
Course Guide
34886 Software engineering

34886 Software engineering 1

COURSE DATA

Data Subject

Code 34886

Name Software engineering

Cycle Grade

ECTS Credits 6.0

Academic year 2023 - 2024

Study (s)

Degree Center Acad.
year

Period

1403 - Degree in Telematics Engineering School of Engineering 3 First term

Subject-matter

Degree Subject-matter Character

1403 - Degree in Telematics Engineering 11 - Software engineering Obligatory

Coordination

Name Department

PANACH NAVARRETE, JOSE IGNACIO 240 - Computer Science

SUMMARY

The course "Software Engineering" is a core course as part of the field "Software Engineering and Project
Management" of the Telematics Engineering Degree. The course workload is 6 ECTSand it’s offered in
the 3rd semester of 3rd year.

The aim of the course is to introduce students in the development of software projects by following a
systematic process and relying on tools to improve software quality in production environments.

It will introduce students to the knowledge and use of different methodologies for developing information
systems.

We seek to provide sufficient knowledge of the software process, so that students, using the Unified
Process, will be able to capture requirements, analyze, design, implement, test and deploy software
projects in a concrete and accuracy way.

Course Guide
34886 Software engineering

34886 Software engineering 2

In regard to the practical part, in this course students will be able to implement the knowledge acquired in
the theoretical part using UML modeling language and Java programming language.

The main objective of this course is to introduce students to the development of software projects from
requirements analysis to implementation and verification of the product by the customer, relating to the
following points:

Understand the origin and meaning of the term "Software Engineering", its historical development
and current challenges (with attention to the sociocultural context of development), and be aware of
the ethical and professional responsibility of a Software Engineer.

•

Become aware of the importance of always performing the analysis and design of the problem, as
prior tasks to implementation in a programming language.

•

Be aware of the need of modeling and abstraction in software development. •
Understand the concept of software development method and its main classifications. •
Distinguish the concepts of diagram and model. •
Know the main UML diagrams: use cases, classes, packages, objects, interaction (sequence and
communication), states and activities, and be able to apply them in order to model a medium sized
project.

•

Given an application of medium size, be able to address the requirements analysis focused on use
cases, the conceptual or domain modeling, and the analysis of collaborations between objects with
appropriate allocation of responsibilities, specially taking into account technological details.

•

Understand and apply design techniques within the framework of an iterative process. •
Choose the best option between different data conceptual designs, justifying and arguing the
decision.

•

Know and apply basic design patterns for building software and evaluate its role as a way of reuse
of experience.

•

Use software tools that allow the creation of different UML diagrams.•

PREVIOUS KNOWLEDGE

Relationship to other subjects of the same degree

There are no specified enrollment restrictions with other subjects of the curriculum.

Other requirements

It is an essential requirement:
	 Have passed the subjects of the first and second course Informatics I (34877) and Informatics II
(34878)
	 Be enrolled or have passed the subject Programming (34888)

OUTCOMES

Course Guide
34886 Software engineering

34886 Software engineering 3

1403 - Degree in Telematics Engineering

- R1 - Ability for self-learning of new knowledge and techniques appropriate for the conception,
development and exploitation of telecommunications systems and services.

- G4 - Ability to solve problems with initiative, decision-making and creativity, and to communicate and
transmit knowledge, abilities and skills, understanding the ethical and professional responsibility of
the activity of a telecommunications technical engineer.

- G9 - Ability to work in a multidisciplinary environment and in a multilingual group and to communicate,
in writing and orally, knowledge, procedures, results and ideas related to telecommunications and
electronics.

- R7 - Understand and use the basic principles of programming for telecommunication networks,
systems and services.

- E3 - Ability to construct, operate and manage telematic services using analytical tools for planning,
dimensioning and analysis.

- E4 - Ability to describe, program, validate and optimize communication protocols and interfaces at
different levels of a network architecture.

LEARNING OUTCOMES

Learning goals of the course:

Apply methods for developing, implementing and maintaining information systems. G4, G9, R1,
R7, E3 and E4 skills

•

Successfully plan and execute software development process iterative. G4, G9, R1, R7, E3 and E4
skills

•

Know how to apply software design patterns in each situation depending on the needs of the
software development project. G4, R1, E3 and E4 skills

•

Define testing requirements validation and verification. G4, R1, E3 and E4 skills•
Obtain user and software requirements. G4, G9, R1, E3 and E4 skills•
Knowing the basics, development processes, methods and tools of software engineering. G3 skill•
Know and understand the current paradigms of software engineering aimed at developing
distributed software, free software engineering and Web engineering. G4, R1 and E4 skills

•

Know the different architecture models, which can be integrated technologies and business
solutions to form a distributed solution particular. E3 and E4 skills

•

It is also pretended in this course to further develop the following skills:

Analyze a software development problem and derive its nature specifically and accurately. G4, G9,
R1 and E3 skills

•

Design a structure of modules, using design patterns to solve problems and evaluate alternatives.
G4, G9, R1 and E3 skills.

