

FICHA IDENTIFICATIVA

Datos de la Asignatura			
Código	34447		
Nombre	Bioquímica y biología molecular		
Ciclo	Grado		
Créditos ECTS	6.0		
Curso académico	2022 - 2023		

Titu	lac	ıon	(es)

TitulaciónCentroCursoPeriodo1204 - Grado de MedicinaFacultad de Medicina y Odontología1Primer
cuatrimestre

Materias		
Titulación	Materia	Caracter
1204 - Grado de Medicina	4 - Bioquímica	Formación Básica

Coordinación

Nombre	Departamento		
ALONSO IGLESIAS, EULALIA	30 - Bioquímica y Biología Molecular		
GONZALEZ NAVARRO, HERMINIA	30 - Bioquímica y Biología Molecular		

RESUMEN

La Bioquímica y la Biología Molecular constituyen un área básica de la Medicina en la que se producen grandes avances con impacto tecnológico y social. La asignatura inicia la presentación de las bases moleculares de los mecanismos fisiológicos y/o patológicos del organismo humano. A través de las clases presenciales teóricas y el trabajo personal, el estudiante aprenderá las bases moleculares de la estructura y función dinámica de las proteínas y los ácidos nucléicos, los mecanismos de obtención de la energía celular y la organización y regulación del metabolismo de los azúcares, lípidos y proteínas. Los seminarios y clases prácticas le permitirán iniciarse en el conjunto de técnicas de laboratorio de Bioquímica y Biología Molecular, que tienen una doble aplicación, de carácter diagnóstico y experimental.

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

Conocimientos de Biología y Química a nivel de Segundo de Bachillerato.

COMPETENCIAS

1204 - Grado de Medicina

- Comprender y reconocer los efectos del crecimiento, el desarrollo y el envejecimiento sobre el individuo y su entorno social.
- Conocer, valorar críticamente y saber utilizar las fuentes de información clínica y biomédica para obtener, organizar, interpretar y comunicar la información científica y sanitaria.
- Saber utilizar las tecnologías de la información y la comunicación en las actividades clínicas, terapéuticas, preventivas y de investigación.
- Tener, en la actividad profesional, un punto de vista crítico, creativo, con escepticismo constructivo y orientado a la investigación.
- Ser capaz de formular hipótesis, recolectar y valorar de forma crítica la información para la resolución de problemas, siguiendo el método científico.
- Establecer una buena comunicación interpersonal que capacite para dirigirse con eficiencia y empatía a los pacientes, a los familiares, medios de comunicación y otros profesionales.
- Organizar y planificar adecuadamente la carga de trabajo y el tiempo en las actividades profesionales.
- Capacidad para trabajar en equipo y para relacionarse con otras personas del mismo o distinto ámbito profesional.
- Capacidad de crítica y autocrítica.
- Capacidad para comunicarse con colectivos profesionales de otras áreas.
- Reconocimiento de la diversidad y multiculturalidad.
- Considerar la ética como valor primordial en la práctica profesional.
- Tener capacidad de trabajar en un contexto internacional.
- Conocer la estructura y función celular. Implicación de las biomoléculas. Conocer el metabolismo, su regulación e integración metabólica.
- Conocer los acontecimientos en la comunicación celular y el papel de las membranas excitables.

RESULTADOS DE APRENDIZAJE

Al finalizar esta asignatura los estudiantes deberán ser capaces de:

- 1. Comprender el carácter molecular de la Medicina actual
- 2. Conocer la estructura y el funcionamiento de las proteínas
- 3. Conocer los enzimas, su mecanismo de acción y sus formas generales de regulación.
- 4. Conocer la estructura, organización y mecanismos de biosíntesis de los Ácidos Nucleicos ADN y ARN
- 5. Conocer el mecanismo molecular y su regulación de la síntesis, maduración y degradación de proteínas.
- 6. Conocer la importancia actual en Medicina de las tecnologías de la Biología Molecular.
- 7. Conocer los mecanismos moleculares de la señalización celular.
- 8. Conocer la importancia biológica del metabolismo intermediario, la bioenergética y el papel del ciclo de Krebs y su regulación.
- 9. Conocer el metabolismo glucídico, su regulación y su interés en Biomedicina.
- 10. Conocer el metabolismo lipídico, su regulación y su interés en Biomedicina.
- 11. Conocer el metabolismo nitrogenado, su regulación y su interés en Biomedicina.

