

FICHA IDENTIFICATIVA

Datos de la Asignatura		
Código	36354	
Nombre	Biología de sistemas	
Ciclo	Grado	
Créditos ECTS	6.0	
Curso académico	2021 - 2022	

 SCION	001
 lación(-

Titulación	Centro	Curso Periodo
1109 - Grado de Bioquímica y Ciencias	Facultad de Ciencias Biológicas	4 Anual
Biomédicas (2015)		

Materias		
Titulación	Materia	Caracter
1109 - Grado de Bioquímica y Ciencias Biomédicas (2015)	14 - Materia de asignaturas optativas	Optativa

Coordinación

Nombre	Departamento	
MARIN NAVARRO, JULIA VICTORIA	30 - Bioquímica y Biología Molecular	

RESUMEN

La asignatura de Biología de Sistemas es una materia optativa del grado de Bioquímica y Ciencias Biomédicas cuyo objetivo fundamental es familiarizar al alumno con una forma de estudiar el medio vivo a nivel molecular y celular en la que se resaltan las relaciones de interdependencia entre los elementos constituyentes, se analizan las consecuencias funcionales de estas interacciones, se priman los aspectos cuantitativos y se enfatiza la necesidad de una modelización matemática para poder abordar la complejidad propia de los organismos vivos. Se trata de una visión relativamente nueva para el alumno en la que, considerando asumidos los contenidos descriptivos de materias como Bioquímica, Biología Celular y Genética, se realiza una abstracción que busca generalizar los aspectos funcionales y analizar sus ventajas y limitaciones mediante modelización matemática utilizando la óptica propia de un ingeniero. El objetivo no es describir el ser vivo sino abstraer, a partir de su compleja descripción, los elementos esenciales e imaginar la lógica funcional subvacente. En este sentido cabe destacar el prometedor campo abierto recientemente por la denominada Biología Sintética, que aspira a producir organismos "de diseño" con nuevas propiedades de utilidad industrial, terapéutica o social. Este enfoque es indudablemente de gran interés para un biólogo molecular, pero exige volver a familiarizarse con unas bases matemáticas y físicas que, si bien son conocidas por los alumnos, no se han utilizado con asiduidad en la mayor parte de las asignaturas que constituyen el recorrido curricular del grado, y pueden haber

quedado parcialmente olvidadas. En este sentido, la asignatura se inicia recordando estos conceptos básicos para aplicarlos luego a situaciones biológicas de complejidad creciente.

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

Aunque no es necesario ningún conocimiento especial de Matemáticas o Física fuera de lo impartido en el primer curso del grado, es deseable una cierta simpatía (o, al menos, ausencia de rechazo) hacia estas disciplinas. El óptimo aprovechamiento del curso requiere además el conocimiento del idioma inglés a nivel de traducción de textos científicos.

COMPETENCIAS

1109 - Grado de Bioquímica y Ciencias Biomédicas (2015)

- Capacidad para pensar de una forma integrada y abordar los problemas desde diferentes perspectivas.
- Saber utilizar las diferentes fuentes bibliográficas y bases de datos biológicos y usar las herramientas bioinformáticas.
- Saber diseñar estrategias experimentales multidisciplinares en el ámbito de las biociencias moleculares para la resolución de problemas biológicos complejos, especialmente los relacionados con salud humana.
- Saber utilizar herramientas matemáticas y estadísticas para la resolución de problemas biológicos.
- Conocer los fundamentos químicos y físicos que determinan las propiedades de las moléculas biológicas y que rigen las reacciones en las que participan.
- Conocer las características estructurales y funcionales de las macromoléculas.

- Conocer las bases bioquímicas y moleculares del funcionamiento celular.
- Capacidad para la asimilación de textos científicos en inglés.

RESULTADOS DE APRENDIZAJE

El objetivo fundamental de esta asignatura es reconciliar los conocimientos de naturaleza descriptiva (y específicamente aquellos aportados por la biología molecular y celular) previamente adquiridos sobre los seres vivos con las leyes físicas universales que operan en la naturaleza. El alumno debe familiarizarse con el análisis cuantitativo de los fenómenos biológicos para convencerse de que los seres vivos cumplen las mismas leyes físicas que rigen el resto del universo (expresables en forma de ecuaciones matemáticas que ligan variables cuantitativas) y, por ello, estas leyes son relevantes para la descripción del medio vivo. Además el alumno debe conocer que, dentro del estricto marco de las leyes físicas a las que están sometidos, los seres vivos han desarrollado soluciones propias y originales para resolver problemas de regulación ligados a la supervivencia y adaptación al medio. El análisis matemático de estas soluciones permite entender la lógica del diseño funcional de los seres vivos, establecer de forma precisa y cuantitativa los límites de sus potencialidades, y comprender el valor adaptativo de estas peculiaridades de la materia viva. El fin último de esta asignatura es acercar al alumno a esta visión analítica del ser vivo que conecta la biología con el resto de las ciencias naturales, a la vez que permite abordar el estudio de problemas esenciales de la biología cuya complejidad escapa a la interpretación intuitiva.

