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Resumen global Introduccion

1. Introduccion

Enfermedad de Alzheimer: fisiopatologia, diagnéstico y tratamiento.

La Enfermedad de Alzheimer (EA) es la enfermedad neurodegenerativa mas comun
siendo la causa de alrededor del 70% de las demencias. En 2018 la EA afectaba a
alrededor de 50 millones de personas en todo el mundo [1,2], y se espera que la incidencia
en paises desarrollados continue aumentando debido al envejecimiento de la poblacion,
superando los 150 millones en 2050. La EA genera un gran impacto social y econdmico
[3], debido a factores como el coste médico, la falta de productividad, la disminucion de
la calidad de vida de enfermos y cuidadores, y la dependencia. Sin embargo, los
tratamientos disponibles no consiguen curar ni detener la enfermedad, siendo en su
mayoria tratamientos sintomatologicos [4]. Actualmente, se estan desarrollando
numerosos ensayos clinicos con nuevos farmacos con accion frente a diferentes
mecanismos fisiopatologicos potencialmente implicados en el desarrollo de la EA [4]. En
general, estos tratamientos estan dirigidos a fases iniciales de la enfermedad, en las que
muestran conseguir una mayor efectividad. Por ello, es necesario un diagndstico
temprano de la EA. Actualmente la complejidad e invasividad de los métodos
diagnosticos utilizados (biomarcadores en liquido cefalorraquideo, técnicas de
neuroimagen), dificulta la deteccion temprana. Por ello, es necesario identificar
biomarcadores diagnosticos fiables, tempranos y minimamente invasivos, asi como
avanzar en el conocimiento de los mecanismos fisiopatologicos implicados en la

aparicion y desarrollo de la enfermedad.

Clinicamente, la EA se caracteriza por un deterioro cognitivo progresivo que afecta a
diferentes dominios como la memoria episddica, la fluidez verbal o las funciones
ejecutivas [5]. En la mayoria de casos se trata de una enfermedad esporadica, de hecho
los casos de EA familiar debida a mutaciones en genes (proteina precursora de amiloide
(APP), presenilinas 1 y 2 (PS1) (PS2)) no llegan al 2% [6]. Ademas, entre los factores de
riesgo de la EA destaca el gen que codifica la Apolipoproteina E (ApoE), concretamente
el alelo €4; asi como otros factores relacionados con el estilo de vida (hipercolesterolemia,

diabetes, hipertension), considerados factores modificables [7].
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Mecanismos fisiopatoldgicos

A nivel fisiopatologico, la EA se caracteriza principalmente por dos marcas
histopatologicas: i) agregados intracelulares de la proteina Tau fosforilada (p-Tau) en
forma de ovillos neurofibrilares, y ii) acimulos extracelulares de la proteina beta amiloide
(BA) anormalmente plegada en forma de placas seniles que ocurre principalmente en el
lobulo temporal medial y estructuras neocorticales, que acaban dando lugar a una pérdida
de sinapsis [4]. En general, las principales hipdtesis sobre el origen de la enfermedad son

la cascada amiloide, la hipotesis de Tau y la colinérgica [4].

La hipotesis amiloide. En 1992 se hipotetizd por primera vez el papel central de la
proteina amiloide  (AP) como el agente causante de la EA [8]. En ella se describia como
a partir de un procesamiento especifico de la proteina precursora amiloide (PPA) se
generaba un péptido que precipitaba dando lugar a la muerte celular, ademas de promover
la acumulaciéon de Tau en ovillos neurofibrilares [8]. La PPA es una proteina
transmembrana que puede ser escindida por dos vias: i) la “normal” o no patologica, en
la que actia la enzima o-secretasa y posteriormente la y-secretasa dando lugar a un
péptido extracelular soluble; y ii) la amiloidogénica, en la que actiia la enzima B-secretasa
(BACE) y posteriormente la enzima y-secretasa produciendo péptidos de diferentes
longitudes, entre los que se encuentra AB42 [9]. Como apoyo a esta teoria se encuentra
los factores de riesgo genéticos. Asi pues, la Apolipiproteina E (ApoE) tiene influencia
sobre la eliminacién de amiloide 42 siendo menor con la isoforma Apog4 [10]. Ademas,

mutaciones en los genes PS1, PS2 y BACE contribuyen al desarrollo de la enfermedad.

El aumento en la produccion de este péptido AB42, considerado toxico y la reduccion en
los mecanismos de eliminacion del mismo da lugar a la formacion primero de oligomeros
afectando a la funcién sindptica. Esto desencadena una respuesta inflamatoria y un
aumento de estrés oxidativo, dando lugar finalmente a la formacion de las placas seniles
[11]. Esta respuesta inflamatoria contribuye a la fosforilacion de Tau que también juega

un papel relevante en el desarrollo de la enfermedad [11].

Hipotesis de Tau. Algunos estudios sugieren que en primer lugar aparece la cascada
amiloide y la toxicidad generada da lugar a la hiperfosforilaciéon de Tau generando un

aumento en la toxicidad celular y pérdida de neuronas. Sin embargo, otros sostienen que
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la patologia Tau es la que desencadena los mecanismos patologicos de la enfermedad

[12,13].

Tau es una proteina intracelular que forma parte del citoesqueleto y es especialmente
importante en las neuronas donde realiza funciones estructurales y de transporte de
sustancias como los neurotransmisores [13]. En condiciones fisiologicas, esta proteina
sufre fosforilaciones en diversos residuos, sin embargo, en condiciones patologicas como
la EA se produce una hiperfosforilacion [13], que aumenta su toxicidad. Ademas, facilita
la formacion de agregados de proteinas Tau u ovillos neurofibrilares (NFT) pudiendo dar

lugar a muerte celular y por tanto a la pérdida de neuronas [13].

Hipotesis colinérgica. La acetilcolina (ACh) es un neurotransmisor que se forma en el
citoplasma de las neuronas colinérgicas a partir de colina y Acetil-CoA por accion de la
enzima colina-acetil transferasa. Este neurotransmisor es transportado por vesiculas al
espacio sinaptico tras la despolarizacion de la neurona presinaptica. En la neurona
postsinaptica puede unirse a receptores muscarinicos o nicotinicos produciendo repuesta
inhibitoria o activadora. En el espacio sinaptico se hidroliza por la acetilcolinesterasa si

no se ha unido a ninglin receptor [14].

La acetilcolina (ACh) es un neurotransmisor implicado en procesos como el aprendizaje
o la memoria, y las neuronas colinérgicas presentan una degeneracion especifica en la EA
[14]. Concretamente, se ha observado una reduccion de la actividad de la enzima
acetiltransferasa de colina [11]. De hecho, los tratamientos convencionales actuales para
la EA se basan en aumentar la sefial colinérgica para contrarrestar la reduccion de
acetilcolina manteniendo el neurotransmisor un tiempo mas prolongado en el espacio

sinaptico [15].

A pesar de haber discrepancias en la temporalidad de mecanismos implicados en la EA,
todos ellos coexisten una vez la patologia esta instaurada, junto con otros mecanismos
como la neuroinflamacion, activacion de microglia y astrocitos, estrés oxidativo,
alteraciones en el metabolismo de lipidos, proteinas, ADN, neurotransmisores, etc [4,16—

20].
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Diagndstico

En la practica clinica el diagndstico se basa principalmente en los sintomas clinicos. Sin
embargo, desde este punto de vista la EA es muy heterogénea [21]. Se trata de una
enfermedad progresiva que puede evolucionar a lo largo de 15-25 afios desde que se
instauran los mecanismos fisiopatoldgicos hasta que aparecen los sintomas clinicos y se
agravan [22]. En el continuo que caracteriza a la EA se pueden definir varias etapas: 1)
EA preclinica en la que hay ausencia de sintomas clinicos, aunque se detecta la alteracion
de los biomarcadores propios de la enfermedad; ii) deterioro cognitivo leve (DCL) con
presencia de sintomas iniciales pero sin afectacion de las actividades de la vida diaria; y
iii) demencia, caracterizada por sintomas mas avanzados con afectacion de las actividades
de la vida diaria [5]. Las guias clinicas definidas por Instituto Nacional de envejecimiento
y la Asociacion de Alzheimer (NIA-AA) basan el diagnéstico en la etapa de deterioro
cognitivo leve (DCL), concretamente en la deteccién de un cambio en la cognicién por
parte del paciente, un observador o bien un clinico experto [23]. Este deterioro se produce
en uno o varios dominios cognitivos (memoria, funcién ejecutiva, atencion, lenguaje,
habilidades visoespaciales) [23]. Sin embargo, estos pacientes siguen manteniendo
independencia en cuanto a la funcionalidad [23]. En etapas mas avanzadas se basa en la
presencia de demencia (deterioro en funcionalidad que no se explican por delirio o
problemas psiquiatricos, deterioro cognitivo basado en valoraciones neuropsicologicas,
alteraciones en el comportamiento), y una progresion de los sintomas durante meses o
afios [24]. Ademas, los principales sintomas cognitivos son el deterioro en el aprendizaje
y recuerdo de la informacion aprendida recientemente en el caso de la variante amnésica,
o bien alteraciones en el lenguaje, visoespaciales o en funciones ejecutivas en la variante

no amnésica [24].

El NIA-AA publico en 2018 una actualizacion de las guias diagnosticas para la EA de
2011 basadas en criterios clinicos encaminada a una definicion mas biologica de la
enfermedad basada en biomarcadores [25]. Los biomarcadores se agrupan segin la
clasificacion ATN (A: deposito de B-amiloide; T: Tau patologica; N: neurodegeneracion).
Este sistema de clasificacion ATN incluye biomarcadores de imagen y liquido
cefalorraquideo (LCR) segun el proceso patologico que cada uno mide. En cuanto a las

medidas de depdsito de amiloide (A) se encuentran los biomarcadores en LCR AB42 y el
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ratio AB42/Ap40 ademas de Tomografia por Emision de Positrones (PET) amiloide. En
cuanto a los depdsitos de ovillos neurofibrilares o Tau patolégica (T), se define por los
niveles de p-Tau en LCR o PET Tau. Por tltimo, la definicion de neurodegeneracion o
dafio neuronal (N) incluye resonancia magnética nuclear (RMN) estructural, PET-FDG o
niveles de Tau total en LCR (t-Tau). En estas guias se remarca la flexibilidad del sistema
para la incorporacion de nuevos biomarcadores dentro de los grupos ATN y también

nuevas categorias.
Tratamientos

Actualmente, los tratamientos frente a la EA unicamente consiguen reducir la
sintomatologia a nivel cognitivo y funcional. Los farmacos mas extendidos para la EA
son los inhibidores de la acetilcolinesterasa (donepezilo (Aricept™), rivastigmina
(Exelon™), y galantamina (Razadyne™)) y antagonistas del receptor N-metil-D-
aspartato (memantine (Namenda™)) [26]. En los ultimos afios se estan desarrollando
nuevos potenciales tratamientos que pueden dividirse en dos tipos: i) los dirigidos a actuar
sobre la sintomatologia de la enfermedad (cognicion, agitacion, agresividad, etc) y ii)
tratamientos modificadores de la enfermedad [26]. Estos tltimos se dirigen a diferentes
dianas entre las que destacan los tratamientos anti-amiloide, encaminados
especificamente a reducir la placa amiloide, los tratamientos anti-Tau dirigidos a reducir
los ovillos neurofibrilares y los dirigidos a reducir o regular inflamacioén, metabolismo,
bioenergética, plasticidad sindptica y neuroproteccion o antioxidantes entre otros
[22,26,27]. Algunos de estos tratamientos han mostrado una reduccion en las placas
amiloides aunque esto s6lo se traduce en una reduccion moderada en el deterioro
cognitivo producido por la enfermedad [28]. En general, los tratamientos que se
encuentran en investigacion clinica tienen una alta tasa de fracaso que podria ser
consecuencia de la complejidad de la enfermedad y la falta de una visiéon completa de los
mecanismos fisiopatologicos implicados y la interaccion entre ellos [26]. Por otro lado,
cabe destacar que la mayoria de los ensayos llevados a cabo actualmente se dirigen a
pacientes en etapas tempranas y algunos en etapas moderadas [26], por lo que es relevante
obtener un diagnodstico precoz para poder acceder a los tratamientos en las etapas

tempranas en las que muestran efectividad [27].

24



Resumen global Introduccion

Estrés oxidativo y Enfermedad de Alzheimer

El estrés oxidativo juega un papel importante en el desarrollo de las enfermedades
neurodegenerativas [29]. En circunstancias normales, existe en el organismo un equilibrio
entre sustancias oxidantes y antioxidantes que permite al organismo realizar sus funciones
metaboélicas y de sefializacion necesarias [30]. Sin embargo, cuando los sistemas
antioxidantes no son capaces de compensar el nivel de oxidantes se desencadena un
desequilibrio conocido como estrés oxidativo [30]. Cuando este desequilibrio ocurre
existe un aumento en el estrés celular dando lugar en ultima instancia a procesos de

muerte celular y apoptosis, necrosis o autofagia [31].

Especificamente, el estrés oxidativo mantiene una relacion bidireccional con la cascada
amiloide, por un lado el estrés oxidativo favorece la via amiloidogénica de procesamiento
de APP aumentando la produccion del péptido toxico AP42, y por otro lado, las placas
amiloides favorecen el aumento de estrés oxidativo llevando a la muerte celular [32,33].
De forma similar, el estrés oxidativo interacciona con las quinasas encargadas de la
fosforilacion de Tau y a su vez los ovillos neurofibrilares producen un aumento de

especies reactivas de oxigeno (ROS) [32].

El ambiente oxidante genera dafio en biomoléculas celulares como proteinas, ADN y
lipidos [34]. Compuestos derivados de este proceso pueden ser detectados en muestras
periféricas como sangre u orina sirviendo como una aproximacion al estado oxidativo del
organismo [35]. Especificamente, los biomarcadores de estrés oxidativo mas utilizados
son proteinas carboniladas, nitrotirosina, productos de oxidacion avanzada de proteinas
(ej. Cloro-tirosina) como derivados de la oxidacion de proteinas; 7,8-dihydroxy-8-oxo-
2'-deoxyguanosine (80xodG), como derivados de la oxidacion de ADN; vy
malondialdehido (MDA), 4-hidroxi-2-nonenal (HNE) e isoprostanos como derivados de

la oxidacidn lipidica [36].

El cerebro es un 6rgano con una gran actividad metabdlica, alto consumo de oxigeno y
alto contenido en acidos grasos poliinsaturados que lo hacen susceptible al dafio oxidativo
[37]. Concretamente, la oxidacion de lipidos podria tener un papel importante en el
desarrollo de enfermedades neurodegenerativas y especificamente en la EA [38]. De

hecho, estudios previos han encontrado co-localizacién de productos de la oxidacion de
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lipidos con placas amiloides evidenciando la relacion entre el estrés oxidativo y los lipidos

con el desarrollo de los mecanismos patoldgicos de la EA [39].

Los lipidos pueden ser oxidados por dos vias independientes (enzimatica y no enzimatica
o por radicales libres) [40]. En esta tesis nos centramos en los compuestos derivados de
la oxidacion de tres acidos grasos polinsaturados (PUFA): 4cido araquiddnico (AA), acido
docosahexanoico (DHA) y acido adrénico (AdA). En cuanto al AA su oxidacion da lugar
a dos familias de compuestos: 1) isoprostanos e isofuranos como (15(R)-15-F-IsoP; 2,3-
dinnor-15-epi-15-F»-IsoP; 15-keto-15-Ex-I1soP; 15-keto-15-Fa-1soP; 15-Ex-IsoP;15-Fa-
IsoP; 5-F-IsoP), origindndose los segundos bajo unas condiciones con mas tension de
oxigeno, y ii) prostaglandinas (PGE2; PGF2.; la,1b-dihomo- PGF2,) [41]. EL AA se
encuentra en una gran cantidad en el cerebro formando parte de las membranas celulares
[42,43]. Por otro lado, la oxidacion del DHA localizado principalmente en la materia gris
del cerebro, y del AdA localizado principalmente en la materia blanca del cerebro, dan
lugar a los neuroprostanos (10-epi-10-F4-NeuroP; 14(RS)-14-F4-NeuroP; 4(RS)-Fa-
NeuroP) y dihomo-isoprotanos (17-epi-17-Fa-dihomo-IsoP; 17-F»-dihomo-IsoP; ent-
7(RS)-7-Fa-dihomo-IsoP;  17(RS)-10-epi-SC-A'*-11-dihomo-IsoF;  7(RS)-ST-A%-11-

dihomo-IsoF), respectivamente [43].
Analisis 6micos y Enfermedad de Alzheimer

Otra herramienta de gran utilidad en el estudio de enfermedades complejas como la EA
son los analisis 6micos en muestras biologicas, que proporcionan informacion acerca de
las vias patologicas implicadas, asi como generando nuevos potenciales biomarcadores y
dianas terapéuticas [44,45]. Este tipo de analisis implican un tratamiento previo de la
muestra, asi como un procesado e interpretacion posterior de los resultados [46]. En esta

tesis centramos el estudio 6mico en anélisis metaboldmico, lipidomico y epigendmico.

Metabolomica en EA

La metabolomica permite caracterizar el perfil de metabolitos en cualquier tipo de
muestras como sangre o LCR, siendo especialmente 1til en la deteccion de potenciales
biomarcadores dada su capacidad para detectar pequefios cambios y para el estudio de
mecanismos fisiologicos y patologicos [47]. Los estudios metabolomicos pueden

enfocarse desde un analisis no dirigido, que permite una visién global; y un analisis
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dirigido, que permite validar y confirmar los resultados obtenidos con los métodos no
dirigidos [48]. Una de las técnicas analiticas mas utilizadas es la espectrometria de masas

(MS), que se caracteriza por su elevada sensibilidad y especificidad [49]

Los estudios metabolomicos dirigidos y no dirigidos han permitido identificar
biomarcadores para la EA en fluidos biolégicos como LCR, plasma u orina [50-52]
postulando esta técnica como una herramienta Util en la busqueda de nuevos

biomarcadores.

Lipidémica en EA

La lipidomica consiste en el estudio del perfil lipidico en una determinada muestra

biologica.

El cerebro tiene una alta composicion lipidica, por ello tiene gran interés el estudio
lipidomico en pacientes con EA, evidenciando la desregulacion de esta familia de
biomoléculas tanto en diferentes areas cerebrales como en otros fluidos biologicos [53].
Ademas, estos metabolitos presentan una potencial utilidad como fuente de

biomarcadores diagnosticos especificos de la enfermedad [53].

Epigendmica en EA

La epigendmica se encarga del estudio de la regulacion de genes siendo las vias mas
estudiadas la metilacion de acido desoxirribonucleico (DNA), las modificaciones de
histonas y los aidos ribonucleico (RNAs) no codificantes [54]. Dentro de estos ultimos,
se encuentran los microRNAs (miRNA) que son secuencias de RNA de entre 19 y 25
nucleétidos implicados en la regulacion de genes tanto positiva como negativamente [55].
Por tanto, la epigenética guarda una estrecha relacion con los procesos patologicos siendo
de gran utilidad en la compresion de los mecanismos fisiopatologicos asi como

proporcionando potenciales biomarcadores [56].

En la EA diversos miRNAs han mostrado niveles diferenciales en comparaciéon con
sujetos sin la enfermedad, tanto en cerebro como en fluidos biologicos (LCR, derivados
sanguineos [57]. Las metilaciones de DNA, modificaciones de histonas y los RNA no
codificantes estan implicados en rutas relacionadas con la enfermedad y sus factores de

riesgo [58]. Por tanto, pueden constituir una importante fuente de biomarcadores.
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Integracién de datos experimentales de diferente naturaleza

La integracion de resultados de diferentes técnicas dmicas permite la identificacion de
vias implicadas en la EA permitiendo una caracterizaciéon mas completa de los pacientes
con EA [59]. Esto puede ayudar a una descripcion mas exhaustiva de la heterogeneidad
de los pacientes con EA y sus implicaciones clinicas con el fin de obtener un diagnostico

temprano, generalizado, fiable y facil acceso a tratamientos personalizados [60].

Estudios previos han integrado datos de diferente naturaleza con el objetivo comun de
profundizar en las vias patologicas de la EA. Especificamente, la integracion de analisis
metabolomicos y gendmicos permitié detectar metabolitos alterados y sus reguladores
[61]. Ademas, la vision conjunta incluyendo metaboléomica y gendmica ayudan a la
compresion de los mecanismos subyacentes que contribuyen al riesgo de EA [62]. Por

tanto, estos estudios permiten una vision global y mas completa de la enfermedad.
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2. Hipéotesis y Objetivos

La hipotesis de la presente Tesis Doctoral es que los compuestos de peroxidacion lipidica
y otros obtenidos mediante andlisis 6micos (metabolomica, lipidomica, epigendmica) en
muestras minimamente invasivas, pueden ser potenciales biomarcadores para el
diagnoéstico temprano de la EA, ademas de proporcionar informacion sobre las vias

metabolicas implicadas en el desarrollo de la enfermedad.

El objetivo principal de la tesis fue estudiar los compuestos derivados de peroxidacion
lipidica como potenciales biomarcadores diagnosticos especificos de la EA y su relacion
con las variables clinicas de la enfermedad, e identificar nuevos biomarcadores y vias
patologicas alteradas en las primeras etapas de la EA mediante una aproximacion

multiémica (metabolomica, lipidomica, epigenomica).
Los objetivos especificos fueron:

1) Identificar potenciales biomarcadores basados en peroxidacion lipidica para
la deteccion de la EA en muestras de orina (Capitulo 1) y plasma (Capitulo
2).

i) Desarrollo de modelos diagnostico de la EA basados en biomarcadores de
peroxidacion lipidica (Capitulos 1, 2 y 5).

iii) Seleccionar el mejor tipo de muestra para el diagnodstico de la EA a partir de
los niveles de los compuestos de peroxidacion lipidica (Capitulo 3).

iv) Analizar la utilidad de los potenciales biomarcadores (compuestos de
peroxidacion lipidica) para el diagndstico temprano o preclinico de la EA
(Capitulo 6).

V) Establecer la relacion entre los compuestos de peroxidacion lipidica y las
variables clinicas de la EA: atrofia cerebral mediante escalas visuales
(Capitulo 7), biomarcadores estandar en Liquido cefalorraquideo (LCR) y
deterioro cognitivo mediante evaluaciones neuropsicologicas (Capitulos 2,
4y6)

vi) Busqueda de nuevos biomarcadores plasmaticos para el diagndstico de la
EA en plasma mediante técnicas émicas: metaboldmica (Capitulos 8 y 9),

lipidémica (Capitulo 10), epigendmica (Capitulo 11).
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vii) Estudio de potenciales vias metabolicas alteradas en la EA mediante el
analisis omico (Capitulos 10 y 11) y la integracion de diferentes resultados

omicos (Capitulo 12).
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3. Metodologia

Participantes y obtencion de muestras

Los participantes incluidos en estos estudios son pacientes de la Unidad de Neurologia
del Hospital Universitario La Fe (Valencia). El diagndstico y clasificacion de estos
pacientes en grupos de estudio se realiza siguiendo los criterios del NIA-AA teniendo en
cuenta la valoracién neuropsicologica (Clinical Dementia Rating (CDR), Mini-mental
State  Examination (MMSE), Repeatable Battery for the Assessment of
Neuropsychological Status (RBANS), Functional Activities Questionnaire (FAQ)),
niveles de biomarcadores (AP42, t-Tau, p-Taul81) en LCR o PET amiloide, y cambios
estructurales cerebrales mediante resonancia magnética nuclear (RMN). De esta forma
los participantes se clasifican en los siguientes grupos: i) control, presentan niveles
normales de biomarcadores en LCR y no tienen alteraciéon cognitiva; ii) EA preclinica,
presentan niveles alterados de biomarcadores en LCR pero no tienen alteracion cognitiva;
iii) DCL debido a EA, presentan niveles alterados de biomarcadores en LCR y alteracion
cognitiva, sin perder la capacidad para la realizacion de las actividades de la vida diaria;
iv) DCL no debido a EA, presentan niveles normales de biomarcadores en LCR y
alteracion cognitiva. El grupo “EA” o “caso” que aparece en algunos capitulos incluye
pacientes con DCL-EA o demencia leve debida a EA y el grupo EA temprana incluye
pacientes con DCL-EA y EA preclinica. Ademas el grupo control esta referido en algunos

capitulos como controles sanos o sanos.
Determinacion de biomarcadores

En cuanto a los biomarcadores analizados en los diferentes estudios que componen la
presente tesis, en la primera seccion se determinan biomarcadores procedentes de la
peroxidacion lipidica y en la segunda seccion biomarcadores de distinta naturaleza

mediante técnicas dmicas (metabolomica, lipidomica, epigendmica)

En cuanto a los biomarcadores de peroxidacion lipidica, se determinaron en muestras de
orina, plasma y LCR mediante un método analitico basado en cromatografia liquida de
alta resolucion acoplado a espectrometria de masas (UPLC-MS/MS). Previamente se
realizd un tratamiento a las muestras, diferente para cada matriz bioldgica, que en general

incluia una etapa de purificacion y pre-concentracion.
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En cuanto a las técnicas 6micas en muestras de plasma se realizaron estudios de
metabolomica y lipidomica mediante los métodos validados de la Unidad Analitica del
Instituto de Investigacion Sanitaria La Fe (IIS LaFe) basados en espectrometria de masas;
y epigenomica mediante secuenciacion masiva. Previamente al analisis metabolomico y
lipidéomico se realizd una etapa de precipitacion de proteinas y para los estudios
epigendmicos se requirié de una etapa de extraccion de RNA. Posteriormente, en todas
las técnicas se realizO un pre-procesamiento de datos y los controles de calidad

pertinentes.
Analisis estadisticos

Los analisis estadisticos realizados fueron por un lado univariantes, incluyendo el estudio
de diferencias entre grupos mediante Mann-Whitney o Kruskal-Wallis para las variables
numéricas y Chi-Cuadrado para las variables categoricas, y el estudio de correlaciones

mediante el Test de Correlacion de Pearson.

Por otro lado, se realizaron analisis multivariantes para estudiar la capacidad diagnéstica
de paneles de biomarcadores y la seleccion de variables influyentes en la discriminacion
entre los grupos de estudio. Los principales modelos utilizados fueron: i) Regresion por
minimos cuadrados parciales (PLS), ii) Regresion lineal Elastic Net, iii) Maquinas de

vectores de soporte (SVM), iv) Redes neuronales artificiales (ANN), y v) Random Forest.

Se utilizaron los softwares R studio y SPSS y se consider6 el p valor <0.05 para establecer

la significacion estadistica.
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4. Resultados

La tesis esta dividida en dos secciones, ambas centradas en los biomarcadores
diagnosticos para la EA. La primera parte incluye 7 capitulos en los que se evalia la
capacidad de los compuestos de peroxidacion lipidica en orina y plasma, en el diagnostico
de la EA. La segunda parte incluye los capitulos del 8 al 12 dedicados al estudio de la
utilidad diagnoéstica de los analisis dmicos (metabolémica, lipidomica, epigendmica) en

la EA. A continuacion, se detallan los principales resultados obtenidos.

En los dos primeros capitulos se realizaron analisis en pacientes con EA temprana (DCL-
EA y demencia leve debida a EA) y controles en muestras de plasma y orina. En las
muestras de orina (capitulo 1), se encontraron algunos biomarcadores diferencialmente
expresados entre los grupos caso (n=70) y control (n=29). Los compuestos 5-F»-IsoP,
2,3-dinor-15-epi-15-F»-IsoP, 15-Ex-IsoP, PGE,, PGF24, 10-epi-10-F4-NeuroP, 4(RS)-4-
F4-NeuroP, ent-7(RS)-7-F»-dihomo-IsoP) mostraron niveles elevados en los pacientes
con EA con respecto a los controles, mientras que 15-keto-15-Ex-IsoP, 15-keto-15-F-
IsoP presentaban niveles mas bajos en el grupo con EA. Con estos resultados, se
desarroll6 un modelo de regresion lineal (Elastic Net) que seleccioné 6 variables (15(R)-
15-F-1soP, 15-Ex-IsoP, PGF2,, 4(RS)-Fs-NeuroP, 14(RS)-14-F4-NeuroP, Ent-7(RS)-7-
Fa-dihomo-IsoP) ademas de género y edad. La exactitud del modelo fue de 0.682. En
paralelo se desarrollé un modelo basado en Random Forest que seleccion6 las mismas
variables con una exactitud de 0.71. Cabe destacar en el modelo de Elastic Net que para
poder ser Util como herramienta de cribado y obtener una buena sensibilidad se debe

sacrificar la especificidad.

En las muestras de plasma (capitulo 2) se encontraron algunos de los biomarcadores
diferencialmente expresados entre los grupos caso (pacientes con EA) y control. Los
compuestos 15(R)-15-Fa-IsoP, 15-keto-15-Ex-IsoP, 15-keto-15-Fy-IsoP, 15-Ex-IsoP,
4(RS)-Fa-NeuroP and ent-7(RS)-7-F-dihomo-IsoP mostraron niveles elevados en el
grupo caso con respecto a los controles, mientras que PGFaq, 5-Fa-IsoP, 7(RS)-ST-A8-11-
dihomo-IsoF presentaban niveles mas bajos en el grupo de EA. Con estos resultados, se
desarrolld un modelo de regresion lineal (Elastic Net) que selecciono 6 variables 15-keto-
15-F»-IsoP, 4(RS)-4-F4-NeuroP, 1a,1b-dihomo-PGF,,, ent-7(RS)-7-F2-dihomo-IsoP, 17-

epi-17-F»-dihomo-IsoP), ademas de género y edad. La exactitud del modelo fue de 0.88
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(IC 95%, 0.82-0.95) y el area bajo la curva- Caracteristica Operativa del Receptor (AUC-
ROC) de validacion de 0.817.

En el capitulo 3 nos planteamos comparar la capacidad diagndstica de los paneles de
biomarcadores determinados en ambas matrices (plasma y orina) en la diferenciacion
entre controles sanos y pacientes con DCL-EA. Para ello, se desarrollaron modelos
estadisticos basados en ANN, SVM y PLS. Los resultados obtenidos fueron los
siguientes: en orina (ANN AUC: 0.839 (IC 95%, 0.746—0.933), PLS AUC: 0.653 (IC
95%, 0.526—0.780), SVM AUC: 0.644 (IC 95%, 0.539-0.749) con funcion polinomial y
0.659 (IC 95%, 0.558-0.759) con funcion radial); en plasma: (ANN AUC: 0.882 (IC 95%,
0.814-0.949), PLS AUC 0.765 (CI 95%, 0.633-0.868) y SVM AUC: 0.817 (IC 95%,
0.712-0.922) con funcién polinomial y 0.827 (IC 95%, 0.739—-0.915) con funcion radial.
En general, los modelos basados en redes neuronales fueron los que presentaron mejores
indices diagndsticos y los modelos basados en biomarcadores en plasma presentaron

mayor exactitud que los de orina.

En el capitulo 4, se estudio la relacion de los niveles de los compuestos peroxidacion
lipidica entre muestras de LCR y plasma para valorar su posible procedencia cerebro-
especifica. Las correlaciones entre estas dos matrices no fueron satisfactorias.
Unicamente 17(RS)-10-epi-SC-A'-11-dihomo-IsoF mostr6 una correlacion significativa
entre las dos matrices (CCP 0.248, p = 0.031). Analizando por separado los grupos de
participantes (EA y no EA) con el fin de evaluar la influencia de la alteracion en la barrera
hematoencefalica, se obtuvieron correlaciones significativas entre las dos matrices para
15(R)-15-F-IsoP (CCP =0.388, p=0.024), 15-keto-15-F-IsoP (CCP =0.360, p=0.037)
y 5-Fa-IsoP (CCP = 0.345, p = 0.046) en el grupo no EA y para 17-Fx-dihomo-IsoP (CCP
=0.399, p = 0.009), 17(RS)-10-¢pi-SC-A'3-11-dihomo-IsoF (CCP = 0.345, p = 0.045) en
el grupo EA. A pesar de no encontrarse en general una buena relacion entre las dos
matrices, si se encontraron algunas relaciones con los biomarcadores propios de la EA'y
el estado cognitivo. De hecho, los niveles de AB42 en LCR mostraron correlacion
negativa significativa con los niveles en LCR de 7(RS)-ST-A3-11-dihomo-IsoF, 5-F-IsoP,
neurofuranos e isofuranos totales. Ademas, p-Taul81 en LCR mostré correlacion
negativa con PGE; en LCR. En cuanto al estado cognitivo, RBANS y especialmente su

dominio viso/espacial mostr6 correlacion con los niveles de 15-Fx-IsoP, Ent-7(RS)-Fa-
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dihomo-IsoP and 15-keto-15-Fa-IsoP LCR. Ademas, 15-keto-15-Fa-IsoP también
correlacionaba con el dominio de atencion de RBANS y MMSE, y 15-keto-15-Ex-IsoP
correlacionaba con FAQ y CDR.

Hasta el momento, habiamos valorado la potencial capacidad diagndstica de este panel
de biomarcadores de EA frente a controles con minimo deterioro cognitivo, pero tratando
de acercarnos mas a la practica clinica, en el capitulo 5 se evaluo la capacidad diagnostica

especifica de los compuestos de peroxidacion lipidica en muestras de plasma para la EA.

Para ello, se evaluaron las diferencias entre pacientes con EA y pacientes sin EA
(controles y pacientes con DCL por otras causas distintas a EA). En este caso, los
compuestos 15-Ex-IsoP, PGF2,, 4(RS)-F4-NeuroP, 10-epi-10-F4-NeuroP e IsoP totales
presentaron diferencias entre los grupos de estudio (EA (n = 138), no EA (DCL y otras
demencias no debidas a EA) (n = 70), control sano (n = 50)). Ademas, se desarroll6 un
modelo diagnoéstico en 2 etapas basado en regresion lineal. La primera etapa consistia en
una evaluacion neuropsicologica (CDR, RBANS.MR) que diferenciaba ente controles y
casos (incluyendo grupos de pacientes con EAy sin EA) con un AUC de 0.99. La segunda
etapa incluia las determinaciones en plasma de 10-epi-10-F4-NeuroP e isoprostanos
totales (IsoPs) y diferenciaba pacientes con EA frente a pacientes no EA. Se obtuvo un

AUC global de 0.74 siendo de 0.99 para la primera etapa y 0.79 en la segunda.

En el capitulo 6, se valoro la capacidad de estos compuestos de peroxidacion lipidica para
la deteccion de EA en sus etapas mas iniciales, es decir, en pacientes preclinicos. Ninguno
de los compuestos mostré diferencias entre los pacientes con EA preclinica y controles
de forma individual. Solo se observaron pequefias diferencias no significativas con
niveles en general, mas bajos en EA. Sin embargo, algunos de estos potenciales
biomarcadores si mostraron relacion con el estado cognitivo (RBANS.MR, CDR) y con
los biomarcadores estandar de EA en LCR. Especificamente RBANS.MR correlacionaba
con 2,3-dinor-15-epi-15-Fy-IsoP (r = -0.314, p = 0.040), 15-Ex-IsoP (r = -0.432, p =
0.025), 5-Fa-IsoP (r=-0.335, p = 0.028), 15-F-IsoP (r =-0.390, p = 0.10), and PGF», (r
=-0.342, p = 0.025) y CDR con 15-¢pi-15-Fa-IsoP (r = 0.329, p = 0.031), PGE; (r =
0.329, p = 0.031), 2,3-dinor-15-epi-15-Fa-IsoP (r = 0.316, p = 0.039), 15-keto-15-Ex-
IsoP (r = 0.333, p = 0.029), 15-keto-15-Fa-IsoP (r = 0.319, p = 0.037), 15-Ex-IsoP (r =
0.363, p =0.017), and 4(RS)-4-F4-NeuroP (r = 0.332, p = 0.030). Por otro lado, t-Tau en
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LCR correlaciono significativamente con 15-F2t-IsoP (r = 0.397, p = 0.008), and PGF2
(r=0.339, p=0.026), mientras que p-Tau lo hizo con 15-F2t-IsoP (0.401, p = 0.008), and
PGF, (r=0.329, p=0.031). Por tanto, a pesar de no mostrar diferencias entre los grupos,
estos compuestos mostraron cierta relacion con la EA en fase preclinica. Por tanto, se
desarrollé un modelo estadistico multivariante basado en regresion logistica Elastic Net,
que incluia 10 compuestos (15-epi-15-Fa-IsoP, PGE,, 15-keto-15-Ex-IsoP, 15-keto-15-
Fa-IsoP, 15-Ex-IsoP, PGF2,, 4(RS)-4-F4-NeuroP, 1a,1b-dihomo-PGFz,, 10-epi-10-Fa-
NeuroP, 14(RS)-14-F4-NeuroP) ademas de sexo y edad, obteniendo una AUC de 0.96 (IC
95% 0.903-1) y una AUC de validacion de 0.90 con una sensibilidad de 91% y una
especificidad de 93 %.

En el capitulo 7, se valor¢ la relacion de los niveles de los compuestos de peroxidacion
lipidica en plasma con los resultados de RMN en EA, concretamente con la atrofia
cerebral evaluada mediante escalas visuales. Algunos compuestos correlacionaban con
las escalas visuales de atrofia temporal medial (MTA) y patologia vascular Fazekas.
Concretamente, se observo relacion entre MTA en el lado derecho con neuroprostanos
totales (r=0.242, p=0.010), 17-epi-17-F-dihomo-IsoP (r=0.223, p=0.018) y PGF2,
(r=—0.259, p=0.006); MTA en el lado izquierdo con neuroprostanos (r=0.213, p=0.024),
17-epi-17-Fy-dihomo-IsoP (r=0.214, p=0.024) y PGF,, (r=—0.305, p=0.001); suma de
MTA con neuroprostanos (r=0.234, p=0.013), 17-epi-17-F»-dihomo-IsoP (r=0.224,
p=0.018) y PGF,, (PCC=—0.288, p=0.002); Fazekas con 17-Fx-dihomo-IsoP (r=0.215,
p=0.023).

En la segunda seccién de la tesis se describen los estudios dmicos. En primer lugar, se
realiz6 un estudio metaboldomico (capitulo 8) en el que se compararon muestras de plasma
de pacientes con DCL-EA y controles. El modelo de regresion basado en Elastic Net
selecciono 24 variables discriminantes en el modo de ionizacion positivo (con una AUC
de 0.993) y 29 variables en el modo de ionizacion negativo (AUC 0.990). De esas 53
variables seleccionadas, se identificaron 16 metabolitos como potenciales biomarcadores,
relacionados con vias como neurotransmision, metabolismo energético, de lipidos o
aminoacidos. De ellas, 4 variables se identificaron con los patrones de fragmentacion

(MS/MS y todos los iones de fragmentacion) (colina, rescinamina, soraphen A, Lyso
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PE(20:0/0:0) o Lyso PE(0:0/20:0)). Finalmente, 1 variable, el metabolito colina, se

confirmé con el patron correspondiente.

En el Capitulo 9, el analisis de los resultados metabolémicos mediante volcano plot y la
regresion por PLS revel6 un conjunto de variables principalmente relacionadas con el
metabolismo lipidico que discriminaba entre pacientes con EA temprana (DCL-EA) y
controles. Sin embargo, con el fin de explicar la amplia dispersion observada en el grupo
de pacientes con EA en el grafico de puntuaciones del PLS, se estudi6 la influencia del
genotipo ApoE en la capacidad discriminante del modelo. Finalmente, se seleccionaron 8
variables principalmente identificadas como glicerofosfolipidos que mostraban niveles
inferiores en los pacientes portadores del alelo e4. Entre ellas, el LysoPC (18:0) se
confirmd con patrén y otras tres variables (LysoPC (18:0), LysoPE (0:0/22:1 (132) y

cardiolipinas) fueron caracterizadas putativamente.

Dado que los resultados obtenidos en los estudios metabolomicos revelaban un
importante papel de los lipidos en la distincion entre pacientes con EA y controles, nos
propusimos realizar un estudio lipidomico con el fin de estudiar las diferencias en el perfil
lipidico plasmatico entre individuos controles y con EA en etapas iniciales, ademas de
identificar potenciales biomarcadores (Capitulo 10). En primer lugar, realizamos un
analisis no dirigido con el que se estudiaron diferencias en cuanto a clases lipidicas entre
controles, pacientes con EA preclinica y pacientes con DCL-EA. Las familias
diacilgliceroles (DGs), lisofosfatidoletanolaminas (LPE), lisofosfatidilcolinas (LPC),
monoacilgliceroles (MG), esfingomielinas (SM) mostraron diferencias entre los grupos.
En general, los niveles de estas familias se encontraban elevados en los pacientes
preclinicos y reducidos en el grupo DCL-EA. Por otro lado, los resultados obtenidos del
analisis no dirigido se analizaron mediante volcano plot y modelo de regresion por PLS.
Se identificaron variables discriminantes entre controles y DCL-EA (fosfocolina), y entre
controles y pacientes con EA preclinica (pisumionoside, 1-O-Palmitoil-2-O-acetil-sn-
glycero-3-phosphorilcolina). A partir de estos resultados y los de estudios previos, se
desarrolld el método analitico para cuantificar un panel de 10 lipidos de los que
finalmente 4 pudieron ser cuantificados de forma satisfactoria en muestras de plasma

(18:1 LPE, 18:0 LPC, 16:1 SM, 16:0 SM). Entre ellos, el LPE 18:1 mostré una AUC-
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ROC de 0.722 (95% IC, 0.595-0.848) discriminando EA (DCL y preclinico) frente a no
EA (controles).

En el capitulo 11, nos propusimos estudiar mecanismos regulatorios que pudiesen estar
alterados en las etapas iniciales de la EA a través de los microRNAs (miRNA) que ademas
podrian servir como biomarcadores plasmaticos. En primer lugar, realizamos
secuenciacion de RNA de tres grupos de estudio (DCL-EA, n = 19), EA preclinica (n =
8) y controles (n = 19). A partir de estos resultados se selecciond un panel de 11 miRNAs
como potenciales biomarcadores discriminantes entre EA y no EA, de los que 8 fueron
cuantificados satisfactoriamente mediante PCR cuantitativa. A pesar de que de forma
individual no se observaron diferencias entre grupos para ninguno de ellos, de forma
multivariante 3 miRNAs (hsa-miR-92a-3p, hsa-miR-486-5p, hsa-miR-29a-3p) mostraron
tendencia a discriminar entre los tres grupos de estudio y 2 miRNAs (hsa-miR-92a-3p.
hsa-miR-29a-3p) mostraron tendencia a discriminar entre pacientes con EA (DCL y
preclinicos) y sin EA. Posteriormente, se estudiaron las potenciales vias que podrian estar
reguladas por estos miRNAs y que podrian desempefiar un papel en la enfermedad
mediante la base de datos miRDB. Primero, hsa-miR-92a-3p tiene como dianas genes
implicados en la regulacion de muerte celular o autofagia, proliferacion celular y rutas de
transporte de vesiculas y transmision sinaptica. Segundo, hsa-miR-486-5p se relaciona
con la sefalizacion celular, funciones estructurales y transcripcion, ademas de con el
metabolismo de proteinas y lipidos. Tercero, hsa-miR-29a-3p podria regular las vias
principales de proliferacion celular y mas especificamente diferenciacion neuronal

ademas de sefializacion, transcripcion y funcion estructural.

Finalmente, en el capitulo 12, combinando los resultados obtenidos en los analisis
lipidémicos y epigendmicos se estudiaron las potenciales vias metabdlicas alteradas en la
enfermedad. Se desarrolld6 un modelo PLS incluyendo los resultados lipidomicos y
epigenomicos (secuenciacion de miRNAs) obtenidos de controles sanos (n=5) y pacientes
con DLC-EA (n=22) y se seleccionaron 25 variables lipidicas y 25 miRNAs como las
variables mas discriminantes entre ambos grupos de participantes. Entre los lipidos se
encontraban principalmente fosfatidiletanolaminas, lisofosfatidilcolinas, ceramidas,
fosfatidilcolinas, triglicéridos, y familias de 4cidos grasos de cadena larga. Muchos de

estos lipidos mostraron correlacion con los miRNAs seleccionados. De hecho, estos
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miRNAs podrian regular genes implicados en vias del metabolismo de acidos grasos,

especificamente en la elongacion de acidos grasos de cadena muy larga.
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5. Conclusiones

-El estrés oxidativo y en concreto la peroxidacion de lipidos parecen jugar un papel
relevante en la EA desde las etapas mas iniciales (preclinicos y DCL). Ademas, estas vias
proporcionan biomarcadores diagnésticos para la enfermedad facilmente accesible en

muestras de plasma.

-Se han definido modelos basados en los niveles de biomarcadores de peroxidacion
lipidica en plasma y la evaluacion del estado cognitivo, siendo capaces de establecer un
diagnoéstico diferencial de EA frente a individuos con otras demencias con

manifestaciones clinicas similares y sujetos sin deterioro cognitivo.

-Ademas, estos biomarcadores se relacionan con la atrofia cerebral, el estado cognitivo

de los pacientes y los biomarcadores estandar de la EA en LCR.

-Las técnicas dmicas (metabolomica, lipidomica, epigendmica) son herramientas utiles
para la busqueda de nuevos biomarcadores, asi como para el estudio de las vias

patologicas alteradas en la EA.

-El metabolismo de lipidos se encuentra alterado en la EA y el perfil lipidico podria

ayudar al diagnostico de la enfermedad.

-El estudio integrado de biomarcadores de diferente naturaleza (lipidos, miRNAs) puede
proporcionar informacion sobre las vias alteradas en la EA y por tanto proporcionar

nuevas dianas terapéuticas.
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This PhD thesis is focused on the identification and determination of reliable and
minimally invasive biomarkers for Alzheimer Disease (AD) diagnosis in its early stages,
as well as to advance in the knowledge of the pathophysiological mechanisms involved

in the course of the disease.

AD is the most common cause of dementia and it generates a great social and economic
impact. However, the lack of early accessible diagnosis biomarkers hinders the initiation
of treatments and limits research into new therapies to cure or slow down the course of
the disease. AD is a complex disease with multiple pathological pathways such as protein
accumulation (amyloid P42 (Ap42, hyperphosphorylated Tau (p-Tau)), but also
pathophysiological pathways such as oxidative stress (OS), lipid dysregulation,
dysregulation of the clearance machinery, etc. Therefore, this PhD thesis is divided into
two parts, the first one dedicated to the studies of lipid peroxidation compounds as
biomarkers of the disease and the second part dedicated to the omics studies
(metabolomic, lipidomic, epigenomic) in patients with early AD to examine the pathways

involved in early AD and to provide new potential diagnosis biomarkers.

Regarding lipid peroxidation-derived compounds, they were measured in urine and
plasma samples by a validated method on based ultra-performance liquid chromatography
coupled to tandem mass spectrometry (UPLC-MS/MS). The developed diagnosis models
showed discriminatory capacity between early AD and controls, especially for plasma
samples. In addition, these compounds were able to discriminate controls from preclinical

AD cases and AD from other dementias.

In addition, omic analyses (metabolomics, lipidomics, epigenomics) were carried out in
plasma samples from AD and non-AD cases. These analyses revealed the dysregulation
of some metabolites (choline, rescinamine, soraphen A, Lyso PE(20:0/0:0), Lyso
PE(0:0/20:0), lipids (LysoPC (18:0), LysoPE (0:0/22:1 (13Z)), cardiolipins,
phosphocholine, 1-O-Palmitoil-2-O-acetil-sn-glycero-3-phosphorilcholine, 18:1 LPE,
18:0 LPC, 16:1 SM, 16:0 SM) and miRNAs (hsa-miR-92a-3p, hsa-miR-486-5p, hsa-miR-

29a-3p). In fact, these miRNAs could be involved in fatty acids metabolism.

The complete characterization of plasma biomarkers from AD patients with special

attention on OS and lipid metabolism could help to obtain an early diagnosis and to define
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the metabolic pathways altered in each individual allowing an early and personalized

treatment.
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Introduction

1. Alzheimer Disease: pathophysiology, diagnosis and treatment.

AD is the most common neurodegenerative disease being the cause of about 70% of
dementia cases. In 2018, AD affected around 50 million people worldwide [1,2], and the
incidence in developed countries is expected to continue increasing due to the rise in life
expectancy, exceeding 150 million cases in 2050. AD has a major social and economic
impact [3], due to factors such as medical costs, lack of productivity, reduced quality of
life for patients and caregivers, and dependency. However, available treatments fail to
cure or stop the disease, being mostly symptomatologic treatments [4]. Numerous clinical
trials are currently underway with new drugs targeting different pathophysiological
mechanisms potentially involved in the development of AD [4]. In general, these
treatments are directed to the early stages of the disease, where they are expected to be
more effective. Therefore, early AD diagnosis is crucial. Currently, the complexity and
invasiveness of the diagnostic methods (biomarkers in cerebrospinal fluid) difficult its
early detection. Therefore, it is necessary to identify reliable, early, and minimally
invasive diagnostic biomarkers, as well as to advance in the knowledge of the

pathophysiological mechanisms involved in the onset and development of the disease.

Clinically, AD is characterized by progressive cognitive impairment affecting different
domains such as episodic memory, verbal fluency, or executive function [5]. In most
cases, it is a sporadic disease. In fact, AD familial cases which are mainly due to mutations
in genes such as amyloid precursor protein (APP) and presenilins 1 and 2 (PS1) (PS2),
do not reach 2%.[6]. However, among the risk factors for AD, it highlights the gene
encoding Apolipoprotein E, specifically the €4 allele. In addition, there are several of
lifestyle-related risk factors (hypercholesterolemia, diabetes, hypertension) that can be

considered modifiable factors [7].
1.1. Pathophysiological mechanisms

At the pathophysiological level, AD is mainly characterized by two histopathological
hallmarks: i) intracellular accumulations of phosphorylated Tau (p-Tau) in the form of
neurofibrillary tangles, and ii) extracellular accumulations of abnormally folded amyloid
B (AP) protein forming senile plaques mainly in the medial temporal lobe and neocortical

structures that eventually result in loss of synapses[4]. In general, the main hypotheses
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about the origin of the disease are the amyloid cascade, Tau hyperphosphorylation, and

cholinergic misfunction [4]. Figure 1 describes the mechanisms involved in AD.
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Figure 1. Alzheimer Disease pathophysiological mechanisms. (a) Describes the amyloid
hypothesis. Amyloid precursor protein (transmembrane protein) can be cleaved by a-
secretase and y-secretase generating soluble peptides. However, when APP is cleaved by
the enzymes B-secretase and y-secretase (as it occurs in AD) it can generate amyloid f
(AB) peptides such as AP42, an insoluble peptide with a tendency to form fibrils and
finally amyloid plaques. (b) Describes the Tau pathology. The Tau protein is found
forming part of the microtubules, stabilizing them. When it is hyperphosphorylated
microtubules can be destabilized and hyperfosforilated Tau (p-Tau) can form first
oligomers and fibrils and, finally neurofibrillary tangles. (c) The cholinergic hypothesis.
Cholinergic neurons use acetylcholine (Ach) as a neurotransmitter. When the neuron
receives stimulation (action potential), Ach is released into the synaptic space. This Ach
is formed from choline and Acetyl-CoA by the enzyme Choline acetyltransferase. Ach in
the synaptic space can be captured by muscarinic and nicotinic receptors, generating
stimulatory or inhibitory responses. If Ach is not bound to any receptor, the enzyme
acetylcholinesterase forms again choline and acetyl-CoA, which is taken again by the
presynaptic neuron. In AD it occurs a reduction in these neurotransmission pathway
activity (d) In AD, these mechanisms cause senile plaques, neurofibrillary tangles, and
the loss of synaptic function. In addition, this generates an oxidizing and pro-
inflammatory environment that positively feedback the disease’s pathophysiological
mechanisms. Created with BioRender.com.
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The amyloid hypothesis. In 1992, the central role of the AP protein as the causative agent

of AD was first hypothesized [8]. It described how specific processing of the amyloid
precursor protein (APP) generates a precipitating peptide that leads to cell death and
promotes the accumulation of Tau in neurofibrillary tangles [8]. APP is a transmembrane
protein that can be cleaved by two pathways: i) the "normal" or non-pathological one, in
which the enzyme o-secretase and subsequently the y-secretase acts giving rise to a
soluble extracellular fragment; and ii) the amyloidogenic one, in which the enzyme f-
secretase (BACE) and subsequently the enzyme y-secretase acts producing peptides of
different lengths, including AP42, an insoluble peptide that forms precipitates [9].
Supporting this theory are genetic risk factors. Actually, ApoE influences AP42 clearance
[10], and mutations in the PS1, PS2, and BACE genes contribute to the development of

the disease.

Increased production of this peptide (AP42) is considered toxic and a reduction in its
clearance mechanisms results in the formation of oligomers affecting synaptic function,
triggering an inflammatory response and increasing oxidative stress (OS), and finally the
formation of plaques [11]. This inflammatory response contributes to the phosphorylation

of Tau, which also plays a relevant role in the disease [11].

Tau hypothesis. Some studies suggest that the amyloid cascade is the first mechanism that
appears and the toxicity associated results in the hyperphosphorylation of Tau leading to
an increase in cellular toxicity and neuronal loss. However, other theories argue that Tau

pathology is the trigger of pathological mechanisms [12,13].

Tau is an intracellular cytoskeleton protein with functions of transport of molecules such
as neurotransmitters in neurons [13]. Under physiological conditions, this protein
undergoes phosphorylations at various residues; however, in pathological conditions such
as AD, hyperphosphorylation occurs [13]. This hyperphosphorylation increases toxicity
but also facilitates the formation of Tau protein aggregates or neurofibrillary tangles

(NFT) leading to cell death and thus to neuronal loss [13].

Cholinergic hypothesis. Acetylcholine (ACh) is a neurotransmitter generated in the

cytoplasm of cholinergic neurons from choline and acetyl-CoA by the action of the
enzyme choline acetyltransferase. This neurotransmitter is transported by vesicles to the

synaptic space after depolarization of the presynaptic neuron. In the postsynaptic neuron,
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it can bind to muscarinic or nicotinic receptors producing an inhibitory or activatory
response. In the synaptic space, it is hydrolyzed by acetylcholinesterase if it has not bound

to any receptor [14].

Acetylcholine (ACh) is a neurotransmitter involved in cognitive processes such as
learning or memory and cholinergic neurons show a specific degeneration in AD [14].
Specifically, a reduction in the activity of the choline acetyltransferase enzyme has been
observed under AD pathological conditions [11]. In fact, current conventional treatments
for AD are based on increasing the cholinergic signal to compensate for the Ach reduction

by maintaining the neurotransmitter for a longer time in the synaptic space [15].

Despite discrepancies in the order of appearance of these mechanisms in AD, all of them
coexist once the pathology is established, along with other mechanisms such as
neuroinflammation, activation of microglia and astrocytes, OS, alterations in the

metabolism of lipids, proteins or DNA, neurotransmission, etc [4,16-20].

Both amyloid and Tau pathologies usually spread from medial temporal lobe grey matter
to the rest of cortical grey matter in a relatively predictable pattern [63]. Initial
involvement in medial temporal lobe structures that are involved in the correct episodic
memory, explains the memory impairment as the first disease symptom. Nevertheless,
variations in pathology spreading would explain the different damage degrees in the brain
cortex among patients, involving in some cases also language disturbance, frontal lobe
dysfunction, or apraxia syndromes. Moreover, advanced-age patients show concurrent

brain comorbidities (e.g. depression, psychiatric disorders...).
1.2. Diagnosis

In clinical practice, the diagnosis is mainly based on clinical symptoms. In this sense, AD
is a highly heterogeneous disease [21]. It is a progressive disease that can evolve over 15-
25 years from the onset of pathophysiological mechanisms to the severe clinical
manifestations [22]. In the AD continuum, the following stages can be distinguished: 1)
Preclinical AD, characterized by the absence of clinical symptoms although impairment
of the CSF AD biomarkers is detected; ii) mild cognitive impairment (MCI),
characterized by the presence of initial symptoms but maintaining functionality in daily
living activities and CSF AD biomarkers alteration; and iii) dementia, characterized by

58



Introduction

more advanced symptoms with alteration of activities of daily living activities [5]. The
clinical guidelines defined by the NIA-AA base the diagnosis at the stage of MCI on the
detection of a change in cognition by the patient, an observer, or an expert clinician [23].
This impairment occurs in one or more cognitive domains (memory, executive function,
attention, language, visuospatial skills) [23], but maintaining patients’ functional
independence [23]. In more advanced stages, the diagnosis is based on the presence of
dementia (impairment in functionality not explained by delirium or psychiatric problems,
cognitive impairment based on neuropsychological assessments, and behavioral
disturbances), and a progression of symptoms over months or years [24]. The main
cognitive symptoms are impairment in learning and recall of recently learned information
in the case of the AD amnestic variant, or alterations in language, visuospatial, or

executive functions in the non-amnestic variant [24].

The NIA-AA published in 2018 an update to the 2011 diagnostic guidelines for AD. The
new criteria changed from a clinical diagnosis to a biological definition based on
biomarkers [25]. Biomarkers were grouped according to the ATN classification (A: AB
deposition; T: pathological Tau; N: neurodegeneration). This ATN classification system
includes imaging and CSF biomarkers. For amyloid (A) deposition measures are CSF
biomarkers (Ap42, AB42/AB40) and amyloid Positron Emission Tomography (PET).
Neurofibrillary tangle deposits or pathological Tau (T) are defined by CSF p-Tau levels
or PET Tau. Finally, the definition of neurodegeneration or neuronal damage (N) includes
structural magnetic resonance imaging (MRI), FDG-PET or CSF biomarkers t-Tau and
NfL levels. These guidelines emphasize the flexibility of the system for the incorporation

of new biomarkers within the ATN groups and also new categories.
1.3. Treatments

Currently, treatments are only able to reduce symptoms at cognitive and functional level.
The most widespread drugs for AD are acetylcholinesterase inhibitors (donepezil
(Aricept™), rivastigmine (Exelon™), and galantamine (Razadyne™)) and N-methyl-D-
aspartate receptor antagonists (memantine (Namenda™)) [26]. The new potential
treatments under development can be divided into two types: i) those aimed at acting on
the symptomatology of the disease (cognition, agitation, aggressiveness, etc.), and ii)
disease-modifying treatments [26]. The latter are directed to different targets. Most of
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them are anti-amyloid treatments, specifically aimed at reducing amyloid plaque; anti-
Tau treatments and those aimed at reducing or regulating inflammation, metabolism,
bioenergetics, synaptic plasticity, and neuroprotection or antioxidants among others
[22,26,27]. Some of these anti-amyloid treatments have shown a reduction in amyloid
plaque. However, it only generates a moderate reduction in the normal deterioration
produced by the disease [28]. In general, the treatments under clinical investigation have
a high failure rate, which could be a consequence of the complexity of the disease and the
lack of a complete view of the pathophysiological mechanisms involved, as well as the
interaction between the different pathways [26]. On the other hand, it should be noted that
most of the trials carried out are addressed to patients in the early stages and some at
moderate stages [26]. So, it is relevant to obtain an early diagnosis to access the treatments

in the early stages, in which they show higher effectiveness [27].

2. New potential biomarkers for AD

AD is a complex and multifactorial disease, whose pathological pathways are currently
not fully understood [64]. Molecular perturbations may occur at a systemic level in the
early stages, before the appearance of characteristic symptoms, and plasma constitutes a
promising minimally invasive sample to study these alterations. In addition, this
biological biofluid could be useful to advance in the knowledge of AD pathophysiological
mechanisms and the identification of new biomarkers, as well as for the discovery of
new therapeutic targets. In this sense, omic techniques are useful tools that provide a large
amount of information. [65-67] In addition, OS that plays a central role in AD may be a

source of biomarkers for the disease.

2.1 Oxidative Stress and AD
2.1.1 Mechanism

OS is described as an imbalance between oxidant and antioxidant species in favor of
oxidants [68]. Under normal circumstances, there is a balance in the body between
oxidant and antioxidant substances that provides the necessary conditions for the correct
metabolic and signaling functions [30]. However, when the antioxidant systems are not

able to compensate for the level of oxidants, it occurs an imbalance known as OS [30]. It
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consists of an increase in cellular stress leading to processes of cell death and apoptosis,
necrosis, or autophagy [31]. The main causes of OS are decrease or inactivation of
antioxidant molecules, increase of reactive oxygen species (ROS) and other oxidant

molecules, as well as increase of endogenous metabolites capable of autoxidation [69].

Among oxidant species, ROS and Reactive Nitrogen Species (RNS) (e.g. superoxide
anion, hydrogen peroxide, hydroxyl radical, nitric oxide) are produced predominantly in
the mitochondria from molecular oxygen and nitrogen [70]. Other sources of ROS are the
endoplasmic reticulum, and nuclear or plasmatic membranes, as well as, oxidase enzymes
(xanthine oxidase, NADPH) [69]. Glutathione (GSH) is the most abundant non-
enzymatic antioxidant in the human body, being able to avoid damage caused by ROS to
important cellular components. In general, OS is involved in most of chronic diseases,
such as cancer [71], respiratory diseases [71] and neurodegeneration [72]. Therefore, OS
mechanisms have been largely studied to clarify the pathogenesis of neurodegeneration
[29]. Specifically, OS maintains a bidirectional relationship with the amyloid cascade. On
the one hand, OS favors the amyloidogenic pathway of APP increasing the production of
toxic AP42 peptide. On the other hand, amyloid plaques favor an increase in OS leading
to cell death [32,33]. Similarly, OS interacts with kinases responsible for Tau
phosphorylation and neurofibrillary tangles produce an increase in ROS [32]. In this

sense, currently, 7 clinical trials for AD treatment are focused on OS [73].
2.1.2. Oxidative stress biomarkers

OS causes oxidation of biomolecules such as proteins, DNA, or lipids. Regarding lipid
peroxidation, it generates cellular damage and new oxidizing molecules [74], altering
membrane lipids and circulating lipids, and also cellular functions [75]. Specifically, at
the brain level, OS could modify lipid and protein levels, generating morphological
brain changes [76—78]. In this sense, throughout the AD course, different brain areas
could be affected [79]. One area with a remarkable atrophy grade during AD progression

is the medial temporal lobe, where the hippocampus is located [80].

The most commonly used biomarkers of OS are carbonyl proteins, nitrotyrosine,
advanced oxidation products of proteins (e.g., chloro-tyrosine) as derivatives of protein

oxidation; 7,8-dihydroxy-8-oxo0-2'-deoxyguanosine (80xodG), as derivatives of DNA
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oxidation; and malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE) and isoprostanes
as derivatives of lipid oxidation [36]. Compounds derived from this process can be
detected in peripheral samples, such as blood or urine, serving as an approach for

oxidative status [35].

Lipid peroxidation biomarkers in AD

The brain is an organ with high metabolic activity, high oxygen consumption, and high
polyunsaturated fatty acid content that make it susceptible to oxidative damage [37].
Therefore, lipid oxidation could play an important role in the development of
neurodegenerative diseases and specifically in AD [38]. Previous studies have found co-
localization of lipid oxidation products with amyloid plaques, evidencing the relationship

between OS and lipids with the development of AD pathological mechanisms [39].

In this sense, some lipid peroxidation products (e.g. isoprostanes, MDA, thiobarbituric
acid-reactive substances (TBARS), and fluorescent lipofuscin-like pigments (LPF)) have
been evaluated as AD biomarkers in different human samples [81], mainly blood (plasma,

serum) and urine[81].

Lipids can be oxidized by two independent pathways (enzymatic and non-enzymatic or
by free radicals) [40]. In this thesis we focus on compounds derived from the oxidation
of three polyunsaturated fatty acids (PUFA): i) arachidonic acid (AA), ii)
docosahexaenoic acid (DHA), and iii) adrenic acid (AdA) (see Figure 2). For AA, its
oxidation generates two families of compounds, isoprostanes and isofurans (e.g. 15(R)-
15-Fa-IsoP; 2,3-dinnor-15-epi-15-Fx-IsoP; 15-keto-15-Ex-IsoP; 15-keto-15-F2-1soP;
15-keto-15-Ex-IsoP; 15-keto-15-Fa-IsoP; 15-E-IsoP;15-Fo-IsoP; 5-F-IsoP), the latter
originated under higher oxygen tension conditions, and prostaglandins (PGE,; PGFa;
la,1b-dihomo-PGF»,) [41]. AA is present in large quantities in the brain as part of cell
membranes [42,43]. On the other hand, the oxidation of DHA, located mainly in brain
grey matter, and AdA located mainly in the white matter of the brain, generate
neuroprostanes (e.g. 10-epi-10-F4-NeuroP; 14(RS)-14-Fs-NeuroP; 4(RS)-F4-NeuroP)
and dihomo-isoprotanes (e.g. 17-epi-17-Fy-dihomo-IsoP; 17-F»-dihomo-IsoP; ent-
7(RS)-7-Fa-dihomo-IsoP;  17(RS)-10-epi-SC-A'3-11-dihomo-IsoF;  7(RS)-ST-A%-11-
dihomo-IsoF), respectively [43].
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Figure 2. Lipid peroxidation metabolites origin.

2.2. Omics Analysis and AD

In the initial stages of AD, there is an imbalance in the interactions among different brain
cell types, pathogenic forms of Tau and amyloid proteins, and the brain signaling
pathways impairment [67,82]. In this way, the neurodegenerative process would affect
each cell type at multiple levels (epigenomic, transcriptomic, metabolomic/lipidomic,
proteomic). Therefore, a complete knowledge of the AD mechanisms could be achieved
from a multi-omic approach applied to different biological samples. In this sense, the
omic tools would contribute importantly to the knowledge of the early AD
pathophysiological mechanisms and the identification of specific and reliable AD

biomarkers in biological samples.

The development of omic platforms and advances in bioinformatics are generating a large
volume of data [83], which provide information about the pathological pathways involved
in AD and new potential biomarkers and therapeutic targets [44,45,67]. This type of
analysis involves prior treatment of the sample as well as subsequent processing and

interpretation of the results [46]. Metabolomics, epigenomics, and proteomics are the
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most widely employed omic tools in clinical studies [67]. In this thesis, we focus on the

omics studies (metabolomic, lipidomic, epigenomic).
2.2.1. Metabolomics and AD

Metabolomics reflects changes in the metabolome representing a precise biochemical
phenotype of the organism in health and disease [84]. This allows a reliable approach to
the complex AD nature. Metabolomics let the characterization of the metabolite profile
using any sample type such as blood or CSF. It is especially useful in the detection of
potential biomarkers given the ability of metabolomics to detect small changes and for

the study of physiological and pathological mechanisms [47].

Metabolomic studies can be carried out from an untargeted analysis, which allows a
global view; and a targeted analysis, which allows validation and confirmation of the
results obtained with non-targeted methods [48]. One of the most widely used analytical
techniques is mass spectrometry (MS), which is characterized by its high sensitivity and
specificity [49]. Targeted and untargeted metabolomic studies have allowed the
identification of biomarkers for AD in biological fluids such as CSF, plasma, or urine

[50-52], postulating this technique as a useful tool for new biomarkers identification.

Recent metabolomics studies in AD have identified some altered metabolic pathways,
such as polyamine pathway, lysine metabolism, tricarboxylic acid cycle, lipid
metabolism, neurotransmission, inflammation and OS [85] mitochondrial activity [86],
as well as the impairment of some metabolite levels (tyrosine, glycylglycine, glutamine,
lysophosphatic ~ acid, platelet-activating factor, organic acids, isoprostanes,
prostaglandines) [87] tryptophan and purines metabolisms [88], sphingolipids [89],
amino acids and phospholipids [90]. Metabolomic studies in AD have been applied
to different biological samples [91,92]. Nevertheless, there is an increasing interest in
improving early AD diagnosis by means of minimally invasive samples, such as serum
[89,93], plasma [87,94], urine [95], and saliva [96]. Specifically, plasma is a promising
matrix since some biochemical pathways have shown disturbances in patients with AD,
such as amino acids, amines, and polyamines metabolisms [52,94,97,98], aswell as
lipid metabolism [87,89,92,99-101], even in mild-cognitive impairment (MCI) stage [94].

Nevertheless, most of metabolomics studies in plasma have been developed from animal
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models [92,101,102], and among human studies few of them defined MCI-AD
participants from the standard CSF biomarkers [87]. In this sense, the ambiguity in
dementia type diagnosis is considered an important limitation in the development of AD
reliable diagnostic models [52,94,97,103-105].

Previous studies found a relationship between different metabolite networks and the
ApoE genotype [87], as well as between ApoE polymorphisms and metabolomic changes
[106]. Moreover, targeted studies found differences in biomarkers such as CSF
Synaptosoma-Associated Protein 25 (SNAP25), or blood metabolic biomarkers between
ApoE4 carriers and non-carriers [107,108]. Therefore, it would be interesting to include
APpOE genotype as a variable in metabolomics studies as it is one of the most important,
although the mechanisms that relate it to the disease are still unknown [109]. ApoE4
genotype is associated with earlier amyloid deposition [110]. In this sense, some patients

showed different responses against therapies according to their ApoE genotype [111].
2.2.2 Lipidomics and AD

Lipidomics consists of the study of the lipid profile in a given biological sample. The
brain has a high lipid composition, and therefore numerous lipidomic studies have been
carried out in AD patients, showing the dysregulation of this family of biomolecules both
in the brain and in other biological fluids [53]. These metabolites have potential utility as
a source of disease-specific diagnostic biomarkers [53] in different biological sample
types [112]. In fact, several lipid families, such as sphingomyelins (SM), cholesterol
esters (CE), phosphatidylcholines (PC), phosphatidylethanolamines (PE),
phosphatidylinositols (PT), ceramides (Cer), and triglycerides (TG), have been related to
AD [113,114]. Lipid biomarkers could be useful not only for diagnosis but also for
disease progression prediction. Specifically, LysoPE (LPE) and PE could be useful
biomarkers for monitoring the conversion of MCI to AD [115,116], and plasma
sphingomyelins have been related to cognitive decline in probable AD patients [116].
In fact, lipidomic analyses have been carried out to study the involvement of lipids in
AD pathology and progression [117]. Brain tissue from elderly healthy participants
and patients with different stages of AD showed differential expression of lipids such

as glycerolipids, glycerophospholipids, and sphingolipids [53]. In addition, the
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lipidomics research field focusing on lipids as potential biomarkers in peripheral

biofluids (e.g., plasma and serum) is gaining attention [118—120].
2.2.3. Epigenomics and AD

Epigenomics focuses on the study of gene regulation mechanisms (e.g. deoxyribonucleic
acid (DNA) methylation, histone modifications, non-coding ribonucleic acid (RNAs))
[54]. This omic science constitutes an interesting approach to the advance in the
knowledge of the pathophysiology of AD since the expression patterns of certain genes
implicated in the development of the disease (APP, PSEN1, PSEN2, BACE1), as well as
secretase enzymes and inflammatory response genes, are altered by epigenetic
modifications (DNA methylation [24], histone modifications, expression of non-coding
genes transcripts (microRNAs [25])). Specifically, some microRNAs (miRNAs) (RNA
sequences of 19-25 nucleotides involved in both positive and negative gene regulation) [55] have
been related to the regulation of amyloid protein precursor (APP) cleavage, presenilin-1
(PSENT1) and beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), as well as in
OS and other AD risk factors[121].

Currently, few studies evaluate the diagnostic capacity of epigenetic changes in peripheral
fluids from AD patients [26]. However, next generation sequencing (NGS) technology is
postulated as a viable approach to carry it out [27]. MiRNAs from AD patients have
shown differential levels compared to non-diseased subjects in brain and biological fluids
such as CSF or blood derivatives using NGS [57,122,123]. They may therefore constitute
an important source of biomarkers. Among epigenetic biomarkers, the miRNAs constitute
a key element in cell signaling pathways. In recent years, they have been postulated as
powerful biomarkers for the diagnosis of neurodegenerative diseases [61]. In fact, there
is evidence that they could be more sensitive than messenger RNA, or even proteins used
as clinical markers [62]. MiRNAs showed good performance as biomarkers and miRNAs
panels showed dysregulation several years before the onset of disease symptoms [124].
Several panels have been developed from plasma, serum, or exosomes, showing their

potential for a minimally invasive disease diagnosis[125-127].

Therefore, epigenetic is closely related to diseases and is useful in the understanding of

pathophysiological mechanisms as well as providing potential biomarkers [56].
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2.2.4. Integration of experimental data of different nature

The integration of results from different omics techniques allows the identification of
pathways involved in AD enabling a more complete characterization of AD patients [59].
This may provide a more comprehensive description of the heterogeneity of AD patients
and its clinical implications to obtain an early, generalized, reliable diagnosis and access

to personalized treatments [60].

Different studies have integrated data from different nature with the common goal of
deepen into the pathological pathways of AD. Specifically, the integration of
metabolomic and genomic analyses allowed the detection of altered metabolites and their
regulators [61]. In addition, the combined view including metabolomics, and genomics
helps with the understanding of the underlying mechanisms contributing to AD risk [62].
Moreover, epigenomic—lipidomic integration would allow the global study of the
regulatory mechanisms involved in AD such as lipid homeostasis, OS, synaptic
vesicle trafficking, inflammation, etc. [59]. Previous works based on the analysisof
genome-wide DNA methylation showed that an epigenetic pattern was associated
with cholesterol regulation [128]. Thus, the study of the integration between
epigenomics and lipidomics could reveal lipid regulation mechanisms involved in
AD. Therefore, integrative studies allow a global and more complete view of the disease

and its pathophysiological mechanisms.
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Hypothesis and objectives

This PhD Thesis hypothesizes that lipid peroxidation and other compounds obtained by
omics analyses (metabolomics, lipidomics, epigenomics) in minimally invasive samples,
may be potential biomarkers for the early AD diagnosis and can provide information on

the metabolic pathways involved in the development of the disease.

Therefore, the main objective of the thesis was to study compounds derived from lipid
peroxidation as potential specific AD diagnostic biomarkers and their relationship with
clinical features of the disease, and to identify new biomarkers and pathological pathways
altered in the early stages of AD from a multi-omics approach (metabolomics, lipidomics,

epigenomics).
The specific objectives were:

(i) Identifying potential biomarkers based on lipid peroxidation for detection of AD in

urine (Chapter 1) and plasma (Chapter 2) samples.

(i) Developing diagnostic models for AD based on lipid peroxidation biomarkers

(Chapters 1, 2,3, and 5).

(iii) Selecting the best sample type for AD diagnosis based on the levels of lipid

peroxidation compounds (Chapter 3).

(iv) Analyzing the usefulness of lipid peroxidation compounds as potential biomarkers

for early or preclinical diagnosis of AD (Chapter 6).

(v) Establishing the relationship between lipid peroxidation compounds and clinical AD
variables: brain atrophy by visual scales (Chapter 7), standard biomarkers in
cerebrospinal fluid (CSF), and cognitive impairment by neuropsychological evaluations

(Chapters 2, 4, and 6).

(vi) Searching for new plasma biomarkers for AD diagnosis using omics techniques:

metabolomics (Chapters 8 and 9), lipidomics (Chapter 10), epigenomics (Chapter 11).

(vii) Studying potential metabolic pathways altered in AD by omics analyses (Chapters
10 and 11) and integration of different omics results (Chapter 12).
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1. Study design and participants

All the studies included in the present thesis were prospective observational studies
carried out including patients form the Neurology Unit at the University and Polytechnic
Hospital La Fe, Valencia (Spain). The study protocols were approved by the Ethics
Committee (CEIC) from Health Research Institute La Fe (Valencia, Spain), the methods
were carried out in accordance with the relevant guidelines and regulations, and informed
consent from all participants was obtained. The studies included in the present doctoral
thesis are included in the projects CP16/00082 and P119/00570 and the references for
CEIC approvals were 2016/0257 and 2019/0105, respectively.

The eligible participants were people between 50 and 80 years old who suffered from
MCI due to AD (MCI-AD), dementia due to AD (dementia-AD), patients with preclinical
AD, participants with dementia not due to AD (non-AD), and participants without
cognitive impairment or minimally impaired (control). The exclusion criteria included
other known neurological impairments (stroke, brain tumor, severe head trauma, epilepsy,
brain injury, multiple sclerosis...) or major psychiatric disorders (major depressive
disorder, bipolar disorder, schizophrenia...), as well as patients with moderate to
severe dementia, major sensory impairment or an invalidating previous pathology or that

were unable to undergo neuropsychological evaluations.

Participants were recruited from the Neurology Unit and they were classified following
the NIA-AA recommendations [23,24] that include neuropsychological evaluation,
structural and functional neuroimaging, and CSF biomarkers. Specifically, there were used
the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS),
Clinical Dementia Rating (CDR), Mini-Mental State Examination (MMSE), Functional
Activities Questionnaire (FAQ)) [129-132] for neuropsychological evaluation, MRI or
computerized axial tomography (CAT) for brain structural evaluation [133], and CSF
biomarkers (A, t-Tau, p-Tau) [134,135] to assess the abnormal amyloid and Tau proteins
processing [134,135]. From 1-10 mL of CSF were collected under a standardized lumbar
puncture procedure at 8-10 a.m. AP42, t-Tau, and p-Tau were measured by Innotest
Elisa kit (Fujirebio Diagnostics, Ghent, Belgium) using a fully automated system
(Lumipulse G, Fujirebio). Table 1 describes the classification criteria for each
participant group: i) the control group included participants with normal levels of CSF
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AD biomarkers and normal cognitive tests; ii) the preclinical AD group included
participants with impaired CSFAD biomarkers and normal cognitive evaluation test
scores; iii) the MCI-AD group were patients with impaired CSF biomarkers and
cognitive impairment, but without daily living activities impairment; iv) the non-AD
group included patients with MCI not due to AD, (e.g. frontotemporal dementia, vascular
dementia, or dementia with Lewy bodies (DLB)), with normal CSF biomarkers and
cognitive impairment. In general, the AD or “case” group included patients with MCI-AD
and mild dementia due to AD, who showed cognitive complaints without daily living
activities impairment or with minor daily living activities impairment. In addition, the

control group is called healthy control or healthy in some of the chapters.

Table 1. Participants’ classification attending to neuropsychological evaluation,
neuroimage andcerebrospinal fluid biomarkers.

Test MCI-AD Preclinical Non-AD Control
Group AD Group

Neuropsychological test

CDR 05-1 0 05-1 0
RBANS.DM <85 >85 <85 >85
MMSE 20-26 >27 <27 > 27
FAQ <9 <9 - <9

Neuroimage test

Amyloid PET Positive Positive Negative Negative

CSF biomarkers

AB42 (pg mL™) <725 <725 >725 >725
p-Tau (pg mL™) >350 >350 <350 <350
t-Tau (pg mL™) >85 >85 <85 <85

CDR: Clinical dementia rating; RBANS.DM: Repeatable Battery for the Assessment of Neuropsychological
Status-Delayed Memory; CSF: cerebrospinal fluid; AP42: amyloid B 42; t-Tau: total Tau; p-Tau:
phosphorylated Tau.

*When only one of the neuropsychological tests has an altered score it is considered a normal cognition.

The present doctoral thesis is divided into two sections. Section I is focused on lipid
peroxidation studies and Section II in omic studies. Therefore, the analytical methods are

described separately.
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2. Section I. Experimental procedures

2.1. Materials and reagents

As regards the lipid peroxidation products, standards of IsoPs and prostaglandins used for
calibration include 15(R)-15-F»-IsoP, 2,3-dinor-15-epi-15-F»-IsoP, 5-Fa-IsoP, 15-keto-
15-Ex-IsoP, 15-keto-15- Fa-IsoP, 15-E-IsoP, 15-Fa-IsoP, 1a,1b-dihomo-PGF,,, PGE,,
and PGF»,, as well as the deuterated internal standard (IS) PGF,.-Ds4 and they were
purchased from Cayman Chemical Company (Ann Arbor, Michigan, USA). The other
standards corresponding to neuroprostanes (NeuroPs), dihomo-isoprostanes (dihomo-
IsoPs) and dihomo-isofurans (dihomo-IsoFs) (7(RS)-ST—A8—1l-dihomo—lsoF, 10-epi-10-
F4-NeuroP, Ds—10-epi-10-F4-NeuroP, 4(RS)-Fs-NeuroP, 17-epi-17-F-dihomo-IsoP, 17-

F2-dihomo-IsoP, 17(RS)— IO—epi-SC—A15 -11-dihomo-IsoF, ent- 7(RS)— 7-Fa-dihomo-
IsoP, 14(RS)— 14-F4-NeuroP) were synthesized by Durand's team at the Institute des
Biomolécules Max Mousseron (IBMM) (Montpellier, France)[136—140]. The calibration
curves were prepared by serial dilutions in H,O (pH 3): CH3OH (85:15 v/v) with

CH3COOH0.01%, in concentrations from 300 nmol L1 to 0.004 nmol L™1 of each

analyte.

The centrifuge (multiSPIN) was from Cleaver Scientific Ltd. (Warwickshire, United
Kingdom) and the vortex mixer was from Velp Scientifica (Usmate, Italy). The speed
vacuum concentrator (mi Vac) was from Genevac LTD (Ipswich, United Kingdom).
The thermomixerHLC was from Ditabis (Pforzheim, Germany). The Strata X-
AW (100 mg, 3 mL) solid phase extraction cartridges used for sample solid- phase
extraction (SPE) and the SPE 12-position vacuum manifold were from Phenomenex
(Madrid, Spain).

2.2. Sample treatment

In this section urine, plasma, and CSF samples were analyzed. The sample treatment for

each matrix is described in Figure 3.
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2.2.1 Urine samples

Urine samples (Chapters 1 and 3) were collected in a sterile bottle and immediately stored
at —80 °C until analysis (~6 months). As stated in a previous study, no deterioration was
observed for the lipid peroxidation compounds at long-term, since samples were not
subjected to freeze-thaw cycles [141]. Then, they were treated following the optimum

procedure established in a previous work [141]. Briefly, samples were thawed on ice and
5 uL of the internal standard solution (PI) (PGF24-ds 10 pmol L~ and ds-10-epi-10-F4-

NeuroP 6 umol L_l) were added to 1 mL of sample. Then, enzymatic hydrolysis was

performed by adding the enzyme B-glucuronidase and sodium acetate buffer (100 mmol

L1, pH 4.9) and incubated for 2 hours at 37 °C. Then, the reaction was stopped and the
enzyme was precipitated with cold methanol and chlorhydric acid (37%, v/v) and

centrifuged for 10 min (14000 g, 4 °C). The supernatant pH was adjusted to 6—7 with sodium

hydroxide (2.5 mol Lfl). Finally, a solid phase extraction procedure was carried out.

The results were standardized by the creatinine levels measured using a colorimetric kit
(MicroVue creatinine EIA) and a spectrophotometer following the manufacturer’s

protocol.
2.2.2 Plasma Sample

Plasma samples were collected from peripheral blood employing cryo-tubes with
ethylenediaminetetraacetic acid. Then they were centrifuged for 15 min at 11609 at room
temperature. Plasma was separated in a tube containing butylated hydroxytoluene
(0.25% (w/v) in ethanol) to avoid further oxidation of the sample. Afterward, samples

were frozen at — 80 °C until analysis.

The sample treatment consisted of the addition of 5 pL of an internal standard solution
(PGF24-Ds 2 pmol L*  and Ds10-epi-10-F4-NeroP 1.2 umol L) and 400 pL of a
potassium hydroxide solution (15% w/v) to 400 pL of plasma to carry out the hydrolysis
(40 °C, 30 min). After that, the samples were placed on ice, diluted with 1 mL of H,O
(0.01%v/v acetic acid), acidified with hydrochloric acid (37%), and centrifuged for 10
min (5000g, 4 °C). Then, the supernatant final pH was adjusted to7 by adding NaOH

2.5 mol L. For clean-up and pre-concentration, a SPE procedure using Strata X-AW
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cartridges was carried out [141].
2.2.3 CSF samples

CSF samples were obtained by lumbar puncture as part of the diagnostic protocol in

the Polytechnic University Hospital La Fe (Valencia, Spain), and they were kept at —80
°C. The analysis consisted of samples thawing on ice and adding 5 pL of the internal
standard solution (IS) (d4-10-epi-10-F4-NeuroP at 6 pmol L~!, and PGF2a-d, at 10

pmol L_l) to 600 pL CSF. Then, they were diluted with 1300 pL of water.
2.2.4 Solid phase extraction

After the samples pretreatment, a cleaning and pre-concentration step was carried out by
solid-phase extraction SPE for all sample types (urine, plasma and CSF). For this, the
cartridges were first conditioned with 1 mL methanol and 1 mL H»O. Then the samples
were loaded into the SPE cartridge and the cartridge was washed with 1 mL ammonium
acetate (100 mmol L', pH 7) and 1 mL heptane. Elution was carried out with 2 x 500 pL
of methanol (5% v/v CH3;COOH). After that, the samples were evaporated to dryness in
the vacuum concentrator and reconstituted in 100 uL of H2O (pH 3):CH3OH (85:15 v/v)
containing 0.01% (v/v) CHsCOOH. Finally, the samples were injected into ultra-
performance liquid chromatography coupled to tandem mass spectrometry (UPLC-
MS/MS)(Waters Acquity UPLC-Xevo TQD system (Milford, MA, USA)).

2.3. Chromatographic system

The chromatographic system consisted of a UPLC system (Waters Acquity) coupled to a
Xevo TQD system mass spectrometry system (Waters, United Kingdom). The conditions
used were: ionization in negative mode (ESI-), capillary tension 2.0kV, source temperature
of 150 °C, desolvation temperature of 395 °C nitrogen cone and desolvation gas flows were

150 and 800 L h!, respectively, and dwell time was 10 ms.

The UPLC conditions were selected to achieve appropriate chromatographic retention and
resolution by using a Cig column (2.1 x 100 mm, 1.7 um) (Acquity UPLC BEH, Waters).
Mobile phases consisted of water (0.01% v/v CH;COOH as mobile phase A) and acetonitrile

(0.01% v/v acetic acid as mobile phase B). The temperatures of the column and the
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autosampler were set at 55 °C and 4 °C, respectively. The injection volume was set at 8 uL.

and the flow rate was set to 0.45mL min~ L. A total 8.5 min elution gradient was performed.
It consisted of 0.5 min with eluent composition at 80% A and 20% B, which was gradually
changed to 55% A and 45% B at 6 min; then B was increased to 95% along 0.2 min, and kept
constant for 0.8 min. Finally, the mobile phase composition returned to the initial

conditions, and it was maintained for 1.3 min for system conditioning.

The detection was performed by multiple reaction monitoring (MRM) using the

acquisition parameters obtained in a previous work [141].
2.4. Neuroimaging data acquisition

MRI was performed as part of the routine clinical assessment. Images were obtained
using three MRI scanners (Siemens): two 1.5 T and one 3T machines were used. Imaging
protocol included axial, sagittal and coronal views of the brain using T1, T2, gradient
echo and fluid attenuation inversion recovery (FLAIR) sequences. Medial temporal
atrophy (MTA) was assessed visually by a single rater relative light changes (RLC) using
FLAIR or T1 coronal images at the level of the hippocampus. The visual assessment of
MTA was ranged from 0 (no atrophy) to 4 (severe atrophy) and was based on criteria and

score system proposed by Scheltens et al.[142].

2.5. Statistical analyses

2.5.1 Univariate analyses

Data were summarized using median and interquartile range (IQR) in the case of
continuous variables, and with relative and absolute frequencies in the case of categorical

variables.

Regarding univariate analysis, differences between groups for numerical variables were
analyzed by the Mann-Whitney or Kruskal Wallis tests. Categorical variables were
analyzed by the Chi-square test. Finally, correlations among the biomarkers, as well as
between the biofluids were analyzed by Pearson Correlation. In addition, as descriptive
analysis, correlations among the different variables (18 lipid peroxidation compounds

in plasma and 3 biomarkers in CSF) were assessed by constructing a correlation network
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based on the spearman correlation matrix of the variables (Chapter 2). Correlations with
an absolute value under 0.3 were excluded from the network to avoid spurious effects.
Variables distribution was studied using a Kolmogorov—Smirnov test. Analysis were
carried out with the software SPSS version 20.0 software (SPSS, Inc., Chicago, IL,
USA) and R software (different versions). For all the analysis, significance value was
p value < 0.05. Box-plots were used to represent the levels of isoprostanoids

biomarkers.
2.5.2. Multivariate analysis

Multivariate analysis based on Elastic Net was developed in Chapter 1. Elastic net is able
to perform variable selection at the same time of model fitting and produces
parsimonious predictive models. This property improves generalization of the model to
new data by avoiding overfitting. It is an adequate variable selection technique compared
to other commonly used methods such as stepwise algorithms or univariate screening,
which suffer from many consistency problems [143]. Prior to modelling, variables were
log-transformed to avoid potential strongly influential outliers due to the highly skewed
nature of some variables. Then, a logistic regression model based on elastic-net-penalized
was developed including gender and age as covariates. The penalization parameter
lambda was selected by performing 500 replications of ten-fold cross validation. The
minimum cross-validated error was selected on each replication and the median from the
selected lambda values was considered the consensus lambda. Since the minimum lambda
value was used, an alternative variable selection method was performed as a sensitivity
analysis. This alternative analysis consisted on a random forest using the Altmann et al.
method [144]. The final elastic net model was validated using bootstrap validation. For
this, the procedure of Steyerberg et al. was followed [145]. Statistical analyses were
performed using the softwares R (version 3.5.0), the BootValidation R (version 0.1.3),

glmnet R (version 2.0-16), and ranger (version 0.9.0).

In chapter 2, as descriptive analysis, correlations among the different variables (18 lipid
peroxidation compounds in plasma and 3 biomarkers in CSF) were assessed by
constructing a correlation network based on the spearman correlation matrix of the
variables. Correlations with an absolute value under 0.3 were excluded from the network
to avoid spurious effects. Then, multivariate analyses based on Elastic-Net was carried
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out. Prior to modelling, variables with near zero variance were excluded (1a,1b-dihomo-
PGF,, and 2,3-dinor-15-epi-15-Fx-1soP). With the remaining variables, an elastic-net-
penalized logistic regression model was adjusted. Age and gender were included in the
models as covariates. Selection of the penalization parameter lambda, which controls the
complexity of the model by decreasing the number of variables included in the model as
it grows larger, was performed by estimating the bias-variance error curve of the
population using 500 replications of ten-fold cross validation. The lambda value at one
standard error from the minimum cross-validated error was selected on each replication
and the median from the selected lambda values was chosen as the consensus lambda.
The fitted elastic net model performance measured as optimism corrected AUC was
validated using bootstrap, following the procedure of Smith et al. [146]. Statistical
analyses were performed using R (version 3.4.3) and the BootValidation R (version 0.1.3)
and glmnet (version 2.0-13) R packages.

