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Descripción General 
 

Dentro de un cambio de paradigma hacia una toxicología mecanística, los 

modelos computacionales emergen como un poderoso complemento de los 

métodos experimentales. Sin embargo, es importante reconocer que los 

métodos experimentales, a pesar de su valor, enfrentan dificultades para 

abarcar todo el espectro de la biología. Debido a esta limitación, emplear un 

único modelo predictivo puede no ser suficiente. En su lugar, podría emplearse 

una combinación de modelos que representen fenómenos biológicos más 

simples. 

La presente tesis se presenta mediante un compendio de publicaciones que 

pretenden desarrollar metodologías aplicables para la predicción de 

parámetros toxicológicos complejos a través de combinación de modelos, así 

como el estudio de la variabilidad asociada a dichas predicciones. 

Rodríguez-Belenguer, P., March-Vila, E., Pastor, M., Mangas-Sanjuan, V., 

Soria-Olivas, E. (2023). Usage of Model Combination in Computational 

Toxicology. Toxicology Letters. https://doi.org/10.1016/j.toxlet.2023.10.013 

En este trabajo revisamos las diversas formas en que se han combinado 

modelos computacionales en la literatura para abordar problemas 

toxicológicos prácticos. Consideramos que este enfoque (el uso de múltiples 

modelos combinados) es una estrategia interesante que podría generalizarse. 

Para ello proporcionamos una taxonomía de situaciones y directrices prácticas, 

ilustradas con numerosos ejemplos.   

Rodríguez-Belenguer, P., Mangas-Sanjuan, V., Soria-Olivas, E., & Pastor, M. 

(2023). Integrating Mechanistic and Toxicokinetic Information in Predictive 

https://doi.org/10.1016/j.toxlet.2023.10.013
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Models of Cholestasis. Journal of Chemical Information and Modeling. 

https://doi.org/10.1021/acs.jcim.3c00945 

Este trabajo pretende proveer una metodología alternativa a los modelos 

directos QSAR para la predicción de colestasis, especialmente en los casos en 

los que se pretende predecir un nuevo compuesto que difiere 

significativamente de los de la serie de entrenamiento. Para ello es 

fundamental la incorporación de información mecanística, la cual se realiza a 

través de la combinación de múltiples modelos QSAR que representan 

fenómenos biológicos más simples. Además, se integra con información 

toxicocinética. Los resultados de esta metodología revelan un poder predictivo 

superior en comparación con el modelado directo QSAR en los escenarios de 

máxima disimilitud estructural entre nuevos compuestos con respecto a los de 

la serie de entrenamiento. 

Rodríguez-Belenguer, P., Kopańska, K., Llopis-Lorente, J., Trenor, B., Saiz, J., & 

Pastor, M. (2023). Application of Machine Learning to improve the efficiency 

of electrophysiological simulations used for the prediction of drug-induced 

ventricular arrhythmia. Computer Methods and Programs in Biomedicine, 

107345. https://doi.org/10.1016/j.cmpb.2023.107345 

En este trabajo se desarrollaron modelos multinivel como otra alternativa de 

modelado en situaciones de complejidad biológica. Para ello, se combinó el 

efecto de bloquear tres canales iónicos para producir arritmia ventricular, 

utilizando un complejo modelo electrofisiológico para predecir el biomarcador 

que representa la duración del potencial de acción al 90% de la repolarización 

(APD90). Dado el alto coste computacional asociado con la obtención de las 

matrices electrofisiológicas, se evaluó a través de diferentes métricas, el 

resultado de predecir los valores de APD90 a partir del uso de modelos 

multinivel en diferentes muestreos regulares. El objetivo principal de este 

enfoque fue el de reducir el número de simulaciones necesarias para la 

https://doi.org/10.1021/acs.jcim.3c00945
https://doi.org/10.1016/j.cmpb.2023.107345
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obtención de las matrices electrofisiológicas. Como resultado, esta 

metodología logró reducir 100 veces los tiempos de simulación. 

Kopańska, K., Rodríguez-Belenguer, P., Llopis-Lorente, J., Trenor, B., Saiz, J., & 

Pastor, M. (2023). Uncertainty assessment of proarrhythmia predictions 

derived from multi-level in silico models. Archives of Toxicology, 97(10), 

2721-2740. https://doi.org/10.1007/s00204-023-03557-6 

En el campo de la toxicología, las predicciones desempeñan un papel 

fundamental en la toma de decisiones y, por ende, es esencial garantizar la 

máxima confiabilidad de dichas predicciones. Por ello, en este trabajo se 

ofrece una representación más realista de las predicciones de los 

biomarcadores de proarritmia, derivadas del modelo multinivel del artículo 

anterior. Esto se consigue a través del estudio del impacto de las fuentes 

aleatorias de variabilidad (experimental e interindividual), tanto de manera 

individual como en un enfoque conjunto sobre las predicciones. Cabe destacar 

que el efecto de considerar simultáneamente ambos tipos de variabilidad no 

resultó ser aditivo y varió según el fármaco estudiado. 

 

En definitiva, esta tesis contribuye a avanzar en la aplicación de la combinación 

de modelos para abordar la predicción de parámetros toxicológicos complejos 

y promueve una mayor comprensión de la variabilidad asociada a estas 

predicciones, para así dar lugar a una toma de decisiones más realista. Por todo 

ello, creemos que esta contribución puede ser útil para la comunidad 

toxicológica, proveyendo una metodología alternativa al modelado directo 

QSAR.

https://doi.org/10.1007/s00204-023-03557-6
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Introducción 
 

La toxicología, históricamente, ha dependido en gran medida de experimentos 

en animales para evaluar la seguridad de compuestos químicos y fármacos. 

Esta aproximación observacional, si bien ha sido valiosa, presenta limitaciones 

éticas y científicas que han llevado a la búsqueda de enfoques alternativos para 

la evaluación de la toxicidad (Fischer et al., 2020).  

En los últimos años se han hecho esfuerzos significativos para reducir, refinar 

y reemplazar (principio de las 3Rs) las pruebas en animales con metodologías 

de nuevo enfoque (New Approach Methodologies, NAMs) (Russell & Burch, 

1960). Estas incluyen ensayos in vitro, que utilizan cultivos celulares o de 

tejidos para evaluar la toxicidad; pruebas in chemico, que se basan en análisis 

químicos y no requieren material biológico; y métodos in silico, que utilizan 

simulaciones computacionales y modelos matemáticos para predecir la 

toxicidad de un compuesto (https://www.epa.gov/). Este cambio de 

paradigma hacia los NAMs fue descrito  en el informe “Toxicity Testing in the 

21st Century: A Vision and a Strategy” por parte de la National Academy of 

Sciences y el National Research Council de los Estados Unidos en 2007 

(Council, 2007). Puede considerarse que este informe estableció las bases para 

una nueva era en la evaluación de la toxicidad, basada en la comprensión de 

los mecanismos de toxicidad, que promueve el uso de métodos más éticos y 

eficaces para caracterizar la seguridad química en seres humanos. 

Métodos en toxicología computacional 
 

Los métodos in silico o in silico toxicology (IST) más comúnmente empleados 

se clasifican en cuatro grupos (Figura 1): extrapolación (Read-Across, RA), 

alertas estructurales o toxicóforos, modelos predictivos basados en la 
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caracterización de la relación cuantitativa estructura-actividad (Quantitative 

Structure-Activity Relationship, QSAR), y acoplamiento molecular o docking. 

Los tres primeros métodos se fundamentan en conocimiento y se basan en la 

teoría del bioisosterismo en la que "estructuras muy similares tienen 

bioactividades muy parecidas" (Johnson y Maggiora 1990). RA busca inferir las 

actividades biológicas de compuestos para los que se carece de información a 

partir de compuestos con una gran similitud estructural. A través de sistemas 

expertos, las alertas estructurales identifican grupos funcionales o 

subestructuras que han sido asociados con la aparición de efectos adversos 

(Adverse Events, AEs). 

Los modelos QSAR son una de las técnicas más empleadas en IST. Estos 

modelos tienen la capacidad de predecir la actividad biológica (incluyendo 

AEs) de un compuesto a partir de su estructura química. Para ello, se emplean 

algoritmos de aprendizaje automático (Machine Learning, ML) y aprendizaje 

profundo (Deep Learning, DL), los cuales tienen la capacidad de predecir 

propiedades como Absorción, Distribución, Metabolismo, y Excreción (ADME) 

y/o toxicológicas. En el ámbito del ML, algunos de los algoritmos más 

comúnmente empleados son Random Forest (RF), XGBoost (XGB), Naïve Bayes 

(NB) y Support Vector Machine (SVM). En la literatura, hay multitud de 

ejemplos de aplicación de algoritmos de ML en toxicología, como es el caso 

del trabajo realizado por Ishfaq et al. (2022), en el que los autores 

construyeron modelos para predecir la actividad biológica de los inhibidores 

de la aromatasa. Del mismo modo, Trinh et al. (2022) emplearon modelos de 

bagging para predecir la toxicidad de nanomezclas de Ti2O producidas en 

Daphnia magna.  

Por su parte, en el DL destacan algoritmos como Deep Neural Network (DNN), 

Convolutional Neural Network (CNN), Graph Neural Network (GNN) y Long 

Short Term Memory (LSTM). Cada vez son más el número de trabajos que 
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utilizan DL en toxicología, como es el caso del trabajo publicado por Romano, 

Hao, y Moore (2022), en el cual utilizaron GNNs para predecir diferentes 

parámetros toxicológicos. Del mismo modo, Ulfa et al. (2021) emplearon otro 

tipo de redes neuronales, como es el caso de una combinación de 

convoluciones 1D con LSTM, para la predicción de la actividad biológica de 

unos compuestos químicos. 

 

Figura 1: Esquema de los principales métodos empleados en toxicología 
computacional 
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En contraste con los algoritmos de ML, el DL presenta dos ventajas 

significativas. Primero, se destaca por la flexibilidad inherente de las 

estructuras basadas en redes neuronales, lo que le permite adaptarse a una 

amplia gama de problemas. Segundo, a diferencia de los algoritmos de ML, las 

redes neuronales tienen la capacidad de aprender y extraer automáticamente 

las características más relevantes de los datos, eliminando así la necesidad de 

realizar una selección manual de características. Por el contrario, los 

algoritmos de DL necesitan muchos más compuestos (varios miles) que los 

modelos de ML para así evitar el sobreajuste (Dargan et al. 2020). 

Para construir los modelos QSAR, la estructura de los compuestos de la serie 

de entrenamiento debe ser descrita mediante un conjunto de variables 

(descriptores moleculares) que suelen incluir características fisicoquímicas (p. 

ej. peso molecular, solubilidad o número de átomos aceptores de hidrógeno) 

y/o características estructurales (por ejemplo, huellas digitales moleculares o 

fingerprints). La variable dependiente representa la actividad biológica, es 

decir, el efecto tóxico que se busca predecir. Dependiendo de la naturaleza de 

la variable dependiente el modelo puede ser de regresión, utilizado para 

predecir, por ejemplo, la concentración necesaria para inhibir el 50% de la 

actividad biológica de un compuesto (IC50), o de clasificación, empleado para 

predecir, por ejemplo, si un compuesto es, o no, carcinógeno.  

Finalmente, el acoplamiento molecular o docking es una técnica empleada 

para predecir cómo un ligando interacciona con un receptor en función de su 

estructura tridimensional. Esto se logra mediante la búsqueda de la 

conformación o posición relativa óptima del ligando dentro del receptor, con 

el objetivo de minimizar la energía libre de unión y maximizar la afinidad. En 

toxicología, esta técnica es importante cuando la toxicidad de un fármaco se 

origina debido a su interacción con una anti-diana (antitarget). Un ejemplo 
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clásico es el caso del receptor glucocorticoide, cuya inhibición puede ocasionar 

daños en el sistema inmune. 

Principales limitaciones y complejidades presentes en 

la toxicología computacional 
 

En los últimos tiempos, los métodos in silico han demostrado ser eficaces y 

convenientes para la evaluación de la toxicidad de compuestos químicos. Estos 

enfoques permiten realizar predicciones rápidas y precisas sin la necesidad de 

llevar a cabo ensayos en animales costosos y éticamente cuestionables 

(Council, 2007). Los métodos in silico son ideales para complementar otros 

tipos de ensayos en una estrategia secuencial, como métodos de cribado 

rápido, complementando métodos in vitro e in vivo (Raies & Bajic, 2016). 

Sin embargo, es importante recordar que los métodos computacionales no 

pueden escapar de las complejidades inherentes a cualquier problema 

toxicológico. En general, estas complejidades se derivan de la complejidad de 

los procesos biológicos y químicos de los organismos, lo que obliga a los 

métodos experimentales y computacionales a introducir simplificaciones y 

suposiciones que limitan su potencial para representar la realidad.  De hecho, 

los métodos in vitro, aunque éticos y efectivos, tienen una serie de limitaciones 

entre las cuales la más destacada es su dificultad para cubrir todos los 

fenómenos biológicos. Otra limitación de los métodos in vitro es la variabilidad 

asociada a sus experimentos, tales como las diferencias en las condiciones de 

laboratorio, la calidad de los reactivos, o las diferencias entre lotes de células 

o tejidos, lo que puede afectar la reproducibilidad y la precisión de los datos 

(Kernik et al., 2019). Estas limitaciones afectan directamente a los métodos 

computacionales, ya que consumen la información generada por los métodos 

experimentales. A raíz de todo lo expuesto, hemos identificado tres categorías 



INTRODUCCIÓN 

6 
 

principales de complejidades, que están relacionadas con los siguientes 

aspectos: biológico, espacio químico, y metodológico.  

Las complejidades biológicas suelen estar relacionadas con la existencia de 

múltiples mecanismos, muchos de ellos desconocidos, que pueden conducir a 

los mismos EAs. Las complejidades relacionadas con el espacio químico surgen 

cuando se intenta evaluar un compuesto químico que difiere 

significativamente en su estructura de los compuestos utilizados para construir 

el modelo, lo que a menudo resulta en predicciones poco precisas. Por último, 

las complejidades metodológicas se presentan cuando un solo algoritmo no 

puede establecer una relación adecuada entre los descriptores moleculares y 

la variable dependiente del modelo, cuando un solo tipo de variables no es 

suficiente para describir el problema toxicológico, o cuando el desequilibrio en 

la distribución de clases afecta negativamente el rendimiento final del modelo. 

Una posible vía para mitigar algunos tipos de complejidades es la combinación 

de modelos QSAR de bajo nivel (Bringezu, Carlos Gómez-Tamayo, y Pastor 

2021; Gadaleta et al. 2018; Heyndrickx et al. 2022; Kotsampasakou y Ecker 

2017; March-Vila et al. 2023). A esta combinación de modelos predictivos se 

le conoce con el nombre de metamodelo. Esta aproximación tiene ventajas 

adicionales, porque ayuda a solventar la alta dependencia de los modelos 

directos QSAR con respecto a la estructura de los compuestos. Este problema 

está muy presente en el desarrollo de nuevos fármacos, donde en muchas 

ocasiones los candidatos a fármaco difieren significativamente de los 

compuestos utilizados para entrenar el modelo. Por tanto, en lugar de utilizar 

un modelo directo QSAR, se construyen modelos individuales que representen 

fenómenos más simples, con una mejor capacidad predictiva, y que, al ser 

combinados, pueden resolver de una manera más precisa el problema en 

cuestión. Esta estrategia busca superar las limitaciones inherentes de los 

modelos QSAR tradicionales, los cuales tienen dificultades para predecir 
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fenómenos biológicos complejos, para así permitir una consideración más 

amplia de la biología subyacente a los eventos toxicológicos. 

Asimismo, esta metodología posee el potencial de ser empleada en la 

evaluación temprana de las propiedades toxicológicas de los candidatos a 

fármacos. No obstante, es importante destacar que su utilización en la toma 

de decisiones debe estar condicionada a la capacidad de estimar la 

incertidumbre de las predicciones. Esto se debe a que los resultados en 

toxicología son empleados para informar científicamente de decisiones 

(Gosling 2019; Maertens et al. 2022), ya sea dentro de las empresas o por 

parte de agencias reguladoras. Por ende, para poder tomar decisiones es 

esencial caracterizar la incertidumbre asociada a las predicciones. 
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Objetivos 
 

El objetivo general de la tesis es: 

Desarrollar, y validar una metodología general aplicable para la predicción de 

propiedades biológicas complejas, que presente ventajas en términos de 

calidad predictiva, así como en la estimación de la incertidumbre asociada a 

las predicciones con respecto a los métodos de referencia disponibles. 

Los objetivos específicos para conseguir tal meta son: 

1. Revisar las distintas estrategias de combinación de modelos de ML 

para abordar la predicción de parámetros biológicos complejos. 

2. Evaluar el poder predictivo del modelado mecanístico en comparación 

con el modelado directo QSAR en condiciones de máxima disimilitud 

estructural en situaciones de aplicación relevante. 

3. Evaluar la mejora en el poder predictivo del modelado mecanístico al 

incorporar información toxicocinética (Toxicokinetics, TK). 

4. Desarrollar una metodología que permita identificar, caracterizar y 

cuantificar la variabilidad asociada a las predicciones obtenidas por la 

combinación de modelos. 
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Resultados y discusión 
 

Complejidad biológica 
 

La idea de combinar múltiples modelos, cada uno de los cuales representa 

mecanismos más simples, con el fin de mejorar la precisión de un modelo 

directo QSAR, cuenta con múltiples antecedentes que respaldan esta 

hipótesis. En el Capítulo 1 de nuestro trabajo de revisión (Rodríguez-Belenguer 

et al., 2023a), hemos identificado los principales tipos de metamodelos. La 

tabla 1 es la esencia del artículo dado que se resumen los diversos tipos de 

problemas encontrados en el ámbito de la toxicología, se analiza la 

complejidad que estos problemas generan, se explica por qué la construcción 

de un modelo directo QSAR podría no ser adecuada y se presenta el 

razonamiento detrás del uso de un metamodelo, junto con ejemplos 

ilustrativos. De entre los tres tipos de complejidades previamente 

mencionadas (biológica, espacio químico y metodológica), hemos decidido 

centrar esta tesis en la complejidad biológica, pese a que, en la revisión, hemos 

profundizado en todas ellas. 

En un evento adverso hay presente una compleja red de fenómenos 

interconectados entre sí. En tales casos, un modelo directo QSAR puede tener 

dificultades para predecir el resultado conjunto de todos los fenómenos 

implicados, y la combinación de modelos de bajo nivel (Low-Level Models, 

LLM) se presenta como una estrategia prometedora para mejorar la calidad 

predictiva. Cada uno de estos LLM representa fenómenos biológicos más 

simples dentro de una red compleja, lo que contribuye a una representación 

más sencilla. En el contexto de los LLM, las rutas de eventos adversos (Adverse 

Outcome Pathways, AOP) emergen como una fuente de información 

mecanística idónea, de la cual puede extraerse información para la 
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identificación de las dianas a modelar y de sus interacciones. Aunque es 

importante destacar que los AOPs (Ankley et al., 2010) no fueron diseñados 

con este propósito específico, proporcionan un entorno transparente, 

accesible y estructurado que facilita la incorporación de información 

mecanística en los modelos gracias a AOPwiki (https://aopwiki.org/). Los AOPs 

conectan eventos moleculares iniciadores (Molecular Initiating Events, MIE) 

con eventos adversos (Adverse Outcome, AO) a través de una cadena causal 

de eventos clave (Key Events, KE), conectados mediante relaciones bien 

definidas (Key Event Relationships, KER). 

Un metamodelo basado en una red de AOPs puede construirse integrando 

predicciones de multiples MIEs para predecir un parámetro toxicológico que 

describa el evento adverso. Para ello, se construyen modelos QSAR 

individuales correspondientes a cada MIE identificado, y se usa la predicción 

de estos eventos para construir un modelo de alto nivel que las relacione con 

las anotaciones biológicas del efecto adverso. 

Todos los trabajos revisados coincidían en que la combinación de MIEs para la 

predicción de diferentes parámetros toxicológicos producía mejores 

resultados que los modelos directos QSAR (Gadaleta et al. 2018, 2022; 

Kleinstreuer et al. 2018; Kotsampasakou y Ecker 2017). Sin embargo, la 

mayoría de los estudios revisados empleaban datos in vitro para predecir 

resultados in vivo, ignorando el efecto de los procesos farmacocinéticos de las 

propiedades ADME en la predicción de la exposición. Esto introduce 

inconsistencias al intentar predecir datos in vivo desde variables puramente in 

vitro. Para abordar este problema una posible solución es utilizar modelos 

cuantitativos de extrapolación de datos in vitro a in vivo (Quantitative In Vitro 

to In Vivo Extrapolations, QIVIVE) (Punt et al. 2021), basados en un modelo 

farmacocinético basado en la fisiología (Physiologically Based 

Pharmacokinetic, PBPK). Este modelo simula eficazmente el comportamiento 
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longitudinal de una sustancia en un organismo, considerando fenómenos 

farmacocinéticos cruciales a lo largo del tiempo. El uso de modelos QIVIVE 

permite extrapolar las concentraciones in vitro a dosis in vivo. Por lo tanto, 

estos modelos proporcionan una herramienta valiosa para mejorar la precisión 

y relevancia de los metamodelos, avanzando en última instancia en nuestra 

comprensión del comportamiento de los compuestos en organismos vivos. 

Integrando la TK sobre un metamodelo con múltiples 

MIEs para predecir colestasis 
 

En virtud de lo anterior, en nuestro artículo (Rodríguez-Belenguer et al. 2023b) 

perteneciente al Capítulo 2, seleccionamos la colestasis inducida por fármacos 

como la adversidad a predecir. La colestasis es un evento adverso dosis 

dependiente caracterizado por una interrupción del flujo biliar, lo que conduce 

al aumento de las concentraciones de ácidos biliares hepáticos, pudiendo 

provocar necrosis y/o apoptosis hepática (Padda et al. 2011). El principal 

mecanismo es la inhibición de transportadores hepáticos encargados de 

facilitar el flujo de bilis desde el hígado hasta el intestino delgado. A pesar de 

que la bomba de exportación de sales biliares (Bile Salt Export Pump, BSEP) 

parece ser el principal MIE, no es el único transportador implicado. Por lo 

tanto, al construir un modelo in silico para predecir la colestasis, es 

fundamental considerar la contribución de otros transportadores que también 

podrían desempeñar un papel importante como MIEs. Entre ellos se 

encuentran las proteínas asociadas a la resistencia a múltiples fármacos (Multi 

Drug Resistence Protein, MRP2, MRP3 y MRP4), la proteína de resistencia al 

cáncer de mama (Breast Cancer Resistance Protein, BCRP), la glicoproteína-P 

(P-glycoprotein, P-gp) y los polipéptidos transportadores aniónicos (Organic 

Anion Transporting Polypeptides [OATP1B1 y OATP1B3]). Kotsampasakou y 

Ecker (2017) demostraron que la colestasis es un parámetro toxicológico lo 
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suficientemente complejo como para requerir enfoques diferentes al 

modelado directo QSAR. Esto se debe a que la colestasis, tal y como hemos 

visto, involucra numerosos mecanismos biológicos subyacentes, y los modelos 

directos QSAR probablemente tendrían una baja capacidad predictiva, siendo 

muy dependientes de las estructuras químicas, al no capturar adecuadamente 

la esencia de cada mecanismo. Por ello, el objetivo de este estudio fue 

desarrollar una metodología alternativa que mejore la calidad predictiva del 

modelado directo QSAR a través de la incorporación de información 

mecanística y TK, con el fin de superar su alta dependencia estructural. 

La principal novedad de nuestro trabajo es la integración de información 

mecanística con toxicocinética, lo que permite la construcción de un 

metamodelo que compara las dosis in vivo obtenidas de los modelos QIVIVE 

con las dosis terapéuticas. De esta manera, este modelo aborda tanto el riesgo 

como la exposición, ofreciendo una perspectiva más completa y precisa de la 

colestasis inducida por fármacos. 

Para determinar si esta metodología aporta ventajas en términos de calidad 

predictiva en comparación con los modelos directos QSAR, se llevó a cabo una 

evaluación utilizando diversas métricas. Se comparó el metamodelo que 

incorpora información TK con aquel que solo utiliza datos in vitro y con los 

modelos directos QSAR. Esta evaluación se realizó en situaciones de máxima 

disimilitud estructural, con el propósito de simular escenarios comunes en el 

descubrimiento de fármacos, donde se busca predecir la toxicidad de nuevos 

compuestos que difieren significativamente en estructura de los ya existentes 

en el mercado. Para ello, se utilizó un enfoque de validación cruzada (CV) con 

20 repeticiones y 5 folds (20-Repeated 5-fold CV), cuyos resultados se 

compararon con los de un enfoque de validación cruzada basada en la 

semejanza estructural (Similarity 5-fold CV). Por lo que, si los resultados de 

cualquiera de los modelos evaluados mediante la CV basada en similitud son 
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menos robustos (Figura 2), esto indica una dependencia estructural de dicho 

modelo. Este mismo procedimiento se llevó a cabo también utilizando grupos 

de códigos anatomo-terapéuticos-químicos (Anatomical Therapeutic 

Chemical, ATC) (Figura 3) para evaluar si los modelos eran aplicables a 

compuestos con distintas propiedades farmacológicas. 

 

Figura 2: Diagrama de violín para diferentes métricas seleccionadas para evaluar la 
abstracción estructural de la metodología propuesta a través de una validación 

cruzada basada en semejanza estructural. 
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Figura 3: Diagramas de violín para diferentes métricas seleccionadas para evaluar la 
abstracción estructural de la metodología propuesta a través de una validación 

cruzada basada en códigos ATC. 
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El metamodelo incorporando información farmacocinética (Metamodel_pk) 

resultó ser el más sensible, con una sensibilidad superior al 80%, y con una 

especificidad superior al 50% (Figuras 2 y 3). Este resultado se mantuvo 

constante tanto en condiciones de evaluación normales a través de un 20-

Repeated 5-fold Cross Validation, como en situaciones de máxima disimilitud 

estructural y farmacológica (Similarity 5-fold Cross Validation y 5 ATC-fold CV). 

Asimismo, el Metamodel_pk resultó ser un modelo con un poder predictivo 

mucho mayor que el metamodelo que no incorpora información 

farmacocinética (Metamodel_not_pk), lo que resalta la importancia de 

considerar la farmacocinética en este tipo de estrategias. Los modelos directos   

QSAR, tanto los que utilizan fingerprints [fp] como descriptores fisicoquímicos 

[PC], resultaron ser altamente específicos pero muy poco sensibles. La 

sensibilidad de ambos modelos QSAR se vio reducida en condiciones de 

máxima disimilitud estructural y farmacológica, lo que reafirma su alta 

dependencia con respecto de las estructuras. Dado que, nos enfrentamos a un 

desequilibrio de clases en favor de la clase negativa, en estos casos, casi 

siempre suele aportar más valor un modelo con un equilibrio adecuado entre 

sensibilidad y especificidad, pero priorizando una sensibilidad más alta como 

es el caso del metamodelo que aporta información farmacocinética. 

Por tanto, en este estudio la combinación de múltiples fenómenos biológicos 

más simples (MIEs) y la incorporación de información TK a través de modelos 

QIVIVE, produjo un rendimiento predictivo superior en comparación con el uso 

de modelos directos QSAR, especialmente en los casos de máxima disimilitud. 

Estos resultados sugieren que la metodología podría aplicarse en otros 

parámetros toxicológicos complejos, así como tener un potencial uso en la 

evaluación de riesgos al considerar la exposición y el riesgo en el metamodelo 

propuesto. 
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Modelos multinivel de arritmia ventricular 
 

La combinación de múltiples MIEs no es la única opción de incorporar 

información mecanística en un metamodelo que trata de resolver la 

complejidad biológica. Es por ello que en el Capítulo 3, también hemos dirigido 

nuestra atención hacia una familia de modelos más complejos, llamados 

modelos multinivel (Rodríguez-Belenguer et al. 2023c). 

En este trabajo, se desarrollaron modelos multinivel al combinar el efecto del 

bloqueo de tres canales iónicos para producir arritmia ventricular mediante un 

complejo modelo electrofisiológico. Esta aproximación se podría considerar 

más mecanística en comparación con la predicción a través de modelos 

directos QSAR, ya que se basa en el conocimiento del mecanismo por el cual 

los fármacos inducen arritmias ventriculares, afectando a la conductancia 

iónica que regula el potencial de membrana de los cardiomiocitos (Bartos, 

Grandi, y Ripplinger 2015).  

El modelo electrofisiológico que se usa para predecir biomarcadores de 

arritmia ventricular a partir de las alteraciones de la conductancia requiere 

simulaciones computacionales muy complejas, lo que lo hace tedioso y no 

interactivo. Para abordar este problema, se pueden utilizar matrices de 

simulaciones precalculadas, lo que permite un cálculo instantáneo de 

biomarcadores como la duración del potencial de acción al 90% de la 

repolarización (APD90). Sin embargo, la preparación de estas matrices (para 

ello usamos una versión modificada del modelo de O’Hara (O’Hara et al. 2011)) 

puede ser costosa en términos computacionales para los desarrolladores de 

métodos, lo que limita el alcance de las condiciones simuladas. Asimismo, es 

importante tener en cuenta que para proporcionar una descripción más 

completa de los mecanismos celulares de las arritmias inducidas por fármacos, 

la iniciativa Comprehensive In Vitro Proarrhythmia Assay (CiPA) propuso un 
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nuevo paradigma de pruebas en el cual la idea principal es utilizar los efectos 

de los fármacos medidos in vitro en múltiples canales iónicos (INa, INaL, IKr, Ito, 

ICaL, IK1, y IKs), en lugar de depender únicamente de IKr. En este sentido, se 

requieren estrategias para acortar los tiempos de simulación y, de esta forma, 

poder incluir un mayor número de canales iónicos. 

Una simulación individual, que implica 500 latidos para un único conjunto de 

valores de entrada para tres canales iónicos, tarda alrededor de dos minutos y 

medio por CPU (Central Processing Unit). En nuestro caso, las matrices eran de 

56*56*56 puntos (uno por cada canal iónico), lo que significa que, utilizando 

32 CPUs, el tiempo necesario para obtener las matrices electrofisiológicas de 

nuestros modelos de arritmia ascendía a 56·56·56·2.5/32=13 720 minutos 

(228.7 horas). Por lo tanto, la implementación de estas matrices con una 

combinación de canales iónicos superior a tres (tal y como propone CiPA), se 

convierte en una limitación en sí misma, ya que el tiempo de cálculo se 

incrementa exponencialmente.  

Por todo lo anterior, el objetivo principal de este trabajo fue reducir los 

tiempos necesarios para obtener las matrices electrofisiológicas, para ello se 

llevaron a cabo diferentes muestreos regulares en los que se evaluaron la 

calidad de los modelos, a través de métricas como el Error Relativo Medio en 

% (Mean Relative Error, MRE) y el porcentaje de datos con un Error Relativo 

(Relative Error, RE) inferior al 5% (Non-Large Data-Points Error, NLDE) para 

diversas aproximaciones de ML (transformación polinómica con regresión de 

Ridge [PR], SVM, y perceptrón multicapa [Multi-Layer Perceptron, MLP]). De 

esta manera, pudimos determinar la frecuencia con la que era necesario 

construir estas matrices con la certeza de que la información no utilizada no 

resultaba necesaria. Los modelos fueron validados en diferentes particiones, y 

a través de un conjunto de datos externo conteniendo 12 fármacos propuestos 
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por la iniciativa CiPA, los cuales presentan unas propiedades electrofisiológicas 

bien conocidas.  

