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Descripcion General

Dentro de un cambio de paradigma hacia una toxicologia mecanistica, los
modelos computacionales emergen como un poderoso complemento de los
métodos experimentales. Sin embargo, es importante reconocer que los
métodos experimentales, a pesar de su valor, enfrentan dificultades para
abarcar todo el espectro de la biologia. Debido a esta limitacién, emplear un
Unico modelo predictivo puede no ser suficiente. En su lugar, podria emplearse
una combinaciéon de modelos que representen fendmenos biolégicos mas

simples.

La presente tesis se presenta mediante un compendio de publicaciones que
pretenden desarrollar metodologias aplicables para la prediccion de
parametros toxicoldgicos complejos a través de combinacién de modelos, asi

como el estudio de la variabilidad asociada a dichas predicciones.

Rodriguez-Belenguer, P., March-Vila, E., Pastor, M., Mangas-Sanjuan, V.,
Soria-Olivas, E. (2023). Usage of Model Combination in Computational
Toxicology. Toxicology Letters. https://doi.org/10.1016/j.toxlet.2023.10.013

En este trabajo revisamos las diversas formas en que se han combinado
modelos computacionales en la literatura para abordar problemas
toxicoldgicos practicos. Consideramos que este enfoque (el uso de multiples
modelos combinados) es una estrategia interesante que podria generalizarse.
Para ello proporcionamos una taxonomia de situaciones y directrices practicas,

ilustradas con numerosos ejemplos.

Rodriguez-Belenguer, P., Mangas-Sanjuan, V., Soria-Olivas, E., & Pastor, M.

(2023). Integrating Mechanistic and Toxicokinetic Information in Predictive


https://doi.org/10.1016/j.toxlet.2023.10.013

Models of Cholestasis. Journal of Chemical Information and Modeling.

https://doi.org/10.1021/acs.jcim.3c00945

Este trabajo pretende proveer una metodologia alternativa a los modelos
directos QSAR para la prediccion de colestasis, especialmente en los casos en
los que se pretende predecir un nuevo compuesto que difiere
significativamente de los de la serie de entrenamiento. Para ello es
fundamental la incorporacidn de informacién mecanistica, la cual se realiza a
través de la combinacién de multiples modelos QSAR que representan
fendmenos bioldgicos mds simples. Ademads, se integra con informacidn
toxicocinética. Los resultados de esta metodologia revelan un poder predictivo
superior en comparacion con el modelado directo QSAR en los escenarios de
maxima disimilitud estructural entre nuevos compuestos con respecto a los de

la serie de entrenamiento.

Rodriguez-Belenguer, P., Koparnska, K., Llopis-Lorente, J., Trenor, B., Saiz, J., &
Pastor, M. (2023). Application of Machine Learning to improve the efficiency
of electrophysiological simulations used for the prediction of drug-induced
ventricular arrhythmia. Computer Methods and Programs in Biomedicine,

107345. https://doi.org/10.1016/j.cmpb.2023.107345

En este trabajo se desarrollaron modelos multinivel como otra alternativa de
modelado en situaciones de complejidad bioldgica. Para ello, se combiné el
efecto de bloquear tres canales idnicos para producir arritmia ventricular,
utilizando un complejo modelo electrofisioldgico para predecir el biomarcador
que representa la duracidn del potencial de accidn al 90% de la repolarizacion
(APDgp). Dado el alto coste computacional asociado con la obtencion de las
matrices electrofisioldgicas, se evalué a través de diferentes métricas, el
resultado de predecir los valores de APDg a partir del uso de modelos
multinivel en diferentes muestreos regulares. El objetivo principal de este

enfoque fue el de reducir el nimero de simulaciones necesarias para la


https://doi.org/10.1021/acs.jcim.3c00945
https://doi.org/10.1016/j.cmpb.2023.107345

obtenciéon de las matrices electrofisioldgicas. Como resultado, esta

metodologia logré reducir 100 veces los tiempos de simulacion.

Kopanska, K., Rodriguez-Belenguer, P., Llopis-Lorente, J., Trenor, B., Saiz, J., &
Pastor, M. (2023). Uncertainty assessment of proarrhythmia predictions
derived from multi-level in silico models. Archives of Toxicology, 97(10),

2721-2740. https://doi.org/10.1007/s00204-023-03557-6

En el campo de la toxicologia, las predicciones desempeifian un papel
fundamental en la toma de decisiones y, por ende, es esencial garantizar la
maxima confiabilidad de dichas predicciones. Por ello, en este trabajo se
ofrece una representacion mas realista de las predicciones de los
biomarcadores de proarritmia, derivadas del modelo multinivel del articulo
anterior. Esto se consigue a través del estudio del impacto de las fuentes
aleatorias de variabilidad (experimental e interindividual), tanto de manera
individual como en un enfoque conjunto sobre las predicciones. Cabe destacar
que el efecto de considerar simultdneamente ambos tipos de variabilidad no

resultd ser aditivo y varid segun el farmaco estudiado.

En definitiva, esta tesis contribuye a avanzar en la aplicacidn de la combinacidn
de modelos para abordar la prediccién de parametros toxicoldgicos complejos
y promueve una mayor comprension de la variabilidad asociada a estas
predicciones, para asi dar lugar a una toma de decisiones mas realista. Por todo
ello, creemos que esta contribucion puede ser util para la comunidad
toxicoldgica, proveyendo una metodologia alternativa al modelado directo

QSAR.


https://doi.org/10.1007/s00204-023-03557-6
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Introduccion

La toxicologia, histdricamente, ha dependido en gran medida de experimentos
en animales para evaluar la seguridad de compuestos quimicos y farmacos.
Esta aproximacidn observacional, si bien ha sido valiosa, presenta limitaciones
éticas y cientificas que han llevado a la busqueda de enfoques alternativos para

la evaluacidn de la toxicidad (Fischer et al., 2020).

En los ultimos afios se han hecho esfuerzos significativos para reducir, refinar
y reemplazar (principio de las 3Rs) las pruebas en animales con metodologias
de nuevo enfoque (New Approach Methodologies, NAMs) (Russell & Burch,
1960). Estas incluyen ensayos in vitro, que utilizan cultivos celulares o de
tejidos para evaluar la toxicidad; pruebas in chemico, que se basan en analisis
guimicos y no requieren material biolégico; y métodos in silico, que utilizan
simulaciones computacionales y modelos matematicos para predecir la
toxicidad de un compuesto (https://www.epa.gov/). Este cambio de
paradigma hacia los NAMs fue descrito en el informe “Toxicity Testing in the
21st Century: A Vision and a Strategy” por parte de la National Academy of
Sciences y el National Research Council de los Estados Unidos en 2007
(Council, 2007). Puede considerarse que este informe establecié las bases para
una nueva era en la evaluacién de la toxicidad, basada en la comprension de
los mecanismos de toxicidad, que promueve el uso de métodos mas éticos y

eficaces para caracterizar la seguridad quimica en seres humanos.

Meétodos en toxicologia computacional

Los métodos in silico o in silico toxicology (IST) mas cominmente empleados
se clasifican en cuatro grupos (Figura 1): extrapolacion (Read-Across, RA),

alertas estructurales o toxicéforos, modelos predictivos basados en la
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caracterizacion de la relacién cuantitativa estructura-actividad (Quantitative
Structure-Activity Relationship, QSAR), y acoplamiento molecular o docking.
Los tres primeros métodos se fundamentan en conocimiento y se basan en la
teoria del bioisosterismo en la que "estructuras muy similares tienen
bioactividades muy parecidas" (Johnson y Maggiora 1990). RA busca inferir las
actividades bioldgicas de compuestos para los que se carece de informacion a
partir de compuestos con una gran similitud estructural. A través de sistemas
expertos, las alertas estructurales identifican grupos funcionales o
subestructuras que han sido asociados con la aparicion de efectos adversos

(Adverse Events, AEs).

Los modelos QSAR son una de las técnicas mas empleadas en IST. Estos
modelos tienen la capacidad de predecir la actividad bioldgica (incluyendo
AEs) de un compuesto a partir de su estructura quimica. Para ello, se emplean
algoritmos de aprendizaje automatico (Machine Learning, ML) y aprendizaje
profundo (Deep Learning, DL), los cuales tienen la capacidad de predecir
propiedades como Absorcién, Distribucidon, Metabolismo, y Excrecién (ADME)
y/o toxicoldgicas. En el dmbito del ML, algunos de los algoritmos mas
comunmente empleados son Random Forest (RF), XGBoost (XGB), Naive Bayes
(NB) y Support Vector Machine (SVM). En la literatura, hay multitud de
ejemplos de aplicacion de algoritmos de ML en toxicologia, como es el caso
del trabajo realizado por Ishfag etal. (2022), en el que los autores
construyeron modelos para predecir la actividad bioldgica de los inhibidores
de la aromatasa. Del mismo modo, Trinh et al. (2022) emplearon modelos de
bagging para predecir la toxicidad de nanomezclas de Ti,O producidas en

Daphnia magna.

Por su parte, en el DL destacan algoritmos como Deep Neural Network (DNN),
Convolutional Neural Network (CNN), Graph Neural Network (GNN) y Long

Short Term Memory (LSTM). Cada vez son mas el numero de trabajos que
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utilizan DL en toxicologia, como es el caso del trabajo publicado por Romano,
Hao, y Moore (2022), en el cual utilizaron GNNs para predecir diferentes
parametros toxicolégicos. Del mismo modo, Ulfa et al. (2021) emplearon otro
tipo de redes neuronales, como es el caso de una combinacidén de
convoluciones 1D con LSTM, para la predicciéon de la actividad biolégica de

unos compuestos quimicos.

Extrapolacion Alertas estructurales
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Figura 1: Esquema de los principales métodos empleados en toxicologia
computacional
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En contraste con los algoritmos de ML, el DL presenta dos ventajas
significativas. Primero, se destaca por la flexibilidad inherente de las
estructuras basadas en redes neuronales, lo que le permite adaptarse a una
amplia gama de problemas. Segundo, a diferencia de los algoritmos de ML, las
redes neuronales tienen la capacidad de aprender y extraer automaticamente
las caracteristicas mas relevantes de los datos, eliminando asi la necesidad de
realizar una seleccion manual de caracteristicas. Por el contrario, los
algoritmos de DL necesitan muchos mas compuestos (varios miles) que los

modelos de ML para asi evitar el sobreajuste (Dargan et al. 2020).

Para construir los modelos QSAR, la estructura de los compuestos de la serie
de entrenamiento debe ser descrita mediante un conjunto de variables
(descriptores moleculares) que suelen incluir caracteristicas fisicoquimicas (p.
ej. peso molecular, solubilidad o nimero de atomos aceptores de hidrégeno)
y/o caracteristicas estructurales (por ejemplo, huellas digitales moleculares o
fingerprints). La variable dependiente representa la actividad bioldgica, es
decir, el efecto téxico que se busca predecir. Dependiendo de la naturaleza de
la variable dependiente el modelo puede ser de regresidn, utilizado para
predecir, por ejemplo, la concentracién necesaria para inhibir el 50% de la
actividad bioldgica de un compuesto (ICso), o de clasificacion, empleado para

predecir, por ejemplo, si un compuesto es, o no, carcinégeno.

Finalmente, el acoplamiento molecular o docking es una técnica empleada
para predecir cdmo un ligando interacciona con un receptor en funcion de su
estructura tridimensional. Esto se logra mediante la busqueda de la
conformacién o posicién relativa dptima del ligando dentro del receptor, con
el objetivo de minimizar la energia libre de uniéon y maximizar la afinidad. En
toxicologia, esta técnica es importante cuando la toxicidad de un farmaco se

origina debido a su interaccién con una anti-diana (antitarget). Un ejemplo
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clasico es el caso del receptor glucocorticoide, cuya inhibicién puede ocasionar

dafios en el sistema inmune.

Principales limitaciones y complejidades presentes en
la toxicologia computacional

En los ultimos tiempos, los métodos in silico han demostrado ser eficaces y
convenientes para la evaluacién de la toxicidad de compuestos quimicos. Estos
enfoques permiten realizar predicciones rapidas y precisas sin la necesidad de
llevar a cabo ensayos en animales costosos y éticamente cuestionables
(Council, 2007). Los métodos in silico son ideales para complementar otros
tipos de ensayos en una estrategia secuencial, como métodos de cribado

rapido, complementando métodos in vitro e in vivo (Raies & Bajic, 2016).

Sin embargo, es importante recordar que los métodos computacionales no
pueden escapar de las complejidades inherentes a cualquier problema
toxicoldgico. En general, estas complejidades se derivan de la complejidad de
los procesos bioldgicos y quimicos de los organismos, lo que obliga a los
métodos experimentales y computacionales a introducir simplificaciones y
suposiciones que limitan su potencial para representar la realidad. De hecho,
los métodos in vitro, aunque éticos y efectivos, tienen una serie de limitaciones
entre las cuales la mas destacada es su dificultad para cubrir todos los
fendmenos bioldgicos. Otra limitacién de los métodos in vitro es la variabilidad
asociada a sus experimentos, tales como las diferencias en las condiciones de
laboratorio, la calidad de los reactivos, o las diferencias entre lotes de células
o tejidos, lo que puede afectar la reproducibilidad y la precisidn de los datos
(Kernik et al., 2019). Estas limitaciones afectan directamente a los métodos
computacionales, ya que consumen la informacién generada por los métodos

experimentales. A raiz de todo lo expuesto, hemos identificado tres categorias
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principales de complejidades, que estdn relacionadas con los siguientes

aspectos: bioldgico, espacio quimico, y metodoldgico.

Las complejidades biolégicas suelen estar relacionadas con la existencia de
multiples mecanismos, muchos de ellos desconocidos, que pueden conducir a
los mismos EAs. Las complejidades relacionadas con el espacio quimico surgen
cuando se intenta evaluar un compuesto quimico que difiere
significativamente en su estructura de los compuestos utilizados para construir
el modelo, lo que a menudo resulta en predicciones poco precisas. Por ultimo,
las complejidades metodoldgicas se presentan cuando un solo algoritmo no
puede establecer una relacién adecuada entre los descriptores moleculares y
la variable dependiente del modelo, cuando un solo tipo de variables no es
suficiente para describir el problema toxicolégico, o cuando el desequilibrio en

la distribucion de clases afecta negativamente el rendimiento final del modelo.

Una posible via para mitigar algunos tipos de complejidades es la combinacién
de modelos QSAR de bajo nivel (Bringezu, Carlos Gomez-Tamayo, y Pastor
2021; Gadaleta et al. 2018; Heyndrickx et al. 2022; Kotsampasakou y Ecker
2017; March-Vila et al. 2023). A esta combinacién de modelos predictivos se
le conoce con el nombre de metamodelo. Esta aproximacién tiene ventajas
adicionales, porque ayuda a solventar la alta dependencia de los modelos
directos QSAR con respecto a la estructura de los compuestos. Este problema
estd muy presente en el desarrollo de nuevos farmacos, donde en muchas
ocasiones los candidatos a farmaco difieren significativamente de los
compuestos utilizados para entrenar el modelo. Por tanto, en lugar de utilizar
un modelo directo QSAR, se construyen modelos individuales que representen
fendmenos mas simples, con una mejor capacidad predictiva, y que, al ser
combinados, pueden resolver de una manera mas precisa el problema en
cuestion. Esta estrategia busca superar las limitaciones inherentes de los

modelos QSAR tradicionales, los cuales tienen dificultades para predecir
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fendmenos bioldgicos complejos, para asi permitir una consideracion mas

amplia de la biologia subyacente a los eventos toxicoldgicos.

Asimismo, esta metodologia posee el potencial de ser empleada en la
evaluacion temprana de las propiedades toxicoldgicas de los candidatos a
farmacos. No obstante, es importante destacar que su utilizacién en la toma
de decisiones debe estar condicionada a la capacidad de estimar la
incertidumbre de las predicciones. Esto se debe a que los resultados en
toxicologia son empleados para informar cientificamente de decisiones
(Gosling 2019; Maertens et al. 2022), ya sea dentro de las empresas o por
parte de agencias reguladoras. Por ende, para poder tomar decisiones es

esencial caracterizar la incertidumbre asociada a las predicciones.






Objetivos

El objetivo general de la tesis es:

Desarrollar, y validar una metodologia general aplicable para la prediccién de
propiedades bioldgicas complejas, que presente ventajas en términos de
calidad predictiva, asi como en la estimacion de la incertidumbre asociada a

las predicciones con respecto a los métodos de referencia disponibles.

Los objetivos especificos para conseguir tal meta son:

1. Revisar las distintas estrategias de combinacion de modelos de ML
para abordar la prediccion de parametros biolégicos complejos.

2. Evaluar el poder predictivo del modelado mecanistico en comparacién
con el modelado directo QSAR en condiciones de méaxima disimilitud
estructural en situaciones de aplicacion relevante.

3. Evaluar la mejora en el poder predictivo del modelado mecanistico al
incorporar informacidn toxicocinética (Toxicokinetics, TK).

4. Desarrollar una metodologia que permita identificar, caracterizar y
cuantificar la variabilidad asociada a las predicciones obtenidas por la

combinacién de modelos.






Resultados y discusion

Complejidad bioldgica

La idea de combinar multiples modelos, cada uno de los cuales representa
mecanismos mas simples, con el fin de mejorar la precision de un modelo
directo QSAR, cuenta con multiples antecedentes que respaldan esta
hipdtesis. En el Capitulo 1 de nuestro trabajo de revisidon (Rodriguez-Belenguer
et al., 2023a), hemos identificado los principales tipos de metamodelos. La
tabla 1 es la esencia del articulo dado que se resumen los diversos tipos de
problemas encontrados en el ambito de la toxicologia, se analiza la
complejidad que estos problemas generan, se explica por qué la construccion
de un modelo directo QSAR podria no ser adecuada y se presenta el
razonamiento detrds del uso de un metamodelo, junto con ejemplos
ilustrativos. De entre los tres tipos de complejidades previamente
mencionadas (bioldgica, espacio quimico y metodoldgica), hemos decidido
centrar esta tesis en la complejidad bioldgica, pese a que, en la revisidon, hemos

profundizado en todas ellas.

En un evento adverso hay presente una compleja red de fenémenos
interconectados entre si. En tales casos, un modelo directo QSAR puede tener
dificultades para predecir el resultado conjunto de todos los fenédmenos
implicados, y la combinacidon de modelos de bajo nivel (Low-Level Models,
LLM) se presenta como una estrategia prometedora para mejorar la calidad
predictiva. Cada uno de estos LLM representa fendmenos biolégicos mas
simples dentro de una red compleja, lo que contribuye a una representacién
mas sencilla. En el contexto de los LLM, las rutas de eventos adversos (Adverse
Outcome Pathways, AOP) emergen como una fuente de informacion

mecanistica idonea, de la cual puede extraerse informacién para la
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identificacién de las dianas a modelar y de sus interacciones. Aunque es
importante destacar que los AOPs (Ankley et al., 2010) no fueron disefiados
con este propdsito especifico, proporcionan un entorno transparente,
accesible y estructurado que facilita la incorporacion de informacién
mecanistica en los modelos gracias a AOPwiki (https://aopwiki.org/). Los AOPs
conectan eventos moleculares iniciadores (Molecular Initiating Events, MIE)
con eventos adversos (Adverse Outcome, AO) a través de una cadena causal
de eventos clave (Key Events, KE), conectados mediante relaciones bien

definidas (Key Event Relationships, KER).

Un metamodelo basado en una red de AOPs puede construirse integrando
predicciones de multiples MIEs para predecir un parametro toxicoldgico que
describa el evento adverso. Para ello, se construyen modelos QSAR
individuales correspondientes a cada MIE identificado, y se usa la prediccion
de estos eventos para construir un modelo de alto nivel que las relacione con

las anotaciones bioldgicas del efecto adverso.

Todos los trabajos revisados coincidian en que la combinacion de MIEs para la
prediccion de diferentes pardametros toxicoldgicos producia mejores
resultados que los modelos directos QSAR (Gadaleta etal. 2018, 2022;
Kleinstreuer et al. 2018; Kotsampasakou y Ecker 2017). Sin embargo, la
mayoria de los estudios revisados empleaban datos in vitro para predecir
resultados in vivo, ignorando el efecto de los procesos farmacocinéticos de las
propiedades ADME en la prediccién de la exposicidon. Esto introduce
inconsistencias al intentar predecir datos in vivo desde variables puramente in
vitro. Para abordar este problema una posible solucion es utilizar modelos
cuantitativos de extrapolacion de datos in vitro a in vivo (Quantitative In Vitro
to In Vivo Extrapolations, QIVIVE) (Punt et al. 2021), basados en un modelo
farmacocinético basado en la fisiologia (Physiologically Based

Pharmacokinetic, PBPK). Este modelo simula eficazmente el comportamiento
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longitudinal de una sustancia en un organismo, considerando fenémenos
farmacocinéticos cruciales a lo largo del tiempo. El uso de modelos QIVIVE
permite extrapolar las concentraciones in vitro a dosis in vivo. Por lo tanto,
estos modelos proporcionan una herramienta valiosa para mejorar la precisién
y relevancia de los metamodelos, avanzando en ultima instancia en nuestra

comprensién del comportamiento de los compuestos en organismos vivos.

Integrando la TK sobre un metamodelo con multiples
MIEs para predecir colestasis

En virtud de lo anterior, en nuestro articulo (Rodriguez-Belenguer et al. 2023b)
perteneciente al Capitulo 2, seleccionamos la colestasis inducida por farmacos
como la adversidad a predecir. La colestasis es un evento adverso dosis
dependiente caracterizado por una interrupcion del flujo biliar, lo que conduce
al aumento de las concentraciones de acidos biliares hepaticos, pudiendo
provocar necrosis y/o apoptosis hepatica (Padda etal. 2011). El principal
mecanismo es la inhibicidn de transportadores hepaticos encargados de
facilitar el flujo de bilis desde el higado hasta el intestino delgado. A pesar de
que la bomba de exportacién de sales biliares (Bile Salt Export Pump, BSEP)
parece ser el principal MIE, no es el Unico transportador implicado. Por lo
tanto, al construir un modelo in silico para predecir la colestasis, es
fundamental considerar la contribucién de otros transportadores que también
podrian desempefiar un papel importante como MIEs. Entre ellos se
encuentran las proteinas asociadas a la resistencia a multiples farmacos (Multi
Drug Resistence Protein, MRP2, MRP3 y MRP4), la proteina de resistencia al
cancer de mama (Breast Cancer Resistance Protein, BCRP), la glicoproteina-P
(P-glycoprotein, P-gp) y los polipéptidos transportadores anidénicos (Organic
Anion Transporting Polypeptides [OATP1B1 y OATP1B3]). Kotsampasakou vy

Ecker (2017) demostraron que la colestasis es un parametro toxicoldgico lo
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suficientemente complejo como para requerir enfoques diferentes al
modelado directo QSAR. Esto se debe a que la colestasis, tal y como hemos
visto, involucra numerosos mecanismos bioldgicos subyacentes, y los modelos
directos QSAR probablemente tendrian una baja capacidad predictiva, siendo
muy dependientes de las estructuras quimicas, al no capturar adecuadamente
la esencia de cada mecanismo. Por ello, el objetivo de este estudio fue
desarrollar una metodologia alternativa que mejore la calidad predictiva del
modelado directo QSAR a través de la incorporacion de informacion

mecanistica y TK, con el fin de superar su alta dependencia estructural.

La principal novedad de nuestro trabajo es la integracion de informacion
mecanistica con toxicocinética, lo que permite la construccion de un
metamodelo que compara las dosis in vivo obtenidas de los modelos QIVIVE
con las dosis terapéuticas. De esta manera, este modelo aborda tanto el riesgo
como la exposicion, ofreciendo una perspectiva mas completa y precisa de la

colestasis inducida por farmacos.

Para determinar si esta metodologia aporta ventajas en términos de calidad
predictiva en comparacién con los modelos directos QSAR, se llevé a cabo una
evaluacion utilizando diversas métricas. Se compard el metamodelo que
incorpora informacién TK con aquel que solo utiliza datos in vitro y con los
modelos directos QSAR. Esta evaluacion se realizé en situaciones de mdaxima
disimilitud estructural, con el propdsito de simular escenarios comunes en el
descubrimiento de farmacos, donde se busca predecir la toxicidad de nuevos
compuestos que difieren significativamente en estructura de los ya existentes
en el mercado. Para ello, se utilizéd un enfoque de validacion cruzada (CV) con
20 repeticiones y 5 folds (20-Repeated 5-fold CV), cuyos resultados se
compararon con los de un enfoque de validaciéon cruzada basada en la
semejanza estructural (Similarity 5-fold CV). Por lo que, si los resultados de

cualquiera de los modelos evaluados mediante la CV basada en similitud son
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menos robustos (Figura 2), esto indica una dependencia estructural de dicho

modelo. Este mismo procedimiento se llevd a cabo también utilizando grupos

de

cddigos

anatomo-terapéuticos-quimicos

(Anatomical Therapeutic

Chemical, ATC) (Figura 3) para evaluar si los modelos eran aplicables a

compuestos con distintas propiedades farmacoldgicas.
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Figura 2: Diagrama de violin para diferentes métricas seleccionadas para evaluar la
abstraccion estructural de la metodologia propuesta a través de una validacion
cruzada basada en semejanza estructural.
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Figura 3: Diagramas de violin para diferentes métricas seleccionadas para evaluar la
abstraccion estructural de la metodologia propuesta a través de una validacion
cruzada basada en cédigos ATC.
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El metamodelo incorporando informacidn farmacocinética (Metamodel_pk)
resultd ser el mds sensible, con una sensibilidad superior al 80%, y con una
especificidad superior al 50% (Figuras 2 y 3). Este resultado se mantuvo
constante tanto en condiciones de evaluacién normales a través de un 20-
Repeated 5-fold Cross Validation, como en situaciones de maxima disimilitud

estructural y farmacoldgica (Similarity 5-fold Cross Validation y 5 ATC-fold CV).

Asimismo, el Metamodel_pk resulté ser un modelo con un poder predictivo
mucho mayor que el metamodelo que no incorpora informacién
farmacocinética (Metamodel_not_pk), lo que resalta la importancia de
considerar la farmacocinética en este tipo de estrategias. Los modelos directos
QSAR, tanto los que utilizan fingerprints [fp] como descriptores fisicoquimicos
[PC], resultaron ser altamente especificos pero muy poco sensibles. La
sensibilidad de ambos modelos QSAR se vio reducida en condiciones de
maxima disimilitud estructural y farmacoldgica, lo que reafirma su alta
dependencia con respecto de las estructuras. Dado que, nos enfrentamos a un
desequilibrio de clases en favor de la clase negativa, en estos casos, casi
siempre suele aportar mas valor un modelo con un equilibrio adecuado entre
sensibilidad y especificidad, pero priorizando una sensibilidad mas alta como

es el caso del metamodelo que aporta informacién farmacocinética.

Por tanto, en este estudio la combinacidon de multiples fendmenos bioldgicos
mas simples (MIEs) y la incorporacién de informaciéon TK a través de modelos
QIVIVE, produjo un rendimiento predictivo superior en comparacién con el uso
de modelos directos QSAR, especialmente en los casos de mdaxima disimilitud.
Estos resultados sugieren que la metodologia podria aplicarse en otros
pardmetros toxicoldgicos complejos, asi como tener un potencial uso en la
evaluacién de riesgos al considerar la exposicion y el riesgo en el metamodelo

propuesto.
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Modelos multinivel de arritmia ventricular

La combinacién de multiples MIEs no es la uUnica opcién de incorporar
informaciéon mecanistica en un metamodelo que trata de resolver Ia
complejidad bioldgica. Es por ello que en el Capitulo 3, también hemos dirigido
nuestra atencién hacia una familia de modelos mas complejos, llamados

modelos multinivel (Rodriguez-Belenguer et al. 2023c).

