contestación larga. (30% de nota final).
- Elaboración y defensa en exposición oral en clase de trabajos realizados por el alumno (talleresseminarios y prácticas). (50% de nota final).
- Asistencia y participación en actividades programadas (clases, salidas al campo, prácticas, etc.). (20% de nota final).

Las evaluaciones correspondientes a la primera y segunda convocatoria tendrán los mismos fundamentos.

REFERENCIAS

Básicas

- Bronmark, C. & Hansson, L. 2010. The biology of lakes and ponds. Ed. Oxford University Press.
 - -Casado, S. & Montes, C. Guía de los lagos y humedales de España. Ed. J..M. Reyero.
 - -Closs, G. Downes, B., Boulton, A. 2004. Freshwater ecology. Blackwell Publishing.
 - -Dodds W. K. 2003. Freshwater Ecology. Academic Press.
 - -Frid, C. L. & Dobson, M. 2002. Ecology of Aquatic Management: Aquatic Resources, Pollution and Sustainability. Prentice Hall.
 - -Horne A. J. & Goldman Ch. 1994. Limnology. Mac Graw Hill.
 - -Kalff, J. 2002. Limnology. Prentice Hall.
 - -Kumagai M. & Vicent W.F. 2003. Freshwater management. Global versus local perspectives. Springer.
 - -Lampert W. & Sommer, U. 1997. Limnology. Ecology of lakes and streams. Ed. Oxford University Press
 - -Maitland P.S. & Morgan N.C. 1997. Conservation and management of freshwater habitats: lakes, rivers and wetlands. Chapman & Hall-Kluwer. New York.
 - -Margalef, R. 1981. Limnología. Omega. Barcelona.
 - -Miller, G. T. 2002. Introducción a la ciencia ambiental. Thomson
 - -Moss, B. 1998. Ecology of fresh waters. Man and medium, past to future. Blackwell. Oxford.

- -Petts, G. & Calow, P. 1996. River biota. Diversity and dinamics. Blackwell Science.
- -Scheffer, M. 1998. Shallow lakes. Chapman & Hall.
- -Wetzel, C. 2001. Limnology. Elsevier.
- -Wetzel R.G. & Likens G.E. 2000. Limnological analyses. Springer-Verlag, New York.

