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Agraïments

Ja de ben petit no parava de preguntar als meus pares per qualsevol cosa
que el meu enteniment no aconseguia explicar.1 Passats els anys, vaig pensar,
ingènuament, que estudiar la carrera de física finalment em donaria la resposta
a totes les qüestions que tenia sobre l’Univers que m’envoltava. Evidentment,
això no va ser així. Amb la meua curiositat encara insatisfeta, vaig tindre
la meravellosa idea de començar un doctorat al Departament d’Astronomia
i Astrofísica. Malgrat no haver sigut capaç de respondre a eixies preguntes
que jo mateix em feia quan tenia uns 12 anys (Què hi havia abans del Big
Bang? Hi existeixen universos paral·lels? Què hi ha dins d’un forat negre?, i
d’altres preguntes típiques dels documentals vespertins de La 2), durant aquestos
darrers anys he tingut la fortuna d’estudiar uns dels objectes més interessants
de l’Univers: els estels de neutrons. I, d’una manera o d’altra, també he sigut
capaç de posar el meu granet de sorra en la comprensió d’aquestos estels tan
curiosos.

Hi ha molta gent culpable del fet que estiga, mentre escric aquestes línies,
cada vegada més a prop de convertir-me en doctor. En primer lloc, vull agrair
de tot cor als meus supervisors, Toni i Pablo, per haver-me guiat i fet costat
durant aquestos anys.

Toni, recorde nítidament aquella xarrada que donares al novembre de l’any
2017 sobre ones gravitacionals (encara guarde a la meua habitació el full de
l’anunci). Va ser en eixe moment quan vaig saber que volia dedicar-me a estudiar
aquestes arrugues de l’espaitemps. Et vull donar les gràcies per haver comptat
amb mi quan vaig contactar-te durant l’estiu de l’any 2019 per saber si seria
possible realitzar el projecte de fi de màster amb tu, i sobretot per accedir a ser
el meu tutor durant aquestos anys de doctorat. Vull aprofitar també per agrair
el teu suport quan anava tan perdut quan vaig començar a donar les classes
de tutelades al grau. Mai oblidaré els teus comentaris quan em veus amb una

1Papà, mamá, vull agrair-vos públicament la vostra paciència.
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samarreta de grups com Pink Floyd, Joy Division, Queen o The Beatles. Tampoc
oblidaré les xarrades matineres al teu despatx en què sempre em convides a
seure amb un “Please, take a seat”, encara que m’haja quedat plantat en la
porta. Sempre, sempre, t’he pogut trobar quan he tingut cap problema, i sempre
he trobat el teu suport. Estic molt agraït per la teua proximitat i tots els teus
consells, tant científics com personals.

Pablo, te conocí cuando empecé el máster y Toni y yo bajamos a tu despacho
(todavía estabas en el primer piso) para discutir los primeros pasos de mi trabajo
de fin de máster, que ha degenerado con los años en esta tesis. Ha sido un
placer trabajar contigo estos años y empezar un proyecto que tenías en mente
desde hacía mucho tiempo y que por fin hemos podido desarrollar. Agradezco
tu paciencia cuando entro cada dos por tres en tu despacho para comentarte
hasta la mínima chorrada que se me pasa por la cabeza. También recordaré esas
charlas en tu despacho que se alargaban más de la cuenta y donde llenaba la
pizarra de expresiones ininteligibles. Y es que en muchas de estas ocasiones salía
de tu despacho sabiendo algo nuevo que desconocía antes de entrar.

Als dos, gràcies de nou per mostrar-vos sempre disponibles quan necessitava
reunir-me amb vosaltres per comentar-vos qualsevol avanç (o problema) en els
nostres projectes, i, sobretot, per haver-me ajudat a créixer com a investigador.
Espere que açò no siga un acomiadament definitiu i pugam continuar treballant
junts en un futur no massa llunyà.

I would also like to thank the referees of this thesis: Juan Antonio Miralles,
Martin E. Pessah, Viola Sordini, Roberto De Pietri, Meg Millhouse and Carlos
Palenzuela. I am very grateful for the time you spent reviewing this work and
for agreeing to be part of this committee.

Quiero también agradecer a Martin y a Milton el haber sido unos actores
vitales en el desarrollo de este trabajo. Martin, muchas gracias por haberme
dejado trastear con tu código y por haber tenido tantísima paciencia cuando no
sabía por dónde tirar con las simulaciones. Milton, muchas gracias por haberme
ayudado desde el primer momento que pisaste este departamento y por haber
tenido tanto interés en trabajar conmigo. Estoy seguro de que haremos muchas
cosas juntos en el futuro.

A més, voldria mostrar el meu agraïment a totes les persones del DAA que
m’han acompanyat durant aquestos anys. Als meus companys de doctorat:
Davide, Fabrizio, Nico, Sergio, Beatrice, Tasos, Marco Cusinato, Peppe, Raimon,
Inês, Salva, Marco Molina,..., per haver format part d’una manera o altra
d’aquesta experiència. No poden faltar Raquel i Miquel (el bueno), per compartir
tants dinars i aguantar les meues tremendes turres. Gràcies també al professorat
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del Departament: Manel, Vicent, Susana, Juan Antonio, Pepe, Miguel Ángel,...,
i, a més a més, vull agrair a Vicent i a José Carlos la seua ajuda durant els meus
anys de docència en el grau. Y Álex, gracias por haberme guiado y ayudado
tanto estos años, te deseo lo mejor en tu próxima etapa.

Tal com la gent es pot imaginar, la quantitat de paperassa que s’ha de
dur a terme durant una tesi és descomunal. Congressos, viatges, docència,...,
qualsevol cosa requereix plenar un fum de documents. Afortunadament, Manel,
Arancha i Ana fan que aquestes coses siguen molt més fàcils de fer. El DAA no
podria tindre millor secretaria sense vosaltres. Sempre és un plaer pujar-hi per
demanar-vos qualsevol cosa i que em rebeu amb un somriure d’orella a orella.
Sou l’alegria del Departament.

Vull agrair també als meus companys de carrera que començaren amb mi
aquesta llarga aventura a la universitat (Jordi, Kike, Raül, Cento, Salva T,
Marina, Silvia, Alicia, Cris, Salva M, Javi, Xavo, Pedro, Álvaro, Codina,...).
Molts de vosaltres us estareu preguntant com he estat tan boig de seguir encara
quatre anys més a Burjassot. Certament, no sé què respondre.

Durant el meu pas per l’institut, vaig tindre la sort de tindre com a professors
a persones que van despertar en mi l’amor que ara tinc per la física: Lluís Fillol
i Manolo Simón. Gràcies de tot cor per ser els primers en guiar-me en aquest
llarg viatge. També vull donar les gràcies a Eulogi Oset, Miquel Portilla, Enric
Valor i alguns altres professors per haver contribuït a que tinga un bon record
del meus anys a la facultat.

I want to thank all my collaborators, who contributed to the work I am
presenting here. Gracias Florencia, por haber empezado conmigo desde cero ese
proyecto que no sabíamos cómo iba a terminar. Thank you Roberto for being
so helpful, I could learn a lot from you about GW data analysis. I am also
very grateful with the Institute for Pure and Applied Mathematics from UCLA
for hosting me during the three-month long program and for giving me the
opportunity to acquire a wider knowledge about the field of GW astrophysics.
Moreover, I was very lucky to meet amazing people there: Simone (h*sssstia
tio!!), Sushant, Yanyan, Lorena,... and Marco Cavaglià, who has been always
supportive and has (patiently) supervised the Machine Learning project during
almost two years. I would also like to thank Luciano Rezzolla and Natey Kübler
for inviting me to their department to give a seminar about my work.

No puedo pasar por alto los tres meses que pasé de estancia en Copenhague,
en el Niels Bohr Institute, trabajando junto a Martin Pessah. Martin, muchísimas
gracias por haberme recibido allí y por haberme hecho sentir como en casa. Me
siento muy afortunado de haber trabajado contigo y de haber aprendido tanto
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de ti en tan poco tiempo. My three months in København were amazing thanks
to the very nice people I met there: David, Kai, Gaia, Philip, Marcela, Lorenz,
Dan, Chris and Pablo. It is also worthy of mention the Søernes Ølbar, the
place where the GW memory project was conceived (and where I had the best
afterwork beers).

Gràcies a l’Ajuda per a la Formació de Professorat Universitari (FPU) i
les Ajudes Complementàries de Mobilitat per a Estàncies Breus, del Ministeri
de Ciència, Innovació i Universitats del Govern d’Espanya (amb referències
FPU19/01750 i EST23/00420, respectivament) per haver-me donat els recursos
necessaris per a realitzar aquesta tesi. Part dels estudis realitzats durant aquesta
tesi es van dur a terme amb el superordinador Lluis Vives (Servei d’Informàtica
de la Universitat de València), amb la Xarxa Espanyola de Supercomputació
mitjançant l’ús de MareNostrum al Centre de Supercomputació de Barcelona, i
amb els recursos computacionals del LIGO Laboratory.

Aquesta tesi no podria haver-se escrit sense els meus amics i la meua família.
Malgrat haver-me preguntat en repetides ocasions què hi estava fent (ni jo ho
sabia, de vegades) i haver fet l’esforç d’entendre la meua resposta (amb més o
menys èxit), sempre estaré agraït pel vostre interés i, sobretot, per la vostra
preocupació quan les coses no anaven tan bé. Stand, este “ALRIGHT!” va
por vosotros. Guille, aquí tienes esas integrales por las que tanto preguntas.
Andrea, siento no haber podido visitarte este año, me has pillado liado con esto
de aquí, pero sabes de sobra que te echo mucho de menos. Menchu, nunca estaré
suficientemente agradecido al campus de hidrogeles inteligentes por darme la
oportunidad de conocerte. Arturet, Juanan, Raül, Vlis, Lydia, Xavi, Álvaro,
Damian,..., a la mayoría os conozco desde hace más de 15 años y tengo la inmensa
suerte de teneros todavía en mi vida. Charles, Angy, Lídia, quiero agradeceros
en especial a vosotros todo el cariño que me habéis dado durante estos años de
altibajos (más altos que bajos, afortunadamente). Sois la familia que he podido
elegir. Os quiero mucho.

Tinc molt clar què respondre quan algú em pregunte si em penedisc d’haver
dedicat aquestos intensos quatre anys a fer una tesi doctoral. Sens dubte, li
diria que no. I la raó principal és que gràcies a aquesta tesi he pogut conéixer a
dues persones que portaré sempre amb mi: David i Jose. Xics, no sou conscients
de tot el que heu significat per a mi aquestos anys. Heu sigut, literalment, el
meu dia a dia, i la raó per la qual m’alçava de matí i anava a treballar amb un
somriure. Qui anava a dir el primer dia que vaig entrar per la porta del 3.02. (el
millor despatx del món) que hi trobaria dos tremendos jjjambos com vosaltres.
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David, benvolgut Davittt, ja sé que açò ho va dir Jose en els seus agraïments,
però permet que ho repetisca. No he conegut mai una persona tan intel·ligent i
brillant com tu. Estic segur que aconseguiràs tot el que et proposes i espere que,
vages a on vages, la gent aprecie que vals un món. És un orgull ser el teu amic.
Trobaré a faltar les sessions matinals d’entreneniment al despatx amb els nostres
cafelitos (espere que ho estigues llegint amb el to apropiat). I poc es parla del
cardio que m’has obligat a fer quan he intentat seguir-te pel corredor, perquè
eixes camallades que fas són insuperables. Amic, el teu Mokkos et trobarà a
faltar, però espere que puguem retrobar-nos en aquest Departament al més aviat
possible.

Jose, querido Joselito, mi socialista favorito. No te puedes imaginar lo mucho
que se ha notado tu ausencia en el 3.02. durante este último año. Dice mucho
de ti que siempre hagas el esfuerzo de venir a desayunar con nosotros y de que
nos veamos un par de veces por semana, ya sea para tomarnos un combito o
para bebernos una cervecita a la fresca en la plaza de Patraix. Quiero que sepas
que nunca olvidaré ese momento en el que me diste un abrazo cuando más lo
necesitaba. Tienes un grandísimo corazón2 y, por muy lejos que estemos el uno
del otro, sé que esta amistad va a durar para siempre. Prometo hacerte pronto
una visita por tus tierras viguesas, y también por Villanueva de la Cañada,
para tomarme un cafecito por 40 céntimos en mi futuro lugar de trabajo (guiño,
guiño). Ah, y quiero aprovechar para recordarte que tienes todos tus papeles en
mi estantería esperando a que algún día los recojas, porque puede que algún día
acaben dentro del patinillo.

Estic també molt agraït amb vosaltres per haver-me donat l’oportunitat de
conéixer a Ana i a Josep, les vostres parelles. Crec, sincerament, que teniu la
millor companyia i us desitge de bon cor el millor. David, Jose, és una sort
enorme tindre al meu costat dues persones com vosaltres. Gràcies per contagiar-
me el vostre quokkisme i espere també haver-vos contagiat una mica el meu
tremendo maikisme. Dona igual a on anem, el 3.02. viurà sempre en nosaltres!!!!
↗

Prim (aka Getita, BC, Jermayolin), que además de amiga eres (prima)
hermana, gracias por haber sido desde el momento en el que nací una compañera
inseparable (e insuperable). Danitito, el trotamundos, quien es su propio jefe, el
mejor comentarista de los partidos del C.F. Pozuelo, que sepas que me siento
muy afortunado de tener un primo como tú. Gracias también a Rodri, Pau,
Nico, Jorge, Claudia y Pauet, y a todos mis tíos y tías, por componer la familia
de la cual estoy tan orgulloso de formar parte. Y es que esta familia no existiría

2Y una grandísima piscina que quiero visitar más a menudo.
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sin mis yayos, Juan y Amparo. Yayos, gracias por haberme dado muchos de
los mejores recuerdos de mi infancia y por haber creado la mejor familia del
mundo. Vuestro nieto el (casi) doctor os quiere y os querrá siempre. Y yayo,
por cierto, siento decepcionarte, pero esta tesis no me ha dado las respuestas a
tus numerosas cuestiones metafísicas. Tendremos que seguir discutiendo largo y
tendido sobre esas preguntas todavía sin responder, pero, a partir de ahora, de
doctor a doctor.

No m’oblide de la meua tia Filo. Ja sé que no he de treballar tant, com
sempre em dius, però pots veure que el treball ha donat fruit, finalment. Tampoc
m’oblide dels meus iaios, Pepito i Filo. Mai m’oblide, de fet. El vostre xiquet
fadrí ja s’ha fet fadrí de veritat. Encara que no hi estigueu, cada vegada que
supere cap meta pense en vosaltres. Us estime molt, i us trobe a faltar.

Papà, mamá, Joan, mai podré agrair-vos suficientment tot el que heu fet per
mi. Si he arribat fins ací és pel vostre suport incondicional i la vostra paciència
extraordinària. Heu confiat sempre en mi, i això és el que m’ha donat forces
per aconseguir (quasi) tot el que m’he proposat. Tot el que sóc i el que seré és
gràcies a vosaltres. Sou el millor exemple a seguir. I ara, finalment, ja podrem
fer-nos eixa cervesseta merescuda en la piscina d’Eslida. Us estime, pollos.

Gracias a Rafa, Nuria, Jalo y Raquel, porque después de estos años también
formáis parte de mi familia. Y a Raki, Panxa y Kira, por ser mis mejores amigos
perrunos.

Y Marina, ni en cientos de páginas podría escribir todo lo agradecido que
estoy de poder compartir mi vida contigo. Eres la persona que me ha acompañado
en este viaje de cuatro años, y la que me acompañará el resto de mi vida. Has
tenido que aguantar muchos momentos no demasiado fáciles y aún así has sido
quien ha hecho que siga hasta el final. No te merezco, y no sé si en toda una
vida podré hacer todo lo que has hecho por mí. Marina, te quiero. De esta nube
no me voy a bajar nunca.

Bé, sé que açò només és el principi i que encara queda camí per recòrrer.
Perquè, com deia el meu benvolgut Freddie, the show must go on!



Abstract

The plethora of gravitational-wave observations from several astronomical sys-
tems is changing our understanding of the Universe at an unprecedented rate.
More concretely, the multimessenger observations of binary neutron star mergers
have provided important information about matter at extreme densities, the
generation of short gamma-ray bursts, the production of heavy elements, and
the rate of expansion of the Universe. The understanding of the complex physics
involved in this astrophysical scenario has been expanded thanks to the use of
numerical simulations. To properly describe these systems, simulations need
prohibitive computational resources to account for all the physics of the problem:
a realistic equation of state for dense matter, an accurate neutrino transport
scheme or the treatment of small-scale turbulence, among other issues. Realistic
simulations of binary neutron star mergers can provide gravitational-wave signals
that can be directly compared to real detections. The study of the postmerger
gravitational-wave signal can put constraints on the equation of state and give
information about the dynamics and stability of the merger remnant.

This thesis presents a comprehensive study of the magnetohydrodynamical
turbulence triggered by the main instabilities developed during and after the
merger of two neutron stars: the Kelvin-Helmholtz instability and the magne-
torotational instability. Moreover, this thesis provides several applications of
unmodelled reconstructions of binary neutron star postmerger signals, and a
new approach to rapidly classify gravitational-wave sources.

The first part of the thesis focuses on the development of a new model for
turbulence in binary neutron star mergers. This new model, which consists in
solving evolution equations for turbulent energy densities, aims to reproduce
the effects of the small-scale physics with moderate resolution. Moreover, this
part of the thesis presents a new study of the saturation mechanism of the
magnetorotational instability.
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The second part of the thesis is dedicated to the analysis of gravitational-wave
signals from the postmerger phase of binary neutron star mergers. Due to the
stochastic nature of the signal during that phase, unmodelled reconstructions are
applied to study the inference of inertial modes and the detectability of differences
in the treatment of thermal effects with the equation of state. Furthermore, a
new machine learning approach to rapidly classify compact binary sources of
gravitational waves is presented. This new scheme aims to provide more faithful
information about the gravitational-wave source to perform electromagnetic
follow-up observations.

The findings of this thesis enhance our understanding of the instabilities that
play a role in binary neutron star mergers by developing turbulence that can have
important consequences on the stability of the merger remnant. Moreover, the
work on gravitational-wave data analysis has implications for future applications
of gravitational-wave astronomy to study the equation of state of neutron star
matter, and multimessenger observations of compact binary systems.



Resum

He tingut la fortuna de realitzar la meua tesi doctoral en una època en què la
física de la gravitació està esdevenint nombrosos avanços gràcies a la plètora
d’observacions d’ones gravitacionals. Aquestes deteccions estan canviant el nostre
enteniment sobre l’Univers a un ritme sense precedents. Més concretament,
l’observació d’ones gravitacionals de la fusió de dos estels de neutrons, coneguda
com GW170817, arran de la subseqüent detecció de radiació electromagnètica
al llarg de tot l’espectre (des d’ones de ràdio fins a raigs gamma) va donar lloc
a l’era de l’astronomia multi-missatgera. Els estels de neutrons són, després
dels forats negres, els objectes més compactes de l’Univers. És per això que
el seu estudi pot ajudar a entendre el comportament de la matèria sotmesa
a densitats supranuclears. Les observacions de fusions de binàries d’estels de
neutrons otorguen l’evidència més directa que les fusions d’objectes estelars
compactes, en què al menys un dels components de la binària és un estel de
neutrons, són progenitors dels motors que impulsen les explosions de raigs gamma.
A més, aquestos events donen un fort suport observacional a les proposicions
teòriques que relacionen les fusions d’estels de neutrons amb la nucleosíntesi
d’elements pesats. Fins i tot, les fusions de binàries d’estels de neutrons també
poden emprar-se per a obtindre una mesura independent del ritme d’expansió
de l’Univers (la constant de Hubble).

El nostre enteniment de la física tan complexa involucrada en les fusions
d’aquestos estels i també en la consegüent evolució del sistema s’ha expandit
considerablement durant les últimes dècades. Açò ha sigut possible gràcies a
l’ús de simulacions numèriques. La Relativitat Numèrica és l’eina emprada
per a estudiar aquestos sistemes. Tanmateix, l’enorme espai de paràmetres del
problema, la seua dimensionalitat i la quantitat de física a tindre en compte
limiten el nombre de simulacions que es realitzen. Per a descriure adequadament
aquestos escenaris, les simulacions numèriques necessiten emprar una equació
d’estat de la matèria realista que incloga efectes tèrmics i altres característiques
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microfísiques; un esquema correcte per al transport de neutrins; una resolució
suficientment elevada per a capturar turbulència a xicoteta escala, i d’altres
fenòmens físics que tenen un paper important i que es discutiran al llarg de la
tesi.

Els estels de neutrons

Els estels de neutrons es formen després del col·lapse gravitacional del nucli
de ferro d’un estel massiu amb una massa superior a les 10 masses solars, el
qual desencadena una explosió de supernova de tipus IIb3. Malauradament,
el mecanisme d’explosió encara no s’entén completament, però es coneix que
els neutrins juguen un paper important. Aquestos són expulsats de l’interior
de l’estel de neutrons en formació i s’emporten l’energia necessària per reviure
l’explosió. El romanent d’aquesta supernova és un proto-estel de neutrons
amb una temperatura relativament elevada i que gira ràpidament amb rotació
diferencial.

L’estel de neutrons format es refreda amb el temps i perd la seua rotació
diferencial inicial, el que duu a una rotació uniforme i de ritme reduït. Aquestos
estels de neutrons aïllats i estables estan magnetitzats, i poden presentar els
camps magnètics més intensos observats a l’Univers (fins a 1016 G). La seua
massa es troba al voltant de les dues masses solars i tenen radis d’una desena de
quilòmetres, aproximadament. A més, emeten feixos de radiació electromagnètica
(en el rang de les ones de ràdio) des dels seus pols magnètics. Arran dels seus
períodes estables de rotació, aquestos feixos s’observen com a polsos de radiació
quan arriben a la Terra, i van ser identificats per primera vegada per Jocelyn
S. Bell fa més de 50 anys.

Les densitats característiques dels estels de neutrons poden arribar fins i tot
a valors per damunt de la densitat del nucli atòmic. Açò resulta en una font de
pressió (contra la gravetat) que no només és produïda per electrons, sinò també
per altres partícules del nucli atòmic i altres d’exòtiques. En aquestes condicions
tan extremes, per tant, és necessari que la matèria estiga correctament descrita
per l’equació d’estat; és a dir, per la relació entre les variables termodinàmiques.
L’evolució dels sistemes binaris d’estels de neutrons i també l’estructura i
l’estabilitat dels romanents d’aquestes fusions depenen estretament de l’equació
d’estat de la matèria. A més a més, l’equació d’estat té un impacte elevat en
l’emissió de neutrins i en les condicions perquè es done la nucleosíntesi d’elements

3Un mecanisme de formació alternatiu és el col·lapse induït per acreció d’una nana blanca,
que condueix a una supernova de tipus Ia
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químics pesats després de la fusió dels estels. Per això, s’han dut a terme molts
esforços per a entendre la termodinàmica d’aquestos objectes compactes.

Els estels de neutrons posseeixen un ampli rang de períodes de rotació, des
dels mil·lisegons fins als segons. La rotació ve donada per la conservació del
moment angular durant el col·lapse del nucli de l’estel progenitor (o durant
la col·lisió de dos estels de neutrons que resulta en un romanent estable). En
nàixer (o després de la fusió), els estels de neutrons presenten un elevat grau de
rotació diferencial, és a dir, diferents parts de l’estel roten a diferents velocitats.
En el cas d’un proto-estel de neutrons, aquest hereta el moment angular de
l’estel progenitor i, a causa de la reducció dràstica de tamany, la velocitat de
rotació és substancialment elevada. En el cas dels romanents de la fusió de dos
estels de neutrons, les capes externes dels estels són expulsades en la col·lisió
i formen un disc d’acreció al voltant del nucli de l’estel romanent. A més, la
rotació diferencial pot excitar diverses inestabilitats i modes d’oscil·lació que
emeten radiació gravitatòria i poden amplificar el camp magnètic. Cal afegir
que la rotació diferencial augmenta la massa màxima de l’estel a causa de les
forces centrífugues que compensen la gravetat. El nou valor de la massa màxima
dependrà de l’equació d’estat de la matèria.

Quan els estels de neutrons aïllats evolucionen en el temps i s’estabilitzen, es
refreden i el seu període de rotació esdevé molt estable. Aquest període constant
és molt útil per mesurar la massa dels estels de neutrons, i també per detectar
ones gravitacionals amb molt baixa freqüència (10−9 −10−6 Hz). Es pot aprofitar
l’estabilitat temporal d’un gran nombre de púlsars galàctics i detectar variacions
en el temps d’arribada dels polsos de radiació (en ones de ràdio) a causa de la
radiació gravitacional. Aquesta tècnica de detecció s’anomena Pulsar Timing
Array (PTA). Les ones gravitacionals caracteritzades per freqüències tan petites
poden ser emeses per fonts com el fons de radiació gravitatòria de fusions de
forats negres supermassius o fenòmens exòtics de l’Univers primerenc. De fet, ja
s’ha anunciat una detecció d’aquest fons estocàstic d’ones gravitacionals.

Quan dos estels de neutrons es troben en un sistema binari, units grav-
itacionalment, els objectes eventualment col·lisionen. La pèrdua d’energia del
sistema a causa de l’emissió de radiació gravitatòria redueix el radi orbital fins
que les superfícies dels estels es toquen i els objectes es fusionen. Segons la massa
dels components de la binària, entre d’altres, la natura del romanent de la fusió
pot variar. Si la massa total del sistema és molt elevada, l’objecte col·lapsarà a
un forat negre ràpidament. En canvi, si la massa total no supera un valor crític,
l’objecte pot ser un estel de neutrons hipermassiu que romandrà estable durant
uns centenars de mil·lisegons fins que col·lapse. L’elevat grau de rotació diferen-
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cial i la pressió tèrmica generen el suport centrífug suficient per a contrarrestar
la gravetat de l’objecte. Durant el seu breu temps de vida, l’estel hipermassiu
pot sofrir diverses oscil·lacions i inestabilititats magnetohidrodinàmiques, a més
d’ejectar massa, la qual forma un disc al voltant de l’objecte. El temps de vida del
romanent de la fusió, junt amb la seua dinàmica, tenen implicacions importants
en l’emissió de radiació electromagnètica i en la producció d’elements pesats. Per
desgràcia, tot açò encara no s’entén completament, perquè depén estretament
d’un tractament adequat de tota la física involucrada. A banda de necessitar
una equació d’estat realista per descriure correctament el comportament de la
matèria, els esquemes de transport de neutrins són importants per a estudiar la
influència de la pressió tèrmica en l’estabilitat del romanent.

Com ja s’ha mencionant anteriorment, la massa expulsada durant i després de
la fusió dels estels pot orbitar al voltant del romanent i formar un disc d’acreció.
Aquesta massa pot ser expulsada mitjançant diversos mecanismes a diferents
velocitats. Aquest material ejectat és important per a la creació d’elements
químics. Nous elements poden ser produïts quan nuclis atòmics s’exposen a
fluxos intensos de neutrons. En aquest escenari, la fracció d’electrons és molt
petita, el que facilita la captura ràpida d’electrons i la creació d’elements molt
pesats. De fet, es pensa que les fusions d’estels de neutrons són l’únic escenari
en què es poden formar aquestos elements.

Cal també afegir que les binàries d’estels de neutrons són l’escenari idoni per
a les explosions de raig gamma de curta duració. Quan el romanent de la fusió
col·lapsa a un forat negre, dolls (ultra)relativistes nodrits per camps magnètics
molt intensos són capaços d’emetre aquesta radiació.

Turbulència magnetohidrodinàmica

La turbulència generada durant la col·lisió dels estels de neutrons i durant la fase
consegüent és capaç d’amplificar el camp magnètic dels estels diversos ordres
de magnitud. Un camp magnètic molt intens pot tindre efectes en la dinàmica
del romanent de la fusió, o tindre la capacitat d’impulsar dolls relativistes
que podrien explicar certes observacions electromagnètiques. Per exemple, el
desenvolupament de la inestabilitat magneto-rotacional en el romanent dona lloc
a una redistribució del seu moment angular que en redueix el grau de rotació
diferencial, la qual cosa afecta a l’estabilitat de l’objecte i, per tant, a l’emissió
multi-missatgera i a la nucleosíntesi d’elements químics.

En escenaris molt dinàmics com les binàries d’estels de neutrons pot existir
una transferència d’energia i de moment a través d’un ampli rang d’escales
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de longitud, conegut com a rang inercial. Quan açò ocorre, les estructures a
gran escala que es trobaven ordenades poden esdevindre una disrupció i formar
petites estructures desordenades. L’energia i el moment es transferiran a aquestes
escales, on l’energia cinètica es transforma en energia interna, fins que s’arriba a
l’escala de dissipació, en què el ritme de transferència d’energia és igual al ritme
de dissipació d’energia. El grau de turbulència es quantifica amb el nombre de
Reynolds (Re), quantitat que mesura la ràtio entre la major escala del rang
inercial i l’escala de dissipació. S’ha comprovat experimentalment que, per tal
de considerar un fluid com a turbulent, el seu nombre de Reynolds ha de ser
Re ≳ 1000. En binàries d’estels de neutrons, aquesta quantitat pot arribar a
valors de 1015 − 1016.

La font de turbulència dominant durant la col·lisió dels estels és la inestabilitat
de Kelvin-Helmholtz (KH). El salt de velocitat en la interfície entre els dos estels
pot produir cisalles a gran escala que activen aquesta inestabilitat. Aquestes
cisalles de velocitat produeixen vòrtexs que, al seu torn, formen estructures més
petites que poden amplificar el camp magnètic a petites escales diversos ordres
de magnitud. La turbulència generada per la inestabilitat de KH decaurà amb el
temps quan assolisca les escales dissipatives, ja que no hi ha injecció addicional
d’energia cinètica des de les escales grans.

Durant l’evolució del romanent hipermassiu, la inestabilitat magneto-rotacional
s’ha vist com el principal mecanisme responsable de produir turbulència magneto-
hidrodinàmica i de redistribuir moment angular. Objectes amb rotació diferencial
(amb un gradient negatiu de la velocitat angular) i amb camps magnètics dèbils
estan subjectes a aquesta inestabilitat. Petites pertorbacions poden créixer expo-
nencialment en forma d’estructures ordenadres i tindre un impacte en el fluid a
gran escala. Aquest creixement de les pertorbacions s’atura eventualment arran
de mecanismes que no s’entenen completament. Es creu que el desenvolupament
d’inestabilitats parasítiques sobre la inestabilitat magneto-rotacional és la causa
de la seua saturació. Aquestes inestabilitats secundàries creixen molt ràpidament
i trenquen les estructures ordenades, el que dona lloc a un estat turbulent.

Les simulacions numèriques necessiten resoldre l’ampli rang d’escales en què
la turbulència es desenvolupa per tal de capturar tota la física involucrada en
el problema. Tanmateix, si la resolució espacial no és suficientment elevada,
les simulacions potser només capturen una part d’aquest rang d’escales, el
que pot resultar en un tractament incorrecte de la física a petita escala i
amb conseqüències en totes les escales. En simulacions de fusions de binàries
d’estels de neutrons, es necessiten recursos prohibitius per a dur a terme un
tractament realista de la microfísica (equació d’estat, transport de neutrins) i
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de la turbulència magnetohidrodinàmica. Per tant, és convenient dissenyar un
model que siga capaç de capturar la física a petita escala i el desenvolupament
de la turbulència amb una resolució moderada. Encara que aquest model de
turbulència no siga correcte en escales molt petites, ha de ser capaç de capturar
la física quan s’aplica a les escales característiques del problema.

Per tal de simular fusions d’estels de neutrons, les simulacions numèriques
es realitzen en el context de la relativitat general. La inclusió de models per a
turbulència pot significar la modificació de les equacions de la magnetohidrod-
inàmica (que descriuen la dinàmica del fluid magnetitzat) amb termes efectius
que representen l’efecte de les escales no resoltes. En relativitat general, aquesta
modificació de les equacions de moviment ha de retindre la seua covarància. Per
tant, l’aplicació d’aquestos models ha de fer-se amb cura. Durant les últimes
dècades, diversos models de turbulència s’han proposat en simulacions de fluids
relativistes. En molts casos, les variables turbulentes es relacionen amb les
quantitats resoltes per la simulació mitjançant relacions fenomenològiques que
introdueixen certs factors que han de ser calibrats amb simulacions locals de
control.

Simulacions de binàries d’estels de neutrons amb aquestos models han pogut
reproduir amb èxit l’amplificació turbulenta del camp magnètic a petita escala,
pròpia de la inestabilitat de KH. S’han comparat els resultats amb simulacions
d’elevada resolució, i s’ha comprovat que es pot assolir la mateixa amplificació
només utilitzant la meitat de la resolució emprada en simulacions sense models
de turbulència. A més a més, l’aplicació d’un terme efectiu de viscositat en
l’equació del moment és capaç de reproduir el transport de moment angular
generat per la inestabilitat magneto-rotacional i dur a l’estel romanent de la
fusió a un estat de rotació uniforme.

Un nou model per a la turbulència en binàries d’estels de neutrons

La major part d’aquestos anys l’he dedicada al desenvolupament d’un nou model
de turbulència que siga capaç de reproduir l’evolució de les energies cinètiques
turbulentes de les inestabilitats magnetohidrodinàmiques més importants en
les fusions de dos estels de neutrons: la inestabilitat de KH i la inestabilitat
magneto-rotacional. El model, que té un fort caràcter fenomenològic, es basa
en equacions d’evolució per a les energies cinètiques turbulentes lligades a les
inestabilitats del problema. En el Capítol 2, presente la versió del model per a
la inestabilitat magneto-rotacional. Tal com he dit anteriorment, inestabilitats
secundàries (les parasítiques) són les encarregades de saturar el creixement de la
inestabilitat principal. Per tant, en aquest cas, la versió del meu model consta
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de dues equacions que es troben lligades. Les equacions són hiperbòliques i
diferencials, amb un terme de flux i termes font que contenen quantitats obteses a
partir d’estudis analítics de la inestabilitat. La inestabilitat parasítica s’alimenta
de la principal, i el terme de creixement de l’equació per a la energia parasítica és
directament proporcional a l’energia de la inestabilitat magneto-rotacional, i al
seu torn és el terme font negatiu en l’equació d’evolució de l’energia turbulenta
de la inestabilitat primària. La dissipació en energia interna es veu reflectida en
el sistema d’equacions amb un terme font negatiu a l’equació per a la inestabilitat
parasítica. La resolució d’aquestes dues equacions diferencials permet reproduir el
creixement exponencial i súper-exponencial (per al cas parasític) de les densitats
d’energia turbulentes i la seua consegüent saturació.

Aquestes quantitats es poden relacionar amb els termes que s’han d’afegir a
les equacions de la magnetohidrodinàmica, els tensors de tensió turbulents, i que
representen els efectes de la dinàmica a petita escala. La relació es duu a terme
mitjançant uns factors de proporcionalitat que, per simplicitat, es consideren
constants en espai i temps. Els coeficients que s’apliquen a l’energia turbulenta
de la inestabilitat magneto-rotacional són analítics i es basen en arguments físics,
mentre que els coeficients parasítics s’han de calibrar amb simulacions de control.

En el Capítol 3, presente la versió del model de turbulència per a la in-
estabilitat KH. En aquest cas, el model és prou més simple. Només consta
d’una equació per a la densitat d’energia turbulenta, i té la mateixa estructura
que l’equació per a la densitat d’energia parasítica. Això és així perquè, en el
context de magnetohidrodinàmica ideal (amb viscositat i resistivitat nul·les), les
inestabilitats parasítiques que saturen la inestabilitat magneto-rotacional són
de tipus KH. En aquest cas, però, el terme de creixement ve donat pel salt en
velocitat característic de la interfície entre els dos estels. Mitjançant simulacions
numèriques en caixes, he pogut testar el model i també calibrar els coeficients de
proporcionalitat que relacionen la densitat d’energia turbulenta amb els tensors
turbulents que apareixen en les equacions de moviment del fluid.

Per a ambdues versions del model, i amb l’ajuda de les simulacions numèriques
de control, s’ha observat que el model és capaç de donar una estimació dels tensors
de tensió turbulents del mateix ordre de magnitud que el cas en què la turbulència
es pot resoldre. De fet, al Capítol 4 es presenten simulacions numèriques d’un
estel de neutrons magnetitzat amb rotació diferencial. En aquestes condicions,
s’espera que la inestabilitat magneto-rotacional es desenvolupe si s’empra la
resolució espacial necessària. Per tant, després d’introduir en el codi numèric
les equacions d’evolució de les energies turbulentes de la inestabilitat magneto-
rotacional i la parasítica, s’han realitzat simulacions amb baixa resolució, la
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qual, en principi, no permet observar el desenvolupament de la inestabilitat. No
obstant això, la inclusió del model en les simulacions dona lloc al transport de
moment angular que s’espera arran del desenvolupament de la inestabilitat. Per
contra, com s’esperava, en simulacions que no contenen el model no s’observa
aquest efecte. En aquestes simulacions només s’han afegit els tensors turbulents
en l’equació del moment del fluid, però si es vol estudiar l’amplificació del camp
magnètic s’hauria de modificar també l’equació d’inducció per al camp magnètic.
Investigacions amb lleugeres modificacions del model es faran en el futur pròxim
per a estudiar aquest altre tret característic de la inestabilitat magneto-rotacional.
A més, la implementació d’una formulació covariant del model és necessària per
dur a terme simulacions numèriques en relativitat general.

La saturació de la inestabilitat magneto-rotacional

Al Capítol 5 s’investiga, mitjançant un estudi analític de les equacions magneto-
hidrodinàmiques, l’evolució dels modes parasítics que s’encarreguen de saturar
la inestabilitat magneto-rotacional. Aquest tipus d’estudi ja s’havia realitzat
amb anterioritat, però en aquest cas moltes simplificacions s’han relaxat i s’ha
pogut obtenir resultats més realistes que concorden més amb resultats de simu-
lacions numèriques locals capaces de resoldre la inestabilitat. En aquest Capítol
s’ha estudiat el creixement súper-exponencial d’una gran quantitat de modes
parasítics amb diferents amplituds inicials. S’ha observat que els modes que
creixen més ràpidament assoleixen la mateixa amplitud que la inestabilitat
magneto-rotacional (és a dir, la saturació) quan aquesta és més d’un ordre de
magnitud major que el camp magnètic vertical inicial, tal i com s’observa en
treballs numèrics. A més, els resultats d’aquest treball suggereixen una petita
modificació del meu model de turbulència presentat al Capítol 2, ja que aquest
tractament més realista de les inestabilitats parasítiques ha permés observar que
el seu creixement és, en realitat, més lent del que s’esperava.

Anàlisi de senyals d’ones gravitacionals de binàries d’estels de
neutrons

Les fusions de binàries d’estels de neutrons són fonts principals de radiació
gravitatòria. La detecció de senyals d’ones gravitacionals de fusions de binàries
d’estels de neutrons ens permet acarar els resultats obtesos mitjançant simu-
lacions numèriques amb les observacions i inferir paràmetres físics de la font
(que es troben codificats en el senyal). Simulacions mostren que el senyal emés
en aquest sistema és molt sensible a l’equació d’estat de la matèria. A més,
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l’espectre de freqüències del romanent de la fusió mostra l’excitació de modes
d’oscil·lació en l’estel. És per això que una anàlisi curosa d’aquestos trets podria
donar informació inestimable de la física dels estels de neutrons.

El senyal d’ones gravitacionals reflecteix la dinàmica del sistema. Durant
la fase en què els dos estels s’apropen l’un a l’altre, abans de col·lisionar,
l’amplitud i la freqüència del senyal augmenten. En aquesta fase, l’emissió
d’ones gravitacionals està ben aproximada per expansions analítiques i semi-
analítiques. L’efecte de marea a causa del tamany finit de l’estel de neutrons
es troba gravat en l’ona gravitacional, ja que canvia l’evolució de la seua fase.
Aquestes deformacions de marea depenen molt de l’equació d’estat i poden
ser descrites per un paràmetre conegut com a deformació de marea. Aquest
paràmetre, junt amb les masses de la binària i la seua ràtio, són els paràmetres
que dominen en l’ona gravitacional durant aquesta fase anterior a la fusió. La
rotació dels estels i l’eccentricitat del sistema juguen un paper secundari. Arran
dels events GW170817 i GW190425, detectats per la col·laboració LIGO, Virgo
i KAGRA (LVK) i que es corresponen amb les dues úniques fusions de binàries
d’estels de neutrons observades fins ara, hi existeixen estimacions reals d’aquest
paràmetre de deformació de marea. Amb el valor obtingut de la deformació de
marea, i amb el de la massa efectiva de la binària, va ser possible obtindre una
estimació del valor del radi de l’estel de neutrons més massiu del sistema. Açò es
va dur a terme mitjançant relacions universals independents de l’equació d’estat,
construïdes amb nombroses simulacions numèriques.

Durant la fase posterior a la fusió dels estels de neutrons, l’energia emesa
en ones gravitacionals és considerablement major que durant la fase prèvia a
la col·lisió, i la freqüència característica del senyal es troba en el rang dels kHz.
Aquesta part del senyal és més difícil de descriure i té una natura certament
estocàstica, a causa de la interacció de diferents efectes tals com turbulència,
camps magnètics intensos, radiació de neutrins o inestabilitats hidrodinàmiques.
A més, ja hem vist que dur a terme simulacions realistes d’aquesta fase de la fusió
és una tasca molt complicada. En conseqüència, és també difícil extraure senyals
d’ones gravitacionals realistes que es puguen emprar per a futures deteccions.
L’espectre de les ones gravitacionals emeses durant els primers mil·lisegons
després de la col·lisió es troba caracteritzat per un pic principal que es correspon
amb el mode fonamental quadrupolar d’oscil·lació de l’estel. La localització
d’aquest pic és sensible a l’equació d’estat. Més concretament, simulacions
numèriques han permés determinar que el pic està estretament correlacionat
amb la deformació de marea. Variacions en l’equació d’estat poden produir una
varietat significant d’espectres d’ones gravitacionals amb diferents posicions dels
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pics de freqüència. És per això que l’ús de relacions quasi-universals que enllacen
aquesta freqüència amb propietats de l’estel de neutrons romanent ha fet que
l’espectroscopia d’ones gravitacionals esdevinga un camp de recerca molt actiu
per a estudiar l’equació d’estat d’aquestos objectes. Cal afegir que hi poden
existir pics secundaris relacionats amb diferents modes d’oscil·lació estelars.

Mentre el romanent evoluciona, aquest s’estabilitza i l’amplitud del senyal
d’ona gravitacional disminueix, i les freqüències del senyal també evolucionen
amb el temps. Eventualment, el romanent pot col·lapsar a un forat negre, i
l’emissió de radiació gravitacional s’atura sobtadament.

La tècnica emprada per inferir els paràmetres físics de sistemes de binàries
d’estels de neutrons durant la fase prèvia a la col·lisió és, en anglés, el matched
filtering. Aquest mètode permet identificar senyals soterrats en soroll del detector
mitjançant la correlació de les dades amb models generats a partir de mil·lions de
mostres d’ones gravitacionals teòriques. A més, aquesta tècnica permet estimar
paràmetres astrofísics de les fonts d’ones gravitacionals. Malauradament, el
senyal posterior a la fusió dels estels és molt més difícil de detectar, perquè el
seu rang de freqüències característic no és òptim per als detectors actuals. A
causa del nombre limitat de simulacions numèriques d’aquesta fase de la fusió,
no és possible produir un nombre suficient d’ones gravitacionals sintètiques
per dur a terme el matched filtering. Una alternativa a aquesta tècnica és la
recerca no modelada de senyals. Malgrat ser un mètode menys eficient, permet
reconstruir la fase posterior a la col·lisió i extraure informació de l’espectre
d’ones gravitacionals.

Reconstruccions no modelades dels senyals de romanents hipermassius

Al Capítol 7 presente una aplicació d’aquesta recerca no modelada de senyals
gravitacionals. Els romanents hipermassius, després d’unes quantes desenes de
mil·lisegons, quan el mode quadrupolar dominant es relaxa, poden esdevindre
inestabilitats convectives que exciten els anomenats modes inercials, els quals pre-
senten freqüències i una amplitud menors que les del mode quadrupolar. L’estudi,
mitjançant la reconstrucció no modelada dels senyals extrets de simulacions
numèriques i injectats en soroll dels detectors, mostra que aquestos modes no es
poden detectar pels observatoris d’ones gravitacionals actuals (LIGO, Virgo i
KAGRA), però sí per futurs detectors (Cosmic Explorer i Einstein Telescope), els
quals tenen una sensitivitat deu vegades major que la dels actuals. La detecció
d’aquestos modes i la caracterització dels seus pics a l’espectre d’ones gravita-
cionals poden donar informació addicional de l’equació d’estat, a més d’una visió
més profunda de l’estructura interna d’aquestos romanents hipermassius. Les
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freqüències característiques dels modes inercials potser estiguen relacionades amb
paràmeters físics de l’estel de neutrons. Açò podria comprovar-se mitjançant
la realització de simulacions numèriques amb diverses equacions d’estat que
permeten construir relacions quasi-universals. Per desgràcia, es necessiten escales
de temps prou elevades per excitar aquestos modes, la qual cosa pot limitar la
producció d’aquestes simulacions.

A banda d’aquest treball, al Capítol 8 he avaluat la possible identificació
d’efectes tèrmics en romanents de fusions d’estels de neutrons mitjançant, de
nou, reconstruccions no modelades de senyals d’ones gravitacionals. Quan el
romanent hipermassiu es forma, la temperatura no es pot negligir i s’ha de
tindre en compte en les simulacions numèriques. La forma d’introduir aquestos
efectes en les simulacions és a través de l’equació d’estat. Dos enfocaments
diferents s’empren actualment: l’enfocament híbrid, computacionalment menys
costós però, al seu torn, menys realista, i l’ús d’equacions d’estats tabulades,
computacionalment més costoses però que incorporen efectes tèrmics d’una
manera més realista. En aquest Capítol, reconstruccions de senyals injectats
en soroll mostren que les freqüències de l’espectre característiques del mode
fonamental quadrupolar són diferents entre els dos enfocaments, i que aquestes
diferències poden ser detectades a distàncies considerables per futurs detectors.
La distància màxima de detectabilitat depén de l’equació d’estat considerada.

Classificació a temps real de fonts d’ones gravitacionals amb un nou mètode
bayesià

Actualment, la col·laboració LVK es troba en el seu quart període d’observació
(O4). Al llarg dels anys, la sensitivitat dels detectors ha millorat, i açò ha
resultat en un increment substancial de les deteccions d’ones gravitacionals. En
aquest nou període d’observació es realitza aproximadament una detecció al
dia, i s’espera que açò augmente en els pròxims períodes d’observació. Aquest
fet pot afectar els mètodes tradicionals emprats per la detecció de senyals i
l’estimació de paràmetres. Doncs, l’ús de tècniques de intel·ligència artificial
en l’astrofísica d’ones gravitacionals està esdevenint un increment considerable.
Les seues aplicacions són increïblement diverses. En l’anàlisi de dades d’ones
gravitacionals, la intel·ligència artificial pot completar els bancs de mostres
emprats en matched filtering, ajudar en cerques d’events i accelerar l’estimació
de paràmetres de les fonts dels senyals.

Al Capítol 9 s’explora una de les possibles aplicacions de la intel·ligència
artificial en el camp de l’astrofísica d’ones gravitacionals. Hi presente un nou
esquema per a classificar en temps real senyals d’ones gravitacionals provinents de
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binàries d’objectes compactes. Aquest mètode empra les masses i els paràmetres
de rotació estimats pels algoritmes de detecció per oferir probabilitats que la
font de radiació gravitatòria tinga un estel de neutrons i, si escau, hi haja
matèria romanent després de la col·lisió de la binària. Aquestes mètriques venen
donandes per dos algoritmes supervisats de classificació, anomenats Random
Forest (RF) i K-Nearest Neighbours (KNN), els quals han sigut entrenats sobre
conjunts enormes de dades i una gran varietat d’equacions d’estat.

La novetat presentada en aquest Capítol és l’ús d’una tècnica bayesiana per
calcular probabilitats més realistes a partir dels resultats dels algoritmes de
classificació. Aquest esquema ofereix informació més directa i interpretable que
pot ser d’utilitat per a la comunitat astronòmica, ja que ajudaria a donar una
resposta ràpida per realitzar observacions en l’espectre electromagnètic, en el
cas en què hi haguera un romanent que emetera aquest tipus de radiació. A
més, aquest mètode es pot aplicar a altres propietats dels senyals gravitacionals
detectats pels observatoris LVK. Per exemple, podria donar la probabilitat que
una de les components de la binària es trobe en el buit de massa dels estels
de neutrons. Com els estels de neutrons tenen una massa màxima (al voltant
d’unes 2.5 masses solars), i forats negres amb masses inferiors a 5 masses solars
rarament s’han observat, hi existeix un buit de massa entre l’estel de neutrons
més massiu i el forat negre més lleuger mai observats. Trobar objectes dins
d’aquesta regió crítica podria donar-nos informació molt important. Si hi es
troba un estel de neutrons, aquesta observació posaria restriccions molt fortes
en l’equació d’estat de la matèria densa. Alternativament, si es detecta un forat
negre en aquesta regió, això tindria un fort impacte en el nostre enteniment de
les explosions de supernova, les quals són el mecanisme de formació dels forats
negres de massa estelar.

Altres treballs

A banda dels treballs en què he sigut l’autor principal, els quals ja han estat
resumits, he participat en diversos projectes amb un paper més secundari. A
l’Apèndix A, explique de manera resumida els projectes en què he estat involucrat
i la meua contribució a aquestos. Dos d’aquestos treballs consisteixen en l’estudi
dels efectes de la matèria fosca en la dinàmica i l’estabilitat dels estels de neutrons.
Aquesta matèria fosca pot representar-se mitjançant partícules bosòniques molt
lleugeres que només interactuen gravitacionalment amb la matèria fermiònica
que constitueix els estels de neutrons.
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El primer projecte consisteix en l’estudi de l’impacte que pot tindre un núvol
de matèria fosca constituït per partícules bosòniques en l’estabilitat d’un estel
de neutrons que, aïllat, és inestable a la inestabilitat de barra. Quan un estel
amb rotació diferencial gira amb molta velocitat, pot patir una deformació en
forma de barra. Aquesta inestabilitat, relacionada amb un cert mode d’oscil·lació
de l’estel, excita l’emissió d’ones gravitacionals. En aquest treball, trobàrem
que l’addició de matèria fosca (mitjançant l’acoblament del potencial del camp
bosònic a les equacions d’Einstein) pot alterar aquesta inestabilitat, i excitar
diferents modes d’oscil·lació i, fins i tot, estabilitzar l’estel. Aquest efecte depén
de la massa del núvol bosònic i de la mateixa partícula de matèria fosca.

El segon projecte relacionat amb l’efecte de la matèria fosca en estels de
neutrons pretén estudiar l’efecte de l’axió, una partícula bosònica amb un
potencial característic, en la configuració d’equilibri dels estels de neutrons.
Quan es troben aïllats, els estels de neutrons tenen configuracions estables per
a certs valors de la seua massa i el seu radi. En afegir aquest camp bosònic,
vam trobar que hi poden existir més configuracions d’equilibri, és a dir, que es
poden trobar estels de neutrons estables per a més combinacions de masses i
radis, segons també quins valors tinguen els paràmeters que descriuen el camp
de l’axió.

Per últim, durant la meua estada al Niels Bohr Institute vaig realitzar un
projecte secundari que consistia en l’estudi dels efectes de la memòria d’ones
gravitacionals en el fons còsmic de microones. La memòria d’ones gravitacionals
és un efecte de la relativitat general que ocorre quan una ona provoca un canvi
persistent en la posició relativa de parells de masses. Aquest efecte pot generar-se
a causa de la col·lisió de binàries massives de forats negres, entre d’altres. En
aquest projecte vam descobrir que l’efecte de memòria pot provocar fluctuacions
en la temperatura del fons còsmic de microones, perquè pot alterar la longitud
d’ona dels fotons mitjançant un procés de camí aleatori. Aquestes fluctuacions,
malauradament, són de molt baixa magnitud, i els observatoris actuals ho tenen
molt difícil per detectar-les.
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CHAPTER 1

Introduction

I have been extremely fortunate to do my PhD thesis during a period where a
lot of progress is being made in the field of gravitational astrophysics. The first
ever detection of a gravitational wave (GW) signal occured during the first day
of my Bachelor degree, and the subsequent observations stimulated me to start
my research career in this direction. Plenty of new GW signals from a wide
variety of astrophysical sources which are still invisible to us are awaiting to be
detected.

We are in a golden era of astrophysics where a plethora of new GW ob-
servations is changing our understanding of the Universe at an unprecedented
rate [Abbott et al. 2016a, Abbott et al. 2019a, Abbott et al. 2021c, Abbott et al.
2024, Abbott et al. 2023b]. In particular, the seminal observations of GWs from
binary neutron star (BNS) merger GW170817, along with the subsequent obser-
vation of electromagnetic (EM) radiation across the entire spectrum (from radio
waves to gamma rays), spurred the era of multimessenger astronomy [Abbott
et al. 2017b, Abbott et al. 2017e, Abbott et al. 2017c]. Multimessenger obser-
vations of BNS mergers provide the most direct evidence that stellar compact
mergers, where at least one of the binary companions is a neutron star (NS), are
progenitors of the central engines that power gamma-ray bursts (GRBs) [Mac-
Fadyen and Woosley 1999]; they give strong observational support to theoretical
proposals linking BNS mergers with production sites for r-process nucleosyn-
thesis and kilonovae [Eichler et al. 1989, Li and Paczynski 1998, Metzger et al.
2010a]; they can be used as standard sirens to give an independent measure of
the expansion of the Universe [Schutz 1986, Nissanke et al. 2010, Abbott et al.
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2017a], and put tight constraints on the equation of state (EOS) of matter at
supranuclear densities (see, e.g., Oertel et al. 2017 and references therein).

Our understanding of the complex physics and dynamics involved in BNS
mergers and in their postmerger evolution has significantly expanded in the last
few decades. This has been possible thanks to the use of numerical simulations,
ever larger and more accurate in terms of computational resources and more
sophisticated in terms of input physics. Numerical Relativity (NR) is the tool
which is employed to study these systems (see Paschalidis [2017], Baiotti and
Rezzolla [2017], Duez and Zlochower [2019], Shibata and Hotokezaka [2019], and
Ciolfi [2020b] for recent reviews). The huge parameter space of the problem,
its dimensionality, and the amount of physics involved limit the number of
simulations. To properly describe these systems, numerical simulations need
to employ realistic EOS that include thermal effects and other microphysical
features; a proper transport scheme for neutrinos; large enough resolution to
capture small-scale turbulence, and more other physics that play a role and will
be further discussed in the following sections.

Therefore, the description of the long-term evolution of the postmerger phase
for generic initial conditions remains poorly constrained [Siegel et al. 2013,
Shibata and Hotokezaka 2019, Ciolfi 2020b]. As a result, linking the results of
simulations with the data from multimessenger observations of BNS mergers,
short gamma-ray bursts (sGRBs) and kilonovae, is still to a large extent an
ongoing task.

1.1 Neutron stars

NSs are ideal astrophysical laboratories for testing matter at extreme conditions
and provide connections between astrophysics, nuclear physics and particle
physics. The extreme densities reached in their core (∼ 1014 g/cm3) can result
in matter dominated by exotic particles and phenomena such as superfluidity
and superconductivity. They also possess the most intense magnetic fields in the
Universe (with strengths up to 1016 G in some cases) and can rotate at very high
frequencies, reaching rotational frequencies of several kHz. Due to their high
compactness, General Relativity (GR) must be taken into account to properly
describe their equilibrium structure. Their typical mass and radius, which can
be determined by the Tolman-Oppenheimer-Volkoff (TOV) equations (under
spherical symmetry and neglecting magnetic fields) together with a realistic
relation between the thermodynamic variables (EOS), are of the order of 1.5
M⊙ and ∼ 12 km, respectively.
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1.1.1 Formation

NSs are born after the gravitational collapse of the iron core of a massive star with
a mass M ≥ 10 M⊙, which triggers a core-collapse supernova (CCSN) explosion1.
The explosion mechanism is still not fully understood, but neutrinos can play
an important role in the absence of rapid rotation, leading to neutrino-driven
explosions [Bethe and Wilson 1985, Burrows and Lattimer 1987]. Neutrinos leak
out from the hot interior of the protoneutron star (PNS), carrying away the
energy needed to revive the (accretion) shock. A small fraction of the emitted
neutrinos is absorbed, heating the surrounding gas. This provokes that the stalled
shock, which has lost energy as it progressed radially ourwards, revives and the
supernova explosion sets. The energy released in this explosion is of the order of
1051 erg. Due to the diverse CCSN progenitors, PNSs can be born with different
rotation rates. For progenitors with rapid rotation (with rotation frequencies in
the range of several Hz), the amplification of the magnetic field can in fact drive
the explosion, resulting in magnetorotational explosions [Kuroda et al. 2020,
Obergaulinger and Aloy 2021, Powell et al. 2023]. The PNS remnant is born
with rotation frequencies of the order of ∼ 1 kHz and amplified magnetic field
strengths of ∼ 1014 G. In this scenario, a collimated outflow can be produced,
being a candidate r-process site. Moreover, the energy explosions can be higher
than the neutrino-driven mechanism, reaching values of ∼ 1052 erg.

The PNS is born with an initially large temperature of order 50 MeV and
a radius of around 100 km. It is lepton rich and consists of an unshocked core
with low entropy and high density, surrounded by a transition region and a
shocked envelope with lower density and higher entropy. The neutrinos in the
inner region are trapped, but the outer envelope is not opaque to neutrinos. Less
than a second after core bounce, the outer envelope cools down and contracts,
decreasing its entropy. After several minutes, the NS cools down to temperatures
lower than 1 MeV, and thermal effects become negligible [Burrows and Lattimer
1986, Keil and Janka 1995, Keil, Janka, and Mueller 1996, Prakash et al. 1997,
Pons et al. 1999]. In some cases, the PNS may not survive this early evolution,
collapsing instead to a black hole (BH). This might be due to the fact that the
accretion pushes the PNS above the maximum mass supported gravitationally
(fallback supernova, e.g., Chan et al. 2018), or if the shock is never revived and
the mass goes into forming a BH (failed supernova, e.g., Nadezhin 1980). If
the failed supernova occurs for a rotating progenitor, the collapsing mass can
circularise into an accretion disc around the BH. This disc can be neutrino-cooled

1An alternative formation mechanism for NSs is the accretion-induced collapse of a white
dwarf (WD) [Nomoto 1982] that leads to a Type Ia supernova.
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if it is formed deep enough. This system, known as collapsar [Woosley 1993],
can give rise to a relativistic jet, powering a long-duration gamma-ray burst
(lGRB) [Woosley and Bloom 2006].

The stable PNS continues cooling down and reaches uniform rotation due
to a combination of spin-down mechanisms and viscosity. These isolated stable
NSs can be relatively highly magnetised (B ∼ 1010 − 1015 G) and emit beams
of EM radiation (in the radio range) out of their magnetic poles. Due to their
stable rotational periods, these beams are observed as pulses of radiation when
they arrive to Earth, and were first identified by Jocelyn S. Bell more than 50
years ago [Hewish et al. 1968] as pulsating stars (PSR B1919+21). That is why
NSs that spin rapidly and are magnetised are also known as pulsars.

1.1.2 Structure

NSs are only surpassed by BHs as the most known compact objects in the
Universe. They span a wide range of density regimes [Lattimer and Prakash
2004], from densities comparable to those of the WDs to values above the nuclear
density, ρnuc (∼ 1014 g/cm3). Figure 1.1 shows the surface and internal layers
of a NS. These objects possess a very thin atmosphere of a few centimeters and
an envelope with a negligible amount of mass, but both play a key role in the
formation of the photon spectrum and in the transport of thermal energy from
the star. The envelope is followed by an outer crust with a mass density similar
to a WD (ρ ∼ 107 g/cm3), where nuclei (mainly 56

26Fe) are in a lattice and the
electron degeneracy pressure dominates. As density increases, the dominant
nuclei achieve a neutron excess with a mass number A ∼ 200, which is impossible
to reproduce in terrestrial laboratories. When density overcomes the neutron
drip threshold at ρ ≈ 4.3 × 1011 g/cm3 (resulting in a null neutron chemical
potential), free nucleons coexist with nuclei, resulting in a neutron fluid that
dominates over nuclei. In the transition to the NS core, nuclei are close together
and the lattice transforms into a continuous phase in which matter has a different
dimensionality (from 3D nuclei to 1D slabs) and coexists with multidimensional
voids. This is known as the nuclear pasta phase and happens when the mass
density is close to the nuclear density, ρnuc ∼ 1014 g/cm3. When ρ ≈ ρnuc,
the lattice dissolves entirely and matter in the core consists of free nucleons,
electrons and neutrinos that are created and trapped within. Above nuclear
density, the Fermi energy is so high that even nucleons become relativistically
degenerate, and neutrons and protons interact to form exotic particles such as
pions (forming Bose-Einstein condensates), kaons and hyperons, leading to a
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Figure 1.1 Surface and internal regions of a NS. The upper bar shows the geometric matter
transitions between the crust and the core. In the bottom, superfluid aspects of the crust
(left) and the core (right) are depicted. From Lattimer and Prakash 2004. Reprinted with
permission from AAAS.

region of coexisting hadronic and deconfined quark matter [Glendenning 1992,
Alford 2001], characterised by superfluidity and superconductivity.

1.1.3 Equation of state

The characteristic supranuclear densities of NSs lead to a source of pressure (to
balance gravity) that is not only produced by electrons, but mostly by nucleons
and other exotic particles. Therefore, the EOS must correctly describe matter
at such extreme conditions (see, e.g., Glendenning 1997, Klähn et al. 2006).

The evolution of BNS systems and also the structure and stability of the
resulting remnants are highly dependent of the EOS. Moreover, the EOS has
a high impact in the neutrino emission and the conditions for the r-process
nucleosynthesis to happen during the BNS postmerger phase [Ruffert, Janka,
and Schaefer 1996, Ruffert et al. 1997]. Furthermore, very high densities are
reached as well in CCSNe [Kotake, Sato, and Takahashi 2006, Burrows and
Vartanyan 2021] and in the resulting PNS, and the treatment of matter can



6 Introduction

have a strong influence in the further evolution of the PNS [Prakash et al. 1997,
Pons et al. 1999]. This is the reason why there have been strong efforts to
constrain the thermodynamics of these compact objects (see, e.g., Lattimer 2012
and Oertel et al. 2017 for reviews and references therein).

1.1.3.1 Theoretical approaches to build an equation of state

The number of parameters used to build an EOS depends on the equilibrium
conditions. For a cold and charged-neutral NS in β-equilibrium, the EOS can
be parametrised solely with the baryonic number density, nB. In this case, an
EOS given in terms of the pressure and the energy density can close the system
of hydrodynamic equations and determine global properties of the star such as
the masses and radii. However, in PNSs and BNS mergers β-equilibrium is not
achieved, and temperature effects are not negligible. This makes the temperature
and the electron fraction, Ye, additional parameters of the EOS. The EOSs
that cover ranges of temperature and charge fractions that are characteristic of
NSs can be used in numerical simulations which can lead to results that can be
contrasted with astrophysical observations [Lattimer and Prakash 2007, Steiner,
Lattimer, and Brown 2010, Fortin et al. 2016]. Such EOSs should also include a
description of nonuniform matter at subsaturation densities where nuclei appear,
and a description of homogeneous matter at supranuclear densities [Oertel et
al. 2017]. Relatively high temperatures achieved in CCSNe and BNS mergers
favor the appearance of additional particles apart from electrons, nuclei and
nucleons, e.g., hyperons [Oertel, Fantina, and Novak 2012] or pions [Peres,
Oertel, and Novak 2013]. Moreover, phase transitions to quark matter might be
included [Nakazato, Sumiyoshi, and Yamada 2008, Sagert et al. 2009].

There exist different ab initio methods to build a NS EOS that start from “re-
alistic” few-body interactions to face the many-body problem [Fetter and Walecka
2003, Guardiola 1998, Müther and Polls 2000, Lee 2009, Baldo and Burgio 2012].
An alternative to the ab initio methods are the so-called phenomenological
approaches which employ effective interactions with less complexity. Phenomeno-
logical EOSs can be seen as purely parametric mean-field models in which a
parametrised functional is fitted to microscopically motivated EOSs [Nambu and
Jona-Lasinio 1961a, Nambu and Jona-Lasinio 1961b, Chodos et al. 1974, Bender,
Heenen, and Reinhard 2003]. Thus, these models are very useful to apply in
astrophysical simulations (see e.g. Read et al. 2009 for piecewise polytrope fits
and Alford 2001 for the application of a linear fit for quark matter). All these
approaches deal with particle interactions and treat the many-body problem
of a variety of subatomic particles in different ways. The complexity of the
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EOS models can vary, going from single-parameter, barotropic EOSs, i.e. poly-
tropic EOS [Tooper 1965], to hadronic EOS [Heiselberg and Hjorth-Jensen 2000,
Haensel, Potekhin, and Yakovlev 2007] and strange quark EOS [Glendenning
1997, Gondek-Rosińska et al. 2000].

1.1.3.2 Observational constraints on the equation of state: masses and radii

Presently, NS masses probably represent the most reliable observational con-
straint on the EOS of compact stars. Masses can be accurately measured from
radio binary pulsars [Manchester and Taylor 1977], in which a pulsar is orbiting
around another NS, a WD or a main-sequence star. The extraordinary stability
of the pulsar period allows for accurate timings of the binary orbits. The mea-
sure of the Doppler shift permits inferring the orbital velocities and the total
mass of the binary can be deduced. The maximum NS mass is an important
quantity useful to rule out candidates for NS EOS. The pulsars observed in
PSR J1614-2230 [Demorest et al. 2010] and PSR J0348+0432 [Antoniadis et al.
2013], with masses of 1.928 ± 0.017 M⊙ and 2.01 ± 0.04 M⊙, respectively, are
the most massive pulsars measured with relatively high precision, constraining
considerably the parameter space of the EOS (see Figure 1.2). Moreover, the
detection of some relativistic effects facilitates the measurements of each compo-
nent mass. The Shapiro delay [Shapiro 1964] yields a slower propagation of the
pulsar radiation due to a deep gravitational well, compared to flat spacetime.
Moreover, an orbiting pair of NSs emit GWs that carry away angular momentum
and energy from the system, shrinking the orbits. This effect was first observed
in the Hulse-Taylor binary pulsar, PSR B1913+16, becoming a strong proof of
GR [Lorimer 2008]. Years later, the Shapiro delay was observed with relatively
high precision in the binary pulsar PSR B1534+12 [Stairs et al. 2002]. The
masses of the pulsar PSR J0737-3039 [Lyne et al. 2004] have also been determined
to impressive accuracy employing this method. Masses can also be measured for
NSs that accrete matter from a stellar companion in the so-called X-ray binaries,
but with a higher uncertainty and in a model-dependent way [Falanga et al.
2015], since the companion’s light curve needs to be modelled.

The methods employed to measure NS radii possess higher uncertainties.
There are proposed methods based on thermal X-ray and optical luminosities
of isolated and quiescent NSs [Guillot et al. 2013, Potekhin 2014]; type-I X-ray
bursts, i.e., the expansion of the thermal photosphere [Galloway and Lampe
2012, Poutanen et al. 2014]; the observation of quasi-periodic oscillations (QPOs)
in accreting NSs [Schaab and Weigel 1999], or the detection of GWs from NS
mergers [Bauswein et al. 2017]. Several past observations suggested that R ≳ 10
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Figure 1.2 Gravitational mass and circumferential radius for different EOSs including the
observational constraints (95% confidence levels) from GW observations (LIGO-Virgo), EM
detections (NICER or XMM-Newton), and mass measurements of two high-mass pulsars (radii
not measured). The PREX-2 1σ lower limit on the radius for a 1.4 M⊙ NS is also included.
Figure reprinted with permission from Di Giovanni et al. 2022. Copyright (2022) by the
American Physical Society.

km, but the accuracy was much worse than for the mass measurements. Luckily,
the Neutron star Interior Composition Explorer (NICER) mission [Gendreau et
al. 2012, Gendreau et al. 2016], installed on the International Space Station and
launched on 2017, has already measured the massess and radii of two pulsars, PSR
J0030+0451 [Miller et al. 2019, Riley et al. 2019] and PSR J0740+6620 [Miller
et al. 2021, Riley et al. 2021], with a determination of their radii with ∼ 10%
uncertainty (13.02+1.24

−1.06 km [Miller et al. 2019] and 13.7+2.6
−1.5 km [Miller et al.

2021], respectively, and 12.71+1.14
−1.19 km [Riley et al. 2019] and 12.39+1.30

−0.98 km [Riley
et al. 2021]). In addition, the recent observations of GWs emitted by a BNS
merger have put additional constraints on the EOS by inferring values for the
masses and radii of the component NSs. This will be covered with more detail
in Section 1.4.

From different EOS candidates, one can build theoretical mass-radius rela-
tions that can be compared with real measurements of masses and radii of NSs.
The EOSs with a maximum mass below the heaviest NSs found are excluded. In
Figure 1.2 some mass-radius relations are depicted for several EOS candidates.
Real measurements from pulsar observations or GW signals put constraints in
the validity of the EOSs, as shown by the highlighted regions in the figure. Some
models can also be excluded by causality (speed of sound > speed of light), finite
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pressure and GR. The theoretical existence curves in Figure 1.2 are obtained by
solving the TOV equation and hence assume spherical symmetry.

1.1.4 Rotating neutron stars

NSs have a wide range of rotational periods, ranging from milliseconds to several
seconds (see, e.g., Paschalidis 2017 for a review). Rotation is driven by angular
momentum conservation during the collapse of their progenitors’ core (or during
a BNS merger that results in a stable NS remnant). Initially differentially and
fast-rotating NSs can spin down over time due to various mechanisms, such as
viscosity, magnetic-field braking [Spitzer 1978], gravitational radiation (driven
by the mass quadrupole term; Papaloizou and Pringle 1978) and by emission of
particles like neutrinos [Mikaelian 1977].

Newly born NSs and merger remnants possess a relatively high degree of
differential rotation, i.e., different parts of the star rotate at different rates. In
the case of PNSs, the star inherits the angular momentum of the progenitor
star, and due to the drastic reduction in size, it spins substantially fast. Also,
differential rotation rises due to the collapse of the core. In the case of BNS
merger remnants, they rotate very rapidly due to the conservation of angular
momentum from the merging stars. As we will see in Section 1.2, the outer layers
of the stars are disrupted during merger and form an accretion disc around the
core of the merger remnant. This may depend on the binary mass ratio. For a
high enough value, no tidal disruption is expected. Differential rotation can drive
various instabilities and oscillation modes, e.g., r-modes, emitting gravitational
radiation, and amplify the magnetic field due to a dynamo process. Furthermore,
it can increase the maximum mass of the star due to the strong centrifugal
forces that balance gravity. The value of the new threshold mass is dictated by
the EOS. Efforts have been made to build NS models with realistic rotational
profiles and EOSs, so that tighter constraints can be placed on the maximum
mass of rotating NSs (e.g., Stergioulas and Friedman 1995, Nozawa et al. 1998,
Hanauske et al. 2017, Iosif and Stergioulas 2022, Cassing and Rezzolla 2024).

Isolated NSs that have cooled down, i.e., pulsars, have a remarkably stable
rotational period. This constant period is very helpful to measure the mass of
the NS, as discussed in Section 1.1.3, and to detect very low-frequency GWs
(10−9 − 10−6 Hz). By exploiting the temporal stability of numerous galactic
pulsars across the sky by continuously monitoring the radio signals, variations
in the arrival time of pulses due to gravitational radiation can be detected. This
detection technique is called pulsar timing array (PTA) [Hobbs et al. 2010].
GWs with these small frequencies can come from sources such as the GW
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background from supermassive BH mergers or exotic phenomena in the early
Universe. Indeed, a detection of this stochastic GW background has already
been claimed [Agazie et al. 2023].

1.1.4.1 Quasi-normal oscillation modes

General linear perturbations of the energy density in a TOV NS can be written
as a sum of quasi-normal modes, labelled by the indices (l, m) that come from the
spherical harmonics. The angular dependence is given by Legendre polynomials,
and their time dependence is oscillatory, with a certain frequency. Oscillations
(or pulsations) can be excited after a core collapse or during the BNS early
postmerger phase [Imamura, Friedman, and Durisen 1985, Managan 1985, Ipser
and Lindblom 1990, Moenchmeyer et al. 1991, Zwerger and Mueller 1997],
among other scenarios. They can be a source of gravitational and high-energy
radiation in isolated NSs, and can give further information on the EOS [Font
et al. 2001, Dimmelmeier, Stergioulas, and Font 2006, Gaertig and Kokkotas
2011, Krüger et al. 2021]. The main pulsation modes in relativistic NSs have
been classified in three different classes: the polar modes, which are analogous to
the pulsations of a Newtonian fluid and are slowly damped (f -modes, p-modes,
g-modes); the axial and hybrid modes, which are associated to the rotation of
the star, are degenerate with zero frequency in nonrotating stars (inertial modes,
r-modes), and the spacetime modes, analogous to the quasi-normal modes of a
BH (w-modes). Rotation impacts the modes of a nonrotating NS [Stergioulas
and Friedman 1998, Font et al. 2002]. The degeneracy in the index m is broken
and nonaxisymmetric modes arise. Also, prograde modes (with m < 0) are
different from the retrograde modes (m > 0). In general, the frequencies of
prograde modes increase, while those from retrograde modes decrease when the
rotation rate increases.

For further details about the different types of oscillation modes see, e.g., Mc-
Dermott, van Horn, and Hansen 1988, Andersson and Kokkotas 1998, Kokkotas
and Schmidt 1999.

1.1.4.2 Nonaxisymmetric instabilities

At birth or during accretion, NSs that rotate rapidly can be subject to several
nonaxisymmetric instabilities that affect their spin rate and dynamical evolution.
A star with a high enough rotation rate (for ratios of the rotational kinetic
energy T to the gravitational potential energy W , β ≡ T/|W | ≥ 0.27) will
undergo a dynamical instability known as the bar-mode instability [Houser,
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Centrella, and Smith 1994, Shibata, Baumgarte, and Shapiro 2000, Shibata
and Sekiguchi 2005, Baiotti et al. 2007]. This instability will deform the star
into a nonaxisymmetric (bar) shape due to centrifugal forces. Differentially
rotating ellipsoids can also develop spiral arms when β is much larger than
the threshold value. Such configuration will lead to a strong GW emission in
the range of kHz and also to mass ejection. It has also been observed that
relativistic effects decrease the critical value of β for dynamical bar formation, in
post-Newtonian simulations [Saijo et al. 2001] and in full GR [Manca et al. 2007,
Löffler et al. 2015]. The bar-mode instability can also develop for low values of
the β parameter, i.e., slower rotation rates. If the star possess a high degree
of differential rotation, it can be dynamically unstable against the bar-mode
deformation [Centrella et al. 2001, Ott et al. 2005]. To study this instability, both
hydrodynamic (e.g., Cerdá-Durán, Quilis, and Font 2007, Corvino et al. 2010,
De Pietri et al. 2014, Shibagaki et al. 2020) and magnetohydrodynamic (MHD)
(e.g., Camarda et al. 2009, Fu and Lai 2011) simulations have been performed.
Figure 1.3 displays snapshots at different times of the rest-mass density of a
differentially rotationg NS prone to the bar-mode instability. The different row
represent models with different vertical magnetic field strengths (from top to
bottom, Bz = {1014, 4 × 1015, 1016} G). The instability develops for low enough
initial magnetic fields (top row), but it can be suppressed for higher values (lower
panels). In the next Subsection, the role of magnetic fields in NSs is discussed
in more detail.

Highly differentially rotating NSs can also become unstable to the dynamical
one-arm (spiral) instability. It was discovered in Newtonian hydrodynamic
simulations by Centrella et al. 2001. The one-arm instability consists in the
displacement of the maximum density of the NS from its core. This phenomenon
results in the stellar core orbiting around the centre of mass with an almost
constant frequency. This deformation leads to a time variation of the quadrupole
moment that results in the emission of GWs. It is still unclear how this instability
arises, despite numerous studies. Simulations by Saijo and Yoshida 2006, Ou and
Tohline 2006 and Corvino et al. 2010 argue that the one-arm instability is excited
near the corotation radius, i.e., the radius at which the local angular velocity of
the fluid and the angular frequency of the unstable mode match. This is also
the case for the bar-mode instability [Cerdá-Durán, Font, and Dimmelmeier
2007, Passamonti and Andersson 2015]. Both the bar-mode and the one-arm
instabilities arise in dynamical scenarios where highly differentially rotating NSs
form. Simulations have shown the emergence of the one-arm (spiral) instability
in CCSNe [Ott et al. 2005, Kuroda, Takiwaki, and Kotake 2014, Shibagaki et al.
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Figure 1.3 Snapshots of the rest mass density at different times, for three differentially
rotating NS models with different initial vertical magnetic fields. From top to bottom,
Bz = {1014, 4 × 1015, 1016} G. For sufficiently low magnetic fields, the bar-mode instability
can develop (top panels). However, if the initial magnetic field is strong enough, the instability
can be supressed (middle and bottom panels). Figure reprinted with permission from Franci
et al. 2013. Copyright (2013) by the American Physical Society.

2020, Takiwaki, Kotake, and Foglizzo 2021] and in the hypermassive NS formed
after a BNS merger [Paschalidis et al. 2015, East et al. 2016, Radice, Bernuzzi,
and Ott 2016, Xie et al. 2020].

At lower rotation rates, the star can undergo the so-called Chandrasekhar-
Friedman-Schutz (CFS) instability [Chandrasekhar 1970, Friedman and Schutz
1978], which arises from the coupling between its rotation and its oscillation
modes. An oscillating mode that is retrograde for a corotating observer has a
negative angular momentum (compared to the unperturbed star), but if the
mode is prograde for a distant observer, this will remove angular momentum
from the star and the angular momentum will increase its negative value. This
results in a loss of angular momentum via gravitational radiation, until the
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oscillation mode becomes stable as the star spins down. Some inertial modes
and the r-modes are generically unstable to the CFS instability.

In this context, it is worthy of mention the r-mode instability [Andersson
1998, Andersson, Kokkotas, and Stergioulas 1999, Andersson and Kokkotas 2001].
The r-modes possess frequencies of the same order of magnitude as the rotation
frequency of the NS. They are caused by the Coriolis force generated by the
rotation, and they involve the motion of fluid elements primarily in the axial
direction. The r-modes are unstable due to the GW emission for all rotating
NSs, regardless their rotation rate.

Another nonaxisymmetric instability that rotating stars can undergo is the
viscosity-driven instability [James 1964], which breaks the circulation of the
fluid. It is not as generic in rotating NSs as the CFS instability, since it strongly
depends on the stiffness of the EOS [Skinner and Lindblom 1996, Bonazzola,
Frieben, and Gourgoulhon 1998] and it is supressed by relativistic effects [Shapiro
and Zane 1998, Gondek-Rosińska and Gourgoulhon 2002]. This instability is
associated with the regions where viscosity is more significant, in the NS’s outer
layers, and is characterised by the shearing motion between fluid layers.

1.1.5 Magnetic fields in neutron stars

Magnetic fields play a crucial role in shaping the properties and behaviour of
NSs. Even though NSs have some of the strongest magnetic fields in the Universe
(with surface values ranging from 108 to 2×1013 G in pulsars), the magnetic field
energy densities are too small in comparison with the total energy density of the
fluid. This is the reason why the presence of magnetic fields is often ignored in
numerical studies. Nevertheless, magnetic fields with moderate strengths might
affect the stability of the star without altering its bulk properties. In addition,
there exists a class of NSs that possess stronger magnetic fields (up to ∼ 1015

G), the so-called magnetars [Kouveliotou et al. 1998], which experience powerful
phenomena due to their intense magnetic field [Bocquet et al. 1995]. Moreover,
initially weak magnetic fields can undergo a significant amplification due to the
appearance of dynamo processes triggered by fluid instabilities.

1.1.5.1 Observational constraints

The measurement of the NS period and its time variation allows estimating the
magnitude of the magnetic field. As mentioned earlier in Subsection 1.1.1, NSs
spin down during their evolution, and magnetic fields are responsible for that.
The stellar period and its time evolution are strongly linked to the magnetic field
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Figure 1.4 P − Ṗ diagram for 1704 objects. The black dots correspond to 1674 rotation-
powered pulsars (RPPs), and the different colors represent other classes of NSs: 9 Anomalous
X-ray Pulsars (AXP, blue crosses), 5 Soft Gamma Repeaters (SGRs, green crosses), 3 Central
Compact Objects (CCOs, cyan circles), 6 Isolated NSs (INSs, magenta squares), and 7 Rotating
Radio Transients (RRATs, red triangles). The open circles stand for binary systems. Lines
of constant magnetic field, B, (dashed) and pulsar age, τ , (dash-dotted) are provided. The
solid line in the figure is a “death line”, below which RPPs’ radio emission shuts off. Figure
reproduced with permission from Kaspi 2010.

strength. Magnetic fields in NSs have been measured in both isolated and binary
systems. In Lorimer 2008, 20 known isolated millisecond pulsars observed in
the Galactic disc are displayed. They possess magnetic fields of about B ∼ 1010

G. Moreover, observations of eccentric (e > 0.05) binary pulsars not located in
globular clusters indicate that the magnetic field at the stellar surface is in the
range of B ∼ 109.7 − 1012.6 G. Figure 1.4 shows a P − Ṗ diagram (period vs
period time derivative) of observed NSs, including lines of constant magnetic
field and pulsar ages. The higher the magnetic field strength, the higher the
period time derivative (actually, B ∝ (PṖ )1/2).

However, the magnetic field also decays through ambipolar diffusion and
Ohmic dissipation. In addition, the Hall effect, i.e., the decoupling of electrons
from protons, rearranges the magnetic field in the star. As the magnetic field
decays, the spin down is reduced, until eventually the field is too weak to change
the spin period anymore. Viganò et al. 2013 found that an initial magnetic field
of 3 × 1012 G can be reduced by a factor ∼ 2 in a timescale of 5 × 105 yr. This
means that, close to the merger time of a BNS system (t ∼ 107 − 109 yr, Lorimer
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2008), the magnetic field might be ∼ 3 − 4 orders of magnitude lower than its
initial value.

1.1.5.2 Magnetic field structure and magnetosphere

Generally, magnetised NSs possess magnetic fields with poloidal and toroidal
components. In the former, magnetic field lines emerge from one magnetic pole
of the NS and converge at the opposite pole of the star, resulting in a somewhat
dipolar configuration. Stars with stationary purely poloidal magnetic fields must
be uniformly rotating, and the current is purely toroidal [Carter 1973]. On the
other hand, poloidal currents can generate purely toroidal magnetic fields in
ideal MHD [Oron 2002, Frieben and Rezzolla 2012], and the toroidal field can
also emerge if the field is not axisymmetric. However, a mixed magnetic field
configuration seems to be more stable [Braithwaite and Spruit 2006]. If the star
is differentially rotating, a toroidal component will arise from the wound-up
poloidal field. The interplay between differential rotation and magnetic fields
can have important consequences for the stability of the NS: magnetic braking of
the differential rotation, dynamo effects that amplify the magnetic field and the
development of the magnetorotational instability (MRI), which plays a crucial
role in the evolution of PNSs and BNS postmerger remnants.

The NS magnetic field interacts with charged particles in the stellar magneto-
sphere, with important implications in high-energy phenomena, shaping the EM
emission of the star. To treat the magnetic field outside the star, i.e., decoupled
from the fluid, ideal MHD is no longer valid, since it assumes that the bulk fluid
and embedded magnetic field are constrained to move together. One would need
to employ Maxwell’s equations for force-free electrodynamics (FFE) (or even vac-
uum) exteriors together with ideal MHD for the star’s interior. The development
of resistive schemes in general-relativistic magnetohydrodynamics (GRMHD)
simulations of NSs is an ongoing field of research. There are several works in spe-
cial relativity of aligned and oblique rotators (rotating magnetic dipoles) to study
stationary pulsar magnetospheres using FFE [e.g., Contopoulos, Kazanas, and
Fendt 1999, Spitkovsky 2006, Kalapotharakos, Contopoulos, and Kazanas 2012,
Kalapotharakos et al. 2012, Contopoulos, Kalapotharakos, and Kazanas 2014,
Mahlmann and Aloy 2022], without including the NS interior. These simulations
have brought important results, e.g., the proof of the stationary configuration of
the magnetosphere or the computation of the spin-down–Poynting–luminosity.

There have also been several efforts to go beyond ideal MHD in the context
of special-relativistic [e.g., Palenzuela et al. 2009, Wright and Hawke 2020]
and dynamical GR spacetimes [e.g., Andersson 2012, Andersson et al. 2022,
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Palenzuela 2013, Dionysopoulou et al. 2013, Paschalidis and Shapiro 2013, Pétri
2016, Carrasco, Palenzuela, and Reula 2018]. In the context of the EM emission
of (non)rotating collapsing NSs, it has been found that the Poynting luminosity
of nonrotating and rotating models scales with the square of the initial magnetic
field strength at the pole, with an increase of ≈ 20% of the rotating cases with
respect to the nonrotating models [Lehner et al. 2012]. For the case of rotating
pulsars, Palenzuela 2013 showed (using the FFE solution for an aligned dipole
field) that the spin-down luminosity differs by 20% from the flat spacetime
case, due to GR and other effects. Later, Ruiz, Paschalidis, and Shapiro 2014
presented a more systematic study, providing relations that link the spin-down
luminosity with the star rotation and compactness, using the technique from
Paschalidis and Shapiro 2013 to match the ideal MHD interior with the force-free
limit.

In addition to the global magnetic field structure, NSs also have magnetic
fields anchored in their solid crust (crustal magnetic fields) [Gil, Melikidze, and
Geppert 2003, Pons and Geppert 2007, Gourgouliatos, De Grandis, and Igoshev
2022]. They influence the nonuniform surface temperature [Pons et al. 2002,
Geppert, Küker, and Page 2004] and can explain the fact that old pulsars show
no significant magnetic field decay over their lifetime [Hartman et al. 1997,
Regimbau and de Freitas Pacheco 2001]. Moreover, depending on their relative
strength, a rapid decay of the crustal dipolar field could have observable influence
on the pulsar’s spin down.