En este trabajo, se desarrollaron modelos multinivel al combinar el efecto del
bloqueo de tres canales idnicos para producir arritmia ventricular mediante un
complejo modelo electrofisioldgico. Esta aproximacion se podria considerar
mas mecanistica en comparacion con la prediccion a través de modelos
directos QSAR, ya que se basa en el conocimiento del mecanismo por el cual
los farmacos inducen arritmias ventriculares, afectando a la conductancia
idnica que regula el potencial de membrana de los cardiomiocitos (Bartos,

Grandi, y Ripplinger 2015).

El modelo electrofisiolégico que se usa para predecir biomarcadores de
arritmia ventricular a partir de las alteraciones de la conductancia requiere
simulaciones computacionales muy complejas, lo que lo hace tedioso y no
interactivo. Para abordar este problema, se pueden utilizar matrices de
simulaciones precalculadas, lo que permite un cdlculo instantaneo de
biomarcadores como la duracidon del potencial de accion al 90% de la
repolarizacion (APDgo). Sin embargo, la preparacidon de estas matrices (para
ello usamos una version modificada del modelo de O’Hara (O’Hara et al. 2011))
puede ser costosa en términos computacionales para los desarrolladores de
métodos, lo que limita el alcance de las condiciones simuladas. Asimismo, es
importante tener en cuenta que para proporcionar una descripcion mas
completa de los mecanismos celulares de las arritmias inducidas por farmacos,

la iniciativa Comprehensive In Vitro Proarrhythmia Assay (CiPA) propuso un
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nuevo paradigma de pruebas en el cual la idea principal es utilizar los efectos
de los farmacos medidos in vitro en multiples canales idnicos (Ina, Inat, lkr lto,
lcat, lk1, ¥ lks), en lugar de depender Unicamente de lg. En este sentido, se
requieren estrategias para acortar los tiempos de simulacién y, de esta forma,

poder incluir un mayor nimero de canales idnicos.

Una simulacién individual, que implica 500 latidos para un Unico conjunto de
valores de entrada para tres canales idnicos, tarda alrededor de dos minutos y
medio por CPU (Central Processing Unit). En nuestro caso, las matrices eran de
56*56*56 puntos (uno por cada canal idnico), lo que significa que, utilizando
32 CPUs, el tiempo necesario para obtener las matrices electrofisiolégicas de
nuestros modelos de arritmia ascendia a 56-56-56-2.5/32=13 720 minutos
(228.7 horas). Por lo tanto, la implementacion de estas matrices con una
combinacién de canales idnicos superior a tres (tal y como propone CiPA), se
convierte en una limitacién en si misma, ya que el tiempo de calculo se

incrementa exponencialmente.

Por todo lo anterior, el objetivo principal de este trabajo fue reducir los
tiempos necesarios para obtener las matrices electrofisiolégicas, para ello se
llevaron a cabo diferentes muestreos regulares en los que se evaluaron la
calidad de los modelos, a través de métricas como el Error Relativo Medio en
% (Mean Relative Error, MRE) y el porcentaje de datos con un Error Relativo
(Relative Error, RE) inferior al 5% (Non-Large Data-Points Error, NLDE) para
diversas aproximaciones de ML (transformacion polinémica con regresion de
Ridge [PR], SVM, y perceptrén multicapa [Multi-Layer Perceptron, MLP]). De
esta manera, pudimos determinar la frecuencia con la que era necesario
construir estas matrices con la certeza de que la informacion no utilizada no
resultaba necesaria. Los modelos fueron validados en diferentes particiones, y

a través de un conjunto de datos externo conteniendo 12 farmacos propuestos
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por la iniciativa CiPA, los cuales presentan unas propiedades electrofisioldgicas

bien conocidas.

Los resultados obtenidos permitieron demostrar que, para este problema, el
modelo que mejores resultados obtuvo fue SVM con un muestreo de uno cada
cien puntos. En esta situacién el MRE en test no superd el 0.20% (Figura 4) y

no hubo ningun dato con un RE superior al 5% (Figura 5).
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Figura 4: MRE(%) para los diferentes muestreos y modelos evaluados.

En la validacién externa que utiliza los 12 farmacos propuestos por la iniciativa
CiPA, el RE maximo fue practicamente despreciable, de 1.5%, lo que supone
un error de 4ms en la determinacion del APDgo. En términos practicos, esto
implicaria, por ejemplo, un cambio en el valor del APDg de 200 ms a 204 ms,
sin que esto tenga ningun impacto en la consideracién del riesgo

arritmogénico.
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Figura 5: RE (%) en funcidn de los valores experimentales de APDgo. Las columnas
representan los tres modelos entrenados PR, SVM, y MLP. Las filas se corresponden
con los diferentes ratios de muestreo evaluados.

Por lo tanto, se consiguid reducir de manera significativa la cantidad de
simulaciones requeridas para efectuar predicciones precisas de
biomarcadores de arritmia ventricular mediante la implementacién de
modelos multinivel con algoritmos de ML. Hemos evidenciado que la cantidad
total de datos inicialmente simulados puede disminuir hasta un 1% de los
utilizados hasta ahora, lo que implica una reduccién sustancial en el tiempo de
calculo, pasando de las 228.7 horas originales a aproximadamente 2.29 horas.
Este enfoque abre la posibilidad de modelar procesos bioldgicos mas

complejos, como aquellos que involucran cuatro o mas canales iénicos.

Variabilidad asociada a las predicciones de modelos
multinivel
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A pesar de que los enfoques computacionales son una valiosa incorporacion a
los métodos puramente experimentales, es esencial realizar una exhaustiva
evaluacién de la variabilidad asociada a las predicciones con el fin de mejorar

la confiabilidad de los métodos in silico (Gosling 2019).

En el pasado, se han propuesto diversas metodologias para caracterizar la
variabilidad observada en los experimentos in vitro que miden el bloqueo de
los canales idnicos debido a productos quimicos (Elkins et al. 2013; Kramer
et al. 2020; Li et al. 2017; Mirams et al. 2014). Por otro lado, la variabilidad
interindividual asociada a los pacientes representa una fuente de variacién
relevante, consecuencia de multiples factores vinculados con las
caracteristicas individuales de los pacientes. Al emplear enfoques in silico, los
modelos electrofisioldgicos que incorporan la ICso especifica de cada canal
idnico en los biomarcadores de arritmia ventricular, utilizan numerosos
parametros que se ajustan para adaptarse a los resultados experimentales. Sin
embargo, dado que los seres humanos no somos fisiolégicamente idénticos,
ningn modelo electrofisioldgico puede producir resultados que representen
adecuadamente a todos los pacientes ni explicar con precision las diferencias
observadas entre nosotros (Wisniowska, Tylutki, y Polak 2017). Por ello, los
enfoques poblacionales se han descrito como una estrategia Util para
considerar la variabilidad interindividual en los pardmetros de los modelos in

silico.

En el Capitulo 4, en nuestro trabajo (Kopariska y Rodriguez-Belenguer et al.
2023), hemos abordado la caracterizacion de la variabilidad asociada en los
modelos multinivel. Para ello, se ha identificado la incertidumbre aleatoria. Asi
como, desarrollado métodos para caracterizar y propagar (via simulaciones de
Monte-Carlo) este tipo de variabilidad seleccionada. Finalmente, se ha
cuantificado la variabilidad presente en los resultados finales de los modelos

multinivel mencionados anteriormente. Por todo ello, los objetivos de este
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trabajo son, ofrecer una representacion mas realista de las predicciones de los
biomarcadores de proarritmia, asi como permitir el estudio del impacto de
fuentes aleatorias de variabilidad, tanto individualmente como en conjunto,

sobre las predicciones.

La incertidumbre aleatoria se debe a la variabilidad intrinseca y extrinseca,
junto con errores de medicidn, que se utilizan para analizar las asociaciones
con las entradas del modelo. Estos elementos se resumen como "variabilidad
experimental" (Simulacidon A) y "variabilidad interindividual" (Simulacién B),
afectando los valores de ICso y los parametros predefinidos en los modelos de
simulacidon de potencial de accidn electrofisiolégico (Simulacion C es una

combinacién de ambas).

Al comparar las distribuciones de las tres simulaciones representadas en la
Figura 6, que corresponden a los 12 compuestos de CiPA, se evidencian
notables diferencias en términos de su amplitud y asimetria. En la Simulacién
A, se introdujeron valores aleatorios con una media de 0 y una desviacion
estandar de 0.5 en los valores de ICso para generar las entradas del modelo.
Por lo tanto, la forma y la anchura de estas distribuciones no estdn
directamente influenciadas por las suposiciones utilizadas para caracterizar

este tipo de variabilidad.

En la Simulacion B, a diferencia de la Simulacidn A, la dispersién y la forma de
las distribuciones, si se deben a las suposiciones realizadas sobre la
variabilidad interindividual. Por ello, la suma de nuUmeros aleatorios
distribuidos normalmente a los valores de salida en la Simulacién B resulta en
distribuciones de APDgy con un histograma normal y sin diferencias notables

en el ancho.

Al combinar ambos tipos de variabilidad en la Simulaciéon C, las distribuciones

son bastante similares a las obtenidas en la Simulacién B, pero con una
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dispersion ligeramente mayor y cierta asimetria. Es crucial destacar que el
efecto de considerar ambos tipos de variabilidad simultdneamente no es

aditivo y varia segun el farmaco en estudio.
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Figura 6: Graficos de violin mostrando las distribuciones de los valores de APDg
obtenidos en diferentes simulaciones de Monte-Carlo introduciendo los siguientes
tipos de variabilidad: Simulacién A:Variabilidad experimental (A-plCsg); Simulacidn B:
Variabilidad interindividual (A-Parametros); Simulacién C: Combinacién de
variabilidad experimental e interindividual.
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En cuanto a los graficos de barras de la Figura 7 (utilizados para determinar los
percentiles 10 y 90), no muestran grandes diferencias en las predicciones de
APDgy generadas en las tres simulaciones realizadas para el mismo farmaco.
Esto sugiere que la prediccion real, calculada como el valor mediano del APDgy,

apenas se ve afectada por el tipo de simulacidén y se mantiene constante.
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Figura 7: Graficos de barras que muestran la mediana de las predicciones de APDgg
obtenidas para los 12 compuestos CIPA, utilizando tres tipos de simulacién.
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Simulacién A: Variabilidad experimental (A-plCsp); Simulacion B: Variabilidad
interindividual (A-Parametros); Simulacion C: Combinacién de variabilidad
experimental e interindividual. Los intervalos representan los percentiles 10t y 90t
obtenidos a partir de las distribuciones mostradas en la Figura 6.

En resumen, la inclusion de la variabilidad experimental en las entradas del
modelo multinivel de seguridad cardiaca representd un avance significativo
para aumentar la confiabilidad de las predicciones derivadas de estos
modelos. Ademas, considerar las diferencias interindividuales en cuanto a los
efectos de los medicamentos es especialmente importante cuando se trata de
proteger a personas con mayor susceptibilidad a desarrollar arritmias
cardiacas, ya que como se describe en Wisniowska, Tylutki, y Polak (2017): "Los
seres humanos varian, por lo tanto, los modelos cardiacos deben tenerlo en

cuenta...". Finalmente, la combinacidn de variabilidad u otros tipos de
incertidumbre no implicé que los efectos de cada fuente se sumen en la

prediccién final.
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Introduction

Traditionally, toxicology has relied on animal experiments to assess the
adverse effects of candidate drugs. Nonetheless, in recent years, significant
efforts have been made to reduce, refine, and replace animal testing with New
Approach Methodologies (NAMs) (Russell & Burch, 1960). This shift towards
sustainable science was initiated by the publication of "Toxicity Testing in the
21st Century: A Vision and a Strategy" by the National Academy of Sciences
and National Research Council of the USA (Council, 2007).

Despite these advances, inherent complexities in the phenomena under
research persist in both experimental and computational methods (in silico)
within the realm of NAMs, making it challenging to assess the toxicity of the
chemicals under study. In this context, two fundamental questions emerge:
what do we understand by "complexity", and what types of complexity can we
encounter? According to the Cambridge Dictionary, complexity is defined as
"the state of having many parts and being difficult to understand or find an
answer to a problem". Furthermore, an added challenge lies in capturing the
interaction among each of these components, resulting in emergent
phenomena that are unpredictable at lower levels of representation. With
respect to the types of complexities, we propose three major groups:

mechanistic, chemical space and methodological.

On the one hand, mechanistic complexities encompass situations in which
biological endpoints are constituted by several different processes
interconnected in a network, and a reductionist approach may lead to a loss of
information or a poor representation of the underlying mechanisms in a
biological phenomenon. Chemical space complexities, on the other hand, arise
when evaluating the toxicity of new compounds that differ significantly from

those used to build a model. Finally, methodological complexities pertain to
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the intricacies and challenges encountered in designing, implementing, and
executing research methods and procedures. This complexity may occur due
to the nature of the research problem, the need to account for multiple

variable types, or because of the typical class imbalance problem.

Now, the following question that emerges is: what causes these complexities?
Essentially, these complexities rely on the complexity of the biological and
chemical processes in the organisms. These complexities frequently constrain
experimental and computational methods, compelling them to make
numerous assumptions that, in certain instances, may not align with reality. /In
vitro assays, one of the most widely used NAMs, have significant advantages
such as speed, cost-effectiveness and ethical acceptability. However, they
typically focus on individual cell types or tissues, thereby missing factors such
as organ-to-organ communication, systemic effects, and intercellular
interactions, affecting the overall relevance of the data collected (Hartung,
2018). Finally, it is essential to emphasize that computational methods, despite
the significant benefits they offer, such as cost-effectiveness (Council, 2007),
reduced reliance on animal testing, and high-throughput screening (Raies &
Bajic, 2016), heavily depend on the data generated by experimental methods.
This dependence exposes them to the limitations of experimental data, in

addition to their own inherent limitations.

Hence, in this work, we will review how the inherent complexities in the field
of computational toxicology have been addressed through the combination of
multiple models and the integration of their results. Instead of following a
systematic review approach we aim to provide readers with a practical guide
on the effective utilization of model combination in the field of computational
toxicology, offering insights on when, how, and for what purposes to employ
this approach. To facilitate this, we will delve into the "metamodel" concept

which represents the combination of multiple models, with each individual
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model referred to as a LLM. As the primary focus of this review lies in predictive
models (Raies & Bajic, 2016), it is noteworthy that each of the LLMs is
constructed utilizing QSAR models. By integrating these LLMs, we can
effectively tackle the complexity at hand and optimize our problem-solving
capabilities. The metamodel framework enables us to benefit from a
comprehensive and well-rounded approach that capitalizes on the unique
attributes of each component (March-Vila et al., 2023; Bringezu et al., 2021;
C.-H. Chen et al., 2020).

Type of metamodels

A metamodel is a supervised learning approach which involves the
combination of several LLMs to achieve superior predictive performance
compared to what a classical QSAR model could achieve (Polikar, 2006; Rokach,
2010). Figure 1 presents an overview of the process from problem formulation
to its resolution using metamodels. The icons surrounding the head represent
some of the day-to-day issues faced by a computational toxicologist, such as
high dissimilarity between the test set and train set, complex biological
phenomena, algorithmic limitations, or information accessibility issues which
stem from the confidentiality of pharmaceutical companies' data, among
others. These problems form the basis of the three types of complexities we
analyse: mechanistic, chemical space, and methodological complexities.
Therefore, once computational toxicologists identify the problem at hand and
its associated complexity, they can attempt to solve it using metamodels. On
the one hand, there may be a need to better describe the mechanisms of a
complex endpoint, where each model represents a specific mechanism

(mechanistic-based metamodel).
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Figure 1: Overview of how three different types of complexities in toxicology are

tackled through the combination of models.
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On the other hand, there may be a requirement to improve the description of
a complex chemical space, with n models representing different chemical
spaces (fragment-based chemical spaces metamodel). Also, there may be a
challenge in enhancing the prediction capability by combining models to
better capture the complex association with an endpoint using different
algorithms or descriptors (methodological-based metamodel). Regardless of
the problem type, once the LLMs are constructed and used for predicting, their
outputs are combined to obtain the desired outcome (Bringezu et al., 2021;

Daghighi et al., 2022; Yu et al., 2022).

In the process of integrating predictions, another crucial step involves
identifying the most suitable combinatorial strategy. This can be achieved
through methods such as logical operations (OR, AND, Majority) or building a
high-level machine learning model, which is trained using as input the
predictions produced by the LLM (Pastor et al., 2021). On certain occasions,
the choice of the method is not driven by the predictive performance, but
rather by the most logical approach from a toxicological perspective. In such
cases, considerations related to the safety and potential risks associated with
the chemicals being analysed take precedence over the absolute performance

of the model.

Table 1 presents a summary of the main problems associated to the
complexities reviewed in this article, highlighting the underlying problem that
motivates their use, as well as explaining the reasons why a classical QSAR
model would not be a more suitable option, along with the kind of LLM and
the main examples to be reviewed.

Table 1: Summary of the underlying problem that leads to proposing a metamodel,

kind of metamodel, why a classical QSAR model is not convenient, rationale of
metamodel use, low-level models and examples.

. Why not a Rationale of Low-level Examples
Kind of .
Problem complexit classical metamodel models
plexity QSAR? use
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Need to simplify

Molecular Initiating

Molecular Initiating
event combination
(Sapounidou et al.,
2023; Gadaleta et al.,

confidentiality

not have access to
the structures.

different positions
in the chemical
space.

model.

Classical QSAR the problem into 2022, 2018;
. Events (MIEs) of an R
models cannot different models Kleinstreuer et al.,
Complex Adverse Outcome
R . L capture the that represent the 2018;
biological Mechanistic L . Pathway (AOP) or
intricacies of different processes N Kotsampasakou &
phenomenon 5 . different levels of
complex biological of the mechanistic Ecker, 2017).
phenomena. phenomenon . X e Multi-level model
information. R
under study. (Mirams et al.,
2014a; Rodriguez-
Belenguer et al.,
2023a).
e Combination of
Each models without
Data Itis impossible to pharmaceutical structure sharing
accessibilit combine all the company contains Each dataset for (Bosc et al., 2021;
Y . datasets into one its own structures each company Gedeck et al., 2017).
due to Chemical space i
structure because you do that can cover represents a * Federated learning

(S. Chen et al., 2021;
Heyndrickx et al.,
2022b; Simm et al.,
2021).

A classical QSAR
may overlook or

Models trained on
individual clusters
can capture the
specific patterns
within each subset.

Each low-level
model is trained

Cluster using

majority class.

prediction towards
the majority class.

evenly until a 50:50
ratio is reached.

Lack of . L with the dataset unsupervised
. P . fail to account for Combining the . X .
identifiability Chemical space . belonging to a learning (H. Liet al.,
N the inherent models enables ’ K
of patterns in 5 . cluster obtained by 2018; Samanipour
the data heterogeneity leveraging the a clusterin etal., 2022)
within the dataset. strengths of each N g v .
. technique.
cluster-specific
model across the
entire dataset.
e Algorithm
The strengths and combinations .
weaknesses of the (Cerruela Garcia
A classical QSAR ) X Different machine etal., 2018; D’Souza
B ) different algorithms .
Algorithm N algorithm cannot learning et al., 2021; Grenet
. Methodological . can be . R
limitations excel in all approximations for etal., 2019; Hanser
. compensated by
scenarios. - the same dataset. etal., 2019; He et al.,
combining them .
with each other. 2019; Liew etal,,
. 2011; L. Wang et al.,
2021; Yu et al., 2022).
The combination of
models in which
each one has a
A classical QSAR . .
model with so different type of e Descriptor
Molecular many types of variables allows Different kind of combinations
descriptor Methodological . v tvp you to attack the variables for each (Bugeac et al., 2021;
o variables may have e :
limitations ™ N multicollinearity model. Kwon et al., 2019;
multicollinearity
problem separately Smusz et al., 2013).
problems. . N
without the risk of
losing information
that is necessary.
The combination of Replicating the
A classical QSAR appropriately minority class in e Creation of balanced
Class will tend to more balanced individual each model and subsets from original
imbalance Methodological effectively models will avoid distribute the series (Bringezu
limitations predicting the biases in the majority class et al., 2021; March-

Vila et al., 2023).

Mechanistic-based metamodel

Understanding the mechanism of toxicity is crucial when evaluating a specific

toxic response. Without knowledge of the underlying mechanism, it becomes
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challenging to make informed decisions regarding the toxic effects of the drug
under examination (Ross, 1989). In fact, Cronin & Richarz (2017) highlight a
shift in the field of toxicology towards “an assessment of the (perturbation of)
normal biological pathways relating to toxicity allowing for a mechanistic basis
to understanding the effects of chemicals” (Cronin & Richarz, 2017). Hence, in
computational toxicology, constructing models grounded on mechanistic
knowledge offers the benefits of enhancing the model's predictive accuracy,
its predictive performance when extrapolating, and increasing its
interpretability by incorporating the biology that underlies the endpoint of
interest (Benzekry, 2020). This has been a longstanding pursuit in the field of
artificial intelligence (Al), aiming to move beyond “black box” models that lack
transparency and fail to explain the reasons behind their predictions (Petch

et al., 2022).

In the realm of in silico toxicology, classical QSAR models have shown efficacy
in predicting simple biological phenomena (Chinen & Malloy, 2022; De et al.,
2022). However, their performance tends to be inadequate when it comes to
predicting more complex biological phenomena (e.g., cholestasis, steatosis, or
neurotoxicity). Hence, in this review, a mechanistic-based metamodel is
focused on the integration of the outputs of several LLMs focused on simpler
biological phenomena, with each model representing a specific mechanism
relevant to the desired endpoint. So, the combination of simpler biological
phenomena at the receptor or organ level is investigated, thereby admitting
that complex mechanisms cannot be directly modelled. This recognition arises
from the understanding that a classical QSAR model would fail to capture the
intricate information underlying each distinct biological phenomenon

(Cherkasov et al., 2014).

To overcome the limitation that complex biological phenomena cannot be

correctly modelled by a classical QSAR model, it would be useful to integrate

35



CAPITULO 1

existing mechanistic knowledge into a rational framework, like the one
provided by an Adverse Outcome Pathway (AOP). It is important to make clear
that AOPs were not created with this purpose, however, they provide a
structured and transparent framework which allows models to take advantage
of the mechanistic information accessible on AOPwiki. AOPs link molecular
initiating events (MIEs) to Adverse Outcomes (AO) through intermediate key
events (KEs), providing a mechanistic understanding of the toxicity of chemical
compounds (Ankley etal.,, 2010). One potential strategy to construct a
metamodel based on AOP network (which can link different MIEs) consists of
the integration of information from multiple MIEs to predict a selected
toxicological endpoint. In this scenario, individual QSAR models are
constructed corresponding to each identified MIE, enabling the prediction of
these events for a dataset with clinical annotations. So, the prediction matrix
obtained would serve as the input variables for a model, while the clinical
annotations would act as the output variable. The final predictions can be
derived by either employing a voting system among the different predicted
MIEs or by retraining the prediction matrix using a classifier, as mentioned
above. The choice on how to merge model outputs relies on the nature and
severity of the adverse event under evaluation. For instance, in some cases, a
logical OR could be the preferred approach as it would indicate that the
presence of any of the studied mechanisms alone would classify the
compound as toxic. However, in other cases, a majority or a greater number of
involved mechanisms may need to provide a positive vote to determine

whether a compound exhibits positive or negative activity.

Kotsampasakou & Ecker (2017) employed a combination of MIEs to predict
cholestasis. In this work, the authors created an in silico method by
constructing a metamodel that combined multiple transporters (acting as
MIEs) related to cholestasis occurrence and compared it with a classical QSAR

approach. In this case, the MIEs matrix was trained with different Machine
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Learning (ML) classifiers (Kotsampasakou & Ecker, 2017). The findings
indicated that the metamodel produced better predictive performance than
the classical QSAR models. Also, Gadaleta et al. (2022) developed a MIE-based
metamodel approach for predicting neurotoxicity. Fifteen QSAR models were
created, each corresponding to a different MIE and were combined using a
balanced random forest. The MIE predictions were used alongside chemical
descriptors and structural fingerprints in various classifiers to compare their
predictive performance. Overall, classifiers based on MIE predictions showed
prediction accuracy similar to those based on chemical descriptors and
structural fingerprints (Gadaleta et al., 2022). Other works that have been
evaluated using similar methods have also demonstrated encouraging
outcomes (Sapounidou et al., 2023; Gadaleta et al., 2018; Kleinstreuer et al.,

2018).

However, although AOPs provide a valuable framework for this type of
metamodeling, it is not the only way to combine biological information. In
other studies, Mirams et al. (2014) developed a multi-level in silico tool
combining information from various ion channels to predict the action
potential duration at 90% of the repolarization (APDgo), which is an important
measure of the cardiac cell's depolarization and repolarization time during an
action potential (Mirams et al., 2014a). The authors were able to create a
metamodel that incorporated this multi-level information, resulting in highly
accurate predictions. This type of metamodel that combines ion channels for
the prediction of a given biomarker was subsequently used in another work
(Rodriguez-Belenguer et al., 2023a). Here, Rodriguez-Belenguer et al. (2023)
employed a metamodel with various ion channels to predict APDgg, aiming to
reduce the number of time-consuming electrophysiological simulations. The
authors successfully demonstrated that decreasing the number of simulations

led to an almost hundred-fold reduction in computation time.
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This type of metamodel is limited by the difficulty of identifying the biological
foundations of toxicological endpoints and a wide enough collection of
involved mechanisms. For instance, when attempting to model an AOP
network with multiple MIEs, the possibility of having poor knowledge about a
specific MIE or the presence of missing data in any of the MIEs may occur. This
can result in the metamodel lacking one or more crucial low-level models that
could be relevant to the occurrence of the adverse event in question. In
addition, the AOP itself is not always well-defined, and indeed, the AOP evolve
with time, and they are arranged in networks. This is an additional, higher level

of complexity.

Fragment-based chemical spaces metamodel

The drug-like chemical space has a potential size as vast as 10%° compounds
(Hoffmann & Gastreich, 2019). Hence, in novel drug development, it is
essential to have alternatives to classical QSAR models for accurately
predicting the endpoint of interest for compounds under investigation,
especially when dealing with those that may occupy different regions in the
chemical space compared to the ones present in the training dataset.
Combining models from different chemical spaces can enhance the predictivity
of a classical QSAR model, with two scenarios motivating us to construct such
metamodels. The first involves working with several chemical spaces in the
pharmaceutical industry, which can be complicated since the intellectual
property of the compounds belongs to each individual company, necessitating
the search for strategies that allow working without the need to share
compound structures. The second involves having access to a complete
dataset from which we are unable to identify any patterns at first glance.
Regarding the first case, different companies may possess molecules that
occupy a specific position in the chemical space, while other companies may

have other drugs with similar or different positions. In the second case, the use
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of clustering algorithms (belonging to the branch of unsupervised ML
algorithms) can help to identify data patterns. Regardless of the type of
scenario, developing individual models for different chemical spaces and
combining them could increase the predictivity of classical QSAR model that
would otherwise miss the inherent heterogeneity in the dataset. One must
estimate which approach -logical operations or machine learning - yields the

most accurate predictions.

