

FICHA IDENTIFICATIVA

Datos de la Asignatura		
Código	42599	
Nombre	Bioquímica y biología molecular	
Ciclo	Máster	
Créditos ECTS	9.0	
Curso académico	2019 - 2020	

lación(

Titulación	Centro	Curso Periodo
2116 - Máster Universitario en	Escuela Técnica Superior de	1 Primer
Bioinformática	Ingeniería	cuatrimestre

Materias					
Titulación	Materia	Carácter			
2116 - Máster Universitario en Bioinformática	14 - Bioquímica y biología molecular	Optativa			

Coordinación

Nombre	Departamento
RUIZ GARCIA-TREVIJANO, ELENA	30 - Bioquímica y Biología Molecular
TORRES ASENSI, LUIS	30 - Bioquímica y Biología Molecular

RESUMEN

La Bioquímica y Biología Molecular es una asignatura cuatrimestral optativa de 9 créditos ECTS, que se imparte como complemento formativo para graduados sin previa formación en Ciencias de la Salud o Ciencias Experimentales.

La Bioquímica y Biología Molecular como asignatura tiene como importante objetivo dar a conocer al alumno las bases moleculares de los complejos mecanismos que rigen y regulan las funciones de los distintos organismos, los engranajes de la comunicación entre distintos órganos y tejidos, la adaptación del organismo a distintas situaciones de carácter exógeno.

En esta asignatura se le concede al futuro profesional el nivel de formación necesario para comprender y analizar las tendencias más actualizadas en Ciencias de la Salud y Ciencias experimentales basadas en los adelantos científicos y tecnológicos. En este sentido, se estudiará la estructura y propiedades de las grandes biomoléculas y su relación con la función que desempeñan, la transmisión de la información, así como sus transformaciones en la célula.

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

No se considera necesario resaltar la exigencia de unos conocimientos previos relevantes para la comprensión y seguimiento de la asignatura. Para cursar Bioquímica y Biología Molecular solo es necesario partir del conocimiento de una serie de conceptos básicos que forman parte del contenido general de los cursos del bachillerato y que por tanto tendrá cualquier graduado matriculado en el máster con independencia de su área de conocimiento de origen.

COMPETENCIAS (RD 1393/2007) // RESULTADOS DEL APRENDIZAJE (RD 822/2021)

2116 - Máster Universitario en Bioinformática

- Que los/las estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- Que los/las estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- Que los/las estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- Que los/las estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo
- Ser capaces de acceder a la información necesaria (bases de datos, artículos científicos, etc.) y tener suficiente criterio para su interpretación y empleo.
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

RESULTADOS DE APRENDIZAJE (RD 1393/2007) // SIN CONTENIDO (RD 822/2021)

- Comprender y manejar la terminología científica básica relacionada con la materia.
- Conocer la estructura de la célula y su evolución.
- Ser capaz de entender dónde tienen lugar los diferentes procesos celulares.
- Comprender de una manera general el funcionamiento celular.
- Conocer las estructuras de las biomoléculas y sus transformaciones en la célula.

- Conocer y comprender los procesos esenciales en la transmisión de la información genética desde el ADN hasta la proteína.
- Comprender el funcionamiento de las enzimas y su regulación.
- Conocer las principales rutas metabólicas y obtener una visión integrada del metabolismo y su regulación.

Entendimiento del origen molecular de las funciones básicas de los seres vivos y de sus principales implicaciones biotecnológicas y médicas.

DESCRIPCIÓN DE CONTENIDOS

1. Estructura y organización de las células procariotas y eucariotas.

Las células como unidades estructurales y funcionales. Características y componentes de las células procariotas. Las células eucariotas: membranas, orgánulos y citoesqueleto. Macromoléculas constituyentes de las células. Fundamentos químicos básicos de las reacciones bioquímicas.

2. Estructura de las proteínas y relación estructura-función. Interacciones entre proteínas.

Aminoácidos. Enlace peptídico. Niveles de estructuración de las proteínas. Plegamiento de proteínas. Desnaturalización y renaturalización de proteínas. Clasificación funcional de proteínas: proteínas globulares y proteínas fibrosas. Dinámica de las proteínas. Modificaciones posttraduccionales.

3. Estructura, características generales y funciones de los ácidos nucleicos.

Estructura química de los nucleótidos. Enlace fosfodiester. Composición química de los ácidos nucleicos. Propiedades y tipos de ácidos nucleicos. Interacciones ácidos nucleicos-proteínas.

4. Conceptos básicos en enzimología.

Introducción a los enzimas: Concepto de enzima. Nomenclatura y clasificación de los enzimas. Centro activo de los enzimas: concepto y características. Introducción a la catálisis enzimática. Regulación de la actividad enzimática.

5. Organización del genoma. Genes y cromosomas.

Organización del genoma eucariota. Genomas de virus y bacterias. Organización del DNA. Estructura de los cromosomas eucariotas.

6. Procesos de transmisión de la información génica: Replicación, Transcripción y Traducción

Características generales y etapas de la replicación. Diferencias y similitudes entre la replicación en procariotas y eucariotas. La transcripción en procariotas. Principales diferencias en la transcripción de procariotas y eucariotas. Promotores y proteínas que intervienen en la transcripción. Etapas de la transcripción en procariotas y eucariotas. Maduración y transporte del mRNA. Características de la traducción; el código genético. Componentes de la traducción. La síntesis de proteínas en procariotas; etapas. La traducción en eucariotas.

