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1. Introducción  

Enfermedad de Alzheimer: fisiopatología, diagnóstico y tratamiento. 

La Enfermedad de Alzheimer (EA) es la enfermedad neurodegenerativa más común 

siendo la causa de alrededor del 70% de las demencias. En 2018 la EA afectaba a 

alrededor de 50 millones de personas en todo el mundo [1,2], y se espera que la incidencia 

en países desarrollados continue aumentando debido al envejecimiento de la población, 

superando los 150 millones en 2050. La EA genera un gran impacto social y económico 

[3], debido a factores como el coste médico, la falta de productividad, la disminución de 

la calidad de vida de enfermos y cuidadores, y la dependencia. Sin embargo, los 

tratamientos disponibles no consiguen curar ni detener la enfermedad, siendo en su 

mayoría tratamientos sintomatológicos [4]. Actualmente, se están desarrollando 

numerosos ensayos clínicos con nuevos fármacos con acción frente a diferentes 

mecanismos fisiopatológicos potencialmente implicados en el desarrollo de la EA [4]. En 

general, estos tratamientos están dirigidos a fases iniciales de la enfermedad, en las que 

muestran conseguir una mayor efectividad. Por ello, es necesario un diagnóstico 

temprano de la EA. Actualmente la complejidad e invasividad de los métodos 

diagnósticos utilizados (biomarcadores en líquido cefalorraquídeo, técnicas de 

neuroimagen), dificulta la detección temprana. Por ello, es necesario identificar 

biomarcadores diagnósticos fiables, tempranos y mínimamente invasivos, así como 

avanzar en el conocimiento de los mecanismos fisiopatológicos implicados en la 

aparición y desarrollo de la enfermedad.  

Clínicamente, la EA se caracteriza por un deterioro cognitivo progresivo que afecta a 

diferentes dominios como la memoria episódica, la fluidez verbal o las funciones 

ejecutivas [5]. En la mayoría de casos se trata de una enfermedad esporádica, de hecho 

los casos de EA familiar debida a mutaciones en genes (proteína precursora de amiloide 

(APP), presenilinas 1 y 2 (PS1) (PS2)) no llegan al 2% [6]. Además, entre los factores de 

riesgo de la EA destaca el gen que codifica la Apolipoproteína E (ApoE), concretamente 

el alelo Ɛ4; así como otros factores relacionados con el estilo de vida (hipercolesterolemia, 

diabetes, hipertensión), considerados factores modificables [7].  
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Mecanismos fisiopatológicos 

A nivel fisiopatológico, la EA se caracteriza principalmente por dos marcas 

histopatológicas: i) agregados intracelulares de la proteína Tau fosforilada (p-Tau) en 

forma de ovillos neurofibrilares, y ii) acúmulos extracelulares de la proteína beta amiloide 

(βA) anormalmente plegada en forma de placas seniles que ocurre principalmente en el 

lóbulo temporal medial y estructuras neocorticales, que acaban dando lugar a una pérdida 

de sinapsis [4]. En general, las principales hipótesis sobre el origen de la enfermedad son 

la cascada amiloide, la hipótesis de Tau y la colinérgica [4]. 

La hipótesis amiloide. En 1992 se hipotetizó por primera vez el papel central de la 

proteína amiloide β (Aβ) como el agente causante de la EA [8]. En ella se describía cómo 

a partir de un procesamiento específico de la proteína precursora amiloide (PPA) se 

generaba un péptido que precipitaba dando lugar a la muerte celular, además de promover 

la acumulación de Tau en ovillos neurofibrilares [8]. La PPA es una proteína 

transmembrana que puede ser escindida por dos vías: i) la “normal” o no patológica, en 

la que actúa la enzima α-secretasa y posteriormente la γ-secretasa dando lugar a un 

péptido extracelular soluble; y ii) la amiloidogénica, en la que actúa la enzima β-secretasa 

(BACE) y posteriormente la enzima γ-secretasa produciendo péptidos de diferentes 

longitudes, entre los que se encuentra Aβ42 [9]. Como apoyo a esta teoría se encuentra 

los factores de riesgo genéticos. Así pues, la Apolipiproteína E (ApoE) tiene influencia 

sobre la eliminación de amiloide β42 siendo menor con la isoforma Apoε4  [10]. Además, 

mutaciones en los genes PS1, PS2 y BACE contribuyen al desarrollo de la enfermedad. 

El aumento en la producción de este péptido Aβ42, considerado tóxico y la reducción en 

los mecanismos de eliminación del mismo da lugar a la formación primero de oligómeros 

afectando a la función sináptica. Esto desencadena una respuesta inflamatoria y un 

aumento de estrés oxidativo, dando lugar finalmente a la formación de las placas seniles 

[11]. Esta respuesta inflamatoria contribuye a la fosforilación de Tau que también juega 

un papel relevante en el desarrollo de la enfermedad [11]. 

Hipótesis de Tau. Algunos estudios sugieren que en primer lugar aparece la cascada 

amiloide y la toxicidad generada da lugar a la hiperfosforilación de Tau generando un 

aumento en la toxicidad celular y pérdida de neuronas. Sin embargo, otros sostienen que 



Resumen global Introducción 

22 
 

la patología Tau es la que desencadena los mecanismos patológicos de la enfermedad 

[12,13].  

Tau es una proteína intracelular que forma parte del citoesqueleto y es especialmente 

importante en las neuronas donde realiza funciones estructurales y de transporte de 

sustancias como los neurotransmisores [13]. En condiciones fisiológicas, esta proteína 

sufre fosforilaciones en diversos residuos, sin embargo, en condiciones patológicas como 

la EA se produce una hiperfosforilación [13], que aumenta su toxicidad. Además, facilita 

la formación de agregados de proteínas Tau u ovillos neurofibrilares (NFT) pudiendo dar 

lugar a muerte celular y por tanto a la pérdida de neuronas [13].  

Hipótesis colinérgica. La acetilcolina (ACh) es un neurotransmisor que se forma en el 

citoplasma de las neuronas colinérgicas a partir de colina y Acetil-CoA por acción de la 

enzima colina-acetil transferasa. Este neurotransmisor es transportado por vesículas al 

espacio sináptico tras la despolarización de la neurona presináptica. En la neurona 

postsináptica puede unirse a receptores muscarínicos o nicotínicos produciendo repuesta 

inhibitoria o activadora. En el espacio sináptico se hidroliza por la acetilcolinesterasa si 

no se ha unido a ningún receptor [14].  

La acetilcolina (ACh) es un neurotransmisor implicado en procesos como el aprendizaje 

o la memoria, y las neuronas colinérgicas presentan una degeneración específica en la EA 

[14]. Concretamente, se ha observado una reducción de la actividad de la enzima 

acetiltransferasa de colina [11]. De hecho, los tratamientos convencionales actuales para 

la EA se basan en aumentar la señal colinérgica para contrarrestar la reducción  de 

acetilcolina manteniendo el neurotransmisor un tiempo más prolongado en el espacio 

sináptico [15].  

A pesar de haber discrepancias en la temporalidad de mecanismos implicados en la EA, 

todos ellos coexisten una vez la patología está instaurada, junto con otros mecanismos 

como la neuroinflamación, activación de microglía y astrocitos, estrés oxidativo, 

alteraciones en el metabolismo de lípidos, proteínas, ADN, neurotransmisores, etc [4,16–

20]. 
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Diagnóstico  

En la práctica clínica el diagnóstico se basa principalmente en los síntomas clínicos. Sin 

embargo, desde este punto de vista la EA es muy heterogénea [21]. Se trata de una 

enfermedad progresiva que puede evolucionar a lo largo de 15-25 años desde que se 

instauran los mecanismos fisiopatológicos hasta que aparecen los síntomas clínicos y se 

agravan [22]. En el continuo que caracteriza a la EA se pueden definir varias etapas: i) 

EA preclínica en la que hay ausencia de síntomas clínicos, aunque se detecta la alteración 

de los biomarcadores propios de la enfermedad; ii) deterioro cognitivo leve (DCL) con 

presencia de síntomas iniciales pero sin afectación de las actividades de la vida diaria; y 

iii) demencia, caracterizada por síntomas más avanzados con afectación de las actividades 

de la vida diaria [5]. Las guías clínicas definidas por Instituto Nacional de envejecimiento 

y la Asociación de Alzheimer (NIA-AA) basan el diagnóstico en la etapa de deterioro 

cognitivo leve (DCL), concretamente en la detección de un cambio en la cognición por 

parte del paciente, un observador o bien un clínico experto [23]. Este deterioro se produce 

en uno o varios dominios cognitivos (memoria, función ejecutiva, atención, lenguaje, 

habilidades visoespaciales) [23]. Sin embargo, estos pacientes siguen manteniendo 

independencia en cuanto a la funcionalidad [23]. En etapas más avanzadas se basa en la 

presencia de demencia (deterioro en funcionalidad que no se explican por delirio o 

problemas psiquiátricos, deterioro cognitivo basado en valoraciones neuropsicológicas, 

alteraciones en el comportamiento), y una progresión de los síntomas durante meses o 

años [24]. Además, los principales síntomas cognitivos son el deterioro en el aprendizaje 

y recuerdo de la información aprendida recientemente en el caso de la variante amnésica, 

o bien alteraciones en el lenguaje, visoespaciales o en funciones ejecutivas en la variante 

no amnésica [24].  

El NIA-AA publicó en 2018 una actualización de las guías diagnósticas para la EA de 

2011 basadas en criterios clínicos encaminada a una definición más biológica de la 

enfermedad basada en biomarcadores [25]. Los biomarcadores se agrupan según la 

clasificación ATN (A: depósito de β-amiloide; T: Tau patológica; N: neurodegeneración). 

Este sistema de clasificación ATN incluye biomarcadores de imagen y líquido 

cefalorraquídeo (LCR) según el proceso patológico que cada uno mide. En cuanto a las 

medidas de depósito de amiloide (A) se encuentran los biomarcadores en LCR Aβ42 y el 
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ratio Aβ42/Aβ40 además de Tomografía por Emisión de Positrones (PET) amiloide. En 

cuanto a los depósitos de ovillos neurofibrilares o Tau patológica (T), se define por los 

niveles de p-Tau en LCR o PET Tau. Por último, la definición de neurodegeneración o 

daño neuronal (N) incluye resonancia magnética nuclear (RMN) estructural, PET-FDG o 

niveles de Tau total en LCR (t-Tau). En estas guías se remarca la flexibilidad del sistema 

para la incorporación de nuevos biomarcadores dentro de los grupos ATN y también 

nuevas categorías.  

Tratamientos 

Actualmente, los tratamientos frente a la EA únicamente consiguen reducir la 

sintomatología a nivel cognitivo y funcional. Los fármacos más extendidos para la EA 

son los inhibidores de la acetilcolinesterasa (donepezilo (Aricept™), rivastigmina 

(Exelon™), y galantamina (Razadyne™)) y antagonistas del receptor N-metil-D-

aspartato (memantine (Namenda™)) [26]. En los últimos años se están desarrollando 

nuevos potenciales tratamientos que pueden dividirse en dos tipos: i) los dirigidos a actuar 

sobre la sintomatología de la enfermedad (cognición, agitación, agresividad, etc) y ii) 

tratamientos modificadores de la enfermedad [26]. Estos últimos se dirigen a diferentes 

dianas entre las que destacan los tratamientos anti-amiloide, encaminados 

específicamente a reducir la placa amiloide, los tratamientos anti-Tau dirigidos a reducir 

los ovillos neurofibrilares y los dirigidos a reducir o regular inflamación, metabolismo, 

bioenergética, plasticidad sináptica y neuroprotección o antioxidantes entre otros 

[22,26,27]. Algunos de estos tratamientos han mostrado una reducción en las placas 

amiloides aunque esto sólo se traduce en una reducción moderada en el deterioro 

cognitivo producido por la enfermedad [28]. En general, los tratamientos que se 

encuentran en investigación clínica tienen una alta tasa de fracaso que podría ser 

consecuencia de la complejidad de la enfermedad y la falta de una visión completa de los 

mecanismos fisiopatológicos implicados y la interacción entre ellos [26]. Por otro lado, 

cabe destacar que la mayoría de los ensayos llevados a cabo actualmente se dirigen a 

pacientes en etapas tempranas y algunos en etapas moderadas [26], por lo que es relevante 

obtener un diagnóstico precoz para poder acceder a los tratamientos en las etapas 

tempranas en las que muestran efectividad [27].  
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Estrés oxidativo y Enfermedad de Alzheimer 

El estrés oxidativo juega un papel importante en el desarrollo de las enfermedades 

neurodegenerativas [29]. En circunstancias normales, existe en el organismo un equilibrio 

entre sustancias oxidantes y antioxidantes que permite al organismo realizar sus funciones 

metabólicas y de señalización necesarias [30]. Sin embargo, cuando los sistemas 

antioxidantes no son capaces de compensar el nivel de oxidantes se desencadena un 

desequilibrio conocido como estrés oxidativo [30]. Cuando este desequilibrio ocurre 

existe un aumento en el estrés celular dando lugar en última instancia a procesos de 

muerte celular y apoptosis, necrosis o autofagia [31].  

Específicamente, el estrés oxidativo mantiene una relación bidireccional con la cascada 

amiloide, por un lado el estrés oxidativo favorece la vía amiloidogénica de procesamiento 

de APP aumentando la producción del péptido tóxico Aβ42, y por otro lado, las placas 

amiloides favorecen el aumento de estrés oxidativo llevando a la muerte celular [32,33]. 

De forma similar, el estrés oxidativo interacciona con las quinasas encargadas de la 

fosforilación de Tau y a su vez los ovillos neurofibrilares producen un aumento de 

especies reactivas de oxígeno (ROS) [32].  

El ambiente oxidante genera daño en biomoléculas celulares como proteínas, ADN y 

lípidos [34]. Compuestos derivados de este proceso pueden ser detectados en muestras 

periféricas como sangre u orina sirviendo como una aproximación al estado oxidativo del 

organismo [35]. Específicamente, los biomarcadores de estrés oxidativo más utilizados 

son proteínas carboniladas, nitrotirosina, productos de oxidación avanzada de proteínas 

(ej. Cloro-tirosina) como derivados de la oxidación de proteínas; 7,8-dihydroxy-8-oxo-

2′-deoxyguanosine (8oxodG), como derivados de la oxidación de ADN; y 

malondialdehído (MDA), 4-hidroxi-2-nonenal (HNE) e isoprostanos como derivados de 

la oxidación lipídica [36].  

El cerebro es un órgano con una gran actividad metabólica, alto consumo de oxígeno y 

alto contenido en ácidos grasos poliinsaturados que lo hacen susceptible al daño oxidativo 

[37]. Concretamente, la oxidación de lípidos podría tener un papel importante en el 

desarrollo de enfermedades neurodegenerativas y específicamente en la EA [38]. De 

hecho, estudios previos han encontrado co-localización de productos de la oxidación de 
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lípidos con placas amiloides evidenciando la relación entre el estrés oxidativo y los lípidos 

con el desarrollo de los mecanismos patológicos de la EA [39]. 

Los lípidos pueden ser oxidados por dos vías independientes (enzimática y no enzimática 

o por radicales libres) [40]. En esta tesis nos centramos en los compuestos derivados de 

la oxidación de tres ácidos grasos polinsaturados (PUFA): ácido araquidónico (AA), ácido 

docosahexanoico (DHA) y ácido adrénico (AdA). En cuanto al AA su oxidación da lugar 

a dos familias de compuestos: i) isoprostanos e isofuranos como (15(R)-15-F2t-IsoP; 2,3-

dinnor-15-epi-15-F2t-IsoP; 15-keto-15-E2t-IsoP; 15-keto-15-F2t-IsoP; 15-E2t-IsoP;15-F2t-

IsoP; 5-F2t-IsoP), originándose los segundos bajo unas condiciones con más tensión de 

oxígeno, y ii) prostaglandinas (PGE2; PGF2α; 1a,1b-dihomo- PGF2α) [41]. EL AA se 

encuentra en una gran cantidad en el cerebro formando parte de las membranas celulares 

[42,43]. Por otro lado, la oxidación del DHA localizado principalmente en la materia gris 

del cerebro, y del AdA localizado principalmente en la materia blanca del cerebro, dan 

lugar a los neuroprostanos (10-epi-10-F4t-NeuroP; 14(RS)-14-F4t-NeuroP; 4(RS)-F4t-

NeuroP) y dihomo-isoprotanos (17-epi-17-F2t-dihomo-IsoP; 17-F2t-dihomo-IsoP; ent-

7(RS)-7-F2t-dihomo-IsoP; 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF; 7(RS)-ST-Δ8-11-

dihomo-IsoF), respectivamente [43].  

Análisis ómicos y Enfermedad de Alzheimer 

Otra herramienta de gran utilidad en el estudio de enfermedades complejas como la EA 

son los análisis ómicos en muestras biológicas, que proporcionan información acerca de 

las vías patológicas implicadas, así como generando nuevos potenciales biomarcadores y 

dianas terapéuticas [44,45]. Este tipo de análisis implican un tratamiento previo de la 

muestra, así como un procesado e interpretación posterior de los resultados [46]. En esta 

tesis centramos el estudio ómico en análisis metabolómico, lipidómico y epigenómico.  

Metabolómica en EA 

La metabolómica permite caracterizar el perfil de metabolitos en cualquier tipo de 

muestras como sangre o LCR, siendo especialmente útil en la detección de potenciales 

biomarcadores dada su capacidad para detectar pequeños cambios y para el estudio de 

mecanismos fisiológicos y patológicos [47]. Los estudios metabolómicos pueden 

enfocarse desde un análisis no dirigido, que permite una visión global; y un análisis 
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dirigido, que permite validar y confirmar los resultados obtenidos con los métodos no 

dirigidos [48]. Una de las técnicas analíticas más utilizadas es la espectrometría de masas 

(MS), que se caracteriza por su elevada sensibilidad y especificidad [49] 

Los estudios metabolómicos dirigidos y no dirigidos han permitido identificar 

biomarcadores para la EA en fluidos biológicos como LCR, plasma u orina [50–52] 

postulando esta técnica como una herramienta útil en la búsqueda de nuevos 

biomarcadores.   

Lipidómica en EA 

La lipidómica consiste en el estudio del perfil lipídico en una determinada muestra 

biológica.  

El cerebro tiene una alta composición lipídica,  por ello tiene gran interés el estudio 

lipidómico en pacientes con EA, evidenciando la desregulación de esta familia de 

biomoléculas tanto en diferentes áreas cerebrales como en otros fluidos biológicos [53]. 

Además, estos metabolitos presentan una potencial utilidad como fuente de 

biomarcadores diagnósticos específicos de la enfermedad [53].  

Epigenómica en EA 

La epigenómica se encarga del estudio de la regulación de genes siendo las vías más 

estudiadas la metilación de ácido desoxirribonucleico (DNA), las modificaciones de 

histonas y los áidos ribonucleico (RNAs) no codificantes [54]. Dentro de estos últimos, 

se encuentran los microRNAs (miRNA) que son secuencias de RNA de entre 19 y 25 

nucleótidos implicados en la regulación de genes tanto positiva como negativamente [55]. 

Por tanto, la epigenética guarda una estrecha relación con los procesos patológicos siendo 

de gran utilidad en la compresión de los mecanismos fisiopatológicos así como 

proporcionando potenciales biomarcadores [56].  

En la EA diversos miRNAs han mostrado niveles diferenciales en comparación con 

sujetos sin la enfermedad, tanto en cerebro como en fluidos biológicos (LCR, derivados 

sanguíneos [57]. Las metilaciones de DNA, modificaciones de histonas y los RNA no 

codificantes están implicados en rutas relacionadas con la enfermedad y sus factores de 

riesgo [58]. Por tanto, pueden constituir una importante fuente de biomarcadores.  
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Integración de datos experimentales de diferente naturaleza  

La integración de resultados de diferentes técnicas ómicas permite la identificación de 

vías implicadas en la EA permitiendo una caracterización más completa de los pacientes 

con EA [59]. Esto puede ayudar a una descripción más exhaustiva de la heterogeneidad 

de los pacientes con EA y sus implicaciones clínicas con el fin de obtener un diagnóstico 

temprano, generalizado, fiable y fácil acceso a tratamientos personalizados [60]. 

Estudios previos han integrado datos de diferente naturaleza con el objetivo común de 

profundizar en las vías patológicas de la EA. Específicamente, la integración de análisis 

metabolómicos y genómicos permitió detectar metabolitos alterados y sus reguladores 

[61]. Además, la visión conjunta incluyendo metabolómica y genómica ayudan a la 

compresión de los mecanismos subyacentes que contribuyen al riesgo de EA [62]. Por 

tanto, estos estudios permiten una visión global y más completa de la enfermedad. 
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2. Hipótesis y Objetivos 

La hipótesis de la presente Tesis Doctoral es que los compuestos de peroxidación lipídica 

y otros obtenidos mediante análisis ómicos (metabolómica, lipidómica, epigenómica) en 

muestras mínimamente invasivas, pueden ser potenciales biomarcadores para el 

diagnóstico temprano de la EA, además de proporcionar información sobre las vías 

metabólicas implicadas en el desarrollo de la enfermedad.  

El objetivo principal de la tesis fue estudiar los compuestos derivados de peroxidación 

lipídica como potenciales biomarcadores diagnósticos específicos de la EA y su relación 

con las variables clínicas de la enfermedad, e identificar nuevos biomarcadores y vías 

patológicas alteradas en las primeras etapas de la EA mediante una aproximación 

multiómica (metabolómica, lipidómica, epigenómica). 

Los objetivos específicos fueron:  

i) Identificar potenciales biomarcadores basados en peroxidación lipídica para 

la detección de la EA en muestras de orina (Capítulo 1) y plasma (Capítulo 

2).  

ii) Desarrollo de modelos diagnóstico de la EA basados en biomarcadores de 

peroxidación lipídica (Capítulos 1, 2 y 5).   

iii) Seleccionar el mejor tipo de muestra para el diagnóstico de la EA a partir de 

los niveles de los compuestos de peroxidación lipídica (Capítulo 3).  

iv) Analizar la utilidad de los potenciales biomarcadores (compuestos de 

peroxidación lipídica) para el diagnóstico temprano o preclínico de la EA 

(Capítulo 6).  

v) Establecer la relación entre los compuestos de peroxidación lipídica y las 

variables clínicas de la EA: atrofia cerebral mediante escalas visuales 

(Capítulo 7), biomarcadores estándar en Líquido cefalorraquídeo (LCR) y 

deterioro cognitivo mediante evaluaciones neuropsicológicas (Capítulos 2, 

4 y 6) 

vi) Búsqueda de nuevos biomarcadores plasmáticos para el diagnóstico de la 

EA en plasma mediante técnicas ómicas: metabolómica (Capítulos 8 y 9), 

lipidómica (Capítulo 10), epigenómica (Capítulo 11). 
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vii) Estudio de potenciales vías metabólicas alteradas en la EA mediante el 

análisis ómico (Capítulos 10 y 11) y la integración de diferentes resultados 

ómicos (Capítulo 12).  
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3. Metodología 

Participantes y obtención de muestras 

Los participantes incluidos en estos estudios son pacientes de la Unidad de Neurología 

del Hospital Universitario La Fe (Valencia). El diagnóstico y clasificación de estos 

pacientes en grupos de estudio se realiza siguiendo los criterios del NIA-AA teniendo en 

cuenta la valoración neuropsicológica (Clinical Dementia Rating (CDR), Mini-mental 

State Examination (MMSE), Repeatable Battery for the Assessment of 

Neuropsychological Status (RBANS), Functional Activities Questionnaire (FAQ)), 

niveles de biomarcadores (Aβ42, t-Tau, p-Tau181) en LCR o PET amiloide, y cambios 

estructurales cerebrales mediante resonancia magnética nuclear (RMN). De esta forma 

los participantes se clasifican en los siguientes grupos: i) control, presentan niveles 

normales de biomarcadores en LCR y no tienen alteración cognitiva; ii) EA preclínica, 

presentan niveles alterados de biomarcadores en LCR pero no tienen alteración cognitiva; 

iii) DCL debido a EA, presentan niveles alterados de biomarcadores en LCR y alteración 

cognitiva, sin perder la capacidad para la realización de las actividades de la vida diaria; 

iv) DCL no debido a EA, presentan niveles normales de biomarcadores en LCR y 

alteración cognitiva. El grupo “EA” o “caso” que aparece en algunos capítulos incluye 

pacientes con DCL-EA o demencia leve debida a EA y el grupo EA temprana incluye 

pacientes con DCL-EA y EA preclínica. Además el grupo control está referido en algunos 

capítulos como controles sanos o sanos. 

Determinación de biomarcadores 

En cuanto a los biomarcadores analizados en los diferentes estudios que componen la 

presente tesis, en la primera sección se determinan biomarcadores procedentes de la 

peroxidación lipídica y en la segunda sección biomarcadores de distinta naturaleza 

mediante técnicas ómicas (metabolómica, lipidómica, epigenómica) 

En cuanto a los biomarcadores de peroxidación lipídica, se determinaron en muestras de 

orina, plasma y LCR mediante un método analítico basado en cromatografía líquida de 

alta resolución acoplado a espectrometría de masas (UPLC-MS/MS). Previamente se 

realizó un tratamiento a las muestras, diferente para cada matriz biológica, que en general 

incluía una etapa de purificación y pre-concentración.  
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En cuanto a las técnicas ómicas en muestras de plasma se realizaron estudios de 

metabolómica y lipidómica mediante los métodos validados de la Unidad Analítica del 

Instituto de Investigación Sanitaria La Fe (IIS LaFe) basados en espectrometría de masas; 

y epigenómica mediante secuenciación masiva. Previamente al análisis metabolómico y 

lipidómico se realizó una etapa de precipitación de proteínas y para los estudios 

epigenómicos se requirió de una etapa de extracción de RNA. Posteriormente, en todas 

las técnicas se realizó un pre-procesamiento de datos y los controles de calidad 

pertinentes.  

Análisis estadísticos 

Los análisis estadísticos realizados fueron por un lado univariantes, incluyendo el estudio 

de diferencias entre grupos mediante Mann-Whitney o Kruskal-Wallis para las variables 

numéricas y Chi-Cuadrado para las variables categóricas, y el estudio de correlaciones 

mediante el Test de Correlación de Pearson.  

Por otro lado, se realizaron análisis multivariantes para estudiar la capacidad diagnóstica 

de paneles de biomarcadores y la selección de variables influyentes en la discriminación 

entre los grupos de estudio. Los principales modelos utilizados fueron: i) Regresión por 

mínimos cuadrados parciales (PLS), ii) Regresión lineal Elastic Net, iii) Máquinas de 

vectores de soporte (SVM), iv)  Redes neuronales artificiales (ANN), y v) Random Forest.  

Se utilizaron los softwares R studio y SPSS y se consideró el p valor  <0.05 para establecer 

la significación estadística.  
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4. Resultados 

La tesis está dividida en dos secciones, ambas centradas en los biomarcadores 

diagnósticos para la EA. La primera parte incluye 7 capítulos en los que se evalúa la 

capacidad de los compuestos de peroxidación lipídica en orina y plasma, en el diagnóstico 

de la EA. La segunda parte incluye los capítulos del 8 al 12 dedicados al estudio de la 

utilidad diagnóstica de los análisis ómicos (metabolómica, lipidómica, epigenómica) en 

la EA. A continuación, se detallan los principales resultados obtenidos. 

En los dos primeros capítulos se realizaron análisis en pacientes con EA temprana (DCL-

EA y demencia leve debida a EA) y controles en muestras de plasma y orina. En las 

muestras de orina (capítulo 1), se encontraron algunos biomarcadores diferencialmente 

expresados entre los grupos caso (n=70) y control (n=29). Los compuestos 5-F2t-IsoP, 

2,3-dinor-15-epi-15-F2t-IsoP, 15-E2t-IsoP, PGE2, PGF2α, 10-epi-10-F4t-NeuroP, 4(RS)-4-

F4t-NeuroP, ent-7(RS)-7-F2t-dihomo-IsoP) mostraron niveles elevados en los pacientes 

con EA con respecto a los controles, mientras que 15-keto-15-E2t-IsoP, 15-keto-15-F2t-

IsoP presentaban niveles más bajos en el grupo con EA. Con estos resultados, se 

desarrolló un modelo de regresión lineal (Elastic Net) que seleccionó 6 variables (15(R)-

15-F2t-IsoP, 15-E2t-IsoP, PGF2α, 4(RS)-F4t-NeuroP, 14(RS)-14-F4t-NeuroP, Ent-7(RS)-7-

F2t-dihomo-IsoP) además de género y edad. La exactitud del modelo fue de 0.682. En 

paralelo se desarrolló un modelo basado en Random Forest que seleccionó las mismas 

variables con una exactitud de 0.71. Cabe destacar en el modelo de Elastic Net que para 

poder ser útil como herramienta de cribado y obtener una buena sensibilidad se debe 

sacrificar la especificidad.  

En las muestras de plasma (capítulo 2) se encontraron algunos de los biomarcadores 

diferencialmente expresados entre los grupos caso (pacientes con EA) y control. Los 

compuestos 15(R)-15-F2t-IsoP, 15-keto-15-E2t-IsoP, 15-keto-15-F2t-IsoP, 15-E2t-IsoP, 

4(RS)-F4t-NeuroP and ent-7(RS)-7-F2t-dihomo-IsoP mostraron niveles elevados en el 

grupo caso con respecto a los controles, mientras que PGF2α, 5-F2t-IsoP, 7(RS)-ST-Δ8–11-

dihomo-IsoF presentaban niveles más bajos en el grupo de EA. Con estos resultados, se 

desarrolló un modelo de regresión lineal (Elastic Net) que seleccionó 6 variables 15-keto-

15-F2t-IsoP, 4(RS)-4-F4t-NeuroP, 1a,1b-dihomo-PGF2α, ent-7(RS)-7-F2t-dihomo-IsoP, 17-

epi-17-F2t-dihomo-IsoP), además de género y edad. La exactitud del modelo fue de 0.88 
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(IC 95%, 0.82-0.95) y el área bajo la curva- Característica Operativa del Receptor (AUC-

ROC) de validación de 0.817. 

En el capítulo 3 nos planteamos comparar la capacidad diagnóstica de los paneles de 

biomarcadores determinados en ambas matrices (plasma y orina) en la diferenciación 

entre controles sanos y pacientes con DCL-EA. Para ello, se desarrollaron modelos 

estadísticos basados en ANN, SVM y PLS. Los resultados obtenidos fueron los 

siguientes: en orina (ANN AUC: 0.839 (IC 95%, 0.746–0.933), PLS AUC: 0.653 (IC 

95%, 0.526–0.780), SVM AUC: 0.644 (IC 95%, 0.539–0.749) con función polinomial y 

0.659 (IC 95%, 0.558–0.759) con función radial); en plasma: (ANN AUC: 0.882 (IC 95%, 

0.814–0.949), PLS AUC 0.765 (CI 95%, 0.633–0.868) y SVM AUC: 0.817 (IC 95%, 

0.712–0.922) con función polinomial y 0.827 (IC 95%, 0.739–0.915) con función radial. 

En general, los modelos basados en redes neuronales fueron los que presentaron mejores 

índices diagnósticos y los modelos basados en biomarcadores en plasma presentaron 

mayor exactitud que los de orina. 

En el capítulo 4, se estudió la relación de los niveles de los compuestos peroxidación 

lipídica entre muestras de LCR y plasma para valorar su posible procedencia cerebro-

específica. Las correlaciones entre estas dos matrices no fueron satisfactorias. 

Únicamente 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF mostró una correlación significativa 

entre las dos matrices (CCP 0.248, p = 0.031). Analizando por separado los grupos de 

participantes (EA y no EA) con el fin de evaluar la influencia de la alteración en la barrera 

hematoencefálica, se obtuvieron correlaciones significativas entre las dos matrices para 

15(R)-15-F2t-IsoP (CCP = 0.388, p = 0.024), 15-keto-15-F2t-IsoP (CCP = 0.360, p = 0.037) 

y 5-F2t-IsoP (CCP = 0.345, p = 0.046) en el grupo no EA y para 17-F2t-dihomo-IsoP (CCP 

= 0.399, p = 0.009), 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF (CCP = 0.345, p = 0.045) en 

el grupo EA. A pesar de no encontrarse en general una buena relación entre las dos 

matrices, sí se encontraron algunas relaciones con los biomarcadores propios de la EA y 

el estado cognitivo. De hecho, los niveles de Aβ42 en LCR mostraron correlación 

negativa significativa con los niveles en LCR de 7(RS)-ST-Δ8-11-dihomo-IsoF, 5-F2t-IsoP, 

neurofuranos e isofuranos totales. Además, p-Tau181 en LCR mostró correlación 

negativa con PGE2 en LCR. En cuanto al estado cognitivo, RBANS y especialmente su 

dominio viso/espacial mostró correlación con los niveles de 15-F2t-IsoP, Ent-7(RS)-F2t-
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dihomo-IsoP and 15-keto-15-F2t-IsoP LCR. Además, 15-keto-15-F2t-IsoP también 

correlacionaba con el dominio de atención de RBANS y MMSE, y 15-keto-15-E2t-IsoP 

correlacionaba con FAQ y CDR. 

Hasta el momento, habíamos valorado la potencial capacidad diagnóstica de este panel 

de biomarcadores de EA frente a controles con mínimo deterioro cognitivo, pero tratando 

de acercarnos más a la práctica clínica, en el capítulo 5 se evaluó la capacidad diagnóstica 

específica de los compuestos de peroxidación lipídica en muestras de plasma para la EA.  

Para ello, se evaluaron las diferencias entre pacientes con EA y pacientes sin EA 

(controles y pacientes con DCL por otras causas distintas a EA). En este caso, los 

compuestos 15-E2t-IsoP, PGF2α, 4(RS)-F4t-NeuroP, 10-epi-10-F4t-NeuroP e IsoP totales 

presentaron diferencias entre los grupos de estudio (EA (n = 138), no EA (DCL y otras 

demencias no debidas a EA) (n = 70), control sano (n = 50)). Además, se desarrolló un 

modelo diagnóstico en 2 etapas basado en regresión lineal. La primera etapa consistía en 

una evaluación neuropsicológica (CDR, RBANS.MR) que diferenciaba ente controles y 

casos  (incluyendo grupos de pacientes con EA y sin EA) con un AUC de 0.99. La segunda 

etapa  incluía las determinaciones en plasma de 10-epi-10-F4t-NeuroP e isoprostanos 

totales (IsoPs) y diferenciaba pacientes con EA frente a pacientes no EA. Se obtuvo un 

AUC global de 0.74 siendo de 0.99 para la primera etapa y 0.79 en la segunda. 

En el capítulo 6, se valoró la capacidad de estos compuestos de peroxidación lipídica para 

la detección de EA en sus etapas más iniciales, es decir, en pacientes preclínicos. Ninguno 

de los compuestos mostró diferencias entre los pacientes con EA preclínica y controles 

de forma individual. Solo se observaron pequeñas diferencias no significativas con 

niveles en general, más bajos en EA. Sin embargo, algunos de estos potenciales 

biomarcadores sí mostraron relación con el estado cognitivo (RBANS.MR, CDR) y con 

los biomarcadores estándar de EA en LCR. Específicamente RBANS.MR correlacionaba 

con 2,3-dinor-15-epi-15-F2t-IsoP (r = -0.314, p = 0.040), 15-E2t-IsoP (r = -0.432, p = 

0.025), 5-F2t-IsoP (r = -0.335, p = 0.028), 15-F2t-IsoP (r = -0.390, p = 0.10), and PGF2α (r 

= -0.342, p = 0.025) y CDR con 15-epi-15-F2t-IsoP (r = 0.329, p = 0.031), PGE2 (r = 

0.329, p = 0.031), 2,3-dinor-15-epi-15-F2t-IsoP (r = 0.316, p = 0.039), 15-keto-15-E2t-

IsoP (r = 0.333, p = 0.029), 15-keto-15-F2t-IsoP (r = 0.319, p = 0.037), 15-E2t-IsoP (r = 

0.363, p = 0.017), and 4(RS)-4-F4t-NeuroP (r = 0.332, p = 0.030). Por otro lado, t-Tau en 
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LCR correlacionó significativamente con 15-F2t-IsoP (r = 0.397, p = 0.008), and PGF2 

(r = 0.339, p = 0.026), mientras que p-Tau lo hizo con 15-F2t-IsoP (0.401, p = 0.008), and 

PGF2α (r = 0.329, p = 0.031). Por tanto, a pesar de no mostrar diferencias entre los grupos, 

estos compuestos mostraron cierta relación con la EA en fase preclínica. Por tanto, se 

desarrolló un modelo estadístico multivariante basado en regresión logística Elastic Net, 

que incluía 10 compuestos  (15-epi-15-F2t-IsoP, PGE2, 15-keto-15-E2t-IsoP, 15-keto-15-

F2t-IsoP, 15-E2t-IsoP, PGF2α, 4(RS)-4-F4t-NeuroP, 1a,1b-dihomo-PGF2α, 10-epi-10-F4t-

NeuroP, 14(RS)-14-F4t-NeuroP) además de sexo y edad, obteniendo una AUC de 0.96 (IC 

95% 0.903-1) y una AUC de validación de 0.90 con una sensibilidad de 91% y una 

especificidad de 93 %. 

En el capítulo 7, se valoró la relación de los niveles de los compuestos de peroxidación 

lipídica en plasma con los resultados de RMN en EA, concretamente con la atrofia 

cerebral evaluada mediante escalas visuales. Algunos compuestos correlacionaban con 

las escalas visuales de atrofia temporal medial (MTA) y patología vascular Fazekas.  

Concretamente, se observó relación entre MTA en el lado derecho con neuroprostanos 

totales (r=0.242, p=0.010), 17-epi-17-F2t-dihomo-IsoP (r=0.223, p=0.018) y PGF2α 

(r=−0.259, p=0.006); MTA en el lado izquierdo con neuroprostanos (r=0.213, p=0.024), 

17-epi-17-F2t-dihomo-IsoP (r=0.214, p=0.024) y PGF2α (r=−0.305, p=0.001); suma de 

MTA con neuroprostanos (r=0.234, p=0.013), 17-epi-17-F2t-dihomo-IsoP (r=0.224, 

p=0.018) y PGF2α (PCC=−0.288, p=0.002); Fazekas con 17-F2t-dihomo-IsoP (r=0.215, 

p=0.023). 

En la segunda sección de la tesis se describen los estudios ómicos. En primer lugar, se 

realizó un estudio metabolómico (capítulo 8) en el que se compararon muestras de plasma 

de pacientes con DCL-EA y controles. El modelo de regresión basado en Elastic Net 

seleccionó 24 variables discriminantes en el modo de ionización positivo (con una AUC 

de 0.993) y 29 variables en el modo de ionización negativo (AUC 0.990). De esas 53 

variables seleccionadas, se identificaron 16 metabolitos como potenciales biomarcadores, 

relacionados con vías como neurotransmisión, metabolismo energético, de lípidos o 

aminoácidos. De ellas, 4 variables se identificaron con los patrones de fragmentación 

(MS/MS y todos los iones de fragmentación) (colina, rescinamina, soraphen A, Lyso 
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PE(20:0/0:0) o Lyso PE(0:0/20:0)). Finalmente, 1 variable, el metabolito colina, se 

confirmó con el patrón correspondiente.  

En el Capítulo 9, el análisis de los resultados metabolómicos mediante volcano plot y la 

regresión por PLS reveló un conjunto de variables principalmente relacionadas con el 

metabolismo lipídico que discriminaba entre pacientes con EA temprana (DCL-EA) y 

controles. Sin embargo, con el fin de explicar la amplia dispersión observada en el grupo 

de pacientes con EA en el gráfico de puntuaciones del PLS, se estudió la influencia del 

genotipo ApoE en la capacidad discriminante del modelo. Finalmente, se seleccionaron 8 

variables principalmente identificadas como glicerofosfolípidos que mostraban niveles 

inferiores en los pacientes portadores del alelo ε4. Entre ellas, el LysoPC (18:0) se 

confirmó con patrón y otras tres variables (LysoPC (18:0), LysoPE (0:0/22:1 (13Z) y 

cardiolipinas) fueron caracterizadas putativamente.  

Dado que los resultados obtenidos en los estudios metabolómicos revelaban un 

importante papel de los lípidos en la distinción entre pacientes con EA y controles, nos 

propusimos realizar un estudio lipidómico con el fin de estudiar las diferencias en el perfil 

lipídico plasmático entre individuos controles y con EA en etapas iniciales, además de 

identificar potenciales biomarcadores (Capítulo 10). En primer lugar, realizamos un 

análisis no dirigido con el que se estudiaron diferencias en cuanto a clases lipídicas entre 

controles, pacientes con EA preclínica y pacientes con DCL-EA. Las familias 

diacilgliceroles (DGs), lisofosfatidoletanolaminas (LPE), lisofosfatidilcolinas (LPC), 

monoacilgliceroles (MG), esfingomielinas (SM) mostraron diferencias entre los grupos. 

En general, los niveles de estas familias se encontraban elevados en los pacientes 

preclínicos y reducidos en el grupo DCL-EA. Por otro lado, los resultados obtenidos del 

análisis no dirigido se analizaron mediante volcano plot y modelo de regresión por PLS. 

Se identificaron variables discriminantes entre controles y DCL-EA (fosfocolina), y entre 

controles y pacientes con EA preclínica (pisumionoside, 1-O-Palmitoil-2-O-acetil-sn-

glycero-3-phosphorilcolina). A partir de estos resultados y los de estudios previos, se 

desarrolló el método analítico para cuantificar un panel de 10 lípidos de los que 

finalmente 4 pudieron ser cuantificados de forma satisfactoria en muestras de plasma 

(18:1 LPE, 18:0 LPC, 16:1 SM, 16:0 SM). Entre ellos, el LPE 18:1 mostró una AUC-
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ROC de 0.722 (95% IC, 0.595–0.848) discriminando EA (DCL y preclínico) frente a no 

EA (controles). 