Fragment chemical spaces without sharing data

Martin & Zhu (2021) pointed out that collaboration between pharmaceutical
companies can be hindered by the protection of intellectual property and
trade secrets (Martin & Zhu, 2021). The specific biological structures and
targets of interest to each company create further barriers to collaboration.
Thus, it becomes crucial to adopt strategies that facilitate sharing of models
without disclosing structures or activity data to enable secure collaboration
among competitors. For this, different strategies can allow to work with
confidential data, but the ones we have reviewed focus on sharing the
individual predictions from each low-level model and the use of federated
learning strategies (McMahan etal.,, 2016; Konecny etal., 2017). Both
strategies are specifically designed to overcome the collaborative paradigm
and enable data owners to jointly train a model without exposing their data to
others. As an example, Gedeck et al. (2017) constructed a metamodel with a
Bayesian ridge regression that practically reproduced the results of a classical
QSAR model (Gedeck et al., 2017). In another work, Bosc et al. (2021) formed
a consortium with different partners and trained multinomial naive Bayes
models (Manning et al., 2008) with eleven datasets for predicting malaria
(Boscet al., 2021). The metamodel exhibited good performance across various
validation sets and had the significant advantage of being computationally

efficient. They also developed a web application accessible through the link:
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https://www.ebi.ac.uk/chembl/maip/. Regarding  federated learning

strategies, the MELLODY project utilized federated machine learning to train
predictive models on data that remains on the owner's servers, without the
need to transfer it to a central location. This approach ensures that the data
and asset owners retain control of their information throughout the project.
The federated model was trained on the platform by aggregating the gradients
of all contributing partners in a cryptographic, secure way, which enabled the
creation of a global federated model for drug discovery without sharing
confidential datasets. The successful application of federated learning in
MELLODY will lead to substantial efficiency gains in drug discovery and
development, as it expands the data available to a broader set of stakeholders
(Heyndrickx et al., 2022b). Other works that have been reviewed show that
federated learning within computational toxicology is a powerful tool to work
in a collaborative way between companies (S. Chen et al., 2021; Simm et al.,

2021).

In essence, these kind of metamodels have the significant advantage of
increasing the possibility of having similar compounds between both the
training and test sets by working collaboratively between companies with
different chemical spaces. However, it is worth noting that the model closest
to the test set in the chemical space will perform better than the others and
may not benefit from the combination of models. In contrast, the combination
of all models should provide better results for companies that are further away
from that chemical space. At the outset of the modelling process, there is no
information available on the similarity of the test set to the dataset or to those
of other pharmaceutical companies. While this technique may disadvantage a
company, the collective benefits outweigh any potential drawbacks. One
potential solution to overcome these disadvantages may be to eliminate
individual company predictions that exceed a certain distance from the test set

(this approach is being carried out in a work of our group). In this way, the best
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LLM would not lose importance by the combination of models, and the worst
models would still contribute to the combination.

Fragmenting chemical spaces with clustering approaches

Datasets often contain inherent heterogeneity, where different subsets of
instances exhibit distinct patterns or behaviours. By clustering the data, you
can identify and separate these subsets into individual clusters. Building
separate models for each cluster enables targeted modelling, ensuring that

each model captures the specific patterns within its assigned cluster.

One can either use expert knowledge to cluster the data, for instance using a
specific chemical, molecular or pharmacokinetic descriptor and group the data
that fall within certain thresholds, or unsupervised learning algorithms such as
K-means (Selim & Ismail, 1984), DBScan (Ester et al., 1996) or hierarchical
clustering (Johnson, Stephen C., 1967) to understand better how the data
groups together and then create subsets based on the grouping. We can trace
approaches to solve this issue back to 1977, when Svante Wold published
SIMCA (Wold & Sjostrom, 1977) as a way to identify clusters within chemical

data.

The approach known as “clustering first, and then modelling” (H. Li et al., 2018;
Yuan etal., 2007) has been applied in some works. Yuan et al. (2007)
concluded in their work that the statistical results obtained by local models
based on the subsets were much superior to those obtained by the global
model based on the whole training set (Yuan et al., 2007) and Li et al. (2018)
mentioned that by creating subsets of similar compounds the afterwards
modelling shows better predictions because analogical chemicals are more
likely to capture same category molecules precisely, suggesting that low-level

models are superior to classical QSAR models (H. Li et al., 2018).
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Golalipour et al. (2021) compiled a plethora of methods to cluster data and
combined these clusters into an ensemble. They suggested that each
clustering method has good efficiency on specific data (Golalipour et al., 2021),
which means that one should review the data and the context in which is
working to choose the clustering method that best suits its needs. Also, they
mentioned that a clustering ensemble shows a better performance than the
set of base clustering methods (Golalipour et al., 2021), a situation we have

also observed in our ensemble models when compared to classical models.

An illustrative example of how to cluster the data either using clustering
algorithms or expert knowledge, such as defined labels, can be found in the
work of Samanipour et al. (2022). They collected acute fish toxicity data from
different sources and derived the toxic classes of the compounds using on one
side k-means clustering and on the other, Globally Harmonized System of
Classification (GHS) (UNECE, 2021) labels referred to acute fish toxicity based
on different thresholds, so the compounds can be classified from very low to
high toxicity (Samanipour et al., 2022). Then, they compared the performance
of a QSAR regression model against a descriptor-based direct classification
model. Finally, they checked the categorization obtained from the k-means and
the knowledge based on GHS, finding that there is a high level of similarity in
the thresholds (Samanipour et al., 2022). We find these results illustrative
enough to encourage clustering and subset selection using an unsupervised
clustering algorithm to identify patterns within data and generate subsets that
allow the creation of LLMs that overcome the limitations of the heterogeneity
in the training series. Still, one must be cautious since each dataset must be

well-defined and studied, alongside with the problem to solve.

In broad terms, by using clustering techniques, you can identify distinct
subsets of data with similar characteristics (Samanipour et al., 2022). Each

individual model can then specialize in learning patterns within a specific
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cluster, potentially leading to improved performance. However, if the clusters
are not well-defined or if there is significant overlap between clusters, the
individual models may not effectively capture the desired patterns. Clustering
errors or misclassifications can propagate to the metamodel, impacting its

overall performance.

Methodological-based metamodel

In this category of metamodels, those that are built without depending on the
examination of any biological mechanism, physicochemical attribute, or
pharmacokinetic property are included. Their primary objective consists of
improving model performance by addressing methodological challenges which
are universal in the realm of computational toxicology. Some of the commonly
reviewed in this work include the inadequacy of a single algorithm or variable
type to effectively solve the problem and class imbalance. This approach is
designed to tackle a specific aspect of the problem at hand, surpassing the
limitations of a classical QSAR model. Here, the merging of outputs from
individual models would prioritize achieving the optimal performance of a
metamodel, as the resolution of the problem is not affected by biological or

chemical complexities.

Algorithm limitations

While numerous ML algorithms have been employed to acquire knowledge on
QSARs, there is not a universally recognized optimal algorithm for QSAR
learning (Wu etal., 2021). Thus, understanding the working principles,
advantages, and disadvantages of each algorithm is crucial to determine the
potential benefits that a combination of algorithms can offer for a given

problem or task (Table 2).
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Table 2: Summary of the main ML algorithms in IST and their advantages and
disadvantages.

How does it work?

Algorithms Problem Association Ad d
A statistical model e Simple to .
R . ) . . Subject to

Linear regression (LR) that finds the linear implement. _

L . . . . - underfitting.

(Hastie, Tibshirani, & Regression Linear relationship between e Overfitting can be L frect of

Friedman, 2009) independent and reduced by argre etecto
dependent variables. regularization. outliers.

A statistical method
that constructs a .
X . e Handling .

. linear regression o . Subject to
Partial least square model b roiectin multicollinearity. overfittin
(PLS) (H. 0. A. Wold, Regression Linear v prol . & e Dealing with il

both the predicted ) X . Large effect of

1968) X high-Dimensional )
variables and dat outliers.
observable variables ata.
onto a new space.

A I|n_ear regression Biased
technique introduces e Performs well .
o I estimates
regularization to with high- .
revent overfitting b dimensional data when there is
Ridge (L2) (Hoerl & ) - prev 8 by : substantial
Regression? Linear’ adding a penalty term e Reduces the L .

Kennard, 1970a) . . multicollinearit
to the loss function. impact of
Penalizes the sum of irrelevant 4 .

. Shrinks all
squares of  the predictors. .
N coefficients.
weights.
A linear regression
.technlque that e Find relevant
introduces . May struggle
N predictors. .
regularization and o with
o Effective in e .
N performs feature R X multicollinearit
Lasso (L1) (Tibshirani, . . 3 . situations where
Regression@ Linear? selection by adding y.

1996) only a small .

an absolute penalty Sometimes
number of

term to the loss dict can be very
function.  Penalizes frel ¢ orsiret strict.
the sum of absolute ruly important.
values of the weights.
It is a simple
probabilistic machine

. B Assumes
learning  algorithm independence
that makes e Fast and efficient. betv\?een

Naive Bayes (Gareth Classificatio . predictions based on e Handles missing

Linear i features.
James, 2013) n the application of data gracefully. .
. . Assumption
Bayes' theorem with
. about the
the assumption of A
independence priors.
between features.
Can lead to
overfitting  if
. the degree of
A regression the polynomial
. . technique that fits e Works on any size X .
Polynomial (Hastie, is too high.
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to capture nonlinear shape.
. R degree the
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higher of
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complexity.
A supervised learning
algorithm that finds
an optimal
Support Vector ) hyperplane or . Effect'lv? in high- Computz?honal
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e Improved
eneralization
An ensemble fe ardin; e less
learning method that X g. . 8
. X R individual Interpretable
Regression combines multiple -
Random Forest (RF) . . decision trees. than the
) and Non-linear decision trees, where . K -
(Breiman, 2001) P . X e Handling high- decision trees.
classification the final result is R . .
. dimensional data. e Computational
obtained through N )
. N e The importance complexity.
voting or averaging. )
of the variables
can be obtained.
Assigns a data point implicity.
K-Nearest Neighbors Regression 8 p - * Simplicity . ¢ Feat.ure
! . based on the majority e No assumptions Scaling.
(KNN) (Fix & Hodges, and Non-linear R
e . vote or average of its of data e Memory
1951) classification X L .
k nearest neighbours. distribution. requirements.
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liers.
A gradient-boosting e Parallel and . (I:Auet:o:
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Chen & Guestrin, and Non-linear set of weak learners processing. zsatg)tl-.‘. ith
2016) classification to build a powerful e Feature ¢ h.roh ems wit
predictive model. importance. {g - .
dimensionality
A computational
model that learns e large training
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(NN) (Rumelhart and . ; complex.patterns.
- Non-linear between input and o e Hyperparamet
et al., 1986a) classification e Flexibility.
output data through er manual
interconnected layers tuning.
of nodes (neurons).

2 They can be incorporated into classification algorithms as hyperparameters
® They can be incorporated into algorithms suitable for non-linear associations

In this context, it is important to note that a classical QSAR modelling approach
with the same model does not necessarily excel in all scenarios. Thus,
considering the potential complementarity among different algorithms (Table
2) becomes crucial to develop more reliable models for toxicological
predictions. For instance, in the field of Drug-induced liver injury (DILI)
prediction, researchers such as Liew et al. (2011) were early adopters of model
combinations to improve their predictions (Liew et al., 2011). The approach
involved constructing a total of 617 base classifiers using a diverse set of 1,087
compounds. These base models incorporated K-NN and SVM, which were
further stacked with a Naive Bayes classifier. The performance of the ensemble
was evaluated through internal validation using a five-fold cross-validation
technique. The study revealed that the ensemble model exhibited proficient
classification of positive compounds associated with hepatic effects. However,
its performance was comparatively lower for negative compounds, especially
when they possessed structural similarities. In the latter case, a classical QSAR

model is probably more efficient.
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In another work, Hanser et al. (2019) showed that using the same training
series with a combination of statistical models like RF and SOHN (Hanser et al.,
2014) along with an expert system such as Derek Nexus, produced a better
outcome than the individual models by itself (Hanser et al., 2019). In another
reviewed work, Ancuceanu et al. (2020) stacked a set of 78 ML models for
predicting DILI achieving slightly superior results to other models published
(Ancuceanu et al., 2020). The most common algorithms were Decision Tree,
Random Forest, Support Vector machines and Neural Networks which were
weighted using majority voting. The balance accuracy of this work (74%) was
higher than the work published by He et al. (2019). Other works reviewed
showed that the combination of different algorithms is a technique commonly
used in the field of computational toxicology (Yu et al., 2022; Cerruela Garcia

et al., 2018; Grenet et al., 2019; D’Souza et al., 2021; L. Wang et al., 2021).

In summary, the combination of diverse mathematical approaches offers the
advantage of compensating for the strengths and weaknesses of individual
algorithms. However, it is important to note that such models tend to be
treated as complete black boxes, focusing solely on improving performance

without considering chemical, pharmacokinetic, or biological complexities.

Molecular descriptor limitations

The training of a model relies on accurately representing molecules using
descriptors that effectively capture their properties and structural features.
Literature offers numerous molecular descriptors, encompassing a wide range
from basic molecule properties to intricate three-dimensional
representations. These descriptors are often stored as vectors with hundreds
or even thousands of elements. It is crucial to acknowledge that there is no
single optimal choice for the best feature (Carracedo-Reboredo et al., 2021).

Consequently, the selection and combination of features should be carefully
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studied, considering the context and objectives of the modelling research

(Carracedo-Reboredo et al., 2021).

Classical QSAR modelling using different descriptors, rather than employing a

combination of models with these diverse descriptors, might show three major

drawbacks:

High dimensionality: Combining multiple descriptors increases the
overall dimensionality of the model. As the number of features grows,
computational complexity and resource requirements can escalate
significantly. This can lead to longer training times and challenges in

optimizing the model's performance (W. Zhou et al., 2012).

Difficulty of interpretability: Incorporating numerous descriptors into
a single model can make it more challenging to interpret and
understand the contributions of individual features to the model's
predictions. Extracting meaningful insights and interpreting feature
importance becomes more complex when multiple features are

combined (Matveieva & Polishchuk, 2021).

Multicollinearity: When using multiple descriptors that may be
correlated or redundant, multicollinearity can appear. This can lead to
instability in the model's performance and make it difficult to discern
the true influence of each descriptor on the toxicological endpoint

being predicted (Heo et al., 2019).

Hence, employing a combination of individual models, each containing one

type of variable, can effectively address the challenges associated with

classical QSAR modelling. In Table 3 there are listed the most used descriptors

in computational toxicology.

Table 3: Main descriptors used in computational toxicology

Kind of descriptor | Brief description |
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Physico-chemical They allow the calculation of information based on specific fractions of a molecule. Examples: carbon
descriptor 1D atoms, cyanates, or nitriles (Carracedo-Reboredo et al., 2021).

They rely on graphical representations of molecules, exhibiting theoretical structural properties which are
preserved under isomorphism. Examples: Molecular weight, number of bonds, hydrogen bond acceptor
(Carracedo-Reboredo et al., 2021).

Physico-chemical
descriptor 2D

Physico-chemical They consider the distances between bonds, bond angles, dihedral angles, and other measures. Examples:
descriptor 3D Asphericity, eccentricity, and inertial shape factor (Carracedo-Reboredo et al., 2021).

Molecular ACCess Systems They are constructed using SMART patterns and are optimized for substructure searching based on 2D
keys fingerprint (MACCS) molecular descriptors. There are two kinds: 166-bit keyset and a 960-bit keyset (Durant et al., 2002).

This fingerprinting method encodes 881 structural key types, representing substructures found in a
fraction of all compounds within the PubChem database. They are used by PubChem for similarity
neighbour and similarity searching (Y. Wang et al., 2009).

ECFP is a representation of a molecule's structure based on its connectivity pattern. It captures
information about the presence or absence of specific chemical substructures and their connectivity to
neighbouring atoms (Rogers & Hahn, 2010).

AtomPairs2DFingerprint (APFP) captures information about the atomic environment and shortest path
separations between pairs of atoms in a compound's topological representation. 780 distinct atom pairs at
Atom pairs different topological distances are encoded (Schneider et al., 1999; Carhart et al., 1985).
GraphOnlyFingerprint (GraphFP) encodes the 1024 unique paths of a fragment within the compound's
structure (Steinbeck et al., 2003).

They are generated by considering all potential paths of specific lengths, originating from each heavy
atom in the molecular graph (Landrum et al., 2020).

PubChem Fingerprints
(PubChemFP)

Extended Connectivity
Fingerprints (ECFP)

RDKkit fingerprints

Forinstance, in the study conducted by Smusz et al. (2013), a multidimensional
analysis of machine learning methods was employed to classify bioactive
compounds (Smusz et al., 2013). Researchers constructed eleven learning
algorithms, which included four meta-classifiers (with different input
combinations). Various types of fingerprints, such as ECFP, MACCS, or
PubChemFP, among others, were utilized in this analysis. The incorporation of
meta-learning techniques resulted in an enhancement of the evaluation
parameters. This suggests that the use of meta-learning approaches improved
the performance of the classical models, leading to increased accuracy and

predictive capability.

In another study performed by Kwon et al. (2019), an ensemble method was
proposed and evaluated on nineteen bioassay datasets (Kwon et al., 2019).
The results showed that the ensemble method consistently outperformed
thirteen individual models. The researchers utilized three types of molecular
fingerprints, namely PubChem, ECFP, MACCS, and SMILES. Regarding ML
models, they employed SVM which achieved the highest average Area Under
the Curve (AUC) value compared to other algorithms such as NN, RF, gradient

boosting machines (GBM), and ordinary regression.

In the study conducted by Bugeac et al. (2021), the researchers constructed a

metamodel consisting of 28 individual models, each utilizing a different set of
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physicochemical descriptors and fingerprints (Bugeac etal.,, 2021). The
performance of various classification algorithms was evaluated, including KNN,
logistic regression, decision tree classifier, and ensemble methods. Among
these algorithms, KNN, logistic regression, and decision tree classifier
demonstrated the highest balanced accuracy. However, during nested cross-
validation, the ensemble method exhibited slightly superior results. It suggests
that the ensemble approach was able to harness the collective predictive

power of the individual models, resulting in improved performance.

As previously mentioned, constructing a metamodel using individual models
with different input variables can effectively address challenges related to high
dimensionality, interpretability, and multicollinearity when dealing with each
variable type separately. However, this approach overlooks the intricate
complexities of biological systems that extend beyond these factors.
Consequently, this oversight could lead to incomplete representations of

biological responses, undermining the accuracy and robustness of predictions.

Balancing strategies

When dealing with real-world data we often see the problem of class
imbalance, which consists in the overrepresentation of one class over the
other one. This causes learning algorithms to bias towards the majority class
(Krawczyk, 2016; Megahed et al., 2021). Using a metamodel to correct class
imbalance can offer several advantages over classical QSAR models with over-
or under-sampling strategies (Liu et al., 2022; March-Vila et al., 2023). One key
advantage is that the metamodel allows for the creation of individual models
that balance the classes, often leading to improved predictive power (Galar
et al., 2012). The choice of how to balance datasets relies on both the size and
the degree of imbalance in the original training dataset. To illustrate, when

dealing with a large collection of compounds that exhibits a significant
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imbalance, such as a ratio of 100:1, it is possible to create multiple subsets
where each subset contains an equal number of instances from the
underrepresented class while ensuring a fair representation of compounds
from the overrepresented class. The way to combine these multiple subsets
depends on the nature of the endpoint that is being studied, thus the choice
of a logical OR, logical AND or majority voting should be decided according to
how the endpoint is defined: is a compound positive for a certain endpoint no
matter in which part of the chemical space of the subsets falls in, or should it

be considered positive after several models have shown it is?

Galar et al. (2012) proposed a new taxonomy for ensemble-based techniques
to deal with the imbalanced dataset, that consisted of cost-sensitive
ensembles and data preprocessing followed by ensemble learning (Galar et al.,
2012). They concluded that ensemble-based algorithms are worthwhile since
they improve the results that are obtained by the usage of data preprocessing
techniques and training a single classifier. They state that, despite the use of
more classifiers making them more complex, the overall growth is justified by

the better results that can be assessed (Galar et al., 2012).

Bringezu et al. (2021) solved their imbalance data problem by creating a series
of low-level models with balanced datasets that stemmed from the main
training series. This resulted in a classifier with high sensitivity and specificity
(Bringezu etal.,, 2021). They also compared the performance of their
ensemble models against a classical QSAR model that used the main training
series without correcting the imbalance. The classical QSAR had good
specificity but low sensitivity (0.95 and 0.47 respectively) which led to an
accuracy of 0.71, whereas the ensemble model had a more balanced
specificity/sensitivity ratio (0.87 and 0.92 respectively) which resulted in an
accuracy of 0.87, thus improving the results of the classical QSAR (Bringezu

et al, 2021).
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Likewise, March-Vila et al. (2023) obtained a very unbalanced dataset that was
performing badly as a model since a classical QSAR tends to predict more
effectively the majority class. They decided to split the training series into
multiple balanced sets, keeping the same negative annotated compounds in
all the subsets, since those were the less represented class, and adding
different positive compounds into each of the sets until they reached a balance
between positive and negative annotations. They proceeded with the creation
of one model for each dataset and a subsequent metamodel was created
based on the previous low-level models. They found two main advantages in
this approach: first, using an imbalance correction algorithm such as random
oversampling (Menardi & Torelli, 2014) or random undersampling (Lemaitre
et al., 2017) would have affected the chemical space they were working on,
and, in this way, the chemical space remained unaltered. And second, the
performance of the metamodel surpassed the previously created models with

the unbalanced datasets (March-Vila et al., 2023).

In this kind of strategy, it is important to consider that the metamodel
approach assumes a static class distribution during the training phase. If there
are significant changes in the class distribution during deployment or
inference, the performance of the metamodel may deteriorate. In such cases,
it becomes necessary to retrain or update the metamodel to adapt to the new

distribution and ensure continued optimal performance.

Discussion

In this article, we have focused on reviewing three different types of model
combinations: mechanistic-based metamodel, fragment-based chemical space
metamodel, and methodological-based metamodel. These kind of
metamodels have been developed to tackle the intrinsic complexities inherent

in the problem under investigation within the field of computational

51



CAPITULO 1

toxicology. In broad terms, we have observed that the predictivity of classical
QSAR models might be constrained when describing complex biological
phenomena, complex chemical spaces, or with different methodological
challenges. These complexities could stem from the fact that classical QSAR
models might face challenges in interpreting the specific mechanisms leading
to the assessment criterion, the broad chemical space or the singularities of
each kind of ML algorithm, training series and molecular descriptor, whereas
a lower-level model may have an easier time capturing and interpreting these
complexities due to its ability to delve into the underlying mechanisms and
nuances of the data. Furthermore, there is an additional layer of complexity
encompassing the three described above, which pertains to the intricacies of
human beliefs and behaviour. This layer plays a significant role in determining
the credibility of computational predictions, influencing others' willingness to

use them in decision-making.

However, despite all the benefits shown in this review for metamodels, they
typically combine individual models that use in vitro data to predict clinical
annotations established in in vivo assays. As mentioned in the introduction, in
vitro data may not directly correlate with in vivo data due to the absence of
important factors such as absorption, distribution, metabolism, and excretion
(ADME) processes, which is a limitation in itself. This limitation poses a
significant obstacle to obtaining reliable results since we are trying to predict
in vivo data from variables that contain only in vitro information. To address
this issue, one possible solution may be to employ in vitro to in vivo
extrapolation models (QIVIVE), based on a minimal physiologically based
pharmacokinetic (mPBPK) model. This model effectively simulates the
longitudinal behaviour of a substance in a living organism, considering crucial
pharmacokinetic phenomena over time, such as ADME processes. The use of
QIVIVE models would allow extrapolating in vitro concentrations to in vivo

doses. Thus, QIVIVE models could provide a valuable tool to enhance the
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accuracy and relevance of metamodels, ultimately advancing our
understanding of drug behaviour and its effects in the context of the real
world. In general, metamodels facilitate the integration of various types of
data, including in vitro and in vivo, enabling a comprehensive assessment of
chemical toxicity. This integration provides the foundation for a more accurate
risk assessment by holistically considering hazard and exposure of substances

across different levels of biological organization using metamodels.

If earlier we discussed how to enhance metamodels through QIVIVE models,
another long-standing debate within the computational toxicology community
aimed at improving statistical methods is the integration with expert systems.
The combination of expert-based and statistical approaches exhibits
substantial potential across various scientific domains, notably in the
assessment of mutagenic impurities within the pharmaceutical industry. This
collaborative synergy offers the prospect of producing more resilient and
precise outcomes by harnessing human expertise alongside the objectivity of
statistical models. Nevertheless, it is imperative to approach this
amalgamation judiciously, particularly within the framework of regulatory
standards, as exemplified by ICH M7. The primary concern pertains to the risk
that an inadequately managed combination might compromise the
transparency and scientific justification demanded during the evaluation of
mutagenic impurities. To maintain the credibility and acceptance of such
hybrid models, they must uphold transparency in their decision-making
processes and ensure comprehensibility, aligning them with the principles
enshrined in regulatory guidelines. Striking a delicate equilibrium that
capitalizes on the strengths of both approaches while staying in compliance
with regulatory standards is pivotal to the continued advancement and

recognition of these models.
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Despite the good performance shown by metamodels, it is still necessary to
look at the data and understand the problem to be solved, since each context
must be dealt with a specific solution rather than a general one that fits all.
Even though we are in the era of Al and very powerful technologies appear,
such as generative deep learning algorithms, we must keep in mind that
properly handling the data, for instance with a rational curation process or
hypothesis testing, is the first and key step that will allow us to develop a

proper solution to a given problem.

Still, and considering the limitations shown in this review, it is of major
importance that we collect the knowledge regarding metamodels since they
have proven to be a useful and powerful approach for solving complex
problems. At the end of the day, if we manage to develop tools that aid
decision-making in a rational and justified manner, we will be able to better
explain the reality surrounding us and we will have a better understanding of

how the models work, avoiding black boxes thanks to a better interpretability.

Conclusions

Our review of combining different QSAR models for predicting toxicological
endpoints has shed light on the effectiveness of this approach in addressing
various complexities but also provided a guide on how, when, and for what
purposes to utilize them. By categorizing these complexities as mechanistic,
chemical space, and methodological, we aimed to provide a systematic

understanding of the challenges faced in the field of computational toxicology.

The findings from the reviewed works overwhelmingly demonstrate that
model combination yields superior performance compared to classical QSAR
models. This notable improvement can be attributed to the ability of the
combination approach to focus on individual sub-processes, allowing for a

more targeted and accurate analysis of the specific toxicological endpoint of
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interest. In contrast, the classical QSAR model, incorporating a heterogeneous
mix of all sub-processes, may lead to confusion and less precise predictions.
The versatility of the model combination approach lies in its ability to unravel
the intricacies of mechanistic interactions, capture diverse chemical space
representations, and overcome methodological limitations. By leveraging the
strengths of different models and integrating their outputs, the metamodels
offer a promising avenue for addressing the complexities present in

toxicological studies.

The consolidation of information on model combination into a single article
holds the potential to be a valuable resource for the computational toxicology
community. However, we acknowledge that the subdivision of complexities
giving rise to the different reviewed metamodels is our point of view which is
essential for a comprehensive understanding of their applicability. Similarly,
we recognize that further research is necessary to explore additional
combinations of models and the integration of advanced computational

techniques.
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Introduction

There is an urgent need to replace, reduce, and refine (3Rs) animal
experimentation. The knowledge obtained from past in vivo experiments can
be reused to minimise the need to perform new assays, promoting sustainable
science. New approach methodologies (NAMs) constitute an
attractivealternative for assessing chemical hazards and estimating the effects
of exposure, with the potential to support Toxicological Next Generation Risk
Assessment (NGRA) and to promote the application of the 3R principles.
Among the different approximations encompassed by the NAM term 2 in
silico methods are highly convenient on their own or as a complement to in

vitro techniques.

While in silico toxicology (IST) offers benefits in terms of cost-effectiveness,
high throughput, and ethical considerations, its ability to predict complex
biological endpoints is still under debate 3. Another difficulty is their
integration with experimental data for risk assessment purposes, particularly

in regulatory setups +’.