En concreto, se pretende que, a través de la asignatura, el alumno desarrolle las siguientes destrezas:

- A) Adquisición de conocimientos
- 1) Actualización de los conocimientos de física y matemáticas que son relevantes para la descripción, análisis y comprensión de los fenómenos vitales.
- 2) Conocimiento del diseño funcional de macromoléculas biológicas y de sus capacidades y limitaciones como máquinas microscópicas.
- 3) Conocimiento de procesos celulares importantes para la actividad vital, analizados desde el punto de vista físico y matemático.
- B) Desarrollo de habilidades científicas
- 1) Hábito de indagar en los problemas biológicos hasta conectar con sus bases físicas.
- 2) Capacidad de establecer relaciones cuantitativas entre magnitudes biológicas en forma de modelos matemáticos con capacidad predictiva.
- 3) Familiarización con los procedimientos matemáticos de análisis de los modelos, y capacidad de deducir las propiedades y limitaciones del proceso modelizado en base a las interacciones que lo gobiernan.
- C) Desarrollo de habilidades sociales

Los seres vivos son probablemente los objetos más complejos del universo. Su comprensión última exige ser analizados utilizando todas las herramientas disponibles en los diversos campos de la ciencia y, por ello, necesita seguramente de la colaboración de científicos (biólogos, químicos, físicos, matemáticos e ingenieros) con especializaciones radicalmente distintas. En su calidad de materia interdisciplinaria, la Biología de Sistemas aporta al biólogo molecular y celular un bagaje científico que le permite comunicarse con especialistas de otros campos, con los que desee colaborar o, simplemente, intercambiar ideas o información. En este sentido, los conocimientos impartidos en esta asignatura ayudan a la formación de una mente abierta, dispuesta a incorporar ideas provenientes de otros campos de la ciencia en el estudio del funcionamiento de los seres vivos.

Por otro lado, esta asignatura contribuye también al desarrollo de otras habilidades sociales (enfoque racional en la resolución de problemas, capacidad de argumentación, manejo de las fuentes de información, uso del inglés a través de la bibliografía, etc.) propias del aprendizaje de toda ciencia.

DESCRIPCIÓN DE CONTENIDOS

1. Conceptos básicos

Introducción a la Biología de Sistemas. Conceptos matemáticos y físicos útiles en Biología. Flujo de energía libre en el medio vivo. Acoplamientos energéticos.

2.

Modelización

Modelos deterministas en ecuaciones diferenciales temporales. Sistemas dinámicos. Estados estacionarios y estabilidad. Ciclos límite y oscilaciones mantenidas. Bifurcaciones y caos dinámico.

3. Probabilidad y Mecánica Estadística

Distribuciones probabilísticas. Distribución de Boltzmann, Consecuencias cinéticas y termodinámicas. Flujos cíclicos y balance detallado. Tipos de ruido y su descripción.

4. Máquinas biológicas

Maquinaria biológica. Limitaciones termodinámicas. Interacciones a nivel molecular. Diseño de receptores, transportadores, catalizadores y motores moleculares. Mecanismos de fidelidad de reconocimiento y control de errores.

5. Cibernética

Respuesta frecuencial de un sistema. Retroalimentación. Análisis de circuitos de regulación. Circuitos homeostáticos y resistencia a fluctuaciones. Circuitos de percepción de estímulos. Cascadas de amplificación y diversificación de señales. Circuitos que producen oscilaciones. Ritmos y relojes biológicos.

6. Procesos espacio-temporales

Ecuaciones diferenciales en derivadas parciales. Paseo errático y leyes de difusión. Tiempos de captura. Modelos de difusión con arrastre y de reacción-difusión. Procesos morfogenéticos.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Clases de teoría	45,00	100
Prácticas en aula	15,00	100
Estudio y trabajo autónomo	15,00	0
Preparación de actividades de evaluación	40,00	0
Preparación de clases prácticas y de problemas	35,00	0
TOTAL	150,00	

METODOLOGÍA DOCENTE

La materia se impartirá en forma de clases teóricas en el aula de una hora de duración. Estas clases incluirán no sólo la exposición de conceptos, sino también ejemplos de aplicación de estos conceptos a lo modelización biológica. Las explicaciones teóricas se interrumpirán periódicamente para intercalar algunas aplicaciones que requieran cálculos cuantitativos en forma de problemas que se resolverán detalladamente en clase. De forma paralela se plantearan otros problemas de interés biológico a resolver por el alumno (bajo la tutoría del profesor) en base a las explicaciones teóricas recibidas, a los problemasmodelo resueltos en clase, y a bibliografía auxiliar que el profesor pueda sugerir.