Los resultados obtenidos permitieron demostrar que, para este problema, el 

modelo que mejores resultados obtuvo fue SVM con un muestreo de uno cada 

cien puntos. En esta situación el MRE en test no superó el 0.20% (Figura 4) y 

no hubo ningún dato con un RE superior al 5% (Figura 5). 

 

Figura 4: MRE(%) para los diferentes muestreos y modelos evaluados. 

En la validación externa que utiliza los 12 fármacos propuestos por la iniciativa 

CiPA, el RE máximo fue prácticamente despreciable, de 1.5%, lo que supone 

un error de 4ms en la determinación del APD90. En términos prácticos, esto 

implicaría, por ejemplo, un cambio en el valor del APD90 de 200 ms a 204 ms, 

sin que esto tenga ningún impacto en la consideración del riesgo 

arritmogénico. 



RESULTADOS Y DISCUSIÓN 

21 
 

 

Figura 5: RE (%) en función de los valores experimentales de APD90. Las columnas 
representan los tres modelos entrenados PR, SVM, y MLP. Las filas se corresponden 

con los diferentes ratios de muestreo evaluados. 

Por lo tanto, se consiguió reducir de manera significativa la cantidad de 

simulaciones requeridas para efectuar predicciones precisas de 

biomarcadores de arritmia ventricular mediante la implementación de 

modelos multinivel con algoritmos de ML. Hemos evidenciado que la cantidad 

total de datos inicialmente simulados puede disminuir hasta un 1% de los 

utilizados hasta ahora, lo que implica una reducción sustancial en el tiempo de 

cálculo, pasando de las 228.7 horas originales a aproximadamente 2.29 horas. 

Este enfoque abre la posibilidad de modelar procesos biológicos más 

complejos, como aquellos que involucran cuatro o más canales iónicos. 

Variabilidad asociada a las predicciones de modelos 

multinivel 
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A pesar de que los enfoques computacionales son una valiosa incorporación a 

los métodos puramente experimentales, es esencial realizar una exhaustiva 

evaluación de la variabilidad asociada a las predicciones con el fin de mejorar 

la confiabilidad de los métodos in silico (Gosling 2019).  

En el pasado, se han propuesto diversas metodologías para caracterizar la 

variabilidad observada en los experimentos in vitro que miden el bloqueo de 

los canales iónicos debido a productos químicos (Elkins et al. 2013; Kramer 

et al. 2020; Li et al. 2017; Mirams et al. 2014). Por otro lado, la variabilidad 

interindividual asociada a los pacientes representa una fuente de variación 

relevante, consecuencia de múltiples factores vinculados con las 

características individuales de los pacientes. Al emplear enfoques in silico, los 

modelos electrofisiológicos que incorporan la IC50 específica de cada canal 

iónico en los biomarcadores de arritmia ventricular, utilizan numerosos 

parámetros que se ajustan para adaptarse a los resultados experimentales. Sin 

embargo, dado que los seres humanos no somos fisiológicamente idénticos, 

ningún modelo electrofisiológico puede producir resultados que representen 

adecuadamente a todos los pacientes ni explicar con precisión las diferencias 

observadas entre nosotros (Wisniowska, Tylutki, y Polak 2017). Por ello, los 

enfoques poblacionales se han descrito como una estrategia útil para 

considerar la variabilidad interindividual en los parámetros de los modelos in 

silico. 

En el Capítulo 4, en nuestro trabajo (Kopańska y Rodríguez-Belenguer et al. 

2023), hemos abordado la caracterización de la variabilidad asociada en los 

modelos multinivel. Para ello, se ha identificado la incertidumbre aleatoria. Así 

como, desarrollado métodos para caracterizar y propagar (via simulaciones de 

Monte-Carlo) este tipo de variabilidad seleccionada. Finalmente, se ha 

cuantificado la variabilidad presente en los resultados finales de los modelos 

multinivel mencionados anteriormente. Por todo ello, los objetivos de este 
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trabajo son, ofrecer una representación más realista de las predicciones de los 

biomarcadores de proarritmia, así como permitir el estudio del impacto de 

fuentes aleatorias de variabilidad, tanto individualmente como en conjunto, 

sobre las predicciones. 

La incertidumbre aleatoria se debe a la variabilidad intrínseca y extrínseca, 

junto con errores de medición, que se utilizan para analizar las asociaciones 

con las entradas del modelo. Estos elementos se resumen como "variabilidad 

experimental" (Simulación A) y "variabilidad interindividual" (Simulación B), 

afectando los valores de IC50 y los parámetros predefinidos en los modelos de 

simulación de potencial de acción electrofisiológico (Simulación C es una 

combinación de ambas).  

Al comparar las distribuciones de las tres simulaciones representadas en la 

Figura 6, que corresponden a los 12 compuestos de CiPA, se evidencian 

notables diferencias en términos de su amplitud y asimetría. En la Simulación 

A, se introdujeron valores aleatorios con una media de 0 y una desviación 

estándar de 0.5 en los valores de IC50 para generar las entradas del modelo. 

Por lo tanto, la forma y la anchura de estas distribuciones no están 

directamente influenciadas por las suposiciones utilizadas para caracterizar 

este tipo de variabilidad.  

En la Simulación B, a diferencia de la Simulación A, la dispersión y la forma de 

las distribuciones, sí se deben a las suposiciones realizadas sobre la 

variabilidad interindividual. Por ello, la suma de números aleatorios 

distribuidos normalmente a los valores de salida en la Simulación B resulta en 

distribuciones de APD90 con un histograma normal y sin diferencias notables 

en el ancho. 

Al combinar ambos tipos de variabilidad en la Simulación C, las distribuciones 

son bastante similares a las obtenidas en la Simulación B, pero con una 
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dispersión ligeramente mayor y cierta asimetría. Es crucial destacar que el 

efecto de considerar ambos tipos de variabilidad simultáneamente no es 

aditivo y varía según el fármaco en estudio. 

 

Figura 6: Gráficos de violín mostrando las distribuciones de los valores de APD90 
obtenidos en diferentes simulaciones de Monte-Carlo introduciendo los siguientes 

tipos de variabilidad: Simulación A:Variabilidad experimental (Δ-pIC50); Simulación B: 
Variabilidad interindividual (Δ-Parámetros); Simulación C: Combinación de 

variabilidad experimental e interindividual. 
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En cuanto a los gráficos de barras de la Figura 7 (utilizados para determinar los 

percentiles 10 y 90), no muestran grandes diferencias en las predicciones de 

APD90 generadas en las tres simulaciones realizadas para el mismo fármaco. 

Esto sugiere que la predicción real, calculada como el valor mediano del APD90, 

apenas se ve afectada por el tipo de simulación y se mantiene constante. 

 

Figura 7: Gráficos de barras que muestran la mediana de las predicciones de APD90 
obtenidas para los 12 compuestos CIPA, utilizando tres tipos de simulación. 
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Simulación A: Variabilidad experimental (Δ-pIC50); Simulación B: Variabilidad 
interindividual (Δ-Parámetros); Simulación C: Combinación de variabilidad 

experimental e interindividual. Los intervalos representan los percentiles 10th y 90th 
obtenidos a partir de las distribuciones mostradas en la Figura 6. 

En resumen, la inclusión de la variabilidad experimental en las entradas del 

modelo multinivel de seguridad cardíaca representó un avance significativo 

para aumentar la confiabilidad de las predicciones derivadas de estos 

modelos. Además, considerar las diferencias interindividuales en cuanto a los 

efectos de los medicamentos es especialmente importante cuando se trata de 

proteger a personas con mayor susceptibilidad a desarrollar arritmias 

cardíacas, ya que como se describe en Wisniowska, Tylutki, y Polak (2017): "Los 

seres humanos varían, por lo tanto, los modelos cardíacos deben tenerlo en 

cuenta...". Finalmente, la combinación de variabilidad u otros tipos de 

incertidumbre no implicó que los efectos de cada fuente se sumen en la 

predicción final. 
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Introduction 

 

Traditionally, toxicology has relied on animal experiments to assess the 

adverse effects of candidate drugs. Nonetheless, in recent years, significant 

efforts have been made to reduce, refine, and replace animal testing with New 

Approach Methodologies (NAMs) (Russell & Burch, 1960). This shift towards 

sustainable science was initiated by the publication of "Toxicity Testing in the 

21st Century: A Vision and a Strategy" by the National Academy of Sciences 

and National Research Council of the USA (Council, 2007). 

Despite these advances, inherent complexities in the phenomena under 

research persist in both experimental and computational methods (in silico) 

within the realm of NAMs, making it challenging to assess the toxicity of the 

chemicals under study. In this context, two fundamental questions emerge: 

what do we understand by "complexity", and what types of complexity can we 

encounter? According to the Cambridge Dictionary, complexity is defined as 

"the state of having many parts and being difficult to understand or find an 

answer to a problem". Furthermore, an added challenge lies in capturing the 

interaction among each of these components, resulting in emergent 

phenomena that are unpredictable at lower levels of representation. With 

respect to the types of complexities, we propose three major groups: 

mechanistic, chemical space and methodological. 

On the one hand, mechanistic complexities encompass situations in which 

biological endpoints are constituted by several different processes 

interconnected in a network, and a reductionist approach may lead to a loss of 

information or a poor representation of the underlying mechanisms in a 

biological phenomenon. Chemical space complexities, on the other hand, arise 

when evaluating the toxicity of new compounds that differ significantly from 

those used to build a model. Finally, methodological complexities pertain to 
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the intricacies and challenges encountered in designing, implementing, and 

executing research methods and procedures. This complexity may occur due 

to the nature of the research problem, the need to account for multiple 

variable types, or because of the typical class imbalance problem. 

Now, the following question that emerges is: what causes these complexities? 

Essentially, these complexities rely on the complexity of the biological and 

chemical processes in the organisms. These complexities frequently constrain 

experimental and computational methods, compelling them to make 

numerous assumptions that, in certain instances, may not align with reality. In 

vitro assays, one of the most widely used NAMs, have significant advantages 

such as speed, cost-effectiveness and ethical acceptability. However, they 

typically focus on individual cell types or tissues, thereby missing factors such 

as organ-to-organ communication, systemic effects, and intercellular 

interactions, affecting the overall relevance of the data collected (Hartung, 

2018). Finally, it is essential to emphasize that computational methods, despite 

the significant benefits they offer, such as cost-effectiveness (Council, 2007), 

reduced reliance on animal testing, and high-throughput screening (Raies & 

Bajic, 2016), heavily depend on the data generated by experimental methods. 

This dependence exposes them to the limitations of experimental data, in 

addition to their own inherent limitations. 

Hence, in this work, we will review how the inherent complexities in the field 

of computational toxicology have been addressed through the combination of 

multiple models and the integration of their results. Instead of following a 

systematic review approach we aim to provide readers with a practical guide 

on the effective utilization of model combination in the field of computational 

toxicology, offering insights on when, how, and for what purposes to employ 

this approach. To facilitate this, we will delve into the "metamodel" concept 

which represents the combination of multiple models, with each individual 
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model referred to as a LLM. As the primary focus of this review lies in predictive 

models (Raies & Bajic, 2016), it is noteworthy that each of the LLMs is 

constructed utilizing QSAR models. By integrating these LLMs, we can 

effectively tackle the complexity at hand and optimize our problem-solving 

capabilities. The metamodel framework enables us to benefit from a 

comprehensive and well-rounded approach that capitalizes on the unique 

attributes of each component (March-Vila et al., 2023; Bringezu et al., 2021; 

C.-H. Chen et al., 2020).  

Type of metamodels 

 

A metamodel is a supervised learning approach which involves the 

combination of several LLMs to achieve superior predictive performance 

compared to what a classical QSAR model could achieve (Polikar, 2006; Rokach, 

2010).  Figure 1 presents an overview of the process from problem formulation 

to its resolution using metamodels. The icons surrounding the head represent 

some of the day-to-day issues faced by a computational toxicologist, such as 

high dissimilarity between the test set and train set, complex biological 

phenomena, algorithmic limitations, or information accessibility issues which 

stem from the confidentiality of pharmaceutical companies' data, among 

others. These problems form the basis of the three types of complexities we 

analyse: mechanistic, chemical space, and methodological complexities. 

Therefore, once computational toxicologists identify the problem at hand and 

its associated complexity, they can attempt to solve it using metamodels. On 

the one hand, there may be a need to better describe the mechanisms of a 

complex endpoint, where each model represents a specific mechanism 

(mechanistic-based metamodel).  
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Figure 1: Overview of how three different types of complexities in toxicology are 
tackled through the combination of models. 
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On the other hand, there may be a requirement to improve the description of 

a complex chemical space, with n models representing different chemical 

spaces (fragment-based chemical spaces metamodel). Also, there may be a 

challenge in enhancing the prediction capability by combining models to 

better capture the complex association with an endpoint using different 

algorithms or descriptors (methodological-based metamodel). Regardless of 

the problem type, once the LLMs are constructed and used for predicting, their 

outputs are combined to obtain the desired outcome (Bringezu et al., 2021; 

Daghighi et al., 2022; Yu et al., 2022). 

In the process of integrating predictions, another crucial step involves 

identifying the most suitable combinatorial strategy. This can be achieved 

through methods such as logical operations (OR, AND, Majority) or building a 

high-level machine learning model, which is trained using as input the 

predictions produced by the LLM (Pastor et al., 2021). On certain occasions, 

the choice of the method is not driven by the predictive performance, but 

rather by the most logical approach from a toxicological perspective. In such 

cases, considerations related to the safety and potential risks associated with 

the chemicals being analysed take precedence over the absolute performance 

of the model.  

Table 1 presents a summary of the main problems associated to the 

complexities reviewed in this article, highlighting the underlying problem that 

motivates their use, as well as explaining the reasons why a classical QSAR 

model would not be a more suitable option, along with the kind of LLM and 

the main examples to be reviewed. 

Table 1: Summary of the underlying problem that leads to proposing a metamodel, 
kind of metamodel, why a classical QSAR model is not convenient, rationale of 

metamodel use, low-level models and examples. 

Problem 
Kind of 

complexity 

Why not a 
classical 
QSAR? 

Rationale of 
metamodel 

use 

Low-level 
models 

 

Examples 
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Complex 
biological 

phenomenon 
Mechanistic 

Classical QSAR 
models cannot 

capture the 
intricacies of 

complex biological 
phenomena. 

Need to simplify 
the problem into 
different models 

that represent the 
different processes 

of the 
phenomenon 
under study. 

Molecular Initiating 
Events (MIEs) of an 
Adverse Outcome 
Pathway (AOP) or 
different levels of 

mechanistic 
information. 

• Molecular Initiating 
event combination 
(Sapounidou et al., 
2023; Gadaleta et al., 
2022, 2018; 
Kleinstreuer et al., 
2018; 
Kotsampasakou & 
Ecker, 2017). 

• Multi-level model 
(Mirams et al., 
2014a; Rodríguez-
Belenguer et al., 
2023a). 

Data 
accessibility 

due to 
structure 

confidentiality 

Chemical space 

It is impossible to 
combine all the 

datasets into one 
because you do 

not have access to 
the structures. 

Each 
pharmaceutical 

company contains 
its own structures 

that can cover 
different positions 

in the chemical 
space. 

Each dataset for 
each company 
represents a 

model. 

• Combination of 
models without 
structure sharing 
(Bosc et al., 2021; 
Gedeck et al., 2017). 

• Federated learning 
(S. Chen et al., 2021; 
Heyndrickx et al., 
2022b; Simm et al., 
2021). 

 
Lack of 

identifiability 
of patterns in 

the data 

Chemical space 

A classical QSAR 
may overlook or 

fail to account for 
the inherent 

heterogeneity 
within the dataset. 

Models trained on 
individual clusters 

can capture the 
specific patterns 

within each subset. 
Combining the 
models enables 
leveraging the 

strengths of each 
cluster-specific 

model across the 
entire dataset. 

Each low-level 
model is trained 
with the dataset 
belonging to a 

cluster obtained by 
a clustering 
technique. 

• Cluster using 
unsupervised 
learning (H. Li et al., 
2018; Samanipour 
et al., 2022). 

Algorithm 
limitations 

Methodological 

A classical QSAR 
algorithm cannot 

excel in all 
scenarios. 

The strengths and 
weaknesses of the 

different algorithms 
can be 

compensated by 
combining them 
with each other. 

Different machine 
learning 

approximations for 
the same dataset. 

• Algorithm 
combinations 
(Cerruela García 
et al., 2018; D’Souza 
et al., 2021; Grenet 
et al., 2019; Hanser 
et al., 2019; He et al., 
2019; Liew et al., 
2011; L. Wang et al., 
2021; Yu et al., 2022). 

Molecular 
descriptor 
limitations 

Methodological 

A classical QSAR 
model with so 
many types of 

variables may have 
multicollinearity 

problems. 

The combination of 
models in which 
each one has a 

different type of 
variables allows 
you to attack the 
multicollinearity 

problem separately 
without the risk of 
losing information 
that is necessary. 

Different kind of 
variables for each 

model. 

• Descriptor 
combinations 
(Bugeac et al., 2021; 
Kwon et al., 2019; 
Smusz et al., 2013). 

Class 
imbalance 
limitations 

Methodological 

A classical QSAR 
will tend to more 

effectively 
predicting the 
majority class. 

The combination of 
appropriately 

balanced individual 
models will avoid 

biases in the 
prediction towards 
the majority class. 

Replicating the 
minority class in 
each model and 

distribute the 
majority class 

evenly until a 50:50 
ratio is reached. 

• Creation of balanced 
subsets from original 
series (Bringezu 
et al., 2021; March-
Vila et al., 2023). 

 

Mechanistic-based metamodel 

 

Understanding the mechanism of toxicity is crucial when evaluating a specific 

toxic response. Without knowledge of the underlying mechanism, it becomes 
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challenging to make informed decisions regarding the toxic effects of the drug 

under examination (Ross, 1989). In fact, Cronin & Richarz (2017) highlight a 

shift in the field of toxicology towards “an assessment of the (perturbation of) 

normal biological pathways relating to toxicity allowing for a mechanistic basis 

to understanding the effects of chemicals” (Cronin & Richarz, 2017). Hence, in 

computational toxicology, constructing models grounded on mechanistic 

knowledge offers the benefits of enhancing the model's predictive accuracy, 

its predictive performance when extrapolating, and increasing its 

interpretability by incorporating the biology that underlies the endpoint of 

interest (Benzekry, 2020). This has been a longstanding pursuit in the field of 

artificial intelligence (AI), aiming to move beyond “black box” models that lack 

transparency and fail to explain the reasons behind their predictions (Petch 

et al., 2022). 

In the realm of in silico toxicology, classical QSAR models have shown efficacy 

in predicting simple biological phenomena (Chinen & Malloy, 2022; De et al., 

2022). However, their performance tends to be inadequate when it comes to 

predicting more complex biological phenomena (e.g., cholestasis, steatosis, or 

neurotoxicity). Hence, in this review, a mechanistic-based metamodel is 

focused on the integration of the outputs of several LLMs focused on simpler 

biological phenomena, with each model representing a specific mechanism 

relevant to the desired endpoint. So, the combination of simpler biological 

phenomena at the receptor or organ level is investigated, thereby admitting 

that complex mechanisms cannot be directly modelled. This recognition arises 

from the understanding that a classical QSAR model would fail to capture the 

intricate information underlying each distinct biological phenomenon 

(Cherkasov et al., 2014). 

To overcome the limitation that complex biological phenomena cannot be 

correctly modelled by a classical QSAR model, it would be useful to integrate 
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existing mechanistic knowledge into a rational framework, like the one 

provided by an Adverse Outcome Pathway (AOP). It is important to make clear 

that AOPs were not created with this purpose, however, they provide a 

structured and transparent framework which allows models to take advantage 

of the mechanistic information accessible on AOPwiki. AOPs link molecular 

initiating events (MIEs) to Adverse Outcomes (AO) through intermediate key 

events (KEs), providing a mechanistic understanding of the toxicity of chemical 

compounds (Ankley et al., 2010). One potential strategy to construct a 

metamodel based on AOP network (which can link different MIEs) consists of 

the integration of information from multiple MIEs to predict a selected 

toxicological endpoint. In this scenario, individual QSAR models are 

constructed corresponding to each identified MIE, enabling the prediction of 

these events for a dataset with clinical annotations. So, the prediction matrix 

obtained would serve as the input variables for a model, while the clinical 

annotations would act as the output variable. The final predictions can be 

derived by either employing a voting system among the different predicted 

MIEs or by retraining the prediction matrix using a classifier, as mentioned 

above. The choice on how to merge model outputs relies on the nature and 

severity of the adverse event under evaluation. For instance, in some cases, a 

logical OR could be the preferred approach as it would indicate that the 

presence of any of the studied mechanisms alone would classify the 

compound as toxic. However, in other cases, a majority or a greater number of 

involved mechanisms may need to provide a positive vote to determine 

whether a compound exhibits positive or negative activity. 

Kotsampasakou & Ecker (2017) employed a combination of MIEs to predict 

cholestasis. In this work, the authors created an in silico method by 

constructing a metamodel that combined multiple transporters (acting as 

MIEs) related to cholestasis occurrence and compared it with a classical QSAR 

approach. In this case, the MIEs matrix was trained with different Machine 
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Learning (ML) classifiers (Kotsampasakou & Ecker, 2017). The findings 

indicated that the metamodel produced better predictive performance than 

the classical QSAR models. Also, Gadaleta et al. (2022) developed a MIE-based 

metamodel approach for predicting neurotoxicity. Fifteen QSAR models were 

created, each corresponding to a different MIE and were combined using a 

balanced random forest. The MIE predictions were used alongside chemical 

descriptors and structural fingerprints in various classifiers to compare their 

predictive performance. Overall, classifiers based on MIE predictions showed 

prediction accuracy similar to those based on chemical descriptors and 

structural fingerprints (Gadaleta et al., 2022). Other works that have been 

evaluated using similar methods have also demonstrated encouraging 

outcomes (Sapounidou et al., 2023; Gadaleta et al., 2018; Kleinstreuer et al., 

2018). 

However, although AOPs provide a valuable framework for this type of 

metamodeling, it is not the only way to combine biological information. In 

other studies, Mirams et al. (2014) developed a multi-level in silico tool 

combining information from various ion channels to predict the action 

potential duration at 90% of the repolarization (APD90), which is an important 

measure of the cardiac cell's depolarization and repolarization time during an 

action potential (Mirams et al., 2014a). The authors were able to create a 

metamodel that incorporated this multi-level information, resulting in highly 

accurate predictions. This type of metamodel that combines ion channels for 

the prediction of a given biomarker was subsequently used in another work 

(Rodríguez-Belenguer et al., 2023a). Here, Rodríguez-Belenguer et al. (2023) 

employed a metamodel with various ion channels to predict APD90, aiming to 

reduce the number of time-consuming electrophysiological simulations. The 

authors successfully demonstrated that decreasing the number of simulations 

led to an almost hundred-fold reduction in computation time. 
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This type of metamodel is limited by the difficulty of identifying the biological 

foundations of toxicological endpoints and a wide enough collection of 

involved mechanisms. For instance, when attempting to model an AOP 

network with multiple MIEs, the possibility of having poor knowledge about a 

specific MIE or the presence of missing data in any of the MIEs may occur. This 

can result in the metamodel lacking one or more crucial low-level models that 

could be relevant to the occurrence of the adverse event in question. In 

addition, the AOP itself is not always well-defined, and indeed, the AOP evolve 

with time, and they are arranged in networks. This is an additional, higher level 

of complexity. 

Fragment-based chemical spaces metamodel 

The drug-like chemical space has a potential size as vast as 1060 compounds 

(Hoffmann & Gastreich, 2019). Hence, in novel drug development, it is 

essential to have alternatives to classical QSAR models for accurately 

predicting the endpoint of interest for compounds under investigation, 

especially when dealing with those that may occupy different regions in the 

chemical space compared to the ones present in the training dataset. 

Combining models from different chemical spaces can enhance the predictivity 

of a classical QSAR model, with two scenarios motivating us to construct such 

metamodels. The first involves working with several chemical spaces in the 

pharmaceutical industry, which can be complicated since the intellectual 

property of the compounds belongs to each individual company, necessitating 

the search for strategies that allow working without the need to share 

compound structures. The second involves having access to a complete 

dataset from which we are unable to identify any patterns at first glance. 

Regarding the first case, different companies may possess molecules that 

occupy a specific position in the chemical space, while other companies may 

have other drugs with similar or different positions. In the second case, the use 
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of clustering algorithms (belonging to the branch of unsupervised ML 

algorithms) can help to identify data patterns. Regardless of the type of 

scenario, developing individual models for different chemical spaces and 

combining them could increase the predictivity of classical QSAR model that 

would otherwise miss the inherent heterogeneity in the dataset. One must 

estimate which approach -logical operations or machine learning - yields the 

most accurate predictions. 

Fragment chemical spaces without sharing data 

 

Martin & Zhu (2021) pointed out that collaboration between pharmaceutical 

companies can be hindered by the protection of intellectual property and 

trade secrets (Martin & Zhu, 2021). The specific biological structures and 

targets of interest to each company create further barriers to collaboration. 

Thus, it becomes crucial to adopt strategies that facilitate sharing of models 

without disclosing structures or activity data to enable secure collaboration 

among competitors. For this, different strategies can allow to work with 

confidential data, but the ones we have reviewed focus on sharing the 

individual predictions from each low-level model and the use of federated 

learning strategies (McMahan et al., 2016; Konečný et al., 2017). Both 

strategies are specifically designed to overcome the collaborative paradigm 

and enable data owners to jointly train a model without exposing their data to 

others. As an example, Gedeck et al. (2017) constructed a metamodel with a 

Bayesian ridge regression that practically reproduced the results of a classical 

QSAR model (Gedeck et al., 2017). In another work, Bosc et al. (2021) formed 

a consortium with different partners and trained multinomial naïve Bayes 

models (Manning et al., 2008) with eleven datasets for predicting malaria 

(Bosc et al., 2021). The metamodel exhibited good performance across various 

validation sets and had the significant advantage of being computationally 

efficient. They also developed a web application accessible through the link: 
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https://www.ebi.ac.uk/chembl/maip/. Regarding federated learning 

strategies, the MELLODY project utilized federated machine learning to train 

predictive models on data that remains on the owner's servers, without the 

need to transfer it to a central location. This approach ensures that the data 

and asset owners retain control of their information throughout the project. 

The federated model was trained on the platform by aggregating the gradients 

of all contributing partners in a cryptographic, secure way, which enabled the 

creation of a global federated model for drug discovery without sharing 

confidential datasets. The successful application of federated learning in 

MELLODY will lead to substantial efficiency gains in drug discovery and 

development, as it expands the data available to a broader set of stakeholders 

(Heyndrickx et al., 2022b). Other works that have been reviewed show that 

federated learning within computational toxicology is a powerful tool to work 

in a collaborative way between companies (S. Chen et al., 2021; Simm et al., 

2021).  

In essence, these kind of metamodels have the significant advantage of 

increasing the possibility of having similar compounds between both the 

training and test sets by working collaboratively between companies with 

different chemical spaces. However, it is worth noting that the model closest 

to the test set in the chemical space will perform better than the others and 

may not benefit from the combination of models. In contrast, the combination 

of all models should provide better results for companies that are further away 

from that chemical space. At the outset of the modelling process, there is no 

information available on the similarity of the test set to the dataset or to those 

of other pharmaceutical companies. While this technique may disadvantage a 

company, the collective benefits outweigh any potential drawbacks. One 

potential solution to overcome these disadvantages may be to eliminate 

individual company predictions that exceed a certain distance from the test set 

(this approach is being carried out in a work of our group). In this way, the best 

https://www.ebi.ac.uk/chembl/maip/
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LLM would not lose importance by the combination of models, and the worst 

models would still contribute to the combination.  

Fragmenting chemical spaces with clustering approaches 

 

Datasets often contain inherent heterogeneity, where different subsets of 

instances exhibit distinct patterns or behaviours. By clustering the data, you 

can identify and separate these subsets into individual clusters. Building 

separate models for each cluster enables targeted modelling, ensuring that 

each model captures the specific patterns within its assigned cluster. 

One can either use expert knowledge to cluster the data, for instance using a 

specific chemical, molecular or pharmacokinetic descriptor and group the data 

that fall within certain thresholds, or unsupervised learning algorithms such as 

K-means (Selim & Ismail, 1984), DBScan (Ester et al., 1996) or hierarchical 

clustering (Johnson, Stephen C., 1967) to understand better how the data 

groups together and then create subsets based on the grouping. We can trace 

approaches to solve this issue back to 1977, when Svante Wold published 

SIMCA (Wold & Sjöström, 1977) as a way to identify clusters within chemical 

data. 

The approach known as “clustering first, and then modelling” (H. Li et al., 2018; 

Yuan et al., 2007) has been applied in some works. Yuan et al. (2007) 

concluded in their work that the statistical results obtained by local models 

based on the subsets were much superior to those obtained by the global 

model based on the whole training set (Yuan et al., 2007) and Li et al. (2018) 

mentioned that by creating subsets of similar compounds the afterwards 

modelling shows better predictions because analogical chemicals are more 

likely to capture same category molecules precisely, suggesting that low-level 

models are superior to classical QSAR models (H. Li et al., 2018). 
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Golalipour et al. (2021) compiled a plethora of methods to cluster data and 

combined these clusters into an ensemble. They suggested that each 

clustering method has good efficiency on specific data (Golalipour et al., 2021), 

which means that one should review the data and the context in which is 

working to choose the clustering method that best suits its needs. Also, they 

mentioned that a clustering ensemble shows a better performance than the 

set of base clustering methods (Golalipour et al., 2021), a situation we have 

also observed in our ensemble models when compared to classical models. 

An illustrative example of how to cluster the data either using clustering 

algorithms or expert knowledge, such as defined labels, can be found in the 

work of Samanipour et al. (2022). They collected acute fish toxicity data from 

different sources and derived the toxic classes of the compounds using on one 

side k-means clustering and on the other, Globally Harmonized System of 

Classification (GHS) (UNECE, 2021) labels referred to acute fish toxicity based 

on different thresholds, so the compounds can be classified from very low to 

high toxicity (Samanipour et al., 2022). Then, they compared the performance 

of a QSAR regression model against a descriptor-based direct classification 

model. Finally, they checked the categorization obtained from the k-means and 

the knowledge based on GHS, finding that there is a high level of similarity in 

the thresholds (Samanipour et al., 2022). We find these results illustrative 

enough to encourage clustering and subset selection using an unsupervised 

clustering algorithm to identify patterns within data and generate subsets that 

allow the creation of LLMs that overcome the limitations of the heterogeneity 

in the training series. Still, one must be cautious since each dataset must be 

well-defined and studied, alongside with the problem to solve. 

In broad terms, by using clustering techniques, you can identify distinct 

subsets of data with similar characteristics (Samanipour et al., 2022). Each 

individual model can then specialize in learning patterns within a specific 
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cluster, potentially leading to improved performance. However, if the clusters 

are not well-defined or if there is significant overlap between clusters, the 

individual models may not effectively capture the desired patterns. Clustering 

errors or misclassifications can propagate to the metamodel, impacting its 

overall performance. 

Methodological-based metamodel 

 

In this category of metamodels, those that are built without depending on the 

examination of any biological mechanism, physicochemical attribute, or 

pharmacokinetic property are included. Their primary objective consists of 

improving model performance by addressing methodological challenges which 

are universal in the realm of computational toxicology. Some of the commonly 

reviewed in this work include the inadequacy of a single algorithm or variable 

type to effectively solve the problem and class imbalance. This approach is 

designed to tackle a specific aspect of the problem at hand, surpassing the 

limitations of a classical QSAR model. Here, the merging of outputs from 

individual models would prioritize achieving the optimal performance of a 

metamodel, as the resolution of the problem is not affected by biological or 

chemical complexities. 