Quantitative structure-activity relationship (QSAR) is one of the most used
methodologies in the IST field. It has been successfully used to predict in vitro
results and simple toxicological endpoints &°. However, the predictivity of
QSAR models becomes limited when it comes to complex biological endpoints,
such as organ toxicity. This is because complex biological endpoints result
from multiple mechanisms and effects at different biological levels, making it
more challenging to predict them accurately with QSAR. Additionally, QSAR
models have only local validity, and the low structural similarity between the
compounds in the validation and training sets can result in poor predictive
performance °. Another drawback of the QSAR models is that, usually, they

do not consider pharmacokinetic (PK) information, such as the absorption,
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distribution, metabolism, and excretion (ADME) properties of compounds 1%,
and they might have difficulties to characterise the actual chemical risk of a
compound since the toxicity of a compound is linked to the exposure 2. QSAR
methods can be important in transitioning to mechanism-based toxicology 3.
In this quest, Adverse Outcome Pathways (AOPs) have been developed to
integrate existing mechanistic knowledge into a rational framework 4. AOP
connects known biological events linearly through a series of Key Events (KEs)
from a Molecular Initiating Event (MIE) to the final Adverse Outcome (AO).
The causal relationships between these KEs are defined by Key Event

Relationships (KERs).

In 2013, the Organization for Economic Co-operation and Development
(OECD) published the first version of the Guidance Document on Developing
and Assessing Adverse Outcome Pathways with a conceptual background °,
followed by the publication of the User's Handbook Supplement in 2018 .
This supplement provides practical guidance and advice on applying AOPs in
the context of risk assessment and highlights the benefits of using a
mechanistic approach to comprehend adverse effects better. Moreover, this
supplement contains practical instructions for AOP development and
collaborative work on the databases AOP knowledgebase (AOP-KB)'” and AOP-
Wiki 8.

Computational methods could exploit the standardised knowledge
representation that AOPs provide. Accordingly, in silico models with multiple
molecular initiating events (MIEs) can be built to predict complex toxicological

endpoints for which QSAR models do not provide quality results %2°,

AOPs have also been incorporated in mechanistic-based toxicokinetic
(TK)/toxicodynamic models that evaluate exposure-response relationships 21~

2 A common misconception is to consider that drugs with a very small ICso
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are "more toxic". However, this is not necessarily true as the likelihood and
severity of adverse effects are more closely linked to the total amount of drug
at the target site, rather than the drug's potency %*. Even drugs with a high ICso
can cause toxicity if the dose administered in clinical use (the therapeutic dose
[To]) is high enough. Therefore, to make decisions about the potential toxicity
of drugs, 1Csos should be transformed to "point of departure doses" using
quantitative in vitro to in vivo extrapolation (QIVIVE) models . QIVIVE is
derived from a minimal Physiological-based pharmacokinetic (PBPK) model,
which reproduces the kinetic of a substance within a living organism over time,
considering the main pharmacokinetic phenomena: absorption, distribution,
metabolism, and excretion. The main objective of QIVIVE is to establish the in
vivo dose which will produce a certain concentration in the blood (or tissues).
This can correspond to in vitro concentrations like the half-maximal effective
concentration (ECso), ICso, or half-maximal active concentration (ACso). In this
sense, QIVIVE can be considered a "reverse dosimetry" method, providing

doses from concentrations.

In this work, we aim to develop a novel approach that integrates the
contribution of multiple MIEs and the compound TK properties for the
prediction of a complex toxicological endpoint. In this study, we will use
hepatotoxicity as a representative example of a complex toxicological
endpoint. Drug-induced liver injury (DILI) is one of the primary causes of
attrition during clinical and preclinical studies and one of the main reasons for
drug withdrawal from the market 22?7, DILI can be categorised as either
idiosyncratic or non-idiosyncratic based on its relationship with the drug dose.
If DILI occurs independently of the dose, it is considered idiosyncratic, while it
is considered non-idiosyncratic if DILI is dose-dependent. Non-idiosyncratic

DILI can be classified into the following three categories 2 i) hepatocellular, ii)
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cholestatic, and iii) mixed. Because DILI is a very broad endpoint, we will focus

on cholestasis.

Cholestatic DILI is a dose-dependent adverse effect defined as a disruption of
the bile flow, which increases hepatic bile acid concentrations, resulting in
necrosis and/or apoptosis. Together with hepatocellular, it is one of the most
severe manifestations of DILI 2628, Cholestasis is often produced by inhibiting
the hepatic transporters responsible for facilitating bile flow from the liver to
the small intestine %¢. Hepatic transporters are classified according to their
location in the membranes: those belonging to the canalicular membrane and
those belonging to the basolateral membrane. Canalicular membrane
transporters regulate hepatic clearance, as well as the secretion of bile salts
and conjugates into the bile. Basolateral membrane transporters regulate the
uptake of drugs and transport endobiotics and xenobiotics from the blood to

the hepatocyte 2.

Bile Salt Export Pump (BSEP), multidrug resistance-associated protein (MRP2),
Breast cancer resistance protein (BCRP), and P-glycoprotein (P-gp) are
canalicular membrane transporters %273°, while MRP3, MRP4, and organic
anion transporting polypeptides (OATP1B1 and OATP1B3) are basolateral
membrane transporters. The role of BSEP inhibition is one of the most
important mechanisms studied in cholestasis occurrence, being the main MIE

described in the cholestasis AOP found in the AOP-wiki 3.

This study aims to add to existing QSAR methodologies a new approach which
integrates mechanistic information for multiple MIE (using AOPs) and TK
information (using QIVIVE models), providing a more complete and realistic
description of the phenomenon studied. This approach will be illustrated by
applying it to the prediction of the cholestatic properties of a series of

compounds. The results of this case study will be used to discuss its
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advantages compared to direct QSAR modelling, especially in the most
common situations in drug development, where the candidates do not have

much structural resemblance with the structures in the training series.

Material and methods

Cholestasis dataset

A series of chemical compounds with cholestasis annotations was obtained
from Kotsampasakou and Ecker (2017), where the researchers extracted the

annotations from PubMed (http://www.ncbi.nim.nih.gov/pubmed), Google,

Scopus (https://www.scopus.com/), and the SIDER database v2 searching the

terms: "drug-induced cholestasis" or "cholestasis". The data was curated by
removing inorganic compounds and compounds containing metallic elements.
In the end, the series consisted of 577 compounds with 130 "positives"

(cholestatic compounds) and 447 "negatives" (non-cholestatic compounds).

For our study, we applied additional curation, eliminating compounds whose
administration route is not oral nor intravenous since only these routes
provide relatively simple and well-understood absorption and elimination
pathways. The filtered dataset contained 437 compounds (116 positives and

321 negatives).

The compounds in this series were characterised using unique IDs to facilitate
the extraction of data from other sources: ChEMBL IDs were obtained using
chembl-webresource-client 0.10.8 32, DSSTox substance IDs or DTXSIDs were
assigned using PubChemPy 1.0.4 33, and Drugbank IDs were obtained from

Drugbank version 5.1.9 3

In addition, for chemical comparisons by
pharmacological groups, information on Anatomical Therapeutic Chemical

(ATC) classification was added up to the second level of information
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(Pharmacological or Therapeutic subgroup) using chembl-webresource-client

and MedCode 1.3 .

Transporter QSAR models

Sets of compounds annotated with the plCso values were extracted from
ChEMBL version 29 to build QSAR models for the main hepatic transporters
involved in drug-induced cholestasis (low-level models, LLM). The process of
selecting compounds that inhibit specific transporters involved two filters: the
target organism (homo sapiens) and the target type (single protein). No
filtering based on assay type was implemented to avoid compromising the
number of compounds selected. This decision was made taking into account
that a higher number of assays might introduce variability due to differences
in experimental conditions and measurement techniques 3¢. Compounds for
which multiple experimental annotations were available were included as
multiple data points. This procedure has the advantage of giving more weight
to multiple-tested compounds and incorporating experimental variability, in
contrast with alternative procedures in which a single mean or median is used
to characterize their biological properties. The structures were standardised
using a curation tool *’, removing inorganic compounds and compounds with
metallic elements. Table 1 shows the hepatic transporters considered, with
detailed information (transporter names with their target ChEMBL ID,
acronym, number of compounds, and the mean and standard deviation [std]
of the plCso distributions for each selected transporter) on the data extracted.
To match the transporter inhibition data with the in vivo cholestasis data

described above, we used the ChEMBL ID of the compounds.
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Table 1: Information about compounds collected for each hepatic transporter.

Transporter Acronym N? Mean_plCso | Std_plCso
P-glycoprotein (CHEMBL4302) P-gp 1031 5.89 1.11
Breast cancer resistance protein

BCRP 1015 5.99 0.75
(CHEMBL5393)
Organic anion transporting polypeptide
OATP1B1 63 5.49 0.61
1 (CHEMBL1697668)
Organic anion transporting polypeptide
OATP1B3 25 5.13 0.77
3 (CHEMBL1743121)
Multidrug resistance-associated protein
MRP4 106 4.70 0.47
4 (CHEMBL1743128)
Multidrug resistance-associated protein
MRP2 57 4.69 0.42
2 (CHEMBL5748)
Bile salt export pump (CHEMBL6020) BSEP 361 4.68 0.51
Multidrug resistance-associated protein
MRP3 43 4.52 0.45
3 (CHEMBL5918)

N is the number of compounds in the training series of each LLM.

Figure 1 displays the violin plots showing the distributions of pICs values for
the selected transporters. Consistent with the information in Table 1, the
mean plCsp falls within the range of 4.5-6 for each transporter, with P-gp and
BCRP exhibiting the highest means. Likewise, P-gp also exhibited the highest
standard deviation likely due to the inclusion of a larger number of diverse

assays conducted to this particular transporter.
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Figure 1: Violin plots of the plCs distributions of the eight hepatic selected
transporters.

For each LLM, we obtained all compounds with ICso annotations and
developed a QSAR model using the plCso as the dependent variable. Morgan
fingerprints (FP) (nbits=2048, radius=2, features=enabled) were computed
using RDKit 2019.9.3 (Landrum 2016) and used as input variables for building
four machine learning (ML) regression models for each LLM with scikit-learn
version 0.24.1 3% XGBoost 1.4.2 (XGB) %°, Random Forest (RF) *!, K-nearest
neighbours (KNN) %2, and Support Vector Machines (SVM) %3, All models were
trained using a grid search with 5-fold cross-validation (CV) to find the best
hyperparameters based on the Mean Absolute Error (MAE) as the scoring
metric. The model with the lowest MAE was selected for each of the LLMs. As
part of our proposed hyperparameter grid for the SVM model, we included
the linear kernel as an option in addition to the radial kernel, serving as an

alternative to linear models. To ensure the robustness of the models, a 20-
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Repeated 5-fold CV approach was employed for the model evaluation. The
selection of twenty repetitions was made considering that a Repeated k-fold
CV requires fewer replicates than the total number of compounds available.
As there were only twenty-five compounds collected for inhibiting the
OATP1B3 transporter, twenty replicates were selected for the analysis
throughout the entire article to maintain consistency in the methodology
when using Repeated k-fold CV 4. The information corresponding to the

settings of these models is provided in the supporting information Table S1.

These models (LLM) were used to predict eight transporter plCso values for the
437 compounds belonging to the cholestasis dataset. For compounds with
known experimental activity, the mean of all available experimental values
was used instead of the predictions. The final matrix contains 437 rows

(compounds) and 8 columns (transporters).

In vitro to in vivo extrapolations

In vivo half maximal inhibitory equivalent oral doses (IEODsg) were calculated
from the ICsp values by applying QIVIVE methods, translating concentrations
into in vivo doses. For calculating IEODses, we used the High-Throughput
Toxicokinetics (httk 2.1.0) library **. Monocompartmental (MC) models were
built using the default parameters provided by the httk library. Order 1 kinetics
assumes that the drug concentration in the body can be described by a single
compartment, which is appropriate for drugs that distribute rapidly and evenly
throughout the body, under the assumption that the effect of a peripheral
distribution is negligible at a steady state. QSAR models usually assume that
the compound is at a steady state without considering any time-dependent
processes that may affect the drug concentration. Hence, after computing the
steady-state concentrations (Cs) using the MC model, the next step was to
calculate the IEODs for each drug that inhibits each transporter. The IEODsx is

directly proportional to the in vitro ICso and inversely proportional to Css 6.
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The httk library #° can compute the percentile of the specified IEODs, for the
model. In our case, we obtained the 90" percentile as the larger the percentile
predicted Cs from the MC model, the lower IEODsg, due to the inverse
relationship between Css and IEODsq. This approach is considered to be the
most conservative as cholestasis is a dose-dependent adverse outcome, and
any compound with a therapeutic dose (Tp) above the highest IEODs; among
the selected transporters would be considered cholestatic. The information
about the therapeutic doses was obtained by matching the Drugbank IDs in
the cholestasis dataset with the corresponding entries in the Drugbank
database (other sources of information consulted were: drugs
[https://www.drugs.com/] and Medscape

[https://reference.medscape.com/]).

The calculation of IEODsg requires obtaining physicochemical parameters such
as molecular weight (MolWt), log P (octanol-water partition coefficient), and
PK parameters such as intrinsic clearance (Clint) and plasma-unbound fraction
(fun). For the compounds in the cholestasis dataset, MolWt and log P were
computed using RDKit. Experimental Clin;, and fup values were extracted from
the httk databases (only drugs that have been experimentally tested with
human hepatocyte cells), using DTXSIDs to identify the compounds in both
datasets whenever possible. For the rest of the compounds, these values were
predicted using OPERA version 2.9 . Compounds that were unable to have
either fu, or Clin: values calculated by OPERA were eliminated from the
cholestasis dataset. As a result, the dataset contained a total of 426
compounds, with 115 classified as positive and 311 as negative. Finally,
compounds with IEODsy values larger than 10000 mg/kg/day (only 7
compounds were in this category) were removed from the cholestasis dataset
since we consider that these doses are not realistic from a physiological point

of view. After this elimination, the final dataset was reduced to 419
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compounds (114 positives and 305 negatives). To further clarify the

procedure, the filtering steps are summarized in Figure 2.

Administration route (oral
and IV)

Removing compounds with
v No available CLiy; and fy,

Removing compounds with
IEODs; values greater
than 10000 mg/kg/day

Figure 2: Cholestasis dataset filters.

Cholestasis model building

The cholestasis models were built using the series described above, using two
different strategies: direct QSAR modelling and combining the predictions
provided by the LLM (obtaining a metamodel). In the latter approach, we
generated two different metamodels for assessing the advantages of
incorporating PK information. In the metamodel incorporating PK information
(Metamodel_pk), a compound was considered positive when its Tp was n
times higher than the predicted IEODs, for any of the considered transporter,
where n is a factor adjusted to balance the sensitivity and specificity of the
metamodel. Regarding metamodel not incorporating PK information
(Metamodel_not_pk), this model used ICso information exclusively. A
compound was classified as positive if the ICso of any of the transporters was
<300 pM, according to “¢-°1, Both metamodels were constructed as scikit-learn

estimators to fully utilize the functionalities of the scikit-learn library.
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Direct QSAR models were built using physicochemical descriptors (PC) and FP
as predictor variables, obtained using RDKit. The following algorithms were
used: XGB, RF, Naive Bayes approach (Multinomial Naive Bayes [MNB] for FP
and Gaussian Naive Bayes [GNB] for PC descriptors) °2, and SVM. Like in the
regression models, we added the linear kernel within the hyperparameter grid

for SVM classification models.

In order to find the best hyperparameters, all models underwent a grid search
with a 5-fold CV, utilizing the the Area Under the Receiver Operating
Characteristic Curve (ROC AUC) score as the scoring metric. For the QSAR
models, the algorithm achieving the highest ROC AUC among the four tested
models was chosen as the optimal choice (Tables S2 and S3 provides further

details).

Model evaluation

The model quality was evaluated using the model's sensitivity (S), specificity

(SP), accuracy (A), Matthews correlation coefficient (MCC), and ROC AUC.

Comparison between Repeated k-fold and “similarity-based cross-
validation” performances

To incorporate the similarity in the assessment of the model predictivity, we
compared the results obtained with a standard 20-Repeated 5-fold CV ** with
a modified CV algorithm where the groups contain structurally dissimilar
compounds. So, if the predictive power of a model is lower when using the
"similarity-based CV", it would indicate that it is worse for predicting when the
compounds in the test series are more structurally different from those in the
training series. For this modified version of CV, we applied a hierarchical
clustering to obtain five clusters (Cluster 1=51 compounds, Cluster 2=174

compounds, Cluster 3=61 compounds, Cluster 4= 79 compounds, and Cluster
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5=54 compounds) using fingerprints as input variables and the Jaccard
distance as the evaluation metric. The same number of folds was established
for both types of CVs to allow a fair comparison. Each fold in the similarity 5-
fold CV was trained using four clusters and validated with the remaining
cluster, thus predicting compounds with low structural similarity to the
training set of that fold. For detailed information on the search for optimal
hyperparameter sets using both 20-Repeated 5-fold CV (Table S2.A in the
supporting information) and similarity 5-fold CV (Table S2.B in the supporting
information), refer to the supporting information. These tables provide
further insights into the process of identifying the best hyperparameters for

both types of cross-validation.

Likewise, intra- and inter-cluster similarities were evaluated using FP
descriptors and the Tanimoto similarity metric. The mean similarity value of
the three most similar compounds was computed intra- and inter-cluster. The
supporting information's Figure S1 presents a heatmap displaying the
Tanimoto similarity values for both intra- and inter-cluster comparisons. The
similarity values intra-clusters showed minimal differences, ranging from 0.41
(Cluster 2) to 0.47 (Cluster 1). Regarding to the comparison inter-clusters, the
similarity values ranged from 0.17 (Cluster 1-Cluster 5) to 0.31 (Cluster 2-
Cluster 4). The observed results suggest that intra-cluster similarity
outweighed inter-cluster similarity, indicating that this methodology has the
potential to be worthy in evaluating the structural independence of the

proposed approach.

Performances according to the "ATC-based cross-validation"

Such as mentioned above, our study intends to determine if the proposed
methodology has advantages with respect to other approaches in terms of

predictive quality when the compounds are different from those in the
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models' training series. With this aim, complementing the "similarity-based
cross-validation" described above, we applied a cross-validation procedure
where drugs used in certain therapeutic areas (as identified by their ATC
codes) are used to predict compounds used in different therapeutic areas. We
started by compiling the ATCs for the compounds in our series for the five
most represented ATCs: JO1 (antibacterials for systemic use), NO5
(psycholeptics), LO1 (antineoplastic agents), CO1 (cardiac therapy) and N0O2
(analgesics), as shown in Table 2. So, we conducted an ATC 5-fold CV, where
each fold involved training on compounds from four of the five ATC and
predicting the validation set of compounds from the remaining ATC.
Additional information regarding the optimal hyperparameters for each
evaluated model can be found in Table S3 of the supporting information. Also,
we calculated the intra- and inter-ATC group similarities in the same way as
before used for computing the similarities described above for the similarity
5-fold CV method. Within the same ATC code, molecular similarities ranged
from 0.22 (LO1) to 0.54 (J01), as shown in Figure S2 of the supporting
information. When comparing compounds from different ATC codes,
similarities ranged from 0.16 (J01-C01, N05-J01, LO1-C01) to 0.27 (NO5-N02).
Similarly, to our previous CV strategy, intra-ATC similarity was found to be
higher than inter-ATC similarity, justifying the use of this evaluation method,
following the same approach as the previous one, for building models based
on splits with high dissimilarity. This allows us to further verify that the
performance of our proposed model is less dependent on the structural

similarity between the training and test series than a direct QSAR model.

Table 2: Summary information of the top five ATC codes.

Most common
ATC Number of compounds by class
pharmacological groups
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J01  (antibacterials  for

systemic use)

# Cholestatic compounds=20

# Non-cholestatic compounds=17

B-lactams and Penicillins

NO5 (psycholeptics)

# Cholestatic compounds=12

# Non-cholestatic compounds=25

Psycholeptics and hypnotics

LO1 (antineoplastic agents)

# Cholestatic compounds=6

# Non-cholestatic compounds=16

Alkylating agents ad plant

alkaloids

CO01 (cardiac therapy)

# Cholestatic compounds=3

# Non-cholestatic compounds=15

Cardiac stimulants and

anthyarrhymics

NO2 (analgesics)

# Cholestatic compounds=2

# Non-cholestatic compounds=15

Antimigraine and opioids

Statistical analyses

Student's t-tests at a 95% confidence level were used to determine whether

there are statistically significant differences in the "Lipinski's rules of five"

(Lipinski et al. 1997) variables between the positive and negative classes. This

analysis was complemented with a two-way ANOVA to determine whether the

effect of the transported type and the target class (as fixed factors) have a

statistically significant effect on the IEODsgat a 95% confidence level.

Software

Table 3 shows a summary of the main software libraries and packages used in

this study.

Table 3: Packages with their version used and main applicability.
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Package Version Applicability Language References
scikit-learn 0.24.1 ML 3
numpy 1.19.5 Vector operations 53
statsmodels 0.12.2 Statistics 54
seaborn 0.11.1 Visualisation 55
matplotlib 3.34 Visualisation 56
RDKit 2019.9.3 Chemical python 3.6.13 38
pandas 1.1.5 Dataframe operations 57
chembl-webresource-client 0.10.8 ChEMBL requests *
PubChemPy 1.0.4 PubChem requests 33
MedCode 13 ATC codes 36
XGBoost 1.4.2 Boosting model 40
httk 2.1.0 Pharmacokinetic R4.2.1 a

Results and discussion

Overview

To detect potential differences between cholestatic and not cholestatic

compounds due to physicochemical properties, we run a preliminary study

using some of the variables used by "Lipinski's rules of five

n 58

The approach described here was based on physiological knowledge, where

we constructed models for simpler phenomena (MIEs) that represent relevant

components of the complex endpoint (AO) and combined the predictions

incorporating toxicokinetic considerations. We started by gathering existing
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information on the biological processes involved in this endpoint from the AOP
wiki. Then, we developed QSAR models for each of the hepatic transporters
identified as relevant MIEs: P-gp, BCRP, OATP1B1, OATP1B3, MRP4, MRP2,
BSEP, and MRP3 (see Table 1), as described in the Methods Section. The
predicted in vitro inhibitory information was exploited by applying logical
rules. A simple logical OR on this prediction matrix was used to label
compounds showing inhibitory activity for any of these transporters as a

potential cholestatic compound (second part of Figure 3.A).

However, this approach has the limitation that the inhibitory in vitro
concentrations obtained by the models can be non-representative of the ones
reached in therapeutics due to differences in clearance, protein binding,
bioavailability, and other pharmacokinetic parameters. For this reason, we
incorporated toxicokinetic considerations to obtain IEODss (representing in
vivo doses) from the predicted ICsos (representing in vitro data) using QIVIVE
models. The proposed workflow (Figure 3.B) starts applying a PBPK model to
obtain Cs from the input plCso. Then, the QIVIVE approach allows obtaining
IEODsp from the Cs. Finally, the IEODso are compared with Tp (obtained from
public sources, as described in the Methods Section), and we used a logical OR
rule to label as cholestatic the compounds for which any of the Tp is larger

than the highest IEODso among all transporters (first part of Figure 3.A).

87



CAPITULO 2

x8
Tp > IEODsg

Compounds Annotations

x8
IC50 <10 uM

I OR

FP

ML
Classif.

PC

x8

Compounds ICs0 Cig IEODsy Tp > IEOD5qg

ML PBPK IVIVE
B) x8 2 |

Regress.

Figure 3: Scheme of the proposed methodology. A) High-level view of the four
models being compared: Metamodel with PK information (grey), Metamodel
without PK information (brown), direct QSAR with FP descriptors (light blue), and
direct QSAR with PC (yellow). Red cells represent cholestatic compounds, and green
cells represent non-cholestatic compounds. B) Scheme of the proposed workflow to
introduce toxicokinetics in the modelling.

The results obtained using this approach were compared with a classical direct
modelling method that uses compound structures to build QSAR models, using
both FP and PC descriptors (summarised in the third and fourth sections of
Figure 3.A), and predicted cholestasis directly without considering any

mechanistic information.

The comparison of our approach with the direct QSAR models included an
analysis of their performance using standard metrics but also an additional

analysis for comparing their applicability for the prediction of dissimilar
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compounds. This involves an evaluation of their predictive quality using
"similarity-based" and "ATC-based" complementary CVs, carried out as

described in the Methods Section.

Preliminary analyses

As a preliminary step, we studied possible differences in the physicochemical
properties between the cholestatic and non-cholestatic compounds in the
studied series of 419 compounds. Figure 4 shows the summary of density and
scatter plots, separated by class for the compound's molecular weight
(ExacMolWt), number of hydrogen bond acceptors (NumHAcceptors), number
of hydrogen bond donors (NumHDonors), and log P (MolLogP). These are the

properties represented by Lipinski's rules of five 8

, Which are known to
describe important properties for the pharmacokinetic and pharmacodynamic
characteristics of the compounds. The centre of the distribution is slightly
higher for ExactMolWt, MolLogP, and NumHAcceptors in the set of cholestatic
molecules compared to the non-cholestatic ones. However, according to the

Student's t-test performed, the differences were not statistically significant for

any of the properties studied at a 95% confidence level.
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Figure 4: Distribution of Lipinski's rules of five: Molecular weight (ExactMolwt),
Number of hydrogen bond donors (NumHDonors), Number of hydrogen bond
acceptors (NumHAcceptors), and octanol-water partition coefficient log P (MolLogP).

Low-level models

Individual QSAR regression models for the eight transporters selected (Table
1) were built as described in the Methods Section. The violin plots in Figure 5
show the MAE distributions obtained from the 20-Repeated 5-CV for each of
the eight low-level models. Particularly, the models for P-gp and OATP1B3
inhibition had the poorest performance. Regarding deviations between folds,
P-gp's extensive data leads to minimal variations, while OATP1B3's limited
data results in significant deviations. These findings emphasize the impact of
variability between several assays and data availability on predictive

performance, such as described above.
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Figure 5: Violin plot with MAE obtained for each LLM.

Table 4 presents the mean and standard deviation of the twenty repetitions

of the 5-fold CV. It reveals that P-gp (0.78) and OATP1B3 (0.68) had the highest

mean MAEs, with a low standard deviation for P-gp (0.03) and a higher

standard deviation for OATP1B3 (0.19). These observations align with the

insights shared in the previous Figure 5. The remaining transporters exhibited

similar mean MAE values. The models for BCRP and BSEP demonstrated less

deviation between folds (akin to what was observed for P-gp), as these models

had more training data compared to the others.

Table 4: Mean and std of MAEs obtained from the 20-Repeated 5-fold CV for the
eight selected transporters.

Metrics BCRP MRP2 MRP3 MRP4 OATP1B1 OATP1B3 BSEP P-gp
MAEmean 0.32 0.29 0.36 0.36 0.36 0.68 0.33 0.78
MAE;tq 0.02 0.06 0.08 0.05 0.07 0.19 0.03 0.03
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Figure 6 depicts the box plot illustrating the predicted plCso distributions for
each transporter. Notably, the worst performing models (P-gp and BCRP)
exhibit similar values in their distributions. This finding could have the
potential to impact the overall quality of the metamodels. It is important to
note that these data impose an upper bound on the quality of the predictive
models derived from them. While it could be tempting to push the model
beyond this limit, doing so risks to produce model overfitting, compromising
their predictive performance. The analysis showed statistically significant
differences (p<0.01) in the plCso distributions between the different
transporters and classes (two-way ANOVA, 95% confidence level, as described

in the Methods Section).
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Figure 6: Box plots of the plCs distributions separated by class for each selected
transporter.