DESCRIPCIÓN DE CONTENIDOS

1. TEORÍA (I)

- 1. Introducción a la Bioquímica y la Biología Molecular.
- 2. Relevancia de las moléculas biológicas: Estructura, función, reacción e interacción.
- 3. Aminoácidos y péptidos. Estructura primaria de las proteínas.
- 4. Proteínas: estructura secundaria, terciaria y cuaternaria. Conformación nativa.
- 5. Plegamiento y desnaturalización de proteínas.
- 6. Las reacciones catalizadas por enzimas. Medida de la actividad catalítica de un enzima. Cofactores enzimáticos: características generales y propiedades.
- 7. Cinética enzimática y velocidad de reacción. Modelo de Michaelis-Menten. Cinéticas que se apartan del modelo de Michaelis-Menten. Cooperatividad.
- 8. Regulación de la actividad enzimática y de la cantidad de enzima. Inhibición enzimática.
- 9. Introducción a la Biología Molecular: niveles estructurales de los ácidos nucleicos.
- 10. Replicación del ADN.
- 11. Síntesis del ARN (Transcripción).
- 12. Niveles post-transcripcionales de control de la expresión génica.
- 13. Síntesis de proteínas (Traducción).
- 14. Niveles post-traduccionales de control de la expresión génica.
- 15. Señalización celular (I): Receptores y transducción de señales.

- 16. Señalización celular (II): Introducción a la señalización por hormonas.
- 17. Metabolismo intermediario y Bioenergética (I): Metabolismo intermediario. Bioenergética, conceptos termodinámicos y reacciones en la bioquímica. ATP, carga energética y compuestos de alta energía.
- 18. Metabolismo intermediario y Bioenergética (II): Fases del metabolismo intermediario. El ciclo de Krebs o ciclo del ácido cítrico. Reacciones anapleróticas y regulación del ciclo de Krebs. La fosforilación oxidativa: la cadena de transporte de electrones y la síntesis de ATP.

2. TEORÍA (II)

- 19. Glícidos: Concepto, clasificación, importancia y características esenciales. Glucolísis: Función, secuencia reaccional y regulación.
- 20. Gluconeogénesis: Función, secuencia reaccional y regulación.
- 21. Ciclo de las Pentosas: Función, secuencia reaccional y regulación.
- 22. Metabolismo del glucógeno: Degradación, síntesis y almacenamiento.
- 23. Estructura, clasificación y funciones biológicas de los lípidos simples y complejos.
- 24. Origen de los lípidos. Rutas metabólicas y regulación de la oxidación de los ácidos grasos. Metabolismo y regulación de la síntesis y uso de los cuerpos cetónicos.
- 25. Rutas de biosíntesis de ácidos grasos, lípidos complejos y eicosanoides y su regulación.
- 26. Metabolismo del colesterol y de lipoproteínas y su regulación.
- 27. Metabolismo de aminoácidos (I): Origen de los aminoácidos.
- 28. Metabolismo de aminoácidos (II): Mecanismo de degradación de los aminoácidos y destino de la cadena carbonada de los aminoácidos.
- 29. Metabolismo de aminoácidos (III): Transporte de amonio y síntesis de urea.
- 30. Metabolismo de nucleótidos.

3. PRÁCTICAS

SEMINARIOS PRÁCTICOS

- 1. Introducción al laboratorio de Bioquímica: Normas de seguridad en el laboratorio. Manejo de datos en el laboratorio de Bioquímica. Cálculos de concentración para preparación de reactivos y patrones.
- 2. Técnicas básicas en Bioquímica: Espectrofotometría, cromatografía y electroforesis.
- 3. Metodologías de estudio de ADN: Purificación, manipulación y amplificación. Secuenciación. Aplicaciones médicas de la tecnología del ADN.
- 4. Análisis de la actividad funcional de las proteínas: Estudio de la cinética enzimática.
- 5. Integración de prácticas: revisión y discusión de los contenidos.

PRÁCTICAS EN LABORATORIO

- 1. Iniciación al laboratorio de Bioquímica. Manejo de instrumental básico. Problemas de preparación de soluciones.
- 2. Estudio bioquímico del ADN (I): Purificación, cuantificación y amplificación de DNA genómico.
- 3. Estudio bioquímico del ADN (II): Análisis de ADN por electroforesis.
- 4. Estudio bioquímico de proteínas (I): Cuantificación espectrofotométrica de proteínas totales.

- 5. Estudio bioquímico de proteínas (II): Separación electroforética de proteínas heterogéneas.
- 6. Estudio bioquímico de proteínas (III): Análisis de la actividad enzimática.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Clases de teoría	33,00	100
Prácticas en laboratorio	12,00	100
Seminarios	11,00	100
Tutorías regladas	4,00	100
Estudio y trabajo autónomo	90,00	0
TOTAL	150,00	N.