In chapter 3 different regression models, based on linear discriminant analysis (PLS) and
non-linear discriminant analysis (support vector machine (SVM); artificial neural
networks, (ANN)), were developed from lipid peroxidation compounds levels determined
in urine and plasma samples from healthy and MCI-AD participants. Each model was
trained and tested multiple times, and the diagnostic performance obtained for each model

was evaluated.

The PLS analysis was carried out with the Unscrambler software version 7.6 (Camo,
Woodbridge, USA), the SVM analysis with radialand polynomial kernel functions was
carried out with IBM SPSS Modeler software version 1.0 (IBM, New York, USA) and
the ANN analysis was carried out with SPSS software version 20.0 (SPSS, Inc., Chicago,
IL, USA). These statistical multivariate models were developed for each sample matrix

that was analyzed.

The PLS models were constructed from 24 independent variables (22 lipid peroxidation
compounds, gender and age) as predictor variables, 1 dependent variable (participant
group (MCI-AD/healthy control)) and 5 principal components. All variables were

normalized, and a random cross validation (one left out) was carried out.

The SVM models with radial and polynomial kernel functions were developed from 24

independent variables (22 lipid peroxidation analytes, gender and age) and 1 dependent
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variable (participant group (MCI-AD/healthy control)). The dataset was randomly
divided into training sample (70%), testing sample (15%) and validating sample (15%).
The parameters utilized were detention criteria of 1.0E3, regularization parameter (C) of
10, precision of regression of 0.1, and the kernel functions employed were radial basis

function (gamma (y) of 0.1) and polynomial function (y of 1).

The ANN models were constructed from the 24 independent variables (gender and age as
factors, 22 analytes as covariables), and 1 dependent variable (participant group (MCI-
AD/healthy control)). In the first step, the dataset was randomly divided into training
sample (70%), testing sample (15%) and validating sample (15%) [147], before model
development. The training sample is used to train the network in several iterations
improving the ANN performance. Then, the optimum values of weights and biases are
determined, and the ANN performance is examined in the testing sample. The
feedforward architecture was based on the predictors function Multilayer Perceptron
(MPL), as training algorithm, that minimizes the prediction error of outputs, and the form
of this function consists of input, hidden and output layers, but the number of neurons in
each layer as well as the number of layers depend on the complexity of the studied system.
The automatic architecture selection builds a network with one hidden layer, and the
number of units in the hidden layer was tested between 1 and 50, 1 unit being the optimum
number. The transfer functions for the hidden and output layers were hyperbolic tangent
and normalized exponential function, respectively. These functions have the following

forms:
v (X) = tanh (x) = (e* — e ™¥)/(e* + e7)
Y(xk) = exp.(X)/Zj exp(xj), forj = 1, ...,k (dimensions)

In this sense, a three-layer 24-1-1-feed-forward propagation ANN model was trained and

developed from 24 predictor variables (age, gender, lipid peroxidation compounds).

Regarding the training type, it was in batch, and the optimization algorithm to estimate
the synaptic weights was based on scaled conjugate gradient including an initial lambda
and an initial sigma values of 0.0000005 and 0.00005, respectively, as initial values for

the weights and biases to optimize them in successive iterations.

In chapter 5, a two-stage model for Alzheimer’s disease diagnosis was developed by
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adjusting two nested logistic regression models. The first model was based on the
discrimination capacity of the neuropsychological evaluation to differentiate between
control and case (including AD and non-AD groups) participants. Specifically, the
clinical variables RBANS.DM and CDR were used as predictors in this first model. The
second model was based on the discrimination capacity of lipid peroxidation products
from plasma samples to diferentiate between AD and non-AD patients in the case group.
Specifically, the potential predictors in this second model were 15(R)-15-Fa-IsoP, PGE;,
2,3-dinor-iPF2-111, 15-keto-15-Ex-1s0P, 15-keto-15-Fx-1soP, 15-Ex-1soP, 5-Fx-IsoP, 15-
Fa-1s0P, PGF2,, 1a,1b-dihomo-PGF,,, 4(RS)-Fa-NeuroP, 10-epi-10-Fa-NeuroP, 14(RS)-
14-F4-NeuroP, Ent-7(RS)-Fa-dihomo-IsoP, 17-Fx-dihomo-1soP, 17-epi-17-Fx-dihomo-
IsoP, 17(RS)-10-epi-SC-D*-11-dihomo-IsoF, 7(RS)-ST-D8-11-dihomo-IsoF, as well as
the total parameters I1soP, I1soF and NeuroF. Selection of the final predictors in the model

was performed using Elastic Net [148].

Performance of the model was assessed by estimating optimism-corrected AUC using
200 bootstrap replications. All statistical analyses were performed using R (version 3.6)

and R packages pROC (version 1.14.0) and brms (version 2.8.0).

In Chapter 6, the elastic net logistic regression model was used to select “variables” with
the glmnet package in order to discriminate between participants groups [149], due to the
collinear nature and high dimensionality of the data. The elastic net regularization method
of the estimated beta coefficients improves upon ordinary least squares. It linearly
combines the L1 and L2 penalties of the lasso and ridge methods. Regularization
parameter A determines the amount of regularization. An optimal value for A was
determined performing a 5-fold cross-validation, which yielded the minimum cross-
validated mean-squared error (CVM). A median of 500 repetitions of the cross validation

was calculated in order to improve lambda’s robustness.
In Chapter 7, discriminant analysis was performed by PLS.

The multivariate statistical analysis was carried out using the Minitab software version
18 (USA). Then, the Receiver operating characteristic curve (ROC) of the discriminant
model was obtained. Two models were constructed, the first included plasma biomarkers
(isoprostanes, neuroprostanes, isofurans, neurofurans, 17-epi-17-Fz-dihomo-IsoP,

PGF,.), gender and age as predictor variables; and the second included image data (MTA-
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R (right), MTA-L (left) and MTA-S (sum)), gender and age as predictor variables. The
response variable used was group (control-case). All the variables were standardized and

cross-validation of the models was carried out.
4.2.5.3. Diagnostic models performance evaluation

For diagnostic performance evaluation of the receiver operating characteristic (ROC)
curves were constructed from the corresponding validation results from developed
models, indicating the area under the curve (AUC)-ROC as a parameter that represents
the accuracy of each model. For the PLS model, it was cross validatied leaving one out,
while for the SVM and ANN models, validation consisted of using data sets randomly
divided. The corresponding area under the curve (AUC, 95% confidence interval (CI)),
and the optimum cut-off values (the highest sum of sensitivity and specificity) were
determined. Finally, the diagnostic indices (sensitivity, specificity, positive likelihood
ratio (LR+), negative likelihood ratio (LR-), diagnostic odds ratio (DOR)) were

calculated.

3. Section II. Experimental procedures

3.1 Sample treatment

Figure 4 represents the plasma sample treatment for each chapter.
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Figure 4. Plasma samples treatment for omics analyses. a) treatment for metabolomic analyses; b) treatment for lipidomic analyses; c) treatment
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3.1.1 Metabolomics

Plasma samples were thawed on ice, 150 pL of cold acetonitrile (0.1%, v/v) were added
to 50 uL of plasma, vortexed and kept at —20 °C for 30 min, for protein precipitation. After
centrifugation at 13000 g (10 min, 4 °C), 20 pL of the supernatant were transferred to a 96-
wells plate for liquid chromatography coupled to mass spectrometry (LC-MS) analysis.
Then, 70 pL of H,O (0.1% HCOOH, v/v), and 10 pL of internal standard mix solution
(reserpine, leucine enkephaline, phenylalanine-d5, 20 uM each one) were added to each

sample.
3.1.2 Lipidomics

Briefly, 150 pL of cold isopropanol (IPA) were added to 50 pL of plasma, vortexed,

and kept at - 20 °C for 30 min. Then, it was centrifuged (13,000 g, 10 min, 4 °C), and
90 pL of supernatant was transferred to a 96-well plate. After that, 10 uL of an
internal standard (1S) mix solution (17:0 LPC, d18:1/17:0 SM, and 17:0 PE) (100

png/mL, each compound) wwere added to each sample.

For both, metabolomics and lipidomics, Quality control (QC) was prepared by mixing 10
uL from each plasma sample. Blank was prepared replacing plasma by ultrapure water in
order to identify potential artefacts from the tube, reagents and other materials. Finally,
plasma samples, QCs and blanks were injected in the chromatographic system. In order
to avoid intra-batch variability, as well as to enhance quality and reproducibility, the
analysis scheme consisted of random injection order and analysis of QC every 6 plasma
samples. Blank analysis was performed at the end of the sequence. Sample stability and

analytical drift were investigated through the internal standard intensities.
3.1.3 Epigenomics.

RNA was isolated for RNA sequencing using the miRNeasy plasma kit (Qiagen, Ger-
many) following the manufacturer’s protocol. Briefly, 200 pL of plasma and 700 pL of
QIAzol lysis reagent wereincubated for 5 min at room temperature (RT). Then, 140 pL of
chloroform were added and incubated at RT for3 min and centrifuged at 1200 g (15 min, 4
°C). The agueous phase was mixed in a new tube with 525 pL of ethanol and transferred to

a RNeasy MinElute spin column followed by a centrifugation step at 10000 g (30 s, RT).
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The column was then washed with RWT buffer (700 pL) and RPE buffer (500 pL) and
dried for 90 s at 10000 g.Finally, the elution step was performed with 15 puL of RNase-free
water (13000 g, 1 min).

For Polymerase Chain Reaction (PCR) validation, RNA extraction was carried out in a
similar way but including a previous step, which consisted on the addition of RNA spike-

in before the protocol.

3.2 Analytical methods

3.2.1 Metabolomics

Metabolomic analysis was performed on an UPLC system coupled to an iFunnel
quadrupole time of flight (Q-ToF) Agilent 6550 mass spectrometer (Agilent
Technologies, CA, USA). Chromatographic separation was performed by using an UPLC
BEH Cis (100 x 2.1 mm, 1.7 um, Waters, Wexford, Ireland) column from Waters
(Wexford, Ireland). Autosampler and column temperatures were set to 4 °C and 40 °C,

respectively. The injection volume was 5 uL.. A gradient elution with a total run time

of 14 min was performed at a flow rate of 400 uL min ! as follows: 98% of mobile phase
A (H20, 0.1% v/v HCOOH) for 1 min, a linear gradient from 2% to 15% of mobile
phase B (CH3CN, 0.1% v/v HCOOH) for 2 min, from 15% to 50% B for 3 min and
from 50% to 95% for 3 min. Finally, 95% B was held for 3 min and a 0.55 min gradient
was used to return to the initial conditions, which were held for 2.5 min to totally column
recovery. Full scan MS data from 50 to 1700 m/z with a scan frequency of 6 Hz was
collected. Both positive and negative electrospray ionization modes (ESI +, ESI —) were
used and the conditions were set as follows: gas temperature, 200 °C; drying gas, 14 L

min~!: nebulizer, 60 psi; sheath gas temperature, 350 °C; sheath gas flow,11 L min~ L.

Automatic MS spectra recalibration was carried out introducing a reference standard into

the source via a reference sprayer valve during the analysis. Q-ToF-MS was also used

under auto MS/MS and all-ions (MSE) fragmentation modes for the simultaneous
acquisition at low and high collision energies, which provide useful information about the
(de)protonated molecules and main fragment ions for the identification of discovered

metabolites.
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3.2.2 Lipidomics

Samples were analyzed by UPLC coupled to time-of-flight mass spectrometry
(UPLC-TOF/MS-Orbitrap QExactive Plus MS) following the normalized protocol
from the Analytical Unit in Health Research Unit La Fe (Valencia, Spain). Briefly,
the chromatographic conditions consisted of using an Acquity UPLC CSH C18
column (100 x 2.1 mm, 1.7 um) from Waters. The mobile phase in the positive
ionization mode was acetonitrile/water (60:40) with formic acid (10 mM) (A) and
isopropyl alcohol/acetonitrile (90:10) with formic acid (10 mM) (B); in the negative
ionization mode, it was acetonitrile/water (60:40) with acetic acid (10 mM) (A) and

isopropyl alcohol/acetonitrile (90:10) with acetic acid (10 mM) (B). The flow rate was

0.40 mL min~1, the column temperature was 65 °C, and the injection volume was 5
uL.

Untargeted Analysis

For the untargeted analysis, the mass spectrometry conditions consisted of positive and
negative ionization, an m/z range of 70-1700 Da, a resolution full scan of 70,000, a

capillary voltage of 2.5 kV, a sheath gas flow rate of 35, an auxiliary gas flow rate of 15,
a sweep gas flow rate of 0, a capillary temperature of 250 °C, an s-lens RF level of

65, and an auxiliarygas heater temperature of 200 °C. Samples were randomly injected
in the chromatographic system in order to avoid intra-batch variability. Regarding the
QC sample, it was analyzed every seven injections to monitor and correct changes in the
instrument response. Moreover, it was repeatedly analyzed under the auto MS/MS and
all-ion (MSE) fragmentation modes to provide useful information of fragment ions for
identification purposes. The stability of the analytical system during the analysis was
investigated through the trends and drifts of IS intensities over the course of the batch
analysis. A blank analysis was performed at the end of the sequence and was used to

identify artefacts from sampling, the preparation of samples, and analysis.

Then, some variables were annotated, with a mass error <5 ppm, and some of them

were selected for a subsequent targeted analysis.
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Targeted analysis

Some of previous variables were selected for a targeted analysis. First, lipid families
that showedstatistically significant differences among the participant groups were
selected. Then, individual compounds from these families that showed statistically
significant differences between groups were selected. In the case of no commercially

available standards, similar lipid compounds from the same family were selected.

Table 2. Acquisition parameters for targeted lipid analysis.

Compound Mass to Chemical Product lon (m/z) Product lon (m/z)
Charge (m/z) Formula (M) (Quantitative) (Qualitative)
Precursor
lon
18:1 LPE 480.30847 C23H46NO7P 308.294
18:0 LPC 524.37107 C26H54NO7P 184.073 104.107
16:1 SM 701.5592 C39H77N206P 184.073 104.107
(d18:1/16:1)
16:0 SM 703.57485 C39H79N206P 184.073 104.107
(d18:1/16:0)
18:0 SM 731.60615 C41H83N206P 184.073 104.107
(d18:1/18:0)
18:1 (9-Cis) PE 74455378 C41H78NO8P 308.294
(DOPE)
24:0 SM 815.70005 C47H95N206P 184.073 86.0963
17:0LPC 568.3626 C25H52NO7P 184.073
17:0 SM 717.5905 C40H81N206P 184.073
(d18:1/17:0)
17:0 PE 720.22537 C39H78NO8P 184.073

LPE: lysophosphatidylethanolamine; LPC: lysophosphatidylcholine; SM: sphingomyelin; PE:
phosphatidylethanolamine; DOPE: dioleoyl phosphatidylethanolamine.

The sample treatment and the MS/MS method were developed for the simultaneous
targeted analysis of seven lipid compounds (18:1 LPE, 18:0 LPC, 16:1 SM
(d18:1/16:1), 16:0 SM (d18:1/16:0), 18:0 SM (d18:1/d18:0), 18:1 (9-Cis) PE (DOPE),
and 24:0 SM). In addition, 17:0 LPC, 17:0 SM (d18:1/17:0), and 17:0 PE were used
as internal standards. Metabolite concentrations were calculated by an internal
calibration using a reaction and multiple reaction monitoring (MRM) method. The
employed mass spectrometry conditions consisted of positive ionization, a capillary

voltage of 3 kV, a sheath gas flow rate of 35, an auxiliary gas flow rate of 15, a

sweep gas flow rate, a capillary temperature of 250 °C, an s-lens RF level, and an
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auxiliary gas heater temperature of 200 °C. The normalized collision energy was 25 for

all compounds. The MRM methodparameters are summarized in Table 2.

Analytical Method Validation

The analytical characteristics assayed during the validation procedure were the linearity
range, precision, accuracy, limit of detection (LOD), and limit of quantification
(LOQ).The accuracy was evaluated by means of the recovery test. For this, standards
were spiked at three concentration levels, and they were analyzed in triplicate. The
precision was estimated from the analysis of standards and spiked samples at three
concentration levels (i.e., low, medium, and high) in triplicate. The LOD and LOQ
were established experimentally as the concentrations required to generate signal-to-

noise ratios of 3 and 10, respectively.
3.2.3 Epigenomics

RNA sequencing method.

Construction of RNA libraries. The miRNA libraries were prepared from total RNA using
the NEXTFLEX® Small RNA-Seq v3 Kit for Illumina Platforms (Bioo Scientific
Corporation, Texas, USA). Briefly, the small RNA molecules were first ligated to the 3°-4
N adenylated adapters, taking advantage ofthe phosphate group at their terminal end, which
allows the exclusive targeting of these molecules. Secondly, the5’-4 N adapters were
ligated. Later, reverse transcription of the molecule into cDNA was carried out. The
generated cDNA fragments were then amplified and indexed by PCR using different

barcode primers for each sample.Finally, a size-selective purification was carried out.

The quality control and concentration of the libraries were verified with the Agilent
Technologies 2100 bioanalyser using highly sensitivity DNA chips (Central Unit for
Research in Medicine (Universitat de Valéncia)). Subsequently, an equimolecular pool of

each library was prepared for sequencing.

Sequencing on an [llumina equipment. Sequencing was carried out on the NGS NextSeq
550 platform (Illumina, San Diego, CA, USA) by single read sequencing of 50 cycles (1 x
50 bp).

88



Material and methods

miRNAs validation by quantitative PCR.

Quantitative PCR procedure. From the extracted RNA, retro-transcription and
amplification steps were carried out following the manufacturer’s recommendation
(TagMan Advanced miRNA Assays)
[https://tools.thermofisher.com/content/sfs/manuals/100027897_TagManAdv_miRNA_
Assays_UG.pdf]. Briefly, the protocol consisted of four steps. First, the addition of a polyA
tail, after the adapter ligation, followed by the retro-transcription step, and then the
specific miRNA amplification. Finally, samples were diluted, and real time PCR (RT-
PCR) was carried out in duplicate using the thermocycler (ViiA7, Applied Biosystems,
California, USA).

3.3 Data pre-processing
3.3.1 Metabolomics

First, pre-processing of acquired data from the full scan analysis by UPLC-Q-ToF-MS is
required to detect molecular features. Data processing was done by using the XCMS
package in R [150], for peak detection, noise filtering, peak alignment, grouping, and
normalization of data; and the CAMERA package [151], for identification of isotopes and
most probable adducts. Finally, a data matrix was generated including molecular features

(m/z-retention time), sample 1D (observations) and peak intensities.
3.3.2 Lipidomics

The results from the untargeted analytical method were converted to the mzXML file
format, and the data were processed (peak detection, noise filtering, and peak
alignment) using an in-house R processing script based in the LipidMS package
published by Alcoriza-Balaguer et al. and developed in the Analytical Unit of the
Health Research Institute of La Fe (Valencia) [152].

For both analyses metabolomics and lipidomics, before the statistical analysis, data
quality (reproducibility, stability) was evaluated by means of the internal standards
stability and the QC's coefficients of variation (CV). Those molecular features with CV
> 30% or not present in 60% of the samples in at least one of the compared groups were

removed from the data matrix. Prior to statistical analysis, normalization was performed
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in order to find the most appropriate method for this study to eliminate intra-batch
variability due to technical differences. They were two approaches based on multiple
internal standard (IS), a median fold change normalization, and a QC-based robust locally
weighted scatter plot smoothing (LOESS) for signal correction. After evaluation, LOESS
data normalization was selected for statistical analysis. Finally, the obtained peaks table

was used for statistical analysis.
3.3.3 Epigenomics

Pre-processing, quality control and normalization. NGS data (raw fastq files from sSRNA
sequencing) were processed following the standard protocol proposed by Cordero et al.
[153] implemented in the function mirnaCounts from docker4seq package [154] with
default parameters in R[155]. First, a sequence quality control check was generated using
FastQC[156] and then cutadapt[157] program was used for the adapter trimming.
Specifically, adapters and low-quality reads (Phred Score < 10) were trimmed and removed
(44.014.980 reads). Once adapters were removed, sequence reads (219.207.246 good
quality reads) were mapped against miRNA precursors from miRBase (v.21)[158], using
SHRIMP[158,159], filtering out a total of 95.03% reads. Finally, miRNA quantification from
the resulting 4.97% of mapped reads were generated using the function count Overleaps
from GenomicRanges package [160], resulting in a total of 9.799.858 miRNA counts in a
total of 2.386 miRNAs.

miRNAs selection. From the miRNAs identified in the pre-processing, quality control and
normalization process, some of them were selected. Specifically, those miRNAs which
showed a number of counts different from zero in at least 80% of the samples and that
were corroborated in literature. Finally, the selected miRNAs were validated by means of

gPCR in the same plasma samples.
3.4. Statistical analysis

Demographic and clinical data from participants were summarized using median and
interquartile range for continuous variables, and relative and absolute frequencies for
categorical variables. Univariate analysis was carried comparing medians between
participantsgroups by Mann Whitney and Kruskal Wallis tests for numerical variables

and Chi-square test for categorical variables. All these analysis were carried out with
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SPSS software version 20.0 (SPSS, Inc., Chicago, IL, USA). Correlation analyses were
carried out by Pearson correlation test. Statistically significant differences were
considered from p value < 0.05. In addition, the fold change (FC) ratios for metabolomic

analyses were calculated as MCI-AD mean/control group mean for each metabolite.
3.4.1 Metabolomics

Multivariate analyses were carried out with metabolomic data. First, multivariate analysis
based on an Elastic Net penalized logisticregression [149] (Chapter 8). It was adjusted
to identify the most influential variables in the differentiation between healthy
individuals and MCI-AD patients using R (version 3.5), R packages glmnet (version 2.0-
16), and BootValidation (version 0.1.5). Penalized regression methods consist on fitting
a regression model subject to a specific restriction (a bound on the value of the
coefficients). This method forces the shrinkage of the parameters to zero, potentially
performing variable selection at the model-fitting step. Penalization factor for the Elastic
Net was selected using 500 repetitions of 10-fold cross-validation. From each repetition
the highest lambda at one standard error from the minimum was selected (one-standard-
error rule) and the median of the 500 lambda values was used as the final penalization
factor. With the selected features, the Elastic net models obtained for each ionization
mode were evaluated by estimating its optimism corrected AUC-ROC by bootstrapping,
following the procedure of Gordon et al. [146]. On chapter 9, for multivariate statistical
analysis, data from positive and negative ionization modes were treated simultaneously.
First, the normalized variables obtained from data processing were visualized in a
Volcano Plot to show which variables present a stronger combination of FC and statistical
significance (p-value) from a t-test. Significant variables (p value t-test 1) were selected
for a supervised orthogonal-least-squares discriminant analysis (PLS) validated by an
iterative 7-fold cross-validation (CV) approach. The validity and robustness of the models
were evaluated by R? (Y) (model fit) and Q? (Y) (predictive ability) diagnostic
parameters. Quality of CV Q? (Y) was assessed by using the p-value from CV-anova
analysis. R?Y intercepts and Q2 Y intercepts from 1000 times permutation test in the PLS
model was also used to evaluate the overfitting risk. Most discriminant variables were
selected according to their Variance Importance in Projection plot values (VIP >1.0), and

a jackknife confidence interval that did not include zero. Finally, the potential metabolites
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were submitted to identification process. Volcano plots were carried out using the R
platform, while the multivariate analysis was carried out using Simca 14.1 software

(Sartorius Stedim Biotech, Aubagne, France).
3.4.2 Lipidomics

The variables identified by the LipidMS package [152] were grouped into lipid families
(CE, Cer, diglycerol (DG), fatty acid (FA), lysophosphatidylethanolamine (LPE),
lysophos-phatidylcholine (LPC), monoglyceride (MG), PC, PE, PI, SM, and TG). In
addition, we calculated the variables monounsaturated (MUFAS), polyunsaturated
(PUFAS), and saturated (SFAS) fatty acids as the sum of levels (MUFAS, PUFAS, and
SFAS, respectively), including all previous lipid families.

On the other hand, a multivariate statistical analysis was carried out with the
variables detected in the untargeted analysis in order to identify other potential
biomarkers (not identified by the LipidMS package). For this, data from the positive
and negative ionization modes were considered simultaneously. First, the normalized
variables were visualized in a volcano plot carried out using an in-house script in R
platform. From this, variables with a stronger combination of FC (abs (log2 FC) > 1)
and statistical significance (p value of t-test < 0.05) in each comparison (MCI-AD vs.
control and preclinical AD vs. control) were False Discovery Rate-adjusted and
selected for a supervised PLS. The PLS was carried out using Simca 14.1 software
(Sartorius Stedim Biotech, Aubagne, France), and it was validated by a seven cross-
validation procedure (CV, dataset split into seven subsets). The corresponding models
were evaluated by R? (YY) (model fit) and Q? () (predictive ability) diagnostic indices,
the p-value of the CV-anova model, and a permutation test. The most discriminant
variables were selected according to their variance importance in projection plot values
(VIP > 1.0). Once selected, these features were annotated as potential metabolites by the
CEU mass mediator database according to the Schymanski levels of identification [161].

In summary, Figure 5 describes the workflow of these analyses.
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Figure 5. Workflow of the analyses.

3.4.3 Epigenomics

The number of counts obtained from RT-PCR were averaged for duplicates, discarding
replicates with values within + 2 counts from mean. Then, samples were normalized using
the mean and standard deviation. The miRNAs detected in at least 80% of the samples
and with a difference between replicates < 1 count were satisfactorily quantify. The effect
of each biomarker on pathology was then analyzed by Bayesian models: the first model
discriminates among control, MCI-AD and preclinical AD groups; and the second model
discriminates between AD (preclinical AD, MCI-AD) and control groups. For these
models, some parameters were calculated (estimate, which indicates the direction of the
miRNAs levels; Odds Ratio; Percentage Inside Rope, which defines the percentage of the
area that is within the region of practical equivalence (equivalent to null effect);
probability of direction (PD), which indicates the probability that the effect has in a

particular direction (indicated by the estimate). PD > 80% was considered significative).
3.4.4 Lipidomics-Epigenomics Integration

Sparse Partial Least Squares (PLS) regression was applied to the previous data sets to
select variables (miRNAs, lipids) and integrate them. The PLS approach combines both

integration and variable selection on two data sets in a one-step strategy [154].
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Then, the graphical representations (correlation circle plots, heatmaps, relevance

networks) resulting from the statistical approach were plotted.

Individual differences between groups were carried out by Mann-Whitney test, and
correlations by Pearson Correlation. In all the cases, statistical significance was fixed

in a p value of 0.05.

Statistical analyses were performed using R software (v 4.0.3, Auckland, CA, USA)
and mixOmics (v 6.16.2) and clickR (v 0.7.35) packages and SPSS software version
20.0 (SPSS, Inc., Chicago, IL, USA).

3.5 Metabolite annotation
3.5.1 Metabolomics

Metabolite annotation. Molecular features selected by Elastic Net analysis were
preliminarily identified by querying their exact mass against those presented in the online
Human Metabolome Database (HMDB) (http://www.hmdb.ca/) and the Metlin database

(https://metlin.scripps.edu) within a mass range of + 10 ppm. The identities of the selected

features were verified by comparing the MS/MS and all-ions spectra with those of the
proposed metabolites in the cited online databases, as well as by using authentic standards

whenever available.

Variables selected by PLS analysis were identified by using the online CEU Mass
Mediator ((CMM), 3.0, Gil de la Fuente et al, 2019) [162] which combines the results of
several online databases, among which Human Metabolome Database (HMDB)
(http://hmdb.ca/), Metlin (https://metlin.scripps.edu/), LipidMaps
(http://www.lipidmaps.org) and Kegg (http://www.kegg.jp) are used. Annotation of
variables (m/z) was carried by querying their accurate mass (AM) against those presented
in these sources within a mass range of £5 ppm. Only those metabolites that appeared at
least in the HMDB were finally selected. The adducts included were [M+H], [M+Na],
[2M+H], and [2M+Na] for positive ionization mode, and [M-H], [M+HCOOH-H], [2M-
H] for negative ionization mode. Also, neutral water loss was taken into account for both
ionization modes. A scoring of annotation was calculated by the CMM based on the

probability to form specific adducts, as well as their retention time (RT), and lipid elution
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order based in RT and the number of carbons and double bonds. Metabolites’ annotation
was also supported by comparing the obtained MS/MS fragmentation spectra with those
experimental spectra proposed in databases. Annotation confidence levels were
determined according to the categorical scoring system proposed by the Metabolomics
Community. They were level 1, identification of molecular feature through AM and RT,
matching with its chemical standard; level 2, putatively annotation through AM and
MS/MS spectra matching with online databases; level 3, putatively characterization of
compounds by AM matching with online databases; and level 4, feature without

annotation (unknown compound) [163,164].
3.5.2 Lipidomics

In order to increase the metabolic coverage, two data analysis strategies were used.
The variables were identified by two complementary methods in order to identify
more metabolites with different polarity ranges. As a first method, annotation using the
LipidMS package and statistical analysis was carried out with the variables. As a
second method, annotation by means of the variable AM, using the CEU mass
mediator database (including the Kegg, LipidMaps, Metlin, and Human
Metabolome databases),a mass range of 5+ ppm, and some adducts ([M+H],
[M+Na], [2M+NH4], [M+NH4],and [M+H-20Q] for the positive ionization mode
and [M-H], [M+HCOOH-H], [2M-H], and [M+Na-2H] for the negative ionization
mode), was carried out. In this second approach, the identity of the metabolites was
confirmed by comparing the obtained MS/MS fragmentation spectra with those
predicted and proposed in the databases. In this sense,four annotation confidence
levels were evaluated, as proposed by E. Schymanski et al. (2014) [161,165]. They
were level 1 (identified compounds with structures confirmed by AM, MS/MS
spectra, retention time (rt), and reference standards); level 2 (compounds putatively
annotated through AM and experimental or predicted MS/MS spectra matched with
online libraries); level 3 (compounds putatively characterized by AM matched with

online databases); and level 4 (unknown compounds) [165,166].

The results from the targeted analytical method were the signal intensities (arbitrary units)
obtained for each lipid compound in plasma samples, and their concentrations were
determined from the corresponding calibration curves.
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3.5.3 Epigenomics: pathway analyses

The target genes of the differentially expressed miRNAs were studied using the miR data
base (miRDB). The selected target genes were those with a target score > 95. Then, the
targets were classified according to cellular pathways and functions in order to analyze

the implication in AD.
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Chapter 1. New screening approach for Alzheimer’s disease risk

assessment from urine lipid peroxidation compounds

1. Summary

The aim of this chapter was to evaluate the capacity of lipid peroxidation compounds
from urine samples to disctiminate patients with AD (case grup, n=70) from non-AD
cases (control group, n=29). Lipid peroxidation compounds were determined in urine
using a validated analytical method based on UPLC-MS/MS. Statistical studies consisted
of the evaluation of two different linear (Elastic Net) and non-linear (Random Forest)

regression models to discriminate between groups of participants.

2. Results

2.1 Participant’ characteristics

Table 3. Demographic and clinical variables of the study participants.

Variable Case (n=70) Control (n=29)

Age (years) (median (IQR)) 70.5 (68, 74) 66 (62, 72)

Gender (female) (n (%0)) 28 (40%) 18 (62%)

Secondary Studies (n (%)) 10 (14%) 10 (34%)
Alcohol consumption (yes) (n (%6)) 6 (8%) 6 (21%)
Smoking status (yes) (n (%6)) 8 (11%) 1 (3%)

Medications (yes) (n (%)) 54 (77%) 18 (62%)

Comorbidity (yes) (n (%6)) 53 (76%) 18 (62%)

RBANS.DM (median (IQR)) 44 (40, 49) 100 (91, 106)

CDR (median (IQR)) 0.5(0.5,1) 0(0,0)
FAQ (median (IQR)) 7(3,13) 0(0,0)

MMSE (median (IQR)) 22 (18, 26) 30 (28, 30)

CSF AB (pg mL™L) (median (IQR))

568 (441, 668)

1227 (1143, 1144)

CSF t-Tau (pg mL™1) (median (IQR))

553 (377, 790)

208 (141, 333)

CSF p-Tau (pg mL™L) (median (IQR)) 88 (71, 116) 51(38,70)
Temporal atrophy (yes) (n (%)) 51 (72%) 2 (%)
Depression (yes) (n (%)) 9 (13%) 3 (10%)

IQR: Interquartilic range; RBANS-DM,Repeatable Battery for the Assessment of Neuropsychological Status-
Delayed Memory (Standard Score; cut- off point <85); CDR, Clinical Dementia Rating, values: 0, 0.5, 1, 2; FAQ,
Functional Activities Questionnaire (Direct Score; cut-off point >9); MMSE, Minimental State Examination.

Table 3 shows the demographic and clinical data for both groups. Small differences were

shown for age and gender between groups, so these variables were considered covariates.
Regarding the neuropsychological variables (CDR, RBANS, FAQ, MMSE) and biological
99



Results, discussion and conclusions Chapter 1

measures (CSF AB, CSF t-Tau, CSF p-Tau, temporal atrophy) used in the standard diagnosis,
they showed significant differences between groups. However, the demographic variables
(age, gender, studies, alcohol, smoking status, medication, comorbidity) did not show

statistical differences betweengroups.

2.2 Determination of urine lipid peroxidation biomarkers

Table 4. Concentrations of lipid peroxidation biomarkers in urine samples

Biomarkers Case (n=70) Control (n=29)
Median (IQR) Median (IQR)
(ng mg_l creatinine) (ng mg_lcreatinine)

15(R)-15-F-1s0P

0.72 (0.5, 1.56)

0.7 (0.48, 0.94)

PGE;

1.98 (0.62, 3.5)

1.69 (0.93, 4.26)

15-keto-15-Ex-1soP

0.93(0.53, 1.47)

1.02 (0.65, 1.54)

15-keto-15-F-1soP

0.84(0.22, 1.94)

1.33(0.58, 2)

2,3-dinor-15-epi-15-F4-1soP

0.78(0.53, 1.22)

0.65 (0.47, 1.09)

15-E5-1soP

0.23 (0.06, 1.31)

0.16 (0.07, 0.58)

5-F-1soP

2.67 (1.68,5.07)

2.37(1.76,3.37)

15-Fy-1soP

0.01(0, 0.02)

0.01 (0, 0.02)

PGFq

3.72(2.79,7.32)

3.38(2.35, 5.17)

4(RS)-4-F4-NeuroP

0.89 (0.67, 1.36)

0.72 (0.5, 1.01)

1a,1b-dihomo-PGF,,

1.33(0.64, 2.48)

1.67 (1.05, 2.23)

10-epi-10-F4-NeuroP

0.03 (0, 0.06)

0.01 (0, 0.05)

14(RS)-14-F4-NeuroP

1.21(0.76, 2.16)

1.27(0.74, 1.94)

ent-7(RS)-7-F-dihomo-IsoP

0.33(0.14, 0.63)

0.28 (0.19, 0.36)

17-Fy-dihomo-lsoP 0.09 (0, 0.38) 0.11(0, 0.26)
17-epi-17-F5-dihomo-1soP 0.01 (0, 0.07) 0(0,0)
17(RS)-10-epi-SC-A15-11-dihomo-lsoF 0.03(0,0.1) 0.05(0.03, 0.08)
7(RS)-ST-A8-11-dihomo-IsoF 0(0,0.02) 0(0,0.03)

IQR, inter-quartile range; IsoP, isoprostane; dihomo-IsoP, dihomo-isoprostane; dihomo-IsoF, dihomo-isofuran,
NeuroP, neuroprostane.

Urine levels of lipid peroxidation compounds obtained for each group are shown in Table 4.
Some of them (5-Fa-IsoP, 2,3-dinor-15-epi-15-F-IsoP, 15-Ex-IsoP, PGE,, PGF,,, 10-¢pi-
10-F4-NeuroP, 4(RS)-4-Fs-NeuroP, ent-7(RS)-7-F2-dihomo-IsoP) showed higher levels in
early AD patients than in healthy controls, and some analytes (15-keto-15-Ex-IsoP, 15-
keto-15-F»-IsoP) showed lower values in the case group than in the control group. Figure

6 shows the box plots for each analyte.
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Figure 6. Box-Plot of the differences in different lipid peroxidation analytes levels
between early AD (case) and healthy (control) groups.

2.3 Screening model from urine lipid peroxidation biomarkers

The elastic net model selected five variables corresponding to one isoprostane, one
neuroprostane, one prostaglandin and two dihomo-isoprostanes shown in Table 5. The

model also included gender and age, which were introduced as covariates. These predictor
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variables were combined as it is indicated in the formula below in order to estimate the

individual probability (Pr) of suffering from AD.

o —4+187+0.51+female+0.064+age—0.13+(4)+0.622+(B)—0.048+(C)+0.554+(D) +0.072+(E)

Pr(Y) 1 + e—+187+0.463«female+0.064+age—0.13+(4)+0.622+(B)—0.048+(C)+0.554(D)+0.072x(E)

A: 15-keto-15-F-IsoP; B: 4(RS)-4-F4-NeuroP; C: 1a,1b-dihomo-PGF,,; D: ent-7(RS)-7-F5-dihomo-IsoP; E:17-
epi-17-Fy-dihomo-IsoP.

Table 5. Results of the elastic net and random forest analyses.

p-value

Variable Coefficient Importance (random

(elastic net) (random forest)  forest)
Gender (female) 0.463 0.17 0.08*
Age 0.064 1.09 0.012*
15-keto-15-Fx-1soP -0.13 0.71 0.043*
4(RS)-F4-NeuroP 0.62 0.74 0.046*
1a,1b-dihomo-PGF,, —-0.048 0.73 0.035*
ent-7(RS)-7-Fy-dihomo-1soP 0.55 0.64 0.044*
17-epi-17-F5-dihomo-1soP 0.072 0.58 0.029*
10-epi-10-F4-NeuroP 0 0.48 0.075
17-F5-dihomo-IsoP 0 0.35 0.133
17(RS)-10-epi-SC-A15-11-dihomo-IsoF 0 0.21 0.219
15-Ex-1soP 0 0.17 0.293
5-F,-1soP 0 0.14 0.325
2,3-dinor-15-epi-15-Fy-1soP 0 0.11 0.381
15(R)-15-F-IsoP 0 0.10 0.379
PGE, 0 0.08 0.405
15-keto-15-Ex-1soP 0 0.05 0.436
7(RS)-ST-A8-11-dihomo-IsoF 0 —0.08 0.636
PGF;, 0 -0.09 0.603
14(RS)-14-F4-NeuroP 0 -0.25 0.755

The alternative analysis using random forest selected the same five variables as the most
important ones (Table 5), and they were also all considered statistically significant by the
Altmann method [144]. Classification performance of the models was assessed using
bootstrap in the case of elastic net and by the Out of Bag (OOB) estimate in the case of
random forest. Bootstrap validated AUC-ROC for the elastic net model was 0.682 and OOB
accuracy for the random forest model was 0.71, so their performance can be considered

similar. Remarkably for the elastic net results, the sensitivity and specificity profile shows
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a sharp decrease of the sensitivity values as the specificity increases, forcing a decision
between high sensitivity (0.97) at a cost of low specificity (0.31) or high specificity (0.93)

at a cost of mediocre sensitivity (0.5) (Figure 7).

Coefficients of the elastic net model are interpreted as log-odds, so negative values indicate
a negative association between higher concentration levels and risk of disease, and
positive values indicate a positive association between higher concentration levels and
risk of disease. Importance values and p-values for random forest are derived from the gini

index using Altman method.
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Figure 7. Sensitivity and specificity profile plot. The continuous line depicts the
relationship between the probability threshold set in the model’s prediction and its
corresponding sensitivity and the dashed line represent the relationship between the
probability threshold and the specificity.

3. Discussion

The reliable determination of lipid peroxidation products levels in urine samples from
well-defined healthy and early AD participants, and the satisfactory classification
performance of two complementary regression models allowed to develop an early and

non-invasive screening model to identify individuals with high risk to develop the AD.

The role of lipid peroxidation in AD development has been largely studied [167] but few

studies have been carried out determining isoprostanoids as target metabolites in AD
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[168,169]. In addition, the analytical methods used in most of these works were based on
commercial kits or immunoassays what is associated to low specificity on isomers
determinations (Puertas et al., 2012). Nevertheless, in the present study a previously
validated analytical method based on mass spectrometry detection has been used, providing
high selectivity and sensitivity, as well as high reliability to determine simultaneously

several isoprostanoids isomers [141].

Regarding the development of early and non-invasive diagnosis, urine could be
considered a promising matrix. However, few studies in literature have focused on this
matrix [171,172]. Specifically, in the present work some compounds (PGE», 2,3-dinor-15-
epi-15-F»-IsoP, 15-E»-IsoP, 5-Fa-IsoP, PGF2,, 10-epi-10-F4-NeuroP, 4(RS)-4-F4-NeuroP
and 17-epi-17-F»-dihomo-IsoP) showed higher concentrations in urine from AD patients
than in healthy participants. Similarly, previous studies showed higher levels of some F-
IsoPs in urine from patients with AD than in the control group [173—175]. However, further
studies to clinically validate these potential biomarkers, using a larger number of samples

from well-defined participants, and predictive models are required.

In this work, two alternative modelling methods with completely different characteristics
were used. First, elastic net logistic regression is based on standard generalized linear
regression models, thus assuming linearity of the relationship between predictors and the
linear predictor, no interactions are assessed and the results are fully interpretable as in a
standard logistic regression. On the other hand, random forest is a non-linear non-
parametric model, that enable the assessment of higher order interactions between
variables at a cost of lower statistical power compared to elastic net model when the
relationship is linear [50,176]. Random forest does not provide an interpretable model, but
provides a list of the most important variables in predicting the response. The fact that both

methods obtained very similar results, provides robustness to our results.

In literature, few AD predictive models using these sophisticated statistical tools can be
found [50,177-179], and most of them are based on neuroimaging measures [180].
However, none of them were based on non-invasive determination of lipid peroxidation

biomarkers in early AD patients.

The diagnostic indices obtained from both models indicated that the results could

constitute a satisfactory screening approach from early AD stages with the consequent
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benefits for patients and health public system. In fact, the high sensitivity obtained would
allow a reliable identification of high-risk patients in the early stages of AD, and they would
be derived to a method with higher specificity to rule out false positives [168]. Nevertheless,
further clinical validation using an external cohort of participants would be required in order

to obtain a reliable diagnostic model.

Regarding the study limitations, the low number of controls compared to cases would be
explained by the difficulty to obtain healthy participants with CSF biomarkers. Also, we
did not include participants with other similar dementias, so differential AD diagnosis was
not achieved. Further clinical validation work will be developed by including a higher
number of controls, as well as patients with similar pathologies. In addition, a follow-up
study will be carried out in order to evaluate the variation of these compounds’ levels along

the time.
4. Conclusion

A set of new lipid peroxidation biomarkers has been determined in urine samples from
well-defined participants (early AD, healthy) by means of a previously validated analytical
method. So, reliable results have been obtained and used to develop a preliminary early
and non-invasive screening model in order to identify potential individuals with high risk
of suffering AD, although it could not be considered AD specific. For this, two different
regression models (linear, elastic net; non-linear, random forest) were developed, obtaining
similar performance in terms of variable selection and accuracy, in spite of being based on

different analytical principles, and so providing robustness to the results.
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Chapter 2. Plasma lipid peroxidation biomarkers for early and non-

invasive Alzheimer Disease detection

1. Summary

The aim of this chapter was to evaluate the capacity of lipid peroxidation compounds
from plasma samples to discriminate patients with AD (case group, n=68) from non-AD
cases (control group, n=26). First, the analytical method for lipid peroxidation compounds
in plasma samples was validated and then plasa from participantes were analysed using a
validated analytical method based on UPLC-MS/MS. Statistical studies consisted of an

elastic-net-penalized logistic regression adjustment.

2. Results

2.1. Patients’ characteristics

Demographic, clinical and CSF biomarker data for both groups are summarized in
Table 6. Age and gender showed small differences between groups, so they were
included in the predictive model as covariates. As expected, RBANS, CDR, FAQ,
AB42, t-Tau and p-Tau were clearly different between both groups. C-reactive
protein (CRP) was also different, with the AD patients displaying higher values.

Depression was similar between both groups.

106



Results, discussion and conclusions

Chapter 2

Table 6. Demographic and clinical characteristics, and biomarkers levels of the

participants.
Variable Case (n=68) Control (n=26)
Age (years) (median, IQR) 71 (68, 74) 66 (62.25, 71.5)
Gender (female) (n, (%0)) 39 (57.35%) 9 (34.62%)
Studies levels (%0) Primary 31 (45%) 14 (53%)
Secondary 15 (22%) 5 (20%)
Academic 22 (33%) 7 (27%)
Alcohol consumption (yes, n (%0)) 9 (13%) 6 (23%)
Smoking status (n, Yes 10 (15%) 2 (8%)
(%)) Former smoker (more 11 (16%) 8 (31%)
than 10 years)
Medications (n, (%)) 54 (79%) 18 (69%)
Comorbidiyt (n, None 15 (22%) 8 (31%)
(%)) Dyslipemia 17 (25%) 6 (23%)
Heart disease 1 (1%) 0 (0%)
Arterial hypertension 8 (12%) 6 (23%)
Two or more 23 (34%) 3 (11,5%)
Others 4 (6%) 3 (11,5%)

Triglycerides (median, IQR)

90 (75.5, 120)

94.5 (83.75, 113.75)

Cholesterol (median, IQR)

1955 (171.25, 220)

202.5 (193, 237)

CRP (median, IQR) 0 (0, 1.3) 0 (0, 0)
RBANS.DM (median, IQR) 44 (40, 49) 100 (91.25, 105.25)
CDR (median, IQR) 0.5 (0.5,1) 0 (0,0)
FA° (median, IQR) 8(3,13) 0(0,0)

CSF AB42 (pg mL™) (median, IQR)

565 (444.5, 673)

1197 (1150, 1423.5)

CSF t-Tau (pg mL™) (median, IQR)

543 (386.5, 788.5)

208 (142, 326)

CSF p-Tau (pg mL™) (median, IQR) 87 (71.5, 108) 52 (41, 68.5)
Temporal atrophy (n, (%)) 51 (79.69%) 2 (8%)
Depression (n, (%6)) 18 (28.57%) 4 (15.38%)

IQR: inter-quartile range; CRP: C-reactive protein; CSF: cerebrospinal fluid; AB42: amyloid B 42; t-Tau: total
Tau; p-Tau: phosphorylated Tau. RBANS-DM, Repeatable Battery for the Assessment of Neuropsychological
Status- Delayed Memory (Standard Score; cut-off point<85). CDR, Clinical Dementia Rating, values: 0, 0.5, 1,
2. FAQ, Functional Activities Questionnaire (Direct Score; cut-off point>9).

2.2. Analytical method validation

The analytical method showed an adequate linearity for all the analytes within the
corresponding concentration ranges and coefficients of determination (R2) ranged
between 0.990 and 0.999. It also provided suitable precision, with intra-day and inter-
day coefficients of variationof 2-11% (n=3) and 5-13% (n = 6), respectively (at
medium concentration level within the linearity interval). The limits of detection
(signal to noise ratio of 3) obtained for each analyte ranged between 0.02 and 2 nmol
L%, and the limits of quantification (signal to noise ratio of 10) were between 0.07
and 8 nmol L%,

The accuracy of the method was evaluated by analyzing standard solutions and spiked
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plasma samples containing the analytes at different concentration levels. In all the cases,
the proposed method provided values close to the real concentrations, and matrix effect
was considered negligible, with the exemption of 15-keto-15-Ex-1soP, for which only a

semi-quantitative determination was achieved.

2.3. Determination of plasma lipid peroxidation biomarkers and

correlation analysis

Regarding plasma levels of lipid peroxidation compounds, some of them (15(R)-15-Fa-
IsoP, 15-keto-15-Ex-1soP, 15-keto-15-F2-1soP, 15-Ex-1soP,4(RS)-Fa-NeuroP and ent-
7(RS)-7-F2+-dihomo-IsoP) showed higher levels in AD patients than in healthy controls
(control). Figure 8 shows the same results by means of box plots for each analyte, and

some analytes showed lower values in the case group than in the control group (PGFyq,

5-Fa-1s0P, 7(RS)-ST—A8-1l—dihomo—lsoF).

Correlation analysis among the plasma lipid peroxidation biomarkers and the CSF
biomarkers (Ap42, t-Tau and p-Tau) was carried out by constructing a correlation
network (Figure 9). Red lines represent positive correlations, while blue lines show
negative correlations. Besides, the width of the line corresponds to the strength of the
correlation. The figure shows an evident association between the CSF biomarkers (t-Tau,
p-Tau, Ap42) and some plasma analytes, such as 15(R)-15-Fx-I1soP formed from the AA
peroxidation, and ent-7(RS)-7-Fz-dihomo-1soP formed from the AA peroxidation. As
observed in Figure 8, these two plasma analytes showed higher levels in AD patients than
in healthy participants, corroborating their high association with standard AD biomarkers.
Other interesting associations were the correlation between ent-7(RS)-7-Fz-dihomo-1soP
and PGE_,, which belongs to the prostaglandins family and may play an important role
in the inflammatory response associated to AD; the correlation between the prostaglandin
PGF,,, the isoprostane isomer 15-Fx-IsoP that is studied in depth in a variety of
biological systems, and 10-epi-10- F4-NeuroP formed from the DHA peroxidation; as
well as the correlation between 15-Ex-1soP and 15-keto-15-Fx-IsoP (Figure 9). Also,
some negative correlations were found between the prostaglandin PGF,, and both 17-epi-
17-Fa-dihomo-IsoP and 4(RS)-F4-NeuroP. However, 14(RS)-14-F4-NeuroP does not

show any correlation with the other compounds.
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Figure 8. Box plot graphs representing the concentration in plasma samples for each
analyte in case and control groups. Boxes represent the 1st and 3rd quartiles, the black
lines the median, and whiskers encompass from Ist quartile — 1.5 times the interquartile
range to 3rd quartile + 1.5 times the interquartile range (* p < 0.01,** p < 0.001).
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Figure 9. Correlation network for all the lipid peroxidation products in plasma and CSF
biomarkers (Ap42, t-Tau and p-Tau). The width of the line corresponds to the strength of
the correlation, red lines represent positive correlations and blue lines represent negative
correlations.

2.4. Diagnostic model from plasma lipid peroxidation biomarkers

The elastic-net logistic regression model fitted to the data selected six variables as
potential predictors of AD. The model was also forced to include age and gender as
covariates. These predictors were combined using the following formula in order to

calculate the individual probability of suffering from AD (Pr):

LP

PI'(AD) = m

where LP=— 3.55 + 2.23 * 15(R)-15-F2-1soP — 0.239 * 15-Ex-1soP —1.424 * PGFy,
+0.5098 * 4(RS)-Fa-NeuroP — 0.08 * 14(RS)-14-F4-NeuroP + 0.154 * Ent-
7(RS)-7-F2-dihomo-IsoP + 0.596 * gender + 0.059 * age
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This model achieved an apparent AUC-ROC of 0.883 (95% Confidence Interval,
0.817-0.95, p-value < 0.001) (Figure 10) and a bootstrap-validated AUC- ROC of
0.817. Calibration of the model was also assessed, obtaining very low deviations
when comparing the fitted versus the real probabilities, except around the 30—40%

mark, where the deviations toped at -10% (Figure 11).

0.6 -

Sensitivity

0.4 4

0.2

R
T T T T T T
0.0 02 04 06 08 10

1 - Specificity
Figure 10. Receiver operating characteristic curve for the diagnostic model. The
AUC is 0.883 with a p < 0.001.
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Figure 11. Calibration plot of the model. The dotted line represents an empirical
estimation of the in-sample observed probability versus the model-predicted probability.
The continuous line represents the bias-corrected estimation of the observed probability
versus the predicted probability. The dashed line represents the ideal 1:1 relationship
between observed and predicted probabilities.
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3. Discussion and conclusion

In this study, we have used a validated analytical method to determine levels of 18
isoprostanoids in plasma from well-defined participants groups (early AD patients and
healthy participants). Nowadays, the standard diagnosis criteria employed to classify the
participants are based on the review from the NIA-AA [23,24]. However, since it shows
some disadvantages, an early and reliable potential diagnosis method has been studied

in this work.

The results obtained from the determination of 18 lipid peroxidation biomarkers in
plasma samples indicate that higher concentrationsof some compounds (15(R)-15-Fa-
IsoP, 15-keto-15-Ex-1soP, 15-keto- 15-Fx-1soP, 15-Ex-IsoP, 4(RS)-Fa-NeuroP, ent-
7(RS)-7-Fx-dihomo- IsoP) were found in early AD patients than in healthy participants.
This finding corroborates the results obtained by Sirin et al. in which plasmalevels of
15-Fx-1soP were higher in AD than in healthy individuals [181]. As regards the
descriptive correlation analysis among plasma and CSF biomarkers, we considered
that a correlation with an absolutevalue = 0.3 may be relevant in the lipid peroxidation
associated to early AD. Although it is not possible to explain the implications of all
these correlations, some of these metabolites’ levels were altered in MCI-AD. Of note,
15(R)-15-F-1soP and ent-7(RS)-7-Fx-dihomo IsoP in plasma showed positive
correlation with t-Tau and p-Tau in CSF, and negative correlation with Ap42 in CSF.
In this sense, a potential relationship between lipid peroxidation and the protein biology
in brain was observed, confirming previous studies [182]. Actually, in a previous study it
was found that the insert of Ap aggregates into the lipid bilayer in cellular membrane,
may lead to the formation of lipid peroxidation compounds [167]. On the other hand,
some compounds in plasma were highly correlated, such as, PGF,, and 15-Fx-isoP,
as well as PGF», and 10-epi-10-F4-NeuroP, and finally PGE, and ent-7(RS)-7-Fa-
dihomo-IsoP, indicating the presence of both enzymatic and non-enzymatic lipid
oXidation since early AD, as well as inflammatory response also observed in previous
studies [183,184]. Moreover, an important inverse relationship was observed between
PGF,, and 17-epi- 17-F-dihomolsoP.

From these preliminary results, we elaborated a regression model showing good
diagnostic accuracy from the biomarkers 15(R)-15-Fu- IsoP, 15-Ex-I1soP, PGF,
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4(RS)-Fas-NeuroP, 14(RS)-14-F4-NeuroP and ent-7(RS)-7-Fz-dihomo-1soP. Although
these biomarkers are not able to discriminate between both groups when considered
alone, they improve their discriminative ability when they are included in the
diagnostic model with age and gender as covariates. Developing reliable diagnostic
models in small data sets is difficult because the issue of overfitting is especially
prominent in these cases. Common methods employed in medical literature include
univariate screening, stepwise variable selection and, most recently, shrinkage or
regularization methods such as lasso or elastic net. Of these, only regularization
methods are able to produce stable estimates of the predictors and achieve good
generalization of its predictive capacity [145]. In this study we used an elastic net
penalized logistic regression model for AD diagnosis. Elastic net is a generalization
of lasso and improves its prediction accuracy as it allows to deal with
multicollinearity (high correlations between the different covariates) which was a
property of our dataset. Our model achieved a promising validated AUC of 0.82 and
has the advantage of providing an equation that can be used to obtain individualized
estimates for each patient. The possibility to estimate the probability of AD opens the
door to personalized decision making in the handling of potential AD patients. This
would leave the use of CSF biomarkers, the gold standard for diagnosis, only for

cases considered as high risk by our model.

Although the diagnostic accuracy of this model was not superior to the employment of

CSF biomarkers this model has the advantage of being based on non-invasive sampling.

In literature, we can find some AD diagnosis models developed using different
biomarkers. For instance, Nazeri et al. showed that different plasma proteins (interleukin-
16, thyroxine-binding globulin, peptide tyrosine tyrosine, apolipoprotein E, eselectin,
matrix metallopeptidase (10)) could be used to achieve the diagnosis and follow-up of the
AD quite accurately against neuroimaging techniques, but these proteins are required to
be clinically validated as possible AD indicators [185]. In addition, Marmarelis et al.
proposed a diagnostic model basedon cerebral hemodynamics through measures of
pressure changes and cerebral CO, vasomotor reactivity, but the specificity of this
diagnosis has not been assessed and the number of participants is low [186]. Another

model was based on the determination of CSF biomarkers by means of capillary

113



Results, discussion and conclusions Chapter 2

electrophoresis coupled to mass spectrometry [187]. Also, a diagnostic model based on
image techniques was described by Liao et al., in which age could explain some

metabolic alterations, but the imaging techniques involve high economic costs [188].

4. Conslusion

To conclude, a satisfactory AD diagnostic model has been obtained from plasma lipid
peroxidation biomarkers, indicating the individual probability of suffering from AD. To
our knowledge, this is the first study evaluating the AD diagnostic accuracy of lipid
peroxidation compounds in plasma from well-defined participants groups and using a
validated analytical method. This is an important contribution in the study of an early and
non-invasive AD diagnosis. In addition, the results from this work are relevant in the
evaluation of OS as a molecular mechanism between amyloid deposition and
neurodegeneration in AD. Prospective clinical validation of this potential diagnostic

model will be carried out using an external group of patients.
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Chapter 3. Assessment of lipid peroxidation and artificial neural

network models in early Alzheimer Disease diagnosis

1. Summary

The aim of this chapter was to evaluate the capacity of lipid peroxidation biomarkers from
plasma and urine samples to discriminate between MCI-AD and healthy control groups
participants with different statistical strategies. For this, lipid peroxidation compounds
were determined in urine and plasma samples from patients diagnosed with early
Alzheimer Disease (n=70) and controls (n=26) by means of UPLC-MS/MS. The obtained
results were analysed by means of different statistical models (PLS, SVM, ANN) to

evaluate the diagnostic capacity for sample type.

2. Results

2.1. Demographic, clinical and analytical variables

The demographic and clinical variables for each group of participants are described
in Table 7. All of them showed a non-normal distribution, so medians were compared
between groups by means of Mann Whitney test for numerical variables, and Chi-square
and Fisher exact tests for categorical variables. The clinical variables (RBANS, CDR,
FAQ, MMSE), cerebrospinal fluid (CSF) AB42, CSF t-Tau and CSF p-Tau) showed
statistically significant differences between MCI-AD and healthy control groups. On the
other hand, demographic variables did not present statistically significant differences
between both groups except of gender and age, so these variables were taken into

account in the subsequent analyses.

The concentrations obtained for each analytical variable (22 analytes) in both matrices
(urine, plasma) are summarized in Table 8. As we can see, statistically significant
differences between groups were obtained for 17-epi-17-Fx-dihomo-IsoP in urine
samples, and for 15(R)-15-F2-1soP, PGF,, 4(RS)-4-Fx-NeuroP, ent-7(RS)-7-Fx-dihomo-
IsoP, 17-epi-17-Fx-dihomo-IsoP, isoprostanes, isofurans, neuroprostanes and

neurofurans in plasma samples.
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Table 7. Demographic and clinical variables of the studied population.

Variable MCI-AD (n=70) Healthy control P-value
(n=26)
Gender (Female, n (%)) 41 (58.6%) 9 (34.6%) 0.037*
Age (Median, (IQR)) 70 (68-74) 66 (62-70) 0.044*
Depression (Yes, n (%)) 9 (13%) 5 (19%) 0.566
Anxiety (Yes, n (%)) 6 (9%) 2 (8%) 0.629
Studies levels Primary 28 (40%) 16 (61%) 0.173
(n (%)) Secondary 20 (29%) 3 (12%)
Academic 22 (31%) 7 (27%)
Smoking status (smoker or former 50 (71%) 13 (50%) 0.124
smoker) (n (%))
Alcohol consumption (yes, n (%)) 12 (17%) 2 (8%) 0.307
Medications (n, None 15 (22%) 8 (31%) 0.269
(%)) psychotropic drugs 3 (4%) 2 (8%)
Antihypertensive 10 (14%) 7 (27%)
Statins 12 (17%) 3 (11%)
Two or more 30(43%) 6 (23%)
Comorbidity (n, None 18 (26%) 10 (39%) 0.071
(%)) Dyslipemia 18 (26%) 3 (11%)
Hypertension 10 (14%) 7 (27%)
Heart disease 0 (0%) 1 (4%)
Two or more 24 (34%) 5 (19%)
RBANS-DM 42 (40-49) 100 (90-106) 0.000*
CDR 0.5 (0.5-1) 0 (0-0) 0.000*
FAQ 7 (2-13) 0 (0-0) 0.000*
MMSE 25 (19-29) 24 (21-27) 0.000*
CSF AB42 (pg mL?) 597 (445-687) 1186 (1033-1403) 0.000*
CSF t-Tau (pg mL™) 572 (396-857) 202 (139-320) 0.000*
CSF p-Tau (pg mL™) 88 (72-111) 49 (35-67) 0.000*

IQR: Interquartile range. Data were expressed as median (interquartile range (IQR)) for non-parametric
continuous variables, and number of cases (percentages) for categorical cases. The statistical calculations
to compare between the two groups employed Mann-Whitney test, Chi-Square test and Fisher exact test,
respectively; RBANS-DM, Repeatable Battery for the Assessment of Neuropsychological Status- Delayed
Memory (Standard Score; cut-off point << 85); CDR, Clinical Dementia Rating, values: 0, 0.5, 1, 2;
FAQ, Functional Activities Questionnaire (Direct Score; cut-off point > 9); MMSE, Minimental State
Examination; CSF, Cerebrospinal fluid; AP42: amyloid B 42; t-Tau, total-Tau; p-Tau,

phosphorylated-Tau; * p << .05.
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Table 8. Concentrations determined by UPLC-MS/MS for each analyte in plasma and urine samples from MCI-AD and healthy control

participants.
Analyte Plasma (nmol L™ Urine (ng mg creatinine 1)
MCI-AD (n=70) Healthy control (n=26)  P- MCI-AD (n=70) Healthy control (n= P-
value 26) value
Median quartile Median  quartile Media  quartile Media  quartile
15(R)-15-F-1soP 0.30 0.23 0.46 0.20 0.15 0.26  0.000* 0.69 047 142 0.71 049 100 0.830
PGE, 0.05 0.00 0.13 0.05 0.00 010 0.520 1.93 043 348 1.85 092 462 0.615
2,3-dinor-15-epi-15-F,-1soP  0.00 0.00 0.03 0.00 0.00 0.00 0.067 0.73 049 122 0.65 047 112 0.458
15-keto-15-E-1soP 0.15 0.00 0.35 0.13 0.04 027 0874 0.92 0.51 1.46 0.88 052 165 0.644
15-keto-15-Fy-1soP 0.23 0.09 0.35 0.23 0.14 028 0.599 0.79 016 1.85 1.52 060 220 0.094
15-Ex-1soP 0.26 0.12 0.43 0.19 0.09 028 0.320 0.18 0.05 1.29 0.19 0.06 0.76  0.830
5-F-1soP 0.40 1.26 0.99 073 123 0.362 2.66 161 485 2.70 177 385 0.817
15-F;-1soP ggg 0.01 0.04 0.02 0.02 0.03 0.638 0.01 0.00 0.02 0.01 0.00 0.02 0.113
PGF;, 0.51 0.24 0.76 0.74 048 094 0.008* 3.67 269 7.90 2.98 234 498  0.295
4(RS)-4-F4-NeuroP 1.14 0.96 1.33 1.03 0.00 113 0.003* 0.91 0.67 1.40 0.72 050 105 0.051
1a,1b-dihomo-PGF,, 0.00 0.00 0.00 0.00 0.00 0.00 0.784 1.26 061 235 1.63 101 232 0232
10-epi-10-F4-NeuroP 0.08 0.03 0.15 0.09 0.03 014 0.731 0.03 0.00 0.06 0.01 0.00 0.04 0.094
14(RS)-14-F4-NeuroP 0.53 0.06 1.03 0.60 0.00 174 0.671 1.22 0.76  2.38 1.37 0.78 198 0.837
fntg(RS)-%th-dihomo- 0.10 0.05 0.15 0.05 0.04 0.08 0.002* 0.32 0.13 0.60 0.29 021 039 1.000
S0

17-F5-dihomo-IsoP 0.00 0.00 0.00 0.00 000 0.00 0555 0.08 000 036 0.10 0.00 023 0.625
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17-epi-17-Fx-dihomo-1soP  0.03 0.00 0.05 0.00 000 001 0015~ 0.01 000 006 0.00 000 0.00 0.019*
17(RS)-10-epi-SC-A®-11- 0.00 0.00 0.00 0.00 000 000 0164 0.3 000 011 0.05 002 008 0330
dihomo-IsoF
7(RS)-ST-A®-11-dihomo- 0.04 0.03 0.08 0.09 002 016 0.067  0.00 000 002 0.00 000 003 0.849
IsoF
Neurofurans? 0.09 -0.05 017 -0.10 -0.15 0.07 0.000* 3.13 176 662 415 251 595 0.356
Isofurans? 0.09 0.07 0.12 0.07 006 009 0.013* 436 253 725 429 337 964 0343
Neuroprostanes? -0.22 070  0.19 -0.65 -0.76 -0.48 0.010* 352 225 497  3.77 202 617 0650
Isoprostanes® 0.30 0.22 0.39 0.20 0.17 027 0.000* 6.20 382 1237 7.30 467 114 049

5

*p <0.05.

2, Total parameters results expressed as intensity of signal units in plasma and as signal units mg™ creatinine in urine.
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2.2. Multivariate statistical models

In this work we developed different multivariate models in order to improve the
diagnostic utility of lipid peroxidation products from plasma and urine samples
[141,168], since they do not have a high diagnostic capacity individually. For this,
different multivariate models based on linear and non-linear regression were developed

for each kind of biological sample and they were compared in terms of diagnostic

performance.
(a) (b)
# Healthy control
03 4 P N MCI-AD
02
), ol® o1 12 o
v
I L e e el
a 2 -0, o, 0,1 0.2 03 04 05 ol6 i * o
00 e els A
9 le13 o5
*ei02 o8 .
®7 B
5 ¥
), & ()
20 4
0,4 4
]
PC1 pc1

Figure 12. Plots representing results of the partial least squares regression model in urine
samples. (a) Loadings plot. 1: Gender; 2: Age; 3: 15(R)-15-Fx-1soP; 4: PGEg; 5: 2,3-
dinor-15-epi-15-Fx-1soP; 6: 15-keto-15-Ex-I1SoP; 7: 15-keto-15-Fx-1s0P; 8: 15-Ex-IsoP;
9: 5-Fy-1soP; 10: 15-Fa-IsoP; 11: PGF,,; 12: 4(RS)-Fa-NeuroP; 13: 1a,1b-dihomo-
PGF,,; 14: 10-epi-10-F4-NeuroP; 15: 14(RS)-14-F4-NeuroP; 16: ent-7(RS)-7-Fa-
dihomo-IsoP; 17: 17-Fx-dihomo-IsoP; 18: 17-epi-17-Fx-dihomo-IsoP; 19: 17(RS)-10-
epi-SC-A-11-dihomo-IsoF; 20: 7(RS)-ST-A8%-11-dihomo-IsoF; 21: neurofurans; 22:
isofurans; 23: neuroprostanes; 24: isoprostanes. (b) Scores plot.

First, PLS linear regression models were developed. For PLS in urine, in Figure 12 we
can see that the MCI-AD group showed higher levels for the compounds 15(R)-15-F-
IsoP, 2,3-dinor-15-epi-15-Fx-1soP, 4(RS)-4-Fx-NeuroP, ent-7(RS)-7-Fx-dihomo-IsoP,
17-epi-17-F-dihomo-1soP, 10-epi-10-Fa-NeuroP, 17-Fx-dihomo-1soP and neurofurans,

as well as higher age and female proportion (Figure 12a). However, the healthy
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participants are grouped on the left side of the score plot (Figure 12b) because they
showed lower levels for the previous compounds. Similarly, for PLS in plasma, in Figure
13 we can see that the MCI-AD group showed higher levels for the compounds 15(R)-
15-Fx-IsoP, 4(RS)-4-F4-NeuroP, neuroprostanes, isoprostanes, ent-7(RS)-7-Fa-dihomo-
IsoP, neurofurans and isofurans, as well as higher age and female proportion (Figure 13a).
However, the healthy individuals are grouped in the left side of the score plot (Figure

13b) due to their lower levels for the previous compounds.
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Figure 13. Plots representing results of the partial least squares regression model in
plasma samples. (a) Loadings plot. 1: Gender; 2: Age; 3: 15(R)-15-F2-1s0P; 4: PGEy; 5:
2,3-dinor-15-epi-15-F2-1s0P; 6: 15-keto-15-Ex-1s0P; 7: 15-keto-15-Fx- 1soP; 8: 15-Ex-
IsoP; 9: 5-Fa-IsoP; 10: 15-Fa-IsoP; 11: PGFa,; 12: 4(RS)-4-Fa-NeuroP; 13: 1a,1b-
dihomo-PGF,,; 14: neuroprostanes; 15: 10-epi-10-Fs-NeuroP; 16: 14(RS)-14-Fa-
NeuroP; 17: isoprostanes; 18: ent-7(RS)-7-Fz-dihomo-1soP; 19: 17-Fx-dihomo-1soP; 20:
17-epi-17-Fx-dihomo-IsoP; 21: 17(RS)-10-epi-SC-A-11-dihomo-IsoF; 22: 7(RS)-ST-
A8-11-dihomo-IsoF; 23: neurofurans; 24: isofurans. (b) Scores plot.

Secondly, SVM models with radial and polynomial kernel functions were developed from
results in plasma and urine samples. Non-linear functions were used in order to obtain a

better classification of the participants.

Thirdly, non-linear regression models based on ANN were developed for urine and
plasma samples in order to classify the two groups of participants. As shown in Figure
14, 22 analytes, gender and age were included in the input layer. For the hidden and output
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layers, the transfer functions were hyperbolic tangent and normalized exponential

functions, respectively.
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Figure 14. General structure of the developed neural network for the prediction of early
AD consisting of 24 input variables, 1 hidden layer with 1 node, and 1 output variable.

2.3. Diagnostic performance for the statistical multivariate

developed models

The diagnostic performance of each model was estimated from the corresponding
ROC curves (Figure 15). In urine samples, the ANN model provided an AUC of
0.839 (ClI 95%, 0.746-0.933), while for the PLS model it was 0.653 (Cl 95%,
0.526-0.780), and for the SVM maodels it was 0.644 (Cl 95%, 0.539-0.749) with the
polynomial function and 0.659 (Cl 95%, 0.558-0.759) with the radial function.
Similarly, in plasma samples, the ANN model provided an AUC of 0.882 (Cl 95%,
0.814-0.949), while for PLS it was 0.765 (Cl 95%, 0.633-0.868), and for SVM
models it was 0.817 (Cl 95%, 0.712-0.922) with the polynomial function and 0.827
(Cl 95%, 0.739-0.915) with the radial function. Therefore, ANN models provided
better diagnostic accuracy than PLS and SVM models in both matrices. Moreover,

plasma matrix showed higher diagnostic accuracy than urine.
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Figure 15. Receiver operating Characteristic curves for PLS and ANN models in plasma
and urine samples.

From the estimated optimal cut-off values, the diagnostic indices in the prediction of early
AD were calculated for each developed model in plasma and urine samples (Table 9).
For urine, the ANN model provideda sensitivity of 80.9%, while its specificity was
76.9%. In addition, DOR value for ANN model in urine revealed that there was strong
association between the model results and the AD occurrence. Regarding the ANN model
in plasma samples, it provided a sensitivity of 88.2%, while its specificity was 76.9%.
This model also showed an elevated DOR valuethat supported its diagnostic value.
DOR values were quite similar among plasma models, but ANN model showed better
accuracy (AUC- ROC 0.882) than PLS (AUC-ROC 0.765) and SVM (AUC-ROC
0.827).

Moreover, ANN model showed better sensitivity and a satisfactory balance between
sensitivity and specificity. ANN model showed better balance, obtaining a higher number
of participants correctly classified. By contrast, PLS model showed high specificity but
low sensitivity, classifying the AD participants as healthy subjects; while SVM model
showed high sensitivity but low specificity, classifying the healthy subjects as AD
patients. In general, for both matrices, the PLS model was the most specific, the SVM
model was the most sensitive, and the ANN model showed the best balance of

sensitivity/specificity.

122



Results, discussion and conclusions

Chapter 3

Table 9. Diagnostic indices for each developed statistical model in the prediction of MCI-AD from lipid peroxidation compounds determined

in urine and plasma samples.

Urine Plasma
PLS ANN SVM PLS ANN SVM
Radial Polynomial Radial Polynomial
AUC (CI 95%) 0.653 (0.526- 0.839(0.746- 0.659 (0.558- 0.644 (0.539- 0.765 0.882 0.827 (0.739-  0.817 (0.712-0.922)
0.780) 0.933) 0.759) 0.749) (0.663- (0.814- 0.915)
0.868) 0.949)
Sensitivity (%, Cl 632 (51.4- 80.9 (70.0- 92.9(68.5-98.7) 92.3(66.7-98.6) 50.7 (39.2- 882 (785- 92.3(66.7-98.6) 100.0 (77.2-100)
95%) 73.7) 88.5) 62.2) 93.9)
Specificity (%, ClI 708 (50.8- 769 (57.9- 11.1(2.0-43.5) 37.5(13.7-69.4) 96.2 (81.1- 769 (57.9- 50.0(21.5-78.5) 25.0 (7.1-59.1)
95%) 85.1) 89.0) 99.3) 89.0)
LR+ (Cl 95%) 217 (1.13- 350 (1.72- 1.04(0.80-1.37) 1.48(0.84-2.58) 13.19 (1.90- 3.82 (1.89- 1.85(0.91-3.76) 1.33 (0.89-1.99)
4.15) 7.14) 91.40) 7.75)
LR- (Cl 95%) 052 (0.36- 0.25 (0.15- 0.64(0.07-6.06) 0.21 (0.03-1.49) 051 (0.40- 0.15 (0.08- 0.15(0.02-1.08) -
0.74) 0.41) 0.66) 0.30)
DOR (CI 95%) 418 (152- 1410 (4.72- 1.63 (0.09- 7.20 (0.60-87.02) 25.74 (3.30- 25.00 12.0 (1.02- -
11.46) 42.13) 29.78) 200.67) (7.73- 141.34)
80.81)

PLS, partial least squares; ANN, artificial neural network; SVM, support vector machine; AUC, area under the curve; LR+, positive likelihood ratio; LR-, negative likelihood

ratio; CI, confidence interval; DOR, diagnostic odds ratio.
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3. Discussion

Some of the analytes studied in this work showed statistically significant differences, such
as 17-epi-17-Fx-dihomo-IsoP in urine samples, and 15(R)-15-Fx-1soP, PGF,, 4(RS)-4-
Fa-NeuroP, ent-7(RS)-7-Fx- dihomo-IsoP, 17-epi-17-Fx-dihomo-IsoP, isoprostanes,
isofurans, neuroprostanes and neurofurans in plasma samples. Nevertheless, each analyte
individually did not provide a reliable AD diagnosis. In contrast, a multivariate model
based on ANN showed better accuracy than PLS and SVM models, and analytes from
plasma samples were more useful than those in urine samples to achieve a reliable AD

diagnosis.

Some studies found lipid peroxidation products as biomarkers for AD diagnosis, and
most of them were based on individual biomarkers, such as lipid peroxidation end
products [189] or TBARS [170]. However, multivariate models could reflect the OS
status of patients better, showing superior diagnostic indices and higher accuracy.
Specifically, a previous work developed an ANN model based on different AD risk
factors studied the predictive value of these factors [190]. It showed high capacity to
integrate different data and achieve a general evaluation. Other developed ANN models
to diagnose AD or MCI were based on image, genetics, neuropsychology or other
biomarkers [191,192], but the present study is the first one using lipid peroxidation
compounds as biomarkers. In general, previous studies based on ANN showed model
accuracies around 90%, similar to our results. Also, PLS models have been developed
for AD diagnosis. They were mainly based on gene expression and neuroimaging
[193-195], but none of them was based on our set of lipid peroxidation products.
In addition, a previous study for MCI diagnosis compared PLS model to other
statistical tests, such as Random Forest showing the higher PLS diagnostic power [196].
The diagnostic indices obtained for each model in the present study indicated that the
ANN model in both matrices showed a satisfactory accuracy (> 80%). In addition,
the plasma ANN model showed, ingeneral, better diagnostic indices than the urine
model, corroboratingprevious studies in the literature [197,198]. Specifically, the ANN
modelbased on the plasma levels of lipid peroxidation products showed high DOR
value, sensitivity, and accuracy, as well as, satisfactory specificity,so it is considered

a reliable diagnostic model. In this sense, Quintanaet al. also found that ANN models
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showed better discriminant capacity than linear models in AD diagnosis [199]. AD
is a complex diseaseprocess, in which multiple factors are involved and that could be
the reason why non-linear regression models showed a better predictive capacity than

those models based on linear regression [190].

Regarding the biological matrix, the proposed ANN diagnostic model in plasma
samples constitutes a promising minimally invasive approach that could avoid, in
some cases, the current diagnostic methods, which involve invasive sampling and
expensive techniques [200]. In this sense, the ANN models have a satisfactory
diagnostic capacity, and they are able to classify the participants into healthy and

MCI-AD, with high accuracy in both matrices as an early screening tool.
4. Conclusion

The non-linear regression model based on ANN explained the non-linear relationship
between the levels of lipid peroxidation compounds and the diagnosis of a complex
pathophysiological process, such as AD, constituting a promising screening approach.
Specifically, the developed ANN model in plasma samples showed high accuracy and
suitable diagnostic indices in early AD prediction. Nevertheless, further research will
need to be carried out to clinically validate this diagnostic model. This approach
constitutes a significant advance in early AD diagnosis, using minimally invasive
sampling techniques, and offers important economic cost reduction for the public

health system.
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Chapter 4. Isoprostanoids levels in cerebrospinal fluid do not reflect

Alzheimer’s Disease

1. Summary

The aim of this chapter was to evaluate the capacity of lipid peroxidation biomarkers in
CSF to reflect neurodegeneration and neuropsychological status and to establish a
correlation between CSF and plasma lipid peroxidation biomarker levels in order to
evaluate the latter as minimally invasive diagnosis biomarkers. For this, there were
analysed plasma and CSF samples from AD and non-AD (including other neurological
pathologies) participants, by means of an analytical method based on UPLC-MS/MS.
Then correlations between biological matrices (plasma and CSF) and between CSF lipid

biomarkers and CSF standard AD biomarkers and neuropsychological tests.

2. Results

2.1. Participants’ characteristics

The clinical and demographic characteristics of the population are summarized in Table
10. There were no differences between groups for age and gender. By contrast, CSF
biomarkers (A, t-Tau andp-Tau) showed statistically significant differences between
participant groups as was expected. The CSF Ap levels were lower in the AD than in the
non-AD patients. It could be explained by the aggregation of A in the brain, hindering its
transport to the CSF [201]. Similarly, the neuropsychological status (RBANS, MMSE,
FAQ) showed differences between the groups while CDR did not show differences.
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Table 10. Demographic and clinical variables of the study participants.

Variables Non-AD (n = 34)$ AD (n=42) p-VaIug (Mann-
Whitney)

Age (years) Median (IQR) 66 (63, 72) 70 (68, 73) 0.102
Gender (Female) (n, %)) 17 (50%) 28 (67%) 0.142
CSF AB42 (pg Ml_l) Median (IQR) 1236.50 (950, 1435) 630 (535, 735) 0.000*
CSF t-Tau (pg Ml_l) Median (IQR) 230 (159, 347) 573 (436, 1005) 0.000*
CSF p-Tau (pg MI"!) Median (IQR) 47 (32, 61) 86 (71, 122) 0.000*
CDR Median (IQR) 0.5(0,0.5) 0.5(0.5,1) 0.071
MMSE Median (IQR) 27 (21, 28) 24 (18, 25) 0.004*
RBANS.IM Median (IQR) 73 (69, 90) 57 (40, 67) 0.000*
RBANS.V/C Median (IQR) 87 (75, 100) 75 (57, 87) 0.016*
RBANS.L Median (IQR) 85 (60, 92) 60 (51, 82) 0.031*
RBANS.A Median (IQR) 79 (60, 88) 60 (49, 79) 0.004*
RBANS.DM Median (IQR) 68 (56, 88) 40 (40, 53) 0.000*
FAQ Median (IQR) 3(0, 8) 7(3,13) 0.015*

* p <0.05; IQR: inter-quartile range; RBANS.IM: Repeatable Battery for the Assessment of Neuropsychological
Status-Immediate Memory; RBANS.V/C: RBANS-Visuospatial/Constructional; RBANS.L: RBANS-Language;
RBANS.A: RBANS-Attention; RBANS.DM: RBANS-Delayed Memory; CDR: Clinical Dementia Rating

values; FAQ: Functional Activities Questionnaire;CSF: cerebrospinal fluid. $The non-AD group is composed
of healthy controls (n = 4) and other dementias and cognitive impairments not caused by AD (n = 30).

2.2. Correlation between CSF isoprostanoids and standard CSF

biomarkers

We analyzed possible correlations between the different isoprostanoids families
(isoprostanes, neuroprotanes, dihomo-isoprostanes), and CSF AD-specific biomarkers (A,
t-Tau, p-Tau) in order to establish a possible relationship between OS (brain grey and white

matter damage) and amyloid pathology. Table 11 shows that Ap correlates negatively with

7(RS)-ST—A8—11—dihomo—lsoF, 5-Fa-1soP, total neurofurans and isofurans. In addition, p-

Tau showed negative correlation with PGE-.
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2.3.  Correlations  between  CSF  isoprostanoids and

neuropsychological evaluation

Regarding correlations between the isoprostanoids biomarkers and neuropsychological
evaluation of the participants, Table 11 shows that RBANS and especially its
visuospatial/constructional domain showed correlations with 15-Fx-1soP, Ent-7(RS)-Fz-
dihomo-IsoP and 15-keto-15-F-IsoP. The latter also showed correlation with the RBANS
attention domain and with MMSE. Moreover, 15-keto-15-Ex-IsoP correlated with FAQ and
CDR scores.

2.4. CSF and plasma lipid peroxidation biomarkers

A previous study described a diagnosis model for early AD based on the quantification of
these isoprostanoid compounds in plasma samples. In the present study it was evaluated

if these plasma levels reflected brain damage by means of the determination of the

corresponding levels in CSF samples. In this sense, only 17(RS)—1O—epi—SC—A15-11—
dihomo-IsoF showed correlation between both matrices (PCC = 0.248, p = 0.031). In
addition, when we analysed the results separately for AD and non-AD groups, we found
that the non-AD group showed correlations between the two matrices for 15®-15-F-IsoP
(PCC =0.388, p = 0.024), 15-keto-15-Fx-IsoP (PCC = 0.360, p = 0.037) and 5-Fx-IsoP
(PCC = 0.345, p = 0.046). However, these analytes did not show correlation between
plasma and CSF samples in AD patients. In this AD group, 17-Fx-dihomo-IsoP (PCC =

0.399, p = 0.009) and 17(RS)-10-epi-SC-A15-11-dihomo-IsoF (PCC = 0.345, p = 0.045)

showed correlation between CSF and plasma samples.

Table 12 shows the plasma levels of isoprostanoids biomarkers. Some metabolites
showed statistically significant differences between the groups for 15®-15-Fx-I1soP (p <
0.001), 2,3-dinor-15-epi- 15-F2-1soP (p = 0.028), 5-F2-1soP (p = 0.021), 15-Fx-1soP (p <
0.001), PGF2, (p = 0.011), neuroprostanes (p = 0.029), 10-epi-10-F4-NeuroP (p <
0.001), isoprostanes (p < 0.001), Ent-7(RS)-7-Fx-dihomo-IsoP(p < 0.001), and 17-epi-
17-Fx-dihomo-IsoP (p < 0.001). However, none of the CSF compounds showed

statistically significant differences between the AD and non-AD groups.
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Table 11. Correlations between CSF isoprostanoids and clinical variables (standard CSF biomarkers, neuropsychological evaluation).

CSF CSF t- CSF p- CDR MMSE RBANS.IM RBANSVC RBANS. RBAN RBANSDM  FAQ
ApB42 Tau Tau L S.A

15@-15-Fx-  PCC 0.196  -0.094 -0.032  -0.038 0159 -0.030 0.124 -0.031 0.147 -0.022 -0.076
IsoP Pvalue  0.089 0.419 0.783 0770  0.226 0.818 0.344 0.811 0.262 0.865 0.564
PGE, PCC 0013  -0.205 0267  -0.031  0.095 0.136 0.043 0.219 0.106 0.061 -0.044

Pvalue  0.908 0.076 0020 0814 0471 0.298 0.743 0.092 0.418 0.643 0.738
2.3-dinor-15- PCC -0.107  0.128 0.100 -0.047  0.081 0.010 0.021 0.019 0.074 -0.122 -0.025
Tg’;'Pﬁ-Fzr Pvalue  0.358 0.272 0.391 0724 0538 0.939 0.875 0.887 0.574 0.352 0.852
15-keto-15-  PCC -0.088  -0.074 -0.015 0297  -0.181 -0.113 -0.034 -0.037  -0.101 -0.120 0.275
EarlsoP Pvalue  0.449 0.524 0.897  0.021*  0.167 0.391 0.799 0.782 0.442 0.361 0.034*
15-keto-15-  PCC 0109  -0.107 0101  -0.117  0.259 0.149 0.344 0.216 0.280 0.019 -0.230
Fa-lsoP Pvalue  0.350 0.359 0.385 0.374  0.045* 0.254 0.007* 0.097 .0030* 0.884 0.077
15-Ex-1soP PCC -0.106  0.039 0.108 0137 0072 0.086 -0.017 -0.047 0.146 0.051 -0.085

Pvalue  0.360 0.741 0.353 0.296 0587 0.514 0.895 0.724 0.265 0.697 0.517
5-Fy-1s0P PCC 0242 -0.031 0.020 -0.005  0.103 -0.175 -0.079 0101 -0.032 -0.067 -0.050

Pvalue 0035%  0.789 0.866 0967 0435 0.181 0.550 0.444 0.808 0.613 0.703
15-Fy-IsoP PCC -0.014  -0.068 -0.024 0038  0.120 -0.022 0.265 -0.051 0.178 -0.007 -0.058

Pvalue  0.903 0.562 0.834 0773  0.360 0.870 0.041* 0.699 0.173 0.959 0.659
PGFy, PCC 0171  0.022 0.051 -0.075  0.031 -0.113 -0.138 0066  -0.070 -0.127 -0.097

Pvalue  0.140 0.849 0.660 0569  0.814 0.390 0.292 0.615 0.593 0.332 0.459
4(RS)-Fuc- PCC -0.018  -0.167 0130  -0.175  -0.049 0.109 -0.078 0.082 -0.123 -0.060 -0.149
NeuroP Pvalue 0877 0.150 0.263 0.181 0.709 0.406 0.554 0.532 0.348 0.647 0.256
10-epi-10- PCC -0.106  -0.045 -0.017 0.103  0.048 -0.077 0.068 -0.108 0.098 -0.047 0.015
Fa-NeuroP Pvalue  0.361 0.699 0.885 0434 0717 0.557 0.606 0.412 0.455 0.720 0.912
14(RS)-14- PCC 0017  -0.167 -0.124  -0.074 0071 0.029 -0.006 -0.006 0.135 0.105 -0.150
Fa-NeuroP Pvalue  0.886 0.150 0.284 0574 0591 0.824 0.965 0.962 0.304 0.423 0.252

PCC -0.004  -0.081 0086  -0.050  0.186 0.055 0.349 0.011 0.240 -0.066 -0.173
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Ent-7(RS)-7- Pvalue  0.974 0.487 0.462 0.707  0.156 0.679 0.006* 0.931 0.065 0.618 0.186
Fx-dihomo-

IsoP
17-Fa- PCC 0.010  -0.086 -0.036 -0.009  -0.026 -0.099 0.153 -0.139 0.017 -0.102 -0.053
dihomo-1soP “pyajue 0935 0.460 0.760 0.947  0.842 0.451 0.242 0.290 0.899 0.440 0.688
17-epi-17- PCC -0.003  -0.079 -0.073 -0.006  0.012 -0.129 0.076 -0.180 0.034 -0.014 -0.018
'I:SZ(;'gihomO' Pvalue  0.982 0.497 0.530 0.963  0.928 0.326 0.564 0.168 0.797 0.914 0.893
17(RS)-10- PCC -0.093  0.014 -0.012 -0.055  0.226 0.026 0.170 -0.054 0.242 0.156 -0.014
epi-SC-A®- Pvalue  0.422 0.901 0.916 0.675  0.083 0.847 0.194 0.683 0.062 0.233 0.913
11-dihomo-
IsoF
7(RS)-ST-A’-  PCC -0.262  0.030 0.035 0.048  -0.030 -0.155 -0.040 0230  -0.110 -0.029 0.131
Ilslo-gihomo- Pvalue 0.022*  0.797 0.765 0715 0821 0.238 0.761 0.077 0.405 0.828 0.318
Isoprostanes® PCC -0.196  -0.022 -0.020 -0.085  0.004 -0.150 -0.238 -0.193 -0.141 -0.040 0.010
Pvalue  0.089 0.852 0.863 0520  0.976 0.253 0.067 0.139 0.284 0.761 0.940
Neurorostan  PCC -0.001  -0.011 -0.033 0.102  -0.019 -0.077 0.207 -0.029 0.055 0.028 -0.026
es® Pvalue  0.995 0.924 0.775 0.437  0.883 0.556 0.113 0.825 0.678 0.831 0.841
Neurofurans PCC -0.246  -0.032 0.019 0159  0.142 0.122 -0.008 -0.013 0.093 0.135 -0.057
: Pvalue 0032  0.784 0.871 0.224  0.278 0.355 0.953 0.920 0.481 0.304 0.667
Isofurans® PCC -0.309  0.013 0.062 -0.098  -0.051 -0.120 -0.084 -0.083 -0.083 -0.132 0.040
Pvalue 0007 0914 0.595 0458  0.698 0.359 0.525 0.530 0.527 0.315 0.760

PCC: Pearson correlation coefficient; *p < 0.05; $Total parameters.
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Table 12. Concentrations of lipid peroxidation biomarkers in plasma samples.
Concentration  (nmol Non-AD (n = 34) AD (n=42) p-Value
L1 . . Mann-
(Median (IQR)) ( Median (IQR)) Whitney
15®-15-F2t-1soP 0.075 (0, 0.231) 0.300 (0.188, 0.394) <0.001 *
PGE, 0.050 (0, 0.100) 0.038 (0, 0.125) 0.590
2,3-dinor-15-epi-15- 0(0, 0) 0 (0, 0.006) 0.028 *
F2t-1soP
15-keto-15-E2t-1soP 0.150 (0, 0.250) 0.163 (0, 0.325) 0.541
15-keto-15-F2t-1soP 0.113 (0.044, 0.181) 0.225 (0.069, 0.331) 0.065
15-E2t-IsoP 0.200 (0.100, 0.325) 0.213 (0.019, 0.525) 0.900
5-F2t-1soP 0.263 (0.056, 0.831) 0.700 (0.350, 1.125) 0.021 *
15-F2t-1soP 0(0, 0) 0.020 (0.009, 0.035)  <0.001 *
PGFaq 0.238 (0.044, 0.363) 0.413 (0.194, 0.706) 0.011 *
4(RS)-F4t-NeuroP 0 (0, 1.475) 1.100 (0.763, 1.425) 0.119
la,1b-dihomo-PGF2g, 0(0,0) 0(0,0) 0.219
10-epi-10-F4t-NeuroP 0.225 (0.175, 0.281) 0.079(0.025,0.175)  <0.001 *
14(RS)-14-F4t-NeuroP 0.300 (0.019, 0.850) 0.563 (0.131, 1.044) 0.316
Ent-7(RS)-7-F2t- 0 (0, 0.050) 0.075(0.050, 0.150)  <0.001 *
dihomo-IsoP
17-F2t-dihomo-1soP 0(0,0) 0(0,0) 0.096
17-epi-17-F2t-dihomo- 0(0,0) 0 (0, 0.025) <0.001 *
IsoP
7(RS)-epi-SC-A15-11- 0(0,0) 0(0,0) 0.066
dihomo-IsoF
7(RS)-ST-A8-11- 0.013 (0, 0.050) 0.025 (0, 0.075) 0.098
dihomo-IsoF
Isoprostanes® 0.449 (0.396, 0.488) 0.345(0.234,0.409)  <0.001 *
Neuroprostanes® 0.142 (0.050, 0.207) 0(0,0.268) 0.029 *
Isofurans® 0.073 (0.058, 0.105) 0.085 (0.069, 0.115) 0.202
Neurofurans$ 0.114 (0.082, 0.173) 0.095 (0, 0.169) 0.111

$Arbitrary units: intensity of signal units x (internal standard concentration, mg L 71); * p-value < 0.05.
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3. Discussion

The reliable determination of lipid peroxidation product levels in CSF samples from
biologically defined groups (AD and non-AD), based on specific AD biomarkers, was
carried out. A previous study showed that these biomarkers were useful to diagnose AD
with high accuracy when they were measured in plasma samples [168]. Previous studies
also showed an increase of CSF isoprostanes in AD patients when their levels were
corrected by ventricular volume, and these levels correlated with other clinical variables
[202]; although Duitis et al. did not find any differences for CSF isoprostanes between
AD, MCI and healthy control groups [203]. Therefore, ventricular volume could affect
the concentration measured in CSF samples and that could be the reason why no

differences were found between participant groups with or without AD.