Incorporating TK considerations

The predicted in vitro plCsp cannot be expected to correlate directly with
observed cholestatic outcomes without first transforming these to in vivo
doses (IEODso) and then comparing these doses with the ones administered in
clinical use. The first step, the computation of IEODs,, was carried out using
QIVIVE models, as described in the Methods Section. To evaluate the
predictive power of the models built by OPERA for predicting fu, and Clin,
compounds of the cholestasis dataset with experimental values (from queries

to the httk library) were predicted. Figure S3 in the supporting information
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displays a scatter plot with the X-axis representing the experimental values
extracted from httk, and the Y-axis showing the OPERA predictions for the
same compounds for both fy, (Figure S3.A in the supporting information) and
Clint (Figure S3.B in the supporting information). In this Figure, minimal
deviations between the actual values and the predictions can be observed. To
further validate the predictive power, Table S4 in the supporting information
presents the MAE values for both f,, (MAE=0.07) and Clir: (MAE=8.50), as well
as the mean and standard deviation between the experimental values from
httk and the predicted values from OPERA, which exhibit practically identical
results. These results highlight the quality of the OPERA models in predicting

pharmacokinetic parameters.

Figure 7 shows box plots with the plEODsos (-logio(IEODsg)) of the eight
selected transporters for cholestatic and non-cholestatic drugs, side by side. It
can be seen that the median value of inhibitory potential for each transporter
is nearly identical between cholestatic and non-cholestatic compounds. The
analysis showed no statistically significant differences (p<0.05) in the pIEODs
distributions between the different transporters and classes (two-way
ANOVA, 95% confidence level, as described in the Methods Section). The
absence of statistical significance in the plIEODsy distributions between
different transporter and classes, in contrast to the statistical significance
observed in the plCso distributions, may be due to the fact that in vitro models
can oversimplify or fail to fully capture the complexity of metabolic pathways
that occur in vivo. Therefore, based on in vivo extrapolations the whole set of

hepatic transporters could have the same relevance in predicting cholestasis.
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Figure 7: Box plot comparing the plEODs, (potential of IEODs) predicted for the
series studied and the eight transporters, separated by class. Transporters are shown
in decreasing order, with respect to the median plEODs.

The predictive quality of the metamodels and the direct QSAR
models

The metamodel obtained using PK information (Metamodel pk) was
constructed by using a logical OR to combine the presence of Tp higher than
the IEODso. In other words, a compound was predicted to be cholestatic if its
To was higher than the predicted IEODso for any of the selected hepatic
transporters. For the metamodel without PK information
(Metamodel_not_pk), a compound was predicted as cholestatic if any
transporters had an I1Cso below 300 uM. The direct QSAR models were built
using fingerprints and physicochemical descriptors as predictor variables. The
models and approaches utilized in this article have undergone a meticulous
grid search, aiming to identify the optimal set of hyperparameters, such as
described in Methods Section.

Comparison between Repeated k-fold and “similarity-based cross-
validation” performances

The results of a direct QSAR model coming from a Repeated k-fold may be too

optimistic and these results may not be representative of practical problems.
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One of the main reasons is that, in real drug development applications, the
structure of the new drug candidate is often very different from the structures
of the training series. Therefore, to obtain a fairer comparison, we further
evaluated the predictive quality of our models by assessing if they could
accurately predict the properties of structurally diverse compounds. With this
aim, we applied a "similarity-based CV" (described in detail in the Methods
Section) where the series was split into five structurally dissimilar subgroups
using hierarchical clustering. Then, we applied a similarity 5-fold CV where
four subgroups were used to predict the remaining one, containing
structurally dissimilar compounds. By comparing the predictive quality of this
approach with those from a standard 20-Repeated 5-fold CV, where groups
were assigned randomly, we can evaluate how dependent the structural

similarity is on the prediction quality for all the studied models.

Table 5 presents the mean and standard deviation for both the 20-Repeated

5-fold CV and the similarity 5-fold CV.

Table 5: Mean and std of the Sensitivity (S), specificity (SP), AUC, MCC, and Accuracy
(A) for each model in both the 20-Repeated 5-fold CV and Similarity 5-fold CV.

S S_std SP | SP_std | AUC | AUC_std | MCC | MCC_std | A | A_std
Metamodel_pk 0.84| 0,07 | 055 | 0,06 | 0.69 0,05 0.34 0,19 0.63 | 0,05
% | Metamodel_not_pk |1.00| 0,00 | 0.00 | 0,01 | 0.50 0,00 0.01 0,03 0.27 | 0,04
®
g-i QSAR_model_FP 0.34| 011 | 0.87 | 0,05 | 0.60 0,05 0.23 0,12 0.72 | 0,05
8' QSAR_model_PC 0.32| 0,10 | 0.84 | 0,06 | 0.58 0,06 0.11 0,12 0.69 | 0,05
~ | Metamodel_pk 0.81| 0.06 | 0.54 | 0.15 | 0.67 0.09 0.29 0.14 0.62 | 0.10
(]
3 Metamodel_not_pk |[0-06 | 0.06 | 0.98 | 0.02 | 0.52 0.03 0.07 0.10 0.74 | 0.09
.% QSAR_model_FP 0.20| 0.09 | 0.94 | 0.03 | 0.57 0.04 0.19 0.10 0.75 | 0.09
o
E QSAR_model_PC 0.24| 0.14 | 0.90 | 0.04 | 0.57 0.05 0.16 0.11 0.74 | 0.06

95



CAPITULO 2

Figure 8 displays violin plots for the sensitivity, specificity, MCC, AUC, and
accuracy of each model based on the 20-Repeated 5-CV (left column) and in
the similarity 5-fold CV (right column). Additionally, Table 5 provides a
summary of the mean and standard deviation of the metrics presented in
Figure 8. This Figure depicts how the average variability across folds was
similar for both types of CV across different models (the std of the
Metamodel_pk was lower than that of the QSAR models). The
Metamodel_not_pk exhibited the least variability between folds for each

metric.

The results observed in Figure 8 indicate that the Metamodel_pk was not
affected by the decrease in structural similarity, as its sensitivity remained
above 0.80 in both scenarios (Table 5). Concerning specificity, the
Metamodel_pk did not exhibit any variations depending on the CV utilised,
and its performance was the same regardless of the CV used (0.55
approximately). Here, it is important to clarify that the low performance in
terms of the specificity of the metamodel with PK information could be due to
that the lower predictivity of LLM with the worst performances (based on an
analysis not included). For instance, the P-gp model only achieved correct
predictions for the non-cholestatic activity of compounds in 7% of the cases,
and the OATP1B3 model achieved 15% of successes. These results may have
an impact on the final quality of the Metamodel_pk in terms of specificity. It
should be noted that this observation is consistent with the description of the

LLMs, where both transporter models exhibited the poorest performances.

In the first type of cross-validation (left column of Figure 8), the
Metamodel_not_pk achieved a sensitivity of 1.00. However, in the second
type of cross-validation (right column of Figure 8), the sensitivity dropped to
approximately 0.00. Interestingly, despite these variations in sensitivity, both

types of cross-validation resulted in ROC AUC scores that were very close to
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0.5. When comparing the two metamodels, it was observed that the model
incorporating PK information exhibited significantly a higher ROC AUC score
(between 0.15-0.19 higher for both CV approaches) compared to the model

without PK information.

In the Repeated k-fold CV, RF model showed the best performance for both
QSAR models. However, when using Similarity k-fold CV, the XGB model
outperformed the others in terms of sensitivity, MCC, and ROC AUC score.
Thus, for QSAR models, we could say that the lower the structural similarity,
the lower the sensitivity. Regarding the QSAR model utilizing FP descriptors,
consistently exhibited slightly higher specificity compared to the model using
PC descriptors. Both models showed similar values of sensitivity, with 0.34 for
QSAR_model_FP and 0.32 for QSAR_model_PCin the Repeated k-fold CV, and
0.20 and 0.24, respectively, in the Similarity-based CV. Aggregated quality
indexes like the AUC or the MCC show an improvement in the overall
predictive quality of the Metamodel_pk. On the contrary, the accuracy is
slightly better for QSAR_model_FP (about 0.7 for both kind of CV), the most
specific model, since the proportion of positive annotations is low
(approximately one positive compound for every three negative compounds),
and a specific model has fewer false positives. Considering the low proportion
of positive compounds, more sensitive models (such as Metamodel pk) are
far more valuable and useful. Furthermore, Table S5 in the supporting
information displays the evaluation of each metric for every model in each fold
of the similarity 5-fold CV. In broad terms, regardless of the similarity space
used, the metamodel incorporating PK information outperformed both QSAR

models, showing a higher sensitivity, MCC, and AUC.
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Figure 8: Sensitivity, specificity, MCC, AUC, accuracy according to the 20-Repeated 5-
fold CV (left column) and the Similarity 5-fold CV (right column).

Performances according to the "ATC-based cross-validation."

The analysis by ATC codes allows the categorisation of drugs based on their
therapeutic and pharmacological properties. In terms of structural
independence, the ATC code can provide insight into the relationship between
a drug's structure and its therapeutic properties. In this study, the predictive
quality of the models was further tested by using a CV approach that closely

resembles the previous point but where the folds were obtained by grouping
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compounds with the same ATC code. This exercise aimed to check whether
models trained with compounds from some therapeutic regions can
accurately predict the toxicity of compounds belonging to different

therapeutic areas, as characterised by their respective ATC codes.

Figure 9 illustrates the performance of the different models, providing further
insights into their comparative robustness to predict structurally diverse
compounds thanks to the use of the ATC-based k-fold approach.
Comprehensive details for each model and metric can be found in Table S6.
Additionally, Table S7 presents a comprehensive breakdown of the results for
each fold, enabling a granular examination of the model performance across
multiple metrics. The results of Figure 9 show the same variability across folds
for different models and metrics that was discussed in previous plots, and the
same trends with respect to the best models in terms of sensitivity and
specificity. Regarding sensitivity, the best results were obtained for the
similarity-based CV approach, with Metamodel_pk exhibiting much higher
sensitivity (0.92) than other models. Overall, the metamodel outperformed
other models in all evaluated metrics except for specificity and accuracy, as
previously mentioned in the section on Similarity-based CV. Analyzing each
fold based on Table S7 in the supporting information and comparing the MCC
scores of different models, we observe that the Metamodel_pk achieved
notably good MCC values (specifically for the ATC code of anticancer drugs
(MCC01=0.47) and cardiovascular therapy (MCCc01=0.56), whereas the QSAR
models displayed MCC scores ranging from -0.24 to 0.15, depending on the
selected QSAR model. Indeed, these two ATC groups (LO1 and C01) frequently
exhibit diverse molecular scaffolds, posing a greater challenge when
attempting to predict them using models trained with other ATC groups. The
inherent dissimilarity between these groups adds an additional layer of

complexity to the prediction task. All this highlights the big drawback of QSAR
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models and evidence that our methodology can address this issue by bridging

the gap created by conventional models.
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Figure 9: Sensitivity, specificity, MCC, AUC, accuracy according to the ATC 5-fold CV.

Discussion
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The methodology presented here allows the prediction of cholestasis using an
alternative approach to the direct QSAR models, which integrates mechanistic
information and pharmacokinetic properties. To effectively execute this
methodology, it is necessary to build low-level models that predict the ICsg of
each inhibited transporter with utmost precision. These in vitro
concentrations are subsequently extrapolated to IEODsy through QIVIVE
models. Similarly, accurate models are essential for determining the
experimental and physicochemical parameters that are used to feed the
monocompartmental model underlying the calculation of Cs in QIVIVE

models.

Determining whether one model's predictive power surpasses another
depends on the intended uses of the prediction results. Achieving the optimal
balance between sensitivity and specificity is crucial in some scenarios.
However, in discovery and early drug development, the main goal of in silico
studies is the early detection of the potentially toxic compound. Therefore, a
lower specificity is much preferable to a lower sensitivity. This is particularly
true in the case of cholestasis since, as previously mentioned, it is a severe
adverse event and a relevant mechanism of DILI, which is one of the primary
causes of drug withdrawal or termination of clinical trials. Hence, in new drug
development, sacrificing potential candidates may be preferable to avoid

future financial losses worth millions of dollars.

It is worth noting that the I1Cso values for many compounds were predicted as
their experimental values were unknown. The LLMs exhibited similar
performances, except for the P-gp and OATP1B3 transporters. In the case of
the P-gp model, its significant assay variability, as described by other authors
3659 directly impacts the measurement of compound biological activity,

resulting in the lowest-performing low-level model. Similarly, the limited

number of compounds available to train the OATP1B3 model contributes to
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its consistently poor performance across different splits of the 20-Repeated 5-
fold CV. Regarding the P-gp model, we could have applied stricter criteria to
the assays to include more homogeneous data. However, to maintain
methodological consistency, the same procedure would need to be applied to
other transporters, potentially resulting in an extremely small number of
compounds. Regarding to OATP1B3 transporter, for which it was not possible
to build a good model, it could have been excluded from the metamodel.
However, we preferred to keep it to maintain a more complete representation
of all the targets involved in the biological mechanisms underlying cholestasis
occurrence. Therefore, we opted for a controlled risk approach, monitoring
subsequent evaluations where metamodel failures were observed. Therefore,
the inaccuracy of the predicted values should be borne in mind as it limits the
quality of the model. Even so, we consider that even a rough estimation of the
plCso is likely to improve the overall predictive performance of the method,
and it has value in exemplifying an approach which can be much improved
when higher-quality estimations of these parameters (either experimental or

predicted) can be generated.

In evaluating the predictive power of the selected strategies (Figures 8 and 9),
it was found that Metamodel_pk exhibited substantially greater sensitivity
than Metamodel_not_pk. The improved sensitivity is likely due to PK data
providing information about a drug's behaviour in the body, including ADME
processes and drug’s exposure. The model that did not incorporate PK
(Metamodel_not_pk) information only used in vitro data, which cannot
accurately predict how a drug will behave in vivo. Similar findings were
observed when comparing the Metamodel_pk to either of the two classical
QSAR models, with the first one demonstrating higher sensitivity than the
QSAR models.
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The predictive performance of QSAR models and metamodels was further
investigated by evaluating their quality in situations where the validation sets
have a lower resemblance to the training sets (Figure 8). Our results confirmed
the theory that QSAR models are highly dependent on the structural similarity
between the test series compounds to the ones in the training series. It
highlights the need for careful consideration of the selection of compounds
used in the training set and the evaluation of the performance of the QSAR
models for structurally diverse compounds. In contrast, our results showed
that the metamodel based on PK information was not dependent on structural
similarity, probably because it represents better the underlying biological
mechanisms. Overall, our study provides further evidence for the differential
performance of QSAR models and metamodel in predicting cholestasis and
highlights the importance of considering the structural similarity of the
validation compounds when evaluating the predictive quality of QSAR models.
These findings suggest that the metamodel with PK information is much less
dependent than the direct QSAR models of the structural similarity and,
therefore can produce a better prediction for original structures, which is one

of the common use scenarios in drug discovery.

This hypothesis was further confirmed using an additional validation analysis,
in which we predicted compounds of a certain therapeutic area (as
characterised by their ATC codes) using compounds from other therapeutic
areas. In this type of analysis, we are aware that alternative strategies, such as
clustering scaffolds, could be employed. However, this approach may
introduce the challenge of having an abundance of scaffolds that may not be
relevant to the analysis, requiring manual selection. Thus, by selecting the five
most prevalent ATC groups within the dataset under investigation, we ensure
a more objective analysis. The analysis revealed that the metamodel with PK

information exhibited significantly higher sensitivity across all ATC groups than
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the QSAR model. Concerning the groups J01, NO5 or NO2, the MCC was not
much superior for the metamodel with respect to QSAR_model_FP (Table S7
of the supporting information). However, the metamodel with PK information
demonstrated clear benefits in terms of predictive quality for the following
LO1 and CO1 ATC subgroups. This could be due to that compounds belonging
to ATC groups, such as antineoplastics or cardiac therapy, do not usually share
common scaffolds with other ATC groups. Once more, this emphasises the
recommended methodology for cases where the objective is to predict the
cholestasis activity of a novel drug from a therapeutic category with many

structural differences.

The results indicate that the metamodel incorporating PK information is better
for typical applications in discovery or early development stages toxicity
assessment than the direct models and Metamodel _not_pk. This could be
explained by the fact that the metamodel with PK information considers both
hazard and exposure, providing a more comprehensive representation of the

underlying biological mechanisms of action.

Conclusion

Here, we present an innovative methodology integrating multiple biological
phenomena (MIE) with pharmacokinetic properties (QIVIVE) to predict
cholestasis as a more comprehensive approach to the phenomena of interest.
The aim was to assess the predictive ability of the proposed methodology and
direct QSAR modelling in three different ways: by evaluating the overall
performance of the models (S, SP, MCC, ROC AUC, A) using classical methods
as well as by using ad-hoc cross-validation approaches where the predicted
compounds are selected to have low similarity (in terms of structural similarity

or ATC codes) with the training series.
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After comparing the predictive power of the proposed models, it was
determined that, in broad terms, the metamodel with PK information
outperformed both the metamodel without PK information and QSAR models
in terms of sensitivity, MCC, and ROC AUC. Nevertheless, concerning accuracy,
the outcomes were less favourable than those of the QSAR models. This
outcome is understandable since there were significantly more negative
compounds than positive ones, and ML models often predict the majority class
more accurately due to higher information available, resulting in a slightly

lower hit rate.

The Metamodel_pk showed structural independence as its sensitivity and
specificity remained unchanged regardless of the similarity space tested (using
the "similarity-based CV"). In contrast, the QSAR models showed decreasing
sensitivity as similarity decreased. In the "ATC-based CV" the Metamodel_pk
also showed a much higher sensitivity than the QSAR model, especially in
cases where there are more diverse structures that keep a lower structural
similarity, as in the case of antineoplastic agents (LO1) or cardiac therapy (C01).
Overall, the metamodel that included PK information demonstrated superior
predictive performance for more diverse structures and cholestatic

compounds.

In light of these results, we propose that this methodology can be applied to
other complex toxicological endpoints, aiding experts in developing new
frameworks to support NGRA as it considers both hazard and exposure for a

more comprehensive toxicity assessment.

Data Availability

The code and datasets used in the study are publicly available from the GitHub

repository: https://github.com/phi-grib/Cholestasis paper.
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Introduction

Assessing the arrhythmogenic risk of new drug candidates is an important step
in safety studies. The mechanism by which drugs induce ventricular
arrhythmias involves their binding to one or multiple ion channels, thereby
altering the ionic conductance that controls cardiomyocyte membrane
potential.! As a result, the form and duration of ventricular action potentials
(APs) change, and the net effects can be observed at tissue and organ levels,
such as the prolongation of the QT-interval on the surface ECG.2 A significant
prolongation of the QT-interval, is often linked to severe adversities such as
early afterdepolarisations (EADs), which can quickly progress to one of the
most severe effects of proarrhythmic drugs: the polymorphic ventricular

tachycardia known as Torsade de Pointes (TdP).?

As the occurrence of TdP historically led to the withdrawal of several marketed
drugs, the International Council for Harmonisation of Technical Requirements
for Pharmaceuticals for Human Use (ICH) developed standardised guidelines
for safety testing of novel medicines.* Resting upon the preclinical ICH S7b
guideline,® the estimation of proarrhythmic risk is done through the
integration of results from in vitro inhibition assay of the Rapid Delayed
Rectifier Potassium Current (lx,) encoded by the Human Ether-a-go-go-related
Gene (hERG) and an in vivo animal QT-prolongation study. Following the clinical
guideline ICH E14,° the potential of a drug to delay ventricular repolarisation

is assessed by measuring in vivo human QT/QTc interval prolongation.

Indeed, testing drugs in compliance with these regulatory requirements over
the last two decades resulted in no further removal of marketed drugs due to
ventricular arrhythmia. However, the consideration of in vitro effects of drugs
on a single ion channel and the application of a conservative cut-off for QT-

prolongation is the reason why several potentially useful drug candidates with
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low toxicity risk are also discarded during the development stages. To provide
a more complete description of the cellular mechanisms of drug
proarrhythmia, a novel testing paradigm was proposed by the Comprehensive
In Vitro Proarrhythmia Assay (CiPA) initiative.”® The CiPA points out that the
consideration of drug interactions with other currents along with the hERG is
also important for the analysis of ventricular arrhythmia. The main aim behind
the CiPA project is to combine in vitro measured drug effects on multiples ion
channels (Ina, InaL, lkr, lto, lca, lk1, and lxs) with computational simulations, such
as in silico reconstructions of cardiac myocyte electrophysiology, and to
compare these results with in vitro human stem cell results and human ECG

phase 1 clinical trials.®

Adding in silico elements to the cardiac safety testing pipeline has two main
advantages, the first being the ability to fill data gaps when experimental
results are not yet available at early stages of drug development and the
second being an increased analytical accuracy due to the solid mechanistic

foundation of the CiPA paradigm.*®

Several works have been published on the implementation of the CiPA based
in silico simulations for the prediction of ventricular arrhythmia and TdP
biomarkers using predicted or experimentally determined drug-induced ion

11-1% Computational models of human and animal

channel inhibition data.
electrophysiology operate at different biological levels, ranging from a single
channel to whole tissue simulations and vary in terms of the degree of
complexity and abstraction, the underlying mathematical approaches, and
physiological parameters.!’ Although the predictions generated by such
models are considered valuable and relevant, they also have limitations
related to their usability. Usually, computational safety models are designed

based on the subjective scientific interests of the developers and the required

efficiency to run on high-performance-computing platforms is seldom
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reached. But most importantly, the simulation consists of multiple steps,
making the prediction process rather tedious.?’ For example, Beattie et al.
(2013)** presented a safety tool based on concentration-effect data for four
cardiac ion channels (hERG, NaV1.5, CaV1.2, KCNQ1), in which drug-induced
channel inhibition of selected compounds was predicted and used for the
computation of QT interval changes in rabbit ventricles using computationally

demanding one-dimensional tissue simulation.

To speed up the process, our group developed an in silico system that
transforms multi-channel blockage into proarrhythmia biomarkers, such as
action potential duration at 90% of the repolarisation (APDg), in which the
most computationally intensive steps are precomputed, allowing to produce
results instantaneously.?*% In our system, input values are pre-processed by
combining channel-specific half-maximal inhibitory concentration (ICso) and
the Hill coefficient for the currents lg;, lks, and lcaL With the concentration of the
drug. The APDg prolongation values are then predicted using isolated human
ventricular myocyte models as a function of these three input values. Since the
calculation can take a considerable time, the predictions are generated by
making use of precomputed matrices comprising large sets of possible
combinations of input values, each of which is associated with a particular
value of the output biomarker. These technical features make the prediction

system simple, practical, and rapid.?%?3

Even if storing precomputed data matrices is a very convenient way to obtain
predictions interactively, with minimal computational requirements for the
end-user, the procedure has the drawback that the preparatory simulations
that the method developer needs to run are extremely expensive in terms of
computational power and time. This is because accurate predictions can only
be produced when the input values cover a wide range of possibilities starting

with safe and ending with very toxic representations of drug effects on each
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considered ion channel. The number of combinations is calculated as X", being
X the number of possible values considered for each input value and n the
count of the input values considered (number of ion channels). This fact
imposes a practical upper limit to the number of currents that can be
considered since incorporating one more channel multiplies by X the number
of simulations to run. Since incorporating additional currents could have
substantial benefits, we studied how to overcome these limitations. A
potential solution would be to train a machine learning (ML) model with part
of the data array and use it to predict the rest of the data array, thereby
reducing the number of required simulations. The use of ML in the field of
arrhythmia and electrophysiology-oriented research is not new, and the
spectrum of published ML applications in this area is very broad.?®* For
example, classification and regression algorithms can be applied to build
models describing the association between the molecular structure and the
inhibitory potential of drugs on ion channels** or to produce high-level
arrhythmogenic risk indicators.>*” Another example of the application of ML
in combination with in silico simulations to improve the predictive results of
the arrhythmogenic risk in post-infarction patients was described by Maleckar
and colleagues (2020), who simulated the data for the analysis only partially

and predicted the rest using ML methods.?®

In this work, we describe an application of ML which aimed only to optimise
the generation of precomputed matrices that link input ionic currents with
output APDg, values. The basic idea was to train a model with a few of the
array nodes and to use it to reconstruct the whole array. We show that even a
tiny fraction of nodes (5% or less) can produce a very accurate estimation of
the values obtained using simulations for the remaining part of the array (95%
or more). Therefore, using an ML model can save up to 95% of the

computation time and, more importantly, opens the possibility to precompute
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matrices with more currents that can provide better, more useful predictions.
In this work, we compare different machine learning approaches, optimise
their parameters, and evaluate the quality of the predictions obtained using
different sample sizes to make the most optimal choices for future simulations.
Then, we present the best methodological settings and validate our selected
model by predicting the APDy, for a series of compounds from the CiPA
dataset. Lastly, we evaluate the value of our method by simulating a real
production scenario where it was applied to a new electrophysiological

simulation.

Methods

Data collection for model building

In silico action potential (AP) modelling of the healthy human endocardial
cardiomyocyte and APDgy measurements were done using a modified version
of the widely known model published by O’Hara and colleagues.?® The
modifications were designed to better reproduce the experimental data of
drug effects. Briefly, the AP model modifications included: i) the scaling of the
following conductances: Ix, by 1.119, Ina by 2.274, Ik, by 1.414, Ixs by 1.648, lca
by 1.018, and Iy, by 0.4; and ii) a reformulation of the activation and
inactivation gates of In.. For further details about the electrophysiological
model, see Llopis-Lorente et al. (2020).1® Simulations were run with a basic
cycle length of 1,000 ms, a stimulus of 1.5-fold the diastolic threshold of
amplitude and a duration of 0.5 ms, at physiological temperature (372C) and
the following extracellular concentrations: [Na*]=140 nM, [Ca?*]=1.8 nM and
[K*]=5.4 nM. Measurements of APDgo under drug effects were done after 500

beats starting from control -no drug- initial conditions.

In this work, we considered the effects of drug action on two combinations of

cardiac ion channels. Primarily, aiming to improve the in silico modelling tool
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described by Obiol-Pardo, we considered drug effects on I, lks and lca
currents.?>?® To evaluate the applicability of our new methodology to other
combinations of ionic channels and validate the proposed machine learning
methods, we selected the currents Ik, lca, Ina. that were recently described by
Llopis-Lorente.!® Drug effects on the AP were simulated using the simple pore
block model.*® Drug inhibition produced on each channel was simulated by
scaling the channel’s maximal conductance (g) using the standard Hill

equation (Equation 1).

h 1
D -
Giarug = i [1 + (ICso i) ] Equation 1

where g; gy, g is channel i‘s maximal conductance in the presence of the drug,
D is the drug concentration, ICs ; is the half-maximal inhibitory concentration
for that drug, and channel i and h is the Hill coefficient, which represents the
number of molecules that are sufficient to block an ion channel.

h
. N . , . D
A wide combination of input values representing the ratio (F) for Iy, ks, lcaL
50

was simulated and stored in an array. The array consisted of 3 channel input

values: g, Ik, and lca. Each of them represented the logarithm of the ratio

h

D — _ '

(IC ) , as described in Equation 2. For each channel (Ix, lks, lca), the input
50

value ranged from -3 to 2.5, with a step increment of 0.1. These values were
chosen to cover the properties found in real molecules, avoiding the need to
extrapolate the models. Therefore, the simulated array comprised 175,616

instances (56 data points for each current).
p 1t .
Input value =log;, ([F] ) Equation 2
50

The output value of the array was the APDq, simulated as described above for
each of the input values combinations. For each set of input values, an

additional binary variable was included to indicate whether early

122



CAPITULO 3

afterdepolarisations (EAD) occurred during the simulation of that drug (EAD=1)
or not (EAD=0). An EAD was defined as any event with a positive voltage
gradient (dV/dt > 0 mV/ms) after 100 ms from the beginning of the action
potential or with a value of membrane voltage at the end of the beat being

higher than resting membrane voltage (Vm > -40 mV).