•

Course Guide
34886 Software engineering

34886 Software engineering 4

Implement a module to run properly and efficiently. R7, E3 and E4 skills•

Test applications systematically defining comprehensive test cases. E4 skill•

Work in a small team, collaborating on the issues of software development, exchanging ideas
constructively and organized. G4, G9, R1, R7, E3 and E4 skills

•

DESCRIPTION OF CONTENTS

1. Introduction to Software Development Process UML

Skills to be acquired:
- Understand what is software engineering and its need
- Know and understand the fundamental concepts that comprise the basic terminology of software
engineering
- Understanding the relationships between the concepts of software process, software lifecycle and
software methodology
- Knowing the characteristics and explain the advantages and disadvantages of different software
process models
- Know the main types of software methodologies
- Know the basic features of a general process software development
- Understand what is software modeling and its benefits
- Recognize UML as a standard language to build software

Contents:
1.1 Overview of Software Engineering
1.2 Basics of Software Engineering
1.3 Software Process Models
1.4 Software Modeling
1.5 The Unified Modeling Language UML 2.0
1.5.1 UML Framework
1.5.2 UML Views
1.6 A Process of OO Software Development
1.6.1 Phases
1.6.2 Activities and Artifacts

Laboratory:
All sessions

Course Guide
34886 Software engineering

34886 Software engineering 5

2. Planning Phase

Skills to be acquired:
- Understand the value of acquiring and managing requirements and their influence on the success of a
project
- Understand what requirements are and the complexity of requirements extraction
- Learn the requirements activities
- Identify the different types of requirements and be able to discern between them
- Learn about diverse elicitation techniques to capture system requirements
- Understand what is the Requirements Document
- Know the IEEE / ANSI 830-199 for SRS
- Develop a SRS document for medium size systems
- Learn the different elements and diagrams that UML provides to represent Use Cases
- Represent Functional Requirements with Use Cases
- Accomplish detailed specification of Use Cases

Contents:
2.1. requirements
2.1.1 Definition and characteristics of the Requirements
2.1.2 Functional vs. Non Functional Requirements
2.1.3 Software Requirements Document
2.1.4 Exercises on Requirements
2.2 Prototype
2.3 Use Cases
2.3.1 Introduction.
2.3.2 Actors
2.3.3 Use Case Specification
2.3.4 Relations: generalization, extension, including
2.3.5 Use Case Diagrams
2.3.6 Standard errors and Recommendations
2.3.7 Exercises on use cases.

Laboratory:
Session 1: Prototyping UGI
Session 2: Working on Use Case Diagrams

3. Analysis

Skills to be acquired:
- Know the steps required to accomplish the analysis phase in the first cycle of development and the
artifacts to be generated
- Be able to develop the Data Dictionary
- Be able to abstract the relevant concepts to develop a Conceptual Model
- Develop using Class Diagrams the conceptual model of a system
- Identify system events in Use Cases descriptions to extract System Operations

Course Guide
34886 Software engineering

34886 Software engineering 6

- Develop System Sequence Diagrams for Use Cases starting from Use Case Expanded Specification
- Develop Contracts for System Operations

Contents:
Part I:
3.1 Introduction
3.2 Class Diagram
3.2.1 Classifiers
3.2.2 Classes
3.2.3 Interfaces
3.2.4 Relations dependency, generalization, association, realization
3.3 Conceptual Model
3.4 Exercises on class and object diagrams

Part II:
3.5 Interacciones
3.6 Sequence Diagrams
3.5.1 Elements
3.5.2 Modeling Interaction Diagrams
3.5.3 Lifecycle Application
3.7 System General Sequence Diagrams
3.8 Contracts
3.9 Sequence diagrams and contracts Exercises

Laboratory:
Session 3: Working on Class Diagrams
Session 4: Working on Sequence Diagrams
Session 5: Working on Life Cycle 1 Design
Session 7: Working on Life Cycle 2 Analysis & Design

4. Design

Skills to be acquired:
- Know the steps required to accomplish the design phase in the first cycle of development and the
artifacts to be generated
- Understand the concept of responsibility
- Understand and know how to apply a set of patterns when deciding responsibilities assignment to
classes
- Be able to develop interaction diagrams for each system operation following its contract
- Develop the Design Class Diagram from the Conceptual Model

Contents:
4.1 System Design
4.1.1 Responsibilities
4.1.2 Design Sequence Diagrams

