
Course Guide
34840 Software engineering I

34840 Software engineering I 1

COURSE DATA

Data Subject

Code 34840

Name Software engineering I

Cycle Grade

ECTS Credits 6.0

Academic year 2023 - 2024

Study (s)

Degree Center Acad.
year

Period

1407 - Degree in Multimedia Engineering School of Engineering 3 First term

Subject-matter

Degree Subject-matter Character

1407 - Degree in Multimedia Engineering 5 - Desarrollo del Software
Multimedia

Obligatory

Coordination

Name Department

MARTINEZ PLUME, JAVIER 240 - Computer Science

SUMMARY

The course "Software Engineering" is a core course as part of the Telematics Engineering Degree. The
course workload is 6 ECTS and it’s offered in the 3rd semester of 3rd year.

The aim of the course is to introduce students in the development of software projects by following a
systematic process and relying on tools to improve software quality in production environments.

It will introduce students to the knowledge and use of different methodologies for developing information
systems.

We seek to provide sufficient knowledge of the software process, so that students, using the Unified
Process, will be able to capture requirements, analyze, design, implement, test and deploy software
projects in a concrete and accuracy way.

Course Guide
34840 Software engineering I

34840 Software engineering I 2

In regard to the practical part, in this course students will be able to implement the knowledge acquired in
the theoretical part using UML modeling language and Java programming language.

The main objective of this course is to introduce students to the development of software projects from
requirements analysis to implementation and verification of the product by the customer, relating to the
following points:

Understand the origin and meaning of the term "Software Engineering", its historical development
and current challenges (with attention to the sociocultural context of development), and be aware of
the ethical and professional responsibility of a Software Engineer.

•

Become aware of the importance of always performing the analysis and design of the problem, as
prior tasks to implementation in a programming language.

•

Be aware of the need of modeling and abstraction in software development.•
Understand the concept of software development method and its main classifications.•
Distinguish the concepts of diagram and model.•
Know the main UML diagrams: use cases, classes, packages, objects, interaction (sequence and
communication), states and activities, and be able to apply them in order to model a medium sized
project.

•

Given an application of medium size, be able to address the requirements analysis focused on use
cases, the conceptual or domain modeling, and the analysis of collaborations between objects with
appropriate allocation of responsibilities, specially taking into account technological details.

•

Understand and apply design techniques within the framework of an iterative process.•
Choose the best option between different data conceptual designs, justifying and arguing the
decision.

•

Know and apply basic design patterns for building software and evaluate its role as a way of reuse
of experience.

•

Use software tools that allow the creation of different UML diagrams.

PREVIOUS KNOWLEDGE

Relationship to other subjects of the same degree

There are no specified enrollment restrictions with other subjects of the curriculum.

Other requirements

Without prerequisites for enrollment, it is recommended to have completed the following courses / fields:
	 Programming

OUTCOMES

Course Guide
34840 Software engineering I

34840 Software engineering I 3

1405 - Grado en Ingenieria Multimedia

- B4 - Have basic skills in the use and programming of computers, operating systems, databases and
computer software for use in engineering.

- B5- Know the structure, organisation, operation and interconnection of computer systems, the
fundamentals of their programming and their application to solve engineering problems.

- I9- Know and apply the principles, methodologies and life cycles of software engineering.

- MM3 - Be able to implement methodologies, technologies, processes and tools for the professional
development of multimedia products in a real context of use by applying the appropriate solutions for
each environment.

- MM5 - Know how to apply the theoretical and practical resources to deal with a multimedia application
as a whole.

- MM21 - Communicate effectively, both in writing and verbally, knowledge, procedures, results and
ideas related to ICT and specifically to multimedia, and know their socioeconomic impact.

- MM23 - Make proper use of theories, procedures and tools in the professional development of
multimedia engineering in a real context (specification, design, implementation, deployment and
evaluation of multimedia systems solutions).

- MM24 - Be able to design, develop, evaluate and ensure the accessibility, ergonomics, usability and
security of multimedia systems, services and applications and of the information that these manage.

- MM26 - Be able to conceive, develop and maintain multimedia systems, services and applications
using the methods of software engineering as a tool for quality assurance, according to the
knowledge acquired as described in the specific competences.

- MM28 - Be able to solve problems with initiative, decision-making and creativity and to communicate
and transmit the knowledge, abilities and skills of a multimedia engineer.

