

FICHA IDENTIFICATIVA

Datos de la Asignati	ıra
Código	34873
Nombre	Física I
Ciclo	Grado
Créditos ECTS	6.0
Curso académico	2019 - 2020

11141401011(00)
Titulogión

litulacion	Centro	Curso Periodo
1403 - Grado en Ingeniería Telemática	Escuela Técnica Superior de	1 Primer
	Ingeniería	cuatrimestre

Materias		
Titulación	Materia	Carácter
1403 - Grado en Ingeniería Telemática	2 - Física	Formación Básica

Coordinación

Titulación(es)

Nombre	Departamento
BORDES VILLAGRASA, JOSE MANUEL	185 - Física Teórica
OTEO ARACO, J. ANGEL	185 - Física Teórica

RESUMEN

(Punto 5.5.1.3 del documento: Memoria de verificación del MECD)

Física I es una asignatura básica de primer curso, impartida en el primer cuatrimestre del Grado en Ingeniería Telemática. Cuenta con una parte de teoría y problemas que se imparte en el aula con el grupo completo, y otra de prácticas de laboratorio en subgrupos de 16 estudiantes. Los objetivos buscados son:

- Dominar los distintos procedimientos para la resolución de los distintos problemas de Física, incluyendo las habilidades matemáticas necesarias. Se pretende que el alumno sepa interpretar los resultados y discutir si son razonables.
- Ofrecer aquellos conocimientos necesarios para afrontar otras asignaturas del grado, en el mismo curso o cursos superiores.
- Introducir al alumno en el trabajo experimental en Física, incluyendo la realización de montajes experimentales, la toma de medidas, su tratamiento matemático e interpretación en términos de leyes físicas, y presentación como memoria científica.

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

Se recomienda haber cursado las asignaturas de Física y Matemáticas en el bachillerato.

COMPETENCIAS (RD 1393/2007) // RESULTADOS DEL APRENDIZAJE (RD 822/2021)

1403 - Grado en Ingeniería Telemática

- G3 Conocimiento de materias básicas y tecnologías, que le capacite para el aprendizaje de nuevos métodos y tecnologías, así como que le dote de una gran versatilidad para adaptarse a nuevas situaciones.
- G4 Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, y de comunicar y transmitir conocimientos, habilidades y destrezas, comprendiendo la responsabilidad ética y profesional de la actividad del Ingeniero Técnico de Telecomunicación.
- B3 Comprensión y dominio de los conceptos básicos sobre las leyes generales de la mecánica, termodinámica, campos y ondas y electromagnetismo y su aplicación para la resolución de problemas propios de la ingeniería.

RESULTADOS DE APRENDIZAJE (RD 1393/2007) // SIN CONTENIDO (RD 822/2021)

Resultados Generales del Aprendizaje

Esta asignatura posibilita obtener los siguientes resultados de aprendizaje:

- Conocer y comprender los fundamentos de la Física, así como del bagaje matemático para su formulación, y las aplicaciones más relevantes en la industria o la vida cotidiana (Competencia B3).
- Ser capaz de evaluar claramente los órdenes de magnitud, evaluando la importancia relativa de las diferentes causes que intervienen en un fenómeno físico (Competencia G3).
- Saber resolver problemas, siendo capaz de identificar los elementos esenciales y de realizar las aproximacions requeridas (Competencia B3, G3 y G4).
- Profundizar en las diferentes ramas de la Física a partir de las nociones básicas adquiridas en esta materia, integrando formalismos matemáticos y conceptos más complejos (Competencia B3).

Ser capaz de profundizar en las diferentes ramas de la física a partir de los conceptos básicos adquiridos en esta materia, integrando formalismos matemáticos y conceptos más complejos (Competencia B3).

DESCRIPCIÓN DE CONTENIDOS

0. ELEMENTOS DE MATEMÁTICAS

Vectores. Operaciones con vectores. Componentes cartesianas. Derivación. Integración.

1. MAGNITUDES Y UNIDADES

Análisis dimensional. Órdenes de magnitud

2. CINEMÁTICA DE LA PARTÍCULA

Movimiento rectilíneo, en dos y en tres dimensiones. Sistemas de referencia. Movimiento circular y movimiento armónico simple.

3. DINÁMICA DE PARTÍCULAS

Leyes de Newton. Fuerzas de rozamiento. Aplicaciones.

4. ENERGIA Y MOMENTO LINEAL

Trabajo y energía cinética. Fuerzas conservativas y energía potencial. Momento lineal. Teoremas de conservación..

5. CAMPOS DE FUERZAS

Ley de la gravitación de Newton. Energía potencial gravitatoria. Intensidad de campo y superficies equipotenciales. Momento angular y Leyes de Kepler.

6. MECÁNICA DE FLUIDOS

Principios de Pascal y de Arquímedes. Régimen laminar y turbulento. Viscosidad.

7. TERMODINÁMICA

Temperatura y equilibrio. Teorema de conservación de la energía (1ª ley de la termodinámica). Entropía. Segunda ley de la termodinámica.

8. LABORATORIO

Introducción general al Laboratorio y dos prácticas (Ley de Hooke y oscilaciones elásticas y Densidad y viscosidad).

