

FICHA IDENTIFICATIVA

Datos de la Asignatura		
Código	34902	
Nombre	Redes avanzadas I	
Ciclo	Grado	
Créditos ECTS	6.0	
Curso académico	2023 - 2024	

itulacion(es)		
Titulación	Centro	Curso Periodo
1400 - Grado de Ingeniería Informática	Escuela Técnica Superior de Ingeniería	4 Primer cuatrimestre
1403 - Grado de Ingeniería Telemática	Escuela Técnica Superior de Ingeniería	4 Primer cuatrimestre
Materias		

Titulación	Materia	Caracter
1400 - Grado de Ingeniería Informática	16 - Materia Optativa	Optativa
1403 - Grado de Ingeniería Telemática	19 - Optatividad	Optativa

Coordinación

Nombre	Departamento
FELICI CASTELL, SANTIAGO	240 - Informática

RESUMEN

La asignatura de Redes Avanzadas 1 está enmarcada dentro de un grupo de asignaturas de redes, en particular en la parte de optatividad del grado.

El objetivo principal de la asignatura es preparar al alumno para certificaciones oficiales con gran demanda profesional en el sector de las telecomunicaciones. La certificación abre las puertas a un sector estratégico como es Internet en el mundo empresarial y de negocios. Los contenidos de la asignatura cubren cuatros bloques tanto teóricos como prácticos: routing, switching, conexiones WAN y otros tecnologías complementarias, como Wifi, VOIP y técnicas de resolución de problemas.

La asignatura se ha diseñado siguiendo una metodología adaptada al nuevo Espacio Europeo de Educación Superior (EEES), y pretende centrar el aprendizaje en el estudiante. Este método mejora la implicación del estudiante y ayuda a su evaluación de forma continua, reforzando y complementando los conocimientos adquiridos en clases magistrales.

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

Tener superadas las competencias de Fundamentos de Redes de Computadores y Arquitectura de Redes de Computadores.

COMPETENCIAS

RESULTADOS DE APRENDIZAJE

El estudiante debe adquirir las siguientes habilidades:

Capacidad para realizar la planificación, diseño, implementación, mantenimiento y resolución de problemas en redes lan y wan.

Capacidad para que de forma autonoma preparen configuraciones de los equipos de red, tanto routers como switches, con la capacidad de poder detectar configuraciones incorrectas y para poder administrarlos.

Capacidad para superar las pruebas teorico/practicas de certificaciones oficiales otorgadas por fabricantes líderes en equipos de redes de datos.

DESCRIPCIÓN DE CONTENIDOS

1. REDES AVAZADAS 1

INTRODUCCUION

ARQUITECTURA INTERNA DE LOS EQUIPOS DE RED: ROUTERS Y SWITCHES.

ADMINISTRACION Y CONFIGURACIÓN BASICA DE LOS EQUIPOS DE RED. ADMINISTRACIÓN REMOTA Y POR LÍNEA DE COMANDOS. GESTIÓN DE LOS SISTEMAS OPERATIVOS DE ESTOS FOLIPOS

CONFIGURACION DE PROTOCOLOS DE ROUTING: RIP (v1 y v2), EIGRP Y OSPF (CON 1 AREA O CON VARIAS AREAS).

CONFIGURACION DE LOS SWITCHES: CREACION DE VLANS, VTP (VLAN TRUNKING PROTOCOL), STP Y RSTP

CONFIGURACION DE CONEXIONES PUNTO A PUNTO (TECNOLOGIAS WAN): PPP, FRAME RELAY

CONFIGURACIÓN BÁSICA DE REDES INALAMBRICAS, VERSION CENTRALIZADA Y DISTRIBUIDA. PLANIFICACIÓN DE LA RED PARA SERVICIOS DE VOZ (VOIP)

TECNICAS DE RESOLUCIÓN DE PROBLEMAS.

Presencial No presencial

Teoría 30 45 Problemas 10 15

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Clases de teoría	30,00	100
Prácticas en laboratorio	20,00	100
Prácticas en aula	10,00	100
Elaboración de trabajos individuales	15,00	0
Estudio y trabajo autónomo	15,00	0
Lecturas de material complementario	15,00	0
Preparación de actividades de evaluación	15,00	0
Preparación de clases de teoría	15,00	0
Preparación de clases prácticas y de problemas	15,00	0
TOTAL	150,00	W/ III

METODOLOGÍA DOCENTE

Las actividades formativas se desarrollarán de acuerdo con la siguiente distribución:

El 40% de las horas de los créditos ECTS (1 crédito son 25 horas) se destinarán a las siguientes actividades presenciales:

Actividades teóricas.

Descripción: En las clases teóricas se desarrollarán los temas proporcionando una visión global e integradora, analizando con mayor detalle los aspectos clave y de mayor complejidad, fomentando, en todo momento, la participación del/la estudiante.

Actividades prácticas.

Descripción: Complementan las actividades teóricas con el objetivo de aplicar los conceptos básicos y ampliarlos con el conocimiento y la experiencia que vayan adquiriendo durante la realización de los trabajos propuestos. Comprenden los siguientes tipos de actividades presenciales: Clases de problemas y cuestiones en aula; sesiones de discusión y resolución de problemas y ejercicios previamente trabajados por los estudiantes; prácticas de laboratorio; presentaciones orales; conferencias; tutorías programadas (individualizadas o en grupo)

Evaluación.

Descripción: Realización de cuestionarios individuales de evaluación en el aula con la presencia del profesorado.

El 60% de las horas de los ECTS (25 horas por ECTS) se dedicarán a las siguientes actividades no presenciales:

- Trabajo personal del/la estudiante.

Descripción: Realización (fuera del aula) de trabajos monográficos, búsqueda bibliográfica dirigida, cuestiones y problemas, así como la preparación de clases y exámenes (estudio). Esta tarea se realizará de manera individual e intenta potenciar el trabajo autónomo.

Se utilizará la plataforma de e-learning (Aula Virtual) de la Universitat de València como soporte de comunicación con los estudiantes. A través de ella se tendrá acceso al material didáctico utilizado en clase, así como los problemas y ejercicios a resolver.

EVALUACIÓN

La asignatura se evaluará de la siguiente manera en evaluación continua:

- 1) Parte teórica examen final escrito (30%) Nota mínima 5. Como alternativa en evaluación continua se realizarán exámenes escritos promediados.
- 2) Parte laboratorio (45%)
- 2.1 Asistencia, preparación y realización de la práctica evaluada en el mismo laboratorio (10%).
- 2.2 Examen escrito de configuración con comandos (35%) . Nota mínima 5. Como alternativa se realizarán exámenes prácticos promediados.
- 3) Ejercicios propuestos por el profesor (25%).

REFERENCIAS

Básicas

- Apuntes de la asignatura en Aula Virtual
 - -CCNA CERTIFICATION GUIDE
 - -Texto referencia

Complementarias

- Tanenbaum, Andrew S.: Redes de Computadoras, Prentice-Hall
 - -Stallings, William: Comunicaciones y Redes de Computadores, Prentice-Hall
 - -Kurose, James F.: Redes de Computadores, Prentice Hall

