

FICHA IDENTIFICATIVA

Datos de la Asignatu	ıra
Código	34792
Nombre	Circuitos electrónicos
Ciclo	Grado
Créditos ECTS	6.0
Curso académico	2016 - 2017

 SCION	001
 lación(-

Titulación	Centro	Curso	Periodo
1402 - Grado de Ingeniería Electrónica de	Escuela Técnica Superior de	1	Segundo
Telecomunicación	Ingeniería		cuatrimestre

Materias		
Titulación	Materia	Caracter
1402 - Grado de Ingeniería Electrónica de Telecomunicación	3 - Circuitos y componentes electrónicos y fotónicos	Formación Básica

Coordinación

Nombre	Departamento
MARTIN GUERRERO, JOSE DAVID	242 - Ingeniería Electrónica
MUÑOZ MARI, JORDI	242 - Ingeniería Electrónica

RESUMEN

La asignatura "Circuitos Electrónicos" es una asignatura cuatrimestral, consta de 6 créditos ECTS y se imparte durante el 2º cuatrimestre del primer curso del Grado en Ingeniería Electrónica de Telecomunicación (GIET). La asignatura pretende que el alumno profundice en aquellos conocimientos de Teoría de Circuitos adquiridos en los cursos de bachiller, ciclos formativos o titulaciones universitarias previas, y que, en ciertos aspectos, los complete. En cualquier caso la asignatura no parte de un cierto nivel previo como requisito necesario, por lo que aquellos estudiantes que no hayan estudiado anteriormente Teoría de Circuitos no deben tener problemas para seguirla, siempre y cuando tengan las competencias matemáticas necesarias para trabajar con las herramientas que se emplean en esta asignatura.

La asignatura tiene un carácter eminentemente práctico en el sentido de que los conceptos teóricos serán, básicamente, aprendidos mediante la realización de ejercicios y problemas que irán aumentando gradualmente su complejidad para alcanzar todos los conceptos que deben ser aprendidos en cada tema.

Las líneas básicas contenidas en el programa se articulan alrededor de los conceptos fundamentales en Teoría de Circuitos y, en particular, a cuatro unidades temáticas que aglutinan conceptos fundamentales que todo ingeniero electrónico de comunicaciones debe conocer y dominar. De hecho, los contenidos de Circuitos Electrónicos son ampliamente utilizados en muchas otras asignaturas de la carrera y asimismo en el desarrollo de la actividad profesional ya que se trata de conceptos y nociones básicas sobre funcionamiento de circuitos eléctricos. Las cuatro unidades temáticas hacen referencia a los cuatro grandes bloques en los que se estructura la asignatura, a saber:

- 1. Conceptos básicos. Leyes. Teoremas. Estados transitorio y estacionario.
- 2. Régimen alterno estacionario.
- 3. Respuesta en frecuencia.
- 4. Formalismos de análisis de circuitos (transformada de Laplace).

El aprendizaje estará basado en la resolución de problemas y ejercicios, en un primer lugar por el profesor y posteriormente con una participación cada vez más activa de los estudiantes, saliendo a la pizarra para explicar sus propuestas de resolución, discutiendo problemas por grupos con la moderación del profesor o mediante el desarrollo de seminarios abiertos y talleres de trabajo. Respecto a las clases prácticas, se facilitará con antelación a la realización de la práctica el guión de la misma que debe ser estudiado y preparado antes de llegar al laboratorio. Las prácticas permiten reforzar los contenidos teóricos así como tener una primera toma de contacto con un laboratorio de Electrónica, tanto en cuanto a simulación de circuitos como a su montaje.

El horario de tutorías de los profesores responsables puede consultarse en la web del Departamento de Ingeniería Electrónica (http://www.uv.es/die). El material de la asignatura (apuntes, boletines de problemas, guiones de prácticas, etc.) estará disponible a través del Aula Virtual de la Universitat de València (http://aulavirtual.uv.es/).