Algorithm limitations 

 

While numerous ML algorithms have been employed to acquire knowledge on 

QSARs, there is not a universally recognized optimal algorithm for QSAR 

learning (Wu et al., 2021). Thus, understanding the working principles, 

advantages, and disadvantages of each algorithm is crucial to determine the 

potential benefits that a combination of algorithms can offer for a given 

problem or task (Table 2). 
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Table 2: Summary of the main ML algorithms in IST and their advantages and 
disadvantages. 

Algorithms Problem Association How does it work? Advantages Disadvantages 

Linear regression (LR) 
(Hastie, Tibshirani, & 
Friedman, 2009) 

Regression Linear 

A statistical model 
that finds the linear 
relationship between 
independent and 
dependent variables. 

• Simple to 
implement. 

• Overfitting can be 
reduced by 
regularization. 

• Subject to 
underfitting. 

• Large effect of 
outliers. 

Partial least square 
(PLS) (H. O. A. Wold, 
1968) 

Regression Linear 

A statistical method 
that constructs a 
linear regression 
model by projecting 
both the predicted 
variables and 
observable variables 
onto a new space. 

• Handling 
multicollinearity. 

• Dealing with 
high-Dimensional 
data. 

• Subject to 
overfitting. 

• Large effect of 
outliers. 

Ridge (L2) (Hoerl & 
Kennard, 1970a) 

Regressiona Linearb 

A linear regression 
technique introduces 
regularization to 
prevent overfitting by 
adding a penalty term 
to the loss function. 
Penalizes the sum of 
squares of the 
weights. 

• Performs well 
with high-
dimensional data. 

• Reduces the 
impact of 
irrelevant 
predictors. 

• Biased 
estimates 
when there is 
substantial 
multicollinearit
y. 

• Shrinks all 
coefficients. 

Lasso (L1) (Tibshirani, 
1996) 

Regressiona Linearb 

A linear regression 
technique that 
introduces 
regularization and 
performs feature 
selection by adding 
an absolute penalty 
term to the loss 
function. Penalizes 
the sum of absolute 
values of the weights. 

• Find relevant 
predictors. 

• Effective in 
situations where 
only a small 
number of 
predictors are 
truly important. 

• May struggle 
with 
multicollinearit
y. 

• Sometimes 
can be very 
strict. 

Naïve Bayes (Gareth 
James, 2013) 

Classificatio
n 

Linear 

It is a simple 
probabilistic machine 
learning algorithm 
that makes 
predictions based on 
the application of 
Bayes' theorem with 
the assumption of 
independence 
between features. 

• Fast and efficient. 

• Handles missing 
data gracefully. 

 

• Assumes 
independence 
between 
features. 

• Assumption 
about the 
priors. 

Polynomial (Hastie, 
Tibshirani, & 
Friedman, 2009) 

Regression Non-linear 

A regression 
technique that fits 
the data to a 
polynomial function 
to capture nonlinear 
relationships. 

• Works on any size 
of data. 

• Flexibility of 
shape. 

• Can lead to 
overfitting if 
the degree of 
the polynomial 
is too high. 

• The higher the 
polynomial 
degree the 
higher of 
model 
complexity. 

Support Vector 
Machines (SVM) 
(Cortes & Vapnik, 
1995) 

Regression 
and 

classification 

Linear and 
non-linear 

A supervised learning 
algorithm that finds 
an optimal 
hyperplane or 
boundary to separate 
data points or 
estimate continuous 
values after a 
nonlinear 
transformation of the 
input data (kernels). 

• Effective in high-
dimensional 
spaces. 

• Versatile kernel 
functions. 

• Computational
ly Intensive. 

• Sensitive to 
noisy data or 
imbalance. 

Decision Tree (DT) 
(Breiman, 1984) 

Regression 
and 

classification 
Non-linear 

Creates a hierarchical 
structure of rules to 
make predictions by 
recursively splitting 
data based on feature 
values. 

• Easy to 
interpretability. 

• Robust to 
outliers. 

• Independent of 
the input range. 

• Lack of 
smoothness. 

• High Variance. 
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Random Forest (RF) 
(Breiman, 2001) 

Regression 
and 

classification 
Non-linear 

An ensemble 
learning method that 
combines multiple 
decision trees, where 
the final result is 
obtained through 
voting or averaging. 

• Improved 
generalization 
regarding 
individual 
decision trees. 

• Handling high-
dimensional data. 

• The importance 
of the variables 
can be obtained. 

• Less 
Interpretable 
than the 
decision trees. 

• Computational 
complexity. 

K-Nearest Neighbors 
(KNN) (Fix & Hodges, 
1951) 

Regression 
and 

classification 
Non-linear 

Assigns a data point 
based on the majority 
vote or average of its 
k nearest neighbours. 

• Simplicity. 

• No assumptions 
of data 
distribution. 

• Feature 
Scaling. 

• Memory 
requirements. 

XGBoost (XGB) (T. 
Chen & Guestrin, 
2016) 

Regression 
and 

classification 
Non-linear 

A gradient-boosting 
algorithm that uses a 
set of weak learners 
to build a powerful 
predictive model. 

• Parallel and 
sequential 
processing. 

• Feature 
importance. 

• Sensitive to 
outliers. 

• Memory 
usage. 

• Problems with 
high-
dimensionality
. 

Neural Networks 
(NN) (Rumelhart 
et al., 1986a) 

Regression 
and 

classification 

Linear and 
Non-linear 

A computational 
model that learns 
complex patterns and 
relationships 
between input and 
output data through 
interconnected layers 
of nodes (neurons). 

• Ability to learn 
complex.patterns. 

• Flexibility. 

• Large training 
data 
requirements. 

• Hyperparamet
er manual 
tuning. 

a They can be incorporated into classification algorithms as hyperparameters 
b They can be incorporated into algorithms suitable for non-linear associations 

In this context, it is important to note that a classical QSAR modelling approach 

with the same model does not necessarily excel in all scenarios. Thus, 

considering the potential complementarity among different algorithms (Table 

2) becomes crucial to develop more reliable models for toxicological 

predictions. For instance, in the field of Drug-induced liver injury (DILI) 

prediction, researchers such as Liew et al. (2011) were early adopters of model 

combinations to improve their predictions (Liew et al., 2011). The approach 

involved constructing a total of 617 base classifiers using a diverse set of 1,087 

compounds. These base models incorporated K-NN and SVM, which were 

further stacked with a Naïve Bayes classifier. The performance of the ensemble 

was evaluated through internal validation using a five-fold cross-validation 

technique. The study revealed that the ensemble model exhibited proficient 

classification of positive compounds associated with hepatic effects. However, 

its performance was comparatively lower for negative compounds, especially 

when they possessed structural similarities. In the latter case, a classical QSAR 

model is probably more efficient. 
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In another work, Hanser et al. (2019) showed that using the same training 

series with a combination of statistical models like RF and SOHN (Hanser et al., 

2014) along with an expert system such as Derek Nexus, produced a better 

outcome than the individual models by itself (Hanser et al., 2019). In another 

reviewed work, Ancuceanu et al. (2020) stacked a set of 78 ML models for 

predicting DILI achieving slightly superior results to other models published 

(Ancuceanu et al., 2020). The most common algorithms were Decision Tree, 

Random Forest, Support Vector machines and Neural Networks which were 

weighted using majority voting. The balance accuracy of this work (74%) was 

higher than the work published by He et al. (2019). Other works reviewed 

showed that the combination of different algorithms is a technique commonly 

used in the field of computational toxicology (Yu et al., 2022; Cerruela García 

et al., 2018; Grenet et al., 2019; D’Souza et al., 2021; L. Wang et al., 2021). 

In summary, the combination of diverse mathematical approaches offers the 

advantage of compensating for the strengths and weaknesses of individual 

algorithms. However, it is important to note that such models tend to be 

treated as complete black boxes, focusing solely on improving performance 

without considering chemical, pharmacokinetic, or biological complexities.  

Molecular descriptor limitations 

 

The training of a model relies on accurately representing molecules using 

descriptors that effectively capture their properties and structural features. 

Literature offers numerous molecular descriptors, encompassing a wide range 

from basic molecule properties to intricate three-dimensional 

representations. These descriptors are often stored as vectors with hundreds 

or even thousands of elements. It is crucial to acknowledge that there is no 

single optimal choice for the best feature (Carracedo-Reboredo et al., 2021). 

Consequently, the selection and combination of features should be carefully 
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studied, considering the context and objectives of the modelling research 

(Carracedo-Reboredo et al., 2021). 

Classical QSAR modelling using different descriptors, rather than employing a 

combination of models with these diverse descriptors, might show three major 

drawbacks: 

1. High dimensionality: Combining multiple descriptors increases the 

overall dimensionality of the model. As the number of features grows, 

computational complexity and resource requirements can escalate 

significantly. This can lead to longer training times and challenges in 

optimizing the model's performance (W. Zhou et al., 2012). 

2. Difficulty of interpretability: Incorporating numerous descriptors into 

a single model can make it more challenging to interpret and 

understand the contributions of individual features to the model's 

predictions. Extracting meaningful insights and interpreting feature 

importance becomes more complex when multiple features are 

combined (Matveieva & Polishchuk, 2021). 

3. Multicollinearity: When using multiple descriptors that may be 

correlated or redundant, multicollinearity can appear. This can lead to 

instability in the model's performance and make it difficult to discern 

the true influence of each descriptor on the toxicological endpoint 

being predicted (Heo et al., 2019). 

Hence, employing a combination of individual models, each containing one 

type of variable, can effectively address the challenges associated with 

classical QSAR modelling. In Table 3 there are listed the most used descriptors 

in computational toxicology. 

Table 3: Main descriptors used in computational toxicology 

Kind of descriptor Brief description 



CAPÍTULO 1 

48 
 

Physico-chemical 
descriptor 1D 

They allow the calculation of information based on specific fractions of a molecule. Examples: carbon 
atoms, cyanates, or nitriles (Carracedo-Reboredo et al., 2021). 

Physico-chemical 
descriptor 2D 

They rely on graphical representations of molecules, exhibiting theoretical structural properties which are 
preserved under isomorphism. Examples: Molecular weight, number of bonds, hydrogen bond acceptor 
(Carracedo-Reboredo et al., 2021). 

Physico-chemical 
descriptor 3D 

They consider the distances between bonds, bond angles, dihedral angles, and other measures. Examples: 
Asphericity, eccentricity, and inertial shape factor (Carracedo-Reboredo et al., 2021). 

Molecular ACCess Systems 
keys fingerprint (MACCS) 

They are constructed using SMART patterns and are optimized for substructure searching based on 2D 
molecular descriptors. There are two kinds: 166-bit keyset and a 960-bit keyset (Durant et al., 2002). 

PubChem Fingerprints 
(PubChemFP)  

This fingerprinting method encodes 881 structural key types, representing substructures found in a 
fraction of all compounds within the PubChem database. They are used by PubChem for similarity 
neighbour and similarity searching (Y. Wang et al., 2009). 

Extended Connectivity 
Fingerprints (ECFP) 

ECFP is a representation of a molecule's structure based on its connectivity pattern. It captures 
information about the presence or absence of specific chemical substructures and their connectivity to 
neighbouring atoms (Rogers & Hahn, 2010). 

Atom pairs 

AtomPairs2DFingerprint (APFP) captures information about the atomic environment and shortest path 
separations between pairs of atoms in a compound's topological representation. 780 distinct atom pairs at 
different topological distances are encoded (Schneider et al., 1999; Carhart et al., 1985).  
GraphOnlyFingerprint (GraphFP) encodes the 1024 unique paths of a fragment within the compound's 
structure (Steinbeck et al., 2003). 

RDkit fingerprints 
They are generated by considering all potential paths of specific lengths, originating from each heavy 
atom in the molecular graph (Landrum et al., 2020). 

For instance, in the study conducted by Smusz et al. (2013), a multidimensional 

analysis of machine learning methods was employed to classify bioactive 

compounds (Smusz et al., 2013). Researchers constructed eleven learning 

algorithms, which included four meta-classifiers (with different input 

combinations). Various types of fingerprints, such as ECFP, MACCS, or 

PubChemFP, among others, were utilized in this analysis. The incorporation of 

meta-learning techniques resulted in an enhancement of the evaluation 

parameters. This suggests that the use of meta-learning approaches improved 

the performance of the classical models, leading to increased accuracy and 

predictive capability.  

In another study performed by Kwon et al. (2019), an ensemble method was 

proposed and evaluated on nineteen bioassay datasets (Kwon et al., 2019). 

The results showed that the ensemble method consistently outperformed 

thirteen individual models. The researchers utilized three types of molecular 

fingerprints, namely PubChem, ECFP, MACCS, and SMILES. Regarding ML 

models, they employed SVM which achieved the highest average Area Under 

the Curve (AUC) value compared to other algorithms such as NN, RF, gradient 

boosting machines (GBM), and ordinary regression. 

In the study conducted by Bugeac et al. (2021), the researchers constructed a 

metamodel consisting of 28 individual models, each utilizing a different set of 
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physicochemical descriptors and fingerprints (Bugeac et al., 2021). The 

performance of various classification algorithms was evaluated, including KNN, 

logistic regression, decision tree classifier, and ensemble methods. Among 

these algorithms, KNN, logistic regression, and decision tree classifier 

demonstrated the highest balanced accuracy. However, during nested cross-

validation, the ensemble method exhibited slightly superior results. It suggests 

that the ensemble approach was able to harness the collective predictive 

power of the individual models, resulting in improved performance.  

As previously mentioned, constructing a metamodel using individual models 

with different input variables can effectively address challenges related to high 

dimensionality, interpretability, and multicollinearity when dealing with each 

variable type separately. However, this approach overlooks the intricate 

complexities of biological systems that extend beyond these factors. 

Consequently, this oversight could lead to incomplete representations of 

biological responses, undermining the accuracy and robustness of predictions. 

Balancing strategies 

 

When dealing with real-world data we often see the problem of class 

imbalance, which consists in the overrepresentation of one class over the 

other one. This causes learning algorithms to bias towards the majority class 

(Krawczyk, 2016; Megahed et al., 2021). Using a metamodel to correct class 

imbalance can offer several advantages over classical QSAR models with over- 

or under-sampling strategies (Liu et al., 2022; March-Vila et al., 2023). One key 

advantage is that the metamodel allows for the creation of individual models 

that balance the classes, often leading to improved predictive power (Galar 

et al., 2012). The choice of how to balance datasets relies on both the size and 

the degree of imbalance in the original training dataset. To illustrate, when 

dealing with a large collection of compounds that exhibits a significant 
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imbalance, such as a ratio of 100:1, it is possible to create multiple subsets 

where each subset contains an equal number of instances from the 

underrepresented class while ensuring a fair representation of compounds 

from the overrepresented class. The way to combine these multiple subsets 

depends on the nature of the endpoint that is being studied, thus the choice 

of a logical OR, logical AND or majority voting should be decided according to 

how the endpoint is defined: is a compound positive for a certain endpoint no 

matter in which part of the chemical space of the subsets falls in, or should it 

be considered positive after several models have shown it is? 

Galar et al. (2012) proposed a new taxonomy for ensemble-based techniques 

to deal with the imbalanced dataset, that consisted of cost-sensitive 

ensembles and data preprocessing followed by ensemble learning (Galar et al., 

2012). They concluded that ensemble-based algorithms are worthwhile since 

they improve the results that are obtained by the usage of data preprocessing 

techniques and training a single classifier. They state that, despite the use of 

more classifiers making them more complex, the overall growth is justified by 

the better results that can be assessed (Galar et al., 2012). 

Bringezu et al. (2021) solved their imbalance data problem by creating a series 

of low-level models with balanced datasets that stemmed from the main 

training series. This resulted in a classifier with high sensitivity and specificity 

(Bringezu et al., 2021). They also compared the performance of their 

ensemble models against a classical QSAR model that used the main training 

series without correcting the imbalance. The classical QSAR had good 

specificity but low sensitivity (0.95 and 0.47 respectively) which led to an 

accuracy of 0.71, whereas the ensemble model had a more balanced 

specificity/sensitivity ratio (0.87 and 0.92 respectively) which resulted in an 

accuracy of 0.87, thus improving the results of the classical QSAR (Bringezu 

et al., 2021). 
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Likewise, March-Vila et al. (2023) obtained a very unbalanced dataset that was 

performing badly as a model since a classical QSAR tends to predict more 

effectively the majority class. They decided to split the training series into 

multiple balanced sets, keeping the same negative annotated compounds in 

all the subsets, since those were the less represented class, and adding 

different positive compounds into each of the sets until they reached a balance 

between positive and negative annotations. They proceeded with the creation 

of one model for each dataset and a subsequent metamodel was created 

based on the previous low-level models. They found two main advantages in 

this approach: first, using an imbalance correction algorithm such as random 

oversampling (Menardi & Torelli, 2014) or random undersampling (Lemaître 

et al., 2017) would have affected the chemical space they were working on, 

and, in this way, the chemical space remained unaltered. And second, the 

performance of the metamodel surpassed the previously created models with 

the unbalanced datasets (March-Vila et al., 2023). 

In this kind of strategy, it is important to consider that the metamodel 

approach assumes a static class distribution during the training phase. If there 

are significant changes in the class distribution during deployment or 

inference, the performance of the metamodel may deteriorate. In such cases, 

it becomes necessary to retrain or update the metamodel to adapt to the new 

distribution and ensure continued optimal performance. 

Discussion 

 

In this article, we have focused on reviewing three different types of model 

combinations: mechanistic-based metamodel, fragment-based chemical space 

metamodel, and methodological-based metamodel. These kind of 

metamodels have been developed to tackle the intrinsic complexities inherent 

in the problem under investigation within the field of computational 
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toxicology. In broad terms, we have observed that the predictivity of classical 

QSAR models might be constrained when describing complex biological 

phenomena, complex chemical spaces, or with different methodological 

challenges. These complexities could stem from the fact that classical QSAR 

models might face challenges in interpreting the specific mechanisms leading 

to the assessment criterion, the broad chemical space or the singularities of 

each kind of ML algorithm, training series and molecular descriptor, whereas 

a lower-level model may have an easier time capturing and interpreting these 

complexities due to its ability to delve into the underlying mechanisms and 

nuances of the data. Furthermore, there is an additional layer of complexity 

encompassing the three described above, which pertains to the intricacies of 

human beliefs and behaviour. This layer plays a significant role in determining 

the credibility of computational predictions, influencing others' willingness to 

use them in decision-making. 

However, despite all the benefits shown in this review for metamodels, they 

typically combine individual models that use in vitro data to predict clinical 

annotations established in in vivo assays. As mentioned in the introduction, in 

vitro data may not directly correlate with in vivo data due to the absence of 

important factors such as absorption, distribution, metabolism, and excretion 

(ADME) processes, which is a limitation in itself. This limitation poses a 

significant obstacle to obtaining reliable results since we are trying to predict 

in vivo data from variables that contain only in vitro information. To address 

this issue, one possible solution may be to employ in vitro to in vivo 

extrapolation models (QIVIVE), based on a minimal physiologically based 

pharmacokinetic (mPBPK) model. This model effectively simulates the 

longitudinal behaviour of a substance in a living organism, considering crucial 

pharmacokinetic phenomena over time, such as ADME processes. The use of 

QIVIVE models would allow extrapolating in vitro concentrations to in vivo 

doses. Thus, QIVIVE models could provide a valuable tool to enhance the 
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accuracy and relevance of metamodels, ultimately advancing our 

understanding of drug behaviour and its effects in the context of the real 

world. In general, metamodels facilitate the integration of various types of 

data, including in vitro and in vivo, enabling a comprehensive assessment of 

chemical toxicity. This integration provides the foundation for a more accurate 

risk assessment by holistically considering hazard and exposure of substances 

across different levels of biological organization using metamodels. 

If earlier we discussed how to enhance metamodels through QIVIVE models, 

another long-standing debate within the computational toxicology community 

aimed at improving statistical methods is the integration with expert systems. 

The combination of expert-based and statistical approaches exhibits 

substantial potential across various scientific domains, notably in the 

assessment of mutagenic impurities within the pharmaceutical industry. This 

collaborative synergy offers the prospect of producing more resilient and 

precise outcomes by harnessing human expertise alongside the objectivity of 

statistical models. Nevertheless, it is imperative to approach this 

amalgamation judiciously, particularly within the framework of regulatory 

standards, as exemplified by ICH M7. The primary concern pertains to the risk 

that an inadequately managed combination might compromise the 

transparency and scientific justification demanded during the evaluation of 

mutagenic impurities. To maintain the credibility and acceptance of such 

hybrid models, they must uphold transparency in their decision-making 

processes and ensure comprehensibility, aligning them with the principles 

enshrined in regulatory guidelines. Striking a delicate equilibrium that 

capitalizes on the strengths of both approaches while staying in compliance 

with regulatory standards is pivotal to the continued advancement and 

recognition of these models. 
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Despite the good performance shown by metamodels, it is still necessary to 

look at the data and understand the problem to be solved, since each context 

must be dealt with a specific solution rather than a general one that fits all. 

Even though we are in the era of AI and very powerful technologies appear, 

such as generative deep learning algorithms, we must keep in mind that 

properly handling the data, for instance with a rational curation process or 

hypothesis testing, is the first and key step that will allow us to develop a 

proper solution to a given problem.  

Still, and considering the limitations shown in this review, it is of major 

importance that we collect the knowledge regarding metamodels since they 

have proven to be a useful and powerful approach for solving complex 

problems. At the end of the day, if we manage to develop tools that aid 

decision-making in a rational and justified manner, we will be able to better 

explain the reality surrounding us and we will have a better understanding of 

how the models work, avoiding black boxes thanks to a better interpretability. 

Conclusions 

 

Our review of combining different QSAR models for predicting toxicological 

endpoints has shed light on the effectiveness of this approach in addressing 

various complexities but also provided a guide on how, when, and for what 

purposes to utilize them. By categorizing these complexities as mechanistic, 

chemical space, and methodological, we aimed to provide a systematic 

understanding of the challenges faced in the field of computational toxicology. 

The findings from the reviewed works overwhelmingly demonstrate that 

model combination yields superior performance compared to classical QSAR 

models. This notable improvement can be attributed to the ability of the 

combination approach to focus on individual sub-processes, allowing for a 

more targeted and accurate analysis of the specific toxicological endpoint of 
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interest. In contrast, the classical QSAR model, incorporating a heterogeneous 

mix of all sub-processes, may lead to confusion and less precise predictions. 

The versatility of the model combination approach lies in its ability to unravel 

the intricacies of mechanistic interactions, capture diverse chemical space 

representations, and overcome methodological limitations. By leveraging the 

strengths of different models and integrating their outputs, the metamodels 

offer a promising avenue for addressing the complexities present in 

toxicological studies. 

The consolidation of information on model combination into a single article 

holds the potential to be a valuable resource for the computational toxicology 

community. However, we acknowledge that the subdivision of complexities 

giving rise to the different reviewed metamodels is our point of view which is 

essential for a comprehensive understanding of their applicability. Similarly, 

we recognize that further research is necessary to explore additional 

combinations of models and the integration of advanced computational 

techniques.  
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Introduction 

 

There is an urgent need to replace, reduce, and refine (3Rs) animal 

experimentation. The knowledge obtained from past in vivo experiments can 

be reused to minimise the need to perform new assays, promoting sustainable 

science. New approach methodologies (NAMs) constitute an 

attractivealternative for assessing chemical hazards and estimating the effects 

of exposure, with the potential to support Toxicological Next Generation Risk 

Assessment (NGRA) and to promote the application of the 3R principles. 

Among the different approximations encompassed by the NAM term 1,2, in 

silico methods are highly convenient on their own or as a complement to in 

vitro techniques.  

While in silico toxicology (IST) offers benefits in terms of cost-effectiveness, 

high throughput, and ethical considerations, its ability to predict complex 

biological endpoints is still under debate 3. Another difficulty is their 

integration with experimental data for risk assessment purposes, particularly 

in regulatory setups 4–7. 

Quantitative structure-activity relationship (QSAR) is one of the most used 

methodologies in the IST field. It has been successfully used to predict in vitro 

results and simple toxicological endpoints 8,9. However, the predictivity of 

QSAR models becomes limited when it comes to complex biological endpoints, 

such as organ toxicity. This is because complex biological endpoints result 

from multiple mechanisms and effects at different biological levels, making it 

more challenging to predict them accurately with QSAR. Additionally, QSAR 

models have only local validity, and the low structural similarity between the 

compounds in the validation and training sets can result in poor predictive 

performance 10. Another drawback of the QSAR models is that, usually, they 

do not consider pharmacokinetic (PK) information, such as the absorption, 
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distribution, metabolism, and excretion (ADME) properties of compounds 11, 

and they might have difficulties to characterise the actual chemical risk of a 

compound since the toxicity of a compound is linked to the exposure 12. QSAR 

methods can be important in transitioning to mechanism-based toxicology 13. 

In this quest, Adverse Outcome Pathways (AOPs) have been developed to 

integrate existing mechanistic knowledge into a rational framework 14. AOP 

connects known biological events linearly through a series of Key Events (KEs) 

from a Molecular Initiating Event (MIE) to the final Adverse Outcome (AO). 

The causal relationships between these KEs are defined by Key Event 

Relationships (KERs).  

In 2013, the Organization for Economic Co-operation and Development 

(OECD) published the first version of the Guidance Document on Developing 

and Assessing Adverse Outcome Pathways with a conceptual background 15, 

followed by the publication of the User's Handbook Supplement in 2018 16. 

This supplement provides practical guidance and advice on applying AOPs in 

the context of risk assessment and highlights the benefits of using a 

mechanistic approach to comprehend adverse effects better. Moreover, this 

supplement contains practical instructions for AOP development and 

collaborative work on the databases AOP knowledgebase (AOP-KB)17 and AOP-

Wiki 18. 

Computational methods could exploit the standardised knowledge 

representation that AOPs provide. Accordingly, in silico models with multiple 

molecular initiating events (MIEs) can be built to predict complex toxicological 

endpoints for which QSAR models do not provide quality results 19,20.  

AOPs have also been incorporated in mechanistic-based toxicokinetic 

(TK)/toxicodynamic models that evaluate exposure-response relationships 21–

23. A common misconception is to consider that drugs with a very small IC50 
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are "more toxic". However, this is not necessarily true as the likelihood and 

severity of adverse effects are more closely linked to the total amount of drug 

at the target site, rather than the drug's potency 24. Even drugs with a high IC50 

can cause toxicity if the dose administered in clinical use (the therapeutic dose 

[TD]) is high enough. Therefore, to make decisions about the potential toxicity 

of drugs, IC50s should be transformed to "point of departure doses" using 

quantitative in vitro to in vivo extrapolation (QIVIVE) models 25. QIVIVE is 

derived from a minimal Physiological-based pharmacokinetic (PBPK) model, 

which reproduces the kinetic of a substance within a living organism over time, 

considering the main pharmacokinetic phenomena: absorption, distribution, 

metabolism, and excretion. The main objective of QIVIVE is to establish the in 

vivo dose which will produce a certain concentration in the blood (or tissues). 

This can correspond to in vitro concentrations like the half-maximal effective 

concentration (EC50), IC50, or half-maximal active concentration (AC50). In this 

sense, QIVIVE can be considered a "reverse dosimetry" method, providing 

doses from concentrations.  

In this work, we aim to develop a novel approach that integrates the 

contribution of multiple MIEs and the compound TK properties for the 

prediction of a complex toxicological endpoint. In this study, we will use 

hepatotoxicity as a representative example of a complex toxicological 

endpoint. Drug-induced liver injury (DILI) is one of the primary causes of 

attrition during clinical and preclinical studies and one of the main reasons for 

drug withdrawal from the market 26,27. DILI can be categorised as either 

idiosyncratic or non-idiosyncratic based on its relationship with the drug dose. 

If DILI occurs independently of the dose, it is considered idiosyncratic, while it 

is considered non-idiosyncratic if DILI is dose-dependent. Non-idiosyncratic 

DILI can be classified into the following three categories 26 i) hepatocellular, ii) 
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cholestatic, and iii) mixed. Because DILI is a very broad endpoint, we will focus 

on cholestasis.  

Cholestatic DILI is a dose-dependent adverse effect defined as a disruption of 

the bile flow, which increases hepatic bile acid concentrations, resulting in 

necrosis and/or apoptosis. Together with hepatocellular, it is one of the most 

severe manifestations of DILI 26,28. Cholestasis is often produced by inhibiting 

the hepatic transporters responsible for facilitating bile flow from the liver to 

the small intestine 26. Hepatic transporters are classified according to their 

location in the membranes: those belonging to the canalicular membrane and 

those belonging to the basolateral membrane. Canalicular membrane 

transporters regulate hepatic clearance, as well as the secretion of bile salts 

and conjugates into the bile. Basolateral membrane transporters regulate the 

uptake of drugs and transport endobiotics and xenobiotics from the blood to 

the hepatocyte 26. 

Bile Salt Export Pump (BSEP), multidrug resistance-associated protein (MRP2), 

Breast cancer resistance protein (BCRP), and P-glycoprotein (P-gp) are 

canalicular membrane transporters 28–30, while MRP3, MRP4, and organic 

anion transporting polypeptides (OATP1B1 and OATP1B3) are basolateral 

membrane transporters. The role of BSEP inhibition is one of the most 

important mechanisms studied in cholestasis occurrence, being the main MIE 

described in the cholestasis AOP found in the AOP-wiki 31. 

This study aims to add to existing QSAR methodologies a new approach which 

integrates mechanistic information for multiple MIE (using AOPs) and TK 

information (using QIVIVE models), providing a more complete and realistic 

description of the phenomenon studied. This approach will be illustrated by 

applying it to the prediction of the cholestatic properties of a series of 

compounds. The results of this case study will be used to discuss its 
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advantages compared to direct QSAR modelling, especially in the most 

common situations in drug development, where the candidates do not have 

much structural resemblance with the structures in the training series. 

Material and methods 

Cholestasis dataset 

 

A series of chemical compounds with cholestasis annotations was obtained 

from Kotsampasakou and Ecker (2017), where the researchers extracted the 

annotations from PubMed (http://www.ncbi.nlm.nih.gov/pubmed), Google, 

Scopus (https://www.scopus.com/), and the SIDER database v2 searching the 

terms: "drug-induced cholestasis" or "cholestasis". The data was curated by 

removing inorganic compounds and compounds containing metallic elements. 

In the end, the series consisted of 577 compounds with 130 "positives" 

(cholestatic compounds) and 447 "negatives" (non-cholestatic compounds). 

For our study, we applied additional curation, eliminating compounds whose 

administration route is not oral nor intravenous since only these routes 

provide relatively simple and well-understood absorption and elimination 

pathways. The filtered dataset contained 437 compounds (116 positives and 

321 negatives). 

The compounds in this series were characterised using unique IDs to facilitate 

the extraction of data from other sources: ChEMBL IDs were obtained using 

chembl-webresource-client 0.10.8 32, DSSTox substance IDs or DTXSIDs were 

assigned using PubChemPy 1.0.4 33, and Drugbank IDs were obtained from 

Drugbank version 5.1.9 34. In addition, for chemical comparisons by 

pharmacological groups, information on Anatomical Therapeutic Chemical 

(ATC) classification was added up to the second level of information 

http://www.ncbi.nlm.nih.gov/pubmed
https://www.scopus.com/
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(Pharmacological or Therapeutic subgroup) using chembl-webresource-client 

and MedCode 1.3 35.  

