

Guía Docente 34156 Análisis Matemático II

FICHA IDENTIFICATIVA

Datos de la Asignatura		
Código	34156	
Nombre	Análisis Matemático II	
Ciclo	Grado	
Créditos ECTS	12.0	
Curso académico	2022 - 2023	

 SCION	001
 ación(
 40.0	

Titulación	Centro	Curso	Periodo
1107 - Grado de Matemáticas	Facultad de Ciencias Matemáticas	2	Anual

	- 4		
RЛ	211	٥ri	20
IAI	au	eri	a s

Titulación	Materia	Caracter
1107 - Grado de Matemáticas	6 - Análisis Matemático	Obligatoria

Coordinación

Nombre	Departamento
MARTINEZ CENTELLES, JOSEP	15 - Análisis Matemático
MAZON RUIZ, JOSE M	15 - Análisis Matemático

RESUMEN

El dominio del cálculo diferencial e integral de las funciones de varias variables reales es una de las bases de la formación matemática. Uno de los objetivos del segundo curso del Grado debe ser la comprensión de los conceptos y la fluidez en el uso de las técnicas básicas de esta materia.

La asignatura está dividida en dos partes, cada una se estudia en un cuatrimestre. En la primera parte se estudia el Cálculo Diferencial, que se desarrolla para funciones definidas en espacios euclideos de dimensión finita. La segunda parte del curso se dedica al estudio de la integral de Lebesgue

Guía Docente 34156 Análisis Matemático II

CONOCIMIENTOS PREVIOS

Relación con otras asignaturas de la misma titulación

No se han especificado restricciones de matrícula con otras asignaturas del plan de estudios.

Otros tipos de requisitos

Álgebra Lineal y Geometría I, Análisis Matemático I

COMPETENCIAS

1107 - Grado de Matemáticas

- Tener capacidad de análisis y síntesis.
- Resolver problemas que requieran el uso de herramientas matemáticas.
- Saber trabajar en equipo.
- Aprender de manera autónoma.
- Poseer y comprender los conocimientos matemáticos.
- Expresarse matemáticamente de forma rigurosa y clara.
- Razonar lógicamente e identificar errores en los procedimientos.
- Tener capacidad de abstracción y modelización.
- Conocer el momento y el contexto histórico en que se han producido las grandes contribuciones de mujeres y hombres al desarrollo de las matemáticas.
- Visualizar e interpretar las soluciones que se obtengan.

RESULTADOS DE APRENDIZAJE

- Calcular límites de funciones de varias variables e identificar las funciones diferenciables.
- Manejar las derivadas parciales mediante la regla de la cadena y el teorema de la función implícita.
- Conocer la formulación de ecuaciones de la física matemática por medio de derivadas parciales.
- Estudiar extremos locales y extremos condicionados de funciones de varias variables.
- Saber aplicar los teoremas de la funcón inversa e implícita a problemas concretos.
- Entender el concepto de convergencia de integrales impropias y conocer los principales criterios de convergencia.

Guía Docente 34156 Análisis Matemático II

- Saber identificar las funciones integrales Lebesque.
- Saber aplicar los principales teoremas de convergencia.
- Conocer la formulación de los teoremas de Fubini, del cambio de variable, y saber aplicarlos para calcular integrales.
- Relacionar la noción de medida con la de integración.
- Resolver problemas que impliquen el planteamiento de integrales (longitudes, áreas, volúmenes y centros de gravedad).

DESCRIPCIÓN DE CONTENIDOS

- 1. Límites, continuidad y diferenciabilidad de funciones de varias variables.
- 2. Derivadas de orden superior. La fórmula de Taylor y extremos locales de funciones de varias variables.
- 3. Los teoremas de la función inversa y la función implícita.
- 4. Extremos condicionados y multiplicadores de Lagrange.
- 5. Funciones integrables de Lebesgue.
- 6. Teoremas de convergencia.
- 7. Teorema de Fubini.