In the present work, although isoprostanoids did not show differences between AD and
non-AD groups, some lipid peroxidation products determined in CSF correlated with CSF
AP and p-Tau levels. These results are consistent with those obtained by Kuo et al. who
did not find differences between AD and non-AD groups for CSF levels of F.-isoprostanes
and Fs-neuroprostanes, but showed correlations with these metabolites and CSF AP levels
[204]. By contrast, Yao et al. found that 12(S)-hydroxyeicosatetraenoic (HETE) acid and
15(S)-HETE correlated with CSF Tau but not with CSF A [205]. As amyloid biomarkers
are specific for AD, isoprostanes seem to be more specific for amyloid pathology and AD

than other biomarkers, such as HETE.

In our study, there is a correlation between isoprostanoids, such as 15-keto-15-F-1s0P,
and cognitive impairments identified through MMSE scale examination. Similar results
were obtained by Duits et al. that found a correlation between MMSE and F-isoprostanes
in ApoE &4 carriers [203]. Moreover, Kester et al. did not find differences for CSF
isoprostanes levels between non-demented, MCI and AD patients, but these analytes showed
an increase in the follow up of these participants showing an association with cognitive decline
and MMSE examination [206]. In fact, CSF isoprostanes were described by de Leon et al. as
good, not only in diagnosis, but also in AD progression study [207]. However, Yao et al.
did not find any correlation between MMSE score and 12(S)-HETE and 15(S)-HETE, while
in the present study 8-iso-15-keto-PGF,, correlated with this neuropsychological status
evaluation [205].Therefore, ApoE &4 could be another important variable that affects
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isoprostanes levels in CSF.

In this study, correlations between lipid peroxidation levels in CSF and plasma samples
were not found. Similarly, plasma and CSF levels of other metabolites, such as
neurogranin, did not show any correlation [208]. Moreover, AB42 measured in plasma
and CSF samples did not show any correlation [209], while Mehta et al. did not find
correlation for AP40 and AB42 between these two biofluids [210]. However, Sun et al.
studied correlations between different analytes such as a(1)-antichymotrypsin (ACT), a(1)-
antitrypsin (AAT), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1) and
oxidised low-density lipoprotein (0xLDL) between plasma and CSF samples. They found
correlations for ACT, IL-6, MCP-1 and oxLDL, the latter showing a weaker correlation [211].
In addition, other analytes, such as adiponectin showed a correlation between these two
matrices [212]. Moreover, different metabolites from the kyneurine pathway showed
correlation between plasma and CSF samples, some showing a relationship with other CSF
biomarkers (t-Tau, p-Tau) [213]. Therefore, metabolites exchange between blood brain
barrier (BBB) is not always equal, and concentrations between both biofluids could show
differential distribution depending on the metabolite characteristics. As a hypothesis, CSF
is continuously filtrating, so isoprotanes are not accumulated in this fluid, and the
analyte concentrations in CSF are dependent on ventricular volume. By contrast,
metabolites accumulating in the blood system for longer could be more easily measured.
Previous studies showed that BBB permeability is increased under pathologic conditions,
such as AD [214,215], and this permeability depends on inflammatory processes [216].
BBB alteration in AD could be responsible for the differences in correlation between
plasma and CSF levels of different analytes in AD and non-AD. In addition, ventricular
volume could influence the concentration of different metabolites in CSF, so corrections

to this volume could result in a better correlation between plasma and CSF levels.
4. Conclusions

New lipid peroxidation biomarkers were satisfactorily measured in CSF samples from
participants with AD and without AD (including healthy controls and other neurological
pathologies) by an analytical method based on UPLC-MS/MS. These CSF metabolites are
not able to discriminate between AD and non-AD groups, although some of them correlate
with neuropsychological evaluations, as well as standard AD CSF biomarkers (Ap42, p-Tau).
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On the other hand, the levels of each isoprostanoid in plasma and CSF did not show
correlation. It could be that changes in the transportation of substances through the BBB, the
clearance of these compounds did not allow their accumulation and quantification in CSF,
due to the necessity to correct CSF biomarker levels with ventricular volume. However,

the CSF isoprostanoids levels could be useful in the evaluation of cognitive capacity.
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Chapter 5. Clinical utility of plasma lipid peroxidation biomarkers in

Alzheimer’s Disease differential diagnosis

1. Summary

The aim of this chapter was to develop an early AD diagnosis model based on plasma

lipid peroxidation biomarkers for a differential diagnosis from other similar neurological

And neurodegenerative diseases with shared clinical symptoms. For this, plasma lipid
peroxidation compounds in plasma samples from participants classified into AD (n =
138), non-AD (including MCI and other dementias not due to AD) (n = 70) and healthy
controls (n = 50) were analysed by UPLC-MS/MS. A two-stage model for Alzheimer’s
disease diagnosis was developed by adjusting two nested logistic regression models. The
first stage was based on neuropsychological status and the second stage on lipid

peroxidation.
2. Results

Table 13. Clinical and demographic variables for the participants.

Variables AD Group Healthy Group Non-AD Group
(n =138) (n=50) (n=70)

Age (years, median (IQR)) 71 (68, 74) 67 (62, 69) 66 (62, 71)
Gender (female, n (%0)) 80 (59.7%) 19 (38.78%) 31 (48.44%)
RBANS.DM (median (IQR)) 44 (40, 56) 100 (92, 106) 64 (52, 81)
CDR (median (IQR)) 0.5 (0.5-1) 0(0-0) 0.5 (0.5-1)
AB42 (pg mL~1 median (IQR)) 580 (464, 694) 1085 (924, 1308) 1049 (850, 1264)
t-Tau (pg mL~1 median (IQR)) 707 (428, 830) 255 (144, 313) 322 (190, 395)
p-Tau (pg mL~1, median (IQR)) 99 (71, 110) 47 (32, 60) 52 (34, 61)

CDR: Clinical dementia rating; RBANS.DM: Repeatable Battery for the Assessment of Neuropsychological
Status-Delayed Memory; CSF: cerebrospinal fluid; t-Tau: total Tau; p-Tau: phosphorylated Tau.

The demographic and clinical data from the participants are summarized in Table 13. The
clinical variables allowed to differentiate among participants groups. Specifically, the CSF

biomarkers (AR42, t-Tau, p-Tau) levels identify AD patients from control and non-AD

135



Results, discussion and conclusions

Chapter 5

participants. Moreover, the neuropsychological evaluation (RBANS.DM, CDR) identifies

control participants.

Table 14. Analytes concentrations in plasma samples from participants groups.

Variable AD Group Healthy Group ~ Non-AD Group P-Value
Median (IQR) (nmol L™1) (n=138) (n=50) (n=70) (ﬁgfﬁsa)l—
Median (IQR) Median (IQR) Median (IQR)

15(R)-15-F5-1soP 0.21 (0.12, 0.32) 0.19(0.13,0.29)  0.19(0.09, 0.33) 0.361
PGE, 0.08 (0, 0.38) 0.08 (0.02,0.36)  0.12 (0.03, 0.36) 0.913
2,3-dinor-iPF,-111 0(0,0) 0(0,0) 0(0,0) 0.418
15-keto-15-Ex-1soP 0.04 (0, 0.13) 0.03 (0, 0.14) 0(0,0.2) 0.924
15-keto-15-F5-1soP 0.14 (0.06, 0.37) 0.14 (0.09, 0.23) 0.16 (0.1, 0.33) 0.872
15-E-IsoP 0.2 (0.09, 0.93) 0.2 (0.12,0.64)  0.48 (0.18, 1.05) 0.041*
5-Fy-1s0P 0.77 (0.37, 1.45) 1.12 (0.54, 1.46)  1.08 (0.45, 1.55) 0.542
15-Fy-IsoP 0.03 (0.01, 0.06) 0.02 (0.01, 0.04) 0.01 (0, 0.07) 0.129
PGF,, 0.43 (0.17, 0.91) 0.78 (0.4, 1.08) 0.62 (0.3, 1.13) 0.005 *
4(RS)-F4-NeuroP 1.2 (0.59, 1.44) 1.22 (0.7, 1.43) 0.5(0,1.43) 0.006 *
la,1b-dihomo-PGF,, 0(0,0) 0(0,0) 0(0,0) 0.178
10-epi-10-F4-NeuroP 0.13 (0.05, 0.2) 0.13(0.07,0.18)  0.22(0.17,0.31) <0.001 *
14(RS)-14-F4-NeuroP 0.56 (0.1,1.2) 0.62 (0, 1.33) 0.52 (0.1, 1.48) 0.891
1s0P$ 0.36 (0.26, 0.55) 0.31(0.19, 0.45)  0.54 (0.42, 0.93) <0.001 *
Ent-7(RS)-Fa-dihomo-1soP 0.12 (0.08, 0.17) 0.11 (0.07, 0.15) 0.13 (0, 0.45) 0.181
17-Fx-dihomo-IsoP 0(0,0) 0(0,0) 0(0,0) 0.989
17-epi-17-Fx-dihomo-1soP 0(0,0.02) 0(0,0) 0(0,0.18) 0.168
17(RS)-10-epi-SC-A15-11- 0(0,0) 0(0,0) 0(0,0) 0.536
dihomo-IsoF
7(RS)—ST-A8-11-dihomo- 0.06 (0, 0.12) 0.11 (0, 0.18) 0.02(0,0.1) 0.155
IsoF
NeuroF$ 0.13 (0.06, 0.25) 0.07 (-0.1,0.25) 0.14 (0.08, 0.2) 0.022*
1soF$ 0.14 (0.08, 0.29) 0.11 (0.07,0.3) 0.2 (0.08, 0.39) 0.336

$ Arbitrary units: (intensity of signal units x (internal standard concentration, nmol L~ ! ); ¥ P<0.05; IQR: Interquartile

range.
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The analytes concentrations found in plasma samples from participants groups are
summarized in Table 14. All these variables showed non-normal distribution, so the non-
parametric test (Kruskal-Wallis) was applied showing statistically significant differences
among groups for some lipid peroxidation compounds (15-Ex-1soP, PGFy,, 4(RS)-Fa-
NeuroP, 10-epi-10-F-NeuroP, 1soP).

The first model, using these neuropsychological variables, was able to discriminate
between control and patients. It achieved a very high accuracy, with an AUC of 0.99 and
a bootstrap validated AUC of 0.99. These results show that separating control
participants from case patients (AD, non-AD) is straightforward using standard
neuropsychological evaluation tests. In Figure 16a, it can be seen that participants without
any neurological or neurodegenerative disease (healthy participants) are grouped in the
left and upper side, indicating higher RBANS.DM and lower CDR punctuations. The

formula for this first prediction step is the following:

9.25—-0.13xRBANS+22.71xCDR

PI'( Case/Control) = 1+ e9.25—0.13XRBANS+22.71XCDR

The second model, for discriminating between AD and non-AD patients in the case
group included the variables 10-epi-10-Fs-NeuroP and IsoPs (Figure 16b), and it
achieved an AUC of 0.79 and a bootstrap validated AUC of 0.74. Calibration of the
model was satisfactory. It was assessed using bootstrapping and comparing predicted
vs. obtained values, observing very low deviations. The formula for this final prediction
step, to be applied only to the individuals predicted as patients (case) by the first step, is

the following:
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Figure 16. (a) Representation of control and dementia patients by using standard
neuropsychological evaluation tests (RBANS-DM, CDR); (b) Representation of AD and

non-AD patients by using the variables 10-epi-10-F4t-NeuroP and IsoP.

—0.14+1.15xlog (IsoPs)+2.24x10—epi—10—F4t—NeuroP

PI‘( Case/Control) = 1+ e—0.14+1.15xl0g(150Ps)+2.24x10—epi—10—F4—t—NeuroP

3. Discussion

In this work it is described a new diagnosis model based on plasma lipid peroxidation
biomarkers and neuropsychological scores, which evaluate memory, cognition and

functional performance.

This model could be able to differentiate AD from healthy subjects and participants
with other pathologies, such as MCI not due to AD, frontotemporal dementia,
vascular dementia, or DLB. Differential diagnosis between AD and non-AD
pathologies are commonly a challenge in neurology units especially in early stages
[217], since some pathologies show similar clinical symptoms. Therefore, a reliable

early diagnosis model is required to be applied to clinical practice.

Recent research has shown an increasing interest in the clinical validation of potential
biomarkers to early and specific diagnose AD using minimally invasive biological samples
[44]. Among the physiological mechanisms that are already impaired in early disease
stages, lipid peroxidation has shown some promising results, and plasma samples constitute
an interesting matrix in the search for the corresponding biomarkers [141,170,189,218—
222].

Among lipid peroxidation biomarkers evaluated in plasma, some AD studies found
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altered levels for malondialdehyde [170,218-220], 4-hydroxynonenal [221], lipophilic
fluorescent products [189,222], and isoprostanes [168]. In general, these potential
biomarkers showed elevated levels in AD in comparison with healthy participants,
reflecting high OS at systemic level. However, OS is common in many pathologies,
such as cancer [223] or vascular diseases [224], as well as in other neurodegenerative
diseases [225]. For that reason, the present work focused on the need to develop a
specific diagnosis model for AD. In fact, AD shows similar clinical symptoms to other
pathologies, and the differential AD diagnosis constitutes the real diagnostic challenge.
In this sense, lipid peroxidation biomarkers were evaluated as potential specific AD
biomarkers, as the brain has a high lipid composition (polyunsaturated fatty acids...) [167].
For this, a previously developed and validated analytical method was applied [168]. This
method showed adequate linearity for all the analytes within the corresponding
concentration ranges, and suitable precision. The limits of detection and accuracy were
satisfactory, and matrix effect was considered negligible. Among studied compounds,
statistically significant results were obtained for two prostaglandins (derived from
araquidonic acid), two neuroprostanes (derived from DHA), and isoprostanes as total
parameter (15-Ex-1soP, PGF»,, 4(RS)-Fa-NeuroP, 10-epi-10-F4-NeuroP, 1soP). In contrast
to the results in this work, some studies determining isoprostanoids did not obtain satisfactory
results [226,227]. It could be explained by the limited list of compounds assessed in
literature. However, in the present study a set of 18 compounds were evaluated
simultaneously, and it could provide more information about the oxidative state of each

individual.

In addition, the present study shows the strengths of using standard diagnosis based on
biological definition (CSF biomarkers) to identify accurately the participants (early AD
patients, healthy controls, non-AD patients). Furthermore, it is important to highlight
the relevant discrimination capacity of the neuropsychological evaluation to identify
accurately the healthy controls. From this accurate participant’s classification, a further
AD specific and minimally invasive diagnosis was developed. For this, a two-step model
was required using the advantages of the neuropsychological evaluation (first step),
and the plasma lipid peroxidation determinations (second step). In the developed model,
the first step identified the healthy participants, while the second step increased the

diagnosis specificity, differentiating AD patients from other patients with other
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pathologies with similar symptoms. In this sense, a one-step model would not be able
to distinguish accurately among AD, non-AD and healthy patients. Therefore, the two-
step developed model was required to achieve the minimally invasive and differential

AD diagnosis.

Regarding AD differential diagnosis, our study achieved high discriminative power.
Albeit not outstanding, it serves as a first approach for developing a differential diagnosis
model based on lipid peroxidation compounds. Some studies can be found in literature
identifying different biomarkers that differentiate AD from vascular dementia [228],
and diabetes-related dementia [229]. However, there isa lack of preliminary studies
with clinical validation. A recent study focused on differentiating AD and DLB by
means of different pathological signatures of gait [230] supported the theory of
interacting cognitive-motor networks [231]. In addition, a previous study found that
the CSF p-Tau/AP42 ratio might reliably detect AD pathology in patients suffering
from different types of dementia [232]. In the present work the non-AD group
included a large variety of pathologies, such as MCI not due to AD, frontotemporal
dementia, vascular dementia, and DLB. The different lipid peroxidation pattern
observed between AD and non-AD subjects could be corroborated by a previous study,
which suggested that high lipid peroxidation levels preceded Af accumulation in brain
[233]. Amongthe physiological mechanisms that could explain the different lipid
peroxidation levels between AD and non-AD pathologies, it is important to highlight
the role of potential mediators between lipid peroxidation products and AD pathology
[234]. Specifically, thromboxane A2 receptor is activated by isoprostanes and
promotes amyloid aggregation [235,236]. In fact, previous studies have shown that
agonists for this receptor reduced this amyloid increase and they could be potential
treatments for AD [235]. On the other hand, another study found co-localization of lipid
oxidation and amyloid plaques in brain [39]. From the clinical point of view, the
specificity described in the developed diagnosis model could have a great value due

to the high clinical similarity among pathological symptoms.

As regards biomarkers and neuropsychological tests, they were selected from our previous
experience. In fact, a study carried out with the same lipid peroxidation compounds in

plasma samples from AD and healthy participants showed the capacity of these analytes
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as potential biomarkers for AD [168]. In that work, a one-step diagnosis model was
developed from the levels obtained for six lipid peroxidation compounds. The
corresponding diagnosis model could differentiate early AD patients from healthy
participants with satisfactory accuracy (AUC-ROC 0.817). Nevertheless, it showed the
disadvantage of low sample size. Moreover, the differential diagnosis power from non-
AD pathologies, which constitutes an important diagnostic problem in clinical practice,
was not evaluated [168]. On the other hand, a previous model for early AD diagnosis was
developed from the RBANS.DM test. It showed a high discriminative power between AD
and non-AD participants [237,238]. For that reason, RBANS.DM was included in the
first step of the present model, improving biomarkers diagnosis power. In this sense, the
present developed diagnosis model is based on two steps, the sample size has been
suitable to carry out an internal clinical validation, and the differential diagnosis has been
included.

Finally, few studies have carried out an external clinical validation of potential
biomarkers (plasma proteins, magnetic resonance imaging scans) differentiating two
groups of participants (discovery group, validation group) [238,239]. In order to
improve the statistical power, other studies developed an internal clinical validation
[240,241]. Similarly, in this work, an internal clinical validation was carried out
obtaining a satisfactory diagnostic power, since a large sample size was available. Most
of previous works were based on CSF biomarkers or neuroimaging biomarkers, so the
internal clinical validation based on plasma lipid peroxidation biomarkers constitutes

a promising new approach.

The two-step diagnosis model developed in the present work provides the probability of
suffering AD from early stages. In the first step, in a given population, it is possible to
discriminate the control patients of case patients and thus putative AD patients. In the
second step, AD diagnosis can be differentiated from other neurodegenerative
diseases also involving cognitive impairment. These results combined with other
factors (e.g., age, gender, familiar background, risk factors...) could decide upon the
further need of using invasive techniques to establish the patient’s diagnosis [242].
Therefore, the present diagnosis model could be considered a relevant approach in the

clinical practice field.
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4. Conclusions

A two-step early and differential diagnostic model has been developed indicating the
individual probability of suffering from early AD, using low cost and minimally invasive
procedures for the potential diagnosis. It consisted of a simultaneous approach from
neuropsychological and biochemical fields. Lipid peroxidation has been assayed as a
physiological mechanism which is impaired at early stages in AD. In this sense, a large
set of related biomarkers were determined in plasma samples, selecting two compounds
in the development of an AD differential diagnosis model. The corresponding internal
validation was satisfactory, and further external validation of the developed model will
be carried out as a fundamental stage before being applied in the clinical routine use. This
is a promising screening test that could avoid the current invasive diagnosis method and

could be useful in diagnosis and investigation.
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Chapter 6. Lipid peroxidation assessment in preclinical Alzheimer

Disease diagnosis

1. Summary

The aim of this chapter was to evaluate the capacity of lipid peroxidation compounds as
minimally invasive biomarkers of preclinical AD. For this, a panel of lipid peroxidation
biomarkers were determined in plasma samples from preclinical AD participants (n = 12)
and controls (n = 31) by UPLC-MS/MS. Then, the results were analysed using an elastic

net logistic regression model.

2. Results

2.1. Patients’ characteristics

Demographic characteristics of the participants are described in Table 15. Participants
showed median ages between 62 and 70 years old and they showed comparable
normal cognitive status, with similar median RBANS.DM and CDR scores. As expected,
the control group showed higher median levels of AB42 than the preclinical group,
and the control group showed lower levels of t-Tau and p-Tau than the preclinical
group. Additionally, both groups showed similar use of medications, comorbidities and

educational levels.
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Table 15. Participants’ clinical and demographic description.

Variable Control group (n=31) Preclinical group (n=12)
Median (1st, 3rd quartile) Median (1st, 3rd quartile)
Age (years) 62 (58.5, 67) 70 (60.75, 74)
Gender (Female, n (%0)) 19 (61.29%) 6 (50%)
Smoke (Yes, n (%)) 6 (27.27%) 1(14.29%)
Alcohol (Yes, n (%0)) 6 (27.27%) 0 (0%)
RBANS.DM (score) 98 (94, 102) 94.5 (87, 100.25)
RBANS.A (score) 91 (82, 98.5) 85 (78, 91)
RBANS.L (score) 90 (83, 94) 88.5 (82.5, 94.25)
RBANS.VC (score) 92 (84, 105) 87 (75, 105)
RBANS.IM (score) 87 (83, 98.5) 85 (81.75, 94)
CDR (score) 0.5 (0, 0.5) 0.5 (0, 0.5)
CSF AB42 (pg mL™) 1224 (975.5, 1409.5) 571.5 (407, 683.29)
CSF t-Tau (pg mL™) 212 (181.5, 259) 443.5 (256.75, 607.75)
CSF p-Tau (pg mL™) 34 (26.5, 38.5) 74 (40.75, 86)
CSF t-Tau/ Ap42 0.18 (0.16-0.21) 0.70 (0.51-0.97)
FAQ (score) 1(0,3.5) 1(0,3)
GDS (score) 11 (5.5,13) 5(3.75,9)
Educational Basic/primary 10 (32.26%) 4 (33.33%)
level Secondary 7 (22.58%) 2 (16.67%)
(n, (%)) Universitary 14 (45.16%) 6 (50%)
Medication (n, (%))
Statins 9 (40.91%) 3(42.86%)
Fibrates 0 (0%) 1 (14.29%)
Morphics 0 (0%) 0 (0%)
IACE 1 (4.55%) 0 (0%)
Neuroleptics 2 (9.09%) 0 (0%)
Benzodiazepines 6 (27.27%) 2 (28.57%)
Antiepileptics 1 (4.55%) 0 (0%)
Anticoagulants 0 (0%) 0 (0%)
Antihipertensives 7 (31.82%) 2 (28.57%)
Corticoids 1 (4.55%) 0 (0%)
Anti-inflammatory 3 (13.64%) 0 (0%)
Comorbidity (n, (%))
Dyslipidemia 11 (50%) 3 (42.86%)
Diabetes 9 (40.91%) 1 (14.29%)
Hypertension 8 (36.36%) 2 (28.57%)
Heart Disease 1 (4.55%) 0 (0%)
Cerebrovascular 1 (4.55%) 0 (0%)
Depression (n, (%)) 4 (18.18%) 2 (28.57%)
Anxiety (n, (%)) 3 (13.64%) 2 (28.57%)

RBANS, Repeatable Battery for the Assessment of Neuropsychological Status (DM, delayed memory; A,
attention; L, learning; VC, visuospatial/constructional; IM, immediate memory); CDR, clinical dementia
rating; CSF cerebrospinal fluid; FAQ, functional activities questionnaire; GDS, geriatric depression scale;
ACE], acetylcholinesterase inhibitors.
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2.2. Plasma levels of lipid peroxidation compounds

The plasma levels obtained for the determined lipid peroxidation compounds are
summarized in Table 16 for each participant group. As can be seen, these potential
biomarkers did not show statistically significant differences between preclinical AD
patients and healthy participants (Table 16). Figure 17 shows the corresponding boxplots,
observing slight differences in median values between groups. In general, lower levels

were obtained for the preclinical AD group.

Table 16. Plasma levels of lipid peroxidation compounds.

Variable (nmol L) Control (n=31) Preclinical (n=12) P value
Median (1st, 3rd Median (1st, 3rd
guartile) guartile)

15-epi-15-F-1soP 0.62 (0.48,0.82) 0.51(0.34,0.74) 0.414
PGE, 0.3 (0.26, 0.38) 0.29 (0.27, 0.36) 0.738
2,3-dinor-15-epi-15-F-1soP 0.03 (0, 0.03) 0.03 (0.02, 0.03) 0.602
15-keto-15-Ex-1soP 1.02 (0.72, 1.35) 0.94 (0.69, 1.27) 0.384
15-keto-15-Fx-1soP 0.65 (0.45, 0.85) 0.66 (0.34, 0.89) 0.926
15-E-1soP 1.05 (0.8, 1.39) 1.26 (0.89, 1.46) 0.478
5-Fy-1soP 2.75(2.16, 3.19) 2.35(1.63,2.9) 0.414
15-Fy-IsoP 0.05 (0.05, 0.05) 0.05 (0.05, 0.07) 0.430
PGF,, 0.32(0.25, 0.51) 0.34 (0.22, 0.65) 0.968
4(RS)-4-F4-NeuroP 3.62(2.72,4.9) 3.45 (2.36, 4.58) 0.800
1a,1b-dihomo-PGF,, 3.67 (3.06, 4.43) 3.14 (2.31,4.34) 0.478
10-epi-10-F4-NeuroP 0.17 (0.11, 0.26) 0.15 (0.07, 0.25) 0.698
14(RS)-14-F4-NeuroP 1.77 (1.29, 2.31) 1.35(1.03, 2.08) 0.355
ent-7(RS)-7-F-dihomo-1soP 0(0,0) 0 (0, 0.01) 0.414
17-Fy-dihomo-1soP 0(0,0) 0(0,0) 1.000
17-epi-17-Fy-dihomo-IsoP 0(0,0) 0(0,0) 1.000
17(RS)-10-epi-SC-A™-11- 0(0,0) 0(0,0) 0.679
dihomo-IsoF

7(RS)-ST-A%-11-dihomo-1soF 0(0,0.22) 0(0,0) 0.165
Neurofurans 0.27 (0.19, 0.37) 0.24 (0.21, 0.41) 0.679
Isofurans 0.52 (0.4, 0.65) 0.5 (0.41, 0.69) 0.718
Dihomao-isoprostanes 0.15(0.14,0.17) 0.15(0.13,0.17) 0.883
Dihomo-isofurans 0.01 (0.01, 0.02) 0.01 (0.01, 0.02) 0.883
Neuroprostanes 0.64 (0.49, 0.76) 0.59 (0.45, 0.77) 0.679
Isoprostanes 1.5(1.25,1.84) 1.32(1.14, 1.67) 0.328

Correlations were computed between CSF biomarkers (Ap42, t-Tau and p-Tau) and

plasma lipid peroxidation biomarkers (see Figure 18). Results showed that t-Tau
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correlated with 15-Fx-IsoP (r = 0.397, p = 0.008), and PGF,, (r = 0.339, p = 0.026); and p-
Tau correlated with 15-Fx-I1soP (0.401, p = 0.008), and PGF», (r = 0.329, p = 0.031). In
addition, correlations were assayed between neuropsychological status and plasma
biomarkers. Specifically, RBANS.DM correlated with 2,3-dinor-15-epi-15-Fx-1soP (r =
- 0.314, p = 0.040), 15-Ex-IsoP (r = - 0.432, p = 0.025), 5-Fx-1soP (r = 0.335, p=0.028),
15-Fa-IsoP (r = 0.390, p = 0.10), and PGFy, (r = - 0.342, p = 0.025). Additionally, CDR
showed correlation with 15-epi-15-Fa-IsoP (r = 0.329, p = 0.031), PGE; (r = 0.329, p =
0.031), 2,3-dinor-15-epi-15-Fx-IsoP (r = 0.316, p = 0.039), 15-keto-15-Ex-1soP (r = 0.333,
p = 0.029), 15-keto-15-F-1soP (r = 0.319,p = 0.037), 15-Ex-1soP (r = 0.363, p = 0.017),
and 4(RS)-4-Fa-NeuroP (r = 0.332, p = 0.030).

2.3. Potential diagnosis model

The developed model included 10 analytical variables (15-epi-15-Fx-IsoP, PGE2, 15-
keto-15-Ex-1soP, 15-keto-15-Fa-1soP, 15-Ex-IsoP, PGF2a, 4(RS)-4-F4t-NeuroP, 1a,1b-
dihomo- PGF2a, 10-epi-10-Fs-NeuroP, 14(RS)-14-Fax-NeuroP), as well as age and
gender. Table 17 shows the model characteristics and the tendency of the different
selected biomarkers.The conditional effect for each variable is represented in Figure
19, showing the increase or decrease in preclinical-AD probability according to the
levels for each variable. This model showed an AUC of 0.96 (CI 95%, 0.903-1.000)
(Figure 20), and a validation AUC of 0.90. The sensitivity and specificity profile shows
a satisfactory compromise, with high sensitivity (0.91) at a high specificity (0.93),
constituting the optimum cut-off point (0.44) (Figure 21). The equation of the developed

model determining the probability of sufferingfrom preclinical-AD status is shown.

LP

Pr(preclinical — AD) = T o7

where LP =—6.566-0.153 * Female + 0.164 *Age—11.622 * A—28.241 * B —3.277 * C+2.457 * D+ 6.391
*E+8988*F—0.174*G+0315*H+9.298 *1-0.323 *J

A: 15-epi-15-F5-IsoP; B: PGE,, 15-keto-15-Ey-IsoP; D: 15-keto-15-Fy-IsoP; E: 15-Ep-IsoP; F: PGF,y; G:
4(RS)-4-F4-NuroP; H: 1a,1b-dihomo-PGF,,; I: 10-epi-10-F4-NeuroP; J: 14(RS)-14-F4-NeuroP
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Figure 17. Box plots representing the concentrations in plasma samples for each analyte
in control and preclinical-AD groups.Boxes represent the 1st and 3rd quartiles, and the

black lines, the median.
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Figure 18. Correlation plots between plasma metabolites and CSF biomarkers.

Table 17. Model parameters.

Variables Estimate exp.Estimate.
(Intercept) -6.566 0.001
Gender (Females) -0.153 0.858
Age 0.164 1.178
15-epi-15-F-IsoP -11.622 0
PGE, -28.241 0
15-keto-15-E,-IsoP -3.277 0.038
15-keto-15-F,-IsoP 2.457 11.671
15-E,-IsoP 6.391 596.158
PGF,, 8.988 8003.721
4(RS)-4-F4-NeuroP -0.174 0.841
1a,1b-dihomo-PGF,, 0.315 1.371
10-epi-10-Fs-NeuroP 9.289 10823.421
14(RS)-14-F4-NeuroP -0.323 0.724
Lambda 0.004
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Figure 19. Conditional effect plots for each variable included in the model to predict
the probability of preclinical-AD.
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Figure 20. Receiver operating characteristic curve for the diagnostic model. The area
under curve (AUC) is 0.96 (95% Confidence interval (Cl), 0.903-1).

149



Results, discussion and conclusions Chapter 6

= I P—

o

04 06 0.8

Sensitivity/Specificty

g2

—— Sensitivity ---- Specificity

0.0

T T T T T T
00 02 04 06 08 10

Threshold

Figure 21. Sensitivity and specificity profile plot. The continuous line represents the
relationship between the probability threshold set in the model’s prediction and the
sensitivity. The dashed line represents the relationship between the probability threshold
and the specificity.

3. Discussion

In this work, some lipid peroxidation compounds were measured simultaneously in
plasma samples from preclinical AD and healthy elderly participants, using UPLC-
MS/MS as an analytical technique. These biomarkers did not show statistically significant
different levels between both groups, although small differences could be observed for
each metabolite. In addition, some of them showed a correlation with specific CSF
biomarkersfor AD (t-Tau, p-Tau) and with neuropsychological tests (RBANS.DM,
CDR), showing a certain relationship with early AD development. Thus, a multivariate
model was developed including some of these lipid peroxidation compounds, and
showing their potential utility in discrimination between preclinical AD patients and
healthy participants. In fact, the multivariate model takes into account the effect of
each individual predictor, which could change in the presence of other variables,
generating a composed algorithm, and it provides accurate predictions. These
compounds were studied because they can reflect specific impairment of brain white
matter or grey matter. However, their specificity would be determined in further

studies, because there is no clear evidence that potentially detectable changes would be
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AD-specific, or if they would be general biomarkers of impairment of brain lipid

metabolism.

In the literature, some studies focused on searching for AD plasma biomarkers,
mainly lipidic molecules were assayed [163,168]. However, most of them were based on
participants with MClI and AD, all of them were patients with clinical symptoms (memory
loss, cognitive decline), but none of them evaluated the group of well-characterized
preclinical participants [118,168,243]. In fact, a previous work from our group was
focused on the determination of lipid peroxidation compounds (isoP, NeuroP, isoF,
NeuroF) in plasma samples from MCI-AD patients, developing a diagnosis model
[168].In that model, the selected compounds were 15-epi-15-Fa-I1soP, 15-E-IsoP,
PGF2q4, 4(RS)-F4-NeuroP, 14(RS)-14-F- NeuroP, and ent-7(RS)-7-Fz-dihomo-IsoP. All
of them, except Ent-7(RS)-7-F2 dihomo-1soP, were included in the present diagnosis
model to predict AD in presymptomatic stage (preclinical AD). However, higher
concentrations for these compounds were found in MCI- AD patients than in healthy
participants; while lower concentrations were obtained for 15-epi-15-F2-1soP and 4(RS)-
Fa-NeuroP in preclinical AD patients. These differences could be explained by the
disease progression. In addition, the new developed model included more variables
(PGE,, 15-keto-15-Ex-IsoP, 15-keto-15-Fx-IsoP, 1a,1b-dihomo-PGF,,, 10-epi-10-
F4-NeuroP) in order to improve the accuracy (AUC validated = 0.90) in comparison with
the previous model (AUC validated = 0.82) [168].

Recent research has focused on earlier AD stages, before the appearance of the first
clinical manifestations of the disease. In general, these studies were about plasma
AB42/AB40 ratio, showing an AUC of 0.78 in the discrimination between normal
cognitive individuals with PET AP positivity and negativity [244]. In addition,
plasma AB levels showed an association with dementia (MMSE and the Geriatric
Mental State Schedule (GMS)) and AD [245]. However, other study showed that
plasma AR levels could not predict AD in preclinical participants [246,247]. A further
study focused on plasma p-Tau revealed its utility in AD diagnosis and prognosis,
showing increased values since preclinical stages and an accuracy of 85% in AD
dementia diagnosis [247]. However, the present work is thefirst study evaluating lipid

peroxidation compounds in preclinical AD patients accurately diagnosed by CSF
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biomarkers.

Similarly, some of the studied biomarkers were lipidic compounds in plasma from
preclinical AD participants [248]. In fact, the study carried out by Mapstone et al.
analyzed lipids (phosphatidylcholine, Lysophosphatidylcholine, acylcarnitines, etc.),
and it was carried out following the progression along 5 years, showing their potential

utility as progression AD biomarkers [243].

The model developed in the present work was based on the plasma levels of 10 lipid
peroxidation compounds. It is shown that an increase in the levels of these biomarkers
(15-keto-15-Fx-1soP, 15-Ex-IsoP, PGF,,, 10-epi-10-Fs-NeuroP) could increase the
probability of suffering from AD. Previous studies showed the utility of models based
on plasma lipids as predictor approach of conversion amnestic MCI to AD or AD
progression since preclinical stages [243,249]. The biomarkers determined in these
studies are mainly related to membrane integrity, while ours are derived from OS.
Another panel including 17 lipids can predict cognitive decline and brain atrophy in AD
and it is related to clinical diagnosis in AD and t-Tau CSF levels [250].

Early AD diagnosis remains a big challenge for human sciences. There is a high need
for easily available biomarkers now that specific biomarkers have been described.
These specific biomarkers are invasive and expensive; so minimally invasive
biomarkers are in demand. The utility of these putative biomarkers can be found in the
diagnostic paradigm, identifying people at risk for developing cognitive impairment,
with a biological suspicion of specific or non-specific neurodegeneration, or other pre-
diagnostic characteristics. Inaddition, these biomarkers could be useful in identifying
subgroups with different disease evolution, different therapeutic response, and different

neuropsychological dysfunction.

Among the study limitations, it is important to highlight the small sample used. This
limitation is an evident issue and the results of a study with a higher number of cases
cannot be anticipated. However, the present study could be considered exploratory.
It is important to remark that the participants were selected in an asymptomatic stage,
and highlight the difficulties of realizing CSF studies in asymptomatic cases. Another
limitation is the exclusion of cases with other similar neurodegenerative diseases.

Different patterns of biomarkers are expected in other neurodegenerative diseases, but
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in the present study, they were not evaluated. Therefore, these are preliminary results and

further analysis in a large external cohort is required.
4. Conclusions

Lipid peroxidation biomarkers were determined in plasma from participants with
preclinical AD and healthy elderly participants, showing no differences individually.
However, these biomarkers showed a correlation with other specific AD CSF
biomarkers and neuropsychological status. The multivariate model including 10 of
these biomarkers constitutes a promising diagnostic tool to be applied to the general
population in early AD detection. However, further validation studies are necessary

to confirm the utility of this potential model for preclinical AD diagnosis.
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Chapter 7. Lipid peroxidation biomarkers correlation with medial

temporal atrophy in early Alzheimer Disease

1. Summary

The aim of this chapter was to evaluate the correlation between plasma lipid peroxidation
biomarkers and anatomical brain changes, specifically medial temporal atrophy. For this,
there were evaluated the temporal brain atrophy by means of visual ratings from magnetic
resonance imaging (MRI) and a set of lipid peroxidation biomarkers from plasma samples
were analysed in participants with AD (n=80) and healthy controls (n=32). The
correlation between plasma lipid peroxidation biomarkers and atrophy visual ratings was
evaluated. In addition, two statistical models using PLS analyses were carried out, the
first based on neuroimaging analysis (visual ratings) and the second based on plasma lipid

peroxidation biomarkers levels.

2. Results.

2.1. Participants’ description

In Table 18, demographic and clinical characteristics from the study population are
summarized. Age and gender showed statistically significant differences between
both groups, so they were included as covariates in the multivariate models. As
expected, clinical variables (CSF ApB42, CSF t-Tau, CSF p-Tau, RBANS-DM,
CDR, FAQ, MMSE) showed statistically significant differences between case and

control groups.
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Table 18. Demographic and clinical variables for the participants.

Variables Control (n=32) Case (n=80) P value
Age (years, median (IQR)) 66 (62-69) 71 (68-74) 0.000*
Gender (female, n (%)) 11 (34%) 47 (59%) 0.020*
AB42 (pg mL"', median (IQR)) 1192 (1051-1444) 588 (441-676) 0.000%*
t-Tau (pg mL™’, median (IQR))) 171 (108-284) 523 (361-775) 0.000*
p-Tau (pg mL", median (IQR))) 44 (27-57) 82 (66-116) 0.000*
CDR (median (IQR)) 0 (0-0) 0.5 (0.5-1) 0.000%*
MMSE (median (IQR)) 30 (28-30) 22 (18-26) 0.000*
RBANS.DM (median (IQR)) 100 (92-106) 44 (40-52) 0.000*
FAQ (median (IQR)) 0 (0-0) 7 (3-13) 0.000*
GDS (median (IQR)) 3 (1-7) 7 (4-11) 0.021%*
Fazekas (median (IQR)) 0 (0-1) 1 (0-1) 0.018*
MTA-RIGHT (median (IQR)) 0 (0-0) 2(1-2) 0.000*
MTA-LEFT (median (IQR)) 0 (0-0) 1(1-2) 0.000*
MTA (R+L) (median (IQR)) 0 (0-0) 3(2-4) 0.000%*

2.2. Image measurement data

Using neuroimaging techniques, the variables determined were MTA right (MTA-R), left
(MTA-L), sum (MTA-S) and Fazekas. As can be seen in Table 18, the three MTA

indices showed statistically significant differences between groups, as well as Fazekas.
2.3. Analyte determination

In Table 19 medians of analytes levels determined in plasma from case and control
groups are summarized. 8-is0-15(R)-PGFx,, 2,3-dinor- iPF,4-111, 8-iso-15-keto-PGEx,
4(RS)-Fa-NeuroP, neuroprostanes, isoprostanes, Ent-7(RS)-Fz-dihomo-IsoP and 17-
epi-17-Fx-dihomo-1soP, showed higher levels in the case group than in the control
group. Inversely, PGF,,, 14(RS)-14-Fa-NeuroP, 5-iPF».-VI and 7(RS)—ST—A8—11—
dihomo-IsoF showed higher levels in the control group. Nevertheless, only 8-iso-15(R)-
PGF2, (p =0.042), PGF2, (p =0.001), 4(RS)-Fa-NeuroP (p = 0.030), neuroprostanes
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(p = 0.001), isoprostanes (p = 0.006) and 17-epi-17-Fx-dihomo-IsoP (p = 0.008)

showed statistically significant differences between groups.

Table 19. Concentrations of analytes in plasma samples from participants groups.

Control (n=32)

Case (n=80)

P value

8-is0-15(R)-PGF;,

0.25 (0.20-0.35)

0.30(0.23-0.49)

0.042*

PGE,

0.06 (0.01-0.75)

0.09 (0.00-0.28)

0.693

2,3-dinor-iPF.-111

0.00 (0.00-0.00)

0.00 (0.00-0.03)

0.950

8-iso-15-keto-PGE,

0.06 (0.00-0.17)

0.13 (0.00-0.34)

0.425

8-iso-15-keto- PGF,,

0.25(0.18-0.33)

0.26 (0.13-0.35)

0.754

8-is0-PGE,

0.28 (0.15-1.98)

0.39 (0.18-0.78)

0.689

5-iPF,.-VI

0.94 (0.67-1.22)

0.71 (0.35-1.22)

0.123

8-is0-PGF5.

0.02 (0.01-0.03)

0.02 (0.01-0.03)

0.841

PGF;.

0.74 (0.60-0.94)

0.48 (0.25-0.78)

0.001*

4(RS)-F4-NeuroP

1.03 (0.71-1.24)

1.15 (0.96-1.33)

0.030%*

1a,1b-dihomo-PGF;.

0.00 (0.00-0.00)

0.00 (0.00-0.00)

0.326

Neuroprostanes

0.29 (0.22-0.38)

0.83 (0.26-1.52)

0.001*

10-epi-10-F4-NeuroP

0.11 (0.07-0.18)

0.09 (0.03-0.18)

0.390

14(RS)-14-F4-NeuroP

0.90 (0.00-1.51)

0.80 (0.29-1.27)

0.930

Isoprostanes

0.22 (0.18-0.34)

0.32 (0.23-0.40)

0.006*

Ent-7(RS)-F2-dihomo-IsoP

0.08 (0.05-0.17)

0.13(0.08-0.18)

0.145

17-F~dihomo-IsoP

0.00 (0.00-0.00)

0.00 (0.00-0.00)

0.302

17-epi-17-F,~dihomo-IsoP

0.00 (0.00-0.00)

0.00 (0.00-0.03)

0.008*

7(RS)-10-epi-SC-A'*-11-dihomo-IsoF

0.00 (0.00-0.00)

0.00 (0.00-0.00)

0.150

7(RS)-ST-A%-11-dihomo-IsoF

0.10 (0.01-0.25)

0.05 (0.01-0.19)

0.199

Neurofurans

0.18 (0.11-0.26)

0.18 (0.13-0.27)

0.762

Isofurans

0.09 (0.06-0.22)

0.10 (0.08-0.16)

0.399
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2.4. Correlation between plasma lipid peroxidation biomarkers

levels and image indices

Relationship between neuroimaging indices and plasma biomarker levels was analyzed,
and some statistically significant correlation was observed. In fact, MTA in right
brain lobe showed positive correlation with neuroprostanes (r = 0.242, p = 0.010),
and 17-epi-17-Fx-dihomo-IsoP (r = 0.223, p = 0.018), while it showed negative
correlation with PGF,, (r = —0.259, p = 0.006). Similar results were obtained with
MTA in the left side, positive correlation was observed with neuroprostanes (r =
0.213, p =0.024), and 17-epi-17-Fx-dihomo-1IsoP (r = 0.214, p = 0.024), while it
showed negative correlation with PGF,, (r =—0.305, p = 0.001). In the same sense,
the sum of MTA in both brain lobes showed correlation with neuroprostanes (r =
0.234,p=0.013), 17-epi-17-Fx-dihomo-1soP (r = 0.224, p =0.018) and PGF,, (PCC
=—0.288, p = 0.002). In addition, Fazekas, index related to vascular brain disease,
showed correlation with 17-Fx-dihomo-IsoP (r = 0.215, p = 0.023) (see Figure 22).
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Figure 22. Correlations between neuroimaging variables and plasma biomarkers levels.
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2.5. Multivariate analysis

Two statistical models were carried out, the first based on neuroimaging analysis and
the second based on plasma lipid peroxidation biomarkers levels. As it is shown in
Figure 23a, the model based on neuroimaging analysis showed a correlation between
the different MTA measures (right and left lobe and total MTA), but age and gender
did not correlate with them. Also, the scatter plot (Figure 23b) showed a satisfactory
separation between participants groups. In this sense, the case group is characterized by
higher levels of MTA. For this model, the AUC-ROC is 0.929 (Cl 95%, 0.882-0.977).
Besides, this model has a sensitivity of 90.00%, a specificity of 84.38% and its positive

and negative predictive values are 93.51% and 77.14, respectively.
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Figure 23. PLS models. First, model based on neuroimaging techniques (a) loading graph
and (b) score plot. Second, model based on plasma biomarkers (c) loading plot and (d)
score plot.
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Regarding the model constructed by plasma biomarkers (neuroprostanes, isoprostanes,
neurofurans, isofurans, 17-epi-17-Fx-dihomo- IsoP, PGF,,), a negative correlation
between PGF,, and isoprostanes and isofurans was observed, but age and gender did
not correlate with biomarkers (Figure 23c). Also, Figure 23d shows a satisfactory
discrimination between case and control groups. This model could diagnose AD or not-
AD with an accuracy of AUC-ROC = 0.900 (0.845-0.956). The diagnosis indices
for this model were sensitivity 72.5%, specificity 100%, negative predictive value
59.26% and positive predictive value 100%.

3. Discussion

The parameter MTA is commonly related to cerebrovascular dementias [251]. Previous
works showed that this morphological alteration is associated with MCI and AD,
showing higher damage grade in AD than in MCI patients, as well as a correlation
with neuropsychological evaluation tests (e.g. MMSE, CDR) [252]. In this sense,
some cut-off values for MTA to be used as AD diagnosis and MCI prognosis were
established [253]. In addition, MTA is related to cognitive impairment in patients with
Dementia with Lewy Bodies [254]. Medial temporal lobe atrophy evaluation contributes
to a better diagnosis accuracy [255]. Moreover, correlations between MTA and CSF
biomarkers t-Tau and p-Tau for different variants of Early-Onset Alzheimer Disease
(EOAD) were described [256]. Nowadays, neuropsychological tests and CSF biomarkers
are employed as AD diagnosis, these two parameters could be related to MTA, so the
evaluation of atrophy could be useful in AD diagnosis, as well as the lipid peroxidation
study as a possible pathway implied in AD. Our results showed that a diagnosis model
based only on this atrophy evaluation could diagnose AD with an accuracy of 0.929. It
could avoid actual lumbar puncture used in AD diagnosis nowadays, as well as
neuropsycological evaluations that require a considerable amount of time on part of
specialized staff and is tiresome for patients. In this sense, other diagnosis models for AD
based on neuroimaging techniques have been developed. Specifically, a model based on
MRI and Positron Emission Tomography (PET) was able to differentiated between AD,
MCI and healthy control groups with accuracies between 0.75 and 0.95 [257]. The
model developed by [258] was able to distinguish between EOAD and behavioral variant

of frontotemporal dementia with an accuracy of 0.82 based on cortical thickness and DT
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(diffusion tensor) MRI measures [258]. Our model shows better accuracy, but its
specificity is required to be evaluated employing other dementias or neurodegenerative
diseases. This model shows good diagnosis indices, especially its high specificity that
could allow the application of this model as a preliminary screening test although
it probably needs other tests to give a reliable diagnosis.

Regarding the evaluation of possible correlations between neuroimaging results (MTA)
and different lipid peroxidation products in plasma samples form AD and healthy
participants, the highest correlations were between brain MTA and neuroprostanes.
Therefore, specific brain alterations could be measured in plasma samples by means of
these lipid peroxidation products [259]. As MTA scale is based mainly in grey matter
atrophy, neuroprostanes could explain this alteration evaluation [142]. In addition,
neuroprostanes levels were statistically significant different between AD and healthy
participants. Therefore, they are satisfactory AD biomarkers. In addition, the dihomo-
isoprostanes could be obtained from brain white matter oxidation. The correlation found
between MTA and these compounds could be explained as some white matter atrophy
that occurs together with the grey matter alterations in medial temporal lobe mainly in
the hipocampus from AD patients. We also analyzed correlations between our biomarkers
and Fazekas, which is a scale based on brain white matter lesions and it is usually related
to vascular pathologies. This scale is not AD specific but it could help to discard AD as a
cause of vascular dementia [260]. Punctuation for this scale showed statistically
significant correlation with 17-Fz-dihomo-1soP that is a white matter lipid peroxidation
product. So, this biomarker could be useful in the study of white matter lesions present
in different neurodegenerative diseases, not only in AD, and sometimes it could serve to
discard AD diagnosis or to differentiate it from frontotemporal dementia whose

symptoms could be confused [261].

Regarding plasma biomarkers, neuroprostanes and neurofurans are derived from DHA
oxidation, while isoprostanes and isofurans come from the AA oxidation [262], and
dihomo isoprostanes (e.g. 17-epi-17-Fx-dihomo- 1soP) come from AdA oxidation [263].
DHA is the major polyunsaturated fatty acid in the brain [43] so, the presence of
neuroprostanes and neurofurans in different human biofluids is highly brain specific. For

the quantificationof these lipid peroxidation biomarkers in plasma samples, the analytical
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method was previously described [168], and the developed model could distinguish
between AD and healthy patients with an accuracy of 0.90. Therefore, it could reflect
brain lipid peroxidation damage (neuroprostanes, neurofurans, 17-epi-17-Fx-dihomo-
IsoP), and OS at systemic level in AD patients. In fact, it was shown in previous works
[264,265]. Also, the presence of a negative correlation between PGF,, and MTA,
and its capacity to discriminate between AD and control groups (p = 0.001) are
remarkable. This analyte is an inflammatory mediator and it is derived from AA
oxidation by an enzymatic pathway [266]. Previous studies showed that inflammation is
related to AD progression [267], and inhibition of cyclooxygenases that are implied in
prostaglandin pathway in AD models, showed beneficial effects. So, probably in very
early stages of the disease these mechanisms try to avoid the disease progression [268].
In addition, it is known that in neurodegenerative diseases the BBB) is altered [214].
Specifically in AD, previous works showed an increase on BBB permeability [215],
allowing that different lipid peroxidation products generated in brain could pass through
the BBB, and being found at peripheral level. For this reason, we constructed a model
based on plasma biomarkers levels that could reflect brain MTA including damage to
white matter, grey matter and also inflammatory mediators. That model shows really
satisfactory diagnosis indices. Its specificity of 100% is especially remarkable. In our
study, all patients diagnosed as positive with our model were AD patients. By contrast,
its weak point is the sensitivity (72.5%). For that reason, the new model could serve as a
screening test. Only when the test result is negative, patients will have to undergo
additional tests to confirm the diagnosis. It would improve the diagnosis based on only
image tests because biomarkers reflecting specific brain atrophy in AD patients would
constitute an integrative vision of oxidative status [269]. In any case, more studies are
required to confirm this diagnosis capacity, and other dementias or neurodegenerative

diseases have to be included in the study to evaluate the model specificity.
4. Conclusions

Correlation between plasma neuroprostanes and dihomo-isoprostanes with neuroimaging
data could indicate that the neurodegeneration occurred in different brain areas is related
to OS damage and brain lipid peroxidation. Lipid peroxidation biomarkers could reflect

brain damage that accompanied neurodegenerative diseases. However, their specificity
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should be studied comparing the results with other neurodegenerative and brain
pathologies. AD diagnosis model based on lipid peroxidation biomarkers shows similar
accuracy as the neuroimaging model, and it reflects the implication of this pathway in
the pathology since its early stages. The model based on lipid peroxidation biomarkers
(neuroprostanes, neurofurans, isoprostanes, isofurans, 17-epi-17-Fz-dihomo-IsoP,
PGF,,) could be used as a screening test for AD diagnosis avoiding in many cases

invasive and expensivediagnosis techniques.
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Chapter 8. Plasma metabolomics in early Alzheimer's disease patients

diagnosed with amyloid biomarker

1. Summary

The aim of this chapter was to identify reliable plasma biomarkers associated to MCI-AD
by means of untargeted metabolomics. For this, an untargeted metabolomics study based
on UPLC has been carried out using plasma samples from patients with MCI-AD (n=29)
and controls (n=29). The differences between metabolomic profiles from MCI-AD and
controls were investigated using ElasticNet. Then, an attempt was made to identify the
selected variables by The Human Metabolome Database, all ions fragmentation modes,

or confirmation with standard when it was possible.

2. Results

2.1. Participants demographic and clinical characteristics

The demographic and clinical characteristics of participants in this study are summarized
in Table 20. As we can see, age and gender showeddifferences between groups and for
that reason they were included in the multivariate model as co-variables. As expected
from participants' classification, temporal atrophy was higher in MCI-AD, and the CSF
biomarkers showed significant differences between groups. Regarding the
neuropsychological evaluations, the RBANS (IM, V/C, L, A, DM) and MMSE scores were
lower in MCI-AD patients than in control subjects, while the FAQ and CDR scores were
higher in the MCI-AD group.
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Table 20. Demographic and clinical characteristics of study participants.
Variable Control MCI-AD P value
(n=29) (n=29)

Age (years) (median (IQR)) 65 (63, 70) 72 (69, 75) 0.002*
Gender (female) (n (%)) 9 (31.03 %) 19 (65.52%) 0.016*
Studies levels (n Basics 6 (20 %) 17 (59 %) 0.010
%
(%)) University 11 (38 %) 5 (17%)
Medications (n Statins 10 (34%) 17 (59%) 0.149
(%)) Fibrates 3 (10%) 2 (7%)

Benzodiazepines 2 (7%) 4 (13.79%)

Opiates 0 (0%) 0 (0%)

Antiepileptics 1 (3.45%) 0 (0%)

Antihipertensives 10 (35.71%) 14 (48.28%)

Corticoids 0 (0%) 2 (6.9%)
Comorbidity (n Dyslipidemia 10 (35.71%) 16 (55.17%) 0.621
(%)) Diabetes 3 (10%) 3 (10.34%)

Hypertension 11 (38%) 13 (44.83%)

Heart Disease 1 (3.45%) 0 (0%)
Smoking status (N Yes 1 (3.45%) 2 (6.9%) 0.778
(%))

Former smoker 9 (31%) 7 (24.14%)

(more than 10

years)
Alcohol or drugs consumption (n (%0)) 6 (21.43%) 3 (10.34%) 0.301
Presenile family None 22 (76%) 22 (88%) 0.381
background (n First grade 5 (17%) 5 (17%)
(%)) Second grade 2 (1%) 0 (0%)
Depression (n (%0)) 3 (10.34%) 4 (14%) 0.883
Anxiety (n (%)) 1 (3.45%) 3(10.34%) 0.246
Temporal atrophy (n (%)) 2 (7.14%) 20 (69%) 0.000*
CSF AB42 (pg mL*) (median (IQR)) 1256 (1164, 1464) 600 (496, 687) 0.000*
CSF t-Tau (pg mL™) (median (IQR)) 196 (141, 298) 590 (465, 782) 0.000*
CSF p-Tau (pg mL™) (median (IQR)) 48 (37, 60) 84 (73, 104) 0.000*
RBANS.MI (median (IQR)) 93 (84,107) 61 (51,75) 0.000*
RBANS.V/C (median (IQR)) 101 (86,112) 81 (75,92) 0.013*
RBANS.L (median (IQR)) 92 (86,97) 71 (59,85) 0.000*
RBANS.A (median (IQR)) 100 (82,112) 68 (56,81) 0.000*
RBANS.DM (median (IQRY)) 100 (92, 106) 48 (40, 66) 0.000*
MMSE (median (IQR)) 30 (28,30) 25 (24,28) 0.000*
FAQ (median (IQR)) 0(0,0) 5(0, 8.5) 0.000
CDR (n (%)) 0 29 (100%) 5 (17%) 0.000

0.5 0 (0%) 18 (62%)

1 0 (0%) 6 (21%)

IQR: Inter-quartile range.

166



Results, discussion and conclusions Chapter 8

2.2. Multivariable analysis and selection of discriminant variables

Elastic net models were used to select discriminant variables. Outcomes of these models
identified 24 and 29 discriminant variables between MCI-AD and control subjects in
positive and negative ionization mode, respectively. The different levels of these
variables between participants groups were represented in heat map visualizations of the

variables' values (Figure 24).
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Figure 24. Heatmap including the selected variables by the elastic net logistic
regression model. Z-scores for each variable are represented in a color-coded scale were
values at the mean are black, values under the mean are red and values over the mean are
green. Ordering of rows and columns of the heatmap is performed by hierarchical
clustering of the observations (columns) and of the variables (rows). a) for the negative
ionization mode, and b) for the positive ionization mode.

As we can see, the levels of relative increase were depicted in green, while the levels of
relative decrease were depicted in red. In this sense, most of the metabolites showed
higher levels in MCI-AD group than in control group. The discrimination power of these
selected variables was measured as bootstrap validated AUC, being 0.993 and 0.990 in

negative and positive ionization mode, respectively.
2.3. Metabolites identification

From the 53 variables selected by the elastic net models, 16 variables were preliminarily
identified as potential metabolites, only 4 of these variables were tentatively identified
with their MS fragmentspattern (MS/MS and/or all-ions fragmentation), being only 1

variable finally confirmed with its pure standard (Table 21).
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Table 2 1. Metabolomic variables selected by Elastic Net statistical models and

preliminarily identified by The Human Metabolome

Database.
Mass Retenti  Adduct Formula Annotation Confirmation Compound class/ Metabolism 2Fold
(m/z) on time mode change
(min)
104.1072 0.60 [M+H]* C5H14NO Choline MS fragmentation  Quaternary ammonium/  1.582436
confirmation Cholinergic system
Standard
confirmation
162.1126 0.60 [M+H]* C7H15NO3 L-carnitine; Malonyl-Carnitin Amines/ Energy metabolism and  1.750063
fatty acid oxidation
[M+H]* C7H16NO3 S-Carnitinium Quaternary ammonium
(Carnitines)/fatty acid oxidation
324.0017 0.68 M* UNKNOWN 3.211441
339.0380 0.65 [M+H]* C14H10010 2,3,4-trihydroxy-5-(3,4,5- Organic compound (depsides and ~ 1.60648
trihydroxybenzoyloxy)benzoic  acid; depsidones)/Benzene
361.0200 0.65 [M+Na]* 2,4,5-trihydroxy-3-(3,4,5- hydroxylation 1.834496
trihydroxybenzoyloxy)benzoic  acid;
3,4-dihydroxy-5-(2,3,4,5-
tetrahydroxybenzoyloxy)benzoic acid;
4,4'5,5'6,6'-hexahydroxy-[1,1'-
biphenyl]-2,2'-dicarboxylic acid
346.0096 0.68 Mm* UNKNOWN 2.529556
381.9859 0.66 M* UNKNOWN 2.702668
383.9662 0.70 M* UNKNOWN 2.896863
405.9472 0.67 M* UNKNOWN 3.292516
424.0229 0.73 [M+H]* C16H13N307S2  5-Amino-4-hydroxy-3-(phenylazo)- Food dye 2.54245
2,7-naphthalenedisulfonic acid
485.2893 9.38 M* UNKNOWN 0.628327
502.3162 9.37 Mm* UNKNOWN 0.632845
507.2710 9.37 M* UNKNOWN 0.579632
523.2451 9.37 [M+H]* C28H39CIO7 4-Deoxyphysalolactone Withanolides/inflammation

pathways
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0.00 [M+H]* C29H34N207 Bargustanine Benzyllisoquinolines/Neuromuscu  0.563752
lar-blocking drugs
530.3471 9.37 [M+H]* UNKNOWN 0.563486
531.4074 12.79 [M+H]+ C33H5405 alpha-Tocopherol succinate Vitamin E/Antioxidant activity 0.764254
555.9557 0.76 [M+H]* UNKNOWN 1.864629
568.4784 10.48 [M+H]* UNKNOWN 1.045444
569.3630 12.79 [M+Na]* C30H5804S2 Dilauryl 3,3'-thiodipropionate Dicarboxylic acids/Membrane  0.761616
formation
570.0358 0.66 M* UNKNOWN 4.656571
635.2954 6.72 [M+H]* C35H42N209 Rescinnamine MS fragmentation ~ Antihypertensive drug 0.903152
confirmation

92.9260 0.62 M- UNKNOWN 1.424961
94.9233 0.62 M- UNKNOWN 1.400025
169.1009 1.03 M- UNKNOWN 0.780474
174.9533 0.54 M- UNKNOWN 1.731515
195.8083 0.65 M- UNKNOWN 0.515284
197.8046 0.65 M- UNKNOWN 0.48432
215.0294 0.62 [M-H] C3H7CIO2 Chlorohydrin Halohydrins/Cell membrane 1.648367
217.0264 0.62 [M-H,0- C11H12N2S2 Brassinin 3-alkylindole (exogenous)

HT-

[I\1|+HCO C7H903P Monomethyl phenylphosphonate Exogenous 1.662713

or

[l\al-HZO- C7H12N205S Cysteinyl-Aspartate Dipeptide/Protein catabolism

s

[l\}I-HZO- C7H12N205S Aspartyl-Cysteine Dipeptide/Protein catabolism

s
224.9758 0.72 M]' UNKNOWN 1.577898
268.7960 0.61 M- UNKNOWN 1.513857
271.2240 9.61 M UNKNOWN 1.564616
291.0783 0.70 M- UNKNOWN 8.59362
304.9090 0.53 M- UNKNOWN 2.562249
315.0368 0.64 [M-H,0] C11H15N208P Nicotinamide ribotide Amide/Cellular energy  1.336687

[M-H0] C11H16N208P Beta-nicotinamide D-ribonucleotide maintenance
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343.9895 0.67 M- UNKNOWN 2.712838
372.9974 0.65 M- UNKNOWN 1.835085
373.9481 6.98 M- UNKNOWN 0.928195
401.9472 0.66 M- UNKNOWN 2.426884
403.9443 0.66 M- UNKNOWN 3.314504
459.9050 0.66 M- UNKNOWN 2.853813
478.2869 8.19 M- UNKNOWN 1.174307
494.3182 9.05 1.540692
498.2564 8.02 [M-H] C25H42NO7P Lyso PE(20:5/0:0); Lyso PE(0:0/20:5) Lysophospholipid / Lipid 0.748392
metabolism
498.9239 8.16 [M-H] C6H16018P4 Inositol  1,3,4,5-tetraphosphate; 1D- Second messengers in Ca2+ and  0.649237
Myo-inositol 1,3,4,6- Cl- regulation through membrane /
tetrakisphosphate; D-Myo-inositol Inositol metabolism
3,4,5,6-tetrakisphosphate; ~ 1D-Myo-
inositol 1,4,5,6-tetrakisphosphate
533.9969 0.72 UNKNOWN 2.92495
538.3073 8.19 [M-H,0] C29H4408 24,25-diacetylvulgaroside MS fragmentation  Exogenous 1.185665
Cyasterone confirmation Exogenous
Soraphen A Macrolide/Lipid metabolism
554.3392 9.05 [M+HCO  C25H52NO7P Lyso  PE(20:0/0:0) or Lyso MS fragmentation Lysophospholipid / Lipid  1.534458
or PE(0:0/20:0) confirmation metabolism
568.3554 9.39 M- UNKNOWN 1.351365
1227.6849 9.39 M- UNKNOWN 1.49062

*Fold change is calculated by the average value of the MCI-AD group compared to the control group.
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Among the tentatively identified metabolites, first the variable m/z 635.2954 was
identified as rescinnamine, a drug used for hypertension treatment. It is important to note
that the incidence of hypertension did not show differences between control and MCI-AD
groups (Table 20), soit is unlikely to be this compound. Second, the variable m/z
538.3073 was identified with three potential metabolites (24,25-diace- tylvulgaroside,
cyasterone, soraphen A), 24,25-diacetylvulgaroside and cyasterone were exogenous
products derived from fruits and plants [270,271], while soraphen A was a
myxobacterium product that may be related to some infection in AD. So, we hypothesize
that the metabolite with mass 538.3073 could be soraphen A. Third, the variable m/z
498.2564 was identified as lysophosphatidylethanolamines (Lyso PE (20:0/0:0) or Lyso
PE (0:0/20:0)), breakdown products of phosphatidylethanolamine, present in cells of all
organisms [272]. Finally, the variable m/z 104.1072 was also confirmed with its pure

standard and identified as choline.

The relative levels of these variables in each group of participants are depicted in Figure
24. In general, the MCI-AD group showed increased levels for Lyso PE (m/z 498.2564),
soraphen A (m/z 538.3073), and choline (m/z 104.1072). However, there is a small group
of MCI-AD participants with decreased levels for Lyso PE (m/z 498.2564) and soraphen
A (m/z 538.3073) (Figure 24). In Figure 25, the differences between MCI-AD and control
groups are depicted for the metabolites verified by MS fragmentation patterns, showing
statistically significant differences for choline (p < 0.001), rescinamine (p < 0.001) and
Lyso PE (p <0.05).
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Figure 25. Bar graph representing the tentatively identified metabolites levels for each
participants group (MCI-AD, control). (* p < 0.05, ** p < 0.001).

3. Discussion

An untargeted metabolomics study has been carried out in plasma samples to identify
potential early AD biomarkers. For this, plasma samples from participants with CSF
biomarker-confirmed diagnosis (healthy and MCI-AD), as well as a reliable and robust
analytical method based on minimal sample treatment and UPLC-Q-ToF-MS
chromatographic system were used. Specifically, the valuable samples from healthy and
MCI-AD participants classified by specific AD biomarkers in CSF [25], together with the
high quality, reproducibility and stability of the analytical method, provided high
reliability to the experimental results. In fact, few studies in literature employed specific
CSF biomarkers to identify clearly AD patients [87]. Also, few works have focused
on AD patients at early stage [87,89,93,94,103], and few of them employed simple and
robust untargeted analytical methods [94,103].

From the metabolomics results obtained in both mass spectrometry ionization modes, a
multivariable statistical analysis was carried out to select the most discriminant variables
between healthy individuals and MCI-AD patients. It was based on Elastic net penalized
logistic regression, and the corresponding models obtained for each ionization mode
provided high accuracy (AUC 0.990 and 0.993, respectively). However, most of previous
works developed PLS discriminant models [52,92,94,97,101], adding all the studied

variables into the model because PLS is not able to assign zero coefficients. Therefore,
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PLS has the consequent limitations in metabolites selection and accuracy assessment.
Nevertheless, elastic net is able to shrink the coefficients of uninformative variables
exactly to zero, selecting automatically the most informative variables. This entails that
the coefficients of elastic net model are more stable and reliable compared with those of
PLS. Another difference between both statistical models is related to the selection of
relevant variables. For elastic net, the variable selection is performed at the model-fitting
step; while for PLS it relies on ranking methods, such as variable importance in projection
(VIP) scores, which are affected by variable correlation, and they are sensitive to tuning

parameters [273].

Among the discriminant molecular features selected for the elastic net models, some
variables were preliminarily identified (choline, carnitine and nicotinamide derivatives,
depsides, tocopherols, dipeptides, Lyso PEs, inositol derivatives). They are involved to
cholinergic system, energy metabolism, amino acids and lipids metabolism, as well as
nicotinamide pathways. These results agree with previous works in which lipids and
amines biochemical pathways were altered in AD [52,87,97-101]. In addition, the
nicotinamide pathway is involved in the mitochondrial transport chain that is related to
the progression of AD through OS generation [274], so it could explain the higher levels
found for nicotinamide ribotide or beta-nicotinamide D-ribonucleotide in the MCI group.
Previous studies proposed nicotinamide riboside as a potential AD treatment since it
showed beneficial effects on cognition and A toxicity in AD mouse model [275], and in
DNArepair [276]. This metabolite also showed beneficial effects on neuroprotection and
energy metabolism that is directly implied in AD pathology [277]. Regarding inositol
pathway, some metabolites were down-regulated in MCI-AD (inositol-1,3,4,5-
tetraphosphate or 1D-myo-inositol-1,3,4,6-tetrakisphosphate or D-myo-inositol-3,4,5,6-
tetrakisphosphate or 1D-myo-inositol-1,4,5,6-tetrakisphosphate). Similarly, inositol-
1,4,5-trisphosphate receptor levels were lower in AD and it could be important in the
neurofibrillary pathology [278]. In general, inositol is an important membrane
component. Its brain derivates are implied in synaptic transport, and neurotransmitter
secretion, and they regulate autophagy [279]. According to carnitine pathway, higher
levels were found for MCI-AD group. Nevertheless, studies from literature found that
serum acetyl-L-carnitine and other acyl-L-carnitine levels decreased in MCI and AD

subjects [280,281], as well as in CSF samples [282]. A possible explanation to the higher
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levels obtained for acetylcarnitine in the MCI-AD group may be that these compounds
have antioxidant function [283], so natural mechanisms could be activated atearly AD
stages in order to face into the OS associated to further disease development. In addition,
a mice model study demonstrated that acetyl-L-carnitine protects against
neuroinflammation [284]. Therefore, the high levels found in early AD stages could be a
compensatory mechanism, activating the protective mechanisms against thedevelopment

of the disease.

The tentatively identified discriminant variables in this study were Lyso PE
(20:0/0:0)/Lyso PE (0:0/20:0), choline and probably soraphen A. In spite of soraphen A
was not confirmed by its standard, we discarded the other two possible compounds with
the same mass (24,25- diacetylvulgaroside and cyasterone) as they are fruit and
vegetables products, while soraphen A could show a possible relationship with fungal
infection. So, Lyso PE (20:0/0:0)/Lyso PE (0:0/20:0), choline and soraphen A could be
considered potential early AD biomarkers in plasma. In general, the MCI-AD group
showed increased levels for soraphen A, Lyso PE and choline. First, soraphen A is
produced by myxobacteria, and it can act as acetyl-CoA carboxylase inhibitor, which
would alter the lipid synthesis pathways, avoiding the fatty acids elongation [285]. In the
present study, most of MCI-AD patients showed increased levels of this metabolite. It
may be indirectly related to the also higher levels of choline. Probably, the impairment in
fatty acid elongation would lead to an increase in short-chain fatty acids levels, such as,
choline. On the other hand, this potential myxobacteria infection is a controversial result
that should be studied in depth, as well as other unexplained findings in literature relative
to microscopic evidence of fungal infections in brain tissue from AD patients [286-288].
Second, Lyso PEs usually show low circulating levels, and they are considered
biomarkers of the progression of AD [289]. In general, previous studies found that an
alteration in lipid metabolism correlates with AD development [290]. However, a few
participants from MCI-AD group showed decreased levels for soraphen A and Lyso PE,
and further research is required to differentiate patients' subgroups. Third, choline was
the only confirmed metabolite, constituting a promising biomarker in early AD diagnosis.
It is a precursor metabolite in acetylcholine synthesis, so it plays an important role in this
neurotransmitter function. In addition, it is a key component in some lipids with relevant

brain functions, such as phosphatydilcholine [291], corroborating the impairment
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observed in early AD stage. However, the choline levels found in AD patients from
different metabolomics studies showed somediscrepancy [285,292—-294], probably due to
the heterogeneous experimental conditions used (animal or human model, AD stage,
sample matrix, analytical technique). In the present study, MCI-AD patients showed
increased levels of this metabolite, as it was observed by Linet al. 2017 [101,295]. It
could be explained by the fact that in early AD stages the cholinergic transmission is
reduced, and as compensatory response choline production would be increased. In
addition, the pathology development involves a cellular integrity impairment, allowing
the release of compounds out of the cell, such as choline [295]. Nevertheless, a recent
study showed lower levels of choline in AD patients compared to healthy subjects [296].

Probably, the different disease phases show different biochemical profiles [98].
4. Conclusions

An untargeted metabolomics study has been carried out in plasma samples from patients
with MCI due to AD and healthy participants, achieving the identification of some
metabolites that could be involved in early AD development. They have important roles
in some metabolic pathways related to neurotransmitters, energy metabolism, and lipids
and amino acids pathways. However, only choline was confirmed, and further work will
be carried out using a targeted analytical method based on UPLC-MS/MS in order to
clinically validate this promising early AD biomarker. In addition, some tentatively
identified compoundswith neuroprotective or antioxidant effects were found elevated in
MCI-AD patients. This may be explained by the activation of compensatory mechanisms

to prevent AD development since its early stages.
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Chapter 9. Metabolomics study to identify plasma biomarkers in

alzheimer disease: ApoE genotype effect

1. Summary

The aim of this chapter was to identify metabolites altered in first AD stages to find new
potential diagnosis biomarkers, as well as to evaluate the effect of ApoE genotype on the
metabolomic profile of individuals with early AD. For this, metabolomic analysis was
carried out for plasma samples from early AD patients and controls. Then data were
analyzed by volcano plot and PLS to select discriminatory variables first between AD and

non-AD participants and then between Apoe4 carriers and non-carriers.

2. Results and discussion

2.1. Demographic and clinical data of participants

Clinical and demographic characteristics from participants are summarized in Table 22.
There were no differences between control and early AD groups for demographic
variables except for gender and age. However, clinical variables (neuroimaging, CSF
biomarkers (AB42, t-Tau, p-Tau), and neuropsychological evaluation tests (RBANS,
CDR, FAQ)) showed differences between groups as it was expected.
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Table 22. Demographic and clinical variables for the participants groups.

Variable Control (n=29) Early AD (n =29)
Age (years) (median (IQR)) 65 (63, 70) 72 (69, 75)
Gender (female) (n (%)) 9 (31.03 %) 19 (65.52%)
Studies levels (n (%)) Basics 6 (20 %) 17 (59 %)
University 11 (38 %) 5 (17%)
Medications (n (%)) Statins 10 (34%) 17 (59%)
Fibrates 3 (10%) 2 (1%)
Benzodiazepines 2 (T%) 4 (13.79%)
Opiates 0 (0%) 0 (0%)
Antiepileptics 1 (3.45%) 0 (0%)
Antihipertensives 10 (35.71%) 14 (48.28%)
Corticoids 0 (0%) 2 (6.9%)
Comorbidity (n (%)) Dyslipidemia 10 (35.71%) 16 (55.17%)
Diabetes 3 (10%) 3 (10.34%)
Hypertension 11 (38%) 13 (44.83%)
Heart Disease 1 (3.45%) 0 (0%)
Smoking status (n (%))  Yes 1 (3.45%) 2 (6.9%)
Former smoker (more than 9 (31%) 7 (24.14%)
10 years)

Alcohol or drugs consumption (n (%0))

6 (21.43%)

3 (10.34%)

Presenile family _None 22 (76%) 22 (88%)
background (n (%0)) First grade 5 (17%) 5 (17%)

Second grade 2 (T%) 0 (0%)
Depression (n (%0)) 3 (10.34%) 4 (14%)
Anxiety (n (%)) 1 (3.45%) 3(10.34%)
Temporal atrophy (n (%)) 2 (7.14%) 20 (69%)
CSF AB42 (pg mL™) (median (IQR)) 1256 (1164, 600 (496, 687)

1464)

CSF t-Tau (pg mL™) (median (IQR)) 196 (141, 298) 590 (465, 782)
CSF p-Tau (pg mL™) (median (IQR)) 48 (37, 60) 84 (73, 104)
RBANS.DM (median (IQR)) 100 (92, 106) 48 (40, 66)
FAQ (median (IQR)) 0(0,0) 5(0,8.5)
CDR (n (%)) 0 29 (100%) 5 (17%)

0.5 0 (0%) 18 (62%)

1 0 (0%) 6 (21%)

2.2. Metabolomic differences between healthy and early AD subjects

The Volcano Plot analysis, carried out for the healthy control and early AD groups,

showed 36 significant variables (Figure 26a). The supervised PLS analysis was carried

out with those variables in order to find the most powerful discriminant metabolites

between groups. As shown in Figure 26b, the PLS model revealed a clear separation

between early AD cases and healthy controls (except for some misclassified controls),

with good R%Y (0.738) and QY (0.679) parameters, indicating biochemical changes
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between groups. The model was satisfactorily validated with a 7-fold cross validation
method (p CV-anova 1. Finally, 15 variables were studied and tentatively identified by
using CMM tool and mass fragmentation strategies. Metabolite annotation based on AM,
retention time and MS/MS spectra from chemical standard lead to the confirmation of
m/z 1043.7008 as Lysophosphatidylcholine (18:1) (Lyso PC (18:1)). This metabolite
showed levels with differences statistically significant between early AD and healthy
control participants (Figure 26c¢). In addition, the variable m/z 1047.7345 was putatively
characterized as NeuAcalpha2-3Galbeta-Cer(d18:1/20:0), LysoPE(21:0), LysoPC(18:0)
or PC(0-16:0/2:0), all of them were glycerophospholipids. On the other hand, m/z
570.0359, and m/z 335.0450 were putatively characterized as chemical compound, and
phenols, organic sulphuric acids, or fatty acyls classes, respectively. The other variables
could not be identified by any of the databases. As previous works described, it seems
that lipid metabolism plays an important role in AD physiopathology [297], and it could
be useful in the discrimination between early AD and healthy controls. In this sense,
previous studies showed that membrane lipid composition could be involved in the
activity of gamma secretase, an enzyme acting in the appearance of AP peptide, the most
characteristic hallmark of AD [162,165]. In addition, structural changes in lipid
membrane could change the interaction with AP protein [298]. Regarding lipid
metabolites, lysophosphatidylcholine is postulated as a potential plasma biomarker.
Similarly, Liu et al. and Lin et al. found that lysophosphatidilcholines and
phosphatidilcholines showed differential levels between AD and healthy elderly in
plasma samples [299,300]. In fact, most of metabolomics studies carried out in plasma
for AD biomarkers identification showed lipids as important potential biomarkers [301].
Oberacher et al. 2017 found similar results using soluble lysates from platelets where
different phosphocholines seemed to discriminate between early AD and healthy controls
[302]. Also, Dorninger et al. 2018 found that although lphosphatidylysocholine levels
increased in normal aging, this increase is more remarkable in probable AD patients
[303]. In addition, it was demonstrated that lysophosphatidylcholines increased the in
vitro formation of AB1-42 oligomer [298,304]. On the contrary, Li et al. found decreased

levels of lysophosphocholines in brain tissue from AD mice model [305].
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Figure 26. a) Volcano Plot representing the significant variables in the discrimination
between early AD and healthy control groups. The non-significant variables are
represented in grey, the significant variables are represented in red (p value t-test> 0.05
and FC> 2); b) PLS represents differential distribution between early AD and healthy
control groups; ¢) Boxplot of plasma analytical responses of LysoPC(18:1). *p value <
0.05.

2.3. Metabolomic differences between ApoE4 genotypes

In Figure 26b, we appreciate a clear clustering in the control group, while the early AD
case group showed high scattering, indicating a within class variation. In order to explain
this variability, we proposed the ApoE4 genotype as a potential variable since it is
considered an important risk factor in AD development. Specifically, ApoE genotype is
related to AD pathogenesis as the €4 allele is involved in cholesterol brain metabolism
and in the maintenance of membrane integrity [48]. In addition, it is related to other
pathways such as lipid metabolism, synaptic function, glucose metabolism microglial
response, or Tau pathology, among others [306]. Therefore, ApoE genotype could
generate differences in metabolomic profile. Previously, Karjalainen et al. indicated that
ApoE-g4 carriers and non-carriers showed differential serum metabolomics profile, it
could be associated to different pathological status [106]. Therefore, in the present study,
different metabolic profiles in plasma from early AD patients, as well as the ApoE
genotype, influence were evaluated. The metabolomics differences were evaluated using

the same statistical procedure described above. It was applied in early AD cases
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previously classified as e4-carriers and non g4-carriers according to the PCR analysis
results. In this sense, 20 significant variables were selected in the Volcano Plot (Figure
27a) for the following PLS analysis. As it is shown in the score plot (Figure 27b), few
samples were misclassified and the model presented R?Y (0.437) and Q%Y (0.394)
diagnostic parameters. Nevertheless, the model was reliable with a CV-anova p-value 1
and which their jackknife confidence interval did not include zero. Finally, 8 variables
were tentatively identified by using the CMM tool (see Table 23). All these analytes
showed lower values for e4-carriers. Specifically, m/z 1043.7008 with a fold-change ratio
of 0.26 was confirmed as LysoPC(18:1) by using a chemical standard, and it showed
statistically significant differences between groups. This variable was previously
confirmed in the metabolome comparison between healthy and early AD groups. Other
variables were putatively characterized as LysoPC(P-18:0), LysoPE(0:0/22:1(13Z)), and
cardiolipins. As can be seen in Figure 27¢c, some of these metabolites showed statistically
significant differences between e4-carriers and non €4- carriers. Regarding the identified
compounds class, most of them are glycerophospholipids (Table 23). Fonteh et al.
previously described differences for different glycerophospholipids in CSF from AD
patients and healthy controls [307]. However, Sharman did not find differences for
glycerophospholipids levels in brain tissue nor plasma samples from knock-in mice with
different human ApoE subtypes expression [308]. On the other hand, Igbavboa et al.
found differential composition in synaptosomal lipid rafts depending on ApoE genotype
[309]. In general, lipid metabolites are the most relevant compounds, since cardiolipins,
lysophosphatidylcholines and lysophosphatidylethanolamines are discriminant variables
between early AD and healthy control groups, as well as between €4-carriers and non &4-
carriers. Regarding cardiolipins, they are phospholipids highly present in the
mitochondrial membrane, and they have been related to brain disorders and
neurodegenerative diseases, such as AD [310]. In this study, cardiolipins showed lower
signals in e4-carriers than non e4-carriers. This dysregulation could be associated with
mitochondrial dysfunction in AD synapsis [311]. Among lysophosphatidylcholines,
LysoPC(18:1) is one of the most important discriminant variables between g4-carriers and
non g4-carriers in this study, and its plasmatic levels were previously related to a lower
risk of different cancer kinds [312]. In addition, Whiley et al. found that the determination

of 3 different phosphatidylcholines combined with ApoE genotype, provided a
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satisfactory discriminant capacity between AD and non-AD participants [313].
Nevertheless, the present study showed lower levels for this compound in the healthy and
g4-carrier groups in comparison with the non &4- carrier group. This finding reinforces
the idea that the ApoE genotype plays an important role in the development of AD. In this
sense, LysoPC (18:1) levels and ApoE genotype could be a useful tool for early AD
diagnosis. Regarding the limitations of the present study, it is important to highlight the
low number of participants, since it is very difficult to achieve early AD patients and
healthy people identified from CSF biomarkers levels.
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Figure 27. a) Volcano Plot representing the significant variables in the discrimination
between early AD e4-carrier and non g4-carrier groups. The non-significant variables are
represented in grey, the significant variables are represented in red (p value t-test> 0.05
and FC> 2); b) PLS represents differential distribution between e4-carrier and non &4-
carrier groups; ¢) Boxplot of plasma analytical responses of LysoPC (18:1), LysoPC (P-
18:0) and cardiolipin. *p value < 0.05.

3. Conclusions

Different levels for plasma metabolites are found in early AD patients compared to
healthy controls, reflecting the different metabolic pathways that are affected in this
disease. Among these analytes, different lipid compounds stand out, so lipid metabolism
is an important pathway that seems to fail since early stages of the pathology. Therefore,

it could constitute a source of biomarkers for the early AD diagnosis, as well as further
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therapeutic targets. In addition, in the early AD patients, different metabolic profiles were
obtained depending on their ApoE genotype (g4-carriers, non ed-carriers). Actually,
different glycerophospholipids were altered between these groups. It could involve an
important advancement in the knowledge of the different impaired mechanisms, as well
as the improvement in precision medicine for diagnosis and treatment. Nevertheless,
further work based on target analysis would be required for the quantification of these
potential biomarkers in a larger number of participants in order to validate the diagnostic

performance of these metabolites.
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Table 23. Metabolites” annotation from ApoE classification.

m/z tr Adduct Formula Identification of variables Compound class / FC*
(min) fon Metabolite annotation Level Metabolism
#
1087.6829 8.86 M-H C6 H102012P2 alpha-D-galactosyl undecapreny! diphosphate 2 Prenol lipids/Lipid metabolism 0.46
1043.7008 8.85 2M+H C26H52NO7P LysoPC(18:1) 1 Glycerophospholipids / Lipid 0.26
metabolism
508.3746 9.02 M+H C26H54NO6P LysoPC(P-18:0) 3 Glycerophospholipids 0.48
530.3563 9.02 M+Na C26H54NO6P LysoPC(P-18:0) 3 Glycerophospholipids 0.48
536.3696 9.16 M+H C27H54NO7P LysoPE(0:0/22:1(132)) 3 Glycerophospholipids 0.50
LysoPE(22:1(132)/0:0)
1261.8213 8.69 M+H C67H122017P2 CL(8:0/14:0/18:2(9Z,117)/18:2(9Z,11Z)) 3 Glycerophospholipids 0.50
CL(8:0/i-14:0/18:2(9Z,117)/18:2(9Z,117))
1018.6680 8.70 + Unknown 4 0.50
548.8109 8.85 + Unknown 4 0.46

# 1: confirmed; 2: putative annotated; 3: putative characterized; 4: unknown.

* Score 1 for ionization rules (particular adducts formation depending on the lipid class, ionisation mode and mobile phase modifier used) based on CMM is very likely right (score
range between 1.5-2)

® Score 1 for ionization rules (particular adducts formation depending on the lipid class, ionisation mode and mobile phase modifier used) based on CMM is likely right (score
range between 1-1.5)

¢FC: Fold Change was calculated as median signal of carriers divided to non-carriers

LysoPC: Lysophosphatidilcholine; LysoPE: lysophosphatidylethanolamine; CL: cardiolip
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Chapter 10. Plasma lipidomics approach in early and specific

Alzheimer’s Disease diagnosis

1. Summary

The aim of this chapter is to evaluate plasma lipid profiles from untargeted and targeted
approaches, identifying lipid families and single lipids involved in early AD as potential
biomarkers. For this, an untargeted lipidomic analysis was carried out in plasma samples
from preclinical AD (n = 11), MCI-AD (n = 31), and control (n = 20) participants. The,
variables were identified by means of two complementary methods (LipidMS and CEU
mass mediator database). Then, a targeted analysis was carried out to quantify some of

the identified lipids.