The standard use of such array was as follows: for a given compound at a
concentration D, Equation 2 was applied for the three ionic channels (I, lks,
Ical). The results of Equation 2 were rounded to the first decimal and bounded
between -3 and 2.5, i.e., if an input value was lower than -3 or higher than 2.5,
the value was then transformed to -3 or 2.5. For each combination of the three
calculated input values, the corresponding output (APDg) was stored in a
three-dimensional result array. For example, a drug with the following ICsps: 1
nM for lx;, 1000 nM for Ixs and 10 nM for lc,. at a concentration of 1 nM yielded
the data point [0, -3, -1], which led to an APDg, of 369.16 ms.

Electrophysiological simulations and generation of the APDg, array were
carried out using MATLAB version R2021b. The table with the APDgo values for
a wide combination of input values is available online, named “KrKsCaL.xlsx”,
on the public repository of the Polytechnic University of Valencia (RIUNET,
https://riunet.upv.es/handle/10251/183067).

Data pre-processing

We removed from the analysis all data points for which EADs were detected.
Also, we applied filters to remove simulation results yielding APDs greater than
1000 ms. These conditions represent repolarisation abnormalities, and the
numerical result is considered unreliable. Additionally, data points with an
APDg larger than the 3™ quartile plus 1.5 times the interquartile range were
considered outliers and removed. This filter removed 1.4% of the data points,
with values ranging between 777.59 and 865.47 ms. After the pre-processing,

the number of simulation results was reduced to 140,269.
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The data array was divided into training, validation, and test sets using four
different sampling rates that were used in the models (Table 1). In each case,
the training and validation series were extracted by picking the results at
regular and pre-defined intervals to guarantee an even distribution of values
for fitting and validation along with the explored range of input values. All
remaining data were used as test series to evaluate the predictive

performance of the models.

Table 1: Percentages of data from the original array sampled using four different
rates to generate the training, validation, and test series for model building

Sampling rate Training series Validation series Test series
1/20 5% 5% 90%
1/50 2% 2% 96%

1/100 1% 1% 98%
1/200 0.5% 0.5% 99%

Machine learning algorithms

Figure 1 shows a 3D representation of the APDy values obtained for different
combinations of two current pairs (lk- and Ixs). The APDg values are distributed
on a non-linear 2D surface smoothly distributed. This observation suggests
that by the application of ML algorithms suitable for processing non-linear
data, we could obtain a good model fitting. In this work, we selected three
different ML methods: Polynomial Transformation with Ridge regression (PR),
Support Vector Machine (SVM), and Multilayer Perceptron (MLP). For each
one, we optimised their hyperparameters and validated the models using

three partitions and an external test set with selected CiPA compounds.
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APDgg (ms)
g

8

Figure 1: 3D plot showing the non-linear relationship between the APDgo and the
input values (I and Ixs) for the simulated data. In this plot, a fixed value of 0.3 was
used for lcar.

Polynomial Regression

The PR model was built using polynomial regression (Equation 3), a form of
linear regression in which the relationship between the independent and
dependent variables is modelled as a polynomial of the n'" degree. In this
algorithm,®! the polynomial degree increases proportionally to the complexity

of the data structure:
J=b+wp.x+wyx?..+w,.x" Equation 3

Where y is the target variable, n is the degree of the polynomial, x is the

independent variable, w represents the model coefficients, and b is the offset.

To reduce the chance of overfitting the model by selecting a too high

polynomial degree, Ridge regression? (Equation 4) was applied:

2
Jw,b) =M, (}’i —b - 25;1 Wj.xij) + aZ?jﬂ) sz Equation 4

Ridge regression, which operates by performing L2 regularisation, penalises

the model coefficients by adding the factor (a). The greater the factor o, the
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greater the impact of the shrinkage penalty, resulting in a larger reduction of
the magnitude of model coefficients. Therefore, finding an optimal value for a

is particularly important to control model overfit.

Support vector machine

To build the SVM model, we used a non-linear support vector machine for
regression (SVR) which can be explained by a line enclosed between two
decision boundaries, where the width between is controlled by the parameter
€. 3% As the data points that lie within the boundaries get assigned a loss of 0,
the best value of € is the one that maximally increases the number of the data
points included within. On the other hand, the error is computed using slack
variables that quantify the distance from the decision boundaries €’s to the
points outside the margin. Support vector machine models strive towards a

maximal error reduction as defined in Equation 5.

T yi—wlopx) —b< e+,
Minimise WZ—W+ CYN, (& +&") subjectto {wTp(x;) + b —y; < & + &},
fi!gik = 0;1 = 1, ., n

Equation 5

&; and &;” are the slack variables, || w |l represents the Euclidian normalisation
of the weight (w) vector. Cis a regularisation parameter where the strength of
the regularisation is inversely proportional to this parameter. ¢(x) is the

transformation from input space into feature space, and b is the bias term.

To process non-linear data, support vector regressors perform the kernel
trick,®* a method that allows for a representation of the data only through a set
of pairwise similarity comparisons between two instances in the input space.
More precisely, a kernel function K(xi,xj) takes as input the original low
dimensional data points (xi, xj) and computes a dot product of these data in

the transformed high dimensional space, without explicitly determining their
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coordinates in this feature space. In this work Radial Basis Function (RBF)3*

kernel (Equation 6) was used.
2
K(x;,x;) = e Y lxi=xjll Equation 6

y is the parameter of the gaussian kernel and (xl-, xj) are two selected input
instances. In this work, scale mode y (Equation 7) was selected because it is

invariant against the scale of the inputs.

1 .
Yscate mode = ———— Equation 7

n. Xyariance

Where n is the number of features and Xyariance COrresponds to the variance in

the input data.

Multilayer perceptron

Multilayer perceptron®® is a feedforward artificial neural network class
belonging to the family of supervised machine learning algorithms. The basic
structure of an MLP consists of a dot product of the input data (x) with their
weights (w) + the bias (b) and of an activation function which in most cases is

non-linear (Equation 8). These inputs yield an output of a single neuron.
output = f(y) = fQ =1 Wi - X + b) Equation 8

The output obtained from the first neuron is transmitted to the next one
through feedforward propagation. In order to reduce the error between the
desired output and the predicted output, the weights are updated in a process
of backpropagation.®” The most important hyperparameters that impact the
predictive performance of the neural network are hidden layers, activation
function,®® learning rate (Ir), which controls the step-size in updating the
weights, the L2 regularisation parameter penalty alpha (a), and the solver for

weight optimisation.
Evaluation metrics
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The three machine learning algorithms were applied to four training series
generated with different sampling rates (as shown in Table 1) to build 12
models. The predictive performances of the models were compared using
three evaluation metrics: Mean Absolute Error (MAE) (Equation 9), the Mean
Relative Error in % (MRE) computed from Relative Error (Equation 10), and the
percentage of data with Relative Error (RE) below 5% (non-large data-points
error, NLDE). These metrics were used to quantify the differences between
predicted and simulated APDgo values and to guarantee that the quantity of
the sampled data from the original simulated data array is enough to build a
robust ML model. We only consider acceptable the simulations with an RE

below 5%.

1 S .
MAE = —%¥i2q |Y; - 7] Equation 9

17l~ corresponds to the predicted value, Y; is the real value, and n is the number

of data points.

RE(%) = @ 100 Equation 10

i
RE (%) values, computed as a function of APDgy, were plotted for a visual

evaluation

Hyperparameters of all described ML algorithms

Algorithm-specific hyperparameters selected for the optimisation of the ML

models are listed in Table 2.

Table 2: Selected hyperparameters for the optimisation of selected ML models

Internal name Algorithm Hyperparameters
PR Ridge regression with a Polynomial degree=[2-15], a=[1.10°—
polynomial transformation 10]
SUM Support Vector Machine C=[0.1 - 30.10°], kernel=RBF, Y=scale,
Regression €=0.1
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Hidden layers=[(50,50,50), (50,100,50),
(100,)], learning rate=[constant,
adaptative, sgd], solver= Adam, a=[ 0.05,
0.1,0.5], activation=RelLU

MLP Multilayer Perceptron

The hyperparameter tuning for the different models aimed to minimise the
validation set MAE. We also tested whether the hyperparameters of the three
selected algorithms can be optimised using only the training set or if it requires

an additional validation set.

The scripts were developed using Python 3.8. Machine learning models were
built and evaluated using standard libraries Scikit-learn,*® NumPy,*° Pandas*
and Matplotlib.*> The source code of the scripts used for building and
validating the models, together with the datasets described and analysed in
this manuscript, are available at GitHub (https://github.com/phi-
grib/cardioML) and distributed as open source under GNU GLP-3.0 license.

Example case study using CiPA compounds

To obtain a more realistic evaluation, focused on the range of ICso observed in
commonly used drugs for the I, Ik, and lca channels, as well as drug
concentrations reached in their clinical use, we computed the input values as
described in Equation 2 for 12 CiPA drugs belonging to three different TdP risk
classes (low, intermediate, high). For these compounds, we used the
concentration corresponding to their Effective Free Therapeutic Plasma
Concentration (EFTPC) values, the channel-specific half-maximal inhibitory
concentrations (ICso) and Hill coefficients (h) extracted from Llopis-Lorente et
al. (2020).% D, ICsps, h values and the corresponding input values used for the
simulation of the 12 CiPA drugs are available at the file “12_CiPA_Drugs.D-
IC50-h.xlIsx” at GitHub (https://github.com/phi-

grib/cardioML/blob/main/12 CiPA Drugs.D-IC50-h.xlsx). The PR, SVM, and

MLP models, trained with data sampled 1/100, were applied to these

compounds to predict their APDqo.
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The predicted results were eventually compared with the simulated APDgg
read-out from the data array, and the differences were expressed as Relative

Error (%).

Results

Overview

The starting point for this work was to generate a large number of APDgo values
using electrophysiological simulations, as described in the Methods section.
For these simulations, the input values represent the relation between the ICso,
Hill coefficient and the drug concentration for three ion channels Ik, Ik, and
lca.. The output values are the APDgo we expect to obtain for cardiomyocytes
exposed to a drug with the given I, ks, and lca input values. These values were
collected in an array containing the APDgyo values produced by the simulations

for a wide combination of input values.

The next step was generating small samples of the original data, which were
used to train ML models that were used to predict the remaining data as
accurately as possible. The results were compared to identify the best ML
methods and the lowest training series size producing acceptable results.
Finally, the quality of the models was further compared, and the method was

validated using 12 CiPA compounds.

Our study showed that a simulation of only 1-5% of data is sufficient to build
an ML model able to produce accurate estimations of the remaining 99-95%
of the APDg values. Such a large reduction in the computation automatically
translates into a substantial improvement of both the time and computing
power required for the preceding data collection step. Consequently, this
reduction opens the possibility of considering drug effects on more than three
channels, thereby improving the mechanistic description of the in silico tool.

From the model settings evaluated, the best results were obtained using SVM.
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A sampling ratio 1/100 was considered a good trade-off between estimation
quality and computation reduction, according to three quality evaluation
metrics considered: MRE (%), MAE (%) and percentage of data points with RE
below 5% computed for the training, validation, and test set. In the external
validation using CiPA compounds, we showed that the maximum error
obtained by the SVM model for the sampling ratio 1/100 barely exceeds 1.5%

of RE, representing approximately 4 ms of deviation.

Compilation of the data array

As described above, a data array of APDgy obtained for different simulation
input values (ratio of drug concentration over Ik, lks, and lca 1Cso) was
generated. This dataset consisted of simulated APDg, for 175,616 possible
combinations of drug effects on channels Ik, Iks, and lca.. It covers a range of
blockades from 0.1% to 99.7% for each channel. The pre-treatment applied
removed values assigned the top cut-off value (1000 ms) and higher (see
Methods section for details). Figure 2 shows the final distributions of the APDg
values, where most of the values are concentrated around the physiological

biomarker values (264 ms).

10000
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Figure 2: Distributions of APDgy values after data pre-processing
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This data array resulted from the systematic application of electrophysiological
simulations using a range of input values that start from practically safe
scenarios (-3 indicates the ratio of 1:1000 between the effective free
therapeutic plasma concentration and the ICso). Larger APDgg values can only
be observed for a few combinations of input values, with a slight concentration

of around 610 ms.
Machine learning: fitting and quality

Before model building, the original data array was split into training, validation
and test sets using regular and equal-sized patterns with four different
sampling rates: 1/20, 1/50, 1/100, and 1/200. A first sample of data points was
assigned as a training set and a second one as a validation set, whereby the
rest of the data was devoted to the test set. Then, we used the training set to
build PR, SVM and MLP models. A detailed description of the applied sampling
rates and ML algorithms is provided in the Methods section. In this work, we
optimised the hyperparameters of each algorithm by minimising the loss
function on both the training (data known for the model) and the validation
(independent data) series and compared the results to evaluate whether a
separate validation set is necessary or somewhat redundant in the process of
model optimisation. Furthermore, this allows assessing if the best modelling
settings (hyperparameters determined for a specific algorithm and sampling)
can be re-used to obtain a suitable model for another data set of similar nature

without needing a validation set.

After building 12 models, their quality was evaluated using the MAE, MRE and
NLDE, computed as explained in the Methods section. Figure 3 summarises
the results obtained in the calculation of MRE for each model and the four
selected sampling ratios. In the general quality assessment of the models, the
lowest MAE (results not shown) and MRE (%) were produced by the PR

algorithm. Nevertheless, the differences between PR and SVM, considering
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both evaluation metrics are minimal, of approximately 0.2%. Compared with
the SVM and PR models, the MAE and MRE computed for the MLP model are

generally higher and increase for low sampling ratios.

4.0
35
3.0

2.5 Em PR
2.0 SVM

B MLP

MRE (%)

1.5

1.0

0.5

0.0 1/20 1/50 1/100 1/200

Sampling Rate
Figure 3: Selected evaluation metric for different ML models and partitions of data,
MRE (%)

The plots in Figure 4 illustrate the RE (%) calculated for the predicted APDq
values from the test series. We show the differences between the three tested
models: PR (blue), SVM (orange), and MLP (green) and how the different
sampling ratios impacted the evaluation metrics from the smallest to the
highest. In models PR and SVM, the RE (%) range is smaller than for MLP. All
the models have in common that the RE (%) is larger for APDgy below 300 ms
and above 600 ms. In the graphical distribution of RE (%) along the APDqy, axis,
it is noticeable that the initial and end regions of the APDg value range are the
ones with the largest RE (%) increase. Nonetheless, out of the three model
types, SVM is the only algorithm that does not make any prediction above the
considered threshold of 5% of RE.

A closer observation of the differences between the APDg obtained from the

simulation and the predicted, expressed as RE (%), shows that the largest
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errors have a periodic pattern. This can be observed, for example, in the region
between 300 and 500 ms in the results of the PR with 1/100 sampling. These
errors are produced by a border effect: the model does not fit well the data
points located at the upper and lower limits of the input values. In these
positions, there is an abrupt change of the surface, and some models struggle
to fit the simulation results accurately. In particular, the use of equispaced
sample points in PR can produce slight oscillations at the edges (Runge’s

phenomenon).*

PR SVM MLP
10 10 107
75 75 75
o g
NEs 5 5
o &
25 25

aillid o o

0 " ° anblizlg
250 350 450 550 650 750 250 350 450 550 650 750

1/50
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250 350 450 550 650 750 250 350 450 550 650 750
APDg (ms) APDgo (ms) APDgp (ms)

Figure 4: Each plot shows the RE (%) as a function of the experimental values of
APDgp. Columns represent three trained models PR, SVM, and MLP. Rows correspond
to the sampling ratios applied to the input data starting from 1/20 to 1/200.

Figure 5 represents a 3D plot, with APDq in the Z (vertical axis) and lx, and Iks
in the X and Y axes, respectively. A fixed value of 0.3 was used for Ic, in all
instances. For all models and sampling rates shown in the graphics, the
predicted values correspond more precisely with the simulation results in the

centre of the covered output ranges (APDgy between 300 and 600 ms). As
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described above, the values predicted by the three different models are
plotted using the following colours PR (blue), SVM (orange), and MLP (green),
while grey was used to depict simulated values on each plot. Still, some models
exhibit minor deviations in the borders for the reasons explained above.
However, even in these areas, we obtain errors well below 5% for all SVM

models.
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1/20
APDgo (ms)

1/50
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Figure 5: 3D plots representing Ik, Ixs and APDgo for a fixed value of Ic,. equal to 0.3 to
give an example. Columns represent three trained models PR, SVM, and MLP. Rows
correspond to the sampling ratios applied to the input data starting from 1/20 to
1/200.

External validation using a set of CiPA compounds

A set of 12 CiPA compounds with well-defined cardiac electrophysiology,
clinical response and known effective therapeutic concentration was used in

our project to validate the predictive quality of the models.

Figure 6 (A) illustrates the APDg, simulated and predicted using the three ML
models and the sampling rate of 1/100 for a set of 12 CiPA drugs. For all
selected CiPA drugs except Quinidine, which poses a high risk of inducing TdP,
the duration of the experimental APDq interval lies below 300 ms. This trend
remains unchanged for the APDgg values predicted by all three models. Figure
6 (B) illustrates the RE (%) for the CiPA dataset used for the external validation.
The RE values are very low and below 1% in most cases. This external validation
result confirms the results obtained in the validation and testing step of the
model training, where the PR and SVM models perform comparatively well. In
contrast, the predictions generated by the MLP model deviate more from the

experimental values.

5001 A mmm  Simulated APDgg (ms) B BN RE(%)PR
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Figure 6: External validation of the three ML models built using the training set
sampled 1/100 performed using a set of 12 CiPA drugs selected from three TdP risk
classes. A: Simulated and predicted APDg values. B: RE (%).
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Simulation of future use by applying the developed
methodology to another data array

Once a suitable sampling rate and algorithm were selected, and its
hyperparameters were optimised, could these settings be used to fit
biomarkers obtained from a different electrophysiological simulation? Should
the hyperparameters be optimised again using a validation set? To answer
these questions, a second pre-simulated data array was used. The simulations
were carried out following the in silico action potential (AP) modelling protocol
described in the Methods section but now using input values which reflect the

degree of inhibition of three different ion currents (lk, InaL, lcat).

Data simulation and sampling were done using methods equivalent to those
described above. Further on, the assessment of the SVM using a sampling
ratio of 1/100 was performed following two different approaches. The first
option was identical to the methodology described for the array APDgo— (lkr,
Igs, lcat), in which we used 1/100 data points for model training, 1/100 for
validation, and 98/100 for testing. The hyperparameters for this model were
determined based on the validation set. In the second scenario, we built an
SVM model and optimised its hyperparameters as a function of the training set
only, which was compiled by combining the training and validation sets
(summing to 2 data points per 100).
Table 3: Performance metrics assessed for the model APDgo— (lkr, ks, Icat) using (A)

training, validation, and test set and (B) using the double amount of data for training
and the rest for test set.

(A)
SVM
Sampling Partition MAE MRE (%) NLDE
Train 0.56 0.18 100.00
1/100 Val 1.00 0.27 100.00
Test 0.93 0.25 100.00
(B)
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SVM
Sampling Partition MAE MRE (%) NLDE
Train 0.56 0.18 100.00
1/100
Test 0.93 0.25 100.00

For the selected model and sampling rate, the results obtained using either
two (Table 3 (A)) or three (Table 3 (B)) partitions are rather similar. Therefore,
we found that in comparable situations, the same hyperparameters can be
applied to train other models, making it unnecessary to include the validation

partition.

Discussion

The methodology presented here allows the replacement of computationally
costly simulations with estimations generated by a machine learning model.
For the method to be profitable, the reduction must significantly impact the
number of necessary simulations. In the Results section, it was shown that the
number of data points available for training the model largely impacts the
errors the model commits on average but selecting 1 of every 100 data points
results in an excellent balance between the reduction of the calculations and

the robustness and predictive accuracy of the simulation fitting.

Deciding on the necessary number of points required to capture the data
structure is a problem-specific decision. In the current application, simulating
1/100 points would practically produce a one hundred-fold decrease in the
number of required simulations and computation time, fulfilling our original

objectives.

All in all, the described methodology led to the development of high-quality
models able to produce APDgy values, which are a relatively accurate
estimation of those produced by computationally intensive simulations. In this

research, we obtained slight differences in the quality of the SVM as compared
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to the PR model. The errors produced by PR at the borders can be justified by
the use of regularly spaced sample points, and could be mitigated by the use
of Chebyshev nodes .** However, for this particular work we considered that
the use of an ad-hoc sampling for PR will not allow a fair comparison with other
models. The advantage of applying polynomial transformation is the simplicity
of the underlying mathematics, especially in contrast to the Neural Network
or SVM models when large regularisation values are used for training.
Therefore, PR would be the preferred algorithm if taking the lowest
computational complexity as the criteria for choosing the model. But very
often, fitting complex data requires the application of a high polynomial
degree which goes in hand with a high probability of overfitting, which is the
downside of PR. This issue can be resolved through the application of
regularisation. The most common regularisation methods are Lasso (L1) and
Ridge (L2). While Ridge regression introduces a penalty factor to shrink the
magnitude of the model coefficients, Lasso eliminates some of the insignificant
coefficients of the model. This difference was extremely important since all
features in our input data were essential to model the biological problem
correctly and therefore, L2 regularisation was selected instead of the more

rigorous L1.

For this reason, if increasing the number of ion channels is the objective of
future works, Polynomial Regression would not be the best choice. This is
because incrementing the number of input values could yield less smooth
surfaces, requiring an increase of the polynomial degree and more rigorous
regularisation. On the other hand, the Support Vector Machine algorithm is
characterised by a very high generalisation ability, even when the number of
instances is less than the number of variables.*> However, one of the
downsides of SVMs for regression is its sensitivity to outliers, which highlights

the importance of both data pre-processing and model optimisation. The
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robustness of the SVM algorithm was confirmed in this work by obtaining high-

quality models and precise predictions.

The third and last tested model, the MLP, did not generalise as well as the other
two models. A possible explanation for this result may be the insufficient
amount of data since Artificial Neural Networks generally require a lot of
information to learn from and to predict well. Additionally, since the tuning of
hyperparameters of MLP is comparatively expensive in terms of content and
time, improving the performance of the neural network model would require
testing a wider range of hyperparameters. Nevertheless, the scope of
application of Multi-Layer Perceptron is wide and covers several modelling
areas. To give a more related example, MLP algorithms were used with high
accuracy in Arrhythmia Classification problems where the data was richer in

specific information and valuable characteristics.*

With respect to the method limitations, the models described here were
developed and optimised for a combination of three ion channels. When re-
using this methodology for a different combination of channels or ventricular
arrhythmia biomarkers, the model building and validation would need to be

repeated to ensure high-quality results.

We used a specific model (a modified version of O’Hara and colleagues) to
generate the APDg array. There are many available models in the field for
which the methodology is expected to work well. This, however, would need

to be confirmed.

Conclusion

In this work, we have shown that it is possible to significantly reduce the
number of simulations required to make accurate predictions of ventricular-
arrhythmia biomarkers through the application of ML models. We

demonstrated that the total amount of the originally simulated data points can

140



CAPITULO 3

be reduced to just 1%. Such data reduction goes in hand with a significant
reduction of the time necessary to produce an in silico prediction tool based
on large pre-simulated datasets. The simple approach developed here opens
up the possibility of modelling more complex biological processes, such as the
alteration of ventricular-arrhythmia safety biomarkers as a response to an
interaction of four and more ionic channels. Additionally, the methods
described here are likely to be applicable to model other biomarkers than
APDg and even be applied to predict other computational simulation results
in different fields of biomedical research. Lastly, the development of effective
early-stage screening systems is aligned with the interests of pharmaceutical

companies.
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Introduction

Ventricular arrhythmias, especially polymorphic ventricular tachycardia known
as Torsade de Pointes (TdP), are very serious and feared adverse drug effects.
The early estimation of the potential of drug candidates to induce ventricular
arrhythmias is therefore of the highest interest to all stakeholders in
healthcare (Gintant etal.,, 2016b). The main mechanism of drug-induced
ventricular arrhythmia involves the inhibition of one or multiple ion channels
present in the membrane of ventricular myocytes. Such inhibitory effects
prolong the action potential (AP) duration of ventricular cells triggering effects
at the organ level. These prolongation effects can be observed at the patient
level as changes in the duration and shape of QT-intervals on the surface ECG

(Roden, 2004b; Yap & Camm, 2003b).

Since 2005, proarrhythmia assessment of pharmaceuticals for human use has
been carried out according to the guidelines ICH S7b and ICH E14. In the non-
clinical phase (ICH E14, 2005; ICH S7B, 2005), the risk is estimated by
combining results from in vitro inhibition assays of the rapid delayed rectifier
potassium current (lg) encoded by the human ether-a-go-go-related gene
(hERG) and an in vivo animal QT-prolongation studies, while in clinical phases
(ICH E14, 2005; S7B, 2005), drug proarrhythmia is assessed by measuring in
vivo human QT/QTc interval prolongation. A decade later, the comprehensive
in vitro proarrhythmia assay (CiPA) initiative enriched the mechanistic
description of proarrhythmia and complemented the assessment by
incorporating in silico methodologies (Fermini et al., 2016b; Sager et al.,
2014b). The four-stage CiPA paradigm highlights the value of considering drug
effects on a set of ion currents (Ina, InaL, lkr, lto, lcal, k1, and ls) as independent
factors involved in arrhythmogenesis, instead of relying on Ix, only (Z. Li et al.,
2017b; Sager et al., 2014b). The potency of drug-mediated inhibition of those

ion channels, usually measured as the half maximal inhibitory concentration
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(ICso), serves as input for electrophysiological models, which translate this
information into proarrhythmia biomarkers (Z. Li, Ridder, et al., 2019b; Park

et al., 2019).

In the last decade, several efforts have been undertaken to enhance the
assessment of proarrhythmia by introducing meta-models. Such meta-models
are trained using larger series of simulation results, which allows for
instantaneous predictions of selected proarrhythmia biomarkers. In particular,
(Mirams et al., 2014b) described a meta-model built from simulated APD data
for a series of different combinations variating the level of ion channel
inhibition between 0% and 100% for five ionic transporters, including hERG,
CaV1.2, NaV1.5, KCNQ1/MinK, and Kv4.3/KChIP2.2. Moreover, our groups also
developed a multi-level in silico tool for the prediction of drug-induced action
potential duration at 90% of repolarization (APDg) and QT-interval
prolongation (Obiol-Pardo et al., 2011b; Romero et al., 2018b). The core of this
tool was a large 3D data array containing a large number of simulated APDg
prolongation effects generated by the inhibition of 3 relevant ion channels (I,
I, and lcal). Since these values were pre-computed for a wide range of
inhibition values, the method can provide an instantaneous estimate of the
APDgo duration in ventricular cardiomyocytes, using as inputs the values of
ICsos for these channels and the plasma concentration of the drug. In a recent
work, this approach was optimized by replacing the 3D data array with a
machine learning (ML) model trained using only a small fraction of these costly
computational simulations, leading to a significant reduction of the number of
simulations required to obtain reliable APDgo estimates (Rodriguez-Belenguer

et al., 2023b).

Although computational approaches are a valuable complement to purely
experimental methods, a detailed assessment of the variability and

uncertainty associated with the predictions is required to increase the
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reliability of in silico methods (Gosling, 2019). Quantification of variability and
uncertainty in computational modelling systems and their predictions has
been the objective of previous works in the cardiac safety field (Mirams et al.,

2016, 2020).