Course Guide
34886 Software engineering

34886 Software engineering 7

4.1.3 Design Class Diagrams
4.1.4 Patterns for the allocation of responsibilities
4.3 Exercises

Laboratory:
Session 5: Working on Life Cycle 1 Design
Session 7: Working on Life Cycle 2 Analysis & Design

5. Implementation

Skills to be acquired:
- Learn prior decisions before implementing
- Know the types of transformation from model space to code space
- Transform design artifacts into code
- Detect models modification need for system optimization

Contents:
5.1 Prior Decisions
5.2 Types of transformation
5.2.1 Model Transformations
5.2.2 Code Transformations
5.2.3 Model to Code Transformations: direct Engineering
5.2.4 Code to Model Transformations: reverse Engineering
5.3 Direct Engineering
5.3.1 Mapping Classes
5.3.2 Mapping Relations
5.3.3 Mapping Inheritance
5.3.4 Methods Creation
5.3.5 Mapping Contracts
5.4 Implementation Exercises

Laboratory:
Session 6: Working on Life Cycle 1 Implementation
Session 8: Working on Life Cycle 2 Implementation

6. System Architecture

Skills to be acquired:
- Know the steps required to accomplish the design phase in the second cycle of development and the
artifacts to be generated
- Understand the concepts of layers, packages and partitions and how to use in organizing the system
architecture
- Represent packages and their relationships in Package Diagrams
- Choose the architecture to be used and model it using Packages Diagrams
- Knowing and applying other patterns

Course Guide
34886 Software engineering

34886 Software engineering 8

Contents:
6.1 Multilayer Architecture & UML
6.2 Patterns for connecting packages
6.3 Exercises

Laboratory:
Session 7: Working on Life Cycle 2 Analysis & Design

7. Testing

Skills to be acquired:
- Understand and differentiate the key issues related to software testing
- Understand the need for testing as an essential part of software system development
- Distinguish the different testing levels according on the purpose
- Learn different software testing techniques

Contents:
7.1 Basics: Errors, Defects, Failures, Test Cases
7.2 Verification and Validation
7.2.1 Software Inspections
7.2.2 Software Testing
7.2.3 Debugging
7.3 Software Testing Levels
7.3.1 Unit Testing
7.3.2 Integration Testing
7.3.3 System Tests
7.3.4 Validation Testing
7.4 Software Testing Techniques
7.4.1 Black-Box Testing
7.4.2 White-Box Testing
7.5 Test Plan

Course Guide
34886 Software engineering

34886 Software engineering 9

WORKLOAD

ACTIVITY Hours % To be attended

Theory classes 30,00 100

Laboratory practices 20,00 100

Classroom practices 10,00 100

Attendance at events and external activities 3,00 0

Development of group work 14,00 0

Development of individual work 6,00 0

Study and independent work 7,00 0

Preparing lectures 20,00 0

Preparation of practical classes and problem 30,00 0

Resolution of case studies 7,00 0

Resolution of online questionnaires 3,00 0

TOTAL 150,00

TEACHING METHODOLOGY

LECTURES:

The lectures will be based on active lectures where every 20/25 minutes will be introduced in any activity
that requires the involvement of students, so that 1) they can do an activity based on the content they
have just learnt, 2) recover the level of attention to the next block.

LECTURES PREPARATION:

Students have to prepare the lecture content, following the plan of the course. To do this they will use the
literature suggested by the lecturer as well as the materials provided him or/and any other directions
provided by the lecturer.

PREPARATION OF PRACTICAL WORK:

To better assimilate the contents of the lectures, practical sessions are conducted in the laboratories.
Attendance to practical sessions is mandatory and will be verified by the lecturer in charge of the group.
Students who are working and cannot attend practical sessions should contact the lecturer before the
beginning of the first session. The results of these activities must be submitted to the lecturer in charge of
the group during the course and in the terms established by the lecturer. Students are expected to
do/prepare some of these activities at home.

Course Guide
34886 Software engineering

34886 Software engineering 10

TEAM WORK:

A set of problems will be proposed that should be solved in teams of 5 to 6 persons. Each member of the
group will be graded both the joint mark of the group as the individual mark of each member.

The e-learning platform (Aula Virtual) will be used as communication tool between the lecturer and the
student. The student will access to all the material used in the lectures, through Aula Virtual, as well as all
the problems and exercise that needs to solve.