En el capítulo 11, nos propusimos estudiar mecanismos regulatorios que pudiesen estar 

alterados en las etapas iniciales de la EA a través de los microRNAs (miRNA) que además 

podrían servir como biomarcadores plasmáticos. En primer lugar, realizamos 

secuenciación de RNA de tres grupos de estudio (DCL-EA, n = 19), EA preclínica (n = 

8) y controles (n = 19). A partir de estos resultados se seleccionó un panel de 11 miRNAs 

como potenciales biomarcadores discriminantes entre EA y no EA, de los que 8 fueron 

cuantificados satisfactoriamente mediante PCR cuantitativa. A pesar de que de forma 

individual no se observaron diferencias entre grupos para ninguno de ellos, de forma 

multivariante 3 miRNAs (hsa-miR-92a-3p, hsa-miR-486-5p, hsa-miR-29a-3p) mostraron 

tendencia a discriminar entre los tres grupos de estudio y 2 miRNAs (hsa-miR-92a-3p. 

hsa-miR-29a-3p) mostraron tendencia a discriminar entre pacientes con EA (DCL y 

preclínicos) y sin EA. Posteriormente, se estudiaron las potenciales vías que podrían estar 

reguladas por estos miRNAs y que podrían desempeñar un papel en la enfermedad 

mediante la base de datos miRDB. Primero, hsa-miR-92a-3p tiene como dianas genes 

implicados en la regulación de muerte celular o autofagia, proliferación celular y rutas de 

transporte de vesículas y transmisión sináptica. Segundo, hsa-miR-486-5p se relaciona 

con la señalización celular, funciones estructurales y transcripción, además de con el 

metabolismo de proteínas y lípidos. Tercero, hsa-miR-29a-3p podría regular las vías 

principales de proliferación celular y más específicamente diferenciación neuronal 

además de señalización, transcripción y función estructural.  

Finalmente, en el capítulo 12, combinando los resultados obtenidos en los análisis 

lipidómicos y epigenómicos se estudiaron las potenciales vías metabólicas alteradas en la 

enfermedad. Se desarrolló un modelo PLS incluyendo los resultados lipidómicos y 

epigenómicos (secuenciación de miRNAs) obtenidos de controles sanos (n=5) y pacientes 

con DLC-EA (n=22) y se seleccionaron 25 variables lipídicas y 25 miRNAs como las 

variables más discriminantes entre ambos grupos de participantes. Entre los lípidos se 

encontraban principalmente fosfatidiletanolaminas, lisofosfatidilcolinas, ceramidas, 

fosfatidilcolinas, triglicéridos, y familias de ácidos grasos de cadena larga. Muchos de 

estos lípidos mostraron correlación con los miRNAs seleccionados. De hecho, estos 
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miRNAs podrían regular genes implicados en vías del metabolismo de ácidos grasos, 

específicamente en la elongación de ácidos grasos de cadena muy larga. 
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5. Conclusiones  

-El estrés oxidativo y en concreto la peroxidación de lípidos parecen jugar un papel 

relevante en la EA desde las etapas más iniciales (preclínicos y DCL). Además, estas vías 

proporcionan biomarcadores diagnósticos para la enfermedad fácilmente accesible en 

muestras de plasma.  

-Se han definido modelos basados en los niveles de biomarcadores de peroxidación 

lipídica en plasma y la evaluación del estado cognitivo, siendo capaces de establecer un 

diagnóstico diferencial de EA frente a individuos con otras demencias con 

manifestaciones clínicas similares y sujetos sin deterioro cognitivo.   

-Además, estos biomarcadores se relacionan con la atrofia cerebral, el estado cognitivo 

de los pacientes y los biomarcadores estándar de la EA en LCR.  

-Las técnicas ómicas (metabolómica, lipidómica, epigenómica) son herramientas útiles 

para la búsqueda de nuevos biomarcadores, así como para el estudio de las vías 

patológicas alteradas en la EA.  

-El metabolismo de lípidos se encuentra alterado en la EA y el perfil lipídico podría 

ayudar al diagnóstico de la enfermedad.  

-El estudio integrado de biomarcadores de diferente naturaleza (lípidos, miRNAs) puede 

proporcionar información sobre las vías alteradas en la EA y por tanto proporcionar 

nuevas dianas terapéuticas.
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This PhD thesis is focused on the identification and determination of reliable and 

minimally invasive biomarkers for Alzheimer Disease (AD) diagnosis in its early stages, 

as well as to advance in the knowledge of the pathophysiological mechanisms involved 

in the course of the disease. 

AD is the most common cause of dementia and it generates a great social and economic 

impact. However, the lack of early accessible diagnosis biomarkers hinders the initiation 

of treatments and limits research into new therapies to cure or slow down the course of 

the disease. AD is a complex disease with multiple pathological pathways such as protein 

accumulation (amyloid β42 (Aβ42, hyperphosphorylated Tau (p-Tau)), but also 

pathophysiological pathways such as oxidative stress (OS), lipid dysregulation, 

dysregulation of the clearance machinery, etc. Therefore, this PhD thesis is divided into 

two parts, the first one dedicated to the studies of lipid peroxidation compounds as 

biomarkers of the disease and the second part dedicated to the omics studies 

(metabolomic, lipidomic, epigenomic) in patients with early AD to examine the pathways 

involved in early AD and to provide new potential diagnosis biomarkers. 

Regarding lipid peroxidation-derived compounds, they were measured in urine and 

plasma samples by a validated method on based ultra-performance liquid chromatography 

coupled to tandem mass spectrometry (UPLC-MS/MS). The developed diagnosis models 

showed discriminatory capacity between early AD and controls, especially for plasma 

samples. In addition, these compounds were able to discriminate controls from preclinical 

AD cases and AD from other dementias.  

In addition, omic analyses (metabolomics, lipidomics, epigenomics) were carried out in 

plasma samples from AD and non-AD cases. These analyses revealed the dysregulation 

of some metabolites (choline, rescinamine, soraphen A, Lyso PE(20:0/0:0), Lyso 

PE(0:0/20:0), lipids (LysoPC (18:0), LysoPE (0:0/22:1 (13Z)), cardiolipins, 

phosphocholine, 1-O-Palmitoil-2-O-acetil-sn-glycero-3-phosphorilcholine, 18:1 LPE, 

18:0 LPC, 16:1 SM, 16:0 SM) and miRNAs (hsa-miR-92a-3p, hsa-miR-486-5p, hsa-miR-

29a-3p). In fact, these miRNAs could be involved in fatty acids metabolism.  

The complete characterization of plasma biomarkers from AD patients with special 

attention on OS and lipid metabolism could help to obtain an early diagnosis and to define 
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the metabolic pathways altered in each individual allowing an early and personalized 

treatment.  
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1. Alzheimer Disease: pathophysiology, diagnosis and treatment. 

AD is the most common neurodegenerative disease being the cause of about 70% of 

dementia cases. In 2018, AD affected around 50 million people worldwide [1,2], and the 

incidence in developed countries is expected to continue increasing due to the rise in life 

expectancy, exceeding 150 million cases in 2050. AD has a major social and economic 

impact [3], due to factors such as medical costs, lack of productivity, reduced quality of 

life for patients and caregivers, and dependency. However, available treatments fail to 

cure or stop the disease, being mostly symptomatologic treatments [4]. Numerous clinical 

trials are currently underway with new drugs targeting different pathophysiological 

mechanisms potentially involved in the development of AD [4]. In general, these 

treatments are directed to the early stages of the disease, where they are expected to be 

more effective. Therefore, early AD diagnosis is crucial. Currently, the complexity and 

invasiveness of the diagnostic methods (biomarkers in cerebrospinal fluid) difficult its 

early detection. Therefore, it is necessary to identify reliable, early, and minimally 

invasive diagnostic biomarkers, as well as to advance in the knowledge of the 

pathophysiological mechanisms involved in the onset and development of the disease. 

Clinically, AD is characterized by progressive cognitive impairment affecting different 

domains such as episodic memory, verbal fluency, or executive function [5]. In most 

cases, it is a sporadic disease. In fact, AD familial cases which are mainly due to mutations 

in genes such as amyloid precursor protein (APP) and presenilins 1 and 2 (PS1) (PS2), 

do not reach 2%.[6]. However, among the risk factors for AD, it highlights the gene 

encoding Apolipoprotein E, specifically the Ɛ4 allele. In addition, there are several of 

lifestyle-related risk factors (hypercholesterolemia, diabetes, hypertension) that can be 

considered modifiable factors [7].  

1.1. Pathophysiological mechanisms 

At the pathophysiological level, AD is mainly characterized by two histopathological 

hallmarks: i) intracellular accumulations of phosphorylated Tau (p-Tau) in the form of 

neurofibrillary tangles, and ii) extracellular accumulations of abnormally folded amyloid 

β (Aβ) protein forming senile plaques mainly in the medial temporal lobe and neocortical 

structures that eventually result in loss of synapses[4]. In general, the main hypotheses 
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about the origin of the disease are the amyloid cascade, Tau hyperphosphorylation, and 

cholinergic misfunction [4]. Figure 1 describes the mechanisms involved in AD.  

Figure 1. Alzheimer Disease pathophysiological mechanisms. (a) Describes the amyloid 

hypothesis. Amyloid precursor protein (transmembrane protein) can be cleaved by α-

secretase and γ-secretase generating soluble peptides. However, when APP is cleaved by 

the enzymes β-secretase and γ-secretase (as it occurs in AD) it can generate amyloid  β 

(Aβ) peptides such as Aβ42, an insoluble peptide with a tendency to form fibrils and 

finally amyloid plaques. (b) Describes the Tau pathology. The Tau protein is found 

forming part of the microtubules, stabilizing them. When it is hyperphosphorylated 

microtubules can be destabilized and hyperfosforilated Tau (p-Tau) can form first 

oligomers and fibrils and, finally neurofibrillary tangles. (c) The cholinergic hypothesis. 

Cholinergic neurons use acetylcholine (Ach) as a neurotransmitter. When the neuron 

receives stimulation (action potential), Ach is released into the synaptic space. This Ach 

is formed from choline and Acetyl-CoA by the enzyme Choline acetyltransferase. Ach in 

the synaptic space can be captured by muscarinic and nicotinic receptors, generating 

stimulatory or inhibitory responses. If Ach is not bound to any receptor, the enzyme 

acetylcholinesterase forms again choline and acetyl-CoA, which is taken again by the 

presynaptic neuron. In AD it occurs a reduction in these neurotransmission pathway 

activity (d) In AD, these mechanisms cause senile plaques, neurofibrillary tangles, and 

the loss of synaptic function. In addition, this generates an oxidizing and pro-

inflammatory environment that positively feedback the disease’s pathophysiological 

mechanisms. Created with BioRender.com. 
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The amyloid hypothesis. In 1992, the central role of the Aβ protein as the causative agent 

of AD was first hypothesized [8]. It described how specific processing of the amyloid 

precursor protein (APP) generates a precipitating peptide that leads to cell death and 

promotes the accumulation of Tau in neurofibrillary tangles [8]. APP is a transmembrane 

protein that can be cleaved by two pathways: i) the "normal" or non-pathological one, in 

which the enzyme α-secretase and subsequently the γ-secretase acts giving rise to a 

soluble extracellular fragment; and ii) the amyloidogenic one, in which the enzyme β-

secretase (BACE) and subsequently the enzyme γ-secretase acts producing peptides of 

different lengths, including Aβ42, an insoluble peptide that forms precipitates [9]. 

Supporting this theory are genetic risk factors. Actually, ApoE influences Aβ42 clearance 

[10], and mutations in the PS1, PS2, and BACE genes contribute to the development of 

the disease. 

Increased production of this peptide (Aβ42) is considered toxic and a reduction in its 

clearance mechanisms results in the formation of oligomers affecting synaptic function, 

triggering an inflammatory response and increasing oxidative stress (OS), and finally the 

formation of plaques [11]. This inflammatory response contributes to the phosphorylation 

of Tau, which also plays a relevant role in the disease [11]. 

Tau hypothesis. Some studies suggest that the amyloid cascade is the first mechanism that 

appears and the toxicity associated results in the hyperphosphorylation of Tau leading to 

an increase in cellular toxicity and neuronal loss. However, other theories argue that Tau 

pathology is the trigger of pathological mechanisms [12,13].  

Tau is an intracellular cytoskeleton protein with functions of transport of molecules such 

as neurotransmitters in neurons [13]. Under physiological conditions, this protein 

undergoes phosphorylations at various residues; however, in pathological conditions such 

as AD, hyperphosphorylation occurs [13]. This hyperphosphorylation increases toxicity 

but also facilitates the formation of Tau protein aggregates or neurofibrillary tangles 

(NFT) leading to cell death and thus to neuronal loss [13].  

Cholinergic hypothesis. Acetylcholine (ACh) is a neurotransmitter generated in the 

cytoplasm of cholinergic neurons from choline and acetyl-CoA by the action of the 

enzyme choline acetyltransferase. This neurotransmitter is transported by vesicles to the 

synaptic space after depolarization of the presynaptic neuron. In the postsynaptic neuron, 
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it can bind to muscarinic or nicotinic receptors producing an inhibitory or activatory 

response. In the synaptic space, it is hydrolyzed by acetylcholinesterase if it has not bound 

to any receptor [14].  

Acetylcholine (ACh) is a neurotransmitter involved in cognitive processes such as 

learning or memory and cholinergic neurons show a specific degeneration in AD [14]. 

Specifically, a reduction in the activity of the choline acetyltransferase enzyme has been 

observed under AD pathological conditions [11]. In fact, current conventional treatments 

for AD are based on increasing the cholinergic signal to compensate for the Ach reduction 

by maintaining the neurotransmitter for a longer time in the synaptic space [15].  

Despite discrepancies in the order of appearance of these mechanisms in AD, all of them 

coexist once the pathology is established, along with other mechanisms such as 

neuroinflammation, activation of microglia and astrocytes, OS, alterations in the 

metabolism of lipids, proteins or DNA, neurotransmission, etc [4,16–20]. 

Both amyloid and Tau pathologies usually spread from medial temporal lobe grey matter 

to the rest of cortical grey matter in a relatively predictable pattern [63]. Initial 

involvement in medial temporal lobe structures that are involved in the correct episodic 

memory, explains the memory impairment as the first disease symptom. Nevertheless, 

variations in pathology spreading would explain the different damage degrees in the brain 

cortex among patients, involving in some cases also language disturbance, frontal lobe 

dysfunction, or apraxia syndromes. Moreover, advanced-age patients show concurrent 

brain comorbidities (e.g. depression, psychiatric disorders…).  

1.2. Diagnosis  

In clinical practice, the diagnosis is mainly based on clinical symptoms. In this sense, AD 

is a highly heterogeneous disease [21]. It is a progressive disease that can evolve over 15-

25 years from the onset of pathophysiological mechanisms to the severe clinical 

manifestations [22]. In the AD continuum, the following stages can be distinguished: i) 

Preclinical AD, characterized by the absence of clinical symptoms although impairment 

of the CSF AD biomarkers is detected; ii) mild cognitive impairment (MCI), 

characterized by the presence of initial symptoms but maintaining functionality in daily 

living activities and CSF AD biomarkers alteration; and iii) dementia, characterized by 
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more advanced symptoms with alteration of activities of daily living activities [5]. The 

clinical guidelines defined by the NIA-AA base the diagnosis at the stage of MCI on the 

detection of a change in cognition by the patient, an observer, or an expert clinician [23]. 

This impairment occurs in one or more cognitive domains (memory, executive function, 

attention, language, visuospatial skills) [23], but maintaining patients’ functional 

independence [23]. In more advanced stages, the diagnosis is based on the presence of 

dementia (impairment in functionality not explained by delirium or psychiatric problems, 

cognitive impairment based on neuropsychological assessments, and behavioral 

disturbances), and a progression of symptoms over months or years [24]. The main 

cognitive symptoms are impairment in learning and recall of recently learned information 

in the case of the AD amnestic variant, or alterations in language, visuospatial, or 

executive functions in the non-amnestic variant [24].  

The NIA-AA published in 2018 an update to the 2011 diagnostic guidelines for AD. The 

new criteria changed from a clinical diagnosis to a biological definition based on 

biomarkers [25]. Biomarkers were grouped according to the ATN classification (A: Aβ 

deposition; T: pathological Tau; N: neurodegeneration). This ATN classification system 

includes imaging and CSF biomarkers. For amyloid (A) deposition measures are CSF 

biomarkers (Aβ42, Aβ42/Aβ40) and amyloid Positron Emission Tomography (PET). 

Neurofibrillary tangle deposits or pathological Tau (T) are defined by CSF p-Tau levels 

or PET Tau. Finally, the definition of neurodegeneration or neuronal damage (N) includes 

structural magnetic resonance imaging (MRI), FDG-PET or CSF biomarkers t-Tau and 

NfL levels. These guidelines emphasize the flexibility of the system for the incorporation 

of new biomarkers within the ATN groups and also new categories. 

1.3. Treatments  

Currently, treatments are only able to reduce symptoms at cognitive and functional level. 

The most widespread drugs for AD are acetylcholinesterase inhibitors (donepezil 

(Aricept™), rivastigmine (Exelon™), and galantamine (Razadyne™)) and N-methyl-D-

aspartate receptor antagonists (memantine (Namenda™)) [26]. The new potential 

treatments under development can be divided into two types: i) those aimed at acting on 

the symptomatology of the disease (cognition, agitation, aggressiveness, etc.), and ii) 

disease-modifying treatments [26]. The latter are directed to different targets. Most of 
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them are anti-amyloid treatments, specifically aimed at reducing amyloid plaque; anti-

Tau treatments and those aimed at reducing or regulating inflammation, metabolism, 

bioenergetics, synaptic plasticity, and neuroprotection or antioxidants among others 

[22,26,27]. Some of these anti-amyloid treatments have shown a reduction in amyloid 

plaque. However, it only generates a moderate reduction in the normal deterioration 

produced by the disease [28]. In general, the treatments under clinical investigation have 

a high failure rate, which could be a consequence of the complexity of the disease and the 

lack of a complete view of the pathophysiological mechanisms involved, as well as the 

interaction between the different pathways [26]. On the other hand, it should be noted that 

most of the trials carried out are addressed to patients in the  early stages and some at 

moderate stages [26]. So, it is relevant to obtain an early diagnosis to access the treatments 

in the early stages, in which they show higher effectiveness [27].  

2. New potential biomarkers for AD 

AD is a complex and multifactorial disease, whose pathological pathways are currently 

not fully understood [64]. Molecular perturbations may occur at a systemic level in the 

early stages, before the appearance of characteristic symptoms, and plasma constitutes a 

promising minimally invasive sample to study these alterations. In addition, this 

biological biofluid could be useful to advance in the knowledge of AD pathophysiological 

mechanisms and the identification of new biomarkers, as well as for the discovery of 

new therapeutic targets. In this sense, omic techniques are useful tools that provide a large 

amount of information. [65–67] In addition, OS that plays a central role in AD may be a 

source of biomarkers for the disease. 

2.1 Oxidative Stress and AD 

2.1.1 Mechanism 

OS is described as an imbalance between oxidant and antioxidant species in favor of 

oxidants [68]. Under normal circumstances, there is a balance in the body between 

oxidant and antioxidant substances that provides the necessary conditions for the correct 

metabolic and signaling functions [30]. However, when the antioxidant systems are not 

able to compensate for the level of oxidants, it occurs an imbalance known as OS [30]. It 
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consists of an increase in cellular stress leading to processes of cell death and apoptosis, 

necrosis, or autophagy [31]. The main causes of OS are decrease or inactivation of 

antioxidant molecules, increase of reactive oxygen species (ROS) and other oxidant 

molecules, as well as increase of endogenous metabolites capable of autoxidation [69]. 

Among oxidant species, ROS and Reactive Nitrogen Species (RNS) (e.g. superoxide 

anion, hydrogen peroxide, hydroxyl radical, nitric oxide) are produced predominantly in 

the mitochondria from molecular oxygen and nitrogen [70]. Other sources of ROS are the 

endoplasmic reticulum, and nuclear or plasmatic membranes, as well as, oxidase enzymes 

(xanthine oxidase, NADPH) [69]. Glutathione (GSH) is the most abundant non-

enzymatic antioxidant in the human body, being able to avoid damage caused by ROS to 

important cellular components. In general, OS is involved in most of chronic diseases, 

such as cancer [71], respiratory diseases [71] and neurodegeneration [72]. Therefore, OS 

mechanisms have been largely studied to clarify the pathogenesis of neurodegeneration 

[29]. Specifically, OS maintains a bidirectional relationship with the amyloid cascade. On 

the one hand, OS favors the amyloidogenic pathway of APP increasing the production of 

toxic Aβ42 peptide. On the other hand, amyloid plaques favor an increase in OS leading 

to cell death [32,33]. Similarly, OS interacts with kinases responsible for Tau 

phosphorylation and neurofibrillary tangles produce an increase in ROS [32]. In this 

sense, currently, 7 clinical trials for AD treatment are focused on OS [73]. 

2.1.2. Oxidative stress biomarkers 

OS causes oxidation of biomolecules such as proteins, DNA, or lipids. Regarding lipid 

peroxidation, it generates cellular damage and new oxidizing molecules [74], altering 

membrane lipids and circulating lipids, and also cellular functions [75]. Specifically, at 

the brain level, OS could modify lipid and protein levels, generating morphological 

brain changes [76–78]. In this sense, throughout the AD course, different brain areas 

could be affected [79]. One area with a remarkable atrophy grade during AD progression 

is the medial temporal lobe, where the hippocampus is located [80].  

The most commonly used biomarkers of OS are carbonyl proteins, nitrotyrosine, 

advanced oxidation products of proteins (e.g., chloro-tyrosine) as derivatives of protein 

oxidation; 7,8-dihydroxy-8-oxo-2′-deoxyguanosine (8oxodG), as derivatives of DNA 
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oxidation; and malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE) and isoprostanes 

as derivatives of lipid oxidation [36]. Compounds derived from this process can be 

detected in peripheral samples, such as blood or urine, serving as an approach for 

oxidative status [35].  

Lipid peroxidation biomarkers in AD 

The brain is an organ with high metabolic activity, high oxygen consumption, and high 

polyunsaturated fatty acid content that make it susceptible to oxidative damage [37]. 

Therefore, lipid oxidation could play an important role in the development of 

neurodegenerative diseases and specifically in AD [38]. Previous studies have found co-

localization of lipid oxidation products with amyloid plaques, evidencing the relationship 

between OS and lipids with the development of AD pathological mechanisms [39]. 

In this sense, some lipid peroxidation products (e.g. isoprostanes, MDA, thiobarbituric 

acid-reactive substances (TBARS), and fluorescent lipofuscin-like pigments (LPF)) have 

been evaluated as AD biomarkers in different human samples [81], mainly blood (plasma, 

serum) and urine[81]. 

Lipids can be oxidized by two independent pathways (enzymatic and non-enzymatic or 

by free radicals) [40]. In this thesis we focus on compounds derived from the oxidation 

of three polyunsaturated fatty acids (PUFA): i) arachidonic acid (AA), ii) 

docosahexaenoic acid (DHA), and iii) adrenic acid (AdA) (see Figure 2). For AA, its 

oxidation generates two families of compounds, isoprostanes and isofurans (e.g. 15(R)-

15-F2t-IsoP; 2,3-dinnor-15-epi-15-F2t-IsoP; 15-keto-15-E2t-IsoP; 15-keto-15-F2t-IsoP; 

15-keto-15-E2t-IsoP; 15-keto-15-F2t-IsoP; 15-E2t-IsoP;15-F2t-IsoP; 5-F2t-IsoP), the latter 

originated under higher oxygen tension conditions, and prostaglandins (PGE2; PGF2α; 

1a,1b-dihomo-PGF2α) [41]. AA is present in large quantities in the brain as part of cell 

membranes [42,43]. On the other hand, the oxidation of DHA, located mainly in brain 

grey matter, and AdA located mainly in the white matter of the brain, generate 

neuroprostanes (e.g. 10-epi-10-F4t-NeuroP; 14(RS)-14-F4t-NeuroP; 4(RS)-F4t-NeuroP) 

and dihomo-isoprotanes (e.g. 17-epi-17-F2t-dihomo-IsoP; 17-F2t-dihomo-IsoP; ent-

7(RS)-7-F2t-dihomo-IsoP; 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF; 7(RS)-ST-Δ8-11-

dihomo-IsoF), respectively [43].  
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Figure 2. Lipid peroxidation metabolites origin. 

2.2. Omics Analysis and AD 

In the initial stages of AD, there is an imbalance in the interactions among different brain 

cell types, pathogenic forms of Tau and amyloid proteins, and the brain signaling 

pathways impairment [67,82]. In this way, the neurodegenerative process would affect 

each cell type at multiple levels (epigenomic, transcriptomic, metabolomic/lipidomic, 

proteomic). Therefore, a complete knowledge of the AD mechanisms could be achieved 

from a multi-omic approach applied to different biological samples. In this sense, the 

omic tools would contribute importantly to the knowledge of the early AD 

pathophysiological mechanisms and the identification of specific and reliable AD 

biomarkers in biological samples.  

The development of omic platforms and advances in bioinformatics are generating a large 

volume of data [83], which provide information about the pathological pathways involved 

in AD and new potential biomarkers and therapeutic targets [44,45,67]. This type of 

analysis involves prior treatment of the sample as well as subsequent processing and 

interpretation of the results [46]. Metabolomics, epigenomics, and proteomics are the 
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most widely employed omic tools in clinical studies [67]. In this thesis, we focus on the 

omics studies (metabolomic, lipidomic, epigenomic). 

2.2.1. Metabolomics and AD  

Metabolomics reflects changes in the metabolome representing a precise biochemical 

phenotype of the organism in health and disease [84]. This allows a reliable approach to 

the complex AD nature. Metabolomics let the characterization of the metabolite profile 

using any sample type such as blood or CSF. It is especially useful in the detection of 

potential biomarkers given the ability of metabolomics to detect small changes and for 

the study of physiological and pathological mechanisms [47].  

Metabolomic studies can be carried out from an untargeted analysis, which allows a 

global view; and a targeted analysis, which allows validation and confirmation of the 

results obtained with non-targeted methods [48]. One of the most widely used analytical 

techniques is mass spectrometry (MS), which is characterized by its high sensitivity and 

specificity [49]. Targeted and untargeted metabolomic studies have allowed the 

identification of biomarkers for AD in biological fluids such as CSF, plasma, or urine 

[50–52], postulating this technique as a useful tool for new biomarkers identification. 

Recent metabolomics studies in AD have identified some altered metabolic pathways, 

such as polyamine pathway, lysine metabolism, tricarboxylic acid cycle, lipid 

metabolism, neurotransmission, inflammation and OS [85] mitochondrial activity [86], 

as well as the impairment of some metabolite levels (tyrosine, glycylglycine, glutamine, 

lysophosphatic acid, platelet-activating factor, organic acids, isoprostanes, 

prostaglandines) [87] tryptophan and purines metabolisms [88], sphingolipids [89], 

amino acids and phospholipids [90]. Metabolomic studies in AD have been applied 

to different biological samples [91,92]. Nevertheless, there is an increasing interest in 

improving early AD diagnosis by means of minimally invasive samples, such as serum 

[89,93], plasma [87,94], urine [95], and saliva [96]. Specifically, plasma is a promising 

matrix since some biochemical pathways have shown disturbances in patients with AD, 

such as amino acids, amines, and polyamines metabolisms [52,94,97,98], as well as 

lipid metabolism [87,89,92,99–101], even in mild-cognitive impairment (MCI) stage [94]. 

Nevertheless, most of metabolomics studies in plasma have been developed from animal 
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models [92,101,102], and among human studies few of them defined MCI-AD 

participants from the standard CSF biomarkers [87]. In this sense, the ambiguity in 

dementia type diagnosis is considered an important limitation in the development of AD 

reliable diagnostic models [52,94,97,103–105]. 

Previous studies found a relationship between different metabolite networks and the 

ApoE genotype [87], as well as between ApoE polymorphisms and metabolomic changes 

[106]. Moreover, targeted studies found differences in biomarkers such as CSF 

Synaptosoma-Associated Protein 25 (SNAP25), or blood metabolic biomarkers between 

ApoE4 carriers and non-carriers [107,108]. Therefore, it would be interesting to include 

ApoE genotype as a variable in metabolomics studies as it is one of the most important, 

although the mechanisms that relate it to the disease are still unknown [109]. ApoE4 

genotype is associated with earlier amyloid deposition [110]. In this sense, some patients 

showed different responses against therapies according to their ApoE genotype [111].  

2.2.2 Lipidomics and AD 

Lipidomics consists of the study of the lipid profile in a given biological sample. The 

brain has a high lipid composition, and therefore numerous lipidomic studies have been 

carried out in AD patients, showing the dysregulation of this family of biomolecules both 

in the brain and in other biological fluids [53]. These metabolites have potential utility as 

a source of disease-specific diagnostic biomarkers [53] in different biological sample 

types [112].  In fact, several lipid families, such as sphingomyelins (SM), cholesterol 

esters (CE), phosphatidylcholines (PC), phosphatidylethanolamines (PE), 

phosphatidylinositols (PI), ceramides (Cer), and triglycerides (TG), have been related to 

AD [113,114]. Lipid biomarkers could be useful not only for diagnosis but also for 

disease progression prediction. Specifically, LysoPE (LPE) and PE could be useful 

biomarkers for monitoring the conversion of MCI to AD [115,116], and plasma 

sphingomyelins have been related to cognitive decline in probable AD patients [116]. 

In fact, lipidomic analyses have been carried out to study the involvement of lipids in 

AD pathology and progression [117]. Brain tissue from elderly healthy participants 

and patients with different stages of AD showed differential expression of lipids such 

as glycerolipids, glycerophospholipids, and sphingolipids [53]. In addition, the 
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lipidomics research field focusing on lipids as potential biomarkers in peripheral 

biofluids (e.g., plasma and serum) is gaining attention [118–120]. 

2.2.3. Epigenomics and AD 

Epigenomics focuses on the study of gene regulation mechanisms (e.g. deoxyribonucleic 

acid (DNA) methylation, histone modifications, non-coding ribonucleic acid (RNAs)) 

[54]. This omic science constitutes an interesting approach to the advance in the 

knowledge of the pathophysiology of AD since the expression patterns of certain genes 

implicated in the development of the disease (APP, PSEN1, PSEN2, BACE1), as well as 

secretase enzymes and inflammatory response genes, are altered by epigenetic 

modifications (DNA methylation [24], histone modifications, expression of non-coding 

genes transcripts (microRNAs [25])). Specifically, some microRNAs (miRNAs) (RNA 

sequences of 19-25 nucleotides involved in both positive and negative gene regulation) [55] have 

been related to the regulation of amyloid protein precursor (APP) cleavage, presenilin-1 

(PSEN1) and beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), as well as in 

OS and other AD risk factors[121].  

Currently, few studies evaluate the diagnostic capacity of epigenetic changes in peripheral 

fluids from AD patients [26]. However, next generation sequencing (NGS) technology is 

postulated as a viable approach to carry it out [27]. MiRNAs from AD patients have 

shown differential levels compared to non-diseased subjects in brain and biological fluids 

such as CSF or blood derivatives using NGS [57,122,123]. They may therefore constitute 

an important source of biomarkers. Among epigenetic biomarkers, the miRNAs constitute 

a key element in cell signaling pathways. In recent years, they have been postulated as 

powerful biomarkers for the diagnosis of neurodegenerative diseases [61]. In fact, there 

is evidence that they could be more sensitive than messenger RNA, or even proteins used 

as clinical markers [62]. MiRNAs showed good performance as biomarkers and miRNAs 

panels showed dysregulation several years before the onset of disease symptoms [124]. 

Several panels have been developed from plasma, serum, or exosomes, showing their 

potential for a minimally invasive disease diagnosis[125–127].  

Therefore, epigenetic is closely related to diseases and is useful in the understanding of 

pathophysiological mechanisms as well as providing potential biomarkers [56]. 
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2.2.4. Integration of experimental data of different nature 

The integration of results from different omics techniques allows the identification of 

pathways involved in AD enabling a more complete characterization of AD patients [59]. 

This may provide a more comprehensive description of the heterogeneity of AD patients 

and its clinical implications to obtain an early, generalized, reliable diagnosis and access 

to personalized treatments [60]. 

Different studies have integrated data from different nature with the common goal of 

deepen into the pathological pathways of AD. Specifically, the integration of 

metabolomic and genomic analyses allowed the detection of altered metabolites and their 

regulators [61]. In addition, the combined view including metabolomics, and genomics 

helps with the understanding of the underlying mechanisms contributing to AD risk [62]. 

Moreover, epigenomic–lipidomic integration would allow the global study of the 

regulatory mechanisms involved in AD such as lipid homeostasis, OS, synaptic 

vesicle trafficking, inflammation, etc. [59]. Previous works based on the analysis of 

genome-wide DNA methylation showed that an epigenetic pattern was associated 

with cholesterol regulation [128]. Thus, the study of the integration between 

epigenomics and lipidomics could reveal lipid regulation mechanisms involved in 

AD. Therefore, integrative studies allow a global and more complete view of the disease 

and its pathophysiological mechanisms.
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This PhD Thesis hypothesizes that lipid peroxidation and other compounds obtained by 

omics analyses (metabolomics, lipidomics, epigenomics) in minimally invasive samples, 

may be potential biomarkers for the early AD diagnosis and can provide information on 

the metabolic pathways involved in the development of the disease.  

Therefore, the main objective of the thesis was to study compounds derived from lipid 

peroxidation as potential specific AD diagnostic biomarkers and their relationship with 

clinical features of the disease, and to identify new biomarkers and pathological pathways 

altered in the early stages of AD from a multi-omics approach (metabolomics, lipidomics, 

epigenomics). 

The specific objectives were:  

(i) Identifying potential biomarkers based on lipid peroxidation for detection of AD in 

urine (Chapter 1) and plasma (Chapter 2) samples.  

(ii) Developing diagnostic models for AD based on lipid peroxidation biomarkers 

(Chapters 1, 2,3, and 5).   

(iii) Selecting the best sample type for AD diagnosis based on the levels of lipid 

peroxidation compounds (Chapter 3).  

(iv) Analyzing the usefulness of lipid peroxidation compounds as potential biomarkers 

for early or preclinical diagnosis of AD (Chapter 6).  

(v) Establishing the relationship between lipid peroxidation compounds and clinical AD 

variables: brain atrophy by visual scales (Chapter 7), standard biomarkers in 

cerebrospinal fluid (CSF), and cognitive impairment by neuropsychological evaluations 

(Chapters 2, 4, and 6). 

(vi) Searching for new plasma biomarkers for AD diagnosis using omics techniques: 

metabolomics (Chapters 8 and 9), lipidomics (Chapter 10), epigenomics (Chapter 11). 

(vii) Studying potential metabolic pathways altered in AD by omics analyses (Chapters 

10 and 11) and integration of different omics results (Chapter 12). 
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1. Study design and participants   

All the studies included in the present thesis were prospective observational studies 

carried out including patients form the Neurology Unit at the University and Polytechnic 

Hospital La Fe, Valencia (Spain). The study protocols were approved by the Ethics 

Committee (CEIC) from Health Research Institute La Fe (Valencia, Spain), the methods 

were carried out in accordance with the relevant guidelines and regulations, and informed 

consent from all participants was obtained. The studies included in the present doctoral 

thesis are included in the projects CP16/00082 and PI19/00570 and the references for 

CEIC approvals were 2016/0257 and 2019/0105, respectively. 

The eligible participants were people between 50 and 80 years old who suffered from 

MCI due to AD (MCI-AD), dementia due to AD (dementia-AD), patients with preclinical 

AD, participants with dementia not due to AD (non-AD), and participants without 

cognitive impairment or minimally impaired (control). The exclusion criteria included 

other known neurological impairments (stroke, brain tumor, severe head trauma, epilepsy, 

brain injury, multiple sclerosis…) or major psychiatric disorders (major depressive 

disorder, bipolar disorder, schizophrenia…), as well as patients with moderate to 

severe dementia, major sensory impairment or an invalidating previous pathology or that 

were unable to undergo neuropsychological evaluations.  

Participants were recruited from the Neurology Unit and they were classified following 

the NIA-AA recommendations [23,24] that include neuropsychological evaluation, 

structural and functional neuroimaging, and CSF biomarkers. Specifically, there were used 

the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), 

Clinical Dementia Rating (CDR), Mini-Mental State Examination (MMSE), Functional 

Activities Questionnaire (FAQ)) [129–132] for neuropsychological evaluation, MRI or 

computerized axial tomography (CAT) for brain structural evaluation [133], and CSF 

biomarkers (Aβ, t-Tau, p-Tau) [134,135] to assess the abnormal amyloid and Tau proteins 

processing [134,135].  From 1–10 mL of CSF were collected under a standardized lumbar 

puncture procedure at 8-10 a.m. Aβ42, t-Tau, and p-Tau were measured by Innotest 

Elisa kit (Fujirebio Diagnostics, Ghent, Belgium) using a fully automated system 

(Lumipulse G, Fujirebio). Table 1 describes the classification criteria for each 

participant group: i) the control group included participants with normal levels of CSF 
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AD biomarkers and normal cognitive tests; ii) the preclinical AD group included 

participants with impaired CSF AD biomarkers and normal cognitive evaluation test 

scores; iii) the MCI-AD group were patients with impaired CSF biomarkers and 

cognitive impairment, but without daily living activities impairment; iv) the non-AD 

group included patients with MCI not due to AD, (e.g. frontotemporal dementia, vascular 

dementia, or dementia with Lewy bodies (DLB)), with normal CSF biomarkers and 

cognitive impairment. In general, the AD or “case” group included patients with MCI-AD 

and mild dementia due to AD, who showed cognitive complaints without daily living 

activities impairment or with minor daily living activities impairment. In addition, the 

control group is called healthy control or healthy in some of the chapters. 

Table 1. Participants’ classification attending to neuropsychological evaluation, 

neuroimage and cerebrospinal fluid biomarkers. 

Test MCI-AD 

Group 

Preclinical 

AD 

Non-AD 

Group 

Control 

Neuropsychological test 

CDR 0.5–1 0 0.5–1 0 

RBANS.DM ≤85 >85 ≤85 >85 

MMSE 20-26 ≥ 27 <27 ≥ 27 

FAQ <9 <9 - <9 

Neuroimage test 

Amyloid PET Positive Positive Negative Negative 

CSF biomarkers 

Aβ42 (pg mL−1) <725 <725 ≥725 ≥725 

p-Tau (pg mL−1) >350 >350 ≤350 ≤350 

t-Tau (pg mL−1) >85 >85 ≤85 ≤85 

CDR: Clinical dementia rating; RBANS.DM: Repeatable Battery for the Assessment of Neuropsychological 

Status-Delayed Memory; CSF: cerebrospinal fluid; Aβ42: amyloid β 42; t-Tau: total Tau; p-Tau: 
phosphorylated Tau.  

*When only one of the neuropsychological tests has an altered score it is considered a normal cognition.  

 

The present doctoral thesis is divided into two sections. Section I is focused on lipid 

peroxidation studies and Section II in omic studies. Therefore, the analytical methods are 

described separately.  
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2. Section I. Experimental procedures 

2.1.  Materials and reagents 

As regards the lipid peroxidation products, standards of IsoPs and prostaglandins used for 

calibration include 15(R)-15-F2t-IsoP, 2,3- dinor-15-epi-15-F2t-IsoP, 5-F2t-IsoP, 15-keto-

15-E2t-IsoP, 15-keto-15- F2t-IsoP, 15-E2t-IsoP, 15-F2t-IsoP, 1a,1b-dihomo-PGF2α, PGE2, 

and PGF2α, as well as the deuterated internal standard (IS) PGF2α-D4 and they were 

purchased from Cayman Chemical Company (Ann Arbor, Michigan, USA). The other 

standards corresponding to neuroprostanes (NeuroPs), dihomo-isoprostanes (dihomo-

IsoPs) and dihomo-isofurans (dihomo-IsoFs) (7(RS)-ST-Δ8–11-dihomo-IsoF, 10-epi-10-

F4t-NeuroP, D4–10-epi-10-F4t-NeuroP, 4(RS)-F4t-NeuroP, 17-epi-17-F2t-dihomo-IsoP, 17-

F2t-dihomo-IsoP,   17(RS)− 10-epi-SC-Δ15-11-dihomo-IsoF,   ent- 7(RS)− 7-F2t-dihomo-

IsoP, 14(RS)− 14-F4t-NeuroP) were synthesized by Durand's team at the Institute des 

Biomolécules Max Mousseron (IBMM) (Montpellier, France)[136–140]. The calibration 

curves were prepared by serial dilutions in H2O (pH 3): CH3OH (85:15 v/v) with 

CH3COOH 0.01%, in concentrations from 300 nmol L−1 to 0.004 nmol L−1 of each 

analyte. 

The centrifuge (multiSPIN) was from Cleaver Scientific Ltd. (Warwickshire, United 

Kingdom) and the vortex mixer was from Velp Scientifica (Usmate, Italy). The speed 

vacuum concentrator (mi Vac) was from Genevac LTD (Ipswich, United Kingdom). 

The thermomixer HLC was from   Ditabis   (Pforzheim,   Germany).   The   Strata X-

AW (100 mg, 3 mL) solid phase extraction cartridges used for sample solid- phase 

extraction (SPE) and the SPE 12-position vacuum manifold were from Phenomenex 

(Madrid, Spain). 