2. Results

2.1. Participant’s demographic and clinical data

In Table 24, the clinical and demographic characteristics of the participants are
summarized. As was expected, neuropsychological variables (CDR, RBANS, FAQ, and
MMSE) and CSF biomarkers (Ap42, t-Tau, and p-Tau) showed statistically significant
differences among the participant groups. In addition, age showed statistically significant
differences among the groups. In this sense, the correlations between age and all lipids
(from the untargeted and targeted analyses) were assessed, without obtaining significant

results for any lipids.
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Table 24. Clinical and demographic participant characteristics.

Healthy MCI-AD Preclinical AD p
(n=31) (n=20) (n=11) Value
(Krusk
al-
Wallis)
Median Age (years) (IQR) 62 (58, 68) 72 (69, 74) 70 (60, 74) 0.000
Gender (Female, n (%0)) 19 (61%) 10 (53%) 6 (50%) 0.737
Educational Primary (n (%)) 10 (32%) 7 (39%) 4 (33%) 0.023
Level Secondary (n (%)) 7 (23%) 10 (56%) 2 (17%)
University (n (%)) 14 (45%) 2 (18%) 6 (50%)
Concomitant Statins (n (%)) 9 (41%) 12 (63%) 3 (25%) 0.335
Medication Fibrates (n (%)) 0 (0%) 3 (17%) 1 (8%) 0.143
Benzodiazepines (n (%)) 6 (27%) 3 (16%) 2 (17%) 0.635
Antidepressants (n (%)) 7 (32%) 2 (11%) 0 (0%) 0.085
Antiepileptics (n (%)) 1 (5%) 0 (0%) 0 (0%) 0.547
Antihypertensives (n 7 (32%) 9 (50%) 2 (29%) 0.424
(%))
Corticoids (n (%)) 1 (5%) 0 (0%) 0 (0%) 0.547
Anti-inflammatories (n 3 (14%) 0 (0%) 0 (0%) 0.151
(%))
Comorbidities  Dyslipidemia (n (%)) 11 (50%) 11 (58%) 3 (43%) 0.766
Diabetes (n (%)) 3 (14%) 2 (11%) 0 (0%) 0.589
Hypertension (n (%)) 8 (36%) 9 (47%) 2 (29%) 0.628
Heart Disease (n (%)) 1 (5%) 0 (0%) 0 (0%) 0.547
Cerebrovascular (n 1 (5%) 0 (0%) 0 (0%) 0.547
(%))
Smoke (Yes, n (%)) 6 (27%) 3 (16%) 1 (14%) 0.598
Alcohol (Yes, n (%)) 6 (27%) 2 (11%) 0 (0%) 0.157
Depression (Yes, n (%0)) 5 (23%) 5 (26%) 2 (29%) 0.939
Anxiety (Yes, n (%0)) 4 (18%) 3 (16%) 2 (29%) 0.757
APB42 (pg mL™) 1224 (964, 495 (452, 572 (383, 694) 0.000
Median (IQR) 1421) 622)
t-Tau (pg mL™) 212 (181, 578 (449, 444 (208, 611) 0.000
Median (IQR) 259) 793)
p-Tau (pg mL™) 34(25,39) 91(62,109) 74 (28, 94) 0.000
Median (IQR)
CDR 05(0,0.5) 0.5(0.5,0.5) 0.5 (0,0.5) 0.001
Median (IQR)
MMSE 29 (28, 29) 24 (22, 25) 29 (27, 30) 0.000
Median (IQR)
RBANS.DM 98 (94,103) 42 (40, 53) 95 (87, 101) 0.000
Median (IQR)
FAQ 1(0,4) 7 (5, 10) 1(0,3) 0.000
Median (IQR)

IQR: Inter-quartile range; AD: Alzheimer Disease; MCI-AD: mils cognitive impairment due to Alzheimer
Dis- ease; CDR: Clinical Dementia Rating; MMSE: Mini-Mental State Examination; FAQ: Functionality
Assessment Questionnaire; RBANS: Repeatable Battery for Assessment of Neuropsychological Status; DM:

Delayed memory
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2.2.  Lipids identified by LipidMS package

From the untargeted analysis, 197 features were annotated by the LipidMS package.
They were grouped into some lipid families (4 CE, 16 Cer, 2 DG, 20 FA, 3 LPE,
16 LPC, 2 MG, 73 PC, 9 PE, 5PI, 12 SM, and 35 TG). As can be seen in Figure 28,
the main families were PC (37%), TG (18%), and FA (10%). In Table 25, the
DG, LPE, LPC, MG, and SM families and monounsaturated lipids showed statistically
significant differences among the three participant groups (preclinical AD, MCI-AD, and
healthy). Moreover, the healthy and preclinical AD groups showed statistically
significant differences in the levels of the Cer, LPE, LPC, MG, and SM families,
while the MCI-AD and healthy groups showed statistically significant differences in
the levels of DG, MG, and PE. In addition, Figure 29 shows the boxplots representing
the levels of the lipid families in the participant groups (preclinical AD, MCI-AD, and
healthy). In general, higher levels were obtained for the preclinical AD group, and
lower levels were obtained for the MCI-AD group. A similar tendency was observed
for monounsaturated, polyunsaturated, and saturated lipids, although only
monounsaturated compounds showed statistically significant differences. In
general, a trend was not found for any of the lipid families between the preclinical and
MCI groups.

@sm

@716

Figure 28. Lipid families identified from untargeted lipidomic analysis and
identification by LipidMS package.
CE: Cholesterol esters; Cer: Ceramides; DG: Diglycerols; FA: Fatty acids; LPC: Lys
phosphatidylcholines; LPE: Lysophosphatidylethanolamines; MG: Monoglycerides; PC: Phos-
phatidylcholines; PE: Phosphatidylethanolamines; PI: Phosphatidylinositols; SM: Sphingomyelins;
TG: Triglycerides.
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Table 25. Average sum of the different lipid families’ levels in the participant groups (preclinical AD, MCI-AD, and healthy).

Lipid Family Healthy Controls MCI-AD Preclinical AD p Value (Kruskal- Healthy vs. Preclinical Healthy vs. MCI-AD
(HC) (n=20) (n=11) Wallis) AD (Mann—Whitney, (Mann—Whitney, p
(n=31) p Value) Value)
CE (a.u.) 4.15 (2.86, 4.83) 3.60 (3.03, 5.04) 4.47 (3.86, 4.96) 0.416 0.350 0.685
Cer (a.u.) 4.39(3.52,4.39) 3.94 (2.42,5.75) 5.67 (5.09, 6.87) 0.070 0.038 * 0.452
DG (a.u.) 2.05 (1.56,2.22) 1.51 (1.25,1.98) 2.20(1.94,2.73) 0.007 * 0.155 0.023 *
FA (a.u.) 15.04 (9.29, 22.21) 13.42 (9.44, 18.38) 22.32 (11.48, 26.24) 0.299 0.201 0.685
LPE (a.u.) 8.68 (7.16, 11.41) 7.61 (4.77,12.73) 13.86 (10.32, 17.10) 0.006 * 0.002 * 0418
LPC (a.u.) 18.48 (13.62, 12.39) 15.75 (8.93, 24.98) 27.37 (22.68, 35.24) 0.006 * 0.001 * 0.396
MG (a.u.) 1.48 (1.02, 2.83) 0.81(0.48, 1.10) 2.52(1.77,3.56) <0.001 * 0.017 * 0.002 *
PC (a.u.) 46.66 (35.34,56.80)  41.08 (27.78,55.27)  53.13 (43.75,59.73) 0.202 0.257 0.316
PE (a.u.) 7.04 (5.09, 8.78) 4.76 (3.05, 9.53) 6.85 (6.13, 10.46) 0.061 0.572 0.034 *
PI (a.u.) 3.50 (2.86,4.99) 3.08 (2.09, 5.00) 3.77(2.70, 6.13) 0.366 0.553 0.307
SM (a.u.) 8.63 (6.13, 10.48) 5.79 (3.13, 10.02) 11.21 (9.65, 12.90) 0.001 * 0.003 * 0.061
TG (a.u.) 24.05(19.40,28.94)  21.00 (18.36,29.71)  22.21(17.83, 27.27) 0.625 0.381 0.537
Monounsaturated (a.u.)  39.78 (31.30,47.49)  33.35(22.55,46.09)  47.79 (45.98, 60.65) 0.011 * 0.009 * 0.232
Polyunsaturated (a.u.)  93.13 (74.29, 113.90) 78.75 (58.62, 106.44) 104.67 (88.91, 111.74) 0.170 0.233 0.307
Saturated (a.u.) 156.73 (132.57, 189.15) 138.36 (99.15, 168.83) 191.35 (155.78, 203.83) 0.100 0.054 0.452

a.u.: arbitrary units. * p <0.05. HC: healthy control.
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Figure 29. Boxplots representing the levels of lipid families for each participant group
(healthy, preclinical AD, and MCI-AD. There were 4 CEs, 4 Cers, 2 DGs, 14 FAs, 3
LPEs, 8 LPCs, 2 MGs, 44 PCs, 7 PEs, 3 Pls, 9 SMs, and 25 TGs included in the analysis.
(a.u.: arbitrary units)). o: outlayer; *: Extreme outlayer.

2.2.1. Targeted analysis

From previous results, the selected lipids were 18:1 LPE, 18:0 LPC, 16:1 SM (d18:1/16:1),
16:0 SM (d18:1/16:0), 18:0 SM (d18:1/d18:0), 18:1 (9-Cis) PE (DOPE), and 24:0 SM.
The corresponding analytical method was developed and validated, obtaining satisfactory
analytical performance for 18:1 LPE, 18:0 LPC, 16:1 SM (d18:1/16:1), and 16:0 SM
(d18:1/16:0)(see Table 26). In fact, the accuracy was satisfactory, with recoveries around
100%, except for18:0 LPC with recoveries >130%, probably due to the matrix effect.
Moreover, a suitable sensitivity was obtained, with LODs between 0.548 and 4.185 nmol

L~1 and LOQs between 1.83 and 13.95 nmol L™L. The other analytes did not show
suitable analytical performance (18:0 SM (d18:1/d18:0), 18:1 (9-Cis) PE (DOPE), and

24:0 SM), and they were not determined in plasma samples.
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Table 26. Analytical method validation.

Analyte Standard Recovery (%) LOD LOQ Linearity Range  Equation (y =a + bx)
Concentration (nmol L™) (nmol L") (nmol L™) azts,
(nmol L) bzts,

RZ

18:1 LPE 6.25 108 + 14 0.548 1.83 1.83-26.30 0.0019 + 0.0008
9.38 109 + 15 0.0027 + 0.000063
125 104 +17 0.998

18:0 LPC 50 153+ 15 4.185 13.95 13.95-209.38 0.012 +0.024
75 147 +15 0.0072 + 0.00022
100 134 +21 0.997

16:1 SM (d18:1/16:1) 50 101 +11 2.857 9.52 9.52-208.11 0.0774 £ 0.021
75 101 +11 0.0064 + 0.00019
100 96+ 16 0.997

16:0 SM (d18:1/16:0) 125 108 + 58 1.240 4.13 4.13-52.51 —0.0041 £ 0.0063
18.75 102+6 0.012 + 0.00024
25 82+5 0.999

18:0 SM (d18:1/d18:0) 3.13 0.289 0.96 0.96-13.23 0.0014 + 0.0011
4.69 100 + 26 0.0047 + 0.00017
6.25 119 +59 0.996

18:1 (9-Cis) PE (DOPE) 0.78 0.069 0.23 0.23-3.30 0.00019 + 0.00015
1.17 103 + 65 0.0024 + 0.000089
1.56 62 + 62 0.996

24:0 SM 6.25 0.306 1.02 1.02-26.02 0.24 +£0.03
9.38 0.044 +0.003
12.50 0.990
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2.2.2. Sample analysis

A panel of four lipids (previously selected) was determined in plasma samples from
healthy participants (n = 20) and patients with preclinical AD (n = 11) and MCI-AD (n =
31). The concentrations of each lipid in the participant groups are summarized in
Table 27. As can be seen, statistically significant differences were observed for 18:1
LPE among the three groups (p = 0.010) and between the AD (preclinical + MCI)
and healthy groups (p = 0.003). In addition, this potential AD biomarker showed a
correlation with some CSFbiomarkers (t-Tau (0.299, p = 0.022) and p-Tau (0.290, p =
0.026)). It should be mentioned that no correlation was observed between the lipid

levels and age.

Table 27. Lipid concentrations in plasma from participant groups (healthy, MCI-AD, and
preclinical AD).

Lipids Healthy Control MCI-AD (n = Preclinical AD Kruskal- Mann-
(HC) 20) (n=11) Wallis p Whitney p
(n=31) Median (IQR) Median (IQR) Value Value
Median (IQR) (nmol L™) (nmol L™) (three (AD vs. non-
(nmol L™) groups) AD)
18:1 1.37(0.38,1.83) 1.8(1.2,4.2) 1.8(0.9,3.7) 0.010 * 0.003 *
LPE
18:0 67 (61, 80) 65 (56, 96) 81 (60, 105) 0.504 0.569
LPC
16:1 15 (7, 27) 13 (8, 24) 19 (15, 25) 0.501 0.647
SM
16:0 177 (137, 206) 168 (132, 213) 209 (159, 239) 0.374 0.371
SM

* p value < 0.05.

In addition, LPE 18:1 showed an AUC-ROC of 0.722 (95% CI, 0.595-0.848),

discriminating between early AD (preclinical + MCI) and healthy participants.
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2.3.  Compounds identified by CEU Mass Mediator Database

2.3.1. Preclinical AD vs. Healthy Subjects

The volcano plot analysis from the preclinical AD and healthy groups showed 48
significant variables (Figure 30a). The PLS analysis was carried out with these
variables in order to identify the most discriminant variables between the groups. This
model showed a p value <0.001 and a clear separation between preclinical AD cases and
healthy participants (Figure 30b), with good R?Y (0.637) and Q2Y (0.566) parameters.
The model was satisfactorily validated (1000 iterations) with R?Y = 0.202 and Q%Y =
-0.373.
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Figure 30. (a) Volcano Plot representing the significant variables in the discrimination
between healthy controls and preclinical AD participants. Statistically significant
variables are represented in red (p < 0.05, FC > 2); (b) PLS plot represents differential
distribution between healthy controls and preclinical AD; (c) Threshold VIP plot value
> 1 (red variables).

Potential compounds were subjected to identification and confirmation based on a
threshold of VIP value >1 (27 variables) (Figure 30c). Finally, 16 variables were
tentatively characterized by querying our experimental MS data with those provided in
the commercial databases. From them, some variables showed more weight over the model
(m/z 1484.140079, 508.3767054, 494.3609278, and 770.6063157). In addition, two
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variables were putatively annotated through AM and MS/MS mass spectra with online
databases. These variables were pisumionoside (m/z 405.2102471) and 1-O-Palmitoyl-2-
O-acetyl-sn-glycero-3-phosphorylcholine (m/z 520.3404329).

2.3.2. Mild Cognitive Impairment-AD vs. Healthy Controls

The volcano plot analysis from the MCI-AD and healthy groups showed 153 significant
variables (Figure 31a). The PLS analysis was carried out with these variables in order
to identify the most discriminant lipids between the groups. This model showed a CVp-
value <0.001 and a clear separation between MCI-AD and healthy control participants
(Figure 31b), with good R?Y (0.926) and Q?Y (0.785) parameters. The model was
satisfactorilyvalidated (1000 iterations) with R%Y = 0.572 and Q2?Y = - 0.686.
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Figure 31. (a) Volcano plot representing the significant variables in the discrimination
between healthy controls and MCI-AD. Statistically significant variables are
represented in red (p < 0.05, FC > 2); (b) PLS plot represents differential distribution
between healthy controls and MCI-AD. (c) Threshold VIP plot value > 1 (red variables).

Potential metabolites were subjected to identification and confirmation based on a
threshold of VIP value > 1 (22 variables) (Figure 31c). Finally, 11 variables were
tentatively characterized by using the corresponding databases. From them, some
variables showed more weight over the model (m/z 409.3113, 362.2550, 350.3417, and
518.351396). In addition, the variable m/z 766.573457 was putatively annotated trough AM
and MS/MS mass spectra with online databases, and it was identified as a

phosphocholine.
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3. Discussion

A lipidomic approach was developed in plasma samples from participants classified
according to their amyloid status (CSF biomarkers) to identify lipid alterations involved
in the onset of AD. For this, an untargeted analysis was carried out, and comparisons
between early AD (preclinical or MCI) and healthy participants were evaluated. Some
significant variables were identified in early AD deregulation, and lipid families were
evaluated. Finally, a complementary multivariate analysis was carried out in order to

identify other potential discriminative variables.

Lipid families identified by the LipidMS database revealed the potential implication
of DG, LPE, LPC, MG, and SM in early AD. In the comparison between
preclinical AD and healthy groups, some lipid families were identified as potential
biomarkers (Cer, LPEs, LPCs, MGs, and SMs), as they were differentially expressed,
especially the monounsaturated species. Similarly, Mielke et al. found an association
between Cer and SMs with therisk of AD, although they described differential risks
between men and women [314]. In addition, Jazvins€ak Jembrek et al. described the
role of ceramides as mediators of neuronal apoptosis related to OS and AB accumulation
[315]. Therefore, this deregulationof ceramides in the preclinical stages of the disease
could contribute to the advancement of clinical manifestations contributing to neuronal
loss. Moreover, Panchal et al. described ceramide accumulation in AD plaques [316].
In addition, SM/ceramide has been related toAD cognitive decline [116]. However,
the utility of ceramides as biomarkers for dementias requires further investigation
[317]. LPE was described as a biomarker for progression toAD [115], although our
results suggest that it could be a potential biomarker for preclinicalstages. Similarly,
LPCs could be a potential biomarker for the first stages of AD. In this sense, LPCs
play a role in PUFASs transport across the BBB, perhaps controlling the availability
of these essential compounds for the proper functioning of the brain [318]] In the
comparison between MCI-AD and healthy controls, different lipid families were
identified as potential biomarkers (DGs, MGs, and PEs). Similarly, Wood et al. found
increased levels of DGs and MGs in early AD [319]. PEs could be involved in the
physiopathology of AD due to their involvement in cell processessuch as oxidative

phosphorylation, mitochondrial biogenesis, and autophagy [290]. Our results show
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that MGs could be potential biomarkers of early AD, including both the preclinical
and MCI-AD stages. In addition, LPE, LPC, and SM seem to be more specifically
altered in the preclinical stage, while DGs could be useful as biomarkers for the MCI
stage.On the other hand, the annotation of variables by means of other databases
(HMDB, Kegg, and Metlin) reported other important annotated variables and metabolite
classes. In the discrimination between preclinical AD and healthy subjects, some lipid
families were found, such as phosphatidylglicerol, glicerophosphocholine,
glicerophosphoserine, phosphoethanolamine, phosphocholine, glicoesphingolipid,
diacilglicerol, terpenes, steroids, flavonoid classes, and vitamin E. Specifically,
plasma glycerophosphocholine compounds were observed at higher levels in the
preclinical AD group. Similarly, other studies showed elevated levels of this lipid in AD
brains [320] as well as in cerebrospinal fluid samples from AD patients [307,321],
indicating that abnormal phospholipid metabolism in the brain is characteristic of AD.
In addition, the present study found that plasma phosphoethanolamine levels were
lower in the preclinical AD group, and a previous work found lower levels for PE
in AD brain samples [322]. In fact, PE is a precursor for phosphatidylcholine and
a substrate for important posttranslational modifications [290]. Moreover,
phosphocholine is a precursor of phosphatidylcholine, and higher levels were obtained
for the preclinical AD group, indicating a potential membrane impairment in the early
disease process [323]. Moreover, glycosphingolipids could be involved in preclinical
AD since higher levels wereobtained in plasma samples from these participants. In
this regard, ceramides, which are involved in sphingolipid metabolism, showed an
association with neuropsychiatric symptoms [324]. Moreover, we found higher
levels of DGs in the preclinical AD group, similar to the increased plasma levels in
early AD, suggesting that lipidomics alterations lead to the accumulation of DGs in
MCI subjects [319]. On the other hand, in the present study,phosphatidylglycerol
(PG) and flavonoids showed lower plasma levels in the preclinical AD group.
Flavonoid compounds could act against AD pathology by inhibiting microglia
activation and A aggregation. Therefore, a reduction in these compounds early in
the disease may contribute to the development of AD pathways. However, a search
of the literature failed to reveal any studies related to this finding. Studies have been

reported that vitamin D showed higher levels in preclinical AD compared to healthy
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participants, but we found that prior investigations reported reduced levels of these
vitamins in AD and MIC-AD cases [325]. Since the cases examined here were
classified as preclinical AD, it is possible that this group was exhibiting a compensatory
response to the disease process. In addition,the discrimination between preclinical AD
and healthy controls is characterized by the biomarkers 1-O-Palmitoyl-2-O-acetyl-sn-
glycero-3-phosphorylcholine and pisumionoside, which were putatively annotated.
Pisumionoside is an exogenous compound derived from vegetables, such as
seedpods of garden peas, that could have a hepatoprotective function [326]. These
levels are elevated in healthy subjects compared to preclinical AD subjects.
Therefore, pisumionoside could have a protective effect against AD. Moreover,1-O-
Palmitoyl-2-O-acetyl-sn-glycero-3-phosphorylcholine is a glycerophosphorylcholine
that showed increased levels in AD, in concordance with previous studies [327]. Its
oxidized products were considered biomarkers of neuroinflammation in other
pathologies such as multiple sclerosis [328]. Moreover, other lipid families
(glycosyldiacylglycerols, fatty acids, terpenoids, sesquiterpene mycotoxins, terpene
lactones, phosphocholines, glucosylceramides, and fucopentanoses) were annotated
by HMDB comparing MCI-AD and healthy groups. First, glycosyldiacylglycerols
showed lower levels in the MCI-AD group.Previous studies found an increase in
diacylglycerols in the frontal cortex in neurodegenerative diseases such as dementia
with Lewy bodies or AD [329]. In addition, glycosylation showed a relationship with
neurodegeneration and AD. Therefore, it could be an indicator of disease progression
[330]. Moreover, fatty acids showed lower levels in the MCI-AD group, similar to
previous reports [331,332], reflecting differences in intake and metabolism.
Moreover, terpenoids and some vitamins showed higher levels in the MCI-AD
group. In this sense, there is some controversy since previous studies showed protective
effects for these compounds [333,334].

Regarding the targeted analysis, the developed analytical method was able to determine
low plasma levels of some lipids that could be useful as potential AD biomarkers
(18:1 LPE, 18:0 LPC, 16:1 SM (d18:1/16:1), and 16:0 SM (d18:1/16:0)). Accuracy was
satisfactory for all of them. However, only 18:1 LPE showed statistically significant
increased levels in preclinical and MCI-AD in comparison with healthy controls. Su et al.

found this lipid increased in brain-derived extracellular vesicles from AD patients [335].
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For LPC in plasma samples, a previous study showed an increase with aging, which
is more evident under AD conditions [303]. Similarly, the present study found higher
levels of LPC 18:1 and lower levels of L-a-phosphatidilcholine and PC in AD
patients. However, Mulder et al. found a decrease in the ratio LysoPC/PC under
MCI or dementia due to AD conditions [336]. In addition, the present study showed
plasma 18:1 LPC correlations with CSF t-Tau and p-Tau, which are biomarkers currently
employed in AD diagnosis. Specifically, Tau is considered a neurodegeneration
biomarker [337]. In this sense, the correlation found between 18:1 LPC and Tau showed
the potential utility of 18:1 LPC as a neurodegeneration biomarker. Similarly,
previous studies showed the utility of the metabolites 18:0 LPC and 18:2 LPC as
potential biomarkers for AD [90]. These discrepancies could be explained by the
different types of samples used (plasma and CSF) as well as by the different isomers
determined in these compounds’ families. In addition, the ratio between LPC and PC
in the plasma samples showed the capacity to differentiate between AD and non-AD

participants [338].

The main limitation of this study is the small sample size. However, the participants
were accurately classified into groups according to their amyloid status, cognitive
state, and brain alterations with neuroimaging. Moreover, there is a lack of confirmation
studies to identify the metabolites as reliable AD biomarkers. Nevertheless, this work
provides a detailed lipidomic approach from untargeted and targeted analyses that
identified potential biomarkers and pathways involved in early AD development.
Although analyses of confounding variables, such as age, were not performed,

correlations between age and lipids or lipid class were assessed.
4. Conclusions

A lipidomic approach was developed from untargeted and targeted analyses of plasma
samples. It showed some differential expression of lipids between healthy participants
and patients at the early stages of AD. Therefore, the plasma lipid profile could be
useful in theearly and minimally invasive detection of AD. Among lipid families,
relevant results were obtained from DGs, LPEs, LPCs, MGs, and SMs. Specifically,
MGs could be potentially useful in AD detection, while LPEs, LPCs, and SM are
related more specifically to their preclinical stage and DGs are related to the MCI
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stage. Among these families, 18:1 LPE showed potential utility as a biomarker for AD
and neurodegeneration. In addition, other analyte families, such as
phosphatidylglicerol, phosphocholine, glicerophosphocholine, glicerophosphoserine,
glicoesphingolipid, vitamin E, terpenes, steroids, flavonoids, glycosyldiacylglycerols,
fatty acids, glucosylceramides, and fucopentanoses, showed potential alterations in
early AD stages. However, further analysis in a large number of samples is required

to validate these preliminary results.
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Chapter 11. Plasma microRNAs as potential biomarkers in early

Alzheimer disease expresion

1. Summary

The aim of this chapter is to analyse the differential expression of a panel of miRNAs
selected from sequencing analysis in plasma from early AD and control participants
evaluating their potential usefulness as biomarkers and their implication in molecular
pathways altered in early AD stages. For this, miRNAomic expression profiles were
analysed by Next Generation Sequencing in plasma samples from MCI-AD (n = 19),
preclinical AD (n = 8) and controls (n = 19). Then, the selected miRNAs were validated
by quantitative PCR (q-PCR) and a Bayesian model was developed including them. Then
the targets of the selected miRNAs and the pathways regulated by them were analyzed
using miRDB.

2. Results

2.1. Participants characteristics

The participants’ characteristics are summarized in Table 28. As can be seen, most of the
variables showed no significant differences among participants’ groups. In fact, only the
clinical variables used in their diagnosis (CSF biomarkers levels, neuropsychological
assessment) show statistically significant differences, as expected. In contrast,
demographic variables (age, sex, educational level, medication use (statins, fibrates,
benzodiazepines,  antihypertensives),  comorbidities  (dyslipidemia,  diabetes,

hypertension)) are similar between the study groups.
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Table 28. Participant’s clinical and demographic variables.
Control MCI-AD Preclinical-AD

Variable (n=19) (n=19) (n=8) P

value
Median (1st, 3rd Q.)

Age (years) 69 (64.5, 70.5) 70 (67.5, 74) 68.5(66.7,705)  0.134

Sex, female, n (%) 8 (42.11%) 8 (42.11%) 5 (62.5%) 0575

Educational level (n, %)

Basic or primary 6 (31.58%) 7 (38.89%) 1 (12.5%)

Secondary 6 (31.58%) 10 (55.56%) 3(37.5%) 0.094

Uiversitary 7 (36.84%) 1 (5.56%) 4 (50%)

Smoking Yes, n, (%) 3(15.79%) 3(15.79%) 2 (25%) 0.823

Alcohol Yes, n (%) 4 (21.05%) 2 (10.53%) 1 (12.5%) 0.647

Statins (n, %) 11 (57.89%) 10 (52.63%) 3 (37.5%) 0.625

Fibrates (n, %) 2 (10.53%) 2 (11.11%) 1 (14.29%) 0.690

Benzodiazepines (n, %) 3 (15.79%) 2 (10.53%) 1 (12.5%) 0.889

Antihipertensives (n, %) 8 (42.11%) 7 (38.89%) 1 (12.5%) 0.317

Dyslipidemia (n, %) 13 (68.42%) 10 (52.63%) 3 (37.5%) 0.303

Diabetes (n, %) 3 (15.79%) 1(5.26%) 3 (37.5%) 0.103

Hypertenison (n, %) 9 (47.37%) 8 (42.11%) 1 (12.5%) 0.224

AB42 (pg mol-1) 1224 (967, 495 (456, 616) 6715 (507.5, <0.001

1429) 714)
t-Tau (pg mol-1) 276 (2217.5, 578 (432.75, 464 (337.5, 0.001
375) 785.75) 548.5)

p-Tau (pg mol-1) 40 (29, 44) 91 (58.75, 107.75) 67 (58.25, 99) <0.001

CDR 0(0,0) 0.5 (0.5, 0.5) 0(0,0) <0.001

MMSE 29 (27.5, 29.5) 24 (23, 25.75) 27 (26.75,28.25)  <0.001

FAQ 0(0,1) 7(5,10.5) 1(0,2) <0.001

RBANS.MR 10110é9§).5, 42 (40, 55) 86 (77.25,98.75)  <0.001
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2.2. miRNAs validation

A panel of 11miRNAs was selected following the specified criteria (counts in at least 80%
of the samples and previous findings in literature). The selected miRNAs were hsa-miR-
92a-3p, hsa-miR-486-5p, hsa-miR-29a-3p, hsa-miR-486-3p, hsa-miR-150-5p, hsa-miR-
142-5p, hsa-miR-320b, hsa-miR-483-3p,hsa-miR-1293, hsa-miR-342-3p, and hsa-miR-
4259. Of these, 8 miRNAs were successfully quantified (has-miR-92a-3p, has-miR-486-
5p, has-miR-29a-3p, miR-486-3p, miR-150-5p, miR-320b, miR-483-3p, miR-342-3p);
while some miRNAs were not detected (hsa-miR-142-5p, miR-1293, hsa-miR-4259). The
levels obtained for each miRNA are summarised in Table 29. As can be seen, small

differences were obtained for each miRNA amongparticipants’ groups.

Table 29. Median levels of miRNAs in plasma from participants’ groups.

Control MCI-AD Preclinical AD
Variable (Total counts) (n=19) (n=19) (n=8)
Median (IQR) Median (IQR) Median (IQR)

hsa-miR-92a-3p

22.26 (21.12, 22.67)

2151 (21.27, 22.72)

21.89 (21.37, 22.61)

hsa-miR-486-5p

22.72 (22.22, 23.43)

22.5(22.13, 23.3)

23.33 (22.26, 24.21)

hsa-miR-29a-3p

26.86 (25.92, 27.55)

26.93 (26.4, 27.36)

27.62 (26.62, 27.99)

hsa-miR-486-3p

28.19 (27.47, 28.96)

28.07 (27.44, 29.35)

27.98 (27.4, 29.8)

hsa-miR-150-5p

24.18 (23.84, 24.9)

23.93 (23.38, 25.2)

23.93 (23.38, 24.49)

hsa-miR-320b

26.94 (26.26, 27.64)

26.73 (26.19, 27.1)

26.88 (25.94, 27.48)

hsa-miR-483-3p

31.53 (31.18, 32.32)

31.63 (30.97, 32.91)

315 (31.31, 31.74)

hsa-miR-342-3p

28.54 (28.07, 29.04)

28.48 (27.7, 29.46)

27.71 (27.05, 28.75)

Individually, the validated miRNAs showed no significant differences between groups.
Therefore, two multivariate models, including the previously selected miRNAs, were
developed to analyse the tendency of each miRNA in participants’ groups. The first model
included 3 participant groups (control, MCI-AD, preclinical AD); while the second model
included 2 participant groups (AD (MCI-AD + preclinical-AD), control). In Table 30, the
characteristics of the first model are summarised, showing that the miRNAS hsa-miR-92a-
3p, hsa-miR-486-5p and hsa-miR-29a-3p had a high probability of direction (PD >80%).
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Specifically, hsa-miR-92a-3p showed a PD 85.40% of a negative estimate, so relatively
reduced levels were found in AD. Similar results were obtained for hsa-miR-486-5p. In
fact, it showed a high probability of a negative estimate with small Region of Practical
Equivalence (ROPE) (< 15%), which defines the percentage of the area that is within
the region of practical equivalence (equivalent to null effect)), showing an Odds Ratio
(OR) lower than 1, and suggesting a protective effect for AD. By contrast, hsa-miR-29a-3p
showed a positive estimate, so relatively increased levels were found in AD. Similarly, the
characteristics of the model including 2 participants’ groups (AD, control), showed that the
MiRNAS hsa-miR-92a-3p and hsa-miR-29a-3p had a PD >90%, with negative and positive

estimates, respectively.

These results are shown in Figure 32, which depicts the PD and ROPE for each miRNA.
The miRNAs with a high PD (mir-92a-3p, miR-486-5p, miR-29a-3p), showed most of
their area on one side of 0 (Figure 32a). In addition, mir-92a-3p and miR-486-5p showed
a negative direction, while miR-29a-3p showed a positive direction. Figure 32b shows the
ROPE region, being a small area in the first three miRNAs.

Table 30. Characteristics of the Bayesian model including 3 participants groups (control,

preclinical-AD, MCI-AD).

Variables Estimate OR (CI 95%) Inside Rope (%) PD (%)
hsa-miR-92a-3p —0.484 0.616 (0.241,1.455) 19.34% 85.40%
hsa-miR-486-5p —0.649 0.522 (0.112,2.28) 14.15% 81.38%
hsa-miR-29a-3p 0.418 1.519 (0.662,3.626) 22.76% 82.88%
hsa-miR-486-3p 0.478 1.613 (0.462,5.929) 18.05% 77.88%
hsa-miR-150-5p 0.123 1.131 (0.243,5.574) 19.76% 55.27%
hsa-miR-320b 0.174 1.19 (0.373,4.02) 23.34% 60.68%
hsa-miR-483-3p 0.286 1.331 (0.624,2.968) 29.86% 77.15%
hsa-miR-342-3p —0.458 0.632 (0.131,3.086) 16.47% 72.58%

The Probability of Direction (PD) is an index of effect existence, ranging from 50 to
100%, representing the certainty with which an effect goes in a particular direction. PD >
80% was considered significative. For each variable the direction depends on the estimate
(negatives estimate < 0, and positives estimates > 0). Region of Practical Equivalence
(ROPE) defines the percentage of the area that is within the region of practical
equivalence (equivalent to null effect). OR odds ratio, Cl confidence interval.
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Figure 32. Probability of direction (PD) and Region of Practical Equivalence (ROPE) for
each miRNA. (a) PD shows the estimation of direction for each biomarker, showing a
protective AD effect for those with negative direction and risk AD effect for those with
positive direction. Polygons show the density summary of the posterior draws and colored
given the estimated direction (positive or negative) of the effect parameter. The
proportion of the polygon that does not include zero is a statement about probability of
the proposed direction of effect. (b) ROPE represents the area of null equivalence that is
the percentage with none direction (positive or negative). Effects given a full ROPE based
on a 100%, 95% and 90% highest posterior density interval. The proportion of the
polygon that does not include zero is a statement about the significance of effect.

2.3. Pathway analysis

For the miRNAs with a high directional probability (hsa-92a-3p, hsa-486-5p, hsa- 29a-
3p), their potential target genes were analysed in order to assess their involvement in the
pathology development. Table 31 shows the potential target genes of the selected
miRNAs related to AD mechanisms. As can be seen, 112 potential targets were obtained
for miRNA hsa-92a-3p, 16 targets for hsa-486-5p, and 88 targets for hsa-29a-3p, with a
target score of at least 95. In addition, each of the selected miRNAs regulated several
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pathways. As can be seen in Figure 33, the most common pathways were cell signalling
and transcription regulation, but also lipid metabolism, protein synthesis and
modifications, and structural functions were regulatedby the selected miRNAs. First, the
main pathways that could be regulated by the miRNA hsa-92a-3p are cell death or
autophagy and cell proliferation pathways, and some pathways related to vesicle transport
and synaptic transmission. Among the cell death targets, BCL2L11 (BCL2 like 11) is
involved in neuronal and lymphocyte apoptosis and G3BP2 (G3BP stress granule
assembly factor 2) is involved in stress response. In the cell proliferation pathway, the gene
C210rf91 (chromosome 21 open reading frame 91) plays a role in the proliferation of
neurons in the cortex. Among synaptic transmission targets, GLRAL (glycine receptor
alpha 1), SYN2 (synapsinll), SCN8A (sodium voltage-gated channel alpha subunit 8),
CADM2 (cell adhesion molecule 2), CBLN4 (cerebellin 4 precursor), SYNJ1
(synaptojanin 1), SLC17A6 (solute carrier family 17 member 6), and NSF (N-ethyl-
maleimide sensitive factor, vesicle fusing ATPase) are highlighted, being the last two
targets involved in vesicle transport. Other important genes are REST (REL1 silencing
transcription factor), which regulates neuronal genes transcription; and NEFH
(neurofilament heavy), which contributes to the maintenance of neuronal structure. In
addition, PPCS (phosphopantothenoylcysteine synthetase) could be relevant in the

regulation and metabolism of CoenzymeA.

Secondly, the main pathways that could be regulated by the miRNA hsa-486-5p are cell

signalling, lipid and protein pathways, structural functions and transcription.
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Table 31. Potential target genes and related AD pathways. In
(http://mirdb.org/mirdb/index.html)

this link it can be found the full name of each gene

Pathway hsa-miR-92a-3p hsa-miR-486-5p hsa-miR-29a-3p
Autophagy TECPR2, EPG5
Cell death G3BP2, HIPK3, USP28, DNAJBY, TRIB2, XKR6, AKT3

BCL2L11,RNF38

proliferation

CD69, FNIP1, BTG2, MAP2K4, C210rf91,
KLF4, FNIP2, GTF2A1, CDK16, ARID1B,
CDCATL, CCNJL, CUX1, MAP1B,
RNF38

NAV1, NAV2, NAV3, IGF1, ZNF346,
LIF, CDK6, SGMS2, PDIK1L, CHSY1,
NEXMIF,AKT3, ADAMTS9

Cell signalling

PIKFYVE, DOCKY, ITGAV, EFR3A,
RIC1, RNF38, GPR180, PLEKHAL, JMY,
GNAQ, RGS17, PTEN, PCDH11X, GIT2,

NEXMIF, AKT3, DAAM2, PTEN,
PGAP2,ROBO1, RAP1GDS1, RAB30,

DCC, PTEN, SLC10A7, ARHGAP44, DGKH, CLDN1, TRAF3

ADGRF2,CALN1, DPP10, LRCH1, MARK1

HCN2
Energetic metabolism and oxidative NOX4, SESN3, PTEN, SLC12A5 PTEN PTEN
stress
Glucose metabolism MAN2A1, FBN1, UGP2 FBN1
Immune response TAGAP, CD69, KLF4, GLRA1, FOXN2, TRAF3

RAB23
lipid metabolism PPCS, KIAA1109 FAHD1 OSBPL11

membrane transport

SLC12A5, SLC25A32, SGK3

SESTD1, ABCE1, SLC5A8

Nucleic acid metabolism and DNA
organization

MORC3, RBM27, GID4, CPEB3, SLX4,
AGO3, JMY, ANP32E, RSBN1

DOTIL, KMT5C, ERCC6, NASP,
KDM5B, TDG

DNA and histones methylation

TETL. TET2, TET3, DOTIL, DNMT3A,

204



Results, discussion and conclusions

Chapter 11

DNMT3B, KDM5B

Protein degradation

FBXW?7, SESN3, KLHL14, USP36, USP28,
UBXN4

VPS37C, TRIMG3

Protein synthesis and modifications

B3GALT2, PTARL, GOLGAS, COG3,
SGK3, ADAM10, EDEM1

COPS7B, MARK1, LMTK2, ABHD17B

ADAMTS9, ADAMTSS6, D102, ABCE1

Structural function

ACTC1, ANP32E, NEFH, RSBN1,
NCKAPS5, NEFM, RHPN2, FBN1,
MYO1B

SNRPD1, NCKAPS, LCE3E

COL5A3, COL5A1, COL3A1, FBN1,
COL11A1, HAS3, TMEM169, COL19A1,
COL4A1, COL1A1, COL7AL, SPARC,
COL5A2, HMCNL1, C1QTNF®6,
ADAMTS2,CEP68, PXDN, COL9A1,
HAPLN3, RND3, TRAF3, RAB30,
CLDN1

Synaptic transmission

GLRAL, SYN2, SCN8A, CADM?2,
CBLN4,SYNJ1, SLC17A6, NSF

ARHGAP44

Transcription

MIER1, HAND2, TBL1XR1, LATS2,
FOXN2, ZEB2, REST, GRHL1, TEADI,
HIVEP1

BTAF1, SNRPD1, FOXO1, ZNF331

HBP1, ATAD2B, BRWD3, NSD1,
ZBTB34,NFIA, KDM5B, PURG, HIF3A,
ZBTB5, ZNF282, AMERL, REST, TAFS5,

ZHX3,

C16orf72

Vesicle transport

MYO1B, CDK16, PIKFYVE, SLC17AG6,
NSF, RAB23, DENND1B

ASAP2, VPS37C

Others

ZFC3H1, TTC9, ATXN1, DCAF6,
LHFPL2,FAM160B1, ERGIC2, MAGEC?,
SPRYD4, ANKRD28, TRIM36, FAM24A,

BCL11B

TRIM36

ADAMTS17, PRR14L, FAM241A,
LYSMD1,PXYLP1, SMS, ATAD2B

205



Results, discussion and conclusions Chapter 11

Autophagy Cell Desth
Vesicie transport Proliteration
Q 4 f 2O 4 Ceil signalling
Transcription \ ﬂ .
gy . g e
N , - metsbolsTy
Synaptic (FeemRo2s3p = BB oxiative strese
transmission T = =4 <
o (hsa-miR-485-5p) e
o (hea-rmiR-20s-30) - Glucose
Structurg! Apf ' - metabolism
function X
’ $ Immune
2332 response
DNA and ﬁ{li \\ pon
histones ‘ b \

methytation 5
Lipid
i metabolism

Protein synthesis,
degradation and
modifications Membrane

8
Nucleic acid metabolism i piok

and DNA organization

Figure 33. Pathways regulated by the three miRNAs that showed relationship with AD.
The arrows indicate those miRNAs involved in each pathway. Each color represents a
miRNA: green (hsa-miR-92a-3p), red (hsa- miR-486-5p) and blue (hsa-miR-29a-3p).
*Created with BioRender.com.

Thirdly, the main pathway that could be regulated by the miRNA hsa-29a-3p is the cell
proliferation pathway, which involves neurone regeneration and migration trough NAV3
(neuron navigator3), NAV1, and NAV2. Also, ZNF346 (zinc finger protein 346) could act
to protect neurons and LIF (LIF, interleukin 6 family cytokine) is involved in neuronal
differentiation. In cell signalling pathways, the targets DAAM2 (dishevelled associated
activator of morphogenesis 2) and ROBO1 (roundabout guidance receptor 1) contribute
to nervous system development and neuronal migration, respectively. Furthermore,

miRNA hsa-29a-3p plays a role in structure regulation, specifically regulating the
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synthesis of different collagen chains, and HMCN1 (hemicentin 1) is involved in macular
degeneration and C1QTNF6 (C1q and TNF related 6) is involved in identical protein
binding activity. Also, this miRNA could regulate REST in the transcription pathway.

3. Discussion

In this study, miRNA sequencing was carried out to identify potential early AD biomarkers.
From these, a validation step was conducted, in which quantifiable miRNAs were
identified, while some of them were not detected. In fact, the miRNAs not validated were
hsa-miR-142-5p, hsa-miR-1293 and hsa-miR-4259. A previous study in cell line found a
relationship between dysregulation of miR-142-5p expression and AD pathogenesis and
synaptic dysfunction [339], and it was detected up-regulated in the blood of AD patients
[340]. Also, hsa-miR-4259 was detected in saliva samples, but there is a lack of studies
quantifying this biomarker in plasma samples [341]. In addition, has- miR-1293 was
previously detected in platelets from hepatocellular carcinoma and lung adenocarcinoma

cell line [342]. Nevertheless, there are no studies describing its association with AD.

Regarding the methodology, Haining et al., performed a similar study trying to find a
miRNA profile in early AD. However, different cohorts for untargeted and targeted
analysis were used [125]. Also, Dakterzada aimed to find miRNAs in plasma from AD
participants, identifying a BACEL related panel of biomarkers different from the miRNAs
in the present work [343]. It could be due to the use of a different identification technique
based on microarrays analysis [344]. The different methodologies employed could affect
the miRNAs selection, so it shouldbe taken into account in comparisons with other studies
[343].

Regarding the miRNAs that showed a trend with the pathology in the present study, they
were hsa-miR- 92a-3p, has-miR-486-5p and hsa-miR-29a. First, hsa-miR-92a-3p showed a
tendency for decreased levels in AD. A previous study showed dysregulation of 3 miRNAs
related to synaptic proteins, including hsa-miR-92a-3p in MCI and AD [345]. Another
study described the relationship between miR-92a-3p and Tau accumulation [346]. One
of the most AD-relevant pathways that could be regulated by this miRNA is synaptic
transmission [347]. Specifically, SYNJ1, a potential target for this miRNA, seemed to be

involved in AP clearance [348,349], while synapsins could act on AP generation by

207



Results, discussion and conclusions Chapter 11

modulating BACE1 [350]. In addition, CBLN4 could regulate AP toxicity [351].
Regarding neuronal apoptosis, it could be regulated by this miRNA and the BCL2L2
target. In fact, a previous work showed that Ap could regulate that pathway [352]. Other
target genes (NEFH, REST), which are involved in neuronal structure and neuronal gene

transcription, were described as potential AD diagnosis biomarkers [353,354].

Second, the present study showed a tendency towards reduced levels of hsa-miR-486-5p
in AD. Similarly, Nagaraj et al. described a panel of 6 plasma miRNAs, including hsa-
miR-486-5p, that differentiated between controls and MCI-AD [355]. This miRNA could
regulate some genes involved in cell signalling, lipid and protein pathways, transcription

and structural function.

Third, a trend towards higher levels for hsa-miR-29a-3p in AD plasma was found.
Similarly, Shioya et al. described differential levels of this miRNA at brain level, suggesting
its implication in neurodegeneration trough NAV3 (Neurone Navigator 3) regulation
[356,357]. In addition, another miRNA from that family (hsa-miR-29c) has been related
to AD pathology due to its involvement in the Ap accumulation through the regulation of
BACEL1 [357,358]. Moreover, Mliller et al. suggested that miR-29a could be a candidate
biomarker for AD in CSFsamples without cells [359]. In this regard, different types of
collagenous chains and C1QTNF6 are targets of miRNA hsa-29a-3p. Previous studies
described collagenous chains as a component from amyloid plaques [360]. The collagenous
regulation may contribute to the assembly of amyloid fibres, enhancing the development
of amyloid pathology. In addition, C1g complement protein co-localizes with the AB in
brain [361,362]. Therefore, CLQTNF6,which is thought to play a role in identical protein
binding, could help in the accumulation of Clq protein, triggering amyloid plaque
formation (PubMed Gene). In addition, ROBO1 and DAAM2, which are involved in
neuronal migration and nervous system development, are targets for this miRNA. In fact,
ROBO1 could show a relationship with axon guidance dependent on presenilin, which
helps in the proteolysis of A precursor protein and triggers to AD pathology development
[363,364]. Furthermore, DAAM2 was described by Ding et al. as a mediator in
regenerative oligodendrocyte differentiation; while Sellers et al. demonstrated that AB

synaptotoxicity is mediated by this protein [365,366].

The main limitations in this study are the small sample size, since it is quite difficult to have
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a large number of biologically classified early AD patients (MCI, preclinical). Moreover,
from the selected miRNAs, some of them were not validated as they were not correctly
quantified, probably due to the fact that they were detected in few samples. In addition,
the study design is cross-sectional. In order to obtain more accurate data from the different
disease stages, it should be longitudinal. However, participants in this present study are
perfectly characterized according to CSF biomarkers and their cognitive status, providing

a reliable approach to the disease progression.
4. Conclusion

RNA sequencing analysis in plasma samples from participants with early AD and healthy
controls allowed to identify some differentially expressed miRNAs. From them, 3 selected
miRNAs (miRNA-92a-3p, miRNA-486-5p, miRNA-29a-3p) were slightly dysregulated in
AD, being potential biomarkers of the pathology. In fact, they could be involved in the
regulation of important pathways of the pathology, such as synaptic transmission, cell
signalling, structure maintenance or cell metabolism, so they could be relevant
therapeutic targets. However, further research with a larger sample is needed to verify

these results, as well as to develop the potential mechanisms of action of these miRNAs.
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Chapter 12. Epigenomics and lipidomics integration in Alzheimer

Disease: pathways involved in early stages

1. Summary

The aim of this work was to carry out the integration of epigenomics and lipidomics
analysis in plasma samples from patients with MCI-AD in order to advance the
knowledge of early physiopathological mechanisms. For this, epigenomic and lipidomic
analysis were carried out in plasma samples from patients with MCI-AD (n = 22) and
controls (n = 5). Then, omics integration between microRNAs (miRNAs) and lipids was

performed by PLS regression and target genes for the selected miRNAs were identified.

2. Results

2.1. Participants

Table 32. Demographic and clinical characteristics of the participants.

Variables Healthy Group MCI-AD Group
(n=5) (n=22)

Age (years, median (IQR)) 68 (68, 72) 72 (69, 74)

Gender (female, n (%)) 2 (40%) 12 (54.5%)

CSF Ap42 (pg mL%, median (IQR)) 1346.74 (930, 1421) 517.16 (453.86, 634.45)

CSF AB42/ AB40 (median, IQR) 0.1 (0.09, 0.11) 0.05 (0.05, 0.05)

CSF t-Tau (pg mL?, median (IQR)) 240 (238, 276) 566 (450, 780)

CSF p-Tau (pg mL™%, median (IQR)) 35 (35, 40) 81 (64.5, 107)

CSF NfL (pg mL™%, median (IQR)) 826.94 (791, 847.7) 1428.68 (1123.24, 1555.91)

CSF t-Tau/ Ap42 (median (IQR)) 0.2 (0.19, 0.25) 0.99(0.79, 1.32)

CDR (score, median (IQR)) 0 (0-0.5) 0.5 (0-1)

MMSE (score, median (IQR)) 29 (29, 30) 24 (23, 26)

RBANS_DM (score, median (IQR)) 100 (98, 110) 44 (40, 64)

FAQ (score, median (IQR)) 1(0,2) 74,9

CSF: cerebrospinal fluid; AB: amyloid B; IQR: inter-quartile range; CDR: Clinical Dementia Rating;
MMSE: Mini-Mental State Examination; RBANS DM: The Repeatable Battery for the Assessment of
Neuropsychological Status Delayed Memory; FAQ: Functional Activities Questionnaire.

Table 32 shows the demographic and clinical data for the participants. As expected,
CSF biomarkers levels and neuropsychological tests were different between groups.
In fact, the MCI-AD group showed lower levels for AB42, and higher levels for t-Tau
and p-Tau; also, MCI-AD group showed lower scores for MMSE, and RBANS, and
higher scores for CDR and FAQ.
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2.2. Omics integration

The PLS model integrated two data matrices X (epigenomics) and Y (lipidomics).
Additionally, PLS performed simultaneous variables selection in the two data sets,
by means of LASSO penalization on the pair of loading vectors. In this sense, two
components were chosen, and 25 variables were selected on each dimension and for each
data set. The X-block represented miRNAs, and the Y-block represented lipids.

Samples from both sets were represented in the ‘common’ subspace spanned by the
principal components (PCl, PC2). As can be seen in Figure 34, samples were
differentiated in the plot according to the participants group, there was not observed a
clear separation.Among the 25 selected variables for each data set, the miRNAs (block
X) with higher loadings in the PLS regression were hsa-miR-494-3p, hsa-miR-6894-3p,
hsa-miR-421 andhsa-let-7a-3p; and the lipids (block Y) with higher loadings were FA
(20:3), FA (20:4), FA (16:0), FA (20:2), and FA (18:2) (see Figure 35).

sPLS Comp 1 - 2, XY-space

Grupo
Control
MCI-AD

XY-variate 2

XY-variate 1

Figure 34. Scatter plot for participants samples in PLS analysis. Represent the samples
distribution in the ‘common’ subspace between the two sets of components (epigenomics
and lipidomics variables).
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Loadings on comp 1 Loadings on comp 1
Block X' Block 'Y"

hsa-miR-4433a-3p PC(18:0/203)

hsa-miR-4433b-5p PI(36:4)
hsa-miR-5010-5p PC(40:4)
hsa-miR-7976

hsa-miR-143-3p

FA(18:2)
FA(20:0)
PE (36:4)
16 (16:0/20:4/18:1)
MG (22:4)

hsa-miR-29b-3p
hsa-miR-877-5p
hsa-miR-576-5p
hsa-miR-185-5p PC(38:2)
hsa-miR-19b-3p PE(34:2)
hsa-miR-29a-3p
hsa-miR-505-3p
sa-

PE(38:4)
LPE (18:0)
h

miR-432-5p LPC(18:0)

hsa-miR-2110 Cer (18:1/249)
TG (17:0/17:0/17:0)
FA(18:0)
FA(14:0)

hsa-miR-654-5p

hsa-miR-199b-3p
hsa-miR-382-5p
hsa-miR-323a-3p FA(16:0)
FA(18:2)
FA(18:0)

hsa-miR-4506-5p
hsa-miR-329-3p
hsa-miR-664a-3p FA(18:2)
hsa-let-7a-3p FA(20:2)
hsa-miR-421
hsa-miR-6894-3p

FA(16:0)
FA(20:4)

hsa-miR-494-3p FA(20:3)

-
-
~

T 1
04 03 02 -01

°
°
s
@
&
»
s
°
°

01 02

Figure 35. Horizontal barplot to visualise loading vector. The contribution of each
variable for each component (comp) is represented in a barplot, where each bar length
corresponds to the loading weight (importance) of the feature. The loading weight can be
positive or negative.

The correlation circle plot depicted miRNAs and lipids selected on each component.
Some subsets of variables were important to define each component. Actually, some
miRNAs (hsa-miR-5010-5p, hsa- miR-421, hsa-miR-664a, hsa-miR-29b-3p, hsa-let-7a-
3p, hsa-miR-19b-3p) and some lipids (FA (20:4), FA (20:3), FA (18:0)) mainly
participated in defining the PLS component 2; and some miRNAs (hsa-miR-335-3p,
hsa-miR-532-3p, hsa-miR-379-5p, hsa-miR-4646-3p, hsa-miR-425-3p) mainly
participated in defining component 1. Additionally, miRNAs, such as hsa-miR-421 and
hsa-miR-5010-5p, were positively correlated to the lipids FA (20:4) andFA (20:3); while
these miRNAs were negatively correlated to the lipid TG (17:0/17:0/17:0).

The integration results were depicted by means of a heatmap. The similarity matrix was
obtained from the PLS results [367] and agglomerative hierarchical clustering was

derived using the Euclidean distance as the similarity measure, and the Ward
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methodology [368]. In this sense, Figure 36 shows the heatmap for the correlations
between miRNAs and lipids selected from PLS. The red color corresponded to positive
correlation, while the blue color corresponded to negative correlation. Most of the
correlations were positive.In general, Figure 37 showed a positive correlation between
studied miRNAs and lipids. However, the lipid TG (17:0/17:0/17:0) showed a negative
correlation with all the described miRNAs. In addition, similar miRNAs were grouped,
showing clusters for miR-29a-3p, let-7a-3p, miR-576-5p, miR-185-5p, miR-6894-3p, miR-
5010-5p; for miR-29b-3p, miR-877-5p, miR-494-3p, miR-4433a-3p, miR-4433b-5p; and
for miR-421, miR-450b-5p, miR-664a-3p, miR-432-5p, miR-654-5p, miR-2110, miR-
329-3p. In addition, similar lipids were grouped, showing clusters for FA (18:0)/FA
(14:0)/FA (18:0)/FA (16:0)/FA (18:2) and FA (20:3)/FA (20:4)/FA (18:2)/FA (20:2)/FA
(16:0).
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Figure 36. Heatmap representing correlations between miRNAs and lipid
variables. Red colour represents positive correlations and blue colour represents negative
correlations.
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Figure 37. Relevance associations network for PLS. Pair-wise similarity matrix directly
obtained from the latent components was calculated. The similarity value between a pair
of variables is obtained by calculating the sum of the correlations between the original
variables and each of the latent components of the model. The values in the similarity
matrix can be seen as a robust approximation of the Pearson correlation.

2.3. Potential pathways involved in AD

In Table 33, the predicted target genes for the selected miRNAs were described paying
special attention to the genes that are implied in lipid metabolism, specifically in fatty
acids pathways, which showed correlation with the miRNAs. In fact, fatty acids
family showed the strongest correlations with miRNAs (see Figure 37). Among the
identified target genes, several enzymes, such as elongases (ELOVL1, ELOVL2,
ELOVL3, ELOVL4, ELOVLS5, ELOVLS6, ELOVLY), fatty acid desaturase (FADS6),
fatty acyl-CoA reductases (FAR 1, FAR 2), fatty acid binding protein (FABP7), and
fatty acid 2-hydroxylase (FA2H) were highlighted.
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Table 33. Predicted target genes related to fatty acids for the selected miRNAs
(miRBase).

miRNA Target Genes

hsa-miR-494-3p ELOVL3  (ELOVL fatty acid elongase 3)
ELOVL5  (ELOVL fatty acid elongase 5)

hsa-miR-6894-3p -

hsa-miR-421 ARV1 (ARV1 homolog, fatty acid homeostasis

modulator)

FAR1 (fatty acyl-CoA reductase 1)
ELOVL2  (ELOVL fatty acid elongase 2)

hsa-let-7a-3p ELOVL2  (ELOVL fatty acid elongase 2)

FA2H (fatty acid 2-hydroxylase)

ELOVL7  (ELOVL fatty acid elongase 7)

hsa-miR-664a-3p FAR1 (fatty acyl-CoA reductase 1)
ELOVL4  (ELOVL fatty acid elongase 4)
ELOVL7  ELOVL fatty acid elongase 7
ELOVL5 ELOVL fatty acid elongase 5

hsa-miR-329-3p -

hsa-miR-450b-5p ELOVL6  (ELOVL fatty acid elongase 6)

hsa-miR-323a-3p -

hsa-miR-382-5p -

hsa-miR-199b-3p -

hsa-miR-654-5p FADS6 (fatty acid desaturase 6)
ELOVL1 (ELOVL fatty acid elongase 1)
hsa-miR-2110 ELOVL4  (ELOVL fatty acid elongase 4)
hsa-miR-432-5p -
hsa-miR-505-3p ELOVL4  (ELOVL fatty acid elongase 4)
hsa-miR-29a-3p ELOVL4  (ELOVL fatty acid elongase 4)
hsa-miR-19b-3p ELOVL5 (ELOVL fatty acid elongase 5)
hsa-miR-185-5p ELOVL4  (ELOVL fatty acid elongase 4)

ELOVL2 (ELOVL fatty acid elongase 2)
FAR1 (fatty acyl-CoA reductase 1)

hsa-miR-576-5p FAR2 (fatty acyl-CoA reductase 2)
hsa-miR-877-5p -

hsa-miR-29b-3p ELOVL4  (ELOVL fatty acid elongase 4)
hsa-miR-143-3p FADS6 (fatty acid desaturase 6)

FAR1 (fatty acyl-CoA reductase 1)
hsa-miR-7976 -
hsa-miR-5010-5p -
hsa-miR-4433b-5p -
hsa-miR-4433a-3p FABP7 (fatty acid binding protein 7)
ELOVL4  (ELOVL fatty acid elongase 4)
ELOVL2 (ELOVL fatty acid elongase 2)

Another representation for the integration results is based on relevance network for PLS
regression, showing simultaneously positive and negative correlations between the two
variable types (microRNAs, lipids). As can be seen in Figure 37, most of these

correlations were positive. Specifically, the highest positive correlations corresponded to
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these pairs of variables (FA (16:0) and FA (20:2) with hsa-miR-664, hsa-miR-432, hsa-
miR-421, and hsa-miR-450b-5p; FA (18:0) and FA (18:2) with hsa-miR-664, hsa-miR-421
and hsa-miR-450b-5p; FA (20:3) and FA (20:4) with hsa-miR- 664, hsa-miR-211, hsa-
miR-432, hsa-miR-329, hsa-miR-654, hsa-let-7a-3p, hsa-miR-29a-3p, hsa-miR-421, and
hsa-miR-450b-5p). On the other hand, the highest negative correlations corresponded to
the lipid TG (17:0/17:0/17:0) with some miRNAs (hsa-miR-664-3p, hsa- miR-2110, hsa-
miR-432-5p, hsa-miR-329-3p, hsa-miR-654-5p, hsa-miR-185-5p, hsa-let-7a-3p, hsa-miR-
576-5p, hsa-miR-29a-3p, hsa-miR-6894-3p, hsa-miR-421, hsa-miR-450b-5p).

2.4. Lipidomics and epigenomics in AD

From the univariate analysis, differences between groups were not obtained for miRNAs
nor individual lipids. In addition, the analysis between age/gender and biomarkers

levels showed no correlations for any miRNA or lipid analysed.
3. Discussion

Epigenomics and lipidomics analyses were carried out in plasma samples from early AD
patients, identifying microRNAs and lipids, respectively. From these results, integration
analysis was carried out in order to study associations between both compounds families;
toevaluate their potential relationship with early AD development; and identify the

potential pathways altered in early stages of the disease.

Some studies in literature are focused on multi-omics integration, mainly based on
proteomics and miRNAs [369]. However, few studies are focused on lipidomic and
miRNAs integration, which allow us to identify different biological activities
involved in cell communication [370]. In general, the integration of omics results
(lipidomics, metabolomics, proteomics, epigenomics) helps to give a global image of
the mechanisms involved in complex diseases [371]. Nevertheless, this field of
research is still underdeveloped in AD and few studies are based on this integration
[59].

In the present study, integration and selection of variables from each dimension
showed that some microRNAs (hsa-miR-494-3p, hsa-miR-6894-3p, hsa-miR-421 and
hsa-let-7a-3p) and some lipids (FA (20:3), FA (20:4), FA (16:0), FA (20:2), FA (18:2))
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had higher loadings in the regression model. Similarly, a previous study carried out
in plasma from amyloid positive and amyloid negative participants obtained a
signature of 71 miRNAs differentially expressed between groups, highlighting the
hsa-miR-421 and hsa-let-7a- 3p [372]. In addition, a previous study from Hojati et al.
revealed that hsa-miR-494-3p was slightly up-regulated in AD patients and that it was
related to metabolic and cellular response to stress pathways [373]; while Lv et al.,
found that levels of hsa-let-7a-3p were elevated in patients with early onset familiar
AD [374]. The up-regulation of hsa-let-7a-3p showed an increase in neurotoxicity in
AD cell model [375]. On the other hand, previous studies found several fatty acids
levels increased or decreased in AD [376,377]. Specifically, AD was related to lower
levels of myristic 14:0, palmitic 16:0, stearic 18:0 and oleic 18:1acid and a higher
proportion of linoleic acid 18:2n - 6 [376]. However, this study was limited to FAs from
14:0 to 22:6 and did not determine all lipidic profiles. In addition, Conquer et al.
described lower levels of phospholipid, PC 20:5n-3, DHA, total n-3 fatty acids, the
n-3/n-6 ratio and phospholipid 24:0 compared to controls [377]. Moreover, Conquer et
al. did not find differences for FA (20:3), FA (20:4), FA (20:2) and FA (18:2) in plasma
samples from AD, cognitive impairment, and patients with other neurodegenerative
diseases [377]. This discrepancy with the present results could be due to differences in
AD diagnosis methods, since the previous study did not use CSF biomarkers to
identify AD patients. Infact, these participants were classified by amyloid PET, and
biomarkers were measured in erythrocytes. In addition, erythrocyte fatty acid
composition varied according to disease development, showing differences between
AD and non-AD participants for FA (20:4) but not for FA (20:3), FA (20:2) nor FA
(18:2) [378].

Regarding correlations between microRNAs and lipids, and similarities among them
in each omics data group, they showed that most of these correlations were positive.
However, previous studies that correlated epigenomics (DNA hydroxymethylation)
and metabolomics showed more variety between positive and negative correlations [379].
More specifically, several studies in neurodegeneration revealed the interaction between
miRNAs expression and lipids regulation, mainly focussed on cholesterol metabolism
[380]. Jauouen et al. described miR-33 function modulating ABCAL1 and interfering

with AB plaque formation through cholesterol metabolism regulation [381]. In the
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present study, some miRNAs (miR-29a-3p, let-7a-3p, miR-576-5p, miR-185-5p, miR-
6894-3p, miR-5010-5p; for miR-29b-3p, miR-877-5p, miR-494-3p, miR-4433a-3p, miR-
4433b-5p; for miR-421, miR-450b-5p, miR-664a-3p, miR-432-5p, miR-654-5p, miR-
2110, miR-329-3p) were grouped reflecting their similarity. Taking into account previous
works, Kumar et al. found different miRNAs clustered expression, differentiating AD and
control participants (hsa-miR-4741, hsa-miR-4668-5p, hsa-miR-3613-3p, hsa-miR-5001-
5p, miR-4674) [382]. The discrepancies with present results may be due to the
difference in the diagnosis of the patients, since the study from Kumar et al. was not
based on CSF biomarkers. Moreover, Denk et al. showed clustered expression of
miRNAs in control, AD and frontotemporal dementia participants, showing that some
clusters included miRNAs from the same family, while others included different families
in the same cluster, as in the present study [383]. However, the set of analysed miRNAs
was limited. On the other hand, some lipids were grouped in the present paper (FA
(18:0)/FA (14:0)/FA (18:0)/FA (16:0)/FA (18:2); FA (20:3)/FA (20:4)/FA (18:2)/FA
(20:2)/FA (16:0)). In this sense, previous findings in an AD mice modelshowed different
lipids expression clusters along the disease progression (two, three, seven months),
showing mainly PEs in two months progression and a predomination of TG at seven
months [384]. In addition, Kumar et al. described the co-regulation of different lipid

sets, among which 17 were fatty acids [385].

Finally, the highest positive correlations between microRNAs and lipids were mainly
for hsa-miR-664, hsa-miR-432, hsa-let-7a-3p, hsa-miR-29a-3p, hsa-miR-421 and has-
miR-450b-5p with some fatty acids (FA (16:0), FA (18:0), FA (20:2), FA (20:3), FA
(20:4)). In general, the described miRNAs showed a positive correlation with fatty acids.
Of note, these miRNAs targeted sequences in genes implied in fatty acids metabolism.
In this sense, previous studies showed a relationship between AD and fatty acids
metabolism,demonstrating differential levels of fatty acids (FA (16:0), FA (18:0), FA
(18:1), FA (18:2), FA (20:4), FA (20:5), FA (22:6)) similar to the present results [386].
Regarding hsa-miR-421, it showed a positive correlation with some detected lipids (FA
(16:0), FA (20:2), FA (18:2), FA (20:4), FA (20:3), FA (18:0), FA (14:0)). Previous works
identified the relationship between this miRNA and lipid metabolism regulation,
specifically with triacylglycerol levels [387].0n the other hand, the highest negative
correlations corresponded to the triglyceride (TG (17:0/17:0/17:0)) with some miRNAs
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(hsa-miR-664-3p, hsa-miR-432-5p, hsa-miR-329-3p, hsa-miR-654-5p, hsa-miR-185-5p,
hsa-let-7a-3p, hsa-miR-576-5p, hsa-miR-29a-3p, hsa-miR-421, hsa-miR-450b-5p).
Similarly, in literature it was shown that hsa-miR-29a could regulate the lipoprotein lipase

(LPL) that catalyses hydrolysis of the triglycerides [388].

The main limitation of this study is the reduced number of healthy control patients.
However, the availability of biologically identified (CSF biomarkers) patients with
MCI due to AD provides a great potential in the identification of potential pathways
involved in early AD. Other limitations in this study are: (i) the analytical method is a
semiquantitative approach, (ii) the ApoE genotype has not been taken into account,

although it is known that ApoE is involved in lipid homeostasis.
4. Conclusions

The present study highlights the potential of a multi-omics approach in the
development of a signature of biomarkers of MCI-AD, as well as the description of
potential metabolic pathways involved in AD since its early stages. Specifically,
epigenomics and lipidomics integration allowed us to identify some associations
between microRNAs and lipids, showing their relationship with early AD
development. In fact, fatty acids impairment could be an important pathway involved
in early AD. However, further work based on targeted analysis should be carried out
in a larger cohort in order to validate these preliminary results, as well as to study the

proposed pathways in detail.
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General conclusions and outlook

1. OS and specifically lipid peroxidation seems to play a relevant role in AD from the
earliest AD stages (preclinical and MCI). In addition, these pathways could provide

biomarkers from minimally invasive samples (urine, plasma).

2. Some lipid peroxidation compounds (isoprostanes, neuroprostans, isofurantes,
neurofurans and dihomo-isoprostanes) have been determined satisfactorily in urine,

plasma and CSF samples employing newly validated analytical methods.

3. Multivariate linear and non-linear models developed including the levels of lipid
peroxidation compounds in urine and plasma samples are promising screening tools to
identify individuals with high risk of suffering from AD, especially the non-linear models

such as ANN.

4. The levels of lipid peroxidation compounds determined in plasma show a better
predictive capacity for AD compared to those in urine samples, despite the plasma levels
do not correlate with the CSF levels.

5. Lipid peroxidation compounds could be potential diagnosis biomarkers for AD in
preclinical stages, as well as potential differential diagnosis biomarkers, detecting patients
with AD among individuals with other neurodegenerative diseases, showingsimilar

clinical manifestations, or without cognitive impairment.

6. Plasma lipid peroxidation compounds levels are related to brain atrophy, cognitive

status of patients and the CSF AD standard biomarker levels.

7. Omics techniques (metabolomics, lipidomics, epigenomics) are useful tools for the
search of new biomarkers, as well as for advance in the knowledge of new pathological

pathways altered in AD.

8. Metabolomic analysis revealed pathways altered in early AD stages (neurotransmitters,
energy metabolism, lipids and amino acids). Also, other pathways with neuroprotective
or antioxidant effects could be activated in the initial stages of the disease as

compensatory mechanisms against the cellular damage.

9. The genotype ApoE is associated to lipid metabolomic profile and must be taken into

account as a modifying variable in lipidomic and metabolomic studies.
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10. Lipid metabolism is dysregulated in AD and plasma lipid profiling could help in AD

diagnosis.

11. Epigenomics (miRNA) analysis revealed a potential dysregulation of pathways such
as synaptic transmission, cell signalling, structure maintenance or cell metabolism in

early AD stages.

12. The integrated study of biomarkers of different nature (lipids, miRNAa) may provide
information about altered pathways in AD and thus provide new therapeutic targets.

Future work:

Lipid peroxidation compounds, metabolites, lipids and miRNAs in plasma samples have
shown potential as early AD biomarkers. However, to assess the usefulness of the
proposed biomarkers, a validation in an external cohort including general population

should be performed.

On the other hand, the diagnostic capacity of lipids, miRNAs and lipid peroxidation
compounds is not completely accurate due to the complexity of the disease. So, a wider
characterization of different pathological pathways of the disease would be required.
Therefore, one of the lines of future work would be a complete characterization of
patients, including OS and lipid metabolism pathways but also different proteinopathies

such as amyloid, Tau, neuroimaging patterns or omics profiles.

Moreover, the high degree of co-pathologies in neurodegenerative diseases, requires a
complete characterization of all pathological pathways in order to develop therapies that

could be applied specifically depending on the needs.
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New screening approach for
Alzheimer’s disease risk assessment
from urine lipid peroxidation
compounds

Carmen Pefia-Bautista, Claire Vigor?, Jean-Marie Galano?, Camille Oger?, Thierry Durand?,
Inés Ferrer’, Ana Cuevas®, Rogelio Lopez-Cuevas’ Miguel Baquero®, Marina Lépez-Nogueroles®,
Méaximo Vento(3?, David Hervas-Marin(%°, Ana Garcia-Blanco' & Consuelo Chafer-Pericas®

Alzheimer Disease (AD) standard biological diagnosis is based on expensive or i i es.
Recentresearch has focused on some molecular mechanisms involved since early AD stags, such

as lipid p idation. Therefore, a i ive screening approach based on new lipid peroxidation
compounds determination would be very useful. Well-defined early AD patients and healthy
participants were recruited. Lipid peroxidation compounds were determined in urine using a validated
analytical method based on liquid chromatography coupled to tandem mass spectrometry. Statistical

studies isted of the evaluation of two diff linear (Elastic Net) and non-linear (Random Forest)
regression models to discriminate b groups of particip Theregression models ﬁn-d to
the data from some lipid p idation biomarkers (isop

dihomo-isoprostanes) in urine as potential predictors of early AD. These predlctlon models achieved
fair validated area under the receiver operating characteristics (AUC-ROCs > 0.68) and their results
corroborated each other since they are based on different analytical principles. A satisfactory early
screening approach, using two complementary regression models, has been obtained from urine levels
of some lipid peroxidation compounds, indicating the individual probability of suffering from early AD.

Alzheimer’s disease (AD) is the main cause of dementia worldwide', and a continuous incidence increase is
expected in the next few years with the corresponding great social and economic impact’. Nowadays, the standard
diagnosis consists of specific neuroimaging procedures and biomarkers in cerebrospinal fluid (CSF)*4, with the
corresponding disadvantages of high cost and invasive sampling. In addition, available treatments have proven to
be more effective in early stages*®. Therefore, it would be very useful to develop an early and non-invasive screen-
ing model based on the individual risk to develop the AD.

In recent years, there is an increase body research about the involvement of oxidative stress since early AD
stages’™". Specifically, lipid peroxidation plays an important role in the development of AD due to the high
lipid composition of the brain, as well as its high oxygen consumption'”. In fact, Benseny-Cases et al. observed
co-localization of oxidized lipids with senile plaques'’, but also higher levels of oxidized lipids were found in
plasma from AD patients than healthy individuals'?. Among the lipid peroxidation products, isoprostanes (IsoPs)
are considered important potential biomarkers of brain damage in AD". Actually, high levels of F,-IsoPs were
found in CSF'***, as well as in plasma and serum from early AD patients'*"’. However, few studies have been
carried out in urine samples'**’ and most of them did not develop any statistical models for predicting AD.

The regression models constitute an important tool to predict the individual risk of suffering from AD. In
this sense, few AD predictive models using sophisticated statistical tools can be found in literature, and they are
based on CSF biomarkers or not validated analytical methods*'-**. In addition, most of them required expensive

*Neonatal Research Unit, Health Research Institute La Fe, Valencia, Spain. Institut des Biomolécules Max Mousseron,
IBMM, University of Montpellier, CNRS ENSCM, Montpellier, France. *Neurology Unit, University and Polytechnic
Hospital La Fe, Valencia, Spain. *Analytical Unit Platform, Health Research Institute La Fe, Valencia, Spain. *Biostatistical
Unit, Health Research Institute La Fe, Valencia, Spain. Correspondence and requests for materials should be addressed
toA.G.-B. (email: Ana.garcia-blanco @uv.es) or C.C.-P. (email: m..consuelo. chafer @uv.es)
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neuroimaging measures™, In this study we have developed regression models from lipid peroxidation biomarkers
in urine in order to obtain a non-invasive and early AD screening approach.

Materials and Methods
Study design and participants. Participants were from the Neurology Unit (University and Polytechnic
Hospital La Fe, Valencia, Spain). Their ages were between 50 and 75 years, and they were classified into early AD
(case group) (n=70) and healthy (control group) (n=29) accordmg to neuropsychologlcal tests, neuroimaging
(nuclear magnetic resonance, computerized axial graphy), and CSF bi (3-amyloid, total tau (t-Tau),
phosphorylated tau (p-Tau)).

The study protocol was approved by the Ethics Committee (CEIC) from Health Research Institute La Fe
(Valencia, Spain), the methods were carried out in accordance with the relevant guidelines and regulations, and
informed consent from all participants was obtained.

Lipidp idation c d: The i ? dards 5-F,-IsoP, 2,3-dinor-15-epi-15-Fy-IsoP,
15(R) 15 Fy-IsoP, 15-F,,- lsoP 15-E,-IsoP, 15- keto 15-Ey-IsoP, 15-keto-15-F,,-IsoP, prostaglandins PGE,,
PGF,,, and 1a,1b-dihomo-PGF,, and deuterated internal standard (IS) PGF,,-d, were from Cayman Chemical
Company (Ann Arbor, Michigan, USA). The standards of 10-¢pi-10-F,,-NeuroP, d,-10-epi-10-F,,-NeuroP, 4(RS)-
4-F,-NeuroP, 14(RS)-14-F,-NeuroP, 7(RS)-ST-A®-11-dihomo-IsoF, 17(RS)-10-epi-SC-A'*-11-dihomo-IsoF,
17-epi-17-F-dihomo-IsoP, 17-F,-dihomo-IsoP, and ent-7(RS)-7-F,-dihomo-IsoP, were synthesned at the
Institute of Bmmolecules Max Mousseron (IBMM) (Montpellier, France) by Professor Durand's team™.

The calibration curves were prepared by serial dilutions in H,0 (pH 3):CH;OH (85:15v/v) with CH;COOH
0.01%, in concentrations from 300 nmol L' to 0.004 nmol L' of each analyte.

Urine samples analysis. Urine samples (n=99) were collected in a sterile bottle and immediately stored

—80°C until analysis (~6 months). As stated in a previous study, no deterioration was observed for the lipid
peroxidation cnmpounds at long-term, since samples were not subjected to freeze-thaw cycles®. Then, they were
treated followi rocedure established in a previous work®. Briefly, samples were thawed on ice
and 5pL of the lmemal'standar solution (PI) (PGF,,-d, 10 pmol L' and d,-10-epi-10-F,-NeuroP 6 pmol L-')
were added to 1 mL of sample. Then, enzymatic hydrolysis was performed by adding the enzyme 3-glucuronidase
and sodium acetate buffer (100 mmol L', pH 4.9) and incubated for 2 hours at 37°C. Then, the reaction was
stopped and the enzyme was precipitated with cold methanol and chlorhydric acid (37%, v/v) and centrifuged
for 10min (14000 g 4 °C). The supernatant pH was adjusted to 6-7 with sodium hydroxide (2.5molL™"). Then, a
cleaning and pre-concentration step was carried out by solid-phase extraction (SPE). For this, the cartridges were
first conditioned with methanol and H,0, then the samples were loaded into the SPE cartridge and the cartridge
was washed with ammonium acetate (100 mmol L', pH 7) and heptane. Elu(iun was carried out with 2 x 500pL
of methanol (5% v/v CH;COOH). After that, the samples were evap din the vacuum and recon-
stituted in 100 uL of H,O (pH 3):CH,OH (85:15 v/v) containing 0.01% (v/v) CH;COOH. Pmally. the samples
were injected intoa chromatographlc system (UPLC-MS/MS).

The results were standardized by the creatinine levels measured using a colorimetric kit (MicroVue creatinine
EIA) and a spectrophotometer.

Chromatographicsystem. The chromatographic system consisted of a UPLC system (Waters Acquity)
coupled to a Xevo TQD system mass spectrometry system (Waters, United Kingdom). The conditions used were:
ionization in negative mode (ESI-), capillary tension 2.0kV, source temperature of 150°C, desolvation tempera-
ture of 395 °C, gas flow of the nitrogen cone of 150 Lh~', and desolvation ﬂow 0(800 Lh-%

The LC conditions were selected to achieve appropriate ch and resolution by using a
Cy5 column (2.1 x 100 mm, 1.7 um) (Acquity UPLC BEH, Waters). Mobile phases consisted of water (0.01% v/v
CH,COOH as mobile phase A) and acetonitrile (0.01% v/v acetic acid as mobile phase B). The temperatures of
the column and the autosampler were set at 55°C and 4°C, respectively. The injection volume was set at 8 uL and
the flow rate was set to 0.45mL min . A total 8.5 min elution gradient was performed. It consisted of 0.5 min with
eluent composition at 80% A and 20% B, which was gradually changed to 55% A and 45% B at 6 min; then B was
increased to 95% along 0.2 min, and kept constant for 0.8 min. Finally, the mobile phase composition returned to
the initial conditions, and it was maintained for 1.3 min for system conditioning.

The detection was performed by multiple reaction monitoring (MRM) using the acquisition parameters
obtained in a previous work®.

Statistical analysis. Data were summarized using median and interquartile range (IQR) in the case of con-
tinuous variables, and with relative and absolute frequencies in the case of categorical variables (Table 1). Prior
to modelling, variables were log-transformed to avoid potential strongly influential outliers due to the highly
skewed nature of some variables (Fig. S1 in Supplementary Material). Then, a logistic regression model based on
elastic-net-penalized was developed including gender and age as covariates. The penalization parameter lambda
was selected by performing 500 replications of ten-fold cross validation. The minimum cross-validated error
was selected on each replication and the median from the selected lambda values was considered the consensus
lambda. Since the minimum lambda value was used, an alternative variable selection method was performed as
a sensitivity analysis. This alternative analysis consisted on a random forest using the Altmann ef al. method*’.
The final elastic net model was validated using bootstrap validation. For this, the procedure of Steyerberg et al.
was followed®. Statistical analyses were performed using the softwares R (version 3.5.0), the BootValidation R
(version 0.1.3), glmnet R (version 2.0-16), and ranger (version 0.9.0).
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Age (years) (median (IQR) 70.5(68,74) 66 (62, 72)
Gender (female) (n (%)) 28 (40%) 18 (62%)
Secondary Studies (n (%)) 10 (14%) 10 (34%)
Alcohol consumption (yes) (n (%)) 6(8%) 6(21%)
Smoking status (yes) (n (%)) 8(11%) 1(3%)
Medications (yes) (n (%)) 54(77%) 18 (62%)
Comarbidity (yes) (n (%)) 53 (76%) 18 (62%)
*RBANS.DM (median (IQR)) 44 (40,49) 100 (91, 106)
*CDR (median (IQR)) 05(05,1) 0(0,00
“FAQ (median (IQR)) 7(3,13) 0(0,0)
“MMSE (median (IQR)) 22(18,26) 30 (28, 30)
CSF Amyloid 3 (pg mL ) (median (IQR)) 568 (441,668) 1227 (1143, 1144)
CSF t-Tau (pg mL ) (median (IQR)) 553 (377,790) 208 (141, 333)
CSF p-Tau (pg mL ) (median (IQR)) 88(71,116) 51(38, 70)
‘Temporal atrophy (yes) (n (%)) 51(72%) 2(7%)
Depression (yes) (n (%)) 9(13%) 3(10%)

Table 1. Demographic and clinical variables of the study participants. IQR: Interquartilic range. ‘RBANS-DM,
Repeatable Battery for the Assessment of Neuropsychological Status- Delayed Memory (Standard Score; cut-
off point <85). "CDR, Clinical Dementia Rating, values: 0, 0.5, 1, 2. ‘FAQ, Functional Activities Questionnaire
(Direct Score; cut-off point >9). MMSE, Minimental State Examination.

15(R)-15-F - IsoP 072(0.5,1.56) 07 (0.48, 094)
PGE, 1.98(0.62,35) 1.69 0,93, 4.26)

15-keto-15-E, - IsoP 093(053,147) 102 (065, 154)

15-keto-15-F, -IsoP 084(0.22,194) 133(058,2)

23-dinor-15-¢pi- 15-F, -IsoP 078 (0.53,122) 0,65 (0.47, 1.09)

15-E, -1soP 023 (0.06,131) 0.16 (007, 058)

5.F,-IsoP 267(1.68,507) 237 (1.76,337)

15-F, -lsoP 001 (0,0.02) 0.01(0,0.02)

PGE,, 372(2.79,732) 338(235,5.17)

4(RS)-4-F,-NeuroP 089 (0.67,136) 072(05,1.01)

13, Ib-dihomo-PGF,, 133 (0.64,2.48) 1.67 (1.05,2.23)

10-¢pi-10-F,-NeuroP 0,03 (0,0.06) 001 (0,0.05)

14(RS)-14-F,-NeuroP 121(0.76,2.16) 127(0.74, 194)
ent-7(RS)-7-F,-dihomo-IsoP 033(0.14,063) 0.28 (0.19, 036)

17-F,-dihomo-IsoP 0,09 (0,0.38) 0.11(0,0.26)

17-¢pi-17-F,-dihomo-IsoP 001 (0,007) 0(0,0)

17(RS)-10-¢pi-SC-A*-11-dihomo- IsoF 003(0,0.1) 0,05 (0.03, 0.08)
7(RS)-ST-A*-11-dihomo-IsoF 0(0,002) 0(0,0.03)
Table 2. Conc ions of lipid peroxidation biomarkers in urine samples. IQR, inter-quartile range; IsoP,
isoprostane; dihomo-IsoP, dihomo-isoprostane; dihomo-IsoF, dih isofi NeuroP, P
Results

Participants’ characteristics. Table 1 shows the demographic and clinical data for both groups. Small dif-
ferences were shown for age and gender between groups, so these variables were considered covariates. Regarding
the neuropsychological variables (Clinical Dementia Rating (CDR), Repeatable Battery for the Assessment of
Neuropsychological Status (RBANS), Functional Activities Questi ire (FAQ), Mini | State E inati
(MMSE) and biological measures (CSF 3-amyloid, CSF t-Tau, CSF p-Tau, temporal atrophy) used in the standard
diagnosis, they showed significant differences between groups. However, the demographic variables (age, gen-
der, studies, alcohol, smoking status, medication and comorbidity) did not show statistical differences between
groups.
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Figure 1. Box-Plot of the differences in different lipid peroxidation analytes levels between early AD (case) and
healthy (control) groups.

Determination of urine lipid peroxidation biomarkers.  Urine levels of lipid peroxidation compounds
obtained for each group are shown in Table 2. Some of them (5-F,,-IsoP, 2,3-dinor-15-epi-15-F,-IsoP, 15-E-IsoP,
PGE,, PGF,, 10-¢pi-10-F,,-NeuroP, 4(RS)-4-F,-NeuroP, ent-7(RS)-7-F,-dihomo-IsoP) showed higher levels in
early AD patients than in healthy controls, and some analytes (15-keto-15-E,-IsoP, 15-keto-15-F,-IsoP) showed
lower values in the case group than in the control group. Figure 1 shows the box plots for each analyte.

Screening model from urine lipid peroxidation biomarkers. The elastic net model selected five var-
iables corresponding to one isop one p onep glandin and two dihomo-isoprostanes
shown in Table 3. The model also included gender and age, which were introduced as covariates. These predictor
variables were combined as it is indicated in the formula below in order to estimate the individual probability (Pr)
of suffering from AD.

o 4187404634 female +0.064+age —0.13+(4)+0.6224(B) ~0.048+(C) +0.554(D) + 0.072 +(E)

).
Pr(Y] 1 + ¢ 18720463 female +0.064 +age—0.13+(4) 0,622+ (B) —0.048+(C)+0.554+ (D) +0.072+(E)
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Gender (female) 0463 0.17 0.08*
Age 0.064 1.09 0012*
15-Keto- 15-F,,-IsoP 013 071 0043%
4(RS)-F,,-NeuroP 062 0.74 0.046%
1a,1b-dihomo-PGF,, —0.048 0.73 0.035*
ent-7(RS)-7-F,,-dihomo-IsoP 055 0.64 0.044*
17-¢pi-17-F,-dihomo-IsoP 0072 058 0.029%
10-¢pi-10-F,,-NeuroP 0 048 0075
17-F,,-dihomo IsoP 0 035 0.133
17(RS)-10-¢pi-SC-A'*-11-dihomo-IsoF 0 0.21 0219
15-E, -IsoP 0 0.17 0293
5-F,-IsoP 0 0.14 0325
23-dinor-15-¢pi- 15-F,,-1soP 0 0.11 0381
15(R)-15-F,-IsoP 0 0.10 0379
PGE: 0 0.08 0405
15-keto-15-E,,-IsoP 0 0.05 0436
7(RS)-ST-A*-11-dihomo-IsoF 0 —0.08 0636
PGF,,, 0 ~0.09 0603
14(RS)-14-F ,-NeuroP 0 -0.25 0755

Table 3. Results of the elastic net and random forest analyses. Coefficients of the elastic net model are
interpreted as log-odds, so negative values indicate a negative association between higher concentration levels
and risk of disease and positive values indicate a positive association between higher concentration levels and
risk of disease. Importance values and p-values for random forest are derived from the gini index using Altman
method.

04 06 08 10

Sensitivity/Specificity

02

R J — Sensitivity ---- Specificity

T T T T T

05 06 07 08 09
Threshold

Figure 2. Sensitivity and specificity profile plot. The line depicts the relationship between the
probability threshold set in the model’s prediction and its corresponding sensitivity and the dashed line
represent the relationship between the probability threshold and the specificity.

A: 15-keto-15-F,,-IsoP; B: 4(RS)-4-F,-NeuroP; C: 1a,1b-dihomo-PGF,,; D: ent-7(RS)-7-F,~dihomo-IsoP; E:
17-epi-17-F,-dihomo-IsoP

The alternative analysis using random forest selected the same five variables as the most important ones (Table 3),
and they were also all considered statistically significant by the Altmann method”. Classification performance of the
models was assessed using bootstrap in the case of elastic net and by the Out of Bag (OOB) estimate in the case of
random forest. Bootstrap validated area under the receiver operating characteristics (AUC-ROC) for the elastic net
model was 0.682 and OOB accuracy for the random forest model was 0.71, so their performance can be considered
similar. Remarkably for the elastic net results, the sensitivity and specificity profile shows a sharp decrease of the sen-
sitivity values as the specificity increases, forcing a decision between high sensitivity (0.97) at a cost oflow specificity
(0.31) or high specificity (0.93) at a cost of mediocre sensitivity (0.5) (Fig. 2).
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Discussion

The reliable determination of lipid peroxidation products levels in urine samples from well-defined healthy and
early AD participants, and the satisfactory classification performance of two complementary regression models
allowed to develop an early and non-invasive screening model to identify individuals with high risk to develop

the AD.
The role of lipid peroxldauon in AD dcvelopmem has been largely studied'?, but few studies have been carried
out determining isop astarget in AD'"*. In addition, the analytical methods used in most

of these works were based on commercial kits or immunoassays what is associated to low specificity on isomers
determinations™. Nevertheless, in the present study a previously validated analytical method based on mass spec-
trometry detection has been used, pmvxdmg hlgh selectivity and sensitivity, as well as high reliability to determine
ly several isop ids isomers?®,

Reg g the develop of early and invasive di is, urine could be considered a promising
matrix. However, few studies in literature have focused on this matrix*" . Specifically, in the present work some
compounds (PGE,, 2,3-dinor-15-epi-15-Fy-IsoP, 15-E-IsoP, 5-Fa-IsoP, PGF,,, 10-epi-10-F,-NeuroP, 4(RS)-
4-F,-NeuroP and 17-¢pi-17-F,-dihomo-IsoP) showed higher concentrations in urine from AD patients than in
healthy participants. Similarly, previous studies showed higher levels of some F,-IsoPs in urine from patients with
AD than in the control group'®-*. However, further studies to dinically validate these potential biomarkers, using
a larger number of samples from well- defmed pamclpants and predictive models are required.

