

Course Guide 42205 Derivatives

COURSE DATA	A					
	ata Subject					
Data Subject						
Code	42205					
Name	Derivatives					
Cycle	Master's degree	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
ECTS Credits	6.0					
Academic year	2021 - 2022					
Study (s)						
Degree		Center	Acad. Period year			
2081 - M.U. Banca y Cuantitativas (2007)	/ Finanzas	Faculty of Economics	1 Annual			
Subject-matter						
Degree		Subject-matter	Character			
2081 - M.U. Banca y Finanzas Cuantitativas (2007)		1 - Compulsory subjects	Obligatory			
Coordination						
Name		Department	Department			
LUCIA LOPEZ, JUL	IO JESUS	113 - Financial and Actuarial Economics				

SUMMARY

The main objective of this subject is to provide an in-depth introduction to derivative securities and markets. It provides coverage of the analytical techniques needed to understand how derivatives work, how they are used, and how they are priced.

PREVIOUS KNOWLEDGE

Relationship to other subjects of the same degree

There are no specified enrollment restrictions with other subjects of the curriculum.

Vniver§itatö́tdValència

Course Guide 42205 Derivatives

Other requirements

Relationships with other subjects:

This subject is related to the basic subjects "Foundations of Financial Economics I and II", as well as the instrumental subjects "Stochastic Processes" and "Numerical Calculus for Finance". Additionally, a successful completion of the "Derivatives" course is required to tackle the more advanced contents that are covered in the subject "Derivatives (Extension)".

OUTCOMES

LEARNING OUTCOMES

Students will acquire knowledge and diverse techniques that are both needed to implement the following financial expert tasks:

-Risk management and portfolio strategies: quantifying risk exposures, hedging of portfolios with derivative securities, and portfolio insurance.

-Valuation of derivative instruments.

DESCRIPTION OF CONTENTS

1. Unit 1. Introductory and institutional issues

- 1. Derivative markets
- 2. Organization of futures and options markets
- 3. Organization of OTC markets
- 4. Combined strategies
- 4.1. Combined strategies with options
- 4.2. Synthetic assets and structured products
- 5. Derivative Spanish market

2. Unit 2. Basic non-arbitrage valuation

- 1. Forward and futures contracts
- 2. Options

3. Unit 3. Introduction to hedging using futures

- 1. Basic principles and basis risk
- 2. Minimum variance hedging

Course Guide 42205 Derivatives

Vniver§itatÿdValència

4. Unit 4. Valuacion of derivatives in discrete time

- 1. Discrete-time valuation models
- 2. The Cox-Ross-Rubinstein binomial model
- 3. Relationship with diffusion processes: binomial approximation to Black-Scholes
- 4. Valuation of exotic options with discrete-time models

5. Unit 5. Continuous-time valuation (PDE approach): Black-Scholes model and extensions

- 1. One-factor models
- 1.1. Tradable asset (price variable)
- 1.2. Non-tradable underlying variable (state variable)
- 2. Two-factor models
- 2.1. Non-tradable underlying variable
- 2.2. Tradable asset
- 3. The Black-Scholes-Merton model and empirical evidence

WORKLOAD

ACTIVITY		Hours	% To be attended
Theory classes		60,00	100
	TOTAL	60,00	Alliaxa IS

TEACHING METHODOLOGY

Theory clases, problem solving and exercises with computer.

EVALUATION

Final grades will be based on a final written exam that will include questions and problems regarding both theory and practice.

REFERENCES

Basic

- John C. Hull (2015): Options, futures, and other derivatives. 9th ed., Pearson.

Vniver§itatö́dValència

Course Guide 42205 Derivatives

Additional

- Tema 4 / Unit 4:

- Bingham, N. H. and Rudiger Kiesel (1998): Risk: Neutral Valuation : Pricing and Hedging of Financial Derivatives, Springer.

- Lamberton, Damien and Bernard Lapeyre (1996): Introduction to Stochastic Calculus Applied to Finance, Chapman & Hall.

- Pliska, Stanley R. (1997): Introduction to Mathematical Finance : Discrete Time Models, Blackwell.

Tema 5 / Unit 5:

- Björk, T. (2004): Arbitrage theory in continuous time. Second edition, OUP.
- Duffie, D. (1996): "Dynamic asset pricing theory. 2nd ed.", Princeton University Press.

Ingersoll, J.E. (1987): "Theory of Financial Decision Making", Blackwell Publishing.

ADDENDUM COVID-19

This addendum will only be activated if the health situation requires so and with the prior agreement of the Governing Council

English version is not available

En caso de tener que suspenderse la actividad presencial, el programa se reorganizará para poder continuar online con el desarrollo del Máster, manteniendo la calidad y el rigor tanto de las clases como de los métodos de evaluación. La Comisión Académica valorará la conveniencia de modificar la forma de evaluación de las asignaturas y cualquier posible cambio será anunciado al alumnado a la mayor brevedad posible.