2.2. Sample treatment 

In this section urine, plasma, and CSF samples were analyzed. The sample treatment for 

each matrix is described in Figure 3. 
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Figure 3. Samples treatment for lipid peroxidation analyses. a) treatment for urine samples; b) treatment for plasma samples; c) treatment for 

CSF samples.
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2.2.1 Urine samples  

Urine samples (Chapters 1 and 3) were collected in a sterile bottle and immediately stored 

at −80 °C until analysis (~6 months). As stated in a previous study, no deterioration was 

observed for the lipid peroxidation compounds at long-term, since samples were not 

subjected to freeze-thaw cycles [141]. Then, they were treated following the optimum 

procedure established in a previous work [141]. Briefly, samples were thawed on ice and 

5 μL of the internal standard solution (PI) (PGF2α-d4 10 μmol L−1 and d4-10-epi-10-F4t-

NeuroP 6 μmol L−1) were added to 1 mL of sample. Then, enzymatic hydrolysis was 

performed by adding the enzyme β-glucuronidase and sodium acetate buffer (100 mmol 

L−1, pH 4.9) and incubated for 2 hours at 37 °C. Then, the reaction was stopped and the 

enzyme was precipitated with cold methanol and chlorhydric acid (37%, v/v) and 

centrifuged for 10 min (14000 g, 4 °C). The supernatant pH was adjusted to 6–7 with sodium 

hydroxide (2.5 mol L−1). Finally, a solid phase extraction procedure was carried out.  

The results were standardized by the creatinine levels measured using a colorimetric kit 

(MicroVue creatinine EIA) and a spectrophotometer following the manufacturer’s 

protocol. 

2.2.2 Plasma Sample  

Plasma samples were collected from peripheral blood employing cryo-tubes with 

ethylenediaminetetraacetic acid. Then they were centrifuged for 15 min at 1160g at room 

temperature. Plasma was separated in a tube containing butylated hydroxytoluene 

(0.25% (w/ v) in ethanol) to avoid further oxidation of the sample. Afterward, samples 

were frozen at − 80 °C until analysis. 

The sample treatment consisted of the addition of 5 µL of an internal standard solution 

(PGF2α-D4 2 µmol L-1   and   D4–10-epi-10-F4t-NeroP 1.2 µmol L-1) and 400 µL of a 

potassium hydroxide solution (15% w/v) to 400 µL of plasma to carry out the hydrolysis 

(40 °C, 30 min). After that, the samples were placed on ice, diluted with 1 mL of H2O 

(0.01% v/v acetic acid), acidified with hydrochloric acid (37%), and centrifuged for 10 

min (5000g, 4 °C). Then, the supernatant final pH was adjusted to 7 by adding NaOH 

2.5 mol L-1. For clean-up and pre-concentration, a SPE procedure using Strata X-AW 
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cartridges was carried out [141]. 

2.2.3 CSF samples 

CSF samples were obtained by lumbar puncture as part of the diagnostic protocol in 

the Polytechnic University Hospital La Fe (Valencia, Spain), and they were kept at –80 

◦C. The analysis consisted of samples thawing on ice and adding 5 µL of the internal 

standard solution (IS) (d4-10-epi-10-F4t-NeuroP at 6 µmol L−1, and PGF2α-d4 at 10 

µmol L−1) to 600 µL CSF. Then, they were diluted with 1300 µL of water.  

2.2.4 Solid phase extraction 

After the samples pretreatment, a cleaning and pre-concentration step was carried out by 

solid-phase extraction SPE for all sample types (urine, plasma and CSF). For this, the 

cartridges were first conditioned with 1 mL methanol and 1 mL H2O. Then the samples 

were loaded into the SPE cartridge and the cartridge was washed with 1 mL ammonium 

acetate (100 mmol L−1, pH 7) and 1 mL heptane. Elution was carried out with 2 × 500 μL 

of methanol (5% v/v CH3COOH). After that, the samples were evaporated to dryness in 

the vacuum concentrator and reconstituted in 100 μL of H2O (pH 3):CH3OH (85:15 v/v) 

containing 0.01% (v/v) CH3COOH. Finally, the samples were injected into ultra-

performance liquid chromatography coupled to tandem mass spectrometry (UPLC-

MS/MS) (Waters Acquity UPLC-Xevo TQD system (Milford, MA, USA)). 

2.3. Chromatographic system  

The chromatographic system consisted of a UPLC system (Waters Acquity) coupled to a 

Xevo TQD system mass spectrometry system (Waters, United Kingdom). The conditions 

used were: ionization in negative mode (ESI-), capillary tension 2.0 kV, source temperature 

of 150 °C, desolvation temperature of 395 °C nitrogen cone and desolvation gas flows were 

150 and 800 L h-1, respectively, and dwell time was 10 ms. 

The UPLC conditions were selected to achieve appropriate chromatographic retention and 

resolution by using a C18 column (2.1 × 100 mm, 1.7 μm) (Acquity UPLC BEH, Waters). 

Mobile phases consisted of water (0.01% v/v CH3COOH as mobile phase A) and acetonitrile 

(0.01% v/v acetic acid as mobile phase B). The temperatures of the column and the 
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autosampler were set at 55 °C and 4 °C, respectively. The injection volume was set at 8 µL 

and the flow rate was set to 0.45 mL min−1. A total 8.5 min elution gradient was performed. 

It consisted of 0.5 min with eluent composition at 80% A and 20% B, which was gradually 

changed to 55% A and 45% B at 6 min; then B was increased to 95% along 0.2 min, and kept 

constant for 0.8 min. Finally, the mobile phase composition returned to the initial 

conditions, and it was maintained for 1.3 min for system conditioning. 

The detection was performed by multiple reaction monitoring (MRM) using the 

acquisition parameters obtained in a previous work [141]. 

2.4. Neuroimaging data acquisition 

MRI was performed as part of the routine clinical assessment. Images were obtained 

using three MRI scanners (Siemens): two 1.5 T and one 3T machines were used. Imaging 

protocol included axial, sagittal and coronal views of the brain using T1, T2, gradient 

echo and fluid attenuation inversion recovery (FLAIR) sequences. Medial temporal 

atrophy (MTA) was assessed visually by a single rater relative light changes (RLC) using 

FLAIR or T1 coronal images at the level of the hippocampus. The visual assessment of 

MTA was ranged from 0 (no atrophy) to 4 (severe atrophy) and was based on criteria and 

score system proposed by Scheltens  et  a l . [142] . 

2.5. Statistical analyses 

2.5.1 Univariate analyses 

Data were summarized using median and interquartile range (IQR) in the case of 

continuous variables, and with relative and absolute frequencies in the case of categorical 

variables.  

Regarding univariate analysis, differences between groups for numerical variables were 

analyzed by the Mann-Whitney or Kruskal Wallis tests. Categorical variables were 

analyzed by the Chi-square  test. Finally, correlations among the biomarkers, as well as 

between the biofluids were analyzed by Pearson Correlation. In addition, as descriptive 

analysis, correlations among the different variables (18 lipid peroXidation compounds 

in plasma and 3 biomarkers in CSF) were assessed by constructing a correlation network 
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based on the spearman correlation matrix of the variables (Chapter 2). Correlations with 

an absolute value under 0.3 were excluded from the network to avoid spurious effects. 

Variables distribution was studied using a Kolmogorov–Smirnov test. Analysis were 

carried out with the software SPSS version 20.0 software (SPSS, Inc., Chicago, IL, 

USA) and R software (different versions).  For all the analysis, significance value was 

p value < 0.05. Box-plots were used to represent the levels of isoprostanoids 

biomarkers. 

2.5.2. Multivariate analysis 

Multivariate analysis based on Elastic Net  was developed in Chapter 1. Elastic net is able 

to perform variable selection at the same time of model fitting and produces 

parsimonious   predictive models. This property improves generalization of the model to 

new data by avoiding overfitting. It is an adequate variable selection technique compared 

to other commonly used methods such as stepwise algorithms or univariate screening, 

which suffer from many consistency problems [143]. Prior to modelling, variables were 

log-transformed to avoid potential strongly influential outliers due to the highly skewed 

nature of some variables. Then, a logistic regression model based on elastic-net-penalized 

was developed including gender and age as covariates. The penalization parameter 

lambda was selected by performing 500 replications of ten-fold cross validation. The 

minimum cross-validated error was selected on each replication and the median from the 

selected lambda values was considered the consensus lambda. Since the minimum lambda 

value was used, an alternative variable selection method was performed as a sensitivity 

analysis. This alternative analysis consisted on a random forest using the Altmann et al. 

method [144]. The final elastic net model was validated using bootstrap validation. For 

this, the procedure of Steyerberg et al.  was followed [145]. Statistical analyses were 

performed using the softwares R (version 3.5.0), the BootValidation R (version 0.1.3), 

glmnet R (version 2.0–16), and ranger (version 0.9.0). 

In chapter 2, as descriptive analysis, correlations among the different variables (18 lipid 

peroxidation compounds in plasma and 3 biomarkers in CSF) were assessed by 

constructing a correlation network based on the spearman correlation matrix of the 

variables. Correlations with an absolute value under 0.3 were excluded from the network 

to avoid spurious effects. Then, multivariate analyses based on Elastic-Net was carried 
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out. Prior to modelling, variables with near zero variance were excluded (1a,1b-dihomo-

PGF2α and 2,3-dinor-15-epi-15-F2t-IsoP). With the remaining variables, an elastic-net-

penalized logistic regression model was adjusted. Age and gender were included in the 

models as covariates. Selection of the penalization parameter lambda, which controls the 

complexity of the model by decreasing the number of variables included in the model as 

it grows larger, was performed by estimating the bias-variance error curve of the 

population using 500 replications of ten-fold cross validation. The lambda value at one 

standard error from the minimum cross-validated error was selected on each replication 

and the median from the selected lambda values was chosen as the consensus lambda. 

The fitted elastic net model performance measured as optimism corrected AUC was 

validated using bootstrap, following the procedure of Smith et al. [146]. Statistical 

analyses were performed using R (version 3.4.3) and the BootValidation R (version 0.1.3) 

and glmnet (version 2.0–13) R packages. 

In chapter 3 different regression models, based on linear discriminant analysis (PLS) and 

non-linear discriminant analysis (support vector machine (SVM); artificial neural 

networks, (ANN)), were developed from lipid peroxidation compounds levels determined 

in urine and plasma samples from healthy and MCI-AD participants. Each model was 

trained and tested multiple times, and the diagnostic performance obtained for each model 

was evaluated. 

The PLS analysis was carried out with the Unscrambler software version 7.6 (Camo, 

Woodbridge, USA), the SVM analysis with radialand polynomial kernel functions was 

carried out with IBM SPSS Modeler software version 1.0 (IBM, New York, USA) and 

the ANN analysis was carried out with SPSS software version 20.0 (SPSS, Inc., Chicago, 

IL, USA). These statistical multivariate models were developed for each sample matrix 

that was analyzed.  

The PLS models were constructed from 24 independent variables (22 lipid peroxidation 

compounds, gender and age) as predictor variables, 1 dependent variable (participant 

group (MCI-AD/healthy control)) and 5 principal components. All variables were 

normalized, and a random cross validation (one left out) was carried out. 

The SVM models with radial and polynomial kernel functions were developed from 24 

independent variables (22 lipid peroxidation analytes, gender and age) and 1 dependent 
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variable (participant group (MCI-AD/healthy control)). The dataset was randomly 

divided into training sample (70%), testing sample (15%) and validating sample (15%). 

The parameters utilized were detention criteria of 1.0E−3, regularization parameter (C) of 

10, precision of regression of 0.1, and the kernel functions employed were radial basis 

function (gamma (γ) of 0.1) and polynomial function (γ of 1). 

The ANN models were constructed from the 24 independent variables (gender and age as 

factors, 22 analytes as covariables), and 1 dependent variable (participant group (MCI-

AD/healthy control)). In the first step, the dataset was randomly divided into training 

sample (70%), testing sample (15%) and validating sample (15%) [147], before model 

development. The training sample is used to train the network in several iterations 

improving the ANN performance. Then, the optimum values of weights and biases are 

determined, and the ANN performance is examined in the testing sample. The 

feedforward architecture was based on the predictors function Multilayer Perceptron 

(MPL), as training algorithm, that minimizes the prediction error of outputs, and the form 

of this function consists of input, hidden and output layers, but the number of neurons in 

each layer as well as the number of layers depend on the complexity of the studied system. 

The automatic architecture selection builds a network with one hidden layer, and the 

number of units in the hidden layer was tested between 1 and 50, 1 unit being the optimum 

number. The transfer functions for the hidden and output layers were hyperbolic tangent 

and normalized exponential function, respectively. These functions have the following 

forms: 

γ (x) = tanh (x) = (ex − e−x)/(ex + e−x) 

γ(xk) = exp.(xk)/Σj exp(xj), for j = 1, …,k (dimensions) 

In this sense, a three-layer 24-1-1-feed-forward propagation ANN model was trained and 

developed from 24 predictor variables (age, gender, lipid peroxidation compounds). 

Regarding the training type, it was in batch, and the optimization algorithm to estimate 

the synaptic weights was based on scaled conjugate gradient including an initial lambda 

and an initial sigma values of 0.0000005 and 0.00005, respectively, as initial values for 

the weights and biases to optimize them in successive iterations. 

In chapter 5, a two-stage model for Alzheimer’s disease diagnosis was developed by 
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adjusting two nested logistic regression models. The first model was based on the 

discrimination capacity of the neuropsychological evaluation to differentiate between 

control and case (including AD and non-AD groups) participants. Specifically, the 

clinical variables RBANS.DM and CDR were used as predictors in this first model. The 

second model was based on the discrimination capacity of lipid peroxidation products 

from plasma samples to diferentiate between AD and non-AD patients in the case group. 

Specifically, the potential predictors in this second model were 15(R)-15-F2t-IsoP, PGE2, 

2,3-dinor-iPF2-III, 15-keto-15-E2t-IsoP, 15-keto-15-F2t-IsoP, 15-E2t-IsoP, 5-F2t-IsoP, 15-

F2t-IsoP, PGF2α, 1a,1b-dihomo-PGF2α, 4(RS)-F4t-NeuroP, 10-epi-10-F4t-NeuroP, 14(RS)-

14-F4t-NeuroP, Ent-7(RS)-F2t-dihomo-IsoP, 17-F2t-dihomo-IsoP, 17-epi-17-F2t-dihomo-

IsoP, 17(RS)-10-epi-SC-D15-11-dihomo-IsoF, 7(RS)-ST-D8-11-dihomo-IsoF, as well as 

the total parameters IsoP, IsoF and NeuroF. Selection of the final predictors in the model 

was performed using Elastic Net [148]. 

Performance of the model was assessed by estimating optimism-corrected AUC using 

200 bootstrap replications. All statistical analyses were performed using R (version 3.6) 

and R packages pROC (version 1.14.0) and brms (version 2.8.0). 

In Chapter 6, the elastic net logistic regression model was used to select “variables” with 

the glmnet package in order to discriminate between participants groups [149], due to the 

collinear nature and high dimensionality of the data. The elastic net regularization method 

of the estimated beta coefficients improves upon ordinary least squares. It linearly 

combines the L1 and L2 penalties of the lasso and ridge methods. Regularization 

parameter λ determines the amount of regularization. An optimal value for λ was 

determined performing a 5-fold cross-validation, which yielded the minimum cross-

validated mean-squared error (CVM). A median of 500 repetitions of the cross validation 

was calculated in order to improve lambda´s robustness. 

In Chapter 7, discriminant analysis was performed by PLS. 

The multivariate statistical analysis was carried out using the Minitab software version 

18 (USA). Then, the Receiver operating characteristic curve (ROC) of the discriminant 

model was obtained. Two models were constructed, the first included plasma biomarkers 

(isoprostanes, neuroprostanes, isofurans, neurofurans, 17-epi-17-F2t-dihomo-IsoP, 

PGF2α), gender and age as predictor variables; and the second included image data (MTA-
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R (right), MTA-L (left) and MTA-S (sum)), gender and age as predictor variables. The 

response variable used was group (control-case). All the variables were standardized and 

cross-validation of the models was carried out. 

4.2.5.3. Diagnostic models performance evaluation 

For diagnostic performance evaluation of the receiver operating characteristic (ROC) 

curves were constructed from the corresponding validation results from developed 

models, indicating the area under the curve (AUC)-ROC as a parameter that represents 

the accuracy of each model. For the PLS model, it was cross validatied leaving one out, 

while for the SVM and ANN models, validation consisted of using data sets randomly 

divided. The corresponding area under the curve (AUC, 95% confidence interval (CI)), 

and the optimum cut-off values (the highest sum of sensitivity and specificity) were 

determined. Finally, the diagnostic indices (sensitivity, specificity, positive likelihood 

ratio (LR+), negative likelihood ratio (LR−), diagnostic   odds   ratio   (DOR))   were   

calculated.    

 

3. Section II. Experimental procedures 

3.1 Sample treatment 

Figure 4 represents the plasma sample treatment for each chapter.  
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Figure 4. Plasma samples treatment for omics analyses. a) treatment for metabolomic analyses; b) treatment for lipidomic analyses; c) treatment 

for epigenomic (miRNomic) analyses.
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3.1.1 Metabolomics  

Plasma samples were thawed on ice, 150 μL of cold acetonitrile (0.1%, v/v) were added 

to 50 μL of plasma, vortexed and kept at −20 °C for 30 min, for protein precipitation. After 

centrifugation at 13000 g (10 min, 4 °C), 20 μL of the supernatant were transferred to a 96-

wells plate for liquid chromatography coupled to mass spectrometry (LC-MS) analysis. 

Then, 70 μL of H2O (0.1% HCOOH, v/v), and 10 μL of internal standard mix solution 

(reserpine, leucine enkephaline, phenylalanine-d5, 20 μM each one) were added to each 

sample.  

3.1.2 Lipidomics 

Briefly, 150 µL of cold isopropanol (IPA) were added to 50 µL of plasma, vortexed, 

and kept at - 20 ◦C for 30 min. Then, it was centrifuged (13,000 g, 10 min, 4 ◦C), and 

90 µL of supernatant was transferred to a 96-well plate. After that, 10 µL of an 

internal standard (IS) mix solution (17:0 LPC, d18:1/17:0 SM, and 17:0 PE) (100 

µg/mL, each compound) wwere added to each sample.  

For both, metabolomics and lipidomics, Quality control (QC) was prepared by mixing 10 

μL from each plasma sample. Blank was prepared replacing plasma by ultrapure water in 

order to identify potential artefacts from the tube, reagents and other materials. Finally, 

plasma samples, QCs and blanks were injected in the chromatographic system. In order 

to avoid intra-batch variability, as well as to enhance quality and reproducibility, the 

analysis scheme consisted of random injection order and analysis of QC every 6 plasma 

samples. Blank analysis was performed at the end of the sequence. Sample stability and 

analytical drift were investigated through the internal standard intensities. 

3.1.3 Epigenomics.  

RNA was isolated for RNA sequencing using the miRNeasy plasma kit (Qiagen, Ger- 

many) following the manufacturer’s protocol. Briefly, 200 µL of plasma and 700 µL of 

QIAzol lysis reagent were incubated for 5 min at room temperature (RT). Then, 140 µL of 

chloroform were added and incubated at RT for 3 min and centrifuged at 1200 g (15 min, 4 

°C). The aqueous phase was mixed in a new tube with 525 µL of ethanol and transferred to 

a RNeasy MinElute spin column followed by a centrifugation step at 10000 g (30 s, RT). 
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The column was then washed with RWT buffer (700 µL) and RPE buffer (500 µL) and 

dried for 90 s at 10000 g. Finally, the elution step was performed with 15 µL of RNase-free 

water (13000 g, 1 min). 

For Polymerase Chain Reaction (PCR) validation, RNA extraction was carried out in a 

similar way but including a previous step, which consisted on the addition of RNA spike-

in before the protocol. 

3.2 Analytical methods 

3.2.1 Metabolomics 

Metabolomic analysis was performed on an UPLC system coupled to an iFunnel 

quadrupole time of flight (Q-ToF) Agilent 6550 mass spectrometer (Agilent 

Technologies, CA, USA). Chromatographic separation was performed by using an UPLC 

BEH C18 (100 × 2.1 mm, 1.7 μm, Waters, Wexford, Ireland) column from Waters 

(Wexford, Ireland). Autosampler and column temperatures were set to 4 °C and 40 °C, 

respectively. The injection volume was 5 μL. A gradient elution with a total run time 

of 14 min was performed at a flow rate of 400 μL min−1 as follows: 98% of mobile phase 

A (H2O, 0.1% v/v HCOOH) for 1 min, a linear gradient from 2% to 15% of mobile 

phase B (CH3CN, 0.1% v/v HCOOH) for 2 min, from 15% to 50% B for 3 min and 

from 50% to 95% for 3 min. Finally, 95% B was held for 3 min and a 0.55 min gradient 

was used to return to the initial conditions, which were held for 2.5 min to totally column 

recovery. Full scan MS data from 50 to 1700 m/z with a scan frequency of 6 Hz was 

collected. Both positive and negative electrospray ionization modes (ESI +, ESI –) were 

used and the conditions were set as follows: gas temperature, 200 °C; drying gas, 14 L 

min−1; nebulizer, 60 psi; sheath gas temperature, 350 °C; sheath gas flow, 11 L min−1. 

Automatic MS spectra recalibration was carried out introducing a reference standard into 

the source via a reference sprayer valve during the analysis. Q-ToF-MS was also used 

under auto MS/MS and all-ions (MSE) fragmentation modes for the simultaneous 

acquisition at low and high collision energies, which provide useful information about the 

(de)protonated molecules and main fragment ions for the identification of discovered 

metabolites. 
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3.2.2 Lipidomics 

Samples were analyzed by UPLC coupled to time-of-flight mass spectrometry 

(UPLC-TOF/MS-Orbitrap QExactive Plus MS) following the normalized protocol 

from the Analytical Unit in Health Research Unit La Fe (Valencia, Spain). Briefly, 

the chromatographic conditions consisted of using an Acquity UPLC CSH C18 

column (100 x 2.1 mm, 1.7 µm) from Waters. The mobile phase in the positive 

ionization mode was acetonitrile/water (60:40) with formic acid (10 mM) (A) and 

isopropyl alcohol/acetonitrile (90:10) with formic acid (10 mM) (B); in the negative 

ioniza tion mode, it was acetonitrile/water (60:40) with acetic acid (10 mM) (A) and 

isopropyl alcohol/acetonitrile (90:10) with acetic acid (10 mM) (B). The flow rate was 

0.40 mL min−1, the column temperature was 65 ◦C, and the injection volume was 5 

µL. 

Untargeted Analysis 

For the untargeted analysis, the mass spectrometry conditions consisted of positive and 

negative ionization, an m/z range of 70–1700 Da, a resolution full scan of 70,000, a 

capillary voltage of 2.5 kV, a sheath gas flow rate of 35, an auxiliary gas flow rate of 15, 

a sweep gas flow rate of 0, a capillary temperature of 250 ◦C, an s-lens RF level of 

65, and an auxiliary gas heater temperature of 200 ◦C. Samples were randomly injected 

in the chromatographic system in order to avoid intra-batch variability. Regarding the 

QC sample, it was analyzed every seven injections to monitor and correct changes in the 

instrument response. Moreover, it was repeatedly analyzed under the auto MS/MS and 

all-ion (MSE) fragmentation modes to provide useful information of fragment ions for 

identification purposes. The stability of the analytical system during the analysis was 

investigated through the trends and drifts of IS intensities over the course of the batch 

analysis. A blank analysis was performed at the end of the sequence and was used to 

identify artefacts from sampling, the preparation of  samples, and analysis. 

Then, some variables were annotated, with a mass error <5 ppm, and some of them 

were selected for a subsequent targeted analysis. 
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Targeted analysis 

Some of previous variables were selected for a targeted analysis. First, lipid families 

that showed statistically significant differences among the participant groups were 

selected. Then, individual compounds from these families that showed statistically 

significant differences between groups were selected. In the case of no commercially 

available standards, similar lipid compounds from the same family were selected. 

Table 2. Acquisition parameters for targeted lipid analysis. 

Compound Mass to 

Charge (m/z) 

Precursor 

Ion 

Chemical 

Formula (M) 
Product Ion (m/z) 

(Quantitative) 
Product Ion (m/z) 

(Qualitative) 

18:1 LPE 480.30847 C23H46NO7P 308.294 
 

18:0 LPC 524.37107 C26H54NO7P 184.073 104.107 

16:1 SM 

(d18:1/16:1) 

701.5592 C39H77N2O6P 184.073 104.107 

16:0 SM 

(d18:1/16:0) 

703.57485 C39H79N2O6P 184.073 104.107 

18:0 SM 

(d18:1/18:0) 

731.60615 C41H83N2O6P 184.073 104.107 

18:1 (9-Cis) PE 

(DOPE) 

744.55378 C41H78NO8P 308.294 
 

24:0 SM 815.70005 C47H95N2O6P 184.073 86.0963 

17:0 LPC 568.3626 C25H52NO7P 184.073 
 

17:0 SM 

(d18:1/17:0) 

717.5905 C40H81N2O6P 184.073 
 

17:0 PE 720.22537 C39H78NO8P 184.073 
 

LPE:    lysophosphatidylethanolamine;     LPC:     lysophosphatidylcholine;     SM:    sphingomyelin;     PE: 

phos phatidylethanolamine; DOPE: dioleoyl phosphatidylethanolamine. 

The sample treatment and the MS/MS method were developed for the simultaneous 

targeted analysis of seven lipid compounds (18:1 LPE, 18:0 LPC, 16:1 SM 

(d18:1/16:1), 16:0 SM (d18:1/16:0), 18:0 SM (d18:1/d18:0), 18:1 (9-Cis) PE (DOPE), 

and 24:0 SM). In addition, 17:0 LPC, 17:0 SM (d18:1/17:0), and 17:0 PE were used 

as internal standards. Metabolite concentrations were calculated by an internal 

calibration using a reaction and multiple reaction monitoring (MRM) method. The 

employed mass spectrometry conditions consisted of positive ionization, a capillary 

voltage of 3 kV, a sheath gas flow rate of 35, an auxiliary gas flow rate of 15, a 

sweep gas flow rate, a capillary temperature of 250 ◦C, an s-lens RF level, and an 
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auxiliary gas heater temperature of 200 ◦C. The normalized collision energy was 25 for 

all compounds. The MRM method parameters are summarized in Table 2. 

Analytical Method Validation 

The analytical characteristics assayed during the validation procedure were the linearity 

range, precision, accuracy, limit of detection (LOD), and limit of quantification 

(LOQ). The accuracy was evaluated by means of the recovery test. For this, standards 

were spiked at three concentration levels, and they were analyzed in triplicate. The 

precision was estimated from the analysis of standards and spiked samples at three 

concentration levels (i.e., low, medium, and high) in triplicate. The LOD and LOQ 

were established experimentally as the concentrations required to generate signal-to-

noise ratios of 3 and 10, respectively. 

3.2.3 Epigenomics 

RNA sequencing method.  

Construction of RNA libraries. The miRNA libraries were prepared from total RNA using 

the NEXTFLEX® Small RNA-Seq v3 Kit for Illumina Platforms (Bioo Scientific 

Corporation, Texas, USA). Briefly, the small RNA molecules were first ligated to the 3’-4 

N adenylated adapters, taking advantage of the phosphate group at their terminal end, which 

allows the exclusive targeting of these molecules. Secondly, the 5’-4 N adapters were 

ligated. Later, reverse transcription of the molecule into cDNA was carried out. The 

generated cDNA fragments were then amplified and indexed by PCR using different 

barcode primers for each sample. Finally, a size-selective purification was carried out. 

The quality control and concentration of the libraries were verified with the Agilent 

Technologies 2100 bioanalyser using highly sensitivity DNA chips (Central Unit for 

Research in Medicine (Universitat de València)). Subsequently, an equimolecular pool of 

each library was prepared for sequencing. 

Sequencing on an Illumina equipment. Sequencing was carried out on the NGS NextSeq 

550 platform (Illumina, San Diego, CA, USA) by single read sequencing of 50 cycles (1 × 

50 bp). 
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miRNAs validation by quantitative PCR.  

Quantitative PCR procedure. From the extracted RNA, retro-transcription and 

amplification steps were carried out following the manufacturer’s recommendation 

(TaqMan Advanced miRNA Assays) 

[https://tools.thermofisher.com/content/sfs/manuals/100027897_TaqManAdv_miRNA_

Assays_UG.pdf]. Briefly, the protocol consisted of four steps. First, the addition of a polyA 

tail, after the adapter ligation, followed by the retro-transcription step, and then the 

specific miRNA amplification. Finally, samples were diluted, and real time PCR (RT-

PCR) was carried out in duplicate using the thermocycler (ViiA7, Applied Biosystems, 

California, USA). 

3.3 Data pre-processing 

3.3.1 Metabolomics 

First, pre-processing of acquired data from the full scan analysis by UPLC-Q-ToF-MS is 

required to detect molecular features. Data processing was done by using the XCMS 

package in R [150], for peak detection, noise filtering, peak alignment, grouping, and 

normalization of data; and the CAMERA package [151], for identification of isotopes and 

most probable adducts. Finally, a data matrix was generated including molecular features 

(m/z-retention time), sample ID (observations) and peak intensities.  

3.3.2 Lipidomics 

The results from the untargeted analytical method were converted to the mzXML file 

format, and the data were processed (peak detection, noise filtering, and peak 

alignment) using an in-house R processing script based in the LipidMS package 

published by Alcoriza-Balaguer et al. and developed in the Analytical Unit of the 

Health Research Institute of La Fe (Valencia) [152].  

For both analyses metabolomics and lipidomics, before the statistical analysis, data 

quality (reproducibility, stability) was evaluated by means of the internal standards 

stability and the QC's coefficients of variation (CV). Those molecular features with CV 

> 30% or not present in 60% of the samples in at least one of the compared groups were 

removed from the data matrix. Prior to statistical analysis, normalization was performed 

https://tools.thermofisher.com/content/sfs/manuals/100027897_TaqManAdv_miRNA_Assays_UG.pdf
https://tools.thermofisher.com/content/sfs/manuals/100027897_TaqManAdv_miRNA_Assays_UG.pdf
https://tools.thermofisher.com/content/sfs/manuals/100027897_TaqManAdv_miRNA_Assays_UG.pdf
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in order to find the most appropriate method for this study to eliminate intra-batch 

variability due to technical differences. They were two approaches based on multiple 

internal standard (IS), a median fold change normalization, and a QC-based robust locally 

weighted scatter plot smoothing (LOESS) for signal correction. After evaluation, LOESS 

data normalization was selected for statistical analysis. Finally, the obtained peaks table 

was used for statistical analysis. 

3.3.3 Epigenomics 

Pre‑processing, quality control and normalization. NGS data (raw fastq files from sRNA 

sequencing) were processed following the standard protocol proposed by Cordero et al. 

[153] implemented in the function mirnaCounts from docker4seq package [154] with 

default parameters in R[155]. First, a sequence quality control check was generated using 

FastQC[156] and then cutadapt[157] program was used for the adapter trimming. 

Specifically, adapters and low-quality reads (Phred Score < 10) were trimmed and removed 

(44.014.980 reads). Once adapters were removed, sequence reads (219.207.246 good 

quality reads) were mapped against miRNA precursors from miRBase (v.21)[158], using 

SHRIMP[158,159] , filtering out a total of 95.03% reads. Finally, miRNA quantification from 

the resulting 4.97% of mapped reads were generated using the function count Overleaps 

from GenomicRanges package [160], resulting in a total of 9.799.858 miRNA counts in a 

total of 2.386 miRNAs. 

miRNAs selection. From the miRNAs identified in the pre-processing, quality control and 

normalization process, some of them were selected. Specifically, those miRNAs which 

showed a number of counts different from zero in at least 80% of the samples and that 

were corroborated in literature. Finally, the selected miRNAs were validated by means of 

qPCR in the same plasma samples. 

3.4. Statistical analysis  

Demographic and clinical data from participants were summarized using median and 

interquartile range for continuous variables, and relative and absolute frequencies for 

categorical variables. Univariate analysis was carried comparing medians between 

participants groups by Mann Whitney and Kruskal Wallis tests for numerical variables 

and Chi-square test for categorical variables. All these analysis were carried out with 
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SPSS software version 20.0 (SPSS, Inc., Chicago, IL, USA). Correlation analyses were 

carried out by Pearson correlation test. Statistically significant differences were 

considered from p value < 0.05. In addition, the fold change (FC) ratios for metabolomic 

analyses were calculated as MCI-AD mean/control group mean for each metabolite. 

3.4.1 Metabolomics 

Multivariate analyses were carried out with metabolomic data. First, multivariate analysis 

based on an Elastic Net penalized logistic regression [149] (Chapter 8).  I t was adjusted 

to identify the most influential variables in the differentiation between healthy 

individuals and MCI-AD patients using R (version 3.5), R packages glmnet (version 2.0-

16), and BootValidation (version 0.1.5). Penalized regression methods consist on fitting 

a regression model subject to a specific restriction (a bound on the value of the 

coefficients). This method forces the shrinkage of the parameters to zero, potentially 

performing variable selection at the model-fitting step. Penalization factor for the Elastic 

Net was selected using 500 repetitions of 10-fold cross-validation. From each repetition 

the highest lambda at one standard error from the minimum was selected (one-standard-

error rule) and the median of the 500 lambda values was used as the final penalization 

factor. With the selected features, the Elastic net models obtained for each ionization 

mode were evaluated by estimating its optimism corrected AUC-ROC by bootstrapping, 

following the procedure of Gordon et al. [146]. On chapter 9, for multivariate statistical 

analysis, data from positive and negative ionization modes were treated simultaneously. 

First, the normalized variables obtained from data processing were visualized in a 

Volcano Plot to show which variables present a stronger combination of FC and statistical 

significance (p-value) from a t-test. Significant variables (p value t-test 1) were selected 

for a supervised orthogonal-least-squares discriminant analysis (PLS) validated by an 

iterative 7-fold cross-validation (CV) approach. The validity and robustness of the models 

were evaluated by R2 (Y) (model fit) and Q2 (Y) (predictive ability) diagnostic 

parameters. Quality of CV Q2 (Y) was assessed by using the p-value from CV-anova 

analysis. R2 Y intercepts and Q2 Y intercepts from 1000 times permutation test in the PLS 

model was also used to evaluate the overfitting risk. Most discriminant variables were 

selected according to their Variance Importance in Projection plot values (VIP >1.0), and 

a jackknife confidence interval that did not include zero. Finally, the potential metabolites 
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were submitted to identification process. Volcano plots were carried out using the R 

platform, while the multivariate analysis was carried out using Simca 14.1 software 

(Sartorius Stedim Biotech, Aubagne, France). 

3.4.2 Lipidomics 

The variables identified by the LipidMS package [152] were grouped into lipid families 

(CE, Cer, diglycerol (DG), fatty acid (FA), lysophosphatidylethanolamine (LPE), 

lysophos- phatidylcholine (LPC), monoglyceride (MG), PC, PE, PI, SM, and TG). In 

addition, we calculated the variables monounsaturated (MUFAS), polyunsaturated 

(PUFAS), and saturated (SFAS) fatty acids as the sum of levels (MUFAS, PUFAS, and 

SFAS, respectively), including all previous lipid families.  

On the other hand, a multivariate statistical analysis was carried out with the 

variables detected in the untargeted analysis in order to identify other potential 

biomarkers (not identified by the LipidMS package). For this, data from the positive 

and negative ionization modes were considered simultaneously. First, the normalized 

variables were visualized in a volcano plot carried out using an in-house script in R 

platform. From this, variables with a stronger combination of FC (abs (log2 FC) > 1) 

and statistical significance (p value of t-test < 0.05) in each comparison (MCI-AD vs. 

control and preclinical AD vs. control) were False Discovery Rate-adjusted and 

selected for a supervised PLS. The PLS was carried out using Simca 14.1 software 

(Sartorius Stedim Biotech, Aubagne, France), and it was validated by a seven cross-

validation procedure (CV, dataset split into seven subsets). The corresponding models 

were evaluated by R2 (Y) (model fit) and Q2 (Y) (predictive ability) diagnostic indices, 

the p-value of the CV-anova model, and a permutation test. The most discriminant 

variables were selected according to their variance importance in projection plot values 

(VIP > 1.0). Once selected, these features were annotated as potential metabolites by the 

CEU mass mediator database according to the Schymanski levels of identification [161]. 

In summary, Figure 5 describes the workflow of these analyses. 
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Figure 5. Workflow of the analyses. 

3.4.3 Epigenomics 

The number of counts obtained from RT-PCR were averaged for duplicates, discarding 

replicates with values within ± 2 counts from mean. Then, samples were normalized using 

the mean and standard deviation. The miRNAs detected in at least 80% of the samples 

and with a difference between replicates < 1 count were satisfactorily quantify. The effect 

of each biomarker on pathology was then analyzed by Bayesian models: the first model 

discriminates among control, MCI-AD and preclinical AD groups; and the second model 

discriminates between AD (preclinical AD, MCI-AD) and control groups. For these 

models, some parameters were calculated (estimate, which indicates the direction of the 

miRNAs levels; Odds Ratio; Percentage Inside Rope, which defines the percentage of the 

area that is within the region of practical equivalence (equivalent to null effect); 

probability of direction (PD), which indicates the probability that the effect has in a 

particular direction (indicated by the estimate). PD > 80% was considered significative). 

3.4.4 Lipidomics-Epigenomics Integration 

Sparse Partial Least Squares (PLS) regression was applied to the previous data sets to 

select variables (miRNAs, lipids) and integrate them. The PLS approach combines both 

integration and variable selection on two data sets in a one-step strategy [154]. 
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Then, the graphical representations (correlation circle plots, heatmaps, relevance 

networks) resulting from the statistical approach were plotted. 

Individual differences between groups were carried out by Mann–Whitney test, and 

correlations by Pearson Correlation. In all the cases, statistical significance was fixed 

in a p value of 0.05. 

Statistical analyses were performed using R software (v 4.0.3, Auckland, CA, USA) 

and mixOmics (v 6.16.2) and clickR (v 0.7.35) packages and SPSS software version 

20.0 (SPSS, Inc., Chicago, IL, USA). 

3.5 Metabolite annotation 

3.5.1 Metabolomics  

Metabolite annotation. Molecular features selected by Elastic Net analysis were 

preliminarily identified by querying their exact mass against those presented in the online 

Human Metabolome Database (HMDB) (http://www.hmdb.ca/) and the Metlin database 

(https://metlin.scripps.edu) within a mass range of ± 10 ppm. The identities of the selected 

features were verified by comparing the MS/MS and all-ions spectra with those of the 

proposed metabolites in the cited online databases, as well as by using authentic standards 

whenever available. 

Variables selected by PLS analysis were identified by using the online CEU Mass 

Mediator ((CMM), 3.0, Gil de la Fuente et al, 2019) [162] which combines the results of 

several online databases, among which Human Metabolome Database (HMDB) 

(http://hmdb.ca/), Metlin (https://metlin.scripps.edu/), LipidMaps 

(http://www.lipidmaps.org) and Kegg (http://www.kegg.jp) are used. Annotation of 

variables (m/z) was carried by querying their accurate mass (AM) against those presented 

in these sources within a mass range of ±5 ppm. Only those metabolites that appeared at 

least in the HMDB were finally selected. The adducts included were [M+H], [M+Na], 

[2M+H], and [2M+Na] for positive ionization mode, and [M-H], [M+HCOOH-H], [2M-

H] for negative ionization mode. Also, neutral water loss was taken into account for both 

ionization modes. A scoring of annotation was calculated by the CMM based on the 

probability to form specific adducts, as well as their retention time (RT), and lipid elution 

https://metlin.scripps.edu/
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order based in RT and the number of carbons and double bonds. Metabolites’ annotation 

was also supported by comparing the obtained MS/MS fragmentation spectra with those 

experimental spectra proposed in databases. Annotation confidence levels were 

determined according to the categorical scoring system proposed by the Metabolomics 

Community. They were level 1, identification of molecular feature through AM and RT, 

matching with its chemical standard; level 2, putatively annotation through AM and 

MS/MS spectra matching with online databases; level 3, putatively characterization of 

compounds by AM matching with online databases; and level 4, feature without 

annotation (unknown compound) [163,164]. 

3.5.2 Lipidomics  

In order to increase the metabolic coverage, two data analysis strategies were used. 

The variables were identified by two complementary methods in order to identify 

more metabolites with different polarity ranges. As a first method, annotation using the 

LipidMS package and statistical analysis was carried out with the variables. As a 

second method, annotation by means of the variable AM, using the CEU mass 

mediator database (including the Kegg, LipidMaps, Metlin, and Human 

Metabolome databases), a mass range of 5 ± ppm, and some adducts ([M+H], 

[M+Na], [2M+NH4], [M+NH4], and [M+H-2O] for the positive ionization  mode  

and  [M-H],  [M+HCOOH-H],  [2M-H], and [M+Na-2H] for the negative ionization 

mode), was carried out. In this second approach, the identity of the metabolites was 

confirmed by comparing the obtained MS/MS fragmentation spectra with those 

predicted and proposed in the databases. In this sense, four annotation confidence 

levels were evaluated, as proposed by E. Schymanski et al. (2014) [161,165]. They 

were level 1 (identified compounds with structures confirmed by AM, MS/MS 

spectra, retention time (rt), and reference standards); level 2 (compounds putatively 

annotated through AM and experimental or predicted MS/MS spectra matched with 

online libraries); level 3 (compounds putatively characterized by AM matched with 

online databases); and level 4 (unknown compounds) [165,166]. 

The results from the targeted analytical method were the signal intensities (arbitrary units) 

obtained for each lipid compound in plasma samples, and their concentrations were 

determined from the corresponding calibration curves. 
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3.5.3 Epigenomics: pathway analyses 

The target genes of the differentially expressed miRNAs were studied using the miR data 

base (miRDB). The selected target genes were those with a target score ≥ 95. Then, the 

targets were classified according to cellular pathways and functions in order to analyze 

the implication in AD.
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CONCLUSIONS.  

SECTION I. Lipid peroxidation studies 
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Chapter 1. New screening approach for Alzheimer’s disease risk 

assessment from urine lipid peroxidation compounds  

1. Summary 

The aim of this chapter was to evaluate the capacity of lipid peroxidation compounds 

from urine samples to disctiminate patients with AD (case grup, n=70) from non-AD 

cases (control group, n=29). Lipid peroxidation compounds were determined in urine 

using a validated analytical method based on UPLC-MS/MS. Statistical studies consisted 

of the evaluation of two different linear (Elastic Net) and non-linear (Random Forest) 

regression models to discriminate between groups of participants. 