1.1.5.3 Magnetic field amplification

Although magnetic fields in isolated NSs are usually not strong enough to
have a significant impact in the stellar dynamics, they can be amplified due to
hydrodynamic turbulence triggered by fluid instabilities. The interplay between
the fluid velocity and the magnetic field lines leads to dynamo mechanisms that
can arise from different processes and transport angular momentum from the
NS interior to the exterior layers (see, e.g., Brandenburg and Subramanian 2005
for a review). There exist several mechanisms that amplify magnetic fields in
newly born PNSs and in BNS merger remnants: differential rotation, convection
and other mechanisms related to turbulence.

The wind-up process of the magnetic field, also called the Ω-dynamo [Ober-
gaulinger, Aloy, and Müller 2006, Obergaulinger et al. 2006, Cerdá-Durán, Font,
and Dimmelmeier 2007], consists in the transformation of the poloidal mag-
netic field into a toroidal field while rotational kinetic energy is extracted from
differential rotation. Several instabilities undergone by the toroidal field can
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transform it back into a poloidal magnetic field, closing the dynamo mechanism.
In PNSs, these instabilities are driven by either lepton gradients which result
in the so-called neutron-finger instability [Bruenn and Dineva 1996], or by the
convective instability driven by negative entropy gradients [Keil and Janka 1995,
Keil, Janka, and Mueller 1996, Pons et al. 1999, Miralles, Pons, and Urpin
2000, Raynaud et al. 2020]. In these cases, the α-effect, i.e., the twisting of the
magnetic field lines due to the effect of the star’s rotation in convective regions,
is the one that closes the dynamo [Thompson and Duncan 1993, Wheeler et al.
2000, Bonanno, Urpin, and Belvedere 2005, Masada, Takiwaki, and Kotake 2022,
Reboul-Salze et al. 2022].

There exist other instabilities that can act in convectively stable regions.
The Tayler instability [Tayler 1973] was proposed by Spruit 1999 and confirmed
by numerical simulations [Braithwaite 2006a, Braithwaite 2006b, Barrère et al.
2022, Margalit et al. 2022] as a mechanism that closes the Ω-dynamo. It is a
kink instability that destroys the toroidal field by transforming it into a poloidal
field. Therefore, the Ω-dynamo needs to generate the toroidal field component
faster than its destruction due to the Tayler instability. Saturation will be
reached when both timescales are similar. For typical magnetic field strengths
in PNS progenitors, the Tayler instability is found to be inefficient in amplifying
the magnetic field in short timescales, but it can become important on longer
timescales where the α − Ω-dynamo acts. Figure 1.5 depicts and schematic
representation of this dynamo process.

The MRI [Chandrasekhar 1960, Balbus and Hawley 1991, Balbus and Hawley
1992], which will be further discussed in more depth in Section 1.3, is another
process that is able to amplify the magnetic field in differentially rotating
PNSs and BNS merger remnants [Akiyama et al. 2003, Obergaulinger et al.
2009, Rembiasz et al. 2016a, Guilet et al. 2022, Reboul-Salze et al. 2022]. It
is a shear instability that generates turbulence and amplifies arbitrary weak
magnetic fields, which results in the redistribution of angular momentum inside
the star. In the process, axisymmetric channel flows are formed [Goodman
and Xu 1994] and the amplification saturates due to the channel destruction
by nonaxisymmetric parasitic instabilities [Goodman and Xu 1994, Pessah and
Goodman 2009, Rembiasz et al. 2016b]. The difficulties to numerically capture
the fastest growing mode of the MRI because of the large resolution needed in
3-dimensional simulations makes this instability an issue that nowadays is still
under study.

Magnetic fields also have an impact in the evolution of hydrodynamic instabil-
ities. For example, Camarda et al. 2009 performed Newtonian MHD simulations
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Figure 1.5 Pictorial representation of the Tayler-Spruit dynamo action. In the left panel, the
fallback accretion (orange arrows) generates differential rotation, Ω(r) in the star. In the
middle panel, the differential rotation generates a toroidal magnetic field, Bϕ, from the radial
component, Br, by shearing. The Tayler instability generates an electromotive force Eϕ (due
to a nonaxisymmetric perpendicular magnetic field, δB⊥) that in turn arises a radial magnetic
field. The right panel shows the saturated turbulent magnetic field. Figure reproduced with
permission from Barrère et al. 2022.

of differentially rotating NSs prone to the bar-mode instability, and found that
magnetic fields seem to not have a very significant effect in realistic configura-
tions. However, the most extreme cases were able to suppress growth of the bar
mode. In addition, Franci et al. 2013 studied the effects of magnetic fields on
the development of the dynamical bar-mode instability in GRMHD simulations.
The authors found that if an initial purely poloidal field confined inside the
NS is strong enough (B ≳ 1016 G), it can suppress the instability completely,
whereas weak fields have negligible impact on the instability (see Figure 1.3).
Moreover, Muhlberger et al. 2014 showed that magnetic fields can suppress the
development of the low-β type bar-mode instability.

1.2 Binary neutron star mergers: an overview

BNS mergers are very dynamical astrophysical events that can be observed
through different astronomical signatures (EM, neutrino and gravitational radia-
tion). In order to properly study and model what happens in a BNS merger,
many physical aspects need to be taken into account: nuclear physics to build
realistic EOSs and study the nucleosynthesis likely triggered after the merger;
particle physics to include neutrinos, and GRMHD to capture the evolution of
the fluid and the magnetic field in a curved spacetime. Mergers that involve
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NSs can be of two different types: neutron star - black hole (NSBH) mergers,
where one of the components is a BH, and BNS mergers, in which both compact
objects are NSs. In the former case, the NS will (likely) be disrupted by the BH,
leading to a BH as a merger remnant. Depending on the binary mass ratio (and
also the NS compactness and the BH spin), the BH might be surrounded by
an accretion disc subject to MHD instabilities and dynamical outflows could be
triggered, or alternatively the NS will be totally absorbed by the BH, leaving no
matter behind. In the following, I focus on the latter case, BNS mergers, which
can show a wider variety of postmerger scenarios.

1.2.1 Stages of a binary neutron star merger

As stated in Section 1.1.1, NSs are born mostly from the core-collapse explosion
of massive progenitor stars. When two of these stars are bound together in a
binary system, they can end up in a compact object binary. In order to merge
within one Hubble time, they need to be close enough. This requires a common-
envelope stage [Bhattacharya and van den Heuvel 1991], in which one component
collapses into a NS first and is enveloped by the second component during its
supergiant phase, which collapses later to another NS2. This is thought to be
the standard formation channel for BNS systems. However, they can also form
dynamically, when the stars are formed separately but become gravitationally
bound when they come close to each other. This happens in globular clusters
where the stellar density is higher.

1.2.1.1 Inspiral phase

Once the binary system is formed, the two NSs orbit around each other. Both
stars lose energy due to GW emission, leading to an orbital decay that makes
them inspiral towards one another. During this phase, the NSs can be treated
as cold (T = 0) and the evolution of the binary system can be well-described by
post-Newtonian (PN) expansions [Blanchet 2006], where the stars are treated as
point particles (see Section 1.4).

The major part of the lifetime of the system happens during this phase,
lasting about 107 − 109 yr for most Galactic systems analysed [Kalogera et al.
2001, Lorimer 2008], and only during the late inspiral (from hours to minutes
before the merger) the binary becomes unstable. The stars become tidally
deformed and the orbital trajectory is affected [Kochanek 1992]. The tidal

2One of the components (or both) can collapse to a BH and form binary black hole (BBH)
or NSBH systems, but we are focusing on BNS mergers.
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deformation of the NSs strongly depends on the EOS, and more precisely on
its stiffness. This effect can be observed through the inspiral GW signal, which
will be covered in Section 1.4, and serves to put constraints on the EOS of NS
matter.

There have also been few studies about the EM emission during the inspiral
phase, known as precursor emission [Fernández and Metzger 2016]. If one of the
stars is magnetised, the orbital motion induces a current along the magnetic field
lines that connect both stars. The resulting voltage powers EM emission that
becomes more intense as the stars get closer to each other. This phenomenon
is known as magnetospheric interaction [Hansen and Lyutikov 2001, Lai 2012,
Palenzuela et al. 2013]. Furthermore, it is worth mentioning the driving of a
crust-core interface mode (crustal fracture model or crust-shattering flares) that
can lead to shattering of the NS crust [Tsang et al. 2012, Tsang 2013]. This
resonant excitation could be a source of GRB precursor emission.

1.2.1.2 Dynamical phase

The system enters the merger or dynamical phase when the stars plunge together.
To properly study the physics involved during this phase, full NR simulations
are needed. The stars are supposed to be irrotational before merger, since
gravitational emission circularises the orbits, and when they touch each other
there exists a discontinuity in velocity at the interface between the stars. This
velocity jump triggers the Kelvin – Helmholtz instability (KHI), which leads to
the formation of vortices and turbulent motion that can result in a substantial
amplification of the magnetic field, growing up to equipartition with the kinetic
energy of the turbulent field, i.e., B ∼ 1016 G [Kiuchi et al. 2015, Ruiz et al.
2016, Ciolfi et al. 2019, Aguilera-Miret, Viganò, and Palenzuela 2022, Kiuchi
et al. 2024]. Due to the tidal deformation (gravitational torques) of the NSs
in the late inspiral, matter can be expelled (dynamical ejecta) in a timescale
of ≤ 10 ms and form a disc around the merger remnant [Rezzolla et al. 2010,
Rosswog 2013, Radice et al. 2016, Radice et al. 2018, Shibata and Hotokezaka
2019]. Typical mass fractions of the discs observed in simulations are of the
order of 10−3 − 10−2 M⊙. The total mass and the mass ratio of the binary,
and the stiffness of the EOS determine the total amount of ejected mass. Also,
thermal energy is generated from shock heating [Metzger et al. 2010b, Bauswein,
Goriely, and Janka 2013] at the interface between the stars.
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Figure 1.6 Schematic view that illustrates the different stages of an equal-mass BNS merger
for different initial total masses of the system M in terms of the maximum mass of a TOV
(nonrotating) star, MTOV. The top row shows a rapid collapse to a BH surrounded by
an accretion disc (very massive binary); the middle row shows a delayed collapsed of the
postmerger remnant star, and the bottom row depicts the formation of a supermassive NS
that eventually yields a nonrotating neutron star or collapses to a BH. The characteristic
frequencies of the emitted GWs are highlighted in red. Figure reprinted with permission
from Baiotti and Rezzolla 2017. Copyright (2017) by IOP Publishing Ltd.

1.2.1.3 Postmerger phase

After merger, the system settles down into a new configuration. The outcome
of the merger strongly depends on the total mass of the system (see, e.g., Piro,
Giacomazzo, and Perna 2017, Bernuzzi 2020 and Sarin and Lasky 2021 for
reviews). Figure 1.6 is a schematic view of possible BNS merger outcomes as
a function of the total mass of the system. For very massive progenitors (the
threshold mass will depend on the EOS), the remnant will be gravitationally
unstable and suffer a prompt collapse to form a spinning BH surrounded by an
accretion disc within few milliseconds after the merger. The mass of the accretion
disc depends on the EOS, but, as previously stated, it does not exceed 10−2

M⊙ [Hotokezaka et al. 2013, Ruiz and Shapiro 2017, Shibata and Hotokezaka
2019].

Postmerger remnants with masses Mrem ≤ 1.2MTOV will survive for more
than a second [Falcke and Rezzolla 2014, Ravi and Lasky 2014]. These stars are
known as supramassive when their mass is above the TOV threshold, but still
below the maximum mass for uniformly rotating NSs, which is very insensitive
to the EOS [e.g., Komatsu, Eriguchi, and Hachisu 1989]. The supramassive
remnant will be stable against gravity until there is a loss of angular momentum
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that spins down the star, due to X-ray emission or magnetic braking [Faber and
Rasio 2012], with a lifetime between seconds and hours. Alternatively, remnant
massive neutron stars (RMNSs) with masses below MTOV are stable.

If the total mass of the binary is somewhat larger (Mrem ≥ 1.2MTOV), the
system may go through a short-lived phase in which a transient postmerger
object forms, a so-called hypermassive neutron star (HMNS), supported against
gravitational collapse by rapid differential rotation and thermal pressure3. These
remnants have larger masses compared to stationary nonrotating NSs (TOV so-
lutions with mass MTOV), and their maximum mass depends on the EOS [Baum-
garte, Shapiro, and Shibata 2000, Shibata et al. 2006, Bauswein, Baumgarte,
and Janka 2013, Piro, Giacomazzo, and Perna 2017, Weih, Most, and Rezzolla
2018, Espino and Paschalidis 2019]. The HMNS survives several tens (or even
hundreds) of milliseconds, even though this is not completely understood, under-
going several oscillations and (magneto)hydrodynamical instabilities, and eject
mass that forms a disc around the star. Both the rotational profile and the disc
mass depend on the EOS [Kastaun and Galeazzi 2015] and the mass ratio of
the binary system [Bernuzzi 2020] (see next Subsection). These RMNSs, apart
from differentially rotating, are characterised by strong magnetic fields (up to
B ∼ 1016 G), which have undergone a turbulent amplification during (KHI) and
after the merger (MRI) [e.g., Anderson et al. 2008, Liu et al. 2008, Kiuchi et al.
2014, Kiuchi et al. 2015, Palenzuela et al. 2015, Kawamura et al. 2016]. Once
support against gravity by rapid rotation and neutrino pressure lessens, the
remnant eventually collapses to a BH. Damping of differential rotation comes
from magnetic and viscous dissipation, i.e., angular momentum transport, that
may arise from instabilities such as the MRI.

The lifetime of the remnant is still poorly understood, since it strongly
depends on an adequate treatment of all the physics involved. The turbulent
magnetic field amplification produced during and (few tens of ms) after the
merger plays an important role on the stability of the remnant, but it requires
very high resolutions to be captured (see Section 1.3). Moreover, faithful neutrino
transport schemes are needed to study the influence of thermal pressure on the
stability of the RMNS several tens of ms after merger (the neutrino-cooling
timescale) [Kaplan et al. 2014]. The lifetime of the remnant also depends on
the remnant mass, but in every case there will be a period of strong differential
rotation just after the merger. The remnant’s lifetime, together with its dynamics
and evolution, have important implications in the EM and kilonova emission

3Temperatures in BNS mergers can go up to 80 MeV and the inclusion of thermal effects in
the EOS is needed.
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Figure 1.7 Artistic representation of the BNS/NSBH postmerger scenario, after the formation
of an accretion disc around the remnant. The red component denotes the tidal dynamical
ejecta, the blue component the ejecta from the disc, the purple component refers to the jet
and the yellow component corresponds to the heated matter from the jet, i.e., cocoon. The
components of the figure are not scaled proportionally for artistic purposes. Figure reproduced
with permission from Ascenzi et al. 2021.

that trigger the r-process nucleosynthesis [Fernández and Metzger 2016, Metzger
2019].

1.2.2 Mass ejecta and electromagnetic emission

During and after a BNS merger mass can be lost through many different channels
and on different timescales. The material ejected during the merger phase
is collectively called dynamical ejecta. As mentioned before, the dynamical
ejecta in BNS mergers has two components: shock-heated material from the
interface between the stars and mass ejected in tidal tails (e.g., Bauswein,
Goriely, and Janka 2013, Radice et al. 2018, Shibata and Hotokezaka 2019).
For NSBH mergers, however, only the latter can occur [Shibata and Taniguchi
2011, Foucart et al. 2017] when the NS is tidally disrupted and not swallowed by
the BH [Foucart, Hinderer, and Nissanke 2018]. The quantity of mass ejected
by dynamical outflows ranges from 10−4 M⊙ to 10−2 M⊙, depending on the
stiffness of the EOS and the binary total mass and mass ratio. For stiff EOSs,
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the velocity of the NSs at merger is relatively small because the minimum orbital
separation is large (they have larger radii). This results in a small dynamical
ejecta mass. For a large total mass of the system, the shock heating efficiency
and kinetic energy of the remnant star can be high, leading to a large dynamical
ejecta. Moreover, for smaller mass ratios (q ≡ m2/m1, being m1 the larger
mass) the dynamically ejected mass is observed to be larger (for q ≲ 0.8) the
dynamical ejecta mass can be Mej ≳ 0.005 M⊙. The eccentricity of the orbit
also impacts the mass of the ejecta, being larger for eccentric mergers [East and
Pretorius 2012].

The composition and velocity of the dynamical ejecta is key for the predictions
of the EM emission after merger, and for nucleosynthesis calculations as well.
The composition, i.e., the electron fraction Ye of the ejecta, strongly depends on
the neutrino treatment, but it can present values as low as Ye ∼ 0.1 [Bernuzzi
2020]. As a word of caution, an accurate neutrino transport scheme is still
not available, and a strong effort is being made in this direction, being the
Monte Carlo [Foucart et al. 2020] and the gray two-moment (M1) [Thorne
1981, Shibata et al. 2011, Wanajo et al. 2014] schemes the state-of-the art
approaches. On the other hand, the ejecta velocity is very sensitive to the
stiffness of the EOS [Radice et al. 2018] and numerical treatment of magnetic
fields. In addition, the characteristic velocities of dynamical ejecta have values of
∼ 0.1 − 0.3c [Hotokezaka et al. 2013, Sekiguchi et al. 2016, Radice et al. 2018],
and the asymptotic velocities can reach values of ∼ 0.8c.

Part of the mass ejected during and after merger can orbit around the remnant,
forming an accretion disc (see Setiawan, Ruffert, and Janka 2006, Fujibayashi
et al. 2020, Fernández, Foucart, and Lippuner 2020, among others). As for the
RMNS before the collapse, gravity is balanced by centrifugal acceleration and
thermal pressure, which determines the geometrical thickness of the disc. Mass
from the disc can be ejected as wind (disc outflow) by several mechanisms that
act on different timescales: the Lorentz force [Blandford and Znajek 1977], which
acts on a timescale of few ms and needs a poloidal magnetic field; neutrino
absorption [Ruffert, Janka, and Schaefer 1996, Just et al. 2022], acting during
several tens of ms4 [Metzger and Fernández 2014], and thermal ejection, due to
viscous (turbulent) heating and nuclear recombination, active on longer timescales
(t ∼ 100 ms) [Metzger, Piro, and Quataert 2009]. The latter mechanism becomes
dominant as neutrino cooling shuts down. It has been observed that 10 − 40%
of the initial mass of the disc can be ejected [Fernández and Metzger 2013, Just

4This mechanism is important for HMNS, but sub-dominant for a BH, since the neutrino
fraction is smaller in that case.
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et al. 2015, Fujibayashi et al. 2020] on a timescale of a few seconds. This mass
ejecta coming from the remnant’s disc is known as secular ejecta. The electron
fraction of the material is around Ye ∼ 0.2−0.4, being higher in discs around NS
remnants rather than BHs, but generally less neutron rich than the dynamical
ejecta. The velocity of the disc ejecta is significantly slower than the dynamical
ejecta, with speeds up to ≲ 0.2c [Bernuzzi 2020]. Figure 1.7 displays an artistic
representation of the mass ejection and the associated EM emission during the
BNS/NSBH postmerger phase.

Flashes of gamma rays of cosmological origin, with energies of the order of
1050 − 1053 erg, have been observed since the late 1960s. These so-called GRBs
(see Piran 2004 for a review) are classified into long and short [Kouveliotou
et al. 1993]. The former last several tens of seconds and might be caused by
the collapse of very massive stars [Narayan, Paczynski, and Piran 1992, Hjorth
et al. 2003, Woosley and Bloom 2006]. The latter ones only last less than a
second. BNS mergers are the candidate scenario for these sGRBs [Rezzolla
et al. 2011, Murguia-Berthier et al. 2017], but what is the formation mechanism
of a GRB jet? Numerical simulations have revealed that magnetic fields in
HMNS remnants have a complex topology, since dipolar fields are destroyed at
merger, tangling the magnetic field [Kiuchi et al. 2014]. In GRMHD simulations
of BNS mergers where the remnant collapses to a BH, magnetically-powered
jets can be obtained (see, e.g., Kiuchi et al. 2014, Ruiz et al. 2016, Combi and
Siegel 2023, and Dionysopoulou, Alic, and Rezzolla 2015 for an application of
resistive-MHD). These jets can break out the slower mass ejecta, depending on
their power, the opening angle and the quantity of ejected mass [Kawamura et al.
2016]. Figure 1.8 depicts several snapshots of a BNS merger simulation where
a jet is launched. Magnetic field lines are rearranged after merger, while an
accretion disc is formed around the remnant BH. Current studies are exploring
the possibility that long-lived NS remnants, in addition to accreting BHs, could
power ultrarelativistic GRB jets (since generally they do not fulfil the conditions
for the Blandford-Znajek mechanism) [Ciolfi 2020a, Bamber et al. 2024].

1.2.3 Kilonovae: r-process nucleosynthesis

The production of heavy elements in astrophysical processes has been an active
field of research since the 1950s when Burbidge et al. 1957 first formulated
the theory of cosmic nucleosynthesis. There exist several scenarios where this
phenomenon occurs: Big Bang nucleosynthesis, low-mass stars (s-processes),
high-mass stars (formation of α elements) and explosive nucleosynthesis, forming
elements beyond the iron peak via r-processes. I will focus here on the latter.
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Figure 1.8 Snapshots of the formation of a jet after a BNS merger. The rest-mass density
is normalised to its initial value and the magnetic field lines are represented by white lines.
In the last two bottom panels, an incipient jet is launched, and the arrows indicate plasma
velocities. Figure reproduced from Ruiz et al. 2016 by permission of the AAS.

New elements can be produced by exposing nuclei to intense neutron fluxes.
This results in a competition between neutron capture (n-capture), the inverse
process, and β-decay, where a neutron transforms into a proton by the emission
of an electron accompanied by an antineutrino. The final composition depends
on the timescale of the n-capture and the β-decay time. A high flux of neutrons
generates heavier nuclei, becoming more unstable, until a nucleus for which
decay is faster than n-capture is reached. This process can involve nuclei located
far away from the valley of stability, but β-decay is responsible for leading back
to stable nuclei with higher mass number A.

Heavy elements with mass numbers above the iron’s (A ≳ 56) cannot be
produced in stellar interiors, but they can be synthesised during a supernova (SN)
explosion. Neutrino-driven winds in CCSNe favour the formation of heavy
elements during the late explosion, when the postshock wave is propagating
outwards. However, SN simulations have shown that the electron fraction is
around 0.4 − 0.5, too large to allow for rapid neutron captures, i.e., r-processes,
that lead to very heavy elements (A ≳ 120). In contrast, BNS mergers lead to
mass ejecta with smaller electron fractions, making them perfect candidate sites
for r-processes [Freiburghaus, Rosswog, and Thielemann 1999].

In order to compute nucleosynthesis from the ejecta in simulations, it is
typical to use passive tracer particles that sample the ejecta in mass [Wu et al.
2016]. The thermodynamic trajectory in time generated by each particle can
be used as input to a nuclear reaction network. The ejecta components of BNS
mergers will have different contributions to nucleosynthesis. Tidal dynamical
ejecta (present in NSBH and BNS mergers) preserves a very low electron fraction
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(Ye ∼ 0.05 from cold NS matter) and expands quickly, making it ideal for the
production of heavy elements [Roberts et al. 2017]. The shocked dynamical
ejecta, only present in BNS mergers, suffers from some reprocessing by neutrinos,
reducing the quantity of neutrons [Zappa et al. 2023]. On the other hand, the
secular outflow from the disc also undergoes significant neutrino reprocessing,
leading to a broad distribution of Ye in the disc [Curtis et al. 2023]. The
computed abundances of very heavy elements in numerical simulations present
a good agreement with solar abundances and seem to be robust for different
EOSs and mass ratios [Radice et al. 2018].

The material dominated by heavy elements undergoes radioactive decay
emitting EM radiation in the optical and infrared bands. This emission is known
as kilonova5 [Li and Paczynski 1998, Metzger et al. 2010a]. The Lanthanides
produced in the dynamical ejecta (which is very neutron rich) decay emitting
near-infrared radiation that lasts for ∼ 1 week, due to the higher opacity than
iron-group elements (e.g., Kasen, Badnell, and Barnes 2013, Fontes et al. 2015,
Tanaka et al. 2020). However, there is also a contribution from the disc outflow
that is more isotropic. The leading portion of the ejecta encounters a low optical
depth, resulting in a thermal transient that peaks in a timescale of ∼hours. The
lifetime of the RMNS plays an important role here. If the HMNS is long-lived,
the emitted neutrinos can increase the electron fraction so that no Lanthanides
are produced, the optical depth is low and results in a radiation that peaks
at optical wavelengths. On the other hand, if there is a rapid collapse to a
BH, the electron fraction will remain low and the disc outflows will be neutron
rich, leading to a similar emission to that from the dynamical ejecta [Metzger
and Fernández 2014]. Therefore, the kilonova has an early blue (optical) and a
red (infrared) component depending on the mass ejection mechanism and the
neutrino absorption. There may exist a late-time radio transient, generated by
the interaction between subrelativistic ejecta and the interstellar medium. This
accelerates particles, leading to synchrotron emission [Nakar and Piran 2011,
Hotokezaka et al. 2016]. The timescale of this transient has been predicted to
be between years and decades [Balasubramanian et al. 2022].

The multimessenger event GW1708176 [Abbott et al. 2017d], which was
observed and well localised by both Advanced Laser Interferometer Gravitational-
Wave Observatory (LIGO) and Advanced Virgo interferometers, allowed to
follow-up EM observations from γ-rays to radio waves [Abbott et al. 2017e]. An

5Metzger et al. 2010a used this nomenclature for the first time, since the EM transient
peaked at a luminosity 103 higher than a typical nova.

6The detection of SN1987A [Hirata et al. 1987] on Feb 23 1987 is considered to be the first
multimessenger event, as it was observed in EM and neutrinos.
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unusually weak GRB coming from the binary merger localization (GRB 170817A)
was detected by Fermi [Goldstein et al. 2017] and INTEGRAL [Savchenko et
al. 2017] satellites. Moreover, a near-infrared counterpart (AT2017gfo) was
discovered and monitored [Cowperthwaite et al. 2017, Tanvir et al. 2017]. This
observation provides strong support to the connection between sGRBs, r-process
nucleosynthesis and BNS mergers.

1.3 Turbulence in binary neutron star mergers

As previously discussed, the redistribution of angular momentum in the HMNS
remnant has important effects on the stability of the object and therefore on
the subsequent multimessenger emission and the r-process nucleosyntesis. The
suppression of differential rotation in the star is operated by turbulence. It can
be driven by the Kelvin – Helmholtz (KH) instability during the late inspiral
and merger phases or by the MRI in the postmerger phase. Before describing
these MHD instabilities, it is important to understand what turbulence means
(for reviews, see, e.g., Brandenburg and Subramanian 2005, Radice and Hawke
2024).

In very dynamical scenarios such as BNS mergers there can exist transfer of
energy and momentum across a wide range of length scales (known as inertial
range). When this happens, the ordered large-scale structures from the fluid
can become disrupted and form disordered small-scale structures. The kinetic
energy and momentum will be transferred to smaller scales, where kinetic energy
is converted into internal energy, until the dissipation scale is reached. This is
the scale at which the energy transfer rate is balanced by the viscous energy
dissipation rate. The so-called inertial forces are developed in this direct cascade
to smaller scales. The degree of turbulence in a physical system is quantified by
the (dimensionless) Reynolds number (Re), which measures the ratio between the
largest scale of the inertial range and the dissipation scale where the turbulent
cascade ends. It has been shown experimentally that flows with Re ≳ 1000
become turbulent [Frisch 1995]. Typical values of Re in a BNS merger are
Re ∼ 1015 − 1016 [Radice and Hawke 2024]. Moreover, magnetic stresses can
have an influence in the development of turbulence. Magnetic tension can drive
anisotropic turbulence and there can exist an inverse cascade due to dynamo
action that creates large-scale magnetic fields. In addition to the redistribution
of angular momentum in the BNS merger remnant, turbulence may rapidly and
strongly amplify the magnetic field during and after the merger. A very strong
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Figure 1.9 Snapshots of the merger of two NSs, represented by the rest-mass density, giving
rise to the KHI. The white arrows represent the velocity fields. The velocity shear produces
vortices that can lead to the amplification of the small-scale magnetic field. Figure reprinted
with permission from Kiuchi et al. 2015. Copyright (2015) by the American Physical Society.

magnetic field might be able to power jets and drive (ultra)relativistic outflows
that could explain EM observations.

1.3.1 Kelvin – Helmholtz instability

In the interface between the two NSs the jump in velocity can produce large-scale
shears in the fluid that drive the KH instability [Chandrasekhar 1961, Miura and
Sato 1978, Miura and Pritchett 1982]. These velocity shears produce large-scale
vortices which in turn develop into smaller structures that can amplify the small-
scale magnetic field several orders of magnitude. Figure 1.9 depicts snapshots of
the rest-mass density from a GRMHD simulation from Kiuchi et al. 2015, at the
moment at which two NSs merge. The velocity jump in the interface between
both stars leads to the formation of vortices, which are represented by white
arrows.

The typical wavelength of the unstable modes is the width of the shear layer.
This marks the initial value of the inertial range of scales. Moreover, the growth
rate of the instability, which indicates how rapid the magnetic field amplification
can be, scales with the velocity jump over the shear layer width [Miura and
Pritchett 1982]. Turbulence will decay in time as it reaches the dissipative scales,
since there is no more energy and momentum injection from large scales.

Local box simulations show that magnetic fields need to be initially very
weak (B ≲ 1013 G) to develop a turbulent state (e.g., Ryu, Jones, and Frank
2000, Obergaulinger, Aloy, and Müller 2010). Otherwise, the magnetic field
dominates the dynamics, leading to a slower deceleration of the shear flow and a
more pronounced alignment of the flux and vorticity tubes. Once turbulence
is developed, the weak magnetic field can reach amplitudes 3 − 4 orders of
magnitude above its initial value. In order to prove this in global GRMHD
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simulations, prohibitive resolutions are needed to capture the inertial range
of scales. A few such simulations with very high spatial resolution show the
amplification of the magnetic field [Kiuchi et al. 2015, Kiuchi et al. 2018, Kiuchi
et al. 2024]. However, a model for turbulence would be needed for simulations
with modest resolution.

1.3.2 Magnetorotational instability

The MRI [Velikhov 1959, Chandrasekhar 1960] has been suggested as the mech-
anism that drives MHD turbulence and redistributes angular momentum in
astrophysical discs orbiting around compact objects [Balbus and Hawley 1991,
Balbus and Hawley 1998]. Weakly magnetised accretion discs [Shakura and
Sunyaev 1973, Lynden-Bell and Pringle 1974] (in the absence of further destabil-
ising effects such as entropy or composition gradients), can be unstable to the
MRI when there is a negative radial gradient in the angular velocity. The onset
conditions of the MRI can be fulfilled in PNSs (e.g., Cerdá-Durán et al. 2008,
Obergaulinger et al. 2009) and BNS postmerger remnants (e.g., Fernández et al.
2019, Kiuchi et al. 2024).

Due to the relevance of the MRI in several astrophysical scenarios, a lot of
effort has been made in trying to understand the physics of the instability and
the resulting turbulent state. Seed perturbations can grow exponentially on
timescales close to the rotational period. These perturbations take the form of
channel modes, which are pairs of vertically stacked layers in which the velocity
and the magnetic fields have radial and azimuthal components of alternating
polarity, i.e., with alternating sign. The size of the channels is proportional to
the magnetic field strength and inversely proportional to the rotation frequency
and density. For studies that explore the linear growth of the stability, see,
e.g., Pessah, Chan, and Psaltis 2006b, Pessah, Chan, and Psaltis 2007, Pessah
and Chan 2008, Lesaffre, Balbus, and Latter 2009. From these modes, the joint
contribution of the magnetic (Maxwell) stress tensor and kinetic (Reynolds)
stress tensor leads to the transport of angular momentum from the inner parts
of the disc to its outskirts. Moreover, the growth of the magnetic stresses
results in an exponential amplification of the magnetic field. The growth of the
instability will eventually terminate, resulting in the breakdown of the channels
into small-scale turbulence.

The mechanism responsible for the saturation of the MRI and thus the factor
by which seed perturbations are amplified is not yet fully understood. Goodman
and Xu 1994 presented an explanation based on parasitic instabilities (PIs)
that was further developed with local linear (and weakly nonlinear) analyses
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Figure 1.10 Spatial distribution of the radial component of the magnetic field (generated by
the MRI), for different times. Initially, the magnetic field forms shear layers that are eventually
disrupted, leading to a turbulent state at which the magnetic field amplitude saturates. Figure
reproduced with permission from Rembiasz et al. 2016b (Figure 6).

by Umurhan, Menou, and Regev 2007, Lesaffre, Balbus, and Latter 2009, Lat-
ter, Lesaffre, and Balbus 2009, Latter, Fromang, and Gressel 2010, Pessah
and Goodman 2009 and Pessah 2010, among others. This model provides a
physical mechanism that explains the termination of the MRI and the subse-
quent nonlinear regime. The laminar channel flows can be unstable against
PIs that can be of KH or tearing-mode (TM) type, depending on the value of
the kinematic viscosity and resistivity, i.e. non-ideal effects. At the beginning
of the exponential growth of the MRI, the effect of the PIs is negligible, since
they grow much slower than the primary instability. Nevertheless, the growth
rate of the PIs is proportional to the amplitude of the MRI modes, which grow
exponentially in time. This means that, at some point, the PIs start growing
much faster than the MRI modes, and they eventually disrupt the channel modes
and saturate the main instability, leading to a turbulent regime. The predictions
made by these analytical approaches have been tested by several numerical
MHD simulations [Latter, Lesaffre, and Balbus 2009, Latter, Fromang, and
Gressel 2010, Longaretti and Lesur 2010, Murphy and Pessah 2015, Rembiasz
et al. 2016b, Rembiasz et al. 2016a, Hirai et al. 2018]. However, there are still
some discrepancies between the analytical predictions and the numerical results.
Figure 1.10 shows snapshots at different times of the radial component of the
magnetic field, from three-dimensional MHD box simulations by Rembiasz et al.
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2016b. Initially, the field is distributed in laminar channel flows, but eventually
these channels are disrupted, and a turbulent state is achieved in which the
amplitude of the field saturates.

1.3.3 Sub-grid modelling and large-eddy simulations of binary neutron star
mergers

Numerical simulations need to resolve the wide range of scales in which turbulence
develops if one wants to capture all the physics involved in the problem. The
so-called direct numerical simulations (DNS) aim to do that. Nevertheless, if
the resolution is not large enough, simulations may only capture part of the
range of scales, leading to an incorrect treatment of the small-scale physics that
can have important consequences in all scales. In simulations of BNS mergers,
extremely high computational resources are needed in order to account for a
realistic treatment of the microphysics (EOS, neutrino transport), non-ideal
effects and turbulence. Therefore, it is fairly convenient to devise a model able to
capture small-scale physics and the development of turbulence while sidestepping
computationally prohibitive DNS. Even though the model for turbulence might
not be correct in very small scales, it can capture the proper physics when
applied to the characteristic scales of the problem. The simulations that employ
this approach are known as large-eddy simulations (LES).

A way to see how the small-scale fields impact on the dynamics of the bulk
flow is to apply the mean-field formalism [Krause and Rädler 1980] to the MHD
equations. One can separate between resolved and unresolved contributions
of the velocity and magnetic fields by applying a filtering operation in space
(or time). If we assume that the behaviour is solved for a certain lengthscale l,
we can introduce a filter that acts on that scale. The residual between filtered
and unfiltered fields will be the turbulent contribution. By introducing this
decomposition in the MHD equations, which are nonlinear, and after applying the
filtering operation to the equations, additional terms with products of turbulent
quantities, i.e., turbulent stresses, will appear. The goal of turbulence modelling
is to find a closure relation for the fluctuations that allow to express them in
terms of resolved quantities.

In the context of GR, the closure needs to retain the covariance of the
equations of motion. The filtering operation can break this covariance and
problems may arise with the averaging of the Lorentz factor. Several discussions
have been made, e.g, in Celora et al. 2021, Celora et al. 2024, to keep the
covariance by adding an observer with the 4-velocity of the flow and applying



1.3 Turbulence in binary neutron star mergers 33

the averaging procedure in its rest frame, so that the metric and covariant
derivatives are not affected.

During the last decades, several closure relations, also called sub-grid clo-
sures, have been proposed as models for turbulence in numerical simulations
of relativistic flows. Smagorinsky 1963 presented a simple model for Newto-
nian flows that relates the turbulent velocity with the shear of the mean flow.
It introduces an effective turbulent viscosity the value of which needs to be
provided. A way to find the optimal value is to calibrate it with control box
simulations. The presence of calibration constants in such phenomenological
models is common. Radice 2017, Radice 2020 extended this model to GR and
applied it to BNS merger simulations. In those works, the turbulent viscosity is
defined as the coupling between a mixing length (close to the MRI wavelength)
and the local sound speed.

Giacomazzo et al. 2015 introduced a sub-grid term in the induction equation
for the vector potential to study the turbulent magnetic field amplification during
the merger phase, where the KH instability takes place. The closure is inspired
by the mean-field dynamo theory [Krause and Rädler 1980], where the sub-grid
source term in the induction equation is proportional to the large-scale magnetic
field (or vector potential). A similar model has been introduced by Most 2023,
who employs a new approach to the MRI-driven αΩ dynamo [Parker 1955,
Reboul-Salze et al. 2022] for GRMHD simulations. Also recently, Aguilera-Miret,
Viganò, and Palenzuela 2022 and Palenzuela et al. 2022 performed GRLES with
the so-called gradient model [Leonard 1975, Carrasco, Viganò, and Palenzuela
2020, Viganò et al. 2020]. This agnostic model makes use of the Taylor series
approximation (or gradient) of the fields to obtain an expression for the turbulent
terms. There is a factor that depends on the filtering kernel that relates the sub-
grid terms to the size of the kernel. More information about the Newtonian form
of this model is provided in Chapter 2. Moreover, there have been some works
that developed sub-grid models based on the application of machine learning (ML)
techniques, such as deconvolutional neural networks [Yuan, Xie, and Wang 2020],
or physics-informed ML to treat turbulence in CCSN simulations [Karpov et al.
2022].

The use of LES has allowed exploring with more depth the effects of small-
scale turbulence in BNS merger simulations. In the past, several works did
not manage to capture the magnetic field amplification triggered during the
merger [Baiotti, Giacomazzo, and Rezzolla 2008, Giacomazzo, Rezzolla, and
Baiotti 2011]. However, with the use of very high spatial resolutions (∆x ∼ 10
m), it has been possible to capture the turbulent dynamo from the KH instability
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Figure 1.11 Left panel: Exponential amplification of the magnetic energy due to the KHI in a
GRMHD simulation of a BNS merger with no sub-grid models. Very high resolution is needed
(∆x = 12.5 m) to obtain a correct saturation amplitude. Figure reprinted with permission
from Kiuchi et al. 2018. Copyright (2018) by the American Physical Society. Middle panel:
Magnetic field amplification due to the KHI from another GRMHD simulation, employing the
gradient sub-grid model. The same saturation amplitude is reached using a high-resolution
run without the model and a mid-resolution run with the sub-grid approach. Figure reprinted
with permission from Palenzuela et al. 2022. Copyright (2022) by the American Physical
Society. Right panel: Comparison between a GRLES and a standard simulation. The GRLES
approach allows the magnetic field to be amplified several orders of magnitude, in contrast to
the standard simulation, in which turbulence is not captured. Figure reproduced by permission
of the AAS from Giacomazzo et al. 2015.

without the use of LES [Kiuchi et al. 2015, Kiuchi et al. 2018, Kiuchi et al.
2024]. Promising results were obtained by Giacomazzo et al. 2015 with the
application of a mean-field dynamo sub-grid model, reaching magnetic field
amplitudes of 1016 G. More convergent results were shown by Aguilera-Miret,
Viganò, and Palenzuela 2022, Palenzuela et al. 2022, where they performed
GRLES with the gradient sub-grid model. Those simulations confirmed that
weak small-scale magnetic fields can be amplified up to 1016 G. It is worth
noting that in Palenzuela et al. 2022 the same value of the field amplitude was
obtained with a high-resolution simulation without the sub-grid model and also
with a mid-resolution LES, showing convergence. Figure 1.11 shows how the
magnetic field is amplified due to the KHI in different simulations. The left
panel depicts an effective amplification with GRMHD simulations with very
high spatial resolution (∆x = 12.5 m) and no sub-grid approaches [Kiuchi et al.
2018]. The middle panel, however, depicts a GRLES approach with the gradient
model [Palenzuela et al. 2022]. The same saturation amplitude is achieved by
performing a high-resolution simulation and by using half the spatial resolution
with the sub-grid model. In the right panel, the mean-field dynamo developed
by Giacomazzo et al. 2015 allows the mean magnetic field to be amplified several
orders of magnitude. Aguilera-Miret, Viganò, and Palenzuela 2022 also found
that the amplification seems to be independent of the initial magnetic field
(as long as it is weak enough). Furthermore, Aguilera-Miret et al. 2023 also
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observed an inverse cascade of the magnetic field at later times after merger,
leading to an amplification of the large-scale field, which is characteristic from a
turbulent dynamo. Very recently, Kiuchi et al. 2024 have found strong evidence
for a αΩ-dynamo in the postmerger remnant from GRMHD simulations with
extremely high resolution (∆x = 12.5 m, with no sub-grid models), showing the
expected inverse cascade triggered by the MRI.

Duez et al. 2004 studied angular momentum transport in postmerger remnants
by performing hydrodynamical axisymmetric evolutions of differentially rotating
NSs built with a j-constant law for the rotation profile [Eriguchi and Mueller
1985]. Further MHD simulations by Siegel et al. 2013 confirmed the qualitative
findings of Duez et al. 2004, in which viscosity appeared due to magnetic and
kinetic turbulent stresses. More recently, the GRLES calculations of Radice
et al. 2018, Duez et al. 2020 showed that viscosity drives the NSs to a uniform
rotation, leading to the collapse of those models with mass above the uniformly
rotating limit. Nevertheless, it has been found that the rotational profile of
RMNS remnants is considerably different to the j-constant one. The maximum
rotational frequency is located far from the centre of the star, at densities below
1013 g/cm3, and the inner core is slowly rotating [Shibata and Sekiguchi 2005,
Kastaun and Galeazzi 2015, Kastaun et al. 2017]. Since the angular momentum
is lower at the center, the effective viscosity from the MRI can rise the rotational
velocity in the inner core, increasing the degree of differential rotation of the
star and therefore delaying the collapse [Radice 2017]. Several examples of such
rotational profiles from HMNSs can be found in, e.g., Hanauske et al. 2017, Iosif
and Stergioulas 2022, Cassing and Rezzolla 2024.

The impossibility of DNS to cover all the range of scales where turbulence
develops makes the use of LES a good effective approach. Their application has
confirmed the magnetic field amplification triggered by the KH instability and
the αΩ dynamo, and the angular momentum transport arising from the MRI.
However, the additional parameters that these models introduce may have an
effect on the physics of the problem, and one needs to be careful with preserving
covariance in GR simulations [Celora et al. 2021]. Substantial work needs to
be done in this field to provide further insight on the role of turbulence in the
evolution and stability of the merger remnant and the subsequent observational
EM and GW signatures, along with the computation of the mass ejecta that
plays a key role in r-process nucleosynthesis.
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1.4 Gravitational waves from neutron star mergers

BNS mergers are prime sources of gravitational radiation. The detection of
GW signals from BNS mergers allows confronting the results obtained through
numerical simulations and to infer physical parameters of the source (encoded
in the waveforms). Simulations show that the GWs emitted in BNS mergers
are very sensitive to the EOS of NS matter. Moreover, their postmerger spectra
show the excitation of oscillation modes in the RMNS remant. A careful analysis
of these features may yield invaluable information on NS physics.

1.4.1 Extracting information from the gravitational-wave signal

Gravitational waveforms reflect the dynamics of the system. During the inspiral
phase, the amplitude and frequency of the GW signal increase as the objects
come close to each other. This part of the signal is known as the chirp signal.
At this stage, the GW emission is well approximated by analytical and semi-
analytical expansions. The effect of tides due to the finite size of the NS is
imprinted in the waveform, changing its phase evolution [Hinderer et al. 2016].
Such tidal deformations of the stars strongly depend on the EOS7, but are very
difficult to extract from the waveform separately for each binary component, and
they can be described by the tidal deformability parameter. In PN waveforms,
the dominant tidal parameter (also known as the effective tidal deformability, Λ̃),
which corresponds to the mass-weighted averaged tidal deformability, appears
and can be extracted from GW observations of the inspiral phase, together
with the chirp mass, Mchirp, of the binary. The masses, their ratios, and the
tidal deformability, i.e., the EOS, are the dominant parameters in the inspiral
waveform. The spin (although the stars are slowly rotating before merger) and
the binary eccentricity (relevant when the systems are formed via dynamical
capture) might add minor corrections to the signal. Also, the possible influence
of magnetic fields in the inspiral waveform has also been studied [Giacomazzo,
Rezzolla, and Baiotti 2009], and it is unlikely to be detected by current detectors
for realistic premerger field strengths (only detectable for unrealistically large
values, B ∼ 1017 G).

The tidal deformability of NSs can take values between O(100) and O(1000),
depending on the EOS and the stellar mass. By fixing the individual NS mass,
the deformability can change by a factor ∼ 10 according to the choice of the
EOS. A large value of the tidal parameter corresponds to a less compact
star that is easily deformable, which has a soft EOS. On the other hand,

7In particular, they depend on the pressure gradients inside the star.
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Figure 1.12 Left: Marginalised posterior probability for the tidal deformabilities of the two
component stars of GW170817. The green area shows the posterior computed using EOS-
insensitive relations. The solid (dashed) lines represent the 50% (90%) credible levels of the
posteriors, given by different relations. The grey dashing stands for the unphysical region
where Λ2 < Λ1 (being 1 the primary mass), and some values of the tidal parameters for
different EOSs appear as black lines. Right: Marginalised posterior for the mass m and radius
R of each of the component stars of GW170817, obtained from EOS-insensitive relations. The
blue (orange) color represents the more (less) massive component. The grey lines show some
mass-radius relations for several EOSs and in the top left corner there are lines denoting
the Schwarszchild BH and Buchdahl limits. The plots at the sides depict one-dimensional
posteriors. Figures reproduced with permission from Abbott et al. 2018a. Copyright (2018)
by the American Physical Society.

lower values of the tidal deformability indicate the existence of a stiff EOS.
There have been actual estimates of the tidal deformability from the analysis
of the two BNS mergers detected by the LIGO, Virgo, and KAGRA (LVK)
Collaboration, GW170817 [Abbott et al. 2017d] and GW190425 [Abbott et al.
2020b]. For GW170817, the statistical uncertainties made it only possible to
set an upper limit for the mass-weighted tidal deformability, Λ̃ < 800 [Abbott
et al. 2017d], which excludes several stiff EOSs. From this detection, there have
been numerous estimates and constraints on EOSs on the basis of the bounds
on Λ̃ (see Figure 1.12 and, e.g, Abbott et al. 2018a, Zhang, Li, and Xu 2018,
Lim and Holt 2018, Abbott et al. 2019b, Landry and Essick 2019). In the case
of GW190425, the upper limit for Λ̃ was 1200 for low-spin priors.

With the inferred value of the tidal deformability and the chirp mass, it was
possible to also infer the radius of the primary NS, i.e., the more massive one. For
a primary mass m1 = 1.4 M⊙, the inferred radius was R1.4 ≈ 12 km. This was
found thanks to EOS-insensitive (quasi-universal) relations, built from a large
set of simulations employing various EOSs [Yagi and Yunes 2017, Chatziioannou,
Haster, and Zimmerman 2018, De et al. 2018, Raithel, Özel, and Psaltis 2018].
At merger, it was found by Read et al. 2013 that the instantaneous GW frequency
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is well correlated with the tidal deformability and the NS compactness. By
employing an extended set of EOSs, the authors presented EOS-insensitive
relations between this frequency at the peak amplitude and the compactness
and tidal parameter.

As previously discussed, the postmerger phase is characterised by the forma-
tion of a RMNS remnant that eventually collapses to a BH. The energy emitted
in GWs is considerably larger than in the inspiral phase, and the characteristic
frequency of the signal is in the range of kHz. This part of the waveform is
more difficult to model than the inspiral signal and has a somewhat stochastic
nature. This is due to the interplay of different effects such as turbulence, strong
magnetic fields, neutrino radiation, viscosity or hydrodynamical instabilities.
In addition, this challenges the possibility of performing realistic numerical
simulations and therefore extract accurate GW signals that could be employed
for detection purposes (e.g., Breschi et al. 2019, Breschi et al. 2022). In fact,
the Computational Relavity (CoRe) database8 [Dietrich et al. 2018, Gonzalez
et al. 2023] is a collaborative effort to produce a catalog of NR simulations of
compact binaries.

The GW spectrum of the early postmerger phase (up to t − tmerg ≈ 30
ms) is characterised by a main peak, f2, that corresponds to the fundamental
quadrupolar (m = 2) mode of oscillation of the star [Zhuge, Centrella, and
McMillan 1994, Ruffert, Janka, and Schaefer 1996]. The location of this peak
is sensitive to the EOS, and it is around ∼ 2 − 4 kHz, e.g., Takami, Rezzolla,
and Baiotti 2015. Numerical simulations have allowed determining that this
peak is tightly correlated with the tidal deformability and also with the radius
of a NS with mass 1.6 M⊙ [Bauswein et al. 2012, Hotokezaka et al. 2013]. This
quasi-universal relation was explained by Bernuzzi, Dietrich, and Nagar 2015,
who noticed that for a large tidal deformability, the tidal interaction during the
inspiral is more attractive, leading to a merger at lower frequencies. The remnant
star is consequently less bound and more extended, resulting in a lower frequency
of its fundamental mode. Variations on the EOS can produce a significant variety
of postmerger GW spectra with different peak locations. Figure 1.13 shows the
diversity of postmerger waveforms that can be obtained for different EOSs and
initial masses. The use of quasi-universal, EOS-insensitive, relations to link this
frequency with NS properties has turned GW spectroscopy into a very active
field of research to constrain the EOS of NS matter (see e.g. Baiotti, Giacomazzo,
and Rezzolla 2008, Stergioulas et al. 2011, Bauswein et al. 2012, Bauswein and
Stergioulas 2015, Hotokezaka et al. 2013, Takami, Rezzolla, and Baiotti 2014,

8http://www.computational-relativity.org

http://www.computational-relativity.org
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Figure 1.13 Several gravitational waveforms for equal-mass BNS mergers. Each row refers
to a different EOS, while each column stands for a certain initial mass. Figure reprinted
with permission from Takami, Rezzolla, and Baiotti 2015. Copyright (2015) by the American
Physical Society.

Takami, Rezzolla, and Baiotti 2015, Bernuzzi et al. 2014, Bernuzzi, Dietrich, and
Nagar 2015, Clark et al. 2016, De Pietri et al. 2016, De Pietri et al. 2020). There
may exist secondary peaks in the GW postmerger spectrum that are related to
different oscillation modes of the star. For example, the one-arm instability (see
Section 1.1) can imprint a frequency peak at about half the value of the main
f2, but its amplitude is considerably lower compared to the main peak, making
it more difficult to detect.

As the remnant evolves it stabilises and the amplitude of the GW signal
decreases, while the frequencies evolve in time [Rezzolla and Takami 2016,
Maione et al. 2017, De Pietri et al. 2020]. At a certain point, the remnant may
collapse to a BH, and the GW emission suddenly stops. As collapse approaches,
the star loses angular momentum by emitting gravitational radiation, which
lowers the waveform amplitude as the remnant becomes more axisymmetric and
compact (e.g, Maione et al. 2017). The frequency of the quadrupolar mode
increases when the collapse gets closer.
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Postmerger densities can become incredibly large, beyond twice nuclear
saturation density. For lower values, the NS (hadronic) EOS is expected to
describe the star realistically enough. However, in the postmerger phase matter
in the core may undergo phase transitions (PTs) to, for example, deconfined
quark matter. The appearance of quarks considerably softens the EOS. The
eventual observation of NSs with similar masses and different tidal deformabilities
might be an evidence of transitions to quark matter. This phenomenon would
have an imprint in the GW emission from the postmerger remnant star (see
e.g. Bauswein et al. 2019, and Mondal et al. 2023 for the detectability of PTs).
After some milliseconds, the increased quark fraction in the core can change the
quadrupole moment and therefore change the value of f2. In fact, a method to
detect a PT would consist in comparing the main frequency peak measured in the
postmerger with the one inferred from the tidal deformability via quasi-universal
relations. The latter would be unaffected by the PT, since the tidal deformability
is measured during the inspiral. In addition, the stability lifetime of the RMNS
can be modified by PTs, and the formation of a quark core can trigger neutrino
bursts that can power GRBs [Cheng and Dai 1996, Bombaci and Datta 2000].
The existence of PTs is also due to the relatively high temperatures reached.
The treatment of thermal effects in the EOS is an issue that will be further
discussed in Chapter 8.

It is also worthy of mention the convexity of the EOS. For non-convex EOSs,
the sound speed can be non-monotonic with the number density and the evolution
of the remnant can lead to significant differences in the GW emission [Rivieccio
et al. 2024]. Indeed, these differences can be of the same order of those provoked
by PTs, despite those not being included in the EOS description.

1.4.2 Data analysis of postmerger gravitational waves

The observation and analysis of GW170817, the first GW signal from a BNS
merger, has allowed to put constraints on the EOS by measuring the effective
tidal deformability from the inspiral phase. The second BNS merger observation,
GW190425, did not further improve previous constraints [Dietrich et al. 2020].

The technique employed to infer the parameters of BNS systems during
the inspiralling phase is matched filtering [Abbott et al. 2020a]. This method
is able to identify signals buried in the detector noise by correlating the data
with precomputed templates made of a large sample (of the order of millions)
of theoretical waveforms. Matched filtering is not only used for detection of
modelled sources. By performing Bayesian analyses, it is also possible to infer
astrophysical parameters of the sources using the templates. The synthetic
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inspiral waveforms (also known as approximants) that are commonly used to
create the database are analytical PN expansions (for reviews, see Blanchet
2006, Blanchet 2014, Futamase and Itoh 2007, Schäfer and Jaranowski 2018
and references therein), effective one-body (EOB) approaches [Buonanno and
Damour 1999, Buonanno and Damour 2000, Damour et al. 2008, Damour and
Nagar 2010] and the Phenom models [Ajith et al. 2007]. So far, three classes
of 4th-order PN methods have been employed to compute the dynamics of
BNS systems: the Hamiltonian approach [Damour, Jaranowski, and Schäfer
2014], the Fokker-action approach [Bernard et al. 2017, Bernard et al. 2018],
and effective field theories [Foffa et al. 2017, Levi 2020]. The EOB models
reduce the binary system to a single effective particle under an effective po-
tential. They combine results from PN theory and strong-field effects such
as scattering. There exist two big families of EOB models for spinning BH
binaries: one developed in, e.g., Barausse and Buonanno 2011, Taracchini et al.
2012, Taracchini et al. 2014, Pan et al. 2014, Babak, Taracchini, and Buo-
nanno 2017, and another employed in, e.g., Damour 2001, Damour et al. 2008,
Damour, Iyer, and Nagar 2009, Damour and Nagar 2009, Damour and Nagar
2014. These models differ in the choice of several degrees of freedom that arise
in the EOB theory, such as the functional form for the potentials. Tidal effects
have been included in different ways to study NS binaries [Ho and Lai 1999,
Baiotti et al. 2010, Damour and Nagar 2010, Bernuzzi et al. 2012, Steinhoff
et al. 2016]. The Phenom approaches approximate waveforms by calibrating
them to NR using analytical or semi-analytical expressions. Alternatively, they
can be obtained through the “hybridisation” of waveforms from NR simula-
tions and PN approximations. By incorporating finite size effects of NSs, the
approximants used for BH binaries can be augmented with a tidal description.
A commonly used phenomenological approximant for BNS is NRTidal [Diet-
rich, Bernuzzi, and Tichy 2017], and the newest version NRTidalv2 [Dietrich
et al. 2019]. Another phenomenological waveform model recently developed
can be found in Kawaguchi et al. 2018. The analyses of GW170817 em-
ployed different waveform models, named TaylorF2, IMRPhenomD_NRTidal,
IMRPhenomPv2_NRTidal and SEOBNRv4_ROM_NRTidal. A recent line of work is
the use of surrogate models [Field et al. 2014, Varma et al. 2019], which allow the
fast computation of waveforms in the frequency domain. These models have been
shown to reach an accuracy comparable to NR, and can be useful to perform
a parameter space sampling, with direct use in parameter estimation pipelines.
Surrogate models for BNS signals can be found in, e.g., Lackey et al. 2017,
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Lackey et al. 2019. For further details about approximants of BNS waveforms,
see Dietrich, Hinderer, and Samajdar 2021 and references therein.

Unfortunately, the postmerger GW signal is more challenging to detect,
because its characteristic frequencies lay in the range of several kHz, resulting
in a smaller signal-to-noise ratio (SNR) for present-day observatories. Therefore,
only sources located at very close distances (≈ 30 Mpc) can have a detectable
postmerger signal [Clark et al. 2016, Chatziioannou et al. 2017, Tsang, Dietrich,
and Van Den Broeck 2019]. In addition, the only way to produce realistic
waveforms of this stage is via numerical simulations, which is not an easy task.
The large amount of physics involved makes simulations very computationally ex-
pensive, and it is not possible to build large template banks for matched-filtering
applications. To rapidly build postmerger waveform templates, ML techniques
have been employed to fit synthetic signals with numerical waveforms [Easter
et al. 2019, Whittaker et al. 2022].

An alternative to matched-filtering techniques are generic unmodelled searches.
Although less efficient than matched filtering, unmodelled analyses properly
reconstruct the postmerger signal and extract information from the GW spec-
trum depending on the SNR (see, for example, Clark et al. 2016, Klimenko
et al. 2016, Chatziioannou et al. 2017, Tsang, Dietrich, and Van Den Broeck
2019). Two model-agnostic searches were performed for the postmerger signal of
GW170817 [Abbott et al. 2017]: Coherent Wave Burst (cWB) [Klimenko et al.
2016] and BayesWave [Cornish and Littenberg 2015, Littenberg and Cornish
2015]. The former algorithm consists on searches of coherent excess power in
wavelet transformations, while the latter employs Bayesian inference, recon-
structing the waveform with a linear superposition of sine-Gaussian wavelets.
Even though neither method found any postmerger signal in GW170817 [Abbott
et al. 2017, Abbott et al. 2019b], they placed upper limits on the total energy
emitted in GWs.

Future GW detectors such as Einstein Telescope [Punturo et al. 2010, Hild
et al. 2011] and Cosmic Explorer [Evans et al. 2021] will be a factor ten more
sensitive than current detectors in the range of high-frequency postmerger signals,
increasing the horizon detection distance by roughly the same factor. Model-
agnostic waveform reconstructions would be able to provide GW spectra that
could be used to infer physical properties of the star via quasi-universal relations,
and give information about the oscillation modes of the RMNS remnant.
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1.4.3 Use of machine learning techniques for gravitational-wave data analysis

The rate of detections in the current LVK’s fourth observing run (O4) is almost
one per day, and it is expected to increase in the next observing runs. This
may affect traditional approaches for signal detection and parameter estimation.
Therefore, the use of ML techniques in GW astrophysics is experiencing a
rapid increase. Their plausible applications are incredibly diverse. In GW data
analysis, ML can help complete template banks, aid searches and speed-up
parameter estimation (see Huerta et al. 2019, Cuoco et al. 2021 for reviews and
references therein).

As previously mentioned, waveform surrogate models are used to cover certain
regions of the parameter space. Such models can be built with ML regression
techniques, such as Gaussian Process Regression [Easter et al. 2019]. Moreover,
ML algorithms such as convolutional neutral networks are also employed to
search for (BBH) GW signals, with sensitivity comparable to matched filter-
ing [Gabbard et al. 2018, George and Huerta 2018, Álvares et al. 2021, Boudart
and Fays 2022]. Indeed, it has been found that ML GW searches are competitive
on simulated data, but they struggle when handling real noise and long-duration
data [Schäfer et al. 2023]. Moreover, ML techniques can provide a rapid inference
of source properties. These methods are likelihood-free, autoregressive normal-
ising flows which give results comparable to traditional Markov Chain Monte
Carlo (MCMC) methods [Green, Simpson, and Gair 2020]. For example, [Gab-
bard et al. 2022] showed that conditional variational autoencoders perform full
parameter estimation of GW150914 in ∼ 1 s. Finally, another application of ML
to GW astrophysics is the real-time classification of compact binary sources with
supervised algorithms [Chatterjee et al. 2020]. A rapid characterisation of the
nature of the system is crucial for the success of multimessenger observations.

1.4.4 My involvement in the Virgo Collaboration

The Virgo Collaboration9 was founded in 1993 with the goal of building a GW
interferometer in Europe. It was first built in 2003, and underwent several
major upgrades which culminated with the Advanced Virgo detector [Acernese
et al. 2015]. The Virgo Collaboration joined efforts with the LIGO Scientific
Collaboration in 2007, when they signed a MoU to jointly analyse the GW
data and publish the results. Currently, the fourth Observing Run is ongoing,
jointly with the Japanese KAGRA detector [KAGRA Collaboration et al. 2019].
During the previous three Observing Runs, 90 GW events were identified by

9https://www.virgo-gw.eu

https://www.virgo-gw.eu
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the Advanced LIGO and Advanced Virgo detectors. Most of those events
were identified as BBH mergers, but two detected sources were regarded as
BNS mergers, GW170817 and GW190425. In July 2016, the Valencia Virgo
Group10 joined the Virgo Collaboration. This group is based in the Departament
d’Astronomia i Astrofísica of the Universitat de València. I became a member
of the group when I started my PhD thesis, by November 2020. During this
period, I was involved in several service work activities and I participated quite
actively in the Collaboration.

My service work activities were diverse. During the first year, I joined the
GstLAL team to help perform searches of sub-solar mass compact objects during
the 03b run. In addition, I translated into Spanish several science summaries
and press notes from the Collaboration. Once O4 started, I participated in
several Rapid Response Team (RRT) shifts. The RRT is a joint LVK effort to
support multimessenger searches by providing timely supervision and human
vetting of the signal alerts. As Level-0 shifter, I had the role of responding in
low latency to all significant candidate alerts during my shifts11. Furthermore, I
took part in the Parameter Estimation ROTA team. My work there consisted
in monitoring the online parameter estimation analyses of real candidate events.
If the run failed or the candidate event required further analyses, I manually
launched and monitored additional runs.

In February 2022, I was elected co-chair of the Virgo Early Career Scientists
(VECS) group. During the mandate, which lasted one year, I organised monthly
meetings together with my co-chair and other activities that were useful to
the early-career community. For example, we organised job fairs and different
activities during the Virgo weeks and LVK meetings. We also forwarded job
vacancies and information about tutorials or talks that were interesting to young
researchers. Moreover, we prepared a joint project with the Outreach team called
“Women of Virgo”. It consisted in interviewing women working for Virgo and
getting to know their experience in their scientific careers. In summer 2022, the
new Virgo bylaws were approved, and I took part of the discussions to modify
the bylaws that involved early-career scientists. Currently, I am involved in the
rewriting of a draft of the new bylaws, a task that has been assigned to the
VECS group.

During these almost four years, I attended periodically the meetings of
the Extreme Matter group and I also presented there my works on sub-grid

10https://www.uv.es/virgogroup/index.html
11And I was lucky enough to retract a compact binary merger candidate and sign off a real

one!

https://www.uv.es/virgogroup/index.html
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modelling (Chapters 2 and 3) and data analysis of GW postmerger signals
(Chapters 7 and 8). In addition, while I was working on the project about real-
time classification of compact binary coalescence (CBC) events (see Chapter 9),
I discussed the results with the EM-bright group and gave a presentation to this
group and the EM-follow up group as well.

Moreover, all the publications submitted during the thesis have undergone
the internal review of the LVK Collaboration before being submitted to the
scientific journals.

1.5 Outline

This thesis is organised as follows:

PART I.- Turbulence modelling (Chapters 2, 3, 4 and 5). In this first
block, which can be considered the main part of the thesis, I discuss the work
related to the analysis and modelling of MHD turbulence in the context of
BNS mergers. In the first two chapters, I present a new sub-grid model for
MHD turbulence generated by the MRI (Chapter 2) and the KH instability
(Chapter 3). By comparing its performance with the output of local DNS, I
assess the validity of this model. In Chapter 4, I present preliminary results from
the application of the sub-grid model into numerical simulations of differentially
rotating isolated NSs. In Chapter 5, I perform a local linear analysis to study
the saturation of the MRI by PIs, relaxing some assumptions made in previous
works. Finally, I dedicate Chapter 6 to summarise the main conclusions of this
part and discuss future work useful to improve the current version of my sub-grid
model and implement it in upcoming simulations.

PART II.- Analysis of gravitational-wave signals (Chapters 7, 8 and 9).
This second part contains all the work I performed in the context of data analysis
of GW signals from NS mergers. Chapters 7 and 8 explore the capability of
reconstructing BNS postmerger waveforms and extract information from the
recovered GW spectra, focusing on the inference of inertial modes (Chapter 7)
and the identification of thermal effects (Chapter 8). Chapter 9 comprises the
application of ML algorithms to classify compact binary sources using a Bayesian
approach. In Chapter 10, I summarise the conclusions of this second part and I
present future applications of the methods I employed.
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Appendices. In the Appendices A, I present a summary of the research
works that I have co-authored during my thesis. In Appendices A.1 and A.2,
I show my contribution to the study of the impact of bosonic matter on the
dynamics and stability of NSs. The work in Appendix A.1 consists in the
analysis of the impact of ultralight bosonic particles in the development of the
bar-mode instability in NSs, while in Appendix A.2 I present a study of the
stability of configurations of fermion-axion stars. Furthermore, in Appendix A.3
I give a brief summary of a project about the impact of the gravitational-
wave memory (GWM) effect from populations of massive BH mergers on the
temperature of the Cosmic Microwave Background (CMB).



Part I

Magnetohydrodynamical
turbulence in neutron stars





CHAPTER 2

Assessment of a new sub-grid model for
magnetohydrodynamical turbulence – I.
Magnetorotational instability

This Chapter was originally published in: Miquel Miravet-Tenés, Pablo
Cerdá-Durán, Martin Obergaulinger and José A. Font. Assessment of a new
sub-grid model for magnetohydrodynamical turbulence. I. Magnetorotational
instability. MNRAS, Volume 517, Issue 3, pp. 3505–3524, November 2022. DOI:
10.1093/mnras/stac2888. Reproduced with permission.

2.1 Introduction

As discussed in the Introduction of this thesis, numerical simulations are an
essential tool to study systems involving NSs, such as BNS mergers. However,
the huge parameter space of the problem, its dimensionality, and the amount of
physics involved limit the number of simulations. Therefore, the description of
the long-term evolution of the postmerger phase for generic initial conditions
remains poorly constrained [Siegel et al. 2013, Shibata and Hotokezaka 2019,
Ciolfi 2020b]. As a result, linking the results of simulations with the data from
multimessenger observations of BNS mergers, sGRBs and kilonovae, is still to
a large extent an ongoing task. A key aspect of the riddle is the fate of the
postmerger HMNS remnant whose lifetime can be strongly affected by a number
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of physical effects. Among the most significant ones is the turbulent amplification
of the magnetic field occurring throughout the process, from the late inspiral
(via instabilities such as the KHI) to well inside the postmerger phase (via the
MRI or magnetic winding). The presence of intense magnetic fields of O(1015)
G has important consequences in the dynamics of the postmerger remnant. The
turbulence generated by the MRI is probably the dominant process transporting
angular momentum in the HMNS. The efficiency of this process is directly
related with the timescale in which the BH forms and it leaves an imprint in
the emitted GWs. Moreover, turbulent and convective dynamos could amplify
the magnetic field and generate large-scale structures (dipole fields) that seem
to favour the formation of jets and sGRBs.

Nevertheless, as discussed in Section 1.3, current numerical simulations are
unable to resolve the scales at which turbulence develops with enough accuracy.
Steps to overcome this limitation have been taken through direct numerical
MHD simulations1 with very high resolution. However, as these simulations are
computationally very expensive (involving ∼ O(10) million CPU hours) it is
currently not possible to perform a systematic study of the magnetorotational
evolution of BNS merger remnants.

An alternative way to DNS is to use sub-grid models [Smagorinsky 1963,
Leonard 1975, Müller and Carati 2002, Ogilvie 2003, Giacomazzo et al. 2015,
Radice 2017, Radice 2020]. This allows performing relatively modest numerical
simulations, in terms of resolution, by combining them with a model that
describes the small-scale dynamics, smaller than the computational grid. Sub-
grid models have found applications in astrophysics (e.g. in stellar evolution
[Charbonneau 2013]) as well as in other fields of physics (e.g. meteorology [Müller
and Scherer 2005]) and engineering (e.g. aerodynamics [Ekman et al. 2020]).
The specific case of magnetised fluids comes with its own challenges, mostly
related to the problem of the emergence of inverse cascades. The majority of
studies in this context have dealt with solar and stellar dynamos [Charbonneau
2013]. In the last few years there have been attempts to use sub-grid models in
GR based on simple approaches [Giacomazzo et al. 2015, Radice 2017, Shibata,
Kiuchi, and Sekiguchi 2017, Shibata, Fujibayashi, and Sekiguchi 2021, Viganò
et al. 2020]. Pioneering LES of BNS mergers have already been performed using
some of those models [Viganò et al. 2020, Palenzuela et al. 2022, Aguilera-Miret,
Viganò, and Palenzuela 2022].

1Although strictly speaking the term direct numerical simulation should be used exclusively
for simulations in which all scales are resolved without the necessity of sub-grid models, here
we use the term in a loose way to refer to simulations without sub-grid models, even if not all
scales are resolved.
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In this Chapter we take first steps towards the development and testing of new
approaches for sub-grid models for MHD and compare our proposal with current
procedures based on the gradient sub-grid model [Viganò, Aguilera-Miret, and
Palenzuela 2019, Carrasco, Viganò, and Palenzuela 2020]. We restrict ourselves
to the case of high conductivity and density, for which we have high Reynolds
numbers and the fluid approximation is valid; this is precisely the case of interest
for BNS mergers. The gradient model, based on the Taylor expansion and the
inverse function theorem, is widely used nowadays due to the fact that it does not
rely on any phenomenological assumption. We first introduce sub-grid modelling
with the α-β dynamo approach from Parker [1955] [see Krause and Rädler 1980,
for details] and perform an a-priori test of the gradient model by comparing
the outcome of the model and the data from an in-box MRI simulation. The
same numerical data is used to assess our new proposal. The sub-grid model we
put forward in this work is based on the proportionality relations between the
components of the turbulent stress tensors. We devise evolution equations for the
turbulent energy densities [Pessah and Goodman 2009, Pessah 2010, Rembiasz
et al. 2016b] that make it straightforward to model the stress tensors in terms of
the energy densities of the MRI and the PIs. The form of the evolution equation
depends on the physics of the particular instability under consideration, which,
in the case of this work will be the MRI. A performance comparison between
our model and the gradient sub-grid model of Carrasco, Viganò, and Palenzuela
2020 is done by computing the L2 relative error norm for different filter sizes
and grid resolutions.

This Chapter is organised as follows: in Section 2.2 we discuss the mean-field
formalism used to separate numerically resolved quantities from the small-scale
turbulent ones. Next, in Section 2.3 we show a direct application of the mean-
field formalism to the induction equation with the determination of the α and β

dynamo coefficients, and present the basis of both, the gradient sub-grid model
and our new model. In Section 2.4 we briefly describe the MRI simulation
we use to carry out our testing of the new sub-grid method and the model
comparison. The results of the various tests are also reported in this section.
Finally, our conclusions are summarised in Section 2.5. Some equations in the
Chapter contain indices with Latin characters. Those are spatial and hence take
values from 1 to 3. Unless stated otherwise we use geometrised units by setting
G = c = 1, and the magnetic permeability is also set to µ0 = 1, corresponding
to a Gaussian or Heaviside-Lorentz unit system [see Jackson 1975].
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2.2 Mean-field MHD

2.2.1 Newtonian MHD equations

The mathematical framework for our study is Newtonian MHD whose equations
we review in this section. The MHD equations stem from the result of applying
the Navier-Stokes and the Maxwell equations to an electrically conducting fluid
(or plasma). The equations couple the different dynamical variables of the
plasma, such as the fluid velocity, the gas pressure, the mass density and the
magnetic field. A Newtonian approach can be applied when the plasma velocity
is not relativistic. A common further simplification is to consider the ideal MHD
case where the fluid has an infinite electric conductivity, σ → ∞. In this case
Ohm’s law reduces to

Ei = −ϵijkvjBk , (2.1)

where ϵijk is the 3-dimensional Levi-Civita symbol. This means that the electric
field E is completely determined by the magnetic field B and the fluid velocity
v. Therefore, by inserting Eq. (2.1) into Faraday’s law

∇ × E = −∂B

∂t
, (2.2)

one obtains the induction equation:
∂B

∂t
= ∇ × (v × B). (2.3)

If we use the expansion of the curl of the vector product

∇ × (v × B) = v(∇ · B) − B(∇ · v) + (B · ∇)v − (v · ∇)B, (2.4)

along with the solenoidal condition of the magnetic field, ∇ · B = 0, one can
rewrite the induction equation as

∂tB
i + ∂j(vjBi − viBj) = 0 . (2.5)

This is the first equation of the MHD system. The remaining equations follow
immediately from the equations of mass continuity, the Euler equation, and the
energy equation. The final set of MHD equations can be cast in the following
conservation form:

∂tF
0 + ∂jF j = 0 , (2.6)
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where vector F 0 ≡ C is the state vector, whose components are the following
conserved quantities

C =


ρ

N i

U

Bi

 , (2.7)

which correspond to the mass density, the momentum density, the energy density,
and the magnetic field, respectively. The vectors F j are the fluxes along spatial
direction j,

F j ≡


N j

T ji

Sj

Dji

 =


ρvj

ρvivj − BiBj + δij
[
p + B2/2

]
vj
[
U + p + B2/2

]
− (vkBk)Bj

vjBi − viBj

 , (2.8)

where p is the thermal pressure and B2 = BiBi.
The fluxes are written in terms of the primitive quantities, P = {ρ, vi, ε, Bi},

where ε is the specific internal energy. One can express the conserved fields C

in terms of the primitive ones2:

N i = ρvi, (2.9a)
U = ρ(ε + v2/2) + B2/2 . (2.9b)

2.2.2 Foundations of mean-field MHD

The aim of this work is to employ the mean-field MHD formalism to the previous
equations. In this approach a filter is applied to all variables both in space
and time, over certain characteristic (small) length to compute mean quantities.
Any variable can then be decomposed into a mean and a fluctuating (turbulent)
component of zero mean. Thus, the MHD equations can be written in terms of
mean quantities (resolved scales in numerical simulations) and of the average of
combinations of the fluctuations (unresolved scales). A sub-grid model provides
a closure relation between the two terms that allows us to write the system of
equations as a closed system amenable to be solved numerically.

Given any field A, the corresponding mean field will be denoted by A,
defined to be the expectation value of A in an ensemble of identical systems.
The averages that will be used in the MHD equations can be both spatial or
temporal. Hence, the averaging operator will be defined following Charbonneau

2Note that the mass density and the magnetic field are both primitive and conserved fields.



54 A new sub-grid model for MHD turbulence. I

2013 as either
A = 1

V

∫
V

A(t, x) d3x , (2.10)

for a spatial average in a scale of order λ (having thus a volume V ∝ λ3), or

A = 1
τ

∫
τ

A(t, x) dt , (2.11)

for a time average in a timescale τ . Moreover, the average can be performed over
different realisations of a simulation. We denote by A′ the difference between
the original field and the mean field,

A′ = A − A . (2.12)

We will refer to it as the fluctuating field. The above decomposition can be
physically interpreted as follows: the field A is characterised by a slowly varying
component, A, which varies on a large spatial (temporal) scale L (T ) and
is properly resolved, plus a rapidly fluctuating part, A′, which varies on a
much smaller (shorter) scale, l (t), and represents the effect of the unresolved
dynamics. Therefore, the average operation is computed over an intermediate
spatial (temporal) scale λ (τ): l ≪ λ ≪ L (t ≪ τ ≪ T ).

It is useful to consider the following relations, known as the Reynolds aver-
aging relations [Krause and Rädler 1980],

A = A + A′, A = A, A′ = 0,

A + C = A + C, AC = AC, AC ′ = 0,
(2.13)

holding for any given fields A and C.

Since the average of the fluctuating part is zero, the only possible terms
related to the fluctuating part in the mean-field equations are the mean of
combinations of two fluctuating variables. For this work, we consider only
fluctuations of the velocity (v′) and of the magnetic field (B′), and neglect the
fluctuations of density (ρ′ = 0) and internal energy (ϵ′ = 0). This is similar
to the work of Ogilvie [2003] that considers the incompressible shearing sheet
case [Goldreich and Lynden-Bell 1965]. The incompressible case is also a very
good approximation for the particular case of the MRI (see Goodman and Xu
1994 and the discussion in Rembiasz et al. 2016a) With these considerations,
the fluctuating part in the equations can be written in terms of the following
tensors:

Mij = B′
iB

′
j , (2.14a)

Rij = v′
iv

′
j , (2.14b)
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Fij = v′
iB

′
j − v′

jB′
i , (2.14c)

namely, the Maxwell, Reynolds and Faraday stress tensors, respectively, as
defined in Ogilvie 2003. From their definitions, it follows that the Maxwell and
Reynolds tensors are symmetric, while the Faraday stress tensor is antisymmetric.
These objects naturally appear when performing the averaging of the MHD
equations, which have the form [Ogilvie 2003]

∂tF̃
0

+ ∂jF̃
j

= S(Rij , M ij , F ij) , (2.15)

where quantities with tilde refer to identical functional expressions as Eqs. (2.7)
and (2.8), but for the mean quantities B and v instead of B and v. Note that
F̃

0
≠ F

0 and F̃
j

̸= F
j . The source term S is a function of the mean stresses.

Its value for some particular cases can be found, e.g., in Krause and Rädler 1980
or Ogilvie 2003. The general case is not of direct interest for this work and will
be presented elsewhere. In Eq. (2.15) only quadratic terms, O(A′2), have been
considered, and higher order terms have been neglected. This should be a good
approximation if |A′|2 ≪ |A|2.

2.3 Sub-grid models

We now turn to discuss some sub-grid models that have already been used in
previous works, along with the new model we propose in this Chapter.

2.3.1 α-β dynamo mean-field model

Let us start by filtering the induction equation given in Eq. (2.3). First, we
express the fields in terms of resolved and unresolved parts:

∂

∂t
(B + B′) = ∇ ×

[
(v + v′) × (B + B′)

]
. (2.16)

Averaging the previous expression leads to:
∂

∂t
B = ∇ ×

(
v × B

)
+ ∇ ×

(
v′ × B′

)
, (2.17)

where we have made use of B′ = v′ = 0 and v × B′ = v′ × B = 0. Note that
Eq. (2.17) is the same as Eq. (2.3) but written in terms of filtered quantities
and with an extra term. Also note that the contribution v′ × B′ comes from
nonlinearity. Therefore, we define the turbulent electromotive force as:

ξ ≡ v′ × B′ . (2.18)
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The α-β dynamo mean-field model provides a closure equation for ξ expressed
in terms of the mean quantities. It assumes statistical homogeneity, steadiness
and isotropy for v′. Due to the homogeneity of v′, the electromotive force will
only change with position as far as the mean magnetic flux density and the
spatial derivatives do. Furthermore, due to the isotropy of v′, any quantity
derived from it must be rotation-invariant, and the only vector that does so is
the zero-vector. Therefore, there is no contribution of v′ to the vector structure
of ξ. Additionally, it assumes that B depends so weakly on time and position
that ξ can be represented by B and its first spatial derivatives. Under these
assumptions, the turbulent electromotive force has to fulfil

ξi = αd ijB
j − βd ij(∇ × B)j , (2.19)

where αd and βd are the so-called dynamo coefficients that depend on the
turbulent velocity field, v′ [Charbonneau 2013, Reboul-Salze et al. 2021]. This
equation can be used as a closure relation that allows us to express Eq. (2.17)
solely in terms of resolved quantities (B, v).

In the numerical simulations of MRI of Reboul-Salze et al. 2021 no correlation
was found between the electromotive force from Eq. (2.19) and the mean current
J = −∇ × B. Therefore, one could simplify equation (2.19) to

ξi = αd ijB
j

. (2.20)

This closure relation is one of the sub-grid models we test in this work. The
interested reader is addressed to Krause and Rädler 1980 and Reboul-Salze et al.
2021 for further information.

2.3.2 Gradient sub-grid model

The gradient sub-grid model [Leonard 1975, Müller and Carati 2002] has re-
cently received attention in compressible MHD studies, in particular to investi-
gate magnetic-field amplification in BNS mergers [Viganò, Aguilera-Miret, and
Palenzuela 2019, Carrasco, Viganò, and Palenzuela 2020, Viganò et al. 2020,
Aguilera-Miret et al. 2020, Palenzuela et al. 2022, Aguilera-Miret, Viganò, and
Palenzuela 2022]. In this model one does not need to assume a phenomenological
form for the sub-filter-scale terms as it simply relies on the Taylor expansion of
the fluxes of the MHD equations, Eq. (2.8), expressed in terms of the primitive
variables.

We start by writing the primitive fields P in terms of the conserved ones,
Eq. (2.7), by computing P̃ l ≡ gl(C). Here, the "∼" symbol over a given field
means that this field is expressed in terms of filtered quantities. In our case,
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the primitive variables will be thus functions of the filtered conserved fields.
Therefore, we obtain the following expression when applying a filter over the
MHD equations:

∂tC
l + ∂jF

j,l = 0 , (2.21)

where index “j” represents the spatial directions and index “l” represents the
fields of each set of quantities. We next express the fluxes in terms of P̃

(
C
)
,

which leads to:
∂tC

l + ∂jF j,l(P̃ ) = ∂jτ j,l
F . (2.22)

The term on the right-hand side is the sub-filter scale (SFS) tensor,

τ j,l
F ≡ F j,l(P̃ ) − F j,l(P ) , (2.23)

and there will be one for each flux. In order to express these tensors only in terms
of the filtered variables and their derivatives, one performs a Taylor expansion
to first order in η (which is related to the filter size) of F j,l(P ) around P

F j,l(P ) ≃ F j,l(P ) + η

(
∇2F j,l(P ) − dF j,l

dP
m ∇2P

m
)

, (2.24)

and then expand around P̃

F j,l(P ) ≃ F j,l(P̃ ) + η
dF j,l

dP̃ m

(
∇2P̃ m − dP̃ m

dC
n ∇2C

n

)
, (2.25)

where the indices (l, m, n) denote the spatial components of fields. By the inverse
function theorem we are able to express the primitive variables, P , in terms
of the conserved ones, P̃ = P (C) (the full procedure is outlined in Carrasco,
Viganò, and Palenzuela 2020). Finally, we can re-express the SFS tensors from
Eq. (2.23) in the form

τ j,l
F = −η∇dF j,l

dC
n · ∇C

n
. (2.26)

This is the closure relation of the gradient sub-grid model. It relates the
contribution of the dynamics from the smaller scales to the filtered variables and
their derivatives. The SFS tensor in Eq. (2.26) is proportional to the filter size,
i.e., the typical scale of the simulation, given by the numerical resolution. The
accuracy of the derivatives of the filtered variables depends on the numerical
method used to compute them and also on the resolution of the simulation.
Therefore, the model is expected to perform better for higher resolutions and
also for smaller sizes of the filter [Carrasco, Viganò, and Palenzuela 2020].
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The filtered version of the MHD system in terms of the conserved variables
C

m reads:

∂tρ + ∂jN j(P̃ ) = ∂jτ j
N, (2.27a)

∂tN
i + ∂jT ji(P̃ ) = ∂jτ ji

T , (2.27b)
∂tU + ∂jSj(P̃ ) = ∂jτ j

S , (2.27c)

∂tB
i + ∂jDji(P̃ ) = ∂jτ ji

D . (2.27d)

These equations have the same form as Eq. (2.22) and the non-negligible contri-
bution of the smaller scales appears in the form of source terms in the right-hand
side of the equations. Thanks to the closure relation for the SFS tensors given
by Eq. (2.26), the source terms can be computed with the derivatives of the
fluxes with respect to the conserved variables. Their final expressions are:

τ j
N = −η∇ dN

j

dC
m · ∇C

m = 0 , (2.28a)

τ ji
T = −η∇ dT ji

dC
m · ∇C

m = η
[

− 2ρ∇ṽi · ∇ṽj + 2∇B̃i · ∇B̃j−

−δji
[
∇dP̃

dρ
· ∇ρ + ∇dP̃

dε̃
· ∇ε̃ − 2

ρ

dP̃

dε̃
∇ρ · ∇ε̃ + ∇Bk · ∇B

k−

−1
ρ

dP̃

dε̃

(
ρ∇ṽk · ṽk + ∇Bk · ∇B

k)]]
, (2.28b)

τ j
S = −η∇ dS

j

dC
m · ∇C

m = η
[

− 2
[
∇Θ̃ · ∇ṽj +

(
B

j
Bk∇ṽk−

−Θ̃∇ṽj
)

· ∇(ln ρ) − B
j∇Bk · ∇ṽk − ∇(ṽ · B) · ∇B

j]+
+ṽj

[
∇dP̃

dρ
· ∇ρ + ∇dP̃

dε̃
· ∇ε̃ − 2

ρ

dP̃

dε̃
∇ρ · ∇ε̃ + ∇Bk · ∇B

k−

−1
ρ

dP̃

ε̃

(
ρ∇ṽk · ṽk + ∇Bk · ∇B

k)]]
, (2.28c)

τ ji
D = −η∇dDji

dC
m · ∇C

m = −2η
[
∇ṽi · ∇B

j − ∇ṽj · ∇B
i+

+
(
B

i∇ṽj − B
j∇ṽi

)
· ∇(ln ρ)

]
, (2.28d)

where Θ̃ ≡ U + p̃ + B
2
/2. The derivatives of p̃ with respect to the mass density

and the specific internal energy can be obtained using the EOS.

As we show below in Section 2.4, to assess the method we will employ the
SFS tensors given by Eqs. (2.28) to results of in-box MRI numerical simulations,
comparing their values with those computed using Eq. (2.23).
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2.3.3 MHD-instability-induced-turbulence (MInIT) mean-field model

In the previous sections we have shown that the sub-grid-scale terms that
arise from averaging the MHD equations can be modelled in terms of averaged
variables. For the gradient sub-grid model, the SFS terms represent the sub-grid
contributions of the fluxes (cf. Eq. (2.23)). In fact, those terms have been
obtained by taking gradients of the derivatives of the fluxes with respect to the
conserved variables (see Eq. (2.26)).