In this work, two alternative mod with ¢ letely different characteristics were used. First,
elastic net logistic regression is based on standard d linear gression models, thus assuming linear-
ity of the relationship between predictors and the Iinear predictor, no interactions are assessed and the results
are fully interpretable as in a standard logistic regression. On the other hand, random forest is a non-linear
non-parametric model, that enable the assessment of higher order interactions between variables at a cost of
lower statistical power compared to elastic net model when the relationship is linear****, Random forest does not
provide an interpretable model, but provides alist of the most important variables in predicting the response. The
fact that both methods obtained very similar results, provides robustness to our results.

Inliterature, few AD predictive models using these sophisticated statistical tools can be found® -, and most
of them are based on neuroimaging measures**. However, none of them were based on non-invasive determina-
tion of lipid peroxidation biomarkers in early AD patients.

The diagnostic indexes obtained from both models indicated that the results could constitute a satisfactory
screening approach from early AD stages with the consequent benefits for patients and health public system. In fact,
the high sensitivity obtained would allow a reliable identification of high-risk patients in the early stages of AD, and
they would be derived to a method with higher specificity to rule out false positives'”. Nevertheless, further dinical
validation using an external cohort of participants would be required in order to obtain a reliable diagnostic model.

Regarding the study limitations, the low number of controls compared to cases would be explained by the dif-
ficulty to obtain healthy participants with CSF biomarkers. Also, we did not include participants with other sim-
ilar dementias, so differential AD diagnosis was not achieved. Further clinical validation work will be developed
by including a higher number of controls, as well as patients with similar pathologies. In addition, a follow-up
study will be carried out in order to evaluate the variation of these compounds levels along the time.

Conclusion

A set of new lipid peroxidation biomarkers has been determined in urine samples from well-defined participants
(early AD, health{) by means of a previously validated analytical method. So, reliable results have been obtained
and used to devel early and g model in order to identify potential indi-
viduals with high nsk of suffering AD, although it could not be considered AD specific. For this, two different
regression models (linear, elastic net; non-linear, random forest) were developed, obtaining similar performance
in terms of variable selection and accuracy, in spite of being based on different analytical principles, and so pro-
viding robustness to the results.

Data Availability
The datasets generated during the current study are available from the corr
quest.
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ABSTRACT
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Diagnostic model

Introduction: Alzheimer Disease (AD) standard diagnosis is based on evaluations and biomarkers that are non-
specific, expensive, or requires invasive sampling. Therefore, an early, and non-invasive diagnosis is required. As
regards molecular mechanisms, recent research has shown that lipid peroxidanun plays an nmponam role.
Methods: Well-defined participants groups were recruited. Lipid i i in
plasma using a validated analytical method. Statistical studies consisted of an elastic-net- penahzed logistic re-
gression adjustment.

Results: The regression model fitted to the data included six variables (lipid peroxidation biomarkers) as po-
tential predictors of early AD. This model achieved an apparent area under the receiver operating characteristics
(AUC-ROCs) of 0.883 and a bootstrap-validated AUC-ROC of 0.817. Calibration of the model showed very low

deviations from real probabilities.

Conclusion: A sati y early di

ds the i

ic model has been obtained from plasma levels of 6 lipid peroxidation

1. Introduction

Alzheimer disease (AD), is a complex and clinically heterogeneous
pathologic entity [1-3]. Structural and functional changes are already
present in the early symptomatic phase of the disease,

of suffering from early AD.

contraindications and secondary effects which is commonly not ac-
cepted by patients [4,5]. Besides, amyloid PET testing is a very ex-
pensive imaging procedure not suitable in most environments. Early
diagnosis is a growing demand on common practice in order to achieve
better both in terms of treatment and prognosis. There-

known as Mild Cognitive Impairment (MCI), and even in preclinical
phases. Diagnosis of AD is based on neurocognitive performance ex-
amination, mainly leading to clinical staging, and complementary ex-
plorations, as neuroimaging techniques, and cerebrospinal fluid (CSF)
specific analysis. Neuroimaging features cannot be specific in nature,

fore, an early, cost-effective and non-invasive diagnosis is required [6].
For these reasons, it would be advisable to determine specific and re-
liable AD biomarkers in common biological samples that allowed early
AD diagnostic.

stress (OS) plays an

like brain atrophy or brain hyp bolism, when ible. Specific
hallmarks of disease can only be demonstrated by CSF analysis or
amyloid positron i (PET). The ination of the
42-amino-acid variant of amyloid f§ (B-amyloid 1-42), total tau (t-tau),
and phosphorylated-tau-181 (p-tau) proteins in CSF samples allows
reliable, sensitive, and specific diagnosis of AD. However, CSF samples
are obtained by lumbar puncture, an invasive procedure with several

* Corresponding authors.

role in d ative diseases [7,8]. In fact, OS is an

ib to infl icity, and cell death in
AD [9-11], and some oxidation products have been studied as possible
early disease indicators [12]. In this sense, redox proteomics studies
showed differences between AD and healthy groups for some metabo-
lites like a-enolase and aldolase [13]. Also, Puertas et al. [14] found a
decrease function in the antioxidant system, and higher levels of
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thiobarbituric acid reactive substances and carbonyl proteins in AD
patients than in the control group. Similarly, Sliwinska et al. found an
increased level of 8-oxoguanine in serum from AD patients [15]. Of
note, lipid peroxidation shows a close relationship to AD since the brain
is a susceptible organ due to its high lipid composition and high oxygen
consumption [16].

According to lipid studies, a ip with AD was
observed for such as lip in-like and iso-
prostanes (IsoPs, products from araquidonic acid oxidation) [17,18].
Actually, significant correlation between F-IsoPs (13,14-dihydro-15-
keto-PGF2q, 15-F2-IsoP) and B-amyloid was observed in CSF samples
from MCI patients [19-21]. Nevertheless, taking into account the
higher permeability of the blood-brain barrier since early AD stages
[22], some lipid peroxidation compounds (15-F,,-IsoP, 5-F,-IsoP, dinor
TXB,) have been determined in plasma and urine samples showing
increased levels in AD and MCI patients versus healthy group [23-25].
Nevertheless, other studies did not find differences in the plasma and
urine F,-IsoPs levels between healthy, MCI and AD patients [26], as
well between AD, Parkinson Disease (PD) and control group [27], or
lower urinary levels were found in MCI group [28]. Therefore, more
studies using well-defined groups (age, gender, comorbidity...), vali-
dated analytical methods and higher number of participants are re-
quired to draw conclusions.

The aim of this study is to evaluate the diagnostic performance of
lipid peroxidati ds as early AD bi kers in plasma sam-
ples from a well-defined patient’s group. To our knowledge this is the
first potential diagnostic model obtained fmm the reliable determina-
tion of lipid p id; rk p g a validated analytical
method.

2. Materials and methods
2.1. Study design and participants

A prospective observational study was carried in the gy Unit

Free Radical Biology and Medicine 124 (2018) 388-394

Table 1
ic and clinical and bi kers levels of the partici-
pants.
Variable Case (n = 68)  Control
(n = 26)
Age (years) (median (IQR)) 71 (68, 74) 66 (62.25,
71.5)
Gender (female) (n (%)) 39 (57.35%) 9 (34.62%)
Studies levels (n Primary 31 (45%) 14 (53%)
) Secondary 15 (22%) 5 (20%)
Academic 22 (33%) 7 (27%)
Alcohol consumption (yes, n (%)) 9 (13%) 6 (23%)
Smoking status (n Yes 10 (15%) 2 (8%)
(%)) Former smoker (more 11 (16%) 8 (31%)
than 10 years)
Medications (n (%)) 54 (79%) 18 (69%)
Comorbidity (n(%))  None 15 (22%) 8 (31%)
Dyslipemia 17 (25%) 6 (23%)
Heart disease 1.01%) 0 (0%)
Arterial hypertension 8 (12%) 6 (23%)
“Two or more 23 (34%) 3(11,5%)
Others 4 (6%) 3(11,5%)
Triglycerides (median (IQR)) 90 (7555, 120)  94.5 (8375,
113.75)
Cholesterol (median (IQR)) 1955 (171.25, 2025 (193,
220) 237)
CRP (median (IQR)) 0(0, 1.3 0(0,0)
RBANS.DM (median (IQR)) 44 (40, 49) 100 (91.25,
105.25)
'CDR (median (IQR)) 05 (05,1) 00,0
‘FAQ (median (IQR)) 8(3,13) 0(0,0)
CSF Amyloid B (pgmL™ ") (median (IQR)) 565 (444.5, 1197 (1150,
673) 1423.5)
CSF total Tau (pg mL ") (median (IQR)) 543 (386.5, 208 (142, 326)
788.5)
CSF phosphorylated Tau (pgmL ") (median 87 (71.5,108) 52 (41, 68.5)
(IQR)
Temporal atrophy (n (%)) 51(79.69%) 2 (8%)
Depression (n (%)) 18 (28.57%) 4 (15.38%)

of the University and Polytechnic Hospital La Fe, Valencia (Spain). The
eligible participants were people between 50 and 80 years old who
suffered from MCI due to AD (case group), and healthy individuals
(control group). Patients were recruited from the out-patient Neurology
Unit and healthy individuals from a i For the
case group, criteria eligibility included positive cognitive impairment,
without impaired daily living activities, and with positive biomarkers
(neuroimaging, CFS amyloid, CSF tau); and for the conlrol gmup,
people with absence of cognitive di

adverti

IQR: inter-quartile range.
CRP: C-reactive protein.
CSF: cerebrospinal fluid.
* RBANS-DM, Repeatable Battery for the Assessment of Neuropsychological
Status- Delayed Memory (Standard Score; cut-off point < 85).
" CDR, Clinical Dementia Rating, values: 0, 0.5, 1, 2.
© FAQ, Functional Activities Questionnaire (Direct Score; cut-off point > 9).

dementia of Alzheimer type among patients with MCI [34]. Biochem-

im-
pairment, and negative impaired functionality). The exclusion criteria
included other known neurological impairments (stroke, brain tumour,
severe head trauma, epilepsy, brain injury, multiple sclerosis...) or
major psychiatric disorders (major depressive disorder, bipolar dis-
order, schizophrenia...), as well as patients with moderate to severe
dementia, major sensory impairment or an invalidating previous pa-
thology.

Current criteria employed to diagnose AD are based on recent re-
visions of the National Institute on Aging-Alzheimer's Association (NIA-
AA) [29,30]. According to this, the standard clinical assessment used in
this study is shown in Electronic Supplementary Material Table S1, and
it was based on neuropsychological testing, slmctural neuroimaging by
nuclear magnetic (NMR) or d axial
(CAT), and CSF biomarkers. Neuropsychological testing included

(

cognitive Battery for
A of P logical Sta(us, RBANS-MR) [31], daily
function (Functionality ire, FAQ) [32] and

global state (Clinical Dementia Raung, CDR) [23]. Neuroimaging,
based on a 3-tesla NMR in the Radiology Service, add lusion of
structural causes of dementia such as tumours, vascular lesions and
others, and they allow the detection of whole brain and hippocampal
atrophy; medial temporal atrophy is a useful marker of progression to

ical de of CSF bi (amyloid B, t-tau, p-tau) indicate
the abnormal amyloid and tau proteins pmcssmg [35,36]. From
1-10 mL of CSF were collected under dardized procedure of lumbar

puncture at 8a.m. after overnight fasting. Amyloid B, t-tau and p-tau
were measured by Innotest Ehsa kit (Fujirebio Dlagnomcs, Ghent,
Belgium) using a fully d system (Lumipulse G, i

‘The Ethics Committee (CEIC) at the Health Research Institute La Fe
(Valencia) approved the study protocol and informed consent was ob-
tained from all the participants. They were recruited between January
2017 and July 2017, and classified into control (n = 26) and case
(n = 68) groups. The characteristics of participants in this study are
summarized in Table 1.

2.2. Materials

As regards the lipid peroxidation products, standards of IsoPs and
prostaglandins used for calibration include 15(R)— 15-F-IsoP, 2,3-
dinor-15-epi-15-F-IsoP, 5-Fu-IsoP, 15-keto-15-Ex-IsoP, 15-keto-15-
Fy-IsoP, 15-E,-IsoP, 15-F,-IsoP, 1a,1b-dihomo-PGF,,, PGE,, and
PGF,,, as well as the deuterated internal standard (IS) PGF,,-D, and
they were purchased from Cayman Chemical Company (Ann Arbor,
Michigan, USA). The other dards cor ding to P
( ), dih (dih 1 ")and““ isoft
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(dihomo-IsoFs) (7(RS)-ST-A%-11-dihomo-IsoF, 10-epi-10-Fs-NeuroP,
D,4-10-¢pi-10-F,,-NeuroP, 4(RS)-F,,-NeuroP, 17-epi-17-F,,-dihomo-IsoP,
17-F,-dihomo-IsoP,  17(RS) — 10-epi-SC-A'°-11-dihomo-IsoF,  ent-
7(RS) = 7-F,-dihomo-IsoP, 14(RS)— 14-F,-NeuroP) were synthesized
by Durand's team at the Institute des Biomolécules Max Mousseron
(IBMM) (Montpellier, France) [37-41].

The centrifuge (multiSPIN) used was from Cleaver Scientific Ltd.
(Warwickshire, United Kingdom) and the vortex mixer was from Velp
Scientifica (Usmate, Italy). The speed vacuum concentrator (mi Vac)
was from Genevac LTD (Ipswich, United Kingdom). The thermomixer
HLC was from Ditabis (Pforzheim, Germany). The Strata X-AW
(100 mg, 3mL) solid phase extraction cartridges used for sample solid-
phase extraction (SPE) and the SPE 12-position vacuum d were

Free Radical Biology and Medicine 124 (2018) 388-394

(18 lipid peroxidation compounds in plasma and 3 biomarkers in CSF)
were assessed by constructing a correlation network based on the
spearman correlation matrix of the variables. Correlations with an ab-
solute value under 0.3 were excluded from the network to avoid
spurious effects.

Prior to modelling, variables with near zero variance were excluded
(1a,1b-dihomo-PGF», and 2,3-dinor-15-¢pi-15-F»-IsoP). With the re-
maining variables, an elastic-net-penalized logistic regression model
was adjusted. Elastic net is able to perform variable selection at the
same time of model fitting and produces parsimonious predictive
models. This property improves generalization of the model to new dam
by avoiding overfitting. It is an ad variable sel

from Phenomenex (Madrid, Spain).
2.3. Sample collection and treatment

Plasma samples were collected from peripheral blood employing
cryo-tubes with ethylenediaminetetraacetic acid. Then they were cen-
trifuged for 10 min at 2000g and room temperature. Plasma was sepa-
rated in a tube (BHT) (0.25% (w/
v) in ethanol) to avoid further nxldauon of the sample. Afterward,
samples were frozen at — 80 °C until analysis.

The sample treatment consisted of the addition of 5 pL of an internal
standard solution (PGF,,-D; 2pmolL’ and D,-~10-epi-10-F,-NeroP
1.2 umol ') and 400 pL of a potassium hydroxide solution (15% w/v)
to 400 pL of plasma to carry out the hydrolysis (40 °C, 30 min). After
that, the samples were placed on ice, diluted with 1 mL of H,0 (0.01%
v/v acetic acid), acidified with hydrochloric acid (37%) and centrifuged
for 10 min (5000g, 4 °C). Then, the supernatant final pH was adjusted to
7 by adding NaOH 2.5mol L. For clean-up and pre-concentration, a
solid-phase extraction (SPE) procedure using Strata X-AW cartridges
was carried out [28]. Briefly, SPE cartridges were ditioned (1 mL

to other used methods such as stepwise algo-
rithms or univariate screening, which suffer from many consistency
problems [42]. Age and gender were included in the models as cov-
ariates. ion of the i lambda, which controls
the complexity of the model by decreasing the number of variables
included in the model as it grows larger, was performed by estimating
the bias-variance error curve of the population using 500 replications of
ten-fold cross validation. The lambda value at one standard error from
the minimum cross-validated error was selected on each replication and
the median from the selected lambda values was chosen as the con-
sensus lambda. The fitted elastic net model performance measured as
optimism corrected AUC was b llowing the
procedure of Smith et al. [43]. Statistical analyses were performed
using R (version 3.4.3) and the BootValidation R (version 0.1.3) and
glmnet (version 2.0-13) R packages.

using

3. Results

3.1. Patients’ characteristics

methanol, 1 mL H,0), then the sample was loaded and it was washed
(1 mL ammonium acetate buffer (0.1 mol L', pH 7) and 1 mL heptane).
Elution was carried out with 2 x 500 uL. CH30H (5% (v/v) acetic acid).
After that, eluted samples were evaporated in a speed vacuum con-
centrator and reconstituted in 100 uL of H,O (0.01% acetic acid (v/
v)):CH,0H (85:15 v/v). Finally, they were injected in the chromato-
graphic system.

2.4. Analytical method

The analytical method d of liquid c!

coupled
to tandem mass spectrometry (UPLC-MS/MS). The c i

D hic, clinical and CSF biomarker data for both groups are
summarized in Table 1. Age and gender showed small differences be-
tween groups, so they were included in the predictive model as cov-
ariates. As expected, RBANS, CDR, FAQ, B-amyloid, t-tau and p-tau
were clearly different between both groups. C-reactive protein (CRP)
was also different, with the AD patients displaying higher values. De-
pression was similar between both groups.

3.2. Analytical method validation

The analytical method showed an adequate linearity for all the
analytes within the corresponding concentration ranges and coefficients

system used was a Waters Acquity UPLC-Xevo TQD system (Milford,
MA, USA). The opti mass sp ry (MS/MS) conditions were:
negative electmspray lomzauon (ESI), capillary voltage 2.0kV, source
150°C, 395°C, nitrogen cone and
desolvation gas flows were 150 and 800Lh", respecnvely, and dwell
time was 10 ms. The MS/MS in
Electronic Supplementary Material Table sz An Acquxty UPLC BEH C,g
column (2.1 x 100mm, 1.7 um) from Waters was used, and mobile
phase consisted of water with 0.01% v/v acetic acid (A) and acetonitrile
with 0.01% v/v acetic acid (B). The flow rate was 0.45mLmin", the
column temperature was 55°C and the injection volume was 8ulL. A
total 8.5 min elution gradient was performed as follows: during the first
0.5 min eluent composition was set at 80% A and 20% B, which was
linearly changed to 55% A and 45% B from 0.5 to 6 min; then the
proportion of B was increased to 95% in the next 0.2min and kept
constant for 0.8 min until minute 7. Finally, the initial conditions were
recovered and maintained for 1.3 min for column conditioning.

2.5. Statistical analysis

As descriptive analysis, correlations among the different variables

of (R?) ranged between 0.990 and 0.999. It also provided
suitable with intra-day and inter-day of variation
of 2-11% (n = 3) and 5-13% (n = 6), respectively (at medium con-
centration level within the linearity interval). The limits of detection
(signal to noise ratio of 3) obtained for each analyte ranged between
0.02 and 2nmolL", and the limits of quantification (signal to noise
ratio of 10) were between 0.07 and 8nmol L.

The accuracy of the method was evaluated by analyzing standard
solutions and spiked plasma samples containing the analytes at dif-
ferent concentration levels. In all the cases, the proposed method pro-
vided values close to the real concentrations, and matrix effect was
considered negligible (see Table S3 in Electronic Supplementary
Material), with the exemption of 15-keto-15-E,,-IsoP, for which only a
semi-quantitative determination was achieved.

3.3. Determination of plasma lipid peroxidation biomarkers and correlation
analysis

Plasma levels of lipid peroxidation compounds are shown in
Electronic Supplementary Material Table S4. Some of them
(15(R) — 15-F5-Is0P, 15-keto-15-Ey,-IsoP, 15-keto-15-Fy,-IsoP, 15-Ey-
IsoP, 4(RS)-Fs-NeuroP and ent-7(RS)— 7-Fz-dihomo-IsoP) showed
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Fig. 1. Box plot graphs representing the concentration in plasma samples for each analyte in case and control groups. Boxes represent the 1st and 3rd quartiles, the
black lines the median, and whiskers encompass from 1st quartile — 1.5 times the interquartile range to 3rd quartile + 1.5 times the interquartile range (* p < 0.01,

“*p < 0.001).

higher levels in AD patients than in healthy controls. Fig. 1 shows the
same results by means of box plots for each analyte, and some analytes
showed lower values in the case group than in the control group
(PGF2q, 5-Fa-150P, 7(RS)-ST-A®-11-dihomo-IsoF).

Correlation analysis among the plasma lipid peroxidation bio-
markers and the CSF biomarkers (B-amyloid, t-tau and p-tau) was
carried out by constructing a correlation network (Fig. 2). Red lines
represent positive correlations while blue lines show negative correla-
tions. Besides, the width of the line corresponds to the strength of the
correlation. The figure shows an evident association between the CSF
biomarkers (tau, p-tau, f-amyloid) and some plasma analytes, such as
15(R)-15-F,,-IsoP formed from the arachidonic acid peroxidation, and
ent-7(RS)-7-F,,-dihomo-IsoP formed from the adrenic acid p idati

as the correlation between 15-Ey-IsoP and 15-keto-15-Fu-IsoP (Fig. 2).
Also, some negative correlations were found between the prostaglandin
PGF,, and both 17-pi-17-F,-dihomo-IsoP and 4(RS)-F,-NeuroP.
However, 14(RS)-14-F,,-NeuroP does not show any correlation with the
other compounds.

3.4. Diagnostic model from plasma lipid peroxidation biomarkers

The elastic-net logistic regression model fitted to the data selected
six variables as potential predi of AD. The model was also forced to
include age and gender as covariates. These predictors were combined
using the following formula in order to calculate the individual prob-

Asobserved in Fig. 1, these two plasma analytes showed higher levels in
AD patients than in healthy participants, corroborating their high as-
sociation with standard AD biomarkers. Other interesting associations
were the correlation between ent-7(RS)-7-F-dihomo-IsoP and PGE;
which belongs to the prostaglandins family and may play an important
role in the inflammatory response associated to AD; the correlation
between the pr PGF,,,, the i isomer 15-F,-IsoP
that is studied in depth in a variety of biological systems, and 10-¢pi-10-
F4-NeuroP formed from the d; h ic acid p idation; as well

ability of suffering from AD (Pr):

where LP= - 3.55 + 2.23* 15(R)-15-F2-IsoP - 0.239 * 15-Ez-IsoP -
1.424 *PGF,, + 0.5098 * 4(RS)-F4-NeuroP - 0.08 *14(RS)-14-F,-
NeuroP + 0.154 * Ent-7(RS)-7-F,-dihomo-IsoP  + 0.596 * gender
+ 0.059 * age

This model achieved an apparent area under the receiver operating
characteristics (AUC-ROC) of 0.883 (95% Confidence Interval,
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Fig. 2. Correlation network for all the lipid peroxidation products in plasma and CSF biomarkers (B-amyloid, t-tau and p-tau). The width of the line corresponds to
the strength of the correlation, red lines represent positive correlations and blue lines represent negative correlations.

Fig. 3. Receiver operating characteristic curve for the diagnostic model. The
AUC is 0.883 with ap < 0.001.

0.817-0.95, p-value < 0.001) (Fig. 3) and a bootstrap-validated AUC-
ROC of 0.817. Calibration of the model was also assessed, obtaining
very low deviations when comparing the fitted versus the real prob-
abilities, except around the 30-40% mark, where the deviations toped
at -10% (Fig. 4).

4. Discussion
In this study, we have used a validated analytical method to de-

termine levels of 18 isoprostanoids in plasma from well-defined parti-
cipants groups (early AD patients and healthy participants). Nowadays,

Actual Probabilty
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s

T T T T T
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8= 500 repetitions, boot Mean absolute eror=0.069 =93

Fig. 4. Calibration plot of the model. The dotted line represents an empirical

imation of the nple observed ility versus the model-predicted

ility. The line the bi ted esti of the

observed probability versus the predicted probability. The dashed line re-

presents the ideal 1:1 relationship between observed and predicted prob-
abilities.

the standard diagnosis criteria employed to classify the participants are
based on the review from the NIA-AA [29,30]. However, since it shows
some disadvantages, an early and reliable potential diagnosis method
has been studied in this work.

The results ob! d from the deter of 18 lipid peroxid
tion biomarkers in plasma samples indicate that higher concentrations
of some compounds (15(R)-15-F,-IsoP, 15-keto-15-E,,-IsoP, 15-keto-
15-F,-IsoP, 15-E,-IsoP, 4(RS)-F,-NeuroP, ent-7(RS)-7-F,-dihomo-
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1soP) were found in early AD patients than in healthy participants. This
finding corroborates the results obtained by $irin et al. in which plasma
levels of 15-F,,-IsoP were higher in AD than in healthy individuals [23].
As regards the descriptive correlation analysis among plasma and
CSF bi we i that a 1 with an absolute

Free Radical Biology and Medicine 124 (2018) 388-394

the imaging techniques involve high economic costs [49].

To conclude, a satisfactory AD diagnostic model has been obtained
from plasma lipid peroxidation biomarkers, indicating the individual
probability of suffering from AD. To our knowledge, this is the first
study evaluating the AD diagnostic accuracy of lipid peroxidation

value = 0.3 may be relevant in the lipid ion to
early AD. Although it is not possible to explain the implications of all
these correlations, some of these metabolites levels were altered in MCI-
AD. Of note, 15(R)-15-F,-IsoP and ent-7(RS)-7-F,-dihomo-IsoP in
plasma showed positive correlation with tau and p-tau in CSF, and

in plasma from well-defined participants groups and using a
vahda(ed analytical method. This is an important contribution in the
study of an early and non-invasive AD diagnosis. In addition, the results
from this work are relevant in the evaluation of OS as a molecular
mechanism between amyloid deposition and neurodegeneration in AD.

negative correlation with B-amyloid in CSF. In this sense, a p ial
relationship between lipid peroxidation and the protein biology in brain
was observed, confirming previous studies [18]. Actually, in a previous
study it was found that the insert of p-amyloid aggregates into the lipid
bilayer in cellular membrane, may lead to the formation of lipid per-
oxidation compounds [16]. On the other hand, some compounds in
plasma were highly correlated, such as, PGF,, and 15-F,-isoP, as well
as PGF,, and 10-epi-10-F,-NeuroP, and finally PGE, and ent-7(RS)-7-
F,,-dih IsoP, indicating the of both and non-
enzymatic lipid oxidation since early AD, as well as inflammatory re-
sponse also observed in previous studies [20,44]. Moreover, an im-
portant inverse relationship was observed between PGF,,, and 17-epi-
17-F,,-dihomolsoP.

From these y results, we elab d a model

Prospective clinical valid: of this p ial di ic model will be
carried out using an external group of patients.
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showing good diagnostic accuracy from the biomarkers 15(R)-15-F,-
1s0P, 15-Ex-IsoP, PGF2q, 4(RS)-F4-NeuroP, 14(RS)-14-F4-NeuroP and
ent-7(RS)-7-F,,-dihomo-IsoP. Although these biomarkers are not able to
discriminate between both groups when considered alone, they im-
prove their discriminative ability when they are included in the diag-
nostic model with age and gender as covariates. Developing reliable
diagnostic models in small data sets is difficult because the issue of
overfitting is especially prominent in these cases. Common methods
employed in medical literature include univariate screening, stepwise
variable selection and, most recently, shrinkage or regulanzauon
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methods such as lasso or elastic net. Of these, only If
methods are able to produce stable estimates of the predictors and
achieve good generalization of its predictive capacity [45]. In this study
we used an elastic net penalized logistic regression model for AD di-
agnosis. Elastic net is a li of lasso and imp its pre-
diction accuracy as it allows to deal with multicollinearity (high cor-
relations between the different covariates) which was a property of our
dataset. Our model achieved a promising validated AUC of 0.82 and has
the advantage of providing an equation that can be used to obtain in-
dividualized estimates for each patient. The possibility to estimate the
probability of AD opens the door to personalized decision making in the
handling of potential AD patients. This would leave the use of CSF
biomarkers, the gold standard for diagnosis, only for cases considered
as high risk by our model.

Although the diagnostic accuracy of this model was not superior to
the employment of CSF biomarkers this model has the advantage of
being based on non-invasive sampling.

In literature, we can find some AD diagnosis models developed
using different biomarkers. For instance, Nazeri et al. showed that
different plasma proteins (interleukin-16, thyroxine-binding globulin,
peptide tyrosine tyrosine, apolipoprotein E, eselectin, matrix metallo-
peptidase (10)) could be used to achleve the dlagnosls and follow-up of
the AD quite ly against i but these
proteins are required to be clinically validated as possible AD indicators
[46]. In addition, Marmarelis et al. proposed a diagnostic model based
on cerebral h d: through of pi hanges and
cerebral CO, vasomotor reactivity, but the specificity of this diagnosis
has not been assessed and the number of participants is low [47]. An-
other model was based on the determination of CSF biomarkers by
means of capillary electrophoresis coupled to mass spectrometry [48].
Also, a diagnostic model based on image techniques was described by
Liao et al. in which age could explain some metabolic alterations, but

A.

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.freeradbiomed.2018.06.
038.
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ARTICLE INFO ABSTRACT

Keywards: Objective: Lipid

a i mvolved in early Alzheimer Disease (AD)

Alzheimer Disease

stages, and artificial neural network (ANN) analysis isa model, ized by
its high flexibility and utility in clinical diagnosis. ANN simulates neuron learning procedures and it could
provide good diagnostic performances in this complex and heterogeneous dseasc compared with Ilnear re-
gression analysis. Design and Methods: In our study, a new set of lipid were

Artificial neural network
Mass spectrometry
Partial least squares

Pl
Lipkd perexiidation in urine and plasma samples from patients diagnosed with early Alzheimer Disease (n = 70) and healthy controls
Urine (n = 26) by means of ul liquid hy coupled with tandem mass-spectrometry. Then,

a model based on ANN was developed to classify groups of Results: The d

obtained using an ANN model for each biological matrix were compared with the corresponding linear re-
gression model based on partial least squares (PLS), and with the non-linear (radial and polynomial) support
vector machine (SVM) models. Better accuracy, in terms of receiver operating characteristic-area under curve
(ROC-AUC), was obtained for the ANN models (ROC-AUC 0.882 in plasma and 0.839 in urine) than for PLS and

SVM models. C

and ANN

Lipid p

a useful approach to establish a reliable di-

agnosis when the prognosis is complex, multidimensional and non-linear.

1. Introduction

Alzheimer disease (AD) early diagnosis constitutes a subject of great
concern, since AD is the main cause of dementia in the world, and it
causes great burden on patients and families/care providers, as well as
high social and economic impact [1]. In addition, there is a lack of
effective therapeutic targets as well as non-invasive and cost-effective
molecular diagnostic models, probably due to incomplete under-
standing of the AD pathophysiological mechanisms.

Nowadays, both the onset and development of AD have been linked

AD. These an be ified d on the

from which they derived. Thus, isop i are p;
from arachidonic acid oxidation (all tissues), neuropmstanes/neum—
furans from docosahexanoic acid oxidation (brain grey matter), and di-
h i di-h from adrenic acid oxidation
(brain whlte matter) [11]. In this sense, although some potential bio-
markers have been identified, they have not been clinically validated
[12,13]. In addition, some predictive models, mainly based on linear
regression, have been developed [14,15], but the complexity of AD
physlopathology could demand non-linear regression models to obtain

d lipid

to lipid peroxidation mechanisms given the high lipid P
high metabolic activity and high oxygen consumption of the brain
[2-4]. In fact, previous studies based on lipid peroxidation improved
the understanding of pathophysiological mechanisms underlying AD,
and also a'abhshed new bmmarkezs for diagnosis, prognosis and
h purposes [5]. , different isop ids have
been delermmed in cerebrospinal fluid sampls (CSF) [6,7], plasma and
serum [8], and in urine samples [9,10], showing correlation with early

ition,

results.

Amﬁcnal neural network (ANN) constitutes a promising statistical
tool since it is flexible and can model highly non-linear systems, in
which the relationships between variables are unknown or very com-
plex [16-18]. The ANN models simulate the learning process carried
out by the neurons, establishing connections among different variables,
and allowing a complex data analysis through mathematical functions
[17]. Neurons are placed in several layers (input, hidden, output) in the
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ANN. Specifically, the predictor variables are in the input layer, and the
response variables are in the output layer. Then, some connections,
similar to those in synapses, are established among the variables by
means of different mathematical functions (hyperbolic, sigmoid...), and
different coefficients are assigned to these interactions in order to im-
prove the model's classification ability [19]. In this sense, ANN analysis
is based on supervised learning which has the advantage of being tol-
erant with the highly complex and noisy data obtained from biological
samples [17]. ANN analysis has also some disadvantages, namely the
inability to exactly reproduce the same model due to the complex
learning processes involved in the models' development [16], as well as
the fact of being considered a “black box” by some authors [17].
Nowadays, there is an increasing body of research applying ANN
analysis to clinical diagnosis, since it allows to establish complex in-
teractions among variables involved in some multifactorial pathologies
[20]. In fact, recent studies have provided satisfactory diagnostic results
in different clinical areas [21-25]. However, few studies have com-
pared the clinical predictive capacity of ANN models with linear re-
gression models, and better results, in terms of accuracy, seem to be
obtained from ANN analysis [26,27]. Among ANN studies focusing on
early AD diagnosis, most of them were based on neurophysiological
signals (el y tangles) [28] or image
tests [29-32], requiring high cost and highly specialized staff to inter-
pret the results. Other ANN models based on neuropsychological tests
and clinical variables predicted brain AD characteristic lesions (amyloid
plaques, neurofibrillary tangles) [33], as well as mild cognitive im-
i in elderly individuals [25,26]. hel some neu-
ropsychological tests are influenced by the patients' educati level,

Clinical Biochemistry xxx (xxxx) Xxx-xxx
whose chr hic and d ion ¢ were described in
previous works [9,38]. Finally, the levels of a new set of lipid perox-
idation bi (i dihomoi

were obtained

2.3. Statistical analysis

Different regression models, based on linear discriminant analysis
(partial least squares, PLS) and non-linear discriminant analysis (sup-
port vector machine, SVM; artificial neural networks, ANN), have been
developed from lipid p: idati ds levels d ined in
urine and plasma samples from healthy and MCI-AD participants. Each
model was trained and tested multiple times, and the diagnostic per-
formance obtained for each model was evaluated.

The PLS analysis was carried out with the Unscrambler software
version 7.6 (Camo, Woodbridge, USA), the SVM analysis with radial
and polynomial kemel functions was carried out with IBM SPSS
Modeler software version 1.0 (IBM, New York, USA) and the ANN
analysis was carried out with SPSS software version 20.0 (SPSS, Inc.,
Chicago, IL, USA). These statistical multivariate models were developed
for each sample matrix that was analyzed.

The PLS models were constructed from 24 independent variables
(22 lipid peroxidation compounds, gender and age) as predictor vari-
ables, 1 dependent variable (participant group (MCI-AD/healthy con-
trol)) and 5 principal components. All variables were normalized, and a
random cross validation (one left out) was carried out.

‘The SVM models with radial and polynomial kernel functions were

since high educational level could mask cognitive alteration and very
low educational level (illiteracy) prevents the neuropsychological eva-
luation. An ANN model based on Raman spectroscopy in serum was
employed to discriminate among AD patients, healthy individuals, and
other types of dementias; however, this expensive equipment is not
available in the clinical practice [34]. Moreover, some ANN models
have also been developed using different biomarkers in blood, such as
glucose and apolipoprotein E genotype as AD risk factors [35,36]. To
our knowledge, ANN analysis has not ever been assessed as an early AD
detection model from lipid peroxidation compounds, which are de-
termined by validated analytical methods in plasma or urine samples.

The aim of this study was to develop and evaluate ANN models, in
terms of complex disease diagnostic performance, comparing them with
other linear and non-linear models. For this, a new set of lipid perox-
idation biomarkers was determined in urine and plasma samples from
well-defined mild cognitive-impairment due to AD patients and healthy
participants.

2. Materials and methods
2.1. Patients and samples

Urine and plasma samples were collected from participants re-
cruited in the University and Polytechnic Hospital La Fe (Valencia,
Spain). They were classified as mild cognitive impairment due to
Alzheimer's disease (MCI-AD, n = 70) and healthy control participants
(n = 26) based on neuropsychological tests, structural neuroimaging,
and CSF biomarkers (f-amyloid, total Tau, phosphorylated Tau) [37].
The study protocol was approved by the Ethics Committee (CEIC) of the
Health Research Institute La Fe (Valencia, Spain), and informed consent
was obtained from all the participants.

2.2. Analytical method

The samples were processed as indicated in previous studies, where
the c ing sample p were op d [9,38].
Thereafter, the samples were injected into the chromatographic system
(UPLC-MS/MS) following previously validated analytical methods

developed from 24 inds dent variables (22 lipid peroxidation ana-
lytes, gender and age) and 1 dependent variable (participant group
(MCI-AD/healthy control)). The dataset was randomly divided into
training sample (70%), testing sample (15%) and validating sample
(15%). The parameters utilized were detention criteria of 1.0E™%,
regularization parameter (C) of 10, precision of regression of 0.1, and
the kernel functions employed were radial basis function (gamma (y) of
0.1) and polynomial function (y of 1).

The ANN models were constructed from the 24 independent vari-
ables (gender and age as factors, 22 analytes as covariables), and 1
dependent variable (participant group (MCI-AD/healthy control)). In
the first step, the dataset was randomly divided into training sample
(70%), testing sample (15%) and validating sample (15%) [18], before
model development. The training sample is used to train the network in
several iterations improving the ANN performance. Then, the optimum
values of weights and biases are determined, and the ANN performance
is examined in the testing sample. The feedforward architecture was
based on the predictors function Multilayer Perceptron (MPL), as
training i that minimizes the predi error of outputs, and
the form of this function consists of input, hidden and output layers, but
the number of neurons in each layer as well as the number of layers
depend on the complexity of the studied system. The automatic archi-
tecture selection builds a network with one hidden layer, and the
number of units in the hidden layer was tested between 1 and 50, 1 unit
being the optimum number. The transfer functions for the hidden and
output layers were hyperbolic tangent and normalized exponential
function, respectively. These functions have the following forms:

¥ (x) = tanh (x) = (e* — e™)/(e* + &™)

¥(xx) = exp.(xx)/Zjexp(x), forj =1, ...k (dimensions)

In this sense, a three-layer 24-1-1-feed-forward propagation ANN
model was trained and developed from 24 predictor variables (age,
gender, lipid peroxidation compounds).

Regarding the training type, it was in batch, and the optimization
algorithm to estimate the synaptic weights was based on scaled con-
jugate gradient including an initial lambda and an initial sigma values
of 0.0000005 and 0.00005, respectively, as initial values for the
weights and biases to optimize them in successive iterations.
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2.4. Diagnostic performance evaluation

Under the previously indicated specifications, several ANN models
were developed in each biological matrix, and the averages of them
were consldered as the most reliable corresponding models.

For di; ion of the models PLS, SVM with
polynomial and md.la.l kernel functions, and ANN, receiver Dpera(mg
characteristic (ROC) curves were d from their corresp
validation results, indicating the area under the curve (AUC)-ROC as a
parameter that represents the accuracy of each model. For the PLS
model, it consisted of cross validation leaving one out, while for the
SVM and ANN models, validation consisted of using data sets randomly
divided. The corresponding area under the curve (AUC, 95% confidence
interval (CI)), and the optimum cut-off value (the highest sum of sen-
sitivity and specificity) were determined for each model in the pmdn:—
tion of AD. Finally, the di indices
sitive likelihood ratio (LR+), negative Ilkellhood ratio (LR ).
diagnostic odds ratio (DOR)) were calculated. For all analysis, a
p < .05 was considered to indicate a statistically significant difference.

3. Results

variables

3.1 graphic, clinical and analyti
The demographic and clinical variables for each group of partici-
pants are described in Table 1. All of them showed a non-normal dis-
tribution, so medians were compared between groups by means of
Mann Whitney test for numerical variables, and Chi-square and Fisher
exact tests for categorical variables. The clinical variables (Repeatable
Battery for the of logical Status (RBANS)
Clinical Dementia Rating (CDR), Fi | Activities Q
(FAQ), Mini-Mental State (MMSE), ¢ 0 fluid

Clinical Biochemistry xxx (x0x) Xxx-xxx

Table 1
Demographic and clinical variables of the studied population.
Variable MCI-AD Healthy control  P-value
(n=70) (n = 26)
Gender (Female, n (%)) 41 (58.6%) 9 (34.6%) 0.037
Age (Median, (IQR)) 70 (68-74) 66 (62-70) 0.044
Depression (Yes, n (%)) 9 (13%) 5 (19%) 0.566
Anxiety (Yes, n (%)) 6 (9%) 2(8%) 0.629
Studies levels Primary 28 (40%) 16 (61%) 0173
(n (%)) Secondary 20 (29%) 3 (12%)
Academic 2031%)  727%)
Smoking status (smoker or former 50 (71%) 13 (50%) 0.124
smoker) (n (%))
Alcohol consumption (yes, n (%)) 12 (17%) 2 (8%) 0.307
Medications (n, ~ None 15(22%) 8 (31%) 0.269
%) psychotropic drugs 3 (4%) 2(8%)
Antihypertensive 10 (14%) 7 (27%)
Statins 12 (17%) 3(11%)
Two or more 30(43%) 6 (23%)
Comorbidity (n, None 18 (26%) 10 (39%) 0.071
%) Dyslipemia 18 (26%) 3 (11%)
Hypertension 10 (14%) 7 (27%)
Heart disease 0 (0%) 1(4%)
Two or more 24(34%)  5(19%)
RBANS-DM' 42 (40-49) 100 (90-106)  0.000
CDR* 05(05-1)  0(0-0) 0.000
FAQ' 7(2-13)  0(0-0) 0.000
MMSE* 25(19-29) 24 (21-27) 0.000
CSF” B-amyloid (pgmL ") 597 1186 0.000
(445-687)  (1033-1403)
CSF t-Tau” (pgmL™") 572 202 (139-320)  0.000
(396-857)
CSF p-Taw” (pgmlL~") 88 (72-111) 49 (35-67) 0.000

IQR: Interquartile range.
Data were expressed as median (interquartile range (IQR)) for non-parametric

(CSF) p-amyloid, CSF total-Tau and CSF phosphorylated-Tau) showed
statistically significant differences between MCI-AD and healthy control
groups. On the other hand, demographic variables did not present
statistically significant differences between both groups except of
gender and age, so these variables were taken into account in the
subsequent analyses.

The concentrations obtained for each analytical variable (22 ana-
lytes) in both matrices (urine, plasma) are summarized in Table 2. As
we can see, statistically significant differences between groups were
obtained for 17-epi-17-F,.-dihomo-IsoP in urine samples, and for 15(R)-
15-F,-IsoP, PGF,,, 4(RS)-4 F.,ANeumP ent-7(RS)-7-F,,-dihomo-IsoP,
17-epi-17-F,,-dih I and

variables, and number of cases (percentages) for categorical cases.
The statistical calculations to compare between the two groups employed
Mann-Whitney test, Chi-Square test and Fisher exact test, respectively.

! RBANS-DM, Repeatable Battery for the Assessment of Neuropsychological
Status- Delayed Memory (Standard Score; cut-off point < 85).

2 CDR, Clinical Dementia Rating, values: 0, 0.5, 1, 2.

# FAQ, Functional Activities Questionnaire (Direct Score; cut-off point > 9).

* MMSE, Minimental State Examination.

* CSF, Cerebrospinal fluid.

© t-Tay, total-Tau.

7 p-Tau, phosphorylated-Tau.

“p<.05

neurofurans in plasma smpl&s
3.2. Multivariate statistical models

In this work we developed different multivariate models in order to
improve the diagnostic utility of lipid peroxidation products from
plasma and urine samples [9,38], since they do not have a high diag-
nostic capacity individually. For this, different multivariate models
based on linear and li ion were developed for each kind
of biological sample and they were compared in terms of diagnostic
performance.

First, PLS linear regression models were developed. For PLS in
urine, in Fig. 1 we can see that the MCI-AD group showed higher levels
for the compounds 15(R)-15-F-IsoP, 2,3-dinor-15-epi-15-F,-IsoP,
4(RS)-4-F,-NeuroP, ent-7 (RS)-7-F,-dihomo-IsoP, 17-epi-17-F,-di
‘homo-IsoP, 10-epi-10-F,,-NeuroP, 17-F,,-dihomo-IsoP and neurofurans,
as well as higher age and female proportion (Fig. 1a). However, the
healthy participants are grouped on the left side of the score plot
(Fig. 1b) because they showed lower levels for the previous compounds.
Similarly, for PLS in plasma, in Fig. 2 we can see that the MCI-AD group
showed higher levels for (he compounds 15(R)-15-F,,-IsoP, 4(RS)- 4—F4.
NeuroP, ent-7(RS)-7-F,-dih: IsoP,

and i as well as higher age and female proportion
(Fig. 2a). However, the healthy individuals are grouped in the left side
of the score plot (Fig. 2b) due to their lower levels for the previous
compounds.

Secondly, SVM models with radial and polynomial kernel functions
were developed from results in plasma and urine samples. Non linear
functions were used in order to obtain a better classification of the
participants.

Thirdly, non-linear regression models based on ANN were devel-
oped for urine and plasma samples in order to classify the two groups of
participants. As shown in Fig. 3, 22 analytes, gender and age were in-
cluded in the input layer. For the hidden and output layers, the transfer
functions were hyperbolic tangent and normalized exponential func-
tions, respectively.

I multivariate develop:

3.3. Diagnostic p
models

for the

The diagnostic performance of each model was estimated from the
corresponding ROC curves (Fig. 4). In urine samples, the ANN model
provided an AUC of 0.839 (CI 95%, 0.746-0.933), while for the PLS
model it was 0.653 (CI 95%, 0.526-0.780), and for the SVM models it
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Table 2
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Concentrations determined by UPLC-MS/MS for each analyte in plasma and urine samples from MCI-AD and healthy control participants.

Analyte Plasma (nmol L™ ") Urine (ng mg creatinine ~')
MCI-AD (n =70) Healthy control (n = 26) Pvalue  MCEAD (n = 70) Healthy control (n = 26) P-value
Median quartile Median  quartile Median  quartile Median  quartile
1st 3nd 1st 3rd st 3nd 1st 3nd

15(R)-15-Fzc1soP 030 023 046 020 0.15 0.26 0000 069 047 142 071 049 100 0.830
PGEz 005 000 013 005 0.00 0.10 0520 193 043 348 1.85 092 462 0.615
2,3-dinor-15-¢pi-15-Fa IsoP 000 000 003 0.00 0.00 0.00 0067 073 049 122 0.65 047 112 0.458
15-keto-15-Ex-IsoP 015 000 035 013 0.04 0.27 0874 092 051 146 0.88 052 165 0.644
15-keto-15-FlsoP 023 0.09 035 023 0.14 0.28 0599 079 016 185 152 060 220 0.094
15-Ex-IsoP 026 012 043 019 0.09 0.28 0320 018 005 129 0.9 0.06 076 0.830
5-Fy-lsoP 078 040 126 099 0.73 123 0362 266 161 4.85 270 177 385 0.817
15-FzIsoP 002 001 004 002 0.02 0.03 0638 0.01 000 002 0.1 0.00 002 0.113
PGF2q 051 024 076 074 0.48 0.94 0008 367 269 7.90 298 234 498 0.295
4(RS)-4-FyNeuroP 114 09 133 103 0.00 113 0.003 091 067 140 072 050  1.05 0.051
1a,1b-dihomo-PGF2, 000 000 000 0.00 0.00 0.00 0784 126 061 235 1.63 101 232 0.232
10-¢pi-10-F 4-NeuroP 008 003 015 009 0.03 0.14 0731 003 000 006 0.01 0.00 004 0.094
14(RS)-14-FyNeuroP 053 0.06 103 060 0.00 174 0671 122 076 238 1.37 078 198 0.837
ent-7(RS)7-Fxcdihomo-IsoP 010 005 015 005 0.04 0.08 0002 032 013 060 029 021 039 1.000
17-Faedihomo-IsoP 000  0.00 000 0.00 0.00 0.00 0555 008 000 036 0.10 000 023 0.625
17-¢pi-17-F a-dihomo-IsoP 003 000 005 000 0.00 0.01 0015 0.01 000 0.06 0.00 0.00  0.00 0.019
17(RS)-10-@i-SC-A'>11-dihomo-IsoF 000 0.00 000 0.0 0.00 0.00 0164 003 000 011 0.05 002 008 0.330
7(RS)-ST-A11-dihomo-IsoF 004 003 008 0.09 0.02 0.16 0067 000 000 002 0.00 000 003 0.849
Neurofurans 0.09 -005 017 =010 -0.15 0.07 0000 3.3 176 6.62 4.15 251 595 0.356
Isofurans’ 009 007 012 007 0.06 0.09 0013 436 253 725 4.29 337 964 0.343
Neuroprostanes* -0.22 -070 019 -065 ~-076 -048 0010° 352 225 497 3.77 202 617 0.650
Isoprostanes 030 022 039 020 0.17 0.27 0000 620 382 1237 7.30 467 1145 0.491
“p<.05

“ Total parameters results expressed as intensity of signal units in plasma and as signal units mg ™' creatinine in urine.

was 0.644 (CI 95%, 0.539-0.749) with the polynomial function and
0.659 (CI 95%, 0.558-0.759) with the radial function. Similarly, in
plasma samples, the ANN model provided an AUC of 0.882 (CI 95%,
0.814-0.949), while for PLS it was 0.765 (CI 95%, 0.633-0.868), and
for SVM models it was 0.817 (CI 95%, 0.712-0.922) with the poly-
nomial function and 0.827 (CI 95%, 0.739-0.915) with the radial
function. Therefore, ANN models provided better diagnostic accuracy
than PLS and SVM models in both matrices. Moreover, plasma matrix
showed higher diagnostic accuracy than urine.

From the estimated optimal cut-off values, the diagnostic indices in
the prediction of early AD were calculated for each developed model in
plasma and urine samples (Table 3). For urine, the ANN model provided
a sensitivity of 80.9%, while its specificity was 76.9%. In addition, DOR
value for ANN model in urine revealed that there was strong association
between the model results and the AD occurrence. ding the ANN

dihomo-IsoP, 17-epi-17-F,,-dihomo-IsoP, isop neu-
roprostanes and neurofurans in plasma samples. Nevertheless, each
analyte individually did not provide a reliable AD diagnosis. In con-
trast, a multivariate model based on ANN showed better accuracy than
PLS and SVM models, and analytes from plasma samples were more
useful than those in urine samples to achieve a reliable AD diagnosis.

Some studies found lipid peroxidation products as biomarkers for
AD diagnosis, and most of them were based on individual biomarkers,
such as lipid peroxidation end products [39] or TBARS [40]. However,
multivariate models could reflect the oxidative stress status of patients
better, showing superior diagnostic indices and higher accuracy. Spe-
cifically, a previous work developed an ANN model based on different
AD risk factors studied the predictive value of these factors [35]. It
showed high capacity to integrate different data and achieve a general

model in plasma samples, it provided a sensitivity of 88.2%, while its
specificity was 76.9%. This model also showed an elevated DOR value
that supported its diagnostic value. DOR values were quite similar
among plasma models, but ANN model showed better accuracy (AUC-
ROC 0.882) than PLS (AUC-ROC 0.765) and SVM (AUC-ROC 0.827).
Moreover, ANN model showed better sensitivity and a satisfactory
balance between sensitivity and specificity. ANN model showed better
balance, obtaining a higher number of participants correctly classified.
By contrast, PLS model showed high specificity but low sensitivity,
classifying the AD participants as healthy subjects; while SVM model
showed high sensitivity but low specificity, classifying the healthy
subjects as AD patients. In general, for both matrices, the PLS model
was the most specific, the SVM model was the most sensitive, and the
ANN model showed the best balance of sensitivity/specificity.

4. Discussion
Some of the analytes studied in this work showed statistically sig-

nificant differences, such as 17-epi-17-F,,-dihomo-IsoP in urine samples,
and 15(R)-15-F2-IsoP, PGFaq, 4(RS)-4-Fs-NeuroP, ent-7(RS)-7-Fac-

Other developed ANN models to diagnose AD or MCI were

based on image, genetics, hology or other bi K
[25,41], but the present study is the first one using lipid peroxidation
compounds as biomarkers. In general, previous studies based on ANN
showed model accuracies around 90%, similar to our results. Also, PLS
models have been developed for AD diagnosis. They were mainly based
on gene expression and neuroimaging [42-44], but none of them was
based on our set of lipid peroxidation products. In addition, a previous
study for MCI diagnosis compared PLS model to other statistical tests,
such as Random Forest showing the higher PLS diagnostic power [45].
The diagnostic indices obtained for each model in the present study
indicated that the ANN model in both matrices showed a satisfactory
accuracy (> 80%). In addition, the plasma ANN model showed, in
general, better diagnostic indices than the urine model, corroborating
previous studies in the literature [46,47]. Specifically, the ANN model
based on the plasma levels of lipid peroxidation products showed high
DOR value, sensitivity, and accuracy, as well as, satisfactory specificity,
so it is considered a reliable diagnostic model. In this sense, Quintana
et al. also found that ANN models showed better discriminant capacity
than linear models in AD diagnosis [26]. AD is a complex disease
process in which multiple factors are involved and that could be the
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Fig. 1. Plots representing results of the partial least squares regression model in
urine samples. (a) Loadings plot. 1: Gender; 2: Age; 3: 15(R)-15-Fy-IsoP; 4:
PGEy; 5: 2,3-dinor-15-¢pi-15-F,-IsoP; 6: 15-keto-15-Ey-IsoP; 7: 15-keto-15-Fy,-
150P; 8: 15-Ep-Is0P; 9: 5-Fy,-Is0P; 10: 15-F5-Is0P; 11: PGFoy; 12: 4(RS)-Fo-
NeuroP; 13: 1a,1b-dihomo-PGF,; 14: 10-gpi-10-F,-NeuroP; 15: 14(RS)-14-F-
NeuroP; 16: ent-7(RS)-7-Fy,-dihomo-IsoP; 17: 17-Fy-dihomo-IsoP; 18: 17-epi-
17-Fz-dihomo-IsoP; 19: 17(RS)-10-epi-SC-A""-11-dihomo-IsoF; 20: 7(RS)-ST-
A®11-dihomo-IsoF; 21: neurofurans; 22: isofurans; 23: neuroprostanes; 24:
isoprostanes. (b) Scores plot.

reason why non-linear regression models showed a better predictive
capacity than those models based on linear regression [35].

ing the bi matrix, the d ANN diagnostic
model in plasma samples i a i invasive
approach that could avoid, in some cases, the current diagnostic
methods, which involve invasive sampling and expensive techniques
[48]. In this sense, the ANN models have a satisfactory diagnostic ca-
pacity, and they are able to classify the participants into healthy and
MCI-AD with high accuracy in both matrices as an early screening tool.

5. Conclusion

The non-linear regression model based on ANN explained the non-
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Fig. 2. Plots representing results of the partial least squares regression model in
plasma samples. (a) Loadings plot. 1: Gender; 2: Age; 3: 15(R)-15-Fz-IsoP; 4:
PGEy; 5: 2,3-dinor-15-epi-15-F,-1s0P; 6: 15-keto-15-Eo,-IsoP; 7: 15-keto-15-F -
IsoP; 8: 15-Ey-IsoP; 9: 5-Fy-Is0P; 10: 15-F,IsoP; 11: PGFy,; 12: 4(RS)4-Fy-
NeuroP; 13: 1a,1b-dihomo-PGF,,; 14: neuroprostanes; 15: 10-epi-10-F,-
NeuroP; 16: 14(RS)-14-F,,-NeuroP; 17: isoprostanes; 18: ent-7(RS)-7-Fy-di-
homo-IsoP; 19: 17-F,,dihomo-IsoP; 20: 17-¢pi-17-Fy-dihomo-IsoP; 21: 17(RS)-
10-¢pi-SC-A'*-11-dihomo-IsoF; 22: 7(RS)-ST-A%11-dihomo-IsoF; 23: neuro-
furans; 24: isofurans. (b) Scores plot.
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Fig. 3. General structure of the developed neural network for the prediction of
early AD consisting of 24 input variables, 1 hidden layer with 1 node, and 1
output variable.
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Fig. 4. Receiver operating Characteristic curves for PLS and ANN models in plasma and urine samples.

Table 3
Diagnostic indices for each developed statistical model in the prediction of MCI-AD from lipid peroxidation compounds determined in urine and plasma samples.
Urine Plasma
LS ANN syM PLS ANN SVM
Radial Polynomial Radial Polynomial
AUC (C1 95%)  0.653 0.839 0.659 0.644 0.765 0.882 0827 0.817
(0.526-0.780) (0.746-0.933) (0.558-0.759) (0.539-0.749) (0.663-0.868) (0.814-0.949) (0.739-0.915) (0.712-0.922)
Sensitivity (%, 63.2(51.4-73.7) 80.9 (70.0-88.5) 929 (68.5-98.7) 923 (66.7-986) 50.7 (392-622) 882 (78.5-93.9) 923 (66.7-98.6) 100.0 (77.2-100)
CI 95%)
Specificity (%, 708 (50.8-85.1)  76.9 (57.9-89.0) 111 (2.0-435)  37.5(13.7-69.4) 96.2(81.1-99.3) 769 (57.9-89.0) 50.0 (21.5-785) 25.0 (7.1-59.1)
C1 95%)
LR+ (CI95%) 217 (1.13-4.15) 350 (1.72-7.14) 1.04 (0.80-137) 1.48 (0.84-258) 13.19 3.82(1.89-7.75) 185 (0.91-376)  1.33 (0.89-1.99)
(1.90-91.40)
LR-(C195%)  0.52(036-0.74)  0.25(0.15-0.41)  0.64 (0.07-6.06)  0.21 (0.03-1.49)  0.51 (0.40-0.66) ~ 0.15 (0.08-0.30) ~ 0.15 (0.02-1.08) ~
DOR (C195%) 4.18 14.10 1.63 7.20 25.74 25.00 120 -
(1.52-11.46) (4.72-42.13) (0.09-29.78) (0.60-87.02) (3.30-200.67) (7.73-80.81) (1.02-141.34)

Pls panial least squares; ANN, artificial neural network; SVM, support vector machine; AUC, area under the curve; LR+, positive likelihood ratio; LR-, negative

ratio; CI, interval; DOR, di ic odds ratio.

linear relationship between the levels of hpld peroxidation compounds
and lbe i i ofa complex ical process, such as AD,

a pi h. Specifically, the devel-
oped ANN model in plas'na samples showed high accuracy and suitable
diagnostic indices in early AD prediction. Nevertheless, further research
will need to be carried out to clinically validate this diagnostic model.
This approach constitutes a sngmﬁcant advance in early AD diagnosis,
using invasive , and offers important
economic cost reduction for the public health system.

Funding

This work was supported by the Instituto de Salud Carlos I1l (Miguel
Servet 1 Project (CP16/00082)) (Spanish Ministry of Economy and
Competitiveness, and European Regional Development Fund).
Declaration of Competing Interest

None.
Acknowledgement

CC-P acknowledges a “Miguel Servet 1” Grant (CP16/00082) from

the Instituto Carlos Il (ISCIII, Spanish Ministry of Economy and
Competitiveness). CP-B acknowledges a pre-doctoral Grant (associated

to “Miguel Servet” project CP16/00082) from the ISCIII (Spanish
Ministry of , Industry and Competi

The authors are grateful for the pmfsslona] English Ianguage
editing to Mr. Arash dinejad, English and P
Editor at the Instituto de Investigacién Sanitaria La Fe, Valencia, Spain.

References

[1] M. Prince, E. Albanese, M. Guerchet, M. Prina, World Alzheimer Report 2014:
Dementia and Risk Reduction an Analysis of Protective and Modifiable Factors,
(2014).

[2] W. Huang, X. Zhang, W.W. Chen, Role of oxidative stress in Alzheimer's disease.
Biomed. Rep. 4 (2016) 519-522.

[3] R. Sultana, M. Perluigi, D. Allan Butterfield, Lipid peroxidation triggers neurode-

a redox proteomics view into the Alzheimer disease brain, Free Radic

D13) 157-169.

[4] Z Chen, C. Zhong, Oxidative stress in Alzheimer's disease, Neurosci, Bull, 30 (2014)

271-281.

[S] C. Pefia-Bautista, M. Baquero, M. Vento, C. Chifer-Pericis, Free radicals in
Alzheimer's disease: lipid peroxidation biomarkers, Clin. Chim. Acta 491 (2019)
85-90.

[6] M. Crerska, M. Zielifiski, J. Gromadziriska, Isoprostanes - a novel major group of
oxidative stress markers, Int. J. Occup. Med. Environ. Health 29 (2016) 179-190.

[7] T.J. Montine, E.R. Peskind, J.F. Quinn, A.M. Wilson, K.S. Montine, D. Galasko,
Increased cerebrospinal fluid F2-isoprostanes are associated with aging and latent
Alzheimer's disease as identified by biomarkers, NeuroMolecular Med. 13 (2011)
37-43.

[8] F.B. Sirin, D. Kumbul Dogug, H. Vural, L Eren, I. Inanli, R Siitgi, N. Delibag, Plasma
8is0PGF2a and serum melatonin levels in patients with minimal cognitive im
pairment and Alzheimer disease, Turk. J. Med. Sci. 45 (2015) 1073-1077.

286



Annexes

Chapter 3

E IN PRESS

C. Pefia-Bautista, et al.

91

101
g

121

13)

4]

115)

1161

071

18]
191

1201

21

122

23]

241

(25

261

1271

281

1291

A. Garcia-Blanco, C. Pefia-Bautista, C. Oger, C. Vigor, JM. Galano, T. Durand,

N. Martin-Ibdfiez, M. Baquero, M. Vento, C. Chifer-Pericés, Reliable determination
of new lipid peroxidation compounds as potential early Alzheimer Disease bio-
markers, Talanta. 184 (2018) 193-201,

S. Hartmann, T8, Ledur Kist, A review of biomarkers of Alzheimer's disease in
noninvasive samples, Biomark. Med 12 (2018) 677-690.

L Roberts, J.P. Fessel, The of the i and
isofuran pathways of lipid peroxidation, Chem. Phys. Lipids 128 (2004) 173-186.
B. Olsson, R Lautner, U. Andreasson, A. Ohrfelt, E. Portelius, M. Bjerke, MH.C. er
Rosén, C. Olsson, G. Strobel, E. Wu, K. Dakin, M. Petzold, K. Blennow,

H. Zetterberg, CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a
systematic review and meta-analysis, Lancet 15 (2016) 473-484.

R Wurtman, Biomarkers in the diagnosis and

disease,

301

31)

321

[33]

Clinical Biochemistry xxx (xx0x) xxx-xxx

X. Deng, K. Li, S. Liu, Preliminary study on application of artificial neural network
to the diagnosis of Alzheimer's disease with magnetic resonance imaging, Chin.
Med. J. 112 (1999) 232-237.

HE. da Silva Lopes, J.M. Abe, R, Anghinah, Application of paraconsistent artificial
neural networks as a method of aid in the diagnosis of Alzheimer disease, J. Med.
Syst. 34 (2010) 1073-1081.

J.M. Abe, HF.D.S. Lopes, R. Anghinah, Paraconsistent artificial neural networks
and Alzheimer disease: a preliminary study, Dement. Neuropsychol. 1 (2007)
241-247.

M. Buscema, E. Grossi, D. Snowdon, P. Antuono, M. Intraligi, G. Maurelli, R. Savare,
Antificial neural networks and artificial organisms can predict Alzheimer pathology
in individual patients only on the basis of cognitive and functional status,

Metabolism 64 (2015) §47-S50.

C. Ibdfiez, C. Simé, P.J. Martin-Alvarez, M. Kivipelto, B. Winblad, A, Cedazo-

Minguez, A. Cifuentes, Toward a predictive model of Alzheimer's disease progres-

sion using capillary Anal. Chem.

84 (2012) 8532-8540.

A. Alexiou, V.D. Mantzavinos, N.H. Greig, M.A. Kamal, A Bayesian model for the
ction and early diagnosis of Alzheimer's disease, Front. Aging Neurosci. 31

(2017) 69-77.

B. Debska, B. Guzowska-$wider, Application of artificial neural network in food

classification, Anal. Chim. Acta 705 (2011) 283-291.

D. Zafeiris, S. Rutella, G.R. Ball, An artificial neural network integrated pipeline for

biomarker discovery using Alzheimer's disease as a case study, Comput. Struct.

Biotech. J. 16 (2018) 77-87.

A. Alibakshi, Strategies to develop robust neural network models: prediction of

flash point as a case study, Anal. Chim. Acta 1026 (2018) 69-76.

LA. Berrueta, R.M. Alonso-Salces, K. Héberger, Supervised pattern recognition in

food analysis, J. Chromatogr. A 1158 (2007) 196-214.

W.D. Hong, X.R. Chen, $.Q. Jin, QK. Huang, Q.H. Zhu, J.Y. Pan, Use of an artificial

neural network to predict persistent organ failure in patients with acute pancrea-

titis, Clinics (Sao Paulo) 68 (2013) 27-31.

J. Yazdani Charati, G. Janbabaei, N. Alipour, S. Mohammadi, S. Ghorbani

Gholiabad, A. Fendereski, Survival prediction of gastric cancer patients by Artificial

Neural Network model, Gastroenterol. Hepatol. Bed. Bench. 11 (2018) 110-117.

L. He, H. Li, S.K. Holland, W. Yuan, M. Altaye, N.A. Parikh, Early prediction of

ve deficits in very preterm infants using functional connectome data in an

artificial neural network framework, Neuroimage Clin. 18 (2018) 290-297.

D. Devikanniga, R. Joshua Samuel Raj, Classification of osteoporosis by artificial

neural network based on monarch butterfly optimisation algorithm, Healthe.

Technol. Lett. 5 (2018) 70-75.

A. Catic, L. Gurbeta, A Kurtovic-Kozaric, S, Mehmedbasic, A. Badnjevic,

Application of Neural Networks for classification of Patau, Edwards, Down, Turner

and Klinefelter Syndrome based on first trimester maternal serum screening data,

ultrasonographic findings and patient demographics, BMC Med. Genet. 11

(2018) 19.

A.J.C.C. Lins, M.T.C. Muniz, AN.M. Garcia, AV. Gomes, RM. Cabral, CJA. Bastos-

Filho, Using artificial neural networks to select the parameters for the prognostic of

mild cognitive impairment and dementia in eklerly individuals, Comput. Methods

Prog. Biomed. 152 (2017) 93-104,

M. Quintana, J. Guardia, G, Sénchez Benavides, M. Aguilar, J L. Molinuevo,

A. Robles, M.S. Barquero, C. Antiinez, C. Martinez-Parra, A. Frank-Garcia,

M. Fernindez, R. Blesa, J. Ped Study Team, Using artificial

neural networks in clinical neuropsychology: high performance in mild cognitive

impairment and Alzheimer's disease, J. Clin. Exp. Neuropsychol. 34 (2012)

195-208.

G. Li, X. Zhou, J. Li, Y. Chen, H. Zhang, Y. Chen, J. Liu, H. Jiang, J. Yang, S. Nie,

Comparison of three data mining models for prediction of advanced schistosomiasis

prognosis in the Hubei provine, cPLoS Negl. Trop. Dis. 12 (2018) €0006262.

E. Grossi, M.P, Buscema, D, Snowdon, P. Antuono, Neuropathological findings

processed by artificial neural networks (ANNs) can perfectly distinguish Alzheimer's

patients from controls in the Nun Study, BMC Neurol. 7 (2007) 15.

F. Bertt, G. Lamponi, R.S. Calabrd, P. Bramanti, Elman neural network for the early

ion of cognitive impai in imers disease, Funct. Neurol. 29
(2014) 57-65.

(341

(351

[36]

371

(38]

(391

(40]

411

42]

431

[44]

[45]

(461

47)

(48]

2 (2004) 399-416.

E Ryzhikova, O. Kazakov, L. Halamkova, D. Celmins, P. Malone, E. Molho,

EA. Zimmerman, LK. Lednev, Raman of blood serum for

disease diagnostics: specificity relative to other types of dementia, J. Biophotonics 8

(2015) 584-59.

M. Tabaton, P. Odetti, S. Cammarata, R. Borghi, F. Monacelli, C. Caltagirone,

P. Boss, M. Buscema, E. Grossi, Artificial neural networks identify the predictive

values of risk factors on the conversion of amnestic mild cognitive impairment, J.

Alzheimers Dis. 19 (2010) 1035-1040.

E Grossi, A. Stoccoro, P. Tannorella, L. Migliore, F. Coppeds, mnmi neural

networks link

disease, J. Alxheunzvs Dis. 53 (2016) \5\7 1522.

CR. Jack, D.A. Bennett, K. Blennow, M.C. Carrillo, B. Dunn, $.B. Haeberlein,

D.M. Holtzman, W. Jagust, F. Jessen, J. Karlawish, E. Liu, JL Molinuevo,

T. Montine, C. Phelps, K.P. Rankin, C.C. Rowe, P. Scheltens, E. Siemers,

HM. Snyder, R. Sperling, NIA-AA Research Framework: toward a biological defi-

nition of Alzheimer's disease, Alzheimers Dement. 14 (2018) 535-562.

C. Pena-Bautista, C. Vigor, J.M. Galano, C. Oger, T. Durand, 1. Ferrer, A. Cuevas,

R. Lopez-Cuevas, M. Baquero, M. Lopez-Nogueroles, M. Vento, D, Hervis, A. Garcia-

Blanco, C. Chifer-Pericds, Plasma lipid peroxidation biomarkers for early and non-

invasive Alzheimer Disease detection, Free Radic. Biol. Med. 124 (2018) 388-394,

2. Chmawlova, M. Vyhnalek, J. Laczo, J. Hort, R, Pospisilova, M. Pechova,

A. Skoumalova, Relation of plasma selenium and lipid peroxidation end products in

patients with Alzheimer's disease, Physiol. Res. 66 (2017) 1049-1056.

M.C. Puertas, JM. Martines-Martos, M.P. Cobo, M.P. Carrera, M.D. Mayas,

men and women with
rly stage All.hdmer lype dementia, Exp. Gerontol. 47 (2012) 625-630.

J. Tang, L. Wu, H. Huang, J. Feng, Y. Yuan, Y. Zhou, P. Huang, Y. Xu, C. Yu, Back

propagation artificial neural network for community Alzheimers disease screening

in China, Neural Regen. Res. 8 (2013) 270-276.

B.B. Booij, T. Lindahl, P. Wetterberg, N.V. Skaane, S. Swhg, G. Feten, P.D. Rye,

L1 Kristisnsen, N. Hagen, M. Jensen, K. Birdsen, B. Winblad, P. Sharma,

A. Lonneborg, A gene expression pattern in blood for the early detection of

Alzheimer's disease, J. Alzheimers Dis. 23 (2011) 109-119.

E Konukogly, J.P. Coutu, D.H. Salat, B. Fischl, Alzheimer's Disease Neuroimaging

Initiative (ADNI), Multivariate statistical analysis of diffusion imaging parameters

using partial least squares: application to white matter variations in Alzheimer's

disease, Neurcimage 134 (2016) 573-586.

Q. Zhou, M. Goryawala, M. Cabrerizo, W, Barker, D. Loewenstein, R. Duara,

M. Adjouadi, Multivariate analysis of structural MRI and PET (FDG and 18F-AV-45)

for Alzheimer’s disease and its prodromal stages, Conf. Proc. IEEE. Eng. Med. Biol.

Soc. 2014 (2014) 1051-1054.

3 wn;. K. Chen, L. Yao, B. Hu, X. Wu, J. Zhang, Q. Ye, X. Guo, Alzheimer’s disease

initiative. of mild cognitive

based on partial least squares, J. Alzheimers Dis. 54 (2016) 359-371.

M. Toufan, H, Namdar, M. Abbasnezhad, A. Habibzadeh, H. Esmaeili, S. Yaraghi,

7. Samani, Diagnostic values of plasma, fresh and frozen urine NT-proBNP in heart

failure patients, J. Cardiovasc. Thorac. Res. 6 (2014) 111115,

G. Schley, C. Kaberle, E. Manuilova, S, Rutz, C. Forster, M. Weyand, L Formentini,

R. Kientsch-Engel, K.U. Eckardt, C. Willam, Comparison of plasma and urine bio-

marker performance in acute kidney injury, PLoS One 10 (2015) e0145042.

ER. Peskind, R. Riekse, JF. Quinn, J. Kaye, CM. Clark, M.R. Farlow, C. Decarli,

C. Chabal, D. Vavrek, M.A. Raskind, D. Galasko, Safety and acceptability of the

research lumbar puncture, Alzheimer Dis. Assoc. Disord. 19 (2005) 220-225.

287



Annexes

Chapter 4

. antioxidants ﬁw\n\w

Article
Isoprostanoids Levels in Cerebrospinal Fluid Do Not
Reflect Alzheimer’s Disease

Carmen Pefia-Bautista !, Miguel Baquero 2, Marina Lépez-Nogueroles 3, Maximo Vento (7,
David Hervas *© and Consuelo Chéfer-Pericis 1*

1 Neonatal Research Unit, Health Research Institute La Fe, 46026 Valencia, Spain;
carpebau93@gmail.com (C.P-B.); maximo.vento@uv.cs (M.V.)
Neurology Unit, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain;
miquelbaquero@gmail.com
Analytical Unit Platform, Health Research Institute La Fe, 46026 Valencia, Spain; marina_lopez@iislafe.es
Biostatistical Unit, Health Research Institute La Fe, 46026 Valencia, Spain; bioestadistica@iislafe.es
*  Correspondence: m.consuclo.chafer@uv.es; Tel.: +34-96-124-67-21

check for
Received: 16 April 2020; Accepted: 7 May 2020; Published: 10 May 2020 updates

Abstract: Previous studies showed a relationship between lipid oxidation biomarkers from plasma
samples and Alzheimer’s Disease (AD), constituting a promising diagnostic tool. In this work we
analyzed whether these plasma biomarkers could reflect specific brain oxidation in AD. In this work
lipid peroxidation compounds were determined in plasma and cerebrospinal fluid (CSF) samples from
AD and non-AD (including other neurological pathologies) participants, by means of an analytical
method based on liquid chromatography coupled with mass spectrometry. Statistical analysis
evaluated correlations between biological matrices. The results did not show satisfactory correlations
between plasma and CSF samples for any of the studied lipid peroxidation biomarkers (isoprostanes,
neuroprostanes, prostaglandines, dihomo-isoprostanes). However, some of the analytes showed
correlations with specific CSF biomarkers for AD and with neuropsychological tests (Mini-Mental
State Examination (MMSE), Repeatable Battery for the Assessment of Neuropsychological Status
(RBANS)). In conclusion, lipid peroxidation biomarkers in CSF samples do not reflect their levels in
plasma samples, and no significant differences were observed between participant groups. However,
some of the analytes could be useful as cognitive decline biomarkers.

Keywords: Alzheimer’s disease; cerebrospinal fluid; biomarker; lipid peroxidation; mass
spectrometry; blood-brain barrier

1. Introduction

Alzheimer’s Disease (AD) is the main cause of dementia worldwide and one of the most important
causes of death in elderly people [1]. The demographic change in population highlights a possible
increase in the impact of this pathology on society and the economy [2]. AD is characterized mainly by
memory loss and progressive cognitive impairments that ends up incapacitating patients and prevent
them from participating in the activities of daily life [3]. Histologically, AD is characterized by an
intracellular and extracellular accumulation of phosphorylated tau (p-Tau) and p-amyloid proteins in
neurons that leads to synapse loss [4]. However, the complete physiopathological mechanisms of the
pathology are not completely understand.

Different metabolites from cerebrospinal fluid (CSF) samples have been studied as potential AD
diagnosis biomarkers in order to improve the diagnosis accuracy of amyloid, total Tau (t-Tau) and
p-Tau levels. In fact, a-synuclein determination complements actual AD biomarkers and allows to
distinguish between mild cognitive impairment (MCI) due to AD and other MCI causes with better
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accuracy [5]. Furthermore, synaptosomal-associated protein-25 (SNAP-25), visinin-like protein 1
(VILIP-1), and chitinase3-like protein 1 (YKL-40) were altered at very early stages of the pathology [6],
and cholecystokinin was related to a lower likelihood of MCI and better neuropsychological status [7].
However, CSF is obtained by means of a painful procedure that is not advisable for some individuals
and it is not considered a population screening test. Nowadays, there is a growing field that is trying
to find biomarkers in other biological fluids that could reflect brain damage from the disease [8].
Moreover, different authors found a correlation between biomarkers from CSF and plasma samples [9].
However, the correlation between these two biofluids for analytes (e.g., amyloid-p) is not clear and
could depend on the analytical techniques used, as well as the effects of transportation through the
brain-blood barrier (BBB) [10].

Neurodegenerative disorders show an important relationship with some oxidative stress
mechanisms, especially lipid peroxidation [11]. In this sense, products originating from damage to lipid
components of cellular membranes have been detected in the AD brain [12]. In addition, impaired lipid
peroxidation levels have been found in peripheral fluids [13,14], offering an important step forward in
non-invasive diagnosis [15]. Nevertheless, the interaction between the release of lipid peroxidation
compounds by the central nervous system (CNS) and peripheral levels has not been evaluated.

The aim of this study was to measure a new set of lipid peroxidation products in CSF samples, and
to evaluate their capacity to reflect neurodegeneration (correlation with amyloid and tau biomarker
levels) and neuropsychological status (correlation with neuropsychological tests). In addition, we tried
to establish a correlation between CSF and plasma lipid peroxidation biomarker levels in order to
evaluate the latter as minimally invasive diagnosis biomarkers.

2. Materials and Methods

2.1. Study Design and Participants

The study protocol was approved by the Ethics Committee (CEIC) of the Health Research Institute
La Fe (Valencia, Spain), (project reference number 2016/0257), and informed consent was obtained
from all participants. Participants were recruited from the Neurology Unit at the University and
Polytechnic Hospital La Fe (Valencia, Spain). Seventy-six patients aged between 50 and 75 years
were included in the study. They were classified as AD (including mild cognitive impairment due
to AD (MCI) and mild to moderate dementia due to AD) and non-AD (healthy controls and other
dementias and cognitive impairments not caused by AD) groups. For this, they were subjected
to neuropsychological tests (Repeatable Battery for the Assessment of Neuropsychological Status
(RBANS), Clinical Dementia Rating (CDR), Mini-Mental State Examination (MMSE), Functional
Activities Questionnaire (FAQ)) [16-19], structural neuroimaging by means of magnetic resonance
imaging (MRI) or computerized axial tomography (CAT) [20], and CSF biomarkers (f3-amyloid peptide
(AB), t-Tau, p-Tau) [21,22]. The AD group was characterized by positive levels of A, t-Tau and
p-Tau and altered levels for neuropsychological evaluation by RBANS scale. In the non-AD group,
participants with negative CSF biomarkers (A, t-Tau and p-Tau) were included.

2.2. Samples Analysis

CSF samples (n = 76) were obtained by lumbar puncture as part of the diagnostic protocol
in the Polytechnic University Hospital La Fe (Valencia, Spain), and they were kept at =80 °C. The
analysis consisted of samples thawing on ice and adding 5 uL of the internal standard solution
(IS) (d4-10-epi-10-Fg-NeuroP at 6 umol L', and PGF2a-dy4 at 10 umol L) to 600 uL CSF, and they
were diluted with 1300 uL of water. Then, a cleaning and pre-concentration step was carried out by
solid-phase extraction (SPE) as described previously [14,15]. Briefly, the cartridges were conditioned (1
mL methanol and 1 mL H,0), then the samples were loaded, after that cartridges were washed (1 mL
ammonium acetate (100 mmol L1, pH 7) and 1 mL heptane). Finally, analytes were eluted (2 x 500 uL
of methanol (5% v/v CH3COOH)). Then, samples were evaporated to dryness (vacuum evaporator)
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and reconstituted (100 uL of H>O (pH 3):CH30H (85:15 v/v) with 0.01% (v/2) CH3COOH) to be injected
into ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS)
(Waters Acquity UPLC-Xevo TQD system (Milford, MA, USA)).

Plasma samples from the same participants were analyzed by the method previously described
by Pena-Bautista et al. [15].

2.3. Chromatographic System

The chromatographic system used consists of a Waters Acquity UPLC system coupled to a Xevo
TQD system mass spectrometry system (Waters, United Kingdom). The HPLC conditions used were
described in previous works [14,15].

2.4. Statistical Analysis

Differences between groups for numerical variables were analyzed by the Mann-Whitney test
using SPSS version 20.0 software (SPSS, Inc., Chicago, 1L, USA) and the values were expressed
as median and interquartile range (IQR). Categorical variables were analyzed by the chi-square
test. Finally, correlations among the biomarkers, as well as between the biofluids were analyzed by
Pearson Correlation.

3. Results

3.1. Participants” Characteristics

The clinical and demographic characteristics of the population are summarized in Table 1. There
were no differences between groups for age and gender. By contrast, CSF biomarkers (A, t-Tau and
p-Tau) showed statistically significant differences between participant groups as was expected. The CSF
AP levels were lower in the AD than in the non-AD patients. It could be explained by the aggregation
of A in the brain, hindering its transport to the CSF [23]. Similarly, the neuropsychological status
(RBANS, MMSE, FAQ) showed differences between the groups while CDR did not show differences.

3.2. Correlation between CSF Isoprostanoids and Standard CSF Biomarkers

We analyzed possible correlations between the different isoprostanoids families (isoprostanes,
neuroprotanes, dihomo-isoprostanes) (Figure S1), and CSF AD-specific biomarkers (A{, t-Tau, p-Tau) in
order to establish a possible relationship between oxidative stress (brain grey and white matter damage)
and amyloid pathology. Table 2 shows that A correlates negatively with 7(RS)-ST-A8-11-dihomo-IsoF,
5-Fy-IsoP, total neurofurans and isofurans. In addition, p-Tau showed negative correlation with PGE.

3.3. Correlations between CSF Isoprostanoids and Neuropsychological Evaluation

Regarding correlations between the isoprostanoids biomarkers and neuropsychological evaluation
of the participants, Table 2 shows that RBANS and especially its visuospatial/constructional domain
showed correlations with 15-F;-IsoP, Ent-7(RS)-F;-dihomo-IsoP and 15-keto-15-Fy-IsoP. The latter also
showed correlation with the RBANS attention domain and with MMSE. Moreover, 15-keto-15-Ep-IsoP
correlated with FAQ and CDR scores.
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Table 1. Demographic and clinical variables of the study participants.

Variables Non-AD (n=34)% AD (1 =42) p-Value (Mann-Whitncy)
Age (years) Median (IQR) 66(63,72) 70 (68, 73) 0102
Gender (Female) (s, %)) 17 (30%) 28 (657%) 0142
CSF pramyloid (pg mL !) Median (IOR) 123650 (950, 1435) 630 (535, 735) 0000
CSF t-lau (pg mL ) Median (IQR) 230 (139, 347) 3 (436, 1005) 0.000 >
CSF p-Tau (pg mL 1) Median (IQR) 47 (32, 61) 6 (71,122) 0000
CDR Median (IQR) 05(0,05) 0505, 1) 0071
MMSE Median (IOK) 27 (21,25) 24(18,25) D004
RBANS.IM Median (IQR) 73(69,90) 57 (40,67) 0.000
RBANS.V/C Median (1QR) 7 (73, 100) 75(37,87) DAL6*
RBANST. Vedian (IOR) 5 (60,92) o0 (31,82) 0031~
RBANS.A Median (IOK) 79 (60, 85) &0 (49,79) 0004 %
RBANS.DM Median JQR) 68 (36, 88) 0 40, 53) D000
FAQ Median (IQR) 3(0,8) 7(3,13) 0015~
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Table 2. Cont.
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3.4. CSF and Plasma Lipid Peroxidation Biomarkers

A previous study described a diagnosis model for early AD based on the quantification of these
isoprostanoid compounds in plasma samples. In the present study it was evaluated if these plasma
levels reflected brain damage by means of the determination of the corresponding levels in CSF
samples. In this sense, only 17(RS)-10-epi-SC-A'%-11-dihomo-IsoF showed correlation between both
matrices (PCC = 0.248, p = 0.031). In addition, when we analysed the results separately for AD and
non-AD groups, we found that the non-AD group showed correlations between the two matrices for
15(R)-15-F-IsoP (PCC = 0.388, p = 0.024), 15-keto-15-Fy-IsoP (PCC = 0.360, p = 0.037) and 5-F-IsoP
(PCC = 0.345, p = 0.046). However, these analytes did not show correlation between plasma and
CSF samples in AD patients. In this AD group, 17-F»-dihomo-IsoP (PCC = 0.399, p = 0.009) and
17(RS)-10-epi—SC-A15-1 1-dihomo-IsoF (PCC = 0.345, p = 0.045) showed correlation between CSF and
plasma samples.

Table 3 shows the plasma levels of isoprostanoids biomarkers. Some metabolites showed
statistically significant differences between the groups for 15(R)-15-Fy-IsoP (p < 0.001), 2,3-dinor-15-epi-
15-F¢-IsoP (p = 0.028), 5-Fp-IsoP (p = 0.021), 15-F-IsoP (p < 0.001), PGF2« (p = 0.011), neuroprostanes
(p = 0.029), 10-epi-10-F4-NeuroP (p < 0.001), isoprostanes (p < 0.001), Ent-7(RS)-7-F-dihomo-IsoP
(p < 0.001), and 17-epi-17-Fx-dihomo-IsoP (p < 0.001). However, none of the CSF compounds showed
statistically significant differences between the AD and non-AD groups.

Table 3. Concentrations of lipid peroxidation biomarkers in plasma samples.

Concentration (nmol L 1) Non-AD (n = 34) AD (n=42) p-Value Mann-Whitney
15(R)-15-Fay-1soP Median (IQR) 0.075 (0, 0.231) 0.300 (0.188, 0.394) <0.001*
PGE, Median (IQR) 0.050 (0, 0.100) 0.038 (0, 0.125) 0.590
2,3-dinor-15-epi-15-F-TsoP Median (IQR) 00,0 0(0,0.006) 0.028*
15-keto-15-Ey -IsoP Median (IQR) 0.150 (0, 0.250) 0.163 (0, 0.325) 0541
15-keto-15-Fy-1soP Median (IQR) 0.113 (0.044, 0.181) 0.225 (0.069, 0.331) 0.065
15-Ex-TsoP Median (IQR) 0.200 (0.100, 0.325) 0.213 (0.019, 0.525) 0.900
5-Fy-IsoP Median (IQR) 0.263 (0.056, 0.831) 0.700 (0.350, 1.125) 0.021*
15-Fy-IsoP’ Median (IQR) 0(0,0) 0.020 (0.009, 0.035) <0.001*
PGF,, Median (IQR) 0.238 (0.044, 0.363) 0.413 (0.194, 0.706) 0011 *
4(RS)-Fy-NeuroP Median (IQR) 0(0, 1.475) 1.100 (0.763, 1.425) 0119
1a,1b-dihomo-PCF, , Median (IQR) 0(0,0) 0(0,0) 0.219
10-epi-10-F;-Neurol Median (IQR) 0.225 (0.175, 0.281) 0.079 (0.025, 0.175) <0.001*
14(RS)-14—F4.7-NeumP Median (IQR) 0.300 (0.019, 0.850) 0,563 (0131, 1.044) 0.316
Ent-7(RS)-7-F-dihomo-IsoP Median (IQR) 0 (0, 0.050) 0.075 (0.050, 0.150) <(0.001*
17-Fys-dihomo-IsoP Median (IQR) 0(0,0) 0(0,0) 0.09
17-epi-17-F;-dihomo-TsoP Median (IQR) 0(0,0) 0(0,0.025) <0.001*
17([{5)-10—0};1/;3;‘;?‘1;él];;h}mmu-lsol— 0(0,0) 0(0,0) 0.066
7(RS)-ST-AP-11-dihomo-IsoF Median (IQR) 0.013 (0, 0.050) 0.025 (0, 0.075) 0.098
Isoprostanes ® Median (IQR) 0.449 (0.39, 0.488) 0.345 (0.234, 0.409) <0.001*
Neuroprostanes $ Median (IQR) 0.142 (0.050, 0.207) 0(0,0.268) 0.029 ¢
Isofurans 5 Median (IQR) 0.073 (0.058, 0.105) 0.085 (0.069, 0.115) 0.202
Neurofurans ¥ Median (IQR) 0.114 (0.082, 0.173) 0.095 (0, 0.169) 0111

$ Arbitrary units: intensity of signal units x (internal standard concentration, mg L ~!); * p-value < 0.05.
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4. Discussion

The reliable determination of lipid peroxidation product levels in CSF samples from biologically
defined groups (AD and non-AD), based on specific AD biomarkers, was carried out. A previous
study showed that these biomarkers were useful to diagnose AD with high accuracy when they were
measured in plasma samples [15]. Previous studies also showed an increase of CSF isoprostanes in
AD patients when their levels were corrected by ventricular volume, and these levels correlated with
other clinical variables [24]; although Dutis et al. did not find any differences for CSF isoprostanes
between AD, MCI and healthy control groups [25]. Therefore, ventricular volume could affect the
concentration measured in CSF samples and that could be the reason why no differences were found
between participant groups with or without AD.