2. Results 

2.1 Participant’ characteristics 

Table 3. Demographic and clinical variables of the study participants. 

Variable Case (n = 70) Control (n = 29) 

Age (years) (median (IQR)) 70.5 (68, 74) 66 (62, 72) 

Gender (female) (n (%)) 28 (40%) 18 (62%) 

Secondary Studies (n (%)) 10 (14%) 10 (34%) 

Alcohol consumption (yes) (n (%)) 6 (8%) 6 (21%) 

Smoking status (yes) (n (%)) 8 (11%) 1 (3%) 

Medications (yes) (n (%)) 54 (77%) 18 (62%) 

Comorbidity (yes) (n (%)) 53 (76%) 18 (62%) 

RBANS.DM (median (IQR)) 44 (40, 49) 100 (91, 106) 

CDR (median (IQR)) 0.5 (0.5,1) 0 (0,0) 

FAQ (median (IQR)) 7 (3, 13) 0 (0, 0) 

MMSE (median (IQR)) 22 (18, 26) 30 (28, 30) 

CSF Aβ (pg mL−1) (median (IQR)) 568 (441, 668) 1227 (1143, 1144) 

CSF t-Tau (pg mL−1) (median (IQR)) 553 (377, 790) 208 (141, 333) 

CSF p-Tau (pg mL−1) (median (IQR)) 88 (71, 116) 51 (38, 70) 

Temporal atrophy (yes) (n (%)) 51 (72%) 2 (7%) 

Depression (yes) (n (%)) 9 (13%) 3 (10%) 

IQR: Interquartilic range; RBANS-DM, Repeatable Battery for the Assessment of Neuropsychological Status- 

Delayed Memory (Standard Score; cut- off point < 85); CDR, Clinical Dementia Rating, values: 0, 0.5, 1, 2; FAQ, 
Functional Activities Questionnaire (Direct Score; cut-off point >9); MMSE, Minimental State Examination. 

Table 3 shows the demographic and clinical data for both groups. Small dif ferences were 

shown for age and gender between groups, so these variables were considered covariates. 

Regarding the neuropsychological variables (CDR, RBANS, FAQ, MMSE) and biological 
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measures (CSF Aβ, CSF t-Tau, CSF p-Tau, temporal atrophy) used in the standard diagnosis, 

they showed significant differences between groups. However, the demographic variables 

(age, gender, studies, alcohol, smoking status, medication, comorbidity) did not show 

statistical differences between groups. 

 

2.2 Determination of urine lipid peroxidation biomarkers  

Table 4. Concentrations of lipid peroxidation biomarkers in urine samples 

Biomarkers Case (n = 70) 

Median (IQR) 

(ng mg−1 creatinine) 

Control (n = 29) 

Median (IQR) 

(ng mg−1 creatinine) 

15(R)-15-F2t-IsoP 0.72 (0.5, 1.56) 0.7 (0.48, 0.94) 

PGE2 1.98 (0.62, 3.5) 1.69 (0.93, 4.26) 

15-keto-15-E2t-IsoP 0.93 (0.53, 1.47) 1.02 (0.65, 1.54) 

15-keto-15-F2t-IsoP 0.84 (0.22, 1.94) 1.33 (0.58, 2) 

2,3-dinor-15-epi-15-F2t-IsoP 0.78 (0.53, 1.22) 0.65 (0.47, 1.09) 

15-E2t-IsoP 0.23 (0.06, 1.31) 0.16 (0.07, 0.58) 

5-F2t-IsoP 2.67 (1.68, 5.07) 2.37 (1.76, 3.37) 

15-F2t-IsoP 0.01 (0, 0.02) 0.01 (0, 0.02) 

PGF2α 3.72 (2.79, 7.32) 3.38 (2.35, 5.17) 

4(RS)-4-F4t-NeuroP 0.89 (0.67, 1.36) 0.72 (0.5, 1.01) 

1a,1b-dihomo-PGF2α 1.33 (0.64, 2.48) 1.67 (1.05, 2.23) 

10-epi-10-F4t-NeuroP 0.03 (0, 0.06) 0.01 (0, 0.05) 

14(RS)-14-F4t-NeuroP 1.21 (0.76, 2.16) 1.27 (0.74, 1.94) 

ent-7(RS)-7-F2t-dihomo-IsoP 0.33 (0.14, 0.63) 0.28 (0.19, 0.36) 

17-F2t-dihomo-IsoP 0.09 (0, 0.38) 0.11 (0, 0.26) 

17-epi-17-F2t-dihomo-IsoP 0.01 (0, 0.07) 0 (0, 0) 

17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF 0.03 (0, 0.1) 0.05 (0.03, 0.08) 

7(RS)-ST-Δ8-11-dihomo-IsoF 0 (0, 0.02) 0 (0, 0.03) 

IQR, inter-quartile range; IsoP, isoprostane; dihomo-IsoP, dihomo-isoprostane; dihomo-IsoF, dihomo-isofuran, 
NeuroP, neuroprostane. 

 

Urine levels of lipid peroxidation compounds obtained for each group are shown in Table 4. 

Some of them (5-F2t-IsoP, 2,3-dinor-15-epi-15-F2t-IsoP, 15-E2t-IsoP, PGE2, PGF2α, 10-epi-

10-F4t-NeuroP, 4(RS)-4-F4t-NeuroP, ent-7(RS)-7-F2t-dihomo-IsoP) showed higher levels in  

early AD patients than in healthy controls, and some analytes (15-keto-15-E2t-IsoP, 15-

keto-15-F2t-IsoP) showed  lower values in the case group than in the control group. Figure 

6 shows the box plots for each analyte. 



Results, discussion and conclusions Chapter 1 

101 
 

 

 

Figure 6. Box-Plot of the differences in different lipid peroxidation analytes levels 

between early AD (case) and healthy (control) groups. 

 

2.3 Screening model from urine lipid peroxidation biomarkers 

The elastic net model selected five variables corresponding to one isoprostane, one 

neuroprostane, one prostaglandin and two dihomo-isoprostanes shown in Table 5. The 

model also included gender and age, which were introduced as covariates. These predictor 
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variables were combined as it is indicated in the formula below in order to estimate the 

individual probability (Pr) of suffering from AD. 

Pr(𝑌)
𝑒−4.187+0.51∗𝑓𝑒𝑚𝑎𝑙𝑒+0.064∗𝑎𝑔𝑒−0.13∗(𝐴)+0.622∗(𝐵)−0.048∗(𝐶)+0.554∗(𝐷)+0.072∗(𝐸)

1 + 𝑒−4.187+0.463∗𝑓𝑒𝑚𝑎𝑙𝑒+0.064∗𝑎𝑔𝑒−0.13∗(𝐴)+0.622∗(𝐵)−0.048∗(𝐶)+0.554∗(𝐷)+0.072∗(𝐸)
 

A: 15-keto-15-F2t-IsoP; B: 4(RS)-4-F4t-NeuroP; C: 1a,1b-dihomo-PGF2α; D: ent-7(RS)-7-F2t-dihomo-IsoP; E: 17-

epi-17-F2t-dihomo-IsoP. 

 

Table 5. Results of the elastic net and random forest analyses. 

 

Variable 
 

Coefficient 

(elastic net) 

 

Importance 

(random forest) 

p-value 

(random 

forest) 

Gender (female) 0.463 0.17 0.08* 

Age 0.064 1.09 0.012* 

15-keto-15-F2t-IsoP −0.13 0.71 0.043* 

4(RS)-F4t-NeuroP 0.62 0.74 0.046* 

1a,1b-dihomo-PGF2α −0.048 0.73 0.035* 

ent-7(RS)-7-F2t-dihomo-IsoP 0.55 0.64 0.044* 

17-epi-17-F2t-dihomo-IsoP 0.072 0.58 0.029* 

10-epi-10-F4t-NeuroP 0 0.48 0.075 

17-F2t-dihomo-IsoP 0 0.35 0.133 

17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF 0 0.21 0.219 

15-E2t-IsoP 0 0.17 0.293 

5-F2t-IsoP 0 0.14 0.325 

2,3-dinor-15-epi-15-F2t-IsoP 0 0.11 0.381 

15(R)-15-F2t-IsoP 0 0.10 0.379 

PGE2 0 0.08 0.405 

15-keto-15-E2t-IsoP 0 0.05 0.436 

7(RS)-ST-Δ8-11-dihomo-IsoF 0 −0.08 0.636 

PGF2α 0 −0.09 0.603 

14(RS)-14-F4t-NeuroP 0 −0.25 0.755 

 

The alternative analysis using random forest selected the same five variables as the most 

important ones (Table 5), and they were also all considered statistically significant by the 

Altmann method [144]. Classification performance of the models was assessed using 

bootstrap in the case of elastic net and by the Out of Bag (OOB) estimate in the case of 

random forest. Bootstrap validated AUC-ROC for the elastic net model was 0.682 and OOB 

accuracy for the random forest model was 0.71, so their performance can be considered 

similar. Remarkably for the elastic net results, the sensitivity and specificity profile shows 



Results, discussion and conclusions Chapter 1 

103 
 

a sharp decrease of the sensitivity values as the specificity increases, forcing a decision 

between high sensitivity (0.97) at a cost of low specificity (0.31) or high specificity (0.93) 

at a cost of mediocre sensitivity (0.5) (Figure 7). 

 

Coefficients of the elastic net model are interpreted as log-odds, so negative values indicate 

a negative association between higher concentration levels and risk of disease, and 

positive values indicate a positive association between higher concentration levels and 

risk of disease. Importance values and p-values for random forest are derived from the gini 

index using Altman method. 

Figure 7. Sensitivity and specificity profile plot. The continuous line depicts the 

relationship between the probability threshold set in the model’s prediction and its 

corresponding sensitivity and the dashed line represent the relationship between the 

probability threshold and the specificity. 

 

3. Discussion 

The reliable determination of lipid peroxidation products levels in urine samples from 

well-defined healthy and early AD participants, and the satisfactory classification 

performance of two complementary regression models allowed to develop an early and 

non-invasive screening model to identify individuals with high risk to develop the AD. 

The role of lipid peroxidation in AD development has been largely studied [167] but few 

studies have been carried out determining isoprostanoids as target metabolites in AD 
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[168,169]. In addition, the analytical methods used in most  of these works were based on 

commercial kits or immunoassays what is associated to low specificity on isomers 

determinations (Puertas et al., 2012). Nevertheless, in the present study a previously 

validated analytical method based on mass spectrometry detection has been used, providing 

high selectivity and sensitivity, as well as high reliability to determine simultaneously 

several isoprostanoids isomers [141]. 

Regarding the development of early and non-invasive diagnosis, urine could be 

considered a promising matrix. However, few studies in literature have focused on this 

matrix [171,172]. Specifically, in the present work some  compounds (PGE2, 2,3-dinor-15-

epi-15-F2t-IsoP, 15-E2t-IsoP, 5-F2t-IsoP, PGF2α, 10-epi-10-F4t-NeuroP, 4(RS)- 4-F4t-NeuroP 

and 17-epi-17-F2t-dihomo-IsoP) showed higher concentrations in urine from AD patients 

than in  healthy participants. Similarly, previous studies showed higher levels of some F2-

IsoPs in urine from patients with AD than in the control group [173–175]. However, further 

studies to clinically validate these potential biomarkers, using a larger number of samples 

from well-defined participants, and predictive models are required. 

In this work, two alternative modelling methods with completely different characteristics 

were used. First, elastic net logistic regression is based on standard generalized linear 

regression models, thus assuming linearity of the relationship between predictors and the 

linear predictor, no interactions are assessed and the results are fully interpretable as in a 

standard logistic regression. On the other hand, random forest is a non-linear non-

parametric model, that enable the assessment of higher order interactions between 

variables at a cost of lower statistical power compared to elastic net model when the 

relationship is linear [50,176]. Random forest does not provide an interpretable model, but 

provides a list of the most important variables in predicting the response. The fact that both 

methods obtained very similar results, provides robustness to our results. 

In literature, few AD predictive models using these sophisticated statistical tools can be 

found [50,177–179], and most of them are based on neuroimaging measures [180]. 

However, none of them were based on non-invasive determination of lipid peroxidation 

biomarkers in early AD patients. 

The diagnostic indices obtained from both models indicated that the results could 

constitute a satisfactory screening approach from early AD stages with the consequent 
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benefits for patients and health public system. In fact, the high sensitivity obtained would 

allow a reliable identification of high-risk patients in the early stages of AD, and they would 

be derived to a method with higher specificity to rule out false positives [168]. Nevertheless, 

further clinical validation using an external cohort of participants would be required in order 

to obtain a reliable diagnostic model. 

 Regarding the study limitations, the low number of controls compared to cases would be 

explained by the difficulty to obtain healthy participants with CSF biomarkers. Also, we 

did not include participants with other similar dementias, so differential AD diagnosis was 

not achieved. Further clinical validation work will be developed by including a higher 

number of controls, as well as patients with similar pathologies. In addition, a follow-up 

study will be carried out in order to evaluate the variation of these compounds’ levels along 

the time. 

4. Conclusion 

A set of new lipid peroxidation biomarkers has been determined in urine samples from 

well-defined participants (early AD, healthy) by means of a previously validated analytical 

method. So, reliable results have been obtained and used to develop a preliminary early 

and non-invasive screening model in order to identify potential individuals with high risk 

of suffering AD, although it could not be considered AD specific. For this, two different 

regression models (linear, elastic net; non-linear, random forest) were developed, obtaining 

similar performance in terms of variable selection and accuracy, in spite of being based on 

different analytical principles, and so providing robustness to the results. 
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Chapter 2. Plasma lipid peroxidation biomarkers for early and non-

invasive Alzheimer Disease detection 

1. Summary 

The aim of this chapter was to evaluate the capacity of lipid peroxidation compounds 

from plasma samples to discriminate patients with AD (case group, n=68) from non-AD 

cases (control group, n=26). First, the analytical method for lipid peroxidation compounds 

in plasma samples was validated and then plasa from participantes were analysed using a 

validated analytical method based on UPLC-MS/MS. Statistical studies consisted of an 

elastic-net-penalized logistic regression adjustment. 

 

2. Results 

2.1. Patients’ characteristics 

Demographic, clinical and CSF biomarker data for both groups are summarized in 

Table 6. Age and gender showed small differences between groups, so they were 

included in the predictive model as covariates. As expected, RBANS, CDR, FAQ, 

Aβ42, t-Tau and p-Tau were clearly different between both groups. C-reactive 

protein (CRP) was also different, with the AD patients displaying higher values. 

Depression was similar between both groups. 
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Table 6. Demographic and clinical characteristics, and biomarkers levels of the 

participants. 

Variable Case (n=68) Control (n=26) 

 

Age (years) (median, IQR) 71 (68, 74) 66 (62.25, 71.5) 

Gender (female) (n, (%)) 39 (57.35%) 9 (34.62%) 

Studies levels (%) Primary 31 (45%) 14 (53%) 

Secondary 15 (22%) 5 (20%) 

Academic 22 (33%) 7 (27%) 

Alcohol consumption (yes, n (%)) 9 (13%) 6 (23%) 

Smoking status (n, 

(%)) 

Yes 10 (15%) 2 (8%) 

Former smoker (more 

than 10 years) 

11 (16%) 8 (31%) 

Medications (n, (%)) 54 (79%) 18 (69%) 

Comorbidiyt (n, 

(%)) 

None 15 (22%) 8 (31%) 

Dyslipemia 17 (25%) 6 (23%) 

Heart disease 1 (1%) 0 (0%) 

Arterial hypertension 8 (12%) 6 (23%) 

Two or more 23 (34%) 3 (11,5%) 

Others 4 (6%) 3 (11,5%) 

Triglycerides (median, IQR) 90 (75.5, 120) 94.5 (83.75, 113.75) 

Cholesterol (median, IQR) 195.5 (171.25, 220) 202.5 (193, 237) 

CRP (median, IQR) 0 (0, 1.3) 0 (0, 0) 

RBANS.DM (median, IQR) 44 (40, 49) 100 (91.25, 105.25) 

CDR (median, IQR) 0.5 (0.5,1) 0 (0,0) 

FAc (median, IQR) 8 (3, 13) 0 (0, 0) 

CSF Aβ42 (pg mL-1) (median, IQR) 565 (444.5, 673) 1197 (1150, 1423.5) 

CSF t-Tau (pg mL-1) (median, IQR) 543 (386.5, 788.5) 208 (142, 326) 

CSF p-Tau (pg mL-1) (median, IQR) 87 (71.5, 108) 52 (41, 68.5) 

Temporal atrophy (n, (%)) 51 (79.69%) 2 (8%) 

Depression (n, (%)) 18 (28.57%) 4 (15.38%) 

IQR: inter-quartile range; CRP: C-reactive protein; CSF: cerebrospinal fluid; Aβ42: amyloid β 42; t-Tau: total 
Tau; p-Tau: phosphorylated Tau.  RBANS-DM, Repeatable Battery for the Assessment of Neuropsychological 

Status- Delayed Memory (Standard Score; cut-off point<85). CDR, Clinical Dementia Rating, values: 0, 0.5, 1, 
2. FAQ, Functional Activities Questionnaire (Direct Score; cut-off point>9). 

2.2. Analytical method validation 

The analytical method showed an adequate linearity for all the analytes within the 

corresponding concentration ranges and coefficients of determination (R2) ranged 

between 0.990 and 0.999. It also provided suitable precision, with intra-day and inter-

day coefficients of variation of 2–11% (n = 3) and 5–13% (n = 6), respectively (at 

medium concentration level within the linearity interval). The limits of detection 

(signal to noise ratio of 3) obtained for each analyte ranged between 0.02 and 2 nmol 

L-1, and the limits of quantification (signal to noise ratio of 10) were between 0.07 

and 8 nmol L-1. 

The accuracy of the method was evaluated by analyzing standard solutions and spiked 
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plasma samples containing the analytes at different concentration levels. In all the cases, 

the proposed method provided values close to the real concentrations, and matrix effect 

was considered negligible, with the exemption of 15-keto-15-E2t-IsoP, for which only a 

semi-quantitative determination was achieved. 

2.3. Determination of plasma lipid peroxidation biomarkers and 

correlation analysis 

Regarding plasma levels of lipid peroxidation compounds, some of them (15(R)-15-F2t-

IsoP, 15-keto-15-E2t-IsoP, 15-keto-15-F2t-IsoP, 15-E2t-IsoP,4(RS)-F4t-NeuroP  and  ent-

7(RS)-7-F2t-dihomo-IsoP)  showed higher levels in AD patients than in healthy controls 

(control). Figure 8 shows the same results by means of box plots for each analyte, and 

some analytes showed lower values in the case group than in the control group (PGF2α, 

5-F2t-IsoP, 7(RS)-ST-Δ8-11-dihomo-IsoF). 

Correlation analysis among the plasma lipid peroxidation biomarkers and the CSF 

biomarkers (Aβ42, t-Tau and p-Tau) was carried out by constructing a correlation 

network (Figure 9). Red lines represent positive correlations, while blue lines show 

negative correlations. Besides, the width of the line corresponds to the strength of the 

correlation. The figure shows an evident association between the CSF biomarkers (t-Tau, 

p-Tau, Aβ42) and some plasma analytes, such as 15(R)-15-F2t-IsoP formed from the AA 

peroxidation, and ent-7(RS)-7-F2t-dihomo-IsoP formed from the AA peroxidation. As 

observed in Figure 8, these two plasma analytes showed higher levels in AD patients than 

in healthy participants, corroborating their high association with standard AD biomarkers. 

Other interesting associations were the correlation between ent-7(RS)-7-F2t-dihomo-IsoP 

and PGE2, which belongs to the prostaglandins family and may play an important role 

in the inflammatory response associated to AD; the correlation between the prostaglandin 

PGF2α, the isoprostane isomer 15-F2t-IsoP that is studied in depth in a variety of 

biological systems, and 10-epi-10- F4t-NeuroP formed from the DHA peroxidation; as 

well as the correlation between 15-E2t-IsoP and 15-keto-15-F2t-IsoP (Figure 9). Also, 

some negative correlations were found between the prostaglandin PGF2α and both 17-epi-

17-F2t-dihomo-IsoP and 4(RS)-F4t-NeuroP. However, 14(RS)-14-F4t-NeuroP does not 

show any correlation with the other compounds. 
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Figure 8. Box plot graphs representing the concentration in plasma samples for each 

analyte in case and control groups. Boxes represent the 1st and 3rd quartiles, the black 

lines the median, and whiskers encompass from 1st quartile − 1.5 times the interquartile 

range to 3rd quartile + 1.5 times the interquartile range (* p < 0.01,** p < 0.001). 
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Figure 9. Correlation network for all the lipid peroxidation products in plasma and CSF 

biomarkers (Aβ42, t-Tau and p-Tau). The width of the line corresponds to the strength of 

the correlation, red lines represent positive correlations and blue lines represent negative 

correlations.  

2.4. Diagnostic model from plasma lipid peroxidation biomarkers 

The elastic-net logistic regression model fitted to the data selected six variables as 

potential predictors of AD. The model was also forced to include age and gender as 

covariates. These predictors were combined using the following formula in order to 

calculate the individual probability of suffering from AD (Pr): 

Pr(𝐴𝐷) =
𝑒𝐿𝑃

1 + 𝑒𝐿𝑃
 

where LP= – 3.55 + 2.23 * 15(R)-15-F2t-IsoP – 0.239 * 15-E2t-IsoP –1.424 * PGF2α 

+ 0.5098 * 4(RS)-F4t-NeuroP – 0.08 * 14(RS)-14-F4t-NeuroP + 0.154 * Ent-

7(RS)-7-F2t-dihomo-IsoP + 0.596 * gender + 0.059 * age 
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This model achieved an apparent AUC-ROC of 0.883 (95% Confidence Interval, 

0.817–0.95, p-value < 0.001) (Figure 10) and a bootstrap-validated AUC- ROC of 

0.817. Calibration of the model was also assessed, obtaining very low deviations 

when comparing the fitted versus the real probabilities, except around the 30–40% 

mark, where the deviations toped at -10% (Figure 11). 

Figure 10. Receiver operating characteristic curve for the diagnostic model. The 

AUC is 0.883 with a p < 0.001. 

 

 

Figure 11. Calibration plot of the model. The dotted line represents an empirical 

estimation of the in-sample observed probability versus the model-predicted probability. 

The continuous line represents the bias-corrected estimation of the observed probability 

versus the predicted probability. The dashed line represents the ideal 1:1 relationship 

between observed and predicted probabilities. 
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3. Discussion and conclusion 

In this study, we have used a validated analytical method to determine levels of 18 

isoprostanoids in plasma from well-defined participants groups (early AD patients and 

healthy participants). Nowadays, the standard diagnosis criteria employed to classify the 

participants are based on the review from the NIA-AA [23,24]. However, since it shows 

some disadvantages, an early and reliable potential diagnosis method has been studied 

in this work. 

The results obtained from the determination of 18 lipid peroxidation biomarkers in 

plasma samples indicate that higher concentrations of some compounds (15(R)-15-F2t-

IsoP, 15-keto-15-E2t-IsoP, 15-keto- 15-F2t-IsoP, 15-E2t-IsoP, 4(RS)-F4t-NeuroP, ent-

7(RS)-7-F2t-dihomo- IsoP) were found in early AD patients than in healthy participants. 

This finding corroborates the results obtained by Şirin et al. in which plasma levels of 

15-F2t-IsoP were higher in AD than in healthy individuals [181]. As regards the 

descriptive correlation analysis among plasma and CSF biomarkers, we considered 

that a correlation with an absolute value ≥ 0.3 may be relevant in the lipid peroxidation 

associated to early AD. Although it is not possible to explain the implications of all 

these correlations, some of these metabolites’ levels were altered in MCI- AD. Of note, 

15(R)-15-F2t-IsoP and ent-7(RS)-7-F2t-dihomo IsoP in plasma showed positive 

correlation with t-Tau and p-Tau in CSF, and negative correlation with Aβ42 in CSF. 

In this sense, a potential relationship between lipid peroxidation and the protein biology 

in brain was observed, confirming previous studies [182]. Actually, in a previous study it 

was found that the insert of Aβ aggregates into the lipid bilayer in cellular membrane, 

may lead to the formation of lipid peroxidation compounds [167]. On the other hand, 

some compounds in plasma were highly correlated, such as, PGF2α and 15-F2t-isoP, 

as well as PGF2α and 10-epi-10-F4t-NeuroP, and finally PGE2 and ent-7(RS)-7-F2t-

dihomo-IsoP, indicating the presence of both enzymatic and non-enzymatic lipid 

oxidation since early AD, as well as inflammatory response also observed in previous 

studies [183,184]. Moreover, an important inverse relationship was observed between 

PGF2α and 17-epi- 17-F2t-dihomoIsoP. 

From these preliminary results, we elaborated a regression model showing good 

diagnostic accuracy from the biomarkers 15(R)-15-F2t- IsoP, 15-E2t-IsoP, PGF2α, 
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4(RS)-F4t-NeuroP, 14(RS)-14-F4t-NeuroP and ent-7(RS)-7-F2t-dihomo-IsoP. Although 

these biomarkers are not able to discriminate between both groups when considered 

alone, they improve their discriminative ability when they are included in the 

diagnostic model with age and gender as covariates. Developing reliable diagnostic 

models in small data sets is difficult because the issue of overfitting is especially 

prominent in these cases. Common methods employed in medical literature include 

univariate screening, stepwise variable selection and, most recently, shrinkage or 

regularization methods such as lasso or elastic net. Of these, only regularization 

methods are able to produce stable estimates of the predictors and achieve good 

generalization of its predictive capacity [145]. In this study we used an elastic net 

penalized logistic regression model for AD diagnosis. Elastic net is a generalization 

of lasso and improves its prediction accuracy as it allows to deal with 

multicollinearity (high correlations between the different covariates) which was a 

property of our dataset. Our model achieved a promising validated AUC of 0.82 and 

has the advantage of providing an equation that can be used to obtain individualized 

estimates for each patient. The possibility to estimate the probability of AD opens the 

door to personalized decision making in the handling of potential AD patients. This 

would leave the use of CSF biomarkers, the gold standard for diagnosis, only for 

cases considered as high risk by our model. 

Although the diagnostic accuracy of this model was not superior to the employment of 

CSF biomarkers this model has the advantage of being based on non-invasive sampling. 

In literature, we can find some AD diagnosis models developed using different 

biomarkers. For instance, Nazeri et al. showed that different plasma proteins (interleukin-

16, thyroxine-binding globulin, peptide tyrosine tyrosine, apolipoprotein E, eselectin, 

matrix metallopeptidase (10)) could be used to achieve the diagnosis and follow-up of the 

AD quite accurately against neuroimaging techniques, but these proteins are required to 

be clinically validated as possible AD indicators [185]. In addition, Marmarelis et al. 

proposed a diagnostic model based on cerebral hemodynamics through measures of 

pressure changes and cerebral CO2 vasomotor reactivity, but the specificity of this 

diagnosis has not been assessed and the number of participants is low [186]. Another 

model was based on the determination of CSF biomarkers by means of capillary 
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electrophoresis coupled to mass spectrometry [187]. Also, a diagnostic model based on 

image techniques was described by Liao et al., in which age could explain some 

metabolic alterations, but the imaging techniques involve high economic costs [ 1 8 8 ] . 

4. Conslusion  

To conclude, a satisfactory AD diagnostic model has been obtained from plasma lipid 

peroxidation biomarkers, indicating the individual probability of suffering from AD. To 

our knowledge, this is the first study evaluating the AD diagnostic accuracy of lipid 

peroxidation compounds in plasma from well-defined participants groups and using a 

validated analytical method. This is an important contribution in the study of an early and 

non-invasive AD diagnosis. In addition, the results from this work are relevant in the 

evaluation of OS as a molecular mechanism between amyloid deposition and 

neurodegeneration in AD. Prospective clinical validation of this potential diagnostic 

model will be carried out using an external group of patients. 
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Chapter 3. Assessment of lipid peroxidation and artificial neural 

network models in early Alzheimer Disease diagnosis 

1. Summary  

The aim of this chapter was to evaluate the capacity of lipid peroxidation biomarkers from 

plasma and urine samples to discriminate between MCI-AD and healthy control groups 

participants with different statistical strategies. For this, lipid peroxidation compounds 

were determined in urine and plasma samples from patients diagnosed with early 

Alzheimer Disease (n=70) and controls (n=26) by means of UPLC-MS/MS. The obtained 

results were analysed by means of different statistical models (PLS, SVM, ANN) to 

evaluate the diagnostic capacity for sample type.  

2. Results 

2.1. Demographic, clinical and analytical variables 

The demographic and clinical variables for each group of participants are described 

in Table 7. All of them showed a non-normal distribution, so medians were compared 

between groups by means of Mann Whitney test for numerical variables, and Chi-square 

and Fisher exact tests for categorical variables. The clinical variables (RBANS, CDR, 

FAQ, MMSE), cerebrospinal fluid (CSF) Aβ42, CSF t-Tau and CSF p-Tau) showed 

statistically significant differences between MCI-AD and healthy control groups. On the 

other hand, demographic variables did not present statistically significant differences 

between both groups except of gender and age, so these variables were taken into 

account in the subsequent analyses. 

The concentrations obtained for each analytical variable (22 analytes) in both matrices 

(urine, plasma) are summarized in Table 8. As we can see, statistically significant 

differences between groups were obtained for 17-epi-17-F2t-dihomo-IsoP in urine 

samples, and for 15(R)-15-F2t-IsoP, PGF2α, 4(RS)-4-F4t-NeuroP, ent-7(RS)-7-F2t-dihomo-

IsoP, 17-epi-17-F2t-dihomo-IsoP, isoprostanes, isofurans, neuroprostanes and 

neurofurans in plasma samples. 

 



Results, discussion and conclusions Chapter 3 

116 
 

Table 7. Demographic and clinical variables of the studied population. 

Variable MCI-AD (n=70) Healthy control 
(n=26) 

P-value 

Gender (Female, n (%)) 41 (58.6%) 9 (34.6%) 0.037* 

Age (Median, (IQR)) 70 (68-74) 66 (62-70) 0.044* 

Depression (Yes, n (%)) 9 (13%) 5 (19%) 0.566 

Anxiety (Yes, n (%)) 6 (9%) 2 (8%) 0.629 

Studies levels 

(n (%)) 

Primary 28 (40%) 16 (61%) 0.173 

Secondary 20 (29%) 3 (12%) 

Academic 22 (31%) 7 (27%) 

Smoking status (smoker or former 

smoker) (n (%)) 

50 (71%) 13 (50%) 0.124 

Alcohol consumption (yes, n (%)) 12 (17%) 2 (8%) 0.307 

Medications (n, 

(%)) 

None 15 (22%) 8 (31%) 0.269 

psychotropic drugs 3 (4%) 2 (8%) 

Antihypertensive 10 (14%) 7 (27%) 

Statins 12 (17%) 3 (11%) 

Two or more 30(43%) 6 (23%) 

Comorbidity (n, 

(%)) 

None 18 (26%) 10 (39%) 0.071 

Dyslipemia 18 (26%) 3 (11%) 

Hypertension 10 (14%) 7 (27%) 

Heart disease 0 (0%) 1 (4%) 

Two or more 24 (34%) 5 (19%) 

RBANS-DM 42 (40-49) 100 (90-106) 0.000* 

CDR 0.5 (0.5-1) 0 (0-0) 0.000* 

FAQ 7 (2-13) 0 (0-0) 0.000* 

MMSE 25 (19-29) 24 (21-27) 0.000* 

CSF Aβ42 (pg mL-1) 597 (445-687) 1186 (1033-1403) 0.000* 

CSF t-Tau (pg mL-1) 572 (396-857) 202 (139-320) 0.000* 

CSF p-Tau (pg mL-1) 88 (72-111) 49 (35-67) 0.000* 

 

IQR: Interquartile range. Data were expressed as median (interquartile range (IQR)) for non-parametric 

continuous variables, and number of cases (percentages) for categorical cases. The statistical calculations 

to compare between the two groups employed Mann-Whitney test, Chi-Square test and Fisher exact test, 

respectively; RBANS-DM, Repeatable Battery for the Assessment of Neuropsychological Status- Delayed 
Memory (Standard Score; cut-off point < 85); CDR, Clinical Dementia Rating, values: 0, 0.5, 1, 2; 

FAQ, Functional Activities Questionnaire (Direct Score; cut-off point > 9); MMSE, Minimental State 

Examination; CSF, Cerebrospinal fluid; Aβ42: amyloid β 42; t-Tau, total-Tau; p-Tau, 
phosphorylated-Tau; ⁎ p < .05. 
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Table 8. Concentrations determined by UPLC-MS/MS for each analyte in plasma and urine samples from MCI-AD and healthy control 

participants. 

Analyte   Plasma (nmol L-1) Urine (ng mg creatinine -1) 

MCI-AD (n= 70) Healthy control (n= 26) P-

value 

MCI-AD (n= 70) Healthy control (n= 

26) 

P-

value 

Median quartile Median quartile Media
n  

quartile Media
n  

quartile 

1st 3rd 1st 3rd 1st 3rd 1st 3rd 

15(R)-15-F2t-IsoP 0.30 0.23 0.46 0.20 0.15 0.26 0.000* 0.69 0.47 1.42 0.71 0.49 1.00 0.830 

PGE2 0.05 0.00 0.13 0.05 0.00 0.10 0.520 1.93 0.43 3.48 1.85 0.92 4.62 0.615 

2,3-dinor-15-epi-15-F2t-IsoP 0.00 0.00 0.03 0.00 0.00 0.00 0.067 0.73 0.49 1.22 0.65 0.47 1.12 0.458 

15-keto-15-E2t-IsoP 0.15 0.00 0.35 0.13 0.04 0.27 0.874 0.92 0.51 1.46 0.88 0.52 1.65 0.644 

15-keto-15-F2t-IsoP 0.23 0.09 0.35 0.23 0.14 0.28 0.599 0.79 0.16 1.85 1.52 0.60 2.20 0.094 

15-E2t-IsoP 0.26 0.12 0.43 0.19 0.09 0.28 0.320 0.18 0.05 1.29 0.19 0.06 0.76 0.830 

5-F2t-IsoP  
0.78 

0.40 1.26 0.99 0.73 1.23 0.362 2.66 1.61 4.85 2.70 1.77 3.85 0.817 

15-F2t-IsoP 0.02 0.01 0.04 0.02 0.02 0.03 0.638 0.01 0.00 0.02 0.01 0.00 0.02 0.113 

PGF2α 0.51 0.24 0.76 0.74 0.48 0.94 0.008* 3.67 2.69 7.90 2.98 2.34 4.98 0.295 

4(RS)-4-F4t-NeuroP 1.14 0.96 1.33 1.03 0.00 1.13 0.003* 0.91 0.67 1.40 0.72 0.50 1.05 0.051 

1a,1b-dihomo-PGF2α 0.00 0.00 0.00 0.00 0.00 0.00 0.784 1.26 0.61 2.35 1.63 1.01 2.32 0.232 

10-epi-10-F4t-NeuroP 0.08 0.03 0.15 0.09 0.03 0.14 0.731 0.03 0.00 0.06 0.01 0.00 0.04 0.094 

14(RS)-14-F4t-NeuroP 0.53 0.06 1.03 0.60 0.00 1.74 0.671 1.22 0.76 2.38 1.37 0.78 1.98 0.837 

ent-7(RS)-7-F2t-dihomo-

IsoP 

0.10 0.05 0.15 0.05 0.04 0.08 0.002* 0.32 0.13 0.60 0.29 0.21 0.39 1.000 

17-F2t-dihomo-IsoP 0.00 0.00 0.00 0.00 0.00 0.00 0.555 0.08 0.00 0.36 0.10 0.00 0.23 0.625 



Results, discussion and conclusions    Chapter 3 

118 
 

17-epi-17-F2t-dihomo-IsoP 0.03 0.00 0.05 0.00 0.00 0.01 0.015* 0.01 0.00 0.06 0.00 0.00 0.00 0.019* 

17(RS)-10-epi-SC-Δ15-11-

dihomo-IsoF 

0.00 0.00 0.00 0.00 0.00 0.00 0.164 0.03 0.00 0.11 0.05 0.02 0.08 0.330 

7(RS)-ST-Δ8-11-dihomo-

IsoF 

0.04 0.03 0.08 0.09 0.02 0.16 0.067 0.00 0.00 0.02 0.00 0.00 0.03 0.849 

Neurofuransa 0.09 -0.05 0.17 -0.10 -0.15 0.07 0.000* 3.13 1.76 6.62 4.15 2.51 5.95 0.356 

Isofuransa 0.09 0.07 0.12 0.07 0.06 0.09 0.013* 4.36 2.53 7.25 4.29 3.37 9.64 0.343 

Neuroprostanesa -0.22 -0.70 0.19 -0.65 -0.76 -0.48 0.010* 3.52 2.25 4.97 3.77 2.02 6.17 0.650 

Isoprostanesa 0.30 0.22 0.39 0.20 0.17 0.27 0.000* 6.20 3.82 12.37 7.30 4.67 11.4
5 

0.49 

* p < 0.05.  

a, Total parameters results expressed as intensity of signal units in plasma and as signal units mg-1 creatinine in urine.
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2.2. Multivariate statistical models 

In this work we developed different multivariate models in order to improve the 

diagnostic utility of lipid peroxidation products from plasma and urine samples 

[141,168], since they do not have a high diagnostic capacity individually. For this, 

different multivariate models based on linear and non-linear regression were developed 

for each kind of biological sample and they were compared in terms of diagnostic 

performance. 

(a)       (b)

   

Figure 12. Plots representing results of the partial least squares regression model in urine 

samples. (a) Loadings plot. 1: Gender; 2: Age; 3: 15(R)-15-F2t-IsoP; 4: PGE2; 5: 2,3-

dinor-15-epi-15-F2t-IsoP; 6: 15-keto-15-E2t-IsoP; 7: 15-keto-15-F2t-IsoP; 8: 15-E2t-IsoP; 

9: 5-F2t-IsoP; 10: 15-F2t-IsoP; 11: PGF2α; 12: 4(RS)-F4t-NeuroP; 13: 1a,1b-dihomo-

PGF2α; 14: 10-epi-10-F4t-NeuroP; 15: 14(RS)-14-F4t-NeuroP; 16: ent-7(RS)-7-F2t-

dihomo-IsoP; 17: 17-F2t-dihomo-IsoP; 18: 17-epi-17-F2t-dihomo-IsoP; 19: 17(RS)-10-

epi-SC-Δ15-11-dihomo-IsoF; 20: 7(RS)-ST-Δ8-11-dihomo-IsoF; 21: neurofurans; 22: 

isofurans; 23: neuroprostanes; 24: isoprostanes. (b) Scores plot. 

 

First, PLS linear regression models were developed. For PLS in urine, in Figure 12 we 

can see that the MCI-AD group showed higher levels for the compounds 15(R)-15-F2t-

IsoP, 2,3-dinor-15-epi-15-F2t-IsoP, 4(RS)-4-F4t-NeuroP, ent-7(RS)-7-F2t-dihomo-IsoP, 

17-epi-17-F2t-dihomo-IsoP, 10-epi-10-F4t-NeuroP, 17-F2t-dihomo-IsoP and neurofurans, 

as well as higher age and female proportion (Figure 12a). However, the healthy 
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participants are grouped on the left side of the score plot (Figure 12b) because they 

showed lower levels for the previous compounds. Similarly, for PLS in plasma, in Figure 

13 we can see that the MCI-AD group showed higher levels for the compounds 15(R)-

15-F2t-IsoP, 4(RS)-4-F4t-NeuroP, neuroprostanes, isoprostanes, ent-7(RS)-7-F2t-dihomo-

IsoP, neurofurans and isofurans, as well as higher age and female proportion (Figure 13a). 

However, the healthy individuals are grouped in the left side of the score plot (Figure 

13b) due to their lower levels for the previous compounds. 

(a)       (b) 

   

Figure 13. Plots representing results of the partial least squares regression model in 

plasma samples. (a) Loadings plot. 1: Gender; 2: Age; 3: 15(R)-15-F2t-IsoP; 4: PGE2; 5: 

2,3-dinor-15-epi-15-F2t-IsoP; 6: 15-keto-15-E2t-IsoP; 7: 15-keto-15-F2t- IsoP; 8: 15-E2t-

IsoP; 9: 5-F2t-IsoP; 10: 15-F2t-IsoP; 11: PGF2α; 12: 4(RS)-4-F4t-NeuroP; 13: 1a,1b-

dihomo-PGF2α; 14: neuroprostanes; 15: 10-epi-10-F4t-NeuroP; 16: 14(RS)-14-F4t-

NeuroP; 17: isoprostanes; 18: ent-7(RS)-7-F2t-dihomo-IsoP; 19: 17-F2t-dihomo-IsoP; 20: 

17-epi-17-F2t-dihomo-IsoP; 21: 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF; 22: 7(RS)-ST-

Δ8-11-dihomo-IsoF; 23: neurofurans; 24: isofurans. (b) Scores plot. 

 

Secondly, SVM models with radial and polynomial kernel functions were developed from 

results in plasma and urine samples. Non-linear functions were used in order to obtain a 

better classification of the participants. 

Thirdly, non-linear regression models based on ANN were developed for urine and 

plasma samples in order to classify the two groups of participants. As shown in Figure 

14, 22 analytes, gender and age were included in the input layer. For the hidden and output 
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layers, the transfer functions were hyperbolic tangent and normalized exponential 

functions, respectively. 

 

Figure 14. General structure of the developed neural network for the prediction of early 

AD consisting of 24 input variables, 1 hidden layer with 1 node, and 1 output variable. 