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

Al tratarse de una asignatura básica que se imparte en primer curso no hay requisitos previos de Electrónica o Teoría de Circuitos, si bien es conveniente que el estudiante tenga soltura en algunos conceptos físicos y en la utilización de algunas de las herramientas matemáticas que se utilizarán durante el curso para poder afrontar la asignatura con garantías de éxito. En particular los alumnos deberían tener conocimiento de:

Cálculo matemático con variable compleja. Cálculo vectorial y

COMPETENCIAS

1402 - Grado de Ingeniería Electrónica de Telecomunicación

- G3 Conocimiento de materias básicas y tecnologías, que le capacite para el aprendizaje de nuevos métodos y tecnologías, así como que le dote de una gran versatilidad para adaptarse a nuevas situaciones.
- G4 Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, y de comunicar y transmitir conocimientos, habilidades y destrezas, comprendiendo la responsabilidad ética y profesional de la actividad del Ingeniero Técnico de Telecomunicación.
- G5 Conocimientos para la realización de mediciones, cálculos, valoraciones, tasaciones, peritaciones, estudios, informes, planificación de tareas y otros trabajos análogos en su ámbito específico de la telecomunicación.
- B4 Comprensión y dominio de los conceptos básicos de sistemas lineales y las funciones y transformadas relacionadas, teoría de circuitos eléctricos, circuitos electrónicos, principio físico de los semiconductores y familias lógicas, dispositivos electrónicos y fotónicos, tecnología de materiales y su aplicación para la resolución de problemas propios de la ingeniería.

RESULTADOS DE APRENDIZAJE

El objetivo a alcanzar por la asignatura es que los alumnos adquieran unos conocimientos y una formación suficientes para afrontar con éxito las funciones que les encomienda la sociedad, siendo por tanto capaces de diseñar circuitos y sistemas electrónicos que cumplan las especificaciones industriales solicitadas, utilizando para ello dispositivos electrónicos básicos. Esta asignatura tiene como resultado que el estudiante adquiera conocimientos en el área de las redes electrónicas (o circuitos), de forma que sea capaz de analizar una red cualquiera, tanto en régimen de continúa como de alterna, y en régimen estacionario y transitorio. El análisis de circuitos electrónicos sirve de base de la electrónica analógica, la electrónica industrial, el control automático y los sistemas electrónicos digitales.

Objetivos generales

El principal objetivo de la asignatura es que los estudiantes conozcan con detalle y profundidad una pieza básica para el resto de su formación como ingenieros electrónicos de comunicación, así como muy probablemente en su carrera profesional. Esta pieza es el análisis de circuitos. Al finalizar la asignatura, los alumnos deben ser capaces de manejar con soltura las diferentes herramientas matemáticas que se imparten durante el curso, para de esta manera ser capaces de resolver circuitos eléctricos utilizando diferentes aproximaciones. Asimismo, deben ser capaces de discernir qué método es el más adecuado de entre todos los que conocen para resolver un determinado circuito. En particular, los objetivos generales que el estudiante debe alcanzar son los siguientes:

- Conocer los conceptos básicos de fuentes de corriente y tensión, y los dispositivos pasivos básicos desde el punto de vista de la teoría de circuitos, pudiendo caracterizarlos de acuerdo con el régimen de trabajo o el método matemático utilizado para su análisis, tanto en continua como en alterna.
- Conocer y dominar el formalismo de ecuaciones diferenciales para el análisis de circuitos.
- Conocer los conceptos de fasor e impedancia.
 - Conocer los conceptos de potencia, energía y su aplicación en la Teoría de Redes.
 - Adquirir y recordar los principios de análisis de redes de circuitos pasivas, y los principales teoremas de análisis de las mismas.
- Aprender y recordar las leyes básicas de los circuitos eléctricos, saber aplicarlas para solucionar problemas de circuitos utilizando el camino más sencillo o apropiado en cada caso.
- Aprender a realizar representaciones gráficas de funciones de transferencia en el dominio frecuencial en forma de diagramas de Bode, tanto en módulo como en fase.
- Adquirir la terminología utilizada en el campo de la Electrónica.
- Manejar programas de ordenador de simulación de circuitos electrónicos y aplicarlos en el ámbito del análisis de circuitos.
- Conocer y dominar las transformada de Laplace y su utilidad para el análisis de circuitos.
- Aprender a montar y realizar medidas sobre circuitos electrónicos sencillos.