LEARNING OUTCOMES

Learning goals of the course:

Apply methods for developing, implementing and maintaining information systems.•
Successfully plan and execute software development process iterative.•
Know how to apply software design patterns in each situation depending on the needs of the
software development project

•

Define testing requirements validation and verification•
Obtain user and software requirements•
Knowing the basics, development processes, methods and tools of software engineering•
Know and understand the current paradigms of software engineering aimed at developing
distributed software, free software engineering and Web engineering

•

Know the different architecture models, which can be integrated technologies and business
solutions to form a distributed solution particular.

•

Course Guide
34840 Software engineering I

34840 Software engineering I 4

It is also pretended in this course to further develop the following skills:

Analyze a software development problem and derive its nature specifically and accurately.•
Design a structure of modules, using design patterns to solve problems and evaluate alternatives.

Implement a module to run properly and efficiently.○

Test applications systematically defining comprehensive test cases.○

•

Work in a small team, collaborating on the issues of software development, exchanging ideas
constructively and organized.

DESCRIPTION OF CONTENTS

1. Introduction to Software Development Process UML

Skills to be acquired:
	 Understand what is software engineering and its need
	 Know and understand the fundamental concepts that comprise the basic terminology of software
engineering
	 Understanding the relationships between the concepts of software process, software lifecycle and
software methodology
	 Knowing the characteristics and explain the advantages and disadvantages of different software
process models
	 Know the main types of software methodologies
	 Know the basic features of the Unified Process software development
	 Understand what is software modeling and its benefits
	 Recognize UML as a standard language to build software
Contents:
1.1 Overview of Software Engineering
1.2 Basics of Software Engineering
1.3 Models and Processes
1.3.1 Introduction to Software Process
1.3.2 Software Process Models
1.3.3 Software Development Methodologies
1.4 The Unified Modeling Language UML 2.0
1.4.1 Structural and Dynamic Modeling
1.4.2 UML Views
1.5 Unified Process of OO Software Development
1.5.1 Characteristics
1.5.2 Phases
1.5.3 Activities and Artifacts

Course Guide
34840 Software engineering I

34840 Software engineering I 5

2. Planning Phase and Specification

Skills to be acquired:
	 Understand the value of acquiring and managing requirements and their influence on the success of a
project
	 Understand what requirements are and the complexity of requirements extraction
	 Learn the requirements activities
	 Identify the different types of requirements and be able to discern between them
	 Learn about diverse elicitation techniques to capture system requirements
	 Understand what is the Requirements Document
	 Know the IEEE / ANSI 830-199 for SRS
	 Develop a SRS document for medium size systems
	 Learn the different elements and diagrams that UML provides to represent Use Cases
	 Represent Functional Requirements with Use Cases
	 Accomplish detailed specification of Use Cases
Contents:
2.1. requirements
2.1.1 Definition and characteristics of the Requirements
2.1.2 Types of Requirements
2.1.3 Requirements Activities
2.1.4 Techniques for obtaining Requirements
2.1.5 Software Requirements Specification
2.1.6 Exercises on requirements
2.2 Prototype
2.3 Use Cases
2.3.1 Introduction.
2.3.2 Elements: Actors, Subjects, Events and Scenarios
2.3.3 Use Case Specification
2.3.4 Relations: performance, generalization, extension, including
2.3.5 Use Case Diagrams
2.3.6 Standard errors and Recommendations
2.3.7 Exercises on use cases.

3. Analysis phase

Skills to be acquired:
	 Know the steps required to accomplish the analysis phase in the first cycle of development and the
artifacts to be generated
	 Be able to develop the Data Dictionary
	 Be able to abstract the relevant concepts to develop a Conceptual Model
	 Develop using Class Diagrams the conceptual model of a system
	 Identify system events in Use Cases descriptions to extract System Operations
	 Develop System Sequence Diagrams for Use Cases starting from System Operations
	 Develop Contracts for System Operations
	 Represent complex behaviors using State and Activity Diagrams

Course Guide
34840 Software engineering I

34840 Software engineering I 6

Contents:
3.1 Conceptual Model
3.2 Class Diagram
3.2.1 Classifiers: Types and Properties
3.2.2 Relations dependency, generalization, association, realization
3.3 Diagram of objects
3.3.1. instances
3.4 Exercises class and object diagrams
3.5 System Sequence Diagrams
3.5.1 Interactions
3.5.2 Lifelines
3.5.3 Posts
3.6 Contracts
3.7 Sequence diagrams and contracts Exercises
3.8 Behavior Diagrams complex and State / Activity
3.8.1 Activity Elements
3.8.2 Activity Diagrams
3.8.3 State Machine Elements
3.8.4 State Diagrams
3.9 Activity Diagrams and State Exercises