 

2.3. Diagnostic performance for the statistical multivariate 

developed models 

The diagnostic performance of each model was estimated from the corresponding 

ROC curves (Figure 15). In urine samples, the ANN model provided an AUC of 

0.839 (CI 95%, 0.746–0.933), while for the PLS model it was 0.653 (CI 95%, 

0.526–0.780), and for the SVM models it was 0.644 (CI 95%, 0.539–0.749) with the 

polynomial function and 0.659 (CI 95%, 0.558–0.759) with the radial function. 

Similarly, in plasma samples, the ANN model provided an AUC of 0.882 (CI 95%, 

0.814–0.949), while for PLS it was 0.765 (CI 95%, 0.633–0.868), and for SVM 

models it was 0.817 (CI 95%, 0.712–0.922) with the polynomial function and 0.827 

(CI 95%, 0.739–0.915) with the radial function. Therefore, ANN models provided 

better diagnostic accuracy than PLS and SVM models in both matrices. Moreover, 

plasma matrix showed higher diagnostic accuracy than urine. 
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Figure 15. Receiver operating Characteristic curves for PLS and ANN models in plasma 

and urine samples. 

 

From the estimated optimal cut-off values, the diagnostic indices in the prediction of early 

AD were calculated for each developed model in plasma and urine samples (Table 9). 

For urine, the ANN model provided a sensitivity of 80.9%, while its specificity was 

76.9%. In addition, DOR value for ANN model in urine revealed that there was strong 

association between the model results and the AD occurrence. Regarding the ANN model 

in plasma samples, it provided a sensitivity of 88.2%, while its specificity was 76.9%. 

This model also showed an elevated DOR value that supported its diagnostic value. 

DOR values were quite similar among plasma models, but ANN model showed better 

accuracy (AUC- ROC 0.882) than PLS (AUC-ROC 0.765) and SVM (AUC-ROC 

0.827).  

Moreover, ANN model showed better sensitivity and a satisfactory balance between 

sensitivity and specificity. ANN model showed better balance, obtaining a higher number 

of participants correctly classified. By contrast, PLS model showed high specificity but 

low sensitivity, classifying the AD participants as healthy subjects; while SVM model 

showed high sensitivity but low specificity, classifying the healthy subjects as AD 

patients. In general, for both matrices, the PLS model was the most specific, the SVM 

model was the most sensitive, and the ANN model showed the best balance of 

sensitivity/specificity. 
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Table 9. Diagnostic indices for each developed statistical model in the prediction of MCI-AD from lipid peroxidation compounds determined 

in urine and plasma samples. 

 Urine Plasma 

PLS ANN SVM PLS ANN SVM 

Radial Polynomial Radial Polynomial 

AUC (CI 95%) 0.653 (0.526-
0.780) 

0.839 (0.746-
0.933) 

0.659 (0.558-
0.759) 

0.644 (0.539-
0.749) 

0.765 
(0.663-

0.868) 

0.882 
(0.814-

0.949) 

0.827 (0.739-
0.915) 

0.817 (0.712-0.922) 

Sensitivity (%, CI 

95%) 

63.2 (51.4-

73.7) 

80.9 (70.0-

88.5) 

92.9 (68.5-98.7) 92.3 (66.7-98.6) 50.7 (39.2-

62.2) 

88.2 (78.5-

93.9) 

92.3 (66.7-98.6) 100.0 (77.2-100) 

Specificity (%, CI 

95%) 

70.8 (50.8-

85.1) 

76.9 (57.9-

89.0) 

11.1 (2.0-43.5) 37.5 (13.7-69.4) 96.2 (81.1-

99.3) 

76.9 (57.9-

89.0) 

50.0 (21.5-78.5) 25.0 (7.1-59.1) 

LR+ (CI 95%) 2.17 (1.13-
4.15) 

3.50 (1.72-
7.14) 

1.04 (0.80-1.37) 1.48 (0.84-2.58) 13.19 (1.90-
91.40) 

3.82 (1.89-
7.75) 

1.85 (0.91-3.76) 1.33 (0.89-1.99) 

LR- (CI 95%) 0.52 (0.36-

0.74) 

0.25 (0.15-

0.41) 

0.64 (0.07-6.06) 0.21 (0.03-1.49) 0.51 (0.40-

0.66) 

0.15 (0.08-

0.30) 

0.15 (0.02-1.08) -  

DOR (CI 95%) 4.18 (1.52-

11.46) 

14.10 (4.72-

42.13) 

1.63 (0.09-

29.78) 

7.20 (0.60-87.02) 25.74 (3.30-

200.67) 

25.00 

(7.73-

80.81) 

12.0 (1.02-

141.34) 

- 

 

PLS, partial least squares; ANN, artificial neural network; SVM, support vector machine; AUC, area under the curve; LR+, positive likelihood ratio; LR-, negative likelihood 
ratio; CI, confidence interval; DOR, diagnostic odds ratio. 
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3. Discussion  

Some of the analytes studied in this work showed statistically significant differences, such 

as 17-epi-17-F2t-dihomo-IsoP in urine samples, and 15(R)-15-F2t-IsoP, PGF2α, 4(RS)-4-

F4t-NeuroP, ent-7(RS)-7-F2t- dihomo-IsoP, 17-epi-17-F2t-dihomo-IsoP, isoprostanes, 

isofurans, neuroprostanes and neurofurans in plasma samples. Nevertheless, each analyte 

individually did not provide a reliable AD diagnosis. In contrast, a multivariate model 

based on ANN showed better accuracy than PLS and SVM models, and analytes from 

plasma samples were more useful than those in urine samples to achieve a reliable AD 

diagnosis. 

Some studies found lipid peroxidation products as biomarkers for AD diagnosis, and 

most of them were based on individual biomarkers, such as lipid peroxidation end 

products [189] or TBARS [170]. However, multivariate models could reflect the OS 

status of patients better, showing superior diagnostic indices and higher accuracy. 

Specifically, a previous work developed an ANN model based on different AD risk 

factors studied the predictive value of these factors [190]. It showed high capacity to 

integrate different data and achieve a general evaluation. Other developed ANN models 

to diagnose AD or MCI were based on image, genetics, neuropsychology or other 

biomarkers [191,192], but the present study is the first one using lipid peroxidation 

compounds as biomarkers. In general, previous studies based on ANN showed model 

accuracies around 90%, similar to our results. Also, PLS models have been developed 

for AD diagnosis. They were mainly based on gene expression and neuroimaging 

[ 1 9 3 – 1 9 5 ] , but none of them was based on our set of lipid peroxidation products. 

In addition, a previous study for MCI diagnosis compared PLS model to other 

statistical tests, such as Random Forest showing the higher PLS diagnostic power [196]. 

The diagnostic indices obtained for each model in the present study indicated that the 

ANN model in both matrices showed a satisfactory accuracy (> 80%). In addition, 

the plasma ANN model showed, in general, better diagnostic indices than the urine 

model, corroborating previous studies in the literature [197,198]. Specifically, the ANN 

model based on the plasma levels of lipid peroxidation products showed high DOR 

value, sensitivity, and accuracy, as well as, satisfactory specificity, so it is considered 

a reliable diagnostic model. In this sense, Quintana et al. also found that ANN models 
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showed better discriminant capacity than linear models in AD diagnosis [1 99] . AD 

is a complex disease process, in which multiple factors are involved and that could be 

the reason why non-linear regression models showed a better predictive capacity than 

those models based on linear regression [190] .  

Regarding the biological matrix, the proposed ANN diagnostic model in plasma 

samples constitutes a promising minimally invasive approach that could avoid, in 

some cases, the current diagnostic methods, which involve invasive sampling and 

expensive techniques [200]. In this sense, the ANN models have a satisfactory 

diagnostic capacity, and they are able to classify the participants into healthy and 

MCI-AD, with high accuracy in both matrices as an early screening tool. 

4. Conclusion 

The non-linear regression model based on ANN explained the non-linear relationship 

between the levels of lipid peroxidation compounds and the diagnosis of a complex 

pathophysiological process, such as AD, constituting a promising screening approach. 

Specifically, the developed ANN model in plasma samples showed high accuracy and 

suitable diagnostic indices in early AD prediction. Nevertheless, further research will 

need to be carried out to clinically validate this diagnostic model. This approach 

constitutes a significant advance in early AD diagnosis, using minimally invasive 

sampling techniques, and offers important economic cost reduction for the public 

health system. 
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Chapter 4. Isoprostanoids levels in cerebrospinal fluid do not reflect 

Alzheimer’s Disease 

1. Summary 

The aim of this chapter was to evaluate the capacity of lipid peroxidation biomarkers in 

CSF to reflect neurodegeneration and neuropsychological status and to establish a 

correlation between CSF and plasma lipid peroxidation biomarker levels in order to 

evaluate the latter as minimally invasive diagnosis biomarkers. For this, there were 

analysed plasma and CSF samples from AD and non-AD (including other neurological 

pathologies) participants, by means of an analytical method based on UPLC-MS/MS. 

Then correlations between biological matrices (plasma and CSF) and between CSF lipid 

biomarkers and CSF standard AD biomarkers and neuropsychological tests. 

 

2. Results 

2.1. Participants’ characteristics 

The clinical and demographic characteristics of the population are summarized in Table 

10. There were no differences between groups for age and gender. By contrast, CSF 

biomarkers (Aβ, t-Tau and p-Tau) showed statistically significant differences between 

participant groups as was expected. The CSF Aβ levels were lower in the AD than in the 

non-AD patients. It could be explained by the aggregation of Aβ in the brain, hindering its 

transport to the CSF [201]. Similarly, the neuropsychological status (RBANS, MMSE, 

FAQ) showed differences between the groups while CDR did not show differences. 
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Table 10. Demographic and clinical variables of the study participants. 

* p < 0.05; IQR: inter-quartile range; RBANS.IM: Repeatable Battery for the Assessment of Neuropsychological 

Status–Immediate Memory; RBANS.V/C: RBANS-Visuospatial/Constructional; RBANS.L: RBANS-Language; 
RBANS.A: RBANS-Attention; RBANS.DM: RBANS-Delayed Memory; CDR: Clinical Dementia Rating 

values; FAQ: Functional Activities Questionnaire; CSF: cerebrospinal fluid. $The non-AD group is composed 
of healthy controls (n = 4) and other dementias and cognitive impairments not caused by AD (n = 30). 

 

2.2. Correlation between CSF isoprostanoids and standard CSF 

biomarkers 

We analyzed possible correlations between the different isoprostanoids families 

(isoprostanes, neuroprotanes, dihomo-isoprostanes), and CSF AD-specific biomarkers (Aβ, 

t-Tau, p-Tau) in order to establish a possible relationship between OS (brain grey and white 

matter damage) and amyloid pathology. Table 11 shows that Aβ correlates negatively with 

7(RS)-ST-∆8-11-dihomo-IsoF, 5-F2t-IsoP, total neurofurans and isofurans. In addition, p-

Tau showed negative correlation with PGE2. 

Variables Non-AD (n = 34)$ AD (n = 42) p-Value (Mann-

Whitney) 

Age (years) Median (IQR) 66 (63, 72) 70 (68, 73) 0.102 

Gender (Female) (n, %)) 17 (50%) 28 (67%) 0.142 

CSF Aβ42 (pg Ml−1) Median (IQR) 1236.50 (950, 1435) 630 (535, 735) 0.000* 

CSF t-Tau (pg Ml−1) Median (IQR) 230 (159, 347) 573 (436, 1005) 0.000* 

CSF p-Tau (pg Ml−1) Median (IQR) 47 (32, 61) 86 (71, 122) 0.000* 

CDR Median (IQR) 0.5 (0, 0.5) 0.5 (0.5, 1) 0.071 

MMSE Median (IQR) 27 (21, 28) 24 (18, 25) 0.004* 

RBANS.IM Median (IQR) 73 (69, 90) 57 (40, 67) 0.000* 

RBANS.V/C Median (IQR) 87 (75, 100) 75 (57, 87) 0.016* 

RBANS.L Median (IQR) 85 (60, 92) 60 (51, 82) 0.031* 

RBANS.A Median (IQR) 79 (60, 88) 60 (49, 79) 0.004* 

RBANS.DM Median (IQR) 68 (56, 88) 40 (40, 53) 0.000* 

FAQ Median (IQR) 3 (0, 8) 7 (3, 13) 0.015* 
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2.3. Correlations between CSF isoprostanoids and 

neuropsychological evaluation 

Regarding correlations between the isoprostanoids biomarkers and neuropsychological 

evaluation of the participants, Table 11 shows that RBANS and especially its 

visuospatial/constructional domain showed correlations with 15-F2t-IsoP, Ent-7(RS)-F2t-

dihomo-IsoP and 15-keto-15-F2t-IsoP. The latter also showed correlation with the RBANS 

attention domain and with MMSE. Moreover, 15-keto-15-E2t-IsoP correlated with FAQ and 

CDR scores. 

 

2.4. CSF and plasma lipid peroxidation biomarkers 

A previous study described a diagnosis model for early AD based on the quantification of 

these isoprostanoid compounds in plasma samples. In the present study it was evaluated 

if these plasma levels reflected brain damage by means of the determination of the 

corresponding levels in CSF samples. In this sense, only 17(RS)-10-epi-SC-∆15-11-

dihomo-IsoF showed correlation between both matrices (PCC = 0.248, p = 0.031). In 

addition, when we analysed the results separately for AD and non-AD groups, we found 

that the non-AD group showed correlations between the two matrices for 15®-15-F2t-IsoP 

(PCC = 0.388, p = 0.024), 15-keto-15-F2t-IsoP (PCC = 0.360, p = 0.037) and 5-F2t-IsoP 

(PCC = 0.345, p = 0.046). However, these analytes did not show correlation between 

plasma and CSF samples in AD patients. In this AD group, 17-F2t-dihomo-IsoP (PCC = 

0.399, p = 0.009) and 17(RS)-10-epi-SC-∆15-11-dihomo-IsoF (PCC = 0.345, p = 0.045) 

showed correlation between CSF and plasma samples. 

Table 12 shows the plasma levels of isoprostanoids biomarkers. Some metabolites 

showed statistically significant differences between the groups for 15®-15-F2t-IsoP (p < 

0.001), 2,3-dinor-15-epi- 15-F2t-IsoP (p = 0.028), 5-F2t-IsoP (p = 0.021), 15-F2t-IsoP (p < 

0.001), PGF2α (p = 0.011), neuroprostanes (p = 0.029), 10-epi-10-F4t-NeuroP (p < 

0.001), isoprostanes (p < 0.001), Ent-7(RS)-7-F2t-dihomo-IsoP (p < 0.001), and 17-epi-

17-F2t-dihomo-IsoP (p < 0.001). However, none of the CSF compounds showed 

statistically significant differences between the AD and non-AD groups. 
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Table 11. Correlations between CSF isoprostanoids and clinical variables (standard CSF biomarkers, neuropsychological evaluation). 

  CSF 

Aβ42 

CSF t-

Tau 

CSF p-

Tau 

CDR MMSE RBANS.IM RBANS.VC RBANS.

L 

RBAN

S.A 

RBANS.DM FAQ 

15®-15-F2t-

IsoP    

PCC -0.196 -0.094 -0.032 -0.038 0.159 -0.030 0.124 -0.031 0.147 -0.022 -0.076 

P value 0.089 0.419 0.783 0.770 0.226 0.818 0.344 0.811 0.262 0.865 0.564 

PGE2   PCC 0.013 -0.205 -0.267 -0.031 0.095 0.136 0.043 0.219 0.106 0.061 -0.044 

P value 0.908 0.076 0.020* 0.814 0.471 0.298 0.743 0.092 0.418 0.643 0.738 

2.3-dinor-15-

epi-15-F2t-

IsoP 

PCC -0.107 0.128 0.100 -0.047 0.081 0.010 0.021 0.019 0.074 -0.122 -0.025 

P value 0.358 0.272 0.391 0.724 0.538 0.939 0.875 0.887 0.574 0.352 0.852 

15-keto-15-

E2t-IsoP   

PCC -0.088 -0.074 -0.015 0.297 -0.181 -0.113 -0.034 -0.037 -0.101 -0.120 0.275 

P value 0.449 0.524 0.897 0.021* 0.167 0.391 0.799 0.782 0.442 0.361 0.034* 

15-keto-15-

F2t-IsoP   

PCC -0.109 -0.107 -0.101 -0.117 0.259 0.149 0.344 0.216 0.280 0.019 -0.230 

P value 0.350 0.359 0.385 0.374 0.045* 0.254 0.007* 0.097 .0030* 0.884 0.077 

15-E2t-IsoP   PCC -0.106 0.039 0.108 -0.137 0.072 0.086 -0.017 -0.047 0.146 0.051 -0.085 

P value 0.360 0.741 0.353 0.296 0.587 0.514 0.895 0.724 0.265 0.697 0.517 

5-F2t-IsoP  PCC -0.242 -0.031 0.020 -0.005 0.103 -0.175 -0.079 -0.101 -0.032 -0.067 -0.050 

P value 0.035* 0.789 0.866 0.967 0.435 0.181 0.550 0.444 0.808 0.613 0.703 

15-F2t-IsoP   PCC -0.014 -0.068 -0.024 0.038 0.120 -0.022 0.265 -0.051 0.178 -0.007 -0.058 

P value 0.903 0.562 0.834 0.773 0.360 0.870 0.041* 0.699 0.173 0.959 0.659 

PGF2α   PCC -0.171 0.022 0.051 -0.075 0.031 -0.113 -0.138 -0.066 -0.070 -0.127 -0.097 

P value 0.140 0.849 0.660 0.569 0.814 0.390 0.292 0.615 0.593 0.332 0.459 

4(RS)-F4t-

NeuroP   

PCC -0.018 -0.167 -0.130 -0.175 -0.049 0.109 -0.078 0.082 -0.123 -0.060 -0.149 

P value 0.877 0.150 0.263 0.181 0.709 0.406 0.554 0.532 0.348 0.647 0.256 

10-epi-10-

F4t-NeuroP   

PCC -0.106 -0.045 -0.017 0.103 0.048 -0.077 0.068 -0.108 0.098 -0.047 0.015 

P value 0.361 0.699 0.885 0.434 0.717 0.557 0.606 0.412 0.455 0.720 0.912 

14(RS)-14-

F4t-NeuroP  

PCC 0.017 -0.167 -0.124 -0.074 0.071 0.029 -0.006 -0.006 0.135 0.105 -0.150 

P value 0.886 0.150 0.284 0.574 0.591 0.824 0.965 0.962 0.304 0.423 0.252 

PCC -0.004 -0.081 -0.086 -0.050 0.186 0.055 0.349 0.011 0.240 -0.066 -0.173 
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Ent-7(RS)-7-

F2t-dihomo-

IsoP 

P value 0.974 0.487 0.462 0.707 0.156 0.679 0.006* 0.931 0.065 0.618 0.186 

17-F2t-

dihomo-IsoP  

PCC 0.010 -0.086 -0.036 -0.009 -0.026 -0.099 0.153 -0.139 0.017 -0.102 -0.053 

P value 0.935 0.460 0.760 0.947 0.842 0.451 0.242 0.290 0.899 0.440 0.688 

17-epi-17-

F2t-dihomo-

IsoP 

PCC -0.003 -0.079 -0.073 -0.006 0.012 -0.129 0.076 -0.180 0.034 -0.014 -0.018 

P value 0.982 0.497 0.530 0.963 0.928 0.326 0.564 0.168 0.797 0.914 0.893 

17(RS)-10-

epi-SC-Δ15-

11-dihomo-

IsoF  

PCC -0.093 0.014 -0.012 -0.055 0.226 0.026 0.170 -0.054 0.242 0.156 -0.014 

P value 0.422 0.901 0.916 0.675 0.083 0.847 0.194 0.683 0.062 0.233 0.913 

 

  
7(RS)-ST-Δ8-

11-dihomo-

IsoF 

PCC -0.262 0.030 0.035 0.048 -0.030 -0.155 -0.040 -0.230 -0.110 -0.029 0.131 

P value 0.022* 0.797 0.765 0.715 0.821 0.238 0.761 0.077 0.405 0.828 0.318 

Isoprostanes$ PCC -0.196 -0.022 -0.020 -0.085 0.004 -0.150 -0.238 -0.193 -0.141 -0.040 0.010 

P value 0.089 0.852 0.863 0.520 0.976 0.253 0.067 0.139 0.284 0.761 0.940 

Neurorostan

es$ 

PCC -0.001 -0.011 -0.033 0.102 -0.019 -0.077 0.207 -0.029 0.055 0.028 -0.026 

P value 0.995 0.924 0.775 0.437 0.883 0.556 0.113 0.825 0.678 0.831 0.841 

Neurofurans
$ 

PCC -0.246 -0.032 0.019 -0.159 0.142 0.122 -0.008 -0.013 0.093 0.135 -0.057 

P value 0.032* 0.784 0.871 0.224 0.278 0.355 0.953 0.920 0.481 0.304 0.667 

Isofurans$ PCC -0.309 0.013 0.062 -0.098 -0.051 -0.120 -0.084 -0.083 -0.083 -0.132 0.040 

P value 0.007* 0.914 0.595 0.458 0.698 0.359 0.525 0.530 0.527 0.315 0.760 

 

PCC: Pearson correlation coefficient; *p < 0.05; $Total parameters.



Results, discussion and conclusions               Chapter 4 

131 
 

Table 12. Concentrations of lipid peroxidation biomarkers in plasma samples. 

Concentration (nmol 

L−1) 

Non-AD (n = 34) 

( Median (IQR)) 

AD (n = 42) 

( Median (IQR)) 

p-Value 

Mann-

Whitney 

15®-15-F2t-IsoP 0.075 (0, 0.231) 0.300 (0.188, 0.394) <0.001 * 

PGE2  0.050 (0, 0.100) 0.038 (0, 0.125) 0.590 

2,3-dinor-15-epi-15-

F2t-IsoP  

0 (0, 0) 0 (0, 0.006) 0.028 * 

15-keto-15-E2t-IsoP  0.150 (0, 0.250) 0.163 (0, 0.325) 0.541 

15-keto-15-F2t-IsoP 0.113 (0.044, 0.181) 0.225 (0.069, 0.331) 0.065 

15-E2t-IsoP  0.200 (0.100, 0.325) 0.213 (0.019, 0.525) 0.900 

5-F2t-IsoP  0.263 (0.056, 0.831) 0.700 (0.350, 1.125) 0.021 * 

15-F2t-IsoP  0 (0, 0) 0.020 (0.009, 0.035) <0.001 * 

PGF2α  0.238 (0.044, 0.363) 0.413 (0.194, 0.706) 0.011 * 

4(RS)-F4t-NeuroP 0 (0, 1.475) 1.100 (0.763, 1.425) 0.119 

1a,1b-dihomo-PGF2α  0 (0, 0) 0 (0, 0) 0.219 

10-epi-10-F4t-NeuroP  0.225 (0.175, 0.281) 0.079 (0.025, 0.175) <0.001 * 

14(RS)-14-F4t-NeuroP  0.300 (0.019, 0.850) 0.563 (0.131, 1.044) 0.316 

Ent-7(RS)-7-F2t-

dihomo-IsoP  

0 (0, 0.050) 0.075 (0.050, 0.150) <0.001 * 

17-F2t-dihomo-IsoP 0 (0, 0) 0 (0, 0) 0.096 

17-epi-17-F2t-dihomo-

IsoP  

0 (0, 0) 0 (0, 0.025) <0.001 * 

7(RS)-epi-SC-∆15-11-

dihomo-IsoF  

0 (0, 0) 0 (0, 0) 0.066 

7(RS)-ST-∆8-11-

dihomo-IsoF  

0.013 (0, 0.050) 0.025 (0, 0.075) 0.098 

Isoprostanes$  0.449 (0.396, 0.488) 0.345 (0.234, 0.409) <0.001 * 

Neuroprostanes$  0.142 (0.050, 0.207) 0 (0, 0.268) 0.029 * 

Isofurans$  0.073 (0.058, 0.105) 0.085 (0.069, 0.115) 0.202 

Neurofurans$  0.114 (0.082, 0.173) 0.095 (0, 0.169) 0.111 

$Arbitrary units: intensity of signal units x (internal standard concentration, mg L −1); * p-value < 0.05. 
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3. Discussion 

The reliable determination of lipid peroxidation product levels in CSF samples from 

biologically  defined groups (AD and non-AD), based on specific AD biomarkers, was 

carried out. A previous study showed that these biomarkers were useful to diagnose AD 

with high accuracy when they were  measured in plasma samples [168]. Previous studies 

also showed an increase of CSF isoprostanes in AD patients when their levels were 

corrected by ventricular volume, and these levels correlated with other clinical variables 

[202]; although Dutis et al. did not find any differences for CSF isoprostanes between 

AD, MCI and healthy control groups [203]. Therefore, ventricular volume could affect 

the concentration measured in CSF samples and that could be the reason why no 

differences were found between participant groups with or without AD. 

In the present work, although isoprostanoids did not show differences between AD and 

non-AD  groups, some lipid peroxidation products determined in CSF correlated with CSF 

Aβ and p-Tau levels. These results are consistent with those obtained by Kuo et al. who 

did not find differences between AD and non-AD groups for CSF levels of F2-isoprostanes 

and F4-neuroprostanes, but showed correlations with these metabolites and CSF Aβ levels 

[204]. By contrast, Yao et al. found that 12(S)-hydroxyeicosatetraenoic (HETE) acid and 

15(S)-HETE correlated with CSF Tau but not with CSF A β [205]. As amyloid biomarkers 

are specific for AD, isoprostanes seem to be more specific for amyloid pathology and AD 

than other biomarkers, such as HETE. 

In our study, there is a correlation between isoprostanoids, such as 15-keto-15-F2t-IsoP, 

and cognitive impairments identified through MMSE scale examination. Similar results 

were obtained by Duits et al. that found a correlation between MMSE and F2-isoprostanes 

in ApoE ε4 carriers [203]. Moreover, Kester et al. did not find differences for CSF 

isoprostanes levels between non-demented, MCI and AD patients, but these analytes showed 

an increase in the follow up of these participants showing an association with cognitive decline 

and MMSE examination [206]. In fact, CSF isoprostanes were described by de Leon et al. as 

good, not only in diagnosis, but also in AD progression study [207]. However, Yao et al. 

did not find any correlation between MMSE score and 12(S)-HETE and 15(S)-HETE, while 

in the present study 8-iso-15-keto-PGF2α correlated with this neuropsychological status 

evaluation [205]. Therefore, ApoE ε4 could be another important variable that affects 
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isoprostanes levels in CSF. 

In this study, correlations between lipid peroxidation levels in CSF and plasma samples 

were not found. Similarly, plasma and CSF levels of other metabolites, such as 

neurogranin, did not show any correlation [208]. Moreover, Aβ42 measured in plasma 

and CSF samples did not show any correlation [209], while Mehta et al. did not find 

correlation for Aβ40 and Aβ42 between these two biofluids [210]. However, Sun et al. 

studied correlations between different analytes such as α(1)-antichymotrypsin (ACT), α(1)-

antitrypsin (AAT), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1) and 

oxidised low-density lipoprotein (oxLDL) between plasma and CSF samples. They found 

correlations for ACT, IL-6, MCP-1 and oxLDL, the latter showing a weaker correlation [211]. 

In addition, other analytes, such as adiponectin showed a correlation between these two 

matrices [212]. Moreover, different metabolites from the kyneurine pathway showed 

correlation between plasma and CSF samples, some showing a relationship with other CSF 

biomarkers (t-Tau, p-Tau) [213]. Therefore, metabolites exchange between blood brain 

barrier (BBB) is not always equal, and concentrations between both biofluids could show 

differential distribution depending on the metabolite characteristics. As a hypothesis, CSF 

is continuously filtrating, so isoprotanes are not accumulated in this fluid, and the 

analyte concentrations in CSF are dependent on ventricular volume. By contrast, 

metabolites accumulating in the blood system for longer could be more easily measured. 

Previous studies showed that BBB permeability is increased under pathologic conditions, 

such as AD [214,215], and this permeability depends on inflammatory processes [216]. 

BBB alteration in AD could be responsible for the differences in correlation between 

plasma and CSF levels of different analytes in AD and non-AD. In addition, ventricular 

volume could influence the concentration of different metabolites in CSF, so corrections 

to  this volume could result in a better correlation between plasma and CSF levels. 

4. Conclusions 

New lipid peroxidation biomarkers were satisfactorily measured in CSF samples from 

participants with AD and without AD (including healthy controls and other neurological 

pathologies) by an analytical method based on UPLC-MS/MS. These CSF metabolites are 

not able to discriminate between AD and non-AD groups, although some of them correlate 

with neuropsychological evaluations, as well as standard AD CSF biomarkers (Aβ42, p-Tau). 
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On the other hand, the levels of each isoprostanoid in plasma and CSF did not show 

correlation. It could be that changes in the transportation of substances through the BBB, the 

clearance of these compounds did not allow their accumulation and quantification in CSF, 

due to the necessity to correct CSF biomarker levels with ventricular volume. However, 

the CSF isoprostanoids levels could be useful in the evaluation of cognitive capacity. 
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Chapter 5. Clinical utility of plasma lipid peroxidation biomarkers in 

Alzheimer’s Disease differential diagnosis 

1. Summary  

The aim of this chapter was to develop an early AD diagnosis model based on plasma 

lipid peroxidation biomarkers for a differential diagnosis from other similar neurological 

And neurodegenerative diseases with shared clinical symptoms. For this, plasma lipid 

peroxidation compounds in plasma samples from participants classified into AD (n = 

138), non-AD (including MCI and other dementias not due to AD) (n = 70) and healthy 

controls (n = 50) were analysed by UPLC-MS/MS. A two-stage model for Alzheimer’s 

disease diagnosis was developed by adjusting two nested logistic regression models. The 

first stage was based on neuropsychological status and the second stage on lipid 

peroxidation. 

2. Results 

Table 13. Clinical and demographic variables for the participants. 

Variables

  

AD Group
 

(n = 138) 

Healthy Group 

(n = 50) 

Non-AD Group 

(n = 70) 

Age (years, median (IQR)) 71 (68, 74) 67 (62, 69) 66 (62, 71) 

Gender (female, n (%)) 80 (59.7%) 19 (38.78%) 31 (48.44%) 

RBANS.DM (median (IQR)) 44 (40, 56) 100 (92, 106) 64 (52, 81) 

CDR (median (IQR)) 0.5 (0.5–1) 0 (0–0) 0.5 (0.5–1) 

Aβ42 (pg mL−1, median (IQR)) 580 (464, 694) 1085 (924, 1308) 1049 (850, 1264) 

t-Tau (pg mL−1, median (IQR)) 707 (428, 830) 255 (144, 313) 322 (190, 395) 

p-Tau (pg mL−1, median (IQR)) 99 (71, 110) 47 (32, 60) 52 (34, 61) 

CDR: Clinical dementia rating; RBANS.DM: Repeatable Battery for the Assessment of Neuropsychological 
Status-Delayed Memory; CSF: cerebrospinal fluid; t-Tau: total Tau; p-Tau: phosphorylated Tau. 

The demographic and clinical data from the participants are summarized in Table 13. The 

clinical variables allowed to differentiate among participants groups. Specifically, the CSF 

biomarkers (Aß42, t-Tau, p-Tau) levels identify AD patients from control and non-AD 
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participants. Moreover, the neuropsychological evaluation (RBANS.DM, CDR) identifies 

control participants. 

Table 14. Analytes concentrations in plasma samples from participants groups. 

Variable 

Median (IQR) (nmol L−1) 

AD Group 

 (n = 138) 

Healthy Group 

 (n = 50) 

Non-AD Group 

 (n = 70) 

P-Value  

(Kruskal–

Wallis) 

 Median (IQR) Median (IQR) Median (IQR)  

15(R)-15-F2t-IsoP 0.21 (0.12, 0.32) 0.19 (0.13, 0.29) 0.19 (0.09, 0.33) 0.361 

PGE2 0.08 (0, 0.38) 0.08 (0.02, 0.36) 0.12 (0.03, 0.36) 0.913 

2,3-dinor-iPF2α-III 0 (0, 0) 0 (0, 0) 0 (0, 0) 0.418 

15-keto-15-E2t-IsoP 0.04 (0, 0.13) 0.03 (0, 0.14) 0 (0, 0.2) 0.924 

15-keto-15-F2t-IsoP 0.14 (0.06, 0.37) 0.14 (0.09, 0.23) 0.16 (0.1, 0.33) 0.872 

15-E2t-IsoP 0.2 (0.09, 0.93) 0.2 (0.12, 0.64) 0.48 (0.18, 1.05) 0.041 * 

5-F2t-IsoP 0.77 (0.37, 1.45) 1.12 (0.54, 1.46) 1.08 (0.45, 1.55) 0.542 

15-F2t-IsoP 0.03 (0.01, 0.06) 0.02 (0.01, 0.04) 0.01 (0, 0.07) 0.129 

PGF2α 0.43 (0.17, 0.91) 0.78 (0.4, 1.08) 0.62 (0.3, 1.13) 0.005 * 

4(RS)-F4t-NeuroP 1.2 (0.59, 1.44) 1.22 (0.7, 1.43) 0.5 (0, 1.43) 0.006 * 

1a,1b-dihomo-PGF2α 0 (0, 0) 0 (0, 0) 0 (0, 0) 0.178 

10-epi-10-F4t-NeuroP 0.13 (0.05, 0.2) 0.13 (0.07, 0.18) 0.22 (0.17, 0.31) <0.001 * 

14(RS)-14-F4t-NeuroP 0.56 (0.1, 1.2) 0.62 (0, 1.33) 0.52 (0.1, 1.48) 0.891 

IsoP$ 0.36 (0.26, 0.55) 0.31 (0.19, 0.45) 0.54 (0.42, 0.93) <0.001 * 

Ent-7(RS)-F2t-dihomo-IsoP 0.12 (0.08, 0.17) 0.11 (0.07, 0.15) 0.13 (0, 0.45) 0.181 

17-F2t-dihomo-IsoP 0 (0, 0) 0 (0, 0) 0 (0, 0) 0.989 

17-epi-17-F2t-dihomo-IsoP 0 (0, 0.02) 0 (0, 0) 0 (0, 0.18) 0.168 

17(RS)-10-epi-SC-∆15-11-

dihomo-IsoF 

0 (0, 0) 0 (0, 0) 0 (0, 0) 0.536 

7(RS)-ST-∆8-11-dihomo-

IsoF 

0.06 (0, 0.12) 0.11 (0, 0.18) 0.02 (0, 0.1) 0.155 

NeuroF$  0.13 (0.06, 0.25) 0.07 (−0.1, 0.25) 0.14 (0.08, 0.2) 0.022*   

IsoF$ 0.14 (0.08, 0.29) 0.11 (0.07,0.3) 0.2 (0.08, 0.39) 0.336 

$ Arbitrary units: (intensity of signal units × (internal standard concentration, nmol L-1); * P < 0.05; IQR: Interquartile 

range. 
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The analytes concentrations found in plasma samples from participants groups are 

summarized in Table 14. All these variables showed non-normal distribution, so the non-

parametric test (Kruskal-Wallis) was applied showing statistically significant differences 

among groups for some lipid peroxidation compounds (15-E2t-IsoP, PGF2α, 4(RS)-F4t-

NeuroP, 10-epi-10-F4t-NeuroP, IsoP). 

The first model, using these neuropsychological variables, was able to discriminate 

between control and patients. It achieved a very high accuracy, with an AUC of 0.99 and 

a bootstrap validated AUC of 0.99. These results show that separating control 

participants from case patients (AD, non-AD) is straightforward using standard 

neuropsychological evaluation tests. In Figure 16a, it can be seen that participants without 

any neurological or neurodegenerative disease (healthy participants) are grouped in the 

left and upper side, indicating higher RBANS.DM and lower CDR punctuations. The 

formula for this first prediction step is the following: 

 

Pr( 𝐶𝑎𝑠𝑒/𝐶𝑜𝑛𝑡𝑟𝑜𝑙) =  
𝑒9.25−0.13𝑥𝑅𝐵𝐴𝑁𝑆+22.71𝑥𝐶𝐷𝑅

1 + 𝑒9.25−0.13𝑥𝑅𝐵𝐴𝑁𝑆+22.71𝑥𝐶𝐷𝑅
 

 

The second model, for discriminating between AD and non-AD patients in the case 

group included the variables 10-epi-10-F4t-NeuroP and IsoPs (Figure 1 6 b), and it 

achieved an AUC of 0.79 and a bootstrap validated AUC of 0.74. Calibration of the 

model was satisfactory. It was assessed using bootstrapping and comparing predicted 

vs. obtained values, observing very low deviations. The formula for this final prediction 

step, to be applied only to the individuals predicted as patients (case) by the first step, is 

the following: 
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Figure 16. (a) Representation of control and dementia patients by using standard 

neuropsychological evaluation tests (RBANS-DM, CDR); (b) Representation of AD and 

non-AD patients by using the variables 10-epi-10-F4t-NeuroP and IsoP. 

Pr( 𝐶𝑎𝑠𝑒/𝐶𝑜𝑛𝑡𝑟𝑜𝑙) =  
𝑒−0.14+1.15𝑥𝑙𝑜𝑔(𝐼𝑠𝑜𝑃𝑠)+2.24𝑥10−𝑒𝑝𝑖−10−𝐹4𝑡−𝑁𝑒𝑢𝑟𝑜𝑃

1 + 𝑒−0.14+1.15𝑥𝑙𝑜𝑔(𝐼𝑠𝑜𝑃𝑠)+2.24𝑥10−𝑒𝑝𝑖−10−𝐹4𝑡−𝑁𝑒𝑢𝑟𝑜𝑃
 

3. Discussion  

In this work it is described a new diagnosis model based on plasma lipid peroxidation 

biomarkers and neuropsychological scores, which evaluate memory, cognition and 

functional performance. 

This model could be able to differentiate AD from healthy subjects and participants 

with other pathologies, such as MCI not due to AD, frontotemporal dementia, 

vascular dementia, or DLB. Differential diagnosis between AD and non-AD 

pathologies are commonly a challenge in neurology units especially in early stages 

[217], since some pathologies show similar clinical symptoms. Therefore, a reliable 

early diagnosis model is required to be applied to clinical practice. 

Recent research has shown an increasing interest in the clinical validation of potential 

biomarkers to early and specific diagnose AD using minimally invasive biological samples 

[44]. Among the physiological mechanisms that are already impaired in early disease 

stages, lipid peroxidation has shown some promising results, and plasma samples constitute 

an interesting matrix in the search for the corresponding biomarkers [141,170,189,218–

222]. 

Among lipid peroxidation biomarkers evaluated in plasma, some AD studies found 
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altered levels for malondialdehyde [170,218–220], 4-hydroxynonenal [221], lipophilic 

fluorescent products [189,222], and isoprostanes [168]. In general, these potential 

biomarkers showed elevated levels in AD in comparison with healthy participants, 

reflecting high OS at systemic level. However, OS is common in many pathologies, 

such as cancer [223] or vascular diseases [224], as well as in other neurodegenerative 

diseases [225]. For that reason, the present work focused on the need to develop a 

specific diagnosis model for AD. In fact, AD shows similar clinical symptoms to other 

pathologies, and the differential AD diagnosis constitutes the real diagnostic challenge. 

In this sense, lipid peroxidation biomarkers were evaluated as potential specific AD 

biomarkers, as the brain has a high lipid composition (polyunsaturated fatty acids…) [167]. 

For this, a previously developed and validated analytical method was applied [168]. This 

method showed adequate linearity for all the analytes within the corresponding 

concentration ranges, and suitable precision. The limits of detection and accuracy were 

satisfactory, and matrix effect was considered negligible. Among studied compounds, 

statistically significant results were obtained for two prostaglandins (derived from 

araquidonic acid), two neuroprostanes (derived from DHA), and isoprostanes as total 

parameter (15-E2t-IsoP, PGF2α, 4(RS)-F4t-NeuroP, 10-epi-10-F4t-NeuroP, IsoP). In contrast 

to the results in this work, some studies determining isoprostanoids did not obtain satisfactory 

results [226,227]. It could be explained by the limited list of compounds assessed in 

literature. However, in the present study a set of 18 compounds were evaluated 

simultaneously, and it could provide more information about the oxidative state of each 

individual. 

In addition, the present study shows the strengths of using standard diagnosis based on 

biological definition (CSF biomarkers) to identify accurately the participants (early AD 

patients, healthy controls, non-AD patients). Furthermore, it is important to highlight 

the relevant discrimination capacity of the neuropsychological evaluation to identify 

accurately the healthy controls. From this accurate participant’s classification, a further 

AD specific and minimally invasive diagnosis was developed. For this, a two-step model 

was required using the advantages of the neuropsychological evaluation (first step), 

and the plasma lipid peroxidation determinations (second step). In the developed model, 

the first step identified the healthy participants, while the second step increased the 

diagnosis specificity, differentiating AD patients from other patients with other 
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pathologies with similar symptoms. In this sense, a one-step model would not be able 

to distinguish accurately among AD, non-AD and healthy patients. Therefore, the two-

step developed model was required to achieve the minimally invasive and differential 

AD diagnosis. 

Regarding AD differential diagnosis, our study achieved high discriminative power. 

Albeit not outstanding, it serves as a first approach for developing a differential diagnosis 

model based on lipid peroxidation compounds. Some studies can be found in literature 

identifying different biomarkers that differentiate AD from vascular dementia [228] , 

and diabetes-related dementia [229] . However, there is a lack of preliminary studies 

with clinical validation. A recent study focused on differentiating AD and DLB by 

means of different pathological signatures of gait [230] supported the theory of 

interacting cognitive-motor networks [231]. In addition, a previous study found that 

the CSF p-Tau/Aβ42 ratio might reliably detect AD pathology in patients suffering 

from different types of dementia [232]. In the present work the non-AD group 

included a large variety of pathologies, such as MCI not due to AD, frontotemporal 

dementia, vascular dementia, and DLB. The different lipid peroxidation pattern 

observed between AD and non-AD subjects could be corroborated by a previous study, 

which suggested that high lipid peroxidation levels preceded Aβ accumulation in brain 

[233]. Among the physiological mechanisms that could explain the different lipid 

peroxidation levels between AD and non-AD pathologies, it is important to highlight 

the role of potential mediators between lipid peroxidation products and AD pathology 

[234]. Specifically, thromboxane A2 receptor is activated by isoprostanes and 

promotes amyloid aggregation [235,236]. In fact, previous studies have shown that 

agonists for this receptor reduced this amyloid increase and they could be potential 

treatments for AD [235]. On the other hand, another study found co-localization of lipid 

oxidation and amyloid plaques in brain [39]. From the clinical point of view, the 

specificity described in the developed diagnosis model could have a great value due 

to the high clinical similarity among pathological symptoms. 