Como objetivos específicos, cabría citar los siguientes:

- Expresar correctamente las magnitudes que se miden en los circuitos eléctricos utilizando adecuadamente sus unidades.
- Plantear las relaciones tensión-intensidad en componentes pasivos (R-L-C) con distintos sentidos en la tensión y la intensidad.
- Conocer y aplicar las leyes básicas de circuitos (Ohm, Joule, Kirchhoff).
- Conocer los distintos tipos de generadores y la equivalencia entre ellos.
- Calcular la potencia puesta en juego en un circuito por elementos pasivos y activos.
- Reconocer la topología de un circuito y determinar el mínimo número de ecuaciones necesario para analizarlo.

• Aplicar los métodos de análisis de un circuito por tensiones y por corrientes.

- Tener fluidez en la normalización y desnormalización de las magnitudes involucradas en los circuitos eléctricos para poder resolverlos con cálculos sencillos.
- Conocer y aplicar los teoremas fundamentales del análisis de circuitos: superposición, Thévenin y Norton.
- Conocer el concepto de fasor.
- Utilizar un programa de simulación para analizar circuitos eléctricos.
- Analizar circuitos en régimen permanente sinusoidal, fasores e impedancias.
- Calcular potencias en régimen permanente sinusoidal.
- Aplicar el análisis sistemático de circuitos y los teoremas de superposición, Thévenin y Norton en régimen permanente sinusoidal.
- Analizar la respuesta en régimen transitorio en el dominio del tiempo de circuitos de primer y segundo orden, estableciendo las relaciones entre los términos matemáticos y su interpretación física correspondiente.
- Aplicar las transformada de Laplace al análisis de circuitos en régimen transitorio y régimen estacionario.
- Simular el comportamiento de circuitos en régimen transitorio y en régimen estacionario.

Destrezas a adquirir

- *Básicas*. El alumno debe conocer, familiarizarse y tener soltura con las diferentes herramientas para el análisis de circuitos que se estudian en la asignatura dada su importancia para el resto de su formación e incluso para su carrera profesional. El alumno debe ser consciente de la importancia de la temática estudiada, entendiéndola como una piedra angular en la formación de todo ingeniero electrónico de telecomunicaciones.
- Prácticas. El alumno debe saber cómo montar y realizar medidas sobre circuitos electrónicos sencillos y debe manejar con soltura software de simulación de circuitos electrónicos, conociendo al menos las opciones que estos programas ofrecen para la simulación en el dominio temporal, frecuencial, así como el análisis paramétrico sobre diferentes valores de los componentes que aparecen el circuito. El alumno comenzará a familiarizarse con programas de cálculo matemático que deberá utilizar en cursos posteriores de manera habitual, como Matlab.

DESCRIPCIÓN DE CONTENIDOS

1. Conceptos básicos. Leyes. Teoremas.

En esta primera unidad temática se establecen las bases para el posterior análisis de circuitos. Se comenzará repasando algunos conocimientos básicos sobre componentes electrónicos básicos y señales; se definirá el concepto de circuito, las leyes de Kirchhoff y los teoremas principales de redes. Estados transitorio y estacionario. Se estudiará el método de ecuaciones diferenciales, que permite obtener una solución global tanto en el estado transitorio como en el estacionario.

2. Régimen alterno estacionario.

Esta segunda unidad temática se centra en el análisis alterno estacionario utilizando los conceptos y herramientas estudiados en la anterior unidad temática. Se introduce el concepto de fasor.

3. Respuesta en frecuencia.

Se estudia cómo realizar las representaciones gráficas de las funciones de transferencia en frecuencia mediante los diagramas de Bode, analizando el efecto de los ceros y los polos sobre la función de transferencia y, por tanto, sobre la respuesta del sistema ante una cierta excitación de entrada.