Several different methodologies have been described for the characterisation
of variability observed when in vitro experiments are conducted to measure
ion channel blockade produced by chemicals. Mirams et al. (2014) described
the use of a meta-model for the characterisation of uncertainty in ion channel
block and to further propagate these uncertainties considering a combination
of channels. (Chang et al., 2017) analysed the uncertainty and variability in
drug binding and drug ionic current block for TdP risk assessment using the
non-parametric bootstrap method and a Bayesian inference approach. (Elkins
et al., 2013) assessed the amount of between-experiment variability in drug-
blockade of lx (hERG), Ina (NaV1.5), lca (CaV1.2), Iks (KCNQ1/151ink), and I
(Kv4.3/KchlP2.2) channels using concentration-effect curves fitted for positive
control compounds from high-throughput-screening experiments performed
at Glaxo Smith Kline and Astra Zeneca. (Kramer et al., 2020) performed an
extensive analysis of variability in results obtained from automated patch-
clamp measurements across analysis sites and experimental platforms,
thereby pointing out the importance of following the principles of Good

Laboratory Practice (GLP) to minimise variability.

Another important source of variability are inter-individual differences among
patients receiving the same drug treatment. When applying in silico
approaches, the electrophysiological models that integrate ion channel
specific ICspinto ventricular arrhythmia biomarkers make use of a large number
of parameters that were adjusted to fit experimental results. However,
humans are not physiologically identical, and no single electrophysiological

model can produce results suitable for representing all patients, nor accurately

151



CAPITULO 4

explain the observed differences between patients (Wisniowska et al., 2017).
Population-based approaches have been described as a useful strategy to
consider the inter-individual variability in the parameters of in silico models.
(Britton et al., 2013) analysed the inter-subject variability by generating a
population of cellular AP models, each of which exerted small differences in
parameters. These models were consequently filtered following
physiologically based criteria and using acceptance-rejection criteria, as shown
by (Llopis-Lorente et al., 2022b). Such populations of models can serve for the
estimation of variability in the responses of a human population. Another
approach for the analysis of biological variability was proposed by (Johnstone
et al., 2016), who used Bayesian statistics to infer distributions of inputs and
parameters, such as current maximal conductance. (Pathmanathan et al.,
2015) performed an extensive analysis of uncertainty in the steady-state
inactivation of the fast sodium current using an individual-based statistical
method, the nonlinear mixed effects (NLME) modelling, to analyse voltage

clamp data taken from a population of cells.

Once diverse sources of variability and uncertainty in model inputs and
parameters are identified, Uncertainty Quantification (UQ) analysis should be
conducted to characterise and quantify their impact on models’ final
outcomes. When input uncertainties are expressed using probabilistic terms,
UQis typically performed by applying sampling-based techniques to propagate
them through the model, generating a distribution of model outputs. Monte
Carlo (MC) simulations and Latin Hypercube Sampling (LHS) are the most
popular methods for sampling-based uncertainty propagation (Clayton et al.,
2020), but the application of other propagation approaches has been
reported. For example, (Sobie, 2009) used multivariate regression for the
assessment of the impact of variabilities in channel conductance, time
constants, and steady state voltage offsets. In the second case study described

by (Johnstone etal., 2016), they demonstrated the use of the Gaussian
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Process (GP) emulator to assess the effects of the uncertainties in AP model
parameters once they are propagated to the output ((Johnstone et al., 2016).
Lately, (Hu etal., 2018) described the use of polynomial chaos for the
propagation of uncertainties and global sensitivity analysis within a multi-level
cardiac electrophysiology prediction framework. In most published works, the
UQ was performed only on a subset of model parameters. (Pathmanathan
et al., 2019) followed a different approach, suggesting that simpler models
with a robust and complete UQ may be more useful than complex models
without a full UQ. They performed the UQ on a canine cardiac cell model,
which was reduced to relatively few parameters to which they assigned input

distributions, controlled by a user-dependent hyperparameter.

In this work, we extend our multi-level in silico proarrhythmia model by
integrating a comprehensive analysis of uncertainty. We start by identifying all
sources of aleatory and epistemic uncertainty typically present in cardiac
safety models. Focusing exclusively on aleatory uncertainty, we then
investigate which of the identified sources affect the inputs of our model. We
develop methods for the characterisation and propagation of the selected
uncertainty types through the model, using applicable approaches and simple
simulation methods, respectively. These methods aim to provide a more
realistic representation of proarrhythmia biomarker predictions and allow for
studying the individual and combined effect of different aleatory uncertainty

sources on proarrhythmia biomarker predictions.

Methods

Multi-level in silico proarrhythmia model

In 2011 and 2018, we published two works (Obiol-Pardo et al., 2011c; Romero
et al., 2018b) describing the development and refinement of a multi-level in
silico method for predicting cardiac safety biomarkers (APDgo and QT-interval

duration). This prediction method, shown in Figure 1, uses precomputed

153



CAPITULO 4

simulations for estimating how compounds with different inhibitory effects on
selected ionic currents can affect the ventricular tissue at certain
concentrations. The inputs include ICso values, obtained either in patch-clamp
assays or predicted by in silico Quantitative Structure—Activity Relationship
(QSAR) models, for three currents (here: Ik, Inai, lcal), the drug concentration,
and a set of electrophysiological simulation parameters. Recently, we
developed an optimised version of this method in which the high number of
precomputed simulations was significantly reduced through the application of

machine-learning (Rodriguez-Belenguer et al., 2023b).
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Fig. 1: A simplified schema of our multi-level in silico proarrhythmia model. For a
single compound, the input comprises a set of ICsg values for the currents I, Inal, lcal,
a drug concentration, and a set of electrophysiological simulation parameters. The
model translates these inputs to an APDgg prediction.

Electrophysiological simulations

In silico action potential (AP) modelling of the healthy human endocardial
cardiomyocyte and APDgy measurements were done using the widely known
model published by (O’Hara et al., 2011b), modified as described by (Llopis-
Lorente et al., 2020b). Here, we considered drug effects on APDg as a function

of the three selected currents; Ik, Inau and lca, which are considered
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particularly relevant for drug-induced occurrence of ventricular arrhythmias
and are usually included in the pre-clinical ion channel screening panel at

pharmaceutical companies (Chang et al., 2017).

Electrophysiological machine-learning model

We ran a set of electrophysiological simulations covering a wide range of

h
combination of values for the ratio ( ) for Ik, InaL, lcal. These ratios values

50,1

were used to calculate channel inhibition via the simple pore block model

(Equation 1).

h
D .
idrug = i [1 + (Icso,i) ] Equation 1

where gi, arug represents the maximal conductance of channel i in the presence
of the drug, D is the drug concentration, ICso,i is the half-maximal inhibitory

concentration for that drug, and channel i and h is the Hill coefficient.

The results obtained from the simulations (APDg) were stored in an array,

consisting of 3 input values (1V) corresponding to Ik, Inai, and Icac channels. Each

h
IV was calculated by taking the logarithm of the ratio (ICL) , as described

50,i
in Equation 2. For each channel (I, InaL, lca), the input value ranged from -3

to 2.5, with a step increment of 0.1.
h
IV =logq, ([%] ) Equation 2

The standard utilisation of this array was as follows: for a given compound at
a concentration D, Equation 2 was applied independently for the three ionic
channels (I, Inat, lcal). The resulting values were rounded to the first decimal
and constrained between -3 and 2.5, i.e., if an input value was lower than -3
or higher than 2.5, the value was then transformed to -3 or 2.5, respectively.

For each combination of the three calculated IV, the corresponding output
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(APDgp) was retrieved from the array. For example, a drug with the following
ICs0s: 1 nM for lg,, 1000 nM for Iya and 10 nM for lca at a concentration of

1 nM yielded the data point [0, -3, —-1], which led to an APDg of 369.06 ms.

The results of these simulations (APDgo) were used to build an SVM model, as
described in (Rodriguez-Belenguer et al., 2023b). This model can be effectively
used to predict APDgo for any compound with an /V within the range covered
by the model training series. Indeed, this range expands from -3 to 2.5 and is
wide enough to represent the values found in most drugs and drug candidates.
To limit the prediction space of this model, any /V minor than the minimum or
superior to the maximum acceptable threshold is rounded accordingly. Hence,

no values below -3 or above 2.5 are used to predict the APDg, values.

Uncertainty assessment protocol

According to EFSA’s “Guidance on Uncertainty Analysis in Scientific
Assessments” ((Benford, Halldorsson, Jeger, Knutsen, More, Naegeli,
Noteborn, Ockleford, Ricci, Rychen, Schlatter, Silano, Solecki, Turck, Younes,
Craig, Hart, Von Goetz, Koutsoumanis, Mortensen, Ossendorp, Martino, et al.,
2018), UQ should commence with a comprehensive identification of all
sources of uncertainty that have the potential to alter the assessment
conclusion. In addition, the ECHA and the WHO recommend a complete and
transparent characterisation of uncertainty in model inputs and the
methodology by conducting a probabilistic analysis (European Chemicals

Agency, 2012; Organization & on Chemical Safety, 2018).

In our protocol, the assessment question was defined as follows: “What is the
APDqo that a certain drug will produce in an individual of a healthy population
considering the compound’s potency of inhibition of the considered ion
channels at a specific concentration?” As a first step, we identified all aleatory

and epistemic factors that contribute to the uncertainty in the output used to
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answer the assessment question, when using the in silico proarrhythmia multi-
level model. The next step was to investigate which sources of uncertainty
affect the inputs of our model, thereby focusing specifically on the aleatory
ones. Monte Carlo simulation was used to study how their effect on the input
propagates through our model and is reflected on its output. Results of these
simulations were expressed as values and intervals. The values can be
interpreted as the most probable estimates of APDgy and the intervals as
ranges of values within which the prediction could fall, given a certain level of

credibility.

Identification of the main sources of variability and uncertainty
in cardiac safety models

In order to correctly identify different sources of uncertainty, it is particularly
important to distinguish between their aleatory or epistemic character
(Benford, Halldorsson, Jeger, Knutsen, More, Naegeli, Noteborn, Ockleford,
Ricci, Rychen, Schlatter, Silano, Solecki, Turck, Younes, Craig, Hart, Von Goetz,
Koutsoumanis, Mortensen, Ossendorp, Germini, et al., 2018). To make a clear
distinction, an overview of the most important sources of aleatory and
epistemic uncertainties is presented in Figure 2, adapted from (Shamsi et al.,
2020). The uncertainty types and the examples provided below apply to

cardiac physiome models as previously described by (Mirams et al., 2016).
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Fig. 2: Identified sources of aleatory and epistemic uncertainty affecting elements of
in silico multi-level proarrhythmia models.

The term aleatory uncertainty, which is used interchangeably with variability,
refers to the indispensable heterogeneity and diversity that occurs within
biological populations, let them be biological samples or human individuals.
Variability, which can be controlled and measured but never completely
removed, is reflected in multiple values that a quantity of interest can take on.
Generally, variability can be subdivided based on the criteria, whether the
differences are observed within the same subject (e.g.: the same cell or the
same person) or among different subjects (e.g.: a collection of cells or a specific
human population). These types are referred to as intrinsic or extrinsic
variability, respectively. Aleatory uncertainty can also be classified considering
the biological levels of organisation at which differences can be observed.
Both, intrinsic and extrinsic variability can have their onset at the genetic (DNA
of an organism), physiological (an organism), the environmental (population of

organisms) levels, as well as at all intermediate levels that connect them.
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On the contrary to aleatory uncertainty, when a parameter can only have a
single true value but the knowledge to define it is lacking, it is described as
epistemic uncertainty, shortly called uncertainty (Johnstone et al., 2016). In
the context of computational modelling, epistemic uncertainty can be
attributed to the model either through its inputs or through the underlying
methodology. As for epistemic uncertainty in the inputs, it results mainly from
incomplete data-gathering steps or the sparseness of the collected
information. Concerning the methodology, uncertainty can have its origin in
the structure of the model, in the selected algorithms and parameters or the
introduced interpolation or extrapolation factors. The overall methodological
process, including steps that proceed or succeed in the actual prediction, is
also subject to epistemic uncertainty. These encompass all assumptions,
simplifications or statistical approximations made to develop the model or to
interpret its results. Uncertainty can also arise as a result of coding errors or
the failure to consider the dependency between sources of the required

information.

Despite the theoretical differences, variability and uncertainty are tightly
connected since the epistemic uncertainty about a quantity of interest is often
expressed based on a summary of aleatory uncertainty. More specifically,
when the knowledge to define parameters for the characterisation of
variability is generally incomplete, or the assumptions made to do so are
incorrect, there is uncertainty about variability (Benford, Halldorsson, Jeger,
Knutsen, More, Naegeli, Noteborn, Ockleford, Ricci, Rychen, Schlatter, Silano,
Solecki, Turck, Younes, Craig, Hart, Von Goetz, Koutsoumanis, Mortensen,
Ossendorp, Germini, et al., 2018). There are further cases when the separation
between aleatory and epistemic uncertainty is not clear. A very well-known
example is the occurrence of measurement errors that combine both the

imprecision resulting from inevitable fluctuations in the measurement process
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and intrinsic and extrinsic variability between measurements of the same

quantity (Johnstone et al., 2016).

Sources of variability considered in this work

Computational models can simultaneously be affected by more than one
source of uncertainty. In this work, aleatory uncertainty, which as mentioned
above is mainly referred to as variability, was the only characterised and
quantified subtype of uncertainty. Particularly umbrella terms were used to
group the variability sources that affect each specific input of our multi-level
proarrhythmia model. The associations between model inputs and variability
types were additionally marked within the basic structure of our model, as
shown in Figure 3. There are several epistemic factors associated with the
inputs and the methodology, each of which can be reduced or even removed
by filling the knowledge gaps. However, even if we acknowledge its
importance, the quantification of epistemic uncertainty is out of the scope of

this publication.
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Fig. 3: Structure of our multi-level APDg prediction model showing the sources of
variability that affect model inputs addressed in this work. A-ICsps represents the
variability in the determined inhibitory drug effects on ion channels involved in
physiological action potential generation. A-Parameters describes the variability in
the electrophysiological model parameters due to inter-individual differences. A-[D]
is the variability of the drug concentration obtained after the administration of the
drug at therapeutic dosage due to inter-individual pharmacokinetic differences. Each
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of the input variability sources contributes to the overall level of output variability,
indicated as (A-Prediction).

In our model, the inhibitory effects of drugs targeting ion channels are
introduced as ICspvalues. These values can either be measured experimentally
or predicted using QSAR models for each considered ion channel. For ICsgs
measured experimentally, we assumed that the differences arising from
intrinsic and extrinsic properties of analysed cellular systems can be
summarised as experimental variability (A-ICses). Here, we also account for the
imprecision of repeated laboratory experiments since this factor cannot be
separated from the measured values. Indeed, experimental variability could
also be considered in the case of the Hill coefficient, which is a constant
required to calculate the /Vs for the model. Nevertheless, this constant is equal
to one for many drugs, and even in a different case, the impact of a numeric
change of h when computing IV (Equation 2) is rather small (Parikh et al., 2017,
Romero et al., 2018b). Assuming that the consideration one more source of
variability with a minimal impact on the predictions could introduce additional
complexity and potentially complicate the interpretation of results for those
variability sources whose impact on the prediction outcome is more
significant, experimental variability associated with the Hill coefficient was not

considered in this work.

The second model input affected by variability are the parameters defined to
conduct electrophysiological cellular simulations. Here, we talk about the
inter-individual variability (A-Parameters) that refers to the differences
between individuals in the population. To be more specific, in the context of
this publication the umbrella term inter-individual variability unites practically
all sources of aleatory uncertainty shown in Figure 2. These include intrinsic
and extrinsic differences between different cells within one human body and
between several individuals, respectively. It also counts in genetic

heterogeneity as well as environmental fluctuations, which together trigger
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different epigenetic modifications and hence, physiological diversity between
people and their hearts. Lastly, when cardiac activity is measured
experimentally, random and measurement errors may also be taken into

account.

Another important model input affected by the presence of variability is the
drug concentration (A-[D]). When assessing the arrhythmogenic properties of
a compound, it is common to use the Effective Free Therapeutic Plasma
Concentration (EFTPC) to describe the protein unbound drug concentration
present in the blood of patients treated with therapeutic doses. But the
intrinsic and extrinsic variability also affects the pharmacokinetic (PK)
processes of absorption, distribution, metabolism, and excretion, shortly
ADME. Methods to address variability in drug concentration will be discussed

later but will not be applied in our approach.

Quantitative characterisation of selected types of variability

Different guidelines recommend to derive measures of variability from
representative observation data containing multiple instances of the
quantities of interest that follow a certain distribution of frequencies and their
spread (Hastie, Tibshirani, Friedman, et al., 2009; Shikano et al., 2012). Hence,
the frequentist approach to probability was applied to characterise variability
associated with the inputs of the multi-level proarrhythmia model.
Incorporating pragmatic approximations based on different approaches
described in detail below, it was assumed that experimental and inter-
individual variability can be quantitatively described using normal probability

distributions. The standard deviation (sd) was used to describe data spread.

Experimental variability in I1Cso

Variability in experimentally measured plCso (-log10(ICso)) was characterised by

(Elkins et al., 2013), who assumed that both, the plCsoand sd parameter are
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the same as, or very proximate to the one in control assays when the number
of repeated measurements is high enough. The sd of the values measured in
their study varied between ion channels, control compounds, and the number
of repeats, reaching the minimum and maximum values of 0.08 and 0.2,
respectively. Moreover, they showed that the plCso values collected in

reiterated control assays on the same compound follow a logistic distribution.

We integrated these assumptions and represented the variability by
considering that the experimental value is at the centre of a normal
distribution, with a sd of 0.5. We chose a normal distribution for simplicity, due
to its similarity with logistic distribution (similar in shape but with slightly
higher kurtosis) (Hosmer Jr et al., 2013). The use of 0.5 is an approximation
under the assumption that laboratory requirements stated in the GLP
principles and stable testing conditions were not met during the measurement

of ICso values used in this work.

Inter-individual variability

To characterise the inter-individual variability, we applied the population-
based approach previously described (Britton etal., 2013; Llopis-Lorente
et al., 2022b; Muszkiewicz et al., 2016; Sobie, 2009). A modified version of the
widely used AP endocardial model developed by O’Hara et al. (2011) (O’Hara
et al., 2011b) was used as the baseline model. Assuming the baseline model
represents the “averaged” model, an initial population of 1,000 models was
generated by randomly and simultaneously applying a scaling factor to the 15
channel conductances of the AP model. These scale factors modifying the
channel conductances were randomly sampled from a normal distribution
with mean 1 and standard deviation 0.2, thus assuring most of the population
(>99%) was in a range between +60% with respect to the baseline model. This
range covers the natural variability reported experimentally in human

ventricular tissues (Fink et al., 2008; Romero et al., 2009; Volders et al., 2000).
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The 1,000 models were simulated at 372C and at the following extracellular
concentrations: [Na*] = 140 nM, [Ca?*] = 1.8 nM and [K*] = 5.4 nM. Then a
calibration was performed. Plausible electrophysiological properties were
defined according to experimental measurements for 15 biomarkers related
to AP duration, amplitude of membrane potential, and calcium dynamics.
Limits of acceptance for the 15 electrophysiological properties were taken
from Table 1 in (Llopis-Lorente et al., 2022b). These ranges were obtained
from a variety of experiments conducted on different hearts and cardiac
regions (Britton et al., 2017; Coppini et al., 2013; Grandi et al., 2010; O’Hara
et al., 2011b; Pieske et al., 2002; Sampedro, 2020; Schmidt et al., 1998). After
calibration, 860 models presented a plausible electrophysiological behavior
according to experimental data. Sacling factors of the final population are
available in “ORdmD scaling factors.xlsx” at

https://riunet.upv.es/handle/10251/182593.

Population of input value combinations

The population of 860 models was used to generate a distribution of APDg
predictions for a given set of 125 input value combinations, selected to
represent properties similar to those of real compounds. These values spread
regularly along all dimensions in the 3D array covering all possible
combinations (53) of the five following values: -3, -1, -0.5, 0, 1 for the three
channels lx, Inat, lcal). Whether these distributions have the same shape and
dispersion for diverse input values was first evaluated visually by plotting the

value distributions as individual histograms.
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Fig. 4: Distributions of APDg values generated by the population of 860
electrophysiological models for input values #0 (left), #3 (middle) and #60 (right),
from the input value combinations shown in the graphics.

The example histograms in Figure 4 represent the distribution of APDg values
obtained for three of these input value combinations. Left graphic, obtained
using the input value combination (-3, -3, -3), shows an APDq distribution
generated assuming no inhibition of the selected channels. The remining two
distributions illustrate distributions of output values produced for different
input values combinations where inhibition was accounted for. The shape of
the distributions is approximately normal (as checked using quantile-quantile
plots) and for the 125 conditions tested, the average sd is of 35.4 ms, even if
the dispersion is not homogeneous and different sd values were obtained for

different input values.

The data table composed of 860 APDgy predictions generated for 125 input
value combinations was used to build a model for predicting the dispersion
(sd) of the distributions for a given set of input values. When generating
predictions, this model produces an estimate of the dispersion of an APDg
distribution, for any drug with a combination of input values within the range
covered by the models’ training series. This predicted dispersion can be seen
as an approximation of variability associated with APDg prediction due to the
inter-individual differences in the electrophysiological parameters. The models

were built using a method similar to the one described extensively in our
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previous work (Rodriguez-Belenguer et al., 2023b). SVM algorithm was used
for the dispersion model, and the following hyperparameters were selected
after optimizing the model: C = 1, kernel = Radial Basis Function (RBF), gamma=
Scale. The goodness of fit was assessed as per mean absolute error (MAE =

0.35) computed for the test set.

Propagation and quantitative expression of variability in model
outputs

Variability was propagated applying the forward Monte Carlo (MC) simulation
approach (Kitagawa & Sato, 2001). The MC technique belongs to a broader
group of stochastic simulation methods that allow for the generation of
random numbers in order to solve problems of non-deterministic nature. The
advantage of such a method is that no assumptions about the model must be
made. Moreover, the simplicity and simultaneous correctness of the
methodology are very convenient. In the context of variability assessment, MC
requires the identification of all random components of a model and defining
their interactions with other elements. It is important to consider the
correlation between the level of randomness, or variability, and the number of
samples needed to propagate such variability, thereby maintaining the
reliability of the result. In other words, the greater the spread parameter
describing the variability, the more samples must be drawn from the
probability distribution. Moreover, as the result is highly dependent on the
assumed distribution to be sampled with the MC method, the preparatory
work to make correct assumptions with regard to the random variables is

particularly important (Kroese & Rubinstein, 2012).

The simulations were run considering only experimental variability (Simulation
A), only the variability due to inter-individual differences (Simulation B), or a

combination of both variability types (Simulation C), as shown in Figure 5.
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Fig. 5: Schema of the three simulation types carried out in this work. Simulation A —

propagation of experimental variability associated with plCso values, Simulation B —

propagation of inter-individual variability arising at the level of electrophysiological

model parameters, Simulation C — propagation of combined experimental and inter-
individual variability.

In all instances, the multi-level model described in Figure 1 was applied 1000
times. In each simulation run, normally distributed random values were added
up to specific elements of the model, using the random.normal(mu, sigma)
function provided by the numpy library with a mu value of 0.0 and a sigma
equal to the standard deviation of the variability represented, as described in

the previous section.

In Simulation A, conducted to represent experimental variability in plCso
values, the random value was added to the plCso used to compute the input
values of the model. In Simulation B, aiming to represent the inter-individual
variability, the model was run in the standard way and once the prediction was
generated, the random values were added to the APDg results using the sd

computed by the dispersion model. In either case, the procedure is equivalent
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to drawing the values from a normal distribution with the centre located in the
original value and a standard deviation similar to the one obtained in the
characterisation step. To analyse the combined effects of both types of
variability, in Simulation C both approaches were merged; prior to the
application of the model, the plCso values were modified with the random
values as in Simulation A and, after generating each APDg prediction, the

output values were modified by adding the random values as in Simulation B.

In all three cases, the simulations generate output distributions of slightly
different APDgy values. The centre of these distributions (median or 50%
percentile) was used as the point prediction, while the value range between
the 10" and the 90™ percentile was used as an interval representing the

prediction variability, which can be interpreted as the 80% confidence interval.

An example case study using CiPA compounds

To evaluate the practical application of our methodology, we applied it on a
set of 12 CiPA compounds. These compounds, officially selected as the CiPA
training and calibration set, were chosen in this study because they belong to
three risk classes (low, medium, high) and are well-characterised in terms of
their arrhythmogenic mode of action. Moreover, these are real drugs, each of
which inhibits the selected ion currents Ik, Inat, and Ica with a different potency
at different therapeutic concentrations, resulting in a different combination of
model input values. An overview of some important properties of the selected
drugs extracted from (Colatsky et al., 2016a; Z. Li, Ridder, et al., 2019b; Llopis-
Lorente et al., 2020a) is provided in Table 1.

Table 1: Compounds belonging to the CiPA training and calibration set and their main

characteristics including the EFTPC in nM, ICso values in nM, the h and the TdP and
proarrhythmia risk class.

lkr InaL lcar

Name EFTPC (nM) Risk class

1Cso

(M) h ICs0 (nM) h ICs0 (nM) h
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Bepridil 33 144 1 339 1.9 638000 4.6 high
Dofetilide 2 75 1 837000 4.6 2300000 5.4 high
Quinidine 3237 971 1 2360 0.91 5100000 4.7 high

Sotalol 14690 290000 1 | 134000000 | 5.9 | 58000000 | 5.5 high

Chlorpromazine 38 650 1 673 1.8 6350 2 intermediate
Cisapride 2.6 72 1 421 2.2 4050000 5.6 | intermediate
Ondansetron 139 1200 1 6870 1.2 9310000 0.2 | intermediate
Terfenadine 4 129 1 98.3 1.1 1220000 5.2 | intermediate
Diltiazem 122 7900 1 3040 11 31600 1.2 low
Mexiletine 4129 53000 1 4690 0.99 164000 0.96 low
Ranolazine 1948.2 8300 1 5950 0.99 | 6540000 3.8 low
Verapamil 81 460 1 982 1.2 11200 0.8 low

To obtain biomarker predictions that correspond with the arrhythmogenic
potential of the drugs in clinical practice, the /Vs were calculated using
experimental ICsg values for Ik, Ina,, and Ica channels and the EFTPC. As the
starting point, a single APDgo biomarker prediction was generated using our
default model for each of the 12 compounds. Then, experimental variability
and inter-individual variability were characterised for these compounds and
propagated through the model using the three different simulation types
described above (Figure 5). For each drug, this procedure yielded a single
biomarker prediction and an interval interpretable as an 80% confidence
interval. These results were analysed in detail and critically discussed to
evaluate the advantages of assessing the impact of input variability on the
uncertainty in the output of the model, which contrasts with relying on single

model predictions.

Software

The electrophysiological simulations and the generation of the APDgy array

were carried out using MATLAB version R2021b. These results are available
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online on the public repository of the Universitat Politéecnica de Valencia

(https://riunet.upv.es/handle/10251/191820). The simulations were carried

out using scripts written in Python 3.8. Machine learning models were built
and evaluated using Scikit-learn version 0.24.2 (Pedregosa, F., Varoquaux, G.
and Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M. and Duchesnay, 2011), NumPy version 1.19.5 (Harris et al.,
2020), Pandas version 1.1.5 (McKinney, W., 2010), Statsmodels version 0.12.2
(Seabold & Perktold, 2010). Graphics were generated with Matplotlib version
3.3.4 (Hunter, 2007). The source code of the python scripts, models and
methods  described here are freely accessible at  GitHub

(https://github.com/phi-grib/Cardiotox uncertainty) and usable under GNU

GPL v3 open source license.