As regards biomarkers and neuropsychological tests, they were selected from our previous 

experience. In fact, a study carried out with the same lipid peroxidation compounds in 

plasma samples from AD and healthy participants showed the capacity of these analytes 
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as potential biomarkers for AD [168]. In that work, a one-step diagnosis model was 

developed from the levels obtained for six lipid peroxidation compounds. The 

corresponding diagnosis model could differentiate early AD patients from healthy 

participants with satisfactory accuracy (AUC-ROC 0.817). Nevertheless, it showed the 

disadvantage of low sample size. Moreover, the differential diagnosis power from non-

AD pathologies, which constitutes an important diagnostic problem in clinical practice, 

was not evaluated [168]. On the other hand, a previous model for early AD diagnosis was 

developed from the RBANS.DM test. It showed a high discriminative power between AD 

and non-AD participants [237,238]. For that reason, RBANS.DM was included in the 

first step of the present model, improving biomarkers diagnosis power. In this sense, the 

present developed diagnosis model is based on two steps, the sample size has been 

suitable to carry out an internal clinical validation, and the differential diagnosis has been 

included. 

Finally, few studies have carried out an external clinical validation of potential 

biomarkers (plasma proteins, magnetic resonance imaging scans) differentiating two 

groups of participants (discovery group, validation group) [238,239]. In order to 

improve the statistical power, other studies developed an internal clinical validation 

[240,241]. Similarly, in this work, an internal clinical validation was carried out 

obtaining a satisfactory diagnostic power, since a large sample size was available. Most 

of previous works were based on CSF biomarkers or neuroimaging biomarkers, so the 

internal clinical validation based on plasma lipid peroxidation biomarkers constitutes 

a promising new approach. 

The two-step diagnosis model developed in the present work provides the probability of 

suffering AD from early stages. In the first step, in a given population, it is possible to 

discriminate the control patients of case patients and thus putative AD patients. In the 

second step, AD diagnosis can be differentiated from other neurodegenerative 

diseases also involving cognitive impairment. These results combined with other 

factors (e.g., age, gender, familiar background, risk factors…) could decide upon the 

further need of using invasive techniques to establish the patient’s diagnosis [242]. 

Therefore, the present diagnosis model could be considered a relevant approach in the 

clinical practice field. 
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4. Conclusions  

A two-step early and differential diagnostic model has been developed indicating the 

individual probability of suffering from early AD, using low cost and minimally invasive 

procedures for the potential diagnosis. It consisted of a simultaneous approach from 

neuropsychological and biochemical fields. Lipid peroxidation has been assayed as a 

physiological mechanism which is impaired at early stages in AD. In this sense, a large 

set of related biomarkers were determined in plasma samples, selecting two compounds 

in the development of an AD differential diagnosis model. The corresponding internal 

validation was satisfactory, and further external validation of the developed model will 

be carried out as a fundamental stage before being applied in the clinical routine use. This 

is a promising screening test that could avoid the current invasive diagnosis method and 

could be useful in diagnosis and investigation. 
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Chapter 6. Lipid peroxidation assessment in preclinical Alzheimer 

Disease diagnosis 

1. Summary  

The aim of this chapter was to evaluate the capacity of lipid peroxidation compounds as 

minimally invasive biomarkers of preclinical AD. For this, a panel of lipid peroxidation 

biomarkers were determined in plasma samples from preclinical AD participants (n = 12) 

and controls (n = 31) by UPLC-MS/MS. Then, the results were analysed using an elastic 

net logistic regression model. 

2. Results 

2.1. Patients’ characteristics 

Demographic characteristics of the participants are described in Table 15. Participants 

showed median ages between 62 and 70 years old and they showed comparable 

normal cognitive status, with similar median RBANS.DM and CDR scores. As expected, 

the control group showed higher median levels of Aβ42 than the preclinical group, 

and the control group showed lower levels of t-Tau and p-Tau than the preclinical 

group. Addition ally, both groups showed similar use of medications, comorbidities and 

educational levels. 
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Table 15. Participants’ clinical and demographic description. 

Variable 
  

Control group (n=31) 
Median (1st, 3rd quartile) 

Preclinical group (n=12) 
Median (1st, 3rd quartile) 

Age (years) 62 (58.5, 67) 70 (60.75, 74) 

Gender (Female, n (%)) 19 (61.29%) 6 (50%) 

Smoke (Yes, n (%)) 6 (27.27%) 1 (14.29%) 

Alcohol (Yes, n (%)) 6 (27.27%) 0 (0%) 

RBANS.DM (score) 98 (94, 102) 94.5 (87, 100.25) 

RBANS.A (score) 91 (82, 98.5) 85 (78, 91) 

RBANS.L (score) 90 (83, 94) 88.5 (82.5, 94.25) 

RBANS.VC (score) 92 (84, 105) 87 (75, 105) 

RBANS.IM (score) 87 (83, 98.5) 85 (81.75, 94) 

CDR (score) 0.5 (0, 0.5) 0.5 (0, 0.5) 

CSF Aβ42 (pg mL-1) 1224 (975.5, 1409.5) 571.5 (407, 683.29) 

CSF t-Tau (pg mL-1) 212 (181.5, 259) 443.5 (256.75, 607.75) 

CSF p-Tau (pg mL-1) 34 (26.5, 38.5) 74 (40.75, 86) 

CSF t-Tau/ Aβ42 0.18 (0.16-0.21) 0.70 (0.51-0.97) 

FAQ (score) 1 (0, 3.5) 1 (0, 3) 

GDS (score) 11 (5.5, 13) 5 (3.75, 9) 

Educational 

level 

(n, (%)) 

Basic/primary  10 (32.26%) 4 (33.33%) 

Secondary 7 (22.58%) 2 (16.67%) 

Universitary 14 (45.16%) 6 (50%) 

Medication (n, (%)) 

Statins 9 (40.91%) 3 (42.86%) 

Fibrates 0 (0%) 1 (14.29%) 

Morphics 0 (0%) 0 (0%) 

IACE 1 (4.55%) 0 (0%) 

Neuroleptics 2 (9.09%) 0 (0%) 

Benzodiazepines 6 (27.27%) 2 (28.57%) 

Antiepileptics 1 (4.55%) 0 (0%) 

Anticoagulants 0 (0%) 0 (0%) 

Antihipertensives 7 (31.82%) 2 (28.57%) 

Corticoids 1 (4.55%) 0 (0%) 

Anti-inflammatory 3 (13.64%) 0 (0%) 

Comorbidity (n, (%)) 

Dyslipidemia 11 (50%) 3 (42.86%) 

Diabetes 9 (40.91%) 1 (14.29%) 

Hypertension 8 (36.36%) 2 (28.57%) 

Heart Disease 1 (4.55%) 0 (0%) 

Cerebrovascular 1 (4.55%) 0 (0%) 

Depression (n, (%)) 4 (18.18%) 2 (28.57%) 

Anxiety (n, (%)) 3 (13.64%) 2 (28.57%) 

RBANS, Repeatable Battery for the Assessment of Neuropsychological Status (DM, delayed memory; A, 
attention; L, learning; VC, visuospatial/constructional; IM, immediate memory); CDR, clinical dementia 

rating; CSF cerebrospinal fluid; FAQ, functional activities questionnaire; GDS, geriatric depression scale; 
ACEI, acetylcholinesterase inhibitors. 
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2.2. Plasma levels of lipid peroxidation compounds 

The plasma levels obtained for the determined lipid peroxidation compounds are 

summarized in Table 16 for each participant group. As can be seen, these potential 

biomarkers did not show statistically significant differences between preclinical AD 

patients and healthy participants (Table 16). Figure 17 shows the corresponding boxplots, 

observing slight differences in median values between groups. In general, lower levels 

were obtained for the preclinical AD group. 

 

Table 16. Plasma levels of lipid peroxidation compounds. 

Variable (nmol L-1) 

  

Control (n=31) 

Median (1st, 3rd 

quartile) 

Preclinical (n=12) 

Median (1st, 3rd 

quartile) 

P value 

15-epi-15-F2t-IsoP 0.62 (0.48, 0.82) 0.51 (0.34, 0.74) 0.414 

PGE2 0.3 (0.26, 0.38) 0.29 (0.27, 0.36) 0.738 

2,3-dinor-15-epi-15-F2t-IsoP 0.03 (0, 0.03) 0.03 (0.02, 0.03) 0.602 

15-keto-15-E2t-IsoP 1.02 (0.72, 1.35) 0.94 (0.69, 1.27) 0.384 

15-keto-15-F2t-IsoP 0.65 (0.45, 0.85) 0.66 (0.34, 0.89) 0.926 

15-E2t-IsoP 1.05 (0.8, 1.39) 1.26 (0.89, 1.46) 0.478 

5-F2t-IsoP 2.75 (2.16, 3.19) 2.35 (1.63, 2.9) 0.414 

15-F2t-IsoP 0.05 (0.05, 0.05) 0.05 (0.05, 0.07) 0.430 

PGF2α 0.32 (0.25, 0.51) 0.34 (0.22, 0.65) 0.968 

4(RS)-4-F4t-NeuroP 3.62 (2.72, 4.9) 3.45 (2.36, 4.58) 0.800 

1a,1b-dihomo-PGF2α 3.67 (3.06, 4.43) 3.14 (2.31, 4.34) 0.478 

10-epi-10-F4t-NeuroP 0.17 (0.11, 0.26) 0.15 (0.07, 0.25) 0.698 

14(RS)-14-F4t-NeuroP 1.77 (1.29, 2.31) 1.35 (1.03, 2.08) 0.355 

ent-7(RS)-7-F2t-dihomo-IsoP 0 (0, 0) 0 (0, 0.01) 0.414 

17-F2t-dihomo-IsoP 0 (0, 0) 0 (0, 0) 1.000 

17-epi-17-F2t-dihomo-IsoP 0 (0, 0) 0 (0, 0) 1.000 

17(RS)-10-epi-SC-Δ15-11-

dihomo-IsoF 

0 (0, 0) 0 (0, 0) 0.679 

7(RS)-ST-Δ8-11-dihomo-IsoF 0 (0, 0.22) 0 (0, 0) 0.165 

Neurofurans 0.27 (0.19, 0.37) 0.24 (0.21, 0.41) 0.679 

Isofurans 0.52 (0.4, 0.65) 0.5 (0.41, 0.69) 0.718 

Dihomo-isoprostanes 0.15 (0.14, 0.17) 0.15 (0.13, 0.17) 0.883 

Dihomo-isofurans 0.01 (0.01, 0.02) 0.01 (0.01, 0.02) 0.883 

Neuroprostanes 0.64 (0.49, 0.76) 0.59 (0.45, 0.77) 0.679 

Isoprostanes 1.5 (1.25, 1.84) 1.32 (1.14, 1.67) 0.328 

 

Correlations were computed between CSF biomarkers (Aβ42, t-Tau and p-Tau) and 

plasma lipid peroxidation biomarkers (see Figure 18). Results showed that t-Tau 
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correlated with 15-F2t-IsoP (r = 0.397, p = 0.008), and PGF2α (r = 0.339, p = 0.026); and p-

Tau correlated with 15-F2t-IsoP (0.401, p = 0.008), and PGF2α (r = 0.329, p = 0.031). In 

addition, correlations were assayed between neuropsychological status and plasma 

biomarkers. Specifically, RBANS.DM correlated with 2,3-dinor-15-epi-15-F2t-IsoP (r = 

- 0.314, p = 0.040), 15-E2t-IsoP (r = - 0.432, p = 0.025), 5-F2t-IsoP (r = 0.335, p = 0.028), 

15-F2t-IsoP (r = 0.390, p = 0.10), and PGF2α (r = - 0.342, p = 0.025). Additionally, CDR 

showed correlation with 15- epi-15-F2t-IsoP (r = 0.329, p = 0.031), PGE2 (r = 0.329, p = 

0.031), 2,3-dinor-15-epi-15-F2t-IsoP (r = 0.316, p = 0.039), 15-keto-15-E2t-IsoP (r = 0.333, 

p = 0.029), 15-keto-15-F2t-IsoP (r = 0.319, p = 0.037), 15-E2t-IsoP (r = 0.363, p = 0.017), 

and 4(RS)-4-F4t-NeuroP (r = 0.332, p = 0.030). 

2.3. Potential diagnosis model 

The developed model included 10 analytical variables (15-epi-15-F2t-IsoP, PGE2, 15- 

keto-15-E2t-IsoP, 15-keto-15-F2t-IsoP, 15-E2t-IsoP, PGF2α, 4(RS)-4-F4t-NeuroP, 1a,1b-

dihomo- PGF2α, 10-epi-10-F4t-NeuroP, 14(RS)-14-F4t-NeuroP), as well as age and 

gender. Table 17 shows the model characteristics and the tendency of the different 

selected biomarkers. The conditional effect for each variable is represented in Figure 

1 9 , showing the increase or decrease in preclinical-AD probability according to the 

levels for each variable. This model showed an AUC of 0.96 (CI 95%, 0.903–1.000) 

(Figure 20), and a validation AUC of 0.90. The sensitivity and specificity profile shows 

a satisfactory compromise, with high sensitivity (0.91) at a high specificity (0.93), 

constituting the optimum cut-off point (0.44) (Figure 21). The equation of the developed 

model determining the probability of suffering from preclinical-AD status is shown. 

Pr( 𝑝𝑟𝑒𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 − 𝐴𝐷) =  
𝑒𝐿𝑃

1 + 𝑒𝐿𝑃
 

 

where LP = −6.566–0.153 * Female + 0.164 *Age—11.622 * A − 28.241 * B − 3.277 * C + 2.457 * D + 6.391 

* E + 8.988 * F − 0.174 * G + 0.315 * H + 9.298 * I − 0.323 * J 

A: 15-epi-15-F2t-IsoP; B: PGE2; 15-keto-15-E2t-IsoP; D: 15-keto-15-F2t-IsoP; E: 15-E2t-IsoP; F: PGF2α; G: 

4(RS)-4-F4t-NuroP; H: 1a,1b-dihomo-PGF2α; I: 10-epi-10-F4t-NeuroP; J: 14(RS)-14-F4t-NeuroP 
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Figure 17. Box plots representing the concentrations in plasma samples for each analyte 

in control and preclinical-AD groups. Boxes represent the 1st and 3rd quartiles, and the 

black lines, the median. 
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Figure 18. Correlation plots between plasma metabolites and CSF biomarkers. 

 

Table 17. Model parameters. 

Variables Estimate exp.Estimate. 

(Intercept) -6.566 0.001 

Gender (Females) -0.153 0.858 

Age 0.164 1.178 

15-epi-15-F2t-IsoP -11.622 0 

PGE2 -28.241 0 

15-keto-15-E2t-IsoP -3.277 0.038 

15-keto-15-F2t-IsoP 2.457 11.671 

15-E2t-IsoP 6.391 596.158 

PGF2α 8.988 8003.721 

4(RS)-4-F4t-NeuroP -0.174 0.841 

1a,1b-dihomo-PGF2α 0.315 1.371 

10-epi-10-F4t-NeuroP 9.289 10823.421 

14(RS)-14-F4t-NeuroP -0.323 0.724 

Lambda 0.004  
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Figure 19. Conditional effect plots for each variable included in the model to predict 

the probability of preclinical-AD. 

Figure 2 0 . Receiver operating characteristic curve for the diagnostic model. The area 

under curve (AUC) is 0.96 (95% Confidence interval (CI), 0.903–1). 
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Figure 21. Sensitivity and specificity profile plot. The continuous line represents the 

relationship between the probability threshold set in the model’s prediction and the 

sensitivity. The dashed line represents the relationship between the probability threshold 

and the specificity. 

 

3. Discussion  

In this work, some lipid peroxidation compounds were measured simultaneously in 

plasma samples from preclinical AD and healthy elderly participants, using UPLC- 

MS/MS as an analytical technique. These biomarkers did not show statistically significant 

different levels between both groups, although small differences could be observed for 

each metabolite. In addition, some of them showed a correlation with specific CSF 

biomarkers for AD (t-Tau, p-Tau) and with neuropsychological tests (RBANS.DM, 

CDR), showing a certain relationship with early AD development. Thus, a multivariate 

model was developed including some of these lipid peroxidation compounds, and 

showing their potential utility in discrimination between preclinical AD patients and 

healthy participants. In fact, the multivariate model takes into account the effect of 

each individual predictor, which could change in the presence of other variables, 

generating a composed algorithm, and it provides accurate predictions. These 

compounds were studied because they can reflect specific impairment of brain white 

matter or grey matter. However, their specificity would be determined in further 

studies, because there is no clear evidence that potentially detectable changes would be 
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AD-specific, or if they would be general biomarkers of impairment of brain lipid 

metabolism. 

In the literature, some studies focused on searching for AD plasma biomarkers, 

mainly lipidic molecules were assayed [163,168]. However, most of them were based on 

participants with MCI and AD, all of them were patients with clinical symptoms (memory 

loss, cognitive decline), but none of them evaluated the group of well-characterized 

preclinical participants [118,168,243]. In fact, a previous work from our group was 

focused on the determination of lipid peroxidation compounds (isoP, NeuroP, isoF, 

NeuroF) in plasma samples from MCI-AD patients, developing a diagnosis model 

[ 1 6 8 ] . In that model, the selected compounds were 15-epi-15-F2t-IsoP, 15-E2t-IsoP, 

PGF2α, 4(RS)-F4t-NeuroP, 14(RS)-14-F4t- NeuroP, and ent-7(RS)-7-F2t-dihomo-IsoP. All 

of them, except Ent-7(RS)-7-F2t dihomo-IsoP, were included in the present diagnosis 

model to predict AD in presymptomatic stage (preclinical AD). However, higher 

concentrations for these compounds were found in MCI- AD patients than in healthy 

participants; while lower concentrations were obtained for 15-epi-15-F2t-IsoP and 4(RS)-

F4t-NeuroP in preclinical AD patients. These differences could be explained by the 

disease progression. In addition, the new developed model included more variables 

(PGE2, 15-keto-15-E2t-IsoP, 15-keto-15-F2t-IsoP, 1a,1b-dihomo-PGF2α, 10- epi-10-

F4t-NeuroP) in order to improve the accuracy (AUC validated = 0.90) in comparison with 

the previous model (AUC validated = 0.82) [168]. 

Recent research has focused on earlier AD stages, before the appearance of the first 

clinical manifestations of the disease. In general, these studies were about plasma 

Aβ42/Aβ40 ratio, showing an AUC of 0.78 in the discrimination between normal 

cognitive individuals with PET Aβ positivity and negativity [244]. In addition, 

plasma Aβ levels showed an association with dementia (MMSE and the Geriatric 

Mental State Schedule (GMS)) and AD [245]. However, other study showed that 

plasma Aβ levels could not predict AD in preclinical participants [246,247]. A further 

study focused on plasma p-Tau revealed its utility in AD diagnosis and prognosis, 

showing increased values since preclinical stages and an accuracy of 85% in AD 

dementia diagnosis [247]. However, the present work is the first study evaluating lipid 

peroxidation compounds in preclinical AD patients accurately diagnosed by CSF 
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biomarkers. 

Similarly, some of the studied biomarkers were lipidic compounds in plasma from 

preclinical AD participants [248]. In fact, the study carried out by Mapstone et al. 

analyzed lipids (phosphatidylcholine, Lysophosphatidylcholine, acylcarnitines, etc.), 

and it was carried out following the progression along 5 years, showing their potential 

utility as progression AD biomarkers [243]. 

The model developed in the present work was based on the plasma levels of 10 lipid 

peroxidation compounds. It is shown that an increase in the levels of these biomarkers 

(15-keto-15-F2t-IsoP, 15-E2t-IsoP, PGF2α, 10-epi-10-F4t-NeuroP) could increase the 

probability of suffering from AD. Previous studies showed the utility of models based 

on plasma lipids as predictor approach of conversion amnestic MCI to AD or AD 

progression since preclinical stages [243,249]. The biomarkers determined in these 

studies are mainly related to membrane integrity, while ours are derived from OS. 

Another panel including 17 lipids can predict cognitive decline and brain atrophy in AD 

and it is related to clinical diagnosis in AD and t-Tau CSF levels [250]. 

Early AD diagnosis remains a big challenge for human sciences. There is a high need 

for easily available biomarkers now that specific biomarkers have been described. 

These specific biomarkers are invasive and expensive; so minimally invasive 

biomarkers are in demand. The utility of these putative biomarkers can be found in the 

diagnostic paradigm, identifying people at risk for developing cognitive impairment, 

with a biological suspicion of specific or non-specific neurodegeneration, or other pre-

diagnostic characteristics. In addition, these biomarkers could be useful in identifying 

subgroups with different disease evolution, different therapeutic response, and different 

neuropsychological dysfunction. 

Among the study limitations, it is important to highlight the small sample used. This 

limitation is an evident issue and the results of a study with a higher number of cases 

cannot be anticipated. However, the present study could be considered exploratory. 

It is important to remark that the participants were selected in an asymptomatic stage, 

and highlight the difficulties of realizing CSF studies in asymptomatic cases. Another 

limitation is the exclusion of cases with other similar neurodegenerative diseases. 

Different patterns of biomarkers are expected in other neurodegenerative diseases, but 
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in the present study, they were not evaluated. Therefore, these are preliminary results and 

further analysis in a large external cohort is required. 

4. Conclusions 

Lipid peroxidation biomarkers were determined in plasma from participants with 

preclinical AD and healthy elderly participants, showing no differences individually. 

However, these biomarkers showed a correlation with other specific AD CSF 

biomarkers and neuropsychological status. The multivariate model including 10 of 

these biomarkers constitutes a promising diagnostic tool to be applied to the general 

population in early AD detection. However, further validation studies are necessary 

to confirm the utility of this potential model for preclinical AD diagnosis. 
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Chapter 7. Lipid peroxidation biomarkers correlation with medial 

temporal atrophy in early Alzheimer Disease 

1. Summary 

The aim of this chapter was to evaluate the correlation between plasma lipid peroxidation 

biomarkers and anatomical brain changes, specifically medial temporal atrophy. For this, 

there were evaluated the temporal brain atrophy by means of visual ratings from magnetic 

resonance imaging (MRI) and a set of lipid peroxidation biomarkers from plasma samples 

were analysed in participants with AD (n=80) and healthy controls (n=32). The 

correlation between plasma lipid peroxidation biomarkers and atrophy visual ratings was 

evaluated. In addition, two statistical models using PLS analyses were carried out, the 

first based on neuroimaging analysis (visual ratings) and the second based on plasma lipid 

peroxidation biomarkers levels.  

 

2. Results. 

2.1. Participants’ description 

In Table 18, demographic and clinical characteristics from the study population are 

summarized. Age and gender showed statistically significant differences between 

both groups, so they were included as covariates in the multivariate models. As 

expected, clinical variables (CSF A β42, CSF t -Tau, CSF p-Tau, RBANS-DM, 

CDR, FAQ, MMSE) showed statistically significant differences between case and 

control groups. 
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Table 18. Demographic and clinical variables for the participants. 

Variables Control (n=32) Case (n=80) P value 

Age (years, median (IQR)) 66 (62-69) 71 (68-74) 0.000* 

Gender (female, n (%)) 11 (34%) 47 (59%) 0.020* 

Aβ42 (pg mL-1, median (IQR)) 1192 (1051-1444) 588 (441-676) 0.000* 

t-Tau (pg mL-1, median (IQR))) 171 (108-284) 523 (361-775) 0.000* 

p-Tau (pg mL-1, median (IQR))) 44 (27-57) 82 (66-116) 0.000* 

CDR (median (IQR)) 0 (0-0) 0.5 (0.5-1) 0.000* 

MMSE (median (IQR)) 30 (28-30) 22 (18-26) 0.000* 

RBANS.DM (median (IQR)) 100 (92-106) 44 (40-52) 0.000* 

FAQ (median (IQR)) 0 (0-0) 7 (3-13) 0.000* 

GDS (median (IQR)) 3 (1-7) 7 (4-11) 0.021* 

Fazekas (median (IQR)) 0 (0-1) 1 (0-1) 0.018* 

MTA-RIGHT (median (IQR)) 0 (0-0) 2 (1-2) 0.000* 

MTA-LEFT (median (IQR)) 0 (0-0) 1 (1-2) 0.000* 

MTA (R+L) (median (IQR)) 0 (0-0) 3 (2-4) 0.000* 

 

2.2. Image measurement data 

Using neuroimaging techniques, the variables determined were MTA right (MTA-R), left 

(MTA-L), sum (MTA-S) and Fazekas. As can be seen in Table 18, the three MTA 

indices showed statistically significant differences between groups, as well as Fazekas. 

2.3. Analyte determination 

In Table 19 medians of analytes levels determined in plasma from case and control 

groups are summarized. 8-iso-15(R)-PGF2α, 2,3-dinor- iPF2α-III, 8-iso-15-keto-PGE2, 

4(RS)-F4t-NeuroP, neuroprostanes, isoprostanes, Ent-7(RS)-F2t-dihomo-IsoP and 17-

epi-17-F2t-dihomo-IsoP, showed higher levels in the case group than in the control 

group. Inversely, PGF2α, 14(RS)-14-F4t-NeuroP, 5-iPF2α-VI and 7(RS)-ST-Δ8-11-

dihomo-IsoF showed higher levels in the control group. Nevertheless, only 8-iso-15(R)-

PGF2α (p = 0.042), PGF2α  (p = 0.001), 4(RS)-F4t-NeuroP (p = 0.030), neuroprostanes 
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(p = 0.001), isoprostanes (p = 0.006) and 17-epi-17-F2t-dihomo-IsoP (p = 0.008) 

showed statistically significant differences between groups. 

Table 19.  Concentrations of analytes in plasma samples from participants groups. 

  Control (n=32) Case (n=80) P value 

8-iso-15(R)-PGF2α 0.25 (0.20-0.35) 0.30 (0.23-0.49) 0.042* 

PGE2 0.06 (0.01-0.75) 0.09 (0.00-0.28) 0.693 

2,3-dinor-iPF2α-III 0.00 (0.00-0.00) 0.00 (0.00-0.03) 0.950 

8-iso-15-keto-PGE2 0.06 (0.00-0.17) 0.13 (0.00-0.34) 0.425 

8-iso-15-keto- PGF2α 0.25 (0.18-0.33) 0.26 (0.13-0.35) 0.754 

8-iso-PGE2 0.28 (0.15-1.98) 0.39 (0.18-0.78) 0.689 

5-iPF2α-VI 0.94 (0.67-1.22) 0.71 (0.35-1.22) 0.123 

8-iso-PGF2α 0.02 (0.01-0.03) 0.02 (0.01-0.03) 0.841 

PGF2α 0.74 (0.60-0.94) 0.48 (0.25-0.78) 0.001* 

4(RS)-F4t-NeuroP 1.03 (0.71-1.24) 1.15 (0.96-1.33) 0.030* 

1a,1b-dihomo-PGF2α 0.00 (0.00-0.00) 0.00 (0.00-0.00) 0.326 

Neuroprostanes 0.29 (0.22-0.38) 0.83 (0.26-1.52) 0.001* 

10-epi-10-F4t-NeuroP 0.11 (0.07-0.18) 0.09 (0.03-0.18) 0.390 

14(RS)-14-F4t-NeuroP 0.90 (0.00-1.51) 0.80 (0.29-1.27) 0.930 

Isoprostanes 0.22 (0.18-0.34) 0.32 (0.23-0.40) 0.006* 

Ent-7(RS)-F2t-dihomo-IsoP 0.08 (0.05-0.17) 0.13 (0.08-0.18) 0.145 

17-F2t-dihomo-IsoP 0.00 (0.00-0.00) 0.00 (0.00-0.00) 0.302 

17-epi-17-F2t-dihomo-IsoP 0.00 (0.00-0.00) 0.00 (0.00-0.03) 0.008* 

7(RS)-10-epi-SC-Δ15-11-dihomo-IsoF 0.00 (0.00-0.00) 0.00 (0.00-0.00) 0.150 

7(RS)-ST-Δ8-11-dihomo-IsoF 0.10 (0.01-0.25) 0.05 (0.01-0.19) 0.199 

Neurofurans 0.18 (0.11-0.26) 0.18 (0.13-0.27) 0.762 

Isofurans 0.09 (0.06-0.22) 0.10 (0.08-0.16) 0.399 
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2.4. Correlation between plasma lipid peroxidation biomarkers 

levels and image indices 

Relationship between neuroimaging indices and plasma biomarker levels was analyzed, 

and some statistically significant correlation was observed. In fact, MTA in right 

brain lobe showed positive correlation with neuroprostanes (r = 0.242, p = 0.010), 

and 17-epi-17-F2t-dihomo-IsoP (r = 0.223, p = 0.018), while it showed negative 

correlation with PGF2α (r = −0.259, p = 0.006). Similar results were obtained with 

MTA in the left side, positive correlation was observed with neuroprostanes (r = 

0.213,   p = 0.024), and 17-epi-17-F2t-dihomo-IsoP (r = 0.214, p = 0.024), while it 

showed negative correlation with PGF2α (r = −0.305, p = 0.001). In the same sense, 

the sum of MTA in both brain lobes showed correlation with neuroprostanes (r = 

0.234, p = 0.013),  17-epi-17-F2t-dihomo-IsoP (r = 0.224, p = 0.018) and PGF2α (PCC 

= −0.288, p = 0.002). In addition, Fazekas, index related to vascular brain disease, 

showed correlation with 17-F2t-dihomo-IsoP (r = 0.215, p = 0.023) (see Figure 22). 

 

Figure 22. Correlations between neuroimaging variables and plasma biomarkers levels. 

 



Results, discussion and conclusions               Chapter 7 

158 
 

2.5. Multivariate analysis 

Two statistical models were carried out, the first based on neuroimaging analysis and 

the second based on plasma lipid peroxidation biomarkers levels. As it is shown in 

Figure 23a, the model based on neuroimaging analysis showed a correlation between 

the different MTA measures (right and left lobe and total MTA), but age and gender 

did not correlate with them. Also, the scatter plot (Figure 23b) showed a satisfactory 

separation between participants groups. In this sense, the case group is characterized by 

higher levels of MTA. For this model, the AUC-ROC is 0.929 (CI 95%, 0.882–0.977). 

Besides, this model has a sensitivity of 90.00%, a specificity of 84.38% and its positive 

and negative predictive values are 93.51% and 77.14, respectively. 

(a) (b) 

  

(c) (d) 

 

Figure 23. PLS models. First, model based on neuroimaging techniques (a) loading graph 

and (b) score plot. Second, model based on plasma biomarkers (c) loading plot and (d) 

score plot. 
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Regarding the model constructed by plasma biomarkers (neuroprostanes, isoprostanes, 

neurofurans, isofurans, 17-epi-17-F2t-dihomo- IsoP, PGF2α), a negative correlation 

between PGF2α and isoprostanes and isofurans was observed, but age and gender did 

not correlate with biomarkers (Figure 23c). Also, Figure 23d shows a satisfactory 

discrimination between case and control groups. This model could diagnose AD or not- 

AD with an accuracy of AUC-ROC = 0.900 (0.845–0.956). The diagnosis indices 

for this model were sensitivity 72.5%, specificity 100%, negative predictive value 

59.26% and positive predictive value 100%. 

3. Discussion 

The parameter MTA is commonly related to cerebrovascular dementias [251]. Previous 

works showed that this morphological alteration is associated with MCI and AD, 

showing higher damage grade in AD than in MCI patients, as well as a correla tion 

with neuropsychological evaluation tests (e.g. MMSE, CDR) [ 2 5 2 ] . In this sense, 

some cut-off values for MTA to be used as AD diagnosis and MCI prognosis were 

established [253]. In addition, MTA is related to cognitive impairment in patients with 

Dementia with Lewy Bodies [254]. Medial temporal lobe atrophy evaluation contributes 

to a better diagnosis accuracy [ 2 5 5 ] . Moreover, correlations between MTA and CSF 

biomarkers t-Tau and p-Tau for different variants of Early-Onset Alzheimer Disease 

(EOAD) were described [256]. Nowadays, neuropsychological tests and CSF biomarkers 

are employed as AD diagnosis, these two parameters could be related to MTA, so the 

evaluation of atrophy could be useful in AD diagnosis, as well as the lipid peroxidation 

study as a possible pathway implied in AD. Our results showed that a diagnosis model 

based only on this atrophy evaluation could diagnose AD with an accuracy of 0.929. It 

could avoid actual lumbar puncture used in AD diagnosis nowadays, as well as 

neuropsycological evaluations that require a considerable amount of time on part of 

specialized staff and is tiresome for patients. In this sense, other diagnosis models for AD 

based on neuroimaging techniques have been developed. Specifically, a model based on 

MRI and Positron Emission Tomography (PET) was able to differentiated between AD, 

MCI and healthy control groups with accuracies between 0.75 and 0.95 [257]. The 

model developed by [258] was able to distinguish between EOAD and behavioral variant 

of frontotemporal dementia with an accuracy of 0.82 based on cortical thickness and DT 
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(diffusion tensor) MRI measures [258]. Our model shows better accuracy, but its 

specificity is required to be evaluated employing other dementias or neurodegenerative 

diseases. This model shows good diagnosis indices, especially its high specificity that 

could allow the application of this model as a preliminary screening test although 

it probably needs other tests to give a reliable diagnosis. 

Regarding the evaluation of possible correlations between neuroimaging results (MTA) 

and different lipid peroxidation products in plasma samples form AD and healthy 

participants, the highest correlations were between brain MTA and neuroprostanes. 

Therefore, specific brain alterations could be measured in plasma samples by means of 

these lipid peroxidation products [259]. As MTA scale is based mainly in grey matter 

atrophy, neuroprostanes could explain this alteration evaluation [142]. In addition, 

neuroprostanes levels were statistically significant different between AD and healthy 

participants. Therefore, they are satisfactory AD biomarkers. In addition, the dihomo-

isoprostanes could be obtained from brain white matter oxidation. The correlation found 

between MTA and these compounds could be explained as some white matter atrophy 

that occurs together with the grey matter alterations in medial temporal lobe mainly in 

the hipocampus from AD patients. We also analyzed correlations between our biomarkers 

and Fazekas, which is a scale based on brain white matter lesions and it is usually related 

to vascular pathologies. This scale is not AD specific but it could help to discard AD as a 

cause of vascular dementia [260]. Punctuation for this scale showed statistically 

significant correlation with 17-F2t-dihomo-IsoP that is a white matter lipid peroxidation 

product. So, this biomarker could be useful in the study of white matter lesions present 

in different neurodegenerative diseases, not only in AD, and sometimes it could serve to 

discard AD diagnosis or to differentiate it from frontotemporal dementia whose 

symptoms could be confused [261]. 

Regarding plasma biomarkers, neuroprostanes and neurofurans are derived from DHA 

oxidation, while isoprostanes and isofurans come from the AA oxidation [262], and 

dihomo isoprostanes (e.g. 17-epi-17-F2t-dihomo- IsoP) come from AdA oxidation [263]. 

DHA is the major polyunsaturated fatty acid in the brain [43] so, the presence of 

neuroprostanes and neurofurans in different human biofluids is highly brain specific. For 

the quantification of these lipid peroxidation biomarkers in plasma samples, the analytical 
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method was previously described [168], and the developed model could distinguish 

between AD and healthy patients with an accuracy of 0.90. Therefore, it could reflect 

brain lipid peroxidation damage (neuroprostanes, neurofurans, 17-epi-17-F2t-dihomo-

IsoP), and OS at systemic level in AD patients. In fact, it was shown in previous works 

[ 2 6 4 , 2 6 5 ] . Also, the presence of a negative correlation between PGF2α and MTA, 

and its capacity to discriminate between AD and control groups (p = 0.001) are 

remarkable. This analyte is an inflammatory mediator and it is derived from AA 

oxidation by an enzymatic pathway [266]. Previous studies showed that inflammation is 

related to AD progression [267], and inhibition of cyclooxygenases that are implied in 

prostaglandin pathway in AD models, showed beneficial effects. So, probably in very 

early stages of the disease these mechanisms try to avoid the disease progression [268]. 

In addition, it is known that in neurodegenerative diseases the BBB) is altered [214]. 

Specifically in AD, previous works showed an increase on BBB permeability [ 2 1 5 ] , 

allowing that different lipid peroxidation products generated in brain could pass through 

the BBB, and being found at peripheral level. For this reason, we constructed a model 

based on plasma biomarkers levels that could reflect brain MTA including damage to 

white matter, grey matter and also inflammatory mediators. That model shows really 

satisfactory diagnosis indices. Its specificity of 100% is especially remarkable. In our 

study, all patients diagnosed as positive with our model were AD patients. By contrast, 

its weak point is the sensitivity (72.5%). For that reason, the new model could serve as a 

screening test. Only when the test result is negative, patients will have to undergo 

additional tests to confirm the diagnosis. It would improve the diagnosis based on only 

image tests because biomarkers reflecting specific brain atrophy in AD patients would 

constitute an integrative vision of oxidative status [269]. In any case, more studies are 

required to confirm this diagnosis capacity, and other dementias or neurodegenerative 

diseases have to be included in the study to evaluate the model specificity. 

4. Conclusions 

Correlation between plasma neuroprostanes and dihomo-isoprostanes with neuroimaging 

data could indicate that the neurodegeneration occurred in different brain areas is related 

to OS damage and brain lipid peroxidation. Lipid peroxidation biomarkers could reflect 

brain damage that accompanied neurodegenerative diseases. However, their specificity 
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should be studied comparing the results with other neurodegenerative and brain 

pathologies. AD diagnosis model based on lipid peroxidation biomarkers shows similar 

accuracy as the neuroimaging model, and it reflects the implication of this pathway in 

the pathology since its early stages. The model based on lipid peroxidation biomarkers 

(neuroprostanes, neurofurans, isoprostanes, isofurans, 17-epi-17-F2t-dihomo-IsoP, 

PGF2α) could be used as a screening test for AD diagnosis avoiding in many cases 

invasive and expensive diagnosis techniques. 
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Chapter 8. Plasma metabolomics in early Alzheimer's disease patients 

diagnosed with amyloid biomarker 

1. Summary 

The aim of this chapter was to identify reliable plasma biomarkers associated to MCI-AD 

by means of untargeted metabolomics. For this, an untargeted metabolomics study based 

on UPLC has been carried out using plasma samples from patients with  MCI-AD (n=29) 

and controls (n=29). The differences between metabolomic profiles from MCI-AD and 

controls were investigated using ElasticNet. Then, an attempt was made to identify the 

selected variables by The Human Metabolome Database, all ions fragmentation modes, 

or confirmation with standard when it was possible.  

 

2. Results 

2.1. Participants demographic and clinical characteristics 

The demographic and clinical characteristics of participants in this study are summarized 

in Table 20. As we can see, age and gender showed differences between groups and for 

that reason they were included in the multivariate model as co-variables. As expected 

from participants' classification, temporal atrophy was higher in MCI-AD, and the CSF 

biomarkers showed significant differences between groups. Regarding the 

neuropsychological evaluations, the RBANS (IM, V/C, L, A, DM) and MMSE scores were 

lower in MCI-AD patients than in control subjects, while the FAQ and CDR scores were 

higher in the MCI-AD group. 

 

 

 

 

 



Results, discussion and conclusions Chapter 8 

166 
 

Table 20. Demographic and clinical characteristics of study participants. 

Variable Control  
(n = 29) 

MCI-AD  
(n = 29) 

P value 

Age (years) (median (IQR)) 65 (63, 70) 72 (69, 75) 0.002* 

Gender (female) (n (%)) 9 (31.03 %) 19 (65.52%) 0.016* 

Studies levels (n 

(%)) 

Basics 6 (20 %) 17 (59 %) 0.010 

University 11 (38 %) 5 (17%) 

Medications (n 

(%)) 

Statins 10 (34%) 17 (59%) 0.149 

Fibrates 3 (10%) 2 (7%) 

Benzodiazepines 2 (7%) 4 (13.79%) 

Opiates 0 (0%) 0 (0%) 

Antiepileptics 1 (3.45%) 0 (0%) 

Antihipertensives 10 (35.71%) 14 (48.28%) 

Corticoids 0 (0%) 2 (6.9%) 

Comorbidity (n 

(%)) 

Dyslipidemia 10 (35.71%) 16 (55.17%) 0.621 

Diabetes 3 (10%) 3 (10.34%) 

Hypertension 11 (38%) 13 (44.83%) 

Heart Disease 1 (3.45%) 0 (0%) 

Smoking status (n 

(%)) 

Yes 1 (3.45%) 2 (6.9%) 0.778 

Former smoker 

(more than 10 

years) 

9 (31%) 7 (24.14%) 

Alcohol or drugs consumption (n (%)) 6 (21.43%) 3 (10.34%) 0.301 

Presenile family 

background (n 

(%)) 

None 22 (76%) 22 (88%) 0.381 

First grade 5 (17%) 5 (17%) 

Second grade 2 (7%) 0 (0%) 

Depression (n (%)) 3 (10.34%) 4 (14%) 0.883 

Anxiety (n (%)) 1 (3.45%) 3 (10.34%) 0.246 

Temporal atrophy (n (%)) 2 (7.14%) 20 (69%) 0.000* 

CSF Aβ42 (pg mL-1) (median (IQR)) 1256 (1164, 1464) 600 (496, 687) 0.000* 

CSF t-Tau (pg mL-1) (median (IQR)) 196 (141, 298) 590 (465, 782) 0.000* 

CSF p-Tau (pg mL-1) (median (IQR)) 48 (37, 60) 84 (73, 104) 0.000* 

RBANS.MI (median (IQR)) 93 (84,107) 61 (51,75) 0.000* 

RBANS.V/C (median (IQR)) 101 (86,112) 81 (75,92) 0.013* 

RBANS.L (median (IQR)) 92 (86,97) 71 (59,85) 0.000* 

RBANS.A (median (IQR)) 100 (82,112) 68 (56,81) 0.000* 

RBANS.DM (median (IQR)) 100 (92, 106) 48 (40, 66) 0.000* 

MMSE (median (IQR)) 30 (28,30) 25 (24,28) 0.000* 

FAQ (median (IQR)) 0 (0, 0) 5 (0, 8.5) 0.000 

CDR (n (%)) 0 29 (100%) 5 (17%) 0.000 

0.5 0 (0%) 18 (62%) 

1 0 (0%) 6 (21%) 

IQR: Inter-quartile range. 
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2.2. Multivariable analysis and selection of discriminant variables 

Elastic net models were used to select discriminant variables. Outcomes of these models 

identified 24 and 29 discriminant variables between MCI-AD and control subjects in 

positive and negative ionization mode, respectively. The different levels of these 

variables between participants groups were represented in heat map visualizations of the 

variables' values (Figure 24). 