Transporter QSAR models 

 

Sets of compounds annotated with the pIC50 values were extracted from 

ChEMBL version 29 to build QSAR models for the main hepatic transporters 

involved in drug-induced cholestasis (low-level models, LLM). The process of 

selecting compounds that inhibit specific transporters involved two filters: the 

target organism (homo sapiens) and the target type (single protein). No 

filtering based on assay type was implemented to avoid compromising the 

number of compounds selected. This decision was made taking into account 

that a higher number of assays might introduce variability due to differences 

in experimental conditions and measurement techniques 36. Compounds for 

which multiple experimental annotations were available were included as 

multiple data points. This procedure has the advantage of giving more weight 

to multiple-tested compounds and incorporating experimental variability, in 

contrast with alternative procedures in which a single mean or median is used 

to characterize their biological properties. The structures were standardised 

using a curation tool 37, removing inorganic compounds and compounds with 

metallic elements. Table 1 shows the hepatic transporters considered, with 

detailed information (transporter names with their target ChEMBL ID, 

acronym, number of compounds, and the mean and standard deviation [std] 

of the pIC50 distributions for each selected transporter) on the data extracted. 

To match the transporter inhibition data with the in vivo cholestasis data 

described above, we used the ChEMBL ID of the compounds. 
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Table 1: Information about compounds collected for each hepatic transporter. 

Transporter Acronym Na Mean_pIC50  Std_pIC50 

P-glycoprotein (CHEMBL4302) P-gp 1031 5.89 1.11 

Breast cancer resistance protein 

(CHEMBL5393) 
BCRP 1015 5.99 0.75 

Organic anion transporting polypeptide 

1 (CHEMBL1697668) 
OATP1B1 63 5.49 0.61 

Organic anion transporting polypeptide 

3 (CHEMBL1743121) 
OATP1B3 25 5.13 0.77 

Multidrug resistance-associated protein 

4 (CHEMBL1743128) 
MRP4 106 4.70 0.47 

Multidrug resistance-associated protein 

2 (CHEMBL5748) 
MRP2 57 4.69 0.42 

Bile salt export pump (CHEMBL6020) BSEP 361 4.68 0.51 

Multidrug resistance-associated protein 

3 (CHEMBL5918) 
MRP3 43 4.52 0.45 

aN is the number of compounds in the training series of each LLM. 

 

Figure 1 displays the violin plots showing the distributions of pIC50 values for 

the selected transporters. Consistent with the information in Table 1, the 

mean pIC50 falls within the range of 4.5-6 for each transporter, with P-gp and 

BCRP exhibiting the highest means. Likewise, P-gp also exhibited the highest 

standard deviation likely due to the inclusion of a larger number of diverse 

assays conducted to this particular transporter. 
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Figure 1: Violin plots of the pIC50 distributions of the eight hepatic selected 
transporters. 

For each LLM, we obtained all compounds with IC50 annotations and 

developed a QSAR model using the pIC50 as the dependent variable. Morgan 

fingerprints (FP) (nbits=2048, radius=2, features=enabled) were computed 

using RDKit 2019.9.3 (Landrum 2016) and used as input variables for building 

four machine learning (ML) regression models for each LLM with scikit-learn 

version 0.24.1 39; XGBoost 1.4.2 (XGB) 40, Random Forest (RF) 41,  K-nearest 

neighbours (KNN) 42, and Support Vector Machines (SVM) 43. All models were 

trained using a grid search with 5-fold cross-validation (CV) to find the best 

hyperparameters based on the Mean Absolute Error (MAE) as the scoring 

metric. The model with the lowest MAE was selected for each of the LLMs. As 

part of our proposed hyperparameter grid for the SVM model, we included 

the linear kernel as an option in addition to the radial kernel, serving as an 

alternative to linear models. To ensure the robustness of the models, a 20-
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Repeated 5-fold CV approach was employed for the model evaluation. The 

selection of twenty repetitions was made considering that a Repeated k-fold 

CV requires fewer replicates than the total number of compounds available. 

As there were only twenty-five compounds collected for inhibiting the 

OATP1B3 transporter, twenty replicates were selected for the analysis 

throughout the entire article to maintain consistency in the methodology 

when using Repeated k-fold CV 44. The information corresponding to the 

settings of these models is provided in the supporting information Table S1.  

These models (LLM) were used to predict eight transporter pIC50 values for the 

437 compounds belonging to the cholestasis dataset. For compounds with 

known experimental activity, the mean of all available experimental values 

was used instead of the predictions. The final matrix contains 437 rows 

(compounds) and 8 columns (transporters). 

In vitro to in vivo extrapolations 

In vivo half maximal inhibitory equivalent oral doses (IEOD50) were calculated 

from the IC50 values by applying QIVIVE methods, translating concentrations 

into in vivo doses. For calculating IEOD50s, we used the High-Throughput 

Toxicokinetics (httk 2.1.0) library 45. Monocompartmental (MC) models were 

built using the default parameters provided by the httk library. Order 1 kinetics 

assumes that the drug concentration in the body can be described by a single 

compartment, which is appropriate for drugs that distribute rapidly and evenly 

throughout the body, under the assumption that the effect of a peripheral 

distribution is negligible at a steady state. QSAR models usually assume that 

the compound is at a steady state without considering any time-dependent 

processes that may affect the drug concentration. Hence, after computing the 

steady-state concentrations (Css) using the MC model, the next step was to 

calculate the IEOD50 for each drug that inhibits each transporter. The IEOD50 is 

directly proportional to the in vitro IC50 and inversely proportional to Css 46. 
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The httk library 45 can compute the percentile of the specified IEOD50 for the 

model. In our case, we obtained the 90th percentile as the larger the percentile 

predicted Css from the MC model, the lower IEOD50, due to the inverse 

relationship between Css and IEOD50. This approach is considered to be the 

most conservative as cholestasis is a dose-dependent adverse outcome, and 

any compound with a therapeutic dose (TD) above the highest IEOD50 among 

the selected transporters would be considered cholestatic. The information 

about the therapeutic doses was obtained by matching the Drugbank IDs in 

the cholestasis dataset with the corresponding entries in the Drugbank 

database (other sources of information consulted were: drugs 

[https://www.drugs.com/] and Medscape 

[https://reference.medscape.com/]). 

The calculation of IEOD50 requires obtaining physicochemical parameters such 

as molecular weight (MolWt), log P (octanol-water partition coefficient), and 

PK parameters such as intrinsic clearance (Clint) and plasma-unbound fraction 

(fub). For the compounds in the cholestasis dataset, MolWt and log P were 

computed using RDKit. Experimental Clint, and fub values were extracted from 

the httk databases (only drugs that have been experimentally tested with 

human hepatocyte cells), using DTXSIDs to identify the compounds in both 

datasets whenever possible. For the rest of the compounds, these values were 

predicted using OPERA version 2.9 47. Compounds that were unable to have 

either fub or Clint values calculated by OPERA were eliminated from the 

cholestasis dataset. As a result, the dataset contained a total of 426 

compounds, with 115 classified as positive and 311 as negative. Finally, 

compounds with IEOD50 values larger than 10000 mg/kg/day (only 7 

compounds were in this category) were removed from the cholestasis dataset 

since we consider that these doses are not realistic from a physiological point 

of view. After this elimination, the final dataset was reduced to 419 

https://reference.medscape.com/
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compounds (114 positives and 305 negatives). To further clarify the 

procedure, the filtering steps are summarized in Figure 2. 

 

Figure 2: Cholestasis dataset filters. 

Cholestasis model building 

 

The cholestasis models were built using the series described above, using two 

different strategies: direct QSAR modelling and combining the predictions 

provided by the LLM (obtaining a metamodel). In the latter approach, we 

generated two different metamodels for assessing the advantages of 

incorporating PK information. In the metamodel incorporating PK information 

(Metamodel_pk), a compound was considered positive when its TD was n 

times higher than the predicted IEOD50 for any of the considered transporter, 

where n is a factor adjusted to balance the sensitivity and specificity of the 

metamodel. Regarding metamodel not incorporating PK information 

(Metamodel_not_pk), this model used IC50 information exclusively. A 

compound was classified as positive if the IC50 of any of the transporters was 

≤300 μM, according to 48–51. Both metamodels were constructed as scikit-learn 

estimators to fully utilize the functionalities of the scikit-learn library. 
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Direct QSAR models were built using physicochemical descriptors (PC) and FP 

as predictor variables, obtained using RDKit. The following algorithms were 

used: XGB, RF, Naïve Bayes approach (Multinomial Naïve Bayes [MNB] for FP 

and Gaussian Naïve Bayes [GNB] for PC descriptors) 52, and SVM. Like in the 

regression models, we added the linear kernel within the hyperparameter grid 

for SVM classification models. 

In order to find the best hyperparameters, all models underwent a grid search 

with a 5-fold CV, utilizing the the Area Under the Receiver Operating 

Characteristic Curve (ROC AUC) score as the scoring metric. For the QSAR 

models, the algorithm achieving the highest ROC AUC among the four tested 

models was chosen as the optimal choice (Tables S2 and S3 provides further 

details). 

Model evaluation 

The model quality was evaluated using the model's sensitivity (S), specificity 

(SP), accuracy (A), Matthews correlation coefficient (MCC), and ROC AUC.  

Comparison between Repeated k-fold and “similarity-based cross-

validation” performances 

 

To incorporate the similarity in the assessment of the model predictivity, we 

compared the results obtained with a standard 20-Repeated 5-fold CV 44 with 

a modified CV algorithm where the groups contain structurally dissimilar 

compounds. So, if the predictive power of a model is lower when using the 

"similarity-based CV", it would indicate that it is worse for predicting when the 

compounds in the test series are more structurally different from those in the 

training series. For this modified version of CV, we applied a hierarchical 

clustering to obtain five clusters (Cluster 1=51 compounds, Cluster 2=174 

compounds, Cluster 3=61 compounds, Cluster 4= 79 compounds, and Cluster 
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5=54 compounds) using fingerprints as input variables and the Jaccard 

distance as the evaluation metric. The same number of folds was established 

for both types of CVs to allow a fair comparison. Each fold in the similarity 5-

fold CV was trained using four clusters and validated with the remaining 

cluster, thus predicting compounds with low structural similarity to the 

training set of that fold. For detailed information on the search for optimal 

hyperparameter sets using both 20-Repeated 5-fold CV (Table S2.A in the 

supporting information) and similarity 5-fold CV (Table S2.B in the supporting 

information), refer to the supporting information. These tables provide 

further insights into the process of identifying the best hyperparameters for 

both types of cross-validation.  

Likewise, intra- and inter-cluster similarities were evaluated using FP 

descriptors and the Tanimoto similarity metric. The mean similarity value of 

the three most similar compounds was computed intra- and inter-cluster. The 

supporting information's Figure S1 presents a heatmap displaying the 

Tanimoto similarity values for both intra- and inter-cluster comparisons. The 

similarity values intra-clusters showed minimal differences, ranging from 0.41 

(Cluster 2) to 0.47 (Cluster 1). Regarding to the comparison inter-clusters, the 

similarity values ranged from 0.17 (Cluster 1-Cluster 5) to 0.31 (Cluster 2-

Cluster 4). The observed results suggest that intra-cluster similarity 

outweighed inter-cluster similarity, indicating that this methodology has the 

potential to be worthy in evaluating the structural independence of the 

proposed approach. 

Performances according to the "ATC-based cross-validation" 

 

Such as mentioned above, our study intends to determine if the proposed 

methodology has advantages with respect to other approaches in terms of 

predictive quality when the compounds are different from those in the 
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models' training series. With this aim, complementing the "similarity-based 

cross-validation" described above, we applied a cross-validation procedure 

where drugs used in certain therapeutic areas (as identified by their ATC 

codes) are used to predict compounds used in different therapeutic areas. We 

started by compiling the ATCs for the compounds in our series for the five 

most represented ATCs: J01 (antibacterials for systemic use), N05 

(psycholeptics), L01 (antineoplastic agents), C01 (cardiac therapy) and N02 

(analgesics), as shown in Table 2. So, we conducted an ATC 5-fold CV, where 

each fold involved training on compounds from four of the five ATC and 

predicting the validation set of compounds from the remaining ATC. 

Additional information regarding the optimal hyperparameters for each 

evaluated model can be found in Table S3 of the supporting information. Also, 

we calculated the intra- and inter-ATC group similarities in the same way as 

before used for computing the similarities described above for the similarity 

5-fold CV method. Within the same ATC code, molecular similarities ranged 

from 0.22 (L01) to 0.54 (J01), as shown in Figure S2 of the supporting 

information. When comparing compounds from different ATC codes, 

similarities ranged from 0.16 (J01-C01, N05-J01, L01-C01) to 0.27 (N05-N02). 

Similarly, to our previous CV strategy, intra-ATC similarity was found to be 

higher than inter-ATC similarity, justifying the use of this evaluation method, 

following the same approach as the previous one, for building models based 

on splits with high dissimilarity. This allows us to further verify that the 

performance of our proposed model is less dependent on the structural 

similarity between the training and test series than a direct QSAR model. 

Table 2: Summary information of the top five ATC codes. 

ATC Number of compounds by class 
Most common 

pharmacological groups 
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J01 (antibacterials for 

systemic use) 

# Cholestatic compounds=20 

# Non-cholestatic compounds=17 

B-lactams and Penicillins 

N05 (psycholeptics) 

# Cholestatic compounds=12 

# Non-cholestatic compounds=25 

Psycholeptics and hypnotics  

L01 (antineoplastic agents) 

# Cholestatic compounds=6 

# Non-cholestatic compounds=16 

Alkylating agents ad plant 

alkaloids 

C01 (cardiac therapy) 

# Cholestatic compounds=3 

# Non-cholestatic compounds=15 

Cardiac stimulants and 

anthyarrhymics 

N02 (analgesics) 

# Cholestatic compounds=2 

# Non-cholestatic compounds=15 

Antimigraine and opioids 

 

Statistical analyses 

 

Student's t-tests at a 95% confidence level were used to determine whether 

there are statistically significant differences in the "Lipinski's rules of five" 

(Lipinski et al. 1997) variables between the positive and negative classes. This 

analysis was complemented with a two-way ANOVA to determine whether the 

effect of the transported type and the target class (as fixed factors) have a 

statistically significant effect on the IEOD50 at a 95% confidence level.  

Software 

 

Table 3 shows a summary of the main software libraries and packages used in 

this study. 

Table 3: Packages with their version used and main applicability. 
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Package Version Applicability Language References 

scikit-learn 0.24.1 ML 

python 3.6.13 

39 

numpy 1.19.5 Vector operations 53 

statsmodels 0.12.2 Statistics 54 

seaborn 0.11.1 Visualisation 55 

matplotlib 3.3.4 Visualisation 56 

RDKit 2019.9.3 Chemical 38 

pandas 1.1.5 Dataframe operations 57 

chembl-webresource-client 
0.10.8 ChEMBL requests 32 

PubChemPy 1.0.4 PubChem requests 33 

MedCode 1.3 ATC codes 36 

XGBoost 1.4.2 Boosting model 40 

httk 2.1.0 Pharmacokinetic R 4.2.1 45 

 

Results and discussion 

Overview 

 

To detect potential differences between cholestatic and not cholestatic 

compounds due to physicochemical properties, we run a preliminary study 

using some of the variables used by "Lipinski's rules of five" 58.  

The approach described here was based on physiological knowledge, where 

we constructed models for simpler phenomena (MIEs) that represent relevant 

components of the complex endpoint (AO) and combined the predictions 

incorporating toxicokinetic considerations. We started by gathering existing 
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information on the biological processes involved in this endpoint from the AOP 

wiki. Then, we developed QSAR models for each of the hepatic transporters 

identified as relevant MIEs: P-gp, BCRP, OATP1B1, OATP1B3, MRP4, MRP2, 

BSEP, and MRP3 (see Table 1), as described in the Methods Section. The 

predicted in vitro inhibitory information was exploited by applying logical 

rules. A simple logical OR on this prediction matrix was used to label 

compounds showing inhibitory activity for any of these transporters as a 

potential cholestatic compound (second part of Figure 3.A).  

However, this approach has the limitation that the inhibitory in vitro 

concentrations obtained by the models can be non-representative of the ones 

reached in therapeutics due to differences in clearance, protein binding, 

bioavailability, and other pharmacokinetic parameters. For this reason, we 

incorporated toxicokinetic considerations to obtain IEOD50s (representing in 

vivo doses) from the predicted IC50s (representing in vitro data) using QIVIVE 

models. The proposed workflow (Figure 3.B) starts applying a PBPK model to 

obtain Css from the input pIC50. Then, the QIVIVE approach allows obtaining 

IEOD50 from the Css. Finally, the IEOD50 are compared with TD (obtained from 

public sources, as described in the Methods Section), and we used a logical OR 

rule to label as cholestatic the compounds for which any of the TD is larger 

than the highest IEOD50 among all transporters (first part of Figure 3.A).   
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Figure 3: Scheme of the proposed methodology. A) High-level view of the four 
models being compared: Metamodel with PK information (grey), Metamodel 

without PK information (brown), direct QSAR with FP descriptors (light blue), and 
direct QSAR with PC (yellow). Red cells represent cholestatic compounds, and green 
cells represent non-cholestatic compounds. B) Scheme of the proposed workflow to 

introduce toxicokinetics in the modelling. 

The results obtained using this approach were compared with a classical direct 

modelling method that uses compound structures to build QSAR models, using 

both FP and PC descriptors (summarised in the third and fourth sections of 

Figure 3.A), and predicted cholestasis directly without considering any 

mechanistic information. 

The comparison of our approach with the direct QSAR models included an 

analysis of their performance using standard metrics but also an additional 

analysis for comparing their applicability for the prediction of dissimilar 
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compounds. This involves an evaluation of their predictive quality using 

"similarity-based" and "ATC-based" complementary CVs, carried out as 

described in the Methods Section. 

Preliminary analyses 

 

As a preliminary step, we studied possible differences in the physicochemical 

properties between the cholestatic and non-cholestatic compounds in the 

studied series of 419 compounds. Figure 4 shows the summary of density and 

scatter plots, separated by class for the compound's molecular weight 

(ExacMolWt), number of hydrogen bond acceptors (NumHAcceptors), number 

of hydrogen bond donors (NumHDonors), and log P (MolLogP). These are the 

properties represented by Lipinski's rules of five 58, which are known to 

describe important properties for the pharmacokinetic and pharmacodynamic 

characteristics of the compounds. The centre of the distribution is slightly 

higher for ExactMolWt, MolLogP, and NumHAcceptors in the set of cholestatic 

molecules compared to the non-cholestatic ones. However, according to the 

Student's t-test performed, the differences were not statistically significant for 

any of the properties studied at a 95% confidence level.  
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Figure 4: Distribution of Lipinski's rules of five: Molecular weight (ExactMolwt), 
Number of hydrogen bond donors (NumHDonors), Number of hydrogen bond 

acceptors (NumHAcceptors), and octanol-water partition coefficient log P (MolLogP). 

Low-level models 

 

Individual QSAR regression models for the eight transporters selected (Table 

1) were built as described in the Methods Section. The violin plots in Figure 5 

show the MAE distributions obtained from the 20-Repeated 5-CV for each of 

the eight low-level models. Particularly, the models for P-gp and OATP1B3 

inhibition had the poorest performance. Regarding deviations between folds, 

P-gp's extensive data leads to minimal variations, while OATP1B3's limited 

data results in significant deviations. These findings emphasize the impact of 

variability between several assays and data availability on predictive 

performance, such as described above.  



CAPÍTULO 2 

91 
 

 

Figure 5: Violin plot with MAE obtained for each LLM. 

Table 4 presents the mean and standard deviation of the twenty repetitions 

of the 5-fold CV. It reveals that P-gp (0.78) and OATP1B3 (0.68) had the highest 

mean MAEs, with a low standard deviation for P-gp (0.03) and a higher 

standard deviation for OATP1B3 (0.19). These observations align with the 

insights shared in the previous Figure 5. The remaining transporters exhibited 

similar mean MAE values. The models for BCRP and BSEP demonstrated less 

deviation between folds (akin to what was observed for P-gp), as these models 

had more training data compared to the others. 

Table 4: Mean and std of MAEs obtained from the 20-Repeated 5-fold CV for the 
eight selected transporters. 

Metrics BCRP MRP2 MRP3 MRP4 OATP1B1 OATP1B3 BSEP P-gp 

MAEmean 0.32 0.29 0.36 0.36 0.36 0.68 0.33 0.78 

MAEstd 0.02 0.06 0.08 0.05 0.07 0.19 0.03 0.03 
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Figure 6 depicts the box plot illustrating the predicted pIC50 distributions for 

each transporter. Notably, the worst performing models (P-gp and BCRP) 

exhibit similar values in their distributions. This finding could have the 

potential to impact the overall quality of the metamodels. It is important to 

note that these data impose an upper bound on the quality of the predictive 

models derived from them. While it could be tempting to push the model 

beyond this limit, doing so risks to produce model overfitting, compromising 

their predictive performance. The analysis showed statistically significant 

differences (p<0.01) in the pIC50 distributions between the different 

transporters and classes (two-way ANOVA, 95% confidence level, as described 

in the Methods Section). 

 

Figure 6: Box plots of the pIC50 distributions separated by class for each selected 
transporter. 

Incorporating TK considerations 

The predicted in vitro pIC50 cannot be expected to correlate directly with 

observed cholestatic outcomes without first transforming these to in vivo 

doses (IEOD50) and then comparing these doses with the ones administered in 

clinical use. The first step, the computation of IEOD50, was carried out using 

QIVIVE models, as described in the Methods Section. To evaluate the 

predictive power of the models built by OPERA for predicting fub and Clint, 

compounds of the cholestasis dataset with experimental values (from queries 

to the httk library) were predicted. Figure S3 in the supporting information 
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displays a scatter plot with the X-axis representing the experimental values 

extracted from httk, and the Y-axis showing the OPERA predictions for the 

same compounds for both fub (Figure S3.A in the supporting information) and 

Clint (Figure S3.B in the supporting information). In this Figure, minimal 

deviations between the actual values and the predictions can be observed. To 

further validate the predictive power, Table S4 in the supporting information 

presents the MAE values for both fub (MAE=0.07) and Clint (MAE=8.50), as well 

as the mean and standard deviation between the experimental values from 

httk and the predicted values from OPERA, which exhibit practically identical 

results. These results highlight the quality of the OPERA models in predicting 

pharmacokinetic parameters. 

Figure 7 shows box plots with the pIEOD50s (-log10(IEOD50)) of the eight 

selected transporters for cholestatic and non-cholestatic drugs, side by side. It 

can be seen that the median value of inhibitory potential for each transporter 

is nearly identical between cholestatic and non-cholestatic compounds. The 

analysis showed no statistically significant differences (p<0.05) in the pIEOD50 

distributions between the different transporters and classes (two-way 

ANOVA, 95% confidence level, as described in the Methods Section). The 

absence of statistical significance in the pIEOD50 distributions between 

different transporter and classes, in contrast to the statistical significance 

observed in the pIC50 distributions, may be due to the fact that in vitro models 

can oversimplify or fail to fully capture the complexity of metabolic pathways 

that occur in vivo. Therefore, based on in vivo extrapolations the whole set of 

hepatic transporters could have the same relevance in predicting cholestasis. 
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Figure 7: Box plot comparing the pIEOD50 (potential of IEOD50) predicted for the 
series studied and the eight transporters, separated by class. Transporters are shown 

in decreasing order, with respect to the median pIEOD50. 

 

The predictive quality of the metamodels and the direct QSAR 

models 

 

The metamodel obtained using PK information (Metamodel_pk) was 

constructed by using a logical OR to combine the presence of TD higher than 

the IEOD50. In other words, a compound was predicted to be cholestatic if its 

TD was higher than the predicted IEOD50 for any of the selected hepatic 

transporters. For the metamodel without PK information 

(Metamodel_not_pk), a compound was predicted as cholestatic if any 

transporters had an IC50 below 300 μM. The direct QSAR models were built 

using fingerprints and physicochemical descriptors as predictor variables. The 

models and approaches utilized in this article have undergone a meticulous 

grid search, aiming to identify the optimal set of hyperparameters, such as 

described in Methods Section.  

Comparison between Repeated k-fold and “similarity-based cross-

validation” performances 

 

The results of a direct QSAR model coming from a Repeated k-fold may be too 

optimistic and these results may not be representative of practical problems. 
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One of the main reasons is that, in real drug development applications, the 

structure of the new drug candidate is often very different from the structures 

of the training series. Therefore, to obtain a fairer comparison, we further 

evaluated the predictive quality of our models by assessing if they could 

accurately predict the properties of structurally diverse compounds. With this 

aim, we applied a "similarity-based CV" (described in detail in the Methods 

Section) where the series was split into five structurally dissimilar subgroups 

using hierarchical clustering. Then, we applied a similarity 5-fold CV where 

four subgroups were used to predict the remaining one, containing 

structurally dissimilar compounds. By comparing the predictive quality of this 

approach with those from a standard 20-Repeated 5-fold CV, where groups 

were assigned randomly, we can evaluate how dependent the structural 

similarity is on the prediction quality for all the studied models.  

Table 5 presents the mean and standard deviation for both the 20-Repeated 

5-fold CV and the similarity 5-fold CV. 

Table 5: Mean and std of the Sensitivity (S), specificity (SP), AUC, MCC, and Accuracy 
(A) for each model in both the 20-Repeated 5-fold CV and Similarity 5-fold CV. 

 

 

 
S S_std SP SP_std AUC AUC_std MCC MCC_std A A_std 

2
0

-R
e

p
e

at
e

d
 5

-

fo
ld

 C
V

 

Metamodel_pk 0.84 0,07 0.55 0,06 0.69 0,05 0.34 0,19 0.63 0,05 

Metamodel_not_pk 1.00 0,00 0.00 0,01 0.50 0,00 0.01 0,03 0.27 0,04 

QSAR_model_FP 0.34 0,11 0.87 0,05 0.60 0,05 0.23 0,12 0.72 0,05 

QSAR_model_PC 0.32 0,10 0.84 0,06 0.58 0,06 0.11 0,12 0.69 0,05 
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V
 Metamodel_pk 0.81 0.06 0.54 0.15 0.67 0.09 0.29 0.14 0.62 0.10 

Metamodel_not_pk 0.06 0.06 0.98 0.02 0.52 0.03 0.07 0.10 0.74 0.09 

QSAR_model_FP 0.20 0.09 0.94 0.03 0.57 0.04 0.19 0.10 0.75 0.09 

QSAR_model_PC 0.24 0.14 0.90 0.04 0.57 0.05 0.16 0.11 0.74 0.06 
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Figure 8 displays violin plots for the sensitivity, specificity, MCC, AUC, and 

accuracy of each model based on the 20-Repeated 5-CV (left column) and in 

the similarity 5-fold CV (right column). Additionally, Table 5 provides a 

summary of the mean and standard deviation of the metrics presented in 

Figure 8. This Figure depicts how the average variability across folds was 

similar for both types of CV across different models (the std of the 

Metamodel_pk was lower than that of the QSAR models). The 

Metamodel_not_pk exhibited the least variability between folds for each 

metric.  

The results observed in Figure 8 indicate that the Metamodel_pk was not 

affected by the decrease in structural similarity, as its sensitivity remained 

above 0.80 in both scenarios (Table 5). Concerning specificity, the 

Metamodel_pk did not exhibit any variations depending on the CV utilised, 

and its performance was the same regardless of the CV used (0.55 

approximately). Here, it is important to clarify that the low performance in 

terms of the specificity of the metamodel with PK information could be due to 

that the lower predictivity of LLM with the worst performances (based on an 

analysis not included). For instance, the P-gp model only achieved correct 

predictions for the non-cholestatic activity of compounds in 7% of the cases, 

and the OATP1B3 model achieved 15% of successes. These results may have 

an impact on the final quality of the Metamodel_pk in terms of specificity. It 

should be noted that this observation is consistent with the description of the 

LLMs, where both transporter models exhibited the poorest performances.  

In the first type of cross-validation (left column of Figure 8), the 

Metamodel_not_pk achieved a sensitivity of 1.00. However, in the second 

type of cross-validation (right column of Figure 8), the sensitivity dropped to 

approximately 0.00. Interestingly, despite these variations in sensitivity, both 

types of cross-validation resulted in ROC AUC scores that were very close to 
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0.5. When comparing the two metamodels, it was observed that the model 

incorporating PK information exhibited significantly a higher ROC AUC score 

(between 0.15-0.19 higher for both CV approaches) compared to the model 

without PK information.  

In the Repeated k-fold CV, RF model showed the best performance for both 

QSAR models. However, when using Similarity k-fold CV, the XGB model 

outperformed the others in terms of sensitivity, MCC, and ROC AUC score. 

Thus, for QSAR models, we could say that the lower the structural similarity, 

the lower the sensitivity. Regarding the QSAR model utilizing FP descriptors, 

consistently exhibited slightly higher specificity compared to the model using 

PC descriptors. Both models showed similar values of sensitivity, with 0.34 for 

QSAR_model_FP and 0.32 for QSAR_model_PC in the Repeated k-fold CV, and 

0.20 and 0.24, respectively, in the Similarity-based CV. Aggregated quality 

indexes like the AUC or the MCC show an improvement in the overall 

predictive quality of the Metamodel_pk. On the contrary, the accuracy is 

slightly better for QSAR_model_FP (about 0.7 for both kind of CV), the most 

specific model, since the proportion of positive annotations is low 

(approximately one positive compound for every three negative compounds), 

and a specific model has fewer false positives. Considering the low proportion 

of positive compounds, more sensitive models (such as Metamodel_pk) are 

far more valuable and useful. Furthermore, Table S5 in the supporting 

information displays the evaluation of each metric for every model in each fold 

of the similarity 5-fold CV. In broad terms, regardless of the similarity space 

used, the metamodel incorporating PK information outperformed both QSAR 

models, showing a higher sensitivity, MCC, and AUC. 
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Figure 8: Sensitivity, specificity, MCC, AUC, accuracy according to the 20-Repeated 5-
fold CV (left column) and the Similarity 5-fold CV (right column). 

Performances according to the "ATC-based cross-validation." 

The analysis by ATC codes allows the categorisation of drugs based on their 

therapeutic and pharmacological properties. In terms of structural 

independence, the ATC code can provide insight into the relationship between 

a drug's structure and its therapeutic properties. In this study, the predictive 

quality of the models was further tested by using a CV approach that closely 

resembles the previous point but where the folds were obtained by grouping 
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compounds with the same ATC code. This exercise aimed to check whether 

models trained with compounds from some therapeutic regions can 

accurately predict the toxicity of compounds belonging to different 

therapeutic areas, as characterised by their respective ATC codes.  

Figure 9 illustrates the performance of the different models, providing further 

insights into their comparative robustness to predict structurally diverse 

compounds thanks to the use of the ATC-based k-fold approach. 

Comprehensive details for each model and metric can be found in Table S6. 

