

FICHA IDENTIFICATIVA

Datos de la Asignatura			
Código	34504		
Nombre	Nuevas tecnologías en biomedicina		
Ciclo	Grado		
Créditos ECTS	4.5		
Curso académico	2023 - 2024		

I itt	ılaci	ion	(es)

TitulaciónCentroCursoPeriodo1204 - Grado de MedicinaFacultad de Medicina y Odontología2Segundo cuatrimestre

Materias				
Titulación	Materia	Caracter		
1204 - Grado de Medicina	18 - Optativas	Optativa		

Coordinación

NombreDepartamentoCIBRIAN ORTIZ DE ANDA, ROSA MARIA190 - FisiologíaMILIAN MEDINA, LARA285 - Patología

RESUMEN

En la primera parte de la asignatura se introducen y desarrollan los aspectos más relevantes del análisis de imagen para comprender las bases de las técnicas de imagen utilizadas en Medicina. Asimismo, se establecen los principios de utilización del láser, de la termografía, de los ultrasonidos, de la impresión 3D, etc. La segunda parte de la asignatura se centra en el diseño y la tecnología para la construcción de tejidos artificiales. Se estudia los diferentes métodos para la obtención de dichos tejidos, además de revisar específicamente su aplicación a los diferentes sistemas que componen el cuerpo humano.

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

COMPETENCIAS

1204 - Grado de Medicina

- Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
- Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
- Saber utilizar las tecnologías de la información y la comunicación en las actividades clínicas, terapéuticas, preventivas y de investigación.
- Organizar y planificar adecuadamente la carga de trabajo y el tiempo en las actividades profesionales.
- Capacidad para trabajar en equipo y para relacionarse con otras personas del mismo o distinto ámbito profesional.
- Capacidad de crítica y autocrítica.
- Capacidad para comunicarse con colectivos profesionales de otras áreas.
- Reconocimiento de la diversidad y multiculturalidad.
- Considerar la ética como valor primordial en la práctica profesional.
- Tener capacidad de trabajar en un contexto internacional.

RESULTADOS DE APRENDIZAJE

Al finalizar la asignatura el alumno conocerá:

- Cómo se realiza el almacenamiento de una imagen digital y las diferencias entre las imágenes de 8 bits, 16 bits y 32 bits.
- Los algoritmos de aumento y disminución del tamaño de una imagen digital y de resalte de estructuras.
- Los principios de la radiación láser y la importancia de la coherencia de este tipo de luz en su utilización en medicina.

- Las bases de técnicas de imagen de utilidad en medicina.
- Las diferencias y aplicabilidad de los distintos tipos de microscopios.
- El reconocimiento de estructuras a microscopía óptica y electrónica.
- Estudios morfométricos.
- Los modelos experimentales de obtención de células precursoras.
- Los cultivos celulares.
- La visualización microscópica de tejidos y constructos obtenidos por ingeniería tisular.

DESCRIPCIÓN DE CONTENIDOS

1. INTRODUCCIÓN

TEMA 1. Introducción a la asignatura.

2. BASES DE LAS IMÁGENES Y TÉCNICAS DE USO EN MEDICINA

TEMA 2. Digitalización de información. Generalidades sobre el tratamiento automático de la información. Concepto de pixel, voxel, texel. Intensificación y restauración de imagen. Almacenamiento, imágenes en blanco y negro, en color y pseudocolor.

TEMA 3. Técnicas de mejora de la imagen. Compresión de imágenes. Preprocesado. Histogramas. Segmentación. Extracción de características. Mejora en la visualización. Extracción de información. Técnicas avanzadas.

TEMA 4. Propiedades de los ultrasonidos. Concepto de ultrasonido (US). Intervalos de frecuencias y de intensidades de los US en las aplicaciones médicas. Directividad y orientabilidad de los US. Producción y detección de los US: efecto piezoeléctrico directo e inverso. Transductores ultrasónicos.

TEMA 5. Principios físicos de la Ultrasonografía. Principio general de la ecografía. Técnicas ecográficas: A, B y TM. Doppler ultrasónico. Ecografías 3D y 4D.

TEMA 6. Termografía. Características generales de la radiación térmica (RT). Leyes que rigen la emisión de RT. Detección de la RT. Características de la imagen obtenida.

TEMA 7. Principios del láser para uso médico. Introducción al láser. Consecución práctica de la emisión láser. Tipos de láseres.

TEMA 8. Aplicaciones del láser en medicina y cirugía. Campos de aplicación del láser en medicina. Aplicación quirúrgica del láser.

TEMA 9. Fundamentos de la impresión 3D.

