

COURSE DATA

Data Subject			
Code	43097		
Name	Molecular medicine technology		
Cycle	Master's degree		
ECTS Credits	4.5		
Academic year	2023 - 2024		
Study (s)			
Degree		Center	Acad. Period year
2142 - M.U. en Apr Moleculares CC Sa		Faculty of Biological Sciences	1 Second term
	100 12-9.2		
Subject-matter	luu 12-V.2	53353	53.7
	luu 12-V.2	Subject-matter	Character
Subject-matter	oximaciones	Subject-matter 1 - Molecular technologies for research in health sciences	Character Obligatory
Subject-matter Degree 2142 - M.U. en Apr	oximaciones	1 - Molecular technologies for	
Subject-matter Degree 2142 - M.U. en Apre Moleculares CC Sa	oximaciones	1 - Molecular technologies for	
Subject-matter Degree 2142 - M.U. en Apri Moleculares CC Sa Coordination	oximaciones lud 12-V.2	1 - Molecular technologies for research in health sciences	Obligatory
Subject-matter Degree 2142 - M.U. en Apre Moleculares CC Sa Coordination Name LOPEZ RODAS, G	oximaciones lud 12-V.2	1 - Molecular technologies for research in health sciences Department	Obligatory Diecular Biology

SUMMARY

The subject will introduce the student to the concept of Molecular Medicine Targets and their identification, structural characterization and validation for their application in the development of innovative Therapies. To fulfill this teaching objective, the new molecular and genetic techniques used in the investigation of the mechanisms and causes of the disease will be presented to the student. The syllabus of the subject will include lessons on advanced technologies in current Biomedicine. This subject includes the collaborative activity of the CIBER-ISCIII. Most of the lessons will be taught by external professors, researchers of recognized prestige of the Institute of Biomedicine of Valencia (IBV-CSIC), coordinated by the director of the same (Jordi Pérez-Tur). The IBV-CSIC professors participating in the present edition of the subject are the Doctors: Vicente Rubio, Jerónimo Bravo, Marçal Vilar, José Luis Llácer, Clara Marco, Susana Rodríguez-Navarro, Helena Mira, Nuria Flames, Carmen Cucarella, Marta Married, Paloma Pérez, Alberto Marina, Pilar González-Cabo and Natalia Tapia. The subject also has the participation of professors from the Department of Biochemistry and Molecular

Vniver§itatõtdValència

Biology of the University of Valencia (UVEG), who will teach specific topics related to radiometric and radiodiagnostic methods (Prof. Gerardo López-Rodas) and with Proteomics (Prof Manuel Sánchez del Pino), as well as the realization of a practical part directed to the learning and application of In Silico methods of modeling proteins known as targets in Cell Signaling and Oncological Therapy (Prof. Jesús Salgado).

PREVIOUS KNOWLEDGE

Relationship to other subjects of the same degree

There are no specified enrollment restrictions with other subjects of the curriculum.

Other requirements

None

OUTCOMES

2142 - M.U. en Aproximaciones Moleculares CC Salud 12-V.2

- Students should apply acquired knowledge to solve problems in unfamiliar contexts within their field of study, including multidisciplinary scenarios.
- Students should be able to integrate knowledge and address the complexity of making informed judgments based on incomplete or limited information, including reflections on the social and ethical responsibilities associated with the application of their knowledge and judgments.
- Students should communicate conclusions and underlying knowledge clearly and unambiguously to both specialized and non-specialized audiences.
- Students should demonstrate self-directed learning skills for continued academic growth.
- Students should possess and understand foundational knowledge that enables original thinking and research in the field.
- Conocer en profundidad y comprender la organización a nivel molecular de células, sistemas y procesos de relevancia en las Ciencias de la Salud.
- Conocer en profundidad y comprender las bases moleculares de la enfermedad.
- Conocer en profundidad y comprender las metodologías de investigación básica aplicables a las Ciencias de la Salud.
- Tener capacidad de analizar y sintetizar un problema.
- Tener capacidad de comunicación oral y escrita en una segunda lengua científica.
- Tener capacidad de trabajar en equipo
- Tener capacidad de desarrollar un trabajo interdisciplinar.