Additionally, Table S7 presents a comprehensive breakdown of the results for 

each fold, enabling a granular examination of the model performance across 

multiple metrics. The results of Figure 9 show the same variability across folds 

for different models and metrics that was discussed in previous plots, and the 

same trends with respect to the best models in terms of sensitivity and 

specificity. Regarding sensitivity, the best results were obtained for the 

similarity-based CV approach, with Metamodel_pk exhibiting much higher 

sensitivity (0.92) than other models. Overall, the metamodel outperformed 

other models in all evaluated metrics except for specificity and accuracy, as 

previously mentioned in the section on Similarity-based CV. Analyzing each 

fold based on Table S7 in the supporting information and comparing the MCC 

scores of different models, we observe that the Metamodel_pk achieved 

notably good MCC values (specifically for the ATC code of anticancer drugs 

(MCCL01=0.47) and cardiovascular therapy (MCCC01=0.56), whereas the QSAR 

models displayed MCC scores ranging from -0.24 to 0.15, depending on the 

selected QSAR model. Indeed, these two ATC groups (L01 and C01) frequently 

exhibit diverse molecular scaffolds, posing a greater challenge when 

attempting to predict them using models trained with other ATC groups. The 

inherent dissimilarity between these groups adds an additional layer of 

complexity to the prediction task. All this highlights the big drawback of QSAR 
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models and evidence that our methodology can address this issue by bridging 

the gap created by conventional models. 

 

Figure 9: Sensitivity, specificity, MCC, AUC, accuracy according to the ATC 5-fold CV. 

Discussion 
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The methodology presented here allows the prediction of cholestasis using an 

alternative approach to the direct QSAR models, which integrates mechanistic 

information and pharmacokinetic properties. To effectively execute this 

methodology, it is necessary to build low-level models that predict the IC50 of 

each inhibited transporter with utmost precision. These in vitro 

concentrations are subsequently extrapolated to IEOD50 through QIVIVE 

models. Similarly, accurate models are essential for determining the 

experimental and physicochemical parameters that are used to feed the 

monocompartmental model underlying the calculation of Css in QIVIVE 

models. 

Determining whether one model's predictive power surpasses another 

depends on the intended uses of the prediction results. Achieving the optimal 

balance between sensitivity and specificity is crucial in some scenarios. 

However, in discovery and early drug development, the main goal of in silico 

studies is the early detection of the potentially toxic compound. Therefore, a 

lower specificity is much preferable to a lower sensitivity. This is particularly 

true in the case of cholestasis since, as previously mentioned, it is a severe 

adverse event and a relevant mechanism of DILI, which is one of the primary 

causes of drug withdrawal or termination of clinical trials. Hence, in new drug 

development, sacrificing potential candidates may be preferable to avoid 

future financial losses worth millions of dollars. 

It is worth noting that the IC50 values for many compounds were predicted as 

their experimental values were unknown. The LLMs exhibited similar 

performances, except for the P-gp and OATP1B3 transporters. In the case of 

the P-gp model, its significant assay variability, as described by other authors 

36,59, directly impacts the measurement of compound biological activity, 

resulting in the lowest-performing low-level model. Similarly, the limited 

number of compounds available to train the OATP1B3 model contributes to 
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its consistently poor performance across different splits of the 20-Repeated 5-

fold CV. Regarding the P-gp model, we could have applied stricter criteria to 

the assays to include more homogeneous data. However, to maintain 

methodological consistency, the same procedure would need to be applied to 

other transporters, potentially resulting in an extremely small number of 

compounds. Regarding to OATP1B3 transporter, for which it was not possible 

to build a good model, it could have been excluded from the metamodel. 

However, we preferred to keep it to maintain a more complete representation 

of all the targets involved in the biological mechanisms underlying cholestasis 

occurrence. Therefore, we opted for a controlled risk approach, monitoring 

subsequent evaluations where metamodel failures were observed. Therefore, 

the inaccuracy of the predicted values should be borne in mind as it limits the 

quality of the model. Even so, we consider that even a rough estimation of the 

pIC50 is likely to improve the overall predictive performance of the method, 

and it has value in exemplifying an approach which can be much improved 

when higher-quality estimations of these parameters (either experimental or 

predicted) can be generated. 

In evaluating the predictive power of the selected strategies (Figures 8 and 9), 

it was found that Metamodel_pk exhibited substantially greater sensitivity 

than Metamodel_not_pk. The improved sensitivity is likely due to PK data 

providing information about a drug's behaviour in the body, including ADME 

processes and drug’s exposure. The model that did not incorporate PK 

(Metamodel_not_pk) information only used in vitro data, which cannot 

accurately predict how a drug will behave in vivo. Similar findings were 

observed when comparing the Metamodel_pk to either of the two classical 

QSAR models, with the first one demonstrating higher sensitivity than the 

QSAR models.  
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The predictive performance of QSAR models and metamodels was further 

investigated by evaluating their quality in situations where the validation sets 

have a lower resemblance to the training sets (Figure 8). Our results confirmed 

the theory that QSAR models are highly dependent on the structural similarity 

between the test series compounds to the ones in the training series. It 

highlights the need for careful consideration of the selection of compounds 

used in the training set and the evaluation of the performance of the QSAR 

models for structurally diverse compounds. In contrast, our results showed 

that the metamodel based on PK information was not dependent on structural 

similarity, probably because it represents better the underlying biological 

mechanisms. Overall, our study provides further evidence for the differential 

performance of QSAR models and metamodel in predicting cholestasis and 

highlights the importance of considering the structural similarity of the 

validation compounds when evaluating the predictive quality of QSAR models. 

These findings suggest that the metamodel with PK information is much less 

dependent than the direct QSAR models of the structural similarity and, 

therefore can produce a better prediction for original structures, which is one 

of the common use scenarios in drug discovery. 

This hypothesis was further confirmed using an additional validation analysis, 

in which we predicted compounds of a certain therapeutic area (as 

characterised by their ATC codes) using compounds from other therapeutic 

areas. In this type of analysis, we are aware that alternative strategies, such as 

clustering scaffolds, could be employed. However, this approach may 

introduce the challenge of having an abundance of scaffolds that may not be 

relevant to the analysis, requiring manual selection. Thus, by selecting the five 

most prevalent ATC groups within the dataset under investigation, we ensure 

a more objective analysis. The analysis revealed that the metamodel with PK 

information exhibited significantly higher sensitivity across all ATC groups than 
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the QSAR model. Concerning the groups J01, N05 or N02, the MCC was not 

much superior for the metamodel with respect to QSAR_model_FP (Table S7 

of the supporting information). However, the metamodel with PK information 

demonstrated clear benefits in terms of predictive quality for the following 

L01 and C01 ATC subgroups. This could be due to that compounds belonging 

to ATC groups, such as antineoplastics or cardiac therapy, do not usually share 

common scaffolds with other ATC groups. Once more, this emphasises the 

recommended methodology for cases where the objective is to predict the 

cholestasis activity of a novel drug from a therapeutic category with many 

structural differences.  

The results indicate that the metamodel incorporating PK information is better 

for typical applications in discovery or early development stages toxicity 

assessment than the direct models and Metamodel_not_pk. This could be 

explained by the fact that the metamodel with PK information considers both 

hazard and exposure, providing a more comprehensive representation of the 

underlying biological mechanisms of action. 

Conclusion 

 

Here, we present an innovative methodology integrating multiple biological 

phenomena (MIE) with pharmacokinetic properties (QIVIVE) to predict 

cholestasis as a more comprehensive approach to the phenomena of interest. 

The aim was to assess the predictive ability of the proposed methodology and 

direct QSAR modelling in three different ways: by evaluating the overall 

performance of the models (S, SP, MCC, ROC AUC, A) using classical methods 

as well as by using ad-hoc cross-validation approaches where the predicted 

compounds are selected to have low similarity (in terms of structural similarity 

or ATC codes) with the training series. 
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After comparing the predictive power of the proposed models, it was 

determined that, in broad terms, the metamodel with PK information 

outperformed both the metamodel without PK information and QSAR models 

in terms of sensitivity, MCC, and ROC AUC. Nevertheless, concerning accuracy, 

the outcomes were less favourable than those of the QSAR models. This 

outcome is understandable since there were significantly more negative 

compounds than positive ones, and ML models often predict the majority class 

more accurately due to higher information available, resulting in a slightly 

lower hit rate. 

The Metamodel_pk showed structural independence as its sensitivity and 

specificity remained unchanged regardless of the similarity space tested (using 

the "similarity-based CV"). In contrast, the QSAR models showed decreasing 

sensitivity as similarity decreased. In the "ATC-based CV" the Metamodel_pk 

also showed a much higher sensitivity than the QSAR model, especially in 

cases where there are more diverse structures that keep a lower structural 

similarity, as in the case of antineoplastic agents (L01) or cardiac therapy (C01). 

Overall, the metamodel that included PK information demonstrated superior 

predictive performance for more diverse structures and cholestatic 

compounds.  

In light of these results, we propose that this methodology can be applied to 

other complex toxicological endpoints, aiding experts in developing new 

frameworks to support NGRA as it considers both hazard and exposure for a 

more comprehensive toxicity assessment. 

Data Availability 

 

The code and datasets used in the study are publicly available from the GitHub 

repository: https://github.com/phi-grib/Cholestasis_paper.  

https://github.com/phi-grib/Cholestasis_paper
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Supporting Information 

Low-level models optimization; 20 Repeated 5-fold CV, ATC 5-fold CV and 

Similarity 5-CV models optimization; Tanimoto similarity values intra and 

inter-clusters, and intra and inter-ATC; fub and CLint performances; Similarity 5-

fold CV and ATC 5-fold CV performances by fold; ATC 5-fold CV mean 

performances. 

Author information 

Corresponding author 

Manuel Pastor - Research Programme on Biomedical Informatics (GRIB), 

Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 

Hospital del Mar Medical Research Institute, Barcelona, Spain; 

https://orcid.org/0000-0001-8850-1341; Email: manuel.pastor@upf.edu.  

Authors 

Pablo Rodríguez-Belenguer - Research Programme on Biomedical Informatics 

(GRIB), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 

Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of 

Pharmacy and Pharmaceutical Technology and Parasitology, Universitat de 

València, Valencia, Spain; https://orcid.org/0000-0001-5270-7452. 

Víctor Mangas-Sanjuan - Department of Pharmacy and Pharmaceutical 

Technology and Parasitology, Universitat de València, Valencia, Spain; 

Interuniversity Research Institute for Molecular Recognition and 

Technological Development, Universitat Politècnica de València, Valencia, 

Spain; https://orcid.org/0000-0002-3388-5023. 

Emilio Soria-Olivas - IDAL, Intelligent Data Analysis Laboratory, ETSE, 

Universitat de València, Valencia, Spain; https://orcid.org/0000-0002-9148-

8405. 

https://orcid.org/0000-0001-8850-1341
mailto:manuel.pastor@upf.edu
https://orcid.org/0000-0001-5270-7452
https://orcid.org/0000-0002-3388-5023
https://orcid.org/0000-0002-9148-8405
https://orcid.org/0000-0002-9148-8405


CAPÍTULO 2 

107 
 

Author contributions 

Manuel Pastor and Pablo Rodriguez-Belenguer conceived and designed the 

study. Material preparation, data collection, and in silico analysis were 

performed by Pablo Rodriguez-Belenguer. The results analysis was performed 

by Pablo Rodriguez-Belenguer and Manuel Pastor. All the authors analysed 

and discussed the results. The first draft of the manuscript was written by 

Pablo Rodriguez-Belenguer and Manuel Pastor, and all authors contributed to 

previous versions of the manuscript. All authors read and approved the final 

manuscript. 

Funding 

The authors received funding from the eTRANSAFE project, Innovative 

Medicines Initiative 2 Joint Undertaking under grant agreement No 777365, 

supported by European Union's Horizon 2020 and the EFPIA. Authors declare 

that this work reflects only the author's view and that IMI-JU is not responsible 

for any use that may be made of the information it contains. Also, this project 

received funding from the European Union's Horizon 2020 Research and 

Innovation Programme under Grant Agreement No. 964537 (RISK-HUNT3R), 

which is part of the ASPIS cluster. 

Conflicts of interest 

The authors declare no conflict of interest. 

Ethical standards 

The manuscript does not contain clinical studies or patient data. 

References 

1. Chang X, Tan YM, Allen DG, Bell S, Brown PC, Browning L, Ceger P, 
Gearhart J, Hakkinen PJ, Kabadi SV, Kleinstreuer NC, Lumen A, 
Matheson J, Paini A, Pangburn HA, Petersen EJ, Reinke EN, Ribeiro AJS, 



CAPÍTULO 2 

108 
 

Sipes N, Sweeney LM, Wambaugh JF, Wange R, Wetmore BA, Mumtaz 
M. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment 
and Decision Making. Toxics. 2022;10. doi:10.3390/toxics10050232 

2. Rovida C, Escher SE, Herzler M, Bennekou SH, Kamp H, Kroese DE, 
Maslankiewicz L, Moné MJ, Patlewicz G, Sipes N, Van Aerts L, White A, 
Yamada T, Van de Water B. NAM-supported read-across: From case 
studies to regulatory guidance in safety assessment. ALTEX. 
2021;38:140-150. doi:10.14573/altex.2010062 

3. Belfield SJ, Firman JW, Enoch SJ, Madden JC, Erik Tollefsen K, Cronin 
MTD. A review of quantitative structure-activity relationship modelling 
approaches to predict the toxicity of mixtures. Computational 
Toxicology. 2023;25:100251. 
doi:https://doi.org/10.1016/j.comtox.2022.100251 

4. Astuto MC, Di Nicola MR, Tarazona JV, Rortais A, Devos Y, Liem AKD, 
Kass GEN, Bastaki M, Schoonjans R, Maggiore A, Charles S, Ratier A, 
Lopes C, Gestin O, Robinson T, Williams A, Kramer N, Carnesecchi E, 
Dorne JCM. In Silico Methods for Environmental Risk Assessment: 
Principles, Tiered Approaches, Applications, and Future Perspectives. 
Methods Mol Biol. 2022;2425:589-636. doi:10.1007/978-1-0716-1960-
5_23 

5. Osman NA. Statistical methods for in silico tools used for risk 
assessment and toxicology. Physical Sciences Reviews. Published online 
January 7, 2022. doi:10.1515/PSR-2018-
0166/MACHINEREADABLECITATION/RIS 

6. Thomas PC, Bicherel P, Bauer FJ. How in silico and QSAR approaches can 
increase confidence in environmental hazard and risk assessment. 
Integr Environ Assess Manag. 2019;15:40-50. doi:10.1002/IEAM.4108 

7. Myatt GJ, Bassan A, Bower D, Crofton KM, Cross KP, Graham JC, 
Hasselgren C, Jolly RA, Miller S, Pavan M, Tice RR. Increasing the 
acceptance of in silico toxicology through development of protocols and 
position papers. Computational Toxicology. 2022;21:100209. 
doi:10.1016/J.COMTOX.2021.100209 

8. De P, Kar S, Ambure P, Roy K. Prediction reliability of QSAR models: an 
overview of various validation tools. Arch Toxicol. 2022;96:1279-1295. 
doi:10.1007/S00204-022-03252-Y/FIGURES/6 

9. Chinen K, Malloy T. Multi-Strategy Assessment of Different Uses of 
QSAR under REACH Analysis of Alternatives to Advance Information 



CAPÍTULO 2 

109 
 

Transparency. International Journal of Environmental Research and 
Public Health 2022, Vol 19, Page 4338. 2022;19:4338. 
doi:10.3390/IJERPH19074338 

10. Kolmar SS, Grulke CM. The effect of noise on the predictive limit of QSAR 
models. J Cheminform. 2021;13:92. doi:10.1186/s13321-021-00571-7 

11. Madden JC, Thompson C V. Pharmacokinetic Tools and Applications. In: 
Benfenati E, ed. In Silico Methods for Predicting Drug Toxicity. Springer 
US; 2022:57-83. doi:10.1007/978-1-0716-1960-5_3 

12. Calabrese EJ. Dose–Response Relationship. In: Wexler PBTE of T (Third 
E, ed. Academic Press; 2014:224-226. 
doi:https://doi.org/10.1016/B978-0-12-386454-3.00991-X 

13. Krewski D, Acosta Jr D, Andersen M, Anderson H, Bailar III JC, 
Boekelheide K, Brent R, Charnley G, Cheung VG, Green Jr S, Kelsey KT. 
Toxicity testing in the 21st century: a vision and a strategy. J Toxicol 
Environ Health B Crit Rev. 2010;13:51-138. 
doi:10.1080/10937404.2010.483176 

14. Vinken M, Knapen D, Vergauwen L, Hengstler JG, Angrish M, Whelan M. 
Adverse outcome pathways: a concise introduction for toxicologists. 
Arch Toxicol. 2017;91:3697-3707. doi:10.1007/s00204-017-2020-z 

15. OECD. OECD Series on Testing and Assessment No. 184: Guideance 
Document on Developing and Assessing Adverse OutcomePathways. 
OECD, Paris, 2013. Published online 2013. 

16. OECD. OECD Series on Testing and Assessment No. 233: Users’ 
Handbook Supplement to the Guidance Document for Developing and 
Assessing AOPs. OECD, Paris, 2018. Published online 2018:1-60. 

17. OECD. AOP knowledge base. Published 2014. Accessed September 15, 
2022. https://aopkb.oecd.org/ 

18. Society for Advancement of AOPs. AOP-Wiki. Published 2014. Accessed 
September 15, 2022. https://aopwiki.org/aops 

19. Matsuzaka Y, Totoki S, Handa K, Shiota T, Kurosaki K, Uesawa Y. 
Prediction Models for Agonists and Antagonists of Molecular Initiation 
Events for Toxicity Pathways Using an Improved Deep-Learning-Based 
Quantitative Structure–Activity Relationship System. International 
Journal of Molecular Sciences 2021, Vol 22, Page 10821. 2021;22:10821. 
doi:10.3390/IJMS221910821 



CAPÍTULO 2 

110 
 

20. Allen TEH, Goodman JM, Gutsell S, Russell PJ. Quantitative Predictions 
for Molecular Initiating Events Using Three-Dimensional Quantitative 
Structure-Activity Relationships. Chem Res Toxicol. 2020;33:324-332. 
doi:10.1021/ACS.CHEMRESTOX.9B00136/SUPPL_FILE/TX9B00136_SI_0
02.PDF 

21. Testai E, Bechaux C, Buratti FM, Darney K, Di Consiglio E, Kasteel EE, 
Kramer NI, Lautz LS, Santori N, Skaperda ZV, Kouretas D. Modelling 
human variability in toxicokinetic and toxicodynamic processes using 
Bayesian meta-analysis, physiologically-based modelling and in vitro 
systems. EFSA Supporting Publications. 2021;18:6504E. 
doi:10.2903/SP.EFSA.2021.EN-6504 

22. Gao Y, Kang L, Zhang Y, Feng J, Zhu L. Toxicokinetic and toxicodynamic 
(TK-TD) modeling to study oxidative stress-dependent toxicity of heavy 
metals in zebrafish. Chemosphere. 2019;220:774-782. 
doi:10.1016/J.CHEMOSPHERE.2018.12.197 

23. Warner RM, Sweeney LM, Hayhurst BA, Mayo ML. Toxicokinetic 
Modeling of Per- and Polyfluoroalkyl Substance Concentrations within 
Developing Zebrafish (Danio rerio) Populations. Environ Sci Technol. 
Published online September 2, 2022. doi:10.1021/ACS.EST.2C02942 

24. Lehman-McKeeman LD. Mechanisms of Toxicity. In: Klaassen CD, ed. 
Casarett &amp; Doull’s Toxicology: The Basic Science of Poisons, 9th 
Edition. McGraw-Hill Education; 2019. 

25. Punt A, Pinckaers N, Peijnenburg A, Louisse J. Development of a Web-
Based Toolbox to Support Quantitative In-Vitro-to-In-Vivo 
Extrapolations (QIVIVE) within Nonanimal Testing Strategies. Chem Res 
Toxicol. 2021;34:460-472. 
doi:10.1021/ACS.CHEMRESTOX.0C00307/ASSET/IMAGES/LARGE/TX0C
00307_0008.JPEG 

26. Kotsampasakou E, Ecker GF. Predicting Drug-Induced Cholestasis with 
the Help of Hepatic Transporters—An in Silico Modeling Approach. J 
Chem Inf Model. 2017;57:608-615. doi:10.1021/acs.jcim.6b00518 

27. Norman BH. Drug Induced Liver Injury (DILI). Mechanisms and Medicinal 
Chemistry Avoidance/Mitigation Strategies. J Med Chem. 
2020;63:11397-11419. doi:10.1021/acs.jmedchem.0c00524 

28. Padda MS, Sanchez M, Akhtar AJ, Boyer JL. Drug-induced cholestasis. 
Hepatology. 2011;53:1377-1387. doi:10.1002/HEP.24229 



CAPÍTULO 2 

111 
 

29. Pauli-Magnus C, Meier PJ. Hepatobiliary transporters and drug-induced 
cholestasis. Hepatology. 2006;44:778-787. doi:10.1002/HEP.21359 

30. Jazaeri F, Sheibani M, Nezamoleslami S, Moezi L, Dehpour AR. Current 
Models for Predicting Drug-induced Cholestasis: The Role of 
Hepatobiliary Transport System. Iran J Pharm Res. 2021;20:1. 
doi:10.22037/IJPR.2020.113362.14254 

31. Vinken M, Landesmann B, Goumenou M, Vinken S, Shah I, Jaeschke H, 
Willett C, Whelan M, Rogiers V. Development of an Adverse Outcome 
Pathway From Drug-Mediated Bile Salt Export Pump Inhibition to 
Cholestatic Liver Injury. Toxicological Sciences. 2013;136:97-106. 
doi:10.1093/TOXSCI/KFT177 

32. Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson F, 
Bellis L, Overington JP. ChEMBL web services: streamlining access to 
drug discovery data and utilities. Nucleic Acids Res. 2015;43:W612-20. 
doi:10.1093/nar/gkv352 

33. Wang Y, Suzek T, Zhang J, Wang J, He S, Cheng T, Shoemaker BA, 
Gindulyte A, Bryant SH. PubChem BioAssay: 2014 update. Nucleic Acids 
Res. 2014;42:D1075-82. doi:10.1093/nar/gkt978 

34. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, 
Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico 
drug discovery and exploration. Nucleic Acids Res. 2006;34:D668-72. 
doi:10.1093/nar/gkj067 

35. Cates Jill. A Python package for standardizing medical data. Published 
2018. Accessed February 1, 2023. 
https://github.com/topspinj/medcodes 

36. Elkins RC, Davies MR, Brough SJ, Gavaghan DJ, Cui Y, Abi-Gerges N, 
Mirams GR. Variability in high-throughput ion-channel screening data 
and consequences for cardiac safety assessment. J Pharmacol Toxicol 
Methods. 2013;68:112-122. Doi:10.1016/j.vascn.2013.04.007 

37. March-Vila, Eric and Pastor M. Data curation. Published online 2020. 
Accessed February 1, 2023. https://github.com/phigrib/Data_curation 

38. Landrum GA. RDKit: Cheminformatics and Machine Learning Software. 
Open-Source Cheminformatics Software, RDKit (2019). Published online 
2016. 

39. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J. Scikit-



CAPÍTULO 2 

112 
 

learn: Machine Learning in Python. Journal of Machine Learning 
Research. 2011;12:2825-2830. 

40. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. 
Proceedings of the ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining. 2016;13-17-August-2016:785-
794. Doi:10.1145/2939672.2939785 

41. Ho TK. Random decision forests. Proceedings of the International 
Conference on Document Analysis and Recognition, ICDAR. 1995;1:278-
282. Doi:10.1109/ICDAR.1995.598994 

42. Fix E, Hodges JL. Discriminatory Analysis. Nonparametric Discrimination: 
Consistency Properties. Int Stat Rev. 1989;57:238-247. 
Doi:10.2307/1403797 

43. Cortes C, Vapnik V, Saitta L. Support-vector networks. Machine Learning 
1995 20:3. 1995;20:273-297. Doi:10.1007/BF00994018 

44. Alpaydin E. Introduction to Machine Learning. 2nd ed. The MIT Press; 
2010. 

45. Pearce RG, Setzer RW, Strope CL, Sipes NS, Wambaugh JF. Httk: R 
Package for High-Throughput Toxicokinetics. J Stat Softw. 2017;79:1-26. 
Doi:10.18637/JSS.V079.I04 

46. Wetmore BA. Quantitative in vitro-to-in vivo extrapolation in a high-
throughput environment. Toxicology. 2015;332:94-101. 
Doi:10.1016/j.tox.2014.05.012 

47. Mansouri K, Grulke CM, Judson RS, Williams AJ. OPERA models for 
predicting physicochemical properties and environmental fate 
endpoints. J Cheminform. 2018;10:10. Doi:10.1186/s13321-018-0263-1 

48. Rodríguez-Pérez R, Gerebtzoff G. Identification of bile salt export pump 
inhibitors using machine learning: Predictive safety from an industry 
perspective. Artificial Intelligence in the Life Sciences. 2021;1:100027. 
Doi:https://doi.org/10.1016/j.ailsci.2021.100027 

49. Bosc N, Atkinson F, Felix E, Gaulton A, Hersey A, Leach AR. Large scale 
comparison of QSAR and conformal prediction methods and their 
applications in drug discovery. J Cheminform. 2019;11:4. 
Doi:10.1186/s13321-018-0325-4 

50. Jain S, Grandits M, Richter L, Ecker GF. Structure based classification for 
bile salt export pump (BSEP) inhibitors using comparative structural 



CAPÍTULO 2 

113 
 

modeling of human BSEP. J Comput Aided Mol Des. 2017;31:507-521. 
Doi:10.1007/s10822-017-0021-x 

51. Warner DJ, Chen H, Cantin LD, Kenna JG, Stahl S, Walker CL, Noeske T. 
Mitigating the Inhibition of Human Bile Salt Export Pump by Drugs: 
Opportunities Provided by Physicochemical Property Modulation, In 
Silico Modeling, and Structural Modification. Drug Metabolism and 
Disposition. 2012;40:2332-2341. Doi:10.1124/dmd.112.047068 

52. Vikramkumar, B V, Trilochan. Bayes and naïve Bayes Classifier. 
Published online April 3, 2014. doi:10.48550/arxiv.1404.0933 

53. Harris CR, Millman KJ, Van Der Walt SJ, Gommers R, Virtanen P, 
Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R. Array 
programming with NumPy. Nature 2020 585:7825. 2020;585:357-362. 
doi:10.1038/s41586-020-2649-2 

54. Seabold S, Perktold J. statsmodels: Econometric and statistical modeling 
with python. In: 9th Python in Science Conference. ; 2010. 

55. Waskom ML. seaborn: statistical data visualization. J Open Source 
Softw. 2021;6:3021. doi:10.21105/joss.03021 

56. Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. 
2007;9:90-95. doi:10.1109/MCSE.2007.55 

57. McKinney W. Data Structures for Statistical Computing in Python. In: 
van der Walt S, Millman J, eds. Proceedings of the 9th Python in Science 
Conference. ; 2010:51-56. 

58. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and 
computational approaches to estimate solubility and permeability in 
drug discovery and development settings. Adv Drug Deliv Rev. 
1997;23:3-25. doi:https://doi.org/10.1016/S0169-409X(96)00423-1 

59. Landrum GA. The hazards of combining data from IC50 assays. 
Published 2023. Accessed February 1, 2023. Accessed June 17, 2023. 
https://greglandrum.github.io/rdkit-blog/posts/2023-06-12-
overlapping-ic50-assays1.html



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

115 
 

Capítulo 3  

 

Application of machine learning to improve the 

efficiency of electrophysiological simulations used 

for the prediction of drug-induced ventricular 

arrhythmia 

 

Pablo Rodríguez-Belenguer1*, Karolina Kopańska1*, Jordi Llopis-Lorente2, 

Beatriz Trenor2, Javier Saiz2, Manuel Pastor1 

1Research Programme on Biomedical Informatics (GRIB), Universitat Pompeu Fabra, Barcelona, 
Spain 

*Both authors have contributed equally 

2Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de 
València, Valencia, Spain 

 

Revista: Computer Methods and Programs in Biomedicine 

Editorial: Elsevier 

Año: 2023 

Cuartil: Q1 

IF: 6.1 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CAPÍTULO 3 

117 
 

Introduction 

Assessing the arrhythmogenic risk of new drug candidates is an important step 

in safety studies. The mechanism by which drugs induce ventricular 

arrhythmias involves their binding to one or multiple ion channels, thereby 

altering the ionic conductance that controls cardiomyocyte membrane 

potential.1  As a result, the form and duration of ventricular action potentials 

(APs) change, and the net effects can be observed at tissue and organ levels, 

such as the prolongation of the QT-interval on the surface ECG.2 A significant 

prolongation of the QT-interval, is often linked to severe adversities such as 

early afterdepolarisations (EADs), which can quickly progress to one of the 

most severe effects of proarrhythmic drugs: the polymorphic ventricular 

tachycardia known as Torsade de Pointes (TdP).3  

As the occurrence of TdP historically led to the withdrawal of several marketed 

drugs, the International Council for Harmonisation of Technical Requirements 

for Pharmaceuticals for Human Use (ICH) developed standardised guidelines 

for safety testing of novel medicines.4 Resting upon the preclinical ICH S7b 

guideline,5 the estimation of proarrhythmic risk is done through the 

integration of results from in vitro inhibition assay of the Rapid Delayed 

Rectifier Potassium Current (IKr) encoded by the Human Ether-a-go-go-related 

Gene (hERG) and an in vivo animal QT-prolongation study. Following the clinical 

guideline ICH E14,6 the potential of a drug to delay ventricular repolarisation 

is assessed by measuring in vivo human QT/QTc interval prolongation.  

Indeed, testing drugs in compliance with these regulatory requirements over 

the last two decades resulted in no further removal of marketed drugs due to 

ventricular arrhythmia. However, the consideration of in vitro effects of drugs 

on a single ion channel and the application of a conservative cut-off for QT-

prolongation is the reason why several potentially useful drug candidates with 
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low toxicity risk are also discarded during the development stages. To provide 

a more complete description of the cellular mechanisms of drug 

proarrhythmia, a novel testing paradigm was proposed by the Comprehensive 

In Vitro Proarrhythmia Assay (CiPA) initiative.7,8 The CiPA points out that the 

consideration of drug interactions with other currents along with the hERG is 

also important for the analysis of ventricular arrhythmia. The main aim behind 

the CiPA project is to combine in vitro measured drug effects on multiples ion 

channels (INa, INaL, IKr, Ito, ICaL, IK1, and IKs) with computational simulations, such 

as in silico reconstructions of cardiac myocyte electrophysiology, and to 

compare these results with in vitro human stem cell results and human ECG 

phase 1 clinical trials.9   

Adding in silico elements to the cardiac safety testing pipeline has two main 

advantages, the first being the ability to fill data gaps when experimental 

results are not yet available at early stages of drug development and the 

second being an increased analytical accuracy due to the solid mechanistic 

foundation of the CiPA paradigm.10 

Several works have been published on the implementation of the CiPA based 

in silico simulations for the prediction of ventricular arrhythmia and TdP 

biomarkers using predicted or experimentally determined drug-induced ion 

channel inhibition data.11–19 Computational models of human and animal 

electrophysiology operate at different biological levels, ranging from a single 

channel to whole tissue simulations and vary in terms of the degree of 

complexity and abstraction, the underlying mathematical approaches, and 

physiological parameters.11 Although the predictions generated by such 

models are considered valuable and relevant, they also have limitations 

related to their usability. Usually, computational safety models are designed 

based on the subjective scientific interests of the developers and the required 

efficiency to run on high-performance-computing platforms is seldom 
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reached. But most importantly, the simulation consists of multiple steps, 

making the prediction process rather tedious.20 For example,  Beattie et al. 

(2013)21 presented a safety tool based on concentration-effect data for four 

cardiac ion channels (hERG, NaV1.5, CaV1.2, KCNQ1), in which drug-induced 

channel inhibition of selected compounds was predicted and used for the 

computation of QT interval changes in rabbit ventricles using computationally 

demanding one-dimensional tissue simulation.  

