

FICHA IDENTIFICATIVA

Datos de la Asignatura		
Código	42612	
Nombre	Criterios y herramientas de medida de la calidad del agua	
Ciclo	Máster	
Créditos ECTS	3.0	
Curso académico	2019 - 2020	

lación(

Titulacion	Centro	Curse	o Periodo
2120 - M.U. en Gestión de Recursos	Facultad de Geografía e Historia	1	Primer
Hídricos 12-V.1			cuatrimestre

Materias			
Titulación	Materia	Caracter	
2120 - M.U. en Gestión de Recursos	2 - Uso de tecnologías en el ciclo del	Obligatoria	
Hídricos 12-V.1	agua		

Coordinación

Nombre	Departamento
PICO GARCIA, YOLANDA	265 - Medicina Prev. y Salud Púb., CC. Aliment,
	Toxic.y Med. Legal

RESUMEN

Formación básica para diseñar, aplicar e interpretar instrumentos y metodologías de monitorización ambiental de contaminantes, para ello se estudia todo el proceso del análisis comenzando por la toma de muestras, validación de métodos, diferentes técnicas preparación de muestras y de extracción, los métodos más utilizados para el análisis, por último se estudiaran aplicaciones analíticas: plaguicidas, compuestos perfluorados, metales pesados,....

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

No se requieren conocimientos previos específicos.

COMPETENCIAS

2120 - M.U. en Gestión de Recursos Hídricos 12-V.1

- Distinguir, evaluar e interpretar las distintas informaciones y sus contenidos, implementación, aplicación y grado de ejecución.
- Diagnosticar problemáticas generales en la gestión de los recursos hídricos y su repercusión en los planos social, económico y ambiental.
- Ser capaces de planificar una estrategia de control de calidad de aguas: diseño de la red de control, análisis de datos, propuesta de actuaciones para la minimización y prevención de la contaminación.
- Adquisición de conocimientos teórico-prácticos para evaluar la problemática que afecta a los ecosistemas acuáticos en lo que se refiere a contaminación del agua.
- Ser capaz de valorar la importancia de los elementos que componen las instalaciones relacionadas con el transporte y distribución en la gestión integral del agua.
- Conocer los principales procesos de depuración de aguas residuales y valorar las ventajas e inconvenientes de cada uno de ellos.

RESULTADOS DE APRENDIZAJE

Como resultado del aprendizaje de los contenidos de la materia *Criterios y herramientas para medir la calidad del agua*, se espera que los alumnos estén capacitados para:

- 1. Formación básica para diseñar el problema analítico (tras el conocimiento y planteamiento concreto del problema ambiental) a las que se aplica el proceso analítico.
- 2. Conocer las ventajas y limitaciones del análisis químico frente al uso de biomarcadores en la monitorización de la contaminación ambiental.
- 3. Conocer las particularidades de cada compartimento medioambiental de cara a la aplicación de las técnicas analíticas más adecuadas para los diferentes contaminantes.
- 4. Conocimiento de las distintas etapas del proceso analítico como elemento clave para suministrar dicha información. Este comprende las técnicas y métodos aplicables a los distintos grupos de contaminantes, así como un programa de validación y calibración para garantizar la fiabilidad de los resultados.
- 5. Conocimiento de la técnicas analíticas idóneas para cada tipo de muestra y contaminante, y de los parámetros físico-químicos a considerar relacionados con ambos.

- 6. Conocer los principales métodos y estrategias de monitorización de contaminantes ambientales para su correcta aplicación en su futuro desarrollo profesional.
- 7. Conocer las posibilidades y carencias de los resultados obtenidos al analizar los contaminantes, y su aplicación en el concepto más amplio de la contaminación y toxicología ambientales.