Dado que la asignatura se va asentando sobre una serie de conceptos básicos que es necesario asimilar para seguir progresando, se llevará a cabo una evaluación continuada para fomentar que el alumno lleve la asignatura al día.

EVALUACIÓN

Se propone una evaluación continuada a través de exámenes cortos realizados con una periodicidad de unas cuatro semanas, aproximadamente. Estos exámenes no eliminarán materia sino que ésta se irá acumulando a lo largo del curso. Alternativamente, para los que no superen la evaluación continuada, se realizará un examen final escrito de toda la asignatura.

Los exámenes constarán tanto de cuestiones teóricas como de problemas (estos últimos, se podrán resolver en algunos casos con ayuda de apuntes y libros). En ambos casos se evaluará no sólo la adquisición de conocimientos sino también la capacidad de aplicarlos para modelizar problemas biológicos, analizar los modelos y sus predicciones, y extraer conclusiones relevantes. Para ello, en todo examen se planteará al menos una situación biológica que el alumno tendrá que modelizar, proponiendo ecuaciones en base a las interacciones relevantes, analizando matemáticamente las consecuencias del modelo y contrastando sus predicciones con la respuesta biológica esperada. Los exámenes se calificarán sobre un total de 10 puntos, siendo necesario alcanzar una nota de 5.0 (bien como media de los exámenes periódicos o como calificación del examen final) para aprobar la asignatura.

REFERENCIAS

Básicas

- ALON, U. An introduction to Systems Biology: Design principles of biological circuits. Chapman & Hall/CRC, 2007.
- COVERT, M.W. Fundamentals of Systems Biology. CRC Press, 2014.
- DiSTEFANO, J. Dynamic Systems Biology Modeling and Simulation. Elsevier, 2013.
- FALL, C.P., MARLAND, E.S., WAGNER, J.M. y TYSON, J.J. Computational Cell Biology. Springer, 2002
- INGALLS, B.P. Mathematical Modeling in Systems Biology. MIT Press, 2013.
- PHILLIPS, R., KONDEV, J., THERIOT, J. y GARCÍA, H.G. Physical Biology of the Cell. 2nd ed. Garland Science, 2012.
- VOIT, E. A first course in Systems Biology. Garland Science, 2012.
- SNEPPEN,K. Models of life: Dynamics and regulation in biological systems. Cambridge University Press, 2014

Complementarias

- BEARD, D.A. Biosimulation. Cambridge University Press, 2012.
- EDELSTEIN-KESHET, L. Mathematical models in biology. McGraw & Hill, 1988.
- NELSON, P. Physical Models of Living Systems. W.H. Freeman & Co., 2015.
- PALSSON, B.Ø. Systems biology: Simulation of dynamic network states. Cambridge University Press, 2011.
- Van den BERG, H. Mathematical models of biological Systems. Oxford University Press, 2011.
- SEGEL, L.A. y EDELSTEIN-KESHET, L. A primer on mathematical models in Biology. SIAM Press, 2013.

ADENDA COVID-19

Esta adenda solo se activará si la situación sanitaria lo requiere y previo acuerdo del Consejo de Gobierno

1 y 2) Contenidos y Volumen de trabajo.

No se prevén cambios en los contenidos ni volumen de trabajo.

3) Metodología.

El punto de inicio dado el número de estudiantes y las aulas disponibles es de plena presencialidad en las actividades. Sin embargo, ante la posibilidad de que la evolución de la situación derivada de la COVID-19 obligue a una reducción de la presencialidad, se tomarán las siguientes medidas:

- 1) Las actividades presenciales en aula se sustituirían en función de las herramientas tecnológicas disponibles en el aula en el momento de desarrollo del curso, por las siguientes metodologías:
- -Videoconferencia síncrona
- -Presentaciones Powerpoint locutadas en Aula Virtual
- 2) Para tutorías y dudas se utilizarían las siguientes metodologías:
- -Comunicación directa profesor-estudiante a través del correo institucional
- Comunicación profesor-estudiante (de forma individual o en pequeños grupos) a través de videoconferencia

4) Evaluación.

La evaluación se mantendrá de acuerdo a lo indicado en la guía docente original.

En caso de que los exámenes no pudieran ser presenciales, se realizarían 'on line' en Aula Virtual mediante las herramientas disponibles.

Los detalles concretos de la adaptación a las situaciones que se pudieran producir se supervisarán por la CAT y se comunicaran a los estudiantes a través de Aula Virtual