

FICHA IDENTIFICATIVA

Datos de la Asignatura		
Código	34865	
Nombre	Aplicaciones para dispositivos móviles	
Ciclo	Grado	
Créditos ECTS	6.0	
Curso académico	2021 - 2022	

Titulación(es)		
Titulación	Centro	Curso Periodo
1400 - Grado de Ingeniería Informática	Escuela Técnica Superior de Ingeniería	4 Segundo cuatrimestre
1407 - Grado de Ingeniería Multimedia	Escuela Técnica Superior de Ingeniería	4 Segundo cuatrimestre
Materias		
Titulación	Materia	Caracter

Titulación	Materia	Caracter
1400 - Grado de Ingeniería Informática	16 - Materia Optativa	Optativa
1407 - Grado de Ingeniería Multimedia	19 - Optatividad	Optativa

Coordinación

Nombre	Departamento
GIL PASCUAL, MIRIAM	240 - Informática

RESUMEN

La asignatura introduce al alumno en los componentes, APIs y las herramientas que permiten desarrollar aplicaciones en la plataforma Android. En concreto, se mostrarán qué tipos de componentes se pueden usar en una aplicación, qué elementos visuales puede mostrar y cómo tratar los eventos que se producen con la interacción del usuario. Además se revisarán algunas APIs relevantes como: la comunicación vía sockets y la interacción con servidores HTTP, los sensores (geolocalización, acelerómetro y cámara), el acceso a bases de datos y a proveedores de contenidos nativos. Finalmente, se tratará el tema de la generación y la visualización de gráficos, imágenes y animaciones.

Con estos contenidos y la realización de prácticas y tareas se proporcionará una base para que el alumno pueda desarrollar aplicaciones en diferentes ámbitos.

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

Haber cursado las asignaturas que forman en el lenguaje de programación Java. Haber cursado las asignaturas de informática gráfica.

COMPETENCIAS

1400 - Grado de Ingeniería Informática

 TI6 - Capacidad de concebir sistemas, aplicaciones y servicios basados en tecnologías de red, incluyendo Internet, web, comercio electrónico, multimedia, servicios interactivos y computación móvil.

1405 - Grado de Ingeniería Multimedia

- G1 Capacidad para relacionar y estructurar información proveniente de diversas fuentes y de integrar ideas y conocimientos. (RD1393/2007)
- MM1 Poseer conocimiento y capacidad de comprensión de hechos esenciales, conceptos, principios y teorías relativas a los sistemas multimedia incluyendo todas las disciplinas que estos sistemas abarcan.
- MM2 Capacidad de comprensión y manejo de las diversas tecnologías implicadas en los sistemas multimedia. Tanto desde el punto de vista del hardware y la electrónica, como desde el punto de vista del software.
- MM21 Comunicar de forma efectiva, tanto por escrito como oralmente, conocimientos, procedimientos, resultados e ideas relacionadas con las TIC y, concretamente de la Multimedia, conociendo su impacto socioeconómico.

RESULTADOS DE APRENDIZAJE

Como resultados del aprendizaje el alumno debe ser capaz de:

- Desarrollar aplicaciones que contengan varias pantallas y que se pueda realizar la transición entre ellas.
- Desarrollar aplicaciones que usen componentes existentes en el sistema de forma desacoplada
- Desarrollar y usar el sistema de notificaciones del dispositivo
- Desarrollar y usar servicios en las aplicaciones.
- Desarrollar y usar "broadcast receivers" para recibir información del sistema.
- Desarrollar aplicaciones que usen "Sockets" y que realicen peticiones a servidores HTTP.
- Desarrollar y usar bases de datos y "content providers" del sistema y propios.