To speed up the process, our group developed an in silico system that 

transforms multi-channel blockage into proarrhythmia biomarkers, such as 

action potential duration at 90% of the repolarisation (APD90), in which the 

most computationally intensive steps are precomputed, allowing to produce 

results instantaneously.22,23  In our system, input values are pre-processed by 

combining channel-specific half-maximal inhibitory concentration (IC50) and 

the Hill coefficient for the currents IKr, IKs, and ICaL with the concentration of the 

drug. The APD90 prolongation values are then predicted using isolated human 

ventricular myocyte models as a function of these three input values. Since the 

calculation can take a considerable time, the predictions are generated by 

making use of precomputed matrices comprising large sets of possible 

combinations of input values, each of which is associated with a particular 

value of the output biomarker. These technical features make the prediction 

system simple, practical, and rapid.22,23  

Even if storing precomputed data matrices is a very convenient way to obtain 

predictions interactively, with minimal computational requirements for the 

end-user, the procedure has the drawback that the preparatory simulations 

that the method developer needs to run are extremely expensive in terms of 

computational power and time. This is because accurate predictions can only 

be produced when the input values cover a wide range of possibilities starting 

with safe and ending with very toxic representations of drug effects on each 
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considered ion channel. The number of combinations is calculated as Xn, being 

X the number of possible values considered for each input value and n the 

count of the input values considered (number of ion channels). This fact 

imposes a practical upper limit to the number of currents that can be 

considered since incorporating one more channel multiplies by X the number 

of simulations to run. Since incorporating additional currents could have 

substantial benefits, we studied how to overcome these limitations. A 

potential solution would be to train a machine learning (ML) model with part 

of the data array and use it to predict the rest of the data array, thereby 

reducing the number of required simulations. The use of ML in the field of 

arrhythmia and electrophysiology-oriented research is not new, and the 

spectrum of published ML applications in this area is very broad.20,21 For 

example,  classification and regression algorithms can be applied to build 

models describing the association between the molecular structure and the 

inhibitory potential of drugs on ion channels24 or to produce high-level 

arrhythmogenic risk indicators.25–27 Another example of the application of ML 

in combination with in silico simulations to improve the predictive results of 

the arrhythmogenic risk in post-infarction patients was described by Maleckar 

and colleagues (2020), who simulated the data for the analysis only partially 

and predicted the rest using ML methods.28  

In this work, we describe an application of ML which aimed only to optimise 

the generation of precomputed matrices that link input ionic currents with 

output APD90 values. The basic idea was to train a model with a few of the 

array nodes and to use it to reconstruct the whole array. We show that even a 

tiny fraction of nodes (5% or less) can produce a very accurate estimation of 

the values obtained using simulations for the remaining part of the array (95% 

or more).  Therefore, using an ML model can save up to 95% of the 

computation time and, more importantly, opens the possibility to precompute 
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matrices with more currents that can provide better, more useful predictions. 

In this work, we compare different machine learning approaches, optimise 

their parameters, and evaluate the quality of the predictions obtained using 

different sample sizes to make the most optimal choices for future simulations. 

Then, we present the best methodological settings and validate our selected 

model by predicting the APD90 for a series of compounds from the CiPA 

dataset. Lastly, we evaluate the value of our method by simulating a real 

production scenario where it was applied to a new electrophysiological 

simulation.  

Methods  

Data collection for model building  

In silico action potential (AP) modelling of the healthy human endocardial 

cardiomyocyte and APD90 measurements were done using a modified version 

of the widely known model published by O’Hara and colleagues.29 The 

modifications were designed to better reproduce the experimental data of 

drug effects. Briefly, the AP model modifications included: i) the scaling of the 

following conductances: IKr by 1.119, INaL by 2.274, IK1 by 1.414, IKs by 1.648, ICaL 

by 1.018, and INa by 0.4; and ii) a reformulation of the activation and 

inactivation gates of INa. For further details about the electrophysiological 

model, see Llopis-Lorente et al. (2020).16 Simulations were run with a basic 

cycle length of 1,000 ms, a stimulus of 1.5-fold the diastolic threshold of 

amplitude and a duration of 0.5 ms, at physiological temperature (37ºC) and 

the following extracellular concentrations: [Na+]=140 nM, [Ca2+]=1.8 nM and 

[K+]=5.4 nM. Measurements of APD90 under drug effects were done after 500 

beats starting from control -no drug- initial conditions. 

In this work, we considered the effects of drug action on two combinations of 

cardiac ion channels. Primarily, aiming to improve the in silico modelling tool 
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described by Obiol-Pardo, we considered drug effects on IKr, IKs and ICaL 

currents.22,23 To evaluate the applicability of our new methodology to other 

combinations of ionic channels and validate the proposed machine learning 

methods, we selected the currents IKr, ICaL, INaL that were recently described by 

Llopis-Lorente.16 Drug effects on the AP were simulated using the simple pore 

block model.30 Drug inhibition produced on each channel was simulated by 

scaling the channel’s maximal conductance (gi) using the standard Hill 

equation (Equation 1).  

𝑔𝑖,𝑑𝑟𝑢𝑔 = 𝑔𝑖 [1 + (
𝐷

𝐼𝐶50,𝑖
)

ℎ

]

−1

     Equation 1 

where 𝑔𝑖,𝑑𝑟𝑢𝑔 is channel 𝑖‘s maximal conductance in the presence of the drug, 

D is the drug concentration, 𝐼𝐶50,𝑖  is the half-maximal inhibitory concentration 

for that drug, and channel 𝑖 and ℎ is the Hill coefficient, which represents the 

number of molecules that are sufficient to block an ion channel. 

A wide combination of input values representing the ratio (
D

IC50
)

h
 for IKr, IKs, ICaL 

was simulated and stored in an array. The array consisted of 3 channel input 

values: IKr, IKs, and ICaL. Each of them represented the logarithm of the ratio 

(
D

IC50
)

h
, as described in Equation 2. For each channel (IKr, IKs, ICaL), the input 

value ranged from -3 to 2.5, with a step increment of 0.1. These values were 

chosen to cover the properties found in real molecules, avoiding the need to 

extrapolate the models. Therefore, the simulated array comprised 175,616 

instances (56 data points for each current). 

Input value = log10 ([
𝐷

𝐼𝐶50
]

ℎ
)      Equation 2 

The output value of the array was the APD90, simulated as described above for 

each of the input values combinations. For each set of input values, an 

additional binary variable was included to indicate whether early 
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afterdepolarisations (EAD) occurred during the simulation of that drug (EAD=1) 

or not (EAD=0). An EAD was defined as any event with a positive voltage 

gradient (dV/dt > 0 mV/ms) after 100 ms from the beginning of the action 

potential or with a value of membrane voltage at the end of the beat being 

higher than resting membrane voltage (Vm > −40 mV). 

The standard use of such array was as follows: for a given compound at a 

concentration D, Equation 2 was applied for the three ionic channels (IKr, IKs, 

ICaL). The results of Equation 2 were rounded to the first decimal and bounded 

between -3 and 2.5, i.e., if an input value was lower than -3 or higher than 2.5, 

the value was then transformed to -3 or 2.5. For each combination of the three 

calculated input values, the corresponding output (APD90) was stored in a 

three-dimensional result array. For example, a drug with the following IC50s: 1 

nM for IKr, 1000 nM for IKs and 10 nM for ICaL at a concentration of 1 nM yielded 

the data point [0, -3, -1], which led to an APD90 of 369.16 ms. 

Electrophysiological simulations and generation of the APD90 array were 

carried out using MATLAB version R2021b. The table with the APD90 values for 

a wide combination of input values is available online, named “KrKsCaL.xlsx”, 

on the public repository of the Polytechnic University of Valencia (RIUNET, 

https://riunet.upv.es/handle/10251/183067).  

Data pre-processing 

We removed from the analysis all data points for which EADs were detected. 

Also, we applied filters to remove simulation results yielding APDs greater than 

1000 ms. These conditions represent repolarisation abnormalities, and the 

numerical result is considered unreliable. Additionally, data points with an 

APD90 larger than the 3rd quartile plus 1.5 times the interquartile range were 

considered outliers and removed. This filter removed 1.4% of the data points, 

with values ranging between 777.59 and 865.47 ms. After the pre-processing, 

the number of simulation results was reduced to 140,269.   

https://riunet.upv.es/handle/10251/183067
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The data array was divided into training, validation, and test sets using four 

different sampling rates that were used in the models (Table 1). In each case, 

the training and validation series were extracted by picking the results at 

regular and pre-defined intervals to guarantee an even distribution of values 

for fitting and validation along with the explored range of input values. All 

remaining data were used as test series to evaluate the predictive 

performance of the models. 

Table 1: Percentages of data from the original array sampled using four different 
rates to generate the training, validation, and test series for model building 

Sampling rate Training series Validation series Test series 

1/20 5% 5% 90% 

1/50 2% 2% 96% 

1/100 1% 1% 98% 

1/200 0.5% 0.5% 99% 

 

Machine learning algorithms 

Figure 1 shows a 3D representation of the APD90 values obtained for different 

combinations of two current pairs (IKr and IKs). The APD90 values are distributed 

on a non-linear 2D surface smoothly distributed. This observation suggests 

that by the application of ML algorithms suitable for processing non-linear 

data, we could obtain a good model fitting. In this work, we selected three 

different ML methods: Polynomial Transformation with Ridge regression (PR), 

Support Vector Machine (SVM), and Multilayer Perceptron (MLP). For each 

one, we optimised their hyperparameters and validated the models using 

three partitions and an external test set with selected CiPA compounds.  
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Figure 1: 3D plot showing the non-linear relationship between the APD90 and the 
input values (IKr and IKs) for the simulated data. In this plot, a fixed value of 0.3 was 

used for ICaL. 

Polynomial Regression 

The PR model was built using polynomial regression (Equation 3), a form of 

linear regression in which the relationship between the independent and 

dependent variables is modelled as a polynomial of the nth degree. In this 

algorithm,31 the polynomial degree increases proportionally to the complexity 

of the data structure: 

𝑦̂ = 𝑏 + 𝑤1. 𝑥 + 𝑤2. 𝑥2 … + 𝑤𝑛. 𝑥𝑛                          Equation 3 

Where ŷ is the target variable, n is the degree of the polynomial, x is the 

independent variable, w represents the model coefficients, and b is the offset.  

To reduce the chance of overfitting the model by selecting a too high 

polynomial degree, Ridge regression32  (Equation 4) was applied:   

𝐽(𝑤, 𝑏) = ∑  𝑀
𝑖=1 (𝑦𝑖 − 𝑏 − ∑  

𝑝
𝑗=1 𝑤𝑗 . 𝑥𝑖𝑗)

2
+ 𝛼 ∑  

𝑝
(𝑗=1) 𝑤𝑗

2  Equation 4 

Ridge regression, which operates by performing L2 regularisation, penalises 

the model coefficients by adding the factor (α). The greater the factor α, the 
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greater the impact of the shrinkage penalty, resulting in a larger reduction of 

the magnitude of model coefficients. Therefore, finding an optimal value for α 

is particularly important to control model overfit. 

Support vector machine  

To build the SVM model, we used a non-linear support vector machine for 

regression (SVR) which can be explained by a line enclosed between two 

decision boundaries, where the width between is controlled by the parameter 

ε. 33  As the data points that lie within the boundaries get assigned a loss of 0, 

the best value of ε is the one that maximally increases the number of the data 

points included within. On the other hand, the error is computed using slack 

variables that quantify the distance from the decision boundaries Ɛ’s to the 

points outside the margin. Support vector machine models strive towards a 

maximal error reduction as defined in Equation 5.  

Minimise 
𝑤𝑇𝑤

2
+ 𝐶 ∑  𝑁

𝑖=1 (𝜉𝑖 + 𝜉𝑖
∗) subject to {

𝑦𝑖 − 𝑤𝑇𝜙(𝑥𝑖) − 𝑏 ≤ 𝜀 + 𝜉𝑖 ,

𝑤𝑇𝜙(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗,

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1, … , 𝑛

                      

Equation 5 

𝜉𝑖 and 𝜉𝑖
∗ are the slack variables, ∥ 𝑤 ∥ represents the Euclidian normalisation 

of the weight (w) vector. C is a regularisation parameter where the strength of 

the regularisation is inversely proportional to this parameter.  φ(x) is the 

transformation from input space into feature space, and b is the bias term.  

To process non-linear data, support vector regressors perform the kernel 

trick,34 a method that allows for a representation of the data only through a set 

of pairwise similarity comparisons between two instances in the input space. 

More precisely, a kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) takes as input the original low 

dimensional data points (𝑥𝑖 ,  𝑥𝑗) and computes a dot product of these data in 

the transformed high dimensional space, without explicitly determining their 
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coordinates in this feature space.  In this work Radial Basis Function (RBF)35 

kernel (Equation 6) was used. 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒−𝛾∥∥𝑥𝑖−𝑥𝑗∥∥
2

                                           Equation 6 

𝛾 is the parameter of the gaussian kernel and (𝑥𝑖 ,  𝑥𝑗) are two selected input 

instances. In this work, scale mode 𝛾 (Equation 7) was selected because it is 

invariant against the scale of the inputs. 

𝑌𝑠𝑐𝑎𝑙𝑒 𝑚𝑜𝑑𝑒 =
1

𝑛 .  𝑥𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
                                                    Equation 7 

Where n is the number of features and xvariance corresponds to the variance in 

the input data. 

Multilayer perceptron 

Multilayer perceptron36 is a feedforward artificial neural network class 

belonging to the family of supervised machine learning algorithms. The basic 

structure of an MLP consists of a dot product of the input data (x) with their 

weights (w) + the bias (b) and of an activation function which in most cases is 

non-linear (Equation 8). These inputs yield an output of a single neuron. 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑦) = 𝑓(∑ 𝑤𝑘
𝑛
𝑘=1 . 𝑥𝑘 + 𝑏)                       Equation 8 

 

The output obtained from the first neuron is transmitted to the next one 

through feedforward propagation. In order to reduce the error between the 

desired output and the predicted output, the weights are updated in a process 

of backpropagation.37 The most important hyperparameters that impact the 

predictive performance of the neural network are hidden layers, activation 

function,38 learning rate (lr), which controls the step-size in updating the 

weights, the L2 regularisation parameter penalty alpha (ɑ), and the solver for 

weight optimisation.  

Evaluation metrics 
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The three machine learning algorithms were applied to four training series 

generated with different sampling rates (as shown in Table 1) to build 12 

models.  The predictive performances of the models were compared using 

three evaluation metrics: Mean Absolute Error (MAE) (Equation 9), the Mean 

Relative Error in % (MRE) computed from Relative Error (Equation 10), and the 

percentage of data with Relative Error (RE) below 5% (non-large data-points 

error, NLDE). These metrics were used to quantify the differences between 

predicted and simulated APD90 values and to guarantee that the quantity of 

the sampled data from the original simulated data array is enough to build a 

robust ML model. We only consider acceptable the simulations with an RE 

below 5%. 

𝑀𝐴𝐸 =
1

𝑛
∑  𝑛

𝑖=1 |𝑌𝑖 − 𝑌̂𝑖|                                    Equation 9  

𝑌̂𝑖 corresponds to the predicted value, 𝑌𝑖  is the real value, and n is the number 

of data points. 

𝑅𝐸(%) =
|𝑌𝑖−𝑌̂𝑖|

𝑌𝑖
. 100                                                Equation 10 

RE (%) values, computed as a function of APD90, were plotted for a visual 

evaluation  

Hyperparameters of all described ML algorithms 

Algorithm-specific hyperparameters selected for the optimisation of the ML 

models are listed in Table 2.  

Table 2: Selected hyperparameters for the optimisation of selected ML models 

Internal name Algorithm Hyperparameters 

PR 
Ridge regression with a 

polynomial transformation 
Polynomial degree=[2-15], α=[1.10-6 – 

10] 

SVM 
Support Vector Machine 

Regression 
C=[0.1 – 30.105], kernel=RBF, Υ=scale, 

Ɛ=0.1 
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MLP Multilayer Perceptron 

Hidden layers=[(50,50,50), (50,100,50), 
(100,)], learning rate=[constant, 

adaptative, sgd], solver= Adam, α=[ 0.05, 
0.1,0.5], activation=ReLU 

 

The hyperparameter tuning for the different models aimed to minimise the 

validation set MAE. We also tested whether the hyperparameters of the three 

selected algorithms can be optimised using only the training set or if it requires 

an additional validation set. 

The scripts were developed using Python 3.8. Machine learning models were 

built and evaluated using standard libraries Scikit-learn,39 NumPy,40 Pandas41 

and Matplotlib.42  The source code of the scripts used for building and 

validating the models, together with the datasets described and analysed in 

this manuscript, are available at GitHub (https://github.com/phi-

grib/cardioML) and distributed as open source under GNU GLP-3.0 license. 

Example case study using CiPA compounds  

To obtain a more realistic evaluation, focused on the range of IC50 observed in 

commonly used drugs for the IKr, IKs, and ICaL channels, as well as drug 

concentrations reached in their clinical use, we computed the input values as 

described in Equation 2 for 12 CiPA drugs belonging to three different TdP risk 

classes (low, intermediate, high). For these compounds, we used the 

concentration corresponding to their Effective Free Therapeutic Plasma 

Concentration (EFTPC) values, the channel-specific half-maximal inhibitory 

concentrations (IC50) and Hill coefficients (h) extracted from Llopis-Lorente et 

al. (2020).16  D, IC50s, h values and the corresponding input values used for the 

simulation of the 12 CiPA drugs are available at the file “12_CiPA_Drugs.D-

IC50-h.xlsx” at GitHub (https://github.com/phi-

grib/cardioML/blob/main/12_CiPA_Drugs.D-IC50-h.xlsx). The PR, SVM, and 

MLP models, trained with data sampled 1/100, were applied to these 

compounds to predict their APD90.  

https://github.com/phi-grib/cardioML
https://github.com/phi-grib/cardioML
https://github.com/phi-grib/cardioML/blob/main/12_CiPA_Drugs.D-IC50-h.xlsx
https://github.com/phi-grib/cardioML/blob/main/12_CiPA_Drugs.D-IC50-h.xlsx
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The predicted results were eventually compared with the simulated APD90 

read-out from the data array, and the differences were expressed as Relative 

Error (%).  

Results  

Overview 

The starting point for this work was to generate a large number of APD90 values 

using electrophysiological simulations, as described in the Methods section. 

For these simulations, the input values represent the relation between the IC50, 

Hill coefficient and the drug concentration for three ion channels IKr, IKs, and 

ICaL. The output values are the APD90 we expect to obtain for cardiomyocytes 

exposed to a drug with the given IKr, IKs, and ICaL input values. These values were 

collected in an array containing the APD90 values produced by the simulations 

for a wide combination of input values.  

The next step was generating small samples of the original data, which were 

used to train ML models that were used to predict the remaining data as 

accurately as possible. The results were compared to identify the best ML 

methods and the lowest training series size producing acceptable results. 

Finally, the quality of the models was further compared, and the method was 

validated using 12 CiPA compounds.  

Our study showed that a simulation of only 1-5% of data is sufficient to build 

an ML model able to produce accurate estimations of the remaining 99-95% 

of the APD90 values. Such a large reduction in the computation automatically 

translates into a substantial improvement of both the time and computing 

power required for the preceding data collection step. Consequently, this 

reduction opens the possibility of considering drug effects on more than three 

channels, thereby improving the mechanistic description of the in silico tool. 

From the model settings evaluated, the best results were obtained using SVM. 
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A sampling ratio 1/100 was considered a good trade-off between estimation 

quality and computation reduction, according to three quality evaluation 

metrics considered: MRE (%), MAE (%) and percentage of data points with RE 

below 5% computed for the training, validation, and test set. In the external 

validation using CiPA compounds, we showed that the maximum error 

obtained by the SVM model for the sampling ratio 1/100 barely exceeds 1.5% 

of RE, representing approximately 4 ms of deviation.  

Compilation of the data array 

As described above, a data array of APD90 obtained for different simulation 

input values (ratio of drug concentration over IKr, IKs, and ICaL IC50) was 

generated. This dataset consisted of simulated APD90 for 175,616 possible 

combinations of drug effects on channels IKr, IKs, and ICaL. It covers a range of 

blockades from 0.1% to 99.7% for each channel. The pre-treatment applied 

removed values assigned the top cut-off value (1000 ms) and higher (see 

Methods section for details). Figure 2 shows the final distributions of the APD90 

values, where most of the values are concentrated around the physiological 

biomarker values (264 ms).  

  

Figure 2: Distributions of APD90 values after data pre-processing 
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This data array resulted from the systematic application of electrophysiological 

simulations using a range of input values that start from practically safe 

scenarios (-3 indicates the ratio of 1:1000 between the effective free 

therapeutic plasma concentration and the IC50). Larger APD90 values can only 

be observed for a few combinations of input values, with a slight concentration 

of around 610 ms.   

Machine learning: fitting and quality 

Before model building, the original data array was split into training, validation 

and test sets using regular and equal-sized patterns with four different 

sampling rates: 1/20, 1/50, 1/100, and 1/200. A first sample of data points was 

assigned as a training set and a second one as a validation set, whereby the 

rest of the data was devoted to the test set. Then, we used the training set to 

build PR, SVM and MLP models. A detailed description of the applied sampling 

rates and ML algorithms is provided in the Methods section. In this work, we 

optimised the hyperparameters of each algorithm by minimising the loss 

function on both the training (data known for the model) and the validation 

(independent data) series and compared the results to evaluate whether a 

separate validation set is necessary or somewhat redundant in the process of 

model optimisation. Furthermore, this allows assessing if the best modelling 

settings (hyperparameters determined for a specific algorithm and sampling) 

can be re-used to obtain a suitable model for another data set of similar nature 

without needing a validation set.  

After building 12 models, their quality was evaluated using the MAE, MRE and 

NLDE, computed as explained in the Methods section. Figure 3 summarises 

the results obtained in the calculation of MRE for each model and the four 

selected sampling ratios. In the general quality assessment of the models, the 

lowest MAE (results not shown) and MRE (%) were produced by the PR 

algorithm. Nevertheless, the differences between PR and SVM, considering 



CAPÍTULO 3 

133 
 

both evaluation metrics are minimal, of approximately 0.2%. Compared with 

the SVM and PR models, the MAE and MRE computed for the MLP model are 

generally higher and increase for low sampling ratios.  

 

Figure 3: Selected evaluation metric for different ML models and partitions of data, 
MRE (%) 

The plots in Figure 4 illustrate the RE (%) calculated for the predicted APD90 

values from the test series. We show the differences between the three tested 

models: PR (blue), SVM (orange), and MLP (green) and how the different 

sampling ratios impacted the evaluation metrics from the smallest to the 

highest. In models PR and SVM, the RE (%) range is smaller than for MLP. All 

the models have in common that the RE (%) is larger for APD90 below 300 ms 

and above 600 ms. In the graphical distribution of RE (%) along the APD90 axis, 

it is noticeable that the initial and end regions of the APD90 value range are the 

ones with the largest RE (%) increase. Nonetheless, out of the three model 

types, SVM is the only algorithm that does not make any prediction above the 

considered threshold of 5% of RE.  

A closer observation of the differences between the APD90 obtained from the 

simulation and the predicted, expressed as RE (%), shows that the largest 
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errors have a periodic pattern. This can be observed, for example, in the region 

between 300 and 500 ms in the results of the PR with 1/100 sampling. These 

errors are produced by a border effect: the model does not fit well the data 

points located at the upper and lower limits of the input values. In these 

positions, there is an abrupt change of the surface, and some models struggle 

to fit the simulation results accurately. In particular, the use of equispaced 

sample points in PR can produce slight oscillations at the edges (Runge’s 

phenomenon).43  

 

Figure 4: Each plot shows the RE (%) as a function of the experimental values of 
APD90. Columns represent three trained models PR, SVM, and MLP. Rows correspond 

to the sampling ratios applied to the input data starting from 1/20 to 1/200. 

Figure 5 represents a 3D plot, with APD90 in the Z (vertical axis) and IKr and IKs 

in the X and Y axes, respectively. A fixed value of 0.3 was used for ICaL in all 

instances. For all models and sampling rates shown in the graphics, the 

predicted values correspond more precisely with the simulation results in the 

centre of the covered output ranges (APD90 between 300 and 600 ms). As 
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described above, the values predicted by the three different models are 

plotted using the following colours PR (blue), SVM (orange), and MLP (green), 

while grey was used to depict simulated values on each plot. Still, some models 

exhibit minor deviations in the borders for the reasons explained above. 

However, even in these areas, we obtain errors well below 5% for all SVM 

models. 
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Figure 5: 3D plots representing IKr, IKs and APD90 for a fixed value of ICaL equal to 0.3 to 
give an example. Columns represent three trained models PR, SVM, and MLP. Rows 

correspond to the sampling ratios applied to the input data starting from 1/20 to 
1/200. 

External validation using a set of CiPA compounds  

A set of 12 CiPA compounds with well-defined cardiac electrophysiology, 

clinical response and known effective therapeutic concentration was used in 

our project to validate the predictive quality of the models.  

Figure 6 (A) illustrates the APD90 simulated and predicted using the three ML 

models and the sampling rate of 1/100 for a set of 12 CiPA drugs. For all 

selected CiPA drugs except Quinidine, which poses a high risk of inducing TdP, 

the duration of the experimental APD90 interval lies below 300 ms. This trend 

remains unchanged for the APD90 values predicted by all three models. Figure 

6 (B) illustrates the RE (%) for the CiPA dataset used for the external validation. 

The RE values are very low and below 1% in most cases. This external validation 

result confirms the results obtained in the validation and testing step of the 

model training, where the PR and SVM models perform comparatively well. In 

contrast, the predictions generated by the MLP model deviate more from the 

experimental values. 

 

Figure 6: External validation of the three ML models built using the training set 
sampled 1/100 performed using a set of 12 CiPA drugs selected from three TdP risk 

classes. A: Simulated and predicted APD90 values.  B: RE (%). 
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Simulation of future use by applying the developed 

methodology to another data array 

Once a suitable sampling rate and algorithm were selected, and its 

hyperparameters were optimised, could these settings be used to fit 

biomarkers obtained from a different electrophysiological simulation?  Should 

the hyperparameters be optimised again using a validation set? To answer 

these questions, a second pre-simulated data array was used. The simulations 

were carried out following the in silico action potential (AP) modelling protocol 

described in the Methods section but now using input values which reflect the 

degree of inhibition of three different ion currents (IKr, INaL, ICaL). 

Data simulation and sampling were done using methods equivalent to those 

described above.  Further on, the assessment of the SVM using a sampling 

ratio of 1/100 was performed following two different approaches. The first 

option was identical to the methodology described for the array APD90 – (IKr, 

IKs, ICaL), in which we used 1/100 data points for model training, 1/100 for 

validation, and 98/100 for testing. The hyperparameters for this model were 

determined based on the validation set. In the second scenario, we built an 

SVM model and optimised its hyperparameters as a function of the training set 

only, which was compiled by combining the training and validation sets 

(summing to 2 data points per 100).  

Table 3: Performance metrics assessed for the model APD90 – (IKr, IKs, ICaL) using (A) 
training, validation, and test set and (B) using the double amount of data for training 

and the rest for test set. 

(A) 

  SVM 

Sampling Partition MAE MRE (%) NLDE 

1/100 

Train 0.56 0.18 100.00 

Val 1.00 0.27 100.00 

Test 0.93 0.25 100.00 

(B) 
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  SVM 

Sampling Partition MAE MRE (%) NLDE 

1/100 
Train 0.56 0.18 100.00 

Test 0.93 0.25 100.00 

 

For the selected model and sampling rate, the results obtained using either 

two (Table 3 (A)) or three (Table 3 (B)) partitions are rather similar. Therefore, 

we found that in comparable situations, the same hyperparameters can be 

applied to train other models, making it unnecessary to include the validation 

partition.  

Discussion 

The methodology presented here allows the replacement of computationally 

costly simulations with estimations generated by a machine learning model. 

For the method to be profitable, the reduction must significantly impact the 

number of necessary simulations. In the Results section, it was shown that the 

number of data points available for training the model largely impacts the 

errors the model commits on average but selecting 1 of every 100 data points 

results in an excellent balance between the reduction of the calculations and 

the robustness and predictive accuracy of the simulation fitting.  

Deciding on the necessary number of points required to capture the data 

structure is a problem-specific decision. In the current application, simulating 

1/100 points would practically produce a one hundred-fold decrease in the 

number of required simulations and computation time, fulfilling our original 

objectives. 

All in all, the described methodology led to the development of high-quality 

models able to produce APD90 values, which are a relatively accurate 

estimation of those produced by computationally intensive simulations. In this 

research, we obtained slight differences in the quality of the SVM as compared 
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to the PR model. The errors produced by  PR at the borders can be justified by 

the use of regularly spaced sample points, and could be mitigated by the use 

of Chebyshev nodes .43 However, for this particular work we considered that 

the use of an ad-hoc sampling for PR will not allow a fair comparison with other 

models. The advantage of applying polynomial transformation is the simplicity 

of the underlying mathematics, especially in contrast to the Neural Network 

or SVM models when large regularisation values are used for training. 

Therefore, PR would be the preferred algorithm if taking the lowest 

computational complexity as the criteria for choosing the model. But very 

often, fitting complex data requires the application of a high polynomial 

degree which goes in hand with a high probability of overfitting, which is the 

downside of PR. This issue can be resolved through the application of 

regularisation. The most common regularisation methods are Lasso (L1) and 

Ridge (L2). While Ridge regression introduces a penalty factor to shrink the 

magnitude of the model coefficients, Lasso eliminates some of the insignificant 

coefficients of the model. This difference was extremely important since all 

features in our input data were essential to model the biological problem 

correctly and therefore, L2 regularisation was selected instead of the more 

rigorous L1.  

For this reason, if increasing the number of ion channels is the objective of 

future works, Polynomial Regression would not be the best choice. This is 

because incrementing the number of input values could yield less smooth 

surfaces, requiring an increase of the polynomial degree and more rigorous 

regularisation. On the other hand, the Support Vector Machine algorithm is 

characterised by a very high generalisation ability, even when the number of 

instances is less than the number of variables.42 However, one of the 

downsides of SVMs for regression is its sensitivity to outliers, which highlights 

the importance of both data pre-processing and model optimisation. The 
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robustness of the SVM algorithm was confirmed in this work by obtaining high-

quality models and precise predictions. 

The third and last tested model, the MLP, did not generalise as well as the other 

two models. A possible explanation for this result may be the insufficient 

amount of data since Artificial Neural Networks generally require a lot of 

information to learn from and to predict well. Additionally, since the tuning of 

hyperparameters of MLP is comparatively expensive in terms of content and 

time, improving the performance of the neural network model would require 

testing a wider range of hyperparameters. Nevertheless, the scope of 

application of Multi-Layer Perceptron is wide and covers several modelling 

areas. To give a more related example, MLP algorithms were used with high 

accuracy in Arrhythmia Classification problems where the data was richer in 

specific information and valuable characteristics.44   

With respect to the method limitations, the models described here were 

developed and optimised for a combination of three ion channels. When re-

using this methodology for a different combination of channels or ventricular 

arrhythmia biomarkers, the model building and validation would need to be 

repeated to ensure high-quality results.  

We used a specific model (a modified version of O’Hara and colleagues) to 

generate the APD90 array. There are many available models in the field for 

which the methodology is expected to work well. This, however, would need 

to be confirmed.  