In the present work, although isoprostanoids did not show differences between AD and non-AD
groups, some lipid peroxidation products determined in CSF correlated with CSF Ap and p-Tau
levels. These results are consistent with those obtained by Kuo et al. who did not find differences
between AD and non-AD groups for CSF levels of F2-isoprostanes and F4-neuroprostanes, but showed
correlations with these metabolites and CSF Ap levels [26]. By contrast, Yao et al. found that
12(S)-hydroxyeicosatetraenoic (HETE) acid and 15(S)-HETE correlated with CSF tau but not with CSF
{-amyloid [27]. As amyloid biomarkers are specific for AD, isoprostanes seem to be more specific for
amyloid pathology and AD than other biomarkers, such as HETE.

In our study, there is a correlation between isoprostanoids, such as 15-keto-15-Fy-IsoP, and
cognitive impairments identified through MMSE scale examination. Similar results were obtained
by Duits et al. that found a correlation between MMSE and F,-isoprostanes in ApoE ¢4 carriers [25].
Moreover, Kester et al. did not find differences for CSF isoprostanes levels between non-demented, MCI
and AD patients, but these analytes showed an increase in the follow up of these participants showing an
association with cognitive decline and MMSE examination [28]. In fact, CSF isoprostanes were described
by de Leon et al. as good, not only in diagnosis, but also in AD progression study [29]. However,
Yao et al. did not find any correlation between MMSE score and 12(S)-HETE and 15(S)-HETE, while in
the present study 8-iso-15-keto-PGF,4 correlated with this neuropsychological status evaluation [27].
Therefore, ApoE ¢4 could be another important variable that affects isoprostanes levels in CSF.

In this study, correlations between lipid peroxidation levels in CSF and plasma samples were
not found. Similarly, plasma and CSF levels of other metabolites, such as neurogranin, did not
show any correlation [30]. Moreover, AB42 measured in plasma and CSF samples did not show
any correlation [31], while Mehta et al. did not find correlation for AB40 and Ap42 between these
two biofluids [32]. However, Sun et al. studied correlations between different analytes such as
«(1)-antichymotrypsin (ACT), «(1)-antitrypsin (AAT), interleukin-6 (IL-6), monocyte chemoattractant
protein-1 (MCP-1) and oxidised low-density lipoprotein (oxLDL) between plasma and CSF samples.
They found correlations for ACT, IL-6, MCP-1 and oxLDL, the latter showing a weaker correlation [33].
In addition, other analytes, such as adiponectin showed a correlation between these two matrices [34].
Moreover, different metabolites from the kyneurine pathway showed correlation between plasma and
CSF samples, some showing a relationship with other CSF biomarkers (t-Tau, p-Tau) [9]. Therefore,
metabolites exchange between BBB is not always equal, and concentrations between both biofluids
could show differential distribution depending on the metabolite characteristics. As a hypothesis,
CSF is continuously filtrating, so isoprotanes are not accumulated in this fluid, and the analyte
concentrations in CSF are dependent on ventricular volume. By contrast, metabolites accumulating
in the blood system for longer could be more easily measured. Previous studies showed that BBB
permeability is increased under pathologic conditions, such as AD [35,36], and this permeability
depends on inflammatory processes [37]. BBB alteration in AD could be responsible for the differences
in correlation between plasma and CSF levels of different analytes in AD and non-AD. In addition,
ventricular volume could influence the concentration of different metabolites in CSF, so corrections to
this volume could result in a better correlation between plasma and CSF levels.
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5. Conclusions

New lipid peroxidation biomarkers were satisfactorily measured in CSF samples from participants
with AD and without AD (including healthy controls and other neurological pathologies) by an
analytical method based on HPLC-MS/MS. These CSF metabolites are not able to discriminate between
AD and non-AD groups, although some of them correlate with neuropsychological evaluations, as well
as standard AD CSF biomarkers (f-amyloid, p-Tau). On the other hand, the levels of each isoprostanoid
in plasma and CSF did not show correlation. It could be that changes in the transportation of substances
through the BBB, the clearance of these compounds did not allow their accumulation and quantification
in CSF, due to the necessity to correct CSF biomarker levels with ventricular volume. However, the
CSF isoprostanoids levels could be useful in the evaluation of cognitive capacity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/9/5/407/s1,
Figure S1: Chemical structures of isoprostanes, dihomo-isoprostanes, and neuroprostanes.
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Abstract: Background: Differential diagnosis of Alzheimer’s disease (AD) is a complex task due to the
clinical similarity among neurodegenerative diseases. Previous studies showed the role of lipid peroxidation
in early AD development. However, the clinical validation of potential specific biomarkers in minimally
invasive samples constitutes a great challenge in early AD diagnosis. Methods: Plasma samples from
participants classified into AD (1 = 138), non-AD (including MCI and other dementias not due to AD)
(n = 70) and healthy (1 = 50) were analysed. Lipid peroxidation compounds (isoprostanes, isofurans,
neuroprostanes, neurofurans) were determined by ultra-performance liquid chromatography coupled with
tandem mass spectrometry. Statistical analysis for biomarkers’ clinical validation was based on Elastic Net.
Results: A two-step diagnosis model was developed from plasma lipid peroxidation products to diagnose
early AD specifically, and a bootstrap validated AUC of (.74 was obtained. Conclusion: A promising
AD differential diagnosis model was developed. It was clinically validated as a screening test. However,
further external validation is required before clinical application.

Keywords: plasma; lipid peroxidation; Alzheimer’s disease; differential diagnosis; clinical validation

1. Introduction

Alzheimer’s disease (AD) is the dementia type with the highest incidence worldwide [1].
Its physiopathology is incompletely known and, although it has some specific features, it shares common
clinical aspects and metabolic pathways with other neurodegenerative disorders [2]. So, finding specific
ADbiochemical features is not an easy task. The available therapeutic methods only achieve remarkable
symptomatic relief when applied at an early stage. Therefore, clinical validation of potential, early, and
specific AD biomarkers in minimally invasive samples is crucial to improve the disease prognosis.

Currently, standard specific AD diagnosis is based on the determination of protein peptides
(B-amyloid42, tau), by immunoassay (ELISA technique), in invasively obtained cerebrospinal fluid
sampling (CSF) and the expensive brain amyloid PET exams [3]. Recent research has focused on the
identification of potential early biomarkers in minimally invasive samples. In general, these new methods
show low AD specificity, and they have not been clinically validated [4-6]. In fact, a previous study
in plasma samples showed high capacity discriminating between AD and healthy participants, but it
did not evaluate other similar pathologies [4]. Moreover, few studies have focused on the preclinical
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AD stage, asymptomatic step detected from CSF biomarkers. For instance, Eruysal et al. discriminated
between preclinical AD and healthy participants [5]. In the AD mild cognitive impairment (MCI) stage,
patients show cognitive impairment not altering their daily activities, while in mild dementia stage
they show an inability to lead a normal life [7]. In this sense, Gao et al. demonstrated that a sensible
detection of amyloid 42 peptide is able to differentiate between AD, MCI and healthy participants [8].
Inflammatory biomarkers also could differentiate between AD, MCI and healthy controls [9]. However,
other pathologies were not assessed in order to establish the specificity in AD diagnosis.

The main AD histological hallmarks are extracellular senile plaques and neurofibrillary tangles [10].
The former is originated by the extracellular deposition of the accumulated amyloid-beta peptide
(i.e., forty-two amino acid long amyloid-beta peptide [A342]). At the same time, the latter is a consequence
of intracellular accumulation of tau protein hyperphosphorylated [11]. In fact, it should be reported that
cerebrospinal fluid (CSF) concentrations of AB42, total tau (t-tau), and hyperphosphorylated tau (p-tau)
proteins have been validated as “core” biomarkers of AD pathophysiology. They are pathophysiological
biomarkers of amyloid pathology, cortical axonal degeneration, and tangle pathology, respectively [12,13].
In addition, other mechanisms as inflammation or oxidative stress have been related to AD [14].
Specifically, previous studies have shown that lipid peroxidation is involved in the development of
neurodegeneration [15]. In this sense, different products derived from lipid peroxidation (e.g., isoprostanes,
thiobarbituric acid-reactive substances, fluorescent lipofuscin-like pigments) have been evaluated in
different human samples for early AD diagnosis [16-18] and results have reflected the difficulty to develop
an AD differential diagnosis with this kind of determinations [4].

Nowadays, substantial research has focused on the development of a specific and reliable biochemical
AD diagnosis and significant efforts are currently ongoing aimed to enhancing the landscape of
blood-based biomarkers for AD [19]. In this regard, some studies have aimed to a diagnosis looking
for specific profiles in AD using a combination of several blood biomarkers [20]. Nevertheless, limited
specificity was obtained over other neurodegenerative diseases, such as frontotemporal dementia [21,22],
Parkinson’s disease [23], or dementia with Lewy bodies (DLB) [24]. Moreover, most of the studies for
differential diagnosis are based on CSF samples [25,26]. On the other hand, few studies have clinically
validated the potential biomarkers [27]. However, no satisfactory results have been obtained, so further
work is required in this line in order to establish new biomarkers which can be validated and applied to
the clinical routine.

Therefore, the aim of this work is to develop an early AD diagnosis model, using minimally
invasive samples such as plasma that allow a differential diagnosis from other similar neurological
and neurodegenerative diseases with similar clinical symptoms. Moreover, we have carried out an
internal validation that shows the potential clinical utility of some lipid peroxidation biomarkers in
plasma for differential diagnosis of AD.

2. Materials and Methods

2.1. Study Design and Participants

Participants were aged between 50 and 75 years, and admitted to the Neurology Unit of the
University and Polytechnic Hospital La Fe (Valencia, Spain). They were classified into AD group (1 = 138),
non-AD group (1 =70) and the healthy group (1 = 50). The AD group included patients with MCI-AD and
mild dementia due to AD who showed cognitive complaints without daily living activities impairment or
with minor daily living activities impairment. The non-AD group included patients with MCI not due to
AD, frontotemporal dementia, vascular dementia, or DLB. This classification was carried out according to
a protocol described in Table 1 based on neuropsychological evaluation (clinical dementia rating (CDR),
Repeatable Battery for the Assessment of Neuropsychological Status-Delayed Memory (RBANS.DM)),
CSF biomarkers (8-amyloid, Tau and phosphorylate Tau (p-Tau)), and neuroimaging (amyloid PET),
following the National Institute on Aging-Alzheimer’s Association (NIA-AA) recommendations [3].
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Regarding exclusion criteria, patients with a history of structural brain disease (tumor, stroke,
etc.), major head trauma, epilepsy, multiple sclerosis and major psychiatric disorders were excluded,
as well as patients that were not able to undergo neuropsychological evaluations.

The study protocol (project reference number 2016/0257) was approved by the Ethics Committee
(CEIC) from Health Research Institute La Fe (Valencia, Spain). The methods were carried out in
accordance with relevant guidelines and regulations, and informed consent from all participants
was obtained.

2.2. Lipid Peroxidation Componuds

Isoprostanes’ standards were from Cayman Chemical Company (Ann Arbor, Michigan, USA)
(15(R)-15-Fp.IsoP, PGE;, 23-dinor-iPF2 «lll, 15-keto-15-Ep-IsoP, 15-keto-15-Fai-IsoP, 15-Ep-IsoP,
15-Fp-1s0P, 5-Fy-IsoP, PGF,, 1a,1b-dihomo-PGF, ), or synthesized at the Institute of Biomolecules Max
Mousseron (IBMM) (Montpellier, France) by Dr Durand’s team (4(RS)-Fs¢-NeuroP, 10-¢pi-10-F;-NeuroP,
14(RS)-14-F4-NeuroP, Ent-7(RS)-Fp-dihomo-IsoP, 17-Fai-dihomo-TIsoP, 17-¢pi-17-Fp-dihomo-IsoP,
17(RS)-10-¢pi-SC-A"3-11-dihomo-IsoF, 7(RS)-ST-A8-11-dihomo-IsoF) [28].

2.3. Sample Treatment

Blood samples were centrifuged for 10 min at 2000 g and plasma samples were stored at —80 °C
until the analysis. Samples were thawed on ice and 5 pL of the internal standard solution (PGF,-Dy
2 pmol L1 and D4~10-epi-10-F4-NeroP 1.2 pmol L™!) were added. Then, a basic hydrolysis with
potassium hydroxide and a clean-up step with solid phase extraction (SPE) were carried out. Briefly, SPE
was carried out using Strata X-AW cartridges, the procedure consisted on a cartridge conditioning step
with methanol and H,0, a sample loading, washing steps with ammonium acetate buffer (0.1 mol L™,
pH 7) and heptane, and an elution step with 2 x 500 uL. CH30H (5% (v/v) acetic acid). Then samples
were evaporated and reconstituted in 100 pL of H20 (0.01% acetic acid (v/v)):CH30H (85:15 v/v). Finally,
samples were injected in a chromatographic system, and they were analyzed by ultra-performance
liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) [4].

2.4. UPLC-MS/MS

The analytical method consists of ultra-performance liquid chromatography coupled to tandem mass
spectrometry (UPLC-MS/MS) described in a previous study [4]. Briefly, a Waters Acquity UPLC-Xevo
TQD system (Milford, MA USA) and negative electrospray ionization (ESI) were used. The column
employed was an Acquity UPLC BEH C18 (2.1 X 100 MM, 1.7 um). The mobile phase was (A) water
(0.01% v/ acetic acid) and (B) acetonitrile (0.01% acetic acid) [4]. The analytical method was validated in
a previous study [4], showing linearity with confidence intervals of 0.990-0.99. In addition, inter-day and
intra-day coefficients of variation were 5-13% and 2-11%, respectively.

2.5. Statistical Analysis

Variables distribution was studied using a Kolmogorov-Smirnov test. Data were summarized
using median (1st, 3rd quartile) in the case of continuous variables and with relative and absolute
frequencies in the case of categorical variables. A two-stage model for Alzheimer’s disease diagnosis
was developed by adjusting two nested logistic regression models. The first model was based on
the discrimination capacity of the neuropsychological evaluation to differentiate between control and
case (including AD and non-AD groups) participants. Specifically, the clinical variables RBANS.DM
(Repeatable Battery for the Assessment of Neuropsychological Status. Delayed Memory) and CDR
(Clinical Dementia Rating) were used as predictors in this first model. The second model was based
on the discrimination capacity of lipid peroxidation products from plasma samples to differentiate
between AD and non-AD patients in the case group. Specifically, the potential predictors in this
second model were 15(R)-15-Fy-IsoP, PGE,, 2,3-dinor-iPF;-1II, 15-keto-15-Ep-IsoP, 15-keto-15-Fp-IsoP,
15-Ep-IsoP, 5-Fa;-1soP, 15-Fa-IsoP, PGFy, 1a,1b-dihomo-PGFa«, 4(RS)-F4-NeuroP, 10-¢pi-10-F4-NeuroP,
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14(RS)-14-F4-NeuroP, Ent-7(RS)-Fy-dihomo-IsoP, 17-Fa-dihomo-IsoP, 17-epi-17-Fy-dihomo-IsoP,
17(RS)-10-(’pi-SC-A15—l 1-dihomo-IsoF, 7(RS)-ST-A8-11-dihomo-IsoF, as well as the total parameters IsoP,
IsoF and NeuroF. Selection of the final predictors in the model was performed using Elastic Net [29].
Performance of the model was assessed by estimating optimism-corrected AUC using 200 bootstrap
replications. All statistical analyses were performed using R (version 3.6) and R packages pROC
(version 1.14.0) and brms (version 2.8.0).

Table 1. Participants’ classification attending to neuropsychological evaluation, neuroimage and
cerebrospinal fluid biomarkers.

Tests AD Group Non-AD Group Healthy Group
Neuropsychological tests
CDR [30] 0.5-1 0.5-1 0
RBANS.DM [31] <85 =85 >85
Neuroimage tests
Amyloid PET Positive Negative Negative
CSF biomarkers [32,33]
p-amyloid (pg mL™") <725 >725 =725
t-tau (pg mL1) =85 <85 <85
p-tau (pg mL™") 2350 <350 <350

CDR: Clinical dementia rating; RBANS.DM: Repeatable Battery for the Assessment of Neuropsychological
Status-Delayed Memory; CSF: cerebrospinal fluid; I-tau: total tau; p-tau: phosphorylated tau.

3. Results

The demographicand clinical data from the participants are summarized in Table 2. The clinical variables
allowed to differentiate among participants groups. Specifically, the CSF biomarkers (8-amyloid42, Tau,
p-Tau) levels identify AD patients from control and non-AD participants. Moreover, the neuropsychological
evaluation (RBANS.DM, CDR) identifies control participants.

Table 2. Clinical and demographic variables for the participants.

" AD Grouj Healthy Grou; Non-AD Grou
Vaiables =139 was P
Age (years, median (IQR)) 71 (68, 74) 67 (62, 69) 66 (62,71)
Gender (female, 1 (%)) 80 (59.7%) 19 (38.78% 31 (48.44%)
RBANS.DM (median (IQR)) 44 (40, 56) 100 (92, 106) 64 (52, 81)
CDR (median (IQR)) 05 (0.5-1) 0(0-0) 05 (05-1)
B-amyloid (pg mL~, median (IQR)) 580 (464, 694) 1085 (924, 1308) 1049 (850, 1264)
tTau (pg mL ", median (IQR)) 707 (428, 830) 255 (144, 313) 322 (190, 395)
p-Tau (pg mL~", median (IQR)) 99 (71,110) 47 (32, 60) 52 (34, 61)

The analytes concentrations found in plasma samples from participants groups are summarized in
Table 3. All these variables showed non-normal distribution, so the non-parametric test (Kruskal-Wallis)
was applied showing statistically significant differences among groups for some lipid peroxidation
compounds (15-E2t-IsoP, PGF2«, 4(RS)-F4t-NeuroP, 10-epi-10-F4t-NeuroP, IsoP).

The first model, using these neuropsychological variables, was able to discriminate between
control and patients. It achieved a very high accuracy, with an AUC of 0.99 and a bootstrap validated
AUC of 0.99. These results show that separating control participants from case patients (AD, non-AD)
is straightforward using standard neuropsychological evaluation tests. In Figure 1a, it can be seen that
participants without any neurological or neurodegenerative disease (healthy participants) are grouped
in the left and upper side, indicating higher RBANS.DM and lower CDR punctuations. The formula
for this first prediction step is the following:

09-25-0.13xRBANS +22.71xCDR

Pr(Case/Control) = 1+ ¢925-013xRBANS+2271XCDR o
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The second model, for discriminating between AD and non-AD patients in the case group
included the variables 10-epi-10-F4t-NeuroP and IsoPs (Figure 1b), and it achieved an AUC of 0.79
and a bootstrap validated AUC of 0.74. Calibration of the model was satisfactory. It was ass:
using bootstrapping and comparing predicted vs. obtained values, observing very low deviations.
The formula for this final prediction step, to be applied only to the individuals predicted as patients

(case) by the first step, is the following:

Pr(AD/non—-AD) =

¢~ 014+1.15xl0g{150P; }+2.24X10~-epi=10-Fdt—NeuroP

50f 11

1 + ¢~0-14+1.15xl0g (IsoPs) +2.24x10—cpi=10~F4t=Newrol

Table 3. Analytes concentrations in plasma samples from participants groups.

ssed

@)

Variable AD Group Healthy Group Non-AD Group  P-Value
Median (IQR) (nmol L™1) (n =138) (n = 50) (1 =70) (Kruskal-Wallis)
Median (IQR) Median (IQR) Median (IQR)
15(R)-15-Fyy-IsoP 021(0.12,032)  019(0.13,029)  019(0.09,033) 0361
PGE 0.08 (0, 0.38) 0.08 (0.02, 0.36) 0.12 (0.03, 0.36) 0913
2,3-dinor-iPE; 111 0(0,0) 0(0,0) 0(0,0) 0418
15-keto-15-Ey-lsoP 0.04 (0, 0.13) 0.03(0,0.14) 0(0,0.2) 0.924
15-keto-15-F;-IsoP 0.14 (0.06, 0.37) 0.14 (0.09, 0.23) 0.16 (0.1,0.33) 0.872
15-Ey,-IsoP 0.2 (0.09, 0.93) 02 (0.12,0.64) 048(0.18,1.05)  0.041%
5-Fyy-IsoP 0.77 (0.37, 1.45) 112 (0.54, 1.46) 1.08 (0.45, 1.55) 0.542
15-Fy-IsoP 0.03 (0.01, 0.06) 0.02 (0.01, 0.04) 0.01 (0, 0.07) 0.129
PGFoy 043 (017,091) 078 (0.4,1.08) 0.62(0.3,1.13) 0.005*
4(RS)-Fyy-NeuroP 1.2(0.59, 1.44) 1.22(0.7,1.43) 05(0,1.43) 0.006 %
1a,1b-dihomo-PGF,, 0(0,0) 0(0,0) 0(0,0) 0178
10-¢pi-10-Eyy-NeuroP 0.13 (0.05,0.2) 013(0.07,0.18)  022(0.17,031)  <0.001*
14(RS)-14-Fy-NeuroP 056 (0.1,1.2) 062 (0,1.33) 0.52 (0.1,1.48) 0.891
TsoP$ 036(0.26,0.55)  031(0.19,045)  054(0.42,093) <0001+
Ent-7(RS)-Fsy-dihomo-IsoP 0.12(008,017)  0.11(007,0.15)  0.13 (0, 0.45) 0.181
17-Fo;-dihomo-IsoP 0(0,0) 0(0,0) 0(0,0) 0.989
17-¢pi-17-Ey-dihomo-IsoP 0(0,0.02) 0(0,0) 0(0,018) 0.168
17(RS)-10-¢pi-SC-A13-11-dihomo-lsoF 0 (0, 0) 0(0,0) 0(0,0) 0536
7(RS)-ST-A%-11-dihomo-IsoF 0.06 (0,0.12) 0.11 (0, 0.18) 0.02(0,0.1) 0.155
NeuroF? 0.13 (006,025  007(=01,025)  0.14(0.08,0.2) 0.022%
IsoF® 0.14 (0.08, 0.29) 0.11 (0.07, 0.3) 0.2(0.08,0.39) 0.336

# Arbitrary units: (intensity of signal units X (internal standard concentration, nmol L'); * P < 0.05; IQR: Inter-quartile range.
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Figure 1. (a) Representation of control and dementia patients by using standard neuropsychological
evaluation tests (RBANS-DM, CDR); (b) Representation of AD and non-AD patients by using the variables

10-¢pi-10-Fg-NeuroP and IsoP.

4. Discussion

In this work it is described a new diagnosis model based on plasma lipid peroxidation biomarkers
and neuropsychological scores, which evaluate memory, cognition and functional performance.
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This model could be able to differentiate AD from healthy subjects and participants with other
pathologies, such as MCI not due to AD, frontotemporal dementia, vascular dementia, or DLB.
Differential diagnosis between AD and non-AD pathologies are commonly a challenge in neurology
units especially in early stages [34], since some pathologies show similar clinical symptoms. Therefore,
a reliable early diagnosis model is required to be applied to clinical practice.

Recent research has shown an increasing interest in the clinical validation of potential biomarkers to
early and specific diagnose AD using minimally invasive biological samples [35]. Among the physiological
mechanisms that are already impaired in early disease stages, lipid peroxidation has shown some
promising results, and plasma samples constitute an interesting matrix in the search for the corresponding
biomarkers [16,36—42].

Among lipid peroxidation biomarkers evaluated in plasma, some AD studies found altered
levels for malondialdehyde [36-38,42], 4-hydroxynonenal [39], lipophilic fluorescent products [40,41],
and isoprostanes [4]. In general, these potential biomarkers showed elevated levels in AD in comparison
with healthy participants, reflecting high oxidative stress at systemic level. However, oxidative stress
is common in many pathologies, such as cancer [43] or vascular diseases [44], as well as in other
neurodegenerative diseases [45]. For that reason, the present work focused on the need to develop a
specific diagnosis model for AD. In fact, AD shows similar clinical symptoms to other pathologies, and
the differential AD diagnosis constitutes the real diagnostic challenge. In this sense, lipid peroxidation
biomarkers were evaluated as potential specific AD biomarkers, as the brain has a high lipid composition
(polyunsaturated fatty acids ... ) [46]. For this, a previously developed and validated analytical method
was applied [4]. This method showed adequate linearity for all the analytes within the corresponding
concentration ranges, and suitable precision. The limits of detection and accuracy were satisfactory, and
matrix effect was considered negligible. Among studied compounds, statistically significant results
were obtained for two prostaglandins (derived from araquidonic acid), two neuroprostanes (derived
from docosahexanoic acid), and isoprostanes as total parameter (15-E2t-IsoP, PGF2a, 4(RS)-F4t-NeuroF,
10-epi-10-F4t-NeuroP, IsoP). In contrast to the results in this work, some studies determining isoprostanoids
did not obtain satisfactory results [47 48]. It could be explained by the limited list of compounds assessed
in literature. However, in the present study a set of 18 compounds were evaluated simultaneously, and it
could provide more information about the oxidative state of each individual.

In addition, the present study shows the strengths of using standard diagnosis based on biological
definition (CSF biomarkers) to identify accurately the participants (early AD patients, healthy controls,
non-AD patients). Furthermore, it is important to highlight the relevant discrimination capacity of
the neuropsychological evaluation to identify accurately the healthy controls. From this accurate
participant’s classification, a further AD specific and minimally invasive diagnosis was developed. For
this, a two-step model was required using the advantages of the neuropsychological evaluation (first
step), and the plasma lipid peroxidation determinations (second step). In the developed model, the first
step identified the healthy participants, while the second step increased the diagnosis specificity,
differentiating AD patients from other patients with other pathologies with similar symptoms. In this
sense, a one-step model would not be able to distinguish accurately among AD, non-AD and healthy
patients. Therefore, the two-step developed model was required to achieve the minimally invasive and
differential AD diagnosis.

Regarding AD differential diagnosis, our study achieved high discriminative power. Albeit not
outstanding, it serves as a first approach for developing a differential diagnosis model based on lipid
peroxidation compounds. Some studies can be found in literature identifying different biomarkers that
differentiate AD from vascular dementia [49], and diabetes-related dementia [50]. However, there is
a lack of preliminary studies with clinical validation. A recent study focused on differentiating AD
and DLB by means of different pathological signatures of gait [51] supported the theory of interacting
cognitive-motor networks [52]. In addition, a previous study found that the CSF p-taul81/AB42
ratio might reliably detect AD pathology in patients suffering from different types of dementia [26].
In the present work the non-AD group included a large variety of pathologies, such as MCI not
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due to AD, frontotemporal dementia, vascular dementia, and DLB. The different lipid peroxidation
pattern observed between AD and non-AD subjects could be corroborated by a previous study, which
suggested that high lipid peroxidation levels preceded (3-amyloid accumulation in brain [53]. Among
the physiological mechanisms that could explain the different lipid peroxidation levels between AD
and non-AD pathologies, it is important to highlight the role of potential mediators between lipid
peroxidation products and AD pathology [54]. Specifically, thromboxane A2 receptor is activated by
isoprostanes and promotes amyloid aggregation [55,56]. In fact, previous studies have shown that
agonists for this receptor reduced this amyloid increase and they could be potential treatments for
AD [55]. On the other hand, another study found co-localization of lipid oxidation and amyloid plaques
in brain [57]. From the clinical point of view, the specificity described in the developed diagnosis
model could have a great value due to the high clinical similarity among pathological symptoms.

Asregards biomarkers and neuropsychological tests, they were selected from our previous experience.

In fact, a study carried out with the same lipid peroxidation compounds in plasma samples from AD
and healthy participants showed the capacity of these analytes as potential biomarkers for AD [4]. In
that work, a one-step diagnosis model was developed from the levels obtained for six lipid peroxidation
compounds. The corresponding diagnosis model could differentiate early AD patients from healthy
participants with satisfactory accuracy (AUC-ROC 0.817). Nevertheless, it showed the disadvantage of
low sample size. Moreover, the differential diagnosis power from non-AD pathologies, which constitutes
an important diagnostic problem in clinical practice, was not evaluated [4]. On the other hand, a previous
model for early AD diagnosis was developed from the RBANS.DM test. It showed a high discriminative
power between AD and non-AD participants [58]. For that reason, RBANS.DM was included in the first
step of the present model, improving biomarkers diagnosis power. In this sense, the present developed
diagnosis model is based on two steps, the sample size has been suitable to carry out an internal clinical
validation, and the differential diagnosis has been included.

Finally, few studies have carried out an external clinical validation of potential biomarkers (plasma
proteins, magnetic resonance imaging scans) differentiating two groups of participants (discovery
group, validation group) [59,60]. In order to improve the statistical power, other studies developed an
internal clinical validation [61,62]. Similarly, in this work, an internal clinical validation was carried
out obtaining a satisfactory diagnostic power, since a large sample size was available. Most of previous
works were based on CSF biomarkers or neuroimaging biomarkers, so the internal clinical validation
based on plasma lipid peroxidation biomarkers constitutes a promising new approach.

The two-step diagnosis model developed in the present work provides the probability of suffering
AD from early stages. In the first step, in a given population, it is possible to discriminate the control
patients of case patients and thus putative AD patients. In the second step, AD diagnosis can be
differentiated from other neurodegenerative diseases also involving cognitive impairment. These
results combined with other factors (e.g., age, gender, familiar background, risk factors . ... ) could decide
upon the further need of using invasive techniques to establish the patient’s diagnosis [63]. Therefore,
the present diagnosis model could be considered a relevant approach in the clinical practice field.

5. Conclusions

A two-step early and differential diagnostic model has been developed indicating the individual
probability of suffering from early AD, using low cost and minimally invasive procedures for the
potential diagnosis. It consisted of a simultaneous approach from neuropsychological and biochemical
fields. Lipid peroxidation has been assayed as a physiological mechanism which is impaired at early
stages in AD. In this sense, a large set of related biomarkers were determined in plasma samples,
selecting two compounds in the development of an AD differential diagnosis model. The corresponding
internal validation was satisfactory, and further external validation of the developed model will be
carried out as a fundamental stage before being applied in the clinical routine use. This is a promising
screening test that could avoid the current invasive diagnosis method and could be useful in diagnosis
and investigation.
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Abstract: Alzheimer discase (AD) is an increasingly common neurodegenerative discase, especially
in countries with aging populations. Its diagnosis is complex and is usually carried out in advanced
stages of the disease. In addition, lipids and oxidative stress have been related to AD since the
earliest stages. A diagnosis in the initial or preclinical stages of the disease could help in a more
effective action of the treatments. Isoprostanoid biomarkers were determined in plasma samples
from preclinical AD participants (1 = 12) and healthy controls (1 = 31) by chromatography and mass
spectrometry (UPLC-MS/MS). Participants were accurately classified according to cerebrospinal
fluid (CSF) biomarkers and neuropsychological examination. Isoprostanoid levels did not show
differences between groups. However, some of them correlated with CSF biomarkers (t-tau, p-tau)
and with cognitive decline. In addition, a panel including 10 biomarkers showed an area under
curve (AUC) of 0.96 (0.903-1) and a validation AUC of 0.90 in preclinical AD prediction. Plasma
isoprostanoids could be useful biomarkers in preclinical diagnosis for AD. However, these results
would require a further validation with an external cohort.

Keywords: Alzheimer disease; plasma; biomarker; lipid peroxidation; mass spectrometry; preclinical

1. Introduction

Alzheimer disease (AD), the most prevalent cause of dementia, is characterized in
terms of histopathology by its histological markers. Specifically, an intracellular accu-
mulation of phosphorylated tau (p-tau) protein leads to the formation of neurofibrillary
tangles, while an extracellular accumulation of B-amyloid peptide leads to the formation
of senile plaques. These markers lead to a synapse loss that causes neuron dysfunction
and neurodegeneration. Additionally, tau accumulation is a mechanism shared with other
neurodegenerative diseases, while 3-amyloid accumulation is supposed to be specific for
AD [1]. These histopathological findings are present in the brain before AD symptoms
appear. In fact, impairment in amyloid (3-42 (A(342), and tau proteins in cerebrospinal fluid
(CSF) samples are detectable some years before clinical symptoms appear. In this sense,
preclinical AD could be defined as biomarker evidence of AD’s pathological changes in
cognitively healthy individuals [2]; evidence that can be obtained from cerebrospinal fluid
(CSF) biomarkers and amyloid brain Positron Emission Tomography (PET) scan. Therefore,
positivity in amyloid brain status identifies preclinical AD in asymptomatic cases. Research
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focusing on this preclinical AD stage is required in order to advance in the knowledge
of AD physiopathological mechanisms, as well as to identify new, early and minimally
invasive AD biomarkers, which could be determined in the general population, providing
data for a better individual prognosis, new therapeutic targets or other benefits.

Blood samples (plasma, serum) are a promising matrix for identifying potential
AD biomarkers [3]. A recent study focused on plasma samples from preclinical AD
patients, determining different proteins and peptides (p-tau 181, amyloid-@40, amyloid-
B42), showed some evidence that plasma analysis could guide the selection of candidates to
receive a diagnosis of their amyloid status, and so reduce the number of amyloid PET scans
required to identify amyloid-B-positive individuals [4]. Similarly, Janelidze et al. found
that impaired plasma p-tau 217 levels correlated with positivity in the brain before tau-PET
in AD cases [5]. In the same way, Sudrez-Calvet et al. observed that plasma p-tau 181
was significantly increased in the preclinical stage [6], showing early changes in neuronal
tau metabolism. Another study focused on the relationship between plasma amyloid-p
and cognitive decline in preclinical AD, revealed specific associations with the decline in
episodic memory and executive function [7].

Reviewing non-specific AD biomarkers related to other aspects of preclinical AD,
plasma lipocalin-2 was associated with some impairment of executive function, at least in
preclinical AD [8]. Additionally, some lipids were identified as potential plasma biomark-
ers [9]. Moreover, exosomes are an emerging sample matrix [10]. In fact, a recent work
showed an early neuronal lysosomal dysfunction [11]. Nevertheless, no conclusive re-
sults have been obtained, especially in relation to differential AD diagnosis, as well as in
longitudinal studies evaluating clinical progression [12].

Regarding potential physiopathological mechanisms involved in early AD, an in-
creasing number of studies highlight the involvement of oxidative stress, determining
several parameters such as oxidatively damaged lipids, proteins and nucleic acids [13,14].
Specifically, lipid peroxidation plays an important role since brain is a susceptible organ
characterized by both high lipid content and oxygen consumption. Thus, lipid peroxida-
tion is an important factor in the development of neurodegenerative diseases, especially
involving ferroptosis and mitochondrial dysfunction as pathological mechanisms [15]. In
this sense, the impairment of lipid peroxidation biomarkers in the brain was found together
with histological lesions produced in neurodegenerative diseases, such as brain -amyloid
plaques. In addition, previous studies observed an AD relationship with impaired levels
of some plasma lipid peroxidation compounds [16]. It could be explained by the high
permeability of the blood-brain barrier since early AD stages [17]. However, a previous
study in CSF samples did not show correlations between plasma and CSF samples for
any of the studied lipid peroxidation compounds (isoprostanes, neuroprostanes . .. ); also,
lipid peroxidation biomarkers in CSF samples did not show significant differences between
participant groups [18]. In general, previous studies found that some plasma isoprostanes
and neuroprostanes isomers could be useful, to some extent, in clinical or research fields
as their levels are different between early symptomatic AD stages (patients with mild
cognitive impairment (MCI) due to AD) and healthy controls [19,20].

The aim of the present work is to evaluate the possibility of using these lipid peroxida-
tion compounds as minimally invasive biomarkers of preclinical AD, as well as to evaluate
whether its use could be beneficial in the development of a potential prevention approach
to be applied to the general asymptomatic population.

2. Materials and Methods
2.1. Study Design and Participants

In this study involving people with unimpaired cognition, participants with detected
preclinical AD (1 = 12) and a control group with elderly participants without AD pathology
(n =31) were included. The preclinical AD group included participants with positive CSF
AD biomarkers (B-amyloid-42 < 725 pg-mL~, total tau (t-tau > 485 pg-mL~"), phospho-
rylated tau (p-tau > 56 pg-mL')), and normal cognitive evaluation test scores (clinical
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dementia rating (CDR) < 0.5 [21], mini-mental state examination (MMSE) > 27 [22], re-
peatable battery for the assessment of neuropsychological status delayed memory domain
(RBANS.DM) > 85 [23]). The control group included participants with negative levels for
CSF AD biomarkers (3-amyloid-42 > 725 pg-mL !, t-tau <485 pg-mL !, p-tau < 56 pgmL 1)
and normal cognitive tests (CDR < 0.5 [21], MMSE > 27 [22], RBANS.DM > 85 [23]) (see
Table 1). Participants with major brain disorders, traumatic brain injuries and psychi-
atric disorders were excluded, as well as participants that were not able to complete the
neuropsychological evaluations.

Table 1. Clinical assessment to classify the study participants.

- Classification of Participants
Clinical Assessment

Control Preclinical AD
RBANS.DM ! >85 >85
FAQ? <9 <9
CDR? 0-0.5 0-05
MMSE 4 >27 >27
CSF t-tau (pg mL~1) <485 >485
CSF p-tau (pg mL~1) <56 >56
CSF p-amyloid42 (pg mL ') >725 <725
CSF t-tau/ p-amyloid42 <0.51 >0.51

T RBANS.DM, repeatable battery for the assessment of neuropsychological status-delayed memory (standard
score; cut-off point < 85). 2 FAQ, functional activities questionnaire (direct score; cut-off point > 9). * CDR, clinical
dementia rating, values: 0,0.5, 1,2. * MMSE, mini-mental state (cut off point < 27). CSF, cerebrospinal fluid.

The Ethics Committee from Health Research Institute La Fe (Valencia) approved
the protocol (ethical protocol code: 2019/0105) and all included participants signed the
informed consent before the study procedures.

2.2. Sample Collection and Treatment

Blood samples were collected, employing cryo-tubes with ethylenediaminetetraacetic
acid, for all participants. They were centrifuged for 15 min at 1500x ¢. Plasma fraction
(approximately 4 mL) was separated in a tube containing butylated 8-hydroxytoluene
(BHT) (0.25 % (w/?) in ethanol) to avoid further oxidation of the sample. Then, samples
were stored at —80 °C until the analysis.

Sample treatment was previously described by Pena-Bautista etal. [19]. Briefly, 5 pL of
an internal standard solution (PGF2-D4 2 umol L-1 and D4-10-epi-10-F4t-NeuroP 1.2 umol
L-1) and 400 uL of a potassium hydroxide solution (15% w/v) were added to 400 uL of
plasma to carry out the hydrolysis (40 °C, 30 min). Then, proteins were precipitated with
HCI. After that, the supernatant pH was adjusted to 7. Then, samples were purified by
solid phase extraction in order to preconcentrate analytes and minimize interferences.
Finally, the extract was evaporated and reconstituted to be analyzed by ultra-performance
liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) [24].

2.3. Statistical Analysis

Median differences between participant groups were analyzed using the chi-square
test for categorical variables and the Mann-Whitney test for numerical variables. Bi-
variate correlations were established using the Pearson correlation. For all the analysis,
significance value was p value < 0.05. Box-plots were used to represent the levels of
isoprostanoids biomarkers.

In order to discriminate between participants groups, the elastic net logistic regression
model was used to select “variables” with the glmnet package [25], due to the collinear
nature and high dimensionality of the data. The elastic net regularization method of the
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estimated beta coefficients improves upon ordinary least squares. It linearly combines the
L1 and L2 penalties of the lasso and ridge methods. Regularization parameter A determines
the amount of regularization. An optimal value for A was determined performing a 5-fold
cross-validation, which yielded the minimum cross-validated mean-squared error (CVM).
A median of 500 repetitions of the cross validation was calculated in order to improve
lambda ’s robustness.

3. Results
3.1. Patients’ Characteristics

Demographic characteristics of the participants are described in Table 2. Participants
showed median ages between 62 and 70 years old and they showed comparable normal
cognitive status, with similar median RBANS.DM and CDR scores. As expected, the control
group showed higher median levels of 3-amyloid-42 than the preclinical group, and the
control group showed lower levels of t-tau and p-tau than the preclinical group. Addition-
ally, both groups showed similar use of medications, comorbidities and educational levels.

Table 2. Participants’ clinical and demographic description.

Control Group (1 =31)

Preclinical Group (n =12)

Vanable Median (1st, 3rd Quartile) Median (1st, 3rd Quartile)
Age (years) 62 (58.5, 67) 70 (60.75, 74)
Gender (Female, n (%)) 19 (61.29%) 6 (50%)
Smoke (Yes, 1 (%)) 6 (27.27%) 1 (14.29%)
Alcohol (Yes, 1 (%)) 6 (27.27%) 0 (0%)
RBANS.DM (score) 98 (94, 102) 94.5 (87, 100.25)
RBANS.A (score) 91 (82, 98.5) 85 (78,91)
RBANS.L (score) 90 (83, 94) 88.5 (82.5, 94.25)
RBANS.VC (score) 92 (84, 105) 87 (75, 105)
RBANS.IM (score) 87 (83, 98.5) 85 (81.75, 94)
CDR (score) 0.5(0,0.5) 0.5(0,0.5)

CSF p-amyloid-42 (pg mL ')

1224 (975.5, 1409.5)

571.5 (407, 683.29)

CSF t-tau (pg mL~1)

212 (181.5, 259)

443.5 (256.75, 607.75)

CSF p-tau (pg mL~1) 34 (265, 38.5) 74 (40.75, 86)
CSF t-tau/ p-amyloid-42 0.18 (0.16-0.21) 0.70 (0.51-0.97)
FAQ (score) 1(0,3.5) 1(0,3)
GDS (score) 11(5.5,13) 5(.759)
Basic/primary 10 (32.26%) 4(33.33%)
Educational level Secondary 7 (22.58%) 2 (16.67%)
Universitary 14 (45.16%) 6 (50%)
Medication (n, (%))
Statins 9 (4091%) 3 (42.86%)
Fibrates 0 (0%) 1 (14.29%)
Morphics 0 (0%) 0 (0%)
ACEL 1 (4.55%) 0(0%)
Neuroleptics 2 (9.09%) 0 (0%)
Benzodiazepines 6 (27.27%) 2 (28.57%)
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Table 2. Cont.

Control Group (1 = 31)

Preclinical Group (2 =12)

Variable: Median (1st, 3rd Quartile) Median (1st, 3rd Quartile)
Antiepileptics 1 (4.55%) 0 (0%)
Anticoagulants 0 (0%) 0 (0%)
Antihipertensives 7 (31.82%) 2 (28.57%)
Corticoids 1 (4.55%) 0 (0%)
Anti-inflammatory 3 (13.64%) 0 (0%)
Comorbidity (1, (%))
Dyslipidemia 11 (50%) 3 (42.86%)
Diabetes 9 (40.91%) 1(14.29%)
Hypertension 8 (36.36%) 2 (28.57%)
Heart Disease 1 (4.55%) 0 (0%)
Cerebrovascular 1 (4.55%) 0 (0%)
Depression 4 (18.18%) 2 (28.57%)
Anxiety 3 (13.64%) 2 (28.57%)

RBANS, Repeatable Battery for the A

of Neuropsy

ical Status (DM, delayed memory; A, attention; L, learning; VC,

visuospatial /constructional; IM, immediate memory); CDR, clinical dementia rating; CSF cerebrospinal fluid; FAQ, functional activities
questionnaire; GDS, geriatric depression scale; ACEL acetylcholinesterase inhibitors.

3.2. Plasma Levels of Lipid Peroxidation Lipid Compounds

The plasma levels obtained for the determined lipid peroxidation compounds are
summarized in Table 3 for each participant group. As can be seen, these potential biomark-
ers did not show statistically significant differences between preclinical AD patients and
healthy participants (Table 3). Figure 1 shows the corresponding boxplots, observing slight
differences in median values between groups. In general, lower levels were obtained for
the preclinical AD group.

Table 3. Plasma levels of lipid peroxidation compounds.

Control (1 = 31)

Preclinical (7 = 12)

Variable (nmol L~1) p Value
Median (1st, 3rd Quartile) Median (1st, 3rd Quartile)

15-¢pi-15-Fy-IsoP 0.62 (0.48, 0.82) 0.51 (0.34, 0.74) 0414
PGE, 0.3 (0.26, 0.38) 0.29 (0.27, 0.36) 0.738
2,3-dinor-15-epi-15-Fy-Tsol 0.03 (0, 0.03) 0.03 (0.02, 0.03) 0.602
15-keto-15-Ep-IsoP 1.02 (0.72, 1.35) 0.94 (0.69, 1.27) 0.384
15-keto-15-Fy,-IsoP 0.65 (0.45, 0.85) 0.66 (0.34, 0.89) 0.926
15-Ep-IsoP 1.05 (0.8, 1.39) 1.26 (0.89, 1.46) 0478
5-Fy-IsoP 2.75 (2.16, 3.19) 2.35 (1.63, 2.9) 0414
15-Fap-IsoP 0.05 (0.0, 0.05) 0.05 (0.05, 0.07) 0430
PGFa 0.32 (0.25, 0.51) 0.34 (0.22, 0.65) 0.968
4(RS)-4-Fy-NeuroP 3.62 (2.72,4.9) 3.45 (2,36, 4.58) 0.800
1a,1b-dihomo-PGFy 3.67 (3.06, 4.43) 3.14 (2.31, 4.34) 0478
10-¢pi-10-Fy-Neurol 0.17 (0.11, 0.26) 0.15 (0.07, 0.25) 0.698
14(RS)-14-F4-NeuroP 1.77 (1.29,2.31) 1.35 (1.03, 2.08) 0.355
ent-7(RS)-7-Fy-dihomo-TsoP 0(0,0) 0(0,0.01) 0414
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Table 3. Cont.

Control (1 = 31) Preclinical (n = 12)

Variable (nmol L 1) p Value
Median (1st, 3rd Quartile) Median (1st, 3rd Quartile)

17-Fyy-dihomo-TsoP 0(0,0) 0(0,0) 1.000
17-pi-17-F3-dihomo-IsoP 0(0,0) 0(0,0) 1.000
7(RS)-ST-A8-11-dihomo-IsoF 0(0,0.22) 0(0,0) 0.165
Neurofurans 0.27 (0.19, 0.37) 0.24 (0.21, 0.41) 0.679
Tsofurans 0.52 (0.4, 0.65) 0.5 (0.41, 0.69) 0.718
Dihomo-isoprostanes 0.15(0.14, 0.17) 0.15(0.13, 0.17) 0.883
Dihomo-isofurans 0.01 (0.01, 0.02) 0.01 (0.01, 0.02) 0.883
Neuroprostanes 0.64 (0.49, 0.76) 0.59 (0.45, 0.77) 0.679
Isoprostanes 1.5(1.25,1.84) 1.32 (1.14, 1.67) 0.328

Correlations were computed between CSF biomarkers (3-amyloid-42, tau and p-
tau) and plasma lipid peroxidation biomarkers (see Figure 2). Results showed that t-tau
correlated with 15-Fp¢-IsoP (r = 0.397, p = 0.008), and PGF2« (r = 0.339, p = 0.026); and p-tau
correlated with 15-F2-IsoP (0.401, p = 0.008), and PGF2¢ (r = 0.329, p = 0.031). In addition,
correlations were assayed between neuropsychological status and plasma biomarkers.
Specifically, RBANS.DM correlated with 2,3-dinor-15-¢pi-15-F;-IsoP (r = —0.314, p = 0.040),
15-Ept-IsoP (r = —0.432, p = 0.025), 5-Fa-IsoP (r = —0.335, p = 0.028), 15-Fa-IsoP (r = —0.390,
p = 0.10), and PGF2« (r = —0.342, p = 0.025). Additionally, CDR showed correlation with 15-
epi-15-F-IsoP (r = 0.329, p = 0.031), PGE2 (r = 0.329, p = 0.031), 2,3-dinor-15-¢pi-15-F2-IsoP
(r = 0.316, p = 0.039), 15-keto-15-E-IsoP (r = 0.333, p = 0.029), 15-keto-15-Fy-IsoP (r = 0.319,
p = 0.037), 15-Eg-IsoP (r = 0.363, p = 0.017), and 4(RS)-4-F4-NeuroP (v = 0.332, p = 0.030).

3.3. Potential Diagnosis Model

The developed model included 10 analytical variables (15-epi-15-Fy-IsoP, PGE2, 15-
keto-15-Ep;-IsoP, 15-keto-15-Fo-IsoP, 15-Ep-IsoP, PGF2«, 4(RS)-4-F4t-NeuroP, 1a,1b-dihomo-
PGF2«, 10-epi-10-Fy¢-NeuroP, 14(RS)-14-Fy-NeuroP), as well as age and gender. Table 4
shows the model characteristics and the tendency of the different selected biomarkers.
The conditional effect for each variable is represented in Figure 3, showing the increase
or decrease in preclinical-AD probability according to the levels for each variable. This
model showed an AUC of 0.96 (CT 95%, 0.903-1) (Figure 4), and a validation AUC of
0.90. The sensitivity and specificity profile shows a satisfactory compromise, with high
sensitivity (0.91) at a high specificity (0.93), constituting the optimum cut-off point (0.44)
(Figure 5). The equation of the developed model determining the probability of suffering
from preclinical-AD status is shown.

oLP
Py eclinical-AD) = ——
r(preclinica ) T
where LP = —6.566-0.153 * Female + 0.164 *Age—11.622* A — 28241 * B — 3277 *C +
2457*D+6.391*E+8988*F — 0.174* G+ 0.315*H + 9.298 * 1 — 0.323 * ]
A: 15-¢pi-15-Fp-IsoP
B: PGE,
C: 15-keto-15-Ep-IsoP
D: 15-keto-15-F-IsoP
E: 15-Ep-IsoP
F: PGP«
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Figure 1. Box plots representing the concentrations in plasma samples for each analyte in control and preclinical-AD groups.
Boxes represent the st and 3rd quartiles, and the black lines, the median.
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Figure 2. Correlation plots between plasma metabolites and CSF biomarkers.

Table 4. Model parameters.

Variables Estimate Exponential Estimate. (e Estimate)
(Intercept) —6.566 0.001
Gender (Females) —0.153 0.858
Age 0.164 1178
15-epi-15-Fy-Isol —11.622 0
PGE; —28.241 0
15-keto-15-Ey-IsoP —3.277 0.038
15-keto-15-Fp-IsoP 2457 11.671
15-E-TsoP 6.391 596.158
PGFs, 8.988 8003.721
4(RS)-4-Fg;-NeuroP 0174 0.841
1a,1b-dihomo-PGF; 0.315 1.371
10-¢pi-10-F4-NeuroP 9.289 10,823.421
14(RS)-14-F4-NeuroP —0.323 0.724
Lambda 0.004
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Figure 3. Conditional effect plots for each variable included in the model to predict the probability of preclinical-AD.
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Figure 4. Receiver operating characteristic curve for the diagnostic model. The area under curve
(AUC) is 0.96 (95% Confidence interval (CI), 0.903-1).
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Figure 5. Sensitivity and specificity profile plot. The continuous line represents the relationship
between the probability threshold set in the model’s prediction and the sensitivity. The dashed line
represents the relationship between the probability threshold and the specificity.

4. Discussion

In this work, some lipid peroxidation compounds were measured simultaneously
in plasma samples from preclinical AD and healthy elderly participants, using UPLC-
MS/MS as an analytical technique. These biomarkers did not show statistically significant
different levels between both groups, although small differences could be observed for each
metabolite. In addition, some of them showed a correlation with specific CSF biomarkers
for AD (t-tau, p-tau) and with neuropsychological tests (RBANS.DM, CDR), showing a
certain relationship with early AD development. Thus, a multivariate model was developed
including some of these lipid peroxidation compounds, and showing their potential utility
in discrimination between preclinical AD patients and healthy participants. In fact, the
multivariate model takes into account the effect of each individual predictor, which could
change in the presence of other variables, generating a composed algorithm, and it provides
accurate predictions. These compounds were studied because they can reflect specific
impairment of brain white matter or grey matter. However, their specificity would be
determined in further studies, because there is no clear evidence that potentially detectable
changes would be AD-specific, or if they would be general biomarkers of impairment of
brain lipid metabolism.

In the literature, in some studies focused on searching for AD plasma biomarkers,
mainly lipidic molecules were assayed [19,26]. However, most of them were based on par-
ticipants with MCI and AD, all of them were patients with clinical symptoms (memory loss,
cognitive decline), but none of them evaluated the group of well-characterized preclinical
participants [19,27,28]. In fact, a previous work from our group was focused on the deter-
mination of lipid peroxidation compounds (isoP’, NeuroP, isoF, NeuroF) in plasma samples
from MCI-AD patients, developing a diagnosis model [19]. In that model, the selected
compounds were 15-pi-15-Fy-IsoP, 15-Ex-IsoP, PGF2y, 4(RS)-Fy-NeuroP, 14(RS)-14-Fy-
NeuroP, and Ent-7(RS)-7-Fx-dihomo-IsoP. All of them, except Ent-7(RS)-7-F»; dihomo-IsoP,
were included in the present diagnosis model to predict AD in presymptomatic stage
(preclinical AD). However, higher concentrations for these compounds were found in MCI-
AD patients than in healthy participants; while lower concentrations were obtained for
15-epi-15-Fo-IsoP and 4(RS)-F-NeuroP in preclinical AD patients. These differences could
be explained by the disease progression. In addition, the new developed model included
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more variables (PGE,, 15-keto-15-Ex-IsoP, 15-keto-15-F-IsoP, 1a,1b-dihomo-PGF,,, 10-
¢pi-10-Fy-NeuroP) in order to improve the accuracy (AUC validated = 0.90) in comparison
with the previous model (AUC validated = 0.82) [19].

Recent research has focused on earlier AD stages, before the appearance of the first
clinical manifestations of the disease. In general, these studies were about plasma p-
amyloid-42/ B-amyloid-40 ratio, showing an AUC of 0.78 in the discrimination between
normal cognitive individuals with PET p-amyloid positivity and negativity [29]. In addi-
tion, plasma -amyloid levels showed an association with dementia (determined by Mini
Mental State Examination (MMSE) and the Geriatric Mental State Schedule (GMS)) and
AD [30]. However, other study showed that plasma 3-amyloid levels could not predict
AD in preclinical participants [31]. A further study focused on plasma p-tau revealed its
utility in AD diagnosis and prognosis, showing increased values since preclinical stages
and an accuracy of 85% in AD dementia diagnosis [32]. However, the present work is the
first study evaluating lipid peroxidation compounds in preclinical AD patients accurately
diagnosed by CSF biomarkers.

Similarly, some of the studied biomarkers were lipidic compounds in plasma from
preclinical AD participants [33]. In fact, the study carried out by Mapstone et al. analyzed
lipids (phosphatidylcholine, Lysophosphatidylcholine, acylcarnitines, etc.), and it was
carried out following the progression along 5 years, showing their potential utility as
progression AD biomarkers [28].

The model developed in the present work was based on the plasma levels of 10 lipid
peroxidation compounds. It is shown that an increase in the levels of these biomarkers (15-
keto-15-F;-Is0F, 15-Ep-IsoF, PGF,, 10-epi-10-F4-NeuroP) could increase the probability of
suffering from AD. Previous studies showed the utility of models based on plasma lipids as
predictor approach of conversion amnestic MCI to AD or AD progression since preclinical
stages [9,28]. The biomarkers determined in these studies are mainly related to membrane
integrity, while ours are derived from oxidative stress. Another panel including 17 lipids
can predict cognitive decline and brain atrophy in AD and it is related to clinical diagnosis
in AD and t-tau CSF levels [34].

Early AD diagnosis remains a big challenge for human sciences. There is a high need
for easily available biomarkers now that specific biomarkers have been described. These
specific biomarkers are invasive and expensive; so minimally invasive biomarkers are in
demand. The utility of these putative biomarkers can be found in the diagnostic paradigm,
identifying people at risk for developing cognitive impairment, with a biological suspicion
of specific or non-specific neurodegeneration, or other pre-diagnostic characteristics. In
addition, these biomarkers could be useful in identifying subgroups with different disease
evolution, different therapeutic response, and different neuropsychological dysfunction.

Among the study limitations, it is important to highlight the small sample used. This
limitation is an evident issue and the results of a study with a higher number of cases
cannot be anticipated. However, the present study could be considered exploratory. It is
important to remark that the participants were selected in an asymptomatic stage, and
highlight the difficulties of realizing CSF studies in asymptomatic cases. Another limitation
is the exclusion of cases with other similar neurodegenerative diseases. Different patterns
of biomarkers are expected in other neurodegenerative diseases, but in the present study,
they were not evaluated. Therefore, these are preliminary results and further analysis in a
large external cohort is required.

5. Conclusions

Lipid peroxidation biomarkers were determined in plasma from participants with
preclinical AD and healthy elderly participants, showing no differences individually. How-
ever, these biomarkers showed a correlation with other specific AD CSF biomarkers and
neuropsychological status. The multivariate model including 10 of these biomarkers con-
stitutes a promising diagnostic tool to be applied to the general population in early AD
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detection. However, further validation studies are necessary to confirm the utility of this
potential model for preclinical AD diagnosis.
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ARTICLE INFO ABSTRACT

Keywords: Alzheimer Disease (AD) is a pathology that causes millions of deaths every year and it also generales severe

Alzheimer disease economic consequences for families and public health systems. Oxidative stress is related to neurodegenerative

Plasma bm‘m’k‘efs diseases damage. In fact, brain lipid oxidation could produce brain atrophy. The main objective of this study is

ﬂe‘“"f'exe“em“"“ the evaluation of atrophy and lipid peroxidation damage in AD patients. We studied medial temporal brain
lcuroimage

atrophy by magnetic resonance imaging (MRI) and a set of lipid peroxidation biomarkers from plasma samples,
respectively. The participants were AD patients in carly stages (n = 80) and healthy controls (n = 32). Some
lipid idati ( i isofurans, 17-¢pi-17-F,-dihomo-IsoP,
PGFy,) in plasma showed statistically significant correlation with medial temporal atrophy. So, they were se-
lected to generate an AD diagnosis model, showing an AUC-ROC of 0.900, close to accuracy achieved by the
model based on neuroimaging analysis (AUC-ROC 0.929). In addition, the new model showed suitable speci-
ficity, so it could be used as screening test. The developed model based on plasma biomarkers could reflect white
and grey matter lipid peroxidation, which occurs in medial temporal lobe in early AD patients. Nevertheless,
more studies are needed in this field in order to evaluate specificity against other dementias or neurodegen-

Oxidative stress

erative diseases.

1. Introduction

Alzheimer disease (AD) is the fifth global cause of death according
to the World Health Organization (WHO), coming to the third position
in high-income countries. In fact, the growing number of death caused
by this disease in last years, constitutes a great concern (“World Health
Organisation, 2018”). This long progressive pathology involves high
costs for families and gov and the of new early
diagnostic methods and effective treatments are necessary (Alzheimer's
Association, 2016).

Clinically, AD is characterized by a cognitive impairment, being
memory loss the main symptom. These progressive symptoms are

of ical al ions in AD patients’ brain. The main
hallmarks are accumulation of f-amyloid peptides and hyperpho-
sphorylated tau protein, which lead to synapsis loss and degeneration in
different brain areas (Kamat ct al., 2016). Nowadays, AD diagnosis
relies on clinical judgment and exclusion of secondary causes. Diagnosis
specificity and certainty, especially in early stages (e.g. mild cognitive
impairment (MCI)), can be improved by means of disease biomarkers,

such as B-amyloid and tau proteins levels in cerebrospinal fluid (CSF)
(Nordberg, 2015). Paying more attention to neuroimaging is useful in
AD diagnosis and progression prediction (Rathore et al, 2017)
(Serensen et al., 2017), but sometimes the employment of different
image techniques is required to improve their diagnostic capacity (Mi
et al., 2017), which increases diagnosis costs (Ramos Bernardes da Silva
Filho et al., 2017). Throughout the AD course, different brain areas
could be affected (Ferreira et al., 2017). One area with a remarkable
atrophy grade during AD progression is the medial temporal lobe,
where the hippocampus is located, and this alteration has been used to
develop diagnosis models with high reproducibility (Sarria-Estrada
et al.,, 2015). The hippocampus study is even useful in MCI progression
prediction (Persson et al., 2017).

Regarding oxidative stress, it is related to AD progression (Pohanka,
2014) and its characteristic synapsis loss since early stages of the dis-
ease (Kamat et al., 2016). Actually, it could modify brain proteins and
lipids levels, and give place to morphological brain changes (Scheff
et al., 2016) (Yadav and Tiwari, 2014) (Klosinski et al., 2015). In this
sense, the main objective of this study is to evaluate the correlation
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Abbreviations

AD Alzheimer Disease

AdA adrenic acid

AA arachidonic acid

BBB blood brain barrier

CDR Clinical Dementia Rating

CSF cerebrospinal fluid

DHA docosahexaenoic acid

DT difusion tensor

EOAD  Early Onset Alzheimer DIsease
FAQ Functional Activities Questionnaire
EDTA  ethylenediaminetetraacetic acid
MCI mild cognitive impairment

MRI magnetic resonance imaging

between plasma lipid peroxidation biomarkers and anatomical brain
changes, specifically medial temporal atrophy.

2. Material and methods
2.1. Participants

Participants between 50 and 80 years old were recruited from de
Neurology Unit of the University and Polytechnic Hospital La Fe,
Valencia (Spain). Informed consent was approved by the Ethics
Committee of the Health Research Institute La Fe (Valencia).
Participants were classified in case and control groups according to
National Institute on Aging-Alzheimer's Association (NIA-AA) criteria
including CSF biomarkers (3-amyloid, Tau and phosphorylate Tau (p-
Tau)) and ph logical tests (clinical rating (CDR),
Functional Activities Questionnaire (FAQ), Repeatable Battery for the

of Neuropsychological Status-Delayed Memory (RBANS-
DM), Mini-mental state examination (MMSE)) (McKhann et al., 2011)
(Albert et al, 2011). We excluded patients with history of brain
structural disease (tumor, stroke, etc), Fazekas score greater than 2,
major head trauma, epilepsy, multiple sclerosis and major psychiatric
disorders, as well as patients with advanced dementia and patients that
were not able to undergo neuropsychological evaluations because of
their educational level.

2.2. Sample collection, storage and treatment

Blood samples were taken from all participants using cryo-tubes
with ethylenediaminetetraacetic acid (EDTA). They were centrifuged
for 10 min at 2000 g and supernatant (plasma) was stored at —80 °C
until the analysis. Sample treatment was described in a previous work
(Pena-Bautista et al., 2018). Briefly, samples were thawed on ice after
adding the internal standard, a basic hydrolysis with potassium hi-
droxyde and a clean-up step with solid phase extraction (SPE) were
carried out. Finally, samples were injected in a chromatographic system
and were by ultra-per liquid chr y cou-
pled with tandem mass spectrometry (UPLC-MS/MS) (Pena-Bautista
et al., 2018).

CSF samples were obtained as part of the diagnostic protocol in the
Polytechnic University Hospital La Fe (Valencia). From 1 to 10 mL of
CSF were collected under standardized procedure of lumbar puncture at
8 a.m. after overnight fasting, and they were stored at —80°C until
analysis. Biochemical determinations (B-amyloid, t-Tau, p-Tau) were
carried out by Innotest Elisa kit (Fujirebio Diagnostics, Ghent, Belgium)
using a fully d system (L Ise G, Fujirebio)

MTA medial temporal atrophy

NIA-AA  National Institute on Aging- NIA-AA - Alzheimer's
Association

PET positron emission tomography

PLS partial least squares

p-Tau  phosphorylated Tau

RBANS-DM Repeatable Battery for the Assessment of
Neuropsychological Status-Delayed Memory

RLC relative light changes

ROC receiver operating characteristic curve

SPE solid phase extraction

UPLC-MS/MS ultra-performance liquid chromatography coupled
with tandem mass spectrometry

WHO World Health Organization

2.3. Neuroimaging data acquisition

Magnetic resonance imaging (MRI) was performed as part of the
routine clinical assessment. Images were obtained using three MRI
scanners (Siemens): two 1.5 T and one 3T machines were used. Imaging
protocol included axial, sagittal and coronal views of the brain using
T1, T2, gradient echo and fluid attenuation inversion recovery (FLAIR)
sequences. Medial temporal atrophy (MTA) was assessed visually by a
single rater relative light changes (RLC) using FLAIR or T1 coronal
images at the level of the hippocampus. The visual assessment of MTA
was ranged from 0 (no atrophy) to 4 (severe atrophy) and was based on
criteria and score system proposed by Scheltens et al. (1992).

2.4. Statistical analysis

First, univariate statistical analysis was carried out using SPSS
software version 20.0 (SPSS, Inc., Chicago, IL, USA). The differences
between the variables medians of case group and control group were
analyzed using the non-parametric Mann Whitney test for numerical
variables, and Chi-Square test for nominal variables. Correlations be-
tween plasma biomarkers and image data were evaluated by Pearson
correlation coefficient (r).

The multivariate statistical analysis was carried out using the
Minitab software version 18 (USA). Discriminant analysis was per-
formed by partial least squares regression (PLS). Then, the Receiver
operating characteristic curve (ROC) of the discriminant model was
obtained. Two models were constructed, the first included plasma
bi Kers (is stanes, i ans; 17-
epi-17-Fy-dihomo-IsoP, PGF,,), gender and age as predictor variables,
and the second included image data (MTA-R (right), MTA-L (left) and
MTA-S (sum)), gender and age as predictor variables. The response
variable used was group (control-case). All the variables were stan-
dardized and cross-validation of the models was carried out. Then di-
agnosis indices (sensitivity, specificity, positive predictive value, ne-
gative predictive value) were calculated for both models.

2.5. Declaration of sources of funding

This work was supported by the Instituto de Salud Carlos III (Miguel
Servet 1 Project [grant number CP16/00082]) (Spanish Ministry of
Economy and Competitiveness, and European Regional Development
Fund).
3. Results

3.1. Participants’ description

In Table 1, demographic and clinical characteristics from the study
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Table 1

D ic and clinical variables for the particip:
Variables Control (n=32)  Case (n=80) P value
Age (years, median (IQR)) 66 (62-69) 71 (68-74) 0.000%
Gender (female, n (%)) 11 (34%) 47 (59%) 0.020*
p-amyloid (pg mL~*, median 1192 (1051-1444) 588 (441-676)  0.000*

(IQR))

t-Tau (pg mL™", median (IQR))) 171 (108-284) 523 (361-775)  0.000*
pTau (pg mL’, median (IQR))) 44 (27-57) 82 (66-116) 0.000*
CDR (median (IQR)) 0 (0-0) 0.5 (0.5-1) 0.000*
MMSE (median (IQR)) 30 (28-30) 22 (18-26) 0.000*
RBANS.DM (median (IQR)) 100 (92-106) 44 (40-52) 0.000*
FAQ (median (IQR)) 0(0-0) 7 (3-13) 0.000*
GDS (median (IQR)) 3(1-7) 7 (4-11) 0.021%
Fazekas (median (TQR)) 0(0-1) 1(0-1) 0.018*
ATM-RIGHT (median (IQR)) 0(0-0) 2(1-2) 0.000*
ATM-LEFT (median (IQR)) 0 (0-0) 1(1-2) 0.000*
ATM (R + L) (median (IQR)) 0(0-0) 3(2-4) 0.000%

population are summarized. Age and gender showed statistically sig-
nificant differences between both groups, so they were included as
covariates in the multivariate models. As expected, clinical variables
(CSF B-amyloid, CSF Tau, CSF p-Tau, RBANS-DM, CDR, FAQ, MMSE)
showed statistically significant differences between case and control
groups.

3.2. Image measurement data

Using neuroimaging techniques, the variables determined were
MTA-R, MTA-L, MTA-S and Fazekas. As can be seen in Table 2, the
three MTA indices showed statistically significant differences between
groups, as well as Fazekas.

3.3. Analyte determination

In Table 2 medians of analytes levels determined in plasma from
case and control groups are summarized. 8-is0-15(R)-PGFzq, 2,3-dinor-
iPFaq-111, 8-is0-15-keto-PGE,, 4(RS)-F4-NeuroP, neuroprostanes, iso-
prostanes, Ent-7(RS)-Fy-dihomo-IsoP and 17-epi-17-F,-dihomo-IsoP,
showed higher levels in the case group than in the control group. In-
versely, PGFaq, 14(RS)-14-F,4-NeuroP, 5-iPF,,-VI and 7(RS)-ST-AP-11-
dihomo-IsoF showed higher levels in the control group. Nevertheless,
only 8-is0-15(R)-PGFz. (p = 0.042), PGFz, (p = 0.001), 4(RS)-F4-
NeuroP (p = 0.030), neuroprostanes (p = 0.001), isop

Neurochemistry International 129 (2019) 104519
3.5. Multivariate analysis

Two statistical models were carried out, the first based on neuroi-
maging analysis and the second based on plasma lipid peroxidation
biomarkers levels. As it is shown in Fig. 2a, the model based on neu-
roimaging analysis showed a correlation between the different MTA
measures (right and left lobe and total MTA), but age and gender did
not correlate with them. Also, the scatter plot (Fig. 2b) showed a sa-
tisfactory separation between participants groups. In this sense, the case
group is characterized by higher levels of MTA. For this model, the Area
under Curve-Receiver Operating Characteristic AUC-ROC is 0.929 (CI
95%, 0.882-0.977). Besides, this model has a sensitivity of 90.00%, a
specificity of 84.38% and its positive and negative predictive values are
93.51% and 77.14, respectively.

Regarding the model constructed by plasma biomarkers (neuro-

i neurofurans, i 17-¢pi-17-F,-dihomo-
IsoP, PGF,.), a negative correlation between PGF2a and isoprostanes
and isofurans was observed, but age and gender did not correlate with
biomarkers (Fig. 2¢). Also, Fig. 2d shows a satisfactory discrimination
between case and control groups. This model could diagnose AD or not-
AD with an accuracy of AUC-ROC = 0.900 (0.845-0.956). The diag-
nosis indices for this model were sensitivity 72.5%, specificity 100%,
negative predictive value 59.26% and positive predictive value 100%.

4. Discussion

The parameter MTA is commonly related to cerebrovascular de-
mentias (Kalaria and lhara, 2017). Previous works showed that this
morphological alteration is associated with MCI and AD, showing
higher damage grade in AD than in MCI patients, as well as a correla-
tion with neuropsychological evaluation tests (e.g. MMSE, CDR) (Hsu
et al., 2015). In this sense, some cut-off values for MTA to be used as AD
diagnosis and MCI prognosis were established (Ferreira et al., 2015). In
addition, MTA is related to cognitive impairment in patients with De-
mentia with Lewy Bodies (Tagawa et al.. 15). Medial temporal lobe
atrophy evaluation contributes to a better diagnosis accuracy (Visser
et al., 1999). Moreover, correlations between MTA and CSF biomarkers
t-tau and p-tau for different variants of Early-Onset Alzheimer Disease
(EOAD) were described (Granadillo et al., 2017). Nowadays, neu-
ropsychological tests and CSF biomarkers are employed as AD diag-
nosis, these two parameters could be related to MTA, so the evaluation

(p = 0.006) and 17-epi-17-Fy-dihomo-IsoP (p = 0.008) showed statis-
tically significant differences between groups.

3.4. Correlation between plasma lipid peroxidation biomarkers levels and
image indices

between indices and plasma biomarker
levels was analyzed, and some statistically significant correlation was
observed. In fact, MTA in right brain lobe showed positive correlation
with neuroprostanes (r = 0.242, p = 0.010), and 17-epi-17-F,-dihomo-
IsoP (r = 0.223, p = 0.018), while it showed negative with

PGFy, (r= —0.259, p = 0.006). Similar results were obtained with
MTA in the left side, positive correlation was observed with neuro-
prostanes (r = 0.213, p=0.024), and 17-epi-17-Fy-dihomo-IsoP
(r=0.214, p = 0.024), while it showed negative correlation with
PGFy, (r = —0.305, p = 0.001). In the same sense, the sum of MTA in
both brain lobes showed correlation with neuroprostanes (r = 0.234,
p = 0.013), 17-¢pi-17-Fy-dihomo-IsoP (r = 0.224, p = 0.018) and
PGFa (PCC = —0.288, p = 0.002). In addition, Fazekas, index related
to vascular brain disease, showed correlation with 17-F»-dihomo-IsoP
(r=0.215, p = 0.023) (see Fig. 1).

Table 2
C of analytes in plasma samples from participants groups.
Control (n = 32)  Case (n = 80) P value
8:i50-15(R)-PGF2y 0.25(0.20-0.35)  0.30 (0.23-0.49)  0.042°
PGE,. 0.06 (0.01-0.75)  0.09 (0.00-0.28)  0.693
2,3-dinor-iPFa,-1ll 0.00 (0.00-0.00)  0.00 (0.00-0.03)  0.950
8-i50-15-keto-PGEz 0.06 (0.00-0.17)  0.13 (0.00-0.34)  0.425
8-s0-15-keto- PGF., 0.25 (0.18-0.33)  0.26 (0.13-0.35)  0.754
8-i50-PGEx 0.28 (0.15-1.98)  0.39 (0.18-0.78)  0.689
5-PFyeVT 0.94 (0.67-1.22) 071 (0.35-1.22)  0.123
8-i50-PGF2, 0.02 (0.01-0.03)  0.02 (0.01-0.03)  0.841
PGF,, 0.74 (0.60-0.94)  0.48 (0.25-0.78)  0.001*
4(RS)-F - NeuroP 1.03 (0.71-1.24) 115 (0.96-1.33)  0.030¢
1a,1b-dihomo-PGE, 0.00 (0.00-0.00)  0.00 (0.00-0.00)  0.326
0.2 (0.22-0.38)  0.83 (0.26-1.52)  0.001%
10-epi-10-F4-NeuroP 0.11 (0.07-0.18)  0.09 (0.03-0.18)  0.390
14(RS)-14-Far-NeuroP 0.90 (0.00-1.51)  0.80 (0.29-1.27)  0.930
Tsoprostanes 0.22(0.18-0.34)  0.32 (0.23-0.40)  0.006*
Ent-7(RS)-F,<lihomo-IsoP 0.08 (0.05-0.17)  0.13 (0.08-0.18)  0.145
17-Fac-dih 0.00 (0.00-0.00)  0.00 (0.00-0.00)  0.302
17-epi-17. 0.00 (0.00-0.00)  0.00 (0.00-0.03)  0.008*
7(RS)-10-epi-SC-A'-11- 0.00 (0.00-0.00)  0.00 (0.00-0.00)  0.150
dihomo-IsoF
7(RS)-ST-A%11-dihomo-IsoF 0.10 (0.01-0.25) 005 (0.01-0.19)  0.199
Neurofurans 0.18 (0.11-0.26)  0.18 (0.13-0.27)  0.762
Isofurans 0.09 (0.06-0.22)  0.10 (0.08-0.16)  0.399
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Fig. 1. Correlations between neuroimaging variables and plasma biomarkers levels.

of atrophy could be useful in AD diagnosis, as well as the lipid perox-
idation study as a possible pathway implied in AD. Our results showed
that a diagnosis model based only on this atrophy evaluation could
diagnose AD with an accuracy of 0.929. It could avoid actual lumbar
puncture used in AD di i d as well as
evaluations that require a considerable amount of time on part of
specialized staff and is tiresome for patients. In this sense, other diag-
nosis models for AD based on neuroimaging techniques have been de-
veloped. Specifically, a model based on Magnetic Resonance Imaging
(MRI) and Positron Emission Tomography (PET) was able to differ-
entiated between AD, MCI and healthy control groups with accuracies
between 0.75 and 0.95 (Suk et al., 2014). The model developed by Canu
et al. (2017) was able to distinguish between EOAD and behavioral
variant of frontotemporal dementia with an accuracy of 0.82 based on
cortical thickness and DT (diffusion tensor) MRI measures (Canu et al.,
2017). Our model shows better accuracy, but its specificity is required
to be eval d employing other di ias or ive dis-
eases. This model shows good diagnosis indices, especially its high
specificity that could allow the application of this model as a pre-
liminary screening test although it probably needs other tests to give a
reliable diagnosis.

Regarding the evaluation of possible correlations between neuroi-
maging results (MTA) and different lipid peroxidation products in
plasma samples form AD and healthy participants, the highest corre-
lations were between brain MTA and neuroprostanes. Therefore, spe-
cific brain alterations could be measured in plasma samples by means of
these lipid peroxidation products (Miller et al., 2014). As MTA scale is
based mainly in grey matter atrophy, neuroprostanes could explain this
alteration evaluation (Scheltens et al., 1992). In addition, neuropros-
tanes levels were statistically significant different between AD and

healthy participants. Therefore, they are satisfactory AD biomarkers. In
addition, the dihomo-isoprostanes could be obtained from brain white
matter oxidation. The correlation found between MTA and these com-
pounds could be explained as some white matter atrophy that occurs
together with the grey matter alterations in medial temporal lobe
mainly in the hipocampus from AD patients. We also analyzed corre-
lations between our biomarkers and Fazekas, which is a scale based on
brain white matter lesions and it is usually related to vascular pathol-
ogies. This scale is not AD specific but it could help to discard AD as a
cause of vascular dementia (Fazekas et al., 1987). Punctuation for this
scale showed statistically significant correlation with 17-Fz-dihomo-
IsoP that is a white matter lipid peroxidation product. So, this bio-
marker could be useful in the study of white matter lesions present in
different neudegenerative diseases, not only in AD, and sometimes it
could serve to discard AD diagnosis or to differentiate it from fronto-

1 whose could be fused (Elahi et al.,
2017).

Regarding plasma biomarkers, neuroprostanes and neurofurans are
derived from docosahexaenoic acid (DHA) oxidation, while iso-
prostanes and isofurans come from the arachidonic acid (AA) oxidation
(Yen et al,, 2015), and dihomo isop: (e.g. 17-¢pi-17-F-dih
IsoP) come from adrenic acid (AdA) oxidation (Garcia-Flores et al.,
2016). DHA is the major polyunsaturated fatty acid in the brain (Galano
et al., 2013) so, the presence of neuroprostanes and neurofurans in
different human biofluids is highly brain specific. For the quantification
of these lipid peroxidation biomarkers in plasma samples, the analytical
method was previously described (Pefa-Bautista et al., 2018), and the
developed model could distinguish between AD and healthy patients
with an accuracy of 0.90. Therefore, it could reflect brain lipid perox-
idation damage (neuroprostanes, neurofurans, 17-epi-17-F,-dihomo-
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Fig. 2. PLS models. First, model based on neuroimaging techniques (a) loading graph and (b) score plot. Second, model based on plasma biomarkers (c) loading plot

and (d) score plot.

IsoP), and oxidative stress at systemic level in AD patients. In fact, it
was shown in previous works (Hatanaka et al., 2015) (Di Domenico
et al,, 2016). Also, the presence of a negative correlation between
PGF2, and MTA, and its capacity to discriminate between AD and
control groups (p = 0.001) are remarkable. This analyte is an in-
flammatory mediator and it is derived from arachidonic acid oxidation
by an enzymatic pathway (Vane et al., 1998). Previous studies showed
that inflammation is related to AD progression (Calsolaro and Edison,
2016), and inhibition of cyclooxygenases that are implied in pros-
taglandin pathway in AD models, showed Dbeneficial effects. So, prob-
ably in very early stages of the disease these mechanisms try to avoid
the disease progression (Johansson et al., 2015). In addition, it is
known that in neurodegenerative diseases the brain blood barrier (BBB)
is altered (Janelidze et al., 2017). Specifically in AD, previous works
showed an increase on BBB permeability (Algotsson and Winblad,
2007), allowing that different lipid p idation products in

5. Conclusion

Correlation between plasma neuroprostanes and dihomoisopros-
tanes with neuroimaging data could indicate that the neurodegenera-
tion occurred in different brain areas is related to oxidative stress da-
mage and brain lipid peroxidation. Lipid peroxidation biomarkers could
reflect brain damage that accompanied neurodegenerative diseases.
However, their specificity should be studied comparing the results with
other s ive and brain pathologies. AD di is model
based on lipid peroxidation biomarkers shows similar accuracy as the
neuroimaging model, and it reflects the implication of this pathway in
the pathology since its early stages. The model based on lipid perox-
idation biomarkers (i i iso-
furans, 17-epi-17-Fa-dihomo-IsoP, PGFa.) could be used as a screening
test for AD diagnosis avoiding in many cases invasive and expensive

brain could pass through the BBB, and being found at peripheral level.
For this reason, we constructed a model based on plasma biomarkers
levels that could reflect brain MTA including damage to white matter,
grey matter and also inflammatory mediators. That model shows really
satisfactory diagnosis indices. Its specificity of 100% is especially re-
markable. In our study, all patients diagnosed as positive with our
model were AD patients. By contrast, its weak point is the sensitivity
(72.5%). For that reason, the new model could serve as a screening test.
Only when the test result is negative, patients will have to undergo
additional tests to confirm the diagnosis. It would improve the diag-
nosis based on only image tests because biomarkers reflecting specific
brain atrophy in AD patients would constitute an i vision of

Conflicts of interest
The authors report no conflict of interest.
Funding
This work was supported by the Instituto de Salud Carlos IIT (Miguel

Servet 1 Project (CP16/00082)) (Spanish Ministry of Economy and
Competitiveness, and European Regional Development Fund).

oxidative status (Pohanka, 2014). In any case, more studies are required
to confirm this diagnosis capacity, and other dementias or neurode-
generative diseases have to be included in the study to evaluate the
model specificity.

CC-P acknowledges a post-doctoral “Miguel Servet I" Grant (CP16/
00082) from the Health Research Institute Carlos III (Spanish Ministry
of Economy and Competitiveness), and the European Regional

326



Annexes

Chapter 7

C. Pefia-Bautista, et al.

Development Fund (FEDER). CP-B acknowledges a pre-doctoral Grant
(associated to “Miguel Servet” project CP16/00082) from the Health
Research Institute Carlos I (Spanish Ministry of Economy, Industry
and Competitiveness). The authors are grateful for the synthesis of the
lipid i ds by Durand's team at the
Institute des Biomolécules Max Mousseron (IBMM) (Montpellier,
France).

References

Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, TLIT,, Fox, N.C., Gamst, A.,
Holtzman, D.M., Jagust, W.J., Petersen, R.C., Snyder, P.J., Carrillo, M.C., Thies, B.
Phelps, C.H., 2011. 'The diagnosis of mild cognitive impairment due to Alzheimer's
discasc: recommendations from the National Tnstitute on Aging-Alzhcimer’s

diagnostic guidelines for Alz} di
Dementia 7, 270-279. https://doi.org/10.1016/.jalz.2011.03.008,

Algotsson, A., Winblad, B., 2007. The integrity of the blood?brain barrier in Alzheimer?s
disease. Acta Neurol. Scand. 115, 403-408, https://doi.org/10.1111/1.1600-0404,
2007.00823.x.

Alzheimer's Association, 2016. 2016 Alzheimer's discase facts and figures. Alzheimers.
Dement. 12, 459-509,

Calsolaro, V., Edison, P. uroinflammation in Alzheimer's disease: current evi-
dence and future directions. I\I7he|mancmcnna 12, 719-732. https://doi.org/10.
1016/].jalz.2016.02.010.

Canu, E., Agosta, F., Mandic-Stojmenovic, G., Stojkovié, T., Stefanova, E., Inuggi, A.,
unvenal E, Cvpem. M., Kostic, Filippi, M., 2017. Mulﬂpalamemc MRI to

s
dementia. Neurnlmagc Clin 15, 428-438. https://doi.org/10. Imé ) nicl.2017.05.
018.

Di Domenico, F., Pupo, G., Giraldo, ., Badia, M.-C,, Monllor, ., Lloret, A., Eugenia
Schinind, M., Giorgi, A, Cini, C., Tramutola, A., Butterfield, D.A., Via, J., Perluigi,
M., 2016. Oxidative signature of cerebrospinal fluid from mild cognitive impairment
and Alzheimer discase patients. Free Radic. Biol. Med. 91, 1-9. hitps://doi.org/10,
1016/j.freeradbiomed. 2015.12.004.

Elahi, .M., Marx, G., Cobigo, Y., Staffaroni, A.M., Komak, J., Tosun, ., Boxer, A.L.,
Kramer, J.H,, Miller, B.L., Rosen, H.J., 2017. Longitudinal white matter change in
frontotemporal dementia subtypes and :pomd-c late onset Alzheimer's disease.
\Ieumlmage Clin 16, 595-603. https://doi.org/10.1016/}.nicl.2017.09.007.

Fazekas, K., Chawluk, J., Alavi, A., Hurtig, H., Zimmerman, R., 1987. MR signal ab-

normalities at 15 1 in Alzheimer's dementia and normal aging. Am. J. Roentgenol.
149, 351-356. hitps://doi.org/10.2214/ajr.149.2.351.

Ferreira, D., Cavallin, L., Larsson, F.-M., Muehlboeck, J.-S., Mecocci, P., Vellas, B.,

'solaki, M., Kloszewska, 1., Soininen, H., Lovestone, S., Simmons, A., Wahlund,
Weatmn, ., 2015, Practical cut-offs for visual rating scales of medial temporal,
frontal and posterior atrophy in Alzheimer' disease and mild cognitive impairment.
I. Tntern. Med. 278, 277-290. https: //doi.org/10.1111 /joim.12358.

Terreira, D., Verhagen, C., Hem4ndez-Cabrera, JA., c.wallm T Guo C
Muehboeck. -S., Simm 0 festman,

F_kman. U.,

on p -ain atrophy:
and clinical applications. Sci. Rep. 7, 46263, htipe o mg 10,

3 i, T.A., Signorini, C., De Felice, C., Barrett, A.,
Opere, C., Pinot, E., Schwedhelm, E., Benndor, R., Roy, J., Le Guenniec, J.-Y., Oger,
C., urand, T., 2013. Isoprostanes and neuroprostanes: total synthesis, biological
y and biomarkers of oxidative stress in humans. Prostaglandins Other Lipid
Mediat. 107, 95-102. https://doi.org/10.1016/j.prostaglandins.2013.04.003.
Gareie-Hlores, L.A., Medina, $., Oger, G, Galano, J.-M., Durand, T., Cejuela, R, Martinez-
Ferreres, F., Gil- 1u|u|enlo.A 2015 Lipidomic appmm in young adult
h jui

marhleue effect of ice on
and F 2 -dihomo-isoprostane markers. Food Funct 7, 4343-4355. hitps://doi.org/10.
1039/C6FO01000H,

Granadillo, E., Paholpak, P., Mendez, M.E., Teng, E., 2017. Visual ratings of medial
temporal lobe atrophy correlate with CSF tan indices in clinical variants of early-
onset alzheimer disease. Dement. Geriatr. Cognit. Disord. 44, 45-54. htps://doi.org/
10.1159/000477718.

Hatanaka, H., Hanyu, H., Fukasawa, R., Hirao, K., Shimizu, S., Kanetaka, H., lwamoto,
2015, Differences in peripheral oxidative stress markers in Alzheimer's disease, vas-
cular dementia and mixed dementia patients. Geriatr. Gerontol. Int. 15, 53-58.
https://doi.org/10.1111/ggi. 12659.

Hsu, J.-L., Lee, W.-J., Liao, Y.-C., Lirng, J.-K., Wang, S.-)., Fuh, J.-L., 2015, Posterior
atrophy and medial temporal atrophy scores are associated with different symptoms
in patients with alzheimer's discase and mild cognitive impairment. PLoS One 10,
0137121, https://doi.org/10.1371 journal.pone.0137121

Janelidze, S., Hertze, J., Nagga, K., Nilsson, K., Nilsson, C., Wennstrém, M., van Westen,
D., Blennow, K., Zetterberg, H., Hansson, O., 2017. Increased blood-brain barrier
permeability is associated with dementia and diabetes but not amyloid pnlhulogy or
APOE genotype. Neurobiol. Aging 51, 104-112. heps://doi.org/10.1016,
neurobiolaging.2016.11.017.

Johansson, J.U., Woodling, N.S., Wang, Q., Panchal, M., Liang, X., Trueba-Saiz, A.,

H. D., Loi, T., Andreasson, K.I., 2015, Prostaglandin sign
suppresses bc'm,ﬁmnl microglial f\mtl\un in Alchmmm’s disease models. J. Clin.

Investig. 125, 350-364. https://doi.org/10.1172/JCI77487.

Kalaria, RN,, Thara, M., 2017. Medial temporal lobe atrophy is the norm in cere-
bmvw;ulur dl:mt’nlias. Eur. J. Neurol. 24, 539-540. https://doi.org/10.1111/e
13243,

aling

Neurochemistry International 129 (2019) 104519

Kamat, P.K., Kalani, A, Rai, S., Swarnkar, S., Tota, S., Nath, C., Tyagi, N., 2016.

i ve: stress and synapse dysfunction in the pathogencsis of alz-
nderstanding the therapeutics strategies. Mol. Neurobiol. 53,
/doi.org/10.1007/s12035-014-9053-6,

i ., Harrington, M.G., Christensen, T.A.,
s as a kefogenic fucl supply in
ine 2 1888-904.

aging female brain: i

for alzl
/doi.org/10.1016/j.ebiom.2015.11.002.
., Chertkow, H. Hymml B.T., Jack, C.R., Kawas, CH.,
, M hs, R.C., Moris, J.

Rossar, M.N., Scheltens, P., Carrillo, M. Weintraub, ., Phelps, C.IT.,
2011. The diagnosis of dementia duc to Alzheimers discase: recmnmmda ons from
the National Institute on Aging-Alzheimer's Association workgroups agno:
guidelines for Alzheimer's disease. Alzheimer's Dementia 7, 165—169 lutps: /doi.
arg/10.1016/}.jalz.2011.03.005.

Mi, L, Zhang, W., Zhang, I., Fan, Y., Goradia, D, Chen, K., Reiman, E.M., Gu, X., Wang,
Y., 2017. An optimal transportation based univariate neuroimaging index.
Proceedings. LEEE Int. Conf. Comput. Vis, 182-191 2017.

Miller, E., Morel, A., Saso, L., Saluk, J., 2014. Isoprostanes and neuroprostanes as bio-
markers of oxidative stress in neurodegenerative diseases. Oxid. Med. Cell. Longev.
1-10. 2014. hitps://doi.org/10.1155/2014/572491.

Nordberg, A., 2015, Towards early diagnosis in Alzheimer disease. Nat. Rev, Neurol. 11,
69-70. https://doi.org/10.1038/nmeurol. 2014.257.