In our new model the goal is similar, i.e., we want to express the contributions
of the sub-grid scales in terms of resolved quantities that evolve over large enough
scales so that their evolution can be captured by numerical simulations. Ogilvie
2003 proposed a mean-field model based in the computation of the evolution
equations for the mean stresses of the form

(∂t + vk∂k)M ij − M ik∂kvj − M jk∂kvi = S
(M)
ij , (2.29)

(∂t + vk∂k)Rij − Rik∂kvj − Rjk∂kvi = S
(R)
ij , (2.30)

where S
(M)
ij and S

(R)
ij are functions depending on the averages of combinations

of three fluctuating variables (e.g., vivjbk ... ), and could be approximated by a
closure relation. The left-hand side consists of an advective term and a term
accounting for the “stretching” by gradients of the mean velocity. Ogilvie 2003
considered only the particular case of F ij = 0 but, in the most general case, this
quantity should fulfil analogous equations.

One could try to find a general closure for the system of equations proposed
by Ogilvie 2003 (or a generalisation of this system) but this approach is in
general complicated, and the number of additional equations to be solved is
significant (12 equations just for the independent components in Eqs. (2.29)
and (2.30)). Instead of this general approach, we aim at providing a sub-grid
model that resolves turbulence induced by MHD instabilities. The most relevant
MHD instabilities developed during BNS mergers are the MRI and the KHI.
In this Chapter we focus on modelling the former deferring to the following
Chapter the treatment of the latter.

The MRI has been studied through numerical simulations by a number of
authors (see references in the Introduction). Here we consider the semi-global
simulations of Rembiasz et al. 2016b and use those as part of our tests and
model calibration in the next sections. The simulations are discussed in detail
in Section 2.4.1 below. Fig. 2.1 displays the time evolution of the stress tensor
components in one such simulation. All three tensors evolve in a qualitatively
similar way. On top of the initial conditions (a differentially rotating fluid with a
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vertical magnetic field) the instability grows exponentially developing nonlinear
channel flows. Those are eventually disrupted leading to the termination of
the exponential growth. After termination, the fluid settles into a turbulent
state in which stresses are approximately constant (in a statistical sense). This
behaviour can be understood by the PI theory [Goodman and Xu 1994, Pessah
and Goodman 2009]. In this model, the channel flows, which are exact solutions
of the nonlinear incompressible MHD equations [Goodman and Xu 1994, Pessah
and Chan 2008], are disrupted by secondary (parasitic) instabilities growing
in time. In the case of high Reynolds numbers those PIs are of KH type, and
their growth rate depends on the exponentially growing shear, leading to a
super-exponential growth. As the energy of the PI becomes comparable to that
of the channel flows (MRI energy), those are disrupted and the balance between
the two instabilities settles the system into a turbulent state. Rembiasz et al.
2016b were able to measure the PI energy and its super-exponential growth, and
tested the validity of the termination criterion giving strong support to the PI
theory.

Fig. 2.1 compares the different stresses for a particular numerical simulation
with an estimation of the energy densities of the MRI, eMRI, and of the PI, ePI

(see next section for definitions). The general trend is that, up to some constants,
eMRI and ePI are good tracers of the evolution of all stresses. Similar behaviour
is observed in all the simulations analysed. This motivates the development of a
mean-field model based upon evolution equations for eMRI and ePI so that the
stresses can be computed from these quantities using calibrated constants (closure
relation). In the next four subsections we discuss the MRI and PI and provide
the details of the two ingredients (closure relations and energy density equations)
that conform the MHD-instability-induced-turbulence (MInIT) mean-field model,
the main subject of this work.

2.3.3.1 MRI theory

We consider a rotating fluid with a magnetic field with non-zero vertical com-
ponent3. We also consider the case of high Reynolds and magnetic Reynolds
numbers (effectively ideal MHD for MRI fluctuations). In this case, the general
dispersion relation for the modes of wave-like perturbations is [Balbus 1995,
Obergaulinger et al. 2009]:

(γ̂2 − k̂2)2 − (γ̂2 − k̂2)(ω̂2
G + ω̂2

R + 4 cos2 θk) − 4k̂2 cos2 θk = 0 , (2.31)

3By “vertical” it must be understood the component of the magnetic field parallel to the
rotational axis, i.e. along the z-direction of the cylindrical coordinate system (r, ϕ, z).
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Figure 2.1 Evolution of the Maxwell (top), Reynolds (middle) and Faraday (bottom) stress
tensors computed from the numerical data of the simulation MRI-H1 performed by Rembiasz
et al. [2016b]. The dash-dotted black and green lines represent the energy densities of the
stresses associated with the MRI and PI, respectively.
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where θk is the angle between the wavevector k and the vertical axis, ω̂G,R

are dimensionless frequencies related to buoyancy terms and differential rota-
tion, respectively, and γ̂ = γ/Ω is the dimensionless growth rate of the mode,
normalised by the rotational profile

Ω = Ω0

( r

r0

)−q

, (2.32)

with Ω0 being the angular velocity at the characteristic radius r0 and

q = −d ln Ω
d ln r , (2.33)

corresponding to the rotational shear. In Eq. (2.31) we introduce k̂ = k · cA/Ω,
where cA is the Alfvén speed.

Now, let us focus on the case without buoyancy effects (ω̂G = 0). In this
case, the fastest growing mode has a vertical wavevector [Rembiasz et al. 2016b]:

kMRI ≡ kcrit =
√

1 − (2 − q)2

4
Ω

cAz
, (2.34)

where cAz = Bz/
√

ρ is the vertical component of the Alfvén velocity and is
given by the initial magnetic field amplitude in the vertical direction. Thus, the
expression of k̂ is simplified for the fastest growing mode to

k̂MRI =
√

1 − (2 − q)2

4 . (2.35)

For the fastest growing mode the perturbations lie on the rϕ plane and therefore
θk,crit = 0. This implies that the dispersion relation given by Eq. (2.31) leads to
the following growth rate of the MRI:

γMRI = q

2Ω , (2.36)

which is constant in time.

Goodman and Xu 1994 demonstrated that this kind of perturbative solutions
are not only solution of the linearised MHD equations but also of the full
nonlinear equations in the incompressible limit, giving rise to channel flows.
During this phase of exponential growth channel modes are characterised very
accurately by its perturbation velocity and magnetic field, which we identify as
v′ and B′, fulfilling the next properties in the ideal MHD case [c.f. Pessah and
Chan 2008]

v′ = v0

(
r̂ + ϕ̂

)
sin (kz) eγt , (2.37)

B′ = B0

(
r̂ − ϕ̂

)
cos (kz) eγt , (2.38)
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where γ and k refer to the fastest growing mode and v0 and B0 are the velocity
and magnetic field channel-flow amplitudes which are related by

B0√
ρ

=
√

4 − q

q
v0 . (2.39)

Note that B′2 = B2
0 e2γt and v′2 = v2

0 e2γt. These expressions allow us to write
the contribution of the MRI channel flows to all the stresses in terms of v′

r:

R
MRI
rr = R

MRI
ϕϕ = R

MRI
rϕ = v′

rv′
r , (2.40)

R
MRI
rz = R

MRI
ϕz = R

MRI
zz = 0 , (2.41)

M
MRI
rr = M

MRI
ϕϕ = −M

MRI
rϕ = (4/q − 1) ρ v′

rv′
r , (2.42)

M
MRI
rz = M

MRI
ϕz = M

MRI
zz = 0 , (2.43)

F
MRI
ij = 0 , (2.44)

where we have used that sin2 (kz) = cos2 (kz) = 1/2 and sin (kz) cos (kz) = 0
when averaging over the appropriate length scale (larger than λMRI). The
contribution of the MRI channel flows to the (kinetic) energy density is then
just

eMRI = 1
2 ρ Tr

(
R

MRI) = 1
2ρ
(

RMRI
rr + RMRI

ϕϕ

)
= ρ v′

rv′
r . (2.45)

We can now define the next proportionality constants between the different
(MRI) stresses and the MRI energy density:

αMRI
ij ≡

M
MRI
ij

eMRI
, (2.46)

βMRI
ij ≡

ρ R
MRI
ij

eMRI
, (2.47)

γMRI
ij ≡

√
ρ F

MRI
ij

eMRI
, (2.48)

whose values can be computed directly from the expressions above

αMRI
rr = αMRI

ϕϕ = −αMRI
rϕ = 4/q − 1 , (2.49)

αMRI
rz = αMRI

ϕz = −αMRI
zz = 0 , (2.50)

βMRI
rr = βMRI

ϕϕ = βMRI
rϕ = 1 , (2.51)

βMRI
rz = βMRI

ϕz = −βMRI
zz = 0 , (2.52)

γMRI
ij = 0 . (2.53)

For the case with buoyancy (ω̂G ̸= 0) the expressions for kMRI and γMRI

become more complex, but can still be computed from the mean quantities [see
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Obergaulinger et al. 2009]. Similarly, the coefficients αMRI
ij , βMRI

ij and γMRI
ij

will have a different dependence. In this work we focus on the particular case
without buoyancy, but a priori nothing prevents to extend this approach to the
most general case.

2.3.3.2 Parasitic instabilities

In the high Reynolds and magnetic Reynolds number regime, the dominant
parasitic mode is of the KH type and develops along the MRI velocity channel
[Pessah and Goodman 2009]. It is characterised by a wavenumber for the fastest
growing parasitic mode [Pessah 2010]

kPI = 0.59 kMRI , (2.54)

and a corresponding growth rate

γPI = 0.45 kPI v0eγMRIt = σ kMRI v0eγMRIt , (2.55)

with σ = 0.27. Note that, since the growth rate depends on the amplitude of the
channel flow, v0eγMRIt, the PI will grow super-exponentially. Using the channel
mode expressions we can relate v0 eγt to eMRI and rewrite the PI growth rate as

γPI = σ kMRI

√
2 eMRI

ρ
. (2.56)

Since parasitic modes grow on top of the channel modes, the velocity and
magnetic field perturbations can be decomposed as

v′ = v′MRI + v′PI
, B′ = B′MRI + B′PI

. (2.57)

The averaged Reynolds stress will then be

Rij = R
MRI
ij + R

PI
ij + vMRI

i vPI
j + vPI

i vMRI
j . (2.58)

If we consider that MRI and PI modes are spatially uncorrelated, the last
two terms in the previous equation can be dropped. Alternatively, we could
absorb these two terms into the definition of R

PI
ij , since they are zero when no

PI modes are present. In either case we can decompose the averaged Reynolds
stress into a component coming from the MRI (already computed in the previous
section) and a component coming from the PI. Similar arguments can be made
for the Maxwell and Faraday stresses leading to the decomposition

R = R
MRI + R

PI
, M = M

MRI + M
PI

, F = F
PI

. (2.59)



2.3 Sub-grid models 65

The (kinetic) energy density of the parasitic modes can be computed as

ePI = 1
2 ρ Tr

(
R

PI) = 1
2 ρ

(
R

PI
rr + R

PI
ϕϕ + R

PI
zz

)
. (2.60)

The role of the PI is to disrupt the channel flows generating turbulence. To
simplify our model we assume that the turbulence generated by the PI is isotropic,
meaning that all diagonal components of R

PI
ij are equal. Under this condition

ePI = 3
2ρ Rzz , (2.61)

where we have used that R
PI
zz = Rzz because R

MRI
zz = 0. Additionally, the

isotropy condition allows us to rewrite Eq. (2.45) in terms of the Reynolds stress,
instead of only the MRI components, as

eMRI = 1
2ρ
(
Rrr + Rϕϕ − 2Rzz

)
. (2.62)

Eqs. (2.61) and (2.62) can be used to estimate the energy density in both types
of instabilities in numerical simulations, as in the case of Fig. 2.1. We have to
keep in mind that this estimator is not perfect and its application to numerical
simulations may lead to artefacts in some cases (see discussion in Rembiasz et al.
[2016b] and Rembiasz et al. [2016a] for details).

2.3.3.3 Closure relation

Now that we understand that the different stresses depend on eMRI and ePI we
can aim at building a phenomenological relation between the two energy densities.
An important assumption we make is that the proportionality coefficients do
not depend explicitly on time and position, only through their dependence of
mean field variables. This means that the stress tensors will have the same time
dependence as the energy densities eMRI and ePI as long as the mean quantities
are constant. We hence propose the next closure relation:

M ij(t, r) = αMRI
ij eMRI(t, r) + αPI

ij ePI(t, r) , (2.63a)

Rij(t, r) = 1
ρ(t, r)

(
βMRI

ij eMRI(t, r) + βPI
ij ePI(t, r)

)
, (2.63b)

F ij(t, r) =
γPI

ij√
ρ(t, r)

ePI(t, r) , (2.63c)

where the factors involving the mass density are added in order to make the
coefficients dimensionless. For the MRI coefficients we use the ones derived for the
MRI channel modes, Eqs. (2.49)-(2.53). We note that the diagonal components
of βPI

ij could be determined from Eq. (2.61) and the isotropy condition, resulting
in βPI

ii = 2/3. The value of off-diagonal components depends on the correlations
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between different components of the velocity entering on the averages but are
constrained to be |βPI

ij | ≤ 2/3(i ̸= j). However, we prefer to keep βPI
ij as a free

parameter of the theory, together with αPI
ij and γPI

ij . These coefficients can be
calibrated using numerical simulations and their values are discussed in the next
sections.

2.3.3.4 Evolution equations of the MRI and PI energy densities

The last step is to obtain evolution equations for the PI and MRI energy densities.
From their definitions, Eqs. (2.61) and (2.62), the mean-field continuity equation
and Eq. (2.30) (neglecting the stretching terms) we obtain equations of the form

∂teMRI + ∂i(vi eMRI) = S(MRI) , (2.64)
∂tePI + ∂i(vi ePI) = S(PI) , (2.65)

i.e., a set of balance laws for both energy densities, with some complicated
sources that include both the effect of the MRI and the PI. The stretching terms
could be kept and expressed in terms of eMRI and ePI using the coefficients βMRI

ij

and βPI
ij . However, this adds unnecessary complication for the purpose of this

work (stretching is irrelevant for the simulations that we discuss in the next
sections) and would make the equations non-conservative.

A closed and simple form for the source terms can be justified taking into
account some information we derived in the last few subsections, namely: i) the
amplitude of MRI channel flows grows exponentially with a growth rate γMRI

and hence eMRI grows with a rate of 2γMRI during the initial phase; ii) The same
happens for ePI, but with a growth rate 2γPI; iii) The PI draws energy from eMRI

whenever both energy densities are comparable, quenching the growth of the
MRI channels and leading to saturation; iv) Finally, the PI generates turbulence
in which larger vortices are broken in smaller ones in a turbulent cascade until
the physical dissipation scale is reached where dissipation occurs. At this small
scale, kinetic (and magnetic) energy is transformed into thermal energy [see,
e.g., Landau and Lifshitz 1987, chapter III]. Taking all these considerations into
account we propose the next set of equations for the evolution of MRI and PI
energy densities:

∂teMRI + ∂i(vieMRI) = 2 γMRI eMRI − 2 γPI ePI , (2.66)
∂tePI + ∂i(viePI) = 2 γPI ePI − STD . (2.67)

The growth rates γMRI and γPI are given in Eqs. (2.36) and (2.56), respec-
tively. The set of equations represents the energy flow in systems unstable to
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MRI. Firstly, the term 2 γMRIeMRI draws energy from the averaged quantities
to generate MRI channel flows, increasing the MRI energy. Secondly, the term
2 γPI ePI acts as an energy sink for eMRI; this energy is transferred in a conserva-
tive way to the equation for ePI, where it acts as a source. Finally, the quantity
STD, representing the turbulent energy dissipation at the end of the Kolgomorov
cascade, transfers energy back to the averaged quantities in terms of thermal
(internal) energy.

In order to solve Eq. (2.67) one also needs an expression for the turbulent
energy density dissipation term, STD. In Section 33 of Landau and Lifshitz 1987
there is an estimate for the energy dissipation rate per unit mass, ϵ = STD/ρ. It
is shown that

ϵ ∝ v3
λ/λ , (2.68)

where λ corresponds to the size of the turbulent eddy (the order of magnitude
of the distances over which changes in velocity can be appreciated) and vλ is
the speed of the turbulence in spatial scales ∼ λ. In the inertial range of scales
(Kolmogorov cascade) the flux of energy to smaller scales should be constant
across the range of wave vectors and then ϵ should not depend on λ [Landau
and Lifshitz 1987]. Since the turbulence we are now considering is developed by
the PI, vλ could be estimated from ePI as

vλ ∝
√

ePI

ρ
. (2.69)

It is possible to demonstrate that this velocity corresponds to the scale
with the largest eddy size fitting within the filter size used to perform the
averages. According to Kolgomorov’s theory, the kinetic energy spectrum scales
as E(k) ∝ ϵ2/3k−5/3. If we compute the energy in the inertial range of k fitting
within a certain volume (e.g., the volume used to average the MHD equations)
we obtain:

EV =
∫ kmax

kmin

E(k)dk ∝
∫ kmax

kmin

ϵ2/3k−5/3dk , (2.70)

where the integral is computed between kmin = 1/λ (corresponding to the size
of the volume considered, which corresponds to the size λ of the largest eddy
fitting the volume) and kmax (size of the smallest scale, i.e., the dissipation scale).
Since we are considering the case with large Reynolds number, kmax ≫ kmin,
and the integral results in

EV ∝ ϵ2/3k
−2/3
min = (ϵλ)2/3 ∝ v2

λ , (2.71)
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where we have used Eq. (2.68) to express the integral in terms of the velocity.
This means that the bigger scales contribute more to the value of ePI, where

ePI = EV/V, and justifies the use of Eq. (2.69). In this case, we interpret that
ePI is essentially related to the minimum value between the minimum wavelength
of the modes of the MRI and the size of the filter. If all the excited modes of
the instability are resolved (i.e., the minimum wavelength of the instability is
larger than the filter size), λ will be equal to the size of the filter, ∆f . However,
if the scales of the instability are not resolved, the PI should be described by
the scale of the instability, which is λMRI. Therefore we assume

λ = min[∆, λMRI] . (2.72)

Eqs. (2.68) and (2.69) allow us to give an expression for the energy dissipation
rate per unit mass

ϵ ∝ 1
λ

(ePI

ρ

)3/2
, (2.73)

which can be used to estimate the turbulent energy density dissipation rate

STD = ρϵ = C
e

3/2
PI√
ρλ

, (2.74)

where C is a dimensionless constant.
The interpretation of this constant C can be understood by studying Eq. (2.67)

at the saturation point tsat, i.e. when ∂tePI = 0. At this maximum, the right-
hand side of Eq. (2.67) vanishes and it is possible to compute the ratio of PI to
MRI energy

ePI(tsat)
eMRI(tsat)

= 8σ2

C2 λ2k2
MRI = 8σ2

C2
Ω2λ2ρ

B
2
z

(
q − q2

4

)
. (2.75)

Therefore, the value of C is directly related to the ratio of PI to MRI energy in
the saturated state.

2.4 Results

2.4.1 Box simulations

We test the different sub-grid models discussed in the previous sections using
a subset of the three-dimensional, semi-global MRI simulations of Rembiasz
et al. 2016b. The simulation domain is a section of a cylindrical annulus
with a size of 1 km × 4 km × 1 km in the radial direction, ϕ (i.e., rotational
direction), and z direction, respectively. The five models we use are summarised
in Table 2.1 and they correspond to simulations with different grid resolutions
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NAME B0z [1013 G] Resolution (r × ϕ × z) Box size [km] λMRI [km] Zones per channel
MRI-L1 4.6 60 × 240 × 60 1 × 4 × 1 0.333 20
MRI-M1 4.6 76 × 304 × 76 1 × 4 × 1 0.333 25
MRI-H1 4.6 100 × 400 × 100 1 × 4 × 1 0.333 33
MRI-H2 3.45 100 × 400 × 100 1 × 4 × 1 0.25 25
MRI-H3 2.76 100 × 400 × 100 1 × 4 × 1 0.2 20

Table 2.1 This table reports the different MRI simulations from Rembiasz et al. [2016b] used
to test the sub-grid models discussed in this work. The simulations differ in the numerical
resolution and in the initial magnetic-field strength. Note that λMRI is not uniform throughout
the computational domain, but varies by ≈ 20%.

and initial magnetic-field strength. The dynamics of the plasma is governed
by the Newtonian visco-resistive MHD equations and the simulations were
performed using the Aenus code [Obergaulinger 2008]. While the resistivity
and the shear and bulk viscosities of the simulations are non-zero, they are
sufficiently small so as not to affect the growth rates of the MRI and the KHI,
the latter acting as the PI terminating the growth of the MRI. Therefore, all
the three sub-grid models described in Section 2.3 can in principle be used with
these simulations.

The total pressure consists of a polytropic part and a thermal part [Dim-
melmeier 2001], P = Pp + Pth, where Pp reproduces the pressure exerted by a
degenerate electron gas while Pth models a finite-temperature correction. The
total pressure is

P = Pp + Pth = Kργ + (γth − 1)ρ
(

ε − ργ−1 K

γ − 1

)
, (2.76)

where ε is the specific internal energy, K = 4.8974894 × 1014 (in cgs units),
γ = 1.31 and γth = 1.5. This is a good representation of the EOS at the
sub-nuclear densities considered in the simulations.

The initial conditions for the simulations approximate the equatorial layer of
an MRI-unstable surface layer of a PNS, which are similar to the postmerger
configuration of a BNS merger. We use a differential rotation profile Ω(r) ∝ r−q

(see Eq. (2.32)), with Ω0 = 1824 s−1, a characteristic radius (center of the
box) r0 = 15.5 km and a rotational shear q = 1.25. The structure of the layer
was chosen such as to maintain hydrostatic equilibrium, i.e., balance between
the gravitational force of the star, the gas pressure, and the centrifugal force,
and marginal convective stability, i.e., a flat pseudo-entropy (s = P/Pp) profile.
This results in a central density of ρ0 = 1.83 × 10−15, that corresponds to
2.47 × 1013 g cm−3, typical of the regions developing MRI in PNSs and BNS
mergers [Rembiasz et al. 2016b]. The initial magnetic field has only a uniform
vertical component B0z. Compared to the internal or rotational energy of the
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Figure 2.2 Cuts of the radial component of the magnetic field for the simulation MRI-H1, at
the zϕ plane (left column) and at the rϕ plane (right column). The rows show different times
of the simulation, t = {5, 11, 12} ms. The MRI sets in from a layered distribution of Br (t = 5
ms), grows exponentially (t = 11 ms) until it saturates and reaches an isotropic and turbulent
configuration (t = 12 ms).

gas, the magnetic field is weak. In all 5 models, the most unstable MRI channel
modes have a wavelength of λMRI ≤ 0.333 km. This scale is resolved by at least
20 grid cells, which means that the MRI growth rate is numerically close to
convergence [see Rembiasz et al. 2016c].

2.4.1.1 Global quantities.

The onset, growth and termination of the MRI can be observed by monitoring
the evolution of different quantities. Fig. 2.2 displays cuts on the zϕ plane (left)
and on the rϕ plane (right) of the radial component of the magnetic field, Br,
for the simulation MRI-H1 at three different times. Shortly after the start of the
simulation (5 ms, upper panels) channel modes appear triggered by the applied
initial perturbations and the magnetic field exponentially grows from 1012 G
to 1015 G (middle panels), point at which parasitic KH instabilities start to be
visible. Eventually the field saturates and a turbulent configuration is reached
after t ≈ 12 ms (bottom panels). The upper right panel of Fig. 2.2 shows that
the magnetic field (and similarly all other variables) is not completely smooth
in the radial direction. As mentioned before, this is an artefact of the boundary
conditions discussed in Rembiasz et al. 2016a. The artefact is related to the use
of the so-called shearing disc boundary condition in the radial direction; this
approximate treatment of the radial boundaries is necessary because there is
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Figure 2.3 Time evolution of the averaged magnetic energy density components, radial (left),
azimuthal (centre), and vertical (right), in cgs units. The top panels correspond to simulations
with the same resolution but different initial magnetic field strength. The bottom panels depict
results for different resolutions but the same value of the initial magnetic field (cf. Table 2.1).

radial dependence of background quantities that does not allow for the use of
periodic-like (shearing box) conditions. This limits our ability to compute ePI

from the simulation which, in turn, affects the computation of the coefficients for
the MInIT sub-grid model (see discussion in Sections 2.3.3.2, 2.4.4.2 and 2.4.4.3).

Fig. 2.3 shows the time evolution of the contribution of each component to
the total averaged magnetic energy density

emag
i = B2

i

2 , (2.77)

for different resolutions and initial magnetic fields. No important differences are
found between the simulations. All cases plotted show that the MRI grows at the
same rate and saturates at roughly the same level. Moreover, the amplification
of the magnetic field is similar for the three components of the magnetic field.
Note that the growth of the vertical component, shown in the right column of
the figure, is shorter because the initial magnetic field points in this direction.

Furthermore, Fig. 2.4 shows the time evolution of the contribution of each
component to the total averaged kinetic energy for the same simulations shown
in Fig. 2.3. The expression for each component is

ekin
i = 1

2ρv2
i . (2.78)

The only non-vanishing component of the initial velocity field is the azimuthal
one. This component remains nearly constant during the whole simulation
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Figure 2.4 Time evolution of the averaged kinetic energy density components, in cgs units. As
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bottom panels to simulations with different grid resolution.
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Figure 2.5 Spectra of the magnetic (solid lines) and kinetic (dashed lines) energies for different
MRI simulations. As time increases, the magnetic energy tends to even the kinetic energy,
specially at smaller scales, where equipartition is reached after t ≈ 12 ms.

(middle panel) whereas the radial and vertical components grow exponentially
until they saturate again at t ≈ 12 ms. No remarkable differences are found
among the 5 simulations.

A way to see how the magnetic field is amplified during the MRI is via
the energy spectra. This is shown in Fig. 2.5 at three representative times.
Equipartition between kinetic and magnetic energies is reached faster at smaller
scales (higher k). Towards the end of the simulations, at t ≈ 20 ms, the two
energies tend towards equipartition at all scales. The simulation with higher
resolution, MRI-H1, reaches equipartition at small scales earlier than the rest,
while the simulation with the smallest initial magnetic field, MRI-H3, is the
slowest to reach a high value of the magnetic field at large scales.
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Figure 2.6 Time evolution of the diagonal components of the α-dynamo coefficient, computed
from simulation MRI-H1. After an exponential growth, all components reach a similar value
at saturation.

2.4.2 Determination of the α-dynamo coefficient

Our numerical simulations can also be employed to obtain the dynamo coefficients
αd and βd. Here we use Eq. (2.20) to compute αd assuming that this coefficient
is constant inside the simulation box (remember the discussion in Section 2.3.1
to neglect the computation of βd). In Fig. 2.6 we show the time evolution of
the αd coefficient, computed as the average over the azimuthal direction and
evaluated at the center of the rz plane. There is an initial stage at which all
diagonal components are nearly constant, except for αd zz, which starts at a
much lower initial value. At t ≈ 10 ms, all components grow exponentially
for a short time. This is followed by a saturation phase where all components
reach a similar and almost constant level. This result supports the use of the αd

coefficient as a scalar. However, setting a constant value for this coefficient at
all times of a simulation could lead to wrong results, specially during the phase
in which the exponential growth occurs. This is the reason why we search for a
sub-grid model able to deal with temporal evolutions and capture all different
stages of the development of turbulence.

2.4.3 Averaging procedure

One important aspect to test the different sub-grid models is to have a proper
definition of what we mean by average, a procedure that is performed using a
filter. There are different filters that can be used to obtain the mean component
of a turbulent field. For example, Carrasco, Viganò, and Palenzuela 2020 present
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the Gaussian filter, which is used in the formal development of the gradient
model. It has nice mathematical properties, but it is not used in the a-priori
tests. Alternatively, in the a-priori comparison the authors perform an average
over S3

f cells, using the so-called box filter. In this work we also use a box filter.
Each filter size is labelled by the quantity Sf = ∆f /∆, where ∆ is the size of
the cell of the direct numerical simulation and ∆f is the filter size. In the case
of the box filter, ∆f corresponds to the size of the box, which contains Sf cells
per dimension. Thus, a filtered quantity is the mean value in a domain with size
∆f for each direction. Note that even though our simulations used cylindrical
coordinates, the filtering operation will be performed over a domain with equal
length per dimension, since we need a unique value for the filter size, ∆f . In fact,
in our case the cell size ∆ is different for each direction, namely ∆r = ∆z ≠ r∆ϕ,
and therefore the filter size will also be different for each direction, ∆i

f , giving
the same value of Sf in the three directions.

The box filter is characterised by the following normalized kernel [Carrasco,
Viganò, and Palenzuela 2020]:

Fi(|ri − r′
i|) =

{
1/∆f if |ri − r′

i| ≤ ∆i
f /2 ,

0 if |ri − r′
i| > ∆i

f /2 ,
(2.79)

for each dimension. The three-dimensional kernel will be

F (|r − r′|) =
3∏
i

Fi(|ri − r′
i|) . (2.80)

As mentioned before, our simulations use cylindrical coordinates (r, ϕ, z) and
therefore ∆ is different for each side of a numerical cell. However, this is not
an issue for the box filter where the filter has the same shape as the grid cell
∆. In fact, box-filtered data can be regarded as data from a simulation with
lower resolution, i.e., using effectively bigger cells than the actual ones in the
simulation.

2.4.4 Numerical implementation and calibration of the MInIT model

2.4.4.1 Energy density evolution equations in the MInIT model

In order to apply the MInIT model one has to integrate numerically Eqs. (2.66)
and (2.67) in time, starting with appropriate initial values at t = 0, eMRI(0)
and ePI(0) (initial conditions are discussed in Section 2.4.4.3). For the box
simulation considered in this work, the average velocity v only has non-zero ϕ

component. In principle, the advective term in the ϕ direction should therefore
be considered. However, since the simulation has periodic boundary conditions in
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the ϕ direction, any spatial average over the whole simulation box (or involving
averages over ϕ) will be independent of whether this advection was actually
performed or not. Even if we use a filter of size ∆f , the result will be independent
of this advection term, at least in a statistical sense, as long as we construct the
final quantities as averages of filtered quantities at different places in the whole
box. Therefore, we will not consider the advection term for the calibration and
tests performed in this work.

The second consideration is the calculation of the coefficients in the right-
hand side of Eqs. (2.66) and (2.67). Those coefficients depend on the mean
quantities ρ, B and v, the latter through the values of Ω and q. There are small
differences in the values of these quantities across the box, and even within the
filter region.

Finally, we need a numerical procedure to integrate numerically Eqs. (2.66)
and (2.67). This system of partial differential equations is in general stiff because
it involves the exponential and super-exponential growth of the quantities.
Therefore, care has to be taken in the time integration. We use the Strang
splitting method [Strang 1968] to solve them.

Given the initial conditions of the box simulation, which provide the average
values of ρ, B and v, and all calibrated coefficients of the MInIT model (see
next two sections), the integration of the equations directly provide a model
for the whole simulation, as long as the average values do not change, which is
approximately true in our box simulations. The result the model yields can then
be compared with that from the numerical simulation to assess its accuracy.

2.4.4.2 Calibration of the PI coefficients of the MInIT model

The free coefficients αPI
ij , βPI

ij and γPI
ij appearing in the closure relations of the

MInIT model can be computed from Eqs. (2.63) by averaging the stresses in space
and time over the whole box of the simulation and a representative simulation
time. In order to avoid initial transients that appear in some tensor components
during the growth phase (an artefact of the boundary conditions discussed
in Rembiasz et al. 2016a) we only average at times after saturation (t ≳ 12 ms).
The main problem at early times is that ePI has a small value and any small
boundary effect produces a large uncertainty in its estimation, introducing a
large error in the coefficients. After saturation ePI becomes comparable to eMRI

and the small boundary errors become negligible.
The estimated values of the coefficients that we obtain are reported in

Table 2.2. We find that the diagonal components of αPI
ij and βPI

ij are all positive,
with αPI

rr and βrr being compatible with zero. The rϕ component for both
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Table 2.2 Numerical estimation of the PI coefficients of the closure relations of the MInIT
model. The uncertainties (standard deviation) arise from both the time and the spatial
averages of the stress tensors used to calculate the coefficients. Simulation MRI-H1 was used
to compute the coefficients reported here. Statistically similar coefficients were obtained when
used other simulations.

αPI
ij βPI

ij γPI
ij

rr 0.5 ± 1.2 0.08 ± 0.55 -
ϕϕ 7 ± 3 1.2 ± 0.8 -
zz 0.8 ± 0.4 0.7 ± 0.3 -
rϕ −1.4 ± 1.5 −0.8 ± 0.6 0.10 ± 0.81
rz 0.06 ± 0.34 0.03 ± 0.18 0.02 ± 0.29
ϕz −0.1 ± 0.4 0.07 ± 0.26 −0.10 ± 0.51

the Maxwell and Reynolds stresses is consistent with a non-zero value, as
expected, since it is responsible for the transport of angular momentum in
the radial direction. However, the other non-diagonal values are much smaller
and consistent with zero. Regarding the assumption of isotropy in the PI, the
expectation is to have βPI

ii = 2/3 and |βPI
ij | ≤ 2/3 for i ≠ j (see Section 2.3.3.2).

All coefficients estimated are compatible with these predictions within 2-σ
uncertainties. We observe significant differences among the values of different
off-diagonal terms: while the rz and ϕz components are practically zero, the
rϕ is close to the upper limit of 2/3 and negative. This indicates strong anti-
correlations between the r and ϕ components of v′ and at the same time low
correlation with the z component. This is understandable if the PI (of KH type)
develops on top of the channel flows, in a vertical plane forming an angle of π/4
with the radial direction. This breaks the assumption of isotropy in some sense
by establishing a preferred direction. However, it does not affect the assumptions
in Section 2.3.3.2.

By averaging over the whole box and time (for t ≳ 12 ms) of the simulation,
we are assuming that there are no statistical spatial or temporal variations in
the averaging domain and all samples (points and times) are representative of
the same quantity we want to measure. In the spatial case, the radial variations
of the initial conditions, which are preserved in the averaged quantities during
the simulation, are sufficiently small to be neglected. In order to understand the
temporal behaviour we show in Figs. 2.7 and 2.8 the diagonal and non-diagonal
components of the coefficients, respectively, computed only from spatial averages,
as a function of time. The shaded regions in these figures represent the standard
deviation that arises from the average in space of the stresses over the whole box.
Comparing with the values from Table 2.2, one can see that the change of the
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Figure 2.7 Time evolution of the diagonal components of the αPI and βPI coefficients. The
shadows represent the standard deviation that arises from the average over the whole simulation
box. Note that the values of each component are consistently time-independent.
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Figure 2.8 Time evolution of the non-diagonal components of the αPI, βPI and γPI coefficients.
As in Fig. 2.7, the shadows represent the standard deviation that arises from the average over
the whole simulation.

coefficients is larger in space than in time, since the uncertainty from Table 2.2
is smaller. Indeed, the coefficients oscillate in time around an approximately
constant value.

2.4.4.3 Optimization of the C parameter of the MInIT model

After fixing the PI coefficients of the closure model, we still have three free
parameters that need to be fixed, the dimensionless constant C, Eq. (2.74), and
the initial values of the energy densities, eMRI(0) and ePI(0). Of these three
parameters, only C is truly a free parameter of the MInIT model. The other
two depend on the particular physical system. One could in principle take
those two values directly from the simulation. However, the boundary-condition
errors mentioned in the previous section introduce large uncertainties in eMRI(0)
and ePI(0), which are in general small quantities. Hence, we keep these two
quantities as free parameters to be fitted from the simulation. Instead of ePI(0),
we use the ratio K0 = ePI(0)/eMRI(0) as free parameter. The initial value of
eMRI determines the time at which saturation is reached, tsat. The ratio K0

gives the maximum value of eMRI at t = tsat, and the value of C determines the
energy density attained at the saturation regime.
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Figure 2.9 Time evolution of eMRI (solid lines) and ePI (dash-dotted lines) using the MInIT
model for different values of the free parameter C. The black and red dashed lines show the data
from the simulation MRI-H1. We show results only for K0 = 1000 and eMRI(0) = 7 × 10−31

as no significant differences are found for other choices.

In practice, out of the three parameters only C produces changes in the
model outcome. We have found that there are no significant changes in the time
evolution of eMRI and ePI for values of K0 and eMRI(0) sampled in the range
K0 ∈ [10, 1000] and eMRI(0) ∈ [2 × 10−31, 5 × 10−30]. Thus, in practice it is
sufficient to use sufficiently small values for these initial quantities (e.g. K0 = 1000
and eMRI(0) = 7 × 10−31) since the energy densities grow exponentially and
super-exponentially during the development of the instability. Fig. 2.9 shows
the evolution of eMRI and ePI for different values of C using the MInIT model.
While at saturation eMRI and also ePI do depend on the value of C, there is no
such dependence during the growth phase.

Our goal is to find the optimal value of C that minimises the differences
between the results of the direct numerical simulation and our model. To
estimate these differences we use the L2 norm (relative error) defined as

L2 =

√√√√1
2
∑

i

(xi
s − xi

m)2

(
1∑

j (xj
s)2

+ 1∑
j (xj

m)2

)
, (2.81)

where xi
s are the data from the numerical simulation, and xi

m are the data from
the model. To obtain a relative error in Eq. (2.81) we normalise its value to the
harmonic mean between the average value of xi

s and xi
m. Expressed in this way,

L2 will be large when xs and xm differ considerably (several orders of magnitude)
and will be smaller than unity when xi

s = xi
m + δ, with δ ≪ 1. Having values
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Table 2.3 Optimal values of the parameter C that minimise the L2-norm of the Maxwell and
Reynolds stress tensors. The last column reports the mean values of the two, for different
filter sizes.

Optimal values of the C parameter
Maxwell Reynolds Mean

Sf = 40 8.2+0.9
−0.9 8.5+0.6

−0.9 8.3+0.7
−0.9

Sf = 50 8.5+0.9
−0.6 8.8+0.6

−0.9 8.6+0.7
−0.7

Sf = 60 8.8+0.9
−0.6 8.8+0.9

−0.9 8.8+0.9
−0.7

with the same order of magnitude will give L2 ∼ 1. The optimal value of C

is obtained by minimizing the relative error from Eq. (2.81) with C as a free
parameter, using the stress tensors as our data. The xi

m set is composed by the
stress tensors computed with the α, β and γ coefficients and the evolved stress
energy densities, eMRI(t) and ePI(t). On the other hand, the xi

s set consists of
the stress tensors directly obtained by the filtering of the output of a numerical
simulation and the application of Eq. (2.14). Moreover, we only consider the
saturation part of the simulation (t > 12 ms), which is where parameter C plays
an important role (see Fig. 2.9).

In order to have a proper statistical error in the computation of the L2 norm,
we need an ensemble of points on which to compute the norm. A way to obtain
reliable results with this procedure is to apply the box filter of Eq. (2.79) over a
reasonably large number of grid cells, in our case 10 × 10 × 10 cells located in the
center of the box. The filter size must be large enough so that ∆f > λMRI, where
λMRI is the wavelength of the fastest growing mode of the instability. Using a
filter smaller than the fastest growing mode would capture different modes which
would lead to different values for the growth rates. From Table 2.1 we see that
the size of the box is at least 3 times larger than λMRI in the r and z directions
and 12 times larger in the angular direction. Depending on the resolution, λMRI

will be a certain number of times larger than the size of the computational cell,
∆. In the highest resolution simulation, MRI-H1, λMRI = 33.3∆. Thus, a filter
of size Sf = ∆f /∆ = 40 leads to ∆f = 1.2λMRI. For completeness, we also
apply two more box filters with sizes Sf = 50 and Sf = 60. We do this for
all resolutions since all these filter sizes satisfy ∆f > λMRI. In addition, for
the simulations MRI-L1 and MRI-M1 we also use Sf = 30. However, for the
simulation MRI-L1, Sf = 60 yields a filter equal to the size of the box and, thus,
this filter is not used for that simulation. Given this, the scales in which the PIs
are developed will be represented by λMRI since ∆f > λMRI, and Eq. (2.74) will
have λ = λMRI.
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We calculate the L2-norm by applying Eq. (2.81) to the modelled and
simulation-based stresses. More specifically, we obtain the L2-norm for each
time iteration by making the summation in Eq. (2.81) over the spatial points
and all the components of the stresses, in order to give more weight to the larger
components, and then we compute the root mean square of the result over time.
Table 2.3 reports the values of C that minimise the L2-norm for the Maxwell
and Reynolds stress tensors4 for different filter sizes, using the highest-resolution
simulation, MRI-H1. The upper and lower bounds indicate 10% variations in the
minimised L2-norm. The last column reports the mean value of C. It slightly
grows with the size of the filter, but all values fit inside the different confidence
intervals. Averaging over the filter sizes, we obtain

Copt = 8.6 ± 0.8 . (2.82)

The same constant is used even when applying the model to other simulations
with different resolution.

2.4.5 Test of the sub-grid models: an a-priori test

2.4.5.1 Preliminaries

After calibrating the coefficients of the MInIT model we turn next to assess
the performance of our new sub-grid model compared to the gradient model.
This will be done through a so-called a-priori test. This consists in applying
a filtering operation (see Section 2.4.3) to data from a numerical simulation
and compute from these data the corresponding terms of the sub-grid model to
test. This allows for a quantitative comparison with the terms computed by the
analytical model, e.g., using Eqs. (2.23) for the gradient model or Eqs. (2.63)
for our sub-grid model.

A way to check the goodness of a model is to compute the L2-norm between
the data from the simulation and that from the model (see Eq. (2.81)). We
note that Carrasco, Viganò, and Palenzuela 2020 used the so-called Pearson
correlation coefficient instead of the L2-norm as the metric to assess the quality
of the gradient sub-grid model. This coefficient, however, turned out not to be
suitable for the assessment of our model. While the Pearson coefficient measures
the linear correlation between two sets of data, it is not necessary for a model
to have a strong linear correlation in order to fit well to data. The goal of
the MInIT sub-grid model is not to have tight correlations in the evolution

4We do not use the Faraday stress tensor because all its components are much smaller than
the ones from the other stresses.
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Figure 2.10 Time evolution of the L2-norm for both the MInIT model (top panels) and the
gradient model (bottom panels), using simulation MRI-H1. The vertical dashed lines signal
the saturation time of the instability. For the MInIT model, the L2-norm is below ∼ 5 for the
Maxwell and Reynolds stress tensors while for the Faraday stress is around 10 after saturation.
Similar values are found for the SFS tensors of the gradient model for all cases.

of the different quantities but to provide a representation that is statistically
representative of the different quantities on average. For this reason, we resort
here to the L2-norm metric for the model assessment.

2.4.5.2 A-priori test of the models

In the a-priori test we compute the L2-norm of the difference between the
numerical data, xi

s, and the data obtained with the evolution equations of the
model, xi

m. This is similar to what we did in Section 2.4.4.3, but now we make
use of the whole simulation, i.e., considering the growth phase of the instability
as well. As before, we only apply filters with size ∆f > λMRI since we are
considering the fastest growing mode of the instability. Filter sizes Sf = 40, 50
and 60 will be also employed in the test of the gradient model to do a comparison
between both models.

Fig. 2.10 shows the values of the L2-norm for both models before the time-
average is performed. The top row corresponds to the MInIT sub-grid model
while the bottom row depicts the results of the gradient model. In all the plots in
the figure we ignore the first 2 ms of the simulations in order to get rid of initial
transients. As the figure shows, the values of the L2-norm are below ∼ 5 at most
times and for the two sub-grid models, except for the Faraday stress tensor from
the MInIT model which reaches values larger than 102 during the initial growth
phase. For both models the largest values of the L2-norm are attained during
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Figure 2.11 L2-norm of the Maxwell and Reynolds stress tensors of the MInIT model (top
row) and of the τT and τS SFS tensors of the gradient model (bottom row) for different filter
sizes, computed over space and time-averaged. Solid (dashed) lines correspond to the initial
exponential growth (saturation) of the instability. Colours correspond to simulations with
different resolutions, as indicated in the legend.

the saturation phase, as expected. For the MInIT model the coefficients αMRI,
βMRI and γMRI are analytical and match almost perfectly the simulation-based
stresses during the exponential growth. In this phase they dominate because
eMRI ≫ ePI. At saturation ePI ∼ eMRI, and thus the calibrated coefficients αPI,
βPI and γPI also play a role.

In Figs. 2.11 and 2.12 we depict the L2-norm computed over space and
averaged in time by means of the root-mean-square for each filter size. Solid
lines correspond to the initial exponential growth of the instability and dashed
lines to the saturation phase. As in Fig. 2.10, the top row of both figures
depicts the values obtained for the MInIT model and the bottom row those
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Figure 2.12 As Fig. 2.11 but for the Faraday stress tensor of the MInIT model (top row) and
the τD SFS tensor of the gradient model (bottom row).
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of the gradient model. For the quantities reported in Fig. 2.11 (Maxwell and
Reynolds stress tensors and τT and τS SFS tensors) we find that the values of
the L2-norm are O(1) for both sub-grid models. This indicates that the two
models fit well the data of the simulations, i.e., model and data differ by less
than an order of magnitude from each other. In Fig. 2.12 we show the special
case of the Faraday stress tensor and its analogue tensor (τD) computed with
the gradient model. The L2-norm of the Faraday tensor reaches values larger
than 104 during the growth phase due to the artefacts already discussed in
Section 2.3.3.2, since the components of this tensor are exclusively given by ePI.
After saturation, the L2-norm of the Faraday stress tensor decreases to values
of O(10). Correspondingly, the values attained by the τD SFS tensor of the
gradient model are of O(1).

Figs. 2.11 and 2.12 exhibit that the MInIT model shows almost no dependence
on the filter size, for all stress tensors. If anything, the norm is even slightly
smaller for larger filters. Moreover, simulations with different resolutions yield
almost the same values of the norm. 5 On the other hand, for the gradient
model the behaviour of the norm with the filter size is markedly different. In
most cases, in particular for low-resolution simulations, the norm of the SFS
tensors increases with filter size. This is consistent with the results reported
by Carrasco, Viganò, and Palenzuela 2020 who, for the case of the KHI, found a
similar behaviour for the Pearson coefficient for different filter sizes.

2.5 Discussion and conclusions

Time-dependent, DNS of astrophysical systems (and in other fields too) have
limitations to capture the dynamics at all scales of interest. In particular, the
correct description of the development of turbulence at small scales is a chal-
lenge for current grid-based simulations which typically suffer from insufficient
resolution. Instabilities such as the MRI and the KHI play a major role in
the amplification of weak magnetic fields of the postmerger remnant of BNS
mergers. Its correct modelling is paramount for reliable estimates of the lifetime
of a HMNS and of the multimessenger observational signatures thereof. Linking
the results of simulations with the wealth of new data from multimessenger
observations of BNS mergers, sGRBs, and kilonovae, is still an ongoing task.

Despite continuous progress in the computational front, with ever more
efficient and accurate numerical methods and treatment of physical processes, it is

5Simulations with even finer resolutions than the ones employed in this work would be
needed to determine whether there could be an actual dependence on resolution.
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still not feasible to reproduce all physical effects involved in certain astrophysical
scenarios through DNS. An alternative to these computationally expensive
simulations are the so-called sub-grid models, which try to deal with the effects
of the small scales in terms of the resolved scales, with modest resolution. In
this Chapter we have assessed different sub-grid models using three-dimensional
box simulations of the MRI [Rembiasz et al. 2016b].

The first model we have tested is the α, β-dynamo model. This is a fairly
simple (and limited) model that applies several assumptions to reproduce the
dynamo effect arising in the induction equation for the magnetic field. We have
found that once the flow is fully turbulent, the different components of the
α-dynamo reach a similar constant value. However, setting a constant value for
this coefficient throughout the development of turbulence would not work as it
would not capture properly the exponential growth of the instability.

The second sub-grid model we have tested is the gradient model. Some recent
studies of BNS mergers have implemented this model [e.g. Palenzuela et al. 2022]
with promising outcomes – the turbulent amplification of the magnetic field
obtained with the model is similar to that obtained with DNS using twice the
resolution. The gradient sub-grid model is simulation agnostic as no physical
or phenomenological assumption is made since its closure relation to model the
sub-filter-scale tensors is based on the Taylor expansion and the inverse function
theorem. Thus, this model is universal for any kind of astrophysical scenario,
and it is not limited by the physical properties of the problem.

The focus of this Chapter has been to present and assess a new sub-grid
model, the MInIT mean-field model. The main appeal of the MInIT model
is that it is physically motivated as it is based on the time evolution of the
turbulent stress tensors and their relationship with the turbulent energy density
of the MRI and of the PIs. By considering a simple linear dependence between
the tensors and the energy densities, the model only needs two partial-differential
evolution equations for the energies to compute all quantities. These equations
take into account the effect of the PIs that saturate the growing turbulence, and
also their dissipation at the end of the Kolmogorov cascade, which makes the
turbulent stresses to exponentially grow up to a saturation value. The equations
also take into account the growth rate of the (fastest growing mode of the) MRI
and also of the PI as functions of resolved quantities.

Once the evolution equations are solved, the turbulent stress tensors are
obtained by using the constant coefficients that link them to the energy densities.
Those are obtained from control numerical simulations and they are found to be
almost equal for the range of resolutions and initial magnetic fields considered
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in this work. While these coefficients seem therefore universal (at least for
simulations of the same type of instability, but see the discussion below) due to
the isotropy and homogeneity that arise from the turbulent dynamics, further
studies with different initial configurations may be needed to confirm this. We
note that, contrary to the gradient sub-grid model, in our new model no spatial
derivatives need to be computed and most quantities used in the evolution
equation are global parameters of the simulation that we have control on.

The MInIT sub-grid model has been assessed through an a-priori test, i.e., us-
ing data from a DNS and applying a filtering operation to compare the filtered
data with that given by the model. We have used the L2-norm (relative error) as
our metric to quantify the comparison, obtaining values below ∼ 5 for most cases.
This means that the data from the simulation and the modelled stresses do not
differ more than one order of magnitude. An order-of-magnitude agreement is
certainly an achievement for such a simple model and should be sufficient for
its use in complex numerical simulations where even larger uncertainties arise
from the modelling of many of the physical ingredients (e.g., EOS or neutrino
transport). Since the Faraday tensor is in average compatible with zero, the large
relative errors observed in the Faraday tensor for the MInIT model should in
principle not be a problem for the applicability of the model to global simulations,
where its effect on the dynamics would be small. However, given the possible
role of the Faraday tensor in the formation of large-scale dynamos, future studies
and extensions of the MInIT model could focus on a better description of this
component.

Moreover, no dependence on the filter size or the length scale of the unresolved
scales has been found, as opposed to the gradient model in which the L2-norm
(slightly) increases with the filter size, particularly for low-resolution simulations.
For an ideal sub-grid model, there should not be a dependence on the filter size
or on the typical length of sub-grid scales, and it should also properly work in the
limit Sf → ∞. This limit represents the case in which the filter is applied to fully
resolved simulations, i.e., with “infinite” resolution. We have also observed that
the MInIT model behaves consistently for simulations with different resolutions
and initial magnetic fields, as those have yielded similar values of the L2-norm
of the stress tensors.

In its comparison with the gradient model, the MInIT model seems to perform
with comparable accuracy (except for the Faraday tensor discussed above). This
comparison is however unfair and, despite the appearances, different things are
being tested and compared. For the case of the MInIT model, the only required
information from the simulation is the initial value of the mean quantities, and
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from those, the rest of the evolution of predicted. This process mimics the case
of its application to global simulations in which the only information known is
the average values at grid cells and all the dynamics at sub-grid scales should
be modelled. In numerical simulations of the MRI, if the grid cell size is not
sufficiently small the instability will not be captured and turbulence will not
develop (or will do it at a slower rate). The MInIT model allows us to model
MRI in this sub-grid scales and the development of turbulent stresses even if
resolution is not sufficient. In opposition, the test for the gradient model uses the
time evolution of the average quantities over the filter size (not only the initial
values). Since the MRI is well resolved in the simulation, the mean quantities
evolve in time and the prediction of the gradient model follows this evolution. If
only the initial values were provided to the gradient model, the model would
catastrophically fail to predict the growth of the MRI. Somehow, the gradient
model needs that the MRI is minimally resolved, and only then is capable of
describing the turbulence at even lower scales. Therefore, a better statement
for the comparison between both model is that the MInIT model is capable of
achieving similar results than the gradient model with less information from
the simulation. This may imply that in global simulations the MInIT model
may need a lower resolution to achieve the same results that the gradient model.
However, this should be tested in the future.

The theoretical framework developed in this work can be applied to different
astrophysical systems. Resolving the MRI is a subject of interest across different
areas of astrophysics, specially in the modelling of magnetised discs at all
scales, e.g., discs around compact objects, protostellar and proto-planetary
discs, and those systems could benefit of this model. However, extrapolating
the calibrated coefficients obtained in this work to other situations should be
handled with care. In particular, our model assumes a regime in which the
Reynolds number is large, the magnetic field is not dominant, and turbulence is
approximately incompressible. If these conditions are fulfilled, our theoretical
arguments suggest that the coefficients could be used outside the range explored
here, although proper testing and re-calibration would be encouraged. If some
of those conditions do not hold, the coefficients may have different values and/or
additional dependencies. Our most immediate aim is to assess the possible
universality of the model when applied to a different kind of instability (e.g., the
KHI) as well as to further improve the model by a deeper investigation of the
relationship between the stress tensors and the turbulent energy densities (see
next Chapter).
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Applications envisaged include the study of magnetic-field amplification in
PNSs following a CCSN and in HMNS resulting from BNS mergers. Sub-grid
models as the one reported here can greatly help DNS by properly capturing the
magnetic-field amplification at small scales which has potential implications on
the lifetime and dynamics of highly magnetised astrophysical compact objects.
For this purpose, our MInIT model should be seen as a complex and time-
dependent sub-grid model that acts as a closure model. Using this time-dependent
closure in combination with an augmented system of MHD equations, similar
to the one proposed by Ogilvie 2003, global simulations should be possible in a
similar fashion to LES.





CHAPTER 3

Assessment of a new sub-grid model for
magnetohydrodynamical turbulence – II.
Kelvin–Helmholtz instability

This Chapter was originally published in: Miquel Miravet-Tenés, Pablo
Cerdá-Durán, Martin Obergaulinger and José A. Font. Assessment of a new
sub-grid model for magnetohydrodynamical turbulence. II. Kelvin–Helmholtz
instability. MNRAS, Volume 527, Issue 1, pp. 1081–1092, October 2023. DOI:
10.1093/mnras/stad3237.

3.1 Introduction

In the previous Chapter I presented a new sub-grid model based on the propor-
tionality relations between the components of the turbulent stress tensors and
the evolution of a turbulent kinetic energy density. This new model, dubbed
MInIT (for MHD-instability-induced-turbulence), is assessed in Chapter 2 in the
particular case of the MRI. It is found that MInIT captures the development
of turbulent stresses even if the numerical resolution of the MRI simulations is
not sufficient. In the current work we continue the study initiated in Chapter 2
by assessing MInIT in the context of the KHI. The results reported in this
Chapter indicate that our sub-grid model performs as satisfactorily as its MRI
version, yielding order-of-magnitude accurate predictions of the Maxwell and
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Reynolds turbulent stresses attained in box numerical simulations of the KHI.
Together with the findings of Chapter 2 the present investigation increases our
confidence in our new sub-grid model before we develop a GR formulation that
can be employed for actual BNS merger simulations, which are envisaged in our
short-term plan.

The Chapter is organised as follows: in Section 3.2 we show the basis of
the MInIT model applied to the KHI. Next, in Section 3.3 we describe the box
numerical simulations of the KHI we use to carry out our testing of the sub-grid
model. The results of the various tests are also reported in this section. Finally,
our conclusions are summarised in Section 3.4.

3.2 MHD-instability-induced-turbulence (MInIT) mean-field model
for KHI

Following Chapter 2 we aim at prescribing an evolution equation for the energy
density stored in KHI-induced turbulence, that can be used to estimate the
different stresses appearing in the mean-field Eqs. (2.15). The drivers of the KHI
are large-scale shears present in the bulk motion of the fluid (in the case of BNS
mergers this happens particularly during the merger) that induce a turbulent
cascade. The main difference with the MRI is that in that case turbulence is
driven by shear flows occurring at small unresolved scales. Therefore, to model
the KHI we do not worry about tracking the energy in the shear itself (as we
did in Chapter 2) but only in the turbulent part. This results in a model that is
somewhat simpler than the MRI model described in Chapter 2.

To build the KHI MInIT model we need three ingredients: the growth rates
of the KHI computed in terms of the averaged quantities, an evolution equation
for the turbulent energy density, and a closure model to compute the stresses in
terms of this energy density. We address these three items next.

3.2.1 KHI growth rates

The growth rate of the KHI in a magnetised fluid was studied by Miura and
Pritchett 1982 as a function of the sound Mach number, Ms = v/cs, the Alfvén
Mach number, MA = v/vA, and the relative orientation of the velocity and the
magnetic field. In the case of a magnetic field parallel to the velocity field, the
fastest growing mode appears at the limit of zero magnetic field (M−1

A = 0). For
a flow with Ms = 1, the fastest growing mode has a wavenumber (parallel to the
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velocity) and growth rate

kKH ≈ 0.4/al , γKH ≈ 0.14 v

al
, (3.1)

respectively, where 2v here is the variation of the velocity across the shear and
al is the characteristic scale length of the variation of the velocity in this region.
The wavelength of this unstable mode is thus

λKH = 2π

kKH
≈ 15.8al. (3.2)

For higher magnetic fields both the normalised growth rate (γKH
al

v ) and
the wavenumber decrease, but as long as the magnetic field is subdominant
(MA > 1), both quantities do not differ much from the maximum values. The
normalised growth rate increases with decreasing sound Mach number Ms (about
a 20% increase for half the sound Mach number), and increases with increasing
Alfvén Mach number MA.

As noted by Miura and Pritchett 1982 similar conclusions hold if the magnetic
field is transversal to the velocity field. In particular, the growth rates for the
transversal case are not larger than for the parallel case when comparing their
values for the same Mach numbers. The shape of the shear used for the analysis
may also affect the exact values of the growth rates [see Chandrasekhar 1961, for
the unmagnetised case] but not their order-of-magnitude. Therefore, for a fluid
with a non-dominant magnetic field and Ms ∼ 1 we expect the above numbers
to be adequate order-of-magnitude estimates. This is the case for the numerical
setup used in the simulations in this work.

3.2.2 Evolution equation of the KH energy density

We define the turbulent kinetic energy density in the KHI as

eKH = 1
2 ρ

3∑
i=1

Rii . (3.3)

Following Chapter 2 we can write the evolution equation for this turbulent
energy density as

∂teKH + ∂i(vi eKH) = S(KH) , (3.4)

where S(KH) is a source term that acts as a generator and sink of the turbulent
energy density. As in our previous work with the MRI, we neglect the stretching
terms, which are irrelevant and add unnecessary complication to this work, and
would also make the equations non-conservative (see Chapter 2 for more details).
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A closed and simple form for the source terms can be justified taking into
account some information we derived in the last few subsections, namely: i) the
KH channel flows grow exponentially with a growth rate γKH and therefore eKH

will grow with 2γKH; ii) the vortices from the turbulence are broken into smaller
ones in a turbulent cascade until dissipation occurs at the physical dissipation
scale, where the small scale, kinetic and magnetic energies transform into thermal
energy [see, e.g., Landau and Lifshitz 1987, chapter III]. Considering these points,
the evolution equation for the KH energy density becomes

∂teKH + ∂i(vieKH) = 2 γKH eKH − STD , (3.5)

where γKH is the growth rate discussed in the previous section. This equation
shows the energy flow in a KH-unstable system. The first term in the right-hand
side, 2 γKHeKH takes energy from the large-scale quantities, which increases the
turbulent energy. The quantity STD represents the turbulent energy dissipation
at the end of the Kolgomorov scale, which dissipates the kinetic (and magnetic)
energy into thermal (internal) energy, and is transferred back to the large-scale
quantities.

Concerning the Kolgomorov term, we are using the same expression obtained
in Chapter 2, which was proposed following the arguments in Section 33 of Landau
and Lifshitz 1987, namely

STD = C
e

3/2
KH√

ρλKH
, (3.6)

where C is a constant that can be calibrated from numerical simulations (see
next sections).

In a practical application of the MInIT model one would have a sheared
velocity profile that is covered by a number of grid points and one would want
to model the sub-grid scale. In practice this means that, depending on the
resolution, the KHI could already be partially resolved. However, it is unlikely
that the full turbulent cascade is resolved by the simulation, given the extremely
large Reynolds numbers of the astrophysical applications considered (e.g., BNS
mergers). Therefore, the shear leading to the sub-grid turbulence can be either
large-scale shear present in the simulations (e.g., the shear produced at the
merger of two NSs), or that generated by eddies of the resolved turbulence of
the simulation (e.g., large-scale vortexes produced by KHI in the aforementioned
large-scale shear). One characteristic of Kolgomorov-type turbulence, such as the
one produced by the KHI (at least in the unmagnetised case) is that the energy
flux towards lower scales is constant across wave numbers and proportional to
v3/al [Landau and Lifshitz 1987], where v is here the velocity of the vortex
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at each scale al. One can consider that vortices at each scale break up into
smaller-scale vortices due to KHI that arises from the shear produced by those
vortices. One can estimate the scaling of the vortex velocity, wavelength, and
growth rate of the KHI as

v ∝ (al)1/3 , λKH ∝ al , γKH ∝ (al)−2/3. (3.7)

Since by increasing the grid resolution of the simulation one resolves smaller
scales al, the KHI at sub-grid scales has larger growth rates but, at the same
time, STD becomes larger as well. The amount of energy density in turbulence
in the fully turbulent case can be estimated by making the right-hand side of
Eq. (3.5) equal to zero, which implies a zero growth of the instability. This
yields an estimated value of

e KH, fully turbulent ∝ (al)2/3. (3.8)

The implication is that increasing grid resolution leads to a smaller amount of
turbulent energy density in the sub-grid model, as one would expect. This scaling
relation can be tested in numerical simulations as shown below in Section 3.3.2.
We also note, however, that as the resolution is increased the differential equations
to be solved become increasingly stiff, from the numerical point of view.

3.2.3 Closure relation

The main assumptions of the closure relation used for the MInIT model in
Chapter 2 is that the different stress tensors are proportional to the turbulent
kinetic energy density and that the proportionality coefficients do not depend
explicitly on time and position, which implies that the stress tensors have the
same time dependence as eKH. The closure relation between the turbulent energy
density, eKH and the stresses is the following:

M ij(t, r) = αKH
ij eKH(t, r) , (3.9a)

Rij(t, r) = 1
ρ(t, r)βKH

ij eKH(t, r) , (3.9b)

F ij(t, r) =
γKH

ij√
ρ(t, r)

eKH(t, r) , (3.9c)

where the factors involving the mass density in the last two equations are added
in order to make the coefficients dimensionless. These coefficients are calibrated
using numerical simulations and their values are discussed in the next sections.
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Table 3.1 List of KHI simulations. The middle column depicts the initial value of the magnetic
field for all our KHI box simulations. The number of cells for the low, medium, and high
resolution simulations is reported in the last column. The size of each side of the box is L = 1
and the characteristic width of the shear layer is al = 0.01.

NAME Bx0 N3
cells

KH-L1 3 × 10−4 1283

KH-L2 1 × 10−3 1283

KH-L3 3 × 10−2 1283

KH-M1 3 × 10−4 2563

KH-M3 3 × 10−2 2563

KH-H1 3 × 10−4 5123

KH-H2 1 × 10−3 5123

KH-H3 3 × 10−2 5123

3.3 Results

3.3.1 KHI box simulations

To calibrate and test the performance of the model we perform a series of box
simulations of the KHI displaying turbulence. We consider a periodic (in all
directions) three-dimensional Cartesian box of size L3, with L = 1. The initial
fields are similar to the ones employed by Carrasco, Viganò, and Palenzuela
2020:

ρ = ρ0 + ρ1 tanh
(

|y| − y±

al

)
, (3.10a)

vx = vx0 sgn(y) tanh
(

|y| − y±

al

)
+ δvx , (3.10b)

vy = δvy sgn(y) exp
{

(|y| − y±)2

σ2
y

}
, (3.10c)

vz = vz0 sgn(y) exp
{

(|y| − y±)2

σ2
z

}
+ δvz , (3.10d)

Bx = Bx0, By = 0, Bz = 0 , (3.10e)
p = p0 . (3.10f)

These initial conditions describe two shear layers located at y = y±. The values
considered in our simulations are y± = ±0.25, ρ0 = 1.5, ρ1 = 0.5, vx0 = vz0 = 0.5,
p0 = 1 and al = 0.01, where al is the characteristic width of the shear layer.
The parameters σ2

y = 0.01 and σ2
z = 0.1 are the scale of the initial velocity

perturbation in the y-direction and the profile of vz, respectively. The value
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Figure 3.1 Slices of the x-component of the velocity field at the xy-plane for the simulation
KH-M1. The panels show different times of the simulation, t = {2, 5, 10, 30}. The KHI sets in
from a shear layer configuration and reaches an isotropic and turbulent configuration at late
times (t = 30).

of Bx0 is a free parameter that we change for the different simulations. The
specific values are reported in Table 3.1. The sound Mach number, Ms = v0/cs,
is fixed to unity in all the simulations. The initial data are perturbed by seeding
small random perturbations in velocity, δvi, with amplitudes of 10−3. We note
that this is different to the sinusoidal perturbations used in Carrasco, Viganò,
and Palenzuela 2020. We consider an ideal gas EOS,

p = (Γ − 1)ρϵ , (3.11)

with Γ = 4/3.

We evolve these initial conditions using the Aenus code [Obergaulinger
2008] which solves the ideal MHD equations in its conservative form using
finite-volume methods. All the simulations were performed using the Harten-
Lax-van Leer (HLL) flux formula [Harten, Lax, and Leer 1983], a monotonicity-
preserving (MP) reconstruction of 5th order and a 3rd order Runge-Kutta time
integrator [Shu and Osher 1988].

The general qualitative behaviour of the simulations can be seen in Figure 3.1.
This figure displays a selection of slices in the xy plane of the x-component of
the velocity field, vx, for the simulation KH-M1 at four different times. At the
beginning of the simulation there are two shear layers which separate regions
with vx ≈ ±0.5. Once the instability sets in, vortices develop on these shears
and a turbulent isotropic state is reached. The process progressively smooths
and finally erases the initial shear by transporting linear momentum in the y

direction. Figure 3.2 shows similar slices at the same snapshots but for the
y-component of the velocity. It is apparent that at early times vy is characterised
by localised perturbations that later merge into a more extended region from
t = 5 onwards.
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Figure 3.2 Slices of the y-component of the velocity field at the xy-plane for the simulation
KH-M1. From left to right the selected times correspond to t = {2, 5, 10, 30}.

Figure 3.3 shows the time evolution of the contribution of each magnetic-field
component to the total averaged magnetic energy density

emag
i = B2

i

2 , (3.12)

for different grid resolutions and initial magnetic field strength Bx0. The
saturation level of the turbulent magnetic field depends on the two of them.
At low resolution (1283 cells, blue curves) we find a monotonic increase with
the initial field strength (the three values used for the field strength can be
distinguished by a different type of line, as indicated in the caption). Keeping
the initial field fixed, the energy of the final turbulent field increases when
doubling the resolution to the intermediate grid of 2563 cells. A subsequent
twofold increase of the resolution to the finest grid of 5123 cells, however, does
not change the results by the same degree. Therefore, at this resolution, we
approach a state in which the differences between weak and strong initial fields
are small. For the case of model KH-H3, with the largest initial magnetic field
of the models surveyed, Bx0 = 3 × 10−2, the saturated magnetic energy in the
x-direction is more than an order of magnitude larger than the energy of the
rest of the simulations, with lower initial magnetic fields.

Correspondingly, Figure 3.4 shows the time evolution of the contribution of
each component of the kinetic energy to the total averaged value of this quantity
for the same simulations shown in Fig. 3.3. The expression for each component
is

ekin
i = 1

2ρv2
i . (3.13)

Leaving aside the small effect introduced by the initial random perturbations,
the only non-vanishing components of the initial velocity field are vx and vz

(left and right panels, respectively). These components remain nearly constant
during the evolutions (and so do ekin

x and ekin
z ). However, the ekin

y component
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Figure 3.4 Time evolution of the x, y, and z components of the averaged kinetic energy
density. As in Fig. 3.3, the colors represent different gird resolutions and the various line styles
correspond to different initial magnetic field strengths Bx0.

(middle panel) grows exponentially during the early phase of the evolution to
saturate and then slowly decrease. No constant state has yet been reached by
the end of our simulations. This behaviour of ekin

y is due to the transport of
linear momentum across the shear in the y direction. This leads to the mixing of
the positive and negative parts of the velocity field which results in the decrease
of the velocity components shown in Fig. 3.2, while conserving the initially
(almost) zero linear momentum. No remarkable qualitative differences are found
among the simulations. It is worth stressing that the y-component of the kinetic
energy achieves a lower value for stronger initial magnetic fields, regardless of
the resolution.

In Figure 3.5 we depict five snapshots of the evolution of the kinetic energy
spectra for different grid resolutions. The spectra were calculated in the same
way as in Simon, Hawley, and Beckwith 2009. One can see that the inertial
range of the spatial scales, parallel to the Kolmogorov slope ∝ k−5/3 (dashed
line), goes from scales smaller than the characteristic scale of the initial shear
(vertical line) to scales at which there is dissipation into internal energy. The red
shaded region represents the interval of scales for which we employ box filters
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Figure 3.5 Snapshots of the kinetic energy spectra for different gird resolutions (corresponding
to models KH-L1, KH-M1, and KH-H1 in Table 3.1). The dashed line corresponds to the
Kolgomorov slope k−5/3. The red shaded region shows the range in which box filters are
applied. All of them are located inside the inertial range of spatial scales. The vertical black
line refers to the wavenumber of the initial shear, kKH.

(see below), ensuring that we are inside the inertial range. As expected, as the
grid resolution increases, the dissipation scales become smaller.

3.3.2 Averaging procedure

Our aim is to compare the numerical box simulations with the MInIT model in
order to calibrate its free coefficients. In this procedure the KHI box simulations
play the role of the true solution of the ideal MHD equations (although it should
always be kept in mind that the accuracy of the numerical solution does depend
on the finite numerical resolution and on the order of the numerical method).
Using the true solution we perform averages over a certain length scale in order
to achieve a separation between the large-scale (averaged) features and the small
(turbulent) scales that we want to test with MInIT. Given that the result of
the simulation does not depend on the sub-grid model itself, this procedure
provides an a-priori test of the model. On the other hand, a-posteriori tests
would involve performing the simulations with the MInIT model coupled to
the dynamics. Those go beyond the scope of the current Chapter and will be
presented elsewhere.

The averaging procedure that we use consists in a box filter, identical to the
one we employed in Chapter 2. We perform the average over S3

f cells, where
Sf = ∆f /∆ labels each filter size, ∆ is the size of the cell of the DNS, and ∆f

is the filter size. Note that ∆f is related to the scale λ defined in Section 2.2.
Following Carrasco, Viganò, and Palenzuela [2020] we characterise the box filter
with the following normalised kernel,

Fi(|ri − r′
i|) =

{
1/∆f if |ri − r′

i| ≤ ∆i
f /2 ,

0 if |ri − r′
i| > ∆i

f /2 ,
(3.14)
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.

for each dimension i. The three-dimensional kernel is thus

F (|r − r′|) =
3∏
i

Fi(|ri − r′
i|) . (3.15)

As a first application of this filter we test the validity of Eq. (3.8) that
predicts that the kinetic energy density in the sub-grid scales for fully developed
turbulence depends on the filter size ∆f . Figure 3.6 shows the evolution of
eKH∆−2/3

f during the entire evolution of simulation KH-M1 for three filter sizes.
We observe that this quantity is almost independent of ∆f , even at early times.
At late times (t ≳ 20) small deviations become more visible. Those could be
related to the fact that, since the turbulent cascade is not fully resolved down
to the dissipation scale, the smallest scale is only a factor ∼ 10 smaller than
the averaging scale. Therefore, the assumption that there is a large separation
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of scales, used in the derivation of Eq. (3.8), starts being compromised. This
results in a small deficit in the turbulent energy density due to the unresolved
scales. In addition, in Figure 3.7 we depict the evolution of γKH∆2/3

f for the
same resolution and filter sizes. According to Eq. (3.7) this quantity should also
be independent of the filter size. As the figure shows, during the turbulent phase
of the simulation (t ≳ 20) the scaling holds precisely.

3.3.3 Numerical implementation and calibration of the MInIT model

3.3.3.1 Energy density evolution equations in the MInIT model

In order to apply the MInIT model one has to integrate numerically Eqs. (3.5)
in time, starting with appropriate initial values at t = 0, eKH(0). Those initial
conditions are discussed in Section 3.3.3.3 below. For our KHI simulations the
average velocity v is almost zero for the x component, since both signs cancel
out when averaging over the entire box (and taking both sides of the shear
layers). Likewise, the averaged component in the y direction is also zero since
we only consider random perturbations for this component. The only non-zero
component will be vz, and we should therefore consider the advective term in
this direction. However, since the simulations have periodic boundary conditions
in the z direction, any spatial average along this direction will be independent
of the advection. Therefore, for the same reason as in Chapter 2, we can safely
neglect the advection term for the tests in this work.

We perform our analysis in points centered at the shear layers of the initial
conditions, y± = ±0.25, points where we compute all averaged quantities.
Performing the analysis in multiple points in the xz-plane (and different times)
allow us to build more statistics for our results. Additionally, we compute
auxiliary averages centered in y± ± ∆f , that allow us to evaluate y derivatives
at the shear. These different averages mimic the coarse numerical cells that one
would have in simulations using the sub-grid model. They are used to compute
the quantities needed in the model, in particular the growth rate and the KHI
length scale needed for the turbulent source term given by Eq. (3.6).

For the growth rate of the turbulent energy density, γKH, we assume the
values discussed in Section 3.2.1 obtained from Miura and Pritchett 1982 (see
Eq. (3.1)). To evaluate this rate we need information from the simulation about
the value of the velocity jump of the shear and of the characteristic length scale
al. Those values are known for the initial conditions, but they are significantly
modified as the simulation proceeds. Hence, a way of evaluating the rate is to
substitute the term v/al by ∂yvx in Eq. (3.1). Note that for the initial data this
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yields exactly ∂yvx = vx0/al. Numerically, the partial derivative is evaluated
using centered finite differences to the coarse grid cells defined above,

γnum
KH,± ≈ Aγ∂yvx ≈ Aγ

v̄y(y± + ∆f ) − v̄y(y± − ∆f )
2∆f

, (3.16)

and then averaged for different points in the xz plane and over the ± shears
to obtain a single value of γKH. Note that instead of using the same numerical
constant as in Eq. (3.1) we use a generic constant Aγ . This constant should be
close to 0.14 according to Miura and Pritchett 1982 but, since it may depend on
the exact conditions at the shear (see Section 3.2.1), we leave it free at first; its
value is discussed in the next sections.

Regarding the Kolgomorov term from Eq. (3.5), the wavelength of the
instability is discussed in Section 3.2.1 following the work of Miura and Pritchett
1982 (see Eq. (3.2)), and is proportional to the shear length scale al. Since
we only want to model shears at the lower possible scale (see discussion in
Section 3.2.2) we assimilate the value of al in the estimation of λKH to simply
∆f . Therefore, in practice Eq. (3.2) is evaluated as

λKH ≈ 15.8∆f . (3.17)

Finally, we use the Strang splitting method [Strang 1968] to solve Eq. (3.5),
since this partial differential equation is generally stiff, due to the exponential
growth of the quantities.

3.3.3.2 Calibration of the coefficients of the model

We compute the coefficients αKH
ij , βKH

ij and γKH
ij that appear in Eqs. (3.9)

similarly as it was done in Chapter 2, where the stress tensors were obtained by
averaging over the whole box and over a representative time of the simulation.
In the KHI case we perform averages over smaller boxes, with size similar to
the wavelength of the unstable mode (Eq. (3.2)), since we assume that we are
able to resolve this initial fastest growing mode. After that, we obtain a single
value of the coefficients by averaging over all the boxes of size ≈ λKH. One of
the assumptions of the MInIT model is the proportionality between the different
stresses and eKH (see Section 3.2.3), which also implies a proportionality among
the different stresses themselves. Fig. 3.8 shows that this proportionality is
actually only achieved at later times in the simulation, when turbulence is fully
developed. For early times the components of the Reynolds stress that involve
vx start from large values and do not have an exponential growth, due to the fact
that this component represents the shear that is decreasing with time. Therefore,
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Table 3.2 Time average of the coefficients of the closure equations of our model, Eqs. (3.9).
The uncertainty arises from both the time average of the coefficients themselves and the spatial
average of the stress tensors used to calculate the coefficients.

αKH
ij βKH

ij γKH
ij

xx 0.7 ± 0.3 0.74 ± 0.05 -
yy 0.64 ± 0.18 0.64 ± 0.03 -
zz 0.64 ± 0.19 0.61 ± 0.04 -
xy −0.01 ± 0.03 −0.01 ± 0.03 −0.010 ± 0.017
xz −0.02 ± 0.03 −0.041 ± 0.035 −0.01 ± 0.03
yz −0.026 ± 0.025 −0.02 ± 0.03 −0.008 ± 0.015

we will only consider late simulation times (t > 20) for our calculations. This
might be regarded as a limitation of the model. However, this drawback only
affects during very short transients, since the exponential growth happens on a
very short timescale compared to the duration of the simulation.

The estimated values of the coefficients that we obtain are reported in
Table 3.2. These values are the average of those corresponding to simulations
KH-H1 and KH-H2. The initial magnetic field strength of the run KH-H3 is so
large that the magnetic energy dominates over the kinetic energy, and the results
differ considerably from the other two cases. We believe that this is not the
regime we are interested in, in the context of BNS mergers, since magnetic fields
are small (1010 - 1012 G) when the merger occurs [Lorimer 2008]. Therefore, we
compute the coefficients using only the simulations with lower initial magnetic
field. We find that the diagonal components of αKH

ij and βKH
ij are all positive.

All non-diagonal components of the stresses are much smaller than the diagonal
ones, and most of them are also compatible with zero.

By averaging over space and time (for t ≳ 20), we are assuming that there
are no statistical spatial or temporal variations in the averaging domain and
all samples (points and times) are representative of the same quantity we want
to measure. We depict the temporal behaviour of the coefficients in Figs. 3.9
and 3.10 for the diagonal and non-diagonal components of the coefficients,
respectively, computed only from spatial averages. The shaded regions in both
figures represent the standard deviation from the spatial average of the stress
tensors. The coefficients almost do not change in time (except αKH

ij ), and the
uncertainty comes from their spatial variability. The diagonal αKH

ij coefficients
have larger uncertainties due to their increase in time (see Fig. 3.9). This increase
is due to the fact that the turbulence is decaying (and the turbulent kinetic
energy goes down) while the turbulent magnetic energy slowly increases up to
equipartition with the kinetic component.
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Figure 3.8 Time evolution of the components of the Maxwell (top), Reynolds (middle) and
Faraday (bottom) stress tensors for the simulation KH-H1. The Reynolds and the Faraday
stress tensors include factors with the mass density to have the same dimensions that eKH.
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Figure 3.10 Time evolution of the non-diagonal components of the αKH, βKH and γKH
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average over the whole simulation.

3.3.3.3 Optimisation of the C and Aγ parameters of the model

After the values of the coefficients of the closure relations have been obtained we
still need to fix the values of two additional free parameters: the dimensionless
constant C from Eq. (3.6) and the factor Aγ from Eq. (3.16). From Eq. (3.1)
we already know that we can estimate Aγ = 0.14. However, before adopting this
particular value, we explore the dependence of our results with other possible
values for this constant. To do so we compare in Fig. 3.11 the time evolution of
eKH as computed directly from the simulation KH-H1 with its value computed
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Figure 3.11 Time evolution of eKH (solid lines) using the MInIT model for different values of
constants C and Aγ . The black dashed line shows the data from the simulation KH-H1 and
the red dashed line highlights the case with the optimal value for C.
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Table 3.3 Optimal values of the parameter C that minimise the L2-norm of the Maxwell and
Reynolds stress tensors for different filter sizes. The last column reports the mean values of
the two.

Optimal values of the C parameter
KH-H1 KH-H2 MEAN

Sf = 40 9.3 ± 1.5 8.3 ± 1.5 8.8 ± 1.5
Sf = 48 10.7 ± 1.5 9.3 ± 1.5 10.0 ± 1.5
Sf = 56 11.7 ± 1.5 10.3 ± 1.5 11.0 ± 1.5

from the MInIT model for different values of C and Aγ . Our goal is to find
the optimal values of these two constants matching the evolution given by the
simulation. Fig. 3.11 shows that for a wide range of values of Aγ it is always
possible to find a value of C that yields an evolution of eKH close to the simulation
values. Therefore, given the weak dependence of the results with Aγ we fix it
to the value discussed in Section 3.2.1, i.e. Aγ = 0.14 and proceed with the
optimization for C alone.

To optimise the value of C, we minimise the differences between the results
from the DNS and our model. These differences are estimated using the L2

(relative error) norm,

L2 =

√√√√1
2
∑

i

(xi
s − xi

m)2

(
1∑

j (xj
s)2

+ 1∑
j (xj

m)2

)
, (3.18)

where xi
s are the data from the numerical simulation, and xi

m are the data from
the model. As in Chapter 2 we sum over all spatial values and components
of the Maxwell and Reynolds stress tensors for each time iteration, and then
we compute the root mean square over time to obtain a single value. We do
not consider the Faraday stress tensor components because their values are
considerably lower than those of the other stresses. The resulting optimal value
is:

Copt = 10.6 ± 1.5 . (3.19)

The upper and lower bounds indicate 10% variations of the minimised L2-
norm. It is worth noting that this value is fully compatible with the one we
obtained for the MRI case in Chapter 2. Our final single value of Copt has
been obtained after averaging over different filter sizes using both the KH-H1
and KH-H2 simulations. For the same reason of Section 3.3.3.2 the simulation
KH-H3 was discarded in the calibration of C. The filter sizes used span from
∆f = 40∆ to ∆f = 70∆, an interval which is inside the inertial range of scales.
Table 3.3 reports the optimal values of C for different filter sizes. The sizes
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Figure 3.12 A-priori test of the MInIT model: time evolution of the L2-norm of the Maxwell
(left), Reynolds (middle), and Faraday (right) stresses. The norm represents the difference
between the quantities computed from the model and the ones from the output of the
simulations, as shown in Eq. (3.18). We use data from simulations KH-H1 (solid lines), KH-H2
(dashed lines) and KH-H3 (dash-dotted lines). The L2-norm is ∼ 1 for the Maxwell and
Reynolds stress tensors while it is ∼ 10 for the Faraday tensor.

that we use are also valid for the simulations with lower resolution, since they
correspond to scales inside the inertial range in these cases too.

3.3.4 An a-priori test of the model

To close our investigation we next present an a-priori test of our MInIT model
for the KHI, paralleling what we did in Chapter 2 for the MRI. To do so we
compute the L2-norm of the difference between the numerical data, xi

s, and
the data obtained with the evolution equations of the model, xi

m, using the
optimised coefficients. Figure 3.12 shows the time evolution of the norm for the
three stress tensors and different filter sizes, for the simulations with the highest
resolutions.

In the cases with the lowest initial magnetic fields (simulations KH-H1 and
KH-H2) the L2-norm of the Maxwell and Reynolds stresses lays below ∼ 1 for all
filters and at all times. For the highest magnetic field simulation (KH-H3) the
norm is slightly above 1 for the Maxwell stress, but still around 1 for the Reynolds
stress. This result implies that the model is able to give an order-of-magnitude
estimate of the evolution of the Reynolds and Maxwell stresses. However, the
norm for the Faraday tensor is higher, around 10, for the same reason it also was
in the MRI case. The discrepancy is higher for the Faraday tensor simply because
the time and spatial averages of the proportionality coefficients render difficult
to capture the variability and the change of sign of this tensor components. All
in all, the comparison of this a-priori test with our previous results for the MRI
are consistent and promising. In our former work, the values we obtained for
the L2 norm of the Maxwell and Reynolds stresses were also ∼ 1 for both the
MInIT model and the gradient sub-grid model, and around 10 for the Faraday
tensor at late times.
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Figure 3.13 L2-norm of the Maxwell (left), Reynolds (middle) and Faraday (right) stress
tensors of the MInIT model for different filter sizes, computed over space and time-averaged.
Again, the norm represents the difference between our model and the output of the simulations,
as shown in Eq. (3.18). Colours correspond to simulations with different initial magnetic field,
as indicated in the legend.

Finally, we depict in Figure 3.13 the dependence of the model performance
on the filter size, by computing the root mean square of the L2-norm over time.
As we found for the MRI, the norm is almost independent of the size of the
filter. Moreover, it attains slightly lower values for larger filter sizes. We added
here a larger filter size, Sf = 70, that corresponds to the inertial range of scales
for the simulations with the highest resolution (KH-H1, KH-H2 and KH-H3).

3.4 Discussion and conclusions

There are many examples of astrophysical systems for which the proper numerical
modelling of their dynamics is severely hampered by insufficient computational
resolution. A particularly good example is that of fluids at high Reynolds
number where the available resolution of grid-based codes for direct numerical
simulations is usually inadequate to capture the physics at all scales. Relativistic
astrophysical systems such as BNS mergers or CCSNe may therefore be affected
by a deficient modelling when attempting to numerically resolve the amplification
of magnetic fields or the transition to fully fledged turbulence from the growth
of dynamical instabilities at small scales. However, being able to resolve the
KHI and the MRI is essential for a faithful representation of the postmerger
evolution of the remnant in BNS mergers.

Notwithstanding the significant progress achieved through DNS, it is still not
possible to capture all the (extreme) physics characteristic of those astrophysical
systems. An alternative to performing costly high-resolution simulations are sub-
grid models that attempt to express the effects of the turbulent scales in terms of
resolved quantities. Several of those models have been recently implemented in
numerical simulations of BNS mergers, such as the α-viscosity and the gradient
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models [Giacomazzo et al. 2015, Shibata, Kiuchi, and Sekiguchi 2017, Shibata,
Fujibayashi, and Sekiguchi 2021, Viganò, Aguilera-Miret, and Palenzuela 2019,
Carrasco, Viganò, and Palenzuela 2020, Viganò et al. 2020, Palenzuela et al.
2022, Aguilera-Miret, Viganò, and Palenzuela 2022].