Figure 24. Heatmap including the selected variables by the elastic net logistic 

regression model. Z-scores for each variable are represented in a color-coded scale were 

values at the mean are black, values under the mean are red and values over the mean are 

green. Ordering of rows and columns of the heatmap is performed by hierarchical 

clustering of the observations (columns) and of the variables (rows). a) for the negative 

ionization mode, and b) for the positive ionization mode.  

As we can see, the levels of relative increase were depicted in green, while the levels of 

relative decrease were depicted in red. In this sense, most of the metabolites showed 

higher levels in MCI-AD group than in control group. The discrimination power of these 

selected variables was measured as bootstrap validated AUC, being 0.993 and 0.990 in 

negative and positive ionization mode, respectively. 

2.3. Metabolites identification 

From the 53 variables selected by the elastic net models, 16 variables were preliminarily 

identified as potential metabolites, only 4 of these variables were tentatively identified 

with their MS fragments pattern (MS/MS and/or all-ions fragmentation), being only 1 

variable finally confirmed with its pure standard (Table 21).
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Table 2 1 . Metabolomic variables selected by Elastic Net statistical models and preliminarily identified by The Human Metabolome 

Database. 

Mass 

(m/z) 

Retenti

on time 

(min) 

Adduct Formula Annotation Confirmation 

mode  

Compound class/ Metabolism aFold 

change  

104.1072 0.60 [M+H]+ C5H14NO Choline MS fragmentation 

confirmation 

Standard 

confirmation 

Quaternary ammonium/ 

Cholinergic system  

1.582436 

 

162.1126 0.60 [M+H]+ C7H15NO3 L-carnitine; Malonyl-Carnitin  Amines/ Energy metabolism and 

fatty acid oxidation 

1.750063 

 

[M+H]+ C7H16NO3 S-Carnitinium  Quaternary ammonium 

(Carnitines)/fatty acid oxidation 

324.0017 0.68 M+  UNKNOWN   3.211441 

339.0380 0.65 [M+H]+ C14H10O10 2,3,4-trihydroxy-5-(3,4,5-

trihydroxybenzoyloxy)benzoic acid; 
2,4,5-trihydroxy-3-(3,4,5-

trihydroxybenzoyloxy)benzoic acid; 

3,4-dihydroxy-5-(2,3,4,5-
tetrahydroxybenzoyloxy)benzoic acid; 

4,4',5,5',6,6'-hexahydroxy-[1,1'-

biphenyl]-2,2'-dicarboxylic acid 

 Organic compound (depsides and 

depsidones)/Benzene 
hydroxylation 

1.60648 

 

361.0200 0.65 [M+Na]+  1.834496 
 

346.0096 0.68 M+  UNKNOWN   2.529556 

381.9859 0.66 M+  UNKNOWN   2.702668 

383.9662 0.70 M+  UNKNOWN   2.896863 

405.9472 0.67 M+  UNKNOWN   3.292516 

424.0229 0.73 [M+H]+ C16H13N3O7S2 5-Amino-4-hydroxy-3-(phenylazo)-
2,7-naphthalenedisulfonic acid 

 Food dye 2.54245 

485.2893 9.38 M+  UNKNOWN   0.628327 

502.3162 9.37 M+  UNKNOWN   0.632845 

507.2710 9.37 M+  UNKNOWN   0.579632 

523.2451 9.37 [M+H]+ C28H39ClO7 4-Deoxyphysalolactone  Withanolides/inflammation 
pathways 
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 0.00 [M+H]+ C29H34N2O7 Bargustanine  Benzyllisoquinolines/Neuromuscu
lar-blocking drugs 

0.563752 
 

530.3471 9.37 [M+H]+  UNKNOWN   0.563486 

531.4074 12.79 [M+H]+ C33H54O5 alpha-Tocopherol succinate  Vitamin E/Antioxidant activity 0.764254 

555.9557 0.76 [M+H]+  UNKNOWN   1.864629 

568.4784 10.48 [M+H]+  UNKNOWN   1.045444 

569.3630 12.79 [M+Na]+ C30H58O4S2 Dilauryl 3,3'-thiodipropionate  Dicarboxylic acids/Membrane 

formation 

0.761616 

570.0358 0.66 M+  UNKNOWN   4.656571 

635.2954 6.72 [M+H]+ C35H42N2O9 Rescinnamine MS fragmentation 

confirmation 

Antihypertensive drug 0.903152 

92.9260 0.62 M-  UNKNOWN   1.424961 

94.9233 0.62 M-  UNKNOWN   1.400025 

169.1009 1.03 M-  UNKNOWN   0.780474 

174.9533 0.54 M-  UNKNOWN   1.731515 

195.8083 0.65 M-  UNKNOWN   0.515284 

197.8046 0.65 M-  UNKNOWN   0.48432 

215.0294 0.62 [M-H]- C3H7ClO2 Chlorohydrin  Halohydrins/Cell membrane 1.648367 

217.0264 0.62 [M-H20-

H]- 

C11H12N2S2 Brassinin  3-alkylindole (exogenous)  

  [M+HCO

O]- 

C7H9O3P

  

Monomethyl phenylphosphonate  Exogenous 1.662713 

 

  [M-H20-

H]- 

C7H12N2O5S Cysteinyl-Aspartate  Dipeptide/Protein catabolism  

  [M-H20-

H]- 

C7H12N2O5S Aspartyl-Cysteine  Dipeptide/Protein catabolism  

224.9758 0.72 M-  UNKNOWN   1.577898 

268.7960 0.61 M-  UNKNOWN   1.513857 

271.2240 9.61 M-  UNKNOWN   1.564616 

291.0783 0.70 M-  UNKNOWN   8.59362 

304.9090 0.53 M-  UNKNOWN   2.562249 

315.0368 0.64 [M-H20]- C11H15N2O8P Nicotinamide ribotide  Amide/Cellular energy 

maintenance 

1.336687 

  [M-H20]- C11H16N2O8P  Beta-nicotinamide D-ribonucleotide   
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343.9895 0.67 M-  UNKNOWN   2.712838 

372.9974 0.65 M-  UNKNOWN   1.835085 

373.9481 6.98 M-  UNKNOWN   0.928195 

401.9472 0.66 M-  UNKNOWN   2.426884 

403.9443 0.66 M-  UNKNOWN   3.314504 

459.9050 0.66 M-  UNKNOWN   2.853813 

478.2869 8.19 M-  UNKNOWN   1.174307 

494.3182 9.05      1.540692 

498.2564 8.02 [M-H]- C25H42NO7P Lyso PE(20:5/0:0); Lyso PE(0:0/20:5)  Lysophospholipid / Lipid 

metabolism 

0.748392 

498.9239 8.16 [M-H]- C6H16O18P4 Inositol 1,3,4,5-tetraphosphate; 1D-

Myo-inositol 1,3,4,6-
tetrakisphosphate; D-Myo-inositol 

3,4,5,6-tetrakisphosphate; 1D-Myo-

inositol 1,4,5,6-tetrakisphosphate 

 Second messengers in Ca2+ and 

Cl- regulation through membrane / 
Inositol metabolism 

0.649237 

 

533.9969 0.72   UNKNOWN   2.92495 

538.3073 8.19 [M-H20]- C29H44O8 24,25-diacetylvulgaroside 

Cyasterone 

Soraphen A 

MS fragmentation 

confirmation 

 

Exogenous 

Exogenous 

Macrolide/Lipid metabolism 

1.185665 

554.3392 9.05 [M+HCO

O]- 

C25H52NO7P Lyso PE(20:0/0:0) or Lyso 

PE(0:0/20:0) 

MS fragmentation 

confirmation 

Lysophospholipid / Lipid 

metabolism 

1.534458 

568.3554 9.39 M-  UNKNOWN   1.351365 

1227.6849 9.39 M-  UNKNOWN   1.49062 

aFold change is calculated by the average value of the MCI-AD group compared to the control group. 
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Among the tentatively identified metabolites, first the variable m/z 635.2954 was 

identified as rescinnamine, a drug used for hypertension treatment. It is important to note 

that the incidence of hypertension did not show differences between control and MCI-AD 

groups (Table 20), so it is unlikely to be this compound. Second, the variable m/z 

538.3073 was identified with three potential metabolites (24,25-diace- tylvulgaroside, 

cyasterone, soraphen A), 24,25-diacetylvulgaroside and cyasterone were exogenous 

products derived from fruits and plants [270,271], while soraphen A was a 

myxobacterium product that may be related to some infection in AD. So, we hypothesize 

that the metabolite with mass 538.3073 could be soraphen A. Third, the variable m/z 

498.2564 was identified as lysophosphatidylethanolamines (Lyso PE (20:0/0:0) or Lyso 

PE (0:0/20:0)), breakdown products of phosphatidylethanolamine, present in cells of all 

organisms [272]. Finally, the variable m/z 104.1072 was also confirmed with its pure 

standard and identified as choline. 

The relative levels of these variables in each group of participants are depicted in Figure 

24. In general, the MCI-AD group showed increased levels for Lyso PE (m/z 498.2564), 

soraphen A (m/z 538.3073), and choline (m/z 104.1072). However, there is a small group 

of MCI-AD participants with decreased levels for Lyso PE (m/z 498.2564) and soraphen 

A (m/z 538.3073) (Figure 24). In Figure 25, the differences between MCI-AD and control 

groups are depicted for the metabolites verified by MS fragmentation patterns, showing 

statistically significant differences for choline (p < 0.001), rescinamine (p < 0.001) and 

Lyso PE (p <0.05). 
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Figure 25. Bar graph representing the tentatively identified metabolites levels for each 

participants group (MCI-AD, control). (* p < 0.05, ** p < 0.001). 

3. Discussion 

An untargeted metabolomics study has been carried out in plasma samples to identify 

potential early AD biomarkers. For this, plasma samples from participants with CSF 

biomarker-confirmed diagnosis (healthy and MCI-AD), as well as a reliable and robust 

analytical method based on minimal sample treatment and UPLC-Q-ToF-MS 

chromatographic system were used. Specifically, the valuable samples from healthy and 

MCI-AD participants classified by specific AD biomarkers in CSF [25], together with the 

high quality, reproducibility and stability of the analytical method, provided high 

reliability to the experimental results. In fact, few studies in literature employed specific 

CSF biomarkers to identify clearly AD patients [ 8 7 ] . Also, few works have focused 

on AD patients at early stage [87,89,93,94,103], and few of them employed simple and 

robust untargeted analytical methods [94,103]. 

From the metabolomics results obtained in both mass spectrometry ionization modes, a 

multivariable statistical analysis was carried out to select the most discriminant variables 

between healthy individuals and MCI-AD patients. It was based on Elastic net penalized 

logistic regression, and the corresponding models obtained for each ionization mode 

provided high accuracy (AUC 0.990 and 0.993, respectively). However, most of previous 

works developed PLS discriminant models [52,92,94,97,101], adding all the studied 

variables into the model because PLS is not able to assign zero coefficients. Therefore, 
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PLS has the consequent limitations in metabolites selection and accuracy assessment. 

Nevertheless, elastic net is able to shrink the coefficients of uninformative variables 

exactly to zero, selecting automatically the most informative variables. This entails that 

the coefficients of elastic net model are more stable and reliable compared with those of 

PLS. Another difference between both statistical models is related to the selection of 

relevant variables. For elastic net, the variable selection is performed at the model-fitting 

step; while for PLS it relies on ranking methods, such as variable importance in projection 

(VIP) scores, which are affected by variable correlation, and they are sensitive to tuning 

parameters [273]. 

Among the discriminant molecular features selected for the elastic net models, some 

variables were preliminarily identified (choline, carnitine and nicotinamide derivatives, 

depsides, tocopherols, dipeptides, Lyso PEs, inositol derivatives). They are involved to 

cholinergic system, energy metabolism, amino acids and lipids metabolism, as well as 

nicotinamide pathways. These results agree with previous works in which lipids and 

amines biochemical pathways were altered in AD [52,87,97–101]. In addition, the 

nicotinamide pathway is involved in the mitochondrial transport chain that is related to 

the progression of AD through OS generation [274], so it could explain the higher levels 

found for nicotinamide ribotide or beta-nicotinamide D-ribonucleotide in the MCI group. 

Previous studies proposed nicotinamide riboside as a potential AD treatment since it 

showed beneficial effects on cognition and Aβ toxicity in AD mouse model [275], and in 

DNA repair [276]. This metabolite also showed beneficial effects on neuroprotection and 

energy metabolism that is directly implied in AD pathology [277]. Regarding inositol 

pathway, some metabolites were down-regulated in MCI-AD (inositol-1,3,4,5-

tetraphosphate or 1D-myo- inositol-1,3,4,6-tetrakisphosphate or D-myo-inositol-3,4,5,6-

tetrakisphosphate or 1D-myo-inositol-1,4,5,6-tetrakisphosphate). Similarly, inositol-

1,4,5-trisphosphate receptor levels were lower in AD and it could be important in the 

neurofibrillary pathology [278]. In general, inositol is an important membrane 

component. Its brain derivates are implied in synaptic transport, and neurotransmitter 

secretion, and they regulate autophagy [279]. According to carnitine pathway, higher 

levels were found for MCI-AD group. Nevertheless, studies from literature found that 

serum acetyl-L-carnitine and other acyl-L-carnitine levels decreased in MCI and AD 

subjects [280,281], as well as in CSF samples [282]. A possible explanation to the higher 
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levels obtained for acetylcarnitine in the MCI-AD group may be that these compounds 

have antioxidant function [283], so natural mechanisms could be activated at early AD 

stages in order to face into the OS associated to further disease development. In addition, 

a mice model study demonstrated that acetyl-L-carnitine protects against 

neuroinflammation [284]. Therefore, the high levels found in early AD stages could be a 

compensatory mechanism, activating the protective mechanisms against the development 

of the disease. 

The tentatively identified discriminant variables in this study were Lyso PE 

(20:0/0:0)/Lyso PE (0:0/20:0), choline and probably soraphen A. In spite of soraphen A 

was not confirmed by its standard, we discarded the other two possible compounds with 

the same mass (24,25- diacetylvulgaroside and cyasterone) as they are fruit and 

vegetables products, while soraphen A could show a possible relationship with fungal 

infection. So, Lyso PE (20:0/0:0)/Lyso PE (0:0/20:0), choline and soraphen A could be 

considered potential early AD biomarkers in plasma. In general, the MCI-AD group 

showed increased levels for soraphen A, Lyso PE and choline. First, soraphen A is 

produced by myxobacteria, and it can act as acetyl-CoA carboxylase inhibitor, which 

would alter the lipid synthesis pathways, avoiding the fatty acids elongation [285]. In the 

present study, most of MCI-AD patients showed increased levels of this metabolite. It 

may be indirectly related to the also higher levels of choline. Probably, the impairment in 

fatty acid elongation would lead to an increase in short-chain fatty acids levels, such as, 

choline. On the other hand, this potential myxobacteria infection is a controversial result 

that should be studied in depth, as well as other unexplained findings in literature relative 

to microscopic evidence of fungal infections in brain tissue from AD patients [286–288]. 

Second, Lyso PEs usually show low circulating levels, and they are considered 

biomarkers of the progression of AD [289]. In general, previous studies found that an 

alteration in lipid metabolism correlates with AD development [290]. However, a few 

participants from MCI-AD group showed decreased levels for soraphen A and Lyso PE, 

and further research is required to differentiate patients' subgroups. Third, choline was 

the only confirmed metabolite, constituting a promising biomarker in early AD diagnosis. 

It is a precursor metabolite in acetylcholine synthesis, so it plays an important role in this 

neurotransmitter function. In addition, it is a key component in some lipids with relevant 

brain functions, such as phosphatydilcholine [291], corroborating the impairment 
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observed in early AD stage. However, the choline levels found in AD patients from 

different metabolomics studies showed some discrepancy [285,292–294], probably due to 

the heterogeneous experimental conditions used (animal or human model, AD stage, 

sample matrix, analytical technique). In the present study, MCI-AD patients showed 

increased levels of this metabolite, as it was observed by Lin et al. 2017 [101,295]. It 

could be explained by the fact that in early AD stages the cholinergic transmission is 

reduced, and as compensatory response choline production would be increased. In 

addition, the pathology development involves a cellular integrity impairment, allowing 

the release of compounds out of the cell, such as choline [295]. Nevertheless, a recent 

study showed lower levels of choline in AD patients compared to healthy subjects [296]. 

Probably, the different disease phases show different biochemical profiles [98]. 

4. Conclusions  

An untargeted metabolomics study has been carried out in plasma samples from patients 

with MCI due to AD and healthy participants, achieving the identification of some 

metabolites that could be involved in early AD development. They have important roles 

in some metabolic pathways related to neurotransmitters, energy metabolism, and lipids 

and amino acids pathways. However, only choline was confirmed, and further work will 

be carried out using a targeted analytical method based on UPLC-MS/MS in order to 

clinically validate this promising early AD biomarker. In addition, some tentatively 

identified compounds with neuroprotective or antioxidant effects were found elevated in 

MCI- AD patients. This may be explained by the activation of compensatory mechanisms 

to prevent AD development since its early stages. 
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Chapter 9. Metabolomics study to identify plasma biomarkers in 

alzheimer disease: ApoE genotype effect 

1. Summary 

The aim of this chapter was to identify metabolites altered in first AD stages to find new 

potential diagnosis biomarkers, as well as to evaluate the effect of ApoE genotype on the 

metabolomic profile of individuals with early AD. For this, metabolomic analysis was 

carried out for plasma samples from early AD patients and controls. Then data were 

analyzed by volcano plot and PLS to select discriminatory variables first between AD and 

non-AD participants and then between Apoε4 carriers and non-carriers. 

 

2. Results and discussion  

2.1. Demographic and clinical data of participants  

Clinical and demographic characteristics from participants are summarized in Table 22. 

There were no differences between control and early AD groups for demographic 

variables except for gender and age. However, clinical variables (neuroimaging, CSF 

biomarkers (Aβ42, t-Tau, p-Tau), and neuropsychological evaluation tests (RBANS, 

CDR, FAQ)) showed differences between groups as it was expected. 
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Table 22. Demographic and clinical variables for the participants groups. 

 

2.2. Metabolomic differences between healthy and early AD subjects  

The Volcano Plot analysis, carried out for the healthy control and early AD groups, 

showed 36 significant variables (Figure 26a). The supervised PLS analysis was carried 

out with those variables in order to find the most powerful discriminant metabolites 

between groups. As shown in Figure 26b, the PLS model revealed a clear separation 

between early AD cases and healthy controls (except for some misclassified controls), 

with good R2Y (0.738) and Q2Y (0.679) parameters, indicating biochemical changes 

Variable Control (n = 29) Early AD (n = 29) 

Age (years) (median (IQR)) 65 (63, 70) 72 (69, 75) 

Gender (female) (n (%)) 9 (31.03 %) 19 (65.52%) 

Studies levels (n (%)) Basics 6 (20 %) 17 (59 %) 

University 11 (38 %) 5 (17%) 

Medications (n (%)) Statins 10 (34%) 17 (59%) 

Fibrates 3 (10%) 2 (7%) 

Benzodiazepines 2 (7%) 4 (13.79%) 

Opiates 0 (0%) 0 (0%) 

Antiepileptics 1 (3.45%) 0 (0%) 

Antihipertensives 10 (35.71%) 14 (48.28%) 

Corticoids 0 (0%) 2 (6.9%) 

Comorbidity (n (%)) Dyslipidemia 10 (35.71%) 16 (55.17%) 

Diabetes 3 (10%) 3 (10.34%) 

Hypertension 11 (38%) 13 (44.83%) 

Heart Disease 1 (3.45%) 0 (0%) 

Smoking status (n (%)) Yes 1 (3.45%) 2 (6.9%) 

Former smoker (more than 

10 years) 

9 (31%) 7 (24.14%) 

Alcohol or drugs consumption (n (%)) 6 (21.43%) 3 (10.34%) 

Presenile family 

background (n (%)) 

None 22 (76%) 22 (88%) 

First grade 5 (17%) 5 (17%) 

Second grade 2 (7%) 0 (0%) 

Depression (n (%)) 3 (10.34%) 4 (14%) 

Anxiety (n (%)) 1 (3.45%) 3 (10.34%) 

Temporal atrophy (n (%)) 2 (7.14%) 20 (69%) 

CSF Aβ42 (pg mL-1) (median (IQR)) 1256 (1164, 

1464) 

600 (496, 687) 

CSF t-Tau (pg mL-1) (median (IQR)) 196 (141, 298) 590 (465, 782) 

CSF p-Tau (pg mL-1) (median (IQR)) 48 (37, 60) 84 (73, 104) 

RBANS.DM (median (IQR)) 100 (92, 106) 48 (40, 66) 

FAQ (median (IQR)) 0 (0, 0) 5 (0, 8.5) 

CDR (n (%)) 0 29 (100%) 5 (17%) 

0.5 0 (0%) 18 (62%) 

1 0 (0%) 6 (21%) 
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between groups. The model was satisfactorily validated with a 7-fold cross validation 

method (p CV-anova 1. Finally, 15 variables were studied and tentatively identified by 

using CMM tool and mass fragmentation strategies. Metabolite annotation based on AM, 

retention time and MS/MS spectra from chemical standard lead to the confirmation of 

m/z 1043.7008 as Lysophosphatidylcholine (18:1) (Lyso PC (18:1)). This metabolite 

showed levels with differences statistically significant between early AD and healthy 

control participants (Figure 26c). In addition, the variable m/z 1047.7345 was putatively 

characterized as NeuAcalpha2-3Galbeta-Cer(d18:1/20:0), LysoPE(21:0), LysoPC(18:0) 

or PC(O-16:0/2:0), all of them were glycerophospholipids. On the other hand, m/z 

570.0359, and m/z 335.0450 were putatively characterized as chemical compound, and 

phenols, organic sulphuric acids, or fatty acyls classes, respectively. The other variables 

could not be identified by any of the databases. As previous works described, it seems 

that lipid metabolism plays an important role in AD physiopathology [297], and it could 

be useful in the discrimination between early AD and healthy controls. In this sense, 

previous studies showed that membrane lipid composition could be involved in the 

activity of gamma secretase, an enzyme acting in the appearance of Aβ peptide, the most 

characteristic hallmark of AD [162,165]. In addition, structural changes in lipid 

membrane could change the interaction with Aβ protein [298]. Regarding lipid 

metabolites, lysophosphatidylcholine is postulated as a potential plasma biomarker. 

Similarly, Liu et al. and Lin et al. found that lysophosphatidilcholines and 

phosphatidilcholines showed differential levels between AD and healthy elderly in 

plasma samples [299,300]. In fact, most of metabolomics studies carried out in plasma 

for AD biomarkers identification showed lipids as important potential biomarkers [301]. 

Oberacher et al. 2017 found similar results using soluble lysates from platelets where 

different phosphocholines seemed to discriminate between early AD and healthy controls 

[302]. Also, Dorninger et al. 2018 found that although lphosphatidylysocholine levels 

increased in normal aging, this increase is more remarkable in probable AD patients 

[303]. In addition, it was demonstrated that lysophosphatidylcholines increased the in 

vitro formation of Aβ1-42 oligomer [298,304]. On the contrary, Li et al. found decreased 

levels of lysophosphocholines in brain tissue from AD mice model [305].  
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Figure 26. a) Volcano Plot representing the significant variables in the discrimination 

between early AD and healthy control groups. The non-significant variables are 

represented in grey, the significant variables are represented in red (p value t-test> 0.05 

and FC> 2); b) PLS represents differential distribution between early AD and healthy 

control groups; c) Boxplot of plasma analytical responses of LysoPC(18:1). *p value < 

0.05. 

2.3. Metabolomic differences between ApoE4 genotypes  

In Figure 26b, we appreciate a clear clustering in the control group, while the early AD 

case group showed high scattering, indicating a within class variation. In order to explain 

this variability, we proposed the ApoE4 genotype as a potential variable since it is 

considered an important risk factor in AD development. Specifically, ApoE genotype is 

related to AD pathogenesis as the ε4 allele is involved in cholesterol brain metabolism 

and in the maintenance of membrane integrity [48]. In addition, it is related to other 

pathways such as lipid metabolism, synaptic function, glucose metabolism microglial 

response, or Tau pathology, among others [306]. Therefore, ApoE genotype could 

generate differences in metabolomic profile. Previously, Karjalainen et al. indicated that 

ApoE-ε4 carriers and non-carriers showed differential serum metabolomics profile, it 

could be associated to different pathological status [106]. Therefore, in the present study, 

different metabolic profiles in plasma from early AD patients, as well as the ApoE 

genotype, influence were evaluated. The metabolomics differences were evaluated using 

the same statistical procedure described above. It was applied in early AD cases 
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previously classified as ε4-carriers and non ε4-carriers according to the PCR analysis 

results. In this sense, 20 significant variables were selected in the Volcano Plot (Figure 

27a) for the following PLS analysis. As it is shown in the score plot (Figure 27b), few 

samples were misclassified and the model presented R2Y (0.437) and Q2Y (0.394) 

diagnostic parameters. Nevertheless, the model was reliable with a CV-anova p-value 1 

and which their jackknife confidence interval did not include zero. Finally, 8 variables 

were tentatively identified by using the CMM tool (see Table 23). All these analytes 

showed lower values for ε4-carriers. Specifically, m/z 1043.7008 with a fold-change ratio 

of 0.26 was confirmed as LysoPC(18:1) by using a chemical standard, and it showed 

statistically significant differences between groups. This variable was previously 

confirmed in the metabolome comparison between healthy and early AD groups. Other 

variables were putatively characterized as LysoPC(P-18:0), LysoPE(0:0/22:1(13Z)), and 

cardiolipins. As can be seen in Figure 27c, some of these metabolites showed statistically 

significant differences between ε4-carriers and non ε4- carriers. Regarding the identified 

compounds class, most of them are glycerophospholipids (Table 23). Fonteh et al. 

previously described differences for different glycerophospholipids in CSF from AD 

patients and healthy controls [307]. However, Sharman did not find differences for 

glycerophospholipids levels in brain tissue nor plasma samples from knock-in mice with 

different human ApoE subtypes expression [308]. On the other hand, Igbavboa et al. 

found differential composition in synaptosomal lipid rafts depending on ApoE genotype 

[309]. In general, lipid metabolites are the most relevant compounds, since cardiolipins, 

lysophosphatidylcholines and lysophosphatidylethanolamines are discriminant variables 

between early AD and healthy control groups, as well as between ε4-carriers and non ε4-

carriers. Regarding cardiolipins, they are phospholipids highly present in the 

mitochondrial membrane, and they have been related to brain disorders and 

neurodegenerative diseases, such as AD [310]. In this study, cardiolipins showed lower 

signals in ε4-carriers than non ε4-carriers. This dysregulation could be associated with 

mitochondrial dysfunction in AD synapsis [311]. Among lysophosphatidylcholines, 

LysoPC(18:1) is one of the most important discriminant variables between ε4-carriers and 

non ε4-carriers in this study, and its plasmatic levels were previously related to a lower 

risk of different cancer kinds [312]. In addition, Whiley et al. found that the determination 

of 3 different phosphatidylcholines combined with ApoE genotype, provided a 
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satisfactory discriminant capacity between AD and non-AD participants [313]. 

Nevertheless, the present study showed lower levels for this compound in the healthy and 

ε4-carrier groups in comparison with the non ε4- carrier group. This finding reinforces 

the idea that the ApoE genotype plays an important role in the development of AD. In this 

sense, LysoPC (18:1) levels and ApoE genotype could be a useful tool for early AD 

diagnosis. Regarding the limitations of the present study, it is important to highlight the 

low number of participants, since it is very difficult to achieve early AD patients and 

healthy people identified from CSF biomarkers levels. 

 

Figure 27. a) Volcano Plot representing the significant variables in the discrimination 

between early AD ε4-carrier and non ε4-carrier groups. The non-significant variables are 

represented in grey, the significant variables are represented in red (p value t-test> 0.05 

and FC> 2); b) PLS represents differential distribution between ε4-carrier and non ε4-

carrier groups; c) Boxplot of plasma analytical responses of LysoPC (18:1), LysoPC (P-

18:0) and cardiolipin. *p value < 0.05. 

 

3. Conclusions 

Different levels for plasma metabolites are found in early AD patients compared to 

healthy controls, reflecting the different metabolic pathways that are affected in this 

disease. Among these analytes, different lipid compounds stand out, so lipid metabolism 

is an important pathway that seems to fail since early stages of the pathology. Therefore, 

it could constitute a source of biomarkers for the early AD diagnosis, as well as further 
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therapeutic targets. In addition, in the early AD patients, different metabolic profiles were 

obtained depending on their ApoE genotype (ε4-carriers, non ε4-carriers). Actually, 

different glycerophospholipids were altered between these groups. It could involve an 

important advancement in the knowledge of the different impaired mechanisms, as well 

as the improvement in precision medicine for diagnosis and treatment. Nevertheless, 

further work based on target analysis would be required for the quantification of these 

potential biomarkers in a larger number of participants in order to validate the diagnostic 

performance of these metabolites. 
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Table 23.  Metabolites´ annotation from ApoE classification. 

m/z tR 

(min) 

Adduct 

Ion 

Formula Identification of variables Compound class / 

Metabolism 

FCc 

Metabolite annotation Level 

# 

1087.6829 8.86 M-H 

 

C6 H102O12P2 alpha-D-galactosyl undecaprenyl diphosphate 2 Prenol lipids/Lipid metabolism 0.46 

1043.7008 8.85 2M+H 

 

C26H52NO7P 

 

LysoPC(18:1) 1 Glycerophospholipids / Lipid 

metabolism 

0.26 

508.3746 9.02 M+H 

 

C26H54NO6P 

 

LysoPC(P-18:0) 3a Glycerophospholipids 0.48 

530.3563 9.02 M+Na C26H54NO6P LysoPC(P-18:0) 3b Glycerophospholipids 0.48 

536.3696 9.16 M+H C27H54NO7P LysoPE(0:0/22:1(13Z)) 
LysoPE(22:1(13Z)/0:0) 

3a Glycerophospholipids 0.50 

1261.8213 8.69 M+H C67H122O17P2 CL(8:0/14:0/18:2(9Z,11Z)/18:2(9Z,11Z)) 

CL(8:0/i-14:0/18:2(9Z,11Z)/18:2(9Z,11Z)) 

3 Glycerophospholipids 0.50 

1018.6680 8.70 +  Unknown 4  0.50 

548.8109 8.85 +  Unknown 4  0.46 

# 1: confirmed; 2: putative annotated; 3: putative characterized; 4: unknown. 

a Score 1 for ionization rules (particular adducts formation depending on the lipid class, ionisation mode and mobile phase modifier used) based on CMM is very likely right (score 
range between 1.5-2) 

b Score 1 for ionization rules (particular adducts formation depending on the lipid class, ionisation mode and mobile phase modifier used) based on CMM is likely right (score 
range between 1-1.5) 

c FC: Fold Change was calculated as median signal of carriers divided to non-carriers 

LysoPC: Lysophosphatidilcholine; LysoPE: lysophosphatidylethanolamine; CL: cardiolip



Results, discussion and conclusions  Chapter 10 

184 
 

Chapter 10. Plasma lipidomics approach in early and specific 

Alzheimer’s Disease diagnosis 

1. Summary 

The aim of this chapter is to evaluate plasma lipid profiles from untargeted and targeted 

approaches, identifying lipid families and single lipids involved in early AD as potential 

biomarkers. For this, an untargeted lipidomic analysis was carried out in plasma samples 

from preclinical AD (n = 11), MCI-AD (n = 31), and control (n = 20) participants. The, 

variables were identified by means of two complementary methods (LipidMS and CEU 

mass mediator database). Then, a targeted analysis was carried out to quantify some of 

the identified lipids.  

 

2. Results 

2.1. Participant’s demographic and clinical data 

In Table 24, the clinical and demographic characteristics of the participants are 

summarized. As was expected, neuropsychological variables (CDR, RBANS, FAQ, and 

MMSE) and CSF biomarkers (Aβ42, t-Tau, and p-Tau) showed statistically significant 

differences among the participant groups. In addition, age showed statistically significant 

differences among the groups. In this sense, the correlations between age and all lipids 

(from the untargeted and targeted analyses) were assessed, without obtaining significant 

results for any lipids. 
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Table 24. Clinical and demographic participant characteristics. 

 Healthy 
(n = 31) 

MCI-AD 

(n = 20) 
Preclinical AD 

(n = 11) 
p 

Value 

(Krusk

al–

Wallis) 

Median Age (years) (IQR) 62 (58, 68) 72 (69, 74) 70 (60, 74) 0.000 

Gender (Female, n (%)) 19 (61%) 10 (53%) 6 (50%) 0.737 

Educational 

Level 

Primary (n (%)) 10 (32%) 7 (39%) 4 (33%) 0.023 

Secondary (n (%)) 7 (23%) 10 (56%) 2 (17%) 

University (n (%)) 14 (45%) 2 (18%) 6 (50%) 

Concomitant 

Medication 

Statins (n (%)) 9 (41%) 12 (63%) 3 (25%) 0.335 

Fibrates (n (%)) 0 (0%) 3 (17%) 1 (8%) 0.143 

Benzodiazepines (n (%)) 6 (27%) 3 (16%) 2 (17%) 0.635 

Antidepressants (n (%)) 7 (32%) 2 (11%) 0 (0%) 0.085 

Antiepileptics (n (%)) 1 (5%) 0 (0%) 0 (0%) 0.547 

Antihypertensives (n 

(%)) 

7 (32%) 9 (50%) 2 (29%) 0.424 

Corticoids (n (%)) 1 (5%) 0 (0%) 0 (0%) 0.547 

Anti-inflammatories (n 

(%)) 

3 (14%) 0 (0%) 0 (0%) 0.151 

Comorbidities Dyslipidemia (n (%)) 11 (50%) 11 (58%) 3 (43%) 0.766 

Diabetes (n (%)) 3 (14%) 2 (11%) 0 (0%) 0.589 

Hypertension (n (%)) 8 (36%) 9 (47%) 2 (29%) 0.628 

Heart Disease (n (%)) 1 (5%) 0 (0%) 0 (0%) 0.547 

Cerebrovascular (n 

(%)) 

1 (5%) 0 (0%) 0 (0%) 0.547 

Smoke (Yes, n (%)) 6 (27%) 3 (16%) 1 (14%) 0.598 

Alcohol (Yes, n (%)) 6 (27%) 2 (11%) 0 (0%) 0.157 

Depression (Yes, n (%)) 5 (23%) 5 (26%) 2 (29%) 0.939 

Anxiety (Yes, n (%)) 4 (18%) 3 (16%) 2 (29%) 0.757 

Aβ42 (pg mL−1) 

Median (IQR) 

1224 (964, 

1421) 

495 (452, 

622) 

572 (383, 694) 0.000 

t-Tau (pg mL−1) 

Median (IQR) 

212 (181, 

259) 

578 (449, 

793) 

444 (208, 611) 0.000 

p-Tau (pg mL−1) 

Median (IQR) 

34 (25, 39) 91 (62, 109) 74 (28, 94) 0.000 

CDR 

Median (IQR) 

0.5 (0, 0.5) 0.5 (0.5, 0.5) 0.5 (0, 0.5) 0.001 

MMSE 

Median (IQR) 

29 (28, 29) 24 (22, 25) 29 (27, 30) 0.000 

RBANS.DM 

Median (IQR) 

98 (94, 103) 42 (40, 53) 95 (87, 101) 0.000 

FAQ 

Median (IQR) 

1 (0, 4) 7 (5, 10) 1 (0, 3) 0.000 

IQR: Inter-quartile range; AD: Alzheimer Disease; MCI-AD: mils cognitive impairment due to Alzheimer 
Dis- ease; CDR: Clinical Dementia Rating; MMSE: Mini-Mental State Examination; FAQ: Functionality 

Assessment Questionnaire; RBANS: Repeatable Battery for Assessment of Neuropsychological Status; DM: 

Delayed memory 
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2.2. Lipids identified by LipidMS package 

From the untargeted analysis, 197 features were annotated by the LipidMS package. 

They were grouped into some lipid families (4 CE, 16 Cer, 2 DG, 20 FA, 3 LPE, 

16 LPC, 2 MG, 73 PC, 9 PE, 5 PI, 12 SM, and 35 TG). As can be seen in Figure 28, 

the main families were PC (37%), TG (18%), and FA (10%). In Table 2 5 , the 

DG, LPE, LPC, MG, and SM families and monounsaturated lipids showed statistically 

significant differences among the three participant groups (preclinical AD, MCI-AD, and 

healthy). Moreover, the healthy and preclinical AD groups showed statistically 

significant differences in the levels of the Cer, LPE, LPC, MG, and SM families, 

while the MCI-AD and healthy groups showed statistically significant differences in 

the levels of DG, MG, and PE. In addition, Figure 29 shows the boxplots representing 

the levels of the lipid families in the participant groups (preclinical AD, MCI-AD, and 

healthy). In general, higher levels were obtained for the preclinical AD group, and 

lower levels were obtained for the MCI-AD group. A similar tendency was observed 

for monounsaturated, polyunsaturated, and saturated lipids, although only 

monounsaturated compounds showed statistically significant differences. In 

general, a trend was not found for any of the lipid families between the preclinical and 

MCI groups. 

Figure 28. Lipid families identified from untargeted lipidomic analysis and 

identification by LipidMS package.  
CE: Cholesterol esters; Cer:  Ceramides; DG: Diglycerols; FA: Fatty acids; LPC: Lys 

phosphatidylcholines; LPE: Lysophosphatidylethanolamines; MG: Monoglycerides; PC: Phos- 

phatidylcholines; PE: Phosphatidylethanolamines; PI: Phosphatidylinositols; SM: Sphingomyelins; 

TG: Triglycerides. 
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Table 25. Average sum of the different lipid families’ levels in the participant groups (preclinical AD, MCI-AD, and healthy). 

Lipid Family Healthy Controls 

(HC)  

(n = 31) 

MCI-AD 

(n = 20) 

Preclinical AD 

(n = 11) 

p Value (Kruskal–

Wallis) 

Healthy vs. Preclinical 

AD (Mann–Whitney, 

p Value) 

Healthy vs. MCI-AD 

(Mann–Whitney, p 

Value) 

CE (a.u.) 4.15 (2.86, 4.83) 3.60 (3.03, 5.04) 4.47 (3.86,  4.96) 0.416 0.350 0.685 

Cer (a.u.) 4.39 (3.52, 4.39) 3.94 (2.42, 5.75) 5.67 (5.09,  6.87) 0.070 0.038 * 0.452 

DG (a.u.) 2.05 (1.56, 2.22) 1.51 (1.25, 1.98) 2.20 (1.94, 2.73) 0.007 * 0.155 0.023 * 

FA (a.u.) 15.04 (9.29, 22.21) 13.42 (9.44, 18.38) 22.32 (11.48, 26.24) 0.299 0.201 0.685 

LPE (a.u.) 8.68 (7.16, 11.41) 7.61 (4.77, 12.73) 13.86 (10.32, 17.10) 0.006 * 0.002 * 0.418 

LPC (a.u.) 18.48 (13.62, 12.39) 15.75 (8.93, 24.98) 27.37 (22.68, 35.24) 0.006 * 0.001 * 0.396 

MG (a.u.) 1.48 (1.02, 2.83) 0.81 (0.48, 1.10) 2.52 (1.77, 3.56) <0.001 * 0.017 * 0.002 * 

PC (a.u.) 46.66 (35.34, 56.80) 41.08 (27.78, 55.27) 53.13 (43.75, 59.73) 0.202 0.257 0.316 

PE (a.u.) 7.04 (5.09, 8.78) 4.76 (3.05, 9.53) 6.85 (6.13, 10.46) 0.061 0.572 0.034 * 

PI (a.u.) 3.50 (2.86, 4.99) 3.08 (2.09, 5.00) 3.77 (2.70, 6.13) 0.366 0.553 0.307 

SM (a.u.) 8.63 (6.13, 10.48) 5.79 (3.13, 10.02) 11.21 (9.65, 12.90) 0.001 * 0.003 * 0.061 

TG (a.u.) 24.05 (19.40, 28.94) 21.00 (18.36, 29.71) 22.21 (17.83, 27.27) 0.625 0.381 0.537 

Monounsaturated (a.u.) 39.78 (31.30, 47.49) 33.35 (22.55, 46.09) 47.79 (45.98, 60.65) 0.011 * 0.009 * 0.232 

Polyunsaturated (a.u.) 93.13 (74.29, 113.90) 78.75 (58.62, 106.44) 104.67 (88.91, 111.74) 0.170 0.233 0.307 

Saturated (a.u.) 156.73 (132.57, 189.15) 138.36 (99.15, 168.83) 191.35 (155.78, 203.83) 0.100 0.054 0.452 

a.u.: arbitrary units. * p < 0.05. HC: healthy control. 
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Figure 29. Boxplots representing the levels of lipid families for each participant group 

(healthy, preclinical AD, and MCI-AD. There were 4 CEs, 4 Cers, 2 DGs, 14 FAs, 3 

LPEs, 8 LPCs, 2 MGs, 44 PCs, 7 PEs, 3 PIs, 9 SMs, and 25 TGs included in the analysis. 