Peiia-Bautista, C., Vigor, C., Galano, J.-M., Oger, C., Durand, T., Ferrer, I, Cuevas, A,

hetps:/

and non-invasive Alzhelmer Disease detection. Free Radic. Biol. Med. 124, 388-394.
https://doi.org/10.1016/j freeradbiomed. 2018.06.038.

Persson, K., Barca, M.L., Eldholm, R.S., Cavallin, L., Saltyté Benth, 1., Selbak, G.,
Brackhus, A., Saltvedt, I, Engedal, K., 2017. Visual evaluation of medial Icmporal
Lobe atrophy as a clinical marker of conversion from mild cognitive imprirment to
dementia and for predicting progression in patients with mild cognitive im| it
and mild alzheimer's disease. Dement. Geriatr. Cognit. Disord. 44, 12-24. hitps://doi.
0rg/10.1159/000477342.

Pohanka, M., 2014, Alzheimer's disease and oxidative stress: a review. Cwr, Med. Chem.
21, 356-364,

Ramos Bernardes da Silva Filho, S., Oliveira Barbosa, J.I1., Rondinoni, C., dos Santos,
A.C., Garrido Salmon, C.F., da Costa Lima, N.K., Ferriolli, ., Moriguti, J.C., 2017.
Ncumd:goncrarion profile of Alzheimer's patients: a brain morphometry study.

Clin 15, 15-24. https://doi.org/10.1016/].nicl. 2017.04.001,

Ral.hore. 8., Habes, M., Iftikhar, M.A., Shacklett, A., Davatzikos, 017. A review on
neuroimaging-based classification studies and associated feature extraction methods
for Alzheimer's disease and its prodromal stages. Neuroimage 155, 530-548. hitps://

rg/10.1016/j.neuroimage.2017.03.057.

Sarria-Estrada, S., Acevedo, C., Mitjana, R., Frascheri, L., Siurana, S., Auger, C., Rovira,
A, 2015. Repmduclblhry of qualitative assessments of temporal lobe atrophy in MRT
studies. Radiologia 57, 225-228. https://doi.org/10.1016/j.rx.2014.04.002.

Scheff, S:W., Ansari, M.A., Mufson, E.J., 2016. Oxidative stress and hippocampal synaptic
protein levels in elderly cognitively intact individuals with Alzheimer's disease pa-
thology. Neurobiol. Aging 42, 1-12. https://doi.orz/10.1016/j neurobiolaging. 2016,
02.030.

Scheltens, P., Leys, ., Barkhof, F., Huglo, D., Weinstein, I1.C., Vermersch, P., Kuiper, M.,
Steinling, M., Wolters, E.C., Valk, J., 1992, Atrophy of medial temporal lobes on MR
in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neu-
ropsychological correlates. J. Neurol. Neurosurg. Psychiatry 55, 967-972. https:/
doi.org/10.1136/jnnp.55.10.

Sorensen, L., Igel, C., Pai, A, Balas, 1., Anker, C., Lillholm, M., Nielsen, M., 2017.
Differential diagnosis of mild cognitive impairment and Alzheimer's disease using

tructural MRI cortical thickness, hippocampal shape, hippocampal texture, and vo-
lumetry. Alzheimer’s Disease Neuroimaging Initiative and the Australian Imaging
Biomarkers and Lifestyle flagship study of ageing. Neurolmage. Clin. 13, 470-482.
hitps://doi.org/10.1016/}.nicl.2016.11.025.

Lee, S.-W., Shen, D., 2014, feat and
fusion with deep learning for AD/MCI diagnosis. Neumunagc 101, 569-582. Imps 7
doi.org/10.1016/j.neuroimage.2014.06.077.

Tagawa, R., Hashimoto, ., Nakanishi, A., Kawarada, Y., Muramatsu, T., Matsuda, Y.
Kataokn, K., Shimada, A., Uchida, K., Yoshida, A., Higashiyama, wabe, J., Kai,
°I., Shiomi, S., Mori, H., Inoue, K., 2015, The relationship between medial temporal
lobe atrophy and cognitive impmrmem in patients with dementia with Lewy Bodies.
J. Geriatr. Psychiatry Neurol. 28, 249-254. hups://doi.org/10.1177/
0891988715590210,

Vane, J.R., Bakhle, Y.S., Botting, R.M., 1998. CYCLOOXYGENASES 1 AND 2. Annu. Rev.
Pharmacol. Toxicol. 38, 97-120. https://doi.org/10.1146/annurev.pharmeox.38.
1.97.

Visser, P.J., Scheltens, P., Verhey, F.R., Schmand, B., Launer, L
1999. Medial temporal lobe atrophy and memory dysfunction as predictors for de-
mentia in subjects with mild cognitive impairment. J. Neurol. 246, 477-485,

[WWW document] World health organisation, 2018. n.d. URL. hetp:/ /s whoint/en/

fact-sheets/detail /the-top-10. f-death.

Yadav, R.S., Tiwari, N.K., 2014, Lipid integration in neurodegeneration: an overview of

alzheimer's disease. Mol. Neurobiol. 50, 168-176. https://doi.org/10,1007 /5120
014-8661

Yen, H.-C., We
prostanes,
in body ﬂmd: and tissue using gm ‘hemical-ioni
mass spectrometry. Free Radic. Res. 49, 861-880. hitps://doi.org/10.3109/
10715762.2015.1014812.

Suk,

Jolles, J., Jonker, C.,

n -J., Lin, C.L,, 2015 Unresolved issues in tﬁe ana]ysxs of I 2 -iso-

327



Annexes Chapter 8

Journal of Proteomics 200 (2019) 144-152

Contents lists available at ScienceDirect

Journal of Proteomics

journal homepage: www.elsevier.com/locate/jprot

Plasma metabolomics in early Alzheimer's disease patients diagnosed with | f)
amyloid biomarker Gk

e |
~ . v T . 2aC d . - d

Carmen Pefia-Bautista”, Marta Roca”, David Hervés®, Ana Cuevas®, Rogelio Lépez-Cuevas®,

Méximo Vento®, Miguel Baquero’, Ana Garcfa-Blanco™’, Consuelo Chéafer-Pericés™

* Neonatal Research Unit, Health Research Institute La Fe, Valencia. Spain

" Analytical Unit Platform, Health Research Institute La Fe, Valencia, Spain

© Biostatistical Unit, Health Research Institute La Fe, Valencia, Spain
“ Newrology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain

ARTICLE INFO ABSTRACT

Keywords:
Mild cognitive impairment
Alzheimer's discase

An untargeted metabolomics study has been carried out using plasma samples from patients with Mild Cognitive
Impairment due to Alzheimer's disease patients (MCI-AD, n = 29) and healthy people (n = 29)). They have been
classified following the National Institute on Aging and s Association (NIA-AA) r ions and

Lo O cerebrospinal fluid biomarkers. The analytical method was based on liquid chromatography coupled to high
Netablomics resolution mass spectrometry. The data process from the corresponding metabolic profiles retained 1158 mo-

mode. Di

lecular features in positive and 424 in negative i between ic profiles from
MCI-AD patients and healthy participants were investigated using a penalized logistic regression analysis
(ElasticNet), and being able to select automatically the most informative variables (53 molecular features).
From the molecular features selected for the elastic net models, 16 variables were preliminarily identified by
The Human Metabolome Database (amino acids, lipids...). However, only 4 of these variables were tentatively
identified by MS/MS and all ions fragmentation modes, being choline the only confirmed metabolite. Regarding
their metabolic pathways, they could be involved in cholinergic system, energy metabolism, amino acids and
lipids pathways. To conclude, this is a reliable approach to early AD mechanisms, and choline has been identified
as a promising AD diagnosis metabolite.
Significance: The untargeted analysis carried out in human plasma samples from early Alzheimer's disease pa-
tients and healthy individuals, and the use of sophisticated statistical tools, identified some metabolic pathways
and plasma biomarkers. Preliminarily, cholinergic system, energy metabolism, and aminoacids and lipids
pathways may be involved in early Alzheimer's discase development.

1. Introduction clinical validation of new biomarkers, as well as the development of

effective therapeutic targets.

Alzheimer's disease (AD) is based on a complex physiopathology
and there is a lack of early and non-invasive biomarkers. In fact, the
standard diagnosis consists of invasive cerebrospinal fluid (CSF) (f-
amyloid biomarker) or expensive evaluations based on criteria estab-
lished on recent revisions of the National Institute on Aging-Alzheimer’s
Association (NIA-AA) [1-3]. Neverthel lecular perturb may

The omics technologies address the pathological mechanisms un-
derlying complex diseases, such as AD [4]. Specifically, metabolomics is
a useful approach to the phenotype of the organism in health and AD
status [5]. Actually, recent metabolomics studies have identified some
metabolic pathways altered in AD, such as polyamine pathway, lysine

boli: icarboxylic acid cycle, lipid metabolism, neurotransmis-

occur at systemic level in early stages, before the appearance of char-
acteristic symptoms, and plasma constitutes a promising minimally
invasive sample in the 1 of new Therefore,
further research is required in order to advance in the AD physio-
pathological knowledge, which could enhance the identification and

sion and inflammation [6], as well as the impairment of some meta-
bolite levels (tyrosine, glycylglycine, glutamine, lysophosphatic acid,
platelet-activating factor, organic acids, isoprostanes, prostaglandines)
(7).

In general, metabolomics studies in AD have been applied to
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different biological samples [8,9]. Nevertheless, there is an increasing
interest on improving the early AD diagnosis by means of minimally
invasive samples, such as serum [10,11], plasma [7,12], urine [13], and
saliva [14]. Specifically, plasma is a promising matrix since some bio-
chemical pathways have showed disturbances in patients with AD, such
as amino acids, amines and polyamines metabolisms [12,15-17], as

Journal of Proteomics 200 (2019) 144-152

butylated hydroxytoluene (BHT), were purchased from Sigma-Aldrich
(St. Louis, MO, USA).

2.3. Sample collection and treatment

Plasma samples were collected from peripheral blood in cryo-tubes

well as lipid metabolism [9,10,18-21], even in mild impair-
ment (MCI) phase [12]. Also, a previous study developed a model based
on 7-metabolite signature with satisfactory accuracy to distinguish
between amnestic MCI and healthy people [22]. Nevertheless, most of
metabolomics studies in plasma have been developed from animal
models [9,21,23], and among human studies few of them defined MCI-
AD participants from the standard CSF biomarkers [7]. In this sense, the
ambiguity in dementia type diagnosis is considered an important lim-
itation in the development of AD reliable diagnostic models
[12,15,16,22,24,25].

The aim of this work is to identify reliable plasma biomarkers as-
sociated to MCI due to Alzheimer's disease by means of untargeted
metabolomics and sophisticated statistical tools. To our knowledge this
is the first metabolomics study carried out in human plasma samples
from MCI-AD patients with CSF biomarkers-based diagnosis.

2. Experimental section
2.1. Swdy design and participants

A prospective observational study was carried out in the Neurology
Unit (University and Polytechnic Hospital La Fe, Valencia (Spain)). The
Ethics Committee (CEIC) at the Health Research Institute La Fe
(Valencia) approved the study protocol and informed consent was ob-
tained from all the participants. The participants were people with MCI
due to AD (case group, n = 29), and healthy individuals (control group,
n = 29). The inclusion criteria were age between 50 and 80 years old.

EDTA. They were centrifuged (10 min, 2000g, room tem-
perature), and plasma was separated using a tube with BHT (0.25% (w/
v) in ethanol) as antioxidant. Then, samples were frozen at —80 "C until
analysis.

Samples were thawed on ice, 150 yL of cold acetonitrile (0.1%, v/v)
were added to 50 L of plasma, vortexed and kept at —20 °C for 30 min,
for protein precipitation. After centrifugation at 13000 g (10 min, 4 °C),
20 L of the supernatant were transferred to a 96-wells plate for liquid
chromatography coupled to mass spectrometry (LC-MS) analysis. Then,
70 uL of H,0 (0.1% HCOOH, v/v), and 10 pL of internal standard mix
solution (reserpine, leucine enkephaline, phenylalanine-d5, 20 uM each
one) were added to each sample. Quality control (QC) was prepared by
mixing 10 pL from each plasma sample. Blank was prepared replacing
plasma by ultrapure water in order to identify potential artefacts from
the tube, reagents and other materials. Finally, plasma samples, QCs
and blanks were injected in the chromatographic system. In order to
avoid intra-batch variability, as well as to enhance quality and re-
producibility, the scheme analysis consisted of random injection order
and analysis of QC every 6 plasma samples. Blank analysis was per-
formed at the end of the sequence. Sample stability and analytical drift
were investigated through the internal standard intensities.

2.4. UPLC-Q-ToF-MS instrumentation
Metabolomic analysis was performed on an Ultra-Performance

Liquid Chromatography (UPLC) system coupled to an iFunnel quadru-
pole time of flight (Q-ToF) Agilent 6550 mass spectrometer (Agilent

The MCI-AD group was defined to NIA-AA

on diagnostic guidelines [2]. Therefore, the core clinical criteria for the
MCI diagnosis were considered (criteria for the clinical and cognitive
syndrome, cognitive characteristics of MCI...), as well as the CSF bio-
markers indicating a high likelihood that the MCI syndrome is due to
AD (positive B-amyloid biomarker and positive biomarker of neural
injury). In this sense, the MCI-AD participants group showed cognitive
complaints and some degree of cognitive impairment in neuropsycho-
logical evaluation without daily living activities impairment, and po-
sitive biomarkers as defined by current criteria (amyloid PET imaging
or CSF amyloid/tau). The healthy group showed absence of cognitive
disturbances and negative AD biomarkers. The exclusion criteria were
other neurological impairments (stroke, severe head trauma, Parkin-
son's disease, epilepsy, multiple sclerosis brain injury, brain tumour...),
major psychiatric disorders (major dep disorder, enia,
bipolar disorder...), or a previous invalidating pathology. The standard
clinical assessment used in this study was based on neuropsychological
and functional assessment (Repeatable Battery for the Assessment of
Neuropsychological Status (RBANS) with scores according to five do-
mains (immediate memory-RBANS.IM, visuospatial/constructional-
RBANSV/C, language-RBANS.L, attention-RBANS.A, delayed memory-
RBANS.DM), Functionality Assessment Questionnaire (FAQ), Clinical
Dementia Rating (CDR), Mini-Mental State Examination (MMSE))
[26-29], structural neuroimaging by means of nuclear magnetic re-
sonance (NMR) or computed tomography scan (CTS) [30], and CSF
Dbiomarkers [21,32], or amyloid PET imaging.

2.2. Reagents and chemicals

All reagents used were of analytical grade. Acetonitrile, formic acid
(99%) and ultrapure water were obtained from Merck (Darmstadt,
Germany), and ethanol from LabKem (Ireland). The internal standards
reserpine, leucine and pheny d5, as well as

145

T ies, CA, USA). Ct P P was performed
by using an UPLC BEH C,g (100 x 2.1 mm, 1.7 pm, Waters, Wexford,
Ireland) column from Waters (Wexford, Ireland). Autosampler and
column temperatures were set to 4 °C and 40 °C, respectively. The in-
jection volume was 5uL. A gradient elution with a total run time of
14 min was performed at a flow rate of 400 uL min ' as follows: 98% of
mobile phase A (H0, 0.1% v/v HCOOH) for 1 min, a linear gradient
from 2% to 15% of mobile phase B (CH3CN, 0.1% v/v HCOOH) for
2min, from 15% to 50% B for 3 min and from 50% to 95% for 3 min.
Finally, 95% B was held for 3 min and a 0.55 min gradient was used to
return to the initial conditions, which were held for 2.5min to totally
column recovery. Full scan MS data from 50 to 1700 m/z with a scan
frequency of 6 Hz was collected. Both positive and negative electro-
spray ionization modes (ESI +, ESI -) were used and the conditions
were set as follows: gas temperature, 200 °C; drying gas, 14 Lmin~;
nebulizer, 60 psi; sheath gas temperature, 350°C; sheath gas flow,
11Lmin~ L ic MS spectra ra i
troducing a reference standard into the source via a reference sprayer
valve during the analysis. Q-ToF-MS was also used under auto MS/MS
and all-ions (MSF) modes for the 1 acquisi-
tion at low and high collision energies, which provide useful informa-
tion about the (de)protonated molecules and main fragment ions for the
identification of discovered metabolites.

was carried out in-

2.5. Data processing

In the first place, pre-processing of acquired data from the full scan
analysis by UPLC-Q-ToF-MS is required to detect molecular features.
Data processing was done by using the XCMS package in R [33], for
peak detection, noise filtering, peak alignment, grouping, and normal-
ization of data; and the CAMERA package [34], for identification of
isotopes and most probable adducts. Finally, a data matrix was gener-
ated including molecular features (m/z-retention time), sample ID
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(observations) and peak intensities. Before the statistical analysis, data
quality (reproducibility, stability) was evaluated by means of the in-
ternal standards stability and the QC's coefficients of variation (CV).
Those molecular features with CV > 30% were removed from the data
matrix, and a normalization method (fold change) was also used to
eliminate intra-batch variability due to technical differences. Finally,
the obtained peaks table was used for statistical analysis.

2.6. Statistical analysis and molecular features identification

Demographic and clinical data from participants were summarized
using median and inter-quartile range for continuous variables, and
relative and absolute frequencies for categorical variables. Univariate
analysis was carried comparing medians between both participants
groups by Mann Whitney test for each metabolite. In addition, the fold
change ratio of mean in MCI-AD/mean in control group was calculated
for each metabolite. All these analysis were carried out with SPSS
software version 20.0 (SPSS, Inc., Chicago, IL, USA).

Multivariate analysis was based on an Elastic Net penalized logistic
regression [25], it was adjusted to identify the most influential vari-
ables in the differentiation between healthy individuals and MCI-AD
patients using R (version 3.5), R packages glmnet (version 2.0-16), and
BootValidation (version 0.1.5). Penalized regression methods consist on
fitting a regression model subject to a specific restriction (a bound on
the value of the coefficients). This method forces the shrinkage of the
parameters to zero, potentially performing variable selection at the
model-fitting step. Penalization factor for the Elastic Net was selected
using 500 repetitions of 10-fold cross-validation. From each repetition
the highest lambda at one standard error from the minimum was se-
lected (one-standard-error rule) and the median of the 500 lambda
values was used as the final penalization factor. With the selected
features, the Elastic net models obtained for each ionization mode were

| d imating its optimism corrected area under curve-re-
istics (AUC-ROC) by i )

ceiver operating
the procedure of Gordon et al. [36].

Molecular features selected by Elastic Net analysis were pre-
liminarily identified by querying their exact mass against those pre-
sented in the online Human Metabolome Database (HMDB) (http://
www.hmdb.ca/) and the Metlin database (https://metlin.scripps.edu)
within a mass range of = 10 ppm. The identities of the selected features
were verified by comparing the MS/MS and all-ions spectra with those
of the proposed metabolites in the cited online databases, as well as by
using a 2 dard il

3. Results
3.1. I ipe graphic and clinical ch
The d hic and clinical chara of participants in this

study are summarized in Table 1. As we can see, age and gender showed
differences between groups and for that reason they were included in
the multivariate model as co-variables. As expected from participants'
classification, temporal atrophy was higher in MCI-AD, and the CSF
biomarkers showed significant differences between groups. Regarding
the neuropsychological evaluations, the RBANS (IM, V/C, L, A, DM) and
MMSE scores were lower in MCI-AD patients than in control subjects,
while the FAQ and CDR scores were higher in the MCI-AD group.

3.2. Multivariable analysis and selection of discriminant variables

Elastic net models were used to select discriminant variables.
Outcomes of these models identified 24 and 29 discriminant variables
between MCI-AD and control subjects in positive and negative ioniza-
tion mode, respectively (see Supplementary Material Table S1). The
different levels of these variables between participants groups were
represented in heat map visualizations of the variables' values (Fig. 1).
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Table 1
D ic and clinical of study
Variable Control MCLAD
(n=29) (n=29)
Age (years) (median (IQR)) 65 (63,70)  72(69, 75)
Gender (female) (n (%)) 9(31.03%) 19 (65.529%)
Studies levels (n (%)) Basics 6 (20%) 17 (59%)
University 11 (38%) 5 (17%)
Medications (n (%)) Statins 10 (34%) 17 (59%)
Fibrates 3 (10%) 2(7%)
Benzodiazepines 2(7%) 4(13.79%)
Opiates 0 (0%) 0 (0%)
Antiepileptics 1 (3.45%) 0 (0%)
Antihipertensives 10 (35.71%) 14 (48.28%)
Corticoids 0 (0%) 2(6.99%)
Comorbidity (n (%)) Dyslipidemia 10 (35.71%) 16 (55.17%)
Diabetes 3 (10%) 3 (10.34%)
Hypertension 11 (38%) 13 (44.83%)
Heart Disease 1 (3.45%) 0 (0%)
Smoking status (n (%)) Yes 1(3.45%) 2(6.9%)
Former smoker 9(31%) 7 (24.14%)
(> 10years)
Alcohol or drugs consumption (n (%)) 6(21.43%)  3(10.34%)
Presenile family None 22 (76%) 22 (88%)
background (n (%)) First grade 5 (17%) 5 (17%)
Second grade 2(7%) 0(0%)
Depression (n (%)) 3 (10.34%) 4 (14%)
Anxiety (n (%)) 1 (3.45%) 3 (10.34%)
“Temporal atrophy (n (%)) 2 (7.14%) 20 (69%)
CSF Amyloid B (pg mL.~") (median (IQR)) 1256 (1164, 600 (496,
1464) 687)
CSF total Tau (pgmL.~") (median (IQR)) 196 (141, 590 (465,
298) 782)
CSF phosphorylated Tau (pgmL ') (median (IQR)) ~ 48 (37, 60) 84 (73, 104)
RBANS.IM (median (IQR)) 93 (84,107) 61 (51,75)
RBANSV/C (median (IQR)) 101 (86,112) 81 (75,92)
RBANS.L (median (IQR)) 92(8697) 71 (59,85)
RBANS.A (median (IQR)) 100 (82,112) 68 (56,81)
RBANS.DM (median (IQR)) 100 (92, 48 (40, 66)
106)
MMSE (median (IQR)) 30 (28,30) 25(24,28)
FAQ (median (IQR)) 0(0,0) 5(0,85)
CDR (n (%)) 29(100%)  5(17%)
0.5 0 (0%) 18 (629%)
1 0 (0%) 6(21%)

IQR: Inter-quartile range.

As we can see, the levels of relative increase were depicted in green,
while the levels of relative decrease were depicted in red. In this sense,
most of the metabolites showed higher levels in MCI-AD group than in
control group. The discrimination power of these selected variables was
measured as bootstrap validated AUC, being 0.993 and 0.990 in ne-
gative and positive jonization mode, respectively.

3.3. Metabolites identification

From the 53 variables selected by the elastic net models, 16 vari-
ables were preliminarily identified as only 4 of
these variables were tentatively identified with their MS fragments
pattern (MS/MS and/or all-ions fragmentation), being only 1 variable
finally confirmed with its pure standard (Table 2).

Among the tentatively identified metabolites, first the variable m/z
635.2954 was identified as rescinnamine, a drug used for hypertension
treatment. It is important to note that the incidence of hypertension did
not show differences between control and MCI-AD groups (Table 1), so
it is unlikely to be this compound. Second, the variable m/z 538.3073
was identified with three potential metabolites (24,25-diace-
tylvul; ide, cyasterone, phen A), 24,25-diacetylvulgaroside and
cyasterone were exogenous products derived from fruits and plants
[37,38], while soraphen A was a myxobacterium product that may be
related to some infection in AD. So, we hypothesize that the metabolite
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Fig. 1. Heatmap including the selected variables by the elastic net logistic regression model. Z-scores for each variable are represented in a color-coded scale were
values at the mean are black, values under the mean are red and values over the mean are green. Ordering of rows and columns of the heatmap is performed by
hierarchical clustering of the observations (columns) and of the variables (rows). a) for the negative ionization mode, and b) for the positive ionization mode. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 2 (continued)
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with mass 538.3073 could be soraphen A. Third, the variable m/z
498.2564 was identified as lysophosp (Lyso PE
(20:0/0:0) or Lyso PE (0:0/20:0)), breakdown products of phosphati-
dylethanolamine, present in cells of all organisms [39]. Finally, the
variable m/z 104.1072 was also confirmed with its pure standard and
identified as choline.

The relative levels of these variables in each group of participants
are depicted in Fig. 1. In general, the MCI-AD group showed increased
levels for Lyso PE (m/z 498.2564), soraphen A (m/z 538.3073), and
choline (m/z 104.1072). However, there is a small group of MCI-AD
participants with decreased levels for Lyso PE (m/z 498.2564) and
soraphen A (m/z 538.3073) (Fig. 1). In Fig. 2, the differences between
MCI-AD and control groups are depicted for the metabolites verified by
MS fragmentation patterns, showing statistically significant differences
for choline (p < .001), rescinamine (p < .001) and Lyso PE
(P < .05).

4. Discussion

An untargeted metabolomics study has been carried out in plasma
samples to identify potential early AD biomarkers. For this, plasma
samples from participants with CSF biomarker-confirmed diagnosis
(healthy and MCI-AD), as well as a reliable and robust analytical
method based on minimal sample treatment and UPLC-Q-ToF-MS
chromatographic system were used. Specifically, the valuable samples
from healthy and MCI-AD participants classified by specific AD bio-
markers in CSF [3], together with the high quality, reproducibility and
stability of the analytical method, provided high reliability to the ex-
perimental results. In fact, few studies in literature employed specific
CSF biomarkers to identify clearly AD patients [7]. Also, few works
have focused on AD patients at early stage [7,10-12,22], and few of
them employed simple and robust untargeted analytical methods
[12,22].

From the metabolomics results obtained in both mass spectrometry
ionization modes, a multivariable statistical analysis was carried out to
select the most discriminant variables between healthy individuals and
MCI-AD patients. It was based on Elastic net penalized logistic regres-
sion, and the corresponding models obtained for each ionization mode
provided high accuracy (AUC 0.990 and 0.993, respectively). However,
most of previous works developed partial least squares (PLS) dis-
criminant models [9,12,15,16,21], adding all the studied variables into
the model because PLS is not able to assign zero coefficients. Therefore,
PLS has the imitations in ites selection and accu-
racy assessment. Nevertheless, elastic net is able to shrink the coeffi-
cients of uninformative variables exactly to zero, selecting auto-
matically the most informative variables. This entails that the
coefficients of elastic net model are more stable and reliable compared
with those of PLS. Another difference between both statistical models is
related to the selection of relevant variables. For elastic net, the vari-
able selection is performed at the model-fitting step; while for PLS it
relies on ranking methods, such as variable importance in projection
(VIP) scores, which are affected by variable correlation, and they are
sensitive to tuning parameters [40].

Among the discriminant molecular features selected for the elastic
net models, some variables were preliminarily identified (choline,
carnitine and nicotinamide derivatives, depsides, tocopherols, dipep-
tides, Lyso PEs, inositol derivatives). They are involved to cholinergic
system, energy metabolism, amino acids and lipids metabolism, as well
as nicotinamide pathways. These results agree with previous works in
which lipids and amines biochemical pathways were altered in AD
[15-21]. In addition, the nicotinamide pathway is involved in the mi-
tochondrial transport chain that is related to the progression of AD
through oxidative stress generation [41], so it could explain the higher
levels found for nicotinamide ribotide or beta-nicotinamide D-ribonu-
cleotide in the MCI group. Previous studies proposed nicotinamide ri-
boside as a potential AD treatment since it showed beneficial effects on
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Fig. 2. Bar graph the identified bolites levels for each participants group (MCI-AD, control). (* p = .05, ** p < ,001).

cognition and B-amyloid toxicity in AD mouse model [42], and in DNA
repair [43]. This bolite also showed b effects on neuro-
protection and energy metabolism that is directly implied in AD pa-
thology [44]. Regarding inositol pathway, some metabolites were
down-regulated in MCI-AD (inositol-1,3,4,5-tetraphosphate or 1D-myo-
inositol-1,3,4,6 h. or D-my itol-3,4,5,6-tetraki-

hosph or 1D-my 1-1,4,5,6 ki ). Similarly,
inositol-1,4,5-trisphosphate receptor levels were lower in AD and it
could be important in the neurofibrillary pathology [45]. In general,
inositol is an important membrane component. Its brain derivates are
implied in synaptic transport, and neurotransmitter secretion, and they
regulate autophagy [46]. According to carnitine pathway, higher levels
were found for MCI-AD group. Nevertheless, studies from literature
found that serum acetyl-L-carnitine and other acyl-.-carnitine levels
decreased in MCI and AD subjects [47,48], as well as in CSF samples
[49]. A possible explanation to the higher levels obtained for acet-
ylearnitine in the MCI-AD group may be that these compounds have
antioxidant function [50], so natural mechanisms could be activated at
early AD stages in order to face into the oxidative stress associated to
further disease development. In addition, a mice model study demon-

as other unexplained findings in literature relative to microscopic evi-
dence of fungal infections in brain tissue from AD patients [53-55].
Second, Lyso PEs usually show low circulating levels, and they are
considered biomarkers of the progression of AD [56]. In general, pre-
vious studies found that an alteration in lipid metabolism correlates
with AD development [57]. However, a few participants from MCI-AD
group showed decreased levels for soraphen A and Lyso PE, and further
research is required to differentiate patients' subgroups. Third, choline
was the only confirmed boli ituting a ising biomarker
in early AD It is a p in acetylcholine
synthesis, so it plays an important role in this neurotransmitter func-
tion. In addition, it is a key component in some lipids with relevant
brain functions, such as phosphatydilcholine [58], corroborating the
impairment observed in early AD stage. However, the choline levels
found in AD patients from different metabolomics studies showed some
discrepancy [52,59-61], probably due to the heterogeneous experi-
mental conditions used (animal or human model, AD stage, sample
matrix, analytical technique). In the present study, MCI-AD patients
showed increased levels of this metabolite, as it was observed by Lin
etal. 2017 [21]. It could be explained by the fact that in early AD stages

strated that acetyl-1-carnitine protects against neuroi [51].
Therefore, the high levels found in early AD stages could be a com-
pensatory mechanism, activating the protective mechanisms against the
development of the disease.

The tentatively identified discriminant variables in this study were
Lyso PE (20:0/0:0)/Lyso PE (0:0/20:0), choline and probably soraphen
A. In spite of soraphen A was not confirmed by its standard, we dis-
carded the other two possible compounds with the same mass (24,25-
di; and ¢ as they are fruit and vegetables
products, while soraphen A could show a possible relationship with
fungal infection. So, Lyso PE (20:0/0:0)/Lyso PE (0:0/20:0), choline
and soraphen A could be considered potential early AD biomarkers in
plasma. In general, the MCI-AD group showed increased levels for
soraphen A, Lyso PE and choline. First, soraphen A is produced by
myxobacteria, and it can act as acetyl-CoA carboxylase inhibitor, which
would alter the lipid synthesis pathways, avoiding the fatty acids
elongation [52]. In the present study, most of MCI-AD patients showed
increased levels of this metabolite. It may be indirectly related to the
also higher levels of choline. Probably, the impairment in fatty acid
elongation would lead to an increase in short-chain fatty acids levels,
such as, choline. On the other hand, this potential myxobacteria in-
fection is a controversial result that should be studied in depth, as well
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the is reduced, and as compensatory response
choline production would be increased. In addition, the pathology de-
velopment involves a cellular integrity impairment, allowing the re-
lease of compounds out of the cell, such as choline [62]. Nevertheless, a
recent study showed lower levels of choline in AD patients compared to
healthy subjects [63]. Probably, the different disease phases show dif-
ferent biochemical profiles [17].

5. Conclusions

An untargeted metabolomics study has been carried out in plasma
samples from patients with MCI due to AD and healthy participants,

ieving the i of some that could be involved
in early AD development. They have important roles in some metabolic
pathways related to i energy bolism, and lipids
and amino acids pathways. However, only choline was confirmed, and
further work will be carried out using a targeted analytical method
based on UPLC-MS/MS in order to clinically validate this promising
early AD biomarker. In addition, some tentatively identified compounds
with neuroprotective or antioxidant effects were found elevated in MCI-
AD patients. This may be explained by the activation of compensatory
mechanisms to prevent AD development since its early stages.

334



Annexes

Chapter 8

C. Pefia-Bautista, et al.
Conflicts of interest

None of the authors of this manuscript declares having conflicts of
interest.

Funding
This work was supported by the Instituto de Salud Carlos III (Miguel

Servet I Pm_)ect (CP16/00082)) (Spanish Ministry of Economy and
and Regional Devel: Fund).

Acknowledgement

‘We are greatly indebted to all participants, nursing, psychology and
medical staff who voluntarily participated in the present study. Without
their collaboration and enthusiasm this study could not have been
completed.

CC-P acknowledges a “Miguel Servet I' Grant (CP16/00082) from
the Instituto de Salud Carlos III (Spanish Ministry of Economy and
C iti ). CP-B ack ledges a post-doctoral Grant (associated
to “Miguel Servet” project CP16/00082) from the ISCII (Spanish
Ministry of Economy, Industry and Competitiveness). AG-B acknowl-
edges a post-doctoral Grant (associated to “Juan Rodés” project CP17/
00003) from the ISCIII (Spanish Ministry of Economy, Industry and
Competitiveness).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jprot.2019.04.008.

References

[1] G.M. McKhann, D.S. Knopman, H. Chertkow, B.1. Hyman, C.R. Jack Jr.,

C.H. Kawas, W.E. Klunk, W.J. Koroshetz, J.J, Manly, R. Mayeux, R.C. Mohs,

J.C. Morris, M.N. Rossor, P. Scheltens, M.C. Carrillo, B. Thies, 5. Weintraub,

C.HL. Phelps, The diagnosis of dementia due to Alzheimer's discase: recommenda-
tions from the National Institute on Aging-Alzheimer's Association workgroups on
diagnostic guidelines for Alzheimers disease, Alzheimers Dement. 7 (2011)
263-269.

M. Albert, ST. DeKosky, D. Dickson, B. Dubois, ILH. Feldman, N.C. Fox, A. Gamst,
D.M. Holtzman, W.J. Jagust, R.C. Petersen, P.J. Snyder, M.C. Carrillo, B, Thies,
C.H. Phelps, The diagnasis of mild cognitive impairment due to Alzheimer's disease:

ni

n2)

3]

14]

[15]

e}

7|

8]

st

L

120]

121)

22]

23]

Journal of Proteomics 200 (2019) 144-152

pathology nnd progression in Alzheimer disease: a targeted metabolomics study,
PLoS Med. 15 (2018) e1002482.
M. Or c Anderson, 1. Mattila, M. Manoucheri, H. Soininen, . HyGtyliin
C. Basignani, Targeted serum metabolite profiling identifies metabolic slgmmles in
paticnts with Alzhcimer's discase, normal pressure hydrocephalus and brain tumor,
Front. Neurosci. 11 (2018) 747.
G. Wang, Y. Zhou, .J. Huang, H.D. Tang, X.H. Xu, J.J. Liu, Y. Wang, Y.L. Deng,
R.J. Ren, W. Xu, JF. Ma, Y.N. Zhang, A.H. Zhao, S.0. Chen, W. Jia, Plasma meta-
bolite profiles of Alzheimer's discase and mild cognitive impairment, J. Protcome
Res. 13 (2014) 2649-2658.
7. Tang, L. Liu, V. 1i, J. Dong, M. Li, J. Huang, S. Lin, Z. Cai, Urinary metabolomics
reveals alterations of aromatic amino acid metabolism of Alzheimer's disease in the
transgenic CRNDS mice, Curr. Alzheimer Res. 13 (2016) 764-776.
A. Yilmaz, T. Geddes, B. Han, R.O. Bahado-Singh, G.D. Wilson, K. Imam,
M. Maddens, 5.F, Graham, Diagnostic biomarkers of Alzheimer's disease as identi-
fied in saliva using 111 NMR-based metabolomics, J. Alzheimers Dis. 58 (2017)
355-359,
E. Trushina, T. Dutta, X.M. Persson, M.M. Mielke, R.C. Petersen, Identification of
altered metabolic pathways in plasma and CSF in mild cognitive impairment and
Alzheimer's discase using metabolomics, PLoS One & (2013) ¢63644,
S.E. Graham, O.P. Chevallier, C.T. Elliott, C. Holscher, J. Johnston, B. McGuinness,
P.G. Kehoe, A.P. Passmore, B.D. Green, Untargeted metabolomic analysis of human
plasma indicates differentially affected polyamine and L-arginine metabolism in
‘mild cognitive impairment subjects converting to Alzheimer's disease, PLoS One 10
(2015) e0119452.
M. Mapstone, F. Lin, M.A. Nalls, AK. Cheema, AB. Singleton, M.S. Fiandaca,
H.J. Federoff, What success can teach us about failure: the plasma metabolome of
older adults with superior memory and lessons for Alzheimer's disease, Neurobiol.
Aging 51 (2017) 148-155.
K. Inoue, T1. Tsuchiya, T. Takayama, F. Akatsu, Y. Hashizume, T. Yamamoto,
N. Matsukawa, T. Toyo'oka, Blood-based diagnosis of Alzhcimer's disease using
i inti based on philic interaction liquid chromato-
graphy with mass spectrometry and multivariate statistical analysis, J. Chromatogr.
B Analyt. Technol. Biomed. Life Sci. 974 (2015) 24-34,
N. Voyle, M. Kim, P. Proitsi, N.J. Ashton, A.L. Baird, C. Bazenet, A. Hye,
S. Westwood, R. Chung, M. Ward, G.D. Rabinovici, S. Lovestone, G. Breen,
cgido-Quigley, R.J. Dobson, S.1. Kiddle, Alzhcimer's @ neuroimaging in-
itiative. Blood metabolite markers of neocortical amyloid-p burden: discovery and
enrichment using candidate proteins, Transl. Psychiatry 6 (2016) €719,
F.A. de Leeuw, CF.W. pmm ML Knster, A.C. Harms, EA. Struys, T. Hankemeier,
HW.T, van Viijmen, $.J. van der Lee, C.M. van Duijn, P. Scheltens, A. Demirkan,
MA. van de Wiel, W, \a van der Flier, CL Teunissen, Blood-based metabolic sig-
natures in Alzheimer's disease, Alzheimers. Dement. (Amst). 8 (2017) 196-207.
W. Lin, J. Zhang, Y. Liv, R. W, T1. Yang, X. Hu, X. Ling, Studies on diagnostic
and ic mechanism of Alzheimer's disease through metabo-

lomics and hippocampal proteomics, Eur. J. Pharm. Sci. 105 (2017) 119-126.
J. Olazardn, L. G A dartin, M. Valenti-Soler, B. Frades-
Payo, J. MarinMufioz, C. Anttnez, A. Frank-Garefa, C. Acedo-Jiménez, 1.. Morldn-
cia, R, Petidier-Torregrossa, M.C. Guisasola, . Bermejo-Pareja, A. Sanchez.

D.A. Pérez-Martinez, 5. Manzano-Palomo, R. Farquhar, A. Rébano,
A, Calero, A blood-based, 7-metabolite signature for the carly diagnosis of
Alzheimer's disease, J. Alzheimers Dis. 45 (2015) 1157-1173.
R. Gonzdllez Dominguez, . Garcia-Barrera, J. Vitorica, J.L. Gémez Ariza,

f

recommendations from the National Institute on Agin;

workgroups on diagneistic guldelines for Alghcimers diséass, Alzheiiefs Dement.7
(2011) 270-279.

CR. Jack Jr., D.A. Bennett, K. Blennow, M.C. Carrillo, B. Dunn, S.B. Haeberlein,
D.M. Holtzman, W. Jagust, F. Jessen, J. Karlawish, E. Liu, J.1. Molinuevo,

T. Montine, C. Phelps, K.P. Rankin, C.C. Rowe, P. Scheltens, E. Siemers,

HM. Snyder, R. Sperling, NIA-AA research framework: toward a biological defini-
tion of Alzheimer's disease, Alzheimers Dement. 14 (2018) 535-562.

H, Zetterberg, Applying fluid biomarkers to Alzheimer's discase, Am. J. Physiol. Cell
Physiol. 313 (2017) C3-C10.

C.N.A. Enche Ady, S.M. Lim, LK. Teh, M.Z. Sallch, A.V. Chin, M.P. Tan, P.JLH. Poi,
S.B. Kamaruzzaman, A.B. Abdul Majeed, K. Ramasamy ic-guided dis-
covery of Alzheimer's disease biomarkers from body fluid, J. Nerosci, Res. 95
(2017) 2005-2024.

JM. Wilkins, E. Trushina, Appli
Front. Neural. 8 (2018) 719,
F.A. de Leeuw, C.F.W, Peeters, M.L Kester, A.C. Harms, E.A. Struys, T. Hankemeier,
HL.W.T. van Vlijmen, S.J. van der Lee, C.M. van Duijn, P. Scheltens, A. Demirkan,
M.A. van de Wiel, W.M. van der Flier, Teunissen, Blood-based metabolic sig-
natures in Alzheimer’s disease, Alzheimers. Dement. (Amst). 8 (2017) 196-207,
. Koal, K. Klavins, D. Seppi, G. Kemmier, C. Humpel, Sphingomyelin SM(dlS 1/
18:0) is y enhanced in fluid samples

pathological amyloid-beta42, tau, and phospho-tau-181 levels, J. Alzhnmrn bis.
44 (2015) 1193-1201,

[9] X. Pan, M.B. Nasaruddin, C.T. Elliott, B. McGuinn AP. Passmore, P.G. Kchoe,
C. Hélscher, P.I. McClean, S.F. Graham, B.D. Green, Alzheimer's disease-like pa-
thology has transient effects on the brain and blood metabolome, Neurobiol. Aging
38 (2016) 151-163.

V.R. Varma, A.M. Oommen, S. Varma, R. Casanova, Y. An, R.M. Andrews,

R. OBrien, O. Pletnikova, J.C. Troncoso, J. Toledo, R. Baillic, M. Amold,

G. Kastenmueller, K. Nho, P.M. Doraiswamy, A.J. Saykin, R. Kaddurah-Daouk,

C. Legido-Quigley, M. Thambisetty, Brain and blood metabolite signatures of

of in £ ‘s disease,

oy

241

[25]

[26]

127)

28]

1291

1301
131)

32]

331

34

o based on direct mass spectrometry analysis for the

elucidation of altered metabolic pathways in serum from the APP/PS] transgenic

model of Alzheimer's disease, J. Pharm. Biomed. Anal. 107 (2015) 378-385.

R. Gonzil T, Garcia-Ban L. direct infusion

mass spectrometry for serum membolunncs in Alzheimer's disease, Anal. Bioanal.

Chem. 406 (2014) 7137-7148.

J. Marksteiner, 1. Blasko, G, Kemmler, T. Koal, C. Humpel, Bile acid quantification

of 20 plasma metabolites identifies lithocholic acid as a putative biomarker in

Alzheimer's disease, Metabolomics. 14 (1) (2018).

C. Randelph M C. Tierney, E. Mohr, T.N. Chase, The repeatable battery for the
status (RBANS): p ary clinical validity, J.

Clin. Fxp. M“ump‘-)‘hol 20 (1998) 310-319.

RLL Pfeffer, T.T. Kurosaki, C.H. Harrah Jr., JM. Chance, S. Filos, Measurement of

functional activities in older adults in the community, J. Gerontol. 37 (1982)

323-329.

C.P. Hughes, L. Berg, W.1. Danziger, L.A. Coben, R.L. Martin, A new clinical scale

for the staging of dementia, Br. J. Psychiatry 140 (1982) 566-572.

MLF. Folstein, S.E. Folstein, P.R. McHugh, Mini-mental state. A practical method for

grading the cognitive state of patients for the clinician, J. Psychiatr. Res. 12 (1975)

189-198.

G.B. Frisoni, N.C, Fox, C.R. Jack Jr,, P, Scheltens, P.M. Thompson, The clinical use

of structural MRI in Alzheimer disease, Nat. Rev. Newrol. 6 (2010) 67-77.

A. Ancop, P.K. Singh, R.S. Jacob, S.K. Maji, CSF biomarkers for Alzheimer's disease

diagnosis, Int. J. Alzheimers Dis. 606802 (2010) 1-12.

K. Blennow, B. Dubois, A.M. Fagan, P. Lewczuk, M.J, de Leon, H. Hampel, Clinical

utility of cerchrospinal fluid hiomarkers in the diagnosis of early Alzheimers dis-

ease, Alzheimers Dement. 11 (2015) 58-69.

C.A. Smith, E.J. Want, G. O'Maille, R, Abagyan, G. Siuzdak, XCMS: processing mass

spectrometry data for metabolite profiling using nonlinear peak alignment,

matching and identification, Anal. Chem. 78 (2006) 779-787.

C. Kuhl, R. Tautenhahn, C. Boettcher, T.R, Larson, S. Neumann, CAMERA: an in-

tegrated strategy for compound spectra extraction and annotation of liquid chro-

matography/mass spectrometry data sets, Anal. Chem. 84 (2012) 283-289.

335



Annexes

Chapter 8

€. Pefia-Bautista, ef al.

35

[36] G

371
1381

[39]
[401

141

142

431

144]

[451

146]

147]

J. Friedman, T. Hastie, R. Tibshirani, Regularization paths for generalized lincar

models via coordinate descent, J. Stat. Softw. 33 (1) (2010).

.C. Smith, $.R. Seaman, A.M. Wood, P. Royston, LR. White, Correcting for opti-

‘mistic prediction in small data sets, Am. J. Epidamjol 180 (2014) 318-324.

hutp:, hmdb.

F.Li, G. Li, J. Zhao, J. Xiao, Z. Liu, G. Su, A sunple LC MS method for determination

of cyasterone in rat plasma: application to a pilot pharmacokinetic study, Biomed.

Chromatogr. 30 (2016) 867-871.

hitp://www.hmdb.ca/metabolites/HMDB0O1151.

W. Liu, Q. Li, An efficient elastic net with regression coefficients method for vari-

able selection of spectrum data, PLoS One 12 (2017) ¢0171122.

D. Liu, M. Pitta, 1. Jiang, JI. Lee, G. Zhang, X. Chen, E.M. Kawamoto,

M.P. Mattson, Nicotinamide forestalls pathology and cognitive decline in Alzheimer

mice: evidence for improved neuronal bioenergetics and autophagy procession,

Neurobiol. Aging 34 (2013) 1564-1580.

B. Gong, Y. Pan, P. Vempati, W. Zhao, L. Knable, 1. Io, J. Wang, M. Sastre, K. Ono,

AA. Sauve, GAL Pasinett, '\hronnmmde riboside restores cognition through an
of receptor-y la regulated P-secre-

tase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse

models, Neurobiol. Aging 34 (2013) 1581-1588.

Y. Hou, §. Lautrup, 5. Cordonnier, Y. Wang, D.L. Croteau, E. Zavala, Y. Zhang,

K. Moritoh, J.F. O'Connell, B.A. Baptiste, T.V. Stevnsner, M.P. Mattson, V.A. Bohr,

features and DNA damage

responses in a new AD mouse model with introduced DNA repair deficiency, Proc.

Natl. Ac: U. 8. A. 115 (2018) E1876-E1885.

Y. Chi, A.I\. Sauve, Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3

with effects on energy metabolism and newroprotection, Curr. Opin. Clin. Nutr.

Metab. Care 16 (2013) 657-661.

T. Kurumatani, J. Fastbom, W.L. Bonkale, N. Bogdanovic, B. Winblad, T.G. Ohm,

RF. Cowhurn, Loss of inositol 1,4,5-trisphosphate receptor sites and decreased PKC

levels correlate with staging of Alzheimer's disease neurofibrillary pathology, Brain

Res. 796 (1998) 209-221.

AD. Frej, G.P. Otto, RS. Williams, Tipping the scales: lessons from simple model

systems on inositol imbalance in neurological disorders, Eur. J. Cell Biol. 96 (2017)

154-163.

A. Cristofano, N. Sapere, G. La Marca, A. Angiolillo, M. Vitale, G. Corbi,

G. Scapagaini, M. Intricri, C. Russo, G. Corso, A. Di Costanzo, Serum levels of acyl-

carnitines along the continuum from Normal to Alzheimer's dementia, PLoS One 11

(2016) €0155694.

S.C. Thomas, A. Alhasawi, V.P. Appanna, C. Auger, V.D. Appanna, Brain metabo-

lism and Alzheimer's disease: the prospect of a metabolite-based therapy, J. Nutr.

Health Aging 19 (2015) 58-63.

AD+ normal ey Alzheimer

152

[49]

150] C.

1511

1521

53]

154)
155]

156)

157

[58]

1591

160)

61]

62]

163]

Journal of Proteomics 200 (2019) 144-152

M. Lodciro, C. Thifiez, A. Gifuentes, C. Simé, A. Cedazo-Mingucz, Decreased cere-
brospinal fluid levels of L-carnitine in non-apelipoprotein E4 carriers at early stages
of Alzheimer's disease, J. Alzheimers Dis. 41 (2014) 223-232,
Mancuso, T.E. Bates, D.A. Butterfield, S. Calafato, C. Comelius, A
AT. Dinkova Kostova, V. Calabrese, Natural antioxidants in Alzheime
Expert Opin. Investig. Drugs 16 (2007) 1921-1931,
. Kazal, G.F. Yorim, ive effects of acetyll
ide-i in mice: i

De Lorenzo,
discase,

on lipopoly-
brain-derived

m'umimphu {Acmr Newrosci. Lett. 658 (2017) 32-36.

D.B. Jump, M. Torres-Gonzalez, LK. Olson, Soraphen a, an inhibitor of acetyl CoA
carboxylase activity, interferes with fatty acid elongation, Biochem. Pharmacol. 81
(2011) 649-660.

D. Pisa, R. Alonso, A. Juarranz, A. Rdbano, L. Carrasco, Direct visualization of
fungal infection in brains from patients with Alzheimer's disease, J. Alzheimers Dis.
43 (2015) 613-624.

R. Alonso, D. Pisa, A.I. Marina, E. Morato, A. Ribano, L. Carrasco, Fungal infection
in patients with Alzheimer's disease, J. Alzheimers Dis. 41 (2014) 201-311.

D. Pisa, R. Alonso, A. Ribano, 1. Rodal, L. Carrasco, Different brain regions are
infected with Fungi in Alzhcimer's discase, Sci. Rep. 5 (2015) 15015.

M. Tharguren, D.J. Lopez, P. b, The effect of natural and synthetic fatty acids
on membrane structure, microdomain organization, cellular functions and human
health, Biochim. Biophys. Acta 1838 (2014) 1680-1692.

E. Calzada, . Onguka, S.M. Claypool, Phosphatidylethanalamine metabolism in
health and disease, Int. Rev. Cell Mol. Biol. 321 (2016) 29-88.

5. Tayebati, F. Amenta, Choline-containing phospholipids: relevance to brain
functional pathways, Clin. Chem. Lab. Med. 51 (2013) 513-521.

E. Westman, C. Spenger, J. Oberg, H. Reyer, J. Pahnke, 1.O. Wahlund, In vivo 1H-
magnetic resonance spectroscopy can detect metabolic changes in APP/PS1 mice
after donepezil treatment, BMC Neurosci. 10 (2009) 33.

N. Greenberg, A. Grassano, M. Thambisetty, S. Lovestone, C. Legido-Quigley, A
proposed metabolic strategy for monitoring disease progression in Alzheimer's
disease, Electrophoresis 30 (2009) 1235-1239.

C. Théiez, C. $imé, P.J. Martin-Alvarez, M. Kivipelto, B. Winblad, A. Cedazo-
Mingucz, 'A. Gifuentes, Toward a predictive model of Alzheimers discase progres-
sion using capillary Anal. Chem.
84 (2012) 8532-8540.

J. Klein, Membrane breakdown in acute and chronic neurodegeneration: focus on
choline-containing phospholipids, J. Neural Transm. (Vienna) 107 (2000)
1027-1063.

M.C. de Wilde, B. Vellas, E. Girault, A.C. Yavuz, JW. Sijben, Lower brain and blood
nutrient status in Alzheimer's disease: results from meta-analyses, Alzheimers.
Dement. (N Y). 3 (2017) 416-431.

336



Annexes

Chapter 9

Journal of Pharmaceutical and Biomedical Analysis 180 (2020) 113088

ELSEVIER

Contents lists available at ScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

journal homepage: www.elsevier.com/locate/jpba

Metabolomics study to identify plasma biomarkers in alzheimer
disease: ApoE genotype effect

i»

carmen pefia-bautista?, marta roca®, rogelio 16pez-cuevas®, miguel baquero®,
maximo vento?, consuelo chafer-pericas®*

* Neonatal Research Unit, Health Research Institute La Fe, Valencia, Spain
Y Analytical Unit Platform, Health Research Institute La Fe, Valencia, Spain
< Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain

ARTICLE INFO

Article history:

Received 24 October 2019

Received in revised form 3 December 2019
Accepted 24 December 2019

Available online 26 December 2019

Keywords:
Alzheimer disease
Metabolomics

ABSTRACT

Alzheimer Disease (AD) is the main cause of dementia, and it has a great social and economic impact
worldwide. It is a complex multifactorial disease, and we still do not know enough about its causes. For
this reason, omics studies could be a useful tool for the search for new biomarkers and for enhancing
the of different i that may be altered in the initial stages of the disease.
Metabolomic analysis was carried out for plasma samples from early AD patients and healthy controls.
Obtained data were normalized and analyzed by volcano plot and supervised orthogonal-least-squares-
discriminant analysis. Fifteen variables were selected as the most important variables for the groups’
discrimination, and the different levels of 6 identified metabolites could discriminate between patients
with different ApoE4 genotypes (e4-carriers and non £4-carriers). In conclusion, ApoE4 genotype is

Plasma
Biomarker associated with changes in lipid metabolomics profile in AD patients, and it could be relevant for the
Lipid development of AD since early stages.

Apolipoprotein E

1. Introduction

Dementia constitutes a public priority for World Health Orga-
nization (WHO) due to the high associated mortality and its great
impact in the society since its incidence is growing year by year
[1,2]. Among the dementia causes, it is important to highlight
Alzheimer Disease (AD), a multifactorial disease with some risk
factors (e.g., genetics, life-style, metabolism, vascular character-
istics) and high social and economic impact worldwide [3]. This
entity is characterized histologically by the brain accumulation
of B-amyloid peptide and hyperphosphorylated tau protein, brain
atrophy and neuronal loss. Its symptoms, among which the loss of
memory stands out [4], are mainly related to synaptic dysfunction.
AD can be diagnosed or detected by the changes in the level of 3-
amyloid peptide and tau species in cerebrospinal fluid (CSF), even
before the first symptoms begin. The AD natural history is divided
in three stages, pre-clinical, where biological changes are present
but without clinical manifestations [5]; mild cognitive impairment,
when symptoms appear and cognitive deficiencies are detectable

* Corresponding author at: Health Research Institute La Fe, Avda de Fernando Abril
Martorell, 106 46026, Valencia, Spain.
E-mail address: m.consuelo.chafer@uv.es (c. chifer-pericas).
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0731-7085/© 2019 Elsevier B.V. All rights reserved.
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but no impairment in daily functioning exists [6]; and dementia,
when symptoms are severe enough to disrupt patient’s activities
of daily living [7]. However, few studies have focused on the pro-
gression of CSF biomarkers along the course of the disease [8]. For
that reason, it is important to develop new strategies that allow a
reliable AD di is based on n i

Metabolomics is postulated as a promising tool in the search
for non-invasive biomarkers for diagnosis, prognosis, or treatment
monitoring [9]. In fact, it could reflect all metabolomics changes
occurring in the organism in the case of multifactorial diseases,
such as AD, in which several molecular pathways are involved [10].
Metabolomics studies in AD showed some altered pathways, such
as oxidative stress or neurotransmission [11], mitochondrial [12],
tryptophan and purines metabolisms [13] and altered metabolite
levels for some lipids, such as, sphingolipids [ 14], amino acids and
phospholipids [ 15]. In these studies, the CSF samples were the most
used biological fluid [16], but also plasma [17], serum [ 18] or saliva
samples [19] were analyzed. However, there is a lack of repro-
ducible results, probably due to the differences in participants’
clinical characteristics and operational definitions among studies
[16-19]. In few studies, AD standard biomarkers (amyloid 3-42,
total tau, p-tau) were determined in CSF as key determinants of
patients’ biological status, as recommended by the National Insti-
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tute of Aging and the Alzheimer association (NIA-AA) guidelines
[20].

Regarding AD risk factors which would be interesting to include
in metabolomics studies, Apolipoprotein E4 (ApoE4) genotype is
one of the most important, although the mechanisms that relate
it to the disease are still unknown [21]. ApoE4 genotype is asso-
ciated with earlier amyloid deposition [22]. In this sense, some
patients showed different responses against therapies according to
their ApoE genotype [23]. Also, previous studies found a relation-
ship between different metabolite networks and the ApoE genotype
[24], as well as between ApoE polymorphisms and metabolomic
changes [25]. Moreover, targeted studies found differences in
biomarkers such as CSF SNAP-25, or blood metabolic biomarkers
between ApoE4 carriers and non-carriers [26] [27].

The aim of this work is to identify metabolites altered in first AD
stages using well-defined participants groups to find new potential
diagnosis biomarkers, as well as to evaluate the effect of ApoE4
genotype on the metab ic profile of individuals with early AD.

2. Material and methods
2.1. Participants and samples collection

Blood samples from patients with defined Alzheimer disease in
preclinic, prodromic, or mild dementia stages (early AD, n=29)and
healthy controls (n=29) were obtained. Participants in both groups
were recruited consecutively from the Neurology Unit of the Uni-
versity and Polytechnic Hospital La Fe, Valencia (Spain). They were
aged between 50 and 80 years old. The diagnostic criteria included
a comprehensive neuropsychological evaluation that included the
Repeatable Battery for Assessment of Neuropsychological Status
(RBANS) [28], Functionality Assessment Questionnaire (FAQ) [29]
and Clinical Dementia Rating (CDR) [30]. Assessment also included
image analysis by means of NMR-TAC and cerebrospinal fluid (CSF)
levels of amyloid 3-42 peptide, total tau and p-tau. In this sense,
preclinical cases did not show any symptoms; prodromal cases
showed the core criteria for mild cognitive impairment (MCI),
with clinical symptoms and typical neuropsychological alterations
without achieving dementia diagnosis; and mild dementia cases
showed cognitive impairment with impaired functionality. All the
patients showed typical CSF AD biomarker pattern. The control
group showed normal neuropsychology, normal CDR, and nor-
mal CSF biomarker pattern. Participants not accomplishing all the
conditions defined for each group or showing other neuropsy-
chological, psychiatric, relevant systemic comorbidities, or those
unable to undergo the evaluations were excluded.

Samples were centrifuged and stored at -80 °C until the analysis.
Plasma samples treatment was previously described by Pefia-
Bautista et al. [31]. The informed consent was obtained from all
participants, and the Ethics Committee of the Health Research
Institute of La Fe (Valencia) approved the study protocol. CSF bio-
chemical determinations (f-amyloid, t-Tau, p-Tau) were carried
out by Innotest Elisa kit (Fujirebio Diagnostics, Ghent, Belgium)
using a fully automated system (Lumipulse G, Fujirebio).

2.2. Apolipoprotein e genotype

ApOE genotype was determined by PCR using LightMix® Kit
ApoE C112R R158C from Roche Diagnostics [32], in blood samples
from early AD participants following the manufacturer protocol.
2.3. Data pre-processing

Samples were analysed by means of ultra-performance lig-

uid chromatography coupled to time-of-flight mass spectrometry
(UPLC-Q-ToF MS), as it was described in a previous work [31]. Data

processing was carried out in the Analytical Unit of the Health
Research Institute of La Fe (Valencia) using an in-house R process-
ing script with XCMS and CAMERA packages for peak detection,
noise filtering, and peak alignment. The aligned dataset was then
filtered according to the quality assurance (QA) criteria of coeffi-
cient of variation (CV) <30 % in quality control samples (QC) and
the presence of the variable in 60 % of the samples in at least one of
the compared groups. Prior to statistical analysis, four normaliza-
tion methods were performed in order to find the most appropriate
method for this study. They were two approaches based on multi-
ple internal standard (IS), a median fold change normalization, and
a QC-based robust locally weighted scatter plot smoothing (LOESS)
for signal correction. After evaluation, LOESS data normalization
was selected for statistical analysis.

2.4. Statistical analysis

Participants' descriptive statistical analysis was carried out
using median and inter-quartile range for continuous variables,
and relative and absolute frequencies for categorical variables. Dif-
ferences between healthy and early AD groups were evaluated
by means of Mann-Whitney test for numerical variables and Chi-
square test for categorical variables. The software used was IBM®
SPSS® Statistics version 20.0 (SPSS, Inc., Chicago, IL, USA). Statisti-
cally significant differences were considered from p value < 0.05.

For multivariate statistical analysis, data from positive and neg-
ative ionization modes were treated simultaneously. First, the
normalized variables obtained from data processing were visual-
ized in a Volcano Plot to show which variables present a stronger
combination of fold change (FC) and statistical significance (p-
value) from a t-test. Significant variables (p value t-test <0.05 and
abs (log2 FC)> 1) were selected for a supervised orthogonal-least-
squares discriminant analysis (OPLS-DA) validated by an iterative
7-fold cross-validation (CV) approach. The validity and robust-
ness of the models were evaluated by R2(Y) (model fit) and Q2(Y)
(predictive ability) diagnostic parameters. Quality of CV Q(Y)
was assessed by using the p-value from CV-anova analysis. RZY-
intercepts and Q?Y-intercepts from 1000 times permutation test
in the OPLS-DA model was also used to evaluate the overfitting
risk. Most discriminant variables were selected according to their
Variance Importance in Projection plot values (VIP>1.0), and a
jack-knife confidence interval that did not include zero. Finally,
the potential metabolites were submitted to identification process.
Volcano plots were carried out using the R platform, while the
multivariate analysis was carried out using Simca 14.1 software
(Sartorius Stedim Biotech, Aubagne, France).

2.5. Metabolites' annotation

Variables selected by OPLS-DA analysis were identified by using
the online CEU Mass Mediator (CMM 3.0, Gil de la Fuente et al.,
2019) [33] which combines the results of several online databases,
among which Human Metabolome Database (HMDB) (http://hmdb.
caf), Metlin (https://metlin.scripps.edu/), LipidMaps (http://www.
lipidmaps.org) and Kegg (http://www.kegg.jp) are used. Annota-
tion of variables (m/z) was carried by querying their accurate mass
(AM) against those presented in these sources within a mass range
of +5ppm. Only those metabolites that appeared at least in the
HMDB were finally selected. The adducts included were [M*H],
[M*Na), [2M*H], and [2M*Na] for positive ionization mode, and
[M"H],[M*HCOOH H], [2M" H| for negative ionization mode. Neu-
tral water loss was also taken into account for both ionization
modes. A scoring of annotation was calculated by the CMM based
on the probability to form specific adducts, as well as their reten-
tion time (Tg), and lipid elution order based in Tg and the number of
carbons and double bonds. Metabolites’ annotation was also sup-

338



Annexes

Chapter 9

c. peia-bautista, m. roca, r. [6pez-cuevas et al. / Journal of Pharmaceutical and Biomedical Analysis 180 (2020) 113088 3

ported by comparing the obtained MS/MS fragmentation spectra
with those experimental spectra proposed in databases. Annota-
tion confidence levels were determined according to the categorical
scoring system proposed by the Metabolomics Community. They
were level 1, identification of molecular feature through AM and Tg,
matching with its chemical standard; level 2, putatively annotation
through AM and MS/MS spectra matching with online databases;
level 3, putatively characterization of compounds by AM match-
ing with online databases; and level 4, feature without annotation
(unknown compound) [31,32].

3. Results and discussion
3.1. Demographic and clinical data of participants

Clinical and demographic characteristics from participants are
summarized in Table 1. There were no differences between control
and early AD groups for demographic variables except for gender
and age. However, clinical variables (neuroimaging, CSF biomarkers
(amyloid {, total tau, p-tau), and neuropsychological evaluation
tests (RBANS, CDR, FAQ)) showed differences between groups as it
was expected.

3.2. Metabolomic differences between healthy and early AD
subjects

The Volcano Plot analysis, carried out for the healthy control
and early AD groups, showed 36 significant variables (Fig. 1a).
The supervised OPLS-DA analysis was carried out with those vari-
ables in order to find the most powerful discriminant metabolites
between groups. As shown in Fig. 1b, the OPLS-DA model revealed
a clear separation between early AD cases and healthy controls
(except for some misclassified controls), with good R2Y (0.738) and
Q2Y (0.679) parameters, indicating biochemical changes between
groups. The model was satisfactorily validated with a 7-fold cross
validation method (p CV-anova <0.001)and 1000 permutation tests
(R2Y- intercept=0.074, Q2Y-intercept=-0.253).

Potential metabolites contributing to early AD and healthy con-
trols separation were subjected to identification and confirmation
based on a threshold of VIP value >1. Finally, 15 variables were
studied and tentatively identified by using CMM tool and mass
fragmentation strategies (see Table S1 in Supplementary Material).
Metabolite annotation based on AM, retention time and MS/MS
spectra from chemical standard lead to the confirmation of m/z
1043.7008 as Lysophosphatidylcholine (18:1) (Lyso PC(18:1)) (Fig.
S1).This metabolite showed levels with differences statistically sig-
nificant between early AD and healthy control participants (Fig. 1c).
In addition, the variable m/z 1047.7345 was putatively charac-
terized as NeuAcalpha2-3Galbeta-Cer(d18:1/20:0), LysoPE(21:0),
LysoPC(18:0) or PC(0-16:0/2:0), all of them were glycerophos-
pholipids. On the other hand, m/z 570.0359, and m/z 335.0450
were putatively characterized as chemical compound, and phe-
nols, organic sulphuric acids, or fatty acyls classes, respectively. The
other variables could not be identified by any of the databases.

As previous works described, it seems that lipid metabolism
plays an important role in AD physiopathology [35], and it could
be useful in the discrimination between early AD and healthy con-
trols. In this sense, previous studies showed that membrane lipid
composition could be involved in the activity of gamma secre-
tase, an enzyme acting in the appearance of B-amyloid peptide,
the most characteristic hallmark of AD [33,34]. In addition, struc-
tural changes in lipid membrane could change the interaction with
B-amyloid protein [37].

Regarding lipid metabolites, lysophosphatidylcholine is postu-
lated as a potential plasma biomarker. Similarly, Liu et al. and

a) Fiig

3

—iog10(u2eatp vee)
2
B

? * ) ¢
b) i i oo

. [ % Jid

: a’% .’i..

Ee A L]
:“ t ." :.
i ie

: o

= =

<)
LysoPC (18:1)

| &

T
Control

T
Early AD

Fig. 1. a) Volcano Plot representing the significant variables in the discrimination
between early AD and healthy control groups. The non-significant variables are rep-
resented in grey, the significant variables are represented in red (p value t-test> 0.05
and FC>2); b) OPLS-DA represents differential distribution between early AD and
healthy control groups; ¢) Boxplot of plasma analytical responses of LysoPC(18:1).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).

*p value <0.05.

Lin et al. found that lysophosphatidilcholines and phosphatidil-
cholines showed differential levels between AD and healthy elderly
in plasma samples [38,39]. In fact, most of metabolomics stud-
ies carried out in plasma for AD biomarkers identification showed
lipids as important potential biomarkers [40]. Oberacher et al. 2017
found similar results using soluble lysates from platelets where dif-
ferent phosphocholines seemed to discriminate between early AD
and healthy controls [41]. Also, Dorninger et al. 2018 found that
although Iphosphatidylysocholine levels increased in normal aging,
this increase is more remarkable in probable AD patients [42].
In addition, it was d rated that lysoph atidylcholines
increased the in vitro formation of AB1-42 oligomer [36,37]. On the
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# 1: confirmed; 2: putative annotated; 3: putative characterized; 4: unknown.
LysoPC: Lysophosphatidylcholine.

LysoPE: lysophosphatidylethanolamine.

CL: cardiolipin.

2 Score 1 for ionization rules (particular adducts formation depending on the lipid class, ionisation mode and mobile phase modifier used) based on CMM is very likely

right (score range between 1.5-2).

b Score 1 for ionization rules (particular adducts formation depending on the lipid class, ionisation mode and mobile phase modifier used) based on CMM is likely right

(score range between 1-1.5).

< FC: Fold Change was calculated as median signal of carriers divided to non-carriers.

contrary, Li et al. found decreased levels of lysophosphocholines in
brain tissue from AD mice model [43].

3.3. Metabolomic differences between ApoE4 genotypes

In Fig. 1b, we appreciate a clear clustering in the control group,
while the early AD case group showed high scattering, indicat-
ing a within class variation. In order to explain this variability,
we proposed the ApoE4 genotype as a potential variable since it
is considered an important risk factor in AD development. Specifi-
cally, ApoE genotype is related to AD pathogenesis as the £4 allele is

involved in cholesterol brain metabolism and in the maintenance of
membrane integrity [44]. In addition, it is related to other pathways
such as lipid metabolism, synaptic function, glucose metabolism
microglial response, or tau pathology, among others [45]. There-
fore, ApoE genotype could generate differences in metabolomic
profile. Previously, Karjalainen et al.indicated that ApoE-&4 carriers
and non-carriers showed differential serum metabolomics profile,
it could be associated to different pathological status [25]. There-
fore, in the present study, different metabolic profiles in plasma
from early AD patients, as well as the ApoE genotype, influence
were evaluated.
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Table 1
Demographic and clinical variables for the participants groups.
Variable Control (n=29) First AD stages (n=29)
Age (vears) (median (IQR)) 65(63,70) 72(69,75)
Gender (female) (n (%)) 9(31.03%) 19(65.52%)
5 Basics 6(20%) 17 (59 %)
Education level (n (%)) University 11(38%) 5(17%)
Statins 10(34%) 17(59%)
Fibrates 3(10%) 2(7%)
Benzodiazepines 2(7%) 4(13.79%)
Medications (n (%)) Opiates 0(0%) 0(0%)
Antiepileptics 1(345%) 0(0%)
Antihipertensives 10(35.71 %) 14 (4828 %)
Corticoids 0(0%) 2(69%)
Dyslipidemia 10(35.71%) 16(55.17 %)
” Diabetes 3(10%) 3(1034%)
Comorbidity (r (%)) Hypertension 11(38%) 13(4483%)
Heart Disease 1(345%) 0(0%)
. Yes 1(345%) 2(69%)
Smoking status (n (X)) Former smoker (more than 10 years) 9(31%) 7(24.14%)
Alcohol or drugs consumption (n (%)) 6(21.43%) 3(1034%)
None 22(76 %) 22(88%)
Presenile family background (n (%)) First grade 5(17%) 5(17%)
Second grade 2(7%) 0(0%)
Depression (n (%)) 3(1034%) 4(14%)
Anxiety (n (%)) 1(345%) 3(1034%)
Temporal atrophy (n (%)) 2(7.14%) 20 (69 %)
CSFamyloid 3 (pg mL-") (median (IQR)) 1256 (1164, 1464) 600 (496, 687)
CSF total tau (pg mL~') (median (IQR)) 196 (141, 298) 590 (465, 782)
CSF phosphorylated tau (pg mL-1) (median (IQR)) 48(37.60) 84(73,104)
RBANS.DM (median (IQR)) 100 (92, 106) 48 (40, 66)
FAQ (median (IQR)) 0(0.0) 5(0.85)
0 29(100%) 5017%)
CDR(n (%)) 05 0(0%) 18(62%)
1 0(0%) 6(21%)
Table 2
Metabolitesannotation from ApoE classification.
AM (m/z) te (min) Adduct lon Formula Mentificationf variahles Compound class [ Metabolism  FC®
Metabolite annotation Level #
1087.6829 8.86 M-H C6H102012P2  alpha-p-galactosyl undecaprenyl 2 Prenol lipids/Lipid metabolism  0.46
diphosphate
1043.7008 8.85 2M+H C26H52NO7P LysoPC(18:1) 1 Glycerophospholipids / Lipid 0.26
metabolism
508.3746 9.02 M+H C26H54NO6P LysoPC(P-18:0) = o) Glycerophospholipids 048
5303563 9.02 M+Na C26H54NO6P LysoPC(P-18:0) 3 Glycerophospholipids 0.48
536.3696 9.16 M+H C27H54NO7P LysoPE(0:0/22:1(13Z)) 3 Glycerophospholipids 0.50
LysoPE(22:1(13Z)/0:0)
1261.8213 8.69 M+H C67H122017P2  CL(8:0/14:0/18:2(9Z,11Z)/18:2(9Z.11Z) 3 Glycerophospholipids 0.50
CL(8:0/i14:0/18:2(9Z,11Z)/18:2(9Z,11Z))
1018.6680 8.70 + Unknown 4 050
548.8109 8.85 & Unknown 4 0.46
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a)

b)
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Fig. 2. a) Volcano Plot representing the significant variables in the discrimination
between early AD e4-carrier and non e4-carrier groups. The non-significant vari-
ables are ingrey, the significant inred (pvalue
t-test> 0.05 and FC>2); b) OPLS-DA between

ables in the Variance Important Projection Plot VIP value >1 and
which their jack-knife confidence interval did not include zero.

Finally, 8 variables were tentatively identified by using the CMM
tool (see Table 2). All these analytes showed lower values for £4-
carriers. Specifically, m/z 1043.7008 with a fold-change ratio of 0.26
was confirmed as LysoPC(18:1) by using a chemical standard, and
it showed statistically significant differences between groups. This
variable was previously confirmed in the metabolome comparison
between healthy and early AD groups. Other variables were puta-
tively characterized as LysoPC(P-18:0), LysoPE(0:0/22:1(13Z)),and
cardiolipins. As can be seen in Fig. 2c, some of these metabolites
showed statistically significant differences between g4-carriers
and non g4-carriers.

Regarding the identified compounds class, most of them are
glycerophospholipids (Table 2). Fonteh et al. previously described
differences for different glycerophospholipids in CSF from AD
patients and healthy controls [46]. However, Sharman did not
find differences for glycerophospholipids levels in brain tissue nor
plasma samples from knock-in mice with different human ApoE
subtypes expression [47]. On the other hand, Igbavboa et al. found
differential composition in synap I lipid rafts d ding on
ApoE genotype [48]. In general, lipid metabolites are the most
relevant compounds, since cardiolipins, lysophosphatidylcholines
and lysophosphatidylethanolamines are discriminant variables
between early AD and healthy control groups, as well as between
£4-carriers and non g4-carriers.

Regarding cardiolipins, they are phospholipids highly presentin
the mitochondrial membrane, and they have been related to brain
disorders and neurodegenerative diseases, such as AD [49]. In this
study, cardiolipins showed lower signals in g4-carriers than non
g4-carriers. This dysregulation could be associated with mitochon-
drial dysfunction in AD synapsis [50].

Among lysophosphatidylcholines, LysoPC(18:1) is one of the
most important discriminant variables between g4-carriers and
non g4-carriers in this study, and its plasmatic levels were pre-
viously related to a lower risk of different cancer kinds [51]. In
addition, Whiley et al. found that the determination of 3 differ-
ent phosphatidylcholines combined with ApoE genotype, provided
a satisfactory discriminant capacity between AD and non-AD par-
ticipants [52]. Nevertheless, the present study showed lower levels
for this compound in the healthy and g4-carrier groups in compar-
ison with the non g4-carrier group. This finding reinforces the idea
that the ApoE genotype plays an important role in the development
of AD. In this sense, LysoPC (18:1) levels and ApoE genotype could
be a useful tool for early AD diagnosis.

Regardlng the limitations of the present study, it is important to
ight the low number of participants, since it is very difficult to

e4-carrier and non £4-carrier groups: ¢) Buxp!ul of plasma analyucal responses of
LysoPC(18:1), LysoPC (P-18:0) and (For il the

to colour in this figure legend, the reader is referred to the web version of this arti-
cle).

*p value < 0.05.

The metabolomics differences were evaluated using the same
statistical procedure described above. It was applied in early
AD cases previously classified as 4-carriers and non g4-carriers
according to the PCR analysis results. In this sense, 20 significant
variables were selected in the Volcano Plot (Fig. 2a) for the follow-
ing OPLS-DA analysis. As it is shown in the score plot (Fig. 2b), few
samples were misclassified and the model presented R2Y (0.437)
and Q2Y (0.394) diagnostic parameters. Nevertheless, the model
was reliable with a CV-anova p-value <0.05 and acceptable permu-
tation test (R2Y-intercept=0.04, Q2Y-intercept=—0.206). In order
to find out the metabolites whose concentrations were altered in
£4-carriers, compared to non e4-carriers, we selected those vari-

achieve early AD patients and healthy people identified from CSF
biomarkers levels.

4. Conclusions

Different levels for plasma metabolites are found in early AD
patients compared to healthy controls, reflecting the different
metabolic pathways that are affected in this disease. Among these
analytes, different lipid compounds stand out, so lipid metabolism
is an important pathway that seems to fail since early stages of
the pathology. Therefore, it could constitute a source of biomark-
ers for the early AD diagnosis, as well as further therapeutic targets.
In addition, in the early AD patients, different metabolic profiles
were obtained depending on their ApoE genotype (s4-carriers, non
&4-carriers). Actually, different glycerophospholipids were altered
between these groups. It could involve an important advancement
in the knowledge of the different impaired mechanisms, as well
as the improvement in precision medicine for diagnosis and treat-
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ment. Nevertheless, further work based on target analysis would
be required for the quantification of these potential biomarkers in
a larger number of participants in order to validate the diagnostic
performance of these metabolites.
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Abstract: Background: The brain is rich in lipid content, so a physiopathological pathway in
Alzheimer’s disease (AD) could be related to lipid metabolism impairment. The study of lipid
profiles in plasma samples could help in the identification of early AD changes and new potential
biomarkers. Methods: An untargeted lipidomic analysis was carried out in plasma samples from
preclinical AD (n = 11), mild cognitive impairment-AD (MCI-AD) (n = 31), and healthy (n = 20) partici-
pants. Variables were identified by means of two complementary methods, and lipid families’ profiles
were studied. Then, a targeted analysis was carried out for some identified lipids. Results: Statistically
significant differences were obtained for the diglycerol (DG), lysophosphatidylethanolamine (LPE),
lysophosphatidylcholine (LPC), monoglyceride (MG), and sphingomyelin (SM) families as well as for
monounsaturated (MUFASs) lipids, among the participant groups. In addition, statistically significant
differences in the levels of lipid families (ceramides (Cer), LPE, LPC, MG, and SM) were observed
between the preclinical AD and healthy groups, while statistically significant differences in the levels
of DG, MG, and PE were observed between the MCI-AD and healthy groups. In addition, 18:1 LPE
showed statistically significant differences in the targeted analysis between early AD (preclinical and
MCI) and healthy participants. Conclusion: The different plasma lipid profiles could be useful in
the early and minimally invasive detection of AD. Among the lipid families, relevant results were
obtained from DGs, LPEs, LPCs, MGs, and SMs. Specifically, MGs could be potentially useful in AD
detection; while LPEs, LPCs, and SM seem to be more related to the preclinical stage, while DGs are
more related to the MCI stage. Specifically, 18:1 LPE showed a potential utility as an AD biomarker.

Keywords: Alzheimer’s disease; plasma; lipids; diagnosis

1. Introduction

Alzheimer’s disease (AD) is a complex and multifactorial disease, whose mechanisms
of action are currently not fully understood [1]. The most accepted hypotheses describe the
accumulation of amyloid-$ peptide and phosphorylated Tau (p-Tau) protein in the brain as
the cause of the disease [2]. These histological alterations produce neuronal loss, leading to
clinical manifestations (memory loss and cognitive decline) [2]. However, when the clinical
manifestations are visible, the brain damage is already too great, and current treatments do
not show great effectiveness [3]. Currently, the diagnosis of AD is based on cerebrospinal
fluid (CSF) biomarkers, neuropsychological evaluations, and neuroimaging [4]. Therefore,
there is a need to identify early physiopathological pathways and minimally invasive
AD biomarkers.

Lipid metabolism could be related to AD early development since the brain is rich in
lipid content, and aging could produce a dysregulation in lipid homeostasis [5]. Therefore,
several lipids have been described as potential biomarkers for the disease in different types
of biological samples [5]. In fact, the implication of lipids from the cell membrane has
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been described in APP processing and in amyloid pathology [6]. Several lipid families,
such as sphingomyelins (SM), cholesterol esters (CE), phosphatidylcholines (PC), phos-
phatidylethanolamines (PE), phosphatidylinositols (PI), ceramides (Cer), and triglycerides
(TG), have been related to AD [7,8]. These biomarkers could be useful not only for diag-
nosis but also for disease progression prediction. In fact, LysoPE (LPE) and PE are useful
biomarkers for monitoring the conversion of MCI to AD [9], and plasma sphingomyelins
have been related to cognitive decline in probable AD patients [10]. In fact, lipidomic
analyses have been carried out in order to study the involvement of lipids in AD pathology
and progression [11]. Brain tissue from elderly healthy participants and patients with
different stages of AD showed differential expression of lipids such as glycerolipids, glyc-
erophospholipids, and sphingolipids [12]. In addition, this research field focusing on these
compounds as potential biomarkers in peripheral biofluids (e.g., plasma and serum) is
gaining attention [13-15].

The aim of this work is to evaluate plasma lipid profiles from untargeted and tar-
geted approaches, identifying lipid families and single lipids involved in early AD as
potential biomarkers.

2. Material and Methods
2.1. Participants and Sample Collection

The participants were between 50 and 80 years old. They were classified into pa-
tients with preclinical AD (1 = 12), patients with mild cognitive impairment (MCI) due
to AD (MCI-AD, n = 31), and healthy controls (1 = 20). The clinical assessment consisted
of a neuropsychological evaluation based on the Repeatable Battery for Assessment of
Neuropsychological Status Delayed Memory (RBANS.DM) [16], Functionality Assess-
ment Questionnaire (FAQ) [17], Mini-Mental State Examination (MMSE) [18], and Clin-
ical Dementia Rating (CDR) [19]. Moreover, NMR-TAC and cerebrospinal fluid (CSF)
(p-amyloid-42 peptide, total Tau, and phosphorylated Tau) analyses were carried out. In
this sense, patients with preclinical AD show normal cognitive assessments and positive
AD biomarkers (CSF and neuroimaging); patients with MCI-AD show impaired cognitive
assessments (cutoff for mild cognitive impairment from the scales mentioned above) and
positive AD biomarkers; and control participants do not show cognitive impairment and
show negative AD biomarkers. Patients with known major neurological or psychiatric
conditions were excluded. Informed consent was obtained from all participants, and the
Ethics Committee of the Health Research Institute of La Fe (Valencia, Spain) approved the
study protocol (2019/0105).

Blood samples were collected from the participants, centrifuged to separate the plasma
fractions, and stored at —80 °C until the analysis.

2.2. Liquid Chromatography and Mass Spectrometry Analysis
2.2.1. Sample Preparation

The plasma sample treatment was previously described by Pefia-Bautista et al. [20].
Briefly, 150 uL of cold isopropanol (IPA) was added to 50 uL of plasma, vortexed, and kept
at —20 °C for 30 min. Then, it was centrifuged (13,000 g, 10 min, 4 °C), and 90 uL of
supernatant was transferred to a 96-well plate. After that, 10 uL of an internal standard
(IS) mix solution (17:0 LPC, d18:1/17:0 SM, and 17:0 PE) (100 ug/mL, each compound)
was added to each sample. Quality control (QC) was prepared by mixing 10 uL from each
plasma sample. A blank was prepared with ultrapure water using the same extraction tube
used for blood collection.

2.2.2. Liquid Chromatography

Samples were analyzed by ultra-performance liquid chromatography coupled to
time-of-flight mass spectrometry (UPLC-TOF /MS-Orbitrap QExactive Plus MS) follow-
ing the normalized protocol from the Analytical Unit in Health Research Unit La Fe
(Valencia, Spain).
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Briefly, the chromatographic conditions consisted of using an Acquity UPLC CSH
C18 column (100 x 2.1 mm, 1.7 um) from Waters. The mobile phase in the positive
ionization mode was acetonitrile/water (60:40) with formic acid (10 mM) (A) and iso-
propyl alcohol/acetonitrile (90:10) with formic acid (10 mM) (B); in the negative ioniza-
tion mode, it was acetonitrile/water (60:40) with acetic acid (10 mM) (A) and isopropyl
alcohol /acetonitrile (90:10) with acetic acid (10 mM) (B). The flow rate was 0.40 mL min~!,
the column temperature was 65 °C, and the injection volume was 5 pL.

2.2.3. Untargeted Analysis

In the untargeted analysis, the mass spectrometry conditions consisted of positive and
negative ionization, an m/z range of 70-1700 Da, a resolution full scan of 70,000, a capillary
voltage of 2.5 kV, a sheath gas flow rate of 35, an auxiliary gas flow rate of 15, a sweep gas
flow rate of 0, a capillary temperature of 250 °C, an s-lens RF level of 65, and an auxiliary
gas heater temperature of 200 °C. Samples were randomly injected in the chromatographic
system in order to avoid intrabatch variability. Regarding the QC sample, it was analyzed
every seven injections to monitor and correct changes in the instrument response. Moreover,
it was repeatedly analyzed under the auto MS/MS and all-ion (MSE) fragmentation modes
to provide useful information of fragment ions for identification purposes. The stability of
the analytical system during the analysis was investigated through the trends and drifts of
IS intensities over the course of the batch analysis. A blank analysis was performed at the
end of the sequence and was used to identify artefacts from sampling, the preparation of
samples, and analysis.

Then, some variables were annotated, with a mass error <5 ppm, and some of them
were selected for a subsequent targeted analysis.

2.2.4. Targeted Analysis

Some of previous variables were selected for a targeted analysis through the analysis
of chemical standards, attending to the following criteria. First, lipid families that showed
statistically significant differences among the participant groups were selected. Then,
individual compounds from these families that showed statistically significant differences
between groups were selected. In the case of no commercially available standards, similar
lipid compounds from the same family were selected.

The sample treatment and the MS/MS method were developed for the simultaneous
targeted analysis of seven lipid compounds (18:1 LPE, 18:0 LPC, 16:1 SM (d18:1/16:1),
16:0 SM (d18:1/16:0), 18:0 SM (d18:1/d18:0), 18:1 (9-Cis) PE (DOPE), and 24:0 SM). In
addition, 17:0 LPC, 17:0 SM (d18:1/17:0), and 17:0 PE were used as internal standards.
Metabolite concentrations were calculated by an internal calibration using a reaction and
multiple monitoring (MRM) method. The employed mass spectrometry conditions con-
sisted of positive ionization, a capillary voltage of 3 kV, a sheath gas flow rate of 35,
an auxiliary gas flow rate of 15, a sweep gas flow rate, a capillary temperature of 250 °C,
an s-lens RF level, and an auxiliary gas heater temperature of 200 °C. The normalized colli-
sion energy was 25 for all compounds. The multiple reaction monitoring (MRM) method
parameters are summarized in Table 1.

Analytical Method Validation

The analytical characteristics assayed during the validation procedure were the linear-
ity range, precision, accuracy, limit of detection (LOD), and limit of quantification (LOQ).
The accuracy was evaluated by means of the recovery test. For this, standards were spiked
at three concentration levels, and they were analyzed in triplicate. The precision was esti-
mated from the analysis of standards and spiked samples at three concentration levels (i.e.,
low, medium, and high) in triplicate. The LOD and LOQ were established experimentally
as the concentrations required to generate signal-to-noise ratios of 3 and 10, respectively.
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Table 1. Acquisition parameters for targeted lipid analysis.
Mass to Charge (m/z) $ Product Ion (m/z) Product Ion (m/z)
Compound Precursor lon Chemlcal Formula/(M) (Quantitative) (Qualitative)

18:1 LPE 480.30847 C23H46NO7P 308.294

18:0 LPC 524.37107 C26H54NO7P 184.073 104.107

16:1 SM (d18:1/16:1) 701.5592 C39H77N206P 184.073 104.107

16:0 SM (d18:1/16:0) 703.57485 C39H79N206P 184.073 104.107

18:0 SM (d18:1/18:0) 731.60615 C41H83N206P 184.073 104.107
18:1 (9-Cis) PE (DOPE) 744.55378 C41H78NOSP 308.294

24:0SM 815.70005 C47H95N206P 184.073 86.0963
17:0 LPC 568.3626 C25H52NO7P 184.073
17:0 SM (d18:1/17:0) 717.5905 C40H81N206P 184.073
17:0 PE 720.22537 C39H78NOSP 184.073

LPE: lysophosphatidylethanolamine; LPC: lysophosphatidylcholine; SM: sphingomyelin; PE: phos-
phatidylethanolamine; DOPE: dioleoy] phosphatidylethanolamine.

2.3. Preprocessing and Data Analysis

The results from the untargeted analytical method were converted to the mzXML file
format, and the data were processed (peak detection, noise filtering, and peak alignment)
using an in-house R processing script based in the LipidMS package published by Alcoriza-
Balaguer et al. and developed in the Analytical Unit of the Health Research Institute of
La Fe (Valencia) [21]. Then, the obtained dataset was filtered, considering the criteria of
the coefficient of variation (CV) <30% in the QC samples, the presence of the feature in
60% of the samples in at least one group, and the blank (water processed as a sample). In
fact, a fold-change cutoff (biological sample signal /blank signal < 5) was used to remove
features that were not sufficiently abundant in the biological samples. After that, a drift
correction from QC-based robust locally weighted scatter plot smoothing (LOESS) for
data normalization was performed (excluding potential artefacts). Finally, the obtained
normalized dataset was annotated and statistically analyzed.