In this Chapter we have presented an extension of our new sub-grid model
MInIT, an MHD-instability-induced-turbulence mean-field model we first pro-
posed in Chapter 2. In our previous investigation we assessed MInIT in the
context of the modelling of turbulence generated by the MRI. In the present
work we have focused on evaluating MInIT for resolving KHI-induced turbulence.
The main appeal of our model is that it is physically motivated, being based
on the estimation of the turbulent stress tensors through the modelling of the
temporal evolution of a turbulent energy density of the instability. The model
consists in evolution equations for the turbulent energy densities plus a closure
relation that allows computing all turbulent stresses as proportional to those
energy densities. Moreover, it takes into account the fastest growing mode of
the instability and the dissipation of the energy at the end of the Kolmogorov
cascade. While in our previous work on the MRI MInIT required two evolution
equations, one for the MRI and a second one for the turbulence itself (the PIs),
for the modelling of the KHI only one evolution equation has been needed.

The MInIT model depends on several coefficients and constants that must
be calibrated. This has been done using numerical box simulations of the KHI
in which part of the turbulent cascade is resolved and convergence is achieved,
at least in the main global features. We have observed that the calibration of
the constants does not depend strongly on the numerical resolution used in the
simulations or on the initial value of the seed magnetic field, as long as it is
weak. For high magnetic fields, however, some deviations have been found.

We have assessed the performance of the MInIT model for the KHI in the
same way we previously did for the MRI in Chapter 2, i.e., via an a-priori test.
We have used data from DNS and applied a box filter to see the difference
between the quantities given by the model and the filtered ones. To do so, the L2

relative error norm was used to quantitatively compare with the numerical data.
We have found that the values of the L2 norm lay below ∼ 1 for the Maxwell
and Reynolds stresses. Therefore, we are able to obtain order-of-magnitude
accurate estimates of these stresses with our model. In comparison with the
MRI version, the MInIT model for the KHI performs slightly better, since the
data from the simulation and the modelled stresses have been found to differ
less. More precisely, the discrepancy is less than an order of magnitude, which
is an achievement worth mentioning given the simplicity of the model.
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For the Faraday stress tensor the results are worse; the typical values of the
L2 relative error are around 10 at most. This could be explained by the fact
that the model coefficients we found for the Faraday tensor components are
actually compatible with zero (a similar result was obtained in Chapter 2 for the
MRI). This means that our model is compatible with setting the Faraday stress
to zero. However, in reality the Faraday tensor components should probably
have some small (but non-zero) value. Its magnitude is actually relevant since it
impacts the ability of the model to develop large-scale turbulent dynamos that
may operate in BNS mergers and magnetar formation.

In order to obtain more accurate measurements of the Faraday stress one
should build more statistics. Increasing the computational time of the simulations
might help to some extent. However, since our simulations are effectively ones of
decaying turbulence, their time extension is limited by nature. Alternatively, one
could explore the case of driven turbulence which shares some similarities with
the box simulations displayed in this work. In this case, the sustained nature of
the turbulence would allow for longer simulations and build more statistics.

Furthermore, we have also found that our sub-grid model shows no strong
dependence on the filter size Sf . This is something to keep in mind, since an
ideal sub-grid model should work properly in the limit Sf → ∞. Simulations
with different initial magnetic field amplitudes (always in the regime of weak
amplitude) yield similar values of the L2-norm, which is reassuring.

Together with the version of MInIT developed for the MRI in Chapter 2, the
sub-grid model presented in this work could eventually be applied to different
astrophysical systems, in particular in the study of the dynamics of the merger
and postmerger phases in BNS coalescences. The early phase of the merger, when
both NSs make contact, is characterised by the excitation of the KHI, which can
lead to a substantial amplification of the magnetic field of the system, provided
turbulence is properly captured. This is something we plan to investigate with
the model put forward in this Chapter. However, before doing that some extra
work should be carried out in the present version of the model. In particular,
we plan to relax some implicit assumptions of the model, such as considering
weak magnetic field seeds or large Reynolds numbers. Our future goals are
the generalisation of MInIT to account for a wider range of physical conditions
and its implementation in numerical simulations using a GR framework. The
generalisation to curved spacetimes will require the inclusion of metric-dependent
terms in the right-hand side of equations for the unresolved turbulent energy
densities as well as for the large-scale fluid and magnetic field. The additional
terms do not change the basic character of the hyperbolic system and can be
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treated using standard techniques for dealing with local source terms in GRMHD.
The details of such an implementation will be addressed in future work.



CHAPTER 4

Effective angular momentum transport in
differentially rotating neutron stars

4.1 Introduction

As previously discussed in the Introduction (Section 1.3), the MRI is the respon-
sible mechanism for angular momentum transport in differentially rotating NSs
and accretion discs. In Section 1.2 (and references therein) we have seen that
differential rotation in HMNS remnants provides the centrifugal support needed
against gravity to delay the collapse to a BH. However, weak magnetic fields,
together with a negative gradient of the angular frequency, trigger the MRI.
Channel modes develop in the vertical direction and grow exponentially, gener-
ating turbulence and changing the dynamics of the bulk flow. One important
consequence is the effective angular momentum transport in the remnant star.
The damping of the differential rotation reduces the support against gravity and
triggers the collapse of the star. Therefore, the lifetime and stability of HMNS
remnants strongly depend on the development of MHD instabilities such as the
MRI, which lead to viscous turbulent dissipation. It is also worth mentioning
that the stability of PNSs, which also exhibit rapid differential rotation at birth,
can be also influenced by the development of the MRI.

In spite of the enormous efforts made by the NR community to produce
accurate simulations of astrophysical scenarios such as BNS mergers and CCSNe,
the big amount of physics involved makes it very challenging. One key issue is
capturing small-scale turbulence, as mentioned in Section 1.3 (and references
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therein). The prohibitive spatial resolution required to resolve all the scales
involved prevents simulations from properly describing the turbulence triggered
by MHD instabilities. As an alternative, LES are starting to be used in sim-
ulations of BNS and NSBH mergers (see Section 1.2). This approach aims to
model, with the application of a sub-grid closure, the small-scale turbulence in
terms of resolved quantities. More precisely, this approach aims to provide a
closure for the turbulent stress tensors, which appear in the nonlinear mean-field
MHD equations.

In Chapters 2 and 3, I have presented a new sub-grid model for MHD turbu-
lence triggered by the MRI (Chapter 2) and the KHI (Chapter 3), which are
the dominant MHD instabilities in BNS mergers. The model, named MInIT, is
based on evolution equations for the turbulent kinetic energy densities. These
equations are built using phenomenological arguments that are physically mo-
tivated. The turbulent densities are connected to the stress tensors through
certain calibrated coefficients. After performing an a-priori test of the model,
numerical simulations of differentially rotating NSs prone to the MRI are carried
out in this Chapter. As we will show below, by including the corresponding
stresses in the momentum equation and inserting the evolution equations for
the MRI and PI energies in the numerical code, effective angular momentum
transport arises in simulations which lack enough resolution to solve the MRI.

This Chapter is organised as follows: in Section 4.2, I present the mean-field
MHD equations with the inclusion of the turbulent stresses. The numerical
methodology is discussed in Section 4.3 and the results are showcased in Sec-
tion 4.4. Finally, conclusions are drawn in Section 4.5. Unless otherwise stated,
cgs units are employed. Latin indices run from 1 to 3.

4.2 Mean-field MHD equations

In Section 2.2 the foundations of mean-field MHD have been already discussed.
By taking the Newtonian ideal MHD equations and applying a filtering operation,
the equations can be written in terms of mean quantities (resolved scales in
numerical simulations) and also of the average of combinations of the fluctuations
(unresolved scales). The mean of combinations of two fluctuating variables can
be represented by

M ij = b′
ib

′
j , (4.1)

Rij = v′
iv

′
j , (4.2)

F ij = v′
ib

′
j − v′

jb′
i , (4.3)
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which are, respectively, the Maxwell, Reynolds and Faraday turbulent stress
tensors, respectively. A sub-grid model provides a closure relation between these
quantities and the resolved ones that allows to write the system of equations as
a closed system amenable to be solved numerically. The system of equations to
be solved is

∂tρ + ∇j

[
ρvj
]

= 0, (4.4)
∂tp

i + ∇j

[
pivj + P⋆δij − bibj

]
= f i, (4.5)

∂te⋆ + ∇j

[
(e⋆ + P⋆)vj − bivib

j
]

= f jvj , (4.6)
∂t⃗b = −c∇⃗ × E⃗, (4.7)

∇jbj = 0 , (4.8)

where pi = ρvi, P⋆ = Pgas + b2/2, e⋆ = eint + ρv2/2 + b2/2 and f i is an external
force density. Since the aim of this work is to solely study the angular momentum
transport, we focus on the mean-field form of the momentum equation:

∂tp̄
i + ∇j

[
ρ̄v̄iv̄j + P̄⋆δij − b̄ib̄j + ρ̄R̄ij + Tr

{
M̄
}

δij − M̄ ij
]

= f̄ i . (4.9)

The Maxwell and Reynold stresses that appear in Eq. (4.9) are modelled
with the turbulent kinetic energy densities of the MRI and PI, with evolution
equations

∂teMRI + ∇j(v̄ieMRI) = 2 γMRI eMRI − 2 γPI ePI (4.10)
∂tePI + ∇j(v̄iePI) = 2 γPI ePI − STD . (4.11)

The explicit form of the MRI, γMRI, and parasitic, γPI, growth rates and
the Kolmogorov term, STD, can be found in Eqs. (2.36), (2.56) and (2.74),
respectively. The coefficients that link the MRI and parasitic turbulent energies
with the stress tensors are presented in Eqs. (2.49)-(2.53) and in Table 2.2,
respectively. By applying the closure relation from Eq. (2.63), one can obtain
the time evolution of the turbulent stresses.

4.3 Numerical methods

4.3.1 Initial models

The differentially rotating equilibrium models are computed using the Newtonian
version of the code described in Dimmelmeier, Font, and Muller 2002, based on
Hachisu’s self-consistent field method [Komatsu, Eriguchi, and Hachisu 1989].
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The rotation law of the equilibrium model is the following:

Ω(ϖ) = Ωc
1

1 + ϖ2

A2

, (4.12)

where ϖ = r sin θ is the distance to the rotation axis, A is a positive con-
stant [Komatsu, Eriguchi, and Hachisu 1989] and Ωc is the value of Ω, the
angular frequency, at the coordinate centre. In the limit case where A → ∞,
the star becomes a rigid rotator. The initial values of the turbulent energy
densities of the MRI and the PI will be a fraction of the total kinetic energy
density. Since these energies grow rapidly in time, we set them to be 10−12

and 10−13 times smaller, respectively. This choice is quite arbitrary, since the
saturation amplitude of the MRI is quite insensitive to the amplitude of the seed
perturbations, as discussed in Chapter 5.

Regarding the EOS, a polytropic relation between the pressure P and the
rest-mass density ρ is employed:

P = Kργ , (4.13)

with γ = 2 and K = 145529.19 (in cgs units).
A dipolar magnetic field is implemented as in Suwa et al. 2007, with the

following effective vector potential:

Ar = Aθ = 0 , (4.14)

Aϕ = B0

2
r3

0
r3 + r3

0
ϖ, , (4.15)

where Ar, Aθ and Aϕ are the components of the vector potential (in a spherical
coordinate system), r is the radial coordinate, and r0 and B0, which is the value
of the magnetic field at the centre of the star, are model constants.

4.3.2 Numerical implementation

The initial conditions are evolved using the Aenus code [Obergaulinger 2008]
which solves the ideal MHD equations in its conservative form using finite-volume
methods. The simulations are performed using the HLL flux formula [Harten,
Lax, and Leer 1983], a Piecewise Parabolic Method (PPM) reconstruction for
cell interfaces [Colella and Woodward 1984] and a 3rd order Runge-Kutta time
integrator [Shu and Osher 1988]. For the spatial grid, the code employs spherical
polar coordinates (r, θ, ϕ) and axial symmetry with respect to the rotation axis
is assumed. The number of grid cells is (Nr, Nθ, Nϕ) = (396, 128, 1). Since the
MInIT coefficients are computed in cylindrical coordinates, a change of basis
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from cylindrical to spherical coordinates is required. Furthermore, the angular
frequency, Ω, and the shear, q, are computed from the angular velocity, vϕ. For
the radial direction, boundary conditions that deal with the geometric singularity
of the origin, and a constant extrapolation at the outer edge of the grid were
employed. Regarding the polar direction, conditions adapted to the polar axis
were used, and for the azimuthal direction, periodic boundary conditions were
applied.

In order to solve Equations (4.10) and (4.11), the code employs high-resolution
shock capturing schemes for the transport of the energies, as done for the other
MHD quantities. For the sources, which can have stiff source terms and therefore
result in numerical difficulties, an implicit integration with an splitting operator
of the hyperbolic terms is employed, similarly to what Just, Obergaulinger, and
Janka 2015 did to deal with neutrinos.

4.4 Results

We now discuss the results from the evolution of the differentially rotating
NS with and without the implementation of the MInIT model. The initial
configuration possesses a central angular frequency with a value Ωc = 2887.9 s−1

and A = 5 km. The central rest-mass density is ρc = 7.9 × 1014 g/cm3. The NS
has a gravitational mass Mgrav = 2.6 M⊙ and an equatorial radius Req = 18.5
km, corresponding to a HMNS for this choice of EOS. The magnetic dipole is
characterised by B0 = 7.0 × 1013 G and r0 = 12 km. In order to avoid spurious
dynamics near the surface of the star, the evolution of the turbulent energy
densities is limited to regions with densities above ρthresh = 2.5 × 1014 g/cm3,
which corresponds to an equatorial radius of about ≈ 14 km. Moreover, the
evolutions are performed up to t = 75 ms, a plausible timescale for this kind of
scenario.

Figure 4.1 depicts the time evolution of the turbulent energy densities av-
eraged over surfaces of different radii. The total kinetic energy density is also
added for the sake of comparison, and it is more than 3 orders of magnitude
larger than the turbulent energies. In the left panel the average is performed
over the whole domain of evolution of the energies (given by ρthresh), whereas in
the right panel the average is carried out over a surface of radius r = 3.5 km.
Both cases show the same exponential growth of eMRI and the super-exponential
increase of ePI, as one would expect from Fig. 2.9. However, turbulence is not
self-sustained and decays when considering distances close to the center, where
angular momentum transport is more effective. Moreover, the large-scale kinetic
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Figure 4.1 Left panel: time evolution of the turbulent energy densities, eMRI (in blue) and ePI
(in red), together with the total kinetic energy density (dashed black line), averaged over the
surface given by ρthresh. Right panel: same as the other panel, but the average is carried out
over a radius of r = 3.5 km, where turbulence eventually starts decaying.
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Figure 4.2 Radial profiles of the shear factor at the equator for different times (t = {1, 45, 60, 75}
ms). Due to angular momentum transport, the degree of differential rotation lessens, leading
to q → 0 in this region.

energy density slightly decays as well, since the angular momentum is being
transferred to larger distances. This is corroborated with Figure 4.2, where
radial profiles of the shear factor q are depicted at different times. The shear
factor q reduces to 0, and the positive source term of the evolution equation
for the MRI energy density (Eq. (4.10)) vanishes. This results in a gradual
decrease of the turbulent energy densities, since the only non-vanishing term
in the right-hand side of Eq. (4.10) is negative. This makes that the parasitic
energy density decreases as well.

Figure 4.3 shows the radial profiles of the angular frequency Ω at two different
angles θ = 45◦, 90◦ and different times. The dashed curves correspond to a
simulation that includes the MInIT model, whereas the solid curves correspond
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Figure 4.3 Radial profiles of the angular frequency Ω at θ = 45◦ (left panel) and θ = 90◦ (right
panel) for different times (t = {1, 15, 30, 45, 60, 75} ms). The solid lines represent the results
of the simulation without the MInIT model, whereas the dashed lines depict the simulation
that employs it. When the sub-grid model is applied, effective angular momentum transport
is triggered, reducing the central angular frequency more than a factor 2.

to the same simulation without the model. During the first ∼ 15 ms, the profiles
for both cases look the same. Since the turbulent energy densities are still
growing (see Figure 4.1), no effects are visible in the bulk flow. At later times,
the MRI has already reached saturation and its effects start being evident. The
profile flattens, reducing the degree of differential rotation (see Figure 4.2) and
its angular velocity, as one would expect. Even though the solid curves also
decrease in amplitude, this is due to numerical dissipation, and its effect is not
as big as the angular momentum transport triggered by the MRI. Figure 4.4
compares two identical simulations without the sub-grid model that only differ
on the number of radial cells (Nr = 396 and Nr = 198). The rotational profile
flattens more rapidly in the simulation with lower radial resolution (dashed
curves), due to the increased numerical dissipation. This issue should be further
explored with additional simulations with different spatial resolutions.

Figure 4.5 displays the radial profiles of the MRI (upper panel) and PI (lower
panel) energy densities. Initially, the energies attain very small values, but they
increase very rapidly up to a uniform saturation amplitude. This value is almost
constant through the whole domain because the MRI growth rate, γMRI = 0.5qΩ
and wavelength, λMRI, are also mostly constant, as well as the magnetic field
inside the star (no effective dynamo is inserted and therefore the magnetic field
is not amplified by the MRI). As time goes by, the amplitude of the energy
densities decreases gradually, as the degree of differential rotation is reduced due
to the transport of angular momentum.
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Figure 4.5 Radial profiles of the turbulent energy density of the MRI (upper panel) and the PI
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regions, where angular momentum transport takes place, the amplitude decays in time.
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4.5 Discussion and conclusions

In this Chapter, I have assessed the performance of the MInIT model (presented
in Chapter 2) in a numerical simulation of a differentially rotating NS prone
to the MRI. The lack of spatial resolution in current numerical simulations
prevents the development of the MRI in the BNS postmerger phase, where a
rapidly rotating magnetised HMNS with a high degree of differential rotation
is formed. The angular momentum transport triggered by the growth of the
MRI channels can have a substantial impact on the stability and lifetime of
the remnant star. If the rotational profile flattens, leading to uniform rotation,
the centrifugal support against gravity might be insufficient and the star would
collapse to a BH. In addition, the large-scale magnetic field can be amplified
due to the effective dynamo triggered by the instability, having an important
impact in the formation of GRB jets.

So far, the numerical simulations of BNS mergers with the highest resolution
have grid with side-length O(10) m [Kiuchi et al. 2015, Kiuchi et al. 2024].
However, the molecular dissipation scale in the NS is O(1) cm [Radice and
Hawke 2024]. This means that, at least, the computational resources from
the highest resolution simulations should increase by a factor ∼ 109 to fully
capture the inertial range of scales. An alternative to the unaffordable DNS is
the use of LES. The aim of the work reported in this Chapter was to prove
that the MInIT model is able to mimic the transport of angular momentum in
a NS unstable to the MRI. In this Chapter, I have applied for the first time
the MInIT sub-grid model in Newtonian axisymmetric LES of an isolated NS.
After inserting the evolution equations for the turbulent energy densities in
the Aenus code [Obergaulinger 2008], and the resulting Maxwell and Reynolds
stress tensors in the mean-field MHD equations, an effective angular momentum
transport can be observed during the evolution of the NS.

During the first stages of the evolution (t ≲ 15 ms), the amplitude of the MRI
channel modes grows exponentially from considerably low values, as well as the
PIs, which undergo a super-exponential growth. In this lapse of time, the bulk
flow remains in equilibrium, since the MRI growth has not terminated yet. When
saturation occurs, i.e., the amplitude of the parasitic energy density is comparable
to that of the MRI, the turbulent stresses reach a large enough amplitude to
leave an imprint in the bulk flow. This delay is not observed in simulations that
employ an α-viscosity parameter [Shibata, Kiuchi, and Sekiguchi 2017], since
that approach assumes a constant value of the α parameter, corresponding to
the saturated state already. From t ≈ 15 ms, the rotational profile of the star
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flattens, reducing its central rotational frequency an important fraction. The
central angular frequency at the equator reduces to half its initial value (from
Ωc ≈ 3 kHz to Ωc ≈ 1.5 kHz) at t ≈ 50 ms, which means that the timescale
in which angular momentum is transported is O(100) ms. The values of the
rotation velocity and the magnetic field, which are physically plausible, provide
a MRI wavelength difficult to resolve by numerical simulations (λMRI ∼ 10 m).
As shown by Rembiasz et al. 2016b, at least 10 points per MRI channel size
are needed to fully solve the instability. Employing a typical radial resolution
of (∆r ∼ 100 m), I also performed a simulation without the MInIT model. As
expected, no angular momentum transport arises during the evolution of this
MRI-unresolved simulation.

The results presented in this Chapter, albeit promising, are still preliminary.
Further simulations with different rotational profiles and magnetic field strengths
will be needed to explore a wider parameter space. In addition, the use of higher
resolution (or different numerical schema) might reduce the numerical dissipation
responsible for the decrease of the angular frequency in the simulations without
a sub-grid implementation. The most immediate step is the implementation of
the Faraday stress tensor in the induction equation for the magnetic field, which
might induce an effective dynamo. To do so, the modelling of this stress tensor
needs to be improved to account for the characteristic periodicity of the dynamo.
A further action would be the implementation of the model into GRMHD
simulations. This requires that our sub-grid approach preserves covariance, and
a specific scheme with a Lagrangian filter must be applied to do so. In Chapter 6
I discuss these issues in more detail.

For the EOS employed in this work, the maximum mass for an object with
rigid rotation is 1.89 M⊙, lower than the mass of the NS simulated here. This
means that, in a GRMHD simulation, when rigid rotation is reached due to the
angular momentum transport, the HMNS should collapse to a BH. The timescale
of the transport of angular momentum is found to be O(100) ms, but this would
also depend on the rotation of the HMNS and the EOS considered. With this
timescale, the BNS remnant is expected to collapse to a BH at t ≈ 100 ms
after merger. This has important implications in the EM and kilonova emission
that triggers the r-process nucleosynthesis. The HMNS needs to collapse in
order to launch the GRB, which means that a faithful simulation that properly
describes the lifetime of the BNS remnant might help understand the gamma-ray
detections from BNS mergers. BNS merger simulations that do not capture this
turbulent effect might result in very long-lived remnants that are not powerful
enough to power a GRB.
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However, in addition to differential rotation, the HMNS is supported against
gravity through thermal pressure. Realistic EOSs together with a proper neutrino
transport scheme are also required to perform faithful numerical studies of this
scenario.





CHAPTER 5

Revisiting the saturation of the
magnetorotational instability by parasitic
modes

5.1 Introduction

The discussion reported in Section 1.3 has shown that the mechanism responsible
for the saturation of the MRI and thus the factor by which the seed perturbations
are amplified are not yet fully understood. Several authors [Brandenburg et
al. 1995, Fleming, Stone, and Hawley 2000, Sano and Inutsuka 2001, Sano
et al. 2004, Gardiner and Stone 2005, Lesur and Longaretti 2007, Murphy
and Pessah 2015, Rembiasz et al. 2016a, Hirai et al. 2018, Gogichaishvili et al.
2018] have provided further insight into the saturation of the MRI and the
resulting nonlinear turbulent regime by performing numerical box simulations
and also (semi-)global simulations of accretion discs [Sorathia, Reynolds, and
Armitage 2010, Hawley, Guan, and Krolik 2011, Sorathia et al. 2012], fast-
rotating PNSs [Obergaulinger et al. 2009, Mösta et al. 2015, Reboul-Salze et al.
2022] and BNS merger remnants [Kiuchi et al. 2018, Shibata, Fujibayashi, and
Sekiguchi 2021].

The model for PIs, presented by Goodman and Xu 1994, provides a phys-
ical mechanism that explains the termination of the MRI and the subsequent
nonlinear regime. The laminar channel flows can be unstable against PIs that
can be of KH or tearing-mode (TM) type, depending on the value of the kine-
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matic viscosity and resistivity, i.e. non-ideal effects. Pessah and Goodman 2009
and Pessah 2010 performed an analytical study in resistive-viscous MHD of the
evolution of the PIs by solving an eigenvalue problem with linear equations
for these secondary instabilities. They exhaustively covered a huge parameter
space to identify the fastest growing parasitic modes for different values of the
kinematic viscosity and the resistivity. The authors (and also Latter, Lesaffre,
and Balbus 2009) made several assumptions to make the problem more tractable.
The most notable simplifications are the consideration of the primary MRI mode
as a time-independent background, and the assumption that the wavevectors of
the parasitic modes are also time-independent (by neglecting the background
shear from the MHD equations).

In this Chapter, we relax some simplifications made in previous studies to
obtain a more accurate description of the evolution of PIs and better estimate for
the saturation of the MRI. Building on the approach in Pessah 2010, we derive
a set of equations for the parasitic perturbations feeding of the fastest-growing
MRI mode for a fixed vertical magnetic field. However, we here account for
the exponential growth of the MRI modes and the linear shear of the parasitic
wavevector induced by differential rotation of the background flow. By covering
a dense parameter space, we identify the fastest secondary modes that lead to
the saturation of the MRI. Using different values for the seed perturbations, we
obtain amplification factors of the MRI that are similar to the ones obtained in
the numerical simulations presented in Rembiasz et al. 2016a.

This Chapter is organised as follows: in Section 5.2 we present and solve the
linearised equations for the PIs. We showcase in Section 5.3 the time evolution
of several parasitic modes and study the saturation amplitude of the MRI.
Summary and conclusions are given in Section 5.4. In Appendix 5.A, we depict
the physical structure of the PIs.

5.2 Evolution equations for the parasitic perturbations

To carry out a linear analysis of the parasitic modes feeding off the MRI channels,
we need to treat those channels as part of the background fields, as in Goodman
and Xu 1994, Pessah and Goodman 2009, Pessah 2010. This is a sensible
approach during the MRI growth, since the amplitude of the channel modes is
much larger than the parasitic ones. This implies that the primary (the MRI)
instability will not be significantly affected by the secondary (parasitic modes)
until they reach a similar amplitude. This approximation is bound to break
down when the amplitudes involved are comparable. Nevertheless, here we will
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consider that the primary MRI modes grow exponentially unimpeded. The
novelty compared to previous studies is that we do consider that the parasites,
with shearing time-dependent wavevectors, are feeding from a time-dependent
MRI mode.

The system of incompressible MHD equations that leads to the equations of
the parasitic modes is:

∂tV + (V · ∇)V = −2Ω0 × V + qΩ2
0∇(x2) − 1

ρ
∇
(

P + B2

8π

)
(5.1)

+ (B · ∇)B
4πρ

+ ν∇2V ,

∂tB + (V · ∇)B = (B · ∇)V + η∇2B, (5.2)
∇ · V = 0, (5.3)
∇ · B = 0 . (5.4)

We seek for solutions for the total velocity and magnetic fields of the
form [Goodman and Xu 1994]:

U =



Vx

Vy

Vz

Bx

By

Bz


=



0
−qΩx

0
0
0

B̄z


+



V MRI
x

V MRI
y

0
BMRI

x

BMRI
y

0


+



vx

vy

vz

bx

by

bz


, (5.5)

where we include, from left to right, the contribution of the background vertical
magnetic field B̄z and the velocity shear, the MRI fields (that will also constitute
the background dynamics of our problem), and the parasitic fields. Note that the
vertical magnetic field B̄z remains unchanged and the MRI grows exponentially
unaffected by the parasitic perturbations. The former assumption holds in the
incompressible limit because the MRI itself does not produce a feedback into
B̄z [Pessah, Chan, and Psaltis 2006a]. This approximation is expected to break
down when the vertical magnetic field generated by PIs is no longer negligible.

In the ideal, i.e., for sufficiently small values of the viscosity ν and the
resistivity η, incompressible MHD regime, the MRI evolves as an exact, non-
linear solution with a mode structure given by [Goodman and Xu 1994, Pessah,
Chan, and Psaltis 2006b, Pessah and Chan 2008]

V MRI = V0eγMRIt sin(Kz)[cos(θV )x̌ + sin(θV )y̌], (5.6)
BMRI = B0eγMRIt cos(Kz)[cos(θB)x̌ + sin(θB)y̌] , (5.7)
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where V0 and B0 are the initial MRI velocity and magnetic field amplitudes,
respectively, x̌ is the unit vector in the radial direction, y̌ is the unit vector
in the azimuthal direction, θV and θB are the directions of the channels with
respect to the radial direction, x̌, and K is the MRI wavenumber that indicates
the periodicity in the vertical direction. The maximum MRI growth rate is

γMRI = q

2Ω , (5.8)

where Ω is rotation frequency and the shear parameter q is given by

q ≡ −d ln Ω
d ln r

∣∣∣∣∣
r0

, (5.9)

which is evaluated at some fiducial radius r0. The wavenumber of the fastest
growing MRI mode in the ideal MHD limit is [Pessah and Chan 2008]

K =
√

1 − κ4

16 , (5.10)

where κ ≡
√

2(2 − q)Ω is the epicyclic frequency.
In addition, the ratio between the MRI amplitudes, V0/(B0/

√
4πρ), was

found in Pessah and Chan 2008 to be, in the ideal MHD limit:

V0

B0/
√

4πρ
=
√

4 − κ2

4 + κ2 . (5.11)

As in Pessah 2010, we will employ dimensionless variables defined in terms
of the characteristic length and time-scale set by the background magnetic field
and the local angular frequency: L0 ≡ v̄2

Az/Ω0 = B̄2
z/(4πρΩ0) and T0 ≡ 1/Ω0.

With this, B̄z sets the scale for all magnetic and velocity fields. From now on, we
employ V and B to refer to the MRI velocity and magnetic fields, respectively.

The secondary, parasitic velocity and magnetic fields can be expressed as

v = eikh·xu(t, z) , (5.12)
b = eikh·xw(t, z) . (5.13)

where the explicit temporal dependence of the horizontal wavevector is given by

kh = (kx(0) + qΩ0kyt)x̌ + kyy̌ . (5.14)

This simply reflects the fact that wave crests are swept by the (linear) shear
background flow, thereby increasing their wavenumber and rotating towards
the radial direction, x̌ [Latter, Fromang, and Gressel 2010, Mamatsashvili et al.
2013].

We can exploit the incompressible nature of the flow and focus on the
dynamics in the plane (ǩh, ž) (see Pessah 2010). In fact, this condition restricts
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our problem to one single direction, since ikh · vh = −∂zvz. We can furthermore
eliminate the pressure by using the divergenceless condition for the velocity
(Equation (5.3)). Then, the evolution equation for the vertical parasitic velocity
will be

(−∆∂t − ikh · V + ν∆)∆uz − iK2kh · V uz (5.15)
+q sin 2θ∂2

z uz + ikh · B∆wz + iK2kh · Bwz + ∆∂zwz = 0 ,

where ∆ ≡ ∂2
z − k2

h.

The equation for the vertical component of the parasitic magnetic field is

(∂t + ikh · V − η∆)wz − ikh · Buz − ∂zuz = 0 . (5.16)

After applying all the previous assumptions, i.e., treating the MRI fields
as background and adding the time-dependent wavevector, we end up with
Equations (5.15) and (5.16), which are linear equations for the parasitic pertur-
bations in the incompressible regime. Now we can express the previous equations
in Fourier space. The fields can be expressed solely in terms of their vertical
components thanks to the divergenceless nature of the perturbed fields:

u = ∂zuz

ikh
ǩh + uzž

w = ∂zwz

ikh
ǩh + wzž .

The vertical components in terms of Fourier series are

uz = B0

∞∑
n=−∞

αn(t)ei(nK+kz)z (5.17)

wz = B0

∞∑
n=−∞

βn(t)ei(nK+kz)z , (5.18)

where kz is a parameter with 0 ≤ kz/K ≤ 1/2 [Pessah 2010]. Moreover, the
Fourier coefficients are expressed in terms of the initial amplitude of the MRI
channel, B0, and the wavenumbers kh and kz can be rewritten in terms of the
MRI one, K (kh → kh/K, kz → kz/K), as done in Pessah 2010. If one takes
into account the Euler formula:

sin(Kz) = 1
2i

(eiKz − e−iKz)

cos(Kz) = 1
2(eiKz + e−iKz) ,
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the resulting differential equations for the temporal evolution of the Fourier
coefficients are

∂tαn(t) = − i(n + kz)Kβn(t) + q

2∆n
sin 2θ

(n + kz)2

∆n
αn(t) (5.19)

− KV0
kh · V̌ (t)

2∆n

[
αn−1(t)(∆n−1 − 1) − αn+1(t)(∆n+1 − 1)

]
+ iKB0

kh · B̌(t)
2∆n

[
βn−1(t)(∆n−1 − 1) + βn+1(t)(∆n+1 − 1)

]
− νK2∆nαn(t) ,

∂tβn(t) = − KV0
kh · V̌ (t)

2
[
βn−1(t) − βn+1(t)

]
(5.20)

+ iKB0
kh · B̌(t)

2
[
αn+1(t) + αn−1(t)

]
− i(n + kz)Kαn(t)

− ηK2∆nβn(t) ,

where ∆n ≡ k2
h + (n + kz)2 and θ is the angle between the parasitic wavevector,

kh, and the radial direction in the anticlockwise sense.

5.2.1 The initial value problem

In every evolution problem, one needs to give an initial value to the evolving
quantities. The initial Fourier amplitudes of the PIs, i.e., the coefficients αn(0)
and βn(0), can be obtained using the equations from Pessah 2010, which consist
in an eigenvalue problem where the eigenvalues correspond to the growth rate
of the PIs and the eigenvectors’ components are the values of αn, βn. These
equations are:

s

KB0
αn(0) = − i

B0
(n + kz)βn(0) (5.21)

+ i
kh · B̌0

2∆n

[
βn−1(0)(∆n−1 − 1) + βn+1(0)(∆n+1 − 1)

]
− kh · V̌ 0

2∆n

V0

B0

[
αn−1(0)(∆n−1 − 1) − αn+1(0)(∆n+1 − 1)

]
− νK2

KB0
∆nαn(0) ,
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s

KB0
βn(0) = − kh · V̌ 0

2
V0

B0
(βn−1(0) − βn+1(0)) (5.22)

+ i
kh · B̌0

2 (αn−1(0) + αn+1(0)) − i
1

B0
(n + kz)αn(0)

− ηK2

KB0
∆nβn(0) ,

where s is the growth rate of the parasitic modes. In the ideal MHD limit, the
last term in the right-hand side of both equations vanishes. As a note of caution,
the problem presented in Pessah 2010 assumes that the MRI background and kh

do not evolve with time. However, this can be useful to obtain an approximate
initial distribution of the parasitic modes.

By taking the eigenvector corresponding to the eigenvalue with the largest
real contribution (fastest PI mode), we get a set of αn and βn values that will
be our initial values for the equations (5.19) and (5.20). Since the eigenvector is
normalised, we have the freedom to set an initial amplitude for the PI modes, v0.
Therefore, we re-scale the norm so that the velocity of the PI mode is a fraction
of the Alfvén velocity. Consequently, the value of b0 is determined by the PI
eigenvalue problem.

The above equations show that the Fourier components of the parasitic modes
exclusively depend on the parasitic wavevector, (kh, kz), the MRI wavenumber,
K, and the MRI amplitudes, (B, V ).

5.2.2 Solution for the parasitic instabilities

Now that we got the initial values of the Fourier amplitudes of the velocity
and magnetic fields of the PIs, we can evolve the system of equations (5.19)
and (5.20). Since it is a system of coupled linear differential equations of the
form

∂tx(t) = A(t)x(t) , (5.23)

where A(t) is the matrix of coefficients, we can decouple it in the following way.
Let the matrix A(t) be expressed in terms of a diagonal matrix, Λ(t):

Λ = S−1AS , (5.24)

where S is a matrix built with the eigenvectors of A(t) as columns and Λ is a
diagonal matrix with the eigenvalues of A as elements. We can decouple this
system by introducing the variables:

η = S−1x . (5.25)
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Substituting the expression in Eq. (5.24) in Eq. (5.23), and using the new
variable from the above equation, we obtain:

∂tη(t) = Λη(t) , (5.26)

which is a system of decoupled equations. This is valid only when S ̸= S(t), and
we assume this is the case in a small enough time interval ∆t. We can therefore
solve for each component, and every equation will be as:

η̇i = λiηi , (5.27)

and this results in

ηi(t) = exp
[∫ t

t−∆t

λi(τ)dτ

]
ηi(t − ∆t) . (5.28)

We can define the matrix made with the right-hand-side elements from the
above equation, and assume that λi are constant for small enough time intervals,
∆t, i.e., S ̸= S(t), ending up with:

Eij ≡ δij exp
[∫ t

t−∆t

λi(τ)dτ

]
≈ δije∆tλi . (5.29)

In terms of our variables x, the solution has the following form:

x(t) = SES−1x(t − ∆t) . (5.30)

The vectors x(t) consist of the Fourier amplitudes αn(t) and βn(t). Once we
solve these coupled differential equations, we can build the physical velocities
and magnetic fields:

vz(t; x) = B0

∞∑
n=−∞

αn(t)ei(n+kz)zeikh·x (5.31)

bz(t; x) = B0

∞∑
n=−∞

βn(t)ei(n+kz)zeikh·x . (5.32)

Since the horizontal component in the direction of kh is proportional to the
vertical component thanks to the divergence-free condition, the velocity and
magnetic fields parallel to the plane defined by (ǩh, ž) are given by

v(t; x) = −B0

kh

∞∑
n=−∞

(n + kz)αn(t)ei(n+kz)zeikh·xǩh (5.33)

+ B0

∞∑
n=−∞

αn(t)ei(n+kz)zeikh·xž ,



5.2 Evolution equations for the parasitic perturbations 131

b(t; x) = −B0

kh

∞∑
n=−∞

(n + kz)βn(t)ei(n+kz)zeikh·xǩh (5.34)

+ B0

∞∑
n=−∞

βn(t)ei(n+kz)zeikh·xž .

5.2.3 Growth rate of the parasitic modes

The volume-averaged value of the velocity of the PI modes can be computed
from the Fourier amplitudes αn(t):

v(t) ≡ |v̄(t)| = B0

√√√√ ∞∑
n=−∞

[
1 + (n + kz)2

k2
h

]
|αn(t)|2 . (5.35)

Then, the growth rate of the velocity of parasitic mode is approximately

γPI(t) = 1
∆t

v(t) − v(t − ∆t)
v(t − ∆t) (5.36)

and the volume-averaged velocity of the MRI channel mode is given by

V (t) ≡ |V̄ (t)| = V0√
2

eγMRIt . (5.37)

5.2.4 Saturation

We assume that the MRI mode saturates when the parasitic velocity reaches
a certain fraction of the channel velocity [Latter, Fromang, and Gressel 2010,
Rembiasz et al. 2016b]:

v(tsat) = ϵV (tsat) . (5.38)

The parasitic mode that reaches this value first will be the fastest parasitic
mode and will set a saturation amplitude for the MRI mode. We can define the
amplification factor as the ratio between the volume-averaged Maxwell stress
tensor and the initial vertical magnetic field [Rembiasz et al. 2016a]:

A ≡
√

Msat
xy = B0√

2
√

| cos θB sin θB|eγMRItsat , (5.39)

which in the ideal MHD limit reads as

A = B0

2 e
q
2 tsat . (5.40)
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5.3 Results

The PIs are expected to experience a phase of rapid growth when kh is aligned
with either the velocity or the magnetic field of the primary modes (V , B) [Good-
man and Xu 1994, Pessah and Goodman 2009, Pessah 2010, Latter, Lesaffre,
and Balbus 2009]. The ones aligned with the MRI velocity are identified as
KH (or kink) modes, whereas the latter are related to tearing (or pinch) modes.
In the context of ideal MHD (ν ≪ 1, µ ≪ 1), the parasitic modes of KH type
dominate. Since we want to focus on the ideal case, which is more common in
numerical simulations involving NSs, we should expect to obtain at saturation
modes aligned with the velocity of the MRIs, with θ ≈ θV. We therefore set
the viscosity to ν = 10−3 and the resistivity to η = 10−2. The fastest MRI
mode (for q = 1.5) is characterised by a wavevector with modulus K ≈ 0.96
and angles θV = 44.5◦ ≈ 45◦ and θB = 134.7◦ ≈ 135◦, as shown in Pessah 2010.
In addition, the ratio between the MRI amplitudes is V0/B0 ≈ 0.77. We also
consider parasitic modes with kz = 0, i.e., with the same vertical periodicity
than the MRI modes, since these ones are expected to grow faster [Goodman
and Xu 1994, Pessah 2010, Rembiasz et al. 2016b, Hirai et al. 2018]. Moreover,
we fix ϵ from Equation (5.38) to 1.

5.3.1 Time evolution of the parasitic modes

In order to solve the equations given by (5.26), we employ the approach shown
in Eq. (5.29), using an adaptive time step ∆t that decreases as γPI increases, as
shown in Table 5.1. The initial time step is set to ∆t0 = 0.1.

Table 5.1 Values of the time step as a function of the growth rate of the parasitic mode.

γPI/γMRI ∆t/∆t0
< 0.1 1
≥ 0.1 10−1

≥ 1 10−2

≥ 25 10−3

We consider different initial wavevectors for the PIs, characterising several
modes, and evolve them independently, as done in Pessah and Goodman 2009,
Pessah 2010. Since we expect to reach a wavevector with modulus kh = 0.59, as
shown in Pessah 2010 and Rembiasz et al. 2016a, we should start with a vector
with large enough modulus and negative x-component. kx

h . Therefore, the initial
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values of the wavevector components that we consider are

kx
h = {−1, −1.125, −1.25, ..., −15}, (5.41)

ky
h = {0.1, 0.1125, 0.125, ..., 0.7} . (5.42)

We explore the time evolution of these modes with different initial amplitudes
of the MRI channels, B0, and different initial amplitudes for the parasitic
velocities, v0. We summarise in Table 5.2 the initial amplitudes we tested,
together with the fastest parasitic modes for each initial condition, their value
at saturation, the saturation time and the amplification factor. The initial
amplitudes of the MRI magnetic field and the initial parasitic amplitudes are

B0 = {1, 5, 10, 50, 100} × 10−4, (5.43)
v0 = {0.1, 0.5, 1, 5, 10} × 10−4 , (5.44)

respectively, as depicted in Table 5.2. Even though the initial PIs are larger
than the channel modes in some cases, the results seem to be valid as well, since
the early growth of the PIs is much slower than that of the MRI. The runs
are labelled as follows: the symbols vl, l, m, h, vh after b0 and dv stand
for “very low”, “low”, “mid”, “high” and “very high”, respectively. Thus, the
run, e.g., b0vl-dvh is characterised by a “low” B0 and a “very high” v0. The
fastest growing modes possess initial horizontal wavevectors ∼ 3 − 5 times larger
than K, with kx

h(0) ≫ ky
h, and values at saturation at around 0.6 − 0.7, with

θsat ≲ 20◦. We depict in Figure 5.1 the initial and final wavevectors of the fastest
PI modes for all the runs shown in Table 5.2. The amplification factors take
values within the range ∼ 35 − 55, depending on the initial parasitic amplitude.
Although not shown here, there are numerous parasitic modes that grow almost
as fast as the rapid ones, and provide amplification factors with similar values
as the ones in Table 5.2.



134 Revisiting the saturation of the MRI by parasitic modes

0°

30°

60°
90°

120°

150°

180°

kini
h

0 1 2 3 4 5

θi
n

i

0°

30°

60°
90°

120°

150°

180°

ksat
h

0.0 0.2 0.4 0.6 0.8

θs
at

Figure 5.1 Representation of the parasitic wavevectors kh at t = 0 and at saturation, t = tsat,
for all the runs in Table 5.2. The initial modulus kini

h ranges between 3 and 5, but the initial
angle θini is very close to 180◦ in all cases. The wavevectors at saturation have almost the
same angle θsat at around 18◦, and the modulus ksat

h lies around 0.7.
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Figure 5.2 Top panel: time evolution of the averaged velocity of three parasitic modes from the
run b0m-dh: the fastest (in red), another that saturates at later times (in green) and one mode
that does not saturate (in blue). Middle panel: time evolution of the parasitic wavevector
modulus kh (following Equation (5.14)). Bottom panel: time evolution of the angle θ between
the wavevector kh and the radial direction, x. One can see that the modes start growing faster
when kh and θ get close to the values appointed by Pessah 2010, kP10

h and θP10, respectively.

The top panel of Figure 5.2 depicts the time evolution of the velocity computed
from Eq. (5.35) of some parasitic modes from the b0m-dh run. The red colored
line represents the fastest parasitic mode, i.e., the mode that reaches the fraction
ϵ of the MRI velocity in a shorter time. The green line corresponds to a mode
that saturates at later times, and the blue line is a mode that does not reach
saturation. The velocity of the mode that does not saturate starts decreasing
at a certain point. This could be due to the fact that the angle θ becomes
too small (see bottom panel), resulting in a negative growth rate [Pessah 2010].
Alternatively, this can result from kh becoming larger than unity, i.e., larger
than K (see middle panel). The values of kh and θ at the right time are key to
understand why certain modes grow faster than others. For the fastest growing
mode (in red), θ starts decreasing before the slower mode (in green). This means
that the fastest mode starts increasing before the mode in green, when the MRI
velocity is ∼ 103 − 104 times larger than the parasitic velocity, reaching values of
θ ≈ θV and kh ≈ kP10

h at earlier times. The non-saturating mode (in blue) starts
increasing even before the fastest mode, because θ decreases earlier. However,



5.3 Results 137

kh goes beyond 1 at some point (highlighted with the vertical dashed line) and
therefore it does not saturate.
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Figure 5.3 Top panel: time evolution of the normalised growth rate for the same modes as
in Fig. 5.2. The growth rate stays considerably low up to a certain point, where it starts
increasing to become more than ten times larger than the growth rate of the MRI (for the
cases that reach saturation). Middle panel: evolution of the time derivative of γPI from the
fastest mode. We draw vertical lines were the derivative takes positive values and at its last
local maximum before saturation. In the bottom panel we show the evolution of θ with the
same vertical lines.

We showcase in Figure 5.3 the time evolution of the growth rate of these
PI modes (computed with Eq. (5.36)), normalised by the growth rate of the
MRI from Eq. (5.8). The growth rate of the fastest mode starts increasing
monotonically before the other mode that also saturates. There are some modes
that reach a larger growth rate, but they saturate later because they get excited
also later. The growth rate of the fastest growing mode starts increasing fast
above 0 at t ≈ 2.15 and then it continues growing at a slower rate. The middle
panel shows the evolution of its time derivative. The region where the derivative
takes positive values and increases faster coincides with values of θ (lower panel)
around θV = 44.5◦ . The sudden decrease of the derivative between the fast
growths is due to the MRI magnetic field, which is perpendicular to the MRI
velocity. If no MRI magnetic fields were included, the parasitic growth rate
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would increase monotonically, together with its derivative. This behaviour is
also observed in the other cases from Table 5.2, and also for other modes that
saturate at later times.

0°

15°

30°

45°

60°

75°
90°

θ1

θ2

θV

Figure 5.4 Values of the angle θ for which the PIs grow super-exponentially. The rapid increase
of the secondary modes occurs between θ1 and θ2, depicted with solid black lines. These lines
correspond to the mean value of these angles for the runs from Table 5.2. The red shaded
regions represent the 1-σ deviation. The black dashed line stands for the direction of the MRI
velocity field, θV = 44.5◦.

Figure 5.4 shows that the rapid increase of the parasitic modes coincides with
the time-dependent wavevector kh being aligned with the MRI velocity field.
When the growth rate starts increasing monotonically (at θ1), the direction of
kh is getting close to θV. The mode grows faster, and its increase slows down
when θ goes below θV. The angle θ2 of Fig. 5.4 corresponds to the last turning
point of the growth rate before saturation. The black solid lines for θ1 and θ2

correspond to the mean value of these angles from the runs of Table 5.2, and
the shaded regions in red depict the 1-σ deviation. After the braking of the
parasitic growth, the fastest mode eventually saturates. This result is consistent
with the findings made by Pessah 2010, even though the saturation criterion is
different. In Pessah 2010, the saturation was estimated at the time when the
parasitic growth rate equals the MRI one, while our criterion is the one given in
Eq. (5.38). When the parasitic amplitude reaches a similar value than that of
the MRI channel, the parasitic growth rate is already several times larger than
the MRI growth rate (see Figure 5.3). Furthermore, with the current approach,
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it takes more time to the MRI to saturate, leading also to a smaller θsat and
larger ksat

h . This is in agreement with the predictions from Latter, Fromang, and
Gressel 2010, who stated that it should take more time to saturate due to the
inclusion of the background shear in the equations and thus the time dependence
of kh.

5.3.2 The amplification factor

For the sake of comparison, the authors of Rembiasz et al. 2016a computed
several estimates of the amplification factor from the theoretical predictions made
by Pessah 2010. Using the same saturation criterion as ours (Equation (5.38)),
and assuming that the parasitic growth rate is given by

γP10
PI = σKV , (5.45)

where σ = 0.27 [Pessah and Goodman 2009], they obtained the following
analytical expression for the parasitic velocity:

v(t) = v0 exp
[

σKV0

γMRI
(eγMRIt − 1)

]
, (5.46)

after considering that γP10
PI ≡ v̇(t)/v(t). We can obtain an estimate of the

amplification factor by equalising v(tsat) = V (tsat), using the parasitic velocity
from Equation (5.46). Moreover, Rembiasz et al. 2016a obtained an analytical
expression for the amplification factor:

A − 1
2σ

ln A = 1
2σ

[
ln
( 1

v0

)
+ ln

(
ϵ

√
4q

4 − q

)]
+
√

4 − q

4q
V0 . (5.47)

Since initially V0 ≪ 1, the amplification factor should be almost independent
of the initial MRI channel amplitude and depend logarithmically on the initial
parasitic amplitude. As previously discussed, further work made by Latter,
Fromang, and Gressel 2010 gave an approximate description of the inclusion
of the background shear and the subsequent time dependence of the parasitic
wavevector. The authors roughly estimated a reduction of γP10

PI by a factor ≈ 2
as a result of the shear. Thus, in Rembiasz et al. 2016a, the authors computed
an updated expression for the amplification factor, accounting for the shear, but
keeping the channel amplitude constant during the rapid growth of the PIs:

A − 0.92
σ

ln A = 0.92
σ

[
ln
( 1

v0

)
+ ln

(
ϵ

√
4q

4 − q

)]
+ 1

σ
, (5.48)
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which results in a larger amplification factor. For v0 = 10−3, Equation (5.48)
yields

A ≈ 41 , (5.49)

which is very close to our result (see Tables 5.2 and 5.3).

10−4 10−2
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0

20
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80

A

q = 1.5

q = 1.25

10−5 10−4 10−3 10−2

v0

Figure 5.5 Left panel: dependence of the amplification factor (defined in 5.40) on the am-
plitude of the initial MRI velocity field, V0, using the runs b0vl-dvh, b0l-dvh, b0m-dvh,
b0h-dvh, b0vh-dvh (blue circles). We introduce the results from the runs b0vl-dm-q125,
b0l-dm-q125, b0m-dm-q125, b0h-dm-q125,b0vh-dm-q125 (green squares). Right panel: de-
pendence of the amplification factor on the initial amplitude of the parasitic velocity, v0, using
the runs b0vh-dvl, b0vh-dl, b0vh-dm, b0vh-dh, b0vh-dvh (blue circles). The green squares
represent the results from the runs b0l-dvl-q125, b0l-dl-q125, b0l-dm-q125, b0l-dh-q125,
b0l-dvh-q125.

In Figure 5.5 we show the amplification factor defined in Eq. (5.40), for
different choices of the initial MRI velocities, V0 (left panel), and initial parasitic
velocities, v0 (right panel). We use runs with q = 1.5 from Table 5.2 (Keplerian
shear, blue dots) and also q = 1.25 from Table 5.3 (green squares). Note that
the initial amplitudes from Table 5.3 differ from those from Table 5.2, since we
want to use the same initial values as in Rembiasz et al. 2016a. Since q = 1.25,
the MRI wavenumber is now K ≈ 0.93 and V0/B0 ≈ 0.67. In the range of initial
amplitudes we employed, the amplification factor presents values between 20
and 60. For a fixed initial parasitic amplitude, there is no strong dependence
of the amplification factor on the initial MRI field. In contrast, there is a clear
dependence on the initial parasitic amplitude. The initial amplitudes we fixed for
both panels slightly differ between the runs with q = 1.5 (b0vl-dvh, b0l-dvh,
b0m-dvh, b0h-dvh, b0vh-dvh) and the runs with q = 1.25 (b0vl-dm-q125,
b0l-dm-q125, b0m-dm-q125, b0h-dm-q125,b0vh-dm-q125). However, the re-
sults are almost identical for both cases.
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Figure 5.6 Same as Figure 5.5, but in this case we compare the runs with q = 1.25 (green
squares), the results based on the approach from Eq. (5.46) (red crosses) and the results
from the numerical simulations of Rembiasz et al. 2016a (black triangles). In the left panel,
we use the runs b0vl-dm-q125, b0l-dm-q125, b0m-dm-q125, b0h-dm-q125, b0vh-dm-q125,
whereas in the right panel, we use b0m-dvl-q125, b0m-dl-q125, b0m-dm-q125, b0m-dh-q125,
b0m-dvh-q125.

Figure 5.6 shows the comparison between our evolutions with q = 1.25 and
the amplification factors obtained in Rembiasz et al. 2016a with numerical box
simulations using the pseudo-spectral code SNOOPY [Lesur and Longaretti
2005, Lesur and Longaretti 2007]. In this case, the differences are more notable.
First, the simulations from Rembiasz et al. 2016a exhibit a stronger dependence
of the amplification factor on the initial MRI velocity (left panel). Moreover, the
slope in the right panel is also considerably larger than the one from our analyses.
Having said that, our resulting amplification factors differ at about a factor ≈ 2
with respect to those from Rembiasz et al. 2016a. In addition, we draw the
amplification factor obtained using the parasitic velocity from Equation (5.46)
(red crosses). In this case, the amplification factors decrease a factor ≈ 2 with
respect to ours.

We can obtain the relation between the choice of initial amplitudes of the
turbulent fields and the amplification factor, as previously done in Rembiasz
et al. 2016a:

A(V0, v0) = a ln V0 + b ln v0 + c . (5.50)

Using all the runs from Table 5.2, with q = 1.5, the values for the coefficients
turn out to be a = −0.14 ± 0.04, b = −3.80 ± 0.04 and c = 10.0 ± 0.5. For
the runs from Table 5.3, with q = 1.25, the coefficients are a = 0.07 ± 0.04,
b = −3.86 ± 0.04 and c = 12.6 ± 0.3. The dependencies in both cases are almost
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the same, except for the case of the coefficient a, which changes sign. This might
be due to the use of different initial amplitudes and the slight change in the
shear factor q. However, the magnitude of this coefficient is very small compared
to b, which means that the amplification factor barely depends on the initial
channel amplitude. With the approach from Equation (5.46), with q = 1.25, we
obtain a = 0.036 ± 0.006, b = −2.06 ± 0.006 and c = 4.675 ± 0.046. In Rembiasz
et al. 2016a, the factors that multiply the logarithms of the initial amplitudes
are a = 5.4 ± 0.55 and b = −20.2 ± 1.2, being larger than those obtained with
our approach.

The discrepancy between our results and the ones given in Rembiasz et al.
2016a can be partly explained by the difference in the initial conditions. In our
case, the initial MRI fields are given by Eq. (5.6), corresponding to the fastest
growing MRI mode. In addition, the parasitic mode is the one that reaches
the saturation threshold first. Alternatively, Rembiasz et al. 2016a only excited
the fastest growing velocity MRI field (letting the magnetic MRI field grow
later), and they excited a large set of parasitic velocities applying random factors
to their initial amplitudes. Our approach focused directly on the dynamics
of the fastest modes involved. In addition, nonlinearities that may arise at
termination are not captured by our approach. In the nonlinear regime of the
KHI, a growth rate reduction is expected when saturation approaches, meaning
that our predictions might underestimate the amplification factor.

It is worth mentioning that Rembiasz et al. 2016a performed simulations with
another numerical code, Aenus [Obergaulinger 2008], with different boundary
conditions, physical assumptions and numerical schemes. The resulting amplifi-
cation factor differed in some cases by a factor 5 from that obtained with the
SNOOPY code. Moreover, they found that employing a different form of the
initial perturbations also changed the amplification factor, obtaining A ≈ 90
instead of A ≈ 60. Thus, differences in the simulation setup and the use of
different numerical codes can have an impact on the amplification factor.
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5.3.3 Effective growth rate
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Figure 5.7 Upper panels: time evolution of the parasitic velocity for different initial amplitudes
of the PIs (from left to right, v0 = {0.112, 1.12, 11.2} × 10−3) and a fixed initial MRI field,
B0 = 3.33 × 10−2. The solid blue lines refer to the evolution of the parasitic velocity given in
Eq. (5.46), whereas the red lines correspond to our approach. The dashed blue lines refer to
the same velocity from Eq. (5.46), but adding the correcting factor f to the parasitic growth
rate from Eq. (5.45). Lower panels: time evolution of the normalised parasitic growth rate.
By adding the correcting factor f to the expression from Eq. (5.45) (dashed blue lines), the
parasitic growth rate is more similar to the one we obtain in our study (solid red lines).

In the previous subsection, we have seen that the inclusion of the background
shear results in an effective reduction of the parasitic growth rate presented in
Equation (5.45). To quantify the difference between the results from Pessah
2010 and our approach, we compute the factor, f , that needs to be applied
to the parasitic growth rate from Eq. (5.45) to end up with the amplification
factors obtained with our approach, which are closer to those from numerical
simulations. Employing the runs from Table 5.3, we get that, on average, the
factor needed is

f = 0.498 ± 0.006 , (5.51)

which is in agreement with the prediction made by Latter, Fromang, and Gressel
2010, who estimated a reduction by a factor ≈ 2. Moreover, we observe that
this fraction f is independent of the initial parasitic and MRI amplitudes.

The upper panels from Figure 5.7 depict the evolution of the parasitic velocity
using Equation (5.46) (solid blue line), using the same equation but introducing
the factor f in Eq. (5.45) (dashed blue line), and our approach (solid red line). As



5.4 Discussion and conclusions 145

expected, the solid blue curve grows faster than the red one, since Equation (5.46)
assumes that the wavevector kh is constant and aligned with the MRI velocity.
In the lower panels we show the evolution of the normalised parasitic growth rate.
By introducing the factor f from Equation (5.51) in the analytical expression
for the parasitic growth rate from Pessah 2010, we are able to reach the same
amplitude as if we consider the effect of the background shear, resulting in a
time-dependent wavevector.

5.4 Discussion and conclusions

The role of the PIs in the saturation of the MRI has been studied thoroughly
during the last decade [Obergaulinger et al. 2009, Sorathia et al. 2012, Rembiasz
et al. 2016b, Hirai et al. 2018, Gogichaishvili et al. 2018]. First proposed
by Goodman and Xu 1994, these instabilities feed off the MRI and disrupt
the channel modes, terminating the growth of the primary instability leading
to a turbulent regime. The correct understanding of this mechanism is key to
properly model the angular momentum transport and magnetic field amplification
in accretion discs, PNSs and BNS merger remnants. If well treated, these
phenomena can have important implications in the evolution and stability of
these astrophysical systems.

Several analytical studies have been performed to provide further insight into
the linear growth of the MRI [Pessah, Chan, and Psaltis 2006b, Pessah and Chan
2008, Lesaffre, Balbus, and Latter 2009], and also to study the excitation of the
parasitic modes and the subsequent saturation of the primary instability [Latter,
Lesaffre, and Balbus 2009, Latter, Fromang, and Gressel 2010, Pessah and
Goodman 2009, Pessah 2010]. In this work, we relax some assumptions made
in past studies and provide a more accurate analysis of the time evolution of
the spectrum of parasitic modes in the context of ideal MHD. We perform
a local linear approach similar to Pessah 2010, assuming that the MRI mode
evolves unimpeded, i.e., treated as a background field. In contrast to Latter,
Lesaffre, and Balbus 2009, Pessah 2010, we keep the background shear velocity
and vertical magnetic fields in the linearised MHD equations. Furthermore, we
take into account the time dependence of the parasitic horizontal wavevector
that arises from the background shear. Using a dense grid of initial wavevectors,
we explore the spectrum of parasitic modes and look for the fastest one that
saturates the MRI.

The resolution of the system of coupled differential equations for the Fourier
amplitudes of the parasitic modes allows us to follow their growth. As observed
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in numerical simulations [Rembiasz et al. 2016b, Rembiasz et al. 2016a], these
secondary instabilities start growing super-exponentially once the MRI mode
has reached a certain amplitude. When the parasitic modes achieve a similar
amplitude than the primary instability, we stop the amplification of the magnetic
and velocity fields from both the MRI and the PI modes.

During the evolution, the x-component of the parasitic wavevector increases
linearly and proportionally to its y-component. Therefore, the inclination angle
with respect to the x-axis decreases until it asymptotically reaches 0◦. We found
that the fastest parasitic modes start their rapid growth when their wavevector
is almost aligned with the direction of the MRI velocity, at θV ≈ 45◦, as stated
in Pessah 2010 and in agreement with several numerical studies [Rembiasz et al.
2016b, Hirai et al. 2018]. Indeed, their increase slows down after the parasitic
wavevector passes through θV. Moreover, the value of the wavenumber at
saturation is similar to the one found in Pessah 2010. The parasitic wavenumbers,
kh, at saturation found in numerical simulations [Rembiasz et al. 2016b, Hirai
et al. 2018] are somewhat larger than those obtained here. This can be explained
by the existence of other MRI modes (that grow more slowly), which results
in a shear flow that is not purely sinusoidal [Hirai et al. 2018]. Moreover, the
interaction of the PIs with the channels can cause the layered structure to become
narrower, which induces a smaller parasitic mode just before saturation [Hirai
et al. 2018]. Unfortunately, these nonlinear effects cannot be captured by our
approach.

The analysis performed in this Chapter has allowed us to compute the ampli-
fication factor of the MRI with different initial amplitudes of both the primary
and secondary modes, and different values of the shear factor. We observed that
the choice of the seed fields can have an impact on the amplification factor, as
opposed to the choice of the shear. For larger initial parasitic amplitudes, the
modes saturate before because their amplitude is initially closer to that of the
primary field. This behaviour has also been observed in numerical box simula-
tions [Rembiasz et al. 2016a], but in that case the amplification factor is more
dependent on the initial conditions. We have also seen that, with our approach,
the amplification factor barely depends on the initial channel amplitude, as
expected from the analytical predictions of Pessah 2010. This contrasts with the
results from numerical simulations, which show an increase of the amplification
factor with the MRI amplitude.

The inclusion of the background shear in the analysis of the evolution of
the PIs results in a slower growth with respect to previous analyses where the
parasitic wavevector was assumed to be aligned with the MRI velocity [Pessah



5.4 Discussion and conclusions 147

2010]. Thus, in order to include the effect of the misalignment of the time-
dependent wavevector, we have introduced a correcting factor in the analytical
expression of the parasitic growth rate obtained by [Pessah 2010]. This factor
f , which is independent of the initial amplitudes of the instabilities, reduces
the growth rate by half, as expected from the analytical estimations by Latter,
Fromang, and Gressel 2010.

There is some discrepancy between our analytical findings and the results
from numerical simulations of the MRI. The amplification factors obtained
in our study are somewhat smaller to the ones obtained by Rembiasz et al.
2016a. The nonlinearities that arise when the PI amplitude is comparable to
the MRI are expected to reduce the growth rate of the PI, which results in a
larger amplification factor. Moreover, these differences can be partly due to the
way the initial perturbations are excited in the simulations. In fact, [Rembiasz
et al. 2016a] observed that the form of the seed perturbations had an impact
on the amplification factor. Furthermore, the use of different numerical codes
with different boundary conditions and numerical schemes can also lead to
discrepancies. An important result from our work is that the amplification
factor seems to be less dependent on the initial perturbations than expected
from previous numerical simulations. Another implication of our results is that
numerical simulations would need a high resolution in the horizontal plane to
solve the fastest parasitic modes, since they are found to be initially ∼ 3 − 5
times smaller than the MRI channels.

Despite the several differences found between numerical works and our
findings, which are mostly due to nonlinearities and the setup of the simulations,
the predicted amplification factors are in good agreement, as well as the value
of the fastest parasitic wavevector at saturation. In addition, both approaches
identify the parasitic modes as KH instabilities that disrupt the MRI channels
when they are aligned.





Appendix

5.A Physical structure of the parasitic modes

To study the structure of the parasitic modes and the disruption of the MRI
channels, we calculate the components of the vorticity and current density
perpendicular to the plane (ǩh, ž):

δω⊥(t; x) = (∇ × v) · ǩp (5.52)
δj⊥(t; x) = (∇ × b) · ǩp , (5.53)

where ǩp is the direction perpendicular to (ǩh, ž): ǩp ≡ ž∧ǩh. Using Eqs. (5.33)
and (5.34), we obtain

δω⊥(t; x) = − i

kh

∞∑
n=−∞

[k2
h + (n + kz)2]αn(t)ei(n+kz)zeikhh (5.54)

δj⊥(t; x) = − i

kh

∞∑
n=−∞

[k2
h + (n + kz)2]βn(t)ei(n+kz)zeikhh , (5.55)

where khh = kh · x. The total vorticity and current can be obtained by adding
the contribution from the MRI fields projected onto the direction ǩh:

ω⊥(t; x) = V0eγMRIt cos(Kz) cos(θ − θV) + δω⊥(t; x) (5.56)
j⊥(t; x) = −B0eγMRIt sin(Kz) cos(θ − θB) + δj⊥(t; x) . (5.57)

In Figure 5.A.1 we depict the total vorticity field ω⊥ projected onto the
plane (ǩh, ž), where the arrows represent the total velocity V + v (upper panels)
and the vorticity of the parasitic mode δω⊥ with the velocity field v (lower
panels), for different times. At early times (first panel) the MRI channels remain
steady since the fastest parasitic mode has not reached enough amplitude yet.
When saturation approaches (last three panels) the channels are disrupted by
the parasitic mode, showing the familiar wave-like structure expected from KHI
modes in a periodic background. The lower panels representing the vorticity
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and velocity fields of the parasitic mode show a periodic structure of equidistant
vortex sheets, similar to those in Figure 8 from Pessah 2010, but transitioning
in time to more elongated structures.

Alternatively, Figure 5.A.2 shows the current density and magnetic fields
instead of the vorticity and the velocity fields. The magnetic parasitic field forms
again periodic vortex sheets that become horizontally elongated as saturation
approaches. The MRI channels get disrupted and adopt the same structure as
shown in Figure 10 from [Pessah 2010].

Figure 5.A.1 Physical structure of the fastest parasitic modes, including the velocity field
of the primary MRI mode, for different times (increasing from left to right). The arrows in
the upper and lower panels correspond, respectively, to the projections of the total velocity,
V (z) + v(h, z), and the parasitic velocity, v(h, z), onto the time-dependent plane (ǩh, ž). The
coloured contours correspond to the associated total vorticity ω⊥ and the parasitic vorticity
δω⊥ projected onto the direction perpendicular to ǩh.
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Figure 5.A.2 Same as Figure 5.A.1, but including the magnetic and the current density fields
instead of the velocity and the vorticity, respectively.





CHAPTER 6

Summary of part I and future work

In this first part of the thesis, I presented my work focused on the understanding
and modelling of MHD turbulence in the context of NSs and their mergers.

6.1 The MInIT model

In Chapters 2 and 3, I developed a new sub-grid model for MHD turbulence
triggered by the MRI (Chapter 2) and the KHI (Chapter 3): the MInIT mean-
field model. Both versions of the model are based on the temporal evolution of
the turbulent kinetic energy densities and their connection with the turbulent
stress tensors that arise in the mean-field MHD equations. The turbulent stresses
represent the effect of the small-scale dynamics in the nonlinear equations.

The work developed in Chapter 2 focuses on the modelling of turbulence
that arises from the MRI. This instability plays an important role in the
transport of angular momentum and amplification of weak magnetic fields in
accretion discs, newly born PNSs and HMNS merger remnants, which are rapidly
differentially rotating objects. After discussing two existing sub-grid approaches,
the α,β-dynamo and the gradient models, I turned to describe specific features of
the MInIT model, namely the introduction of two partial-differential equations
for the energy densities, accounting for the MRI itself and the PI. The model
is able to capture the exponential growth of the primary instability and the
eventual saturation due to the rapid evolution of the secondary instability, which
dissipates at the end of the Kolmogorov cascade. Once the evolution equations
for the turbulent energy densities are solved, the turbulent stress tensors are
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obtained via the application of constant coefficients to the turbulent energy
densities. On the one hand, the coefficients for the MRI energy density are
known from previous analytical studies. On the other hand, the PI coefficients
have been obtained from control numerical simulations with different resolutions
and initial vertical magnetic fields.

In Chapter 3, I presented the MInIT model version for the KHI. Since
the PI modelled in the previous Chapter is of KH type, the partial-differential
evolution equation of the turbulent energy density in this case is similar to
the one for the parasitic energy density. For this instability, the growth rate
is given by the velocity jump generated by the shear. The dissipation term is
the same as the one suggested for the MRI version. By making a comparison
with three-dimensional box simulations of the KHI with different resolutions
and initial magnetic fields, I obtained the proportionality coefficients that link
the turbulent kinetic energy density with the turbulent stresses, as done in
Chapter 2.

To assess both versions of the MInIT model, I performed an a-priori test.
Using data from control numerical simulations, a box filter was applied to see the
difference between the quantities given by the model and the filtered ones from
the simulations. For a quantitative comparison, I computed the L2 relative-error
norm. In both versions of the model, the norm takes values around ∼ 1 for
the Maxwell and Reynolds stresses, being slightly smaller for the KHI version.
Also, no dependence on the filter size was observed in the assessment of the
sub-grid model. Thus, this means that it is possible to obtain order-of-magnitude
accurate estimates of these quantities when applying the model. Furthermore,
in its comparison with the gradient model, it was found in Chapter 2 that the
MInIT model performs with a similar accuracy. Unfortunately, the Faraday
stress tensor gives less accurate results. Since, in both cases, the evolution
of this tensor components oscillate around zero, the resulting coefficients are
compatible with a zero value. Given the role of this tensor in the generation of
large-scale dynamos, future studies and extensions of the model should focus on
a better treatment of this quantity. It is however worth highlighting that the
similar findings in the assessment of the model for different MHD instabilities
demonstrates its universality.

In the following, I summarise ongoing and future applications of the MInIT
model in the context of BNS merger simulations:
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6.1.1 Application to numerical simulations

The theoretical framework developed in Chapters 2 and 3 can be applied to
numerical simulations of several astrophysical scenarios. Magnetised discs at
different scales, such as discs around compact objects, protostellar and pro-
toplanetary discs, or differentially rotating PNSs can be prone to the MRI.
However, the physical conditions in some of such scenarios can go beyond ideal
MHD, with smaller values of the Reynolds number and magnetic fields with
different strengths. In those cases, the coefficients for the turbulent stresses
may be different. Therefore, a more general formulation of the model that also
accounts for non-ideal effects would be necessary. Unfortunately, performing
three-dimensional non-ideal MHD simulations is not an easy task, and an a-priori
test of the re-formulated model would be fairly challenging.

In Chapter 4, I have presented the first application of the MInIT model
to a global simulation of a differentially rotating NS that is prone to the MRI.
By performing axisymmetric MHD simulations with low resolution (or at least
not high enough to resolve the MRI) including the sub-grid-scale terms, angular
momentum transport is triggered in the star. The rotational profile flattens,
driving the star to a more uniform rotation in its central regions. It was also
observed that, in those regions, the turbulent energy densities eventually decrease,
since MRI turbulence decays due to the absence of differential rotation. The
temporal evolution of the turbulent energies is the same as shown in Chapter 2.
However, in this preliminary work only the momentum equation was modified
by including the Maxwell and Reynolds stresses. For a more complete study of
the model, the inclusion of the Faraday tensor is key. When better modelled,
additional LES involving the Faraday stress as well would provide a more
accurate picture of the large-scale effects of turbulence, and might also show an
efficient magnetic-field amplification.

In order to improve the modelling of the Faraday stress tensor in the context
of the MRI, it would be useful to include the characteristic dynamo oscillations
in the proportionality coefficients for the tensor. To do so, a mixture between the
α, β-dynamo model and the MInIT model could help. Adding the time variability
of quantities such as the large-scale magnetic field in the model could result in
non-zero coefficients that would allow for an efficient large-scale dynamo. For
the KHI version, longer simulations would be needed to obtain more statistics
to better model the Faraday stress components. Moreover, simulations with
sustained turbulence might be helpful to reach this goal.
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BNS mergers are not the only scenario that is planned to be studied. Tur-
bulence (and more concretely, the MRI) arises in other astrophysical systems,
such as PNSs and accretion discs around massive BHs, as mentioned earlier. If
the PNS is formed in a magnetorotational explosion, characterised by a rapid
rotation and intense magnetic fields, the MRI can play a role in the early evo-
lution of the newly born PNS. Thus, the MInIT model could also be applied
in this scenario to study the angular momentum transport and magnetic-field
amplification, and even the Newtonian version might be valid here, since the
majority of CCSNe simulations are performed within this frame. Regarding
accretion discs around (super)massive BHs, MRI turbulence can also arise from
the differential rotation of the disc and the weak magnetic fields present there.
However, as already mentioned, the magnetic field strengths and dissipative
effects can be considerably different from those from the BNS scenario. If further
studies with the MInIT model are performed employing the characteristic values
of the physical quantities involved, it might be possible to properly study the
development of turbulence in this scenario, and link the numerical results with
the recent observations of M87 and Sagittarius A* from the Event Horizon
Telescope (EHT) [Event Horizon Telescope Collaboration et al. 2019, Event
Horizon Telescope Collaboration et al. 2024].

6.1.2 General-relativistic approach

Another prospect is the generalisation to curved spacetimes. Realistic simulations
of BNS mergers are performed within GR. Additional metric-dependent terms
would be required in the equations for the turbulent energy densities, and also
in the mean-field MHD equations. Moreover, covariance should be preserved in
the equations, and not every sub-grid approach does so. Some works [Celora
et al. 2021, Celora et al. 2024] have already proposed a covariant scheme applied
to relativistic LES using a Lagrangian filter. This technique consists in the
application of the filtering scheme with respect to a co-moving observer that
moves along the fluid. The application of the filter arises sub-grid-scale residuals
that can be regarded as non-ideal contributions.

The covariant formulation I am currently developing is based on the following.
The starting point is to devise a procedure to face the issue that, in general, it
is not possible to define the average of a tensor in a covariant way. The problem
is that, although it is possible to express the volume integral of a scalar as a
scalar, this is not possible for tensors of higher rank. Therefore, the averaging
procedure is defined at each point in a special frame, dubbed the mean rest
fluid frame (MRFF), such that the computation of those quantities would be
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the same irrespectively of the observer. The procedure is similar to what is
implicitly assumed when one describes the thermodynamics of a fluid in the rest
frame. A loose definition of the MRFF, {xµ̄}, of a point P , would be:

• It is a local inertial frame.

• The “mean velocity” of the fluid in a small neighbourhood of P , computed
in this frame, is zero.

• The spatial axes are oriented in a certain way with the shear of the fluid.

In this frame, the metric is thus Minkowski at P . One can perform a boost and a
spatial rotation, i.e., a transformation within the Lorentz group. This boost can
result in a mean zero 4-velocity at P , ūµ̄|P = (1, 0, 0, 0). Moreover, since the aim
of this work is to provide a framework to study turbulence generated by rotating
and sheared fluids, it is natural to choose an axis orientation aligned with the
shear of the fluid. That would ease the formulation of closure models based on
local simulations that can be used as sub-grid models for global simulations.

Currently, I am working on the application of this covariant scheme within
the MInIT model to perform GRMHD simulations of weakly magnetised differ-
entially rotating HMNS remnants including the MInIT model.

6.2 Revisiting the saturation of the magnetorotational instability

In Chapter 5, I discussed a local analytical study of the saturation of the
MRI by secondary PIs. This analysis includes the background shear velocity
and the net vertical large-scale magnetic field in the equations for the parasitic
perturbations, in addition to the velocity and magnetic MRI fields which are
treated as background as well. The shear introduces a time dependence to
the parasitic wavevector that can result in a different saturation amplitude of
the MRI magnetic field. These secondary instabilities are initially very small
compared to the MRI channel modes, but they grow super-exponentially until
they eventually disrupt the channels and saturate the exponential amplification
of the MRI fields. In the context of ideal MHD, i.e., for low values of kinetic
viscosity and resistivity, the parasitic modes grow faster when their wavevector
is aligned with the MRI velocity field. This means that the parasitic modes are
of KH type, as one would expect. Also, the wavenumber needs to be smaller
than the MRI’s for the instability to grow. Due to its time dependence, the
wavevector will only be aligned with the primary velocity field during a small
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period of time. For this reason, the PIs do not grow as fast as it is expected
when their wavevector is treated as static. Besides these differences, the analysis
provides consistent results, similar to the ones obtained in previous analytical
and numerical studies. With this approach, I have been able to study in more
detail the time evolution of several parasitic modes (not only the fastest ones)
and the way they feed from the primary instability, something difficult to observe
in numerical simulations. In contrast to other analytical works, this study allows
to follow the evolution of the parasitic growth rate and to test different initial
amplitudes of the primary and secondary instabilities.

By making a comparison with results from three-dimensional box simulations,
it was found that the amplification factor of the MRI magnetic field is closer
to the numerical one than other previous linear analyses. Furthermore, the
dependence of this amplification on the initial amplitude of the parasitic and
primary fields is also similar. However, this dependence is not as strong as
numerical simulations suggest, where one would always find an amplification
factor between ∼ 20 − 80 regardless the amplitude of the initial perturbations
and the value of the shear factor. Nevertheless, it is difficult to compare between
results from local linear analyses and those from numerical simulations. The
numerical perturbations that may arise in simulations can alter the dynamics
of the flow and also limit the control that one has on the initial conditions
of the system. Moreover, the way perturbations are excited in simulations
differs completely from the initial configuration of the instabilities in linear
analyses. It was also observed in numerical studies that the use of different
numerical codes with different boundary conditions and numerical schemes can
also lead to discrepancies between different simulations. In addition, when the
amplitudes of the PIs and the MRI are compatible, the nonlinear effects are
expected to decrease the parasitic growth rate and therefore yield a higher
amplification factor, which would also explain its larger values obtained in
numerical simulations.

The inclusion of the background shear in the analysis of the evolution of
the PIs results in a slower growth with respect to previous analyses where
the parasitic wavevector was assumed to be aligned with the MRI velocity. A
correcting factor f , which accounts for this effect, can be added to the analytical
expression of the parasitic growth rate from Chapter 2. This growth rate is
used in the evolution equation for the turbulent energy density of the PI, and
therefore it would slightly increase the saturation amplitude of the turbulent
energy density of the MRI. The reduced growth rate might change the value of
the C parameter of the MInIT model, and further tests might be required.
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6.2.1 Future studies and numerical simulations

Even though the results presented in this Chapter are in agreement with several
local box simulations of the MRI, there is still room for improvement in the
treatment of PIs. This Chapter focused on the ideal MHD case, which is a
good approximation to study NS interiors. Nevertheless, the MRI can also play
a role in other astrophysical systems such as accretion discs, where viscosity
and resistivity may exhibit non-negligible values. Thus, it would be of interest
to perform a similar analysis for larger values of viscosity and resistivity to
study the growth of the fastest parasitic mode in this context. Moreover, the
inclusion of neutrinos in numerical simulations can be performed via an effective
viscosity. Thus, going beyond the ideal MHD limit also means studying the
effect of neutrinos in the growth and saturation of the MRI.

Moreover, the fastest parasitic modes found in this analysis have larger initial
wavenumbers than the primary MRI ones. This means that, in order to capture
the growth of these rapidly growing modes, sufficiently high resolution in the
horizontal plane is required. More concretely, these modes seem to possess wave-
lengths approximately up to four times smaller than the primary channel sizes.
Numerical simulations with insufficient resolution might miss the evolution of the
fastest secondary instabilities, which would result in a larger amplification factor.
Moreover, the way initial perturbations are excited in numerical simulations may
have an impact in the consequent dynamics of the system. Applying random
perturbations of small amplitude to excite both the MRI and parasitic fields
may delay the growth of the instabilities. Alternatively, exciting the fastest
primary and secondary modes by choosing the proper wavevectors could result
in a prompt saturation.
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CHAPTER 7

Prospects for the inference of inertial
modes from hypermassive neutron stars
with future gravitational-wave detectors

This Chapter was originally published in: Miquel Miravet-Tenés, Florencia
L. Castillo, Roberto De Pietri, Pablo Cerdá-Durán and José A. Font. Prospects
for the inference of inertial modes from hypermassive neutron stars with future
gravitational-wave detectors. Phys. Rev. D, Volume 107, Issue 10, pp. 103053,
May 2023. DOI: 10.1103/PhysRevD.107.103053. Reproduced with permission.

7.1 Introduction

As discussed in the Introduction (Section 1.4), during the first few milliseconds
after its formation, the HMNS exhibits strong nonaxisymmetric deformations
and nonlinear oscillations, namely combinations of oscillation modes and spiral
deformations [Stergioulas et al. 2011, Hotokezaka et al. 2013, Bauswein and
Stergioulas 2015, Takami, Rezzolla, and Baiotti 2015, Bauswein, Stergioulas,
and Janka 2016, Bauswein and Stergioulas 2019]. This is accompanied by the
emission of GWs in a range of frequencies around a few kHz [Shibata and
Uryū 2000, Oechslin, Rosswog, and Thielemann 2002, Baiotti, Giacomazzo, and
Rezzolla 2008, Stergioulas et al. 2011, Bauswein and Janka 2012, Lehner et al.
2016, Rezzolla and Takami 2016, De Pietri et al. 2016, Dietrich et al. 2017]. The
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GW spectrum of the HMNS is characterised by the presence of many distinct
peaks (see e.g. Bauswein and Stergioulas 2019 for a review). The detection and
interpretation of postmerger GW signals relies on a proper understanding of
the physical mechanisms generating those features in the spectrum. Through
their analysis, inference on NS properties might be possible. In particular,
information on the EOS of the remnant star can be obtained through the study
of the frequency of the m = 2 f -mode (quadrupolar mode) [Shibata 2005,
Kastaun, Willburger, and Kokkotas 2010, Kastaun and Galeazzi 2015, Clark
et al. 2016, Kastaun, Ciolfi, and Giacomazzo 2016, Kastaun et al. 2017, Lioutas,
Bauswein, and Stergioulas 2021, Soultanis, Bauswein, and Stergioulas 2022, Iosif
and Stergioulas 2022, Wijngaarden et al. 2022]. There exists a significant amount
of work to build empirical relations to infer the NS radius from the frequency
peak (fpeak) of this dominant mode [Bauswein et al. 2012, Chatziioannou et al.
2017, Bose et al. 2018, Bauswein and Stergioulas 2019]. The frequency peaks
of the postmerger spectra can also be related to other NS properties, such as
the tidal coupling constant [Bernuzzi, Dietrich, and Nagar 2015] or the average
density [Takami, Rezzolla, and Baiotti 2015]. The empirical relations that link
the GW spectrum and physical quantities of the HMNS can directly constrain
the EOS (see Takami, Rezzolla, and Baiotti 2015, Bauswein and Stergioulas
2019 and references therein).

On timescales longer than about 50 ms after merger the simulations of De
Pietri et al. 2018, De Pietri et al. 2020 (see also Ciolfi et al. 2019) have shown
the appearance and growth of convective instabilities in the remnant. The simu-
lations, based on a piecewise polytropic approximation for the EOS treatment
supplemented by a thermal component [Read et al. 2009], showed that at 40 − 50
ms after merger (depending on the EOS), the amplitude of the m = 2 f -mode,
which is the dominant mode in the early and intermediate postmerger phases,
has noticeably decreased. By that time, convective instabilities set in and trigger
inertial modes. The GW emission associated with those modes is found to
dominate over the initial m = 2 f -mode at late postmerger times, producing
new distinctive peaks in the HMNS GW spectrum. The postmerger timescales
discussed in De Pietri et al. 2018, De Pietri et al. 2020 at which the HMNS is
affected by convective instabilities are compatible with those found by Camelio
et al. 2019 who analysed convectively unstable rotating NSs with non-barotropic
thermal profiles (as in the case of BNS remnants). Since inertial modes depend
on the rotation rate of the star and they are triggered by convection, their
detection in GWs would provide a unique opportunity to probe the rotational
and thermal state of the merger remnant. As an example to conduct such
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inference, an empirical relation between the frequency of the inertial modes and
the angular velocity and the rotation rate of the star was proposed by Kastaun
2008.

The results of De Pietri et al. 2018, De Pietri et al. 2020 indicate that
the GW emission of inertial modes in the late postmerger phase is potentially
detectable by the planned third-generation GW detectors. In this chapter we
further investigate this issue by reconstructing the GW signals of De Pietri
et al. 2020 using BayesWave1 Cornish and Littenberg 2015, Littenberg and
Cornish 2015, a Bayesian data-analysis algorithm that recovers the postmerger
signal through a morphology-independent approach using series of sine-Gaussian
wavelets. To assess the detectability of inertial modes we perform injections
into the noise of different detectors from sources at different distances: the
current Hanford-Livingston-Virgo (HLV) detector network [Harry and LIGO
Scientific Collaboration 2010, LIGO Scientific Collaboration 2018, Acernese et al.
2015] and the future Einstein Telescope (ET) [Punturo et al. 2010, Hild et al.
2011]. We also check the dependence of our results on the NS EOS by using two
different EOSs, APR4 and SLy [Read et al. 2009]. The reconstructed waveform
distributions that we obtain for each injection allows us to infer posteriors of the
peak inertial-mode frequency, finertial. Our analysis shows that inertial modes
can be potentially detected by third-generation GW detectors up to distances of
about 10 Mpc.

The Chapter is organised as follows: in Section 7.2 we briefly present the
BayesWave algorithm and introduce the quantities we use to assess the wave-
form reconstructions. Our main results are presented in Sec. 7.3 where we briefly
describe the NR simulations used to generate the waveforms employed for the
injections and we discuss the waveform reconstruction performance. Finally, our
conclusions are presented in Section 7.4.