Conclusion 

In this work, we have shown that it is possible to significantly reduce the 

number of simulations required to make accurate predictions of ventricular-

arrhythmia biomarkers through the application of ML models. We 

demonstrated that the total amount of the originally simulated data points can 
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be reduced to just 1%. Such data reduction goes in hand with a significant 

reduction of the time necessary to produce an in silico prediction tool based 

on large pre-simulated datasets. The simple approach developed here opens 

up the possibility of modelling more complex biological processes, such as the 

alteration of ventricular-arrhythmia safety biomarkers as a response to an 

interaction of four and more ionic channels. Additionally, the methods 

described here are likely to be applicable to model other biomarkers than 

APD90 and even be applied to predict other computational simulation results 

in different fields of biomedical research. Lastly, the development of effective 

early-stage screening systems is aligned with the interests of pharmaceutical 

companies.  
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Introduction 

Ventricular arrhythmias, especially polymorphic ventricular tachycardia known 

as Torsade de Pointes (TdP), are very serious and feared adverse drug effects. 

The early estimation of the potential of drug candidates to induce ventricular 

arrhythmias is therefore of the highest interest to all stakeholders in 

healthcare (Gintant et al., 2016b). The main mechanism of drug-induced 

ventricular arrhythmia involves the inhibition of one or multiple ion channels 

present in the membrane of ventricular myocytes. Such inhibitory effects 

prolong the action potential (AP) duration of ventricular cells triggering effects 

at the organ level. These prolongation effects can be observed at the patient 

level as changes in the duration and shape of QT-intervals on the surface ECG 

(Roden, 2004b; Yap & Camm, 2003b).  

Since 2005, proarrhythmia assessment of pharmaceuticals for human use has 

been carried out according to the guidelines ICH S7b and ICH E14. In the non-

clinical phase (ICH E14, 2005; ICH S7B, 2005), the risk is estimated by 

combining results from in vitro inhibition assays of the rapid delayed rectifier 

potassium current (IKr) encoded by the human ether-a-go-go-related gene 

(hERG) and an in vivo animal QT-prolongation studies, while in clinical phases 

(ICH E14, 2005; S7B, 2005), drug proarrhythmia is assessed by measuring in 

vivo human QT/QTc interval prolongation. A decade later, the comprehensive 

in vitro proarrhythmia assay (CiPA) initiative enriched the mechanistic 

description of proarrhythmia and complemented the assessment by 

incorporating in silico methodologies (Fermini et al., 2016b; Sager et al., 

2014b). The four-stage CiPA paradigm highlights the value of considering drug 

effects on a set of ion currents (INa, INaL, IKr, Ito, ICaL, IK1, and IKs) as independent 

factors involved in arrhythmogenesis, instead of relying on IKr, only (Z. Li et al., 

2017b; Sager et al., 2014b). The potency of drug-mediated inhibition of those 

ion channels, usually measured as the half maximal inhibitory concentration  
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(IC50), serves as input for electrophysiological models, which translate this 

information into proarrhythmia biomarkers (Z. Li, Ridder, et al., 2019b; Park 

et al., 2019). 

In the last decade, several efforts have been undertaken to enhance the 

assessment of proarrhythmia by introducing meta-models. Such meta-models 

are trained using larger series of simulation results, which allows for 

instantaneous predictions of selected proarrhythmia biomarkers. In particular, 

(Mirams et al., 2014b) described a meta-model built from simulated APD data 

for a series of different combinations variating the level of ion channel 

inhibition between 0% and 100% for five ionic transporters, including  hERG, 

CaV1.2, NaV1.5, KCNQ1/MinK, and Kv4.3/KChIP2.2. Moreover, our groups also 

developed a multi-level in silico tool for the prediction of drug-induced action 

potential duration at 90% of repolarization (APD90) and QT-interval 

prolongation (Obiol-Pardo et al., 2011b; Romero et al., 2018b). The core of this 

tool was a large 3D data array containing a large number of simulated APD90 

prolongation effects generated by the inhibition of 3 relevant ion channels (IKr, 

IKs, and ICaL). Since these values were pre-computed for a wide range of 

inhibition values, the method can provide an instantaneous estimate of the 

APD90 duration in ventricular cardiomyocytes, using as inputs the values of 

IC50s for these channels and the plasma concentration of the drug. In a recent 

work, this approach was optimized by replacing the 3D data array with a 

machine learning (ML) model trained using only a small fraction of these costly 

computational simulations, leading to a significant reduction of the number of 

simulations required to obtain reliable APD90 estimates (Rodríguez-Belenguer 

et al., 2023b). 

Although computational approaches are a valuable complement to purely 

experimental methods, a detailed assessment of the variability and 

uncertainty associated with the predictions is required to increase the 
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reliability of in silico methods (Gosling, 2019). Quantification of variability and 

uncertainty in computational modelling systems and their predictions has 

been the objective of previous works in the cardiac safety field (Mirams et al., 

2016, 2020). 

Several different methodologies have been described for the characterisation 

of variability observed when in vitro experiments are conducted to measure 

ion channel blockade produced by chemicals. Mirams et al. (2014) described 

the use of a meta-model for the characterisation of uncertainty in ion channel 

block and to further propagate these uncertainties considering a combination 

of channels. (Chang et al., 2017) analysed the uncertainty and variability in 

drug binding and drug ionic current block for TdP risk assessment using the 

non-parametric bootstrap method and a Bayesian inference approach. (Elkins 

et al., 2013) assessed the amount of between-experiment variability in drug-

blockade of IKr (hERG), INa (NaV1.5), ICaL (CaV1.2), IKs (KCNQ1/151ink), and Ito 

(Kv4.3/KchIP2.2) channels using concentration-effect curves fitted for positive 

control compounds from high-throughput-screening experiments performed 

at Glaxo Smith Kline and Astra Zeneca. (Kramer et al., 2020) performed an 

extensive analysis of variability in results obtained from automated patch-

clamp measurements across analysis sites and experimental platforms, 

thereby pointing out the importance of following the principles of Good 

Laboratory Practice (GLP) to minimise variability. 

Another important source of variability are inter-individual differences among 

patients receiving the same drug treatment. When applying in silico 

approaches, the electrophysiological models that integrate ion channel 

specific IC50 into ventricular arrhythmia biomarkers make use of a large number 

of parameters that were adjusted to fit experimental results. However, 

humans are not physiologically identical, and no single electrophysiological 

model can produce results suitable for representing all patients, nor accurately 
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explain the observed differences between patients (Wisniowska et al., 2017). 

Population-based approaches have been described as a useful strategy to 

consider the inter-individual variability in the parameters of in silico models. 

(Britton et al., 2013) analysed the inter-subject variability by generating a 

population of cellular AP models, each of which exerted small differences in 

parameters. These models were consequently filtered following 

physiologically based criteria and using acceptance-rejection criteria, as shown 

by (Llopis-Lorente et al., 2022b). Such populations of models can serve for the 

estimation of variability in the responses of a human population. Another 

approach for the analysis of biological variability was proposed by (Johnstone 

et al., 2016), who used Bayesian statistics to infer distributions of inputs and 

parameters, such as current maximal conductance. (Pathmanathan et al., 

2015) performed an extensive analysis of uncertainty in the steady-state 

inactivation of the fast sodium current using an individual-based statistical 

method, the nonlinear mixed effects (NLME) modelling, to analyse voltage 

clamp data taken from a population of cells.  

Once diverse sources of variability and uncertainty in model inputs and 

parameters are identified, Uncertainty Quantification (UQ) analysis should be 

conducted to characterise and quantify their impact on models’ final 

outcomes. When input uncertainties are expressed using probabilistic terms, 

UQ is typically performed by applying sampling-based techniques to propagate 

them through the model, generating a distribution of model outputs. Monte 

Carlo (MC) simulations and Latin Hypercube Sampling (LHS) are the most 

popular methods for sampling-based uncertainty propagation (Clayton et al., 

2020), but the application of other propagation approaches has been 

reported. For example, (Sobie, 2009) used multivariate regression for the 

assessment of the impact of variabilities in channel conductance, time 

constants, and steady state voltage offsets. In the second case study described 

by (Johnstone et al., 2016), they demonstrated the use of the Gaussian 



CAPÍTULO 4 

153 
 

Process (GP) emulator to assess the effects of the uncertainties in AP model 

parameters once they are propagated to the output ((Johnstone et al., 2016). 

Lately, (Hu et al., 2018) described the use of polynomial chaos for the 

propagation of uncertainties and global sensitivity analysis within a multi-level 

cardiac electrophysiology prediction framework. In most published works, the 

UQ was performed only on a subset of model parameters. (Pathmanathan 

et al., 2019) followed a different approach, suggesting that simpler models 

with a robust and complete UQ may be more useful than complex models 

without a full UQ. They performed the UQ on a canine cardiac cell model, 

which was reduced to relatively few parameters to which they assigned input 

distributions, controlled by a user-dependent hyperparameter.  

In this work, we extend our multi-level in silico proarrhythmia model by 

integrating a comprehensive analysis of uncertainty. We start by identifying all 

sources of aleatory and epistemic uncertainty typically present in cardiac 

safety models. Focusing exclusively on aleatory uncertainty, we then 

investigate which of the identified sources affect the inputs of our model. We 

develop methods for the characterisation and propagation of the selected 

uncertainty types through the model, using applicable approaches and simple 

simulation methods, respectively. These methods aim to provide a more 

realistic representation of proarrhythmia biomarker predictions and allow for 

studying the individual and combined effect of different aleatory uncertainty 

sources on proarrhythmia biomarker predictions. 

Methods 

Multi-level in silico proarrhythmia model  

In 2011 and 2018, we published two works (Obiol-Pardo et al., 2011c; Romero 

et al., 2018b) describing the development and refinement of a multi-level in 

silico method for predicting cardiac safety biomarkers (APD90 and QT-interval 

duration). This prediction method, shown in Figure 1, uses precomputed 
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simulations for estimating how compounds with different inhibitory effects on 

selected ionic currents can affect the ventricular tissue at certain 

concentrations. The inputs include IC50 values, obtained either in patch-clamp 

assays or predicted by in silico Quantitative Structure–Activity Relationship 

(QSAR) models, for three currents (here: IKr, INaL, ICaL), the drug concentration, 

and a set of electrophysiological simulation parameters. Recently, we 

developed an optimised version of this method in which the high number of 

precomputed simulations was significantly reduced through the application of 

machine-learning (Rodríguez-Belenguer et al., 2023b). 

 

Fig. 1: A simplified schema of our multi-level in silico proarrhythmia model. For a 
single compound, the input comprises a set of IC50 values for the currents IKr, INaL, ICaL, 

a drug concentration, and a set of electrophysiological simulation parameters. The 
model translates these inputs to an APD90 prediction. 

Electrophysiological simulations  

In silico action potential (AP) modelling of the healthy human endocardial 

cardiomyocyte and APD90 measurements were done using the widely known 

model published by (O’Hara et al., 2011b), modified as described by (Llopis-

Lorente et al., 2020b). Here, we considered drug effects on APD90 as a function 

of the three selected currents; IKr, INaL and ICaL, which are considered 
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particularly relevant for drug-induced occurrence of ventricular arrhythmias 

and are usually included in the pre-clinical ion channel screening panel at 

pharmaceutical companies (Chang et al., 2017).  

Electrophysiological machine-learning model  

We ran a set of electrophysiological simulations covering a wide range of 

combination of values for the ratio (
D

IC50,i
)

h

 for IKr, INaL, ICaL. These ratios values 

were used to calculate channel inhibition via the simple pore block model 

(Equation 1). 

𝑔𝑖,𝑑𝑟𝑢𝑔  = 𝑔𝑖 [1 + (
𝐷

𝐼𝐶50,𝑖
)

ℎ

]

−1

   Equation 1 

where gi, drug represents the maximal conductance of channel i in the presence 

of the drug, D is the drug concentration, IC50, i is the half-maximal inhibitory 

concentration for that drug, and channel i and h is the Hill coefficient. 

The results obtained from the simulations (APD90) were stored in an array, 

consisting of 3 input values (IV) corresponding to IKr, INaL, and ICaL channels. Each 

IV was calculated by taking the logarithm of the ratio (
D

IC50,i
)

h

, as described 

in Equation 2. For each channel (IKr, INaL, ICaL), the input value ranged from −3 

to 2.5, with a step increment of 0.1. 

𝐼𝑉 = 𝑙𝑜𝑔10 ([
𝐷

𝐼𝐶50
]

ℎ
)   Equation 2 

The standard utilisation of this array was as follows: for a given compound at 

a concentration D, Equation 2 was applied independently for the three ionic 

channels (IKr, INaL, ICaL). The resulting values were rounded to the first decimal 

and constrained between −3 and 2.5, i.e., if an input value was lower than −3 

or higher than 2.5, the value was then transformed to −3 or 2.5, respectively. 

For each combination of the three calculated IV, the corresponding output 
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(APD90) was retrieved from the array. For example, a drug with the following 

IC50s: 1 nM for IKr, 1000 nM for INaL and 10 nM for ICaL at a concentration of 

1 nM yielded the data point [0, −3, −1], which led to an APD90 of 369.06 ms. 

The results of these simulations (APD90) were used to build an SVM model, as 

described in (Rodríguez-Belenguer et al., 2023b). This model can be effectively 

used to predict APD90 for any compound with an IV within the range covered 

by the model training series. Indeed, this range expands from -3 to 2.5 and is 

wide enough to represent the values found in most drugs and drug candidates. 

To limit the prediction space of this model, any IV minor than the minimum or 

superior to the maximum acceptable threshold is rounded accordingly. Hence, 

no values below -3 or above 2.5 are used to predict the APD90 values.  

Uncertainty assessment protocol 

According to EFSA’s “Guidance on Uncertainty Analysis in Scientific 

Assessments” ((Benford, Halldorsson, Jeger, Knutsen, More, Naegeli, 

Noteborn, Ockleford, Ricci, Rychen, Schlatter, Silano, Solecki, Turck, Younes, 

Craig, Hart, Von Goetz, Koutsoumanis, Mortensen, Ossendorp, Martino, et al., 

2018), UQ should commence with a comprehensive identification of all 

sources of uncertainty that have the potential to alter the assessment 

conclusion. In addition, the ECHA and the WHO recommend a complete and 

transparent characterisation of uncertainty in model inputs and the 

methodology by conducting a probabilistic analysis (European Chemicals 

Agency, 2012; Organization & on Chemical Safety, 2018). 

In our protocol, the assessment question was defined as follows: “What is the 

APD90 that a certain drug will produce in an individual of a healthy population 

considering the compound’s potency of inhibition of the considered ion 

channels at a specific concentration?” As a first step, we identified all aleatory 

and epistemic factors that contribute to the uncertainty in the output used to 



CAPÍTULO 4 

157 
 

answer the assessment question, when using the in silico proarrhythmia multi-

level model. The next step was to investigate which sources of uncertainty 

affect the inputs of our model, thereby focusing specifically on the aleatory 

ones. Monte Carlo simulation was used to study how their effect on the input 

propagates through our model and is reflected on its output. Results of these 

simulations were expressed as values and intervals. The values can be 

interpreted as the most probable estimates of APD90 and the intervals as 

ranges of values within which the prediction could fall, given a certain level of 

credibility. 

Identification of the main sources of variability and uncertainty 

in cardiac safety models 

In order to correctly identify different sources of uncertainty, it is particularly 

important to distinguish between their aleatory or epistemic character 

(Benford, Halldorsson, Jeger, Knutsen, More, Naegeli, Noteborn, Ockleford, 

Ricci, Rychen, Schlatter, Silano, Solecki, Turck, Younes, Craig, Hart, Von Goetz, 

Koutsoumanis, Mortensen, Ossendorp, Germini, et al., 2018). To make a clear 

distinction, an overview of the most important sources of aleatory and 

epistemic uncertainties is presented in Figure 2, adapted from (Shamsi et al., 

2020). The uncertainty types and the examples provided below apply to 

cardiac physiome models as previously described by (Mirams et al., 2016).  
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Fig. 2: Identified sources of aleatory and epistemic uncertainty affecting elements of 
in silico multi-level proarrhythmia models. 

The term aleatory uncertainty, which is used interchangeably with variability, 

refers to the indispensable heterogeneity and diversity that occurs within 

biological populations, let them be biological samples or human individuals. 

Variability, which can be controlled and measured but never completely 

removed, is reflected in multiple values that a quantity of interest can take on. 

Generally, variability can be subdivided based on the criteria, whether the 

differences are observed within the same subject (e.g.: the same cell or the 

same person) or among different subjects (e.g.: a collection of cells or a specific 

human population). These types are referred to as intrinsic or extrinsic 

variability, respectively. Aleatory uncertainty can also be classified considering 

the biological levels of organisation at which differences can be observed. 

Both, intrinsic and extrinsic variability can have their onset at the genetic (DNA 

of an organism), physiological (an organism), the environmental (population of 

organisms) levels, as well as at all intermediate levels that connect them.  
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On the contrary to aleatory uncertainty, when a parameter can only have a 

single true value but the knowledge to define it is lacking, it is described as 

epistemic uncertainty, shortly called uncertainty (Johnstone et al., 2016). In 

the context of computational modelling, epistemic uncertainty can be 

attributed to the model either through its inputs or through the underlying 

methodology. As for epistemic uncertainty in the inputs, it results mainly from 

incomplete data-gathering steps or the sparseness of the collected 

information. Concerning the methodology, uncertainty can have its origin in 

the structure of the model, in the selected algorithms and parameters or the 

introduced interpolation or extrapolation factors. The overall methodological 

process, including steps that proceed or succeed in the actual prediction, is 

also subject to epistemic uncertainty. These encompass all assumptions, 

simplifications or statistical approximations made to develop the model or to 

interpret its results. Uncertainty can also arise as a result of coding errors or 

the failure to consider the dependency between sources of the required 

information. 

Despite the theoretical differences, variability and uncertainty are tightly 

connected since the epistemic uncertainty about a quantity of interest is often 

expressed based on a summary of aleatory uncertainty. More specifically, 

when the knowledge to define parameters for the characterisation of 

variability is generally incomplete, or the assumptions made to do so are 

incorrect, there is uncertainty about variability (Benford, Halldorsson, Jeger, 

Knutsen, More, Naegeli, Noteborn, Ockleford, Ricci, Rychen, Schlatter, Silano, 

Solecki, Turck, Younes, Craig, Hart, Von Goetz, Koutsoumanis, Mortensen, 

Ossendorp, Germini, et al., 2018). There are further cases when the separation 

between aleatory and epistemic uncertainty is not clear. A very well-known 

example is the occurrence of measurement errors that combine both the 

imprecision resulting from inevitable fluctuations in the measurement process 
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and intrinsic and extrinsic variability between measurements of the same 

quantity (Johnstone et al., 2016). 

Sources of variability considered in this work  

Computational models can simultaneously be affected by more than one 

source of uncertainty. In this work, aleatory uncertainty, which as mentioned 

above is mainly referred to as variability, was the only characterised and 

quantified subtype of uncertainty. Particularly umbrella terms were used to 

group the variability sources that affect each specific input of our multi-level 

proarrhythmia model. The associations between model inputs and variability 

types were additionally marked within the basic structure of our model, as 

shown in Figure 3. There are several epistemic factors associated with the 

inputs and the methodology, each of which can be reduced or even removed 

by filling the knowledge gaps. However, even if we acknowledge its 

importance, the quantification of epistemic uncertainty is out of the scope of 

this publication. 

 

Fig. 3: Structure of our multi-level APD90 prediction model showing the sources of 
variability that affect model inputs addressed in this work. Δ-IC50s represents the 
variability in the determined inhibitory drug effects on ion channels involved in 

physiological action potential generation. Δ-Parameters describes the variability in 
the electrophysiological model parameters due to inter-individual differences. Δ-[D] 
is the variability of the drug concentration obtained after the administration of the 

drug at therapeutic dosage due to inter-individual pharmacokinetic differences. Each 



CAPÍTULO 4 

161 
 

of the input variability sources contributes to the overall level of output variability, 
indicated as (Δ-Prediction). 

In our model, the inhibitory effects of drugs targeting ion channels are 

introduced as IC50 values. These values can either be measured experimentally 

or predicted using QSAR models for each considered ion channel. For IC50s 

measured experimentally, we assumed that the differences arising from 

intrinsic and extrinsic properties of analysed cellular systems can be 

summarised as experimental variability (Δ-IC50s). Here, we also account for the 

imprecision of repeated laboratory experiments since this factor cannot be 

separated from the measured values. Indeed, experimental variability could 

also be considered in the case of the Hill coefficient, which is a constant 

required to calculate the IVs for the model. Nevertheless, this constant is equal 

to one for many drugs, and even in a different case, the impact of a numeric 

change of h when computing IV (Equation 2) is rather small (Parikh et al., 2017; 

Romero et al., 2018b). Assuming that the consideration one more source of 

variability with a minimal impact on the predictions could introduce additional 

complexity and potentially complicate the interpretation of results for those 

variability sources whose impact on the prediction outcome is more 

significant, experimental variability associated with the Hill coefficient was not 

considered in this work.  

The second model input affected by variability are the parameters defined to 

conduct electrophysiological cellular simulations. Here, we talk about the 

inter-individual variability (Δ-Parameters) that refers to the differences 

between individuals in the population. To be more specific, in the context of 

this publication the umbrella term inter-individual variability unites practically 

all sources of aleatory uncertainty shown in Figure 2. These include intrinsic 

and extrinsic differences between different cells within one human body and 

between several individuals, respectively. It also counts in genetic 

heterogeneity as well as environmental fluctuations, which together trigger 
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different epigenetic modifications and hence, physiological diversity between 

people and their hearts. Lastly, when cardiac activity is measured 

experimentally, random and measurement errors may also be taken into 

account.     

Another important model input affected by the presence of variability is the 

drug concentration (Δ-[D]). When assessing the arrhythmogenic properties of 

a compound, it is common to use the Effective Free Therapeutic Plasma 

Concentration (EFTPC) to describe the protein unbound drug concentration 

present in the blood of patients treated with therapeutic doses. But the 

intrinsic and extrinsic variability also affects the pharmacokinetic (PK) 

processes of absorption, distribution, metabolism, and excretion, shortly 

ADME. Methods to address variability in drug concentration will be discussed 

later but will not be applied in our approach. 

Quantitative characterisation of selected types of variability 

Different guidelines recommend to derive measures of variability from 

representative observation data containing multiple instances of the 

quantities of interest that follow a certain distribution of frequencies and their 

spread (Hastie, Tibshirani, Friedman, et al., 2009; Shikano et al., 2012). Hence, 

the frequentist approach to probability was applied to characterise variability 

associated with the inputs of the multi-level proarrhythmia model. 

Incorporating pragmatic approximations based on different approaches 

described in detail below, it was assumed that experimental and inter-

individual variability can be quantitatively described using normal probability 

distributions. The standard deviation (sd) was used to describe data spread. 

Experimental variability in IC50   

Variability in experimentally measured pIC50 (-log10(IC50)) was characterised by 

(Elkins et al., 2013), who assumed that both, the pIC50 and sd parameter are 
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the same as, or very proximate to the one in control assays when the number 

of repeated measurements is high enough. The sd of the values measured in 

their study varied between ion channels, control compounds, and the number 

of repeats, reaching the minimum and maximum values of 0.08 and 0.2, 

respectively. Moreover, they showed that the pIC50 values collected in 

reiterated control assays on the same compound follow a logistic distribution.  

We integrated these assumptions and represented the variability by 

considering that the experimental value is at the centre of a normal 

distribution, with a sd of 0.5. We chose a normal distribution for simplicity, due 

to its similarity with logistic distribution (similar in shape but with slightly 

higher kurtosis) (Hosmer Jr et al., 2013). The use of 0.5 is an approximation 

under the assumption that laboratory requirements stated in the GLP 

principles and stable testing conditions were not met during the measurement 

of IC50 values used in this work. 

Inter-individual variability  

To characterise the inter-individual variability, we applied the population-

based approach previously described (Britton et al., 2013; Llopis-Lorente 

et al., 2022b; Muszkiewicz et al., 2016; Sobie, 2009). A modified version of the 

widely used AP endocardial model developed by O’Hara et al. (2011) (O’Hara 

et al., 2011b) was used as the baseline model. Assuming the baseline model 

represents the “averaged” model, an initial population of 1,000 models was 

generated by randomly and simultaneously applying a scaling factor to the 15 

channel conductances of the AP model. These scale factors modifying the 

channel conductances were randomly sampled from a normal distribution 

with mean 1 and standard deviation 0.2, thus assuring most of the population 

(>99%) was in a range between ±60% with respect to the baseline model. This 

range covers the natural variability reported experimentally in human 

ventricular tissues (Fink et al., 2008; Romero et al., 2009; Volders et al., 2000). 
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The 1,000 models were simulated at 37ºC and at the following extracellular 

concentrations: [Na+] = 140 nM, [Ca2+] = 1.8 nM and [K+] = 5.4 nM. Then a 

calibration was performed. Plausible electrophysiological properties were 

defined according to experimental measurements for 15 biomarkers related 

to AP duration, amplitude of membrane potential, and calcium dynamics. 

Limits of acceptance for the 15 electrophysiological properties were taken 

from Table 1 in (Llopis-Lorente et al., 2022b). These ranges were obtained 

from a variety of experiments conducted on different hearts and cardiac 

regions (Britton et al., 2017; Coppini et al., 2013; Grandi et al., 2010; O’Hara 

et al., 2011b; Pieske et al., 2002; Sampedro, 2020; Schmidt et al., 1998). After 

calibration, 860 models presented a plausible electrophysiological behavior 

according to experimental data. Sacling factors of the final population are 

available in “ORdmD scaling factors.xlsx” at 

https://riunet.upv.es/handle/10251/182593. 

Population of input value combinations  

The population of 860 models was used to generate a distribution of APD90 

predictions for a given set of 125 input value combinations, selected to 

represent properties similar to those of real compounds. These values spread 

regularly along all dimensions in the 3D array covering all possible 

combinations (53) of the five following values: -3, -1, -0.5, 0, 1 for the three 

channels IKr, INaL, ICaL). Whether these distributions have the same shape and 

dispersion for diverse input values was first evaluated visually by plotting the 

value distributions as individual histograms.  

https://riunet.upv.es/handle/10251/182593
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Fig. 4: Distributions of APD90 values generated by the population of 860 
electrophysiological models for input values #0 (left), #3 (middle) and #60 (right), 

from the input value combinations shown in the graphics. 

The example histograms in Figure 4 represent the distribution of APD90 values 

obtained for three of these input value combinations. Left graphic, obtained 

using the input value combination (-3, -3, -3), shows an APD90 distribution 

generated assuming no inhibition of the selected channels. The remining two 

distributions illustrate distributions of output values produced for different 

input values combinations where inhibition was accounted for. The shape of 

the distributions is approximately normal (as checked using quantile-quantile 

plots) and for the 125 conditions tested, the average sd is of 35.4 ms, even if 

the dispersion is not homogeneous and different sd values were obtained for 

different input values. 

The data table composed of 860 APD90 predictions generated for 125 input 

value combinations was used to build a model for predicting the dispersion 

(sd) of the distributions for a given set of input values. When generating 

predictions, this model produces an estimate of the dispersion of an APD90 

distribution, for any drug with a combination of input values within the range 

covered by the models’ training series. This predicted dispersion can be seen 

as an approximation of variability associated with APD90 prediction due to the 

inter-individual differences in the electrophysiological parameters. The models 

were built using a method similar to the one described extensively in our 
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previous work (Rodríguez-Belenguer et al., 2023b). SVM algorithm was used 

for the dispersion model, and the following hyperparameters were selected 

after optimizing the model: C = 1, kernel = Radial Basis Function (RBF), gamma= 

Scale. The goodness of fit was assessed as per mean absolute error (MAE = 

0.35) computed for the test set.   

Propagation and quantitative expression of variability in model 

outputs 

Variability was propagated applying the forward Monte Carlo (MC) simulation 

approach (Kitagawa & Sato, 2001). The MC technique belongs to a broader 

group of stochastic simulation methods that allow for the generation of 

random numbers in order to solve problems of non-deterministic nature. The 

advantage of such a method is that no assumptions about the model must be 

made. Moreover, the simplicity and simultaneous correctness of the 

methodology are very convenient. In the context of variability assessment, MC 

requires the identification of all random components of a model and defining 

their interactions with other elements. It is important to consider the 

correlation between the level of randomness, or variability, and the number of 

samples needed to propagate such variability, thereby maintaining the 

reliability of the result. In other words, the greater the spread parameter 

describing the variability, the more samples must be drawn from the 

probability distribution. Moreover, as the result is highly dependent on the 

assumed distribution to be sampled with the MC method, the preparatory 

work to make correct assumptions with regard to the random variables is 

particularly important (Kroese & Rubinstein, 2012). 

The simulations were run considering only experimental variability (Simulation 

A), only the variability due to inter-individual differences (Simulation B), or a 

combination of both variability types (Simulation C), as shown in Figure 5.  
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Fig. 5: Schema of the three simulation types carried out in this work. Simulation A – 
propagation of experimental variability associated with pIC50 values, Simulation B – 
propagation of inter-individual variability arising at the level of electrophysiological 

model parameters, Simulation C – propagation of combined experimental and inter-
individual variability. 

In all instances, the multi-level model described in Figure 1 was applied 1000 

times. In each simulation run, normally distributed random values were added 

up to specific elements of the model, using the random.normal(mu, sigma) 

function provided by the numpy library with a mu value of 0.0 and a sigma 

equal to the standard deviation of the variability represented, as described in 

the previous section.  

In Simulation A, conducted to represent experimental variability in pIC50 

values, the random value was added to the pIC50 used to compute the input 

values of the model. In Simulation B, aiming to represent the inter-individual 

variability, the model was run in the standard way and once the prediction was 

generated, the random values were added to the APD90 results using the sd 

computed by the dispersion model. In either case, the procedure is equivalent 
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to drawing the values from a normal distribution with the centre located in the 

original value and a standard deviation similar to the one obtained in the 

characterisation step. To analyse the combined effects of both types of 

variability, in Simulation C both approaches were merged; prior to the 

application of the model, the pIC50 values were modified with the random 

values as in Simulation A and, after generating each APD90 prediction, the 

output values were modified by adding the random values as in Simulation B. 

In all three cases, the simulations generate output distributions of slightly 

different APD90 values. The centre of these distributions (median or 50th 

percentile) was used as the point prediction, while the value range between 

the 10th and the 90th percentile was used as an interval representing the 

prediction variability, which can be interpreted as the 80% confidence interval.  

An example case study using CiPA compounds  

To evaluate the practical application of our methodology, we applied it on a 

set of 12 CiPA compounds. These compounds, officially selected as the CiPA 

training and calibration set, were chosen in this study because they belong to 

three risk classes (low, medium, high) and are well-characterised in terms of 

their arrhythmogenic mode of action. Moreover, these are real drugs, each of 

which inhibits the selected ion currents IKr, INaL, and ICaL with a different potency 

at different therapeutic concentrations, resulting in a different combination of 

model input values. An overview of some important properties of the selected 

drugs extracted from (Colatsky et al., 2016a; Z. Li, Ridder, et al., 2019b; Llopis-

Lorente et al., 2020a) is provided in Table 1. 

Table 1: Compounds belonging to the CiPA training and calibration set and their main 
characteristics including the EFTPC in nM, IC50 values in nM, the h and the TdP and 

proarrhythmia risk class. 

