

COURSE DATA

Data Subject			
Code	34802		
Name	Computer Network Architecture		
Cycle	Grade		
ECTS Credits	6.0		
Academic year	2019 - 2020		

Study (s)						
Degree	Center	Acad. Period				
		year				
1402 - Degree in Telecommunications	School of Engineering	2 Second term				

Electronic Engineering

Ctudy (a)

Subject-matter					
Degree	Subject-matter	Character			
1402 - Degree in Telecommunications	11 - Networks	Obligatory			
Electronic Engineering					

Coordination

Name Department

SEBASTIAN AGUILAR, RAFAEL 240 - Computer Science

SUMMARY

The subject of computer network architecture is framed within a subject group of computer networks, which are closely related, divided into two subjects and three subjects. This course is part of the basic knowledge acquired in the first quarter in Fundamentals of networks, technologies and delving into more advanced network protocols. In particular, Fundamentals of computer networks with computer networks architecture form a field of 12 credits under the name Network.

It is the second semester of the second course in Engineering degree from Telematics (GIT) and the Electronic Engineering degree in Telecommunications (Gieten) is mandatory, and has a teaching 6 ECTS credits.

The course has been designed with a methodology adapted to the new European Higher Education Area

(EHEA), and central aims in student learning. Matter, and in particular subjects, are designed with a joint plan focused on the methodology of Problem Based Learning (PBL). This method enhances student involvement and support its assessment on an ongoing basis, reinforcing and complementing the knowledge acquired in lectures.

Computer network architectures focuses on expanding the knowledge acquired by the student networks. To this end, studying new technologies through networking applications that use VoIP, MPLS and Multicast. To improve the assimilation of theoretical concepts shall be proposed in a theoretical group which will deploy the technologies seen in the theoretical modules.

The main overall objectives of the course are:

- Acquire a basic knowledge of advanced networking and related protocols in order to understand network applications that use them.
- Learn to conduct a project that requires the assimilation of theoretical content and the deployment of a multimedia network taking into account technical and economic factors.
- Develop collaborative skills, group work and leadership to carry out a project-oriented work.

PREVIOUS KNOWLEDGE

Relationship to other subjects of the same degree

There are no specified enrollment restrictions with other subjects of the curriculum.

Other requirements

Prior knowledge required is the subject of Computer and Network Fundamentals course in computers.

The course is in the first semester of the second course. Therefore assumes that students already have basic knowledge in the field of engineering and have developed skills in solving problems. Also it is expected that students have learned teamwork dynamics and skills. This knowledge will be reinforced throughout the courses in this area with special emphasis on teamwork skills, project-oriented.

COMPETENCES (RD 1393/2007) // LEARNING OUTCOMES (RD 822/2021)

1402 - Degree in Telecommunications Electronic Engineering

- G3 Acquisition of the knowledge of the basic and technological subjects that allows students to learn new methods and theories and endows them with the versatility to adapt to new situations.
- G4 Ability to solve problems with initiative, decision-making and creativity, and to communicate and transmit knowledge, abilities and skills, understanding the ethical and professional responsibility of the activity of a telecommunications technical engineer.
- G5 Knowledge to carry out measurements, calculations, assessments, evaluations, loss adjustments, studies, reports, task planning, and other analogous work in the specific field of telecommunications.
- G6 Ability in the handling of specifications, regulations and norms of compulsory compliance.
- R6 Ability to conceive, deploy, organize and manage telecommunications networks, systems, services and infrastructures in residential (home, urban and digital communities), business and institutional contexts, as well as understanding their economic and social impact.
- R12 Understand and use the concepts of network architecture, protocols and communications interfaces.
- R13 Ability to differentiate the concepts of access and transport networks, circuit and packet switching networks, fixed and mobile networks, as well as distributed network systems and applications, voice, data, audio, video, interactive and multimedia services.
- R14 Understand the interconnection and routing methods of network, as well as the fundamentals of planning, sizing networks according to traffic parameters.

LEARNING OUTCOMES (RD 1393/2007) // NO CONTENT (RD 822/2021)

The student should acquire the following **skills**:

- Ability to access and understand technical literature and the ability to access the information required to know the details of a particular configuration.
- Design a data network with integration of different technologies with different sizes (local, metropolitan, wide area), using both public and private addressing.
- Set up the necessary devices (switches and routers) for the operation of a network and know how to administer the minimum services to be deployed.
- Ability to specify rules to write a specification for the deployment of a network.
- Discuss the elements of security in a computer network.
- Design based programs using the libraries network of transportation and sockets.
- To apply the traffic engineering criteria for deployment of networks with MPLS technologies, QoS and Multicast.
- Understand the advantages and limitations of different technologies used in current networks.