7. Regulación de la expresión génica: secuencias reguladoras, factores de transcripción, epigenética, regulación post-transcripcional.

Elementos reguladores de la transcripción. Factores de transcripción: Tipos y mecanismos de activación. Regulación epigenética de la transcripción. Remodelación de la cromatina. Modificación de histonas y metilación del DNA. siRNA y miRNA.

8. Sistemas de comunicación inter e intracelular y su regulación.

Tipos de señales y receptores. Segundos mensajeros y enzimas efectoras. Vías de señalización intracelular. Ventajas de los sistemas de señalización celular e integración de señales.

9. Concepto y panorámica general del metabolismo intermediario. Integración metabólica. Flujos metabólicos

Conceptos básicos del metabolismo. Principios termodinámicos aplicados a los seres vivos. Potencial de transferencia de grupos fosfato. Potencial reductor. Concepto de flujo Metabólico. Características de las vías metabólicas. Panorama general de las vías metabólicas. Relaciones intertisulares.

10. Técnicas básicas en Bioquímica y Biología Molecular.

Métodos de detección de ácidos nucleicos: hibridación, PCR y secuenciación. Métodos de detección de proteínas: western blot, inmunoprecipitación, geles bidimensionales. Análisis de unión proteína-DNA: ChIP assay. Microarrays: tipos. RNA y DNA-seq. Animales modificados genéticamente: tipos.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Clases de teoría	90,00	100
Elaboración de trabajos individuales	10,00	0
Estudio y trabajo autónomo	70,00	0
Preparación de actividades de evaluación	25,00	0
Preparación de clases de teoría	15,00	0
Preparación de clases prácticas y de problemas	18,00	0
Resolución de casos prácticos	30,00	0
Resolución de cuestionarios on-line	12,00	0
TOTAL	270,00	100

METODOLOGÍA DOCENTE

La metodología docente utilizada en esta asignatura se basa en la realización de tareas formativas del proceso de enseñanza-aprendizaje entorno a la interacción en el aula mediante sesiones expositivas. Incluyen las tareas previas de preparación (búsqueda de información, lectura de textos facilitados por el profesorado), las propias sesiones lectivas y el trabajo posterior de profundización.

Además, se facilitará el aprendizaje mediante análisis de casos de estudio, a través de los cuales se van adquiriendo competencias sobre los diferentes aspectos de la materia. Finalmente, se incluye la posible asistencia a cursos, conferencias o mesas redondas organizadas por la CCA del Máster y/o la realización de un trabajo bibliográfico sobre temas que contribuyan a la formación integral. Se elabora una memoria de las actividades.

EVALUACIÓN

El 50% de la nota se obtendrá mediante la evaluación de exámenes presenciales.

La evaluación de las memorias o informes entregados relativos a actividades formativas de problemas y casos de estudio, de actividades transversales o de otras que se planteen constituirá un 40% de la nota final

La evaluación continua del estudiante por la interacción en el aula o en actividades on-line supondrá un 10% de la nota.

REFERENCIAS

Básicas

- Referencia b1: BERG, J.M., TYMOCZKO, J.L., STRYER, L. Bioquímica. 6ª ed. Ed. Reverté, Barcelona, 2008.
- Referencia b2: CHANDAR N. Y VISELLI S.. Biología Molecular y Celular. Ed Lippincott Williams & Wilkins. 2011.
- Referencia b3: NELSON, D.L., COX, M.M. Lehninger Principios de Bioquímica. 4a ed. Ed. Omega, Barcelona, 2006. (5ª ed. inglés, Lehninger Principles of Biochemistry. Ed. W.H. Freeman and Co., New York, 2008).
- Referencia b4: ALBERTS, B., BRAY, D., LEWIS, J., RAFF, M., ROBERTS, K., WATSON, J.D. Biología Molecular de la Célula. 4ª ed. Ed. Omega, Barcelona, 2004. (5ª ed. inglés, Garland Publishing, Inc., New York, 2007).

Complementarias

- Referencia c1: DEVLIN, T.M. Bioquímica: libro de texto con aplicaciones clínicas. 4ª ed., Ed. Reverté, Barcelona, 2004. (6ª ed. inglés, Textbook of biochemistry with clinical correlations. Ed. John Wiley & Sons, New York, 2006).
- Referencia c2: LEWIN, B. Genes IX. 9 th ed. Ed. McGrawHill, Madrid, 2008
- Referencia c3: WATSON J.D. Biología Molecular del Gen. 5ª ed. Ed. Panamericana, Madrid, 2006.
 (6a ed. inglés, Molecular Biology of the Gen. Ed. The Benjamin Cummings Publishing Company, San Francisco, 2008).
- Referencia c4: CHAMPE, P.C., HARVEY, R. A. Lippincotts illustrated reviews: Bioquímica. 4ª ed. Ed. J.B. Lippincott, Philadelphia, 2008.

ADENDA COVID-19

Esta adenda solo se activará si la situación sanitaria lo requiere y previo acuerdo del Consejo de Gobierno