Name EFTPC (nM) 

IKr INaL ICaL 

Risk class 
IC50 

(nM) 
h IC50 (nM) h IC50 (nM) h 
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Bepridil 33 144 1 339 1.9 638000 4.6 high 

Dofetilide 2 75 1 837000 4.6 2300000 5.4 high 

Quinidine 3237 971 1 2360 0.91 5100000 4.7 high 

Sotalol 14690 290000 1 134000000 5.9 58000000 5.5 high 

Chlorpromazine 38 650 1 673 1.8 6350 2 intermediate 

Cisapride 2.6 72 1 421 2.2 4050000 5.6 intermediate 

Ondansetron 139 1200 1 6870 1.2 9310000 0.2 intermediate 

Terfenadine 4 129 1 98.3 1.1 1220000 5.2 intermediate 

Diltiazem 122 7900 1 3040 1.1 31600 1.2 low 

Mexiletine 4129 53000 1 4690 0.99 164000 0.96 low 

Ranolazine 1948.2 8300 1 5950 0.99 6540000 3.8 low 

Verapamil 81 460 1 982 1.2 11200 0.8 low 

To obtain biomarker predictions that correspond with the arrhythmogenic 

potential of the drugs in clinical practice, the IVs were calculated using 

experimental IC50 values for IKr, INaL, and ICaL channels and the EFTPC. As the 

starting point, a single APD90 biomarker prediction was generated using our 

default model for each of the 12 compounds. Then, experimental variability 

and inter-individual variability were characterised for these compounds and 

propagated through the model using the three different simulation types 

described above (Figure 5). For each drug, this procedure yielded a single 

biomarker prediction and an interval interpretable as an 80% confidence 

interval. These results were analysed in detail and critically discussed to 

evaluate the advantages of assessing the impact of input variability on the 

uncertainty in the output of the model, which contrasts with relying on single 

model predictions. 

Software 

The electrophysiological simulations and the generation of the APD90 array 

were carried out using MATLAB version R2021b. These results are available 
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online on the public repository of the Universitat Politècnica de València 

(https://riunet.upv.es/handle/10251/191820). The simulations were carried 

out using scripts written in Python 3.8. Machine learning models were built 

and evaluated using Scikit-learn version 0.24.2 (Pedregosa, F., Varoquaux, G. 

and Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, 

P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, 

M., Perrot, M. and Duchesnay, 2011), NumPy version 1.19.5 (Harris et al., 

2020), Pandas version 1.1.5 (McKinney, W., 2010), Statsmodels version 0.12.2 

(Seabold & Perktold, 2010). Graphics were generated with Matplotlib version 

3.3.4 (Hunter, 2007). The source code of the python scripts, models and 

methods described here are freely accessible at GitHub 

(https://github.com/phi-grib/Cardiotox_uncertainty) and usable under GNU 

GPL v3 open source license.  

Results 

Overview  

The main aim of this work was to develop methods for the assessment of 

uncertainty, mainly of aleatory type, in prediction results provided by the 

previously described in silico multi-level proarrhythmia model (Figure 1). This 

model predicts the proarrhythmia biomarker APD90 of a certain compound 

from the experimentally measured or predicted inhibition potency of three ion 

currents (IKr, INaL, ICaL) for a given drug concentration and channel-specific Hill 

coefficient.  

The protocol for uncertainty assessment and quantification involved three 

steps:  

1. Identification of the main sources of variability and uncertainty in 

cardiac safety models 

2. Quantitative characterisation of selected types of variability 

https://riunet.upv.es/handle/10251/191820
https://github.com/phi-grib/Cardiotox_uncertainty
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3. Propagation and quantitative expression of variability in model 

outputs 

Independently of the type or source, we recognised that all uncertainty types 

identified (point 1) are interconnected and to some extent affect each other 

and the output of the model. Nevertheless, for this work we attempted to 

group them based on their association with the model inputs. Later, we 

characterised and quantified the individual and the combined effect of two 

selected variability types (points 2 & 3) on the predictions generated by our 

model. 

This method was applied to a set of 12 CiPA drugs. The results of this use case 

were analysed, considering the benefits that such output could provide for 

drug developers and decision-makers. 

Step 1: Identification of the main sources of variability and 

uncertainty in cardiac safety models  

Figure 2 presented in the Methods section provides an overview of the most 

important sources of aleatory and epistemic uncertainty generally associated 

with cardiac safety models.  

The origin of aleatory uncertainty was identified as intrinsic and extrinsic 

variability, as well as measurement errors. These aleatory elements were used 

to find associations with the inputs of our model. As a result, we summarised 

them under the umbrella terms “experimental variability” and “inter-

individual variability”, affecting the input IC50 values and the parameters 

predefined in the electrophysiological action potential simulations models, 

respectively. The experimental variability of the Hill coefficient required to 

compute the input values of our model was not considered in this work, due 

to its minor impact (see Methods section for details). Additionally, the drug 

concentration is also subject to aleatory uncertainty, mainly due to intrinsic 

and extrinsic heterogeneity among subjects of the same population, leading 
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to differences in pharmacokinetic responses. Compared to the Hill coefficient, 

the impact of drug concentration on the numeric outcome of Equation 2 

computing the input values of the proarrhythmia model is larger. But, due to 

some limitations of this protocol, the impact of variability in drug 

concentration on the overall uncertainty levels in the prediction of the model 

was not quantified here. 

With regard to epistemic uncertainty, the two main affected model 

components are the inputs from which the predictions are generated and the 

methodology underlying the prediction system. Experimental inputs are 

subject to epistemic uncertainty due to multiple unknown values and 

approximations introduced during laboratory measurements and in the 

consequent data processing. Some degree of epistemic uncertainty also 

accompanies all methodological steps, starting with the selection of models or 

algorithms, through the definition of their parameters and to the subjective 

expert judgements informing the model, to simplifications and assumptions 

accompanying the interpretation of the prediction results.  

Step 2: Quantitative characterisation of selected types of 

variability 

Experimental variability 

Experimental variability was characterised based on assumptions and results 

previously published by (Elkins et al., 2013). Here, we assumed that IC50 values 

measured for different cardiac ion currents and different compounds are 

naturally associated with levels of deviation of similar magnitude as those of 

control compounds in published literature. In the simulations, this subtype of 

aleatory uncertainty was introduced by adding to the experimental pIC50 

values a random value following a normal distribution with mean 0.0 and a sd 

of 0.5, as explained in the Methods section.  
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Inter-individual variability 

Inter-individual variability was characterised following a multi-step approach 

based on a population of models. This model population, consisting of a total 

of 860 models, was generated by introducing variations into the default 

electrophysiological model used in this work as described in the Methods 

section. In particular, the parameters for every single model belonging to the 

population were equalled to those expected from a healthy population of 

patients. The population of models was then applied to predict APD90 values 

from a set of 125 input value combinations. The resulting 3D array served as 

training data to build a predictive model that can provides approximate 

estimates of the variability that can be attributed to the single APD90 

prediction. This variability is expressed as predicted sd, as explained in the 

Methods section. 

Step 3: Propagation and quantitative expression of variability in 

model outputs 

The variability characterised in Step 2 was propagated through the model by 

running MC simulations, as shown in Methods in Figure 5. The MC simulations 

conducted in this work incorporate only the experimental variability into the 

input values (Simulation A), add up inter-individual variability into the APD90 

predictions (Simulation B) or combine both types of simulations (Simulation 

C). See the Methods section for details. In all instances, these simulations 

turned single inputs into a collection of 1000 differently distributed output 

values. These distributions can be seen as a means to complement single 

predictions provided by our initial model by an informative value interval. 

Being a product of each prediction, the centre of such interval corresponds to 

the centre of the APD90 distribution (median or percentile 50th) and ranges 

from the 10th to the 90th percentile. These intervals can informally be referred 
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to as the 80% confidence intervals and represent the central range of values 

which the model would produce 80% of the times.  

An example case study using selected CiPA compounds 

Value distributions resulting from variability propagation 

To assess the practical value of the developed methodology, the above-

described steps 1-3 were applied to a collection of 12 compounds with well-

defined cardiac electrophysiology and proarrhythmia risk classes defining the 

severity of clinical effects, as previously characterised and published by the 

CiPA initiative (Colatsky et al., 2016a). The use of these drugs was further 

justified in the Methods section.  

Application of the methodology on the example of the CiPA compound set 

yielded a collection of 1000 APD90 values for each CiPA drug and the 

considered simulation type. Figure 6 shows three sections of violin plots, each 

representing results from the simulations A-C.  
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Fig. 6: Violin plots showing distributions of APD90 values obtained in different runs of 
Monte Carlo simulations introducing the following variability types. Simulation A: 

Experimental variability (Δ-pIC50); Simulation B: Inter-individual variability (Δ-
Parameters); Simulation C: Combination of experimental and inter-individual 

variability. 

When comparing the distributions presented in Figure 6, obtained by 

propagating experimental variability (Simulation A) with those where inter-

individual variability was considered (Simulations B and C), there are 
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remarkable differences in the width and skewness. As described in the 

Methods section, in Simulation A random numbers were added to the pIC50 

values used to generate the model IVs. Hence, the shape and width of the 

output distributions do not depend directly on the assumptions made to 

characterise this variability type.  

Conversely, the dispersion and the form of the output distributions essentially 

depend on how sensitive the output values are to small IVs changes in a certain 

region of the training series space. To understand this concept, the model 

describing the non-linear relationship between the APD90s and the IVs can be 

visualised as a hyperplane. In some regions, this hyperplane is rather flat and 

therefore small changes on the IVs produce rather similar APD90 predictions. In 

other regions, this hyperplane is steeper wherefore small IV changes (e.g.: due 

to a pIC50 increase for a highly relevant channel) produce significant APD90 

variations. For the analysed drugs, most of the distributions generated in 

Simulation A are right skewed, with the maximum value far from the 

distribution centre. This can be explained by the non-linear relationship 

between the IVs and the APD90s: even if the IVs used in this simulation follow 

a normal distribution, the output values will not. Therefore, the propagation 

of experimental variability resulted in a condensation of APD90 predictions in a 

narrow area of around 275 ms and a great right skew of the distribution for 

the majority of the drugs included in this analysis. In the case of Bepridil, 

Ranolazine, and Verapamil introducing variability into the pIC50 values yielded 

IVs that fell within a sloped region of the prediction function, resulting in wider 

output distributions and minor right skew. The IVs computed for Quinidine, 

however, were spread differently producing a wide distribution of APD90 values 

with no notable skew.  

As opposed to Simulation A, the dispersion and the form of distributions 

generated in Simulation B, shown in Figure 6, are a consequence of the 
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assumptions made about the inter-individual variability. Since they were 

generated by adding normally distributed random numbers to the output 

values, all APD90 distributions shown in Simulation B show a normal shape and 

exhibit no visible differences concerning the width. The minimal discrepancies 

in the width of the distributions can be justified with similarly minimal spread 

parameters predicted for these drugs as sd by the dispersion model (see 

Methods section). As the minimum and maximum sd values in the training 

series of the dispersion model were 26.93 and 55.18 ms, respectively, these 

values marked the possible prediction range for any kind of input combination. 

But since the IV combinations of the CiPA drugs did not reach these range 

limits, the predicted sd values to be considered as measures of the spread of 

each of these compounds varied between 31.64 and 37.21 ms. As this 

difference is quite a small relative to the predicted APD90 values, the 

observable differences between the width of the simulated distributions are 

minimal.  

When combining both types of variability in one simulation run, we obtained 

the distributions shown in Figure 6C. In general, they are rather similar to the 

ones obtained in Simulation B, but with a slightly larger dispersion and a little 

skew. Importantly, the effect of considering both kinds of variability 

simultaneously is not additive, and the effect depends on the drug studied. For 

example, these effects were particularly noticeable for Bepridil, Quinidine, 

Ondansetron, Ranolazine, and Verapamil. 

When comparing all three approaches, an additional difference between the 

plots is the sudden cut-off observed for the results of simulation A, where only 

experimental variability was considered. This cut-off is absent in distributions 

resulting from Simulations B and C. This difference can be explained by the 

limited range of IVs used in the model describing their associations with the 

pre-computed APD90s (see Methods section). This means that any variation of 
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the IVs resulting in a decrease below the minimum value considered in the 

model (-3.0) generally does not result in any change of the output. As a 

consequence, many of the 1000 IVs generated during the simulation were 

simply converted into the cut-off values and produced exactly the same APD90 

output. For many drugs, this effect was observed for the ICaL channel, the 

inhibition of which usually requires the drug to be administered at higher 

concentrations. In comparison, the inhibition of the IKr channel at the EFTPCs 

of the CiPA drugs is more common, due to which the IVs computed for hERG 

channel had the greatest impact on the predicted APD90. Conversely, the 

propagation of inter-individual variability in Simulation B added random 

numbers to the output values and was therefore not affected by these IV cut-

offs.  

In other words, in the case of Simulation A, after random values were added 

to the model inputs, these values were further processed by the model. In 

Simulation B, however, just one single value was predicted, and the 

distribution of values was simulated from the expected distribution 

parameters.  

Value intervals as a quantitative expression of uncertainty in the 

output 

The distributions of the predicted APD90 values were used to obtain intervals 

between the 10th and 90th percentiles for the 12 CiPA compounds, yielding the 

results shown in Figure 7. 
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Fig. 7: Bar plots showing the median of the APD90 predictions obtained for the 12 
CIPA compounds, using three simulation types. Simulation A: Experimental variability 

(Δ-pIC50); Simulation B: Inter-individual variability (Δ-Parameters); Simulation C: 
Combination of experimental and inter-individual variability. The intervals represent 

the 10th and 90th percentiles obtained from the distributions shown in Figure 6. 

The bar plots in Figure 7 show no remarkable differences in the APD90 

predictions generated in three different simulations conducted for the same 

drug. This observation allows concluding that the actual prediction, computed 
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as the median value of the APD90 distributions produced in simulation A-C, is 

barely affected by the simulation type and the biomarker prediction can be 

expected to remain unchanged. On the contrary, important differences can be 

observed in the widths of the intervals obtained by the different simulations. 

For Simulation A, these intervals vary between 4.3 and 216.6 ms, with a 

maximum difference exceeding 200 ms. In contrast, the intervals obtained for 

Simulation B are relatively similar for all tested compounds and range from 

79.3 and 92.9 ms, approximately, thereby showing a maximum difference 

between two compounds of 13 ms. An overall increase in the intervals’ width 

is noticeable when combining both types of variability. But combining two 

sources of variability does not lead to additive results, meaning that the 

combined result is not the sum of the two sources. Considering that the 

predicted numeric values could be potentially used to assign compounds into 

different risk classes (of TdP or arrythmia), it is possible that the interval ranges 

cross the boundaries of different classes, making then difficult to assign the 

compound to one of them. 

In order to illustrate this situation we have shown in Figure 8 the prediction 

intervals for Quinidine, Ondansetron, and Mexiletine belonging to the high, 

intermediate, and low-risk class of TdP, respectively as defined by the CiPA 

initiative (Colatsky et al., 2016b).  
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Fig. 8: Predicted APD90 values and their corresponding 80% intervals for three 
selected CiPA compounds assigned to the following arrhythmogenic risk classes: 

Quinidine as a high-risk drug (red); Ondansetron as an intermediate-risk drug 
(orange); Mexiletine as a low-risk drug (green). Intervals shown here were obtained 

in MC Simulations A-C as described in Figure 4. 

It can be seen that the intervals computed for high-risk and low-risk drugs 

using any of the presented approaches do not overlap and would allow a clear 

class assignment. On the contrary, the APD90 interval computed for the 

intermediate-risk compound overlaps the interval of the low risk class using all 

three simulation scenarios as well as the high-risk class when the most 

conservative scenario is used. In general, the use of APD90 predictions 

intervals, compared with appropriately selected critical values, would allow for 

a more conservative classification approach, which incorporates into the 

prediction both the effects of the experimental and inter-individual variability.  

Discussion 

Obtaining a reliable risk evaluation for new drug candidates is one of the 

primary responsibilities of safety pharmacology. Regarding arrhythmogenic 

risk, the CiPA paradigm provided a standardised way for performing in vitro/in 
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silico-based cardiac safety assessment using proarrhythmia models (Hwang 

et al., 2020b). Despite the availability of a wide range of cardiac safety models 

stemming from the CiPA work, uncertainty analysis has been one of the last 

missing pieces to be addressed within this paradigm. Is in that context that this 

work proposes a protocol for the assessment of uncertainty and variability 

applicable to multi-level in silico proarrhythmia models.  

A critical view on the developed methodology 

Experimental variability 

The central hypothesis behind this work is that there is a “true” pIC50 value 

when one specific ion channel is exposed to a certain concentration of a drug 

in one specific moment in time. However, the notion of a “true” pIC50 is 

relatively idealistic and therefore does not correspond to what can be 

expected in practical situations. This is because in the proposed “Uncertainty 

assessment protocol”, the arrhythmogenic potential of drugs is assessed using 

a specific computational model and a combination of input values which are 

affected by multiple aleatory factors contributing to the overall levels of 

experimental variability. Hence, the consideration of experimental variability 

in cardiac safety model inputs is a step toward increased credibility of the 

predictions obtained from such models. 

In this work, we assumed the same spread measure and the normality of the 

distributions describing the variability in the inhibition of each considered 

channel by each analysed drug. Even though the introduced assumptions were 

rather simple they allowed to test the effect of this variability in the final 

prediction, at a proof of concept level. In practice, since each pharmaceutical 

company has individual methods to perform the inhibition tests the standard 

deviation considered could be adjusted to match the characteristics of the 

analytical platform, as well as the structure and properties of the tested 

compounds. Importantly, in this study, we considered the overall variability 
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arising during the experiments, thereby combining the experimental errors 

with the biological properties of the samples. In the study performed by (Lei 

et al., 2020), the authors demonstrated that the extent to which the artefacts 

in patch-clamp experiments affect the overall levels of experimental variability 

is much greater than the cell-cell or between-cell differences. Indeed, adding 

this additional layer of detail to separate experimental errors from 

intrinsic/extrinsic variability would contribute to a better understanding of the 

toxicodynamic effects of drugs in the context of cardiac safety assessment.  

Inter-individual variability 

As for experimental variability, the consideration of inter-individual variability 

in cardiac model inputs can be seen as a step in the direction of realistic cardiac 

safety assessment. As described by (Wisniowska et al., 2017), “Humans vary, 

so cardiac models should account for that too…”. The importance of 

considering inter-individual differences with regard to drug effects is 

particularly important if it comes to the protection of individuals who are more 

prone to develop cardiac arrhythmias or TdP. The use of a population of models 

to account for such differences allows to obtain different AP responses under 

the same pharmacological intervention. As compared to classical simulation 

methods based on an averaged model producing unique values, another 

advantage of populational approaches is that they provide novel insights into 

physiological and pathophysiological variabilities (Ni et al., 2018). In addition, 

this approach has shown that TdP-risk assessment improves when taking into 

account the electrophysiological variability between cells (Llopis-Lorente 

et al., 2022a), therefore, increasing evidence points to the crucial role of 

variability in cardiac electrophysiological function. 

Important to consider, however, are the characteristics of the population of 

interest. In this work, the electrophysiological model parameters, as well as 

the pre-processing of the simulated data, were based on criteria reflecting the 
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attributes of a healthy population. Hence, to predict outcomes for a population 

with any type of underlying conditions, the first calibration step of the 

population of models would need to be modified accordingly to account for 

specific characteristics of this population.  

It is worth noting that the described approach for representing inter-individual 

variability was based on the assumption that variability equally impacts all the 

15 channel conductances and that this variability is independent for each 

parameter of the electrophysiological model. These assumptions were based 

on a series of results presented in the available literature on this topic. 

Nevertheless, further modifications of the proposed methodology allowing to 

assign unequal measures representing the variability in the conductances of 

different ion channels and to consider possible dependency between these 

measures could add additional value. 

In the context of this work, however, establishing identifiability of the true ion 

channel conductances values was not the aim. For interested readers, different 

strategies for the identifiability of the parameters of the AP model are 

presented in the review by Whittaker and colleagues (Whittaker et al., 2020). 

Combination of variability 

When combining experimental and inter-individual variability to produce a 

reasonable representation of proarrhythmia predictions, the emphasis should 

lie on appropriate interpretation of such results. From the theoretical 

perspective, the consideration of experimental variability is not necessary in 

clinical settings. Therefore, results obtained by combining these two variability 

sources do not intend to represent the variability in biomarker response that 

would be observed in a healthy human population. Nevertheless, when using 

computational proarrhythmia models which integrate some experimental 

values to produce estimates of human responses, the consideration of 

experimental variability is essential. In the latter case, the produced range of 
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values aims to represent the variability in predictions, given the limited ability 

to define the “true” pIC50 values together with inter-individual differences 

among subjects of a population.  

As shown in this work, combining variability, or other types of types or 

uncertainty, does not mean that the effects of each source on the final 

prediction will sum up. Nevertheless, as the current methodology for 

combining different variability types affects the shape of the obtained 

distributions, the methodology could be adjusted to account for this 

dependency. To do so, an additional analysis of the dependencies between 

each of the input sources, as well as of their associated variabilities, could be 

included in future work.  

Representation of results 

Another important question is whether representing simulation results as a 

biomarker prediction with a corresponding 80% confidence interval has an 

advantage over standard methods yielding point estimates, only. As concluded 

by (Sahlin, 2015))“… a confidence interval is just an interval. It does not provide 

enough information to calculate an expected value or conservative value, 

which is important in rational decision making”. However, a confidence interval 

provided together with the expected value is very useful for communicating 

uncertain results in a simple way. Such intervals allow for the inspection of 

values that would be produced in experiments or for individuals that do not 

represent the exact centre of the distribution from which they were drawn. 

Since variability is an innate element of all-natural and investigational 

processes, assuming that a fixed prediction is the exact centre of a specific 

distribution is rather ingenious. But, when intervals are provided together with 

single values to interpret the predictions, the scientific conclusion derived 

based on them automatically is considerate of the variation among biological 

samples or the physiology of patients. Another factor impacting the credibility 
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of confidence intervals is an adequate identification of all the sources of 

uncertainty and a correct characterisation and propagation of those, that 

indeed affect the prediction outcome. To know which sources should be 

prioritised for the UQ exercise, a prior sensitivity analysis is recommendable 

(Eck et al., 2016). 

Suggestions for future work  

Consideration of epistemic uncertainty 

In this publication, although different sources of aleatory and epistemic 

uncertainty were identified, the described methods were mainly focused on 

the characterisation and propagation of two sources of variability. The protocol 

integrated only principles of the frequentist approach to probability. Indeed, 

when quantifying only variability reflecting the natural variability and 

randomness, the selection of normal distribution with standard deviation as 

the representation of sample spread was a reasonable decision. This is 

because real-valued random variables whose distributions are undefined are 

usually represented using normal distributions. As stated in the Central Limit 

Theorem, under some conditions, when a large series of random numbers are 

sampled from any population with a defined mean and sd, the initial 

distribution converges to a normal distribution as the number of samples 

increases (Devore & Berk, 2012). 

However, epistemic uncertainty, also identified in this work, should not be 

expressed nor modelled using frequentist methods. Instead, the correct way 

to assess epistemic problems involves the application of the subjective 

probability theory, the most common application of which is the Bayesian 

theorem (van de Schoot et al., 2021). This involves starting with an initial 

belief, known as the prior probability, and updating it when new information 

becomes available yielding the posterior distribution. Nevertheless, applying 

Bayesian statistics to estimate the impact of purely epistemic factors (shown 
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in yellow in Figure 2) on the APD90 predictions would require major 

modifications of the developed uncertainty quantification protocol. But 

particularly important for this work and more feasible to implement would be 

the consideration of epistemic uncertainty about the aleatory uncertainties 

summarised as variability types. This would lead to a quantitative expression 

of the level of unknown in the metrics defined to characterise specific 

variability types, for instance, the constant sd value of 0.5 that was assumed 

to characterise experimental variability. Degrees of belief about the true 

parameters for this quantity could be derived using either objective 

measurements or subjective expert judgements. To propagate the uncertainty 

about variability in the quantity of interest, sampling of the resulting prior 

distributions could be integrated as part of a 2 dimensional Monte Carlo 

simulation. A result of such a simulation would not be a single distribution of 

values, but multiple distributions representing the uncertainty about 

variability (Benford, Halldorsson, Jeger, Knutsen, More, Naegeli, Noteborn, 

Ockleford, Ricci, Rychen, Schlatter, Silano, Solecki, Turck, Younes, Craig, Hart, 

Von Goetz, Koutsoumanis, Mortensen, Ossendorp, Germini, et al., 2018). 

Coming back to the previous example, the uncertainty about the level of 

experimental variability would be expressed as several distributions, each of 

which with a different centre (median or mean) and measure of spread.   

Computational model inputs 

There is a high interest in transforming the mixed-platform preclinical cardiac 

safety assessment of novel pharmaceutical products into purely in silico based 

methods without the need for extensive experimental testing. Therefore, the 

structure of our multi-level cardiotoxicity models allows both, experimental as 

well as predicted inputs. Since computational models, such as the PBPK or 

QSAR models, are built using experimental data, experimental variability, 

which was extensively described in this work, is also retained in the training 
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series used for building these models. But, when the plasma drug 

concentration or the channel specific IC50 are generated computationally, the 

level of epistemic uncertainty increases due to further limitations in the 

training data coverage or a high level of subjectivity impacting the 

parametrisation of the respective source models that predicts them.  

For instance, if the intention is to predict proarrhythmic properties of a 

compound available in a public domain, such as the ChEMBL database 

(Gaulton et al., 2012), multiples datapoints would be available for the same 

compound, each of which is produced in a separate experiment following a 

specific protocol. These data points would first need to be extensively filtered 

to select the experimental parameters of interest and aggregated using 

statistical measures such as a mean or the median. This process, together with 

multiple unconsidered originating from differences in laboratory conditions, 

experimental design, and other factors, would contribute to the level of 

epistemic uncertainty. Despite of these factors, the predictive performance of 

purely computational proarrhythmia prediction systems highly depends on the 

selected biomarker. As shown by (Beattie et al., 2013b), the use of QSAR-

derived data to simulate QT-interval shortening may yield nearly as good 

predictions as those produced using experimental data inputs. Conversely, 

utilising QSAR data to predict QT-interval prolongation significantly worsens 

the predictive performance. These two examples show the importance of 

comprehensive definition of the endpoint being modelled which should 

always precede the process of uncertainty analysis to ensure a correct 

determination of model limitations, variability sources and epistemic factors.  

QSAR 

The most widely accepted standard method for the quantification of reliability 

and uncertainty associated with QSAR model predictions are methods based 

on the concept of applicability domain (AD) (Sahlin et al., 2014). Predictions 
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generated for compounds having structurally or physio-chemically similar 

counterparts in the training set are generally considered reliable. Standard AD 

methods can be complemented by placing the model within a framework that 

can estimate the uncertainty levels in every single prediction. An example is 

the conformal prediction framework which guarantees the maximum allowed 

frequency of errors which will be committed by the conformal predictor 

(Alvarsson et al., 2021; Norinder et al., 2014; Svensson et al., 2018). 

Uncertainty resulting from lack of knowledge (e.g.: insufficient training data or 

anomalous samples in test data), that is predominant in model predictions is 

most commonly addressed by applying Bayesian inference, shortly introduced 

above (Sahlin, 2015).  

PBPK 

The arrhythmogenic potential of drug candidates is typically assessed at early 

stages of drug development when the compound can still be removed from 

the development pipeline without much economic harm. At these stages, the 

therapeutic concentration and other PK parameters required to compute the 

EFTPC are still unknown but the use of currently described methodologies to 

estimate point-of-departure concentrations is an interesting approach. These 

could be compared with experimental results produced at preclinical stages 

using physiologically based pharmacokinetic (PBPK) modelling to obtain 

plasma concentrations from the administered doses. PBPK models are 

mathematical algorithms based on ordinal differential equations (ODEs) 

describing physiological processes involved in the absorption, distribution, 

metabolism, and excretion of the drug (Piñero et al., 2018). Variability and 

uncertainty quantification in PBPK models is often initiated by a parametric 

sensitivity analysis to identify the PK parameters that are most susceptible. 

Since PK parameters are subject to inter-individual differences and PK 

simulations are often liable to lack of full information about the constants and 
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parameters in the ODEs, the UQ methods require combining the frequentist 

and conditional probabilistic approaches (Kuepfer et al., 2016). Consideration 

of uncertainty in PBPK simulations would allow to explore a range of clinically 

relevant drug concentrations, especially at the site of the pharmacological or 

toxicological action of the drug (e.g.: drug binding site at the ion channel 

protein in the membrane of ventricular myocytes) (Z. Li, Garnett, et al., 2019). 

Conclusions 

In this study, we developed and tested methods for the quantification of the 

impact of selected variability types on the uncertainty of APD90 predictions 

generated by an in silico multi-level proarrhythmia model. The aim was first to 

explore the effects of different types of variability, separately and in 

combination, by quantitatively characterising and propagating them 

throughout our complex model, and second to replace point predictions with 

value ranges that can be computed for predefined credibility levels (e.g.: 80%) 

and interpreted as confidence intervals.  

The propagation of “experimental variability”, associated with the input IC50 

values, yielded distributions whose characteristics were defined by the 

location of the IVs within the hyperplane-like structure of model training data. 

This contrasts with the distributions resulting from the propagation of “inter-

individual variability”, linked with the parameters specified in the AP 

simulation models, whose shape and width were a direct consequence of the 

methodological assumptions and the predicted spread parameters, 

respectively. After a simultaneous propagation of both types, the distributions 

showed a combined effect of both, the non-linear relationship between the 

IVs and APD90 and the assumption of normality applied to model outputs. 

Importantly, combining two sources of variability did not lead to additive 

results, meaning that the combined result is not their sum.  
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Further, we showed how such distributions can be used to compute the 

proarrhythmia biomarker predictions together with value intervals of certain 

credibility. One of the main conclusions arising from this analysis was the that 

the actual biomarker prediction remains nearly unchanged when the 

simulations are performed, as compared to the initial method without UQ. 

Although we do not claim the undoubtful accuracy of these results, we 

consider that such representation of the predictions has excellent advantages 

over single-point estimates. These mainly include the possibility to inspect 

values that would be produced in experiments or for individuals that do not 

represent the exact centre of the distribution from which they were drawn. 

Hence, it allows to protect individuals who are more prone to develop cardiac 

arrhythmias or TdP, since interval ranges may cross the boundaries of different 

risk classes. Moreover, they provide a more realistic view on predictions in the 

context of drug candidate prioritisation and validation of clinical results, since 

the presence of uncertainty resulting from variability is usually neglected at 

these assessment stages. 
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Conclusiones 
 

1. Se revisaron los principales trabajos en los que se emplea la 

combinación de múltiples MIEs y modelos multinivel como dos 

aproximaciones diferentes para la predicción de parámetros 

toxicológicos complejos.  

2. El modelado mecanístico, a través de la combinación de múltiples 

MIEs para la predicción de la colestasis condujo a la construcción de 

un metamodelo con un poder predictivo superior al modelado directo 

QSAR, ya que sus resultados fueron independientes del grado de 

similitud estructural, a diferencia de los modelos directos QSAR.  

3. La incorporación de la toxicocinética al metamodelo anterior 

incrementó de forma sustancial su capacidad predictiva.  

4. Los modelos multinivel de arritmia fueron empleados de forma 

exitosa reduciendo 100 veces los tiempos de obtención de las matrices 

electrofisiológicas frente a las aproximaciones de referencia. 

5. Se desarrolló con éxito una metodología general para identificar, 

caracterizar, y cuantificar la variabilidad asociada en las predicciones 

del modelo multinivel, mejorando así la caracterización de su 

confiabilidad. 

6. Se determinó que la combinación de la variabilidad experimental y la 

interindividual no tiene un efecto sumatorio en la variabilidad 

asociada sobre las predicciones del modelo multinivel.
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