

Guía Docente 34668 Matemáticas III

FICHA IDENTIFICATIVA

Datos de la Asignatura		
Código	34668	
Nombre	Matemáticas III	
Ciclo	Grado	
Créditos ECTS	6.0	
Curso académico	2023 - 2024	

Titulación	Centro	Curso Periodo
1400 - Grado en Ingeniería Informática	Escuela Técnica Superior de	2 Primer
	Ingeniería	cuatrimestra

Materias	Materia Carácter		
Titulación	Materia	Carácter	
1400 - Grado en Ingeniería Informática	9 - Matemáticas	Formación Básica	

Coordinación

Titulación(es)

Nombre	Departamento
JORNET SANZ, MARC	363 - Matemáticas

RESUMEN

La asignatura se concibe como una introducción al análisis numérico y estadístico. Se pretende que el alumno tome conciencia de la necesidad de atacar ciertos problemas de manera aproximada, y de las herramientas matemáticas que puede utilizar para ello. En particular se pretende familiarizar al alumno con los métodos numéricos habitualmente empleados en la resolución de problemas de ingeniería relacionados con: interpolación y aproximación, ecuaciones lineales y no lineales, integración numérica y ecuaciones diferenciales. Asimismo, se pretende que el alumno conozca y comprenda conceptos básicos en inferencia estadística de interés en ingeniería.

Los contenidos de la asignatura son: **Métodos numéricos y Estadística**, los cuales se estructuran en las unidades temáticas que aparecen en el apartado 6.

Los objetivos generales de la asignatura son:

- Entender y manejar con soltura conceptos elementales asociados a técnicas discretas, y en particular el concepto de aproximación a la solución de un problema.
- Reconocer situaciones en las cuales es necesario utilizar un procedimiento numérico para la obtención de una solución aproximada.
 - Adquirir la capacidad de estructurar un problema discreto, con la finalidad de poderlo implementar

en un lenguaje de programación estructurada.

- Adquirir la capacidad de cuestionar la fiabilidad de los resultados obtenidos.
- Establecer conexiones con otras disciplinas de interés para el estudiante.
- Realizar algunas aplicaciones simples, de interés en Ingeniería, en las que se utilicen los contenidos del curso.

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

Es fundamental tener adquiridos los contenidos de las asignaturas Matemáticas I y Matemáticas II, así como conocer los aspectos básicos de programación de primer curso.

COMPETENCIAS (RD 1393/2007) // RESULTADOS DEL APRENDIZAJE (RD 822/2021)

1400 - Grado en Ingeniería Informática

- G8 Conocimiento de las materias básicas y tecnologías, que capaciten para el aprendizaje y desarrollo de nuevos métodos y tecnologías, así como las que les doten de una gran versatilidad para adaptarse a nuevas situaciones.
- G9 Capacidad para resolver problemas con iniciativa, toma de decisiones, autonomía y creatividad.
 Capacidad para saber comunicar y transmitir los conocimientos, habilidades y destrezas de la profesión de Ingeniero Técnico en Informática.
- B1 Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; cálculo diferencial e integral; métodos numéricos; algorítmica numérica; estadística y optimización.

RESULTADOS DE APRENDIZAJE (RD 1393/2007) // SIN CONTENIDO (RD 822/2021)

Resultados de aprendizaje:

- Comprensión y dominio de conceptos matemáticos básicos.
- Comprensión de modelos físicos mediante herramientas matemáticas
- Interpretación de los resultados matemáticos en contextos fisicamente relevantes.
- Comprensión de los formalismos matemáticos que se puedan plantear en problemas de la ingeniería.
- Capacidad para estructurar la resolución de problemas de la ingeniería de forma matemática.
- Capacidad para resolver problemas de la ingeniería utilizando herramientas matemáticas.

Destrezas a adquirir:

Guía Docente 34668 Matemáticas III

- Entender el concepto de raíz, o cero, de una función, y el funcionamiento básico de métodos sencillos para el cálculo aproximado de raíces. Reconocer aquellas situaciones que necesitan de un método numérico para el cálculo de raíces.
- Saber completar los datos de una tabla asociada a una función desconocida a través de la interpolación polinómica.
- Comprender la necesidad, y apreciar la conveniencia, de utilizar métodos numéricos para resolver sistemas de ecuaciones lineales de dimensión elevada.
- Entender y utilizar la relación entre la integral definida de una función positiva y el área asociada. Comprender la necesidad y la conveniencia de utilizar técnicas numéricas para el cálculo de integrales definidas.
- Comprender el proceso de discretización asociado al cálculo de la solución numérica de una ecuación diferencial ordinaria. Comprender el concepto de orden del método numérico.
 - Comprender procesos sencillos de toma de decisiones basadas en conceptos estadísticos.
 - Descubrir y comprender conexiones con otras disciplinas de interés para el estudiante.