In order to increase the metabolic coverage, two data analysis strategies were used.
The variables were identified by two complementary methods in order to identify more
metabolites with different polarity ranges. As a first method, annotation using the LipidMS
package and statistical analysis was carried out with the variables. As a second method,
annotation by means of the variable accurate mass (AM), using the CEU mass mediator
database (including the Kegg, LipidMaps, Metlin, and Human Metabolome databases),
a mass range of +5 ppm, and some adducts ([M+H], [M+Na], [2M+NH4], [M+NH4],
and [M+H-20] for the positive ionization mode and [M-H], [M+HCOOH-H], [2M-H],
and [M+Na-2H] for the negative ionization mode), was carried out. In this second ap-
proach, the identity of the metabolites was confirmed by comparing the obtained MS/MS
fragmentation spectra with those predicted and proposed in the databases. In this sense,
four annotation confidence levels were evaluated, as proposed by E. Schymanski et al.
(2014) [22]. They were level 1 (identified compounds with structures confirmed by AM,
MS/MS spectra, retention time (rt), and reference standards); level 2 (compounds puta-
tively annotated through AM and experimental or predicted MS/MS spectra matched with
online libraries); level 3 (compounds putatively characterized by AM matched with online
databases); and level 4 (unknown compounds) [23,24].

The results from the targeted analytical method were the signal intensities (arbitrary
units) obtained for each lipid compound in plasma samples, and their concentrations were
determined from the corresponding calibration curves.

2.4. Statistical Analysis

Participant’s characteristics (demographic and clinical) were analyzed using the me-
dian and interquartile range (IQR) for continuous variables and relative and absolute
frequencies for categorical variables. Differences between participant groups (age controls
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and early AD) were evaluated by means of the Mann-Whitney test for numerical variables
and the Chi-square test for categorical variables.

The variables identified by the LipidMS package [21] were grouped into lipid families
(CE, Cer, diglycerol (DG), fatty acid (FA), lysophosphatidylethanolamine (LPE), lysophos-
phatidylcholine (LPC), monoglyceride (MG), PC, PE, PI, SM, and TG). In addition, we cal-
culated the variables monounsaturated (MUFAS), polyunsaturated (PUFAS), and saturated
(SFAS) as the sum of levels (MUFAS, PUFAS, and SFAS, respectively), including all previous
lipid families. Then, a univariate statistical analysis was carried out for each lipid class (the
sum of signals from the individual lipids in each family). Specifically, the Kruskal-Wallis
and Mann-Whitney tests were used to compare the lipid levels among the participant
groups. From these lipid families, some compounds were selected for the targeted analysis.
Similarly, the univariate analysis was based on the Kruskal-Wallis and Mann-Whitney
tests for quantitative variables and the Chi-square test for categorical variables. Correlation
analyses were carried out by Pearson correlation test. Analyses were carried out with the
software IBM® SPSS® Statistics version 20.0 (SPSS, Inc., Chicago, IL, USA). Statistically
significant differences were considered from p value <0.05 for all analyses.

On the other hand, a multivariate statistical analysis was carried out with the vari-
ables detected in the untargeted analysis in order to identify other potential biomarkers
(not identified by the LipidMS package). For this, data from the positive and negative
ionization modes were considered simultaneously. First, the normalized variables were
visualized in a volcano plot carried out using an in-house script in R platform. From this,
variables with a stronger combination of fold change (FC) (abs (log2 FC) > 1) and statis-
tical significance (p value of I-test < 0.05) in each comparison (MCI-AD vs. control and
preclinical AD vs. control) were FDR-adjusted and selected for a supervised orthogonal
least squares discriminant analysis (OPLS-DA). The OPLS-DA was carried out using Simca
14.1 software (Sartorius Stedim Biotech, Aubagne, France), and it was validated by a seven
cross-validation procedure (CV, dataset split into seven subsets). The corresponding models
were evaluated by R2(Y) (model fit) and Q*(Y) (predictive ability) diagnostic indexes, the
p-value of the CV-ANOVA model, and a permutation test. The most discriminant variables
were selected according to their variance importance in projection plot values (VIP > 1.0).
Once selected, these features were annotated as potential metabolites by the CEU mass
mediator database according to the Schymanski levels of identification [22]. In summary,
Figure 1 shows the workflow of these analyses.

(scriptand
Volcano Plot and PLS variable selection
(MClI vs. Healthy 153 features) 1
LipidMS Search R (Preclincal vs. Healthy 48 features)
\dentificati

CEU mass mediator database Identification
(MClI vs. Healthy 27 features identified, 16
tentatively charaterized)
: (Preclincal vs. Healthy 22 features identified, 11
2 i ized)

Metabolism

Class analysis
(12 classes)

Figure 1. Workflow of the analyses.
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3. Results
3.1. Participant Demographic and Clinical Data

In Table 2, the clinical and demographic characteristics of the participants are summa-
rized. As was expected, neuropsychological variables (CDR, RBANS, FAQ, and MMSE) and
CSF biomarkers (amyloid 342, t-Tau, and p-Tau) showed statistically significant differences
among the participant groups. In addition, age showed statistically significant differences
among the groups. In this sense, the correlations between age and all lipids (from the
untargeted and targeted analyses) were assessed, without obtaining significant results for
any lipids (see Table S1 in the Supplementary Material).

Table 2. Clinical and demographic participant characteristics.

Healthy MCI-AD Preclinical AD p Value
(n=31) (n=20) (n=11) (Kruskal-Wallis)
Median Age (years) (IQR) 62 (58, 68) 72 (69, 74) 70 (60, 74) 0.000
Gender (Female, 11 (%)) 19 (61%) 10 (53%) 6 (50%) 0.737
Primary (1 (%)) 10 (32%) 7 (39%) 4 (33%)
Educational Level Secondary (1 (%)) 7 (23%) 10 (56%) 2 (17%) 0.023
University (1 (%)) 14 (45%) 2 (18%) 6 (50%)
Statins (1 (%)) 9 (41%) 12 (63%) 3 (25%) 0335
Fibrates (1 (%)) 0 (0%) 3 (17%) 1(8%) 0.143
Benzodiazepines (n (%)) 6 (27%) 3(16%) 2 (17%) 0.635
Concomitant Antidepressants (n (%)) 7 (32%) 2 (11%) 0(0%) 0.085
Medication Antiepileptics (1 (%)) 1 (5%) 0(0%) 0 (0%) 0.547
Antihypertensives (n (%)) 7 (32%) 9 (50%) 2 (29%) 0.424
Corticoids (17 (%)) 1 (5%) 0(0%) 0(0%) 0.547
Anti-inflammatories (1 (%)) 3 (14%) 0(0% 0(0%) 0.151
Dyslipidemia (1 (%)) 11 (50%) 11 (58%) 3 (43%) 0.766
Diabetes (11 (%)) 3 (14%) 2 (11%) 0(0%) 0.589
Comorbidities Hypertension (1 (%)) 8 (36%) 9 (47%) 2 (29%) 0.628
Heart Disease (1 (%)) 1 (5%) 0(0%) 0 (0%) 0.547
Cerebrovascular (11 (%)) 1 (5%) 0(0%) 0(0%) 0.547
Smoke (Yes, 1 (%)) 6 (27%) 3 (16%) 1(14%) 0.598
Alcohol (Yes, 1 (%)) 6 (27%) 2 (11%) 0(0%) 0.157
Depression (Yes, 1 (%)) 5 (23%) 5 (26%) 2(29%) 0.939
Anxiety (Yes, n (%)) 4(18%) 3(16%) 2 (29%) 0.757
Amyloid 342 (pg mL ') - -
Median (IOR) 1224 (964, 1421) 495 (452, 622) 572 (383, 694) 0.000
t-Tau (pg mL~1) - - .
Medion (IQR) 212 (181,259) 578 (449, 793) 444 (208, 611) 0.000
p-Tau (pg mL ')
Median (IQR) 34(25,39) 91 (62, 109) 74 (28,94) 0.000
CDR
Median (IQR) 0.5(0,0.5) 0.5 (0.5, 0.5) 0.5(0,0.5) 0.001
MMSE
Median (IQR) 29(28,29) 24 (22,25) 29 (27, 30) 0.000
RBANS.DM =
Median (IQR) 98 (94, 103) 42 (40, 53) 95 (87, 101) 0.000
FAQ . &
Median (IQR) 1(0,4) 7 (5,10) 1(0,3) 0.000
IQR: Inter-quartile range; AD: Alzheimer Discase; MCI-AD: mils cognitive impairment due to Alzheimer Dis-
case; CDR: Clinical Dementia Rating; MMSE: Mini-Mental State E: ination; FAQ: F i i
stionnaire; RBANS: Repeatable Battery for A of Neuropsychological Status; DM: Delayed memory.

3.2. Lipids Identified by LipidMS Package

From the untargeted analysis, 197 features were annotated by the LipidMS package.
They were grouped into some lipid families (4 CE, 16 Cer, 2 DG, 20 FA, 3 LPE, 16 LPC,
2 MG, 73 PC, 9 PE, 5 P1, 12 SM, and 35 TG). As can be seen in Figure 2, the main families
were PC (37%), TG (18%), and FA (10%). In Table 3, the DG, LPE, LPC, MG, and SM
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families and monounsaturated lipids showed statistically significant differences among the
three participant groups (preclinical AD, MCI-AD, and healthy). Moreover, the healthy and
preclinical AD groups showed statistically significant differences in the levels of the Cer,
LPE, LPC, MG, and SM families, while the MCI-AD and healthy groups showed statistically
significant differences in the levels of DG, MG, and PE. In addition, Figure 3 shows the
boxplots representing the levels of the lipid families in the participant groups (preclinical
AD, MCI-AD, and healthy). In general, higher levels were obtained for the preclinical
AD group, and lower levels were obtained for the MCI-AD group. A similar tendency
was observed for monounsaturated, polyunsaturated, and saturated lipids, although only
monounsaturated compounds showed statistically significant differences. In general,
a trend was not found for any of the lipid families between the preclinical and MCI groups.

Figure 2. Lipid families identified from untargeted lipidomic analysis and identification by
LipidMS package. CE: Cholesterol esters; Cer: Ceramides; DG: Diglycerols; FA: Fatty acids; LPC:
Lys phosphatidylcholines; LPE: Lysophosphatidylethanolamines; MG: Monoglycerides; PC: Phos-
phatidylcholines; PE: Phosphatidylethanolamines; PI: Phosphatidylinositols; SM: Sphingomyelins;
TG: Triglycerides.

Table 3. Average sum of the different lipid families’ levels in the participant groups (preclinical AD,
MCI-AD, and healthy).

Healthy vs. Healthy vs.
qu i Healthy Controls _ Preclinical AD p Value Preclinical AD MCI-AD
Lipid Family (HC) (n = 31) MEEAD:(=20), =11) (Kruskal-Wallis) ~ (Mann-Whitney, (Mann-Whitney,
p Value) p Value)
CE (au) 415 (2.86, 4.83) 3.60 (3.03, 5.04) 447 (3.86, 4.96) 0416 0350 0685
Cer (a.u.) 439 (3,52, 4.39) 3.94 (242, 5.75) 567 (5.09, 6.87) 0070 0038 0452
DG (a.u.) 205 (1.56,2.22) 151 (1.25,1.98) 2.20(1.94,2.73) 0.007* 0155 0023
FA (au) 1504(929,2221)  1342(9.44,1838)  22.32(11.48,2624) 0299 0201 0685
LPE (a.u.) 8.68 (7.16, 11.41) 761 (477,1273)  13.86(10.32,17.10) 0.006* 0002+ 0418
LPC (au) 1848 (1362,12.39) 1575 (8.93,24.98)  27.37 (22.68,35.24) 0.006* 0.001* 039
MG (a.u) 1.48 (1.02, 2.83) 0.81 (0.48,1.10) 252 (1.7, 3.56) <0.001% 0017+ 0002
PC (a.u.) 4666 (35.34,56.80)  41.08(27.78,55.27)  53.13 (43.75, 59.73) 0202 0257 0316
PE (a.u.) 7.04 (5.09, 8.78) 476 (3.05, 9.53) 6.85 (6.13, 10.46) 0.061 0572 0034
PI (a.u) 350 (2.86, 4.99) 3.08 (2.09, 5.00) 3.77 (270, 6.13) 0366 0553 0307
SM (a.u.) 8.63 (6.13,10.48) 579(313,1002) 1121 (9.65,12.90) 0.001 * 0003+ 0.061
TG (au) 2405 (19.40,2894) 2100 (1836,29.71) 2221 (17.83,27.27) 0625 0381 0537
M"“‘Z‘; ':f";“‘ rated 59 78 (3130,47.49)  33.35(22.55,46.09)  47.79 (45.98, 60.65) 0.011% 0,009 0232
P "’Y“(‘:“:';"‘“"’d 93.13 (74.29,113.90)  78.75 (58.62,106.44) 10467 (8891, 111.74) 0.170 0233 0307
Saturated (a.w)  15673(13257,189.15) 13836 (99.15,16883) 19135 (15578, 20383) 0.100 0054 0452

a.u.: arbitrary units. * p < 0.05. HC: healthy control.
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Figure 3. Boxplots representing the levels of lipid families for each participant group (healthy,
preclinical AD, and MCI-AD. There were 4 CEs, 4 Cers, 2 DGs, 14 FAs, 3 LPEs, 8 LPCs, 2 MGs,
44 PCs, 7 PEs, 3 PIs, 9 SMs, and 25 TGs included in the analysis (a.u.: arbitrary units)). o: outlayer.
*: Extreme outlayer.

3.2.1. Targeted Analysis

From previous results, the selected lipids were 18:1 LPE, 18:0 LPC, 16:1 SM (d18:1/16:1),
16:0 SM (d18:1/16:0), 18:0 SM (d18:1/d18:0), 18:1 (9-Cis) PE (DOPE), and 24:0 SM. The
corresponding analytical method was developed and validated, obtaining satisfactory ana-
Iytical performance for 18:1 LPE, 18:0 LPC, 16:1 SM (d18:1/16:1), and 16:0 SM (d18:1/16:0)
(sce Table 4). In fact, the accuracy was satisfactory, with recoveries around 100%, except for
18:0 LPC with recoveries >130%, probably due to the matrix effect. Moreover, a suitable
sensitivity was obtained, with LODs between 0.548 and 4.185 nmol L~" and LOQs between
1.83 and 13.95 nmol L~!. The other analytes did not show suitable analytical performance
(18:0SM (d18:1/d18:0), 18:1 (9-Cis) PE (DOPE), and 24:0 SM), and they were not determined
in plasma samples.
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Table 4. Analytical method validation.

Equation (y = a + bx)

Standard Linearit;
Analyte Concentration Recgvery LoD 1 Lo 1 Rangey ats
(amol L-1) (%) (nmol L 1) (nmolL ") (amol L-1) b i sp
R?
6.25 108 =14 0.0019 £ 0.0008
18:1 LPE 9.38 109 +15 0.548 183 1.83-26.30 0.0027 £ 0.000063
125 104 +£17 0.998
50 153 £15 0.012 £ 0.024
18:0 LPC 75 147 £15 4.185 13.95 13.95-209.38 0.0072 + 0.00022
100 134 £21 0.997
16:15M 50 101 £11 0.0774 4 0.021
(d18:1/16:1) 75 101 £ 11 2.857 9.52 9.52-208.11 0.0064 - 0.00019
100 96 = 16 0.997
16:0 SM 125 108 + 58 —0.0041 + 0.0063
(d18:1/16:0) 18.75 102+ 6 1.240 413 4.13-5251 0.012 -+ 0.00024
25 8245 0.999
18:0 SM 3.13 0.0014 + 0.0011
(d18:1/d18:0) 4.69 100 + 26 0289 096 0.96-13.23 0.0047 =+ 0.00017
6.25 119 + 59 0.996
181 (9-Cis) 0.78 0.00019 + 0.00015
PE (DOPE) 117 103 + 65 0.069 0.23 0.23-3.30 0.0024 + 0.000089
1.56 62 £ 62 0.996
6.25 0.24 £ 0.03
24:0 SM 9.38 0.306 1.02 1.02-26.02 0.044 + 0.003
12.50 0.990
3.2.2. Sample Analysis
A panel of four lipids (previously selected) was determined in plasma samples from
healthy participants (n = 20) and patients with preclinical AD (n = 11) and MCI-AD (n = 31).
The concentrations of each lipid in the participant groups are summarized in Table 5. As
can be seen, statistically significant differences were observed for 18:1 LPE among the
three groups (p = 0.010) and between the AD (preclinical + MCI) and healthy groups
(p = 0.003). In addition, this potential AD biomarker showed a correlation with some CSF
biomarkers (t-Tau (0.299, p = 0.022) and p-Tau (0.290, p = 0.026)). It should be mentioned
that no correlation was observed between the lipids levels and age (see Table S1 in the
Supplementary Material).
Table 5. Lipid concentrations in plasma from participant groups (healthy, MCI-AD, and preclinical AD).
Healthy: Gontrol(HC) MCI-AD (n = 20) Freclinical AD Kruskal-Wallis Mann-Whitney
Lipids % gf = 3&’ i Median (IQR) A ;’f % 11[) 5 p Value p Value
i (nmol L-1) dian QR (Three Groups)  (AD vs. Non-AD)
18:1 LPE 1.37 (0.38, 1.83) 1.8(1.2,4.2) 1.8(0.9,3.7) 0.010 * 0.003 *
18:0 LPC 67 (61, 80) 65 (56, 96) 81 (60, 105) 0.504 0.569
16:1 SM 15(7,27) 13 (8,24) 19 (15, 25) 0.501 0.647
16:0 SM 177 (137, 206) 168 (132, 213) 209 (159, 239) 0.374 0.371

* p value < 0.05.

In addition, LPE 18:1 showed an AUC-ROC of 0.722 (95% CI, 0.595-0.848), discrimi-
nating between early AD (preclinical + MCI) and healthy participants.

3.3. Compounds Identified by CEU Mass Mediator Database
3.3.1. Preclinical AD vs. Healthy Subjects

The volcano plot analysis from the preclinical AD and healthy groups showed
48 significant variables (Figure 4a). The OPLS-DA analysis was carried out with these
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variables in order to identify the most discriminant variables between the groups. This
model showed a p value <0.001 and a clear separation between preclinical AD cases and
healthy participants (Figure 4b), with good R2Y (0.637) and Q2Y (0.566) parameters. The
model was satisfactorily validated (1000 iterations) with R2Y = 0.202 and Q2Y = —0.373.

Volcano Plot (b)
MHealthy control IllPreclinical-AD
H ° o X
R N
s .
o e
@ = = s i

s

A """II“"""""I"Imlun
TIHTHT i i

gAFOC)

Figure 4. (a) Volcano Plot representing the significant variables in the discrimination between healthy
controls and preclinical AD participants. Statistically significant variables are represented in red
(p <0.05, FC > 2); (b) OPLS-DA plot represents differential distribution between healthy controls and
preclinical AD; (¢) Threshold VIP plot value > 1 (red variables).

Potential compounds were subjected to identification and confirmation based on
a threshold of VIP value >1 (27 variables) (Figure 4c). Finally, 16 variables were tentatively
characterized by querying our experimental MS data with those provided in the commercial
databases (see Table S2 in the Supplementary Material). From them, some variables showed
more weight over the model (11/z 1484.140079, 508.3767054, 494.3609278, and 770.6063157).
In addition, two variables were putatively annotated through AM and MS/MS mass
spectra with online databases. These variables were pisumionoside (11/z 405.2102471) and
1-O-Palmitoyl-2-O-acetyl-sn-glycero-3-phosphorylcholine (111/z 520.3404329).

3.3.2. Mild Cognitive Impairment-AD vs. Healthy Controls

The volcano plot analysis from the MCI-AD and healthy groups showed 153 significant
variables (Figure 5a). The OPLS-DA analysis was carried out with these variables in order
to identify the most discriminant lipids between the groups. This model showed a CV
p-value <0.001 and a clear separation between MCI-AD and healthy control participants
(Figure 5b), with good R2Y (0.926) and Q2Y (0.785) parameters. The model was satisfactorily
validated (1000 iterations) with R2Y = 0.572 and Q2Y = —0.686.

Potential metabolites were subjected to identification and confirmation based on
a threshold of VIP value > 1 (22 variables) (Figure 5c). Finally, 11 variables were tentatively
characterized by using the corresponding databases (see Table 53 in the Supplementary
Material). From them, some variables showed more weight over the model (1m/z 409.3113,
362.2550, 350.3417, and 518.351396). In addition, the variable m/z 766.573457 was putatively
annotated trough AM and MS/MS mass spectra with online databases, and it was identified
as a phosphocholine.

353



Annexes Chapter 10
J. Clin. Med. 2022, 11, 5030 110f17
Volcano Plot
(@ (b) WHealthy control IIMCI-AD
Il
0
°®
£ 3 ® o
- ; é 2 [ e %
& ° .w
5 10
2 4 (c) rowars n)
g
i '
[ .

Iog2(FOC)

Figure 5. (a) Volcano plot representing the significant variables in the discrimination between
healthy controls and MCI-AD. Statistically significant variables are represented in red (p < 0.05,
FC > 2); (b) OPLS-DA plot represents differential distribution between healthy controls and MCI-AD.
(¢) Threshold VIP plot value > 1 (red variables).

4. Discussion

A lipidomic approach was developed in plasma samples from participants classified
according to their amyloid status (CSF biomarkers) to identify lipid alterations involved in
the onset of AD. For this, an untargeted analysis was carried out, and comparisons between
early AD (preclinical or MCI) and healthy participants were evaluated. Some significant
variables were identified in early AD deregulation, and lipid families were evaluated.
Finally, a complementary multivariate analysis was carried out in order to identify other
potential discriminative variables.

Lipid families identified by the LipidMS database revealed the potential implication
of DG, LPE, LPC, MG, and SM in early AD. In the comparison between preclinical AD
and healthy groups, some lipid families were identified as potential biomarkers (Cer, LPEs,
LPCs, MGs, and SMs), as they were differentially expressed, especially the monounsatu-
rated species. Similarly, Mielke et al. found an association between Cer and SMs with the
risk of AD, although they described differential risks between men and women [25]. In
addition, Jazving¢ak Jembrek et al. described the role of ceramides as mediators of neuronal
apoptosis related to oxidative stress and A accumulation [26]. Therefore, this deregulation
of ceramides in the preclinical stages of the disease could contribute to the advancement of
clinical manifestations contributing to neuronal loss. Moreover, Panchal et al. described
ceramide accumulation in AD plaques [27]. In addition, SM/ceramide has been related to
AD cognitive decline [10]. However, the utility of ceramides as biomarkers for dementias
requires further investigation [28]. LPE was described as a biomarker for progression to
AD [9], although our results suggest that it could be a potential biomarker for preclinical
stages. Similarly, LPCs could be a potential biomarker for the first stages of AD. In this
sense, LPCs play a role in polyunsaturated fatty acid (PUFAs) transport across the blood
brain barrier, perhaps controlling the availability of these essential compounds for the
proper functioning of the brain [29]. In the comparison between MCI-AD and healthy
controls, different lipid families were identified as potential biomarkers (DGs, MGs, and
PEs). Similarly, Wood et al. found increased levels of DGs and MGs in early AD [30]. PEs
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could be involved in the physiopathology of AD due to their involvement in cell processes
such as oxidative phosphorylation, mitochondrial biogenesis, and autophagy [31]. Our
results show that MGs could be potential biomarkers of early AD, including both the
preclinical and MCI-AD stages. In addition, LPE, LPC, and SM seem to be more specifically
altered in the preclinical stage, while DGs could be useful as biomarkers for the MCI stage.

On the other hand, the annotation of variables by means of other databases (HMDB,
Kegg, and Metlin) reported other important annotated variables and metabolite classes. In
the discrimination between preclinical AD and healthy subjects, some lipid families were
found, such as phosphatidylglicerol, glicerophosphocholine, glicerophosphoserine, phos-
phoethanolamine, phosphocholine, glicoesphingolipid, diacilglicerol, terpenes, steroids,
flavonoid classes, and vitamin E. Specifically, plasma glycerophosphocholine compounds
were observed at higher levels in the preclinical AD group. Similarly, other studies showed
elevated levels of this lipid in AD brains [32] as well as in cerebrospinal fluid samples from
AD patients [33,34], indicating that abnormal phospholipid metabolism in the brain is char-
acteristic of AD. In addition, the present study found that plasma phosphoethanolamine
levels were lower in the preclinical AD group, and a previous work found lower levels
for PE in AD brain samples [35]. In fact, PE is a precursor for phosphatidylcholine and
a substrate for important posttranslational modifications [31]. Moreover, phosphocholine
is a precursor of phosphatidylcholine, and higher levels were obtained for the preclinical
AD group, indicating a potential membrane impairment in the early disease process [36].
Moreover, glycosphingolipids could be involved in preclinical AD since higher levels were
obtained in plasma samples from these participants. In this regard, ceramides, which are
involved in sphingolipid metabolism, showed an association with neuropsychiatric symp-
toms [37]. Moreover, we found higher levels of DGs in the preclinical AD group, similar
to the increased plasma levels in early AD, suggesting that lipidomics alterations lead to
the accumulation of DGs in MCI subjects [30]. On the other hand, in the present study,
phosphatidylglycerol (PG) and flavonoids showed lower plasma levels in the preclinical
AD group. Flavonoid compounds could act against AD pathology by inhibiting microglia
activation and AP aggregation. Therefore, a reduction in these compounds early in the
disease may contribute to the development of AD pathways. However, a search of the
literature failed to reveal any studies related to this finding. Studies have been reported that
vitamin D showed higher levels in preclinical AD compared to healthy participants, but we
found that prior investigations reported reduced levels of these vitamins in AD and MIC-
AD cases [38]. Since the cases examined here were classified as preclinical AD, it is possible
that this group was exhibiting a compensatory response to the disease process. In addition,
the discrimination between preclinical AD and healthy controls is characterized by the
biomarkers 1-O-Palmitoyl-2-O-acetyl-sn-glycero-3-phosphorylcholine and pisumionoside,
which were putatively annotated. Pisumionoside is an exogenous compound derived
from vegetables, such as seedpods of garden peas, that could have a hepatoprotective
function [39]. These levels are elevated in healthy subjects compared to preclinical AD
subjects. Therefore, pisumionoside could have a protective effect against AD. Moreover,
1-O-Palmitoyl-2-O-acetyl-sn-glycero-3-phosphorylcholine is a glycerophosphorylcholine
that showed increased levels in AD, in concordance with previous studies [40]. Its oxidized
products were considered biomarkers of neuroinflammation in other pathologies such
as multiple sclerosis [41]. Moreover, other lipid families (glycosyldiacylglycerols, fatty
acids, terpenoids, sesquiterpene mycotoxins, terpene lactones, phosphocholines, gluco-
sylceramides, and fucopentanoses) were annotated by HMDB comparing MCI-AD and
healthy groups. First, glycosyldiacylglycerols showed lower levels in the MCI-AD group.
Previous studies found an increase in diacylglycerols in the frontal cortex in neurodegener-
ative diseases such as dementia with Lewy bodies or AD [42]. In addition, glycosylation
showed a relationship with neurodegeneration and AD. Therefore, it could be an indicator
of disease progression [43]. Moreover, fatty acids showed lower levels in the MCI-AD
group, similar to previous reports [44,45], reflecting differences in intake and metabolism.
Moreover, terpenoids and some vitamins showed higher levels in the MCI-AD group. In
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this sense, there is some controversy since previous studies showed protective effects for
these compounds [46,47].

Regarding the targeted analysis, the developed analytical method was able to deter-
mine low plasma levels of some lipids that could be useful as potential AD biomarkers
(18:1 LPE, 18:0 LPC, 16:1 SM (d18:1/16:1), and 16:0 SM (d18:1/16:0)). Accuracy was satisfac-
tory for all of them. However, only 18:1 LPE showed statistically significant increased levels
in preclinical and MCI-AD in comparison with healthy controls. Su et al. found this lipid
increased in brain-derived extracellular vesicles from AD patients [48]. For LPC in plasma
samples, a previous study showed an increase with aging, which is more evident under
AD conditions [49]. Similarly, the present study found higher levels of LPC 18:1 and lower
levels of L-x-phosphatidilcholine and PC in AD patients. However, Mulder et al. found
a decrease in the ratio LysoPC/PC under MCI or dementia due to AD conditions [50]. In
addition, the present study showed plasma 18:1 LPC correlations with CSF Tau and p-Tau,
which are biomarkers currently employed in AD diagnosis. Specifically, Tau is considered
a neurodegeneration biomarker [51]. In this sense, the correlation found between 18:1 LPC
and Tau showed the potential utility of 18:1 LPC as a neurodegeneration biomarker. Sim-
ilarly, previous studies showed the utility of the metabolites 18:0 LPC and 18:2 LPC as
potential biomarkers for AD [52]. These discrepancies could be explained by the different
types of samples used (plasma and CSF) as well as by the different isomers determined
in these compounds’ families. In addition, the ratio between LPC and PC in the plasma
samples showed the capacity to differentiate between AD and non-AD participants [53].

The main limitation of this study is the small sample size. However, the participants
were accurately classified into groups according to their amyloid status, cognitive state,
and brain alterations with neuroimaging. Moreover, there is a lack of confirmation studies
to identify the metabolites as reliable AD biomarkers. Nevertheless, this work provides
a detailed lipidomic approach from untargeted and targeted analyses that identified po-
tential biomarkers and pathways involved in early AD development. Although analyses
of confounding variables, such as age, were not performed, correlations between age and
lipids or lipid class were assessed.

5. Conclusions

Alipidomic approach was developed from untargeted and targeted analyses of plasma
samples. It showed some differential expression of lipids between healthy participants and
patients at the early stages of AD. Therefore, the plasma lipid profile could be useful in the
early and minimally invasive detection of AD. Among lipid families, relevant results were
obtained from DGs, LPEs, LPCs, MGs, and SMs. Specifically, MGs could be potentially
useful in AD detection, while LPEs, LPCs, and SM are related more specifically to their
preclinical stage and DGs are related to the MCI stage. Among these families, 18:1 LPE
showed potential utility as a biomarker for AD and neurodegeneration. In addition, other
analyte families, such as phosphatidylglicerol, phosphocholine, glicerophosphocholine,
glicerophosphoserine, glicoesphingolipid, vitamin E, terpenes, steroids, flavonoids, glyco-
syldiacylglycerols, fatty acids, glucosylceramides, and fucopentanoses, showed potential
alterations in early AD stages. However, further analysis in a large number of samples is
required to validate these preliminary results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jem11175030/s1, Table S1: Correlation analysis between age and
lipid class or targeted lipids.; Table S2: Metabolites’ annotation from metabolome comparison of
preclinical-AD vs. healthy subjects; Table S3: Metabolites’ annotation from metabolome comparison
of MCI-AD vs. healthy subjects.
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Plasma microRNAs as potential
biomarkers in early Alzheimer
disease expression

Carmen Pefia-Bautista!, Adrian Tarazona-Sanchez!, Aitana Braza-Boils?, Angel Balaguer,
Laura Ferré-Gonzalez!, Antonio J. Cafiada-Martinez!, Miguel Baquero” &
Consuelo Chafer-Pericas®

The microRNAs (miRNAs) are potential biomarkers for complex pathologies due to their involvement
in the regulation of several pathways. Alzheimer Disease (AD) requires new biomarkers in minimally
invasive samples that allow an early diagnosis. The aim of this work is to study miRNAS as potential
AD biomarkers and their role in the pathology development. In this study, participants (n=46) were
classified into mild cognitive impairment due to AD (MCI-AD, n=19), preclinical AD (n=8) and healthy
elderly controls (n=19), according to CSF biomarkers levels (amyloid 42, total tau, phosphorylated
tau) and neuropsychological assessment. Then, plasma miRNAomic expression profiles were analysed
by Next Generation Sequencing. Finally, the selected miRNAs were validated by quantitative PCR
(q-PCR). A panel of 11 miRNAs was selected from omics expression analysis, and 8 of them were
validated by g-PCR. Individually, they did not show statistically significant differences among
participant groups. However, a multivariate model including these 8 miRNAs revealed a potential
association with AD for three of them. Specifically, relatively lower expression levels of miR-92a-3p
and miR-486-5p are observed in AD patients, and relatively higher levels of miR-29a-3p are observed
in AD patients. These biomarkers could be involved in the regulation of pathways such as synaptic
transmission, structural functions, cell signalling and metabolism or transcription regulation. Some
plasma miRNAs (miRNA-92a-3p, miRNA-486-5p, miRNA-29a-3p) are slightly dysregulated in AD,
being potential biomarkers of the pathology. However, more studies with a large sample size should
be carried out to verify these results, as well as to further investigate the mechanisms of action of
these miRNAs.

MicroRNAs (miRNAs) have been postulated in recent years as good biomarkers for the diagnosis, prognosis and
therapies of different pathologies'. They are non-coding 19-25 nucleotides RNA molecules, which are involved
in the regulation of gene expression®.

Alzheimer’s disease (AD) is the most common dementia in developed countries, being one of the leading
causes of death, disability and dependency in older populations’. However, despite the efforts and economic
investments made in research into this pathology, it is a complex pathology in which several factors are involved
and whose mechanisms are not fully understood". Specifically, the most consolidated mechanisms are those
involved in the accumulation of amyloid-B42 peptide and phosphorylated Tau (p-Tau) in brain®. Nevertheless,
other mechanisms such as oxidative stress, neuroinflammation or lipid metabolism could contribute to the
pathology®~*. Nowadays, the diagnosis of AD is complex and relies on cerebrospinal fluid (CSF) biomarkers
(amyloid-B42, t-Tau, p-Tau) levels, neuroimaging (NMR, PET), and neuropsychological assessment” "%, Thus,
further research focused on minimally invasive biomarkers is required'*.

Regarding physiopathological mechanisms involved in AD development, miRNAs have been postulated as
mediators. Each miRNA could be involved in different pathways as it can have different target genes. In fact, a
miRNA could recognize a regulatory region in different genes, regulating, activating or inactivating their expres-
sion. Specifically, some miRNAs have been related to the regulation of amyloid protein precursor (APP) cleavage,
presenilin-1 (PSEN1) and beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), as well as in oxidative
stress and other AD risk factors'®. Tn addition, differential expression of miRNAs in AD could be useful in the

1Alzheimer Disease Research Group, Instituto de Investigacion Sanitaria La Fe, Avda de Fernando Abril Martorell,
106, 46026 Valencia, Spain. 2Inherited Cardiomyopathies and Sudden Death Unit, Instituto de Investigacién
Sanitaria La Fe, Valencia, Spain. 3Neurology Unit, Hospital Universitario y Politécnico La Fe, Valencia,
Spain.“email: m.consuelo.chafer@uv.es
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diagnosis of the pathology, and some miRNAs have been described as potential biomarkers for AD diagnosis and
prognosis'®. Some miRNAs showed good performance as biomarkers, mainly panels including different miRNAs
might be dysregulated several years before the onset of disease symptoms'®. Several panels were developed from
plasma, serum or exosomes, showing their potential for a minimally invasive discase diagnosis'” *. In general,
different results have been found in the literature, probably due to the lack of diagnostic biomarkers used in the
classification of participants or due to the differential methodologies applied in sequencing or data processing.
The aim of this work is to analyse the differential expression of a panel of miRNAs selected from sequenc-
ing analysis in plasma from AD and non-AD patients, evaluating their potential usefulness as biomarkers or in
the development of therapeutic targets, as well as to study their potential implications in the course of the AD.

Material And Methods

Participants and samples collection. In this study, participants (n=46) were aged between 50 and
80 years old and were classified into mild cognitive impairment due to AD (MCI-AD, n=19), preclinical-AD
(n=8) and healthy controls (n=19), according to the National Institute on Aging and Alzheimer’s Association
(NIA-AA) criteria. Briefly, the control group showed negative CSF biomarkers or amyloid PET, and normal neu-
ropsychological assessment; the MCI-AD group showed positive CSF biomarkers or amyloid PET, and impaired
neuropsychological assessment; the preclinical-AD group showed positive CSF biomarkers or amyloid PET,
and normal neuropsychological assessment. Participants with other major dis rs and those unable to com-
plete the assessment were excluded. All participants were recruited at the Neurology Unit of the University and
Polytechnic Hospital La Fe (Valencia, Spain) after signing informed consent, and plasma samples were obtained
at the same time the lumbar puncture. The study protocol (2019/0105) was approved by the Ethics Committee
(CEIC) of the Instituto de Investigacion Sanitaria La Fe (Valencia, Spain). No randomisation was performed to
allocate subjects in the study. No pre-registration was performed. The study is blinded as the classification of
participants was performed by a person other than the experimenter. No sample calculation was performed. All
methods were carried out in accordance with relevant guidelines and regulations.

RNA extraction. RNA was isolated for RNA sequencing using the miRNeasy plasma kit (Qiagen, Ger-
many) following the manufacturer’s protocol. Briefly, 200 pL of plasma and 700 uL of QIAzol lysis reagent were
incubated for 5 min at room temperature (RT). Then, 140 pL of chloroform were added and incubated at RT for
3 min and centrifuged at 1200 g (15 min, 4 °C). The aqueous phase was mixed in a new tube with 525 pL of etha-
nol and transferred to a RNeasy MinElute spin column followed by a centrifugation step at 10000 g (30 s, RT).
The column was then washed with RWT buffer (700 uL) and RPE buffer (500 uL) and dried for 90 s at 10000 g.
Finally, the elution step was performed with 15 ul. of RNase-free water (13000 g, 1 min).

For PCR validation, RNA extraction was carried out in a similar way but including a previous step, which
consisted on the addition of RNS spike-in before the protocol.

RNA sequencingmethod.  Construction of RNA libraries. 'The miRNA libraries were prepared from total
RNA using the NEXTFLEX® Small RNA-Seq v3 Kit for [llumina Platforms (Bioo Scientific Corporation, Texas,
USA). Briefly, the small RNA molecules were first ligated to the 3’-4 N adenylated adapters, taking advantage of
the phosphate group at their terminal end, which allows the exclusive targeting of these molecules. Secondly, the
5’-4 N adapters were ligated. Later, reverse transcription of the molecule into cDNA was carried out. The gener-
ated cDNA fragments were then amplified and indexed by PCR using different barcode primers for each sample.
Finally, a size-selective purification was carried out.

‘The quality control and concentration of the libraries were verified with the Agilent Technologies 2100 bio-
analyser using highly sensitivity DNA chips (Central Unit for Research in Medicine (Universitat de Valéncia)).
Subsequently, an equimolecular pool of each library was prepared for sequencing.

Sequencing on an Hllumina equipment. Sequencing was carried out on the NGS NextSeq 550 platform (Illu-
mina, San Diego, CA, USA) by single read sequencing of 50 cycles (1 x 50 bp).

Data analysis. Pre-processing, quality control and normalization. NGS$ data (raw fastq files from sRNA
sequencing) were processed following the standard protocol proposed by Cordero et al.?” implemented in the
function mirnaCounts from dockerdseq package*' with default parameters in R*. First, a sequence quality
control check was generated using FastQC* and then cutadapt® program was used for the adapter trimming.
Specifically, adapters and low-quality reads (Phred Score <10) were trimmed and removed (44.014.980 reads).
Once adapters were removed, sequence reads (219.207.246 good quality reads) were mapped against miRNA
precursors from miRBase (v.21)*, using SHRIMP?*?, filtering out a total of 95,03% reads. Finally, niRNA quan-
tification from the resulting 4,97% of mapped reads were generated using the function count Overleaps from
GenomicRanges package®, resulting in a total of 9.799.858 miRNA counts in a total of 2.386 miRNAs.

miRNAs selection. From the miRNAs identified in the pre-processing, quality control and normalization pro-
cess, some of them were selected. Specifically, those miRNAs which showed a number of counts different from
zero in at least 80% of the samples and that were corroborated in literature. Finally, the selected miRNAs were
validated by means of qPCR in the same plasma samples.

miRNAs validation by quantitative PCR. Quantitative PCR procedure. From the extracted RNA,
retrotranscription and amplification steps were carried out following the manufacturer’s recommendation
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(TagMan Advanced miRNA Assays) [https://tools.thermofisher.com/content/sfs/manuals/100027897_TagMa
nAdv_miRNA_Assays_UG.pdf]. Briefly, the protocol consisted of four steps. First, the addition of a polyA tail,
after the adapter ligation, followed by the retrotranscription step, and then the specific miRNA amplification.
Finally, samples were diluted, and real time PCR (RT-PCR) was carried out in duplicate using the thermocycler
(ViiA7, Applied Biosystems, California, USA).

Statistical analysis. The number of counts obtained from RT-PCR were averaged for duplicates, discarding
replicates with values within +2 counts from mean. Then, samples were normalized using the mean and stand-
ard deviation. The miRNAs detected in at least 80% of the samples and with a difference between replicates < 1
count were considered satisfactorily quantified. The effect of each biomarker on pathology was then analyzed
by Bayesian models: the first model discriminates among control, MCI-AD and preclinical AD groups; and
the second model discriminates between AD (preclinical AD, MCI-AD) and control groups. For these models,
some parameters were calculated (estimate, which indicates the direction of the miRNAs levels; Odds Ratio; Per-
centage Inside Rope, which defines the percentage of the area that is within the region of practical equivalence
(equivalent to null effec robability of direction (PD), which indicates the probability that the effect has in a
particular direction (indicated by the estimate). PD >80% was considered significative).

Pathway analysis. The larget genes of the differentially expressed miRNAs were studied using the miR data
base (miRDB). The selected target genes were those with a target score 295. Then, the targets were classified
according to cellular pathways and functions in order to analyze the implication in AD.

Ethics approval. The study protocol (2019/0105) was approved by the Ethics Committee (CEIC) from
Health Research Institute La Fe (Valencia, Spain).

Consent to participate. Informed consent was obtained from all individual participants included in the
study.

Research involving Human Participants andfor Animals.  Yes, human participants.

Informed consent.  All the participants were recruited in the Neurology Unit from University and Poly-
technic Hospital La Fe (Valencia, Spain) after signing the informed consent.

Results

Participants characteristics.  The participants’ characteristics are summarized in Table 1. As can be seen,
most of the variables showed no significant differences among participants’ groups. In fact, only the clinical
variables used in their dlagnos)s (CSF biomarkers levels, neurop\ychologlcal assessment) show statistically sig-
nificant differences, as exp d. In contrast, d hic variables (age, sex, educational level, medication use
(statins, fibrates, benzodiazepines, antihypertensives), comorbidities (dyslipidemia, diabetes, hypertension)) are
similar between the study groups.

miRNAs validation. A panel of 11miRNAs was selected following the specified criteria (counts in at least
80% of the samples and previous findings in literature). The selected miRNAs were hsa-miR-92a-3p, hsa-miR-
486-5p, hsa-miR-29a-3p, hsa-miR-486-3p, hsa-miR-150-5p, hsa-miR-142-5p, hsa-miR-320b, hsa-miR-483-3p,
hsa-miR-1293, hsa-miR-342-3p, and hsa-miR-4259. Of these, 8 miRNAs were successfully quantified (has-miR-
92a-3p, has-miR-486-5p, has-miR-29a-3p, miR-486-3p, miR-150-5p, miR-320b, miR-483-3p, miR-342-3p);
while some miRNAs were not detected (hsa-miR-142-5p, miR-1293, hsa-miR-4259). The levels obtained for
each miRNA are summarised in Table 2. As can be seen, small differences were obtained for each miRNA among
participants’ groups.

Individually, the validated miRNAs showed no significant differences between groups. Therefore, two mul-
tivariate models, including the previously selected miRNAs, were developed to analyse the tendency of each
miRNA in participants’ groups. The first model included 3 participant groups (control, MCI-AD, preclinical AD);
while the second model included 2 participant groups (AD (MCI-AD + preclinical- AD), control). In Table 3, the
characteristics of the first model are summarised, showing that the miRNAS hsa-miR-92a-3p, hsa-miR-486-5p
and hsa-miR-29a-3p had a high probability of direction (PD >80%). Specifically, hsa-miR-92a-3p showed a
PD 85.40% of a negative estimate, so relatively reduced levels were found in AD. Similar results were obtained
for hsa-miR-486-5p. In fact, it showed a high probability of a negative estimate with small Region of Practical
Equivalence (ROPE) (< 15%), which defines the percentage of the area that is within the region of practical
equivalence (equivalent to null effect)), showing an Odds Ratio (OR) lower than 1, and suggesting a protective
effect for AD. By contrast, hsa-miR-29a-3p showed a positive estimate, so relatively increased levels were found
in AD. Similarly, the characteristics of the model including 2 participants’ groups (AD, control), showed that the
miRNAS hsa-miR-92a-3p and hsa-miR-29a-3p had a PD > 90%, with negative and positive estimates, respectively.

These results are shown in Fig. 1, which depicts the PD and ROPE for each miRNA. The miRNAs with a
high PD (mir-92a-3p, miR-486-5p, miR-29a-3p), showed most of their area on one side of 0 (Fig. 1a). In addi-
tion, mir-92a-3p and miR-486-5p showed a negative direction, while miR-29a-3p showed a positive direction.
Figure 1b shows the ROPE region, being a small area in the first three miRNAs.
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Age (years) 169(64.5,70.5) [ 70(67.5,74) 68.5(66.7,70.5) | 0.134

Sex, female, n (%) | 8 (42.11%) 8 (42.11%) 5 (62.5%) 0575
Educational level (n, %)

Basic or primary 6(31.58%) 7 (38.89%) 1(12.5%)

Secondary 6 (31.58%) 10 (55.56%) 3 (37.5%) 0.094
Uiversitary 7(36.84%) 1(5.56%) 4(50%)

Smoking Yes, n, (%) 3(15.79%) 3(15.79%) 2(25%) 0.823
Alcohol Yes, n (%) 4(21.05%) 2(10.53%) 1(12.5%) 0.647
Statins (n, %) 11 (57.89%) 10/(52.63%) 3(37.5%) 0625
Fibrates (n, %) 2(10.53%) 2(11.11%) 1(14.29%) 0.690
Benzodiazepines (n, %) | 3 (15.79%) 2(10.53%) 1(12.5%) 0.889
Antihipertensives (n, %) | 8 (42.11%) 7 (38.89%) 1(12.5%) 0317
Dyslipidemia (n, %) 13 (68.42%) 10(52.63%) 3(37.5%) 0303
Diabetes (n, %) 3(15.79%) 1(5.26%) 3(37.5%) 0.103
Hypertenison (n, %) 9 (47.37%) 8 (42.11%) 1(12.5%) 0224
Amyloid-p42 (pgmol-1) | 1224 (967, 1429) | 495 (456, 616) 671.5 (507.5,714) | <0.001
(-Tau (pg mol-1) 276 (227.5,373) | 578 (43: 785.75) | 164 (33 48.5) | 0.001
p-Tau (pg mol-1) 40 (29, 44) 91 (58.75,107.75) 67 (58.25,99) <0001 |
CDR 0(0,0) 05 (0.5,03) 0(0,0) <0.001
MMSE 20(27.5,295) | 24(23,25.75) 27(26.75,2825) | <0.001
FAQ 0(0,1) 7(5,105) 102 <0001 |
RBANSMR 101 (965, 1065) [ 42 (40,53) 86(77.05,9875) | <0001 |

Table 1. Participant’s clinical and demographic variables.

hsa-miR-92a-3p 2226(21.12,22.67) | 21,51 (21.27,2272) | 21.89 (2137, 22.61)
hsa-miR-486-5p 225(2213,23.3) | 23.33(22.26,2421)
hsa-miR-29a-3p 2693 (26.1,27.36) | 27.62 (2662, 27.99)
hsa-miR-486-3p 28.19(27.47,28.96) | 28.07 (27.44,29.35) | 27.98 (27.4, 29.8)

hsa-miR-150-5p 2418(23.84,249) | 23.93(23.38,252) | 23.93 (2338, 24.49)
hsa-miR-320b 26.94(26.26,27.64) | 2673 (26.19,27.1) | 26.88 (2594, 27.48)
hsa-miR-483-3p. 31.53(31.18,32.32) |3163(30.97,32.91) | 31.5(31.31,31.74)

hsa-miR-342-3p 28.54(28.07,29.01) | 2848 (27.7,29.46) | 27.71(27.05, 28.75)

Table 2. Median levels of miRNAs in plasma from participants’ groups.

Pathway analysis. Lor the miRNAs with a high directional probability (has-92a-3p, has-486-5p, has-
29a-3p), their potential target genes were analysed in order to assess their involvement in the pathology devel-
opment. Table 4 shows the potential target genes of the selected miRNAs related to AD mechanisms. As can
be seen, 112 potential targets were obtained for miRNA hsa-92a-3p, 16 targets for hsa-486-5p, and 88 targets
for hsa-29a-3p, with a target score of at Jeast 95. In addition, cach of the selected miRNAs regulated several
pathways. As can be seen in Fig. 2, the most c ys were cell signalling and transcription regula-
tion, but also lipid metabolism, protein synthesis and modtﬁuatmns, and structural functions were regulated
by the selected miRNAs. First, the mam p’uhwaya that could be regulated by the miRNA hsa-92a-3p are cell
death or phagy and cell proli and some pathways related to vesicle transport and synaptic
transmission. r\mong the cell death targ:ts, BCI2LI1 (BCIL2 like 11) is involved in neuronal and lymphocyte
apoptosis and G3BP2 (G3BP stress granule assembly factor 2) is involved in stress response. In the cell prolifera-
tion pathway, the gene C210rf91 (chromosome 21 open reading frame 91) plays a role in the proliferation of
neurons in the cortex. Among synaptic transmission targets, GLRAI (glycine receptor alpha 1), SYN2 (synapsin
11), SCN8A (sodium voltage-gated channel alpha subunit 8), CADM2 (cell adhesion molecule 2), CBLN4 (cer-
ebellin 4 precursor), SYNJ 1 (synaptojanin 1), SLC17A6 (solute carrier family 17 member 6), and NSF (N-ethyl-
maleimide sensitive factor, vesicle fusing ATPase) are highlighted, being the last two targets involved in vesicle
transport. Other important genes are REST (RE1 silencing transcription factor), which regulates neuronal genes
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hsa-miR-92a-3p ~0.484 0.616 (0.241,1.455) 19.34% 85.40%
hsa-miR-186-5p ~0.649 0.522(0.112,2.28) 14.15% 81.38%
hsa-miR-29a-3p 0418 1.519 (0.662,3.626) 22.76% 82.88%
hsa-miR-486-3p 0478 1.613 (0.462,5.929) 18.05% 77.88%
hsa-miR-150-5p 0.123 1,131 (0.243,5.574) 19.76% 55.27%
hsa-miR-320b 0174 1.19(0.373,4.02) 23.31% 60.68%
hsa-miR-483-3p 0.286 1331 (0.624.2.968) [ 20.86% | 77.15%
hsa-miR-342-3p -0.458 0.632(0.131,3.086) 16.47% 72.58%

Table 3. Characteristics of the Bayesian model including 3 participants groups (control, preclinical-AD,
MCI-AD). The Probability of Direction (PD) is an index of effect existence, ranging from 50 to 100%,
representing the certainty with which an effect goes in a particular direction. PD > 80% was considered
significative. For each variable the direction depends on the estimate (negatives estimate <0, and positives
estimates > 0). Region of Practical Equivalence (ROPE) defines the percentage of the area that is within the
region of practical equivalence (equivalent to null effect). OR odds ratio, CI confidence interval.

(a) Probability of Direction (b) Region of Practical Equivalence (ROPE)
Effect dwection [ nesseve [[] Posee o [l o [ osx [ 0%
o i s
miR-486-5p 1 miR-486-5p1
miR-29a-3p —1 > Rz Sp
miR-486-3p miR-486-3p
miR~-150-5p
miR-150-5p
‘ \ miR-320b
miR-320b
miR-483-3p
miR-483-3p
miR-342-3p
miR-342-3p
2 ) 3 : 2 ° i
Possible parameter values Possible parameter values
Figure 1. Probability of direction (PD) and Region of Practical Equivalence (ROPE) for each miRNA. (a) PD
shows the estimation of direction for each biomarker, showing a protective AD effect for those with negative
direction and risk AD effect for those with positive direction. Polygons show the density summary of the
posterior draws and coloured given the estimated direction (positive or negative) of the effect parameter. The
proportion of the polygon that does not include zero is a statement about probability of the proposed direction
of effect. (b) ROPE rep the area of null equival that is the p with none direction (positive
or negative). Effects given a full ROPE based on a 100%, 95% and 90% highest posterior density interval. The
proportion of the polygon that does not include zero is a statement about the significance of effect.
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f\llwphdgy

Cell death

G3BP2, HIPK3, USP28, DNAJBY, BCL2L11,.
RNF38

TRIB2, XKR6, AKT3

proliferation

CD69, FNIP1, BTG2, MAP2K4, C21orf91,
KLF4, FNIP2, GTF241, CDKI16, ARID1B,
CDCA7L, CCNJL, CUX1, MAP1B, RNF38

NAV1, NAV2, NAV3, IGFI, ZNF346, LIF,
CDK6, SGMS2, PDIKIL, CHSY1, NEXMIF,
AKT3, ADAMTS9

Cell signalling

PIKFYVE, DOCKS, ITGAV, EFR34, RIC1,
RNF38, GPRI80, PLEKHA L, IMY, GNAQ,
RGS17, PTEN, PCDH 11X, GIT2, ADGRF2,

NEXMIF, AKT3, DAAM2, PTEN, PGAP2,
ROBOI, RAP1GDSI, RAB30, DGKH,
CLDN1, TRAF3

DCC, PTEN, SLCI10A7, ARHGAP44,
MARKI

CAl DPP10, LRCH1, HCN2

Linergetic metabolism and oxidative stress SN3, PTEN, A5 PTEN

Glucose metabolism MAN2AL FBN1, UGP2 FBN1

Immune response TAGAP, CD69, KLF4, GLRA1, FOXN2, TRAF3
RAB23

lipid metabolism PPCS, KIAA1109 FAIID1 OSBPL11

membrane transport

SLCI2AS, SLC25A32, SGK3 | SESTDI, ABCE1, SLC5A8

t

DNA and histones methylation

Protein degradation

Protein synthesis and modifications

Structural function

Nucleic acid metabolism and DNA organi-
zation

MORC3, RBM27, GID4, CPEB3, SLX4,

DOTIL, KMT5C, ERCC6, NASPE, KDMS5B,
AGO3, JMY, ANP32E, RSBN1 TDG

| TETL. TET2, TET3, DOTIL, DNMT3A,
DNMT3B, KDMSB

FBXW?7, SESN3, KLIIL14, USP36, USP28,

UBXN4 VPS$37C, TRIM63

B3GALIL2, PTARL GOLGA3, COG3,

SGK3, ADAMI10, EDEM1 ADAMTS9, ADAMTS6, DIO2, ABCEL

COPS7B, MARK], LMTK2, ABHD17B
COLS5A3, COL5AL, COL3AL, FBNI,
COL11A1, HAS3, TMEM169, COL19A1,
COL4A1, COL1AL, COL7AL SPARC,
COL5A2, HMCN1, CIQTNF6, ADAMTS2,
CEP68, PXDN, COL9A1, HTAPLN3, RND3,
‘TRAF3, RAB30, CLDNI

ACTCI, ANP32E, NEFH, RSBN1,

NCKAPS, NEFM, RHPN2, EBN1, Myo1s | SNRPDL NCKAPS, LCESE

Synaptic transmission

GLRA1, SYN2, SCNSA, CADM2, CBLN4,

SYNJ1, SLC1746, NSE ARHGAP4

Transcription

HBPI, ATAD2B, BRWD3, NSD 1, ZBTB34,
NEIA, KDM5B, PURG, HIF34, ZBTBS,
7NF282, AMERI, REST, TAF5, ZHX3,
Cl6orf72

MIERL, HAND2, TBLIXR1, LATS2,
FOXN2, ZEB2, REST, GRHL1, TEAD1,
HIVEP]

BTAF1, SNRPD1, FOXO1, ZNF331

Vesicle transport

MYOIB, CDK16, PIKFYVE, SLCI7A6,
NSE, RAB23, DENND1B

P2, VPS37C.

Others

ZFC3HI, TTCS, ATXNI, DCAFS, LHFPL2,
FAM160B1, ERGIC2, MAGEC2, SPRYD4,
ANKRD28, TRIM36, FAM24A, BCL11B

ADAMTS17, PRRI4L, FAM241A, LYSMD |

TR PXYLP1, SMS, ATAD2B

Table 4. Potential target genes and related AD pathways. In this link it can be found the full name of each
gene (http://mirdb.org/mirdb/index.html).

transcription; and NEFH (neurofilament heavy), which contributes to the maintenance of neuronal structure. In
addition, PPCS (phosphopantothenoylcysteine synthetase) could be relevant in the regulation and metabolism
of CoenzymeA.

Secondly, the main pathways that could be regulated by the miRNA hsa-486-5p are cell signalling, lipid and
protein pathways, structural functions and transcription.

‘Thirdly, the main pathway that could be regulated by the miRNA hsa-29a-3p is the cell proliferation pathway,
which involves neurone regeneration and migration trough NAV3 (neuron navigator3), NAVI, and NAV2. Also,
ZNF346 (zinc finger protein 346) could act to protect neurons and LIF (LIF interleukin 6 family cytokine) is
involved in neuronal differentiation. In cell signalling pathways, the targets DAAM2 (dishevelled associated
activator of morphogenesis 2) and ROBO1 (roundabout guidance receptor 1) contribute to nervous system
development and neuronal migration, respectively. Furthermore, miRNA hsa-29a-3p plays a role in structure
regulation, specifically regulating the synthesis of different collagen chains, and HMCN1 (hemicentin 1) is
involved in macular degeneration and CIQTNF6 (C1q and TNF related 6) is involved in identical protein bind-
ing activity. Also, this miRNA could regulate REST in the transcription pathway.

Discussion

In this study, miRNA sequencing was carried out to identify potential early AD biomarkers. From these, a valida-
tion step was conducted, in which quantifiable miRNAs were identified, while some of them were not detected.
In fact, the miRNAs not validated were hsa-miR-142-5p, hsa-miR-1293 and hsa-miR-4259. A previous study in
cell line found a relationship between dysregulation of miR-142-5p expression and AD pathogenesis and synaptic
dysfunction®, and it was detected up-regulated in the blood of AD patients™. Also, hsa-miR-4259 was detected
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Figure 2. Pathways regulated by the three miRNAs that showed relationship with AD. The arrows indicate
those miRNAs involved in each pathway. Each color represents a miRNA: green (hsa-miR-92a-3p), red (hsa-
miR-486-5p) and blue (hsa-miR-29a-3p). *Created with BioRender.com.

in saliva samples, but there is a lack of studies quantifying this biomarker in plasma samples*’. In addition, has-
miR-1293 was previously detected in platelets from hepatocellular carcinoma and lung adenocarcinoma cell
line®. Nevertheless, there are no studies describing its association with AD.

Regarding the methodology, Haining et al., performed a similar study trying to find a miRNA profile in carly
AD. However, different cohorts for untargeted and targeted analysis were used". Also, Dakterzada aimed to
find miRNAs in plasma from AD participants, identifying a BACE-1 related panel of biomarkers different from
the miRNAs in the present work™. It could be due to the use of a different identification technique based on
microarrays analysis™. The different methodologies employed could affect the miRNAs selection, so it should
be taken into account in comparisons with other studies®.

Regarding the miRNAs that showed a trend with the pathology in the present study, they were hsa-miR-
92a-3p, has-miR-486-5p and hsa-miR-29a. First, hsa-miR-92a-3p showed a tendency for decreased levels in AD.
A previous study showed dysregulation of 3 miRNAs related to synaptic proteins, including hsa-miR-92a-3p in
MCI and AD*. Another study described the relationship between miR-92a-3p and tau accumulation™. One of
the most AD-relevant pathways that could be regulated by this miRNA is synaptic transmission”. Specifically,
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SYNJ1, a potential target for this miRNA, seemed to be involved in amyloid beta clearance®*”, while synapsins
could act on amyloid beta generation by modulating BACE1™. In addition, CBLN4 could regulate amyloid beta
toxicity*'. Regarding neuronal apoptosis, it could be lated by this miRNA and the BCL2L2 target. In fact, a
previous work showed that amyloid beta could regulate that pathway*. Other target genes (NEFH, REST), which
are involved in neuronal structure and neuronal gene transcription, were described as potential AD diagnosis
biomarkers**!,

Second, the present study showed a tendency towards reduced levels of hsa-miR-486-5p in AD. Similarly,
Nagaraj et al. described a panel of 6 plasma miRNAs, including hsa-miR-486-5p, that differentiated between
controls and MCI-AD*. This miRNA could regulate some genes involved in cell signalling, lipid and protein
pathways, transcription and structural function.

‘Third, a trend towards higher levels for hsa-miR-29a-3p in AD plasma was found. Similarly, Shioya et al.
described differential levels of this miRNA at brain levels, suggesting its implication in neurodegeneration trough
NAV3 (Neurone Navigator 3) regulation®. Tn addition, another miRNA from that family (hsa-miR-29¢) has
been related to AD pathology due to its involvement in the amyloid beta accumulation through the regulation
of BACEI*7#. Moreover, Miiller et al. suggested that miR-29a could be a candidate biomarker for AD in CSF
samples without cells™. In this regard, different types of collagenous chains and CLQTNE6 are targets of miRNA
hsa-29a-3p. Previous studies described coll chains as a comp from amyloid plaques™. The collagen-
ous regulation may contribute to the assembly of amyloid fibres, enhancing the development of amyloid pathol-
ogy. In addition, C1q complement protein co-localizes with the amyloid beta in brain®"*2. Therefore, CIQTNF6,
which is thought to play a role in identical protein binding, could help in the accumulation of C1q protein,
triggering amyloid plaque formation (PubMed Gene). In addition, ROBO1 and DAAM2, which are involved in
neuronal migration and nervous system development, are targets for this miRNA. In fact, ROBO1 could show a
relationship with axon guidance dependent on presenilin, which helps in the proteolysis of amyloid-p precursor
protein and triggers to AD pathology development™*, Furthermore, DAAM2 was described by Ding et al. as a
mediator in regenerative oligodendrocyte differentiation; while Sellers et al. demonstrated that AB synaptotoxic-
ity is mediated by this protein®

‘The main limitations in this study are the small sample size, since it is quite difficult to have a large number of
biologically classified early AD patients (MCI, preclinical). Moreover, from the selected miRNAs, some of them
were not validated as they were not correctly quantified, probably due to the fact that they were detected in few
samples. In addition, the study design is cross-sectional. Tn order to obtain more accurate data from the different
discase stages, it should be longitudinal. However, participants in this present study are perfectly characterized
according to CSF biomarkers and their cognitive status, providing a reliable approach to the disease progression.

Conclusions

RNA sequencing analysis in plasma samples from participants with early AD and healthy controls allowed to
identify some differentially expressed miRNAs. From them, 3 selected miRNAs (miRNA-92a-3p, miRNA-486-5p,
miRNA-29a-3p) were slightly dysregulated in AD, being p ial biomarkers of the pathology. In fact, they could
be involved in the regulations of important pathways of the pathology, such as synaptic transmission, cell signal-
ling, structure maintenance or cell metabolism, so they could be relevant therapeutic targets. However, further
research with a larger sample is needed to verify these results, as well as to develop the potential mechanisms of
action of these miRNAs.

Data availability

‘The datasets generated during the current study are available in the ArrayExpress repository, accession number
E-MTAB-11103.
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Abstract: Background: Alzheimer Disease (AD) is the most prevalent dementia. However, the
physiopathological mechanisms involved in its development are unclear. In this sense, a multi-
omics approach could provide some progress. Methods: Epigenomic and lipidomic analysis were
carried out in plasma samples from patients with mild cognitive impairment (MCI) due to AD
(1 =22), and healthy controls (1 = 5). Then, omics integration between microRNAs (miRNAs) and
lipids was performed by Sparse Partial Least Squares (s-PLS) regression and target genes for the
selected miRNAs were identified. Results: 25 miRNAs and 25 lipids with higher loadings in the sPLS
regression were selected. Lipids from phosphatidylethanolamines (PE), lysophosphatidylcholines
(LPC), ceramides, phosphatidylcholines (PC), triglycerides (TG) and several long chain fatty acids
families were identified as differentially expressed in AD. Among them, several fatty acids showed
strong positive correlations with miRNAs studied. In fact, these miRNAs regulated genes implied
in fatty acids metabolism, as elongation of very long-chain fatty acids (ELOVL), and fatty acid
desaturases (FADs). Conclusions: The lipidomic-epigenomic integration showed that several lipids
and miRNAs were differentially expressed in AD, being the fatty acids mechanisms potentially
involved in the disease development. However, further work about targeted analysis should be
carried out in a larger cohort, in order to validate these preliminary results and study the proposed
pathways in detail.

Keywords: Alzheimer disease; plasma; biomarker; lipids; microRNAs; integration

1. Introduction

Alzheimer disease (AD) is the most prevalent dementia [1]. Some hallmarks are
clearly related to AD; accumulation of extracellular $-amyloid plaques and intracellular
Tau neurofibrillary tangles. Nevertheless, the physiopathological mechanisms involved in
the complex and multifactorial AD development remain unclear [2]. Therefore, a multi-
omics approach could provide some progress in this field.

AD development could involve the reconfiguration of the epigenome and the modifica-
tion of some genes expression have an impact in different disease pathways [3]. Specifically,
differential expression of microRNAs have been found in recent AD studies [4,5]. These
miRNAs could act as an epigenetic mechanism modifying the expression of different pro-
teins post-transcriptionally [6]. Therefore, an increase or decrease in the levels of miRNAs
could influence the expression of different proteins or enzymes. In this context, Hébert et al.
described different miRNAs related to Amyloid precursor protein (APP) expression [7].
Therefore, epigenomics could be implicated in this pathology.

Lipidomics could also play an important role in AD development. In fact, lipids, the
main component of cell membranes, are strongly related to brain function and neurodegen-
erative diseases [8]. Specifically, the lipids from phospholipids, triglycerides, sphingolipids
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and cholesteryl esters correlated with clinical AD diagnosis, brain atrophy and disease
progression [9]. A previous study developed a combination of 24 molecules to classify
patients with high accuracy (>70%), and identified some metabolic features (triglycerides,
phosphatidylcholines) [10].

Integrative network analysis of multi-omics results allowed us to identify molecular
mechanisms in AD. A previous study based on RNA and Whole Genome Sequencing (WGS)
observed signaling circuits of complex molecular interactions in key brain regions [11].
In another multi-omics study, Xicota et al. 2019 studied RNAseq, metabolomics and
lipidomics, they found a signature of some blood metabolites and transcripts, which
identified asymptomatic AD patients [12]. Additionally, a study from the literature showed
the integration of genome-wide association studies with expression data, identifying some
genes related to AD physiopathology. Specifically, the pathways were involved in calcium
homeostasis [13]. In addition, a recent study was based on an integrative analysis of blood
microRNAs expression and genomic data to develop an AD prognosis model, including 24
single nucleotide polymorphism-microRNA (miR-eQTLs), as well as age, sex, and APOE4
genotype [14]. From these miR-eQTLs, four genes related to AD (SHC1, FOXO1, GSK3B,
and PTEN) were identified. Similarly, a genomics and metabolomics study demonstrated
the utility of these data integration with AD risk factors to understand the mechanisms
involved, revealing the importance of glycine as a mediator in cardiovascular and diabetes
risk [15]. Epigenomic-lipidomic integration would allow the global study of the regulatory
mechanisms involved in AD such as lipid homeostasis, oxidative stress, synaptic vesicle
trafficking, inflammation, etc. [16]. These omics data were analysed together to develop an
understanding of lipid regulation by epigenomics. Previous works based on the analysis
of genome-wide DNA methylation showed that an epigenetic pattern was associated
with cholesterol regulation [17]. In addition, in Parkinson Disease (PD), an epigenetic
(DNA methylation) regulation was involved in the inactivation of the autophagy system,
contributing to protein accumulation [18]. Thus, the study of the integration between
epigenomics and lipidomics could show lipid regulation mechanisms involved in AD.

The aim of this work was to carry out the integration of epigenomics and lipidomics
analysis in plasma samples from patients with mild cognitive impairment (MCI) due to
AD, in order to advance the knowledge of early physiopathological mechanisms.

2. Materials and Methods
2.1. Participants and Samples Collection

All the participants were aged between 50 and 80 years old. Patients with known
major neurological or psychiatric conditions were excluded. Assessment included a neu-
ropsychological evaluation (Repeatable Battery for Assessment of Neuropsychological
Status (RBANS) [19], Functionality Assessment Questionnaire (FAQ) [20], Clinical Demen-
tia Rating (CDR) [21], MMSE [22]), analysis by means of NMR-TAC and cerebrospinal
fluid (CSF) levels of amyloid 3-42 peptide, t-Tau and p-Tau (Table 1). According to this,
participants were classified into patients with MCI-AD (n = 22), and healthy controls
(n=5).

Blood samples from participants were collected into EDTA-tubes, and plasma was
separated. Then, plasma samples were stored at —80 °C until the analysis.

Table 1. Clinical and neuropsychological criteria for participants’ classification.

Participant Group
Test or Biomarker
Control MCI-AD
CDR* 0-0.5 0.5-1
MMSE * =27 <27
RBANS.DM * >85 <85
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Table 1. Cont.
Participant Group
Test or Biomarker
Control MCI-AD
FAQ <9 >9
Neuroimaging Structural Nesal Altered
(NMR-TAC)
CSF amyloid 42 (pg mL~1) >700 <700
CSF t-Tau (pgmL ) <350 =350
CSF p-Tau (pg mL ') <85 >85

*In MCI-AD group minimum 2 of the 3 cognitive status test (CDR, MMSE, RBANS.DM) should be altered.

2.2. Omics Analysis
2.2.1. Epigenomics

Epigenomic analysis was carried out by means of NGS NextSeq 550 platform (Illumina,
San Diego, CA, USA) by single read sequencing of 50 cycles (1 x 50 bp). Data were
processed and normalised to quantify and generate miRNA counts. The miRbase (v.21)
allowed us to identify the miRNAs. Then, the identification of potential target genes for
the selected miRNAs were carried out by miRbase (v.21, Manchester, UK).

2.2.2. Lipidomics

Lipidomic analysis was carried out by means of ultra-performance liquid chro-
matography coupled to time-of-flight mass spectrometry (MS). The internal standard
consisted of a mix of: MG(17:0), LPC(17:0), Cer(d18:1/17:0), DG(17:0/17:0), SM(d18:1/17:0),
PE(17:0/17:0), PC(17:0/17:0), TG(17:0/17:0/17:0), CE(17:0), PG(17:0/17:0) and PS(17:0/17:0).
The chromatographic and mass spectrometry conditions were those established in the stan-
dard procedures of the Analytical Unit from Health Research Unit from Health Research
Institute La Fe. Briefly, data were processed for peak detection, noise filtering, and peak
alignment. The procedure was conducted to reduce the intra-batch variability, as well as to
ensure the quality and reproducibility of the analysis. It consisted of a random injection
order, at the beginning of the sequence 5 quality control (QC) samples were analysed in
order to condition column and equipment, and every 5-7 samples a QC was analysed in
Full MS mode. Additionally, at the beginning, middle, and end of the sequence, some
QCs were analysed in Fragmentation in Data Independent mode and in Fragmentation
in Data Dependent mode to proceed to the annotations of lipid species with the LipidMS
annotations package. Then, data were filtered to exclude variables whose coefficients of
variation in the QCs were higher than 30%, and variables with zeros in more than 60% of
samples. Then, data were normalised. Finally, the library LipidMSid was used to identify
the lipids.

2.3. Statistical Analysis and Lipidomics-Epigenomics Integration

Data were summarised using median (1st, 3rd quartiles) for quantitative variables
and absolute frequency (%) for qualitative variables.

Sparse Partial Least Squares (sPLS) regression was applied to the previous data sets to
select variables (miRNAs, lipids) and integrate them. The sPLS approach combines both
integration and variable selection on two data sets in a one-step strategy [23].

Then, the graphical representations (correlation circle plots, heatmaps, relevance
networks) resulting from the statistical approach were plotted.

Individual differences between groups were carried out by Mann-Whitney test, and
correlations by Pearson Correlation. In all the cases, statistical significance was fixed in a
p value of 0.05.
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Statistical analyses were performed using R software (v 4.0.3, Auckland, CA, USA)
and mixOmics (v 6.16.2) and clickR (v 0.7.35) packages and SPSS software version 20.0
(SPSS, Inc., Chicago, IL, USA).

3. Results
3.1. Participants

Table 2 shows the demographic and clinical data for the participants. As expected,
CSF biomarkers levels and neuropsychological tests were different between groups. In
fact, the MCI-AD group showed lower levels for amyloid $-42, and higher levels for ¢-Tau
and p-Tau; also, MCI-AD group showed lower scores for MMSE, and RBANS, and higher
scores for CDR and FAQ.

Table 2. Demographic and clinical characteristics of the participants.

Variables Healthy Group (1 = 5) MCI-AD Group (1 =22)
Age (years, median (IQR)) 68 (68, 72) 72 (69, 74)
Gender (female, n (%)) 2 (40%) 12 (54.5%)
CSF amyloid p-42 (pg mL~,
median (IQR)) 1346.74 (930, 1421) 517.16 (453.86, 634.45)

CSF amyloid p-42/amyloid

g4 (median, 108 0.1(0.09,0.11) 0.05 (0.05,0.05)
CSF +-Tau (pg mL™!, median 240 (238, 276 566 (450, 780
i (238, 276) 566 (450, 780)
CSF p-Tau (pg mL~!, median 35 (35, 40 81 (64.5, 107
Sh 35 (35, 40) (64.5,107)
5 -
CSRINML (peml; ™ madisn 826.94 (791, 847.7) 1428.68 (1123.24, 1555.91)
(IQR))
CSF {-Tau/amyloid p-42
(median (10R)) 02(0.19,0.25) 099 (0.79,1.32)
CDR (score, median (IQR)) 0(0-05) 0.5 (0-1)
MMSE (score, median (IQR)) 29 (29, 30) 24 (23,26)
RBANS_DM (score, median
- 100 (98, 110 44 (40, 64
(IQR) eot) .
FAQ (score, median (IQR)) 1(0,2) 7(4,9)

CSF: cerebrospinal fluid; IQR: inter-quartile range; CDR: Clinical Dementia Rating; MMSE: Mini-Mental State
Examination; RBANS_DM: The Repeatable Battery for the Assessment of Neuropsychological Status_Delayed
Memory; FAQ: Functional Activities Questionnaire.

3.2. Omics Integration

The sPLS model integrated two data matrices X (epigenomics) and Y (lipidomics).
Additionally, sPLS performed simultaneous variables selection in the two data sets, by
means of LASSO penalization on the pair of loading vectors. In this sense, two components
were chosen, and 25 variables were selected on each dimension and for each data set. The
X-block represented miRNAs, and the Y-block represented lipids.

Samples from both sets were represented in the ‘common’ subspace spanned by the
principal components (PC1, PC2). As can be seen in Figure 1, samples were differentiated
in the plot according to the participants group, there was not observed a clear separation.

Among the 25 selected variables for each data set, the miRNAs (block X) with higher
loadings in the sPLS regression were hsa-miR-494-3p, hsa-miR-6894-3p, hsa-miR-421 and
hsa-let-7a-3p; and the lipids (block Y) with higher loadings were FA (20:3), FA (20:4), FA
(16:0), FA (20:2), and FA (18:2) (see Figure 2).
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Figure 1. Scatter plot for participants samples in sPLS analysis. Represent the samples distribution in
the ‘common’ subspace between the two sets of components (epigenomics and lipidomics variables).
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Figure 2. Horizontal barplot to visualise loading vector. The contribution of each variable for each
component (comp) is represented in a barplot, where each bar length corresponds to the loading
weight (importance) of the feature. The loading weight can be positive or negative.

The correlation circle plot depicted microRNAs and lipids selected on each component.
As can be seen in the Supplementary Material (Figure S1), some subsets of variables were
important to define each component. Actually, some miRNAs (hsa-miR-5010-5p, hsa-
miR-421, hsa-miR-664a, hsa-miR-29b-3p, hsa-let-7a-3p, hsa-miR-19b-3p) and some lipids
(FA (20:4), FA (20:3), FA (18:0)) mainly participated in defining the sPLS component 2;
and some miRNAs (hsa-miR-335-3p, hsa-miR-532-3p, hsa-miR-379-5p, hsa-miR-4646-3p,
hsa-miR-425-3p) mainly participated in defining component 1. Additionally, miRNAs, such
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as hsa-miR-421 and hsa-miR-5010-5p, were positively correlated to the lipids FA (20:4) and
FA (20:3); while these miRNAs were negatively correlated to the lipid TG (17:0/17:0/17:0).

The integration results were depicted by means of a heatmap. The similarity matrix
was obtained from the sPLS results [24], and agglomerative hierarchical clustering was
derived using the Euclidean distance as the similarity measure, and the Ward methodol-
ogy [25]. In this sense, Figure 3 shows the heatmap for the correlations between miRNAs
and lipids selected from sPLS. The red colour corresponded to positive correlation, while
the blue colour corresponded to negative correlation. Most of the correlations were positive.
In general, Figure 4 showed a positive correlation between studied miRNAs and lipids.
However, the lipid TG (17:0/17:0/17:0) showed a negative correlation with all the described
miRNAs. In addition, similar miRNAs were grouped, showing clusters for miR-29a-3p,
let-7a-3p, miR-576-5p, miR-185-5p, miR-6894-3p, miR-5010-5p; for miR-29b-3p, miR-877-5p,
miR-494-3p, miR-4433a-3p, miR-4433b-5p; and for miR-421, miR-450b-5p, miR-664a-3p,
miR-432-5p, miR-654-5p, miR-2110, miR-329-3p. In addition, similar lipids were grouped,
showing clusters for FA (18:0)/FA (14:0)/FA (18:0)/FA (16:0)/FA (18:2) and FA (20:3)/FA
(20:4)/FA (18:2)/FA (20:2)/FA (16:0).
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Figure 3. Heatmap representing correlations between miRNAs and lipid variables. Red colour represents positive
correlations and blue colour represents negative correlations.
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Figure 4. Relevance associations network for sPLS. Pair-wise similarity matrix directly obtained from the latent components
was calculated. The similarity value between a pair of variables is obtained by calculating the sum of the correlations
between the original variables and each of the latent components of the model. The values in the similarity matrix can be
seen as a robust approximation of the Pearson correlation.

3.3. Potential Pathways Involved in AD

In Table 3, the predicted target genes for the selected miRNAs were described paying
special attention to the genes that are implied in lipid metabolism, specifically in fatty
acids pathways, which showed correlation with the miRNAs. In fact, fatty acids family
showed the strongest correlations with miRNAs (see Figure 4). Among the identified
target genes, several enzymes, such as elongases (ELOVL1, ELOVL2, ELOVL3, ELOVLA4,
ELOVLS5, ELOVL6, ELOVL?), fatty acid desaturase (FADS6), fatty acyl-CoA reductases
(FAR 1, FAR 2), fatty acid binding protein (FABP7), and fatty acid 2-hydroxylase (FA2H)
were highlighted.

Another representation for the integration results is based on relevance network for
sPLS regression, showing simultaneously positive and negative correlations between the
two variable types (microRNAs, lipids). As can be seen in Figure 4 and the Supplementary
Material in Table S1, most of these correlations were positive. Specifically, the highest
positive correlations corresponded to these pairs of variables (FA (16:0) and FA (20:2) with
hsa-miR-664, hsa-miR-432, hsa-miR-421, and hsa-miR-450b-5p; FA (18:0) and FA (18:2) with
hsa-miR-664, hsa-miR-421 and hsa-miR-450b-5p; FA (20:3) and FA (20:4) with hsa-miR-
664, hsa-miR-211, hsa-miR-432, hsa-miR-329, hsa-miR-654, hsa-let-7a-3p, hsa-miR-29a-3p,
hsa-miR-421, and hsa-miR-450b-5p). On the other hand, the highest negative correlations
corresponded to the lipid TG (17:0/17:0/17:0) with some miRNAs (hsa-miR-664-3p, hsa-
miR-2110, hsa-miR-432-5p, hsa-miR-329-3p, hsa-miR-654-5p, hsa-miR-185-5p, hsa-let-7a-3p,
hsa-miR-576-5p, hsa-miR-29a-3p, hsa-miR-6894-3p, hsa-miR-421, hsa-miR-450b-5p).
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Table 3. Predicted target genes related to fatty acids for the selected miRNAs (miRBase).

miRNA

Target Genes

hsa-miR-494-3p

hsa-miR-6894-3p

ELOVL3 (ELOVL fatty acid elongase 3)

ELOVL5 (ELOVL fatty acid elongase 5)

hsa-miR-421

ARV1 (ARV1 homolog, fany acid homeostasis

modulator)

FARI (fatty acyl-CoA reductase 1)
ELOVL2 (ELOVL fatty acid elongase 2)

hsa-let-7a-3p

ELOVL2 (ELOVL fatty acid elongase 2)

FA2H (fatty acid 2-hydroxylase)
ELOVL7 (ELOVL fatty acid elongase 7)

hsa-miR-664a-3p

FARI (fatty acyl-CoA reductase 1)

ELOVL4 (ELOVL fatty acid elongase 4)
ELOVL7 ELOVL fatty acid elongase 7

ELOVLS5 ELOVL fatty acid elongase 5

hsa-miR-329-3p
hsa-miR-450b-5p

ELOVL6 (ELOVL fatty acid elongase 6)

hsa-miR-323a-3p

hsa-miR-382-5p

hsa-miR-199b-3p

hsa-miR-654-5p

FADS6 (fatty acid desaturase 6)

ELOVL1 (ELOVL fatty acid elongase 1)

hsa-miR-2110

ELOVL4 (ELOVL fatty acid elongase 4)

hsa-miR-432-5p

hsa-miR-505-3p

ELOVL4 (ELOVL fatty acid elongase 4)

hsa-miR-29a-3p

ELOVL4 (ELOVL fatty acid elongase 4)

hsa-miR-19b-3p

ELOVL5 (ELOVL fatty acid elongase 5)

hsa-miR-185-5p

ELOVL4 (ELOVL fatty acid elongase 4)

ELOVL2 (ELOVL fatty acid elongase 2)

FARI (fatty acyl-CoA reductase 1)

hsa-miR-576-5p

FAR? (fatty acyl-CoA reductase 2)

hsa-miR-877-5p

hsa-miR-29b-3p

ELOVL4 (ELOVL fatty acid elongase 4)

hsa-miR-143-3p

FADSE6 (fatty acid desaturase 6)

FARI (fatty acyl-CoA reductase 1)

hsa-miR-7976
hsa-miR-5010-5p

hsa-miR-4433b-5p

hsa-miR-4433a-3p

FABP7 (fatty acid binding protein 7)
ELOVL4 (ELOVL fatty acid elongase 4)

ELOVL2 (ELOVL fatty acid elongase 2)
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3.4. Lipidomics and Epigenomics in AD

From the univariate analysis, differences between groups were not obtained for miR-
NAs nor individual lipids. Median values are summarised as Supplementary Material
(Table S2). In addition, boxplots representing the lipid levels for each participants group
were also depicted in the Supplementary Material (Figure S2).

In addition, the analysis between age/gender and biomarkers levels showed no
correlations for any miRNA or lipid analysed.

4. Discussion

Epigenomics and lipidomics analyses were carried out in plasma samples from early
AD patients, identifying microRNAs and lipids, respectively. From these results, integration
analysis was carried out in order to study associations between both compounds families; to
evaluate their potential relationship with early AD development; and identify the potential
pathways altered in carly stages of the disease.

Some studies in literature are focused on multi-omics integration, mainly based on
proteomics and miRNAs [26]. However, few studies are focused on lipidomic and miR-
NAs integration, which allow us to identify different biological activities involved in cell
communication [27]. In general, the integration of omics results (lipidomics, metabolomics,
proteomics, epigenomics) helps to give a global image of the mechanisms involved in
complex diseases [28]. Nevertheless, this field of research is still underdeveloped in AD
and few studies are based on this integration [16].

In the present study, integration and selection of variables from each dimension
showed that some microRNAs (hsa-miR-494-3p, hsa-miR-6894-3p, hsa-miR-421 and hsa-
let-7a-3p) and some lipids (FA (20:3), FA (20:4), FA (16:0), FA (20:2), FA (18:2)) had higher
loadings in the regression model. Similarly, a previous study carried out in plasma from
amyloid positive and amyloid negative participants obtained a signature of 71 miRNAs
differentially expressed between groups, highlighting the hsa-miR-421 and hsa-let-7a-
3p [29]. In addition, a previous study from Hojati et al. revealed that hsa-miR-494-3p
was slightly up-regulated in AD patients and that it was related to metabolic and cellular
response to stress pathways [30]; while Lv et al., found that levels of hsa-let-7a-3p were
clevated in patients with carly onset familiar AD [31]. The up-regulation of hsa-let-7a-3p
showed an increase in neurotoxicity in AD cell model [32]. On the other hand, previous
studies found several fatty acids levels increased or decreased in AD [33,34]. Specifically,
AD was related to lower levels of myristic 14:0, palmitic 16:0, stearic 18:0 and oleic 18:1
acid and a higher proportion of linoleic acid 18:2n—6 [33]. However, this study was limited
to FAs from 14:0 to 22:6 and did not determine all lipidic profiles. In addition, Conquer
etal. described lower levels of phospholipid, PC 20:5n-3, DHA, total n—3 fatty acids, the
n—3/n—6 ratio and phospholipid 24:0 compared to controls [34]. Moreover, Conquer et al.
did not find differences for FA (20:3), FA (20:4), FA (20:2) and FA (18:2) in plasma samples
from AD, cognitive impairment, and patients with other neurodegenerative diseases [34].
This discrepancy with the present results could be due to differences in AD diagnosis
methods, since the previous study did not use CSF biomarkers to identify AD patients. In
fact, these participants were classified by amyloid PET, and biomarkers were measured in
erythrocytes. In addition, erythrocyte fatty acid composition varied according to disease
development, showing differences between AD and non-AD participants for FA (20:4) but
not for FA (20:3), FA (20:2) nor FA (18:2) [35].

Regarding correlations between microRNAs and lipids, and similarities among them
in each omics data group, they showed that most of these correlations were positive.
However, previous studies that correlated epigenomics (DNA hydroxymethylation) and
metabolomics showed more variety between positive and negative correlations [36]. More
specifically, several studies in neurodegeneration revealed the interaction between miRNAs
expression and lipids regulation, mainly focussed on cholesterol metabolism [37]. Jauouen
et al. described miR-33 function modulating ABCA1 and interfering with Ap plaque
formation through cholesterol metabolism regulation [38]. In the present study, some

379



Annexes

Chapter 12

Biomedicines 2021, 9, 1812

100f 13

miRNAs (miR-29a-3p, let-7a-3p, miR-576-5p, miR-185-5p, miR-6894-3p, miR-5010-5p; for
miR-29b-3p, miR-877-5p, miR-494-3p, miR-4433a-3p, miR-4433b-5p; for miR-421, miR-
450b-5p, miR-664a-3p, miR-432-5p, miR-654-5p, miR-2110, miR-329-3p) were grouped
reflecting their similarity. Taking into account previous works, Kumar et al. found different
miRNAs clustered expression, differentiating AD and control participants (hsa-miR-4741,
hsa-miR-4668-5p, hsa-miR-3613-3p, hsa-miR-5001-5p, miR-4674) [39]. The discrepancies
with present results may be due to the difference in the diagnosis of the patients, since
the study from Kumar et al. was not based on CSF biomarkers. Moreover, Denk et al.
showed clustered expression of miRNAs in control, AD and frontotemporal dementia
participants, showing that some clusters included miRNAs from the same family, while
others included different families in the same cluster, as in the present study [40]. However,
the set of analysed miRNAs was limited. On the other hand, some lipids were grouped
in the present paper (FA (18:0)/FA (14:0)/FA (18:0)/FA (16:0)/FA (18:2); FA (20:3)/FA
(20:4)/FA (18:2)/FA (20:2)/FA (16:0)). In this sense, previous findings in an AD mice model
showed different lipids expression clusters along the disease progression (two, three, seven
months), showing mainly PEs in two months progression and a predomination of TG at
seven months [41]. In addition, Kumar et al. described the co-regulation of different lipid
sets, among which 17 were fatty acids [42].

Finally, the highest positive correlations between microRNAs and lipids were mainly
for hsa-miR-664, hsa-miR-432, hsa-let-7a-3p, hsa-miR-29a-3p, hsa-miR-421 and hsa-miR-
450b-5p with some fatty acids (FA (16:0), FA (18:0), FA (20:2), FA (20:3), FA (20:4)). In
general, the described miRNAs showed a positive correlation with fatty acids. Of note,
these miRNAs targeted sequences in genes implied in fatty acids metabolism. In this
sense, previous studies showed a relationship between AD and fatty acids metabolism,
demonstrating differential levels of fatty acids (FA (16:0), FA (18:0), FA (18:1), FA (18:2),
FA(20:4), FA (20:5), FA (22:6)) similar to the present results [43]. Regarding hsa-miR-421, it
showed a positive correlation with some detected lipids (FA (16:0), FA (20:2), FA (18:2), FA
(20:4), FA (20:3), FA (18:0), FA (14:0)). Previous works identified the relationship between
this miRNA and lipid metabolism regulation, specifically with triacylglycerol levels [44].0n
the other hand, the highest negative correlations corresponded to the triglyceride (TG
(17:0/17:0/17:0)) with some miRNAs (hsa-miR-664-3p, hsa-miR-432-5p, hsa-miR-329-3p,
hsa-miR-654-5p, hsa-miR-185-5p, hsa-let-7a-3p, hsa-miR-576-5p, hsa-miR-29a-3p, hsa-miR-
421, hsa-miR-450b-5p). Similarly, in literature it was shown that hsa-miR-29a could regulate
the lipoprotein lipase (LPL) that catalyses hydrolysis of the triglycerides [45].

The main limitation of this study is the reduced number of healthy control patients.
However, the availability of biologically identified (CSF biomarkers) patients with MCI
due to AD provides a great potential in the identification of potential pathways involved in
carly AD. Other limitations in this study are: (i) the analytical method is a semiquantitative
approach, (ii) the ApoE genotype has not been taken into account, although it is known
that ApoE is involved in lipid homeostasis.

5. Conclusions

The present study highlights the potential of a multi-omics approach in the devel-
opment of a signature of biomarkers of MCI-AD, as well as the description of potential
metabolic pathways involved in AD since its early stages. Specifically, epigenomics and
lipidomics integration allowed us to identify some associations between microRNAs and
lipids, showing their relationship with early AD development. In fact, fatty acids impair-
ment could be an important pathway involved in early AD. However, further work based
on targeted analysis should be carried out in a larger cohort in order to validate these
preliminary results, as well as to study the proposed pathways in detail.
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