4. Design phase

Skills to be acquired:
	 Know the steps required to accomplish the design phase in the first cycle of development and the
artifacts to be generated
	 Understand the concept of responsibility
	 Understand and know how to apply a set of patterns when deciding responsibilities assignment to
classes
	 Be able to develop interaction diagrams for each system operation following its contract
	 Develop the Design Class Diagram from the Conceptual Model
Contents:
4.1 Model of Design
4.1.1 Responsibilities
4.2 Design Class Diagram
4.3 Interaction Diagrams
4.3.1 Operation sequence diagram
4.3.2 Communication diagram
4.4 interaction diagrams Exercises
4.5 Patterns for the allocation of responsibilities.
4.5.1 GRASP Patterns
4.5.2 Patterns GoF
4.6 Example: Design of TPV

Course Guide
34840 Software engineering I

34840 Software engineering I 7

5. System Architecture

Skills to be acquired:
	 Understand the concepts of layers, packages and partitions and how to use in organizing the system
architecture
	 Represent packages and their relationships in Package Diagrams
	 Choose the architecture to be used and model it using Packages Diagrams
	 Knowing and applying other patterns
Contents:
5.1 Architecture and UML multilayer
5.1.1 Layers and partitions
5.1.2 Packages
5.1.3 Diagram Packages
5.2 Patterns of connection between packages
5.2.1 GRASP Patterns
5.2.2 Patterns GoF

6. Implementation Phase

Skills to be acquired:
	 Learn prior decisions before implementing
	 Know the types of transformation from model space to code space
	 Transform design artifacts into code
	 Detect models modification need for system optimization
Contents:
6.1 Prior Decisions
6.2 Types of transformation
6.2.1 Model Transformations
6.2.2 Code Transformations
6.2.3 Model to Code Transformations: direct Engineering
6.2.4 Code to Model Transformations: reverse Engineering
6.3 Direct Engineering
6.3.1 Mapping Classes
6.3.2 Mapping Relations
6.3.3 Mapping Inheritance
6.3.4 Methods Creation
6.3.5 Mapping Contracts

7. Testing

Skills to be acquired:
	 Understand and differentiate the key issues related to software testing
	 Understand the need for testing as an essential part of software system development
	 Distinguish the different testing levels according on the purpose
	 Learn different software testing techniques

Course Guide
34840 Software engineering I

34840 Software engineering I 8

Contents:
7.1 Basics: Errors, Defects, Failures, Test Cases
7.2 Verification and Validation
7.2.1 Software Inspections
7.2.2 Software Testing
7.2.3 Debugging
7.3 Software Testing Levels
7.3.1 Unit Testing
7.3.2 Integration Testing
7.3.3 Acceptance Testing
7.3.4 System Tests
7.4 Software Testing Techniques
7.4.1 Black-Box Testing
7.4.2 White-Box Testing
7.5 Test Plan

WORKLOAD

ACTIVITY Hours % To be attended

Theory classes 30,00 100

Laboratory practices 20,00 100

Classroom practices 10,00 100

Development of group work 4,00 0

Study and independent work 4,00 0

Preparing lectures 23,00 0

Preparation of practical classes and problem 50,00 0

Resolution of case studies 9,00 0

TOTAL 150,00

TEACHING METHODOLOGY

Teaching activities will be conducted in accordance with the following distribution:

Theoretical activities.•

The lectures will present the course contents providing a global vision, a detailed analysis of the key
concepts and encouraging the student participation.

Practical activities.•

Course Guide
34840 Software engineering I

34840 Software engineering I 9

The practical activities complement the theoretical classes and allow the students to put into practice the
contents and improve the understanding of the course concepts. They include the following types of
classroom activities:

Solving problems in class.•
Regular discussion of exercises and problems that the students have previously tried to work out.•
Workshops and seminars in computer lab.•
Group work for project planning and software development and generation of group dynamics.•
Support tutorial sessions (individualized).•

To carry out these activities, the general group will be subdivided into smaller subgroups (20 students
maximum) according to need.

Personal work.•

Preparation of classes and exams (study). This is done individually and tries to promote autonomous work
habits.

Teamwork in small groups.•

It will be carried out by small groups of students (3-4). It consists of work to be done out of the class
timetable in form of exercises and problems. This work tries to improve the teamwork and leadership
skills. They include the following types of activities:

Group work research and collecting information on basic concepts of software engineering,
software life cycle, agile methodologies, software process models, UML history.