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Prácticas en aula	25,00	100
Clases de teoría	25,00	100
Prácticas en laboratorio	10,00	100
Elaboración de trabajos en grupo	8,00	0
Estudio y trabajo autónomo	10,00	0
Preparación de actividades de evaluación	12,00	0
Preparación de clases de teoría	30,00	0
Preparación de clases prácticas y de problemas	30,00	00000
TOTAL	150,00	

METODOLOGÍA DOCENTE

(Punto 5.3 del documento: Memoria de verificación del MECD)

La asignatura consta de varias partes, con una metodología bien diferenciada:

- Teoría y problemas (clases de pizarra)
- Laboratorio.

Teoría y problemas (Competencias G3 y B3):

Se dispone en promedio de cuatro horas por semana durante el primer cuatrimestre que se distribuirán en clases teóricas y de problemas a partes iguales. Las clases teóricas serán, por lo general, de carácter magistral donde se expondrá el contenido de la asignatura, haciendo especial énfasis en sus aplicaciones y en la resolución de cuestiones, estimulando la participación del estudiante. Durante las clases de problemas se resolverán problemas de cada tema. En cada uno de ellos el profesor entregará una colección de problemas de los que algunos "tipo" se resolverán en ella,

principalmente por los propios alumnos. Otros serán asignados de forma individualizada y deberán ser entregados por el estudiante al finalizar cada bloque o tema.

Laboratorio. Actividad de asistencia obligatoria. (Competencias G3, G4 y B3):

Se realizarán 4 sesiones de laboratorio, impartidas en subgrupos pequeños (de 16 alumnos), con un profesor asignado a cada subgrupo. La primera sesión se dedica al tratamiento de datos experimentales (errores, gráficas, ajustes). Las siguientes sesiones se dedican a prácticas de laboratorio propiamente dichas, donde los alumnos, en parejas, realizan el montaje experimental y la toma de datos. Por cada práctica, la pareja tiene que presentar una memoria donde se recojan los datos experimentales y su tratamiento (errores, gráficas, ajustes), así como las conclusiones a las que se llega. Se pondrá énfasis en la utilización de programas informáticos para el tratamiento de los datos (hoja de cálculo), lo que puede hacerse durante las sesiones de prácticas con los ordenadores disponibles en el propio laboratorio.

EVALUACIÓN

La evaluación de la asignatura se hace teniendo en cuenta las distintas partes de la misma: a) Teoría y problemas, b) Laboratorio, con los siguientes criterios:

a) Evaluación de teoría y problemas (Competencias G3 y B3):

Modalidad A

Evaluación mediante dos exámenes parciales (eliminatorios si la nota es superior a 5):

Examen I: temas 1, 2 y 3 eliminatorio.

Examen II: temas 4 a 7.

Modalidad B

Recuperación de los exámenes con nota inferior a 5 o evaluación mediante un examen final. Se admite la posibilidad de mejorar la nota obtenida en la modalidad A.

En ambos casos el examen constará de una parte de teoría (50% de la nota del examen) y otra de problemas (50% de la nota del examen). Para poder realizar la media entre ambas, es necesaria una nota mínima de 3/10 en cada una de ellas.

b) Evaluación del laboratorio (Competencias G3, G4 y B3):

Asistencia obligatoria al laboratorio y calificación de las memorias individuales realizadas. Para aprobar la asignatura es necesario que la nota del laboratorio sea superior a 5/10.

EVALUACIÓN FINAL

La calificación final de la asignatura (sobre 10 puntos) se hará con los siguientes criterios:

Modalidad A

A) 4 puntos: calificación del primer examen parcial.

B) 4 puntos: calificación del segundo examen final.

C) 2 puntos: calificación de los trabajos realizados en el laboratorio (actividad obligatoria para aprobar la asignatura).

Calificación: A+ B+C (si la nota de cada examen parcial es mayor o igual a 4/10).

Modalidad B

A) 8 puntos: calificación del examen a recuperar o del examen final en su caso.

B) 2 puntos: calificación de los trabajos realizados en el laboratorio (actividad obligatoria para aprobar la asignatura).

Calificación: A + B.

Nota de aprobado: 5 puntos.

"En todo caso, el sistema de evaluación se regirá por aquello establecido en el Reglamento de evaluación y calificación de la Universitad de Valencia para Grados y Màsters (https://webges.uv.es/uvTaeWeb/MuestraInformacionEdictoPublicoFrontAction.do?accion=inicio&idEdictoSeleccionado=5639)"

REFERENCIAS

Básicas

- A. Rex, R. Wolfson. Fundamentos de Física. Ed. Pearson Education, Madrid 2011.
- Tipler, Mosca, Física para la Ciencia y la tecnología, Volumen I, Reverté 2010.

Complementarias

- Fishbane, Gasiorowicz, Física para ciencias e ingeniería, Prentice Hall 1993
- Alonso, Finn, Física, Pearson Ecuación 2000
- Alcaraz Sendra, Física. Problemas y ejercicios resueltos. Pearson 2006

ADENDA COVID-19

Esta adenda solo se activará si la situación sanitaria lo requiere y previo acuerdo del Consejo de Gobierno