4. Formalismos de análisis de circuitos.

Se estudiará el método de la transformada de Laplace, que permite obtener una solución global para los circuitos analizados, transitoria y estacionaria. Habilita además una solución más rápida y eficiente que la obtenida por fasores. Asimismo, permite deducir los conceptos de respuestas libre y forzada y estabilidad de una red.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial	
Clases de teoría	30,00	100	
Prácticas en laboratorio	20,00	100	
Prácticas en aula	10,00	100	
Elaboración de trabajos individuales	20,00	0	
Estudio y trabajo autónomo	20,00	V/ pb/ 0/	
Preparación de actividades de evaluación	20,00	0	
Preparación de clases de teoría	15,00	0	
Preparación de clases prácticas y de problemas	15,00	0	
TOTAL	_ 150,00		

METODOLOGÍA DOCENTE

El desarrollo de la asignatura se estructura en torno a cuatro ejes: las sesiones de teoría y problemas, las tutorías, la realización de pruebas de evaluación continua, la presentación de trabajos y las prácticas.

Aprendizaje en grupo con el profesor

Antes de cada lección, el profesor facilitará al alumno el material de estudio necesario para la preparación de la clase, y su estudio posterior una vez finalizada la misma. En las sesiones presenciales de teoría, el profesor discutirá con los alumnos las dudas que puedan haber surgido después de la consulta del material facilitado con anterioridad. En la sesiones de problemas, el profesor explicará una serie de problemas tipo, gracias a los cuales el alumno aprenderá a identificar los elementos esenciales del planteamiento y la

resolución de los problemas. Se utilizará también el método participativo para las sesiones de problemas, en las que se pretende primar la comunicación entre los estudiantes y estudiantes/profesor. Para ello, previamente el profesor indicará qué problemas se pretenden resolver, para que así el alumno pueda asistir a dichas clases con el planteamiento de los problemas, aunque su resolución se completará en clase, en ocasiones formando grupos de alumnos que luego deberán salir a la pizarra a explicar el problema y resolver las dudas que tengan el resto de compañeros.

Tutorías

Los alumnos dispondrán de un horario de tutorías cuya finalidad es la de resolver problemas, dudas, orientación en trabajos, etc. El horario de dichas tutorías se indicará al inicio del curso académico. Además tendrán la oportunidad de aclarar algunas dudas mediante correo electrónico o foros de discusión mediante el empleo de la herramienta Aula Virtual que proporciona la Universitat de València.

Trabajo no presencial

El alumno dispondrá de boletines de problemas con solución para trabajar en los conceptos que se verán a lo largo del curso. Se pondrán a disposición del alumno en el Aula Virtual boletines de problemas autoevaluativos

Materiales docentes disponibles

Para poder llevar a buen término la metodología docente descrita el alumno dispone en el Aula Virtual, desde el inicio del curso académico, de los siguientes documentos:

- *Guía Docente*, ofrece los elementos informativos suficientes como para determinar qué es lo que se pretende que aprenda el alumno, cómo se va a hacer, bajo qué condiciones y cómo va a ser evaluado.
- Apuntes / Transparencias de cada uno de los temas del curso cuando éstas existan.
- Boletín de problemas de cada lección.
- El Guión de Prácticas con la siguiente estructura:
 - Objetivos.
 - Material.
 - Realización.

EVALUACIÓN

La evaluación del aprendizaje se realizará evaluando la participación de los alumnos a lo largo del curso y a través de un examen final de teoría y laboratorio. La asignación porcentual de cada parte de la evaluación será la siguiente:

• Participación: 10%

• Examen final de teoría: 60%

• Laboratorio: 30%

Nota de teoría.

Habrá dos convocatorias de examen coincidiendo con las convocatorias oficiales. El examen de teoría se realizará de forma individual en la fecha, hora y lugar oficialmente designados por el centro y evaluará los conocimientos y conceptos adquiridos por el alumno y su capacidad para resolver problemas basados en la experiencia, los conocimientos y destrezas adquiridas. La nota del examen representará un 60% de la nota final de la asignatura, y será necesario obtener una nota mínima de 4 sobre 10 para poder promediar con el resto de partes de la evaluación.

