Integrated Systems. The course is elective Telecommunications quarterly basis and is given in the fourth year, second quarter, of Engineering Degree in Telecommunication Electronics. The academic program consists of a total of 6 ECTS.

It is topically related to the subject Digital Systems and its general objective is to build on the techniques for the analysis and synthesis of digital systems already known, bringing new methodologies and tools to successfully address the co-design of hardware-software embedded computer systems designed to end product.
As interest activities can highlight the following:

- To give a proper methodology to successfully address-based system design microcontroller (firmware and hardware), paying particular attention to developing real projects in telecommunications preferably embedded applications.
- To practice languages and programming models (C, etc..).
- To provide basic guidelines to follow in the design of optimal firmware maintenance and reusability.
- To present a professional designing platform and learn its use in detail, knowing the most important aspects to increase the productivity of Design engineers
- Not forgetting basic issues, to extend with cutting edge information on knowledge programmable devices and applications: analog - digital fusion, visual programming, codesign hard - soft, real-time applications, protocol design, multiprocessor systems, programmable platforms (PSoC) etc.

The teaching methodology is eminently practical, and consists essentially of the planned development of a project. Classes will be held prioritizing teaching of practical over theoretical. Periodically topics of interest will be addressed by additional technical seminars.

PREVIOUS KNOWLEDGE

Relationship to other subjects of the same degree

There are no specified enrollment restrictions with other subjects of the curriculum.

Other requirements

In order to successfully address the subject, it is recommended that students have some previous knowledge acquired in the matter Digital Systems. Such prior knowledge can be mentioned the following:
- Logic simulation
- Programmable Logic Devices
- Design methodology of combinational and sequential circuits
- Skills and abilities in laboratory

Also essential are the abilities and skills acquired in the subject of Computing, which is taught in the first course:
- Logical reasoning
- Analysis and syn
OUTCOMES

LEARNING OUTCOMES

As learning outcomes, this course allows for the following capabilities

1. To analyze and design product specifications
2. To plan properly the architecture of an electronic system product oriented with strong design constraints as well as the interrelation between the different elements
3. To analyze and design modules, subsystems, circuits, libraries and IP-based platform microprocessor and/or reconfigurable
4. To design firmware for concurrent and real time applications
5. To select and use designing tools, for synthesizing and debugging projects to allow a proper development of electronic products
6. To choose service providers for electronic prototyping
7. In addition to addressing the technical solution of the project, it must be properly managed using an appropriate methodology and specifically designed for projects

In addition, this subject also lets to acquire the following social skills:

- Properly enunciate the technical specification of a system projects digital electronic
- Employ skillfully design and verification tools for microcontroller based projects
- Make designs using different platforms: programmable logic devices, microprocessors, microcontrollers or other computational alternatives
- Develop a suitable methodology to design and implement algorithms in actual projects, ensuring the reusability and facilitating team work
- Make appropriate design decisions as a professional designer does

As a complement to the specific objectives mentioned above, during the course, several generic skills will be promoted:
- Experience in laboratory work, encouraging and working with hardware devices tools
- Knowledge of the scientific method to solve practical problems
- Capacity for analysis and synthesis
- Ability to argue from rational and logical criteria
- Ability to communicate correctly and organized
- Ability to develop a problem in a systematic and organized manner
- Ability to build correctly a written document that defines a project
- Ability to manage information
- Ability to plan and manage time
- Ability to work in group
- Interpersonal relationship skills
- Appropriate use of scientific technical terms

DESCRIPTION OF CONTENTS

1. Introduction to Integrated Telecommunications Systems
 - Introduction to Integrated Telecommunications Systems
 - Integrated System Concept.
 - Characteristics of an Integrated System.
 - Examples of Integrated Systems currently in existence.

2. Architecture of a Programmable System on Chip (PSoC)
 - Architecture of a Programmable System on Chip (PSoC)
 - Internal structure of a PSoC
 - Main features of a PSoC
 - Comparison between the different families of PSoCs

3. Design flow with PSoC Creator
 - Design flow with PSoC Creator
 - Introduction to the PSoC Creator design and programming platform
 - Hardware–firmware co-design
 - My First Program with PSoC Creator.