7.2 Waveform reconstruction

7.2.1 The BayesWave algorithm

The goal of this work is to analyse the reconstruction of the GW signal produced
after the merger of two NSs, particularly in the late postmerger phase. To do
so we employ BayesWave, a Bayesian signal reconstruction algorithm that
uses Morlet-Gabor (or sine-Gaussian) wavelets [Cornish and Littenberg 2015,
Littenberg and Cornish 2015] to model morphologically unknown non-Gaussian

1https://git.ligo.org/lscsoft/bayeswave

https://git.ligo.org/lscsoft/bayeswave
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features with minimal assumptions [Bécsy et al. 2017]. In the time domain, the
two GW polarisations of the wavelets are given by

h+(t) = Ae−(t−t0)2/τ2
cos [2πf0(t − t0) + ϕ0] , (7.1)

h×(t) = ϵh+(t)eiπ/2 , (7.2)

where A is the amplitude of the wavelet, f0 is the central frequency, t0 is the
central time, ϕ0 is the offset phase, ϵ is the ellipticity, and τ = Q/(2πf0), where Q

is the quality factor [Cornish and Littenberg 2015]. The factor eiπ/2 in Eq. (7.2)
indicates there is a π/2 difference in the phase of both polarisations.

BayesWave employs a transdimensional reversible jump Markov chain
Monte Carlo (RJMCMC) to sample the joint posterior of the parameters of
the wavelets, the number NW of wavelets and ellipticity. These are used to
derive the posterior distribution of the reconstructed waveform and, using the
waveform samples, it is straightforward to obtain posteriors of quantities that
can be derived from the signal. This sampler ensures that the algorithm does not
overfit the data, since the addition of wavelets to the reconstruction increases
the dimensionality of the model, which provokes a reduction of the posterior
probability. There has to be a balance between the improvement of the fit and
the addition of wavelets in order to overcome the Occam penalty [Smith and
Spiegelhalter 1980].

7.2.2 Overlap and Peak Frequency

A way to check how well a signal that is injected into detector noise is recovered is
the use of the overlap function between the injected signal, hi, and the recovered
model from BayesWave, hr:

O = ⟨hi, hr⟩√
⟨hi, hi⟩

√
⟨hr, hr⟩

, (7.3)

where the inner product of two complex quantities a and b, ⟨a, b⟩, is defined as

⟨a, b⟩ ≡ 2
∫ ∞

0

a(f)b∗(f) + a∗(f)b(f)
Sh(f) df , (7.4)

where Sh(f) refers to the one-sided noise power spectral density (PSD) of the
detector and the asterisk denotes complex conjugation. The value of the overlap
function ranges from -1 to 1, being O = 1 a perfect match between the injected
and the reconstructed signal, O = −1 a perfect anticorrelation, and O = 0 means
no match between the signals. One can also compute the weighted overlap from
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a network of N detectors:

Onetwork =
∑N

k=1⟨h(k)
i , h

(k)
r ⟩√∑N

k=1⟨h(k)
i , h

(k)
i ⟩
√∑N

k=1⟨h(k)
r , h

(k)
r ⟩

, (7.5)

where the index k stands for the k-th detector. With the resulting overlap
between the injected and reconstructed signals from BayesWave we assess the
reconstructions for different distances to the GW source (i.e. different SNRs).

We also compute the peak frequency, defined as the one corresponding to the
maximum value of the fast Fourier transform (FFT) [Cooley and Tukey 1965] of
the time-domain signal, |h̃(f)|, using a time window over the part of the signal
we are interested in. The segments of data have been previously Hann-windowed.
We expect the peak frequencies, fpeak and finertial, to be located in the range
f ∈ [1500, 4000] Hz [Chatziioannou et al. 2017, De Pietri et al. 2020], and we
will use this range to set the low-frequency and high-frequency cutoffs for the
computation of the overlap and the frequency peaks.

7.3 Results

7.3.1 Summary of the numerical-relativity simulations

The waveforms we employ for our study were obtained in the NR simulations of
BNS mergers performed by De Pietri et al. 2020. The initial data are generated
using the Lorene code [Gourgoulhon et al. 2001, Gourgoulhon et al. 2016] and
the initial separation of the two stars is ≈ 44.3 km, which corresponds to about
four full orbits before merger. The main properties of the initial simulation setup
are reported in Table 7.3.1. The evolution of the initial data is performed using
the Einstein Toolkit [Löffler et al. 2012], an open source code based on the
Cactus framework [Goodale et al. 2003]. The simulation setup employed in the
study of De Pietri et al. 2020 is the same as in Maione et al. 2017, De Pietri et al.
2016, De Pietri et al. 2019, to which the reader is addressed for further details,
except for the fact that π-symmetry was used to reduce the computational
cost by a factor 2. The Einstein Toolkit solves Einstein’s field equations
in the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism [Shibata and
Nakamura 1995, Baumgarte and Shapiro 1998] and the GR hydrodynamics
equations in the Valencia formulation Banyuls et al. 1997, Font 2008. The latter
are integrated numerically with a finite-volume algorithm based on the Harten,
Lax, Van Leer, Einfeldt (HLLE) Riemann solver [Harten, Lax, and Leer 1983,
Einfeldt 1988], the weighted essentially non-oscillatory (WENO) reconstruction
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EOS M0 M C JADM Ω0 (krad/s)
APR4 1.4 1.2755 0.166 6.577 1.767
SLy 1.4 1.2810 0.161 6.623 1.770

Table 7.3.1 Main properties of our two BNS simulations. The columns report the EOS, the
baryonic mass, M0, the gravitational mass (at infinite distance), M , and the compactness,
C := M/R, of the individual stars, and the total angular momentum,JADM, and the total
angular velocity, Ω0, of the binary system. Geometrised units are used (c = G = M⊙ = 1).

method [Liu, Osher, and Chan 1994, Jiang and Shu 1996], and the Method of
Lines with a 4th order, conservative Runge-Kutta scheme [Shu and Osher 1988].

The inertial modes identified in the simulations of De Pietri et al. 2018,
De Pietri et al. 2020 are triggered by a convective instability appearing in
the nonisentropic HMNS which was identified by monitoring the value of the
Schwarzschild discriminant. The modes have frequencies slightly smaller than
twice the maximum angular frequency of the differentially rotating remnant star
Ωmax.

7.3.2 Waveform reconstruction performance

In order to obtain a distribution of frequency peaks we perform injections in
BayesWave of the waveforms computed by [De Pietri et al. 2020]. We use
several sensitivity curves (for Advanced LIGO (aLIGO) we use the PSD model
aLIGOZeroDetHighPower for the two detectors from LIGO Scientific Collabo-
ration 2018, for Advanced Virgo we use the design sensitivity from Acernese
et al. 2015 and we take the ET-D configuration from Hild et al. 2011) to see the
differences between current and future GW detectors. The reconstructions are
compared using the design sensitivities of the HLV detector network and of the
ET, formed by a three detector network on the same site. No sources of noise
and/or glitches are added; we only consider Gaussian noise [Blackburn et al.
2008, Abbott et al. 2009, Aasi et al. 2012] coloured by the PSD of the detector.
We set the source of the injected signals at different distances (giving different
SNRs) and assume that the source is also optimally oriented with respect to one
of the detectors (Hanford, H1, for HLV and E3 for ET2). We set a maximum
number of wavelets of Nmax

W = 100 for HLV and Nmax
W = 200 for ET, a maximum

quality factor of Qmax = 200, n = 2 × 106 iterations, and a sampling rate of 8192
Hz. The maximum number of wavelets is different for HLV and ET because

2The design of the Einstein Telescope consists of three arms forming an equilateral triangle,
with three pairs of interferometers acting as a three-detector network, E1, E2 and E3.
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selecting Nmax
W = 100 for ET is not large enough for the algorithm to reconstruct

the signal accurately, due to the high sensitivity of third-generation detectors.

Figure 7.3.1 Injected (red) and recovered (blue) time-domain waveforms (top panels) and
ASD (bottom panels) for BNS merger simulations with the APR4 EOS. Each ASD is computed
using the corresponding time window depicted in yellow in the top panels. The source is
assumed to be located at d = 3 Mpc. The signals are injected into the E3 configuration of the
third-generation ET observatory, whose sensitivity curve is shown by the dashed green curve.
The width of the time windows is chosen to show how the frequency peak is displaced to lower
frequencies depending on the different evolutionary stage of the postmerger remnant.

Figure 7.3.2 Same as Fig. 7.3.1, but for the H1 detector.

The complete GW strains and the corresponding amplitude spectral density
(ASD) of both injected (red) and recovered (blue) coloured time-domain signals
for the APR4 EOS model of Table 7.3.1 are depicted in Figs. 7.3.1 and 7.3.2, using
the PSD of ET and H1, respectively, and for a source at a distance of 3 Mpc.
The blue-shaded regions show the 50% and 90% credible intervals (CIs) of the
posterior distribution of the reconstructed signal. The limits of these intervals
correspond to the values of the 25th/75th and 5th/95th percentiles, respectively.
Time windows with different widths located at different stages of the postmerger
phase are applied to the time series. Those are indicated by the areas depicted
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in yellow in the top panels of both figures. By moving those windows over time
we can follow potential changes in the ASD during the evolution of the GW
signal, and observe the emergence of different modes in the HMNS. The black
dashed line in the bottom row of the two figures corresponds to the ASD of
the injected entire signal, from ti = −20 ms (where t = 0 ms corresponds to
the time of merger) to tf = 140 ms. Correspondingly, the red lines in the ASD
plots show the corresponding spectrum for the selected time-window intervals.
One can clearly see that the peak frequency changes depending on the time
window applied to obtain the ASD, shifting to lower frequencies for increasingly
later times. We do not include the corresponding plots for the SLy EOS model
because a similar behaviour is observed in this case.

By comparing the two figures the differences between the reconstructions
of the injections into H1 and E3 are evident. The early postmerger signal
corresponding to the f -mode is well recovered for both types of detectors. We
note that this is in agreement with the previous findings of Chatziioannou et al.
2017 who used BNS merger waveforms from the NR simulations of Bauswein,
Stergioulas, and Janka 2014, Bauswein, Stergioulas, and Janka 2016 (extending
only up to ∼ 15 ms after merger) to recover with BayesWave the peak frequency
of the f -mode. However, when it comes to the late postmerger signal during
which the inertial modes are excited, only a third-generation detector such as
ET is able to reasonably reconstruct the waveform. We also performed a similar
study with Cosmic Explorer (CE) [Evans et al. 2021] finding comparable results.

The waveform posterior distribution can be used to derive some physical
parameters of the HMNS. In this case, the reconstructed signals can be used
to obtain the posterior for the dominant postmerger frequency fpeak [Bauswein
et al. 2012, Chatziioannou et al. 2017, Bose et al. 2018]. For both the overlap and
the reconstructed peak frequency we study both the entire postmerger signal,
which is dominated by the f -mode excited at early times, and the late signal,
during which the inertial modes are excited. For completeness, the Appendix
discusses a test case using injections that only contain the late postmerger phase.

7.3.2.1 Study of the full GW signal

We compute the overlap between the injected and the recovered waveforms to test
the performance of BayesWave. In Fig. 7.3.3 we show the overlap as a function
of distance for both APR4 and SLy EOSs, computed for the HLV detector network
(left panel) and for ET (right panel). The overlap clearly decreases with the
distance to the source, as the GW signal becomes more difficult to reconstruct.
The behaviour is the same for both EOS, but the reconstruction is slightly
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better for the APR4 EOS at larger distances. Note also the difference between
the detector networks: the HLV network has Onetwork ∼ 0.7 at 15 Mpc and the
ET gives a similar overlap at roughly 150 Mpc. For the sake of comparison,
in Chatziioannou et al. 2017 an overlap of ∼ 0.9 is reported for a postmerger
SNR of 5. In our case, Onetwork = 0.9 is achieved for a distance of ∼ 12 Mpc,
which translates to a postmerger SNR of ∼ 5 for both EOS.

Figure 7.3.3 Detector network overlap between the full injected and recovered signals as a
function of the distance to the GW source. The left panel shows the results for the HLV
network and the right one for the ET detector. The lines indicate the mean value over the
waveform posterior distribution and the shaded areas are the standard deviations.

We show the dependence of the recovered value of fpeak with the distance
to the source in Fig. 7.3.4, again considering the full waveform, t ∈ [−20, 140]
ms, injected in a window of 1 s of detector data, which corresponds to coloured
Gaussian noise. This value, plotted with solid curves, is the mean value obtained
from the posterior distributions of the recovered signals. We also depict the
standard deviations for both EOSs, which become larger as the distance to the
source increases. These results are consistent with the overlap values shown
in Fig. 7.3.3, since a low overlap value gives a poorly recovered fpeak. In the
case of H1 (left panel), the dispersion starts increasing at d ∼ 13 Mpc for APR4
and d ∼ 17 Mpc for SLy, right where Onetwork drops below 0.6. Concerning
ET (right panel), the uncertainty becomes larger at d ∼ 125 Mpc, also when
Onetwork ∼ 0.6. Notice that for high SNRs the distance to the source and the
SNR are inversely proportional, and a less accurate value of fpeak would be
obtained by decreasing the SNR.

In Chatziioannou et al. 2017 an almost flat posterior distribution for a
postmerger SNR of 3 was obtained. In our case, at 25 Mpc the recovery of the
frequency peak already has a large uncertainty, and corresponds to a postmerger
SNR of ∼ 3 for both EOS, which is consistent with the results of Chatziioannou
et al. 2017.
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Figure 7.3.4 Dependence of the recovered f−mode frequency peak with distance for the H1
detector (left panel) and for the E3 detector (right panel). The solid curves are the mean
values and the shaded areas represent the standard deviations of the distributions. The mean
of the recovered peak is close to the injected signal (dashed lines) for distances up to 10 Mpc
for H1 and 100 Mpc for E3.

Figure 7.3.5 Histograms of the number of wavelets used by BayesWave for the reconstructions
of signals injected in ET coming from sources at d = {10, 50, 100} Mpc. The y−axis indicates
the number of iterations of the RJMCMC algorithm that use a certain number of wavelets.
At each iteration, the algorithm might add wavelets to the series, but only when the fit is
improved considerably so as to overcome the Occam penalty.

In Fig. 7.3.5 we depict histograms of the numbers of wavelets used for the
reconstructions at different distances, d = {10, 50, 100} Mpc. The closer the
source the larger the number of wavelets employed, resulting in more accurate
reconstructions.

7.3.2.2 Study of the late postmerger phase

We turn next to analyse the reconstruction of the late postmerger signal (t ≥ 40
ms for SLy EOS and t ≥ 80 ms for APR4 EOS [De Pietri et al. 2020]). Once the
maximum amplitude of the fundamental quadrupolar f -mode has significantly
decreased, a signal with lower frequency and amplitude appears, associated with
the manifestation of inertial modes in the remnant. The two rightmost panels of
Fig. 7.3.1 clearly show the appearance of this new peak for a source observed at
a distance of 3 Mpc. This peak is just above the sensitivity curve of ET at a
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frequency of ∼ 2.5 kHz (see rightmost panel of Fig. 7.3.2). However, it is out of
reach for current detectors, at least for d = 3 Mpc (cf. Fig. 7.3.2).

Figure 7.3.6 Injected (red) and recovered (blue) time-domain waveforms (top panels) and ASD
(bottom panels) for sources located at d = {5, 7, 12} Mpc. Signals are injected in ET (E3).
The time window used to compute the ASD only considers the last part of the signal (yellow
region). The recovery of the frequency peak degrades with the distance to the source.

Figure 7.3.7 As Fig. 7.3.6, but for H1 and closer source distances, d = {0.5, 1, 3} Mpc
.

To illustrate how the BayesWave reconstruction changes with distance, we
show in Fig. 7.3.6 the injected and reconstructed time-domain waveforms and
the respective ASD reconstructions for three representative distances, namely 5,
7, and 12 Mpc, and for BNS merger simulations with the APR4 EOS. As before,
the regions in yellow in the top panels show the time window we use to compute
the ASD displayed in the bottom panels. The median of the reconstructed



174
Prospects for the inference of inertial modes from hypermassive neutron stars with

future gravitational-wave detectors

ASD is shown with a blue solid line and the 50% and 90% CIs are indicated
by the dark and light blue-shaded areas, respectively. The Hann function (as
other window functions) cuts the tails of the time-domain signal, and thus might
affect the resulting frequency spectra. However, the inertial modes with largest
amplitude are located in the middle of the time window, and are not affected by
the cut. We find that the region around the frequency peak at f ≈ 2.5 kHz is
well recovered when the source is at 5 Mpc. On the other hand, as the distance
increases the reconstruction worsens, as expected, and for a source at 12 Mpc
there is no frequency peak in the reconstructed signal. The corresponding result
for current detectors is shown in Fig. 7.3.7 which depicts the dependence of
the peak-frequency recovery with distance (for d = {0.5, 1, 3} Mpc) with the
design sensitivity of H1. In this case, BayesWave is not able to recover the
peak-frequency of inertial modes even when the GW source is at 3 Mpc.

Figure 7.3.8 Detector overlap of the late postmerger GW signals for the HLV network (left panel)
and ET (right panel). Solid lines represent the mean values from the posterior distributions
and shaded regions are the standard deviations. For both EOS the overlaps drop below ≈ 0.75
for a source distance of about 1 Mpc for HLV and 10 Mpc for ET.

In Fig. 7.3.8 we show the network overlap function of the late postmerger
signal, for both HLV and ET. The same initial time windows as in Figs. 7.3.6
and 7.3.7 are used to compute these overlaps. We note, however, that the final
time of the window is different for both EOSs, namely 140 ms for the APR4 EOS
and 123 ms for the SLy EOS, respectively. For the latter the final time is shorter
since a BH forms at t ≈ 123.6 ms [De Pietri et al. 2020]. Moreover, the initial
time of the window is also different, as pointed out before, since the emergence
of the inertial modes occurs at different times (t ∼ 40 ms for SLy and t ∼ 80 ms
for APR4). For the case of ET (right panel), at d ≈ 8 Mpc the overlap is around
0.7 for both EOSs, but it rapidly decreases to about 0.5 at ≈ 12.5 Mpc. The SLy
EOS gives a higher overlap and a more accurate finertial but both EOSs yield
Onetwork = 0 at 15 Mpc. On the other hand, for the HLV detector network the
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network overlap for both EOSs falls rapidly to practically 0 from a distance of
1.75 Mpc.

Figure 7.3.9 Dependence with distance of the peak frequency during the late postmerger phase,
for signals injected in H1 (left panel) and E3 (right panel). Solid lines and shaded areas are
the mean values and the standard deviations of the distributions, respectively. For ET, the
peak frequency is well identified up to 10 Mpc for both APR4 and SLy EOSs while for H1 a
satisfactory recovery is only possible for sources up to 1 Mpc for both EOSs.

We now focus on the recovery of the frequency peak of these lower-frequency
inertial modes, finertial. Fig. 7.3.9 depicts the dependence of the recovered
finertial with distance for H1 and E3. The maximum distance shown in the plots
for each detector is selected by the value at which the reconstructions start to
significantly fail. These results are in good agreement with the overlap shown in
Fig. 7.3.8. We note that there is a slight dependence on the EOS as we obtain a
peak frequency that is about 75 Hz higher in the APR4 case. For the specific case
of ET, at d = 12 Mpc the recovery of the peak frequency fails for both EOSs. Up
to 8 Mpc, the recovered finertial is close to the injected one with an uncertainty
of ∆finertial ≲ 25 Hz. For the case of H1, this value of the uncertainty of the
method is obtained for much shorter distances (d ≈ 1.0 Mpc).

7.4 Discussion and conclusions

The existence of convectively unstable regions in long-lived remnants of BNS
mergers [De Pietri et al. 2018, De Pietri et al. 2020] triggers the excitation of
inertial modes, which depend on the rotational and thermal properties of the
remnant. Their presence in the late postmerger GW signal might thus provide
further insight in our understanding of NS properties. In this Chapter, we have
studied the possibility of reconstructing the late BNS postmerger GW signal
with current and future interferometers. To this aim, we have employed the
waveforms produced in NR simulations of equal-mass BNS mergers that last
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up to t ≈ 140 ms after merger, performed by De Pietri et al. 2018, De Pietri
et al. 2020. These long-lasting simulations showed the excitation of oscillation
modes in the postmerger remnant with a smaller frequency and amplitude than
those of the quadrupolar f -mode which dominates the GW spectra of the early
postmerger phase. These so-called inertial modes are triggered by a convective
instability developing in the HMNS, for which the Coriolis force acts as the
dominant restoring force [Stergioulas, Apostolatos, and Font 2004, Kastaun 2008,
Stergioulas et al. 2011]. The late-time appearance of these modes has also been
observed in the BNS simulations of Ciolfi et al. 2019 accounting for the effects
of magnetic fields in the dynamics.

Due to their small amplitude, with a strain h(f) more than 1 order of
magnitude smaller than that of the f -mode, the detectability of such inertial
modes can be challenging. In order to assess their possible detection, we have
employed the BayesWave algorithm [Cornish and Littenberg 2015, Littenberg
and Cornish 2015] to reconstruct our time-domain waveforms injected into
Gaussian noise. The signals were injected at different distances from the source
to check the range of detection of those modes. In all cases the source was
assumed to be optimally oriented with respect to (one of) the detectors.

Our study reveals that current GW interferometers (i.e., the HLV network)
are able to recover the peak frequency of inertial modes only if the BNS merger
occurs at distances of about 1 Mpc or less. However, for future detectors such
as ET, the range of detection increases by a factor of 10, consistent with their
increased sensitivity compared to current detectors. An important point to
stress is that the difference between the frequency peaks of the inertial modes
for different EOSs (APR4 and SLy) is bigger than the difference between the
peaks of the fundamental mode in the early part of the signal. This means that
a future detection of those late postmerger modes could give us more insight
into the internal matter and structure of a NS, as a result of the broken EOS
degeneracy and the relationship of those modes with the rotational properties of
differentially rotating stars. In general the frequency finertial changes with the
EOS and the total binary mass, and it also correlates with the tidal deformability.
For the simulations discussed in this work, finertial appears to be very close for
all models because of the properties of the initial systems, in particular the total
mass. Employing different initial data with a wider spread in the total mass
might be something worth trying in a future investigation. Furthermore, the
value of the peak frequency can be used to infer different physical parameters of
the star [Kastaun 2008], extending what has already been done for the f -mode
to infer the radius, the tidal coupling constant or the average density of the
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NS [Bauswein and Janka 2012, Takami, Rezzolla, and Baiotti 2015, Bernuzzi,
Dietrich, and Nagar 2015, Chatziioannou et al. 2017]. However, as mentioned in
De Pietri et al. 2018, one would need to employ perturbative studies to identify
the particular inertial modes that are excited. Such a challenging project is
outside the scope of this work, which has purely focused on the prospects of
detectability of inertial modes.





Appendix

7.A Reconstruction of late postmerger injections

In this Appendix we consider injections that only contain the late postmerger
phase when inertial modes are active. This test case allows us to assess the
capability of BayesWave of recovering only the part of the GW signal containing
the inertial-mode emission and to find out whether there is an improvement
with respect to the case of full-signal injections discussed in the main text. For
APR4 we inject the signal from 80 ms to 140 ms after merger while for SLy the
respective range goes from 45 ms to 140 ms after merger. For this test, we only
consider the ET detector.

In Figs. 7.A.1 and 7.A.2 we depict the time-domain reconstructions and
their ASD for APR4 and SLy, respectively. The ASD of the signal of the APR4
EOS shows also a noticeable secondary peak at a lower frequency (≈ 2250 Hz).
This peak, while being present, is not so clearly prominent in the injections and
reconstructions of the full merger and postmerger signal (see fourth column in
Fig. 7.3.1). Both peaks are properly captured by BayesWave up to a distance
similar to the one obtained when injecting the full signal. The variability
of the highlighted peaks is a sign that different frequencies are present, at
different times, on the postmerger signal. The number of wavelets used for the
reconstructions is displayed in Fig. 7.A.3, in which the histograms show, as in
Fig. 7.3.5, the number of iterations that use a certain number of wavelets. Since
in this case BayesWave only reconstructs the part of the signal corresponding
to the inertial-mode emission, the number of wavelets employed for a distance
of 10 Mpc is low.

Fig. 7.A.4 shows the frequency peaks from the ASD of the recovered signals.
The larger uncertainty in the case of the APR4 EOS is due to the secondary
peak that arises in those injections. The peak from the SLy EOS signal is very
well recovered with small uncertainty up to some distance. Even in the case of
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Figure 7.A.1 Injected (red) and recovered (blue) time-domain waveforms (top panels) and
ASD (bottom panels) for sources located at d = {5, 7, 12} Mpc and for APR4 EOS. In this case
the injected signal only contains the intertial-mode emission.

Figure 7.A.2 As Fig. 7.A.1 but for the SLy EOS.

Figure 7.A.3 Histograms of the number of wavelets used by BayesWave for the reconstructions
of injected signals containing only the inertial-mode emission and located at distances d =
{1, 5, 10} Mpc. The y−axis indicates the number of iterations that BayesWave uses to build
the waveforms by model selection.
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Figure 7.A.4 Dependence of the recovered frequency peak of the inertial modes with distance
for both EOSs, when injecting only the part of the postmerger signal corresponding to the
inertial modes. Solid lines represent the mean values from the posterior distributions and
shaded areas are the standard deviations.
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Figure 7.A.5 Evolution of the overlap between the injected and recovered GW signals with
distance for the two EOSs. Solid lines represent the mean values from the posterior distributions
and shaded areas are the standard deviations.

injecting the part of the signal corresponding to the inertial-mode emission we
obtain similar results to the case in which we injected the full postmerger signal.
No improvements are obtained, and the peak frequency is well recovered up to
a distance of ≈ 12 Mpc. The overlap between the injected and reconstructed
waveforms is depicted in Fig. 7.A.5. As expected, there is a good agreement
with the recovery of the frequency peaks. The overlap drops below 0.5 at d ≈ 12
Mpc, the largest distance at which the peak is recovered with ET.

From these results we conclude that BayesWave yields no difference between
reconstructing the full waveform with an early stage in which the signal is much
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larger or reconstructing only the fraction of the postmerger signal associated
with the emission of the inertial modes.



CHAPTER 8

Identifying thermal effects in neutron star
merger remnants with model-agnostic
waveform reconstructions and
third-generation detectors

The content of this Chapter is originally from: Miquel Miravet-Tenés, Davide
Guerra, Milton Ruiz, Pablo Cerdá-Durán and José A. Font. Identifying
thermal effects in neutron star merger remnants with model-agnostic
waveform reconstructions and third-generation detectors. January 2024.
Submitted to Phys. Rev. D. arXiv:2401.02493.

8.1 Introduction

GW searches of BNS mergers and inference of source parameters rely on ac-
curate waveform models for the inspiral signal. Those are based on analytical
relativity (computing waveform approximants using PN expansions or the EOB
approach [Lackey et al. 2017, Narikawa and Uchikata 2022]) and NR, the full-
fledged numerical solution of Einstein’s field equations coupled to the equations
describing NS matter and radiation processes (see, e.g., Sun et al. 2022, Fou-
cart et al. 2023, Foucart et al. 2020, Gieg et al. 2022, Hayashi et al. 2022,
Radice et al. 2022). In numerical simulations of BNS mergers thermal effects
are incorporated using two alternative approaches. The first one is a “hybrid
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approach” which assumes that the pressure and the internal energy have two
contributions, namely a cold, zero temperature part described by a polytropic
EOS (or a family of piecewise polytropes) and a thermal part described by an
ideal-gas-like EOS [Janka, Zwerger, and Moenchmeyer 1993, Dimmelmeier, Font,
and Muller 2002, Shibata, Taniguchi, and Uryū 2005]. The latter is given by
Pth = ρ0 ϵth(Γth − 1), with ρ0 the rest-mass density, and Pth and ϵth the thermal
pressure and thermal energy density, respectively, and Γth the adiabatic index, a
constant that lays in the range 1 ≲ Γth ≲ 2 for causality constraints, but that in
typical BNS merger simulations is set between 1.6 and 2 (see e.g. [Constantinou
et al. 2015, Takami, Rezzolla, and Baiotti 2015]). The second approach employs
tabulated representations of microphysical finite-temperature EOSs, providing
a self-consistent method to probe the impact of thermal effects in the merger
dynamics. Although the hybrid approach is computationally preferred, it has
some limitations. In particular, it has been shown that the value of the ther-
mal adiabatic index Γth above half saturation density strongly depends on the
nucleon effective mass [Lim and Holt 2019]. Therefore, it is likely that this ap-
proach overestimates the thermal pressure by a few orders of magnitude [Raithel,
Paschalidis, and Özel 2021], which may induce significant changes in the GW
frequencies [Bauswein, Janka, and Oechslin 2010, Figura et al. 2021]. As the
tabulated approach incorporates the temperature self-consistently the above
issue is not present. BNS merger simulations based on tabulated EOSs, while
computationally more challenging than those based on the hybrid approach,
are becoming increasingly more common [Oechslin, Janka, and Marek 2007,
Bauswein, Janka, and Oechslin 2010, Sekiguchi et al. 2011, Fields et al. 2023,
Espino, Bozzola, and Paschalidis 2022, Werneck et al. 2023, Guerra et al. 2024].
These two alternative ways of including thermal effects in the numerical sim-
ulations results in measurable differences in the GW signal, especially in the
postmerger part, significantly affecting the frequency spectra (see e.g. Bauswein,
Janka, and Oechslin 2010, Guerra et al. 2024).

During the first ∼ 5 ms after merger, nonaxisymmetric deformations of the
remnant are accompanied by the emission of high-frequency GWs. The frequency
spectra are characterised by the presence of distinctive peaks associated with
oscillation modes due to nonlinear interactions between the quadrupole and
quasi-radial modes, and the rotation of the nonaxisymmetric binary remnant.
These peaks are typically denoted as f2±0, fspiral, and f2 (or fpeak) [Stergioulas
et al. 2011, Hotokezaka et al. 2013, Bauswein and Stergioulas 2015, Takami,
Rezzolla, and Baiotti 2015, Bauswein, Stergioulas, and Janka 2016, Bauswein
and Stergioulas 2019]. As pointed out in Rezzolla and Takami 2016 the frequency
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of the f2 mode changes by around ∼ 5% in time. These (initial) frequency values
are denoted as f2,i to distinguish them from the value of f2 reached during the
quasi-stationary evolution of the GW signal. Through the analysis of these peaks,
inference on NS properties may be possible. In particular, it has been shown that
their frequencies are related quasi-universally with the tidal deformability of the
stars, and the maximum-mass of non-rotating configurations [Read et al. 2013,
Bauswein and Stergioulas 2015, Takami, Rezzolla, and Baiotti 2015, Rezzolla
and Takami 2016, Guerra et al. 2024, Topolski, Tootle, and Rezzolla 2024].

Long-term simulations of the postmerger remnant extending beyond ∼ 50
ms have also revealed the appearance of inertial modes [De Pietri et al. 2018, De
Pietri et al. 2020]. Their GWs dominate over those associated with the initial
f2 mode at late postmerger times, but have lower frequencies and amplitudes.
As inertial modes depend on the rotation rate of the star and on its thermal
stratification, their detection in GWs would provide a unique opportunity to
probe the rotational and thermal states of the merger remnant (see, e.g., Kastaun
2008).

Recently, long-term simulations of BNS mergers exploring the influence of the
treatment of the thermal part of the EOS by comparing models using hybrid and
tabulated approaches have been reported in Guerra et al. 2024. The differences
found in the dynamics and GW emission can be used to gauge the importance of
the numerical treatment of thermal effects in the EOS, which has observational
implications. In this work, we investigate the identification of such differences in
BNS merger remnants by reconstructing the GW signals of Guerra et al. 2024
using BayesWave1 [Cornish and Littenberg 2015, Littenberg and Cornish 2015],
a Bayesian data-analysis algorithm that recovers the postmerger signal through
a morphology-independent approach using series of sine-Gaussian wavelets. We
stress that our simulations focus on the possible identification of a single difference
in the postmerger remnant – the implementation of thermal effects in the EOS –
and thus assume that potential effects from neglected ingredients in the modelling
(e.g. magnetic fields, viscosity, neutrinos or the knowledge of the underlying
nuclear interaction) would be identical in both setups. Notice that magnetic
viscosity and/or cooling processes, such as neutrino emissions, can modify the
characteristic GW frequencies of the binary remnant. In particular, the GRMHD
simulations of BNS mergers reported in Ruiz, Tsokaros, and Shapiro 2021 found
that magnetic viscosity tends to shift the f2 mode frequency to lower frequencies
by around ∼ 30 − 150 Hz depending on the stiffness of the EOS as well as on the

1https://git.ligo.org/lscsoft/bayeswave

https://git.ligo.org/lscsoft/bayeswave
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numerical resolution. Neutrino processes, on the other hand, tend to slightly
increase its frequency (see e.g. Sun et al. 2022, Foucart et al. 2016).

This investigation is a follow-up of Chapter 7, where we first employed
BayesWave to analyse the detectability prospects of the inertial modes com-
puted in the simulations of De Pietri et al. 2018, De Pietri et al. 2020 employing
only hybrid BNS models. Moreover, we further extend the analysis of Chapter 7
by studying the identification of differences in the treatment of thermal effects
across the entire postmerger signal, i.e., both in the early part where the f2

mode dominates and in the late part where inertial modes are excited. As done
in Chapter 7, we perform waveform injections corresponding to a set of EOSs,
each with a hybrid and a tabulated version, into the noise of the third-generation
GW detector ET [Punturo et al. 2010, Hild et al. 2011, Maggiore et al. 2020,
Branchesi et al. 2023] from BNS sources at different distances. The posterior
distributions of the recovered waveforms give us distributions of the peak fre-
quencies, which can be related to physical properties of the merger remnant via
empirical relations.

Our analysis is complementary to the recent work reported in Villa-Ortega
et al. 2023 where Bayesian model selection was used to explore differences
between the hybrid and the tabulated approaches with the same set of GW
signals from Guerra et al. 2024. This is a completely different approach to our
model-agnostic reconstructions. The findings reported in Villa-Ortega et al. 2023,
where differences between tabulated and hybrid treatments of thermal effects
were found to lead to differences in the postmerger GW observable by third-
generation detectors at source distances ≤ 50 Mpc, are consistent with what is
reported here. We find that differences in the distribution of the main frequency
peaks in the postmerger GW spectra in hybrid and tabulated models can be
resolved in third-generation detectors up to distances similar to those reported
in Villa-Ortega et al. 2023. Recently, the studies in Raithel and Paschalidis 2023
showed that finite-temperature effects included through the hybrid approach
can be measurable with future detectors if the cold EOS is well constrained.

The Chapter is organised as follows: we summarise the setup of the BNS
merger simulations of Guerra et al. 2024 in Section 8.2. Our main results are
discussed in Section 8.3. We divide this section in two parts: the first one is
focused on the early postmerger signal, where we also discuss different EOS-
insensitive fits that relate the f2,i and f2 modes with the tidal deformability
of NSs. Then, in the second part we consider the late postmerger phase and
study the differences in the frequencies of the inertial modes for our set of EOSs.
The conclusions of our work are presented in Section 8.4. Finally, Appendix 8.A
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contains a brief summary of our findings for source inclinations and sky locations
different than those considered in the main body of the paper where optimal
orientation and sky location is assumed.

8.2 Summary of the binary neutron star mergers setup

The gravitational waveforms employed in our analysis were computed in the
NR simulations of BNS mergers recently conducted by Guerra et al. 2024.
The initial data for those simulations consist of two equal-mass, irrotational
NSs modelled by finite-temperature (tabulated) microphysical EOSs, namely
DD2 [Typel et al. 2010], HShen [Shen et al. 2011], LS220 [James M. Lattimer
1991], and SLy4 [Chabanat et al. 1998]. These initial data were built using
Lorene Gourgoulhon et al. 2001, Taniguchi and Gourgoulhon 2002, n.d.[b].
The EOS tables are obtained following the work of Schneider, Roberts, and Ott
2017 and are freely available at n.d.[c]. The initial temperature is fixed to T =
0.01 MeV, the lowest value on the tables. These EOSs span a reasonable range
of central densities, radii, and maximum gravitational masses for irrotational
neutron stars. The initial separation of the two stars is 44.3 km and the rest-mass
of each star is M0 = 1.4 M⊙. Their properties are summarised in Table 8.2.1.
For comparison purposes we also consider waveforms obtained in simulations of
BNS mergers based on hybrid EOSs, consisting of a cold and a thermal part.
The cold component of each EOS is made of piecewise polytropic representations
of the above EOSs using a piecewise regression as in Pilgrim 2021 with seven
pieces [Read et al. 2009]. Correspondingly, the thermal component is based on a
Γ-law EOS with a constant adiabatic index Γth = 1.8.

The two types of BNS models we use – hybrid and tabulated – are built as
similar as possible, to minimise the effects of differences that the initial data may
have in our study. However, there are intrinsic differences in the way the models
are built (e.g. the lowest value of the temperature in the tables is T = 0.01 MeV,
which affects the density distribution at low densities) that make not possible to
build the exact same stars. The gravitational mass vs circumferential radius for
the two types of configurations and for the four EOSs used in this Chapter are
displayed in Fig. 8.2.1 with solid red circles. The unavoidable small discrepancy
visible in this plot leads to a difference of ≲ 10% between the values of the tidal
deformability Λ of the tabulated and the hybrid EOSs listed in Table 8.2.1. We
refer the reader to Guerra et al. 2024 for further details.
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Table 8.2.1 Summary of the initial properties of the BNS configurations. We list the EOSs, the
temperature T [MeV], the gravitational mass M [M⊙], and the compactness C ≡ M/Req and
the tidal deformability Λ = (2/3)κ2 C−5 for each individual star. Here Req is the equatorial
coordinate radius toward the companion of each star, and κ2 is the second Love number. The
ADM mass MADM[M⊙], the ADM angular momentum JADM[M2

⊙] and the angular velocity
Ω[krad/s], for an initial binary coordinate separation of ∼ 44.3 km. In all cases the NS has a
rest-mass M0 = 1.4M⊙. The first (last) four rows correspond to the BNS modelled through a
fully-tabulated (piecewise polytropic) EOS. Dash symbol denotes “not applicable”.

EOS T M C Λ MADM JADM Ω
SLy4 0.01 1.28 0.16 536.00 2.54 6.63 1.77
DD2 0.01 1.29 0.14 1098.68 2.56 6.73 1.78

HShen 0.01 1.30 0.13 1804.67 2.58 6.82 1.78
LS220 0.01 1.29 0.15 851.72 2.55 6.68 1.77
SLy4 - 1.28 0.16 511.70 2.54 6.62 1.77
DD2 - 1.29 0.14 1113.92 2.56 6.73 1.78

HShen - 1.30 0.13 1633.24 2.58 6.82 1.78
LS220 - 1.29 0.15 899.05 2.55 6.69 1.77

The initial data were evolved in Guerra et al. 2024 using the IllinoisGRMHD
code [Werneck et al. 2023, Etienne et al. 2015] embedded in the Einstein
Toolkit infrastructure [Löffler et al. 2012]. Much of the numerical infrastructure
has been extensively discussed in Werneck et al. 2023, Etienne et al. 2015,
Noble et al. 2006, Guerra et al. 2024 to which the interested reader is addressed
for details. As a summary we only mention that the code evolves the BSSN
equations [Baumgarte and Shapiro 1998, Shibata and Nakamura 1995] coupled
to the puncture gauge conditions using fourth-order spatial differentiation. In
all cases the damping coefficient appearing in the shift condition was set to 1/M ,
where M is the Arnowitt–Deser–Misner (ADM) mass of the system. Moreover,
the IllinoisGRMHD adopts the Valencia formalism for the GR hydrodynamics
equations [Banyuls et al. 1997, Font 2008] which are integrated with a state-
of-the-art finite-volume algorithm. Time integration is performed using the
method of lines with a fourth-order Runge-Kutta integration scheme with a
Courant-Friedrichs-Lewy (CFL) factor of 0.5.

Some of the evolutions reported in Guerra et al. 2024 extend for over t − t0 ∼
150 ms after merger. This permits to identify the imprint of thermal effects on the
postmerger GW signals and in the frequency spectra. In particular, such long-
term simulations allow us to study the potential dependence on the treatment
of thermal effects for both, the frequencies associated with the fundamental
quadrupolar mode, excited about some 5 ms after merger, along with those of
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inertial models, typically appearing at significantly longer postmerger times [De
Pietri et al. 2018, De Pietri et al. 2020, Guerra et al. 2024].

Figure 8.2.1 Gravitational mass vs circumferential radius for the tabulated (solid lines) and
the hybrid (dotted lines) EOSs used in this work. The selected NS configurations are depicted
with red dots.

8.3 Results

For all of our injections, we use the ET-D configuration from Hild et al. 2011
as the sensitivity curve of the ET, which is formed by a three-detector network
on the same site. Our conclusions should also broadly hold for CE [Evans et al.
2021], as its detection capabilities are similar to those of ET. For simplicity
and as we did in Chapter 7, we consider Gaussian noise [Blackburn et al. 2008,
Abbott et al. 2009, Aasi et al. 2012] (coloured by the PSD of the detector)
and no sources of noise/glitches are added. The waveforms are injected at
different distances, which result in different SNRs. We also assume that the
source is optimally oriented with respect to the detector. For completeness, in
Appendix 8.A we discuss the differences in the overlap function for non-optimal
orientation and sky location.

We set a maximum number of wavelets of Nmax
W = 200, a maximum quality

factor of Qmax = 200, n = 2 × 106 iterations, and a sampling rate of 8192 Hz,
resulting in the same setup used in Chapter 7.
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8.3.1 Early postmerger phase

We begin by focusing on the first milliseconds after merger. During this early
phase, strong nonaxisymmetric deformations and nonlinear oscillations are
present, namely combinations of oscillation modes and spiral deformations,
leading to the emission of GW signals with frequencies around a few kHz. Since
the amplitude of these signals is considerably larger than in the late postmerger
phase, we also consider correspondingly larger distances, from 1 Mpc up to 200
Mpc.

8.3.1.1 Waveform reconstructions

Figures 8.3.1 and 8.3.2 show the coloured, time-domain signal (top panels) and
the ASD (bottom panels) of the injected (red) and reconstructed (blue) GW
signals (with the detector ASD), at a fixed distance of 20 Mpc. Fig. 8.3.1
corresponds to the HShen EOS and Fig. 8.3.2 to the SLy4 EOS, respectively.
Panels (a) and (b) in both figures differ by the time window used to compute the
ASD, highlighted in yellow in the time-domain waveform plots. We adapt the
time windows to each particular model and phase of the waveform. The time
windows employed for each EOS and phase of the simulation (characterised by
a dominant oscillation mode) are summarised in Table 8.3.1. The blue-shaded
regions in the ASD plots in both figures show the 50% and 90% CIs of the
distribution of the recovered waveforms. These intervals are given by values of
the percentiles 25th/75th and 5th/95th, respectively.

The windows used in panel (a) of Figures 8.3.1 and 8.3.2 correspond to the
time interval t ∈ [−10, 4] ms and t ∈ [−10, 6] ms, respectively, being t = 0 the
time of merger. During this phase, the f2,i modes are excited, and they exhibit
the frequency peaks shown in the bottom rows. The left column of the panels in
both figures show the reconstructions of the hybrid version of the EOS, whereas
the right column depicts the tabulated version. For the case of HShen, in panel
(a) of Fig. 8.3.1, the f2,i peaks are located around 2200 Hz. The ASD of the
hybrid and tabulated version of the EOS are similar, but the tabulated one
produces f2,i modes with a slightly lower frequency. Regarding SLy4, in panel
(a) of Fig. 8.3.2, the peaks are located around 3250 Hz, and the tabulated version
of the EOS also has the peaks at slightly lower frequencies than the hybrid
version. The differences between the hybrid and tabulated versions of the EOSs
are almost negligible, with a difference between the frequency peaks of ≈ 4%.
For the DD2 and LS220 EOSs the mismatch is even smaller.
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Figure 8.3.1 Top row: injected (red) and reconstructed (blue) time-domain waveforms from
BNS mergers with the HShen EOS. Bottom row: corresponding ASD, computed either using
the complete waveforms (dotted line) or at the time windows depicted in yellow in the strain
plots in panels (a) and (b) (see Table 8.3.1). The left (right) column of each of the two
panels corresponds to the hybrid (tabulated) version of the EOS. The source is located at
D = 20 Mpc. The signals are injected into the ET-D configuration of the ET detector, whose
sensitivity curve is shown by the dashed green curve within the frequency range depicted.

In panels (b) of Figs. 8.3.1 and 8.3.2 we depict again the time-domain and
the spectra of the injected and recovered signals for the same two EOSs, but
the time window is applied now for the intervals t ∈ [7.5, 40] ms (HShen) and
t ∈ [20, 30] ms (SLy4). Therefore, the ASD of the bottom panels show the
appearance of the f2 modes. For the SLy4 EOS the amplitude of the f2 modes is
lower than that of the f2,i modes. For the HShen EOS there are more noticeable
differences in the position of the peaks between the hybrid and tabulated models
than for the SLy4 EOS. For both cases, the peaks of the f2 modes appear at
lower frequencies than for the f2,i modes.

Table 8.3.1 Time windows employed to capture the different oscillation modes appearing during
postmerger. Times are expressed in milliseconds and t = 0 ms is the merger time.

EOS Mode
f2,i f2 Inertial

SLy4 [-10, 4] [20, 30] [75, 140]
DD2 [-10, 4] [7, 17] [70, 140]

HShen [-10, 6] [7.5, 40] [105, 140]
LS220 [-10, 6] [8, 15] [80, 140]
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Figure 8.3.2 Same as in Figure 8.3.1 but for the SLy4 EOS.

Spectrograms of the median of the reconstructed signals are shown in Fig-
ure 8.3.3 for the case of HShen (left) and LS220 (right). In both panels, the plots
in the upper row refer to the hybrid version of the EOS and the lower row to the
tabulated version. This figure shows the spectrograms for two difference source
distances, 10 Mpc and 50 Mpc. For a distance of 10 Mpc all the stages of the
postmerger signal are visible in the spectrogram of the HShen EOS: there is an
initial part where the signal is louder followed by a decrease in frequency and
amplitude, visible up to more than 100 ms after merger. This trend occurs for
both hybrid and tabulated versions of the HShen EOS. As the distance increases,
however, the last part of the signal cannot be reconstructed. Beyond 50 Mpc,
the signal is only visible up to t ∼ 50 ms. Note that, for the hybrid version of
the HShen EOS, the signal is detectable for longer times.

The four plots in the right panel of Figure 8.3.3 depict two completely
different behaviours between the hybrid and tabulated versions of the LS220
EOS. In the first case (upper row), the frequency of the signal increases with
time up to t ∼ 40 ms for sources located at short distances (10 Mpc). At that
point, the signal disappears because the remnant collapses to a BH (at t = 66.2
ms after merger) [Guerra et al. 2024]. However, the tabulated version of the
LS220 EOS (lower row) shows that a stable remnant evolves for more than 100
ms after merger. In this case, the GW signal decreases in amplitude, reaching
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Figure 8.3.3 Spectrograms of the reconstructed GW signals at two source distances, D = 10
Mpc and 50 Mpc. The left (right) panels correspond to the HShen (LS220) EOS. Plots in the
upper row depict the hybrid version of the EOS and those in the lower row the tabulated
model. As the distance to the source increases, it becomes more difficult to capture the time
evolution of the frequency of the signal at late times.

frequencies of about 2 kHz. At larger source distances (50 Mpc) BayesWave
only recovers the inspiral phase and the very early stages after merger, not
capturing the collapse of the remnant for the hybrid version of the EOS.

8.3.1.2 Frequency peaks of the f2,i and f2 modes

From the posterior distributions of the GW signals that BayesWave provides,
one can compute the ASD via the FFT of the time-domain signal using a certain
time window. This yields posterior distributions of the frequency peaks of the
spectra. We start considering time windows spanning from t ≈ 10 ms before
merger to a few tens of milliseconds after merger (depending on the EOS; see
Table 8.3.1). The size and position of the time windows are chosen to distinguish
the frequency peaks related to the f2,i and f2 modes.

The top and middle panels of Figure 8.3.4 show the posterior distributions
of the frequency peaks for the f2,i and the f2 modes, respectively. (The bottom
panel in this figure will be discussed below.) The posterior distributions are
constructed using a Gaussian kernel density estimator and setting the bandwidth
equal to the frequency resolution given by the FFT (which will be different
depending on the time window considered). Each column corresponds to a
certain EOS, from left to right SLy4, HShen, DD2 and LS220. The upper row
shows the hybrid version of each EOS, and the lower one the tabulated version.
The different colors refer to several distances to the source, that range from
D = 25 Mpc to D = 200 Mpc. For the f2,i mode, shown in the top panel of
Figure 8.3.4, differences between the treatment of thermal effects in the EOS
are only detectable for SLy4 (first column) and HShen (second column). These
two EOSs show the largest deviation in the frequency peaks as a result of the
distinct consideration of thermal effects. The frequency peak of SLy4 is not
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well recovered for D ≥ 50 Mpc, with a p-value2 of 0.05 and 0.13 for the hybrid
and tabulated cases, respectively, at D = 200 Mpc. This results in detectable
differences between both versions of the EOS only for close enough sources. In
the case of DD2 and LS220, the curves of the posterior distributions overlap for
all distances, and no differences between the tabulated and hybrid EOS might
be seen. The range of detectability is almost the same for all EOS but SLy4
(first column). For the other cases, the peaks are detectable up to D ≳ 200 Mpc,
with p-values over 0.15 for all distances.

The middle panel of Figure 8.3.4 depicts the frequency peaks corresponding
to the f2 mode. These peaks are more difficult to recover than those of the f2,i

mode, even though the differences between the hybrid and tabulated versions
of the EOSs are more prominent. For SLy4, the recovery is inaccurate for
distances D ≳ 50 Mpc, as the peaks of the posterior distributions are located
at significantly lower frequencies than the injected value, for both versions of
the EOS. The corresponding p-values are 0.03 and 0.025 for the hybrid and
tabulated versions, respectively, at D = 100 Mpc. On the other hand, HShen
is the EOS for which the peaks of the f2 mode are best recovered, especially
for the hybrid model, even at the largest distances considered. (This also holds
for the case of the f2,i mode shown in the top panel). For this EOS there is a
shift in the peak frequency of almost 200 Hz between the hybrid and tabulated
treatments of thermal effects, which corresponds to a difference of about 10%.
This difference might be detectable up to D ≲ 200 Mpc. As the distance to
the source increases, the peaks for the tabulated version of the HShen EOS are
reconstructed at increasingly higher frequencies, to reach values that eventually
overlap with the ones inferred for the hybrid case. The DD2 EOS also gives f2

peaks at almost the same frequency for both versions of the EOS (only with a
difference of ≈ 1.45%), as in the case of the f2,i mode shown in the top panel
of Figure 8.3.4. However, the peaks of the f2 mode are well recovered up to
D ≈ 100 Mpc, larger than for the f2,i mode. Beyond this distance, the mean
of the distribution starts differing more than 100 Hz from the injected value.
For the tabulated version of the LS220 EOS, the f2-mode frequency peak only
decreases about 100 Hz compared to the f2,i mode. However, the hybrid version
of this EOS displays a peak at a higher frequency. This can also be seen in the
right panels of Fig. 8.3.3. This is due to the fact that the remnant collapses to a
BH only when the LS220 EOS implements a hybrid treatment of thermal effects.
Both peaks of the f2 mode might be detectable for LS220 up to 200 Mpc.

2We set a threshold of p > 0.05 (corresponding to 2-σ) to consider as null-hypothesis that
the mean of the distribution is equal to the frequency peak of the injected signal.



8.3 Results 195

10−4

10−3

10−2

P
(f

2,
i)
|D

)

HybridHybridHybridHybrid

SLy4 HShen DD2 LS220

D [Mpc]

25

50

100

200

3000 3100 3200 3300
f2,i [Hz]

10−4

10−3

10−2

P
(f

2,
i)
|D

)

TabulatedTabulatedTabulatedTabulated

2100 2200 2300
f2,i [Hz]

2450 2500 2550 2600
f2,i [Hz]

2800 2900 3000 3100
f2,i [Hz]

D [Mpc]

25

50

100

200

10−4

10−3

10−2

P
(f

2
)|D

)

HybridHybridHybridHybrid D [Mpc]

25

50

100

200

3000 3100 3200 3300
f2 [Hz]

10−4

10−3

10−2

P
(f

2
)|D

)

TabulatedTabulatedTabulatedTabulated

2000 2100 2200
f2 [Hz]

2300 2350 2400 2450
f2 [Hz]

2800 2900 3000 3100
f2 [Hz]

D [Mpc]

25

50

100

200

Figure 8.3.4 Posterior distributions of the frequency peaks for the f2i modes (top), f2 modes
(middle), and finertial modes (bottom). Each column corresponds to a different EOS (SLy4,
HShen, DD2 and LS220, from left to right). The upper (lower) rows are the hybrid (tabulated)
versions of the corresponding EOS. Each color in the posterior distributions corresponds to a
different distance to the source, indicated in the legends. The vertical black dashed lines are
the frequency peaks of the injected signals. As expected, the shorter the distance the narrower
the distributions and the closer they are to the injected values. We do not show the peaks for
LS220 in the bottom row because the hybrid version collapses to a BH and there is no late
postmerger signal.



196
Identifying thermal effects in neutron star merger remnants with model-agnostic

waveform reconstructions and third-generation detectors

50 100 150
Distance [Mpc]

0.4

0.6

0.8

1.0
O

n
et

w
or

k
f2,i

SLy4

50 100 150
Distance [Mpc]

HShen

50 100 150
Distance [Mpc]

DD2

50 100 150
Distance [Mpc]

LS220

50 100 150
Distance [Mpc]

−0.5

0.0

0.5

1.0

O
n

et
w

or
k

f2

50 100 150
Distance [Mpc]

50 100 150
Distance [Mpc]

50 100 150
Distance [Mpc]

5 10 15
Distance [Mpc]

0.0

0.5

1.0

O
n

et
w

or
k

Inertial

5 10 15
Distance [Mpc]

5 10 15
Distance [Mpc]

5 10 15
Distance [Mpc]

Figure 8.3.5 Detector network overlap between the injected and reconstructed signals as a
function of the distance to the source. Top, middle and bottom rows correspond to the f2,i

modes, the f2 modes and the finertial modes, respectively. Each column corresponds to one
EOS. Solid lines indicate the mean value over the waveform posterior distribution and shaded
areas are the standard deviations. The blue color corresponds to the hybrid version of the EOS
and the red color to the tabulated version. Notice that the blue curve and shaded area are not
shown for the LS220 EOS in the bottom-right plot as the remnant for the hybrid version of
this EOS collapses to a BH.

In general, the hybrid and tabulated posterior distributions of the f2 mode
frequency peaks do not overlap as much as in the case of the f2,i mode. This fact
favours the prospects of detecting thermal effects in the postmerger signal using
the f2 mode. For example, the frequency shift in the f2 mode for the HShen
EOS is detectable up to almost 200 Mpc. For SLy4, the shift in the f2 mode
frequency is still large to be detectable, but only for small distances to the source,
since the signal amplitude is lower for this EOS. The difference in the frequency
peaks for the f2 mode is also detectable for LS220, as the peak of the posterior
distribution for the tabulated version is over the left tail of the distribution of
the hybrid version of this EOS. Finally, both posterior distributions for the
DD2 EOS still overlap even at D = 25 Mpc, which makes it very difficult to
distinguish the treatment of thermal effects for this EOS in the GW signal.

8.3.1.3 Overlap of the early postmerger phase

The detector network overlap between the injected and reconstructed GW signals
as a function of the distance to the source is displayed in Figure 8.3.5 for our four
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EOSs. The top and middle rows in this figure correspond to the early postmerger
phase (i.e., to the times reported in the first two columns in Table 8.3.1). The
plots in the bottom row correspond to the late phase and will be discussed below.

We start considering the network overlap for the f2,i mode, shown in the
top row of Figure 8.3.5. The blue coloured line corresponds to the average
value of the overlap for the hybrid version of the EOSs and the red line to the
tabulated version. The shaded regions are the standard deviations from the
overlap posterior distributions. Each column corresponds to a different EOS.
As expected, for lower distances the overlap is closer to one (perfect match). For
all cases but the tabulated version of the LS220 EOS, the average value of the
posterior distribution of the network overlap is over 0.5 up to distances of about
200 Mpc. The higher values of the overlap are obtained for the HShen and for the
DD2 EOSs. No common trend for higher or lower values of the overlap depending
on the treatment of thermal effects is observed across our EOS sample.

The middle row of Figure 8.3.5 depicts the corresponding network overlap
for later postmerger times, in which the f2 mode is dominant. In this case, the
overlap at a given distance is lower than that achieved for the f2,i mode, for
all EOS. For the case of SLy4, the average values of the posterior distributions
fall abruptly below 0.5 for D ≳ 50 Mpc. As happens for the f2,i mode, HShen
also reaches the highest overlap for the f2 mode, particularly for the hybrid
version of this EOS, significantly larger than the value for the tabulated version.
The latter reaches an overlap of about 0.5 at 150 Mpc. Regarding the DD2 EOS,
values of the overlap higher than 0.75 are attained up to 100 Mpc. However,
those values abruptly fall to no overlap for larger distances. A similar trend
is also observed for LS220 even though the hybrid version of this EOS yields
higher overlap values for the f2 mode than the tabulated version for significantly
larger distances.

8.3.1.4 Tidal deformability

As previously seen in Section 1.4 from the Introduction, the frequency peaks of
the early postmerger phase of the remnant can be used to infer properties ofNSs
by exploiting correlations with physical parameters through EOS-insensitive,
quasi-universal relations (see e.g. Read et al. 2013, Bernuzzi et al. 2014, Bauswein
and Stergioulas 2015, Takami, Rezzolla, and Baiotti 2015, Rezzolla and Takami
2016, Bauswein and Stergioulas 2019, Bauswein et al. 2019, Soultanis, Bauswein,
and Stergioulas 2022, Topolski, Tootle, and Rezzolla 2024). In particular, a
number of empirical fits between the frequencies of various modes (e.g. the peak
frequency at merger, the f2,i mode, and the f2 mode) and the tidal deformability
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parameter Λ characterising the quadrupole deformability of an isolated NS, have
been proposed (see Soultanis, Bauswein, and Stergioulas 2022, Topolski, Tootle,
and Rezzolla 2024 and references therein for up-to-date revisions of existing
literature). In Guerra et al. 2024 we present new fits of the frequencies of the
f2,i and f2 modes to the tidal deformability parameter using our set of EOSs.
We note that those quasi-universal relations are built using hybrid EOSs only
since the number of simulations with tabulated EOSs is not large enough to
yield a meaningful fit. However, their validity when applied to simulations with
tabulated EOSs can be tested, using the standard deviation of the correlation for
the hybrid EOSs as a reference metric. For the f2,i and f2 modes, the standard
deviation is 67.54 Hz and 97.56 Hz, respectively [Guerra et al. 2024]. Using
those fits we discuss here the posterior probability distributions of the tidal
deformability parameter obtained from both, the frequencies of the f2,i and f2

modes, and for the two different treatments of thermal effects.

In the top row of Figure 8.3.6 we show the results for the f2,i mode, for
different distances and all four EOSs. The distributions displayed are built using
the empirical relations from Guerra et al. 2024. The upper panels correspond to
the hybrid version of the EOSs and the lower panels to the tabulated version.
Since Λi is directly calculated from f2,i, the behaviour of the posterior distribu-
tions of the two quantities with the distance is the same (cf. uppermost row of
Fig. 8.3.4). Our results indicate that Λi could be reconstructed up to D ≈ 200
Mpc for all EOSs except for SLy4 for which the reconstruction is acceptable
only up to D ≲ 100 Mpc. For the SLy4 EOS (first column), the distributions of
Λi are closer to the injected value (red vertical dashed line) for the tabulated
version. On the other hand, HShen and DD2 both yield a good recovery of Λi

for all the distances shown. Their p-values at 200 Mpc are above 0.175 for both
versions of the EOSs.

The tidal deformability parameter can also be computed using the frequency
of the f2 mode. To do so we use the fits for this mode presented in Guerra et al.
2024. The LS220 EOS is discarded in this analysis because at the postmerger
times considered the evolution of the remnant when using the hybrid version
of this EOS already shows the formation of a BH. The differences on the
distributions of Λ between the hybrid and tabulated versions of the EOSs for
the f2 mode are displayed in the bottom row of Fig. 8.3.6. As expected, the
posterior distributions are similar to those obtained with the f2 mode (middle
row of Fig. 8.3.4). The most striking difference is that for the tabulated version
of the HShen EOS, Λ is inaccurately inferred at D = 200 Mpc.
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Figure 8.3.6 Posterior distributions of the tidal deformability parameter computed from the
frequency peaks of the f2,i mode, Λi (top row) and of the f2 mode, Λ (bottom row). Each
column corresponds to a different EOS and different colors correspond to different distances
to the source. The vertical red dashed line is the injected value of the parameter (obtained
with the fit from Guerra et al. 2024) and the vertical black dashed line is the true value shown
in Table 8.2.1. We do not show the distributions for LS220 in the bottom row because the
hybrid version collapses to a BH after the early postmerger phase. See main text for details.

As stated in Section 8.2 using tabulated or hybrid EOSs leads to slightly
different initial NS configurations and, thus, to different values of the tidal
deformability. This is why the vertical black lines displayed in Fig. 8.3.6,
corresponding to the values of Λ reported in Table 8.2.1, are not the same for the
two approaches for the EOS. This figure shows that the empirical fits of Guerra
et al. 2024 can be also applied to simulations with tabulated EOSs in most cases,
as the variations in frequency are within one standard deviation of the mean of
the correlation. In general, we find that the fit for the f2,i mode (red vertical
lines) is closest to the “true” value from the simulation. We observe that the
tidal deformability might be detected up to several tens of Mpc for all EOSs
(when computed from empirical fits built for hybrid models only).
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Figure 8.3.7 Waveforms (top row) and ASD (bottom row) of the injected (red) and reconstructed
(blue) late postmerger GW signals for a source located at D = 7 Mpc. The left panel corresponds
to the HShen EOS and the right panel to the SLy4 EOS. Within each panel, the left (right)
column displays the hybrid (tabulated) version of the respective EOS. The black and green
dotted lines in the bottom-row plots are the ASD computed from the complete waveforms and
the sensitivity curve of the ET detector, respectively.

8.3.2 Late postmerger phase: inertial modes

At later postmerger times than those considered in the preceding section (t ≳ 50
ms) the amplitude of the f2 mode decreases and convective instabilities in the
interior of the remnant set in (see De Pietri et al. 2018, De Pietri et al. 2020,
Guerra et al. 2024). Those trigger the excitation of inertial modes, whose
dynamics leave an imprint in the late postmerger signal. Inertial modes attain
smaller amplitudes than the modes from the early postmerger phase and their
frequency peaks in the spectra are also lower than those of the f2,i and f2 modes.

8.3.2.1 Waveform reconstructions

Figure 8.3.7 shows the coloured, time-domain signal (top row) and the ASD
(bottom row) of the injected (red) and reconstructed (blue) late postmerger
GW signals (with the detector ASD), for a source located at a distance of 7
Mpc. The left panel shows the waveforms and ASD for the HShen EOS while the
right panel displays the corresponding quantities for the case of the SLy4 EOS.
Within each panel, the left (right) column corresponds to the hybrid (tabulated)
version of the respective EOS. As before, the ASD shown in the bottom row
have been computed by Fourier-transforming the waveforms in the time windows
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highlighted in yellow in the plots in the top row (see also Table 8.3.1). Likewise,
the blue-shaded regions in the ASD plots in both figures show the 50% and 90%
CIs of the distribution of the reconstructed waveforms.

At the distance considered and regardless of the treatment of thermal effects,
the reconstructions of the late-time signals BayesWave produces are only
accurate for the HShen EOS. This is due to the small amplitude of the late
postmerger signal in the case of SLy4. The frequency peak of the dominant
inertial mode for this EOS is located around 2.2 kHz (see the ASD of the injected
signal, coloured in red). Despite the peak amplitude is above the sensitivity
curve of the ET detector, BayesWave cannot correctly capture it, as apparent
from the CI of the reconstructed distributions. Regarding the HShen EOS, the
dominant frequency peak of the inertial modes is located below 2 kHz for both
versions of the EOS. In the case of the tabulated version, two peaks are visible
around 1.5 kHz and 2 kHz, while for the hybrid version of this EOS those two
peaks appear at frequencies around 1.75 kHz and 2.5 kHz. Notice that the peak
located at around 2 kHz for the tabulated EOS is actually the f2 mode. This
mode is not yet completely damped at this late postmerger time. Therefore, we
do not consider it when computing the posterior probability for the frequency
peaks in the last row of Fig. 8.3.4. The same explanation holds for the peak at
around 2.5 kHz in the hybrid case (see Guerra et al. 2024 for more details).

8.3.2.2 Frequency peaks of the inertial modes

The posterior distributions of the frequency peaks of the inertial modes are
displayed in the bottom row of Fig. 8.3.4 for all EOSs except LS220 (as the
simulation with the hybrid version of this EOS collapses to a BH at early
postmerger times). The upper (lower) rows in this figure represent the hybrid
(tabulated) versions of the corresponding EOSs. The injections, whose frequencies
are depicted by the dashed vertical lines, are now performed at much shorter
distances than we did for the f2,i and f2 modes, due to the smaller amplitude of
inertial modes. The largest distance considered is now D = 15 Mpc.

The characteristic peak frequencies of inertial modes, finertial, are lower than
the ones from the fundamental modes, f2,i and f2, as can be seen by direct
comparison in Fig. 8.3.4. As for the quadrupolar modes, inertial modes also
display a shift in frequencies depending on the particular treatment of thermal
effects in the EOS. This shift appears to be only detectable for the case of the
HShen EOS (middle panel) as the posterior distributions of the hybrid and the
tabulated versions of the EOS do not overlap up to D ≈ 10 Mpc. On the other
hand, the small amplitude of the late postmerger signal for the SLy4 EOS is
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too low to yield a good reconstruction unless the source is located at a distance
of less than 5 Mpc. Only for such short distances the frequency shift in the
posterior distributions might be distinguished.

8.3.2.3 Overlap of the inertial modes

As we did before for the f2,i and f2 modes, we also use the network overlap
function to assess the reconstruction of the waveforms for the case of inertial
modes. Those overlaps are shown in the bottom row of Figure 8.3.5. For the
SLy4 EOS (first column) the overlap is above 0.5 for a distance to the source of
less than 5 Mpc, with the tabulated version of the EOS attaining a higher value
of the overlap for slightly larger distances. For both implementations of the
thermal effects, the average overlap falls below 0.25 for distances above ≈ 7 Mpc,
which means that the injected and reconstructed waveforms differ considerably.
Correspondingly, the waveform signals for HShen and DD2 (second and third
columns, respectively) are still reconstructed with a network overlap over 0.5 up
to a distance of about 12 Mpc. The tabulaled version of the HShen EOS is more
poorly recovered than its hybrid counterpart, with a smaller overlap at about
10 Mpc. Finally, in the case of the LS220 EOS (fourth column), the network
overlap is above 0.5 for distances up to 15 Mpc. Notice that only the overlap of
the tabulated version of LS220 is plotted in Fig. 8.3.5 as the simulation with a
hybrid EOS collapses to a BH before inertial modes have been excited.

8.4 Conclusions

Numerical simulations of BNS mergers incorporate thermal effects in the EOS us-
ing two alternative approaches. The first one is a hybrid approach which assumes
that the pressure and the internal energy are composed of two constituents, a
cold, zero temperature part described by a family of piecewise polytropes and a
thermal part described by an ideal-gas-like EOS. The second approach employs
tabulated representations of microphysical finite-temperature EOSs, providing
a self-consistent method to probe the impact of thermal effects in the merger
dynamics. These two ways of incorporating thermal effects in the numerical
modelling lead to measurable differences in the GW signal, especially in the
postmerger emission, well visible in the frequency spectra (see e.g. Bauswein,
Janka, and Oechslin 2010, Guerra et al. 2024). In this Chapter we have in-
vestigated the prospects for identifying such differences by reconstructing the
GW signals of Guerra et al. 2024 using BayesWave [Cornish and Littenberg
2015, Littenberg and Cornish 2015], building on our previous work in Chap-
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ter 7 where we focused on inertial modes only, excited in the very late part of
the postmerger signal. Here, we have considered the entire postmerger signal,
i.e. both its early part where the fundamental quadrupolar f2 mode dominates
the GW spectrum and its late part where inertial modes are excited. The
time-domain waveforms of Guerra et al. 2024, obtained through BNS merger
simulations with four different EOSs, accounting for both descriptions of thermal
effects, have been injected into Gaussian noise given by the sensitivity of the
third-generation detector ET [Punturo et al. 2010, Hild et al. 2011], selecting
optimal sky location and inclination. (Results for non-optimal configurations
are discussed in Appendix 8.A.) The capability of BayesWave to reconstruct
the injected signals has been assessed by computing the overlap function of the
detector network. As the postmerger remnant evolves, the amplitude of the
GW signal significantly decreases, resulting in a corresponding reduction of the
overlap between injected and reconstructed waveforms. The same occurs as the
distance to the source increases, irrespective of the portion of the postmerger
signal being analysed.

The two representations of thermal effects in the EOS result in frequency
shifts of the dominant peaks in the GW spectra. In some cases, those differences
are large enough to be told apart, especially in the early postmerger phase, when
the signal amplitude is the loudest, and at sufficiently small distances. The
detectability prospects have been found to strongly depend on the EOS. Both,
the SLy4 EOS (at small enough distances) and the HShen EOS (at significantly
bigger distances) present large frequency shifts of the dominant f2,i and f2 modes.
These shifts may allow distinguishing the differences in the implementation of
thermal effects between hybrid and tabulated versions of these two EOSs with
third-generation detectors. On the other hand, for the DD2 and LS220 EOS,
no large enough frequency shifts between the hybrid and tabulated cases have
been found to unambiguously differentiate with BayesWave the treatment of
thermal effects in the EOS.

Differences in the dominant peaks of the GW spectra are still present during
the late postmerger phase, where the inertial modes dominate [Kastaun 2008,
De Pietri et al. 2018, De Pietri et al. 2020, Guerra et al. 2024]. These modes
are associated with a part of the GW signal with a much lower amplitude than
that of the f2,i and f2 modes. Therefore, they are more difficult to detect (see
Chapter 7). Our results indicate that third-generation detectors such as ET may
be able to observe inertial modes up to a distance of about 10 Mpc, depending
of the EOS. For this late-time part of the signal, the shift in the peak frequency
due to the different treatment of thermal effects can be above 200 Hz at most,
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for the case of the HShen EOS. On the other hand, for the LS220 EOS, the
difference is more obvious: the hybrid version of this EOS leads to the collapse
of the remnant to a BH, as opposed to its tabulated version [Guerra et al. 2024].

Finally, we have also computed the tidal deformability from the frequency
peaks of both the f2,i and f2 modes and through the empirical fits presented
in Guerra et al. 2024. The differences in thermal effects between the hybrid
and the tabulated versions of the EOS inferred through the analysis of the tidal
deformability parameter are also more apparent for the f2 mode, since the shift
in the frequency peaks is more pronounced.

The results of the work reported here are consistent with those recently
presented by Villa-Ortega et al. 2023, who employed Bayesian model selection
to explore differences between the hybrid and the tabulated approaches for
the same set of GW signals. The differences in the posterior distributions of
the main frequency peaks in the early postmerger GW spectra in hybrid and
tabulated models reported here might be resolved in third-generation detectors
up to distances of about tens of Mpc, compatible with the values found by Villa-
Ortega et al. 2023.



Appendix

8.A Reconstruction of injections with non-optimal sky location
and orientation

The injections discussed in the main text of this Chapter were performed
considering an optimal source inclination with respect to the ET detector (ι = 0)
and an optimal sky location, with a right ascension of 2.9109 rad and a declination
of 0.7627 rad. Therefore, the results represent the best-case scenario for a given
source distance. However, in reality the source can be anywhere in the sky and
have an arbitrary declination. Hence, the effective distance to the source can be
actually larger. This possibility is briefly discussed in this Appendix.

Table 8.A.1 Overlap functions for different inclinations and sky localisations for a distance
D = 150 Mpc to the source. The first (second) row corresponds to the mode f2,i (f2). In
parentheses we show the percentage value with respect to the overlap for the optimal case.

Mode Optimal ι Non-optimal ι Optimal ι Non-optimal ι
Optimal Optimal Non-optimal Non-optimal
sky loc sky loc sky loc sky loc

f2,i 0.803 0.650 (81.0 %) 0.656 (81.7 %) 0.630 (78.5 %)
f2 0.835 0.791 (94.7 %) 0.793 (95.0 %) 0.728 (87.2 %)

In Table 8.A.1 we report the value of the overlap function for the fundamental
quadrupolar frequency peaks for a source at a distance D = 150 Mpc and for
different combinations of sky locations and inclinations. We only consider the
hybrid version of the HShen EOS as this is the one yielding the best detectability
prospects in the optimal case. The non-optimal inclination is set to ι = 0.5585
rad and the right ascension and declination in the sky for a representative non-
optimal case are chosen to be 3.4462 rad and 0.45 rad, respectively. As expected,
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the overlap function decreases with respect to the optimal case. The lowest
values found are 78.5% (with respect to the optimal case) and 87.2% for the f2,i

and f2 modes, respectively. Therefore, for signals coming from a non-optimal
sky location and/or from a source with a non-optimal inclination, the effective
distance will not be much larger than the optimal case. Furthermore, we note
that the effect of the actual sky position of the source will become less of a
concern if a network of detectors built in different locations is used.



CHAPTER 9

Bayesian real-time classification of
multi-messenger electromagnetic and
gravitational-wave observations

This Chapter was originally published in: Marina Berbel, Miquel Miravet-
Tenés1, Sushant Sharma Chaudhary, Simone Albanesi, Marco Cavaglià, Lorena
Magaña Zertuche, Dimitra Tseneklidou, Yanyan Zheng, Michael W. Coughlin
and Andrew Toivonen. Bayesian real-time classification of multi-messenger
electromagnetic and gravitational-wave observations. Class. Quantum Grav.,
Volume 41, Issue 8, pp. 085012, April 2024. DOI: 10.1088/1361-6382/ad3279.
Reproduced with permission.

9.1 Introduction

The first detection of a GW signal from a pair of coalescing BHs in 2015 and
the first observation of a coalescing BNS system two years later have established
multi-messenger astronomy (MMA) as a powerful tool for the exploration of the
cosmos [Abbott et al. 2016b, Abbott et al. 2017d, Abbott et al. 2018a]. The
third LVK catalog of transient GW signals (GWTC-3) [Abbott et al. 2021d]
has shown that GW astronomy has entered its mature phase, becoming a true
observational branch of astronomy. MMA allows scientists to explore in depth

1Corresponding author
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the origin and structure of NSs [Ruiz, Shapiro, and Tsokaros 2021, Baiotti and
Rezzolla 2017, Lasky 2015], GRBs [Murase and Bartos 2019, Ciolfi 2018], and
BHs through the observation of their progenitors [Schmidt 2020, Nitz et al. 2023,
Barack et al. 2019], test GR [Abbott et al. 2021e, Berti, Yagi, and Yunes 2018,
Berti et al. 2018, Isi et al. 2019], probe the fundamental nature of gravity [Seoane
et al. 2023, Barausse et al. 2020, Piórkowska-Kurpas and Biesiada 2022], and
measure the evolution of the Universe [Abbott et al. 2023b, Abbott et al. 2021b].

A wealth of new detections is being amassed to achieve these science
goals [Aasi et al. 2015, Acernese et al. 2015]. The rate of detections in LVK’s O4
is close to one per day and is expected to further increase in the fifth observing
run (O5) [Abbott et al. 2018b]. Over the course of O4 and the next observing
runs, the LVK collaborations are expected to analyse hundreds of BBH candi-
date detections, as well as dozens of BNS and NSBH merger events that could
potentially be MMA sources. Among the challenges that this new phase of GW
astronomy brings is the necessity to coordinate the activities of EM and GW
observatories in real time.

One of the most interesting areas of study in MMA is the physics of gravity-
matter interaction in GW sources. Tidally disrupted matter in systems with a
NS may form a high-temperature accretion disc around the BH and trigger the
creation of a prompt EM emission in the form of a short GRB (see Introduction,
Section 1.2). If the system ejecta are unbound, r-process nucleosynthesis may lead
to a kilonova [Lattimer and Schramm 1974, Li and Paczynski 1998, Korobkin
et al. 2012, Barnes and Kasen 2013, Tanaka and Hotokezaka 2013, Kasen,
Fernandez, and Metzger 2015]. These phenomena could also arise in BNS
postmergers through the expulsion of neutron-rich material even when tidal
forces are weak [Abbott et al. 2017e, Arcavi et al. 2017, Coulter et al. 2017,
Kasliwal et al. 2017, Lipunov et al. 2017, Soares-Santos et al. 2017, Tanvir et al.
2017]. The presence of a postmerger matter remnant, which results in an EM
signature or a prompt collapse, is a common factor in all of these scenarios.
Determining the potential of a GW source to become an EM emitter and enabling
coincident observations of these systems by EM and GW observatories in low
latency are crucial for the success of MMA.

The LVK employs different matched-filtering pipelines for low-latency GW
searches [Sachdev et al. 2019, Messick et al. 2017, Sachdev et al. 2020, Nitz et al.
2018, Adams et al. 2016, Chu et al. 2022, Klimenko et al. 2016]. These searches
are based on discrete template banks of CBC waveforms that provide, among
other parameters, the component masses and the dimensionless (anti-)aligned
spins of the objects along the orbital angular momentum. These parameters can



9.1 Introduction 209

be used to determine the EM properties of GW candidates in real time through
empirical fits of NR simulations [Foucart 2012, Foucart, Hinderer, and Nissanke
2018]. Alerts of candidate GW events that included two EM-property metrics
identifying whether the CBC system contains a NS, HasNS, and a postmerger
matter remnant, HasRemnant, were issued in the third observing run (O3) with a
median latency of the order of a few minutes after detection. Alerts with similar
content continue to be issued in O4 with even lower latency. Additionally, LVK’s
O4 alerts include a measure of the HasMassGap property, i.e., the likelihood
that one of the source compact objects has a mass in the lower-mass gap region
between NSs and BHs [Farah et al. 2022] (see the LVK online user guide2).

Classification of GW candidate events in low latency poses several challenges
as the need for accuracy contrasts with the urgency to issue the information
as quickly as possible. The approach taken by the LVK so far has been to
use a specific implementation of a supervised KNeighborClassifier (KNN) ML
algorithm [Pedregosa et al. 2011] with input from the detection pipelines and
EOS models to generate independent HasNS and HasRemnant binary classification
probabilities [Chatterjee et al. 2020]. The KNN model is trained on a broad set
of synthetic CBC signals injected in real detector noise from the second observing
run (O2). The advantage of this scheme relies on its capability to handle the
statistical systematic uncertainties in the parameters recovered by the search
pipelines. This approach allowed for a marked improvement in speed compared
to the semi-analytic effective Fisher formalism method that was deployed in O2.

In this work, we revisit the problem of the real-time production of HasNS and
HasRemnant probability metrics with the aim of further improving the latency and
performance of the current LVK ML-based scheme [Chatterjee et al. 2020]. In the
current LVK implementation, the validity of an event’s classification outcome is
evaluated using elements from the algorithm’s confusion matrix and its Receiver
Operating Characteristic (ROC) curve, which is typically used to evaluate the
performance of an algorithm by plotting the true positive rate (TPR) against the
false positive rate (FPR) at various threshold values. Algorithmic probabilities
for HasNS and HasRemnant are the fractions of KNN neighbours around an event
that, according to the algorithm’s training, indicate whether the event has a NS
or is EM-bright. In this work, we adopt a new strategy, constructing Bayesian
probabilities from a complementary data set to the training data set. A second
limitation of the current classification implementation is the fact that the HasNS
and HasRemnant labels are treated as independent variables. In reality, the
probability of the formation of tidally disrupted matter, i.e., an EM bright event,

2https://rtd.igwn.org/projects/userguide/en/v17.1/content.html

https://rtd.igwn.org/projects/userguide/en/v17.1/content.html
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is always smaller than the probability of the system hosting a NS. Therefore,
the HasNS and HasRemnant labels cannot be treated as disjoint. Currently, this
physical requirement is not implemented mathematically but rather is based on
data; the lack of inversions is tested a posteriori using a technique known as
parameter sweep, which involves assessing the algorithm’s performance across
the whole parameter space. One of the main purposes of this work is to go
beyond the above scheme and calculate true conditional probabilities for HasNS
and HasRemnant.

To achieve this, we design a new classification scheme and perform a thorough
study and comparison of two ML algorithms. We first implement a definition
for conditional HasNS and HasRemnant metrics that incorporates ab initio the
physical requirement that a system with a postmerger matter remnant must
necessarily contain a NS. Then we calculate Bayesian probabilities for HasNS
and HasRemnant. We also implement a marginalisation procedure over a set of
EOS that minimises possible systematics arising from the use of a single EOS.
Finally, we test the performance of the scheme and the algorithms on synthetic
O3 signals and confident GW detections from the latest GWTC-3 catalog.

The structure of the Chapter is as follows. Section 9.2 introduces the
classification algorithms. Bayesian probabilities for HasNS and HasRemnant and
the labelling scheme are defined in Sec. 9.3. The data set is described in Sec. 9.3.2.
Results and algorithm comparisons are reported in Sec. 9.4. Conclusions and
future developments are presented in Sec. 9.5. The process of cross-validation of
our algorithms is covered in depth in Appendix 9.A. A direct comparison of our
approach with the current LVK method is provided in Appendix 9.B.

9.2 Classification Algorithms

We consider two alternative algorithms for unsupervised classification: KNN and
random forest (RF). These methods were chosen because of their versatility, ease
of implementation in low-latency, and comparison with the algorithms currently
being used by the LVK (KNN for HasNS and HasRemnant, RF for HasMassGap).
In this section, we briefly describe the relevant features of the algorithms and
their implementation.

K-Nearest Neighbours

K-Nearest Neighbours is a non-parametric, supervised algorithm [Fix and Hodges
1989, Cover and Hart 1967] that uses the fact that similar points in a data
set are “near” each other in their parameter space. When it is applied to
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classification problems [Guo et al. 2003], the algorithm is usually renamed KNN.
The algorithm captures the idea of similarity between points by computing the
distance between each point in a training set and its neighbours according to a
pre-determined metric. Next, it sorts the neighbours in ascending order based
on their distance to the testing point. By choosing the top K neighbours from
the sorted array, KNN assigns the label to the testing point that corresponds to
the most frequent neighbour.

In this work, we use the open-source Python KNN implementation of scikit-
learn [Pedregosa et al. 2011]. We fix the algorithm hyperparameters by cross-
validating over the data set and obtain the highest accuracy. Throughout our
analysis we use K = 8 neighbours, the Manhattan metric, the BallTree algorithm
and the neighbours are weighted by the inverse of their distance to the event.
Further details on hyperparameter tuning are given in Appendix 9.A. This
configuration differs from the LVK’s current implementation, which employs the
Mahalanobis metric and K = 2n + 1 = 11 neighbours, where n is the number of
features. Our configuration is the optimal choice for the new labelling scheme
that is presented in Sect. 9.3.3.

Random Forest

RF is a classification method based on an ensemble of decision trees. The trees
are hierarchical models that make decisions by recursively splitting the data at
the separation nodes into different categories based on the values of features.
Each tree in the forest is trained independently. To classify a data point, each
tree predicts a category and the algorithm assigns the one that has been chosen
the most. RF is known for its parallelisation capabilities, as computations inside
each tree are independent of the rest. A RF algorithm is usually trained using
bootstrapping, a technique that randomly assigns subsets of the training data
set to each tree. This helps prevent overfitting, as each individual classifier is
not exposed to the same data, and encourages pattern recognition by studying
the same data from different subsets. The model’s performance on the given
data set can be optimised by tuning the input hyperparameters.

In this work, we use the open-source Python RF implementation of scikit-
learn [Pedregosa et al. 2011]. The main tunable hyperparameters are the number
of trees, the maximum allowed depth, and the information gain criteria used at
splitting. Similar to KNN, we choose the algorithm’s optimal hyperparameters
by measuring the accuracy in the testing set. We use 50 trees in the forest, with
a maximum depth of 15, and the maximum number of features considered in a
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node is the square root of the total number of features. Appendix 9.A provides
details on the cross-validation method used to determine these hyperparameters.

9.3 Probability and Labelling Scheme

Bayesian probabilities for the HasNS and HasRemnant metrics can be defined
using the results of the KNN and RF algorithms, namely the fraction of KNN’s
neighbours and RF’s trees that predict a given label. In this section, we define
the probabilities and explain how to derive them from a data set of simulated
signals.

9.3.1 Definition of Bayesian Probabilities

Let us define the probability of a candidate event E being originated by a system
with a NS [E(HasNS) = TRUE] and EM bright [E(HasRemnant) = TRUE] given
the classifier’s outcome evaluated on the detection pipeline output, AX, as
P (HasNS|AX) and P (HasRemnant|AX), respectively. The classifier outcome can
be understood as a map A : X → AX, where X(E) is a vector that identifies
the output of the detection pipeline and AX is a vector that uniquely identifies
the classifier algorithm’s output for X.

Since a system can be EM bright only when a NS is present in the system,
the condition P (HasRemnant|AX) ≤ P (HasNS|AX) must hold. However, if the
probabilities are calculated disjointly, this condition may be violated because of
statistical and systematic errors in the pipeline’s reconstructed signal parameters,
as well as bias and limited accuracy of the ML algorithm. The approach discussed
below avoids the occurrence of this inconsistency.

The true properties (ground truth) of an observed event are unknown. There-
fore, the probabilities P (HasNS|AX) and P (HasRemnant|AX) cannot be calcu-
lated from observations. However, estimators for P (HasNS|AX) and
P (HasRemnant|AX) can be calculated from synthetic events under the assump-
tion that these events are a faithful representation of real observations. This
can be done as follows.

According to Bayes’ theorem, P (HasNS|AX) can be written as

P (HasNS|AX) = P (AX|HasNS)P (HasNS)
P (AX) , (9.1)

where P (AX|HasNS) is the likelihood of observing the classifier’s outcome given
an event with a NS in the system, P (HasNS) is the probability that a system
includes a NS, and P (AX) is the probability of observing the classifier outcome
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AX. Now consider a data set of synthetic events E′ defined as D = {X(E′) ⊗
L(E′)}, where L is a map to a vector space that assigns HasNS and HasRemnant
labels given the event’s properties. We assume that the synthetic set is a faithful
representation of the space of possible real events, i.e., E ≃ E′. The probability
P (HasNS|AX) in Eq. (9.1) can be approximated as:

P (HasNS|AX) ≃ P (HasNS+|AX′)

= P (AX′ |HasNS+)P (HasNS+)
P (AX′) , (9.2)

where HasNS+ = {E′ | E′(HasNS) = TRUE} identifies the elements in D with
positive (+) HasNS true property, i.e., the subset of synthetic events that have
been simulated to contain a NS, and AX′ is the outcome of the classifier on
X′ = X(E′). The label HasNS+ is determined by the values of the simulated
parameters of the events E′ before they are injected into the detection pipeline.
Therefore, the classification label does not depend on the pipeline’s outcome.
The probability P (HasRemnant|AX) can be approximated as:

P (HasRemnant|AX)
= P (HasRemnant|HasNS, AX)P (HasNS|AX)
≃ P (HasRemnant+|AX′′)P (HasNS+|AX′), (9.3)

where HasRemnant+ = {E′ | E′(HasRemnant) = TRUE} identifies the elements in
D with positive (+) HasRemnant true property, i.e., the subset of synthetic events
that have been simulated to be EM-bright, and AX′′ is the algorithm’s outcome
on the subset of events with property E′(HasNS) = TRUE, X′′ = X′(HasNS+).