DESCRIPCIÓN DE CONTENIDOS

1. Contaminación Ambiental

La contaminación ambiental: Contaminantes prioritarios en Europa. Lista de la EPA. Legislación y estado actual. El papel del análisis químicos en la monitorización de la contaminación medioambiental. Ventajas y limitaciones

2. Análisis Químico

Muestreo y preparación de muestras. Planificación de una operación de muestreo. Conservación de la integridad de la muestra. Equipos y estrategias para la toma de muestra en aire, aguas, suelos y sedimentos. Análisis de contaminantes inorgánicos a nivel de trazas y ultratrazas. Análisis de contaminantes orgánicos: técnicas de preparación de la muestra off-line. Extracción/preconcentración en muestras de aguas. Preconcentración de gases. Extracción de muestras sólidas. Estrategias para la eliminación de interferencias. Análisis de contaminantes orgánicos: técnicas de preparación de la muestra on-line. Extracción/preconcentración en muestras de aguas. Preconcentración de gases. Estrategias para la eliminación de interferencias. Instrumentación empleada en la determinación de compuestos orgánicos e inorgánicos contaminantes: LC-MS(MS), GC-MS(MS), AAS, ICP-MS, ICP-OES.

3. Validación y Aplicaciones

Validación de resultados analíticos y cuantificación en análisis instrumental. Calibración. Limites de detección y cuantificación, y de confianza. Sensibilidad y selectividad. Aplicaciones analíticas: pesticidas, compuestos perfluorados, drogas de abuso, fármacos, bifenilos policlorados. Evaluación e interpretación de los datos obtenidos.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Clases teórico-prácticas	30,00	100
Elaboración de trabajos en grupo	5,00	0
Lecturas de material complementario	5,00	0
Preparación de actividades de evaluación	15,00	0
Preparación de clases de teoría	12,00	0
Preparación de clases prácticas y de problemas	5,00	0
Resolución de casos prácticos	3,00	0
TOTAL	75,00	N. C.

METODOLOGÍA DOCENTE

Clases teóricas: 20 horas/curso. Las clases se imparten con ayuda de material técnico audiovisual. El estudiante dispondrá, con anterioridad, de este material en la plataforma virtual.

Casos prácticos: 10 horas/curso. Los estudiantes aplicaran los conocimientos adquiridos durante las clases teóricas a la resolución de casos prácticos sobre problemas de contaminación.

EVALUACIÓN

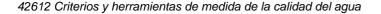
Prueba escrita: La materia de examen incluye los temas expuestos en las clases teóricas y los casos prácticos resueltos, con preguntas de respuesta abierta y corta o de respuesta alternativa (verdadero-falso) con razonamiento, resolución numérica de casos prácticos. Esta prueba representa el 75% de la nota final. Se requiere obtener un mínimo de 5 puntos sobre 10 para contabilizar esta prueba en la nota final.

Evaluación continuada: se valoraran asistencia, progresos realizados por el estudiante en el transcurso de la materia, la actitud, el interés y el grado de participación en la asignatura. Representará un 25 % de la nota. Se puntuará de 0 a 10, no existiendo mínimos para el contabilizar esta nota.

REFERENCIAS

Básicas

- Achaval, A. Crecimiento demográfico y contaminación ambiental. Ed. Buenos Aires: Dunken 2006.
- Sabater, S. et al. (eds.), he Llobregat: The Story of a Polluted Mediterranean River, Hdb Env Chem, DOI 10.1007/698_2012_147, Springer-Verlag Berlin Heidelberg 2012.


- Barcelo, D. (ed) Aguas continentales. Gestión de recursos hídricos, tratamiento y calidad del agua, Cyan, Proyectos y Producciones Editoriales, 2008.

Complementarias

- Petrovic, M.; Barcelo, D., Analysis, fate and removal of pharmaceuticals in the water cycle, Comprehensive Analytical Chemistry, Wilson&Wilson, 2007.
- Pawliszyn, J. Sampling and simple preparation for field and laboratory, Comprehensive Analytical Chemistry, Wilson&Wilson, 2002.
- Barceló, D; Diedrich Hansen, P. Biosensors for Environmental Monitoring of Aquatic Systems, Springer Berlin Heidelberg, 2005.

ADENDA COVID-19

Esta adenda solo se activará si la situación sanitaria lo requiere y previo acuerdo del Consejo de Gobierno