3. BASES DE INGENIERÍA TISULAR

- TEMA 10. Fundamentos de la Ingeniería tisular. Medicina reparativa. Concepto. Antecedentes. Aspectos legales y éticos.
- TEMA 11. La matriz extracelular en ingeniería tisular.
- TEMA 12. Tecnología y diseño para la construcción de tejidos artificiales.
- TEMA 13. Ingeniería tisular del sistema cardiovascular.
- TEMA 14. Ingeniería tisular del sistema músculo esquelético.
- TEMA 15. Ingeniería tisular del aparato digestivo.
- TEMA 16. Ingeniería tisular del sistema nervioso.
- TEMA 17. Ingeniería tisular de la piel y otras estructuras ectodérmicas.

4. PRÁCTICAS EN LABORATORIO

- 1. Captura y procesado digital de imágenes: utilización de sistemas de captura de imágenes. Almacenamiento, imágenes en blanco y negro, en color y pseudocolor. Compresión de imágenes. Preprocesado. Histogramas. Segmentación. Extracción de características.
- 2. Restauración de imágenes. Mejora en la visualización de imágenes. Extracción de información. Técnicas avanzadas.
- 3. Termografía: utilización de una cámara termográfica y un software específico, para la determinación del mapa de temperaturas corporal.
- 4. Visita al laboratorio de investigación en Técnicas con láser.
- 5. Impresión 3D.
- 6. El laboratorio de estudio estructural. Manejo de muestras biológicas. Uso del equipamiento esencial de procesado de muestras. Técnicas de visualización en la rutina histológica. Técnicas especiales de procesado y estudio: microscopía electrónica.
- 7. Estudios morfométricos. Técnicas de procesado de las muestras. Parámetros a cuantificar en los estudios histológicos de tejidos y constructos.
- 8. Manejo de modelos experimentales y obtención de células precursoras.

- 9. Tipos de cultivos celulares. Aspectos generales de las células eucarióticas en cultivo. Cultivos celulares en ingeniería tisular. Soportes y sustratos para cultivos celulares.
- 10. Visualización microscópica de tejidos y constructos obtenidos por técnicas de ingeniería tisular.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Prácticas en laboratorio	20,00	100
Clases de teoría	19,00	100
Seminarios	6,00	100
Estudio y trabajo autónomo	40,00	0
Lecturas de material complementario	2,50	0
Preparación de actividades de evaluación	9,00	0
Preparación de clases de teoría	6,00	0
Preparación de clases prácticas y de problemas	10,00	08000
TOTAL	112,50	

METODOLOGÍA DOCENTE

En las **clases teóricas** el profesor expondrá mediante lección magistral, los conceptos y contenidos más importantes de forma estructurada, para la obtención de los conocimientos y las habilidades que los alumnos deben adquirir. Se potenciará la participación de los estudiantes. Se podrá disponer del material didáctico utilizado por el profesor, si este lo considera adecuado, a partir del recurso electrónico del Aula Virtual.

Seminarios. En grupos reducidos el profesor planteará temas especializados en profundidad, estudios de casos, manejo de bibliografía, temas de actualidad... Se potenciará el trabajo en grupo, y la presentación oral. Podría entenderse como "aprendizaje cooperativo".

Prácticas de laboratorio en grupos reducidos. Están destinadas a consolidar los conocimientos teóricos, mediante la aplicación práctica de los mismos. El/La profesor/a presentará los objetivos, informará sobre el manejo del material, supervisará la realización del trabajo y ayudará a la interpretación de resultados.

Se incorporará la perspectiva de género y los objetivos de desarrollo sostenible (ODS) a la docencia, siempre que sea posible.

EVALUACIÓN

Valoración del examen de la asignatura:

El 60% corresponde a contenidos teóricos de la asignatura y el 40% a contenidos prácticos

Prueba escrita (9 puntos): 36 preguntes de test de 4 respuestas, sólo una válida. 18 preguntas de cada parte de la asignatura.

Evaluación continua, valorable en la asistencia a clases y prácticas (1 punto).

La asignatura se aprueba con una nota igual o superior a 5 puntos.

La asistencia a prácticas es obligatoria. La no asistencia injustificada a más de un 20% de las mismas supondrá la imposibilidad de aprobar la asignatura.

Se recuerda a los alumnos la importancia de realizar las encuestas de evaluación a todo el profesorado de las asignaturas del grado.

REFERENCIAS

Básicas

- Física. Catalá J, ed. Cometa SA, Madrid. 1988.
- Biophysique. Gremy F, ed. Ed. Flammarion Medicine-Sciences. 1982.
- Principios de Ingeniería Tisular, 3ª ed. Lanza R, Lange R, Vacanti J, eds. 2011.
- Recursos-e Salut: ClinicalKey Student. Elsevier (Scopus, ScienceDirect).
 uv-es.libguides.com/RecursosSalut/BibliotecaSalut

Complementarias

- Scientific basis of medical imaging. Wells PNT (Ed.) Longman Group Limited. 2009.