Guía Docente 34156 Análisis Matemático II

- 8. Funciones medibles y medida de Lebesgue.
- 9. Criterio de integrabilidad de Tonelli.
- 10. Fórmula del cambio de variable.

VOLUMEN DE TRABAJO

ACTIVIDAD	Horas	% Presencial
Clases de teoría	60,00	100
Prácticas en aula	45,00	100
Otras actividades	15,00	100
Asistencia a eventos y actividades externas	15,00	0
Elaboración de trabajos en grupo	15,00	0
Elaboración de trabajos individuales	15,00	0
Estudio y trabajo autónomo	35,00	0
Lecturas de material complementario	5,00	0
Preparación de actividades de evaluación	37,50	0
Preparación de clases de teoría	10,00	0
Preparación de clases prácticas y de problemas	2,50	0
Resolución de casos prácticos	25,00	0
Resolución de cuestionarios on-line	5,00	0
TOTAL	285,00	

METODOLOGÍA DOCENTE

- a.- Se introducirá gradualmente y se desarrollará el contenido teórico y práctico de cada tema y las herramientas adecuadas para la resolución de problemas.
- b.- En las clases prácticas se aplicarán los conceptos expuestos en las clases teóricas, para abordar cuestiones o resolver problemas.
- c. Se propondrán colecciones de resultados, cuestiones y problemas para su estudio. Este estudio será tutelado y evaluado. En las clases de problemas preferentemente se resolverán y corregirán los ejercicios propuestos.
- d. Utilizaremos un paquete informático de cálculo simbólico que ayude en la comprensión

Guía Docente 34156 Análisis Matemático II

conceptual y visualización, así como en la resolución de determinados problemas y que sirva como método de experimentación para proporcionar conocimiento intuitivo.

EVALUACIÓN

Cada estudiante tendrá que demostrar el conocimiento de los conceptos básicos y la adquisición de las competencias de la materia mediante la realización de exámenes teórico-prácticos. También se valorará su capacidad para abordar las cuestiones o resolver los problemas propuestos por el profesorado.

Se realizará la evaluación mediante

- (1) Exámenes teóricos escritos en los que se medirá tanto la adquisición de conocimientos como la capacidad de redacción y de rigor en las demostraciones, así como la resolución de cuestiones. Exámenes prácticos escritos en los que se evaluará la capacidad de resolución de problemas y ejercicios. Habrá dos exámenes a lo largo del curso (mitad y final de curso). En cada examen habrá una parte teórica y otra práctica que supondrán cada una el cincuenta por ciento de la nota, y se hará la media siempre que cada nota supere los tres puntos sobre diez. La compensación entre parciales se hará siempre que la nota de cada uno de ellos sea mayor o igual a cuatro puntos sobre diez.
- (2) Se valorará la participación en las tareas o controles propuestos por el profesorado (10% de la nota), siempre que la nota de los exámenes supere un mínimo de cuatro puntos.
- (3) Se valorará la participación en los seminarios (10% de la nota), siempre que la nota de los exámenes supere un mínimo de cuatro puntos.

REFERENCIAS

Básicas

- Apostol, T.M., Análisis Matemático, Editorial Reverté, 1977
- Mazón, J. M, Cálculo diferencial: Teoría y problemas., PUV Laboratori de Materials, 17. 2008

Guía Docente 34156 Análisis Matemático II

- Mazón, J.M. La Integral de Lebesgue en RN . Teoría y Problemas . PUV Laboratori de materials 71.
 2016
- Ortega, J.M. Introducciò a l'Anàlisi Matemàtica. Manuals de la Universitat Autònoma de Barcelona ,
 1993

Complementarias

- Stromberg, K. An introduction to Classsical Real Analysis, Wordswoth Int. Math. Series, 1981.
- Bressoud, David, Second Year of Calculus, Ed. Springer-Verlag, 1991.
- Weir, A.J. Lebesgue Integration and Measure, Cambridge University Press, 1973.