4. PSoC device resources
 - PSoC device resources
 - Power system
 - Memory characteristics
 - System clock management
 - Timers Management
5. Digital peripherals and integrated digital communications

Digital peripherals and integrated digital communications:
- Universal digital blocks (UDB)
- PWM control
- Serial communication (UART)
- SPI communication
- I2C communication

6. Analog peripherals and sensor management

Analog peripherals and sensor management:
- Delta-sigma converters (ADCs)
- Integrated operational amplifiers
- Comparators
- DACs

7. Bluetooth communication

Bluetooth communication:
- Features of the Bluetooth protocol
- Description of the BLE component in PSoC Creator

8. Introduction to real-time operating systems (RTOS)

Introduction to real-time operating systems (RTOS)
- RTOS concept
- PSRC FreeRTOS
- Description of an application run on a FreeRTOS with PSoC
WORKLOAD

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>Hours</th>
<th>% To be attended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes</td>
<td>30,00</td>
<td>100</td>
</tr>
<tr>
<td>Laboratory practices</td>
<td>20,00</td>
<td>100</td>
</tr>
<tr>
<td>Classroom practices</td>
<td>10,00</td>
<td>100</td>
</tr>
<tr>
<td>Attendance at events and external activities</td>
<td>4,00</td>
<td>0</td>
</tr>
<tr>
<td>Development of group work</td>
<td>14,00</td>
<td>0</td>
</tr>
<tr>
<td>Development of individual work</td>
<td>2,00</td>
<td>0</td>
</tr>
<tr>
<td>Study and independent work</td>
<td>10,00</td>
<td>0</td>
</tr>
<tr>
<td>Readings supplementary material</td>
<td>10,00</td>
<td>0</td>
</tr>
<tr>
<td>Preparation of evaluation activities</td>
<td>2,00</td>
<td>0</td>
</tr>
<tr>
<td>Preparing lectures</td>
<td>10,00</td>
<td>0</td>
</tr>
<tr>
<td>Preparation of practical classes and problem</td>
<td>30,00</td>
<td>0</td>
</tr>
<tr>
<td>Resolution of case studies</td>
<td>8,00</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>150,00</td>
<td></td>
</tr>
</tbody>
</table>

TEACHING METHODOLOGY

The training activities will be developed according to the following distribution:

a) Theoretical activities.

In the theoretical classes, the topics will be developed, providing a global and integrating vision, analyzing in greater detail the key and more complex aspects, encouraging, at all times, student participation.

b) Experimental activities.

They complement the theoretical activities with the objective of applying the basic concepts and expanding them with the knowledge and experience that they acquire during the completion of the proposed works. In general they will be carried out in a group, to enhance the teamwork skills of the students. They include the following types of face-to-face activities:
- Experimental application of the concepts associated with the theory topics described above.

- Realization of a final mini-project in which the groups of students must apply the knowledge acquired to solve an application defined by the teaching team. The final mini-project will be carried out using a robotic platform that must be controlled by a microcontroller device that is capable of receiving instructions from an APP through bluetooth communication.

c) Personal work of the student.

Preparation of theoretical classes, experimental sessions and exams (study). This task will be carried out individually and tries to promote autonomous work.

d) Evaluation.

The performance of the students in the experimental sessions, a mini-project that will be presented by the groups in the last two sessions and the final theoretical / practical exam will be continuously evaluated.

e) Scheduled tutorials (individualized or in groups).

The objective of these will be to guide and resolve any doubts that appear. For this, the student must raise them, allowing him to review his work process.

EVALUATION

In the first call, the subject will be evaluated continuously, as follows:

- **1. Student work**, up to 3.5 points

 Evaluation based on attending experimental sessions and reviewing and rating the projects created during each of these sessions. This activity is not recoverable and non-attendance entails obtaining a score of 0 points in that session that will mediate with the rest.

- **2. Evaluation of a mini-project**, up to 3.5 points

 The mini-project will be carried out in a group and will be qualified through a presentation and demonstration of operation that will take place during the last two sessions of the course.
- 3. Final exam of the subject, up to 3.0 points

The exam consisting in the resolutions of problems based on the learning and development of the subject, including theoretical and practical concepts.

In order to pass the subject it will be necessary to obtain a minimum grade of 4 (out of 10) on average in the evaluation of the mini-project and the final exam of the subject. The final grade will be the sum of the three sections and a minimum of 5 points over the total of 10 points must be obtained to pass the subject.

The e-learning platforms (Virtual Classroom) will be used as communication support with the students. Through it, you will have access to the teaching material used in class, as well as the tasks to be solved.

In the second call, both a final exam of the theoretical and practical content taught in the classroom (up to 5.0 points) and an exam on experimental work (up to 5.0 points) will be carried out. The latter will consist of programming a robotic platform based on PSoC to meet specific specifications. A score of 4 out of 10 must be obtained in both exams in order to be evaluated. The final grade will be given for the sum of these two sections. A grade of 5 points over the total of 10 points must be obtained in both final exams in order to pass the subject. In the case of not attend to one or more of these exams, the qualification in the corresponding call will be “not presented”.

In any case, the evaluation system will be governed by what is established in the Evaluation and Qualification Regulations of the Universitat de València for Degrees and Masters (https://webges.uv.es/uvTaeWeb/MuestraInformacionEdictoPublicoFrontAction.do?accion=inicio&idEdictoSeleccionado=5639).

REFERENCES

Basic

Additional

- http://www.cypress.com/
- http://www.psocdeveloper.com/forums/