To evaluate Eqs. (9.2) and (9.3) with a ML classifier, the synthetic data
set is divided into two subsets, D = DR ⊕ DS , where the ⊕ sign indicates
complementary subsets. The DR subset is used for algorithm training and
validation. The DS subset is used to estimate the probabilities. Throughout
this Chapter we use a 70% – 30% split for DR and DS , respectively [Xu and
Goodacre 2018].

The choice of the labelling scheme and the algorithm’s outcome depend on
the ML algorithm characteristics. Throughout this Chapter we implement a
multi-label classification scheme, where each element in D is classified into n

mutually exclusive categories that uniquely define the n possible physical states
of the system. Given that we want to specify two probabilities for HasNS and
HasRemnant, we select the classifier outcome as a vector in a two-dimensional
slice of the vector space AX′ ⊂ Rn. This scheme allows the calculation of
Eqs. (9.2) and (9.3) with a single training process. In the problem at hand, there
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are three possible physical states. A suitable labelling is

L[E′(HasNS) = FALSE] = 0
L[E′(HasNS) = TRUE, (HasRemnant) = FALSE] = 1 (9.4)
L[E′(HasNS) = TRUE, (HasRemnant) = TRUE] = 2 .

With the above definitions, HasRemnant+ is the set of events labelled “2” and
HasNS+ is the union of the sets labelled “1” and “2”. Therefore, a natural choice
for the algorithm outcome is

AX′ = (f1 + f2, f2) ⊂ (f0, f1, f2) , (9.5)

where f0(X′) = 1 − f1(X′) − f2(X′), f1(X′), and f2(X′) are the fractions of
KNN neighbours or RF trees that predict the event to have labels 0, 1, and 2,
respectively.

The factors on the right-hand side of Eqs. (9.2) and (9.3) can be obtained
from DS once the algorithm has been trained on DR. For example, for the KNN
and RF scheme described earlier, the factors in Eq. (9.2) can be estimated as

P (HasNS+) =
NHasNS+

Ns
,

P (AX′ |HasNS+) =
N+

HasNS+(f1 + f2)
NHasNS+

, (9.6)

P (AX′) =
N+

HasNS+(f1 + f2) + N−
HasNS+(f1 + f2)

Ns
,

where Ns is the number of events in DS , NHasNS+ is the number of HasNS+ events
in DS , and N+

HasNS+(f1 + f2) and N−
HasNS+(f1 + f2) are the number of HasNS+

events in DS that are correctly and incorrectly classified by the outcome f1 + f2,
respectively. The first factor on the right-hand side of Eq. (9.3) can be evaluated
similarly to Eq. (9.2) by replacing HasNS with HasRemnant and restricting DS

to HasNS+ elements.
The probability estimators are generally noisy because they are evaluated on

a finite data set. Smooth probability functions can be obtained by mapping them
from the (0, 1) space to the real line with a logistic function, smoothing them with
a Savitzky-Golay filter, fitting them with Gaussian process regression (GPR),
and finally mapping them back to the (0, 1) space.

Both P (HasNS|AX) and P (HasRemnant|AX) depend on the EOS that is used
to label the synthetic events. As the true EOS of matter at NS densities is un-
known, in order to minimise the systematics that arise in adopting a specific EOS
we consider a set of 23 different EOS and marginalise Eqs. (9.2) and (9.3) over
them. The marginalised probabilities PM (HasNS|AX) and PM (HasRemnant|AX)
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are defined as
PM (I|AX) =

∑
J βJPJ(I|AX)∑

J βJ
, (9.7)

where I = HasNS or HasRemnant, PJ(I|AX) (J = 1, . . . 23) are the Bayesian
probabilities in Eqs. (9.2) and (9.3) calculated from the data set DS with labels
assigned according to the J-th EOS, and βJ are Bayes’ factors from Table II
(third column) of Ghosh et al. 2021. The probabilities PJ (I|AX) in Eq. (9.7) can
be tabulated and used to compute the marginalised probabilities PM (HasNS|AE)
and PM (HasRemnant|AE) for any new event E with algorithm outcome AE. It
is important to point out that this method does not depend on the specific value
of the Bayes’ factors.

9.3.2 Data Set

We use a large data set D of simulated BNS, NSBH, and BBH events that was
first used for the space-time volume sensitivity analysis of the LVK GstLAL
search [Messick et al. 2017, Sachdev et al. 2019, Sachdev et al. 2020] and
later employed in Chatterjee et al. 2020. This allows us to directly compare
the performance of the various algorithms and the new labelling scheme to
the performance of the KNN algorithm that is deployed in the current LVK
observing run.

The simulated signals are coherently injected in two-detector data from
the O2 LIGO and Virgo Collaboration (LVC) observing run. The injection
population is built with uniform/loguniform distribution of component masses
whereas the component spins are aligned and injected according to isotropic
distributions. Further details on the waveforms and injection parameters can be
found in Chatterjee et al. 2020. The data set D includes approximately 200000
injected signals that are recovered by the GstLAL pipeline with a false alarm
rate (FAR) ≤ 1/month. The RF and KNN algorithms are trained and tested on
the injected and recovered intrinsic source properties (primary and secondary
masses and spins) and on the recovered SNR.

9.3.3 Labelling Scheme

To label the synthetic data set D = DR ⊕ DS , we follow the practice in use
in the LVK and identify an event with HasNS:TRUE when at least one of the
injected component masses is less than the maximum NS mass allowed by the
EOS. The value of the maximum NS mass ranges from 1.922 M⊙ to 2.753
M⊙ across the various EOSs. The lowest and largest maximum NS masses
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correspond to the BHF_BBB2 and MS1_PP EOSs, respectively. We will highlight
these two cases together with the SLy EOS, which is the most accepted EOS in
the astrophysics community. We set the HasRemnant label as HasRemnant:TRUE
and HasRemnant:FALSE for BNS and BBH systems, respectively. The value of the
HasRemnant label for NSBH events depends on the EOS of the NS. To identify
the HasRemnant event class for NSBH systems, we follow Chatterjee et al. 2020
and apply Eq. (4) from Foucart, Hinderer, and Nissanke 2018, colloquially known
as the Foucart formula.

The Foucart formula is an empirical fit that predicts the total mass of the
accretion disc, the tidal tail, and the ejected mass from the final BH. The main
parameters of the fit are the compactness of the NS, the NSBH binary system’s
symmetric mass ratio, and the normalised innermost stable circular orbit (ISCO)
radius. The tidal disruption of the NS is affected by the mass and spin of the BH.
A highly spinning, low-mass BH’s small ISCO allows the NS to inspiral closer
to the BH and its tidal force to tear the NS apart, resulting in matter ejecta. If
the tidal forces are weak or the NS is very compact, the BH will swallow the NS
and there will be no remnant mass.

Different EOSs have different thresholds for the mass of the remnant. We
label events with inferred masses less than this threshold as HasRemnant:TRUE.
For events with component masses between ∼ 2.5 and 3.5M⊙, the stiffness of
the EOS is the main factor determining the HasRemnant label.

9.4 Results

In this Section, we first discuss the performance of the trained RF and KNN
classifiers on the testing data set DS and use the latter to calculate the Bayesian
probabilities PM (I|A). Then we evaluate PM (I|A) on two independent data
sets. The first set includes a population of simulated CBC events that were
injected in the real-time replay of O3 data and was used for the LVK Mock
Data Challenge (MDC) [Chaudhary et al. 2024]. The second set contains the
confident LVK O3 detections that are reported in LVK’s Gravitational-wave
Transient Catalog (GWTC) [Abbott et al. 2023a].

9.4.1 Performance on the O2 Testing Set

We assess the performance of the classifiers by measuring the TPR and the FPR
of the events in DS . We present our findings as ROC curves that illustrate how
the TPR varies for various score thresholds as a function of the FPR.
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Figure 9.4.1 ROC curves obtained from the O2 testing data set DS for the KNN classifier (left:
HasNS, right: HasRemnant). The curves for the 23 different EOSs are displayed in gray, with
the curves for BHF_BBB2, MS1_PP, and SLy highlighted in red, green, and blue, respectively. The
circle, triangle, and square markers denote score thresholds of 0.1, 0.5, and 0.9, respectively.

The HasNS and HasRemnant ROC curves for the KNN algorithm are displayed
in the left and right panels of Fig. 9.4.1, respectively. Figure 9.4.2 displays the
analogous curves for the RF classifier. The ROC curves for the 23 EOSs are
plotted in gray, with three of them highlighted in colour: BHF_BBB2, the EOS
with the lowest maximum mass for the NS; MS1_PP, the EOS with the largest
maximum mass for the NS; and SLy, which allows for a maximum mass of
2.05M⊙ and is the standard EOS used in LVK low-latency investigations [Ghosh
et al. 2021]. The markers denote different thresholds for the algorithm scores.

The two classifiers perform consistently across all EOSs. The TPR for a score
threshold of 0.5 is around 0.99 for both HasNS and HasRemnant. A comparison of
the HasNS and HasRemnant ROC curves for each algorithm shows that the FPR
for HasNS is generally higher than the FPR for HasRemnant at a given threshold.
Thus, the algorithms typically do a better job in classifying HasRemnant than
HasNS. Separate comparisons of the KNN and RF ROC curves for HasNS and
HasRemnant reveal that at a given threshold, RF produces slightly higher TPR
and lower FPR than KNN.

9.4.2 Bayesian Probability Computation

After the algorithms have been trained and tested, we compute the Bayesian
probabilities defined in Sec. 9.3.1 in terms of their outcomes. Equations (9.2)
and (9.3) must be assessed on a data set independent of the training data set,
as stated in Sec. 9.3.1. To do so, we employ DS .

The KNN and RF probability estimators are shown for each of the 23 EOSs
in Figs. 9.4.3 and 9.4.4, respectively. As expected, the HasNS and HasRemnant
probabilities increase with the fractions of KNN neighbours (RF trees). Local
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Figure 9.4.2 ROC curves obtained from the O2 testing data set DS for the RF classifier (left:
HasNS, right: HasRemnant). The curves for the 23 different EOSs are displayed in gray, with
the curves for BHF_BBB2, MS1_PP, and SLy highlighted in red, green, and blue, respectively. The
circle, triangle, and square markers denote score thresholds of 0.1, 0.5, and 0.9, respectively.

fluctuations in the probabilities are due to noise arising from the finiteness of
the data set.

The probabilities in Figs. 9.4.3 and 9.4.4 can be tabulated and used to compute
the marginalised probabilities PM (HasNS|AE) and PM (HasRemnant|AE) as in
Eq. (9.7).
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Figure 9.4.3 Left panel: HasNS Bayesian probability curves for the 23 EOS as a function of the
fraction of KNN neighbours f1 + f2. Right panel: HasRemnant Bayesian probability curves
as a function of the fraction of KNN neighbours f2. Curves for the BHF_BBB2, MS1_PP, and
SLy EOSs are highlighted in red, green, and blue, respectively. The probabilities show an
increasing trend as the fraction of neighbours increases. Non-monotonic fluctuations are due
to the data set’s finite size.

9.4.3 Bayesian Probabilities for the O3 Sets

To evaluate the method, we classify the events from the MDC data set and
compute the ROC curves based on the ground truth using Bayesian probability
(rather than score) thresholds. The ROC curves are shown in Figs. 9.4.5 and
9.4.6 for KNN and RF, respectively. In contrast to the O2 data set, the MDC
set contains outputs from four matched-filtering pipelines (GstLAL [Messick
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Figure 9.4.4 Left panel: HasNS Bayesian probability curves for the 23 EOSs as a function of
the fraction of RF trees f1 + f2. Right panel: HasRemnant Bayesian probability curves for
HasRemnant as a function of the fraction of RF trees f2. Curves for the BHF_BBB2, MS1_PP, and
SLy EOSs are highlighted in red, green, and blue, respectively. The probabilities show an
increasing trend as the fraction of trees increases. Non-monotonic fluctuations are due to the
data set’s finite size.

et al. 2017, Sachdev et al. 2019, Sachdev et al. 2020], PyCBC [Nitz et al. 2018,
Dal Canton et al. 2021], SPIIR [Chu et al. 2022], and MBTA [Adams et al.
2016]). Therefore, we present separate ROC curves for these pipelines.

In the case of HasNS, KNN yields a TPR between 0.95 and 0.98 and a
FPR smaller than 0.20 for a probability threshold of 0.5 across all pipelines,
with the exception of SPIIR. Even though the ML algorithms are generally
portable across pipelines and data sets, accurate results critically depend on
the training set’s faithful representation of the observations. The pipelines’
suboptimal performance, particularly SPIIR, can be explained by the fact
that we only employed GstLAL to train the algorithms. SPIIR’s interesting
performance can also be seen in current LVK implementation [Chaudhary et al.
2024]. Unfortunately, the inclusion of the other pipelines in the training phase
requires the generation of additional injections by the LVK and is deferred to a
future publication. Despite the restriction on GstLAL triggers, our approaches
perform exceptionally well when applied to other pipelines. We believe that an
increased injection set will further improve the performance of all pipelines.

In regard to HasRemnant, KNN yields a TPR around 0.975 and an FPR
slightly higher than 0.2 for the same threshold across all pipelines, with the
exception of GstLAL. RF’s results are similar to KNN’s results. The RF
ROC curves for HasNS typically have steeper slopes than for KNN, resulting
in a comparable TPR but a lower FPR at a given threshold. In the case of
HasRemnant, RF performs similarly to KNN for GstLAL but worse for the other
pipelines.
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Figure 9.4.5 ROC curves obtained from the O3 MDC data set for the KNN classifier (left:
HasNS, right: HasRemnant). The different LVK matched-filtering pipelines are indicated by
different colors (GstLAL: red; PyCBC: green; gold: SPIIR; blue: MBTA). The results for
all pipelines are shown in black. The circle, triangle, and square markers denote probability
thresholds of 0.1, 0.5, and 0.9, respectively.
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Figure 9.4.6 ROC curves obtained from the O3 MDC data set for the RF classifier (left: HasNS,
right: HasRemnant). The different LVK matched-filtering pipelines are indicated by different
colors (GstLAL: red; PyCBC: green; gold: SPIIR; blue: MBTA). The results for all pipelines
are shown in black. The circle, triangle, and square markers denote probability thresholds of
0.1, 0.5, and 0.9, respectively.

A few interesting results are worth mentioning. On the MDC set, both
algorithms perform better for HasNS than HasRemnant, whereas on the O2 set,
the reverse is true (see Figs. 9.4.1 and 9.4.2). KNN performs better than RF on
HasRemnant, but does worse on HasNS. However, on events recovered by GstLAL,
the pipeline on which the algorithms have been trained, both algorithms exhibit
comparable (high) performance. This seems to indicate that when used with
other pipelines, RF is less flexible than KNN. The conclusions provide more
details about this and a possible explanation for this effect.

Finally, we apply the method to derive Bayesian probabilities for the events
in the LVK GWTC [Abbott et al. 2021a, Abbott et al. 2023a]. In Table 9.4.1
we report the results for some of the most significant GWTC events, labeled
with their event ID, and with their HasNS and HasRemnant probabilities given
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in their General Coordinates Network (GCN) Circulars3. The PM (HasNS|AE)
and PM (HasRemnant|AE) probabilities for GW170817 and GW190425, the
two confirmed BNS detections are ∼ 1 as expected. The probabilities for
GW190426 and GW200115 (NSBH mergers) are PM (HasNS|AE) ∼ 1 and
PM (HasRemnant|AE) < 10−3. The two remaining significant events with non-
zero probabilities are GW190814 and GW190924. These events were reported
as high mass-ratio BBH mergers.

The fact that the system’s component masses differ greatly from one another
can be used to explain why PM (HasNS|AE) for these events is not zero. In
particular, the discrepancy between RF and KNN for GW190814 can be un-
derstood from the different ways the two algorithms operate. RF applies hard
cuts on decision trees to evaluate its outcome. KNN looks at the fractions of
neighbours surrounding the event. The detection pipeline returned a secondary
mass compatible with a NS for three of the 23 EOSs. However, since the region
of the parameter space close to the mass gap, i.e., the region between high NS
masses and low BH masses, is not well covered in the O2 training data set, KNN
overestimates the effect of the three EOS predicting a secondary mass in the NS
region.

3https://gcn.nasa.gov

https://gcn.nasa.gov
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Figures 9.4.7 and 9.4.8 show parameter sweeps in the space of the binary
component masses for the KNN and RF Bayesian probabilities, respectively.
Different rows correspond to different values of the component spins. Both
algorithms perform similarly for PM (HasNS|AE). However, the parameter sweeps
for PM (HasNS|AE) for KNN are noisier than RF for large primary masses. As was
noted above, the KNN algorithm operates by looking at the closest neighbours.
If neighbours with different labels are present in the region of interest, the
outcome is bound to be noisy. The RF algorithm applies hard selection cuts to
primary masses. This results in a more uniform probability. Changes in spin
seem to not significantly affect the outcome. Similar behaviours for KNN and
RF can also be observed in the case of PM (HasRemnant|AE). As expected from
the Foucart formula, PM (HasRemnant|AE) increases with the primary mass for
large primary spins, and the region with PM (HasRemnant|AE) ∼ 1 is included
in the region where PM (HasNS|AE) ∼ 1.
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Figure 9.4.7 Parameter sweeps for PM (HasNS|AE) (left panels) and PM (HasRemnant|AE) (right
panels) for the KNN algorithm. M1 and M2 are the primary and secondary component masses
of the binary. χ1 and χ2 are their effective spins. The SNR is fixed to 10.
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Figure 9.4.8 Parameter sweeps for PM (HasNS|AE) (left panels) and PM (HasRemnant|AE) (right
panels) for the RF algorithm. M1 and M2 are the primary and secondary component masses
of the binary. χ1 and χ2 are their effective spins. The SNR is fixed to 10.
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9.5 Discussion and conclusions

In this Chapter, we have presented a new scheme for real-time classification of
GW CBC signals detected by the LVK detectors. The method uses the output
of the LVK low-latency pipelines to identify whether the GW source progenitor
contains a NS (HasNS) and a postmerger matter remnant is produced in the
merger (HasRemnant). Estimates of these metrics are included in public alerts
for candidate GW events issued by the LVK. Determining these metrics in low
latency is crucial to enabling coincident MMA observations of GW and EM
signatures.

We have assessed the viability and measured the performance of two classifiers,
KNN and RF, on two sets of real detector data augmented with synthetic GW
injections of GW signals that were generated for space-time volume sensitivity
analyses of O2 LVK GW searches [Chatterjee et al. 2020] and an MDC real-time
replay of O3 data [Chaudhary et al. 2024].

One important novel ingredient of the proposed scheme is the computation
of Bayesian probabilities for HasNS and HasRemnant. Until now, the information
that has been passed to astronomers in public alerts has been in the form of binary
classification scores for these metrics. Here, we provide a method to compute
HasNS and HasRemnant as actual probabilities that the GW source includes a
NS and postmerger matter remnant. Therefore, our scheme provides more direct
and easily interpretable information to aid the community of astronomers in
deciding whether to follow up on GW candidate events with EM observatories.

To construct the Bayesian probabilities for HasNS and HasRemnant, we train
and test the classifiers on the O2 data set following the customary 70% – 30%
split between training and testing data. After evaluating the performance of the
classifiers with standard ROC curves, we use the testing set to generate numerical
Bayesian probability expressions for the models. This minimises potential biases
that may result from the use of data sets with different properties while ensuring
that the Bayesian fits are built with data that is independent of the data used for
training the classifiers. The effectiveness of the Bayesian fits is then evaluated
on fully independent data sets using the O3 set and real detections.

As shown in Appendix 9.B, our RF implementation outperforms the specific
KNN algorithm implementation currently utilised in the LVK low-latency infras-
tructure, while our KNN method performs similarly. When tested on the O3 set,
both algorithms improve on HasNS while underperforming on HasRemnant. In
this case, KNN outperforms RF, which exhibits more variation across different
pipelines. If only the injections recovered by GstLAL are considered in O3, the
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O3 results of both RF and KNN are consistent with O2. RF’s performance on
O3 events recovered by other pipelines, on the other hand, is noticeably lower.
This appears to imply that RF is less portable than KNN across different data
sets and pipelines. The different ways RF and KNN operate, as well as the
different characteristics of the sets, may explain their behavior.

The RF classifier is a decision tree-based classifier that sets decision rules by
implementing specific cuts (conditions) on input features. The KNN algorithm
implements decision rules by computing the nearest neighbours of input features
in the parameter space for the data point of interest. RF is designed to construct
hard boundaries based on input parameters, whereas the KNN algorithm is
designed to produce an outcome based on differences between features. As a
result, the RF algorithm’s nature may make it more suitable for classifying
events with HasNS, which is based on a well-defined, hard boundary between
positive and negative outcomes, such as the secondary mass value. To distinguish
between systems with zero and nonzero post-remnant matter in HasRemnant,
the algorithms must learn Foucart’s fit from the recovered parameters. Foucart’s
formula is dependent on the EOS under consideration, as well as the pipeline
that recovers the injection. Because RF and KNN are trained on injections
that are only recovered by GstLAL, RF is more affected than KNN. However,
a comprehensive evaluation, involving datasets from new observing runs and
diverse pipelines, would be needed to definitely compare the performance of the
two algorithms.

This work provides an improved scheme to implement Bayesian probabilities
for HasNS and HasRemnant classification of candidate events that would be
straightforward to deploy in the existing LVK infrastructure. Our method can
also be easily extended to other properties of GW signals that are being or
may be released in low latency, such as HasMassGap among other data products.
Other future extensions of this work include improving algorithm training and
Bayesian fit estimation with updated data sets of simulated injections in LVK
O4 data generated with different pipelines and with better coverage of the mass
gap region than the O2 data set. It would also be worthwhile to investigate
the use of additional ML classifiers that could further improve the process’s
accuracy, reduce the need for computational resources, and decrease latency.
Finally, a similar infrastructure could be designed and deployed to aid in the
rapid parameter estimation of pipeline outputs, but with a focus on feature
regression rather than classification. This latter line of investigation will be
presented in a future publication.





Appendix

9.A Cross validation of the ML algorithms

To obtain the optimal hyperparameters of our ML algorithms, we perform cross-
validation across different values of the algorithm parameters. We apply the
algorithms to the O2 data set for different choices of parameters, and we select
the combination that gives the highest accuracy.

9.A.1 K-Nearest Neighbours

We utilise the k-fold cross validation implemented in scikit-learn [Pedregosa
et al. 2011] with k = 10 folds, which is a common choice in applied ML. As
consistency checks, we use different numbers of folds (k = 4 and k = 5) and
achieve consistent results in all cases, with an accuracy ranging between 0.9449
and 0.9517. The dataset used for cross-validation is D = DR ⊕ DS .

Table 9.A.1 Values of the accuracy for different combinations of the hyperparameters. The
accuracy in all cases is larger than 0.935.

Neighbours Metric Weights Algorithm Accuracy
2 Manhattan Distance BallTree 0.9399
2 Euclidean Distance KDTree 0.9392
2 Manhattan Uniform Auto 0.9359
8 Manhattan Distance BallTree 0.9485
8 Euclidean Distance KDTree 0.9477
8 Manhattan Uniform Auto 0.9468
20 Manhattan Distance BallTree 0.9469
20 Euclidean Distance KDTree 0.9459
20 Manhattan Uniform Auto 0.9437

The KNN algorithm’s hyperparameters include the number of neighbours
(K), distance metric, nearest neighbour method, and prediction weight function.
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Figure 9.A.1 Accuracy of the KNN algorithm as a function of the number of neighbours. The
color red (blue) denotes the Euclidean (Manhattan) metric, and the dots (crosses) denote
uniform (distance) weights. The BallTree algorithm is used to find the nearest neighbours.
The accuracy does not significantly change when more than 5 neighbours are considered.

Table 9.A.1 displays many combinations of these parameters and the result-
ing accuracy following cross-validation. It is worth noting that the choice of
hyperparameters has little to no impact on accuracy.

Figure 9.A.1 illustrates the accuracy dependence on different hyperparameter
options while keeping the algorithm used to compute nearest neighbours, the
BallTree, constant.

The ideal hyperparameters are the same for all EOSs, with the exception
of the number of neighbours, which varies between 6 and 12. We use the
Bayes’ factors described in Ghosh et al. 2021 to marginalise over all EOSs. The
marginalised optimal number of neighbours is 8. However, as illustrated in
Fig. 9.A.1, there is no significant change in accuracy when a higher number of
neighbours is used. Table 9.A.2 shows the fixed hyperparameters used in our
KNN implementation.

Table 9.A.2 Optimal hyperparameters for the KNN algorithm. These are the values we use to
train and test the algorithm, as well as to calculate Bayesian probabilities.

Nº of neighbours Metric Weights Algorithm
8 Manhattan Distance BallTree

9.A.2 Random Forest

To apply cross-validation to the RF algorithm, we use the training (DR) and
testing (DS) data sets presented in Section 9.3. We choose possible values for
the various hyperparameters and compare the accuracy of the generated forests.
Unlike KNN, RF does not apply the k-fold cross-validation procedure. This is
because the implementation of RF we employ admits the bootstrap technique
in the training. Each tree in the forest accesses a random subset of the training
data, thus achieving the same effect.
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Figure 9.A.2 Accuracy of the RF algorithm as a function of the number of trees. The color
red (blue) denotes “sqrt” (“all”) features, while the dots (crosses) denote “entropy” (“gini”)
criteria. The depth of the trees is set at 15. All cases have an accuracy range of 0.960 to 0.965.

We investigate the effect on accuracy by varying the number of trees in the
forest, the method used to compute the information gain after each node split
(gini or entropy), the maximum number of features considered in each node (the
square root of the total number of features, or all of them), and the maximum
depth that the trees can reach. For tree depth, we explore two options: None,
which consists of allowing the trees to grow until data points are isolated at the
leaves, and 15. We chose this figure since it is half the average depth obtained
with the None option.

We use the Bayes’ factors to marginalise on the configurations that lead
to the highest score for each EOS. We conclude that for all EOSs, we should
employ 81.017 trees, the “entropy” criterion, the square root of the number of
features at split, and a depth equal to 15.

Table 9.A.3 Optimal hyperparameters for the RF algorithm.

Trees 81.02
Criteria (0-gini, 1-entropy) 0.9577
Features (0-sqrt, 1-All) 0.3902
Depth (0-15 depth, 1-None) 0.0000

Table 9.A.3 displays the results of hyperparameter marginalisation over the
EOSs. For any EOS, regardless of other hyperparameters, a depth of 15 yields
higher accuracy. The “entropy” criterion is adopted for practically every EOS,
whereas the number of features to consider is more tightly restricted.

Figure 9.A.2 displays the accuracies obtained during cross-validation, with
the depth fixed to 15. It is worth noting that using more trees results in higher
scores. Nonetheless, the goal of making this method run in low latency favours
smaller files (with less tree information) that can be loaded rapidly. Therefore,
given the difference in accuracy and size of the trained models, we limit ourselves
to 50 trees.
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9.B Comparison between our algorithms and the current LVK
implementation

To compare the existing LVK implementation of KNN Chatterjee et al. 2020 with
our multi-label KNN and RF schemes, we show the ROC curves for the three
methods in Fig. 9.B.1. To provide a fair comparison, we trained the LVK’s KNN
classifier for two cases (HasNSand HasRemnant) separately, resulting in a binary
label method. In this instance, we use the hyperparameters that are currently
configured in the low-latency implementation: K = 2n + 1 = 11 neighbours
(where n is the number of features), and neighbor weighting by the inverse of
distance. Both classifiers were trained using the same 70% of the O2 dataset
(the DR subset)4. The ROC curve below was generated using the remaining
30% of the dataset (the DS subset). The multi-label RF method achieves a high
TPR across the entire range of FPR for both HasNS and HasRemnant. Both
multi-label and binary-label KNN methods perform similarly. These ROC curve
comparisons were done in the same way as in Figures 9.4.1 and 9.4.2 before
defining Bayesian probabilities, as they were generated from the testing set.
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Figure 9.B.1 ROC curves derived from the O2 testing data set DS for the RF classifier (solid
lines), the KNN implementation presented in this paper (dashed lines), and the KNN approach
currently used by the LVK Collaborations (dotted lines). The curves for BHF_BBB2, MS1_PP,
and SLy are colored red, green, and blue, respectively. The circle, triangle, and square marks
represent score thresholds of 0.1, 0.5, and 0.9, respectively.

4The current LVK implementation trains the KNN algorithm on the entire dataset D. This
leaves no events to test. Therefore, to ensure a fair comparison, we use a 70%-30% split.



CHAPTER 10

Summary of part II and future work

The second part of the thesis has focused on the analysis of GW signals from
BNS mergers and their remnants, along with other classes of CBC sources.

10.1 Unmodelled reconstructions of binary neutron star post-
merger signals

During Chapters 7 and 8, I have studied the detectability prospects of
several modes that are excited during the BNS postmerger phase. As previously
discussed, this phase is characterised by the highly dynamical formation of a
HMNS that will eventually collapse to a BH. The remnant star undergoes several
oscillations, emitting gravitational radiation with characteristic frequencies in
the range of kHz, considerably above those from the inspiral phase. These
oscillations are connected to the excitation of several quasi-normal modes, being
the quadrupolar (l = m = 2) f -mode the dominant one during the early
postmerger phase. However, once these oscillations damp out, further modes
may become dominant at later times. It is the case of the inertial modes,
triggered by convective instabilities. These modes are characterised by smaller
frequencies and amplitudes than those of the quadrupolar mode, making them
more challenging to detect. The work in Chapter 7 focused on the detectability
of these modes by current and future GW interferometers.

To assess their possible detection, the BayesWave algorithm was employed
to perform unmodelled reconstructions of the GW signals. Due to the lack of
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NR simulations that would be needed to apply matched-filtering techniques, the
best alternative to analyse these signals is the application of unmodelled searches.
To this aim, BayesWave reconstructed long postmerger signals injected into
Gaussian noise, for networks of current and future GW detectors, and with
an optimal inclination and sky localisation. The study reveals that current
detectors do not possess enough sensitivity to observe the GW emission from the
inertial modes, unless the source is located at about ∼ 1 Mpc or less. In contrast,
future detectors with improved sensitivity, such as the ET, increase the detection
range by a factor ∼ 10. Furthermore, I also employed waveforms obtained with
different EOSs. The frequency of the modes changes with the choice of the
EOS, similarly to the frequencies of the f -modes. Thus, the identification of
inertial modes in the late postmerger phase might provide additional constraints
to the EOS, in addition to a deeper insight into the internal structure of HMNS
remnants.

Further simulations are needed to explore possible quasi-universal relations
between the characteristic frequency of the inertial modes and physical param-
eters of the star. Numerical studies with different initial configurations (e.g.,
total binary mass) and EOSs would be required to fulfil this aim, but the long
timescales needed by the inertial modes to arise limit the realisation of such
simulations. Moreover, to properly characterise the inertial modes, perturbative
studies should be applied.

In addition to this work, I assessed in Chapter 8 the identification of thermal
effects in BNS merger remnants with model-agnostic waveform reconstructions.
When the HMNS is formed, temperature cannot be neglected and needs to
be accounted for in numerical simulations. The way to introduce non-zero
temperature effects in BNS simulations is with the EOS. Two approaches are
currently used: the hybrid approach, which is computationally less expensive
but less realistic, and the tabulated approach, more computationally demanding,
but it incorporates thermal effects in a more realistic way. In this Chapter,
injections into Gaussian noise of the ET were performed for different EOSs
described by both hybrid and tabulated approaches. The recovered frequencies
from the dominant quadrupolar f -mode are different between both approaches,
and these differences could be detectable by future interferometers for distances
up to few hundred Mpc in some cases. Moreover, the differences increase as the
mode frequencies evolve in time, but the amplitude of the signals simultaneously
decreases, thus making them difficult to detect. The treatment of thermal effects
also impacts the frequency of the inertial modes, but those are found to be
detectable for up to 15 Mpc, as expected from Chapter 7.
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Differences in the treatment of thermal effects can be large enough to be
identified in future detections of BNS GW postmerger signals. However, these
differences strongly depend on the EOS considered, yielding different frequency
shifts and different amplitudes that determine their detection range. Thus, a
larger set of simulations with different EOSs would be required to extract more
solid conclusions. Furthermore, it would be interesting to study the impact of a
different number of pieces when building the piecewise polytropic EOS employed
for the hybrid approach.

10.1.1 Further applications of unmodelled gravitational-wave searches

It has been proven that the BayesWave algorithm is a good replacement of
matched filtering techniques when the modelling of the GW signal is challenging.
Thus, in addition to BNS postmerger waveforms, CCSN signals are the ideal
candidates to be searched by BayesWave (or other pipelines such as cWB).
Their stochastic nature makes it impossible to model them, so model-agnostic
searches are the best alternative, together with the application of ML techniques.
The frequency of the core-bounce part of the GW signal (with a frequency at
around ∼ 800 Hz) can be related to rotational properties of the stellar core.
The GW emission from CCSNe is also produced from the excitation of different
oscillation modes in the newly born PNS and its surroundings, including the
accretion shock. Moreover, asteroseismology studies have revealed that there is
a relationship between the post-bounce oscillation spectrum of the combined
PNS and shock system, and the peak frequencies of the emitted GW signal,
which can be as low as 100 Hz. Thus, it is possible to infer physical properties
of the PNS with the identification of the mode frequencies in the GW signal,
without the use of matched-filtering techniques that require a large amount of
computationally expensive simulations.

Other plausible purposes of unmodelled reconstructions could be the anal-
ysis of the detectability of the impact that bosonic fields could provoke when
interacting gravitationally with the fermionic matter from NSs. It is shown in
Appendix A that the interaction between a cloud of ultralight bosonic particles
and a NS prone to the bar-mode instability can alter the stability and dynamics
of the system, leading to changes in the GW signal amplitude and its character-
istic frequency. Moreover, the presence of dark matter particles in the merger of
a BNS system might also have an impact on the postmerger GW emission.

It has already been shown in Chapter 8 that differences in the EOS modelling
lead to changes in the characteristic frequencies of the postmerger GW signal.
Apart from the treatment of thermal effects, the inclusion of PTs to quark
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matter in the EOS also alters the postmerger GW spectrum, as well as the use
of non-convex EOSs (see Section 1.4 from the Introduction), which can have
a detectable impact on the emitted GWs. Unmodelled reconstructions might
be able to detect those frequency shifts in the signal without the need of large
waveform templates.

10.2 Real-time classification of CBC sources with a Bayesian
approach

Finally, in Chapter 9 I presented a novel scheme for real-time classification of
GW signals detected by the current LVK detectors. This new method makes
use of the output from LVK low-latency pipelines, i.e., inferred component
masses and spins of the objects along the orbital angular momentum, to provide
probabilities for the GW source to have a NS component (HasNS) and to have
postmerger matter remnant (HasRemnant). These metrics are provided by
supervised ML algorithms, RF and KNN, that have been trained over large
injection data sets and a big variety of EOSs.

The novelty presented in this work is the use of a Bayesian approach to
compute more realistic probabilities from the output of the ML classifiers. In
contrast to the current LVK implementation, which uses the binary classification
scores for HasNS and HasRemnant, this method provides actual probabilities
for these metrics. To build the Bayesian probabilities, the ML algorithms are
trained and optimised with real detector data augmented with synthetic GW
injections. The testing set is used to generate fits for the Bayesian probabilities,
which are evaluated on independent data sets and real detections. Moreover, the
classification algorithms employed in this work seem to slightly outperform the
current LVK implementation. Although being exclusively trained with triggers
from a single pipeline, GstLAL, the approach works surprisingly well when
applied to other low-latency pipelines such as MBTA and PyCBC.

Therefore, this scheme offers more direct and easily interpretable information
that would be useful to the astronomy community, helping in the rapid response
to follow-up observations of EM signatures from CBC that contain (at least) a
NS.

Nevertheless, the performance of the method seems to not be optimal when
applied to triggers from the SPIIR pipeline. A possible solution to this issue
that could be explored in a future work is the use of triggers from several
low-latency pipelines to train the ML classifiers. An increased injection set
would further improve the performance on all pipelines. Moreover, the use of
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synthetic injections from the current (and future) observing run together with
simulated triggers computed from additional EOSs will improve the Bayesian fit
estimation.

10.2.1 Extension to other gravitational-wave signal properties

This method can be easily extended to other properties of the GW signals
detected by the LVK observatories. For example, it could also provide the prob-
ability that one of the binary components is located in the NS mass gap. Since
the maximum mass of a NS is expected to be around 2.5 solar masses, and BHs
with less than 5 solar masses have rarely been observed, there exists a mass gap
between the most massive NS and the least massive BH ever detected. Finding
objects inside this critical region would give us very important information. If
a NS is found, this observation would put strong constraints on the EOS of
dense matter. Alternatively, if a BH is detected within this gap, it could impact
the understanding of CCSN explosions, which are the formation mechanism of
stellar BHs, and also make us consider other formation channels, such as CBC.
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APPENDIX A

Publications as a co-author

Here, I summarise the projects I have been involved in as a co-author. I also
state my own contribution to their development.

A.1 Impact of ultralight bosonic dark matter on the dynamical
bar-mode instability of rotating neutron stars

This work was originally published in Impact of ultralight bosonic dark matter
on the dynamical bar-mode instability of rotating neutron stars. Fabrizio Di
Giovanni, Nicolás Sanchis-Gual, Davide Guerra, Miquel Miravet-Tenés, Pablo
Cerdá-Durán and José A. Font.Phys. Rev. D, Volume 106, Issue 4, pp. 044008,
August 2022. DOI: 10.1103/PhysRevD.106.044008.

Context: Rapidly differentially rotating NSs are expected to be subject
to various nonaxisymmetric instabilities. If the ratio between the rotational
kinetic energy and the gravitational potential energy is sufficiently high, they
can undergo the dynamical bar-mode instability. The nonlinear growth of the
l = m = 2 (l, m are the spherical harmonic indices) oscillation mode will deform
the star into a bar shape (see Section 1.1 from the Introduction). However,
not only fermionic stars can be subject to these nonaxisymmetric instabilities.
In fact, it has been shown through numerical simulations that rotating boson
stars can also be affected by the same kind of instabilities. These objects are
self-gravitating compact objects that can be constructed by minimally coupling
a complex, massive bosonic field to Einstein’s gravity. These exotic compact
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objects are dark matter candidates that could help explain a wide set of observa-
tional results, such as the measurements of galaxy rotation curves, gravitational
lensing, and the CMB. The constituent particles of the bosonic stars lack EM
interactions with baryonic matter, thus being invisible through EM observations.
The only way to observe and study these objects is through their GW emission
and their gravitational interaction with fermionic matter. Having observed that
both fermionic and bosonic objects can suffer from the bar-mode instability, it
is natural to ask what would happen if a bosonic field is added to a rapidly
spinning NS that is prone to develop the bar-mode deformation.

Goals: To investigate the gravitational interaction between ultralight bosonic
field dark matter and the fermions that constitute the NS. This interaction
might provoke changes on the dynamics of unstable differentially rotating NSs
prone to the bar-mode instability, and also on the associated GW emission.

Methods: We perform NR simulations of differentially rotating NSs that
accrete an initial spherically symmetric bosonic field cloud. These simulations
solve the coupled Einstein-Klein-Gordon-Euler system for scalar bosonic fields,
and the Einstein-Proca-Euler system for vector (Proca) fields. We choose dif-
ferent NS configurations and also several masses for the bosonic cloud and the
bosonic particle. Moreover, we compute the Newman-Penrose scalar to study
the GW spectrum of the simulations.

Results: We find that the presence of a bosonic field can critically modify
the development of the bar-mode instability of NSs, depending on the total mass
of the bosonic field and on the boson particle mass. Purely NS models undergo
a bar-like deformation, and we observe the excitation of the l = m = 2 mode,
as expected. The inclusion of a bosonic field leads, in some cases, to a different
mode excitation, being the l = 2, m = 1 mode the dominant one, instead of
the l = m = 2 mode of the bar-deformation. Indeed, in some cases we observe
a quenching of the dominant mode of the bar-deformation, retaining part of
the angular momentum from the NS. For the cases that lead to the formation
of a mixed bar, it has been observed that the timescale of the instability is
also affected by the presence of dark matter, being delayed as the amount of
bosonic field increases. Moreover, the resulting GW spectra indicate that this
dark-matter accretion could change the frequency of the gravitational radiation
emitted by the bar-mode instability.
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Conclusions: Our work explicitly shows that the gravitational coupling
between ultralight bosonic particles and fermionic NS matter can have important
effects in the dynamics and stability of the NS. The increase of the dominant
frequency of the emitted GWs can be potentially observed by future GW de-
tectors within several tens of Mpc, making these results useful for ongoing and
future searches of continuous GW signals from NSs.

My contribution: In this work, I built some initial NS configurations
with differential rotation, and I also performed and monitored several numerical
evolutions. Moreover, I performed some post-processing tasks, such as making
the snapshots of the rest-mass density contours. I also contributed to the writing
of the manuscript and I participated in all the discussions about the project.

A.2 Fermion-axion stars: Static solutions and dynamical stability

This work was originally published in Fermion-axion stars: Static solutions and
dynamical stability. Fabrizio Di Giovanni, Davide Guerra, Simone Albanesi,
Miquel Miravet-Tenés, Dimitra Tseneklidou. Phys. Rev. D, Volume 106,
Issue 8, pp. 084013, October 2022. DOI: 10.1103/PhysRevD.106.084013.

Context: One of the most compelling particle dark-matter candidates is the
axion, a pseudo-scalar particle that could play a key role in cosmology and was
introduced to solve the CP problem. The axion particles can clump together and
resemble Bose-Einstein condensates, i.e., bosonic stars. The scalar axion field has
a characteristic periodic potential, inspired by quantum chromodynamics (QCD)
theory, which depends on the mass of the axion and the decay constant. Studies
of axion boson stars show that new stability branches emerge at high densities.
Therefore, if such axion-like particles exist and can form compact objects, there
could also exist objects made by a mixture of fermions and axions. Purely
fermionic NSs posses a single stable branch, but the addition of an axion-like
particle could significantly change their stability.

Goals: To study the stability of solutions of the coupled Einstein-Klein-
Gordon-Euler system. The system involves bosonic dark matter with a periodic
potential, characteristic of axion-like models, and fermionic matter modelled by
a perfect fluid that resembles a NS.
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Methods: We construct spherically symmetric equilibrium configurations
for different values of the decay constant of the axion potential. Then, we build
an existence diagram in the parameter space given by the central rest-mass
density of the star and the central axion-field amplitude, and identify the stable
and unstable regions. Finally, we perform a nonlinear evolution to assess the
stability of several cases.

Results: The solutions for the mixed fermion-axion stars show the presence
of multiple islands of stability that depend on the choice of the decay constant
of the axion potential. This is opposed to the case of a purely fermionic star,
which only possesses one stable branch. The nonlinear evolution of some initial
configurations confirms the observations from the linear analysis. Models from
the linearly unstable region face different fates when weakly perturbed: some
cases migrate to the stable region, others collapse to a BH, and there are some
models in which the scalar field is dispersed away, leaving behind a purely
fermionic star.

Conclusions: Equilibrium models of fermion-axion stars allow for stable
regions in the parameter space that do not exist when considering a purely
fermionic NS. The characteristic periodic potential of the axion dark-matter
particle leads to the appearance of several islands of stability in the existence
domain. The nonlinear evolution of the linearly unstable models can result in
the dispersion of the bosonic field and the dilution of the fermionic matter, which
is something that has never been observed in previous works.

My contribution: For this project, I computed equilibrium solutions of the
fermion-axion stars for certain values of the axion decay constant that appears
in the potential. I also helped prepare some figures and build the algorithm to
compute equal-mass curves in the parameter space. Moreover, I contributed to
the writing of the manuscript and I participated in all the discussions about the
project.

A.3 Gravitational Wave Memory Imprints on the CMB from
Populations of Massive Black Hole Mergers

This work is originally from Gravitational Wave Memory Imprints on the CMB
from Populations of Massive Black Hole Mergers. Lorenz Zwick, David O’Neill,
Kai Hendriks, Philip Kirkeberg and Miquel Miravet-Tenés. April 2024. Sub-
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Context: The GWM is a GR effect that occurs when the passing of a GW
leaves a persistent change in the relative position of pairs of masses. There
exist two kinds of GWM effects: the linear and the nonlinear. Their detection
would be a convincing evidence of the validity of the theory of GR. In addition,
the observational consequences would be copious, from an improvement in the
parameter estimation of GW sources to implications in cosmology. The CMB
radiation constitutes an important keystone of the understanding of the early
Universe. The effect of the GWM could alter the paths of the CMB photons,
but also provoke temperature fluctuations.

Goals: Explore and characterise the temperature fluctuations that are im-
printed on the CMB by GWM effects from mergers of massive BHs binaries.

Methods: By computing the strain tensor for linear GWM using a PN
expansion, we assume that the memory effect acts as a step function and prop-
agates from the merger event outwards in a shell. We calculate the variation
of the wavelength of the CMB photons that intersect the GWM shell, which
results in a corresponding change in the bulk blackbody temperature. We study
these fluctuations for both individual binary mergers and populations of binaries
that are distributed in local cosmological boxes at a given redshift.

Results: For a single merger event, the resulting maximum temperature
fluctuations, observed by a local observer, scale with the total mass of the binary
and are inversely proportional to the elapsed time after the merger. When
considering populations of mergers, the temperature fluctuations are basically
composed of the superpositions of the individual merger contributions. The
maximum and the standard deviation of the fluctuations follow a random-walk
process and scale with the number of events considered, that can be given by
a certain merger rate. It is found that fluctuations of order ∼ 10−10 K can
be reached across scales of ∼ 1′ to ∼ 1◦ for volumetric merger rates of 10−3

Mpc−3 Gyr−1, characteristic of galaxies located at redshift z = 1. Moreover,
the accumulation of temperature fluctuations gives rise to a power spectrum
the amplitude of which also increases with the merger density and scales as
P (k) ∝ k−2.7.
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Conclusions: Every single BH merger has its imprint on the CMB radiation
by producing temperature fluctuations due to its GWM emission. The resulting
fluctuations from populations of mergers accumulate following a random-walk
process and provide a universal power law with a specific scaling. The detection
of such fluctuations is exceedingly challenging. Their very small amplitude and
the existence of noise sources such as lensing and path deflections makes them
extremely difficult to observe by current observatories.

My contribution: In this project, I took part in the early discussions and
contributed to the computation of the GWM strain produced by a single BBH
merger. In addition, I participated in the writing process and review of the
manuscript.



Bibliography

[1] http://www.lorene.obspm.fr/.
[2] https://stellarcollapse.org/SROEOS.
[3] J. Aasi et al. “The characterization of Virgo data and its impact on

gravitational-wave searches.” In: Class. Quantum Grav. 29.15, 155002
(Aug. 2012), p. 155002. doi: 10.1088/0264-9381/29/15/155002. arXiv:
1203.5613 [gr-qc].

[4] J. Aasi et al. “Advanced LIGO.” In: Class. Quant. Grav. 32 (2015),
p. 074001. doi: 10.1088/0264- 9381/32/7/074001. arXiv: 1411.4547
[gr-qc].

[5] B. P. Abbott et al. “LIGO: the Laser Interferometer Gravitational-Wave
Observatory.” In: Reports on Progress in Physics 72.7, 076901 (July
2009), p. 076901. doi: 10.1088/0034-4885/72/7/076901. arXiv: 0711.3041
[gr-qc].

[6] B. P. Abbott et al. “GW150914: First results from the search for binary
black hole coalescence with Advanced LIGO.” In: Phys. Rev. D 93.12,
122003 (June 2016), p. 122003. doi: 10.1103/PhysRevD.93.122003. arXiv:
1602.03839 [gr-qc].

[7] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary
Black Hole Merger.” In: Phys. Rev. Lett. 116.6 (2016), p. 061102. doi:
10.1103/PhysRevLett.116.061102. arXiv: 1602.03837 [gr-qc].

[8] B. P. Abbott et al. “A gravitational-wave standard siren measurement of
the Hubble constant.” In: Nature 551.7678 (Nov. 2017), pp. 85–88. doi:
10.1038/nature24471. arXiv: 1710.05835 [astro-ph.CO].

[9] B. P. Abbott et al. “Estimating the Contribution of Dynamical Ejecta
in the Kilonova Associated with GW170817.” In: Astrophys. J. Lett.
850.2, L39 (Dec. 2017), p. L39. doi: 10.3847/2041-8213/aa9478. arXiv:
1710.05836 [astro-ph.HE].

[10] B. P. Abbott et al. “Gravitational Waves and Gamma-rays from a Binary
Neutron Star Merger: GW170817 and GRB 170817A.” In: Astrophys.
J. Lett. 848.2 (2017), p. L13. doi: 10.3847/2041-8213/aa920c. arXiv:
1710.05834 [astro-ph.HE].

[11] B. P. Abbott et al. “GW170817: Observation of Gravitational Waves
from a Binary Neutron Star Inspiral.” In: Phys. Rev. Lett. 119.16, 161101
(Oct. 2017), p. 161101. doi: 10.1103/PhysRevLett.119.161101. arXiv:
1710.05832 [gr-qc].

https://doi.org/10.1088/0264-9381/29/15/155002
https://arxiv.org/abs/1203.5613
https://doi.org/10.1088/0264-9381/32/7/074001
https://arxiv.org/abs/1411.4547
https://arxiv.org/abs/1411.4547
https://doi.org/10.1088/0034-4885/72/7/076901
https://arxiv.org/abs/0711.3041
https://arxiv.org/abs/0711.3041
https://doi.org/10.1103/PhysRevD.93.122003
https://arxiv.org/abs/1602.03839
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://doi.org/10.1038/nature24471
https://arxiv.org/abs/1710.05835
https://doi.org/10.3847/2041-8213/aa9478
https://arxiv.org/abs/1710.05836
https://doi.org/10.3847/2041-8213/aa920c
https://arxiv.org/abs/1710.05834
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832


248 Bibliography

[12] B. P. Abbott et al. “Multi-messenger Observations of a Binary Neutron
Star Merger.” In: Astrophys. J. Lett. 848.2, L12 (Oct. 2017), p. L12. doi:
10.3847/2041-8213/aa91c9. arXiv: 1710.05833 [astro-ph.HE].

[13] B. P. Abbott et al. “Search for Post-merger Gravitational Waves from
the Remnant of the Binary Neutron Star Merger GW170817.” In: As-
trophys. J. Lett. 851.1, L16 (Dec. 2017), p. L16. doi: 10.3847/2041-
8213/aa9a35. arXiv: 1710.09320 [astro-ph.HE].

[14] B. P. Abbott et al. “GW170817: Measurements of Neutron Star Radii
and Equation of State.” In: Phys. Rev. Lett. 121.16, 161101 (Oct. 2018),
p. 161101. doi: 10.1103/PhysRevLett.121.161101. arXiv: 1805.11581
[gr-qc].

[15] B. P. Abbott et al. “Prospects for observing and localizing gravitational-
wave transients with Advanced LIGO, Advanced Virgo and KAGRA.”
In: Living Rev. Rel. 21.1 (2018), p. 3. doi: 10.1007/s41114-020-00026-9.
arXiv: 1304.0670 [gr-qc].

[16] B. P. Abbott et al. “GWTC-1: A Gravitational-Wave Transient Catalog
of Compact Binary Mergers Observed by LIGO and Virgo during the
First and Second Observing Runs.” In: Phys. Rev. X 9.3, 031040 (July
2019), p. 031040. doi: 10.1103/PhysRevX.9.031040. arXiv: 1811.12907
[astro-ph.HE].

[17] B. P. Abbott et al. “Properties of the Binary Neutron Star Merger
GW170817.” In: Physical Review X 9.1, 011001 (Jan. 2019), p. 011001.
doi: 10.1103/PhysRevX.9.011001. arXiv: 1805.11579 [gr-qc].

[18] B. P. Abbott et al. “A guide to LIGO-Virgo detector noise and extraction
of transient gravitational-wave signals.” In: Class. Quantum Grav. 37.5,
055002 (Mar. 2020), p. 055002. doi: 10.1088/1361-6382/ab685e. arXiv:
1908.11170 [gr-qc].

[19] B. P. Abbott et al. “GW190425: Observation of a Compact Binary
Coalescence with Total Mass ∼ 3.4 M⊙.” In: Astrophys. J. Lett. 892.1, L3
(Mar. 2020), p. L3. doi: 10.3847/2041-8213/ab75f5. arXiv: 2001.01761
[astro-ph.HE].

[20] B. P. Abbott et al. “Open data from the first and second observing runs
of Advanced LIGO and Advanced Virgo.” In: SoftwareX 13, 100658 (Jan.
2021), p. 100658. doi: 10.1016/j.softx.2021.100658. arXiv: 1912.11716
[gr-qc].

[21] B. P. Abbott et al. “Open Data from the Third Observing Run of LIGO,
Virgo, KAGRA, and GEO.” In: ApJS 267.2, 29 (Aug. 2023), p. 29. doi:
10.3847/1538-4365/acdc9f. arXiv: 2302.03676 [gr-qc].

[22] R. Abbott et al. “Constraints on the cosmic expansion history from
GWTC-3.” In: (Nov. 2021). arXiv: 2111.03604 [astro-ph.CO].

[23] R. Abbott et al. “GWTC-2: Compact Binary Coalescences Observed by
LIGO and Virgo during the First Half of the Third Observing Run.”
In: Phys. Rev. X 11.2, 021053 (Apr. 2021), p. 021053. doi: 10.1103/
PhysRevX.11.021053. arXiv: 2010.14527 [gr-qc].

[24] R. Abbott et al. “GWTC-3: Compact Binary Coalescences Observed by
LIGO and Virgo During the Second Part of the Third Observing Run.”
In: (Nov. 2021). arXiv: 2111.03606 [gr-qc].

https://doi.org/10.3847/2041-8213/aa91c9
https://arxiv.org/abs/1710.05833
https://doi.org/10.3847/2041-8213/aa9a35
https://doi.org/10.3847/2041-8213/aa9a35
https://arxiv.org/abs/1710.09320
https://doi.org/10.1103/PhysRevLett.121.161101
https://arxiv.org/abs/1805.11581
https://arxiv.org/abs/1805.11581
https://doi.org/10.1007/s41114-020-00026-9
https://arxiv.org/abs/1304.0670
https://doi.org/10.1103/PhysRevX.9.031040
https://arxiv.org/abs/1811.12907
https://arxiv.org/abs/1811.12907
https://doi.org/10.1103/PhysRevX.9.011001
https://arxiv.org/abs/1805.11579
https://doi.org/10.1088/1361-6382/ab685e
https://arxiv.org/abs/1908.11170
https://doi.org/10.3847/2041-8213/ab75f5
https://arxiv.org/abs/2001.01761
https://arxiv.org/abs/2001.01761
https://doi.org/10.1016/j.softx.2021.100658
https://arxiv.org/abs/1912.11716
https://arxiv.org/abs/1912.11716
https://doi.org/10.3847/1538-4365/acdc9f
https://arxiv.org/abs/2302.03676
https://arxiv.org/abs/2111.03604
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevX.11.021053
https://arxiv.org/abs/2010.14527
https://arxiv.org/abs/2111.03606


Bibliography 249

[25] R. Abbott et al. “Tests of General Relativity with GWTC-3.” In: (Dec.
2021). arXiv: 2112.06861 [gr-qc].

[26] R. Abbott et al. “Population of Merging Compact Binaries Inferred
Using Gravitational Waves through GWTC-3.” In: Phys. Rev. X 13.1,
011048 (Jan. 2023), p. 011048. doi: 10.1103/PhysRevX.13.011048. arXiv:
2111.03634 [astro-ph.HE].

[27] R. Abbott et al. “GWTC-2.1: Deep extended catalog of compact binary
coalescences observed by LIGO and Virgo during the first half of the third
observing run.” In: Phys. Rev. D 109.2, 022001 (Jan. 2024), p. 022001.
doi: 10.1103/PhysRevD.109.022001. arXiv: 2108.01045 [gr-qc].

[28] F. Acernese et al. “Advanced Virgo: a second-generation interferometric
gravitational wave detector.” In: Class. Quantum Grav. 32.2, 024001 (Jan.
2015), p. 024001. doi: 10.1088/0264-9381/32/2/024001. arXiv: 1408.3978
[gr-qc].

[29] T. Adams et al. “Low-latency analysis pipeline for compact binary coales-
cences in the advanced gravitational wave detector era.” In: Class. Quant.
Grav. 33.17 (2016), p. 175012. doi: 10.1088/0264-9381/33/17/175012.
arXiv: 1512.02864 [gr-qc].

[30] G. Agazie et al. “The NANOGrav 15 yr Data Set: Evidence for a
Gravitational-wave Background.” In: Astrophys. J. Lett. 951.1, L8 (July
2023), p. L8. doi: 10 . 3847 / 2041 - 8213 / acdac6. arXiv: 2306 . 16213
[astro-ph.HE].

[31] R. Aguilera-Miret, D. Viganò, and C. Palenzuela. “Universality of the
Turbulent Magnetic Field in Hypermassive Neutron Stars Produced by
Binary Mergers.” In: Astrophys. J. Lett. 926.2, L31 (Feb. 2022), p. L31.
doi: 10.3847/2041-8213/ac50a7. arXiv: 2112.08406 [gr-qc].

[32] R. Aguilera-Miret et al. “Turbulent magnetic-field amplification in the
first 10 milliseconds after a binary neutron star merger: Comparing high-
resolution and large-eddy simulations.” In: Phys. Rev. D 102.10, 103006
(Nov. 2020), p. 103006. doi: 10 .1103/PhysRevD.102.103006. arXiv:
2009.06669 [gr-qc].

[33] R. Aguilera-Miret et al. “The role of turbulence and winding in the
development of large-scale, strong magnetic fields in long-lived remnants
of binary neutron star mergers.” In: arXiv e-prints, arXiv:2307.04837
(July 2023), arXiv:2307.04837. doi: 10.48550/arXiv.2307.04837. arXiv:
2307.04837 [astro-ph.HE].

[34] P. Ajith et al. “A phenomenological template family for black-hole coa-
lescence waveforms.” In: Class. Quantum Grav. 24.19 (Oct. 2007), S689–
S699. doi: 10.1088/0264-9381/24/19/S31. arXiv: 0704.3764 [gr-qc].

[35] S. Akiyama et al. “The Magnetorotational Instability in Core-Collapse
Supernova Explosions.” In: Astrophys. J. 584.2 (Feb. 2003), pp. 954–970.
doi: 10.1086/344135. arXiv: astro-ph/0208128 [astro-ph].

[36] M. Alford. “Color-Superconducting Quark Matter.” In: Annual Review of
Nuclear and Particle Science 51 (Jan. 2001), pp. 131–160. doi: 10.1146/
annurev.nucl.51.101701.132449. arXiv: hep-ph/0102047 [hep-ph].

https://arxiv.org/abs/2112.06861
https://doi.org/10.1103/PhysRevX.13.011048
https://arxiv.org/abs/2111.03634
https://doi.org/10.1103/PhysRevD.109.022001
https://arxiv.org/abs/2108.01045
https://doi.org/10.1088/0264-9381/32/2/024001
https://arxiv.org/abs/1408.3978
https://arxiv.org/abs/1408.3978
https://doi.org/10.1088/0264-9381/33/17/175012
https://arxiv.org/abs/1512.02864
https://doi.org/10.3847/2041-8213/acdac6
https://arxiv.org/abs/2306.16213
https://arxiv.org/abs/2306.16213
https://doi.org/10.3847/2041-8213/ac50a7
https://arxiv.org/abs/2112.08406
https://doi.org/10.1103/PhysRevD.102.103006
https://arxiv.org/abs/2009.06669
https://doi.org/10.48550/arXiv.2307.04837
https://arxiv.org/abs/2307.04837
https://doi.org/10.1088/0264-9381/24/19/S31
https://arxiv.org/abs/0704.3764
https://doi.org/10.1086/344135
https://arxiv.org/abs/astro-ph/0208128
https://doi.org/10.1146/annurev.nucl.51.101701.132449
https://doi.org/10.1146/annurev.nucl.51.101701.132449
https://arxiv.org/abs/hep-ph/0102047


250 Bibliography

[37] J. D. Álvares et al. “Exploring gravitational-wave detection and parameter
inference using deep learning methods.” In: Class. Quantum Grav. 38.15,
155010 (Aug. 2021), p. 155010. doi: 10.1088/1361-6382/ac0455. arXiv:
2011.10425 [gr-qc].

[38] M. Anderson et al. “Magnetized Neutron-Star Mergers and Gravitational-
Wave Signals.” In: Phys. Rev. Lett. 100.19, 191101 (May 2008), p. 191101.
doi: 10.1103/PhysRevLett.100.191101. arXiv: 0801.4387 [gr-qc].

[39] N. Andersson. “Resistive relativistic magnetohydrodynamics from a
charged multifluids perspective.” In: Phys. Rev. D 86.4, 043002 (Aug.
2012), p. 043002. doi: 10.1103/PhysRevD.86.043002. arXiv: 1204.2695
[astro-ph.SR].

[40] N. Andersson et al. “The physics of non-ideal general relativistic magne-
tohydrodynamics.” In: MNRAS 509.3 (Jan. 2022), pp. 3737–3750. doi:
10.1093/mnras/stab3257. arXiv: 2108.08732 [astro-ph.HE].

[41] N. Andersson. “A New Class of Unstable Modes of Rotating Relativistic
Stars.” In: Astrophys. J. 502.2 (Aug. 1998), pp. 708–713. doi: 10.1086/
305919. arXiv: gr-qc/9706075 [gr-qc].

[42] N. Andersson and K. D. Kokkotas. “Towards gravitational wave as-
teroseismology.” In: MNRAS 299.4 (Oct. 1998), pp. 1059–1068. doi:
10.1046/j.1365-8711.1998.01840.x. arXiv: gr-qc/9711088 [gr-qc].

[43] N. Andersson and K. D. Kokkotas. “The R-Mode Instability in Rotating
Neutron Stars.” In: International Journal of Modern Physics D 10.4
(Jan. 2001), pp. 381–441. doi: 10.1142/S0218271801001062. arXiv: gr-
qc/0010102 [gr-qc].

[44] N. Andersson, K. D. Kokkotas, and N. Stergioulas. “On the Relevance of
the R-Mode Instability for Accreting Neutron Stars and White Dwarfs.”
In: Astrophys. J. 516.1 (May 1999), pp. 307–314. doi: 10.1086/307082.
arXiv: astro-ph/9806089 [astro-ph].

[45] J. Antoniadis et al. “A Massive Pulsar in a Compact Relativistic Binary.”
In: Science 340.6131 (Apr. 2013), p. 448. doi: 10.1126/science.1233232.
arXiv: 1304.6875 [astro-ph.HE].

[46] I. Arcavi et al. “Optical emission from a kilonova following a gravitational-
wave-detected neutron-star merger.” In: Nature 551 (2017), p. 64. doi:
10.1038/nature24291. arXiv: 1710.05843 [astro-ph.HE].

[47] S. Ascenzi et al. “Electromagnetic counterparts of compact binary merg-
ers.” In: Journal of Plasma Physics 87.1 (Feb. 2021), p. 845870102. doi:
10.1017/S0022377820001646. arXiv: 2011.04001 [astro-ph.HE].

[48] S. Babak, A. Taracchini, and A. Buonanno. “Validating the effective-one-
body model of spinning, precessing binary black holes against numerical
relativity.” In: Phys. Rev. D 95.2, 024010 (Jan. 2017), p. 024010. doi:
10.1103/PhysRevD.95.024010. arXiv: 1607.05661 [gr-qc].

[49] L. Baiotti, B. Giacomazzo, and L. Rezzolla. “Accurate evolutions of
inspiralling neutron-star binaries: Prompt and delayed collapse to a
black hole.” In: Phys. Rev. D 78.8, 084033 (Oct. 2008), p. 084033. doi:
10.1103/PhysRevD.78.084033. arXiv: 0804.0594 [gr-qc].

https://doi.org/10.1088/1361-6382/ac0455
https://arxiv.org/abs/2011.10425
https://doi.org/10.1103/PhysRevLett.100.191101
https://arxiv.org/abs/0801.4387
https://doi.org/10.1103/PhysRevD.86.043002
https://arxiv.org/abs/1204.2695
https://arxiv.org/abs/1204.2695
https://doi.org/10.1093/mnras/stab3257
https://arxiv.org/abs/2108.08732
https://doi.org/10.1086/305919
https://doi.org/10.1086/305919
https://arxiv.org/abs/gr-qc/9706075
https://doi.org/10.1046/j.1365-8711.1998.01840.x
https://arxiv.org/abs/gr-qc/9711088
https://doi.org/10.1142/S0218271801001062
https://arxiv.org/abs/gr-qc/0010102
https://arxiv.org/abs/gr-qc/0010102
https://doi.org/10.1086/307082
https://arxiv.org/abs/astro-ph/9806089
https://doi.org/10.1126/science.1233232
https://arxiv.org/abs/1304.6875
https://doi.org/10.1038/nature24291
https://arxiv.org/abs/1710.05843
https://doi.org/10.1017/S0022377820001646
https://arxiv.org/abs/2011.04001
https://doi.org/10.1103/PhysRevD.95.024010
https://arxiv.org/abs/1607.05661
https://doi.org/10.1103/PhysRevD.78.084033
https://arxiv.org/abs/0804.0594


Bibliography 251

[50] L. Baiotti and L. Rezzolla. “Binary neutron star mergers: a review of
Einstein’s richest laboratory.” In: Reports on Progress in Physics 80.9,
096901 (Sept. 2017), p. 096901. doi: 10.1088/1361-6633/aa67bb. arXiv:
1607.03540 [gr-qc].

[51] L. Baiotti et al. “Accurate simulations of the dynamical bar-mode insta-
bility in full general relativity.” In: Phys. Rev. D 75.4, 044023 (Feb. 2007),
p. 044023. doi: 10.1103/PhysRevD.75.044023. arXiv: astro-ph/0609473
[astro-ph].

[52] L. Baiotti et al. “Analytic Modeling of Tidal Effects in the Relativistic
Inspiral of Binary Neutron Stars.” In: Phys. Rev. Lett. 105.26, 261101
(Dec. 2010), p. 261101. doi: 10.1103/PhysRevLett.105.261101. arXiv:
1009.0521 [gr-qc].

[53] A. Balasubramanian et al. “GW170817 4.5 Yr After Merger: Dynamical
Ejecta Afterglow Constraints.” In: Astrophys. J. 938.1, 12 (Oct. 2022),
p. 12. doi: 10.3847/1538-4357/ac9133. arXiv: 2205.14788 [astro-ph.HE].

[54] S. A. Balbus. “General Local Stability Criteria for Stratified, Weakly
Magnetized Rotating Systems.” In: Astrophys. J. 453 (Nov. 1995), p. 380.
doi: 10.1086/176397.

[55] S. A. Balbus and J. F. Hawley. “A Powerful Local Shear Instability in
Weakly Magnetized Disks. I. Linear Analysis.” In: Astrophys. J. 376 (July
1991), p. 214. doi: 10.1086/170270.

[56] S. A. Balbus and J. F. Hawley. “A Powerful Local Shear Instability
in Weakly Magnetized Disks. IV. Nonaxisymmetric Perturbations.” In:
Astrophys. J. 400 (Dec. 1992), pp. 610–621. doi: 10.1086/172022.

[57] S. A. Balbus and J. F. Hawley. “Instability, turbulence, and enhanced
transport in accretion disks.” In: Reviews of Modern Physics 70.1 (Jan.
1998), pp. 1–53. doi: 10.1103/RevModPhys.70.1.

[58] M. Baldo and G. F. Burgio. “Properties of the nuclear medium.” In:
Reports on Progress in Physics 75.2, 026301 (Feb. 2012), p. 026301. doi:
10.1088/0034-4885/75/2/026301. arXiv: 1102.1364 [nucl-th].

[59] J. Bamber et al. “Jet-like structures in low-mass binary neutron star
merger remnants.” In: arXiv e-prints, arXiv:2405.03705 (May 2024),
arXiv:2405.03705. doi: 10.48550/arXiv.2405.03705. arXiv: 2405.03705
[astro-ph.HE].

[60] F. Banyuls et al. “Numerical {3 + 1} General Relativistic Hydrodynamics:
A Local Characteristic Approach.” In: Astrophys. J. 476.1 (Feb. 1997),
pp. 221–231. doi: 10.1086/303604.

[61] L. Barack et al. “Black holes, gravitational waves and fundamental physics:
a roadmap.” In: Class. Quant. Grav. 36.14 (2019), p. 143001. doi: 10.
1088/1361-6382/ab0587. arXiv: 1806.05195 [gr-qc].

[62] E. Barausse and A. Buonanno. “Extending the effective-one-body Hamil-
tonian of black-hole binaries to include next-to-next-to-leading spin-orbit
couplings.” In: Phys. Rev. D 84.10, 104027 (Nov. 2011), p. 104027. doi:
10.1103/PhysRevD.84.104027. arXiv: 1107.2904 [gr-qc].

[63] E. Barausse et al. “Prospects for Fundamental Physics with LISA.” In:
Gen. Rel. Grav. 52.8 (2020), p. 81. doi: 10.1007/s10714-020-02691-1.
arXiv: 2001.09793 [gr-qc].

https://doi.org/10.1088/1361-6633/aa67bb
https://arxiv.org/abs/1607.03540
https://doi.org/10.1103/PhysRevD.75.044023
https://arxiv.org/abs/astro-ph/0609473
https://arxiv.org/abs/astro-ph/0609473
https://doi.org/10.1103/PhysRevLett.105.261101
https://arxiv.org/abs/1009.0521
https://doi.org/10.3847/1538-4357/ac9133
https://arxiv.org/abs/2205.14788
https://doi.org/10.1086/176397
https://doi.org/10.1086/170270
https://doi.org/10.1086/172022
https://doi.org/10.1103/RevModPhys.70.1
https://doi.org/10.1088/0034-4885/75/2/026301
https://arxiv.org/abs/1102.1364
https://doi.org/10.48550/arXiv.2405.03705
https://arxiv.org/abs/2405.03705
https://arxiv.org/abs/2405.03705
https://doi.org/10.1086/303604
https://doi.org/10.1088/1361-6382/ab0587
https://doi.org/10.1088/1361-6382/ab0587
https://arxiv.org/abs/1806.05195
https://doi.org/10.1103/PhysRevD.84.104027
https://arxiv.org/abs/1107.2904
https://doi.org/10.1007/s10714-020-02691-1
https://arxiv.org/abs/2001.09793


252 Bibliography

[64] J. Barnes and D. Kasen. “Effect of a High Opacity on the Light Curves
of Radioactively Powered Transients from Compact Object Mergers.” In:
Astrophys. J. 775 (2013), p. 18. doi: 10.1088/0004-637X/775/1/18. arXiv:
1303.5787 [astro-ph.HE].

[65] P. Barrère et al. “A new scenario for magnetar formation: Tayler-Spruit
dynamo in a proto-neutron star spun up by fallback.” In: Astron. Astro-
phys. 668, A79 (Dec. 2022), A79. doi: 10.1051/0004-6361/202244172.
arXiv: 2206.01269 [astro-ph.HE].

[66] T. W. Baumgarte and S. L. Shapiro. “Numerical integration of Einstein’s
field equations.” In: Phys. Rev. D 59.2, 024007 (Dec. 1998), p. 024007.
doi: 10.1103/PhysRevD.59.024007. arXiv: gr-qc/9810065 [gr-qc].

[67] T. W. Baumgarte, S. L. Shapiro, and M. Shibata. “On the Maximum Mass
of Differentially Rotating Neutron Stars.” In: Astrophys. J. Lett. 528.1
(Jan. 2000), pp. L29–L32. doi: 10.1086/312425. arXiv: astro-ph/9910565
[astro-ph].

[68] A. Bauswein, T. W. Baumgarte, and H. T. Janka. “Prompt Merger
Collapse and the Maximum Mass of Neutron Stars.” In: Phys. Rev. Lett.
111.13, 131101 (Sept. 2013), p. 131101. doi: 10.1103/PhysRevLett.111.
131101. arXiv: 1307.5191 [astro-ph.SR].

[69] A. Bauswein, S. Goriely, and H. T. Janka. “Systematics of Dynamical
Mass Ejection, Nucleosynthesis, and Radioactively Powered Electromag-
netic Signals from Neutron-star Mergers.” In: Astrophys. J. 773.1, 78
(Aug. 2013), p. 78. doi: 10.1088/0004-637X/773/1/78. arXiv: 1302.6530
[astro-ph.SR].

[70] A. Bauswein and H. T. Janka. “Measuring Neutron-Star Properties via
Gravitational Waves from Neutron-Star Mergers.” In: Phys. Rev. Lett.
108.1, 011101 (Jan. 2012), p. 011101. doi: 10.1103/PhysRevLett.108.
011101. arXiv: 1106.1616 [astro-ph.SR].

[71] A. Bauswein, H. T. Janka, and R. Oechslin. “Testing Approximations of
Thermal Effects in Neutron Star Merger Simulations.” In: Phys. Rev. D 82
(2010), p. 084043. doi: 10.1103/PhysRevD.82.084043. arXiv: 1006.3315
[astro-ph.SR].

[72] A. Bauswein and N. Stergioulas. “Unified picture of the post-merger
dynamics and gravitational wave emission in neutron star mergers.”
In: Phys. Rev. D 91.12, 124056 (June 2015), p. 124056. doi: 10.1103/
PhysRevD.91.124056. arXiv: 1502.03176 [astro-ph.SR].

[73] A. Bauswein and N. Stergioulas. “Spectral classification of gravitational-
wave emission and equation of state constraints in binary neutron star
mergers.” In: Journal of Physics G Nuclear Physics 46.11, 113002 (Nov.
2019), p. 113002. doi: 10.1088/1361-6471/ab2b90. arXiv: 1901.06969
[gr-qc].

[74] A. Bauswein, N. Stergioulas, and H. T. Janka. “Revealing the high-density
equation of state through binary neutron star mergers.” In: Phys. Rev. D
90.2, 023002 (July 2014), p. 023002. doi: 10.1103/PhysRevD.90.023002.
arXiv: 1403.5301 [astro-ph.SR].

https://doi.org/10.1088/0004-637X/775/1/18
https://arxiv.org/abs/1303.5787
https://doi.org/10.1051/0004-6361/202244172
https://arxiv.org/abs/2206.01269
https://doi.org/10.1103/PhysRevD.59.024007
https://arxiv.org/abs/gr-qc/9810065
https://doi.org/10.1086/312425
https://arxiv.org/abs/astro-ph/9910565
https://arxiv.org/abs/astro-ph/9910565
https://doi.org/10.1103/PhysRevLett.111.131101
https://doi.org/10.1103/PhysRevLett.111.131101
https://arxiv.org/abs/1307.5191
https://doi.org/10.1088/0004-637X/773/1/78
https://arxiv.org/abs/1302.6530
https://arxiv.org/abs/1302.6530
https://doi.org/10.1103/PhysRevLett.108.011101
https://doi.org/10.1103/PhysRevLett.108.011101
https://arxiv.org/abs/1106.1616
https://doi.org/10.1103/PhysRevD.82.084043
https://arxiv.org/abs/1006.3315
https://arxiv.org/abs/1006.3315
https://doi.org/10.1103/PhysRevD.91.124056
https://doi.org/10.1103/PhysRevD.91.124056
https://arxiv.org/abs/1502.03176
https://doi.org/10.1088/1361-6471/ab2b90
https://arxiv.org/abs/1901.06969
https://arxiv.org/abs/1901.06969
https://doi.org/10.1103/PhysRevD.90.023002
https://arxiv.org/abs/1403.5301


Bibliography 253

[75] A. Bauswein et al. “Equation-of-state dependence of the gravitational-
wave signal from the ring-down phase of neutron-star mergers.” In:
Phys. Rev. D 86.6, 063001 (Sept. 2012), p. 063001. doi: 10 . 1103 /
PhysRevD.86.063001. arXiv: 1204.1888 [astro-ph.SR].

[76] A. Bauswein, N. Stergioulas, and H.-T. Janka. “Exploring properties
of high-density matter through remnants of neutron-star mergers.” In:
European Physical Journal A 52, 56 (Mar. 2016), p. 56. doi: 10.1140/
epja/i2016-16056-7. arXiv: 1508.05493 [astro-ph.HE].

[77] A. Bauswein et al. “Neutron-star Radius Constraints from GW170817 and
Future Detections.” In: Astrophys. J. Lett. 850.2, L34 (Dec. 2017), p. L34.
doi: 10.3847/2041-8213/aa9994. arXiv: 1710.06843 [astro-ph.HE].

[78] A. Bauswein et al. “Identifying a First-Order Phase Transition in Neutron-
Star Mergers through Gravitational Waves.” In: Phys. Rev. Lett. 122.6,
061102 (Feb. 2019), p. 061102. doi: 10.1103/PhysRevLett.122.061102.
arXiv: 1809.01116 [astro-ph.HE].

[79] B. Bécsy et al. “Parameter Estimation for Gravitational-wave Bursts with
the BayesWave Pipeline.” In: Astrophys. J. 839.1, 15 (Apr. 2017), p. 15.
doi: 10.3847/1538-4357/aa63ef. arXiv: 1612.02003 [astro-ph.HE].

[80] M. Bender, P.-H. Heenen, and P.-G. Reinhard. “Self-consistent mean-field
models for nuclear structure.” In: Reviews of Modern Physics 75.1 (Jan.
2003), pp. 121–180. doi: 10.1103/RevModPhys.75.121.

[81] L. Bernard et al. “Dimensional regularization of the IR divergences in
the Fokker action of point-particle binaries at the fourth post-Newtonian
order.” In: Phys. Rev. D 96.10, 104043 (Nov. 2017), p. 104043. doi:
10.1103/PhysRevD.96.104043. arXiv: 1706.08480 [gr-qc].

[82] L. Bernard et al. “Center-of-mass equations of motion and conserved
integrals of compact binary systems at the fourth post-Newtonian order.”
In: Phys. Rev. D 97.4, 044037 (Feb. 2018), p. 044037. doi: 10.1103/
PhysRevD.97.044037. arXiv: 1711.00283 [gr-qc].

[83] S. Bernuzzi. “Neutron star merger remnants.” In: General Relativity and
Gravitation 52.11, 108 (Nov. 2020), p. 108. doi: 10.1007/s10714-020-
02752-5. arXiv: 2004.06419 [astro-ph.HE].

[84] S. Bernuzzi, T. Dietrich, and A. Nagar. “Modeling the Complete Gravita-
tional Wave Spectrum of Neutron Star Mergers.” In: Phys. Rev. Lett. 115.9,
091101 (Aug. 2015), p. 091101. doi: 10.1103/PhysRevLett.115.091101.
arXiv: 1504.01764 [gr-qc].

[85] S. Bernuzzi et al. “Tidal effects in binary neutron star coalescence.”
In: Phys. Rev. D 86.4, 044030 (Aug. 2012), p. 044030. doi: 10.1103/
PhysRevD.86.044030. arXiv: 1205.3403 [gr-qc].

[86] S. Bernuzzi et al. “Quasiuniversal Properties of Neutron Star Mergers.”
In: Phys. Rev. Lett. 112.20, 201101 (May 2014), p. 201101. doi: 10.1103/
PhysRevLett.112.201101. arXiv: 1402.6244 [gr-qc].

[87] E. Berti, K. Yagi, and N. Yunes. “Extreme Gravity Tests with Gravita-
tional Waves from Compact Binary Coalescences: (I) Inspiral-Merger.”
In: Gen. Rel. Grav. 50.4 (2018), p. 46. doi: 10.1007/s10714-018-2362-8.
arXiv: 1801.03208 [gr-qc].

https://doi.org/10.1103/PhysRevD.86.063001
https://doi.org/10.1103/PhysRevD.86.063001
https://arxiv.org/abs/1204.1888
https://doi.org/10.1140/epja/i2016-16056-7
https://doi.org/10.1140/epja/i2016-16056-7
https://arxiv.org/abs/1508.05493
https://doi.org/10.3847/2041-8213/aa9994
https://arxiv.org/abs/1710.06843
https://doi.org/10.1103/PhysRevLett.122.061102
https://arxiv.org/abs/1809.01116
https://doi.org/10.3847/1538-4357/aa63ef
https://arxiv.org/abs/1612.02003
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/PhysRevD.96.104043
https://arxiv.org/abs/1706.08480
https://doi.org/10.1103/PhysRevD.97.044037
https://doi.org/10.1103/PhysRevD.97.044037
https://arxiv.org/abs/1711.00283
https://doi.org/10.1007/s10714-020-02752-5
https://doi.org/10.1007/s10714-020-02752-5
https://arxiv.org/abs/2004.06419
https://doi.org/10.1103/PhysRevLett.115.091101
https://arxiv.org/abs/1504.01764
https://doi.org/10.1103/PhysRevD.86.044030
https://doi.org/10.1103/PhysRevD.86.044030
https://arxiv.org/abs/1205.3403
https://doi.org/10.1103/PhysRevLett.112.201101
https://doi.org/10.1103/PhysRevLett.112.201101
https://arxiv.org/abs/1402.6244
https://doi.org/10.1007/s10714-018-2362-8
https://arxiv.org/abs/1801.03208


254 Bibliography

[88] E. Berti et al. “Extreme Gravity Tests with Gravitational Waves from
Compact Binary Coalescences: (II) Ringdown.” In: Gen. Rel. Grav. 50.5
(2018), p. 49. doi: 10 . 1007/s10714 - 018 - 2372 - 6. arXiv: 1801 .03587
[gr-qc].

[89] H. A. Bethe and J. R. Wilson. “Revival of a stalled supernova shock
by neutrino heating.” In: Astrophys. J. 295 (Aug. 1985), pp. 14–23. doi:
10.1086/163343.

[90] D. Bhattacharya and E. P. J. van den Heuvel. “Formation and evolution
of binary and millisecond radio pulsars.” In: Phys. Rep. 203.1-2 (Jan.
1991), pp. 1–124. doi: 10.1016/0370-1573(91)90064-S.

[91] L. Blackburn et al. “The LSC glitch group: monitoring noise transients
during the fifth LIGO science run.” In: Class. Quantum Grav. 25.18,
184004 (Sept. 2008), p. 184004. doi: 10.1088/0264-9381/25/18/184004.
arXiv: 0804.0800 [gr-qc].

[92] L. Blanchet. “Gravitational Radiation from Post-Newtonian Sources and
Inspiralling Compact Binaries.” In: Living Reviews in Relativity 9.1, 4
(Dec. 2006), p. 4. doi: 10.12942/lrr-2006-4.

[93] L. Blanchet. “Gravitational Radiation from Post-Newtonian Sources and
Inspiralling Compact Binaries.” In: Living Reviews in Relativity 17.1, 2
(Dec. 2014), p. 2. doi: 10.12942/lrr-2014-2. arXiv: 1310.1528 [gr-qc].

[94] R. D. Blandford and R. L. Znajek. “Electromagnetic extraction of energy
from Kerr black holes.” In: MNRAS 179 (May 1977), pp. 433–456. doi:
10.1093/mnras/179.3.433.

[95] M. Bocquet et al. “Rotating neutron star models with a magnetic field.”
In: Astron. Astrophys. 301 (Sept. 1995), p. 757. doi: 10.48550/arXiv.gr-
qc/9503044. arXiv: gr-qc/9503044 [gr-qc].

[96] I. Bombaci and B. Datta. “Conversion of Neutron Stars to Strange Stars
as the Central Engine of Gamma-Ray Bursts.” In: Astrophys. J. Lett. 530.2
(Feb. 2000), pp. L69–L72. doi: 10.1086/312497. arXiv: astro-ph/0001478
[astro-ph].

[97] A. Bonanno, V. Urpin, and G. Belvedere. “Protoneutron star dynamos and
pulsar magnetism.” In: Astron. Astrophys. 440.1 (Sept. 2005), pp. 199–205.
doi: 10.1051/0004-6361:20042098. arXiv: astro-ph/0504328 [astro-ph].

[98] S. Bonazzola, J. Frieben, and E. Gourgoulhon. “Spontaneous symmetry
breaking of rapidly rotating stars in general relativity: influence of the
3D-shift vector.” In: Astron. Astrophys. 331 (Mar. 1998), pp. 280–290.
doi: 10.48550/arXiv.gr-qc/9710121. arXiv: gr-qc/9710121 [gr-qc].

[99] S. Bose et al. “Neutron-Star Radius from a Population of Binary Neutron
Star Mergers.” In: Phys. Rev. Lett. 120.3, 031102 (Jan. 2018), p. 031102.
doi: 10.1103/PhysRevLett.120.031102. arXiv: 1705.10850 [gr-qc].

[100] V. Boudart and M. Fays. “Machine learning algorithm for minute-long
burst searches.” In: Phys. Rev. D 105.8, 083007 (Apr. 2022), p. 083007.
doi: 10.1103/PhysRevD.105.083007. arXiv: 2201.08727 [gr-qc].

[101] J. Braithwaite. “A differential rotation driven dynamo in a stably stratified
star.” In: Astron. Astrophys. 449.2 (Apr. 2006), pp. 451–460. doi: 10.
1051/0004-6361:20054241. arXiv: astro-ph/0509693 [astro-ph].

https://doi.org/10.1007/s10714-018-2372-6
https://arxiv.org/abs/1801.03587
https://arxiv.org/abs/1801.03587
https://doi.org/10.1086/163343
https://doi.org/10.1016/0370-1573(91)90064-S
https://doi.org/10.1088/0264-9381/25/18/184004
https://arxiv.org/abs/0804.0800
https://doi.org/10.12942/lrr-2006-4
https://doi.org/10.12942/lrr-2014-2
https://arxiv.org/abs/1310.1528
https://doi.org/10.1093/mnras/179.3.433
https://doi.org/10.48550/arXiv.gr-qc/9503044
https://doi.org/10.48550/arXiv.gr-qc/9503044
https://arxiv.org/abs/gr-qc/9503044
https://doi.org/10.1086/312497
https://arxiv.org/abs/astro-ph/0001478
https://arxiv.org/abs/astro-ph/0001478
https://doi.org/10.1051/0004-6361:20042098
https://arxiv.org/abs/astro-ph/0504328
https://doi.org/10.48550/arXiv.gr-qc/9710121
https://arxiv.org/abs/gr-qc/9710121
https://doi.org/10.1103/PhysRevLett.120.031102
https://arxiv.org/abs/1705.10850
https://doi.org/10.1103/PhysRevD.105.083007
https://arxiv.org/abs/2201.08727
https://doi.org/10.1051/0004-6361:20054241
https://doi.org/10.1051/0004-6361:20054241
https://arxiv.org/abs/astro-ph/0509693


Bibliography 255

[102] J. Braithwaite. “The stability of toroidal fields in stars.” In: Astron. Astro-
phys. 453.2 (July 2006), pp. 687–698. doi: 10.1051/0004-6361:20041282.
arXiv: astro-ph/0512182 [astro-ph].