METODOLOGÍA DOCENTE

- Clases Teóricas (30 Unidades Temáticas): lecciones magistrales de 50 minutos impartidas en aula por los profesores de la asignatura. Los materiales docentes de cada clase teórica se hace disponible con anterioridad a los alumnos, a través del Aula Virtual.
- Clases de **Prácticas de Laboratorio** (6 Unidades Temáticas): sesiones en laboratorio de dos horas de duración, realizadas en la Sala de Prácticas. Tras una breve introducción a cada sesión práctica por el profesor responsable de la misma, los alumnos realizan diferentes determinaciones, utilizando técnicas analíticas propias de la Bioquímica y la Biología Molecular. Los alumnos deben mantener al día y completar un cuaderno de laboratorio, en el que se recogen los procedimientos metodológicos, los resultados obtenidos y una serie de cuestiones relacionadas con la práctica. El cuaderno de laboratorio se hace disponible con anterioridad a los alumnos, a través del Aula Virtual.
- Clases de **Prácticas de Seminario** (5 Unidades Temáticas): lecciones magistrales impartidas en Sala de Prácticas por los profesores responsables. Cada seminario presenta las bases técnicas, las aplicaciones Biomédicas, los procedimientos metodológicos y el cálculo de resultados de la práctica en cuestión.
- Tutorías regladas: trabajo práctico realizado por los estudiantes, en grupos de 8 alumnos, supervisados por un profesor responsable. El tema propuesto es el mismo para todos los grupos y recoge de forma integrada aspectos genómicos, estructurales, metabólicos, y clínicos de un proceso relevante en Bioquímica y Biología Molecular. Cada grupo tutorizado debe redactar un trabajo escrito y exponerlo en una presentación pública, en la que están presentes los compañeros de clase y el profesor responsable. La dinámica del grupo tutorizado implica al menos cuatro sesiones del grupo con el profesor responsable, que pueden ser realizadas en aula o en tutorías específicas, siendo la primera sesión la de presentación del tema del trabajo y la última sesión, la de exposición pública por parte de los estudiantes. Los materiales docentes para el trabajo, proporcionados por los profesores responsables, se hace disponible con anterioridad a los alumnos, a través del Aula Virtual.

EVALUACIÓN

La evaluación del aprendizaje de la docencia teórica, seminarios y prácticas se realiza mediante un examen final escrito cuya calificación representa el 90% de la calificación global de la asignatura que se completa con la calificación obtenida en la tutoría reglada (grupo tutorizado), una actividad docente práctica voluntaria cuya valoración representa el 10% de la calificación global de la asignatura.

El examen final escrito comprende una primera parte con 6 preguntas de desarrollo escrito que versará sobre los contenidos del programa teórico y tendrá como objetivo evaluar la adquisición de conocimientos y nivel expositivo del alumno con un valor máximo de 0,5 puntos por pregunta y un total máximo de 3 puntos (30% de la calificación global); y una segunda parte con 60 preguntas objetivas con 4 respuestas posibles y sólo una de ellas correcta, que evaluará tanto la adquisición de competencias a partir de la docencia teórica como de la docencia impartida mediante seminarios y prácticas. Cada respuesta correcta vale 0,1 punto, cada respuesta incorrecta resta 0,025 puntos y las respuestas en blanco no penalizan. La proporción de preguntas que evalúan docencia teórica o seminarios y prácticas será aproximadamente el 50%.

Para aprobar la asignatura, la calificación obtenida en la primera y segunda parte del examen tendrá que ser al menos de 1 y 2 puntos, respectivamente.

Las tutorías regladas (grupos tutorizados) tendrán una evaluación continuada de la asistencia, participación y adquisición de capacidades por parte del alumno para reaccionar frente a situaciones concretas complejas. La calificación obtenida por el alumno tendrá un valor final máximo de 1 punto, el 10% de la calificación global de la asignatura.

La asistencia a las enseñanzas prácticas (seminarios y prácticas de laboratorio) es obligatoria y sólo se admitirán faltas justificadas documentalmente. Para superar la asignatura, el alumno matriculado por primera vez deberá asistir al menos al 80% de las actividades prácticas. La falta de asistencia injustificada en más de un 20% de las mismas supondrá la imposibilidad de aprobar la asignatura.

En su conjunto, el aprendizaje adquirido en la enseñanza teórica representa el 60% de la calificación global de la asignatura mientras que el 40% restante dependerá del aprendizaje de enseñanzas prácticas (seminarios, prácticas de laboratorio y tutorías regladas).

Se recuerda a los alumnos la importancia de realizar las encuestas de evaluación a todo el profesorado de las asignaturas del grado.

REFERENCIAS

Básicas

- Se recomienda consultar las últimas ediciones en castellano o inglés de los siguientes manuales:
 - Pamile Champe y cols. Bioquímica. Ed. Mcgraw Hill.
 - Thomas M. Devlin y cols. Bioquímica: Libro de texto con implicaciones clínicas. Ed. Reverté.
 - Álvaro González Hernández. Principios de Bioquímica Clínica y Patología Molecular. Ed. Elsevier.
 - Emilio Herrera y cols. Bioquímica Básica. Ed. Elsevier.
 - Trudy McKee y James McKee. Bioquímica: Las bases moleculares de la vida. Ed. McGraw Hill.

- Michael Murphy y cols. Bioquímica clínica. Texto y atlas en color. Ed. Elsevier.
- Robert Murphy y cols. Bioquímica de Harper. Ed. McGraw Hill
- Peter Ronner. Netter. Bioquímica esencial. Ed. Elsevier.
- Lubert Stryer y cols. Bioquímica. Ed. Reverté.
- Denise R. Ferrier. Bioquímica (Lippincot Ilustrated Reviews). Ed. Lippincott Williams & Wilkins.
- Recursos e-Salut: ClinicalKey Student. Elsevier (Scopus, ScienceDirect). uv-es.libguides.com/RecursosSalut/BibliotecaSalut