Results

Overview

The main aim of this work was to develop methods for the assessment of
uncertainty, mainly of aleatory type, in prediction results provided by the
previously described in silico multi-level proarrhythmia model (Figure 1). This
model predicts the proarrhythmia biomarker APDgy, of a certain compound
from the experimentally measured or predicted inhibition potency of three ion
currents (lkr, Ina, lcat) for a given drug concentration and channel-specific Hill

coefficient.

The protocol for uncertainty assessment and quantification involved three

steps:

1. Identification of the main sources of variability and uncertainty in
cardiac safety models

2. Quantitative characterisation of selected types of variability
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3. Propagation and quantitative expression of variability in model
outputs

Independently of the type or source, we recognised that all uncertainty types
identified (point 1) are interconnected and to some extent affect each other
and the output of the model. Nevertheless, for this work we attempted to
group them based on their association with the model inputs. Later, we
characterised and quantified the individual and the combined effect of two
selected variability types (points 2 & 3) on the predictions generated by our

model.

This method was applied to a set of 12 CiPA drugs. The results of this use case
were analysed, considering the benefits that such output could provide for

drug developers and decision-makers.

Step 1: Identification of the main sources of variability and
uncertainty in cardiac safety models

Figure 2 presented in the Methods section provides an overview of the most
important sources of aleatory and epistemic uncertainty generally associated

with cardiac safety models.

The origin of aleatory uncertainty was identified as intrinsic and extrinsic
variability, as well as measurement errors. These aleatory elements were used
to find associations with the inputs of our model. As a result, we summarised
them under the umbrella terms “experimental variability” and “inter-
individual variability”, affecting the input ICso values and the parameters
predefined in the electrophysiological action potential simulations models,
respectively. The experimental variability of the Hill coefficient required to
compute the input values of our model was not considered in this work, due
to its minor impact (see Methods section for details). Additionally, the drug
concentration is also subject to aleatory uncertainty, mainly due to intrinsic

and extrinsic heterogeneity among subjects of the same population, leading
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to differences in pharmacokinetic responses. Compared to the Hill coefficient,
the impact of drug concentration on the numeric outcome of Equation 2
computing the input values of the proarrhythmia model is larger. But, due to
some limitations of this protocol, the impact of variability in drug
concentration on the overall uncertainty levels in the prediction of the model

was not quantified here.

With regard to epistemic uncertainty, the two main affected model
components are the inputs from which the predictions are generated and the
methodology underlying the prediction system. Experimental inputs are
subject to epistemic uncertainty due to multiple unknown values and
approximations introduced during laboratory measurements and in the
consequent data processing. Some degree of epistemic uncertainty also
accompanies all methodological steps, starting with the selection of models or
algorithms, through the definition of their parameters and to the subjective
expert judgements informing the model, to simplifications and assumptions

accompanying the interpretation of the prediction results.

Step 2: Quantitative characterisation of selected types of
variability

Experimental variability

Experimental variability was characterised based on assumptions and results
previously published by (Elkins et al., 2013). Here, we assumed that ICso values
measured for different cardiac ion currents and different compounds are
naturally associated with levels of deviation of similar magnitude as those of
control compounds in published literature. In the simulations, this subtype of
aleatory uncertainty was introduced by adding to the experimental plCso
values a random value following a normal distribution with mean 0.0 and a sd

of 0.5, as explained in the Methods section.
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Inter-individual variability

Inter-individual variability was characterised following a multi-step approach
based on a population of models. This model population, consisting of a total
of 860 models, was generated by introducing variations into the default
electrophysiological model used in this work as described in the Methods
section. In particular, the parameters for every single model belonging to the
population were equalled to those expected from a healthy population of
patients. The population of models was then applied to predict APDgy values
from a set of 125 input value combinations. The resulting 3D array served as
training data to build a predictive model that can provides approximate
estimates of the variability that can be attributed to the single APDg
prediction. This variability is expressed as predicted sd, as explained in the

Methods section.

Step 3: Propagation and quantitative expression of variability in
model outputs

The variability characterised in Step 2 was propagated through the model by
running MC simulations, as shown in Methods in Figure 5. The MC simulations
conducted in this work incorporate only the experimental variability into the
input values (Simulation A), add up inter-individual variability into the APDg
predictions (Simulation B) or combine both types of simulations (Simulation
C). See the Methods section for details. In all instances, these simulations
turned single inputs into a collection of 1000 differently distributed output
values. These distributions can be seen as a means to complement single
predictions provided by our initial model by an informative value interval.
Being a product of each prediction, the centre of such interval corresponds to
the centre of the APDy distribution (median or percentile 50™") and ranges

from the 10" to the 90™ percentile. These intervals can informally be referred
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to as the 80% confidence intervals and represent the central range of values

which the model would produce 80% of the times.

An example case study using selected CiPA compounds
Value distributions resulting from variability propagation

To assess the practical value of the developed methodology, the above-
described steps 1-3 were applied to a collection of 12 compounds with well-
defined cardiac electrophysiology and proarrhythmia risk classes defining the
severity of clinical effects, as previously characterised and published by the
CiPA initiative (Colatsky et al., 2016a). The use of these drugs was further

justified in the Methods section.

Application of the methodology on the example of the CiPA compound set
yielded a collection of 1000 APDy, values for each CiPA drug and the
considered simulation type. Figure 6 shows three sections of violin plots, each

representing results from the simulations A-C.
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Fig. 6: Violin plots showing distributions of APDgg values obtained in different runs of
Monte Carlo simulations introducing the following variability types. Simulation A:
Experimental variability (A-plCso); Simulation B: Inter-individual variability (A-
Parameters); Simulation C: Combination of experimental and inter-individual
variability.

When comparing the distributions presented in Figure 6, obtained by
propagating experimental variability (Simulation A) with those where inter-

individual variability was considered (Simulations B and C), there are
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remarkable differences in the width and skewness. As described in the
Methods section, in Simulation A random numbers were added to the plICs
values used to generate the model /Vs. Hence, the shape and width of the
output distributions do not depend directly on the assumptions made to

characterise this variability type.

Conversely, the dispersion and the form of the output distributions essentially
depend on how sensitive the output values are to small /Vs changes in a certain
region of the training series space. To understand this concept, the model
describing the non-linear relationship between the APDgos and the /Vs can be
visualised as a hyperplane. In some regions, this hyperplane is rather flat and
therefore small changes on the IVs produce rather similar APDgy predictions. In
other regions, this hyperplane is steeper wherefore small /V changes (e.g.: due
to a plCso increase for a highly relevant channel) produce significant APDgg
variations. For the analysed drugs, most of the distributions generated in
Simulation A are right skewed, with the maximum value far from the
distribution centre. This can be explained by the non-linear relationship
between the /Vs and the APDgos: even if the IVs used in this simulation follow
a normal distribution, the output values will not. Therefore, the propagation
of experimental variability resulted in a condensation of APDqy predictions in a
narrow area of around 275 ms and a great right skew of the distribution for
the majority of the drugs included in this analysis. In the case of Bepridil,
Ranolazine, and Verapamil introducing variability into the plCsp values yielded
Vs that fell within a sloped region of the prediction function, resulting in wider
output distributions and minor right skew. The /Vs computed for Quinidine,
however, were spread differently producing a wide distribution of APDg, values

with no notable skew.

As opposed to Simulation A, the dispersion and the form of distributions

generated in Simulation B, shown in Figure 6, are a consequence of the
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assumptions made about the inter-individual variability. Since they were
generated by adding normally distributed random numbers to the output
values, all APDy distributions shown in Simulation B show a normal shape and
exhibit no visible differences concerning the width. The minimal discrepancies
in the width of the distributions can be justified with similarly minimal spread
parameters predicted for these drugs as sd by the dispersion model (see
Methods section). As the minimum and maximum sd values in the training
series of the dispersion model were 26.93 and 55.18 ms, respectively, these
values marked the possible prediction range for any kind of input combination.
But since the /V combinations of the CiPA drugs did not reach these range
limits, the predicted sd values to be considered as measures of the spread of
each of these compounds varied between 31.64 and 37.21 ms. As this
difference is quite a small relative to the predicted APDg, values, the
observable differences between the width of the simulated distributions are

minimal.

When combining both types of variability in one simulation run, we obtained
the distributions shown in Figure 6C. In general, they are rather similar to the
ones obtained in Simulation B, but with a slightly larger dispersion and a little
skew. Importantly, the effect of considering both kinds of variability
simultaneously is not additive, and the effect depends on the drug studied. For
example, these effects were particularly noticeable for Bepridil, Quinidine,

Ondansetron, Ranolazine, and Verapamil.

When comparing all three approaches, an additional difference between the
plots is the sudden cut-off observed for the results of simulation A, where only
experimental variability was considered. This cut-off is absent in distributions
resulting from Simulations B and C. This difference can be explained by the
limited range of IVs used in the model describing their associations with the

pre-computed APDqos (see Methods section). This means that any variation of
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the IVs resulting in a decrease below the minimum value considered in the
model (-3.0) generally does not result in any change of the output. As a
consequence, many of the 1000 /Vs generated during the simulation were
simply converted into the cut-off values and produced exactly the same APDgg
output. For many drugs, this effect was observed for the lc. channel, the
inhibition of which usually requires the drug to be administered at higher
concentrations. In comparison, the inhibition of the Ix, channel at the EFTPCs
of the CiPA drugs is more common, due to which the /Vs computed for hERG
channel had the greatest impact on the predicted APDg. Conversely, the
propagation of inter-individual variability in Simulation B added random
numbers to the output values and was therefore not affected by these IV cut-

offs.

In other words, in the case of Simulation A, after random values were added
to the model inputs, these values were further processed by the model. In
Simulation B, however, just one single value was predicted, and the
distribution of values was simulated from the expected distribution

parameters.

Value intervals as a quantitative expression of uncertainty in the
output

The distributions of the predicted APDqo values were used to obtain intervals
between the 10" and 90™" percentiles for the 12 CiPA compounds, yielding the

results shown in Figure 7.
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Fig. 7: Bar plots showing the median of the APDg, predictions obtained for the 12
CIPA compounds, using three simulation types. Simulation A: Experimental variability
(A-plICsp); Simulation B: Inter-individual variability (A-Parameters); Simulation C:
Combination of experimental and inter-individual variability. The intervals represent
the 10t and 90 percentiles obtained from the distributions shown in Figure 6.

The bar plots in Figure 7 show no remarkable differences in the APDg
predictions generated in three different simulations conducted for the same

drug. This observation allows concluding that the actual prediction, computed
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as the median value of the APDqg distributions produced in simulation A-C, is
barely affected by the simulation type and the biomarker prediction can be
expected to remain unchanged. On the contrary, important differences can be
observed in the widths of the intervals obtained by the different simulations.
For Simulation A, these intervals vary between 4.3 and 216.6 ms, with a
maximum difference exceeding 200 ms. In contrast, the intervals obtained for
Simulation B are relatively similar for all tested compounds and range from
79.3 and 92.9 ms, approximately, thereby showing a maximum difference
between two compounds of 13 ms. An overall increase in the intervals’ width
is noticeable when combining both types of variability. But combining two
sources of variability does not lead to additive results, meaning that the
combined result is not the sum of the two sources. Considering that the
predicted numeric values could be potentially used to assigh compounds into
different risk classes (of TdP or arrythmia), it is possible that the interval ranges
cross the boundaries of different classes, making then difficult to assign the

compound to one of them.

In order to illustrate this situation we have shown in Figure 8 the prediction
intervals for Quinidine, Ondansetron, and Mexiletine belonging to the high,
intermediate, and low-risk class of TdP, respectively as defined by the CiPA

initiative (Colatsky et al., 2016b).
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Fig. 8: Predicted APDgg values and their corresponding 80% intervals for three
selected CiPA compounds assigned to the following arrhythmogenic risk classes:
Quinidine as a high-risk drug (red); Ondansetron as an intermediate-risk drug
(orange); Mexiletine as a low-risk drug (green). Intervals shown here were obtained
in MC Simulations A-C as described in Figure 4.

It can be seen that the intervals computed for high-risk and low-risk drugs
using any of the presented approaches do not overlap and would allow a clear
class assignment. On the contrary, the APDgy interval computed for the
intermediate-risk compound overlaps the interval of the low risk class using all
three simulation scenarios as well as the high-risk class when the most
conservative scenario is used. In general, the use of APDg predictions
intervals, compared with appropriately selected critical values, would allow for
a more conservative classification approach, which incorporates into the

prediction both the effects of the experimental and inter-individual variability.

Discussion

Obtaining a reliable risk evaluation for new drug candidates is one of the
primary responsibilities of safety pharmacology. Regarding arrhythmogenic

risk, the CiPA paradigm provided a standardised way for performing in vitro/in
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silico-based cardiac safety assessment using proarrhythmia models (Hwang
et al., 2020b). Despite the availability of a wide range of cardiac safety models
stemming from the CiPA work, uncertainty analysis has been one of the last
missing pieces to be addressed within this paradigm. Is in that context that this
work proposes a protocol for the assessment of uncertainty and variability

applicable to multi-level in silico proarrhythmia models.

A critical view on the developed methodology

Experimental variability

The central hypothesis behind this work is that there is a “true” plCso value
when one specific ion channel is exposed to a certain concentration of a drug
in one specific moment in time. However, the notion of a “true” plCso is
relatively idealistic and therefore does not correspond to what can be
expected in practical situations. This is because in the proposed “Uncertainty
assessment protocol”, the arrhythmogenic potential of drugs is assessed using
a specific computational model and a combination of input values which are
affected by multiple aleatory factors contributing to the overall levels of
experimental variability. Hence, the consideration of experimental variability
in cardiac safety model inputs is a step toward increased credibility of the

predictions obtained from such models.

In this work, we assumed the same spread measure and the normality of the
distributions describing the variability in the inhibition of each considered
channel by each analysed drug. Even though the introduced assumptions were
rather simple they allowed to test the effect of this variability in the final
prediction, at a proof of concept level. In practice, since each pharmaceutical
company has individual methods to perform the inhibition tests the standard
deviation considered could be adjusted to match the characteristics of the
analytical platform, as well as the structure and properties of the tested

compounds. Importantly, in this study, we considered the overall variability
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arising during the experiments, thereby combining the experimental errors
with the biological properties of the samples. In the study performed by (Lei
et al.,, 2020), the authors demonstrated that the extent to which the artefacts
in patch-clamp experiments affect the overall levels of experimental variability
is much greater than the cell-cell or between-cell differences. Indeed, adding
this additional layer of detail to separate experimental errors from
intrinsic/extrinsic variability would contribute to a better understanding of the

toxicodynamic effects of drugs in the context of cardiac safety assessment.

Inter-individual variability

As for experimental variability, the consideration of inter-individual variability
in cardiac model inputs can be seen as a step in the direction of realistic cardiac
safety assessment. As described by (Wisniowska et al., 2017), “Humans vary,

4

so cardiac models should account for that too..”. The importance of
considering inter-individual differences with regard to drug effects is
particularly important if it comes to the protection of individuals who are more
prone to develop cardiac arrhythmias or TdP. The use of a population of models
to account for such differences allows to obtain different AP responses under
the same pharmacological intervention. As compared to classical simulation
methods based on an averaged model producing unique values, another
advantage of populational approaches is that they provide novel insights into
physiological and pathophysiological variabilities (Ni et al., 2018). In addition,
this approach has shown that TdP-risk assessment improves when taking into
account the electrophysiological variability between cells (Llopis-Lorente

et al.,, 2022a), therefore, increasing evidence points to the crucial role of

variability in cardiac electrophysiological function.

Important to consider, however, are the characteristics of the population of
interest. In this work, the electrophysiological model parameters, as well as

the pre-processing of the simulated data, were based on criteria reflecting the
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attributes of a healthy population. Hence, to predict outcomes for a population
with any type of underlying conditions, the first calibration step of the
population of models would need to be modified accordingly to account for

specific characteristics of this population.

It is worth noting that the described approach for representing inter-individual
variability was based on the assumption that variability equally impacts all the
15 channel conductances and that this variability is independent for each
parameter of the electrophysiological model. These assumptions were based
on a series of results presented in the available literature on this topic.
Nevertheless, further modifications of the proposed methodology allowing to
assign unequal measures representing the variability in the conductances of
different ion channels and to consider possible dependency between these

measures could add additional value.

In the context of this work, however, establishing identifiability of the true ion
channel conductances values was not the aim. For interested readers, different
strategies for the identifiability of the parameters of the AP model are

presented in the review by Whittaker and colleagues (Whittaker et al., 2020).

Combination of variability

When combining experimental and inter-individual variability to produce a
reasonable representation of proarrhythmia predictions, the emphasis should
lie on appropriate interpretation of such results. From the theoretical
perspective, the consideration of experimental variability is not necessary in
clinical settings. Therefore, results obtained by combining these two variability
sources do not intend to represent the variability in biomarker response that
would be observed in a healthy human population. Nevertheless, when using
computational proarrhythmia models which integrate some experimental
values to produce estimates of human responses, the consideration of

experimental variability is essential. In the latter case, the produced range of
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values aims to represent the variability in predictions, given the limited ability
to define the “true” plCso values together with inter-individual differences

among subjects of a population.

As shown in this work, combining variability, or other types of types or
uncertainty, does not mean that the effects of each source on the final
prediction will sum up. Nevertheless, as the current methodology for
combining different variability types affects the shape of the obtained
distributions, the methodology could be adjusted to account for this
dependency. To do so, an additional analysis of the dependencies between
each of the input sources, as well as of their associated variabilities, could be

included in future work.

Representation of results

Another important question is whether representing simulation results as a
biomarker prediction with a corresponding 80% confidence interval has an
advantage over standard methods yielding point estimates, only. As concluded
by (Sahlin, 2015))“... a confidence interval is just an interval. It does not provide
enough information to calculate an expected value or conservative value,
which is important in rational decision making”. However, a confidence interval
provided together with the expected value is very useful for communicating
uncertain results in a simple way. Such intervals allow for the inspection of
values that would be produced in experiments or for individuals that do not
represent the exact centre of the distribution from which they were drawn.
Since variability is an innate element of all-natural and investigational
processes, assuming that a fixed prediction is the exact centre of a specific
distribution is rather ingenious. But, when intervals are provided together with
single values to interpret the predictions, the scientific conclusion derived
based on them automatically is considerate of the variation among biological

samples or the physiology of patients. Another factor impacting the credibility
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of confidence intervals is an adequate identification of all the sources of
uncertainty and a correct characterisation and propagation of those, that
indeed affect the prediction outcome. To know which sources should be
prioritised for the UQ exercise, a prior sensitivity analysis is recommendable

(Eck et al., 2016).

Suggestions for future work

Consideration of epistemic uncertainty

In this publication, although different sources of aleatory and epistemic
uncertainty were identified, the described methods were mainly focused on
the characterisation and propagation of two sources of variability. The protocol
integrated only principles of the frequentist approach to probability. Indeed,
when quantifying only variability reflecting the natural variability and
randomness, the selection of normal distribution with standard deviation as
the representation of sample spread was a reasonable decision. This is
because real-valued random variables whose distributions are undefined are
usually represented using normal distributions. As stated in the Central Limit
Theorem, under some conditions, when a large series of random numbers are
sampled from any population with a defined mean and sd, the initial
distribution converges to a normal distribution as the number of samples

increases (Devore & Berk, 2012).

However, epistemic uncertainty, also identified in this work, should not be
expressed nor modelled using frequentist methods. Instead, the correct way
to assess epistemic problems involves the application of the subjective
probability theory, the most common application of which is the Bayesian
theorem (van de Schoot et al.,, 2021). This involves starting with an initial
belief, known as the prior probability, and updating it when new information
becomes available yielding the posterior distribution. Nevertheless, applying

Bayesian statistics to estimate the impact of purely epistemic factors (shown
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in yellow in Figure 2) on the APDg predictions would require major
modifications of the developed uncertainty quantification protocol. But
particularly important for this work and more feasible to implement would be
the consideration of epistemic uncertainty about the aleatory uncertainties
summarised as variability types. This would lead to a quantitative expression
of the level of unknown in the metrics defined to characterise specific
variability types, for instance, the constant sd value of 0.5 that was assumed
to characterise experimental variability. Degrees of belief about the true
parameters for this quantity could be derived using either objective
measurements or subjective expert judgements. To propagate the uncertainty
about variability in the quantity of interest, sampling of the resulting prior
distributions could be integrated as part of a 2 dimensional Monte Carlo
simulation. A result of such a simulation would not be a single distribution of
values, but multiple distributions representing the uncertainty about
variability (Benford, Halldorsson, Jeger, Knutsen, More, Naegeli, Noteborn,
Ockleford, Ricci, Rychen, Schlatter, Silano, Solecki, Turck, Younes, Craig, Hart,
Von Goetz, Koutsoumanis, Mortensen, Ossendorp, Germini, et al., 2018).
Coming back to the previous example, the uncertainty about the level of
experimental variability would be expressed as several distributions, each of

which with a different centre (median or mean) and measure of spread.

Computational model inputs

There is a high interest in transforming the mixed-platform preclinical cardiac
safety assessment of novel pharmaceutical products into purely in silico based
methods without the need for extensive experimental testing. Therefore, the
structure of our multi-level cardiotoxicity models allows both, experimental as
well as predicted inputs. Since computational models, such as the PBPK or
QSAR models, are built using experimental data, experimental variability,

which was extensively described in this work, is also retained in the training
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series used for building these models. But, when the plasma drug
concentration or the channel specific ICsp are generated computationally, the
level of epistemic uncertainty increases due to further limitations in the
training data coverage or a high level of subjectivity impacting the

parametrisation of the respective source models that predicts them.

For instance, if the intention is to predict proarrhythmic properties of a
compound available in a public domain, such as the ChEMBL database
(Gaulton et al., 2012), multiples datapoints would be available for the same
compound, each of which is produced in a separate experiment following a
specific protocol. These data points would first need to be extensively filtered
to select the experimental parameters of interest and aggregated using
statistical measures such as a mean or the median. This process, together with
multiple unconsidered originating from differences in laboratory conditions,
experimental design, and other factors, would contribute to the level of
epistemic uncertainty. Despite of these factors, the predictive performance of
purely computational proarrhythmia prediction systems highly depends on the
selected biomarker. As shown by (Beattie et al., 2013b), the use of QSAR-
derived data to simulate QT-interval shortening may yield nearly as good
predictions as those produced using experimental data inputs. Conversely,
utilising QSAR data to predict QT-interval prolongation significantly worsens
the predictive performance. These two examples show the importance of
comprehensive definition of the endpoint being modelled which should
always precede the process of uncertainty analysis to ensure a correct

determination of model limitations, variability sources and epistemic factors.

QSAR

The most widely accepted standard method for the quantification of reliability
and uncertainty associated with QSAR model predictions are methods based

on the concept of applicability domain (AD) (Sahlin et al., 2014). Predictions
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generated for compounds having structurally or physio-chemically similar
counterparts in the training set are generally considered reliable. Standard AD
methods can be complemented by placing the model within a framework that
can estimate the uncertainty levels in every single prediction. An example is
the conformal prediction framework which guarantees the maximum allowed
frequency of errors which will be committed by the conformal predictor
(Alvarsson etal.,, 2021; Norinder etal.,, 2014; Svensson etal., 2018).
Uncertainty resulting from lack of knowledge (e.g.: insufficient training data or
anomalous samples in test data), that is predominant in model predictions is
most commonly addressed by applying Bayesian inference, shortly introduced

above (Sahlin, 2015).

PBPK

The arrhythmogenic potential of drug candidates is typically assessed at early
stages of drug development when the compound can still be removed from
the development pipeline without much economic harm. At these stages, the
therapeutic concentration and other PK parameters required to compute the
EFTPC are still unknown but the use of currently described methodologies to
estimate point-of-departure concentrations is an interesting approach. These
could be compared with experimental results produced at preclinical stages
using physiologically based pharmacokinetic (PBPK) modelling to obtain
plasma concentrations from the administered doses. PBPK models are
mathematical algorithms based on ordinal differential equations (ODEs)
describing physiological processes involved in the absorption, distribution,
metabolism, and excretion of the drug (Pifiero et al., 2018). Variability and
uncertainty quantification in PBPK models is often initiated by a parametric
sensitivity analysis to identify the PK parameters that are most susceptible.
Since PK parameters are subject to inter-individual differences and PK

simulations are often liable to lack of full information about the constants and
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parameters in the ODEs, the UQ methods require combining the frequentist
and conditional probabilistic approaches (Kuepfer et al., 2016). Consideration
of uncertainty in PBPK simulations would allow to explore a range of clinically
relevant drug concentrations, especially at the site of the pharmacological or
toxicological action of the drug (e.g.: drug binding site at the ion channel

protein in the membrane of ventricular myocytes) (Z. Li, Garnett, et al., 2019).

Conclusions

In this study, we developed and tested methods for the quantification of the
impact of selected variability types on the uncertainty of APDgy predictions
generated by an in silico multi-level proarrhythmia model. The aim was first to
explore the effects of different types of variability, separately and in
combination, by quantitatively characterising and propagating them
throughout our complex model, and second to replace point predictions with
value ranges that can be computed for predefined credibility levels (e.g.: 80%)

and interpreted as confidence intervals.

The propagation of “experimental variability”, associated with the input ICso
values, yielded distributions whose characteristics were defined by the
location of the IVs within the hyperplane-like structure of model training data.
This contrasts with the distributions resulting from the propagation of “inter-
individual variability”, linked with the parameters specified in the AP
simulation models, whose shape and width were a direct consequence of the
methodological assumptions and the predicted spread parameters,
respectively. After a simultaneous propagation of both types, the distributions
showed a combined effect of both, the non-linear relationship between the
IVs and APDg and the assumption of normality applied to model outputs.
Importantly, combining two sources of variability did not lead to additive

results, meaning that the combined result is not their sum.
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Further, we showed how such distributions can be used to compute the
proarrhythmia biomarker predictions together with value intervals of certain
credibility. One of the main conclusions arising from this analysis was the that
the actual biomarker prediction remains nearly unchanged when the
simulations are performed, as compared to the initial method without UQ.
Although we do not claim the undoubtful accuracy of these results, we
consider that such representation of the predictions has excellent advantages
over single-point estimates. These mainly include the possibility to inspect
values that would be produced in experiments or for individuals that do not
represent the exact centre of the distribution from which they were drawn.
Hence, it allows to protect individuals who are more prone to develop cardiac
arrhythmias or TdP, since interval ranges may cross the boundaries of different
risk classes. Moreover, they provide a more realistic view on predictions in the
context of drug candidate prioritisation and validation of clinical results, since
the presence of uncertainty resulting from variability is usually neglected at

these assessment stages.
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Conclusiones

1. Se revisaron los principales trabajos en los que se emplea la
combinacién de multiples MIEs y modelos multinivel como dos
aproximaciones diferentes para la prediccion de pardmetros
toxicoldgicos complejos.

2. El modelado mecanistico, a través de la combinacidn de multiples
MIEs para la prediccion de la colestasis condujo a la construccidn de
un metamodelo con un poder predictivo superior al modelado directo
QSAR, ya que sus resultados fueron independientes del grado de
similitud estructural, a diferencia de los modelos directos QSAR.

3. La incorporacion de la toxicocinética al metamodelo anterior
incremento de forma sustancial su capacidad predictiva.

4. Los modelos multinivel de arritmia fueron empleados de forma
exitosa reduciendo 100 veces los tiempos de obtencién de las matrices
electrofisiolégicas frente a las aproximaciones de referencia.

5. Se desarrolléd con éxito una metodologia general para identificar,
caracterizar, y cuantificar la variabilidad asociada en las predicciones
del modelo multinivel, mejorando asi la caracterizacion de su
confiabilidad.

6. Se determind que la combinacién de la variabilidad experimental y la
interindividual no tiene un efecto sumatorio en la variabilidad

asociada sobre las predicciones del modelo multinivel.
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