[103] J. Braithwaite and H. C. Spruit. “Evolution of the magnetic field in
magnetars.” In: Astron. Astrophys. 450.3 (May 2006), pp. 1097–1106. doi:
10.1051/0004-6361:20041981. arXiv: astro-ph/0510287 [astro-ph].

[104] M. Branchesi et al. “Science with the Einstein Telescope: a comparison
of different designs.” In: JCAP 2023.7, 068 (July 2023), p. 068. doi:
10.1088/1475-7516/2023/07/068. arXiv: 2303.15923 [gr-qc].

[105] A. Brandenburg and K. Subramanian. “Astrophysical magnetic fields
and nonlinear dynamo theory.” In: Phys. Rep. 417.1-4 (Oct. 2005), pp. 1–
209. doi: 10.1016/j .physrep.2005.06.005. arXiv: astro- ph/0405052
[astro-ph].

[106] A. Brandenburg et al. “Dynamo-generated Turbulence and Large-Scale
Magnetic Fields in a Keplerian Shear Flow.” In: Astrophys. J. 446 (June
1995), p. 741. doi: 10.1086/175831.

[107] M. Breschi et al. “Kilohertz gravitational waves from binary neutron
star remnants: Time-domain model and constraints on extreme matter.”
In: Phys. Rev. D 100.10, 104029 (Nov. 2019), p. 104029. doi: 10.1103/
PhysRevD.100.104029. arXiv: 1908.11418 [gr-qc].

[108] M. Breschi et al. “Kilohertz Gravitational Waves From Binary Neutron
Star Mergers: Numerical-relativity Informed Postmerger Model.” In: arXiv
e-prints, arXiv:2205.09112 (May 2022), arXiv:2205.09112. arXiv: 2205.
09112 [gr-qc].

[109] S. W. Bruenn and T. Dineva. “The Role of Doubly Diffusive Instabilities
in the Core-Collapse Supernova Mechanism.” In: Astrophys. J. Lett. 458
(Feb. 1996), p. L71. doi: 10.1086/309921.

[110] A. Buonanno and T. Damour. “Effective one-body approach to general
relativistic two-body dynamics.” In: Phys. Rev. D 59.8, 084006 (Apr. 1999),
p. 084006. doi: 10.1103/PhysRevD.59.084006. arXiv: gr-qc/9811091
[gr-qc].

[111] A. Buonanno and T. Damour. “Transition from inspiral to plunge in
binary black hole coalescences.” In: Phys. Rev. D 62.6, 064015 (Sept. 2000),
p. 064015. doi: 10.1103/PhysRevD.62.064015. arXiv: gr-qc/0001013
[gr-qc].

[112] E. M. Burbidge et al. “Synthesis of the Elements in Stars.” In: Reviews of
Modern Physics 29.4 (Jan. 1957), pp. 547–650. doi: 10.1103/RevModPhys.
29.547.

[113] A. Burrows and J. M. Lattimer. “The Birth of Neutron Stars.” In: Astro-
phys. J. 307 (Aug. 1986), p. 178. doi: 10.1086/164405.

[114] A. Burrows and D. Vartanyan. “Core-collapse supernova explosion the-
ory.” In: Nature 589.7840 (Jan. 2021), pp. 29–39. doi: 10.1038/s41586-
020-03059-w. arXiv: 2009.14157 [astro-ph.SR].

[115] A. Burrows and J. M. Lattimer. “Neutrinos from SN 1987A.” In: Astro-
phys. J. Lett. 318 (July 1987), p. L63. doi: 10.1086/184938.

https://doi.org/10.1051/0004-6361:20041282
https://arxiv.org/abs/astro-ph/0512182
https://doi.org/10.1051/0004-6361:20041981
https://arxiv.org/abs/astro-ph/0510287
https://doi.org/10.1088/1475-7516/2023/07/068
https://arxiv.org/abs/2303.15923
https://doi.org/10.1016/j.physrep.2005.06.005
https://arxiv.org/abs/astro-ph/0405052
https://arxiv.org/abs/astro-ph/0405052
https://doi.org/10.1086/175831
https://doi.org/10.1103/PhysRevD.100.104029
https://doi.org/10.1103/PhysRevD.100.104029
https://arxiv.org/abs/1908.11418
https://arxiv.org/abs/2205.09112
https://arxiv.org/abs/2205.09112
https://doi.org/10.1086/309921
https://doi.org/10.1103/PhysRevD.59.084006
https://arxiv.org/abs/gr-qc/9811091
https://arxiv.org/abs/gr-qc/9811091
https://doi.org/10.1103/PhysRevD.62.064015
https://arxiv.org/abs/gr-qc/0001013
https://arxiv.org/abs/gr-qc/0001013
https://doi.org/10.1103/RevModPhys.29.547
https://doi.org/10.1103/RevModPhys.29.547
https://doi.org/10.1086/164405
https://doi.org/10.1038/s41586-020-03059-w
https://doi.org/10.1038/s41586-020-03059-w
https://arxiv.org/abs/2009.14157
https://doi.org/10.1086/184938


256 Bibliography

[116] K. D. Camarda et al. “Dynamical Bar-Mode Instability in Differentially
Rotating Magnetized Neutron Stars.” In: Astrophys. J. 707.2 (Dec. 2009),
pp. 1610–1622. doi: 10.1088/0004-637X/707/2/1610. arXiv: 0911.0670
[astro-ph.SR].

[117] G. Camelio et al. “Rotating neutron stars with nonbarotropic thermal
profile.” In: Phys. Rev. D 100.12, 123001 (Dec. 2019), p. 123001. doi:
10.1103/PhysRevD.100.123001. arXiv: 1908.11258 [gr-qc].

[118] F. Carrasco, C. Palenzuela, and O. Reula. “Pulsar magnetospheres in
general relativity.” In: Phys. Rev. D 98.2, 023010 (July 2018), p. 023010.
doi: 10.1103/PhysRevD.98.023010. arXiv: 1805.04123 [astro-ph.HE].

[119] F. Carrasco, D. Viganò, and C. Palenzuela. “Gradient subgrid-scale
model for relativistic MHD large-eddy simulations.” In: Phys. Rev. D
101.6, 063003 (Mar. 2020), p. 063003. doi: 10.1103/PhysRevD.101.063003.
arXiv: 1908.01419 [astro-ph.HE].

[120] B. Carter. “Black hole equilibrium states.” In: Les Houches Summer
School of Theoretical Physics: Black Holes. Jan. 1973, pp. 57–214.

[121] M. Cassing and L. Rezzolla. “Realistic models of general-relativistic
differentially rotating stars.” In: arXiv e-prints, arXiv:2405.06609 (May
2024), arXiv:2405.06609. doi: 10.48550/arXiv.2405.06609. arXiv: 2405.
06609 [gr-qc].

[122] T. Celora et al. “Covariant approach to relativistic large-eddy simula-
tions: The fibration picture.” In: Phys. Rev. D 104.8, 084090 (Oct. 2021),
p. 084090. doi: 10 . 1103/PhysRevD.104 .084090. arXiv: 2107 .01083
[gr-qc].

[123] T. Celora et al. “Covariant approach to relativistic large-eddy simulations:
Lagrangian filtering.” In: arXiv e-prints, arXiv:2405.13593 (May 2024),
arXiv:2405.13593. doi: 10.48550/arXiv.2405.13593. arXiv: 2405.13593
[astro-ph.HE].

[124] J. M. Centrella et al. “Dynamical Rotational Instability at Low T/W.” In:
Astrophys. J. Lett. 550.2 (Apr. 2001), pp. L193–L196. doi: 10.1086/319634.
arXiv: astro-ph/0010574 [astro-ph].

[125] P. Cerdá-Durán, J. A. Font, and H. Dimmelmeier. “General relativis-
tic simulations of passive-magneto-rotational core collapse with micro-
physics.” In: Astron. Astrophys. 474.1 (Oct. 2007), pp. 169–191. doi:
10.1051/0004-6361:20077432. arXiv: astro-ph/0703597 [astro-ph].

[126] P. Cerdá-Durán et al. “A new general relativistic magnetohydrodynamics
code for dynamical spacetimes.” In: Astron. Astrophys. 492.3 (Dec. 2008),
pp. 937–953. doi: 10 .1051/0004 - 6361 :200810086. arXiv: 0804 .4572
[astro-ph].

[127] P. Cerdá-Durán, V. Quilis, and J. A. Font. “AMR simulations of the
low T/|W| bar-mode instability of neutron stars.” In: Computer Physics
Communications 177.3 (Aug. 2007), pp. 288–297. doi: 10.1016/j.cpc.2007.
04.001. arXiv: 0704.0356 [astro-ph].

[128] E. Chabanat et al. “A Skyrme parametrization from subnuclear to neutron
star densities Part II. Nuclei far from stabilities.” In: Nucl. Phys. A 635
(1998), p. 231. doi: 10.1016/S0375-9474(98)00180-8.

https://doi.org/10.1088/0004-637X/707/2/1610
https://arxiv.org/abs/0911.0670
https://arxiv.org/abs/0911.0670
https://doi.org/10.1103/PhysRevD.100.123001
https://arxiv.org/abs/1908.11258
https://doi.org/10.1103/PhysRevD.98.023010
https://arxiv.org/abs/1805.04123
https://doi.org/10.1103/PhysRevD.101.063003
https://arxiv.org/abs/1908.01419
https://doi.org/10.48550/arXiv.2405.06609
https://arxiv.org/abs/2405.06609
https://arxiv.org/abs/2405.06609
https://doi.org/10.1103/PhysRevD.104.084090
https://arxiv.org/abs/2107.01083
https://arxiv.org/abs/2107.01083
https://doi.org/10.48550/arXiv.2405.13593
https://arxiv.org/abs/2405.13593
https://arxiv.org/abs/2405.13593
https://doi.org/10.1086/319634
https://arxiv.org/abs/astro-ph/0010574
https://doi.org/10.1051/0004-6361:20077432
https://arxiv.org/abs/astro-ph/0703597
https://doi.org/10.1051/0004-6361:200810086
https://arxiv.org/abs/0804.4572
https://arxiv.org/abs/0804.4572
https://doi.org/10.1016/j.cpc.2007.04.001
https://doi.org/10.1016/j.cpc.2007.04.001
https://arxiv.org/abs/0704.0356
https://doi.org/10.1016/S0375-9474(98)00180-8


Bibliography 257

[129] C. Chan et al. “Black Hole Formation and Fallback during the Supernova
Explosion of a 40 M ⊙ Star.” In: Astrophys. J. Lett. 852.1, L19 (Jan.
2018), p. L19. doi: 10 . 3847/2041 - 8213/aaa28c. arXiv: 1710 . 00838
[astro-ph.SR].

[130] S. Chandrasekhar. “The Stability of Non-Dissipative Couette Flow in
Hydromagnetics.” In: Proceedings of the National Academy of Science
46.2 (Feb. 1960), pp. 253–257. doi: 10.1073/pnas.46.2.253.

[131] S. Chandrasekhar. “Solutions of Two Problems in the Theory of Gravita-
tional Radiation.” In: Phys. Rev. Lett. 24.11 (Mar. 1970), pp. 611–615.
doi: 10.1103/PhysRevLett.24.611.

[132] S. Chandrasekhar. Hydrodynamic and hydromagnetic stability. Interna-
tional series of monographs on physics. Clarendon Press, 1961.

[133] P. Charbonneau. Solar and Stellar Dynamos. Saas-Fee Advanced Course.
Jan. 2013. doi: 10.1007/978-3-642-32093-4.

[134] D. Chatterjee et al. “A Machine Learning Based Source Property Inference
for Compact Binary Mergers.” In: Astrophys. J. 896.1 (2020), p. 54. doi:
10.3847/1538-4357/ab8dbe. arXiv: 1911.00116 [astro-ph.IM].

[135] K. Chatziioannou, C.-J. Haster, and A. Zimmerman. “Measuring the
neutron star tidal deformability with equation-of-state-independent re-
lations and gravitational waves.” In: Phys. Rev. D 97.10, 104036 (May
2018), p. 104036. doi: 10.1103/PhysRevD.97.104036. arXiv: 1804.03221
[gr-qc].

[136] K. Chatziioannou et al. “Inferring the post-merger gravitational wave
emission from binary neutron star coalescences.” In: Phys. Rev. D 96 (12
Dec. 2017), p. 124035. doi: 10.1103/PhysRevD.96.124035.

[137] S. S. Chaudhary et al. “Low-latency gravitational wave alert products
and their performance at the time of the fourth LIGO-Virgo-KAGRA
observing run.” In: Proceedings of the National Academy of Sciences
121.18 (2024), e2316474121. doi: 10 . 1073 / pnas . 2316474121. eprint:
https : / / www . pnas . org / doi / pdf / 10 . 1073 / pnas . 2316474121. url:
https://www.pnas.org/doi/abs/10.1073/pnas.2316474121.

[138] K. S. Cheng and Z. G. Dai. “Conversion of Neutron Stars to Strange
Stars as a Possible Origin of γ-Ray Bursts.” In: Phys. Rev. Lett. 77.7
(Aug. 1996), pp. 1210–1213. doi: 10.1103/PhysRevLett.77.1210. arXiv:
astro-ph/9510073 [astro-ph].

[139] A. Chodos et al. “New extended model of hadrons.” In: Phys. Rev. D
9.12 (June 1974), pp. 3471–3495. doi: 10.1103/PhysRevD.9.3471.

[140] Q. Chu et al. “SPIIR online coherent pipeline to search for gravitational
waves from compact binary coalescences.” In: Phys. Rev. D 105.2 (2022),
p. 024023. doi: 10 . 1103/PhysRevD.105 . 024023. arXiv: 2011 . 06787
[gr-qc].

[141] R. Ciolfi. “Short gamma-ray burst central engines.” In: Int. J. Mod. Phys.
D 27.13 (2018), p. 1842004. doi: 10.1142/S021827181842004X. arXiv:
1804.03684 [astro-ph.HE].

[142] R. Ciolfi. “Collimated outflows from long-lived binary neutron star merger
remnants.” In: MNRAS 495.1 (June 2020), pp. L66–L70. doi: 10.1093/
mnrasl/slaa062. arXiv: 2001.10241 [astro-ph.HE].

https://doi.org/10.3847/2041-8213/aaa28c
https://arxiv.org/abs/1710.00838
https://arxiv.org/abs/1710.00838
https://doi.org/10.1073/pnas.46.2.253
https://doi.org/10.1103/PhysRevLett.24.611
https://doi.org/10.1007/978-3-642-32093-4
https://doi.org/10.3847/1538-4357/ab8dbe
https://arxiv.org/abs/1911.00116
https://doi.org/10.1103/PhysRevD.97.104036
https://arxiv.org/abs/1804.03221
https://arxiv.org/abs/1804.03221
https://doi.org/10.1103/PhysRevD.96.124035
https://doi.org/10.1073/pnas.2316474121
https://www.pnas.org/doi/pdf/10.1073/pnas.2316474121
https://www.pnas.org/doi/abs/10.1073/pnas.2316474121
https://doi.org/10.1103/PhysRevLett.77.1210
https://arxiv.org/abs/astro-ph/9510073
https://doi.org/10.1103/PhysRevD.9.3471
https://doi.org/10.1103/PhysRevD.105.024023
https://arxiv.org/abs/2011.06787
https://arxiv.org/abs/2011.06787
https://doi.org/10.1142/S021827181842004X
https://arxiv.org/abs/1804.03684
https://doi.org/10.1093/mnrasl/slaa062
https://doi.org/10.1093/mnrasl/slaa062
https://arxiv.org/abs/2001.10241


258 Bibliography

[143] R. Ciolfi. “The key role of magnetic fields in binary neutron star mergers.”
In: General Relativity and Gravitation 52.6, 59 (June 2020), p. 59. doi:
10.1007/s10714-020-02714-x. arXiv: 2003.07572 [astro-ph.HE].

[144] R. Ciolfi et al. “First 100 ms of a long-lived magnetized neutron star
formed in a binary neutron star merger.” In: Phys. Rev. D 100.2, 023005
(July 2019), p. 023005. doi: 10 .1103/PhysRevD.100 .023005. arXiv:
1904.10222 [astro-ph.HE].

[145] J. A. Clark et al. “Observing gravitational waves from the post-merger
phase of binary neutron star coalescence.” In: Class. Quantum Grav. 33.8,
085003 (Apr. 2016), p. 085003. doi: 10.1088/0264-9381/33/8/085003.
arXiv: 1509.08522 [astro-ph.HE].

[146] P. Colella and P. R. Woodward. “The Piecewise Parabolic Method (PPM)
for Gas-Dynamical Simulations.” In: Journal of Computational Physics
54 (1984), pp. 174–201.

[147] L. Combi and D. M. Siegel. “Jets from Neutron-Star Merger Remnants and
Massive Blue Kilonovae.” In: Phys. Rev. Lett. 131.23, 231402 (Dec. 2023),
p. 231402. doi: 10.1103/PhysRevLett.131.231402. arXiv: 2303.12284
[astro-ph.HE].

[148] C. Constantinou et al. “Thermal properties of hot and dense matter with
finite range interactions.” In: Phys. Rev. C 92.2 (2015), p. 025801. doi:
10.1103/PhysRevC.92.025801. arXiv: 1504.03982 [astro-ph.SR].

[149] I. Contopoulos, C. Kalapotharakos, and D. Kazanas. “A New Standard
Pulsar Magnetosphere.” In: Astrophys. J. 781.1, 46 (Jan. 2014), p. 46.
doi: 10.1088/0004-637X/781/1/46. arXiv: 1310.4931 [astro-ph.HE].

[150] I. Contopoulos, D. Kazanas, and C. Fendt. “The Axisymmetric Pulsar
Magnetosphere.” In: Astrophys. J. 511.1 (Jan. 1999), pp. 351–358. doi:
10.1086/306652. arXiv: astro-ph/9903049 [astro-ph].

[151] J. W. Cooley and J. W. Tukey. “An algorithm for the machine calculation
of complex Fourier series.” In: Mathematics of Computation 19 (1965),
pp. 297–301.

[152] N. J. Cornish and T. B. Littenberg. “Bayeswave: Bayesian inference
for gravitational wave bursts and instrument glitches.” In: Class. Quan-
tum Grav. 32.13, 135012 (July 2015), p. 135012. doi: 10.1088/0264-
9381/32/13/135012. arXiv: 1410.3835 [gr-qc].

[153] G. Corvino et al. “On the shear instability in relativistic neutron stars.”
In: Class. Quantum Grav. 27.11, 114104 (June 2010), p. 114104. doi:
10.1088/0264-9381/27/11/114104. arXiv: 1001.5281 [gr-qc].

[154] D. A. Coulter et al. “Swope Supernova Survey 2017a (SSS17a), the Optical
Counterpart to a Gravitational Wave Source.” In: Science 358 (2017),
p. 1556. doi: 10.1126/science.aap9811. arXiv: 1710.05452 [astro-ph.HE].

[155] T. Cover and P. Hart. “Nearest neighbor pattern classification.” In: IEEE
Transactions on Information Theory 13.1 (1967), pp. 21–27. doi: 10.1109/
TIT.1967.1053964.

https://doi.org/10.1007/s10714-020-02714-x
https://arxiv.org/abs/2003.07572
https://doi.org/10.1103/PhysRevD.100.023005
https://arxiv.org/abs/1904.10222
https://doi.org/10.1088/0264-9381/33/8/085003
https://arxiv.org/abs/1509.08522
https://doi.org/10.1103/PhysRevLett.131.231402
https://arxiv.org/abs/2303.12284
https://arxiv.org/abs/2303.12284
https://doi.org/10.1103/PhysRevC.92.025801
https://arxiv.org/abs/1504.03982
https://doi.org/10.1088/0004-637X/781/1/46
https://arxiv.org/abs/1310.4931
https://doi.org/10.1086/306652
https://arxiv.org/abs/astro-ph/9903049
https://doi.org/10.1088/0264-9381/32/13/135012
https://doi.org/10.1088/0264-9381/32/13/135012
https://arxiv.org/abs/1410.3835
https://doi.org/10.1088/0264-9381/27/11/114104
https://arxiv.org/abs/1001.5281
https://doi.org/10.1126/science.aap9811
https://arxiv.org/abs/1710.05452
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964


Bibliography 259

[156] P. S. Cowperthwaite et al. “The Electromagnetic Counterpart of the
Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical,
and Near-infrared Light Curves and Comparison to Kilonova Models.”
In: Astrophys. J. Lett. 848.2, L17 (Oct. 2017), p. L17. doi: 10.3847/2041-
8213/aa8fc7. arXiv: 1710.05840 [astro-ph.HE].

[157] E. Cuoco et al. “Enhancing gravitational-wave science with machine
learning.” In: Machine Learning: Science and Technology 2.1, 011002 (Jan.
2021), p. 011002. doi: 10.1088/2632-2153/abb93a. arXiv: 2005.03745
[astro-ph.HE].

[158] S. Curtis et al. “Nucleosynthesis in Outflows from Black Hole-Neutron Star
Merger Disks with Full GR(ν)RMHD.” In: Astrophys. J. Lett. 945.1, L13
(Mar. 2023), p. L13. doi: 10.3847/2041-8213/acba16. arXiv: 2212.10691
[astro-ph.HE].

[159] T. Dal Canton et al. “Real-time Search for Compact Binary Mergers in
Advanced LIGO and Virgo’s Third Observing Run Using PyCBC Live.”
In: Astrophys. J. 923.2 (2021), p. 254. doi: 10.3847/1538-4357/ac2f9a.
arXiv: 2008.07494 [astro-ph.HE].

[160] T. Damour. “Coalescence of two spinning black holes: An effective one-
body approach.” In: Phys. Rev. D 64.12 (Dec. 2001), p. 124013. doi:
10.1103/PhysRevD.64.124013. arXiv: gr-qc/0103018 [gr-qc].

[161] T. Damour, B. R. Iyer, and A. Nagar. “Improved resummation of post-
Newtonian multipolar waveforms from circularized compact binaries.”
In: Phys. Rev. D 79.6, 064004 (Mar. 2009), p. 064004. doi: 10.1103/
PhysRevD.79.064004. arXiv: 0811.2069 [gr-qc].

[162] T. Damour, P. Jaranowski, and G. Schäfer. “Nonlocal-in-time action for
the fourth post-Newtonian conservative dynamics of two-body systems.”
In: Phys. Rev. D 89.6, 064058 (Mar. 2014), p. 064058. doi: 10.1103/
PhysRevD.89.064058. arXiv: 1401.4548 [gr-qc].

[163] T. Damour and A. Nagar. “Improved analytical description of inspiralling
and coalescing black-hole binaries.” In: Phys. Rev. D 79.8, 081503 (Apr.
2009), p. 081503. doi: 10.1103/PhysRevD.79.081503. arXiv: 0902.0136
[gr-qc].

[164] T. Damour and A. Nagar. “Effective one body description of tidal effects
in inspiralling compact binaries.” In: Phys. Rev. D 81.8, 084016 (Apr.
2010), p. 084016. doi: 10.1103/PhysRevD.81.084016. arXiv: 0911.5041
[gr-qc].

[165] T. Damour and A. Nagar. “New effective-one-body description of coalesc-
ing nonprecessing spinning black-hole binaries.” In: Phys. Rev. D 90.4,
044018 (Aug. 2014), p. 044018. doi: 10.1103/PhysRevD.90.044018. arXiv:
1406.6913 [gr-qc].

[166] T. Damour et al. “Accurate effective-one-body waveforms of inspiralling
and coalescing black-hole binaries.” In: Phys. Rev. D 78.4, 044039 (Aug.
2008), p. 044039. doi: 10.1103/PhysRevD.78.044039. arXiv: 0803.3162
[gr-qc].

https://doi.org/10.3847/2041-8213/aa8fc7
https://doi.org/10.3847/2041-8213/aa8fc7
https://arxiv.org/abs/1710.05840
https://doi.org/10.1088/2632-2153/abb93a
https://arxiv.org/abs/2005.03745
https://arxiv.org/abs/2005.03745
https://doi.org/10.3847/2041-8213/acba16
https://arxiv.org/abs/2212.10691
https://arxiv.org/abs/2212.10691
https://doi.org/10.3847/1538-4357/ac2f9a
https://arxiv.org/abs/2008.07494
https://doi.org/10.1103/PhysRevD.64.124013
https://arxiv.org/abs/gr-qc/0103018
https://doi.org/10.1103/PhysRevD.79.064004
https://doi.org/10.1103/PhysRevD.79.064004
https://arxiv.org/abs/0811.2069
https://doi.org/10.1103/PhysRevD.89.064058
https://doi.org/10.1103/PhysRevD.89.064058
https://arxiv.org/abs/1401.4548
https://doi.org/10.1103/PhysRevD.79.081503
https://arxiv.org/abs/0902.0136
https://arxiv.org/abs/0902.0136
https://doi.org/10.1103/PhysRevD.81.084016
https://arxiv.org/abs/0911.5041
https://arxiv.org/abs/0911.5041
https://doi.org/10.1103/PhysRevD.90.044018
https://arxiv.org/abs/1406.6913
https://doi.org/10.1103/PhysRevD.78.044039
https://arxiv.org/abs/0803.3162
https://arxiv.org/abs/0803.3162


260 Bibliography

[167] S. De et al. “Tidal Deformabilities and Radii of Neutron Stars from the
Observation of GW170817.” In: Phys. Rev. Lett. 121.9, 091102 (Aug. 2018),
p. 091102. doi: 10.1103/PhysRevLett.121.091102. arXiv: 1804.08583
[astro-ph.HE].

[168] R. De Pietri et al. “Neutron star instabilities in full general relativity
using a Γ =2.75 ideal fluid.” In: Phys. Rev. D 90.2, 024034 (July 2014),
p. 024034. doi: 10.1103/PhysRevD.90.024034. arXiv: 1403.8066 [gr-qc].

[169] R. De Pietri et al. “Modeling equal and unequal mass binary neutron
star mergers using public codes.” In: Phys. Rev. D 93.6, 064047 (Mar.
2016), p. 064047. doi: 10.1103/PhysRevD.93.064047. arXiv: 1509.08804
[gr-qc].

[170] R. De Pietri et al. “Convective Excitation of Inertial Modes in Binary
Neutron Star Mergers.” In: Phys. Rev. Lett. 120.22, 221101 (June 2018),
p. 221101. doi: 10.1103/PhysRevLett.120.221101. arXiv: 1802.03288
[gr-qc].

[171] R. De Pietri et al. “Merger of Compact Stars in the Two-families Scenario.”
In: Astrophys. J. 881.2, 122 (Aug. 2019), p. 122. doi: 10.3847/1538-
4357/ab2fd0. arXiv: 1904.01545 [astro-ph.HE].

[172] R. De Pietri et al. “Numerical-relativity simulations of long-lived remnants
of binary neutron star mergers.” In: Phys. Rev. D 101.6, 064052 (Mar.
2020), p. 064052. doi: 10.1103/PhysRevD.101.064052. arXiv: 1910.04036
[gr-qc].

[173] P. B. Demorest et al. “A two-solar-mass neutron star measured using
Shapiro delay.” In: Nature 467.7319 (Oct. 2010), pp. 1081–1083. doi:
10.1038/nature09466. arXiv: 1010.5788 [astro-ph.HE].

[174] F. Di Giovanni et al. “Can fermion-boson stars reconcile multimessenger
observations of compact stars?” In: Phys. Rev. D 105.6, 063005 (Mar.
2022), p. 063005. doi: 10.1103/PhysRevD.105.063005. arXiv: 2110.11997
[gr-qc].

[175] T. Dietrich, S. Bernuzzi, and W. Tichy. “Closed-form tidal approximants
for binary neutron star gravitational waveforms constructed from high-
resolution numerical relativity simulations.” In: Phys. Rev. D 96.12, 121501
(Dec. 2017), p. 121501. doi: 10 . 1103 / PhysRevD . 96 . 121501. arXiv:
1706.02969 [gr-qc].

[176] T. Dietrich, T. Hinderer, and A. Samajdar. “Interpreting binary neutron
star mergers: describing the binary neutron star dynamics, modelling
gravitational waveforms, and analyzing detections.” In: General Relativity
and Gravitation 53.3, 27 (Mar. 2021), p. 27. doi: 10.1007/s10714-020-
02751-6. arXiv: 2004.02527 [gr-qc].

[177] T. Dietrich et al. “Gravitational waves and mass ejecta from binary
neutron star mergers: Effect of the mass ratio.” In: Phys. Rev. D 95.2,
024029 (Jan. 2017), p. 024029. doi: 10.1103/PhysRevD.95.024029. arXiv:
1607.06636 [gr-qc].

[178] T. Dietrich et al. “CoRe database of binary neutron star merger wave-
forms.” In: Class. Quantum Grav. 35.24, 24LT01 (Dec. 2018), 24LT01.
doi: 10.1088/1361-6382/aaebc0. arXiv: 1806.01625 [gr-qc].

https://doi.org/10.1103/PhysRevLett.121.091102
https://arxiv.org/abs/1804.08583
https://arxiv.org/abs/1804.08583
https://doi.org/10.1103/PhysRevD.90.024034
https://arxiv.org/abs/1403.8066
https://doi.org/10.1103/PhysRevD.93.064047
https://arxiv.org/abs/1509.08804
https://arxiv.org/abs/1509.08804
https://doi.org/10.1103/PhysRevLett.120.221101
https://arxiv.org/abs/1802.03288
https://arxiv.org/abs/1802.03288
https://doi.org/10.3847/1538-4357/ab2fd0
https://doi.org/10.3847/1538-4357/ab2fd0
https://arxiv.org/abs/1904.01545
https://doi.org/10.1103/PhysRevD.101.064052
https://arxiv.org/abs/1910.04036
https://arxiv.org/abs/1910.04036
https://doi.org/10.1038/nature09466
https://arxiv.org/abs/1010.5788
https://doi.org/10.1103/PhysRevD.105.063005
https://arxiv.org/abs/2110.11997
https://arxiv.org/abs/2110.11997
https://doi.org/10.1103/PhysRevD.96.121501
https://arxiv.org/abs/1706.02969
https://doi.org/10.1007/s10714-020-02751-6
https://doi.org/10.1007/s10714-020-02751-6
https://arxiv.org/abs/2004.02527
https://doi.org/10.1103/PhysRevD.95.024029
https://arxiv.org/abs/1607.06636
https://doi.org/10.1088/1361-6382/aaebc0
https://arxiv.org/abs/1806.01625


Bibliography 261

[179] T. Dietrich et al. “Improving the NRTidal model for binary neutron star
systems.” In: Phys. Rev. D 100.4, 044003 (Aug. 2019), p. 044003. doi:
10.1103/PhysRevD.100.044003. arXiv: 1905.06011 [gr-qc].

[180] T. Dietrich et al. “Multimessenger constraints on the neutron-star equa-
tion of state and the Hubble constant.” In: Science 370.6523 (2020),
pp. 1450–1453. doi: 10.1126/science.abb4317. arXiv: 2002.11355.

[181] H. Dimmelmeier. “General relativistic collapse of rotating stellar cores in
axisymmetry.” PhD thesis. Munich University of Technology, Germany,
Jan. 2001.

[182] H. Dimmelmeier, J. A. Font, and E. Muller. “Relativistic simulations
of rotational core collapse. 1. Methods, initial models, and code tests.”
In: Astron. Astrophys. 388 (2002), pp. 917–935. doi: 10.1051/0004-6361:
20020563. arXiv: astro-ph/0204288.

[183] H. Dimmelmeier, N. Stergioulas, and J. A. Font. “Non-linear axisym-
metric pulsations of rotating relativistic stars in the conformal flatness
approximation.” In: MNRAS 368.4 (June 2006), pp. 1609–1630. doi:
10.1111/j.1365-2966.2006.10274.x. arXiv: astro-ph/0511394 [astro-ph].

[184] K. Dionysopoulou, D. Alic, and L. Rezzolla. “General-relativistic resistive-
magnetohydrodynamic simulations of binary neutron stars.” In: Phys. Rev. D
92.8, 084064 (Oct. 2015), p. 084064. doi: 10.1103/PhysRevD.92.084064.
arXiv: 1502.02021 [gr-qc].

[185] K. Dionysopoulou et al. “General-relativistic resistive magnetohydrody-
namics in three dimensions: Formulation and tests.” In: Phys. Rev. D
88.4, 044020 (Aug. 2013), p. 044020. doi: 10.1103/PhysRevD.88.044020.
arXiv: 1208.3487 [gr-qc].

[186] M. D. Duez and Y. Zlochower. “Numerical relativity of compact binaries
in the 21st century.” In: Reports on Progress in Physics 82.1, 016902 (Jan.
2019), p. 016902. doi: 10.1088/1361-6633/aadb16. arXiv: 1808.06011
[gr-qc].

[187] M. D. Duez et al. “General relativistic hydrodynamics with viscosity:
Contraction, catastrophic collapse, and disk formation in hypermassive
neutron stars.” In: Phys. Rev. D 69.10, 104030 (May 2004), p. 104030. doi:
10.1103/PhysRevD.69.104030. arXiv: astro-ph/0402502 [astro-ph].

[188] M. D. Duez et al. “Comparison of momentum transport models for numer-
ical relativity.” In: Phys. Rev. D 102.10, 104050 (Nov. 2020), p. 104050.
doi: 10.1103/PhysRevD.102.104050. arXiv: 2008.05019 [gr-qc].

[189] W. E. East and F. Pretorius. “Dynamical Capture Binary Neutron Star
Mergers.” In: Astrophys. J. Lett. 760.1, L4 (Nov. 2012), p. L4. doi:
10.1088/2041-8205/760/1/L4. arXiv: 1208.5279 [astro-ph.HE].

[190] W. E. East et al. “Relativistic simulations of eccentric binary neutron
star mergers: One-arm spiral instability and effects of neutron star spin.”
In: Phys. Rev. D 93.2, 024011 (Jan. 2016), p. 024011. doi: 10.1103/
PhysRevD.93.024011. arXiv: 1511.01093 [astro-ph.HE].

[191] P. J. Easter et al. “Computing fast and reliable gravitational waveforms
of binary neutron star merger remnants.” In: Phys. Rev. D 100.4, 043005
(Aug. 2019), p. 043005. doi: 10 .1103/PhysRevD.100.043005. arXiv:
1811.11183 [gr-qc].

https://doi.org/10.1103/PhysRevD.100.044003
https://arxiv.org/abs/1905.06011
https://doi.org/10.1126/science.abb4317
https://arxiv.org/abs/2002.11355
https://doi.org/10.1051/0004-6361:20020563
https://doi.org/10.1051/0004-6361:20020563
https://arxiv.org/abs/astro-ph/0204288
https://doi.org/10.1111/j.1365-2966.2006.10274.x
https://arxiv.org/abs/astro-ph/0511394
https://doi.org/10.1103/PhysRevD.92.084064
https://arxiv.org/abs/1502.02021
https://doi.org/10.1103/PhysRevD.88.044020
https://arxiv.org/abs/1208.3487
https://doi.org/10.1088/1361-6633/aadb16
https://arxiv.org/abs/1808.06011
https://arxiv.org/abs/1808.06011
https://doi.org/10.1103/PhysRevD.69.104030
https://arxiv.org/abs/astro-ph/0402502
https://doi.org/10.1103/PhysRevD.102.104050
https://arxiv.org/abs/2008.05019
https://doi.org/10.1088/2041-8205/760/1/L4
https://arxiv.org/abs/1208.5279
https://doi.org/10.1103/PhysRevD.93.024011
https://doi.org/10.1103/PhysRevD.93.024011
https://arxiv.org/abs/1511.01093
https://doi.org/10.1103/PhysRevD.100.043005
https://arxiv.org/abs/1811.11183


262 Bibliography

[192] D. Eichler et al. “Nucleosynthesis, neutrino bursts and γ-rays from coa-
lescing neutron stars.” In: Nature 340.6229 (July 1989), pp. 126–128. doi:
10.1038/340126a0.

[193] B. Einfeldt. “On Godunov-Type Methods for Gas Dynamics.” In: SIAM
Journal on Numerical Analysis 25.2 (1988), pp. 294–318. doi: 10.1137/
0725021. eprint: https://doi.org/10.1137/0725021. url: https://doi.org/
10.1137/0725021.

[194] P. Ekman et al. “Importance of Sub-Grid Scale Modeling for Accurate
Aerodynamic Simulations.” In: Journal of Fluids Engineering 143 (Sept.
2020). doi: 10.1115/1.4048351.

[195] Y. Eriguchi and E. Mueller. “A general computational method for obtain-
ing equilibria of self-gravitating and rotating gases.” In: Astron. Astrophys.
146.2 (May 1985), pp. 260–268.

[196] P. L. Espino and V. Paschalidis. “Revisiting the maximum mass of
differentially rotating neutron stars in general relativity with realistic
equations of state.” In: Phys. Rev. D 99.8, 083017 (Apr. 2019), p. 083017.
doi: 10.1103/PhysRevD.99.083017. arXiv: 1901.05479 [astro-ph.HE].

[197] P. L. Espino, G. Bozzola, and V. Paschalidis. “Quantifying uncertainties in
general relativistic magnetohydrodynamic codes.” In: (Oct. 2022). arXiv:
2210.13481 [gr-qc].

[198] Z. B. Etienne et al. “IllinoisGRMHD: An Open-Source, User-Friendly
GRMHD Code for Dynamical Spacetimes.” In: Class. Quant. Grav. 32
(2015), p. 175009. doi: 10 . 1088 / 0264 - 9381 / 32 / 17 / 175009. arXiv:
1501.07276 [astro-ph.HE].

[199] M. Evans et al. “A Horizon Study for Cosmic Explorer: Science, Observa-
tories, and Community.” In: arXiv e-prints, arXiv:2109.09882 (Sept. 2021),
arXiv:2109.09882. doi: 10.48550/arXiv.2109.09882. arXiv: 2109.09882
[astro-ph.IM].

[200] Event Horizon Telescope Collaboration et al. “First M87 Event Horizon
Telescope Results. V. Physical Origin of the Asymmetric Ring.” In: Astro-
phys. J. Lett. 875.1, L5 (Apr. 2019), p. L5. doi: 10.3847/2041-8213/ab0f43.
arXiv: 1906.11242 [astro-ph.GA].

[201] Event Horizon Telescope Collaboration et al. “First Sagittarius A* Event
Horizon Telescope Results. VIII. Physical Interpretation of the Polarized
Ring.” In: Astrophys. J. Lett. 964.2, L26 (Apr. 2024), p. L26. doi: 10.
3847/2041-8213/ad2df1.

[202] J. A. Faber and F. A. Rasio. “Binary Neutron Star Mergers.” In: Living
Reviews in Relativity 15.1, 8 (Dec. 2012), p. 8. doi: 10.12942/lrr-2012-8.
arXiv: 1204.3858 [gr-qc].

[203] M. Falanga et al. “Ephemeris, orbital decay, and masses of ten eclips-
ing high-mass X-ray binaries.” In: Astron. Astrophys. 577, A130 (May
2015), A130. doi: 10.1051/0004-6361/201425191. arXiv: 1502.07126
[astro-ph.HE].

[204] H. Falcke and L. Rezzolla. “Fast radio bursts: the last sign of supramassive
neutron stars.” In: Astron. Astrophys. 562, A137 (Feb. 2014), A137. doi:
10.1051/0004-6361/201321996. arXiv: 1307.1409 [astro-ph.HE].

https://doi.org/10.1038/340126a0
https://doi.org/10.1137/0725021
https://doi.org/10.1137/0725021
https://doi.org/10.1137/0725021
https://doi.org/10.1137/0725021
https://doi.org/10.1137/0725021
https://doi.org/10.1115/1.4048351
https://doi.org/10.1103/PhysRevD.99.083017
https://arxiv.org/abs/1901.05479
https://arxiv.org/abs/2210.13481
https://doi.org/10.1088/0264-9381/32/17/175009
https://arxiv.org/abs/1501.07276
https://doi.org/10.48550/arXiv.2109.09882
https://arxiv.org/abs/2109.09882
https://arxiv.org/abs/2109.09882
https://doi.org/10.3847/2041-8213/ab0f43
https://arxiv.org/abs/1906.11242
https://doi.org/10.3847/2041-8213/ad2df1
https://doi.org/10.3847/2041-8213/ad2df1
https://doi.org/10.12942/lrr-2012-8
https://arxiv.org/abs/1204.3858
https://doi.org/10.1051/0004-6361/201425191
https://arxiv.org/abs/1502.07126
https://arxiv.org/abs/1502.07126
https://doi.org/10.1051/0004-6361/201321996
https://arxiv.org/abs/1307.1409


Bibliography 263

[205] A. M. Farah et al. “Bridging the Gap: Categorizing Gravitational-wave
Events at the Transition between Neutron Stars and Black Holes.” In:
Astrophys. J. 931.2 (2022), p. 108. doi: 10.3847/1538-4357/ac5f03. arXiv:
2111.03498 [astro-ph.HE].

[206] R. Fernández, F. Foucart, and J. Lippuner. “The landscape of disc
outflows from black hole-neutron star mergers.” In: MNRAS 497.3 (Sept.
2020), pp. 3221–3233. doi: 10.1093/mnras/staa2209. arXiv: 2005.14208
[astro-ph.HE].

[207] R. Fernández and B. D. Metzger. “Delayed outflows from black hole
accretion tori following neutron star binary coalescence.” In: MNRAS
435.1 (Oct. 2013), pp. 502–517. doi: 10.1093/mnras/stt1312. arXiv:
1304.6720 [astro-ph.HE].

[208] R. Fernández and B. D. Metzger. “Electromagnetic Signatures of Neutron
Star Mergers in the Advanced LIGO Era.” In: Annual Review of Nuclear
and Particle Science 66.1 (Oct. 2016), pp. 23–45. doi: 10.1146/annurev-
nucl-102115-044819. arXiv: 1512.05435 [astro-ph.HE].

[209] R. Fernández et al. “Long-term GRMHD simulations of neutron star
merger accretion discs: implications for electromagnetic counterparts.” In:
MNRAS 482.3 (Jan. 2019), pp. 3373–3393. doi: 10.1093/mnras/sty2932.
arXiv: 1808.00461 [astro-ph.HE].

[210] A. L. Fetter and J. D. Walecka. Quantum Theory of Many-particle
Systems. Dover Books on Physics. Dover Publications, 2003.

[211] S. E. Field et al. “Fast Prediction and Evaluation of Gravitational Wave-
forms Using Surrogate Models.” In: Physical Review X 4.3, 031006 (July
2014), p. 031006. doi: 10.1103/PhysRevX.4.031006. arXiv: 1308.3565
[gr-qc].

[212] J. Fields et al. “Thermal Effects in Binary Neutron Star Mergers.” In:
Astrophys. J. Lett. 952.2, L36 (Aug. 2023), p. L36. doi: 10.3847/2041-
8213/ace5b2. arXiv: 2302.11359 [astro-ph.HE].

[213] A. Figura et al. “Binary neutron star merger simulations with hot micro-
scopic equations of state.” In: Phys. Rev. D 103.8 (2021), p. 083012. doi:
10.1103/PhysRevD.103.083012. arXiv: 2103.02365 [gr-qc].

[214] E. Fix and J. L. Hodges. “Discriminatory Analysis. Nonparametric Dis-
crimination: Consistency Properties.” In: International Statistical Review
/ Revue Internationale de Statistique 57.3 (1989), pp. 238–247. issn:
03067734, 17515823. url: http://www.jstor.org/stable/1403797 (visited
on 03/01/2023).

[215] T. P. Fleming, J. M. Stone, and J. F. Hawley. “The Effect of Resistivity
on the Nonlinear Stage of the Magnetorotational Instability in Accretion
Disks.” In: Astrophys. J. 530.1 (Feb. 2000), pp. 464–477. doi: 10.1086/
308338. arXiv: astro-ph/0001164 [astro-ph].

[216] S. Foffa et al. “Effective field theory approach to the gravitational two-
body dynamics at fourth post-Newtonian order and quintic in the Newton
constant.” In: Phys. Rev. D 95.10, 104009 (May 2017), p. 104009. doi:
10.1103/PhysRevD.95.104009. arXiv: 1612.00482 [gr-qc].

https://doi.org/10.3847/1538-4357/ac5f03
https://arxiv.org/abs/2111.03498
https://doi.org/10.1093/mnras/staa2209
https://arxiv.org/abs/2005.14208
https://arxiv.org/abs/2005.14208
https://doi.org/10.1093/mnras/stt1312
https://arxiv.org/abs/1304.6720
https://doi.org/10.1146/annurev-nucl-102115-044819
https://doi.org/10.1146/annurev-nucl-102115-044819
https://arxiv.org/abs/1512.05435
https://doi.org/10.1093/mnras/sty2932
https://arxiv.org/abs/1808.00461
https://doi.org/10.1103/PhysRevX.4.031006
https://arxiv.org/abs/1308.3565
https://arxiv.org/abs/1308.3565
https://doi.org/10.3847/2041-8213/ace5b2
https://doi.org/10.3847/2041-8213/ace5b2
https://arxiv.org/abs/2302.11359
https://doi.org/10.1103/PhysRevD.103.083012
https://arxiv.org/abs/2103.02365
http://www.jstor.org/stable/1403797
https://doi.org/10.1086/308338
https://doi.org/10.1086/308338
https://arxiv.org/abs/astro-ph/0001164
https://doi.org/10.1103/PhysRevD.95.104009
https://arxiv.org/abs/1612.00482


264 Bibliography

[217] J. A. Font. “Numerical Hydrodynamics and Magnetohydrodynamics in
General Relativity.” In: Living Reviews in Relativity 11.1, 7 (Sept. 2008),
p. 7. doi: 10.12942/lrr-2008-7.

[218] J. A. Font et al. “Axisymmetric modes of rotating relativistic stars in
the Cowling approximation.” In: MNRAS 325.4 (Aug. 2001), pp. 1463–
1470. doi: 10.1046/j.1365-8711.2001.04555.x. arXiv: astro-ph/0012477
[astro-ph].

[219] J. A. Font et al. “Three-dimensional numerical general relativistic hy-
drodynamics. II. Long-term dynamics of single relativistic stars.” In:
Phys. Rev. D 65.8, 084024 (Apr. 2002), p. 084024. doi: 10.1103/PhysRevD.
65.084024. arXiv: gr-qc/0110047 [gr-qc].

[220] C. J. Fontes et al. “Relativistic opacities for astrophysical applications.”
In: High Energy Density Physics 16 (Sept. 2015), pp. 53–59. doi: 10.1016/
j.hedp.2015.06.002.

[221] M. Fortin et al. “Neutron star radii and crusts: Uncertainties and unified
equations of state.” In: Phys. Rev. C 94.3, 035804 (Sept. 2016), p. 035804.
doi: 10.1103/PhysRevC.94.035804. arXiv: 1604.01944 [astro-ph.SR].

[222] F. Foucart et al. “Dynamical ejecta from precessing neutron star-black
hole mergers with a hot, nuclear-theory based equation of state.” In:
Class. Quantum Grav. 34.4, 044002 (Feb. 2017), p. 044002. doi: 10.1088/
1361-6382/aa573b. arXiv: 1611.01159 [astro-ph.HE].

[223] F. Foucart. “Black Hole-Neutron Star Mergers: Disk Mass Predictions.”
In: Phys. Rev. D 86 (2012), p. 124007. doi: 10.1103/PhysRevD.86.124007.
arXiv: 1207.6304 [astro-ph.HE].

[224] F. Foucart, T. Hinderer, and S. Nissanke. “Remnant baryon mass in
neutron star-black hole mergers: Predictions for binary neutron star
mimickers and rapidly spinning black holes.” In: Phys. Rev. D 98.8
(2018), p. 081501. doi: 10.1103/PhysRevD.98.081501. arXiv: 1807.00011
[astro-ph.HE].

[225] F. Foucart et al. “Low mass binary neutron star mergers : gravitational
waves and neutrino emission.” In: Phys. Rev. D 93.4 (2016), p. 044019.
doi: 10.1103/PhysRevD.93.044019. arXiv: 1510.06398 [astro-ph.HE].

[226] F. Foucart et al. “Monte-Carlo neutrino transport in neutron star merger
simulations.” In: Astrophys. J. Lett. 902 (2020), p. L27. doi: 10.3847/2041-
8213/abbb87. arXiv: 2008.08089 [astro-ph.HE].

[227] F. Foucart et al. “General relativistic simulations of collapsing binary
neutron star mergers with Monte Carlo neutrino transport.” In: Phys.
Rev. D 107.10 (2023), p. 103055. doi: 10.1103/PhysRevD.107.103055.
arXiv: 2210.05670 [astro-ph.HE].

[228] L. Franci et al. “Dynamical bar-mode instability in rotating and mag-
netized relativistic stars.” In: Phys. Rev. D 88.10, 104028 (Nov. 2013),
p. 104028. doi: 10.1103/PhysRevD.88.104028. arXiv: 1308.3989 [gr-qc].

[229] C. Freiburghaus, S. Rosswog, and F. K. Thielemann. “R-Process in
Neutron Star Mergers.” In: Astrophys. J. Lett. 525.2 (Nov. 1999), pp. L121–
L124. doi: 10.1086/312343.

https://doi.org/10.12942/lrr-2008-7
https://doi.org/10.1046/j.1365-8711.2001.04555.x
https://arxiv.org/abs/astro-ph/0012477
https://arxiv.org/abs/astro-ph/0012477
https://doi.org/10.1103/PhysRevD.65.084024
https://doi.org/10.1103/PhysRevD.65.084024
https://arxiv.org/abs/gr-qc/0110047
https://doi.org/10.1016/j.hedp.2015.06.002
https://doi.org/10.1016/j.hedp.2015.06.002
https://doi.org/10.1103/PhysRevC.94.035804
https://arxiv.org/abs/1604.01944
https://doi.org/10.1088/1361-6382/aa573b
https://doi.org/10.1088/1361-6382/aa573b
https://arxiv.org/abs/1611.01159
https://doi.org/10.1103/PhysRevD.86.124007
https://arxiv.org/abs/1207.6304
https://doi.org/10.1103/PhysRevD.98.081501
https://arxiv.org/abs/1807.00011
https://arxiv.org/abs/1807.00011
https://doi.org/10.1103/PhysRevD.93.044019
https://arxiv.org/abs/1510.06398
https://doi.org/10.3847/2041-8213/abbb87
https://doi.org/10.3847/2041-8213/abbb87
https://arxiv.org/abs/2008.08089
https://doi.org/10.1103/PhysRevD.107.103055
https://arxiv.org/abs/2210.05670
https://doi.org/10.1103/PhysRevD.88.104028
https://arxiv.org/abs/1308.3989
https://doi.org/10.1086/312343


Bibliography 265

[230] J. Frieben and L. Rezzolla. “Equilibrium models of relativistic stars with
a toroidal magnetic field.” In: MNRAS 427.4 (Dec. 2012), pp. 3406–3426.
doi: 10.1111/j.1365-2966.2012.22027.x. arXiv: 1207.4035 [gr-qc].

[231] J. L. Friedman and B. F. Schutz. “Secular instability of rotating Newto-
nian stars.” In: Astrophys. J. 222 (May 1978), pp. 281–296. doi: 10.1086/
156143.

[232] U. Frisch. Turbulence. The legacy of A.N. Kolmogorov. Cambridge Uni-
versity Press, 1995. doi: 10.1017/CBO9781139170666.

[233] W. Fu and D. Lai. “Low-T/|W| instabilities in differentially rotating
protoneutron stars with magnetic fields.” In: MNRAS 413.3 (May 2011),
pp. 2207–2217. doi: 10.1111/j.1365-2966.2011.18296.x. arXiv: 1011.4887
[astro-ph.SR].

[234] S. Fujibayashi et al. “Mass ejection from disks surrounding a low-mass
black hole: Viscous neutrino-radiation hydrodynamics simulation in full
general relativity.” In: Phys. Rev. D 101.8, 083029 (Apr. 2020), p. 083029.
doi: 10.1103/PhysRevD.101.083029. arXiv: 2001.04467 [astro-ph.HE].

[235] T. Futamase and Y. Itoh. “The Post-Newtonian Approximation for
Relativistic Compact Binaries.” In: Living Reviews in Relativity 10.1,
2 (Mar. 2007), p. 2. doi: 10.12942/lrr-2007-2.

[236] H. Gabbard et al. “Matching Matched Filtering with Deep Networks
for Gravitational-Wave Astronomy.” In: Phys. Rev. Lett. 120.14, 141103
(Apr. 2018), p. 141103. doi: 10.1103/PhysRevLett.120.141103. arXiv:
1712.06041 [astro-ph.IM].

[237] H. Gabbard et al. “Bayesian parameter estimation using conditional
variational autoencoders for gravitational-wave astronomy.” In: Nature
Physics 18.1 (Jan. 2022), pp. 112–117. doi: 10.1038/s41567-021-01425-7.
arXiv: 1909.06296 [astro-ph.IM].

[238] E. Gaertig and K. D. Kokkotas. “Gravitational wave asteroseismology
with fast rotating neutron stars.” In: Phys. Rev. D 83.6, 064031 (Mar.
2011), p. 064031. doi: 10.1103/PhysRevD.83.064031. arXiv: 1005.5228
[astro-ph.SR].

[239] D. K. Galloway and N. Lampe. “On the Consistency of Neutron-star
Radius Measurements from Thermonuclear Bursts.” In: Astrophys. J.
747.1, 75 (Mar. 2012), p. 75. doi: 10.1088/0004-637X/747/1/75. arXiv:
1201.1680 [astro-ph.HE].

[240] T. A. Gardiner and J. M. Stone. “Energetics in MRI driven Turbulence.”
In: Magnetic Fields in the Universe: From Laboratory and Stars to Pri-
mordial Structures. Ed. by E. M. de Gouveia dal Pino, G. Lugones, and A.
Lazarian. Vol. 784. American Institute of Physics Conference Series. AIP,
Sept. 2005, pp. 475–488. doi: 10.1063/1.2077209. arXiv: astro-ph/0502519
[astro-ph].

[241] K. C. Gendreau et al. “The Neutron star Interior Composition ExploreR
(NICER): an Explorer mission of opportunity for soft x-ray timing spec-
troscopy.” In: Space Telescopes and Instrumentation 2012: Ultraviolet to
Gamma Ray. Ed. by T. Takahashi, S. S. Murray, and J.-W. A. den Herder.
Vol. 8443. Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series. Sept. 2012, 844313, p. 844313. doi: 10.1117/12.926396.

https://doi.org/10.1111/j.1365-2966.2012.22027.x
https://arxiv.org/abs/1207.4035
https://doi.org/10.1086/156143
https://doi.org/10.1086/156143
https://doi.org/10.1017/CBO9781139170666
https://doi.org/10.1111/j.1365-2966.2011.18296.x
https://arxiv.org/abs/1011.4887
https://arxiv.org/abs/1011.4887
https://doi.org/10.1103/PhysRevD.101.083029
https://arxiv.org/abs/2001.04467
https://doi.org/10.12942/lrr-2007-2
https://doi.org/10.1103/PhysRevLett.120.141103
https://arxiv.org/abs/1712.06041
https://doi.org/10.1038/s41567-021-01425-7
https://arxiv.org/abs/1909.06296
https://doi.org/10.1103/PhysRevD.83.064031
https://arxiv.org/abs/1005.5228
https://arxiv.org/abs/1005.5228
https://doi.org/10.1088/0004-637X/747/1/75
https://arxiv.org/abs/1201.1680
https://doi.org/10.1063/1.2077209
https://arxiv.org/abs/astro-ph/0502519
https://arxiv.org/abs/astro-ph/0502519
https://doi.org/10.1117/12.926396


266 Bibliography

[242] K. C. Gendreau et al. “The Neutron star Interior Composition Explorer
(NICER): design and development.” In: Space Telescopes and Instrumen-
tation 2016: Ultraviolet to Gamma Ray. Ed. by J.-W. A. den Herder, T.
Takahashi, and M. Bautz. Vol. 9905. Society of Photo-Optical Instrumen-
tation Engineers (SPIE) Conference Series. July 2016, 99051H, 99051H.
doi: 10.1117/12.2231304.

[243] D. George and E. A. Huerta. “Deep Learning for real-time gravitational
wave detection and parameter estimation: Results with Advanced LIGO
data.” In: Physics Letters B 778 (Mar. 2018), pp. 64–70. doi: 10.1016/j.
physletb.2017.12.053. arXiv: 1711.03121 [gr-qc].

[244] U. Geppert, M. Küker, and D. Page. “Temperature distribution in mag-
netized neutron star crusts.” In: Astron. Astrophys. 426 (Oct. 2004),
pp. 267–277. doi: 10.1051/0004-6361:20040455. arXiv: astro-ph/0403441
[astro-ph].

[245] S. Ghosh et al. “Rapid model comparison of equations of state from
gravitational wave observation of binary neutron star coalescences.” In:
Phys. Rev. D 104.8 (2021), p. 083003. doi: 10.1103/PhysRevD.104.083003.
arXiv: 2104.08681 [gr-qc].

[246] B. Giacomazzo, L. Rezzolla, and L. Baiotti. “Can magnetic fields be
detected during the inspiral of binary neutron stars?” In: MNRAS 399.1
(Oct. 2009), pp. L164–L168. doi: 10.1111/j.1745-3933.2009.00745.x.
arXiv: 0901.2722 [gr-qc].

[247] B. Giacomazzo, L. Rezzolla, and L. Baiotti. “Accurate evolutions of
inspiralling and magnetized neutron stars: Equal-mass binaries.” In:
Phys. Rev. D 83.4, 044014 (Feb. 2011), p. 044014. doi: 10.1103/PhysRevD.
83.044014. arXiv: 1009.2468 [gr-qc].

[248] B. Giacomazzo et al. “Producing Magnetar Magnetic Fields in the Merger
of Binary Neutron Stars.” In: Astrophys. J. 809.1, 39 (Aug. 2015), p. 39.
doi: 10.1088/0004-637X/809/1/39. arXiv: 1410.0013 [astro-ph.HE].

[249] H. Gieg et al. “Incorporating a Radiative Hydrodynamics Scheme in the
Numerical-Relativity Code BAM.” In: Universe 8.7 (2022), p. 370. doi:
10.3390/universe8070370. arXiv: 2206.01337 [gr-qc].

[250] J. Gil, G. I. Melikidze, and U. Geppert. “Drifting subpulses and inner
accelerationregions in radio pulsars.” In: Astron. Astrophys. 407 (Aug.
2003), pp. 315–324. doi: 10.1051/0004-6361:20030854. arXiv: astro-
ph/0305463 [astro-ph].

[251] N. K. Glendenning. “First-order phase transitions with more than one
conserved charge: Consequences for neutron stars.” In: Phys. Rev. D 46.4
(Aug. 1992), pp. 1274–1287. doi: 10.1103/PhysRevD.46.1274.

[252] N. K. Glendenning. Compact stars. Nuclear physics, particle physics, and
general relativity. Springer New York, NY, 1997.

[253] D. Gogichaishvili et al. “Active Modes and Dynamical Balances in MRI
Turbulence of Keplerian Disks with a Net Vertical Magnetic Field.”
In: Astrophys. J. 866.2, 134 (Oct. 2018), p. 134. doi: 10.3847/1538-
4357/aadbad. arXiv: 1808.06147 [astro-ph.SR].

https://doi.org/10.1117/12.2231304
https://doi.org/10.1016/j.physletb.2017.12.053
https://doi.org/10.1016/j.physletb.2017.12.053
https://arxiv.org/abs/1711.03121
https://doi.org/10.1051/0004-6361:20040455
https://arxiv.org/abs/astro-ph/0403441
https://arxiv.org/abs/astro-ph/0403441
https://doi.org/10.1103/PhysRevD.104.083003
https://arxiv.org/abs/2104.08681
https://doi.org/10.1111/j.1745-3933.2009.00745.x
https://arxiv.org/abs/0901.2722
https://doi.org/10.1103/PhysRevD.83.044014
https://doi.org/10.1103/PhysRevD.83.044014
https://arxiv.org/abs/1009.2468
https://doi.org/10.1088/0004-637X/809/1/39
https://arxiv.org/abs/1410.0013
https://doi.org/10.3390/universe8070370
https://arxiv.org/abs/2206.01337
https://doi.org/10.1051/0004-6361:20030854
https://arxiv.org/abs/astro-ph/0305463
https://arxiv.org/abs/astro-ph/0305463
https://doi.org/10.1103/PhysRevD.46.1274
https://doi.org/10.3847/1538-4357/aadbad
https://doi.org/10.3847/1538-4357/aadbad
https://arxiv.org/abs/1808.06147


Bibliography 267

[254] P. Goldreich and D. Lynden-Bell. “II. Spiral arms as sheared gravitational
instabilities.” In: MNRAS 130 (Jan. 1965), p. 125. doi: 10.1093/mnras/
130.2.125.

[255] A. Goldstein et al. “An Ordinary Short Gamma-Ray Burst with Ex-
traordinary Implications: Fermi-GBM Detection of GRB 170817A.” In:
Astrophys. J. Lett. 848.2, L14 (Oct. 2017), p. L14. doi: 10.3847/2041-
8213/aa8f41. arXiv: 1710.05446 [astro-ph.HE].

[256] D. Gondek-Rosińska et al. “Rapidly rotating compact strange stars.” In:
Astron. Astrophys. 363 (Nov. 2000), pp. 1005–1012. doi: 10.48550/arXiv.
astro-ph/0007004. arXiv: astro-ph/0007004 [astro-ph].

[257] D. Gondek-Rosińska and E. Gourgoulhon. “Jacobi-like bar mode in-
stability of relativistic rotating bodies.” In: Phys. Rev. D 66.4, 044021
(Aug. 2002), p. 044021. doi: 10 . 1103 / PhysRevD . 66 . 044021. arXiv:
gr-qc/0205102 [gr-qc].

[258] A. Gonzalez et al. “Second release of the CORE database of binary
neutron star merger waveforms.” In: Class. Quantum Grav. 40.8, 085011
(Apr. 2023), p. 085011. doi: 10.1088/1361-6382/acc231. arXiv: 2210.16366
[gr-qc].

[259] T. Goodale et al. “The cactus framework and toolkit: Design and appli-
cations.” English (US). In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics). Germany: Springer, 2003, pp. 197–227. isbn: 3540008527. doi:
10.1007/3-540-36569-9_13.

[260] J. Goodman and G. Xu. “Parasitic Instabilities in Magnetized, Differen-
tially Rotating Disks.” In: Astrophys. J. 432 (Sept. 1994), p. 213. doi:
10.1086/174562.

[261] E. Gourgoulhon et al. “Quasiequilibrium sequences of synchronized and
irrotational binary neutron stars in general relativity: Method and tests.”
In: Phys. Rev. D 63.6, 064029 (Mar. 2001), p. 064029. doi: 10.1103/
PhysRevD.63.064029. arXiv: gr-qc/0007028 [gr-qc].

[262] E. Gourgoulhon et al. LORENE: Spectral methods differential equations
solver. Astrophysics Source Code Library, record ascl:1608.018. Aug. 2016.
ascl: 1608.018.

[263] K. N. Gourgouliatos, D. De Grandis, and A. Igoshev. “Magnetic Field
Evolution in Neutron Star Crusts: Beyond the Hall Effect.” In: Symmetry
14.1, 130 (Jan. 2022), p. 130. doi: 10.3390/sym14010130. arXiv: 2201.
08345 [astro-ph.HE].

[264] S. R. Green, C. Simpson, and J. Gair. “Gravitational-wave parameter
estimation with autoregressive neural network flows.” In: Phys. Rev. D
102.10, 104057 (Nov. 2020), p. 104057. doi: 10.1103/PhysRevD.102.
104057. arXiv: 2002.07656 [astro-ph.IM].

[265] R. Guardiola. “Monte Carlo methods in quantum many-body theories.”
In: Lecture Notes in Physics, Berlin Springer Verlag. Ed. by J. Navarro
and A. Polls. Vol. 510. 1998, p. 269. doi: 10.1007/BFb0104529.

https://doi.org/10.1093/mnras/130.2.125
https://doi.org/10.1093/mnras/130.2.125
https://doi.org/10.3847/2041-8213/aa8f41
https://doi.org/10.3847/2041-8213/aa8f41
https://arxiv.org/abs/1710.05446
https://doi.org/10.48550/arXiv.astro-ph/0007004
https://doi.org/10.48550/arXiv.astro-ph/0007004
https://arxiv.org/abs/astro-ph/0007004
https://doi.org/10.1103/PhysRevD.66.044021
https://arxiv.org/abs/gr-qc/0205102
https://doi.org/10.1088/1361-6382/acc231
https://arxiv.org/abs/2210.16366
https://arxiv.org/abs/2210.16366
https://doi.org/10.1007/3-540-36569-9_13
https://doi.org/10.1086/174562
https://doi.org/10.1103/PhysRevD.63.064029
https://doi.org/10.1103/PhysRevD.63.064029
https://arxiv.org/abs/gr-qc/0007028
1608.018
https://doi.org/10.3390/sym14010130
https://arxiv.org/abs/2201.08345
https://arxiv.org/abs/2201.08345
https://doi.org/10.1103/PhysRevD.102.104057
https://doi.org/10.1103/PhysRevD.102.104057
https://arxiv.org/abs/2002.07656
https://doi.org/10.1007/BFb0104529


268 Bibliography

[266] D. Guerra et al. “Thermal effects on long-lived remnants of binary neutron
star mergers.” In: in preparation (2024).

[267] J. Guilet et al. “MRI-driven dynamo at very high magnetic Prandtl
numbers.” In: MNRAS 516.3 (Nov. 2022), pp. 4346–4353. doi: 10.1093/
mnras/stac2499. arXiv: 2205.08602 [astro-ph.HE].

[268] S. Guillot et al. “Measurement of the Radius of Neutron Stars with
High Signal-to-noise Quiescent Low-mass X-Ray Binaries in Globular
Clusters.” In: Astrophys. J. 772.1, 7 (July 2013), p. 7. doi: 10.1088/0004-
637X/772/1/7. arXiv: 1302.0023 [astro-ph.HE].

[269] G. Guo et al. “KNN Model-Based Approach in Classification.” In: On
The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and
ODBASE. Vol. 2888. Jan. 2003, pp. 986–996. isbn: 978-3-540-20498-5.
doi: 10.1007/978-3-540-39964-3_62.

[270] P. Haensel, A. Y. Potekhin, and D. G. Yakovlev. Neutron Stars 1 :
Equation of State and Structure. Vol. 326. 2007.

[271] M. Hanauske et al. “Rotational properties of hypermassive neutron
stars from binary mergers.” In: Phys. Rev. D 96.4, 043004 (Aug. 2017),
p. 043004. doi: 10 . 1103 / PhysRevD . 96 . 043004. arXiv: 1611 . 07152
[gr-qc].

[272] B. M. S. Hansen and M. Lyutikov. “Radio and X-ray signatures of
merging neutron stars.” In: MNRAS 322.4 (Apr. 2001), pp. 695–701. doi:
10.1046/j.1365-8711.2001.04103.x. arXiv: astro-ph/0003218 [astro-ph].

[273] G. M. Harry and LIGO Scientific Collaboration. “Advanced LIGO: the
next generation of gravitational wave detectors.” In: Class. Quantum Grav.
27.8, 084006 (Apr. 2010), p. 084006. doi: 10.1088/0264-9381/27/8/
084006.

[274] A. Harten, P. D. Lax, and B. v. Leer. “On Upstream Differencing and
Godunov-Type Schemes for Hyperbolic Conservation Laws.” In: SIAM
Review 25.1 (1983), pp. 35–61. doi: 10 .1137/1025002. eprint: https :
//doi.org/10.1137/1025002. url: https://doi.org/10.1137/1025002.

[275] J. W. Hartman et al. “A study of the evolution of radio pulsars through
improved population synthesis.” In: Astron. Astrophys. 322 (June 1997),
pp. 477–488.

[276] J. F. Hawley, X. Guan, and J. H. Krolik. “Assessing Quantitative Results
in Accretion Simulations: From Local to Global.” In: Astrophys. J. 738.1,
84 (Sept. 2011), p. 84. doi: 10 . 1088/0004 - 637X/738/1/84. arXiv:
1103.5987 [astro-ph.HE].

[277] K. Hayashi et al. “General-relativistic neutrino-radiation magnetohydro-
dynamic simulation of seconds-long black hole-neutron star mergers.” In:
Phys. Rev. D 106.2 (2022), p. 023008. doi: 10.1103/PhysRevD.106.023008.
arXiv: 2111.04621 [astro-ph.HE].

[278] H. Heiselberg and M. Hjorth-Jensen. “Phases of dense matter in neutron
stars.” In: Phys. Rep. 328.5-6 (May 2000), pp. 237–327. doi: 10.1016/
S0370-1573(99)00110-6. arXiv: nucl-th/9902033 [nucl-th].

[279] A. Hewish et al. “Observation of a Rapidly Pulsating Radio Source.” In:
Nature 217.5130 (Feb. 1968), pp. 709–713. doi: 10.1038/217709a0.

https://doi.org/10.1093/mnras/stac2499
https://doi.org/10.1093/mnras/stac2499
https://arxiv.org/abs/2205.08602
https://doi.org/10.1088/0004-637X/772/1/7
https://doi.org/10.1088/0004-637X/772/1/7
https://arxiv.org/abs/1302.0023
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1103/PhysRevD.96.043004
https://arxiv.org/abs/1611.07152
https://arxiv.org/abs/1611.07152
https://doi.org/10.1046/j.1365-8711.2001.04103.x
https://arxiv.org/abs/astro-ph/0003218
https://doi.org/10.1088/0264-9381/27/8/084006
https://doi.org/10.1088/0264-9381/27/8/084006
https://doi.org/10.1137/1025002
https://doi.org/10.1137/1025002
https://doi.org/10.1137/1025002
https://doi.org/10.1137/1025002
https://doi.org/10.1088/0004-637X/738/1/84
https://arxiv.org/abs/1103.5987
https://doi.org/10.1103/PhysRevD.106.023008
https://arxiv.org/abs/2111.04621
https://doi.org/10.1016/S0370-1573(99)00110-6
https://doi.org/10.1016/S0370-1573(99)00110-6
https://arxiv.org/abs/nucl-th/9902033
https://doi.org/10.1038/217709a0


Bibliography 269

[280] S. Hild et al. “Sensitivity studies for third-generation gravitational wave
observatories.” In: Class. Quantum Grav. 28.9, 094013 (May 2011), p. 094013.
doi: 10.1088/0264-9381/28/9/094013. arXiv: 1012.0908 [gr-qc].

[281] T. Hinderer et al. “Effects of Neutron-Star Dynamic Tides on Gravita-
tional Waveforms within the Effective-One-Body Approach.” In: Phys. Rev. Lett.
116.18, 181101 (May 2016), p. 181101. doi: 10.1103/PhysRevLett.116.
181101. arXiv: 1602.00599 [gr-qc].

[282] K. Hirai et al. “Study of the Transition from MRI to Magnetic Turbulence
via Parasitic Instability by a High-order MHD Simulation Code.” In:
Astrophys. J. 853.2, 174 (Feb. 2018), p. 174. doi: 10.3847/1538-4357/
aaa5b2.

[283] K. Hirata et al. “Observation of a neutrino burst from the supernova
SN1987A.” In: Phys. Rev. Lett. 58.14 (Apr. 1987), pp. 1490–1493. doi:
10.1103/PhysRevLett.58.1490.

[284] J. Hjorth et al. “A very energetic supernova associated with the γ-ray
burst of 29 March 2003.” In: Nature 423.6942 (June 2003), pp. 847–850.
doi: 10.1038/nature01750. arXiv: astro-ph/0306347 [astro-ph].

[285] W. C. G. Ho and D. Lai. “Resonant tidal excitations of rotating neutron
stars in coalescing binaries.” In: MNRAS 308.1 (Sept. 1999), pp. 153–
166. doi: 10.1046/j.1365-8711.1999.02703.x. arXiv: astro-ph/9812116
[astro-ph].

[286] G. Hobbs et al. “The International Pulsar Timing Array project: using
pulsars as a gravitational wave detector.” In: Class. Quantum Grav. 27.8,
084013 (Apr. 2010), p. 084013. doi: 10.1088/0264-9381/27/8/084013.
arXiv: 0911.5206 [astro-ph.SR].

[287] K. Hotokezaka et al. “Radio Counterparts of Compact Binary Mergers
Detectable in Gravitational Waves: A Simulation for an Optimized Sur-
vey.” In: Astrophys. J. 831.2, 190 (Nov. 2016), p. 190. doi: 10.3847/0004-
637X/831/2/190. arXiv: 1605.09395 [astro-ph.HE].

[288] K. Hotokezaka et al. “Remnant massive neutron stars of binary neu-
tron star mergers: Evolution process and gravitational waveform.” In:
Phys. Rev. D 88.4, 044026 (Aug. 2013), p. 044026. doi: 10.1103/PhysRevD.
88.044026. arXiv: 1307.5888 [astro-ph.HE].

[289] J. L. Houser, J. M. Centrella, and S. C. Smith. “Gravitational radiation
from nonaxisymmetric instability in a rotating star.” In: Phys. Rev. Lett.
72.9 (Jan. 1994), pp. 1314–1317. doi: 10.1103/PhysRevLett.72.1314.
arXiv: gr-qc/9409057 [gr-qc].

[290] E. A. Huerta et al. “Enabling real-time multi-messenger astrophysics
discoveries with deep learning.” In: Nature Reviews Physics 1.10 (Oct.
2019), pp. 600–608. doi: 10.1038/s42254-019-0097-4. arXiv: 1911.11779
[gr-qc].

[291] J. N. Imamura, J. L. Friedman, and R. H. Durisen. “Secular stability
limits for rotating polytropic stars.” In: Astrophys. J. 294 (July 1985),
pp. 474–478. doi: 10.1086/163313.

https://doi.org/10.1088/0264-9381/28/9/094013
https://arxiv.org/abs/1012.0908
https://doi.org/10.1103/PhysRevLett.116.181101
https://doi.org/10.1103/PhysRevLett.116.181101
https://arxiv.org/abs/1602.00599
https://doi.org/10.3847/1538-4357/aaa5b2
https://doi.org/10.3847/1538-4357/aaa5b2
https://doi.org/10.1103/PhysRevLett.58.1490
https://doi.org/10.1038/nature01750
https://arxiv.org/abs/astro-ph/0306347
https://doi.org/10.1046/j.1365-8711.1999.02703.x
https://arxiv.org/abs/astro-ph/9812116
https://arxiv.org/abs/astro-ph/9812116
https://doi.org/10.1088/0264-9381/27/8/084013
https://arxiv.org/abs/0911.5206
https://doi.org/10.3847/0004-637X/831/2/190
https://doi.org/10.3847/0004-637X/831/2/190
https://arxiv.org/abs/1605.09395
https://doi.org/10.1103/PhysRevD.88.044026
https://doi.org/10.1103/PhysRevD.88.044026
https://arxiv.org/abs/1307.5888
https://doi.org/10.1103/PhysRevLett.72.1314
https://arxiv.org/abs/gr-qc/9409057
https://doi.org/10.1038/s42254-019-0097-4
https://arxiv.org/abs/1911.11779
https://arxiv.org/abs/1911.11779
https://doi.org/10.1086/163313


270 Bibliography

[292] P. Iosif and N. Stergioulas. “Models of binary neutron star remnants with
tabulated equations of state.” In: Mon. Not. Roy. Astron. Soc. 510.2 (Feb.
2022), pp. 2948–2967. doi: 10.1093/mnras/stab3565. arXiv: 2104.13672
[astro-ph.HE].

[293] J. R. Ipser and L. Lindblom. “The Oscillations of Rapidly Rotating
Newtonian Stellar Models.” In: Astrophys. J. 355 (May 1990), p. 226. doi:
10.1086/168757.

[294] M. Isi et al. “Testing the no-hair theorem with GW150914.” In: Phys. Rev.
Lett. 123.11 (2019), p. 111102. doi: 10.1103/PhysRevLett.123.111102.
arXiv: 1905.00869 [gr-qc].

[295] J. D. Jackson. Classical electrodynamics. Wiley, 1975.
[296] R. A. James. “The Structure and Stability of Rotating Gas Masses.” In:

Astrophys. J. 140 (Aug. 1964), p. 552. doi: 10.1086/147949.
[297] F. D. S. James M. Lattimer. “A generalized equation of state for hot,

dense matter.” In: Nucl. Phys. A 535 (1991), p. 331. doi: 10.1016/0375-
9474(91)90452-C.

[298] H. T. Janka, T. Zwerger, and R. Moenchmeyer. “Does artificial viscos-
ity destroy prompt type-II supernova explosions?” In: "Astronomy and
Astrophysics" 268.1 (Feb. 1993), pp. 360–368.

[299] G.-S. Jiang and C.-W. Shu. “Efficient Implementation of Weighted ENO
Schemes.” In: Journal of Computational Physics 126.1 (June 1996),
pp. 202–228. doi: 10.1006/jcph.1996.0130.

[300] O. Just, M. Obergaulinger, and H. T. Janka. “A new multidimensional,
energy-dependent two-moment transport code for neutrino-hydrodynamics.”
In: MNRAS 453.4 (Nov. 2015), pp. 3386–3413. doi: 10.1093/mnras/
stv1892. arXiv: 1501.02999 [astro-ph.HE].

[301] O. Just et al. “Comprehensive nucleosynthesis analysis for ejecta of
compact binary mergers.” In: MNRAS 448.1 (Mar. 2015), pp. 541–567.
doi: 10.1093/mnras/stv009. arXiv: 1406.2687 [astro-ph.SR].

[302] O. Just et al. “Neutrino absorption and other physics dependencies
in neutrino-cooled black hole accretion discs.” In: MNRAS 509.1 (Jan.
2022), pp. 1377–1412. doi: 10.1093/mnras/stab2861. arXiv: 2102.08387
[astro-ph.HE].

[303] KAGRA Collaboration et al. “KAGRA: 2.5 generation interferometric
gravitational wave detector.” In: Nature Astronomy 3 (Jan. 2019), pp. 35–
40. doi: 10.1038/s41550-018-0658-y. arXiv: 1811.08079 [gr-qc].

[304] C. Kalapotharakos, I. Contopoulos, and D. Kazanas. “The extended
pulsar magnetosphere.” In: MNRAS 420.4 (Mar. 2012), pp. 2793–2798.
doi: 10.1111/j.1365-2966.2011.19884.x. arXiv: 1109.5122 [astro-ph.HE].

[305] C. Kalapotharakos et al. “Toward a Realistic Pulsar Magnetosphere.” In:
Astrophys. J. 749.1, 2 (Apr. 2012), p. 2. doi: 10.1088/0004-637X/749/1/2.
arXiv: 1108.2138 [astro-ph.SR].

[306] V. Kalogera et al. “The Coalescence Rate of Double Neutron Star Sys-
tems.” In: Astrophys. J. 556.1 (July 2001), pp. 340–356. doi: 10.1086/
321583. arXiv: astro-ph/0012038 [astro-ph].

https://doi.org/10.1093/mnras/stab3565
https://arxiv.org/abs/2104.13672
https://arxiv.org/abs/2104.13672
https://doi.org/10.1086/168757
https://doi.org/10.1103/PhysRevLett.123.111102
https://arxiv.org/abs/1905.00869
https://doi.org/10.1086/147949
https://doi.org/10.1016/0375-9474(91)90452-C
https://doi.org/10.1016/0375-9474(91)90452-C
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1093/mnras/stv1892
https://doi.org/10.1093/mnras/stv1892
https://arxiv.org/abs/1501.02999
https://doi.org/10.1093/mnras/stv009
https://arxiv.org/abs/1406.2687
https://doi.org/10.1093/mnras/stab2861
https://arxiv.org/abs/2102.08387
https://arxiv.org/abs/2102.08387
https://doi.org/10.1038/s41550-018-0658-y
https://arxiv.org/abs/1811.08079
https://doi.org/10.1111/j.1365-2966.2011.19884.x
https://arxiv.org/abs/1109.5122
https://doi.org/10.1088/0004-637X/749/1/2
https://arxiv.org/abs/1108.2138
https://doi.org/10.1086/321583
https://doi.org/10.1086/321583
https://arxiv.org/abs/astro-ph/0012038


Bibliography 271

[307] J. D. Kaplan et al. “The Influence of Thermal Pressure on Equilibrium
Models of Hypermassive Neutron Star Merger Remnants.” In: Astrophys. J.
790.1, 19 (July 2014), p. 19. doi: 10.1088/0004-637X/790/1/19. arXiv:
1306.4034 [astro-ph.HE].

[308] P. I. Karpov et al. “Physics-informed Machine Learning for Modeling
Turbulence in Supernovae.” In: Astrophys. J. 940.1, 26 (Nov. 2022), p. 26.
doi: 10.3847/1538-4357/ac88cc. arXiv: 2205.08663 [physics.comp-ph].

[309] D. Kasen, N. R. Badnell, and J. Barnes. “Opacities and Spectra of the
r-process Ejecta from Neutron Star Mergers.” In: Astrophys. J. 774.1, 25
(Sept. 2013), p. 25. doi: 10.1088/0004-637X/774/1/25. arXiv: 1303.5788
[astro-ph.HE].

[310] D. Kasen, R. Fernandez, and B. Metzger. “Kilonova light curves from
the disc wind outflows of compact object mergers.” In: Mon. Not. Roy.
Astron. Soc. 450 (2015), pp. 1777–1786. doi: 10.1093/mnras/stv721.
arXiv: 1411.3726 [astro-ph.HE].

[311] M. M. Kasliwal et al. “Illuminating Gravitational Waves: A Concordant
Picture of Photons from a Neutron Star Merger.” In: Science 358 (2017),
p. 1559. doi: 10.1126/science.aap9455. arXiv: 1710.05436 [astro-ph.HE].

[312] V. M. Kaspi. “Grand unification of neutron stars.” In: Proceedings of the
National Academy of Science 107.16 (Apr. 2010), pp. 7147–7152. doi:
10.1073/pnas.1000812107. arXiv: 1005.0876 [astro-ph.HE].

[313] W. Kastaun, R. Ciolfi, and B. Giacomazzo. “Structure of stable binary
neutron star merger remnants: A case study.” In: Phys. Rev. D 94.4,
044060 (Aug. 2016), p. 044060. doi: 10.1103/PhysRevD.94.044060. arXiv:
1607.02186 [astro-ph.HE].

[314] W. Kastaun et al. “Structure of stable binary neutron star merger
remnants: Role of initial spin.” In: Phys. Rev. D 96.4, 043019 (Aug.
2017), p. 043019. doi: 10.1103/PhysRevD.96.043019. arXiv: 1612.03671
[astro-ph.HE].

[315] W. Kastaun. “Inertial modes of rigidly rotating neutron stars in Cowling
approximation.” In: Phys. Rev. D 77.12, 124019 (June 2008), p. 124019.
doi: 10.1103/PhysRevD.77.124019. arXiv: 0804.1151 [astro-ph].

[316] W. Kastaun and F. Galeazzi. “Properties of hypermassive neutron stars
formed in mergers of spinning binaries.” In: Phys. Rev. D 91.6, 064027
(Mar. 2015), p. 064027. doi: 10 . 1103 / PhysRevD . 91 . 064027. arXiv:
1411.7975 [gr-qc].

[317] W. Kastaun, B. Willburger, and K. D. Kokkotas. “Saturation amplitude
of the f-mode instability.” In: Phys. Rev. D 82.10, 104036 (Nov. 2010),
p. 104036. doi: 10.1103/PhysRevD.82.104036. arXiv: 1006.3885 [gr-qc].

[318] K. Kawaguchi et al. “Frequency-domain gravitational waveform models
for inspiraling binary neutron stars.” In: Phys. Rev. D 97.4, 044044 (Feb.
2018), p. 044044. doi: 10.1103/PhysRevD.97.044044. arXiv: 1802.06518
[gr-qc].

[319] T. Kawamura et al. “Binary neutron star mergers and short gamma-
ray bursts: Effects of magnetic field orientation, equation of state, and
mass ratio.” In: Phys. Rev. D 94.6, 064012 (Sept. 2016), p. 064012. doi:
10.1103/PhysRevD.94.064012. arXiv: 1607.01791 [astro-ph.HE].

https://doi.org/10.1088/0004-637X/790/1/19
https://arxiv.org/abs/1306.4034
https://doi.org/10.3847/1538-4357/ac88cc
https://arxiv.org/abs/2205.08663
https://doi.org/10.1088/0004-637X/774/1/25
https://arxiv.org/abs/1303.5788
https://arxiv.org/abs/1303.5788
https://doi.org/10.1093/mnras/stv721
https://arxiv.org/abs/1411.3726
https://doi.org/10.1126/science.aap9455
https://arxiv.org/abs/1710.05436
https://doi.org/10.1073/pnas.1000812107
https://arxiv.org/abs/1005.0876
https://doi.org/10.1103/PhysRevD.94.044060
https://arxiv.org/abs/1607.02186
https://doi.org/10.1103/PhysRevD.96.043019
https://arxiv.org/abs/1612.03671
https://arxiv.org/abs/1612.03671
https://doi.org/10.1103/PhysRevD.77.124019
https://arxiv.org/abs/0804.1151
https://doi.org/10.1103/PhysRevD.91.064027
https://arxiv.org/abs/1411.7975
https://doi.org/10.1103/PhysRevD.82.104036
https://arxiv.org/abs/1006.3885
https://doi.org/10.1103/PhysRevD.97.044044
https://arxiv.org/abs/1802.06518
https://arxiv.org/abs/1802.06518
https://doi.org/10.1103/PhysRevD.94.064012
https://arxiv.org/abs/1607.01791


272 Bibliography

[320] W. Keil and H. T. Janka. “Hadronic phase transitions at supranuclear
densities and the delayed collapse of newly formed neutron stars.” In:
Astron. Astrophys. 296 (Apr. 1995), p. 145.