- Desarrollar aplicaciones que utilicen los sensores que proporciona el dispositivo.
- Desarrollar aplicaciones que usen fragmentos y permitan la visualización de gráficos, imágenes y animaciones
- Diseñar aplicaciones que apliquen las guías de diseño
- Diseñar y crear diferentes tipos de pruebas para testear la aplicación
- Usar el entorno de desarrollo Eclipse y las herramientas que proporciona el SDK de Android para el desarrollo y prueba de aplicaciones

DESCRIPCIÓN DE CONTENIDOS

1. Introducción

Arquitectura de la plataforma Máquina virtual Componentes que forman una aplicación

2. Actividades e intentos

La clase Activity

Widgets y contenedores

Organización de los elementos en los contenedores

Eventos

Intents

Permisos

3. Almacenamiento Local

Ficheros

Preferencias

Bases de datos

4. Programación concurrente, Notificaciones y Alarmas

Programación concurrente

Notificaciones

Alarmas

5. Programación en red

Comunicación mediante Sockets

Realizar peticiones a servidores HTTP

6. BroadcastReceiver y Service

BroadcastReceiver

Service

7. Desarrollo de interfaces avanzadas

Uso de fragmentos

Introducción a animaciones e interfaces dinámicas

Imágenes y gráficos

Audio y video

Sensores: sensores de movimiento, sensores de posición, sensores de entorno, cámara

8. Guías de diseño

Guías de accesibilidad

Guías de usabilidad

Componentes avanzados

Temas

Fuentes

Iconos

9. Pruebas

Conceptos básicos de las pruebas

Pruebas unitarias

Pruebas de la interfaz de usuario

Pruebas de rendimiento de la interfaz de usuario

VOLUMEN DE TRABAJO

ACTIVIDAD		Horas	% Presencial
Clases de teoría		30,00	100
Prácticas en laboratorio		20,00	100
Prácticas en aula		10,00	100
Elaboración de trabajos en grupo		10,00	0
Elaboración de trabajos individuales		40,00	0
Estudio y trabajo autónomo		30,00	0
Lecturas de material complementario		10,00	0
	TOTAL	150,00	

METODOLOGÍA DOCENTE

Lección magistral, resolución de problemas, trabajo autónomo y trabajo en grupo.

EVALUACIÓN

En primera convocatoria habrá evaluación continua:

- 1) A lo largo de la asignatura se propondrán tareas que serán evaluadas de forma individual (sesiones de laboratorio, problemas, proyectos, trabajos, etc).
- 2) Las sesiones de laboratorio se evaluarán mediante un cuestionario que se entregará al final de la sesión y/o mediante la evaluación del código entregado. Cada enunciado de laboratorio indicará su sistema de evaluación.
- 3) El resto de tareas evaluables serán seleccionadas por el profesor entre las siguientes categorías: problemas, proyectos, trabajos individuales o trabajos en grupo.
- 4) Puesto que la responsabilidad de aprender y demostrar lo aprendido es individual, el profesor podrá en cualquier momento citar a los alumnos que considere para que de forma individual defiendan el trabajo realizado en alguna de las tareas entregadas.

En segunda convocatoria los alumnos deberán repetir o mejorar los trabajos suspendidos en primera convocatoria y que el profesor considere oportunos.

En cualquier caso, la evaluación de la asignatura se hará de acuerdo con el Reglamento de evaluación y calificación de la Universitat de València para los títulos de grado y master aprobado por Consejo de Gobierno de 30 de mayo de 2017 (ACGUV 108/2017)

REFERENCIAS

Básicas

- C. Collins, M. Galpin, M. Kaeppler. Android in Practice, Manning Publications 2011
- P.J. Deitel, H. V. Deitel, A. Deitel, M. Morgano. Android for Programmers: An App-Driven Approach. Prentice Hall; 1 edition 2011
- G. Milette, A. Stroud. Professional Android Sensor Programming, Wrox 2012
- Daniel Sauter. Rapid Android Development. Pragmatic Bookshelf 2013

Complementarias

- Mario Zechner, Robert Green. Beginning Android Games, Apress 2011
- Daniel Shiffman. Learning Processing: A Beginner's Guide to Programming Images, Animation, and Interaction. 2008, Morgan Kaufmann.

ADENDA COVID-19

Esta adenda solo se activará si la situación sanitaria lo requiere y previo acuerdo del Consejo de Gobierno

Si la situación sanitaria lo requiere, la Comisión Académica de la Titulación aprobará un Modelo Docente de la Titulación y su adaptación a cada asignatura, estableciéndose en dicho modelo las condiciones concretas en las que se desarrollará la docencia de la asignatura, teniendo en cuenta los datos reales de matrícula y la disponibilidad de espacios.

