

FICHA IDENTIFICATIVA

Datos de la Asignatura						
Código	43081					
Nombre	Análisis digital de señales e imágenes en fisiología					
Ciclo	Máster					
Créditos ECTS	3.0					
Curso académico	2022 - 2023					

Titulación(es)		
Titulación	Centro	Curso Periodo
2141 - M.U. Fisiología	Facultad de Medicina y Odontología	1 Primer cuatrimestre
3127 - Doct. en Fisiología	Escuela de Doctorado	0 Primer cuatrimestre
Materias		
Titulación	Materia	Carácter
2141 - M.U. Fisiología	 1 - Metodología para la investigación en fisiología 	n Obligatoria

					ió	

Nombre Departamento
SALVADOR PALMER, MARIA ROSARIO 190 - Fisiología

RESUMEN

En esta asignatura se muestra las posibilidades que ofrece la extracción de información representada gráficamente, tanto en imágenes como en señales de interés biomédico. Se inicia a los estudiantes en las técnicas de captura, procesado y tratamiento de las imágenes y señales, para que sean capaces de obtener la información de interés de las mismas. Se trata de forma teórica y práctica la aplicabilidad, tanto a la radiología digital, como a la citogenética, a la termografía y a la electromiografía y electrocardiografía.

De este modo, los objetivos generales de la asignatura son los siguientes:

- Conocer las técnicas de captura, almacenamiento y procesado de imágenes y señales de interés médico.

- Aplicar las técnicas de procesado, tratamiento y análisis de imágenes y señales a la radiografía digital, citogenética, termografía, electromiografía y electrocardiografía.
- Utilizar las herramientas de análisis de los softwares asociados al tratamiento de las imágenes y señales biomédicas.

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

No hay requisitos previos para cursar la asignatura.

COMPETENCIAS (RD 1393/2007) // RESULTADOS DEL APRENDIZAJE (RD 822/2021)

2141 - M.U. Fisiología

- Que los/las estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- Que los/las estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- Que los/las estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- Que los/las estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- Ser capaces de integrar las nuevas tecnologías en su labor profesional y/o investigadora.
- Ser capaces de acceder a herramientas de información en otras áreas del conocimiento y utilizarlas apropiadamente.
- Adquirir una actitud crítica que le permita emitir juicios argumentados y defenderlos con rigor y tolerancia.

- Valorar la necesidad de completar su formación científica, en lenguas, informática, ética, etc, asistiendo a conferencias o cursos y/o realizando actividades complementarias, autoevaluando la aportación que la realización de estas actividades supone para su formación integral.
- Manejar las distintas técnicas de procesado de las imágenes digitales para obtener la información de interés científico en la imagen en cuestión.

RESULTADOS DE APRENDIZAJE (RD 1393/2007) // SIN CONTENIDO (RD 822/2021)

Trabajar con las fuentes de información, tanto tradicionales como a través de las tecnologías de Internet.

Sintetizar y comunicar la información científica.

Conocer a nivel básico la cadena de dispositivos necesarios para la obtención de señales e imágenes biomédicas.

Conocer a nivel básico los modos de almacenamiento de datos en una memoria digital. Concepto de compresión de datos.

Conocer el lenguaje básico de informática aplicada al análisis de señal e imagen.

Seleccionar entre las técnicas de formación y análisis de señales la más adecuada para el problema en cuestión.

Utilizar softwares de manejo de imágenes: en radiografía, en citogenética, en análisis termográfico y en electromiografía y electrocardiografía.

DESCRIPCIÓN DE CONTENIDOS

1. Generalidades de la imagen

- -El ojo: sensor de la visión humana.
- -Formación de la imagen: objeto, lente y sensor.
- -Muestreo y cuantificación.
- -Imágenes monocromas y en color.
- -Almacenamiento de imágenes. Formatos.

2. Procesado digital de imagen

- -Contraste y brillo.
- -El histograma. Modificación del histograma.
- -Filtros de imagen.
- -Segmentación por áreas de interés.

3. Sistemas de imagen morfológica

- -Introducción.
- -Imagen visible: Fotografía, fibra óptica: endoscopia.
- -Microscopía: óptica, confocal y de barrido.
- -Imagen radiográfica: radiografía, fluoroscopia y TAC
- -Ultrasonidos.