[321] W. Keil, H. T. Janka, and E. Mueller. “Ledoux Convection in Protoneu-
tron Stars—A Clue to Supernova Nucleosynthesis?” In: Astrophys. J. Lett.
473 (Dec. 1996), p. L111. doi: 10.1086/310404. arXiv: astro-ph/9610203
[astro-ph].

[322] K. Kiuchi et al. “High resolution numerical relativity simulations for
the merger of binary magnetized neutron stars.” In: Phys. Rev. D 90.4,
041502 (Aug. 2014), p. 041502. doi: 10.1103/PhysRevD.90.041502. arXiv:
1407.2660 [astro-ph.HE].

[323] K. Kiuchi et al. “Efficient magnetic-field amplification due to the Kelvin-
Helmholtz instability in binary neutron star mergers.” In: Phys. Rev. D
92.12, 124034 (Dec. 2015), p. 124034. doi: 10.1103/PhysRevD.92.124034.
arXiv: 1509.09205 [astro-ph.HE].

[324] K. Kiuchi et al. “Global simulations of strongly magnetized remnant mas-
sive neutron stars formed in binary neutron star mergers.” In: Phys. Rev. D
97.12, 124039 (June 2018), p. 124039. doi: 10.1103/PhysRevD.97.124039.
arXiv: 1710.01311 [astro-ph.HE].

[325] K. Kiuchi et al. “A large-scale magnetic field produced by a solar-like
dynamo in binary neutron star mergers.” In: Nature Astronomy 8 (Mar.
2024), pp. 298–307. doi: 10.1038/s41550-024-02194-y. arXiv: 2306.15721
[astro-ph.HE].

[326] T. Klähn et al. “Constraints on the high-density nuclear equation of
state from the phenomenology of compact stars and heavy-ion collisions.”
In: Phys. Rev. C 74.3, 035802 (Sept. 2006), p. 035802. doi: 10.1103/
PhysRevC.74.035802. arXiv: nucl-th/0602038 [nucl-th].

[327] S. Klimenko et al. “Method for detection and reconstruction of gravita-
tional wave transients with networks of advanced detectors.” In: Phys. Rev. D
93.4, 042004 (Feb. 2016), p. 042004. doi: 10.1103/PhysRevD.93.042004.
arXiv: 1511.05999 [gr-qc].

[328] C. S. Kochanek. “Coalescing Binary Neutron Stars.” In: Astrophys. J. 398
(Oct. 1992), p. 234. doi: 10.1086/171851.

[329] K. D. Kokkotas and B. G. Schmidt. “Quasi-Normal Modes of Stars and
Black Holes.” In: Living Reviews in Relativity 2.1, 2 (Sept. 1999), p. 2.
doi: 10.12942/lrr-1999-2. arXiv: gr-qc/9909058 [gr-qc].

[330] H. Komatsu, Y. Eriguchi, and I. Hachisu. “Rapidly rotating general
relativistic stars. I - Numerical method and its application to uniformly
rotating polytropes.” In: MNRAS 237 (Mar. 1989), pp. 355–379. doi:
10.1093/mnras/237.2.355.

[331] O. Korobkin et al. “On the astrophysical robustness of neutron star
merger r-process.” In: Mon. Not. Roy. Astron. Soc. 426 (2012), p. 1940.
doi: 10.1111/j.1365-2966.2012.21859.x. arXiv: 1206.2379 [astro-ph.SR].

[332] K. Kotake, K. Sato, and K. Takahashi. “Explosion mechanism, neutrino
burst and gravitational wave in core-collapse supernovae.” In: Reports on
Progress in Physics 69.4 (Apr. 2006), pp. 971–1143. doi: 10.1088/0034-
4885/69/4/R03. arXiv: astro-ph/0509456 [astro-ph].

https://doi.org/10.1086/310404
https://arxiv.org/abs/astro-ph/9610203
https://arxiv.org/abs/astro-ph/9610203
https://doi.org/10.1103/PhysRevD.90.041502
https://arxiv.org/abs/1407.2660
https://doi.org/10.1103/PhysRevD.92.124034
https://arxiv.org/abs/1509.09205
https://doi.org/10.1103/PhysRevD.97.124039
https://arxiv.org/abs/1710.01311
https://doi.org/10.1038/s41550-024-02194-y
https://arxiv.org/abs/2306.15721
https://arxiv.org/abs/2306.15721
https://doi.org/10.1103/PhysRevC.74.035802
https://doi.org/10.1103/PhysRevC.74.035802
https://arxiv.org/abs/nucl-th/0602038
https://doi.org/10.1103/PhysRevD.93.042004
https://arxiv.org/abs/1511.05999
https://doi.org/10.1086/171851
https://doi.org/10.12942/lrr-1999-2
https://arxiv.org/abs/gr-qc/9909058
https://doi.org/10.1093/mnras/237.2.355
https://doi.org/10.1111/j.1365-2966.2012.21859.x
https://arxiv.org/abs/1206.2379
https://doi.org/10.1088/0034-4885/69/4/R03
https://doi.org/10.1088/0034-4885/69/4/R03
https://arxiv.org/abs/astro-ph/0509456


Bibliography 273

[333] C. Kouveliotou et al. “An X-ray pulsar with a superstrong magnetic field
in the soft γ-ray repeater SGR1806 - 20.” In: Nature 393.6682 (May 1998),
pp. 235–237. doi: 10.1038/30410.

[334] C. Kouveliotou et al. “Identification of Two Classes of Gamma-Ray
Bursts.” In: Astrophys. J. Lett. 413 (Aug. 1993), p. L101. doi: 10.1086/
186969.

[335] F. Krause and K. Rädler. Mean-field magnetohydrodynamics and dynamo
theory. Pergamon Press, 1980.

[336] C. J. Krüger et al. “Fast Rotating Neutron Stars: Oscillations and Instabil-
ities.” In: Frontiers in Astronomy and Space Sciences 8, 166 (Sept. 2021),
p. 166. doi: 10.3389/fspas.2021.736918. arXiv: 2110.00393 [gr-qc].

[337] T. Kuroda, T. Takiwaki, and K. Kotake. “Gravitational wave signatures
from low-mode spiral instabilities in rapidly rotating supernova cores.”
In: Phys. Rev. D 89.4, 044011 (Feb. 2014), p. 044011. doi: 10.1103/
PhysRevD.89.044011. arXiv: 1304.4372 [astro-ph.HE].

[338] T. Kuroda et al. “Magnetorotational Explosion of a Massive Star Sup-
ported by Neutrino Heating in General Relativistic Three-dimensional
Simulations.” In: Astrophys. J. 896.2, 102 (June 2020), p. 102. doi:
10.3847/1538-4357/ab9308. arXiv: 2003.02004 [astro-ph.HE].

[339] B. D. Lackey et al. “Effective-one-body waveforms for binary neutron
stars using surrogate models.” In: Phys. Rev. D 95.10, 104036 (May
2017), p. 104036. doi: 10.1103/PhysRevD.95.104036. arXiv: 1610.04742
[gr-qc].

[340] B. D. Lackey et al. “Effective-one-body waveforms for binary neutron
stars using surrogate models.” In: Phys. Rev. D 95.10 (2017), p. 104036.
doi: 10.1103/PhysRevD.95.104036. arXiv: 1610.04742 [gr-qc].

[341] B. D. Lackey et al. “Surrogate model for an aligned-spin effective-one-
body waveform model of binary neutron star inspirals using Gaussian
process regression.” In: Phys. Rev. D 100.2, 024002 (July 2019), p. 024002.
doi: 10.1103/PhysRevD.100.024002. arXiv: 1812.08643 [gr-qc].

[342] D. Lai. “DC Circuit Powered by Orbital Motion: Magnetic Interac-
tions in Compact Object Binaries and Exoplanetary Systems.” In: As-
trophys. J. Lett. 757.1, L3 (Sept. 2012), p. L3. doi: 10 . 1088 / 2041 -
8205/757/1/L3. arXiv: 1206.3723 [astro-ph.HE].

[343] L. D. Landau and E. M. Lifshitz. Fluid Mechanics. Pergamon, 1987.
[344] P. Landry and R. Essick. “Nonparametric inference of the neutron star

equation of state from gravitational wave observations.” In: Phys. Rev. D
99.8, 084049 (Apr. 2019), p. 084049. doi: 10.1103/PhysRevD.99.084049.
arXiv: 1811.12529 [gr-qc].

[345] P. D. Lasky. “Gravitational Waves from Neutron Stars: A Review.” In:
Publ. Astron. Soc. Austral. 32 (2015), e034. doi: 10.1017/pasa.2015.35.
arXiv: 1508.06643 [astro-ph.HE].

[346] H. N. Latter, S. Fromang, and O. Gressel. “MRI channel flows in vertically
stratified models of accretion discs.” In: MNRAS 406.2 (Aug. 2010),
pp. 848–862. doi: 10.1111/j.1365-2966.2010.16759.x. arXiv: 1004.0109
[astro-ph.HE].

https://doi.org/10.1038/30410
https://doi.org/10.1086/186969
https://doi.org/10.1086/186969
https://doi.org/10.3389/fspas.2021.736918
https://arxiv.org/abs/2110.00393
https://doi.org/10.1103/PhysRevD.89.044011
https://doi.org/10.1103/PhysRevD.89.044011
https://arxiv.org/abs/1304.4372
https://doi.org/10.3847/1538-4357/ab9308
https://arxiv.org/abs/2003.02004
https://doi.org/10.1103/PhysRevD.95.104036
https://arxiv.org/abs/1610.04742
https://arxiv.org/abs/1610.04742
https://doi.org/10.1103/PhysRevD.95.104036
https://arxiv.org/abs/1610.04742
https://doi.org/10.1103/PhysRevD.100.024002
https://arxiv.org/abs/1812.08643
https://doi.org/10.1088/2041-8205/757/1/L3
https://doi.org/10.1088/2041-8205/757/1/L3
https://arxiv.org/abs/1206.3723
https://doi.org/10.1103/PhysRevD.99.084049
https://arxiv.org/abs/1811.12529
https://doi.org/10.1017/pasa.2015.35
https://arxiv.org/abs/1508.06643
https://doi.org/10.1111/j.1365-2966.2010.16759.x
https://arxiv.org/abs/1004.0109
https://arxiv.org/abs/1004.0109


274 Bibliography

[347] H. N. Latter, P. Lesaffre, and S. A. Balbus. “MRI channel flows and their
parasites.” In: MNRAS 394.2 (Apr. 2009), pp. 715–729. doi: 10.1111/j.
1365-2966.2009.14395.x. arXiv: 0901.4712 [astro-ph.HE].

[348] J. M. Lattimer and M. Prakash. “The Physics of Neutron Stars.” In:
Science 304.5670 (Apr. 2004), pp. 536–542. doi: 10.1126/science.1090720.
arXiv: astro-ph/0405262 [astro-ph].

[349] J. M. Lattimer and D. N. Schramm. “Black-hole-neutron-star collisions.”
In: Astrophys. J. Lett. 192 (1974), p. L145. doi: 10.1086/181612.

[350] J. M. Lattimer. “The Nuclear Equation of State and Neutron Star Masses.”
In: Annual Review of Nuclear and Particle Science 62.1 (Nov. 2012),
pp. 485–515. doi: 10.1146/annurev-nucl-102711-095018. arXiv: 1305.3510
[nucl-th].

[351] J. M. Lattimer and M. Prakash. “Neutron star observations: Prognosis
for equation of state constraints.” In: Phys. Rep. 442.1-6 (Apr. 2007),
pp. 109–165. doi: 10.1016/j.physrep.2007.02.003. arXiv: astro-ph/0612440
[astro-ph].

[352] D. Lee. “Lattice simulations for few- and many-body systems.” In: Progress
in Particle and Nuclear Physics 63.1 (July 2009), pp. 117–154. doi:
10.1016/j.ppnp.2008.12.001. arXiv: 0804.3501 [nucl-th].

[353] L. Lehner et al. “Intense electromagnetic outbursts from collapsing hyper-
massive neutron stars.” In: Phys. Rev. D 86.10, 104035 (Nov. 2012),
p. 104035. doi: 10 . 1103 / PhysRevD . 86 . 104035. arXiv: 1112 . 2622
[astro-ph.HE].

[354] L. Lehner et al. “Unequal mass binary neutron star mergers and multi-
messenger signals.” In: Class. Quantum Grav. 33.18, 184002 (Sept. 2016),
p. 184002. doi: 10.1088/0264-9381/33/18/184002. arXiv: 1603.00501
[gr-qc].

[355] A. Leonard. “Energy Cascade in Large-Eddy Simulations of Turbulent
Fluid Flows.” In: Advances in Geophysics 18 (Jan. 1975), pp. 237–248.
doi: 10.1016/S0065-2687(08)60464-1.

[356] P. Lesaffre, S. A. Balbus, and H. Latter. “A comparison of local simulations
and reduced models of MRI-induced turbulence.” In: MNRAS 396.2 (June
2009), pp. 779–787. doi: 10.1111/j .1365- 2966.2009.14798.x. arXiv:
0904.3190 [astro-ph.SR].

[357] G. Lesur and P. Y. Longaretti. “On the relevance of subcritical hydro-
dynamic turbulence to accretion disk transport.” In: Astron. Astrophys.
444.1 (Dec. 2005), pp. 25–44. doi: 10.1051/0004-6361:20053683. arXiv:
astro-ph/0509541 [astro-ph].

[358] G. Lesur and P. Y. Longaretti. “Impact of dimensionless numbers on the
efficiency of magnetorotational instability induced turbulent transport.”
In: MNRAS 378.4 (July 2007), pp. 1471–1480. doi: 10.1111/j.1365-
2966.2007.11888.x. arXiv: 0704.2943 [astro-ph].

[359] M. Levi. “Effective field theories of post-Newtonian gravity: a comprehen-
sive review.” In: Reports on Progress in Physics 83.7, 075901 (July 2020),
p. 075901. doi: 10.1088/1361-6633/ab12bc. arXiv: 1807.01699 [hep-th].

https://doi.org/10.1111/j.1365-2966.2009.14395.x
https://doi.org/10.1111/j.1365-2966.2009.14395.x
https://arxiv.org/abs/0901.4712
https://doi.org/10.1126/science.1090720
https://arxiv.org/abs/astro-ph/0405262
https://doi.org/10.1086/181612
https://doi.org/10.1146/annurev-nucl-102711-095018
https://arxiv.org/abs/1305.3510
https://arxiv.org/abs/1305.3510
https://doi.org/10.1016/j.physrep.2007.02.003
https://arxiv.org/abs/astro-ph/0612440
https://arxiv.org/abs/astro-ph/0612440
https://doi.org/10.1016/j.ppnp.2008.12.001
https://arxiv.org/abs/0804.3501
https://doi.org/10.1103/PhysRevD.86.104035
https://arxiv.org/abs/1112.2622
https://arxiv.org/abs/1112.2622
https://doi.org/10.1088/0264-9381/33/18/184002
https://arxiv.org/abs/1603.00501
https://arxiv.org/abs/1603.00501
https://doi.org/10.1016/S0065-2687(08)60464-1
https://doi.org/10.1111/j.1365-2966.2009.14798.x
https://arxiv.org/abs/0904.3190
https://doi.org/10.1051/0004-6361:20053683
https://arxiv.org/abs/astro-ph/0509541
https://doi.org/10.1111/j.1365-2966.2007.11888.x
https://doi.org/10.1111/j.1365-2966.2007.11888.x
https://arxiv.org/abs/0704.2943
https://doi.org/10.1088/1361-6633/ab12bc
https://arxiv.org/abs/1807.01699


Bibliography 275

[360] L.-X. Li and B. Paczynski. “Transient events from neutron star mergers.”
In: Astrophys. J. Lett. 507 (1998), p. L59. doi: 10.1086/311680. arXiv:
astro-ph/9807272.

[361] LIGO Scientific Collaboration. LIGO Algorithm Library - LALSuite. free
software (GPL). 2018. doi: 10.7935/GT1W-FZ16.

[362] Y. Lim and J. W. Holt. “Neutron Star Tidal Deformabilities Constrained
by Nuclear Theory and Experiment.” In: Phys. Rev. Lett. 121.6, 062701
(Aug. 2018), p. 062701. doi: 10.1103/PhysRevLett.121.062701. arXiv:
1803.02803 [nucl-th].

[363] Y. Lim and J. W. Holt. “Enhanced adiabatic index for hot neutron-
rich matter from microscopic nuclear forces.” In: (Sept. 2019). arXiv:
1909.09089 [nucl-th].

[364] G. Lioutas, A. Bauswein, and N. Stergioulas. “Frequency deviations in
universal relations of isolated neutron stars and postmerger remnants.”
In: Phys. Rev. D 104.4, 043011 (Aug. 2021), p. 043011. doi: 10.1103/
PhysRevD.104.043011. arXiv: 2102.12455 [astro-ph.HE].

[365] V. M. Lipunov et al. “MASTER Optical Detection of the First LIGO/Virgo
Neutron Star Binary Merger GW170817.” In: Astrophys. J. Lett. 850.1
(2017), p. L1. doi: 10 . 3847 / 2041 - 8213 / aa92c0. arXiv: 1710 . 05461
[astro-ph.HE].

[366] T. B. Littenberg and N. J. Cornish. “Bayesian inference for spectral
estimation of gravitational wave detector noise.” In: Phys. Rev. D 91.8,
084034 (Apr. 2015), p. 084034. doi: 10.1103/PhysRevD.91.084034. arXiv:
1410.3852 [gr-qc].

[367] X.-D. Liu, S. Osher, and T. Chan. “Weighted Essentially Non-oscillatory
Schemes.” In: Journal of Computational Physics 115.1 (Nov. 1994),
pp. 200–212. doi: 10.1006/jcph.1994.1187.

[368] Y. T. Liu et al. “General relativistic simulations of magnetized binary neu-
tron star mergers.” In: Phys. Rev. D 78.2, 024012 (July 2008), p. 024012.
doi: 10.1103/PhysRevD.78.024012. arXiv: 0803.4193 [astro-ph].

[369] F. Löffler et al. “The Einstein Toolkit: a community computational
infrastructure for relativistic astrophysics.” In: Class. Quantum Grav.
29.11, 115001 (June 2012), p. 115001. doi: 10.1088/0264-9381/29/11/
115001. arXiv: 1111.3344 [gr-qc].

[370] F. Löffler et al. “Stiffness effects on the dynamics of the bar-mode insta-
bility of neutron stars in full general relativity.” In: Phys. Rev. D 91.6,
064057 (Mar. 2015), p. 064057. doi: 10.1103/PhysRevD.91.064057. arXiv:
1411.1963 [gr-qc].

[371] P. Y. Longaretti and G. Lesur. “MRI-driven turbulent transport: the role
of dissipation, channel modes and their parasites.” In: Astron. Astrophys.
516, A51 (June 2010), A51. doi: 10.1051/0004-6361/201014093. arXiv:
1004.1384 [astro-ph.SR].

[372] D. R. Lorimer. “Binary and Millisecond Pulsars.” In: Living Reviews in
Relativity 11.1, 8 (Nov. 2008), p. 8. doi: 10.12942/lrr-2008-8. arXiv:
0811.0762 [astro-ph].

https://doi.org/10.1086/311680
https://arxiv.org/abs/astro-ph/9807272
https://doi.org/10.7935/GT1W-FZ16
https://doi.org/10.1103/PhysRevLett.121.062701
https://arxiv.org/abs/1803.02803
https://arxiv.org/abs/1909.09089
https://doi.org/10.1103/PhysRevD.104.043011
https://doi.org/10.1103/PhysRevD.104.043011
https://arxiv.org/abs/2102.12455
https://doi.org/10.3847/2041-8213/aa92c0
https://arxiv.org/abs/1710.05461
https://arxiv.org/abs/1710.05461
https://doi.org/10.1103/PhysRevD.91.084034
https://arxiv.org/abs/1410.3852
https://doi.org/10.1006/jcph.1994.1187
https://doi.org/10.1103/PhysRevD.78.024012
https://arxiv.org/abs/0803.4193
https://doi.org/10.1088/0264-9381/29/11/115001
https://doi.org/10.1088/0264-9381/29/11/115001
https://arxiv.org/abs/1111.3344
https://doi.org/10.1103/PhysRevD.91.064057
https://arxiv.org/abs/1411.1963
https://doi.org/10.1051/0004-6361/201014093
https://arxiv.org/abs/1004.1384
https://doi.org/10.12942/lrr-2008-8
https://arxiv.org/abs/0811.0762


276 Bibliography

[373] D. Lynden-Bell and J. E. Pringle. “The evolution of viscous discs and the
origin of the nebular variables.” In: MNRAS 168 (Sept. 1974), pp. 603–
637. doi: 10.1093/mnras/168.3.603.

[374] A. G. Lyne et al. “A Double-Pulsar System: A Rare Laboratory for
Relativistic Gravity and Plasma Physics.” In: Science 303.5661 (Feb. 2004),
pp. 1153–1157. doi: 10.1126/science.1094645. arXiv: astro-ph/0401086
[astro-ph].

[375] A. I. MacFadyen and S. E. Woosley. “Collapsars: Gamma-Ray Bursts and
Explosions in “Failed Supernovae”.” In: Astrophys. J. 524.1 (Oct. 1999),
pp. 262–289. doi: 10.1086/307790. arXiv: astro-ph/9810274 [astro-ph].

[376] M. Maggiore et al. “Science case for the Einstein telescope.” In: JCAP
2020.3, 050 (Mar. 2020), p. 050. doi: 10.1088/1475-7516/2020/03/050.
arXiv: 1912.02622 [astro-ph.CO].

[377] J. F. Mahlmann and M. A. Aloy. “Diffusivity in force-free simulations of
global magnetospheres.” In: MNRAS 509.1 (Jan. 2022), pp. 1504–1520.
doi: 10.1093/mnras/stab2830. arXiv: 2109.13936 [astro-ph.HE].

[378] F. Maione et al. “Spectral analysis of gravitational waves from binary
neutron star merger remnants.” In: Phys. Rev. D 96.6, 063011 (Sept.
2017), p. 063011. doi: 10.1103/PhysRevD.96.063011. arXiv: 1707.03368
[gr-qc].

[379] G. R. Mamatsashvili et al. “Revisiting linear dynamics of non-axisymmetric
perturbations in weakly magnetized accretion discs.” In: MNRAS 435.3
(Nov. 2013), pp. 2552–2567. doi: 10.1093/mnras/stt1470. arXiv: 1308.1058
[astro-ph.EP].

[380] R. A. Managan. “On the secular instability of axisymmetric rotating stars
to gravitational radiation reaction.” In: Astrophys. J. 294 (July 1985),
pp. 463–473. doi: 10.1086/163312.

[381] G. M. Manca et al. “Dynamical non-axisymmetric instabilities in rotating
relativistic stars.” In: Class. Quantum Grav. 24.12 (June 2007), S171–
S186. doi: 10.1088/0264-9381/24/12/S12. arXiv: 0705.1826 [astro-ph].

[382] R. N. Manchester and J. H. Taylor. Pulsars. W.H. Freeman and Company,
1977.

[383] B. Margalit et al. “Angular-momentum Transport in Proto-neutron Stars
and the Fate of Neutron Star Merger Remnants.” In: Astrophys. J. 939.1,
51 (Nov. 2022), p. 51. doi: 10.3847/1538-4357/ac8b01. arXiv: 2206.10645
[astro-ph.HE].

[384] Y. Masada, T. Takiwaki, and K. Kotake. “Convection and Dynamo in
Newly Born Neutron Stars.” In: Astrophys. J. 924.2, 75 (Jan. 2022), p. 75.
doi: 10.3847/1538-4357/ac34f6. arXiv: 2001.08452 [astro-ph.HE].

[385] P. N. McDermott, H. M. van Horn, and C. J. Hansen. “Nonradial Oscil-
lations of Neutron Stars.” In: Astrophys. J. 325 (Feb. 1988), p. 725. doi:
10.1086/166044.

[386] C. Messick et al. “Analysis framework for the prompt discovery of compact
binary mergers in gravitational-wave data.” In: Phys. Rev. D 95 (4 Feb.
2017), p. 042001. doi: 10.1103/PhysRevD.95.042001. url: https://link.
aps.org/doi/10.1103/PhysRevD.95.042001.

https://doi.org/10.1093/mnras/168.3.603
https://doi.org/10.1126/science.1094645
https://arxiv.org/abs/astro-ph/0401086
https://arxiv.org/abs/astro-ph/0401086
https://doi.org/10.1086/307790
https://arxiv.org/abs/astro-ph/9810274
https://doi.org/10.1088/1475-7516/2020/03/050
https://arxiv.org/abs/1912.02622
https://doi.org/10.1093/mnras/stab2830
https://arxiv.org/abs/2109.13936
https://doi.org/10.1103/PhysRevD.96.063011
https://arxiv.org/abs/1707.03368
https://arxiv.org/abs/1707.03368
https://doi.org/10.1093/mnras/stt1470
https://arxiv.org/abs/1308.1058
https://arxiv.org/abs/1308.1058
https://doi.org/10.1086/163312
https://doi.org/10.1088/0264-9381/24/12/S12
https://arxiv.org/abs/0705.1826
https://doi.org/10.3847/1538-4357/ac8b01
https://arxiv.org/abs/2206.10645
https://arxiv.org/abs/2206.10645
https://doi.org/10.3847/1538-4357/ac34f6
https://arxiv.org/abs/2001.08452
https://doi.org/10.1086/166044
https://doi.org/10.1103/PhysRevD.95.042001
https://link.aps.org/doi/10.1103/PhysRevD.95.042001
https://link.aps.org/doi/10.1103/PhysRevD.95.042001


Bibliography 277

[387] B. D. Metzger, A. L. Piro, and E. Quataert. “Neutron-rich freeze-out in
viscously spreading accretion discs formed from compact object mergers.”
In: MNRAS 396.1 (June 2009), pp. 304–314. doi: 10 . 1111 / j . 1365 -
2966.2008.14380.x. arXiv: 0810.2535 [astro-ph].

[388] B. D. Metzger et al. “Electromagnetic counterparts of compact object
mergers powered by the radioactive decay of r-process nuclei.” In: MNRAS
406.4 (Aug. 2010), pp. 2650–2662. doi: 10.1111/j.1365-2966.2010.16864.x.
arXiv: 1001.5029 [astro-ph.HE].

[389] B. D. Metzger et al. “The effects of r-process heating on fallback accretion
in compact object mergers.” In: MNRAS 402.4 (Mar. 2010), pp. 2771–2777.
doi: 10.1111/j.1365-2966.2009.16107.x. arXiv: 0908.0530 [astro-ph.HE].

[390] B. D. Metzger. “Kilonovae.” In: Living Reviews in Relativity 23.1, 1
(Dec. 2019), p. 1. doi: 10.1007/s41114-019-0024-0. arXiv: 1910.01617
[astro-ph.HE].

[391] B. D. Metzger and R. Fernández. “Red or blue? A potential kilonova
imprint of the delay until black hole formation following a neutron star
merger.” In: MNRAS 441.4 (July 2014), pp. 3444–3453. doi: 10.1093/
mnras/stu802. arXiv: 1402.4803 [astro-ph.HE].

[392] K. O. Mikaelian. “New Mechanism for Slowing Down the Rotation of
Dense Stars.” In: Astrophys. J. Lett. 214 (May 1977), p. L23. doi: 10.
1086/182434.

[393] M. C. Miller et al. “PSR J0030+0451 Mass and Radius from NICER
Data and Implications for the Properties of Neutron Star Matter.” In:
Astrophys. J. Lett. 887.1, L24 (Dec. 2019), p. L24. doi: 10.3847/2041-
8213/ab50c5. arXiv: 1912.05705 [astro-ph.HE].

[394] M. C. Miller et al. “The Radius of PSR J0740+6620 from NICER and
XMM-Newton Data.” In: Astrophys. J. Lett. 918.2, L28 (Sept. 2021),
p. L28. doi: 10.3847/2041-8213/ac089b. arXiv: 2105.06979 [astro-ph.HE].

[395] J. A. Miralles, J. A. Pons, and V. A. Urpin. “Convective Instability in
Proto-Neutron Stars.” In: Astrophys. J. 543.2 (Nov. 2000), pp. 1001–1006.
doi: 10.1086/317163. arXiv: astro-ph/0007069 [astro-ph].

[396] A. Miura and P. L. Pritchett. “Nonlocal stability analysis of the MHD
Kelvin-Helmholtz instability in a compressible plasma.” In: J. Geo-
phys. Res. 87.A9 (Sept. 1982), pp. 7431–7444. doi: 10.1029/JA087iA09p07431.

[397] A. Miura and T. Sato. “Shear instability: Auroral arc deformation and
anomalous momentum transport.” In: J. Geophys. Res. 83.A5 (May 1978),
pp. 2109–2117. doi: 10.1029/JA083iA05p02109.

[398] R. Moenchmeyer et al. “Gravitational waves from the collapse of rotating
stellar cores.” In: Astron. Astrophys. 246 (June 1991), pp. 417–440.

[399] C. Mondal et al. “Detectability of a phase transition in neutron star matter
with third-generation gravitational wave interferometers.” In: MNRAS
524.3 (Sept. 2023), pp. 3464–3473. doi: 10.1093/mnras/stad2082. arXiv:
2305.05999 [astro-ph.HE].

[400] E. R. Most. “Impact of a mean field dynamo on neutron star mergers
leading to magnetar remnants.” In: Phys. Rev. D 108.12, 123012 (Dec.
2023), p. 123012. doi: 10.1103/PhysRevD.108.123012. arXiv: 2311.03333
[astro-ph.HE].

https://doi.org/10.1111/j.1365-2966.2008.14380.x
https://doi.org/10.1111/j.1365-2966.2008.14380.x
https://arxiv.org/abs/0810.2535
https://doi.org/10.1111/j.1365-2966.2010.16864.x
https://arxiv.org/abs/1001.5029
https://doi.org/10.1111/j.1365-2966.2009.16107.x
https://arxiv.org/abs/0908.0530
https://doi.org/10.1007/s41114-019-0024-0
https://arxiv.org/abs/1910.01617
https://arxiv.org/abs/1910.01617
https://doi.org/10.1093/mnras/stu802
https://doi.org/10.1093/mnras/stu802
https://arxiv.org/abs/1402.4803
https://doi.org/10.1086/182434
https://doi.org/10.1086/182434
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab50c5
https://arxiv.org/abs/1912.05705
https://doi.org/10.3847/2041-8213/ac089b
https://arxiv.org/abs/2105.06979
https://doi.org/10.1086/317163
https://arxiv.org/abs/astro-ph/0007069
https://doi.org/10.1029/JA087iA09p07431
https://doi.org/10.1029/JA083iA05p02109
https://doi.org/10.1093/mnras/stad2082
https://arxiv.org/abs/2305.05999
https://doi.org/10.1103/PhysRevD.108.123012
https://arxiv.org/abs/2311.03333
https://arxiv.org/abs/2311.03333


278 Bibliography

[401] P. Mösta et al. “A large-scale dynamo and magnetoturbulence in rapidly
rotating core-collapse supernovae.” In: Nature 528.7582 (Dec. 2015),
pp. 376–379. doi: 10.1038/nature15755. arXiv: 1512.00838 [astro-ph.HE].

[402] C. D. Muhlberger et al. “Magnetic effects on the low-T /|W | instability in
differentially rotating neutron stars.” In: Phys. Rev. D 90.10, 104014 (Nov.
2014), p. 104014. doi: 10.1103/PhysRevD.90.104014. arXiv: 1405.2144
[astro-ph.HE].

[403] W.-C. Müller and D. Carati. “Dynamic gradient-diffusion subgrid models
for incompressible magnetohydrodynamic turbulence.” In: Physics of
Plasmas 9.3 (Mar. 2002), pp. 824–834. doi: 10.1063/1.1448498.

[404] K. Murase and I. Bartos. “High-Energy Multimessenger Transient As-
trophysics.” In: Ann. Rev. Nucl. Part. Sci. 69 (2019), pp. 477–506. doi:
10.1146/annurev-nucl-101918-023510. arXiv: 1907.12506 [astro-ph.HE].

[405] A. Murguia-Berthier et al. “The Properties of Short Gamma-Ray Burst
Jets Triggered by Neutron Star Mergers.” In: Astrophys. J. Lett. 835.2, L34
(Feb. 2017), p. L34. doi: 10.3847/2041-8213/aa5b9e. arXiv: 1609.04828
[astro-ph.HE].

[406] G. C. Murphy and M. E. Pessah. “On the Anisotropic Nature of MRI-
driven Turbulence in Astrophysical Disks.” In: Astrophys. J. 802.2, 139
(Apr. 2015), p. 139. doi: 10.1088/0004-637X/802/2/139. arXiv: 1410.6196
[astro-ph.SR].

[407] H. Müther and A. Polls. “Two-Body Correlations in Nuclear Systems.” In:
Progress in Particle and Nuclear Physics 45.1 (Jan. 2000), pp. 243–334.
doi: 10.1016/S0146-6410(00)00105-8. arXiv: nucl-th/0001007 [nucl-th].

[408] M. Müller and D. Scherer. “A Grid and Subgrid-Scale Radiation Pa-
rameterization of Topographic Effects for Mesoscale Weather Forecast
Models.” In: Monthly Weather Review - MON WEATHER REV 133
(June 2005), pp. 1431–1442. doi: 10.1175/MWR2927.1.

[409] D. K. Nadezhin. “Some Secondary Indications of Gravitational Collapse.”
In: Astrophysics and Space Science 69.1 (May 1980), pp. 115–125. doi:
10.1007/BF00638971.

[410] E. Nakar and T. Piran. “Detectable radio flares following gravitational
waves from mergers of binary neutron stars.” In: Nature 478.7367 (Oct.
2011), pp. 82–84. doi: 10.1038/nature10365. arXiv: 1102.1020.

[411] K. Nakazato, K. Sumiyoshi, and S. Yamada. “Astrophysical implications
of equation of state for hadron-quark mixed phase: Compact stars and
stellar collapses.” In: Phys. Rev. D 77.10, 103006 (May 2008), p. 103006.
doi: 10.1103/PhysRevD.77.103006. arXiv: 0804.0661 [astro-ph].

[412] Y. Nambu and G. Jona-Lasinio. “Dynamical Model of Elementary Parti-
cles Based on an Analogy with Superconductivity. I.” In: Physical Review
122.1 (Apr. 1961), pp. 345–358. doi: 10.1103/PhysRev.122.345.

[413] Y. Nambu and G. Jona-Lasinio. “Dynamical Model of Elementary Parti-
cles Based on an Analogy with Superconductivity. II.” In: Physical Review
124.1 (Oct. 1961), pp. 246–254. doi: 10.1103/PhysRev.124.246.

[414] R. Narayan, B. Paczynski, and T. Piran. “Gamma-Ray Bursts as the
Death Throes of Massive Binary Stars.” In: Astrophys. J. Lett. 395 (Aug.
1992), p. L83. doi: 10.1086/186493. arXiv: astro-ph/9204001 [astro-ph].

https://doi.org/10.1038/nature15755
https://arxiv.org/abs/1512.00838
https://doi.org/10.1103/PhysRevD.90.104014
https://arxiv.org/abs/1405.2144
https://arxiv.org/abs/1405.2144
https://doi.org/10.1063/1.1448498
https://doi.org/10.1146/annurev-nucl-101918-023510
https://arxiv.org/abs/1907.12506
https://doi.org/10.3847/2041-8213/aa5b9e
https://arxiv.org/abs/1609.04828
https://arxiv.org/abs/1609.04828
https://doi.org/10.1088/0004-637X/802/2/139
https://arxiv.org/abs/1410.6196
https://arxiv.org/abs/1410.6196
https://doi.org/10.1016/S0146-6410(00)00105-8
https://arxiv.org/abs/nucl-th/0001007
https://doi.org/10.1175/MWR2927.1
https://doi.org/10.1007/BF00638971
https://doi.org/10.1038/nature10365
https://arxiv.org/abs/1102.1020
https://doi.org/10.1103/PhysRevD.77.103006
https://arxiv.org/abs/0804.0661
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRev.124.246
https://doi.org/10.1086/186493
https://arxiv.org/abs/astro-ph/9204001


Bibliography 279

[415] T. Narikawa and N. Uchikata. “Follow-up analyses of the binary-neutron-
star signals GW170817 and GW190425 by using post-Newtonian waveform
models.” In: Phys. Rev. D 106.10 (2022), p. 103006. doi: 10 . 1103 /
PhysRevD.106.103006. arXiv: 2205.06023 [gr-qc].

[416] S. Nissanke et al. “Exploring Short Gamma-ray Bursts as Gravitational-
wave Standard Sirens.” In: Astrophys. J. 725.1 (Dec. 2010), pp. 496–514.
doi: 10.1088/0004-637X/725/1/496. arXiv: 0904.1017 [astro-ph.CO].

[417] A. H. Nitz et al. “Rapid detection of gravitational waves from compact
binary mergers with PyCBC Live.” In: Phys. Rev. D 98.2 (2018), p. 024050.
doi: 10.1103/PhysRevD.98.024050. arXiv: 1805.11174 [gr-qc].

[418] A. H. Nitz et al. “4-OGC: Catalog of Gravitational Waves from Compact
Binary Mergers.” In: Astrophys. J. 946.2 (2023), p. 59. doi: 10.3847/1538-
4357/aca591. arXiv: 2112.06878 [astro-ph.HE].

[419] S. C. Noble et al. “Primitive variable solvers for conservative general
relativistic magnetohydrodynamics.” In: Astrophys. J. 641 (2006), pp. 626–
637. doi: 10.1086/500349. arXiv: astro-ph/0512420.

[420] K. Nomoto. “Accreting white dwarf models for type I supernovae. I -
Presupernova evolution and triggering mechanisms.” In: Astrophys. J. 253
(Feb. 1982), pp. 798–810. doi: 10.1086/159682.

[421] T. Nozawa et al. “Construction of highly accurate models of rotating
neutron stars - comparison of three different numerical schemes.” In:
Astron. Astrophys. Suppl. 132 (Nov. 1998), pp. 431–454. doi: 10.1051/aas:
1998304. arXiv: gr-qc/9804048 [gr-qc].

[422] M. Obergaulinger. “Astrophysical magnetohydrodynamics and radiative
transfer: numerical methods and applications.” PhD thesis. Max-Planck-
Institute for Astrophysics, Garching, Jan. 2008.

[423] M. Obergaulinger and M. A. Aloy. “Magnetorotational core collapse of
possible GRB progenitors - III. Three-dimensional models.” In: MNRAS
503.4 (May 2021), pp. 4942–4963. doi: 10.1093/mnras/stab295. arXiv:
2008.07205 [astro-ph.HE].

[424] M. Obergaulinger, M. A. Aloy, and E. Müller. “Axisymmetric simulations
of magneto-rotational core collapse: dynamics and gravitational wave
signal.” In: Astron. Astrophys. 450.3 (May 2006), pp. 1107–1134. doi:
10.1051/0004-6361:20054306. arXiv: astro-ph/0510184 [astro-ph].

[425] M. Obergaulinger, M. A. Aloy, and E. Müller. “Local simulations of
the magnetized Kelvin-Helmholtz instability in neutron-star mergers.”
In: Astron. Astrophys. 515, A30 (June 2010), A30. doi: 10.1051/0004-
6361/200913386. arXiv: 1003.6031 [astro-ph.SR].

[426] M. Obergaulinger et al. “Axisymmetric simulations of magnetorotational
core collapse: approximate inclusion of general relativistic effects.” In:
Astron. Astrophys. 457.1 (Oct. 2006), pp. 209–222. doi: 10.1051/0004-
6361:20064982. arXiv: astro-ph/0602187 [astro-ph].

[427] M. Obergaulinger et al. “Semi-global simulations of the magneto-rotational
instability in core collapse supernovae.” In: Astron. Astrophys. 498.1 (Apr.
2009), pp. 241–271. doi: 10.1051/0004-6361/200811323. arXiv: 0811.1652
[astro-ph].

https://doi.org/10.1103/PhysRevD.106.103006
https://doi.org/10.1103/PhysRevD.106.103006
https://arxiv.org/abs/2205.06023
https://doi.org/10.1088/0004-637X/725/1/496
https://arxiv.org/abs/0904.1017
https://doi.org/10.1103/PhysRevD.98.024050
https://arxiv.org/abs/1805.11174
https://doi.org/10.3847/1538-4357/aca591
https://doi.org/10.3847/1538-4357/aca591
https://arxiv.org/abs/2112.06878
https://doi.org/10.1086/500349
https://arxiv.org/abs/astro-ph/0512420
https://doi.org/10.1086/159682
https://doi.org/10.1051/aas:1998304
https://doi.org/10.1051/aas:1998304
https://arxiv.org/abs/gr-qc/9804048
https://doi.org/10.1093/mnras/stab295
https://arxiv.org/abs/2008.07205
https://doi.org/10.1051/0004-6361:20054306
https://arxiv.org/abs/astro-ph/0510184
https://doi.org/10.1051/0004-6361/200913386
https://doi.org/10.1051/0004-6361/200913386
https://arxiv.org/abs/1003.6031
https://doi.org/10.1051/0004-6361:20064982
https://doi.org/10.1051/0004-6361:20064982
https://arxiv.org/abs/astro-ph/0602187
https://doi.org/10.1051/0004-6361/200811323
https://arxiv.org/abs/0811.1652
https://arxiv.org/abs/0811.1652


280 Bibliography

[428] R. Oechslin, H. T. Janka, and A. Marek. “Relativistic neutron star merger
simulations with non-zero temperature equations of state. 1. Variation
of binary parameters and equation of state.” In: Astron. Astrophys. 467
(2007), p. 395. doi: 10 .1051/0004- 6361:20066682. arXiv: astro- ph/
0611047.

[429] R. Oechslin, S. Rosswog, and F.-K. Thielemann. “Conformally flat smoothed
particle hydrodynamics application to neutron star mergers.” In: Phys. Rev. D
65.10, 103005 (May 2002), p. 103005. doi: 10.1103/PhysRevD.65.103005.
arXiv: gr-qc/0111005 [gr-qc].

[430] M. Oertel, A. F. Fantina, and J. Novak. “Extended equation of state for
core-collapse simulations.” In: Phys. Rev. C 85.5, 055806 (May 2012),
p. 055806. doi: 10 . 1103 / PhysRevC . 85 . 055806. arXiv: 1202 . 2679
[nucl-th].

[431] M. Oertel et al. “Equations of state for supernovae and compact stars.”
In: Reviews of Modern Physics 89.1, 015007 (Jan. 2017), p. 015007. doi:
10.1103/RevModPhys.89.015007. arXiv: 1610.03361 [astro-ph.HE].

[432] G. I. Ogilvie. “On the dynamics of magnetorotational turbulent stresses.”
In: MNRAS 340.3 (Apr. 2003), pp. 969–982. doi: 10 . 1046 / j . 1365 -
8711.2003.06359.x. arXiv: astro-ph/0212442 [astro-ph].

[433] A. Oron. “Relativistic magnetized star with poloidal and toroidal fields.”
In: Phys. Rev. D 66.2, 023006 (July 2002), p. 023006. doi: 10.1103/
PhysRevD.66.023006.

[434] C. D. Ott et al. “One-armed Spiral Instability in a Low-T/|W| Postbounce
Supernova Core.” In: Astrophys. J. Lett. 625.2 (June 2005), pp. L119–L122.
doi: 10.1086/431305. arXiv: astro-ph/0503187 [astro-ph].

[435] S. Ou and J. E. Tohline. “Unexpected Dynamical Instabilities in Differ-
entially Rotating Neutron Stars.” In: Astrophys. J. 651.2 (Nov. 2006),
pp. 1068–1078. doi: 10.1086/507597. arXiv: astro-ph/0604099 [astro-ph].

[436] C. Palenzuela. “Modelling magnetized neutron stars using resistive mag-
netohydrodynamics.” In: MNRAS 431.2 (May 2013), pp. 1853–1865. doi:
10.1093/mnras/stt311. arXiv: 1212.0130 [astro-ph.HE].

[437] C. Palenzuela et al. “Beyond ideal MHD: towards a more realistic mod-
elling of relativistic astrophysical plasmas.” In: MNRAS 394.4 (Apr. 2009),
pp. 1727–1740. doi: 10.1111/j.1365-2966.2009.14454.x. arXiv: 0810.1838
[astro-ph].

[438] C. Palenzuela et al. “Electromagnetic and Gravitational Outputs from
Binary-Neutron-Star Coalescence.” In: Phys. Rev. Lett. 111.6, 061105
(Aug. 2013), p. 061105. doi: 10.1103/PhysRevLett.111.061105. arXiv:
1301.7074 [gr-qc].

[439] C. Palenzuela et al. “Effects of the microphysical equation of state in
the mergers of magnetized neutron stars with neutrino cooling.” In:
Phys. Rev. D 92.4, 044045 (Aug. 2015), p. 044045. doi: 10.1103/PhysRevD.
92.044045. arXiv: 1505.01607 [gr-qc].

[440] C. Palenzuela et al. “Turbulent magnetic field amplification in binary neu-
tron star mergers.” In: Phys. Rev. D 106.2, 023013 (July 2022), p. 023013.
doi: 10.1103/PhysRevD.106.023013. arXiv: 2112.08413 [gr-qc].

https://doi.org/10.1051/0004-6361:20066682
https://arxiv.org/abs/astro-ph/0611047
https://arxiv.org/abs/astro-ph/0611047
https://doi.org/10.1103/PhysRevD.65.103005
https://arxiv.org/abs/gr-qc/0111005
https://doi.org/10.1103/PhysRevC.85.055806
https://arxiv.org/abs/1202.2679
https://arxiv.org/abs/1202.2679
https://doi.org/10.1103/RevModPhys.89.015007
https://arxiv.org/abs/1610.03361
https://doi.org/10.1046/j.1365-8711.2003.06359.x
https://doi.org/10.1046/j.1365-8711.2003.06359.x
https://arxiv.org/abs/astro-ph/0212442
https://doi.org/10.1103/PhysRevD.66.023006
https://doi.org/10.1103/PhysRevD.66.023006
https://doi.org/10.1086/431305
https://arxiv.org/abs/astro-ph/0503187
https://doi.org/10.1086/507597
https://arxiv.org/abs/astro-ph/0604099
https://doi.org/10.1093/mnras/stt311
https://arxiv.org/abs/1212.0130
https://doi.org/10.1111/j.1365-2966.2009.14454.x
https://arxiv.org/abs/0810.1838
https://arxiv.org/abs/0810.1838
https://doi.org/10.1103/PhysRevLett.111.061105
https://arxiv.org/abs/1301.7074
https://doi.org/10.1103/PhysRevD.92.044045
https://doi.org/10.1103/PhysRevD.92.044045
https://arxiv.org/abs/1505.01607
https://doi.org/10.1103/PhysRevD.106.023013
https://arxiv.org/abs/2112.08413


Bibliography 281

[441] Y. Pan et al. “Inspiral-merger-ringdown waveforms of spinning, precessing
black-hole binaries in the effective-one-body formalism.” In: Phys. Rev. D
89.8, 084006 (Apr. 2014), p. 084006. doi: 10.1103/PhysRevD.89.084006.
arXiv: 1307.6232 [gr-qc].

[442] J. Papaloizou and J. E. Pringle. “Gravitational radiation and the stability
of rotating stars.” In: MNRAS 184 (Aug. 1978), pp. 501–508. doi: 10.
1093/mnras/184.3.501.

[443] E. N. Parker. “Hydromagnetic Dynamo Models.” In: Astrophys. J. 122
(Sept. 1955), p. 293. doi: 10.1086/146087.

[444] V. Paschalidis. “General relativistic simulations of compact binary mergers
as engines for short gamma-ray bursts.” In: Class. Quantum Grav. 34.8,
084002 (Apr. 2017), p. 084002. doi: 10.1088/1361-6382/aa61ce. arXiv:
1611.01519 [astro-ph.HE].

[445] V. Paschalidis and S. L. Shapiro. “A new scheme for matching gen-
eral relativistic ideal magnetohydrodynamics to its force-free limit.”
In: Phys. Rev. D 88.10, 104031 (Nov. 2013), p. 104031. doi: 10.1103/
PhysRevD.88.104031. arXiv: 1310.3274 [astro-ph.HE].

[446] V. Paschalidis et al. “One-arm spiral instability in hypermassive neu-
tron stars formed by dynamical-capture binary neutron star mergers.”
In: Phys. Rev. D 92.12, 121502 (Dec. 2015), p. 121502. doi: 10.1103/
PhysRevD.92.121502. arXiv: 1510.03432 [astro-ph.HE].

[447] A. Passamonti and N. Andersson. “The intimate relation between the
low T/W instability and the corotation point.” In: MNRAS 446.1 (Jan.
2015), pp. 555–565. doi: 10 .1093/mnras/stu2062. arXiv: 1409 .0677
[astro-ph.SR].

[448] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python.” In: J.
Machine Learning Res. 12 (2011), pp. 2825–2830. arXiv: 1201 . 0490
[cs.LG].

[449] B. Peres, M. Oertel, and J. Novak. “Influence of pions and hyperons
on stellar black hole formation.” In: Phys. Rev. D 87.4, 043006 (Feb.
2013), p. 043006. doi: 10.1103/PhysRevD.87.043006. arXiv: 1210.7435
[astro-ph.HE].

[450] M. E. Pessah. “Angular Momentum Transport in Protoplanetary and
Black Hole Accretion Disks: The Role of Parasitic Modes in the Saturation
of MHD Turbulence.” In: Astrophys. J. 716.2 (June 2010), pp. 1012–1027.
doi: 10.1088/0004-637X/716/2/1012. arXiv: 0908.1791 [astro-ph.HE].

[451] M. E. Pessah and C.-k. Chan. “Viscous, Resistive Magnetorotational
Modes.” In: Astrophys. J. 684.1 (Sept. 2008), pp. 498–514. doi: 10.1086/
589915. arXiv: 0801.4570 [astro-ph].

[452] M. E. Pessah, C.-K. Chan, and D. Psaltis. “Local Model for Angular-
Momentum Transport in Accretion Disks Driven by the Magnetorotational
Instability.” In: Phys. Rev. Lett. 97.22, 221103 (Dec. 2006), p. 221103. doi:
10.1103/PhysRevLett.97.221103. arXiv: astro-ph/0610565 [astro-ph].

[453] M. E. Pessah, C.-K. Chan, and D. Psaltis. “The signature of the mag-
netorotational instability in the Reynolds and Maxwell stress tensors
in accretion discs.” In: MNRAS 372.1 (Oct. 2006), pp. 183–190. doi:
10.1111/j.1365-2966.2006.10824.x. arXiv: astro-ph/0603178 [astro-ph].

https://doi.org/10.1103/PhysRevD.89.084006
https://arxiv.org/abs/1307.6232
https://doi.org/10.1093/mnras/184.3.501
https://doi.org/10.1093/mnras/184.3.501
https://doi.org/10.1086/146087
https://doi.org/10.1088/1361-6382/aa61ce
https://arxiv.org/abs/1611.01519
https://doi.org/10.1103/PhysRevD.88.104031
https://doi.org/10.1103/PhysRevD.88.104031
https://arxiv.org/abs/1310.3274
https://doi.org/10.1103/PhysRevD.92.121502
https://doi.org/10.1103/PhysRevD.92.121502
https://arxiv.org/abs/1510.03432
https://doi.org/10.1093/mnras/stu2062
https://arxiv.org/abs/1409.0677
https://arxiv.org/abs/1409.0677
https://arxiv.org/abs/1201.0490
https://arxiv.org/abs/1201.0490
https://doi.org/10.1103/PhysRevD.87.043006
https://arxiv.org/abs/1210.7435
https://arxiv.org/abs/1210.7435
https://doi.org/10.1088/0004-637X/716/2/1012
https://arxiv.org/abs/0908.1791
https://doi.org/10.1086/589915
https://doi.org/10.1086/589915
https://arxiv.org/abs/0801.4570
https://doi.org/10.1103/PhysRevLett.97.221103
https://arxiv.org/abs/astro-ph/0610565
https://doi.org/10.1111/j.1365-2966.2006.10824.x
https://arxiv.org/abs/astro-ph/0603178


282 Bibliography

[454] M. E. Pessah, C.-k. Chan, and D. Psaltis. “Angular Momentum Trans-
port in Accretion Disks: Scaling Laws in MRI-driven Turbulence.” In:
Astrophys. J. Lett. 668.1 (Oct. 2007), pp. L51–L54. doi: 10.1086/522585.
arXiv: 0705.0352 [astro-ph].

[455] M. E. Pessah and J. Goodman. “On the Saturation of the Magnetoro-
tational Instability Via Parasitic Modes.” In: Astrophys. J. Lett. 698.1
(June 2009), pp. L72–L76. doi: 10.1088/0004-637X/698/1/L72. arXiv:
0902.0794 [astro-ph.HE].

[456] J. Pétri. “General-relativistic force-free pulsar magnetospheres.” In: MN-
RAS 455.4 (Feb. 2016), pp. 3779–3805. doi: 10.1093/mnras/stv2613.
arXiv: 1511.01337 [astro-ph.HE].

[457] C. Pilgrim. “piecewise-regression (aka segmented regression) in Python.”
In: The Journal of Open Source Software 6.68, 3859 (Dec. 2021), p. 3859.
doi: 10.21105/joss.03859.

[458] A. Piórkowska-Kurpas and M. Biesiada. “Testing Quantum Gravity in
the Multi-Messenger Astronomy Era.” In: Universe 8.6 (2022), p. 321.
doi: 10.3390/universe8060321.

[459] T. Piran. “The physics of gamma-ray bursts.” In: Reviews of Modern
Physics 76.4 (Oct. 2004), pp. 1143–1210. doi: 10.1103/RevModPhys.76.
1143. arXiv: astro-ph/0405503 [astro-ph].

[460] A. L. Piro, B. Giacomazzo, and R. Perna. “The Fate of Neutron Star
Binary Mergers.” In: Astrophys. J. Lett. 844.2, L19 (Aug. 2017), p. L19.
doi: 10.3847/2041-8213/aa7f2f. arXiv: 1704.08697 [astro-ph.HE].

[461] J. A. Pons and U. Geppert. “Magnetic field dissipation in neutron star
crusts: from magnetars to isolated neutron stars.” In: Astron. Astrophys.
470.1 (July 2007), pp. 303–315. doi: 10.1051/0004-6361:20077456. arXiv:
astro-ph/0703267 [astro-ph].

[462] J. A. Pons et al. “Evolution of Proto-Neutron Stars.” In: Astrophys. J.
513.2 (Mar. 1999), pp. 780–804. doi: 10 .1086/306889. arXiv: astro -
ph/9807040 [astro-ph].

[463] J. A. Pons et al. “Toward a Mass and Radius Determination of the Nearby
Isolated Neutron Star RX J185635-3754.” In: Astrophys. J. 564.2 (Jan.
2002), pp. 981–1006. doi: 10.1086/324296. arXiv: astro-ph/0107404
[astro-ph].

[464] A. Y. Potekhin. “Atmospheres and radiating surfaces of neutron stars.”
In: Physics Uspekhi 57.8, 735-770 (Aug. 2014), pp. 735–770. doi: 10.3367/
UFNe.0184.201408a.0793. arXiv: 1403.0074 [astro-ph.SR].

[465] J. Poutanen et al. “The effect of accretion on the measurement of neutron
star mass and radius in the low-mass X-ray binary 4U 1608-52.” In:
MNRAS 442.4 (Aug. 2014), pp. 3777–3790. doi: 10.1093/mnras/stu1139.
arXiv: 1405.2663 [astro-ph.HE].

[466] J. Powell et al. “Three dimensional magnetorotational core-collapse su-
pernova explosions of a 39 solar mass progenitor star.” In: MNRAS
522.4 (July 2023), pp. 6070–6086. doi: 10.1093/mnras/stad1292. arXiv:
2212.00200 [astro-ph.HE].

https://doi.org/10.1086/522585
https://arxiv.org/abs/0705.0352
https://doi.org/10.1088/0004-637X/698/1/L72
https://arxiv.org/abs/0902.0794
https://doi.org/10.1093/mnras/stv2613
https://arxiv.org/abs/1511.01337
https://doi.org/10.21105/joss.03859
https://doi.org/10.3390/universe8060321
https://doi.org/10.1103/RevModPhys.76.1143
https://doi.org/10.1103/RevModPhys.76.1143
https://arxiv.org/abs/astro-ph/0405503
https://doi.org/10.3847/2041-8213/aa7f2f
https://arxiv.org/abs/1704.08697
https://doi.org/10.1051/0004-6361:20077456
https://arxiv.org/abs/astro-ph/0703267
https://doi.org/10.1086/306889
https://arxiv.org/abs/astro-ph/9807040
https://arxiv.org/abs/astro-ph/9807040
https://doi.org/10.1086/324296
https://arxiv.org/abs/astro-ph/0107404
https://arxiv.org/abs/astro-ph/0107404
https://doi.org/10.3367/UFNe.0184.201408a.0793
https://doi.org/10.3367/UFNe.0184.201408a.0793
https://arxiv.org/abs/1403.0074
https://doi.org/10.1093/mnras/stu1139
https://arxiv.org/abs/1405.2663
https://doi.org/10.1093/mnras/stad1292
https://arxiv.org/abs/2212.00200


Bibliography 283

[467] M. Prakash et al. “Composition and structure of protoneutron stars.” In:
Phys. Rep. 280 (Jan. 1997), pp. 1–77. doi: 10.1016/S0370-1573(96)00023-
3. arXiv: nucl-th/9603042 [nucl-th].

[468] M. Punturo et al. “The Einstein Telescope: a third-generation gravita-
tional wave observatory.” In: Class. Quantum Grav. 27.19, 194002 (Oct.
2010), p. 194002. doi: 10.1088/0264-9381/27/19/194002.

[469] D. Radice. “General-relativistic Large-eddy Simulations of Binary Neutron
Star Mergers.” In: Astrophys. J. Lett. 838.1, L2 (Mar. 2017), p. L2. doi:
10.3847/2041-8213/aa6483. arXiv: 1703.02046 [astro-ph.HE].

[470] D. Radice. “Binary Neutron Star Merger Simulations with a Calibrated
Turbulence Model.” In: Symmetry 12.8 (July 2020), p. 1249. doi: 10.3390/
sym12081249. arXiv: 2005.09002 [astro-ph.HE].

[471] D. Radice, S. Bernuzzi, and C. D. Ott. “One-armed spiral instability
in neutron star mergers and its detectability in gravitational waves.”
In: Phys. Rev. D 94.6, 064011 (Sept. 2016), p. 064011. doi: 10.1103/
PhysRevD.94.064011. arXiv: 1603.05726 [gr-qc].

[472] D. Radice and I. Hawke. “Turbulence modelling in neutron star merger
simulations.” In: Living Reviews in Computational Astrophysics 10.1, 1
(Feb. 2024), p. 1. doi: 10.1007/s41115-023-00019-9. arXiv: 2402.03224
[astro-ph.HE].

[473] D. Radice et al. “Dynamical mass ejection from binary neutron star
mergers.” In: MNRAS 460.3 (Aug. 2016), pp. 3255–3271. doi: 10.1093/
mnras/stw1227. arXiv: 1601.02426 [astro-ph.HE].

[474] D. Radice et al. “Binary Neutron Star Mergers: Mass Ejection, Electro-
magnetic Counterparts, and Nucleosynthesis.” In: Astrophys. J. 869.2, 130
(Dec. 2018), p. 130. doi: 10.3847/1538-4357/aaf054. arXiv: 1809.11161
[astro-ph.HE].

[475] D. Radice et al. “A new moment-based general-relativistic neutrino-
radiation transport code: Methods and first applications to neutron star
mergers.” In: Mon. Not. Roy. Astron. Soc. 512.1 (2022), pp. 1499–1521.
doi: 10.1093/mnras/stac589. arXiv: 2111.14858 [astro-ph.HE].

[476] C. Raithel, V. Paschalidis, and F. Özel. “Realistic finite-temperature
effects in neutron star merger simulations.” In: Phys. Rev. D 104.6 (2021),
p. 063016. doi: 10 . 1103/PhysRevD.104 .063016. arXiv: 2104 .07226
[astro-ph.HE].

[477] C. A. Raithel, F. Özel, and D. Psaltis. “Tidal Deformability from GW170817
as a Direct Probe of the Neutron Star Radius.” In: Astrophys. J. Lett.
857.2, L23 (Apr. 2018), p. L23. doi: 10.3847/2041-8213/aabcbf. arXiv:
1803.07687 [astro-ph.HE].

[478] C. A. Raithel and V. Paschalidis. “Detectability of Finite-Temperature
Effects From Neutron Star Mergers with Next-Generation Gravitational
Wave Detectors.” In: arXiv e-prints (Dec. 2023), arXiv:2312.14046. doi:
10.48550/arXiv.2312.14046. arXiv: 2312.14046 [astro-ph.HE].

[479] V. Ravi and P. D. Lasky. “The birth of black holes: neutron star collapse
times, gamma-ray bursts and fast radio bursts.” In: MNRAS 441.3 (July
2014), pp. 2433–2439. doi: 10.1093/mnras/stu720. arXiv: 1403.6327
[astro-ph.HE].

https://doi.org/10.1016/S0370-1573(96)00023-3
https://doi.org/10.1016/S0370-1573(96)00023-3
https://arxiv.org/abs/nucl-th/9603042
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.3847/2041-8213/aa6483
https://arxiv.org/abs/1703.02046
https://doi.org/10.3390/sym12081249
https://doi.org/10.3390/sym12081249
https://arxiv.org/abs/2005.09002
https://doi.org/10.1103/PhysRevD.94.064011
https://doi.org/10.1103/PhysRevD.94.064011
https://arxiv.org/abs/1603.05726
https://doi.org/10.1007/s41115-023-00019-9
https://arxiv.org/abs/2402.03224
https://arxiv.org/abs/2402.03224
https://doi.org/10.1093/mnras/stw1227
https://doi.org/10.1093/mnras/stw1227
https://arxiv.org/abs/1601.02426
https://doi.org/10.3847/1538-4357/aaf054
https://arxiv.org/abs/1809.11161
https://arxiv.org/abs/1809.11161
https://doi.org/10.1093/mnras/stac589
https://arxiv.org/abs/2111.14858
https://doi.org/10.1103/PhysRevD.104.063016
https://arxiv.org/abs/2104.07226
https://arxiv.org/abs/2104.07226
https://doi.org/10.3847/2041-8213/aabcbf
https://arxiv.org/abs/1803.07687
https://doi.org/10.48550/arXiv.2312.14046
https://arxiv.org/abs/2312.14046
https://doi.org/10.1093/mnras/stu720
https://arxiv.org/abs/1403.6327
https://arxiv.org/abs/1403.6327


284 Bibliography

[480] R. Raynaud et al. “Magnetar formation through a convective dynamo
in protoneutron stars.” In: Science Advances 6.11 (Mar. 2020), eaay2732.
doi: 10.1126/sciadv.aay2732. arXiv: 2003.06662 [astro-ph.HE].

[481] J. S. Read et al. “Constraints on a phenomenologically parameterized
neutron-star equation of state.” In: Phys. Rev. D79 (2009), p. 124032.
doi: 10.1103/PhysRevD.79.124032.

[482] J. S. Read et al. “Measuring the neutron star equation of state with
gravitational wave observations.” In: Phys. Rev. D 79.12, 124033 (June
2009), p. 124033. doi: 10.1103/PhysRevD.79.124033. arXiv: 0901.3258
[gr-qc].

[483] J. S. Read et al. “Matter effects on binary neutron star waveforms.”
In: Phys. Rev. D 88.4, 044042 (Aug. 2013), p. 044042. doi: 10.1103/
PhysRevD.88.044042. arXiv: 1306.4065 [gr-qc].

[484] A. Reboul-Salze et al. “A global model of the magnetorotational instability
in protoneutron stars.” In: Astron. Astrophys. 645, A109 (Jan. 2021), A109.
doi: 10.1051/0004-6361/202038369. arXiv: 2005.03567 [astro-ph.HE].

[485] A. Reboul-Salze et al. “MRI-driven αΩ dynamos in protoneutron stars.”
In: Astron. Astrophys. 667, A94 (Nov. 2022), A94. doi: 10.1051/0004-
6361/202142368. arXiv: 2111.02148 [astro-ph.HE].

[486] T. Regimbau and J. A. de Freitas Pacheco. “Population synthesis of
pulsars: Magnetic field effects.” In: Astron. Astrophys. 374 (July 2001),
pp. 182–188. doi: 10.1051/0004-6361:20010710. arXiv: astro-ph/0105254
[astro-ph].

[487] T. Rembiasz et al. “On the maximum magnetic field amplification by the
magnetorotational instability in core-collapse supernovae.” In: MNRAS
460.3 (Aug. 2016), pp. 3316–3334. doi: 10.1093/mnras/stw1201. arXiv:
1603.00466 [astro-ph.SR].

[488] T. Rembiasz et al. “Termination of the magnetorotational instability via
parasitic instabilities in core-collapse supernovae.” In: MNRAS 456.4 (Mar.
2016), pp. 3782–3802. doi: 10.1093/mnras/stv2917. arXiv: 1508.04799
[astro-ph.SR].

[489] T. Rembiasz et al. “Termination of the MRI via parasitic instabilities in
core-collapse supernovae: influence of numerical methods.” In: Journal of
Physics Conference Series. Vol. 719. Journal of Physics Conference Series.
May 2016, 012009, p. 012009. doi: 10.1088/1742-6596/719/1/012009.
arXiv: 1605.05200 [astro-ph.SR].

[490] L. Rezzolla and K. Takami. “Gravitational-wave signal from binary
neutron stars: A systematic analysis of the spectral properties.” In:
Phys. Rev. D 93.12, 124051 (June 2016), p. 124051. doi: 10 . 1103 /
PhysRevD.93.124051. arXiv: 1604.00246 [gr-qc].

[491] L. Rezzolla et al. “Accurate evolutions of unequal-mass neutron-star
binaries: properties of the torus and short GRB engines.” In: Class. Quan-
tum Grav. 27.11, 114105 (June 2010), p. 114105. doi: 10.1088/0264-
9381/27/11/114105. arXiv: 1001.3074 [gr-qc].

https://doi.org/10.1126/sciadv.aay2732
https://arxiv.org/abs/2003.06662
https://doi.org/10.1103/PhysRevD.79.124032
https://doi.org/10.1103/PhysRevD.79.124033
https://arxiv.org/abs/0901.3258
https://arxiv.org/abs/0901.3258
https://doi.org/10.1103/PhysRevD.88.044042
https://doi.org/10.1103/PhysRevD.88.044042
https://arxiv.org/abs/1306.4065
https://doi.org/10.1051/0004-6361/202038369
https://arxiv.org/abs/2005.03567
https://doi.org/10.1051/0004-6361/202142368
https://doi.org/10.1051/0004-6361/202142368
https://arxiv.org/abs/2111.02148
https://doi.org/10.1051/0004-6361:20010710
https://arxiv.org/abs/astro-ph/0105254
https://arxiv.org/abs/astro-ph/0105254
https://doi.org/10.1093/mnras/stw1201
https://arxiv.org/abs/1603.00466
https://doi.org/10.1093/mnras/stv2917
https://arxiv.org/abs/1508.04799
https://arxiv.org/abs/1508.04799
https://doi.org/10.1088/1742-6596/719/1/012009
https://arxiv.org/abs/1605.05200
https://doi.org/10.1103/PhysRevD.93.124051
https://doi.org/10.1103/PhysRevD.93.124051
https://arxiv.org/abs/1604.00246
https://doi.org/10.1088/0264-9381/27/11/114105
https://doi.org/10.1088/0264-9381/27/11/114105
https://arxiv.org/abs/1001.3074


Bibliography 285

[492] L. Rezzolla et al. “The Missing Link: Merging Neutron Stars Naturally
Produce Jet-like Structures and Can Power Short Gamma-ray Bursts.”
In: Astrophys. J. Lett. 732.1, L6 (May 2011), p. L6. doi: 10.1088/2041-
8205/732/1/L6. arXiv: 1101.4298 [astro-ph.HE].

[493] T. E. Riley et al. “A NICER View of PSR J0030+0451: Millisecond
Pulsar Parameter Estimation.” In: Astrophys. J. Lett. 887.1, L21 (Dec.
2019), p. L21. doi: 10 . 3847/2041 - 8213/ab481c. arXiv: 1912 . 05702
[astro-ph.HE].

[494] T. E. Riley et al. “A NICER View of the Massive Pulsar PSR J0740+6620
Informed by Radio Timing and XMM-Newton Spectroscopy.” In: Astro-
phys. J. Lett. 918.2, L27 (Sept. 2021), p. L27. doi: 10 . 3847 / 2041 -
8213/ac0a81. arXiv: 2105.06980 [astro-ph.HE].

[495] G. Rivieccio et al. “Gravitational-wave imprints of nonconvex dynamics
in binary neutron star mergers.” In: Phys. Rev. D 109.6, 064032 (Mar.
2024), p. 064032. doi: 10.1103/PhysRevD.109.064032. arXiv: 2401.06849
[astro-ph.HE].

[496] L. F. Roberts et al. “The influence of neutrinos on r-process nucleosyn-
thesis in the ejecta of black hole-neutron star mergers.” In: MNRAS
464.4 (Feb. 2017), pp. 3907–3919. doi: 10.1093/mnras/stw2622. arXiv:
1601.07942 [astro-ph.HE].

[497] S. Rosswog. “The dynamic ejecta of compact object mergers and eccentric
collisions.” In: Philosophical Transactions of the Royal Society of London
Series A 371.1992 (Apr. 2013), pp. 20120272–20120272. doi: 10.1098/
rsta.2012.0272. arXiv: 1210.6549 [astro-ph.HE].

[498] M. Ruffert, H. T. Janka, and G. Schaefer. “Coalescing neutron stars - a
step towards physical models. I. Hydrodynamic evolution and gravitational-
wave emission.” In: Astron. Astrophys. 311 (July 1996), pp. 532–566. doi:
10.48550/arXiv.astro-ph/9509006. arXiv: astro-ph/9509006 [astro-ph].

[499] M. Ruffert et al. “Coalescing neutron stars - a step towards physical
models. II. Neutrino emission, neutron tori, and gamma-ray bursts.” In:
Astron. Astrophys. 319 (Mar. 1997), pp. 122–153. doi: 10.48550/arXiv.
astro-ph/9606181. arXiv: astro-ph/9606181 [astro-ph].

[500] M. Ruiz, V. Paschalidis, and S. L. Shapiro. “Pulsar spin-down luminosity:
Simulations in general relativity.” In: Phys. Rev. D 89.8, 084045 (Apr.
2014), p. 084045. doi: 10.1103/PhysRevD.89.084045. arXiv: 1402.5412
[astro-ph.HE].

[501] M. Ruiz and S. L. Shapiro. “General relativistic magnetohydrodynamics
simulations of prompt-collapse neutron star mergers: The absence of jets.”
In: Phys. Rev. D 96.8 (2017), p. 084063. doi: 10.1103/PhysRevD.96.
084063. arXiv: 1709.00414 [astro-ph.HE].

[502] M. Ruiz, S. L. Shapiro, and A. Tsokaros. “Multimessenger Binary Mergers
Containing Neutron Stars: Gravitational Waves, Jets, and γ-Ray Bursts.”
In: Frontiers in Astronomy and Space Sciences 8, 39 (Apr. 2021), p. 39.
doi: 10.3389/fspas.2021.656907. arXiv: 2102.03366 [astro-ph.HE].

https://doi.org/10.1088/2041-8205/732/1/L6
https://doi.org/10.1088/2041-8205/732/1/L6
https://arxiv.org/abs/1101.4298
https://doi.org/10.3847/2041-8213/ab481c
https://arxiv.org/abs/1912.05702
https://arxiv.org/abs/1912.05702
https://doi.org/10.3847/2041-8213/ac0a81
https://doi.org/10.3847/2041-8213/ac0a81
https://arxiv.org/abs/2105.06980
https://doi.org/10.1103/PhysRevD.109.064032
https://arxiv.org/abs/2401.06849
https://arxiv.org/abs/2401.06849
https://doi.org/10.1093/mnras/stw2622
https://arxiv.org/abs/1601.07942
https://doi.org/10.1098/rsta.2012.0272
https://doi.org/10.1098/rsta.2012.0272
https://arxiv.org/abs/1210.6549
https://doi.org/10.48550/arXiv.astro-ph/9509006
https://arxiv.org/abs/astro-ph/9509006
https://doi.org/10.48550/arXiv.astro-ph/9606181
https://doi.org/10.48550/arXiv.astro-ph/9606181
https://arxiv.org/abs/astro-ph/9606181
https://doi.org/10.1103/PhysRevD.89.084045
https://arxiv.org/abs/1402.5412
https://arxiv.org/abs/1402.5412
https://doi.org/10.1103/PhysRevD.96.084063
https://doi.org/10.1103/PhysRevD.96.084063
https://arxiv.org/abs/1709.00414
https://doi.org/10.3389/fspas.2021.656907
https://arxiv.org/abs/2102.03366


286 Bibliography

[503] M. Ruiz, A. Tsokaros, and S. L. Shapiro. “Jet launching from merging
magnetized binary neutron stars with realistic equations of state.” In: Phys.
Rev. D 104.12 (2021), p. 124049. doi: 10.1103/PhysRevD.104.124049.
arXiv: 2110.11968 [astro-ph.HE].

[504] M. Ruiz et al. “Binary Neutron Star Mergers: A Jet Engine for Short
Gamma-Ray Bursts.” In: Astrophys. J. Lett. 824.1, L6 (June 2016), p. L6.
doi: 10.3847/2041-8205/824/1/L6. arXiv: 1604.02455 [astro-ph.HE].

[505] D. Ryu, T. W. Jones, and A. Frank. “The Magnetohydrodynamic Kelvin-
Helmholtz Instability: A Three-dimensional Study of Nonlinear Evolu-
tion.” In: Astrophys. J. 545.1 (Dec. 2000), pp. 475–493. doi: 10.1086/
317789. arXiv: astro-ph/0008084 [astro-ph].

[506] S. Sachdev et al. “The GstLAL Search Analysis Methods for Compact
Binary Mergers in Advanced LIGO’s Second and Advanced Virgo’s First
Observing Runs.” In: (Jan. 2019). arXiv: 1901.08580 [gr-qc].

[507] S. Sachdev et al. “An Early-warning System for Electromagnetic Follow-up
of Gravitational-wave Events.” In: Astrophys. J. Lett. 905.2 (2020), p. L25.
doi: 10.3847/2041-8213/abc753. arXiv: 2008.04288 [astro-ph.HE].

[508] I. Sagert et al. “Signals of the QCD Phase Transition in Core-Collapse
Supernovae.” In: Phys. Rev. Lett. 102.8, 081101 (Feb. 2009), p. 081101.
doi: 10.1103/PhysRevLett.102.081101. arXiv: 0809.4225 [astro-ph].

[509] M. Saijo and S. Yoshida. “Low T/|W| dynamical instability in differentially
rotating stars: diagnosis with canonical angular momentum.” In: MNRAS
368.3 (May 2006), pp. 1429–1442. doi: 10.1111/j.1365-2966.2006.10229.x.
arXiv: astro-ph/0505543 [astro-ph].

[510] M. Saijo et al. “Dynamical Bar Instability in Rotating Stars: Effect of
General Relativity.” In: Astrophys. J. 548.2 (Feb. 2001), pp. 919–931. doi:
10.1086/319016. arXiv: astro-ph/0010201 [astro-ph].

[511] T. Sano and S.-i. Inutsuka. “Saturation and Thermalization of the Magne-
torotational Instability: Recurrent Channel Flows and Reconnections.” In:
Astrophys. J. Lett. 561.2 (Nov. 2001), pp. L179–L182. doi: 10.1086/324763.
arXiv: astro-ph/0110125 [astro-ph].

[512] T. Sano et al. “Angular Momentum Transport by Magnetohydrodynamic
Turbulence in Accretion Disks: Gas Pressure Dependence of the Saturation
Level of the Magnetorotational Instability.” In: Astrophys. J. 605.1 (Apr.
2004), pp. 321–339. doi: 10 .1086/382184. arXiv: astro - ph/0312480
[astro-ph].

[513] N. Sarin and P. D. Lasky. “The evolution of binary neutron star post-
merger remnants: a review.” In: General Relativity and Gravitation 53.6,
59 (June 2021), p. 59. doi: 10.1007/s10714-021-02831-1. arXiv: 2012.08172
[astro-ph.HE].

[514] V. Savchenko et al. “INTEGRAL Detection of the First Prompt Gamma-
Ray Signal Coincident with the Gravitational-wave Event GW170817.”
In: Astrophys. J. Lett. 848.2, L15 (Oct. 2017), p. L15. doi: 10.3847/2041-
8213/aa8f94. arXiv: 1710.05449 [astro-ph.HE].

https://doi.org/10.1103/PhysRevD.104.124049
https://arxiv.org/abs/2110.11968
https://doi.org/10.3847/2041-8205/824/1/L6
https://arxiv.org/abs/1604.02455
https://doi.org/10.1086/317789
https://doi.org/10.1086/317789
https://arxiv.org/abs/astro-ph/0008084
https://arxiv.org/abs/1901.08580
https://doi.org/10.3847/2041-8213/abc753
https://arxiv.org/abs/2008.04288
https://doi.org/10.1103/PhysRevLett.102.081101
https://arxiv.org/abs/0809.4225
https://doi.org/10.1111/j.1365-2966.2006.10229.x
https://arxiv.org/abs/astro-ph/0505543
https://doi.org/10.1086/319016
https://arxiv.org/abs/astro-ph/0010201
https://doi.org/10.1086/324763
https://arxiv.org/abs/astro-ph/0110125
https://doi.org/10.1086/382184
https://arxiv.org/abs/astro-ph/0312480
https://arxiv.org/abs/astro-ph/0312480
https://doi.org/10.1007/s10714-021-02831-1
https://arxiv.org/abs/2012.08172
https://arxiv.org/abs/2012.08172
https://doi.org/10.3847/2041-8213/aa8f94
https://doi.org/10.3847/2041-8213/aa8f94
https://arxiv.org/abs/1710.05449


Bibliography 287

[515] C. Schaab and M. K. Weigel. “Quasi-periodic oscillations in low-mass
X-ray binaries and constraints on the equation of state of neutron star
matter.” In: MNRAS 308.3 (Sept. 1999), pp. 718–730. doi: 10.1046/j.1365-
8711.1999.02743.x. arXiv: astro-ph/9904211 [astro-ph].

[516] G. Schäfer and P. Jaranowski. “Hamiltonian formulation of general relativ-
ity and post-Newtonian dynamics of compact binaries.” In: Living Reviews
in Relativity 21.1, 7 (Aug. 2018), p. 7. doi: 10.1007/s41114-018-0016-5.
arXiv: 1805.07240 [gr-qc].

[517] M. B. Schäfer et al. “First machine learning gravitational-wave search
mock data challenge.” In: Phys. Rev. D 107.2, 023021 (Jan. 2023),
p. 023021. doi: 10 . 1103/PhysRevD.107 .023021. arXiv: 2209 .11146
[astro-ph.IM].

[518] P. Schmidt. “Gravitational Waves From Binary Black Hole Mergers:
Modeling and Observations.” In: Front. Astron. Space Sci. 7 (2020), p. 28.
doi: 10.3389/fspas.2020.00028.

[519] A. S. Schneider, L. F. Roberts, and C. D. Ott. “Open-source nuclear
equation of state framework based on the liquid-drop model with Skyrme
interaction.” In: Phys. Rev. C 96.6 (2017), p. 065802. doi: 10.1103/
PhysRevC.96.065802. arXiv: 1707.01527 [astro-ph.HE].

[520] B. F. Schutz. “Determining the Hubble constant from gravitational wave
observations.” In: Nature 323.6086 (Sept. 1986), pp. 310–311. doi: 10.
1038/323310a0.

[521] Y. Sekiguchi et al. “Gravitational waves and neutrino emission from the
merger of binary neutron stars.” In: Phys. Rev. Lett. 107 (2011), p. 051102.
doi: 10.1103/PhysRevLett.107.051102. arXiv: 1105.2125 [gr-qc].

[522] Y. Sekiguchi et al. “Dynamical mass ejection from the merger of asym-
metric binary neutron stars: Radiation-hydrodynamics study in general
relativity.” In: Phys. Rev. D 93.12, 124046 (June 2016), p. 124046. doi:
10.1103/PhysRevD.93.124046. arXiv: 1603.01918 [astro-ph.HE].

[523] P. A. Seoane et al. “Astrophysics with the Laser Interferometer Space
Antenna.” In: Living Rev. Rel. 26.1 (2023), p. 2. doi: 10.1007/s41114-
022-00041-y. arXiv: 2203.06016 [gr-qc].

[524] S. Setiawan, M. Ruffert, and H. T. Janka. “Three-dimensional simulations
of non-stationary accretion by remnant black holes of compact object
mergers.” In: Astron. Astrophys. 458.2 (Nov. 2006), pp. 553–567. doi:
10.1051/0004-6361:20054193. arXiv: astro-ph/0509300 [astro-ph].

[525] N. I. Shakura and R. A. Sunyaev. “Black holes in binary systems. Ob-
servational appearance.” In: Astron. Astrophys. 24 (Jan. 1973), pp. 337–
355.

[526] I. I. Shapiro. “Fourth Test of General Relativity.” In: Phys. Rev. Lett.
13.26 (Dec. 1964), pp. 789–791. doi: 10.1103/PhysRevLett.13.789.

[527] S. L. Shapiro and S. Zane. “Bar Mode Instability in Relativistic Rotating
Stars: A Post-Newtonian Treatment.” In: Astrophys. J. Suppl. Ser. 117.2
(Aug. 1998), pp. 531–561. doi: 10.1086/313124. arXiv: gr-qc/9711050
[gr-qc].

https://doi.org/10.1046/j.1365-8711.1999.02743.x
https://doi.org/10.1046/j.1365-8711.1999.02743.x
https://arxiv.org/abs/astro-ph/9904211
https://doi.org/10.1007/s41114-018-0016-5
https://arxiv.org/abs/1805.07240
https://doi.org/10.1103/PhysRevD.107.023021
https://arxiv.org/abs/2209.11146
https://arxiv.org/abs/2209.11146
https://doi.org/10.3389/fspas.2020.00028
https://doi.org/10.1103/PhysRevC.96.065802
https://doi.org/10.1103/PhysRevC.96.065802
https://arxiv.org/abs/1707.01527
https://doi.org/10.1038/323310a0
https://doi.org/10.1038/323310a0
https://doi.org/10.1103/PhysRevLett.107.051102
https://arxiv.org/abs/1105.2125
https://doi.org/10.1103/PhysRevD.93.124046
https://arxiv.org/abs/1603.01918
https://doi.org/10.1007/s41114-022-00041-y
https://doi.org/10.1007/s41114-022-00041-y
https://arxiv.org/abs/2203.06016
https://doi.org/10.1051/0004-6361:20054193
https://arxiv.org/abs/astro-ph/0509300
https://doi.org/10.1103/PhysRevLett.13.789
https://doi.org/10.1086/313124
https://arxiv.org/abs/gr-qc/9711050
https://arxiv.org/abs/gr-qc/9711050


288 Bibliography

[528] H. Shen et al. “Relativistic Equation of State for Core-Collapse Supernova
Simulations.” In: Astrophys. J. Suppl. 197 (2011), p. 20. doi: 10.1088/0067-
0049/197/2/20. arXiv: 1105.1666 [astro-ph.HE].

[529] S. Shibagaki et al. “A new gravitational-wave signature of low-T/|W|
instability in rapidly rotating stellar core collapse.” In: MNRAS 493.1
(Mar. 2020), pp. L138–L142. doi: 10.1093/mnrasl/slaa021. arXiv: 1909.
09730 [astro-ph.HE].

[530] M. Shibata et al. “Truncated Moment Formalism for Radiation Hydro-
dynamics in Numerical Relativity.” In: Progress of Theoretical Physics
125.6 (June 2011), pp. 1255–1287. doi: 10.1143/PTP.125.1255. arXiv:
1104.3937 [astro-ph.HE].

[531] M. Shibata. “Constraining Nuclear Equations of State Using Gravitational
Waves from Hypermassive Neutron Stars.” In: Phys. Rev. Lett. 94.20,
201101 (May 2005), p. 201101. doi: 10.1103/PhysRevLett.94.201101.
arXiv: gr-qc/0504082 [gr-qc].

[532] M. Shibata, T. W. Baumgarte, and S. L. Shapiro. “The Bar-Mode In-
stability in Differentially Rotating Neutron Stars: Simulations in Full
General Relativity.” In: Astrophys. J. 542.1 (Oct. 2000), pp. 453–463. doi:
10.1086/309525. arXiv: astro-ph/0005378 [astro-ph].

[533] M. Shibata, S. Fujibayashi, and Y. Sekiguchi. “Long-term evolution of
neutron-star merger remnants in general relativistic resistive magnetohy-
drodynamics with a mean-field dynamo term.” In: Phys. Rev. D 104.6,
063026 (Sept. 2021), p. 063026. doi: 10.1103/PhysRevD.104.063026.
arXiv: 2109.08732 [astro-ph.HE].

[534] M. Shibata and K. Hotokezaka. “Merger and Mass Ejection of Neutron
Star Binaries.” In: Annual Review of Nuclear and Particle Science 69
(Oct. 2019), pp. 41–64. doi: 10.1146/annurev-nucl-101918-023625. arXiv:
1908.02350 [astro-ph.HE].

[535] M. Shibata, K. Kiuchi, and Y.-i. Sekiguchi. “General relativistic viscous
hydrodynamics of differentially rotating neutron stars.” In: Phys. Rev. D
95.8, 083005 (Apr. 2017), p. 083005. doi: 10.1103/PhysRevD.95.083005.
arXiv: 1703.10303 [astro-ph.HE].

[536] M. Shibata and T. Nakamura. “Evolution of three-dimensional gravita-
tional waves: Harmonic slicing case.” In: Phys. Rev. D 52.10 (Nov. 1995),
pp. 5428–5444. doi: 10.1103/PhysRevD.52.5428.

[537] M. Shibata and Y.-i. Sekiguchi. “Three-dimensional simulations of stel-
lar core collapse in full general relativity: Nonaxisymmetric dynamical
instabilities.” In: Phys. Rev. D 71.2, 024014 (Jan. 2005), p. 024014. doi:
10.1103/PhysRevD.71.024014. arXiv: astro-ph/0412243 [astro-ph].

[538] M. Shibata and K. Taniguchi. “Coalescence of Black Hole-Neutron Star
Binaries.” In: Living Reviews in Relativity 14.1, 6 (Dec. 2011), p. 6. doi:
10.12942/lrr-2011-6.

[539] M. Shibata, K. Taniguchi, and K. Uryū. “Merger of binary neutron stars
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