EVALUATION

The knowledge acquired by the student body will be evaluated as follows:

Their participation in the different activities, the degree of achievement obtained in the different training
activities and the involvement shown towards their own learning process will be evaluated on a regular
basis. For this, the following aspects will be assessed:

C) Continuous evaluation, based on the participation and degree of involvement in the teaching-
learning process, taking into account regular attendance at the planned face-to-face activities and
completion of the work. As activities within the continuous evaluation, the students will carry out
individually a set of bulletins of practical exercises or theoretical development that will be delivered
through the virtual classroom within the established period for it. In addition, test-type controls or
short questions of a part of the subject will be carried out. Finally, throughout the course a software
project will be developed that will be presented at the end of the course in class. All these activities
will give rise to the continuous evaluation mark as follows:

•

 C (Continuous Assessment Grade) = 0.4 * Controls + 0.4 *Newsletters + 0.2 * Project Presentation

Activities delivered after the deadline will not be taken into account, nor can activities not carried out be
recovered. Cheating in any of the activities will be strictly penalized, canceling all the student's
continuous assessment notes.

 Competences G4, G9, R1, R7, E3 and E4

(P) Evaluation of practices. They will be done in groups of 5 or 6 people and both the quality of the
solution and the documentation in each of the practices will be assessed. Competences G4, G9,
R1, R7, E3 and E4

•

(E) Individual objective tests, consisting of one or several exams, or knowledge tests, which will
consist of both theoretical-practical questions and problems. It will be necessary to pass each of
these tests or exams in order to pass the subject. Competences G4, R1 and E3.

•

 •

Course Guide
34886 Software engineering

34886 Software engineering 11

The final grade will be obtained by applying the following formula:

Note = 0.35*C + 0.35*E+0.3*P

The marks of the group activities will not necessarily be the same for all the members of the group, and
may vary depending on the involvement of each student.

Only work delivered on the date stipulated by the faculty will be considered. This includes each and every
one of the activities, questionnaires and exercises proposed, the software project and, in general, any task
that is assigned to the students.

The continuous part is not recoverable on second call. The P and E parts only average if a minimum of 5
is reached in each of them.

In case of not having passed E or P with a mark higher than 5 and having taken the E test, the mark in the
minutes will be computed as:

 Final Grade = minimum(E,P,4)

 In case of not showing up for E, the final grade is Not Shown

Given that the grade for the continuous assessment part is not recoverable, in order to request an early
call, students must have previously completed the subject and have passed the continuous assessment.

In any case, the evaluation of the subject will be done in accordance with the Evaluation and
Qualification Regulations of the University of Valencia for undergraduate and master's degrees approved
by the Governing Council on May 30, 2017 (ACGUV 108/2017).

In accordance with the regulations of the Universitat de València, the performance of fraudulent actions
in a test or part of it will lead to a grade of zero in it, regardless of the disciplinary procedure that can be
opened and the sanction that is in accordance with current regulations.

REFERENCES

Basic

- Apuntes de la asignatura

- [Frank Tsui, Orlando Karam, and Barbara Bernal(2016)] Essentials of Software Engineering. Jones &
Bartlett Learning, LLC
[Recurs Electrònic:
https://ebookcentral.proquest.com/lib/univalencia/detail.action?docID=4826428]

Course Guide
34886 Software engineering

34886 Software engineering 12

- [Martina Seidl, Marion Scholz, Christian Huemer, Gerti Kappel] UML @ Classroom. An Introduction to
Object-Oriented Modeling
[Recurs Electrònic: https://link.springer.com/book/10.1007%2F978-3-319-12742-2]

- [C. Larman (2004)] Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development, 3rd (Edition Prentice Hall)[Recurs electronic:
http://proquest.safaribooksonline.com/0131489062?uicode=valencia]

- [Grady Booch, James Rumbaugh, Ivar Jacobson (2005)] The Unified Modeling Language User Guide
(2 n d R e v . E d i t i o n) (A d d i s o n - W e s l e y) [R e c u r s e l e c t r o n i c :
http://proquest.safaribooksonline.com/0321267974]

Additional

- [Kenneth E. Kendall, Julie E Kendall (2010)] Systems Analysis and Design, 8th Edition (Prentice Hall)

- [Michael R. Blaha, James R Rumbaugh (2005)] Object-Oriented Modeling and Design with UML (2nd
Edition) (Prentice Hall)

- [A. Weitzenfeld (2004)] Ingeniería de software orientada a objetos con UML, Java e Internet
(Thomson)

- [Robert C. Martin (2003)] UML for Java programmers (Prentice Hall)[Recurs electronic:
http://proquest.safaribooksonline.com/0131428489?uicode=valencia]

- [Roger S. Pressman (2009)] Software Engineering: A Practitioner's Approach, 7th Edition (Mc Graw
Hill)

- [I. Sommerville (2011)] Software Engineering, 9th Edition (Addison-Wesley)

- [S. Sánchez Alonso, M. A. Sicilia Urbán, D. Rodríguez García (2011)] Ingeniería de software: un
enfoque desde la guía SWEBOK (Garceta)

- [Bernd Bruegge, Allen H. Dutoit] Object-Oriented Software Engineering Using UML, Patterns, and
Java, 3rd Edition (Edition Prentice Hall)