The student should acquire the following social skills:

- Identify the most important technological applications in the social environment.
- Organize the work and implement it in a group.

DESCRIPTION OF CONTENTS

0. Introduction

- Review of networking basics
- Networking technologies
- Important concepts of the OSI reference model

Theory (Face) 4 (No face) 6 Problems (Face) 0 (No face) 0

1. Transport layer protocols

- Introduction
- UDP protocol
- ICMP protocol
- TCP protocol
- Traffic congestion control, Flow traffic control, Loss traffic control

Theory (Face) 5 (No face) 4,5 Problems (Face) 2 (No face) 1,5

2. Application protocols

- Introduction.
- Email. SMTP. POP and IMAP protocols.
- Domain Name Servers. DNS.
- Other applications: FTP, Telnet, HTTP
- Network administration: SNMP, RMON, NBAR, Netflow
- Basic examples of configuration, management and tools.

Theory (Face) 5 (No face) 6 Problems (Face) 2 (No face) 1,5

3. Voice over IP

- Introduction
- VoIP architectures
- H323 standard
- SIP Protocol
- QoS for multimedia networks

Theory (Face) 4 (No face) 6 Problems (Face) 2 (No face) 3

4. Networking security

- Introduction
- Encrypted communications. Methods symmetric (DES, 3DES, AES) and asymmetric (RSA).
- Integrity and compendia. Methods SHA, MD5.
- Certificates and public cable infrastructure. format X.509.V3
- Types of attacks on networks. Classification.
- Access lists. Filtering. Firewall and DMZ. Honeypots

Theory (Face) 6 (No face) 9 Problems (Face) 2 (No face) 3

WORKLOAD

ACTIVITY	Hours	% To be attended
Theory classes	30,00	100
Laboratory practices	20,00	100
Classroom practices	10,00	100
Development of group work	15,00	0
Study and independent work	15,00	/ Д. У / О
Readings supplementary material	15,00	0
Preparation of evaluation activities	15,00	0
Preparing lectures	15,00	0
Preparation of practical classes and problem	15,00	0
TOTA	AL 150,00	

TEACHING METHODOLOGY

The training activities are conducted in accordance with the following distribution:

40% of the hours of ECTS credits (1 credit is 25 hours) will go to the following sessions:

• **Theory:** (outcomes G3, G5, R12, R13, R14)

The lectures will develop the issues by providing a global and inclusive vision, analyzing in detail the key issues and more complex, encouraging at all times, participation / student.

• Practical activities: (G4, R6, R12, R13, R14)

Complement the theoretical activities in order to apply the basics and expand the knowledge and experience to be acquired in the course of the work proposed. They include the following types of classroom activities:

• Classes of problems and issues in the classroom: (G4, G5, G6, R6)

or discussion sessions and problem-solving exercises and previously worked by students or Labs

or oral presentations

or tutorials scheduled (individualized or group)

• Evaluation:

Making individual evaluation questionnaires in the classroom with the presence of teachers.

60% of the hours of ECTS (25 hours per ECTS) will be devoted to the following non-contact activities:

• Work in small groups.

Realisation, by small groups of students (2-4) of work, issues, problems outside the classroom. This work complements the work and encourages individual ability to integrate into working groups.

• Work student (independent).

Realization (outside the classroom) of monographs, literature search directed, issues and problems as well as the preparation of classes and exams (study). This is done individually and tries to promote self-employment.

It will use the platform of e-learning (virtual classroom) of the University of Valencia in support of communication with students. Through it you will have access to course materials used in class as well as solve problems and exercises.

EVALUATION

Next is the criteria for the evaluation:

Table. Criteria and weight of each part of the module in the final grades

Criteria	Grades Juny	Grades July
Written exam (at the end, including mid-term)	35% (5 P)	35%
Lab Presentation	4%	0%
Lab exams	27% (7 P)	31%
Project documentation	27% (4 P)	34%
Lider presentation	7%	0%
Total	100 %	100%

^{* (}P): Indicates that exams or partial assignments have been made. The note is the average of all the partials. There is no average grade to average the partials. The FINAL NOTE will be obtained from the average of the three main parts of the subject (project, laboratory and theory) as long as the student has obtained at least a 5 in each of the parts.

Students who have completed the course in previous years can validate their project and practice notes as long as they had obtained at least 6 in the previous year.

The evaluation of the course will be made taking into account the work done throughout the semester and the final tests.