Vniver§itatö́ d'València

- Conocer y comprender los conceptos básicos y las aplicaciones en investigación básica y clínica de las Tecnologías de la Medicina Molecular.
- Conocer, comprender y aplicar en la práctica Tecnologías de la Medicina Molecular en situaciones relacionadas con la investigación básica y clínica.
- Aprender a identificar, manejar y presentar adecuadamente en informes y exposiciones públicas, conocimientos existentes sobre Tecnologías de la Medicina Molecular, usando como vehículo la lengua inglesa.
- Aprender a identificar, manejar y presentar adecuadamente en informes y exposiciones públicas, conocimientos existentes sobre células madre, usando como vehículo la lengua inglesa.

LEARNING OUTCOMES

1. To know and understand the basic concepts and applications in basic and clinical research in Molecular Medicine Technology

2. To know, understand and apply in practice Molecular Medicine Technology in situations related to basic and clinical research.

3. To learn to identify, manage and present reports and statements properly public knowledge on Molecular Medicine Technology, using the English language as a vehicle.

DESCRIPTION OF CONTENTS

1. Introduction to the course

It will review the issues to be addressed in the course, highlighting how the use of the technologies that will be described can help to understand the molecular basis of disease.

2. Targets in Molecular Medicine

3. The value of Genetics in target identification

4. Structural identification of targets

Cristalography and X-Ray Diffraction Nuclear Magnetic Ressonance Electron Microscopy

Vniver§itat \vec{p} d València

5. Target Validation and Models of Disease

Target Validation at the macromolecular level. Unicellular models: bacteria and yeast. Cellular models. Invertebrate models. Vertebrate models: Zebra fish and Medaka fish.

Vertebrate models: Mouse, rat and pig models.

6. Development of Innovative Therapies

Identification of small molecules acting on targets. Proteins and Nucleic acids as drugs. Gene Edition and Gene Therapy. Regenerative Therapy

7. Radioisotopes and Electromagnetic Radiation (EMR) in Molecular Medicine

8. Proteomics in Molecular Medicine

9. Radiopharmaceuticals of clinical use for diagnostic purposes

10. In Silico Modelling in Molecular Medicine

WORKLOAD

ACTIVITY	Hours	% To be attended
Group work	15,00	100
Theory classes	15,00	100
Seminars	15,00	100
Development of group work	37,50	0
Study and independent work	30,00	0
TOTAL	112,50	

Vniver§itat \vec{p} d València

TEACHING METHODOLOGY

The subject is devised to be developed in the form of face and non-face work.

Actual teaching of this subject will be made by the following methodological approaches: magistral lectures, development of practical work based on bibliography managing and tutoring assistance. In the lectures will present an overview of the topic, with special emphasis on the key concepts. At the same meeting it will indicate the most appropriate resources for a deepening of the subject so that students complete their education in the same

EVALUATION

The evaluation of student learning will be carried out by assessing the following sections:

1) Theoretical exam, of type test that will be carried out in the classroom. This test will be worth up to 50% of the final grade and will be held at the end of the second semester.

It will include questions from the theoretical lessons and the practices given by the professors of the Institute of Biomedicine of Valencia (IBV) and the Department of Biochemistry and Molecular Biology.

2) Writing of a work by the student on topics proposed by the IBV professors and oral presentation of the same.

This part will be worth up to 40% of the final grade. Before the beginning of the subject, the teaching staff will propose the offer of topics.

Each student will choose an individual topic, without overlapping with any other student. For its evaluation, individual presentations will be made to all the classmates of the subject, assessing the content and form of the presentation, as well as the ability to induce questions from the audience.

The set of all the presentations will occupy a maximum time of 15 hours.

3) The student's interest in the subject, expressed as their participation in the organized discussions, the answers to the questions that the professor asked during the face-to-face sessions, attendance at personal tutorials and/or any other type of activity carried out by the student. in relation to the subject.

Of these concepts students will obtain up to 10% in the final grade of the subject.

REFERENCES

Basic

⁻ Trent, RJ. Molecular Medicine, Fourth Edition: Genomics to Personalized Healthcare. Academic Press (2012)

Vniver§itatö́ dValència

- Runge, MS, Patterson, C. Principles of Molecular Medicine. Humana Press(2009)
- Runge, MS, Patterson, C, McKusick, VA. Principles of Molecular Medicine, Humana Press (2006)
- Boultwood J, Fidler,C eds. Methods in Molecular Medicine: Molecular Analysis of Cancer. Totowa, NJ: Humana Press (2002)
- Killeen AA, ed. Methods in Molecular Medicine. Molecular Pathologyv Protocols.: The Humana Press (2000)

Additional

- Los distintos profesores de la asignatura proporcionarán referencias bibliográficas específicas al inicio de la misma.