Además de los objetivos específicos señalados con anterioridad, durante el curso se fomentará el desarrollo de diversas **competencias genéricas**, entre las cuales cabe destacar:

- Exposición correcta y comprensible, oral y escrita, de cuestiones matemáticas relacionadas con la Ingeniería.
 - Habilidades asociadas a la capacidad de trabajar en equipo.

DESCRIPCIÓN DE CONTENIDOS

1. Métodos Numéricos para la resolución de ecuaciones no lineales

Raíces de Ecuaciones no lineales. Método de la bisección, regla-falsa y Newton.

2. Interpolación Polinómica

Construcción del polinomio interpolador dada una tabla de puntos. Estimación de l'error de interpolación.

3. Métodos numéricos para la resolución de sistemas lineales

La descomposición LU y su utilización para resolver sistemas de ecuaciones lineales. Introducción de los métodos iterativos para resolver problemas lineales.

4. Integración Numérica

Reglas Básicas y Reglas Compuestas. Estimación del error de integración.

5. Métodos Numéricos para ecuaciones diferenciales

Método de Euler para integrar ecuaciones diferenciales ordinarias. Convergencia. Orden de convergencia. Métodos de primer orden y de orden superior.

6. Inferencia y Decisión

Variables aleatorias y distribuciones de probabilidad. Cálculo de intervalos de confianza.

7. Regresión

Regresión lineal y no lineal. Coeficiente de correlación.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Prácticas en laboratorio	30,00	100
Clases de teoría	15,00	100
Prácticas en aula	15,00	100
Elaboración de trabajos en grupo	10,00	0
Elaboración de trabajos individuales	5,00	0
Estudio y trabajo autónomo	10,00	0
Preparación de actividades de evaluación	25,00	0 / 2 / 10
Preparación de clases de teoría	15,00	0
Preparación de clases prácticas y de problemas	25,00	0
TOTAL	150,00	

METODOLOGÍA DOCENTE

- En las clases teóricas, el profesor introducirá los conceptos propios de cada tema, así como su utilización en la resolución de problemas concretos.
- En las clases de problemas, se realizarán ejercicios sobre los contenidos teóricos, a nivel individual y en grupo, para favorecer el aprendizaje de los conceptos teóricos.
- El trabajo en las clases de prácticas, en aula de informática, está orientado a la resolución de problemas concretos, por parte del alumno. Para ello, se utilizará un entorno informático que facilite la programación estructurada.
- Se promoverá el trabajo en equipo a través de la elaboración de trabajos que podrán ser presentados al profesor y al resto de la clase.

EVALUACIÓN

La evaluación del aprendizaje se dividirá en dos partes:

- 1. Parte de teoría: La evaluación de teoría consistirá en un examen o exámenes de los contenidos teorico-prácticos de la asignatura. Esta parte podrá ser recuperada en segunda convocatoria y su calificación supondrá el 70% de la nota global. Para hacer media, la nota mínima será de un 50% de esta parte.
- 2. Parte de prácticas: Evaluación de las prácticas de la asignatura. Consistirá en un examen o exámenes de evaluación, o ejercicios entregados en el cuatrimestre. Las pruebas se realizarán en el laboratorio de informática. Su calificación supondrá el 30% de la nota global. Esta parte no podrá ser recuperada en segunda convocatoria.

REFERENCIAS

Básicas

- Referencia b1: Apunts de Matemàtiques per a Ciències i Enginyeries. Rafael Francisco López Machí, Vicente Javier Pastor Murcia. Roderic, UV. Disponible en https://roderic.uv.es/handle/10550/68257.
- Referencia b2: Estadística Bàsica per a lEnginyeria Tècnica en Informàtica de Gestió. Pablo Gregori, Irene Epifanio. Repositori Universitat Jaume I, UJI, 2010. Disponible en https://repositori.uji.es/xmlui/handle/10234/24282.

Complementarias

- Referencia c1: Aproximació Numèrica. S. Amat, F. Aràndiga, J.V. Arnau, R. Donat, P. Mulet, R. Peris. P.U.V.
- Referencia c2: Mètodes Numèrics per a l'àlgebra lineal. F. Aràndiga, R. Donat, P. Mulet. P.U.V
- Referencia c3: Càlcul Numèric. F. Aràndiga, P. Mulet. P.U.V.
- Referencia c4: Ampliación de Estadística para la Ingeniería Técnica en Informática de Gestión. Irene Epifanio, Pablo Gregori. Repositori Universitat Jaume I, UJI, 2010. Disponible en https://repositori.uji.es/xmlui/handle/10234/24181