At the beginning of the course groups of three or four people will be formed who will carry out the theoretical project, presentation of works in class and realization of tests throughout the course. It will try to maintain the same groups for the realization of laboratory practices. Therefore, a large part of the evaluation will be based on the way in which the students work in groups, the way they carry out the activities, the tasks are divided and presented.

Since it is not possible to reproduce the work environment after the course has elapsed, the recovery exams will have their weights modified, and will not take into account the continuous assessment notes if the student has not carried out the relevant tasks during the semester in that the subject was taught.

REFERENCES

Basic

Referencia b1: Apuntes de la asignatura

Referencia b2: Texto referencia Referencia b3: Texto referencia

Additional

- Referencia c1: Tanenbaum, Andrew S.: Redes de Computadoras, Prentice-Hall

Referencia c2: Stallings, William: Comunicaciones y Redes de Computadores, Prentice-Hall

Referencia c3: Kurose, James F.: Redes de Computadores, Prentice Hall

ADDENDUM COVID-19

This addendum will only be activated if the health situation requires so and with the prior agreement of the Governing Council

1. Contenidos

Se mantienen los contenidos originales, tanto prácticos como teóricos de la asignatura.

2. Volumen de trabajo y planificación temporal de la docencia

El volumen de trabajo de la asignatura es el mismo, ya que se han sustituido las clases teóricas presenciales por videos de las clases que los estudiantes deben visionar y estudiar de forma autónoma.

Las clases prácticas y los laboratorios a realizar son los mismos, ya que se realizan mediante un simulador de redes (Cisco Packet Tracer). La explicación de la práctica y su solución se presentan en formato de videos preparados por el profesor disponibles a través de Internet.

Las actividades prácticas siguen la programación temporal establecida, y fechas de entrega predeterminadas, sin embargo, en el bloque teórico se da libertad al alumno para que vaya estudiando el material que se va entregando en las fechas originales de las clases.

3. Metodología docente

Se han realizados las siguientes adaptaciones a la metodología docente:

CLASES TEÓRICAS

Las Sesiones Presenciales se han sustituido por videos consistentes en transparencias locutadas, y material escrito que las acompaña. El material se hace disponible al ritmo al que avanza el curso. Los estudiantes son libres de visionarlas cuando deseen.

CLASES DE PROYECTO/PROBLEMAS

- Las Sesiones de Proyecto están grabadas en video, correspondiendo con el mismo contenido que se imparte en las clases presenciales.
- -La resolución de los proyectos que implica presentación de los alumnos en grupos de 4, se realiza mediante Black Board Collaborate (BBC), donde cada alumno presenta su trabajo hasta la fecha de forma oral, y todos los compañeros y el profesor pueden escucharle e interactuar con él.

CLASES PRÁCTICAS

- La resolución de las prácticas que se realizaba con hardware de red en laboratorio de la empresa Cisco System, se realizan ahora con el simulador de la misma empresa Cisco system, que incluye todos los componentes de hardware necesario y virtualiza todos los sistemas operativos de los dispositivos, por lo que la resolución es análoga.
- La presentación de los objetivos de la práctica se realiza mediante videos grabados por el profesor de la asignatura.
- La resolución de las prácticas se realiza mediante videos grabados por el profesor de la asignatura, y material en Aula Virtual. Los alumnos entregan sus prácticas completadas mediante Aula Virtual.

TUTORIAS

- Se han habilitado Foros, uno por práctica y por bloque del proyecto para la resolución de dudas.
- Se ha establecido un horario que incluye toda la semana para atender por correo electrónico dudas de alumnos
- Se utiliza Skype para tutorías personalizadas de hasta 4 alumnos, en las cuales se utilizan herramientas como compartición de pantalla para poder analizar prácticas y proyectos en estados intermedios y resolver dudas.

4. Evaluación

Se han llevado a cabo las siguientes modificaciones en el método de evaluación:

TEORÍA

Los exámenes parciales teóricos restantes (tres) se realizarán en un único examen que se realizará de forma oral, mediante videoconferencia. Esta nota se combinará con la de los exámenes presenciales ya realizados, manteniendo el peso original de los contenidos.

PROYECTOS

Las presentaciones orales realizadas en clase, se sustituyen por presentaciones mediante teleconferencia usando BBC con toda la clase conectada al evento.

PRÁCTICAS

Los exámenes tipo test realizados en cada práctica, se sustituyen por un examen oral por videoconferencia y pantalla compartida para evaluar la resolución de las prácticas

5. Bibliografía

No hay cambios