•

Presentation of group work (in Castilian).•
Group work for project planning and software development and generation of group dynamics.•
Software development projects, which documentation must be submitted in Castilian and English.•
Presentation of the software project.•
Support tutorial sessions (groups).•

During the course the e-learning platform (Aula Virtual) of the University of Valencia will be used to
support the teaching activities. This platform allows the access to the course materials used in the classes
as well as additional documents, solved problems and exercises.

EVALUATION

Students can choose between two different assessments:

Continuous assessment system•
Single assessment system.•

Continuous assessment system

This will be the method recommended to students. This system allows regular assessment of students'
participation, their exploit of training activities and their participation in the learning process.

Course Guide
34840 Software engineering I

34840 Software engineering I 10

Following aspects will be valued:

Theory sessions: involvement will be assessed, taking into account regular attendance to planned
classroom activities, delivery of the exercises and participation in their resolution, including work
on units 1 and 2 (Theory_M).

•

Problems sessions: involvement will be assessed, taking into account regular attendance to planned
classroom activities, delivery of the exercises, participation in solving exercises during classes and
active participation in the forums (Problem_M).

•

Laboratory sessions: involvement will be assessed, taking into account regular attendance to
planned classroom activities and delivery of the proposed exercises (Laboratory _M).

•

Individual examination: consisting of one or several exams, or knowledge test, that will include
both theoretical and practical questions and problems (Exam_M).

•

To apply such an assessment a class attendance rate above 75% will be required. This percentage will
applied separately to each block. That is, students should attend to more than 75% of theory sessions,
more than 75% of the practice sessions and more than 75% of the laboratory sessions.

Only works submitted before the date stipulated by the teacher will be considered. This includes exercises
in class (theory and practical sessions), laboratory exercises, the work of the first two units and the
software project.

A minimum mark of 4 (out of 10) for each part (Theory_M, Problem_M, Laboratory _M and Exam_M)
is required to obtain a final average mark.

The final mark will be obtained applying the following formula:

Final Mark=20% Continuous_M +30%Laboratory_M +50% Exam_M

Continuous_M =50% Theory_M +50% Problem_M

Single assessment system

This method applies to any student who cannot attend classes regularly due to a reasonable and supported
by professor cause or who already fail the first session continuous assessment.

Theory sessions mark (Theory_M), problems sessions mark (Problem_M) and Laboratory sessions mark
(Laboratory _M) will not be recovered by any other activity.

In both methods, the evaluation will be conducted according to the Regulation of Qualifications of the
University of Valencia. At the time of writing this guide, the current legislation is approved by the
Governing Council of the UVEG of January 27, 2004, adjusted as provided for that purpose by the Royal
Decrees 1044/2003 and 1125 / 2003. It states basically that the marks will be numerical from 0 to 10 with
a decimal expression and must be added the qualitative rating scale for the following:

From 0 to 4,9: “Fail”

From 5 to 6,9: “Pass”

Course Guide
34840 Software engineering I

34840 Software engineering I 11

From 7 to 8,9: “Very good”

From 9 to 10: “Outstanding” or “with Distinction

REFERENCES

Basic

- Apuntes de la asignatura

- [Roger S. Pressman (2009)] Software Engineering: A Practitioner's Approach, 7th Edition (Mc Graw
Hill)

- [I. Sommerville (2011)] Software Engineering, 9th Edition (Addison-Wesley)

- [S. Sánchez Alonso, M. A. Sicilia Urbán, D. Rodríguez García (2011)] Ingeniería de software: un
enfoque desde la guía SWEBOK (Garceta)

- [Grady Booch, James Rumbaugh, Ivar Jacobson (2005)] The Unified Modeling Language User Guide
(2nd Rev. Edition) (Addison-Wesley)

- [C. Larman (2004)] Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development, 3rd (Edition Prentice Hall)

- [Bernd Bruegge, Allen H. Dutoit] Object-Oriented Software Engineering Using UML, Patterns, and
Java, 3rd Edition (Edition Prentice Hall)

Additional

- [Kenneth E. Kendall, Julie E Kendall (2010)] Systems Analysis and Design, 8th Edition (Prentice Hall)

- [Michael R. Blaha, James R Rumbaugh (2005)] Object-Oriented Modeling and Design with UML (2nd
Edition) (Prentice Hall)

- [A. Weitzenfeld (2004)] Ingeniería de software orientada a objetos con UML, Java e Internet
(Thomson)

- [Robert C. Martin (2003)] UML for Java programmers (Prentice Hall)