4. Sistemas de imagen funcional

- -Introducción.
- -Termografía.
- -Resonancia Magnética Nuclear.
- -Imágenes en Medicina Nuclear: Gammagrafías, SPECT, PET.

5. Aplicaciones prácticas del tratamiento digital de imágenes médicas

- -Introducción.
- -Corregistro de imágenes médicas multimodalidad: fusión rígida y fusión deformable.
- -Segmentación de imágenes médicas. Segmentación manual y segmentación automática. Ejemlos.
- -Visualización de las imágenes médicas: ventana y nivel.
- -Ejemplos prácticos de aplicaciones de filtros a imágenes médicas.

6. Práctica: Imágenes termográficas

- -Fundamento.
- -Aplicabilidad.

7. Práctica: Adquisición y tratamiento de señales bioeléctricas

- -Electromiografía.
- -Electrocardiografía.

8. Práctica: Tratamiento de imágenes médicas I

- -Color, profundidad de color y canales RGB.
- -Nivel y ventana en una imagen medica digital.
- -Resolución de la imagen.

9. Práctica: Tratamiento de imágenes médicas II

- -Medida de distancias y ángulos.
- -Mejora de la imagen por manipulación del histograma.
- -Sustracción de imágenes. Su aplicación en imágenes médicas.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Clases de teoría	14,00	100
Prácticas en laboratorio	4,00	100
Tutorías regladas	2,00	100
Otras actividades	2,00	100
Elaboración de trabajos individuales	12,00	0
Estudio y trabajo autónomo	10,00	0
Lecturas de material complementario	5,00	0
Preparación de actividades de evaluación	11,00	0
Preparación de clases de teoría	3,00	0
Preparación de clases prácticas y de problemas	2,00	0
Resolución de casos prácticos	10,00	0
TOTA	75,00	

METODOLOGÍA DOCENTE

- Clases teóricas de lección magistral participativa.
- Clases prácticas de laboratorio. Incluyen seminarios introductorios, realización de las prácticas con el seguimiento y apoyo del profesor y realización de una memoria o una prueba escrita sobre las mismas.
- Conferencias de expertos en las materias.
- Tutorías presenciales y electrónicas con los profesores.

EVALUACIÓN

Sistema de evaluación:

- Examen escrito formado por 6 preguntas de respuesta corta: valoración sobre 6 puntos.

- Memorias de las prácticas de Termografía y Bioseñales: valoración sobre 4 puntos.

La asistencia al 80% de las prácticas es obligatoria.

Calificación mínima para aprobar: 5 puntos.

REFERENCIAS

Básicas

- GONZALEZ RC, WOODS RE. "Digital image processing". Ed. Global Edition (2018). ISBN: 9781292223049
- GIBSON R. Essential medical imaging. Ed. Cambridge University Press (2009). ISBN: 9780521709118.

Complementarias

- CARLYLE. Radiologic science for technologist: physic, biology and protection. Ed. Elsevier-Health Sciences Division (2016). ISBN: 9780323048378.
- DOWSETT DJ. The physics of diagnostic Imaging. Ed. Taylor & Francis. CRC Press (2006). ISBN: 9780340808917.
- ELETA F. Diagnóstico por imágenes. Ed. Journal (2011). ISBN: 9789870550501.
- FRAILE, FJ. Imagen radiológica. Principios físicos e instrumentación. Ed. Elsevier Masson (2004).
 ISBN: 9788445814505.
- GONZÁLEZ RC, WOODS RE, EDDINS SL. Digital Image processing using MATLAB. Ed. Pearson (2020). ISBN: 9780982085417.
- LEONDES CT ed. Medical Imaging Systems Technology. Ed. World Scientific (2005). ISBN: 9812563644.
- METTLER F. Medical effects of ionizing radiation. Ed. Saunders (2008). ISBN: 978072160.
- MOREIRA R. Atlas de ultrasonografía. Ed. Amolca (2010). ISBN: 9789588473468.
- NIBLACK W. An introduction to digital image processing. Ed. Prentice-Hall, London (1986). ISBN: 9780134806747
- SEMMLOW JOHN L. Biosignal and biomedical image processing: MATLAB-based applications. Ed. Taylor & Francis. CRC Press (2014). ISBN: 824748034.