Nota de laboratorio.

La nota de laboratorio se obtendrá como resultado de evaluar cada práctica y un examen final práctico, individual, de la misma naturaleza que las prácticas realizadas, y que tendrá lugar en el laboratorio de prácticas en la última sesión de prácticas. La evaluación continua de cada práctica (preparación 30%, realización 70%) constituirá un 40% de la nota final de laboratorio, mientras que el 60% restante se obtendrá a partir de la realización del examen final individual.

La nota de laboratorio obtenida como se ha descrito en el párrafo anterior representará un 30% de la nota de la asignatura. Será imprescindible obtener un 4 sobre 10 en esta nota para poder promediar con el resto de partes de la evaluación.

Para los alumnos que no obtengan una nota de 4 o mayor asistiendo a los laboratorios, habrá dos convocatorias más en las fechas y horas oficialmente designadas por el centro para el examen oficial de la asignatura, tras el examen de teoría. La nota de este examen representará un 100% de la nota de laboratorio, y un 30% de la nota de la asignatura, y será imprescindible obtener al menos un 4 sobre 10.

REFERENCIAS

Básicas

- 1. J. Espí, J. Muñoz, G. Camps. Análisis de Circuitos. Universitat de València, 2006.
- 2. E. Soria, J. D. Martín, L. Gómez. Teoría de Circuitos. McGraw-Hill (Serie Schaum), 2004.

- 3. J. D. Irwin, Análisis básico de Circuitos en Ingeniería. Prentice-Hall, 1997.
- 4. D. E. Johnson. Análisis básico de Circuitos Eléctricos. Prentice-Hall, 1997.
- 5. R. E. Thomas, A. J. Rosa. Circuitos y señales: introducción a los circuitos lineales y de acoplamiento. Reverté, 2002.
- 6. W. Hayt, J. Kemmerly. Análisis de circuitos en ingeniería. McGraw-Hill, 2007.
- 7. J. Espí. Problemas Resueltos en Teoría de Redes. Moliner 40. Burjassot, 2001.
- 8. J. Espí. Aplicaciones de PSPICE en ingeniería. Moliner 40. Burjassot, 2000.
- 9. J. M. Angulo Usategui, J. Garcia Zubía, Sistemas Digitales y Tecnología de Computadores. Paraninfo, 2002.
- 10. P. Casanova Peláez, N. García Martínez, J.A. Torres Barragán, Tecnologías Digitales. Paraninfo, 1993

Complementarias

- 1. James W. Nilsson, Susan A. Riedel. Circuitos Eléctricos. Prentice Hall, 2005. Libro muy recomendable pero excesivamente teórico para la manera de enfocar la asignatura.
- 2. B. Carlson. Teoría de Circuitos. Thomson, 2002. Se trata de un libro que puede servir de base para las tres primeras unidades temáticas. También incluye un breve tutorial aplicado de Pspice.
- 3. R. L. Boylestad. Introducción al análisis de circuitos. Pearson Education, 2004. Libro igualmente recomendable para las tres primeras unidades temáticas.
- 4. R. Hambley. Electrónica. Prentice Hall, 2001. Excelente libro de texto de Electrónica, que va más allá de los objetivos perseguidos en Circuitos Electrónicos.
- 5. M. H. Rashid. Circuitos Microeletrónicos: Análisis y diseño. Thomson, 2002. Este libro, al igual que el anterior, puede servir como una guía de referencia en electrónica, pero de nuevo el tratamiento del libro excede a los contenidos de esta asignatura.
- 6. P. Horowitz, W. Hill. The Art of Electronics, Cambridge University Press, 1989 (reeditado en 1990, 1991, 1993, 1994, 1995). Libro muy original y ameno, recomendable como lectura complementaria que puede ayudar a entender conceptos que no hayan quedado claros al ser explicados de manera clásica ya que minimiza los largos análisis habituales y se centra en el diseño y funcionamiento de circuitos.
- 7. V. Oppenheim, A. S. Willsky. Señales y sistemas. Prentice Hall, 1997. Este libro trata de manera completa señales y sistemas continuos y discretos.