(a.u.: arbitrary units)). o: outlayer; *: Extreme outlayer. 

 

2.2.1. Targeted analysis 

From previous results, the selected lipids were 18:1 LPE, 18:0 LPC, 16:1 SM (d18:1/16:1), 

16:0 SM (d18:1/16:0), 18:0 SM (d18:1/d18:0), 18:1 (9-Cis) PE (DOPE), and 24:0 SM. 

The corresponding analytical method was developed and validated, obtaining satisfactory 

analytical performance for 18:1 LPE, 18:0 LPC, 16:1 SM (d18:1/16:1), and 16:0 SM 

(d18:1/16:0) (see Table 26). In fact, the accuracy was satisfactory, with recoveries around 

100%, except for 18:0 LPC with recoveries >130%, probably due to the matrix effect. 

Moreover, a suitable sensitivity was obtained, with LODs between 0.548 and 4.185 nmol 

L−1 and LOQs between 1.83 and 13.95 nmol L−1. The other analytes did not show 

suitable analytical performance (18:0 SM (d18:1/d18:0), 18:1 (9-Cis) PE (DOPE), and 

24:0 SM), and they were not determined in plasma samples. 
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Table 26. Analytical method validation. 

Analyte Standard 

Concentration 

(nmol L−1) 

Recovery (%) LOD 

(nmol L−1) 

LOQ  

(nmol L−1) 

Linearity Range 

(nmol L−1) 

Equation (y = a + bx) 

a ± sa 
b ± sb 

R2 

18:1 LPE 6.25 108 ± 14 0.548 1.83 1.83–26.30 0.0019 ± 0.0008 

9.38 109 ± 15 0.0027 ± 0.000063 

12.5 104 ± 17 0.998 

18:0 LPC 50 153 ± 15 4.185 13.95 13.95–209.38 0.012 ± 0.024 

75 147 ± 15 0.0072 ± 0.00022 

100 134 ± 21 0.997 

16:1 SM (d18:1/16:1) 50 101 ± 11 2.857 9.52 9.52–208.11 0.0774 ± 0.021 

75 101 ± 11 0.0064 ± 0.00019 

100 96 ± 16 0.997 

16:0 SM (d18:1/16:0) 12.5 108 ± 58 1.240 4.13 4.13–52.51 −0.0041 ± 0.0063 

18.75 102 ± 6 0.012 ± 0.00024 

25 82 ± 5 0.999 

18:0 SM (d18:1/d18:0) 3.13  0.289 0.96 0.96–13.23 0.0014 ± 0.0011 

4.69 100 ± 26 0.0047 ± 0.00017 

6.25 119 ± 59 0.996 

18:1 (9-Cis) PE (DOPE) 0.78  0.069 0.23 0.23–3.30 0.00019 ± 0.00015 

1.17 103 ± 65 0.0024 ± 0.000089 

1.56 62 ± 62 0.996 

24:0 SM 6.25  0.306 1.02 1.02–26.02 0.24 ± 0.03 

9.38  0.044 ± 0.003 

12.50  0.990 
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2.2.2. Sample analysis 

A panel of four lipids (previously selected) was determined in plasma samples from 

healthy participants (n = 20) and patients with preclinical AD (n = 11) and MCI-AD (n = 

31). The concentrations of each lipid in the participant groups are summarized in 

Table 27. As can be seen, statistically significant differences were observed for 18:1 

LPE among the three groups (p = 0.010) and between the AD (preclinical + MCI) 

and healthy groups (p = 0.003). In addition, this potential AD biomarker showed a 

correlation with some CSF biomarkers (t-Tau (0.299, p = 0.022) and p-Tau (0.290, p = 

0.026)). It should be mentioned that no correlation was observed between the lipid 

levels and age. 

 

Table 27. Lipid concentrations in plasma from participant groups (healthy, MCI-AD, and 

preclinical AD). 

Lipids Healthy Control 

(HC) 

(n = 31) 
Median (IQR) 

(nmol L−1) 

MCI-AD (n = 

20) 

Median (IQR) 
(nmol L−1) 

Preclinical AD 
(n = 11) 

Median (IQR) 
(nmol L−1) 

Kruskal-

Wallis p 

Value 
(three 

groups) 

Mann–

Whitney p 

Value 
(AD vs. non-

AD) 

18:1 

LPE 

1.37 (0.38, 1.83) 1.8 (1.2, 4.2) 1.8 (0.9, 3.7) 0.010 * 0.003 * 

18:0 

LPC 

67 (61, 80) 65 (56, 96) 81 (60, 105) 0.504 0.569 

16:1 

SM 

15 (7, 27) 13 (8, 24) 19 (15, 25) 0.501 0.647 

16:0 

SM 

177 (137, 206) 168 (132, 213) 209 (159, 239) 0.374 0.371 

* p value < 0.05. 

 

In addition, LPE 18:1 showed an AUC-ROC of 0.722 (95% CI, 0.595–0.848), 

discriminating between early AD (preclinical + MCI) and healthy participants. 
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2.3.  Compounds identified by CEU Mass Mediator Database 

2.3.1. Preclinical AD vs. Healthy Subjects 

The volcano plot analysis from the preclinical AD and healthy groups showed 48 

significant variables (Figure 30a). The PLS analysis was carried out with these 

variables in order to identify the most discriminant variables between the groups. This 

model showed a p value <0.001 and a clear separation between preclinical AD cases and 

healthy participants (Figure 30b), with good R2Y (0.637) and Q2Y (0.566) parameters. 

The model was satisfactorily validated (1000 iterations) with R2Y = 0.202 and Q2Y = 

−0.373. 

 

Figure 30. (a) Volcano Plot representing the significant variables in the discrimination 

between healthy controls and preclinical AD participants. Statistically significant 

variables are represented in red (p < 0.05, FC > 2); (b) PLS plot represents differential 

distribution between healthy controls and preclinical AD; (c) Threshold VIP plot value 

> 1 (red variables). 

Potential compounds were subjected to identification and confirmation based on a 

threshold of VIP value >1 (27 variables) (Figure 30c). Finally, 16 variables were 

tentatively characterized by querying our experimental MS data with those provided in 

the commercial databases. From them, some variables showed more weight over the model 

(m/z 1484.140079, 508.3767054, 494.3609278, and 770.6063157). In addition, two 
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variables were putatively annotated through AM and MS/MS mass spectra with online 

databases. These variables were pisumionoside (m/z 405.2102471) and 1-O-Palmitoyl-2-

O-acetyl-sn-glycero-3-phosphorylcholine (m/z 520.3404329). 

2.3.2. Mild Cognitive Impairment-AD vs. Healthy Controls 

The volcano plot analysis from the MCI-AD and healthy groups showed 153 significant 

variables (Figure 31a). The PLS analysis was carried out with these variables in order  

to identify the most discriminant lipids between the groups. This model showed a CV p-

value <0.001 and a clear separation between MCI-AD and healthy control participants 

(Figure 31b), with good R2Y (0.926) and Q2Y (0.785) parameters. The model was 

satisfactorily validated (1000 iterations) with R2Y = 0.572 and Q2Y = -  0.686. 

 

Figure 31. (a) Volcano plot representing the significant variables in the discrimination 

between healthy controls and MCI-AD. Statistically significant variables are 

represented in red (p < 0.05, FC > 2); (b) PLS plot represents differential distribution 

between healthy controls and MCI-AD. (c) Threshold VIP plot value > 1 (red variables). 

Potential metabolites were subjected to identification and confirmation based on a 

threshold of VIP value > 1 (22 variables) (Figure 31c). Finally, 11 variables were 

tentatively characterized by using the corresponding databases. From them, some 

variables showed more weight over the model (m/z 409.3113, 362.2550, 350.3417, and 

518.351396). In addition, the variable m/z 766.573457 was putatively annotated trough AM 

and MS/MS mass spectra with online databases, and it was identified as a 

phosphocholine. 
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3. Discussion 

A lipidomic approach was developed in plasma samples from participants classified 

according to their amyloid status (CSF biomarkers) to identify lipid alterations involved 

in the onset of AD. For this, an untargeted analysis was carried out, and comparisons 

between early AD (preclinical or MCI) and healthy participants were evaluated. Some 

significant variables were identified in early AD deregulation, and lipid families were 

evaluated. Finally, a complementary multivariate analysis was carried out in order to 

identify other potential discriminative variables. 

Lipid families identified by the LipidMS database revealed the potential implication 

of DG, LPE, LPC, MG, and SM in early AD. In the comparison between 

preclinical AD and healthy groups, some lipid families were identified as potential 

biomarkers (Cer, LPEs, LPCs, MGs, and SMs), as they were differentially expressed, 

especially the monounsaturated species. Similarly, Mielke et al. found an association 

between Cer and SMs with the risk of AD, although they described differential risks 

between men and women [314]. In addition, Jazvinšćak Jembrek et al. described the 

role of ceramides as mediators of neuronal apoptosis related to OS and Aβ accumulation 

[315]. Therefore, this deregulation of ceramides in the preclinical stages of the disease 

could contribute to the advancement of clinical manifestations contributing to neuronal 

loss. Moreover, Panchal et al. described ceramide accumulation in AD plaques [316]. 

In addition, SM/ceramide has been related to AD cognitive decline [116]. However, 

the utility of ceramides as biomarkers for dementias requires further investigation 

[317]. LPE was described as a biomarker for progression to AD [115], although our 

results suggest that it could be a potential biomarker for preclinical stages. Similarly, 

LPCs could be a potential biomarker for the first stages of AD. In this sense, LPCs 

play a role in PUFAs transport across the BBB, perhaps controlling the availability 

of these essential compounds for the proper functioning of the brain [318]] In the 

comparison between MCI-AD and healthy controls, different lipid families were 

identified as potential biomarkers (DGs, MGs, and PEs). Similarly, Wood et al. found 

increased levels of DGs and MGs in early AD [319]. PEs could be involved in the 

physiopathology of AD due to their involvement in cell processes such as oxidative 

phosphorylation, mitochondrial biogenesis, and autophagy [290]. Our results show 
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that MGs could be potential biomarkers of early AD, including both the preclinical 

and MCI-AD stages. In addition, LPE, LPC, and SM seem to be more specifically 

altered in the preclinical stage, while DGs could be useful as biomarkers for the MCI 

stage. On the other hand, the annotation of variables by means of other databases 

(HMDB, Kegg, and Metlin) reported other important annotated variables and metabolite 

classes. In the discrimination between preclinical AD and healthy subjects, some lipid 

families were found, such as phosphatidylglicerol, glicerophosphocholine, 

glicerophosphoserine, phosphoethanolamine, phosphocholine, glicoesphingolipid, 

diacilglicerol, terpenes, steroids, flavonoid classes, and vitamin E. Specifically, 

plasma glycerophosphocholine compounds were observed at higher levels in the 

preclinical AD group. Similarly, other studies showed elevated levels of this lipid in AD 

brains [320] as well as in cerebrospinal fluid samples from AD patients [307,321], 

indicating that abnormal phospholipid metabolism in the brain is characteristic of AD. 

In addition, the present study found that plasma phosphoethanolamine levels were 

lower in the preclinical AD group, and a previous work found lower levels for PE 

in AD brain samples [322]. In fact, PE is a precursor for phosphatidylcholine and 

a substrate for important posttranslational modifications [290] . Moreover, 

phosphocholine is a precursor of phosphatidylcholine, and higher levels were obtained 

for the preclinical AD group, indicating a potential membrane impairment in the early 

disease process [323]. Moreover, glycosphingolipids could be involved in preclinical 

AD since higher levels were obtained in plasma samples from these participants. In 

this regard, ceramides, which are involved in sphingolipid metabolism, showed an 

association with neuropsychiatric symptoms [324]. Moreover, we found higher 

levels of DGs in the preclinical AD group, similar to the increased plasma levels in 

early AD, suggesting that lipidomics alterations lead to the accumulation of DGs in 

MCI subjects [319]. On the other hand, in the present study, phosphatidylglycerol 

(PG) and flavonoids showed lower plasma levels in the preclinical AD group. 

Flavonoid compounds could act against AD pathology by inhibiting microglia 

activation and Aβ aggregation. Therefore, a reduction in these compounds early in 

the disease may contribute to the development of AD pathways. However, a search 

of the literature failed to reveal any studies related to this finding. Studies have been 

reported that vitamin D showed higher levels in preclinical AD compared to healthy 
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participants, but we found that prior investigations reported reduced levels of these 

vitamins in AD and MIC- AD cases [325]. Since the cases examined here were 

classified as preclinical AD, it is possible that this group was exhibiting a compensatory 

response to the disease process. In addition, the discrimination between preclinical AD 

and healthy controls is characterized by the biomarkers 1-O-Palmitoyl-2-O-acetyl-sn-

glycero-3-phosphorylcholine and pisumionoside, which were putatively annotated. 

Pisumionoside is an exogenous compound derived from vegetables, such as 

seedpods of garden peas, that could have a hepatoprotective function [326]. These 

levels are elevated in healthy subjects compared to preclinical AD subjects. 

Therefore, pisumionoside could have a protective effect against AD. Moreover, 1-O-

Palmitoyl-2-O-acetyl-sn-glycero-3-phosphorylcholine is a glycerophosphorylcholine 

that showed increased levels in AD, in concordance with previous studies [327]. Its 

oxidized products were considered biomarkers of neuroinflammation in other 

pathologies such as multiple sclerosis [328]. Moreover, other lipid families 

(glycosyldiacylglycerols, fatty acids, terpenoids, sesquiterpene mycotoxins, terpene 

lactones, phosphocholines, gluco sylceramides, and fucopentanoses) were annotated 

by HMDB comparing MCI-AD and healthy groups. First, glycosyldiacylglycerols 

showed lower levels in the MCI-AD group. Previous studies found an increase in 

diacylglycerols in the frontal cortex in neurodegenerative diseases such as dementia 

with Lewy bodies or AD [329]. In addition, glycosylation showed a relationship with 

neurodegeneration and AD. Therefore, it could be an indicator of disease progression 

[330] . Moreover, fatty acids showed lower levels in the MCI-AD group, similar to 

previous reports [331,332] , reflecting differences in intake and metabolism. 

Moreover, terpenoids and some vitamins showed higher levels in the MCI-AD 

group. In this sense, there is some controversy since previous studies showed protective 

effects for these compounds [333,334]. 

Regarding the targeted analysis, the developed analytical method was able to determine 

low plasma levels of some lipids that could be useful as potential AD biomarkers 

(18:1 LPE, 18:0 LPC, 16:1 SM (d18:1/16:1), and 16:0 SM (d18:1/16:0)). Accuracy was 

satisfactory for all of them. However, only 18:1 LPE showed statistically significant 

increased levels in preclinical and MCI-AD in comparison with healthy controls. Su et al. 

found this lipid increased in brain-derived extracellular vesicles from AD patients [335]. 
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For LPC in plasma samples, a previous study showed an increase with aging, which 

is more evident under AD conditions [303]. Similarly, the present study found higher 

levels of LPC 18:1 and lower levels of L-α-phosphatidilcholine and PC in AD 

patients. However, Mulder et al. found a decrease in the ratio LysoPC/PC under 

MCI or dementia due to AD conditions [336]. In addition, the present study showed 

plasma 18:1 LPC correlations with CSF t-Tau and p-Tau, which are biomarkers currently 

employed in AD diagnosis. Specifically, Tau is considered a neurodegeneration 

biomarker [337]. In this sense, the correlation found between 18:1 LPC and Tau showed 

the potential utility of 18:1 LPC as a neurodegeneration biomarker. Similarly, 

previous studies showed the utility of the metabolites 18:0 LPC and 18:2 LPC as 

potential biomarkers for AD [90]. These discrepancies could be explained by the 

different types of samples used (plasma and CSF) as well as by the different isomers 

determined in these compounds’ families. In addition, the ratio between LPC and PC 

in the plasma samples showed the capacity to differentiate between AD and non-AD 

participants [338]. 

The main limitation of this study is the small sample size. However, the participants 

were accurately classified into groups according to their amyloid status, cognitive 

state, and brain alterations with neuroimaging. Moreover, there is a lack of confirmation 

studies to identify the metabolites as reliable AD biomarkers.  Nevertheless, this work 

provides a detailed lipidomic approach from untargeted and targeted analyses that 

identified potential biomarkers and pathways involved in early AD development. 

Although analyses of confounding variables, such as age, were not performed, 

correlations between age and lipids or lipid class were assessed. 

4. Conclusions 

A lipidomic approach was developed from untargeted and targeted analyses of plasma 

samples. It showed some differential expression of lipids between healthy participants 

and patients at the early stages of AD. Therefore, the plasma lipid profile could be 

useful in the early and minimally invasive detection of AD. Among lipid families, 

relevant results were obtained from DGs, LPEs, LPCs, MGs, and SMs. Specifically, 

MGs could be potentially useful in AD detection, while LPEs, LPCs, and SM are 

related more specifically to their preclinical stage and DGs are related to the MCI 
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stage. Among these families, 18:1 LPE showed potential utility as a biomarker for AD 

and neurodegeneration. In addition, other analyte families, such as 

phosphatidylglicerol, phosphocholine, glicerophosphocholine, glicerophosphoserine, 

glicoesphingolipid, vitamin E, terpenes, steroids, flavonoids, glyco syldiacylglycerols, 

fatty acids, glucosylceramides, and fucopentanoses, showed potential alterations in 

early AD stages. However, further analysis in a large number of samples is required 

to validate these preliminary results. 
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Chapter 11. Plasma microRNAs as potential biomarkers in early 

Alzheimer disease expresion 

1. Summary  

The aim of this chapter is to analyse the differential expression of a panel of miRNAs 

selected from sequencing analysis in plasma from early AD and control participants 

evaluating their potential usefulness as biomarkers and their implication in molecular 

pathways altered in early AD stages. For this, miRNAomic expression profiles were 

analysed by Next Generation Sequencing in plasma samples from MCI-AD (n = 19), 

preclinical AD (n = 8) and controls (n = 19). Then, the selected miRNAs were validated 

by quantitative PCR (q-PCR) and a Bayesian model was developed including them. Then 

the targets of the selected miRNAs and  the pathways regulated by them were analyzed 

using miRDB. 

 

2. Results 

2.1. Participants characteristics 

The participants’ characteristics are summarized in Table 28. As can be seen, most of the 

variables showed no significant differences among participants’ groups. In fact, only the 

clinical variables used in their diagnosis (CSF biomarkers levels, neuropsychological 

assessment) show statistically significant differences, as expected. In contrast, 

demographic variables (age, sex, educational level, medication use (statins, fibrates, 

benzodiazepines, antihypertensives), comorbidities (dyslipidemia, diabetes, 

hypertension)) are similar between the study groups. 
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Table 28. Participant’s clinical and demographic variables. 

 

Variable 

Control  

(n = 19) 

MCI-AD  

(n = 19) 

Preclinical-AD 

(n=8) 

 

P 

value 
Median (1st, 3rd Q.) 

Age (years) 69 (64.5, 70.5) 70 (67.5, 74) 68.5 (66.7, 70.5) 0.134 

Sex, female, n (%) 8 (42.11%) 8 (42.11%) 5 (62.5%) 0.575 

Educational level (n, %) 

Basic or primary 6 (31.58%) 7 (38.89%) 1 (12.5%)  

0.094 Secondary 6 (31.58%) 10 (55.56%) 3 (37.5%) 

Uiversitary 7 (36.84%) 1 (5.56%) 4 (50%) 

Smoking Yes, n, (%) 3 (15.79%) 3 (15.79%) 2 (25%) 0.823 

Alcohol Yes, n (%) 4 (21.05%) 2 (10.53%) 1 (12.5%) 0.647 

Statins (n, %) 11 (57.89%) 10 (52.63%) 3 (37.5%) 0.625 

Fibrates (n, %) 2 (10.53%) 2 (11.11%) 1 (14.29%) 0.690 

Benzodiazepines (n, %) 3 (15.79%) 2 (10.53%) 1 (12.5%) 0.889 

Antihipertensives (n, %) 8 (42.11%) 7 (38.89%) 1 (12.5%) 0.317 

Dyslipidemia (n, %) 13 (68.42%) 10 (52.63%) 3 (37.5%) 0.303 

Diabetes (n, %) 3 (15.79%) 1 (5.26%) 3 (37.5%) 0.103 

Hypertenison (n, %) 9 (47.37%) 8 (42.11%) 1 (12.5%) 0.224 

Aβ42 (pg mol-1) 1224 (967, 
1429) 

495 (456, 616) 671.5 (507.5, 
714) 

< 0.001 

t-Tau (pg mol-1) 276 (227.5, 

375) 

578 (432.75, 

785.75) 

464 (337.5, 

548.5) 

0.001 

p-Tau (pg mol-1) 40 (29, 44) 91 (58.75, 107.75) 67 (58.25, 99) < 0.001 

CDR 0 (0, 0) 0.5 (0.5, 0.5) 0 (0, 0) < 0.001 

MMSE 29 (27.5, 29.5) 24 (23, 25.75) 27 (26.75, 28.25) < 0.001 

FAQ 0 (0, 1) 7 (5, 10.5) 1 (0, 2) < 0.001 

RBANS.MR 101 (96.5, 
106.5) 

42 (40, 55) 86 (77.25, 98.75) < 0.001 
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2.2. miRNAs validation  

A panel of 11miRNAs was selected following the specified criteria (counts in at least 80% 

of the samples and previous findings in literature). The selected miRNAs were hsa-miR-

92a-3p, hsa-miR- 486-5p, hsa-miR-29a-3p, hsa-miR-486-3p, hsa-miR-150-5p, hsa-miR-

142-5p, hsa-miR-320b, hsa-miR-483-3p, hsa-miR-1293, hsa-miR-342-3p, and hsa-miR-

4259. Of these, 8 miRNAs were successfully quantified (has-miR- 92a-3p, has-miR-486-

5p, has-miR-29a-3p, miR-486-3p, miR-150-5p, miR-320b, miR-483-3p, miR-342-3p); 

while some miRNAs were not detected (hsa-miR-142-5p, miR-1293, hsa-miR-4259). The 

levels obtained for each miRNA are summarised in Table 29. As can be seen, small 

differences were obtained for each miRNA among participants’ groups. 

Table 29. Median levels of miRNAs in plasma from participants’ groups. 

 

Variable (Total counts) 

Control 

(n = 19) 

Median (IQR) 

MCI-AD 

(n = 19) 

Median (IQR) 

Preclinical AD 

(n = 8) 

Median (IQR) 

hsa-miR-92a-3p 22.26 (21.12, 22.67) 21.51 (21.27, 22.72) 21.89 (21.37, 22.61) 

hsa-miR-486-5p 22.72 (22.22, 23.43) 22.5 (22.13, 23.3) 23.33 (22.26, 24.21) 

hsa-miR-29a-3p 26.86 (25.92, 27.55) 26.93 (26.4, 27.36) 27.62 (26.62, 27.99) 

hsa-miR-486-3p 28.19 (27.47, 28.96) 28.07 (27.44, 29.35) 27.98 (27.4, 29.8) 

hsa-miR-150-5p 24.18 (23.84, 24.9) 23.93 (23.38, 25.2) 23.93 (23.38, 24.49) 

hsa-miR-320b 26.94 (26.26, 27.64) 26.73 (26.19, 27.1) 26.88 (25.94, 27.48) 

hsa-miR-483-3p 31.53 (31.18, 32.32) 31.63 (30.97, 32.91) 31.5 (31.31, 31.74) 

hsa-miR-342-3p 28.54 (28.07, 29.04) 28.48 (27.7, 29.46) 27.71 (27.05, 28.75) 

 

Individually, the validated miRNAs showed no significant differences between groups. 

Therefore, two multivariate models, including the previously selected miRNAs, were 

developed to analyse the tendency of each miRNA in participants’ groups. The first model 

included 3 participant groups (control, MCI-AD, preclinical AD); while the second model 

included 2 participant groups (AD (MCI-AD + preclinical-AD), control). In Table 30, the 

characteristics of the first model are summarised, showing that the miRNAS hsa-miR-92a-

3p, hsa-miR-486-5p and hsa-miR-29a-3p had a high probability of direction (PD > 80%). 
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Specifically, hsa-miR-92a-3p showed a PD 85.40% of a negative estimate, so relatively 

reduced levels were found in AD. Similar results were obtained for hsa-miR-486-5p. In 

fact, it showed a high probability of a negative estimate with small Region of Practical 

Equivalence (ROPE) (< 15%), which defines the percentage of the area that is within 

the region of practical equivalence (equivalent to null effect)), showing an Odds Ratio 

(OR) lower than 1, and suggesting a protective effect for AD. By contrast, hsa-miR-29a-3p 

showed a positive estimate, so relatively increased levels were found in AD. Similarly, the 

characteristics of the model including 2 participants’ groups (AD, control), showed that the 

miRNAS hsa-miR-92a-3p and hsa-miR-29a-3p had a PD > 90%, with negative and positive 

estimates, respectively.  

These results are shown in Figure 32, which depicts the PD and ROPE for each miRNA. 

The miRNAs with a high PD (mir-92a-3p, miR-486-5p, miR-29a-3p), showed most of 

their area on one side of 0 (Figure 32a). In addition, mir-92a-3p and miR-486-5p showed 

a negative direction, while miR-29a-3p showed a positive direction. Figure 32b shows the 

ROPE region, being a small area in the first three miRNAs. 

Table 30. Characteristics of the Bayesian model including 3 participants groups (control, 

preclinical-AD, MCI-AD).  

Variables Estimate OR (CI 95%) Inside Rope (%) PD (%) 

hsa-miR-92a-3p −0.484 0.616 (0.241,1.455) 19.34% 85.40% 

hsa-miR-486-5p −0.649 0.522 (0.112,2.28) 14.15% 81.38% 

hsa-miR-29a-3p 0.418 1.519 (0.662,3.626) 22.76% 82.88% 

hsa-miR-486-3p 0.478 1.613 (0.462,5.929) 18.05% 77.88% 

hsa-miR-150-5p 0.123 1.131 (0.243,5.574) 19.76% 55.27% 

hsa-miR-320b 0.174 1.19 (0.373,4.02) 23.34% 60.68% 

hsa-miR-483-3p 0.286 1.331 (0.624,2.968) 29.86% 77.15% 

hsa-miR-342-3p −0.458 0.632 (0.131,3.086) 16.47% 72.58% 

The Probability of Direction (PD) is an index of effect existence, ranging from 50 to 

100%, representing the certainty with which an effect goes in a particular direction. PD > 

80% was considered significative. For each variable the direction depends on the estimate 

(negatives estimate < 0, and positives estimates > 0). Region of Practical Equivalence 

(ROPE) defines the percentage of the area that is within the region of practical 

equivalence (equivalent to null effect). OR odds ratio, CI confidence interval. 
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Figure 32. Probability of direction (PD) and Region of Practical Equivalence (ROPE) for 

each miRNA. (a) PD shows the estimation of direction for each biomarker, showing a 

protective AD effect for those with negative direction and risk AD effect for those with 

positive direction. Polygons show the density summary of the posterior draws and colored 

given the estimated direction (positive or negative) of the effect parameter. The 

proportion of the polygon that does not include zero is a statement about probability of 

the proposed direction of effect. (b) ROPE represents the area of null equivalence that is 

the percentage with none direction (positive or negative). Effects given a full ROPE based 

on a 100%, 95% and 90% highest posterior density interval. The proportion of the 

polygon that does not include zero is a statement about the significance of effect. 

 

2.3. Pathway analysis 

For the miRNAs with a high directional probability (hsa-92a-3p, hsa-486-5p, hsa- 29a-

3p), their potential target genes were analysed in order to assess their involvement in the 

pathology development. Table 31 shows the potential target genes of the selected 

miRNAs related to AD mechanisms. As can be seen, 112 potential targets were obtained 

for miRNA hsa-92a-3p, 16 targets for hsa-486-5p, and 88 targets for hsa-29a-3p, with a 

target score of at least 95. In addition, each of the selected miRNAs regulated several 
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pathways. As can be seen in Figure 33, the most common pathways were cell signalling 

and transcription regulation, but also lipid metabolism, protein synthesis and 

modifications, and structural functions were regulated by the selected miRNAs. First, the 

main pathways that could be regulated by the miRNA hsa-92a-3p are cell death or 

autophagy and cell proliferation pathways, and some pathways related to vesicle transport 

and synaptic transmission. Among the cell death targets, BCL2L11 (BCL2 like 11) is 

involved in neuronal and lymphocyte apoptosis and G3BP2 (G3BP stress granule 

assembly factor 2) is involved in stress response. In the cell proliferation pathway, the gene 

C21orf91 (chromosome 21 open reading frame 91) plays a role in the proliferation of 

neurons in the cortex. Among synaptic transmission targets, GLRA1 (glycine receptor 

alpha 1), SYN2 (synapsin II), SCN8A (sodium voltage-gated channel alpha subunit 8), 

CADM2 (cell adhesion molecule 2), CBLN4 (cerebellin 4 precursor), SYNJ1 

(synaptojanin 1), SLC17A6 (solute carrier family 17 member 6), and NSF (N-ethyl- 

maleimide sensitive factor, vesicle fusing ATPase) are highlighted, being the last two 

targets involved in vesicle transport. Other important genes are REST (RE1 silencing 

transcription factor), which regulates neuronal genes transcription; and NEFH 

(neurofilament heavy), which contributes to the maintenance of neuronal structure. In 

addition, PPCS (phosphopantothenoylcysteine synthetase) could be relevant in the 

regulation and metabolism of CoenzymeA. 

Secondly, the main pathways that could be regulated by the miRNA hsa-486-5p are cell 

signalling, lipid and protein pathways, structural functions and transcription. 
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Table 31. Potential target genes and related AD pathways. In this link it can be found the full name of each gene 

(http://mirdb.org/mirdb/index.html) 

Pathway hsa-miR-92a-3p hsa-miR-486-5p hsa-miR-29a-3p 

Autophagy TECPR2, EPG5   

Cell death G3BP2, HIPK3, USP28, DNAJB9, 

BCL2L11, RNF38 

 TRIB2, XKR6, AKT3 

 

proliferation 

CD69, FNIP1, BTG2, MAP2K4, C21orf91, 

KLF4, FNIP2, GTF2A1, CDK16, ARID1B, 
CDCA7L, CCNJL, CUX1, MAP1B, 

RNF38 

 NAV1, NAV2, NAV3, IGF1, ZNF346, 

LIF, CDK6, SGMS2, PDIK1L, CHSY1, 
NEXMIF, AKT3, ADAMTS9 

 

Cell signalling 

PIKFYVE, DOCK9, ITGAV, EFR3A, 
RIC1, RNF38, GPR180, PLEKHA1, JMY, 

GNAQ, RGS17, PTEN, PCDH11X, GIT2, 

ADGRF2, CALN1, DPP10, LRCH1, 
HCN2 

 

DCC, PTEN, SLC10A7, ARHGAP44, 
MARK1 

NEXMIF, AKT3, DAAM2, PTEN, 
PGAP2, ROBO1, RAP1GDS1, RAB30, 

DGKH, CLDN1, TRAF3 

Energetic metabolism and oxidative 

stress 

NOX4, SESN3, PTEN, SLC12A5 PTEN PTEN 

Glucose metabolism MAN2A1, FBN1, UGP2  FBN1 

Immune response TAGAP, CD69, KLF4, GLRA1, FOXN2, 
RAB23 

 TRAF3 

lipid metabolism PPCS, KIAA1109 FAHD1 OSBPL11 

membrane transport SLC12A5, SLC25A32, SGK3  SESTD1, ABCE1, SLC5A8 

Nucleic acid metabolism and DNA 

organization 

MORC3, RBM27, GID4, CPEB3, SLX4, 
AGO3, JMY, ANP32E, RSBN1 

 DOT1L, KMT5C, ERCC6, NASP, 
KDM5B, TDG 

DNA and histones methylation   TET1. TET2, TET3, DOT1L, DNMT3A, 
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DNMT3B, KDM5B 

Protein degradation FBXW7, SESN3, KLHL14, USP36, USP28, 
UBXN4 

 VPS37C, TRIM63 

Protein synthesis and modifications    

 B3GALT2, PTAR1, GOLGA3, COG3, 
SGK3, ADAM10, EDEM1 

COPS7B, MARK1, LMTK2, ABHD17B ADAMTS9, ADAMTS6, DIO2, ABCE1 

 

 

Structural function 

 

ACTC1, ANP32E, NEFH, RSBN1, 

NCKAP5, NEFM, RHPN2, FBN1, 
MYO1B 

 

 

SNRPD1, NCKAP5, LCE3E 

COL5A3, COL5A1, COL3A1, FBN1, 

COL11A1, HAS3, TMEM169, COL19A1, 
COL4A1, COL1A1, COL7A1, SPARC, 

COL5A2, HMCN1, C1QTNF6, 

ADAMTS2, CEP68, PXDN, COL9A1, 
HAPLN3, RND3, TRAF3, RAB30, 

CLDN1 

Synaptic transmission GLRA1, SYN2, SCN8A, CADM2, 
CBLN4, SYNJ1, SLC17A6, NSF 

ARHGAP44  

 

Transcription 

MIER1, HAND2, TBL1XR1, LATS2, 
FOXN2, ZEB2, REST, GRHL1, TEAD1, 

HIVEP1 

 

BTAF1, SNRPD1, FOXO1, ZNF331 

HBP1, ATAD2B, BRWD3, NSD1, 
ZBTB34, NFIA, KDM5B, PURG, HIF3A, 

ZBTB5, ZNF282, AMER1, REST, TAF5, 
ZHX3, 

C16orf72 

Vesicle transport MYO1B, CDK16, PIKFYVE, SLC17A6, 
NSF, RAB23, DENND1B 

 ASAP2, VPS37C 

 

Others 

ZFC3H1, TTC9, ATXN1, DCAF6, 

LHFPL2, FAM160B1, ERGIC2, MAGEC2, 

SPRYD4, ANKRD28, TRIM36, FAM24A, 
BCL11B 

 

TRIM36 

ADAMTS17, PRR14L, FAM241A, 

LYSMD1, PXYLP1, SMS, ATAD2B 
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Figure 33. Pathways regulated by the three miRNAs that showed relationship with AD. 

The arrows indicate those miRNAs involved in each pathway. Each color represents a 

miRNA: green (hsa-miR-92a-3p), red (hsa- miR-486-5p) and blue (hsa-miR-29a-3p). 

*Created with BioRender.com. 

 

Thirdly, the main pathway that could be regulated by the miRNA hsa-29a-3p is the cell 

proliferation pathway, which involves neurone regeneration and migration trough NAV3 

(neuron navigator3), NAV1, and NAV2. Also, ZNF346 (zinc finger protein 346) could act 

to protect neurons and LIF (LIF, interleukin 6 family cytokine) is involved in neuronal 

differentiation. In cell signalling pathways, the targets DAAM2 (dishevelled associated 

activator of morphogenesis 2) and ROBO1 (roundabout guidance receptor 1) contribute 

to nervous system development and neuronal migration, respectively. Furthermore, 

miRNA hsa-29a-3p plays a role in structure regulation, specifically regulating the 
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synthesis of different collagen chains, and HMCN1 (hemicentin 1) is involved in macular 

degeneration and C1QTNF6 (C1q and TNF related 6) is involved in identical protein 

binding activity. Also, this miRNA could regulate REST in the transcription pathway. 

3. Discussion 

In this study, miRNA sequencing was carried out to identify potential early AD biomarkers. 

From these, a validation step was conducted, in which quantifiable miRNAs were 

identified, while some of them were not detected. In fact, the miRNAs not validated were 

hsa-miR-142-5p, hsa-miR-1293 and hsa-miR-4259. A previous study in cell line found a 

relationship between dysregulation of miR-142-5p expression and AD pathogenesis and 

synaptic dysfunction [339], and it was detected up-regulated in the blood of AD patients 

[340]. Also, hsa-miR-4259 was detected in saliva samples, but there is a lack of studies 

quantifying this biomarker in plasma samples [341]. In addition, has- miR-1293 was 

previously detected in platelets from hepatocellular carcinoma and lung adenocarcinoma 

cell line [342]. Nevertheless, there are no studies describing its association with AD. 

Regarding the methodology, Haining et al., performed a similar study trying to find a 

miRNA profile in early AD. However, different cohorts for untargeted and targeted 

analysis were used [125]. Also, Dakterzada aimed to find miRNAs in plasma from AD 

participants, identifying a BACE1 related panel of biomarkers different from the miRNAs 

in the present work [343]. It could be due to the use of a different identification technique 

based on microarrays analysis [344]. The different methodologies employed could affect 

the miRNAs selection, so it should be taken into account in comparisons with other studies 

[343]. 

Regarding the miRNAs that showed a trend with the pathology in the present study, they 

were hsa-miR- 92a-3p, has-miR-486-5p and hsa-miR-29a. First, hsa-miR-92a-3p showed a 

tendency for decreased levels in AD. A previous study showed dysregulation of 3 miRNAs 

related to synaptic proteins, including hsa-miR-92a-3p in MCI and AD [345]. Another 

study described the relationship between miR-92a-3p and Tau accumulation [346]. One 

of the most AD-relevant pathways that could be regulated by this miRNA is synaptic 

transmission [347]. Specifically, SYNJ1, a potential target for this miRNA, seemed to be 

involved in Aβ clearance [348,349], while synapsins could act on Aβ generation by 
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modulating BACE1 [350]. In addition, CBLN4 could regulate Aβ toxicity [351]. 

Regarding neuronal apoptosis, it could be regulated by this miRNA and the BCL2L2 

target. In fact, a previous work showed that Aβ could regulate that pathway [352]. Other 

target genes (NEFH, REST), which are involved in neuronal structure and neuronal gene 

transcription, were described as potential AD diagnosis biomarkers [353,354]. 

Second, the present study showed a tendency towards reduced levels of hsa-miR-486-5p 

in AD. Similarly, Nagaraj et al. described a panel of 6 plasma miRNAs, including hsa-

miR-486-5p, that differentiated between controls and MCI-AD [355]. This miRNA could 

regulate some genes involved in cell signalling, lipid and protein pathways, transcription 

and structural function. 

Third, a trend towards higher levels for hsa-miR-29a-3p in AD plasma was found. 

Similarly, Shioya et al. described differential levels of this miRNA at brain level, suggesting 

its implication in neurodegeneration trough NAV3 (Neurone Navigator 3) regulation 

[356,357]. In addition, another miRNA from that family (hsa-miR-29c) has been related 

to AD pathology due to its involvement in the Aβ accumulation through the regulation of 

BACE1 [357,358]. Moreover, Müller et al. suggested that miR-29a could be a candidate 

biomarker for AD in CSF samples without cells [359]. In this regard, different types of 

collagenous chains and C1QTNF6 are targets of miRNA hsa-29a-3p. Previous studies 

described collagenous chains as a component from amyloid plaques  [360]. The collagenous 

regulation may contribute to the assembly of amyloid fibres, enhancing the development 

of amyloid pathology. In addition, C1q complement protein co-localizes with the Aβ in 

brain [361,362]. Therefore, C1QTNF6, which is thought to play a role in identical protein 

binding, could help in the accumulation of C1q protein, triggering amyloid plaque 

formation (PubMed Gene). In addition, ROBO1 and DAAM2, which are involved in 

neuronal migration and nervous system development, are targets for this miRNA. In fact, 

ROBO1 could show a relationship with axon guidance dependent on presenilin, which 

helps in the proteolysis of Aβ precursor protein and triggers to AD pathology development 

[363,364]. Furthermore, DAAM2 was described by Ding et al. as a mediator in 

regenerative oligodendrocyte differentiation; while Sellers et al. demonstrated that Aβ 

synaptotoxicity is mediated by this protein [365,366]. 

The main limitations in this study are the small sample size, since it is quite difficult to have 
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a large number of biologically classified early AD patients (MCI, preclinical). Moreover, 

from the selected miRNAs, some of them were not validated as they were not correctly 

quantified, probably due to the fact that they were detected in few samples. In addition, 

the study design is cross-sectional. In order to obtain more accurate data from the different 

disease stages, it should be longitudinal. However, participants in this present study are 

perfectly characterized according to CSF biomarkers and their cognitive status, providing 

a reliable approach to the disease progression. 

4. Conclusion 

RNA sequencing analysis in plasma samples from participants with early AD and healthy 

controls allowed to identify some differentially expressed miRNAs. From them, 3 selected 

miRNAs (miRNA-92a-3p, miRNA-486-5p, miRNA-29a-3p) were slightly dysregulated in 

AD, being potential biomarkers of the pathology. In fact, they could be involved in the 

regulation of important pathways of the pathology, such as synaptic transmission, cell 

signalling, structure maintenance or cell metabolism, so they could be relevant 

therapeutic targets. However, further research with a larger sample is needed to verify 

these results, as well as to develop the potential mechanisms of action of these miRNAs. 
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Chapter 12. Epigenomics and lipidomics integration in Alzheimer 

Disease: pathways involved in early stages 

1. Summary  

The aim of this work was to carry out the integration of epigenomics and lipidomics 

analysis in plasma samples from patients with MCI-AD in order to advance the 

knowledge of early physiopathological mechanisms. For this, epigenomic and lipidomic 

analysis were carried out in plasma samples from patients with MCI-AD (n = 22) and 

controls (n = 5). Then, omics integration between microRNAs (miRNAs) and lipids was 

performed by PLS regression and target genes for the selected miRNAs were identified.  

2. Results 

2.1. Participants 

Table 32. Demographic and clinical characteristics of the participants. 

Variables Healthy Group 

(n = 5) 

MCI-AD Group 

(n= 22) 

Age (years, median (IQR)) 68 (68, 72) 72 (69, 74) 

Gender (female, n (%)) 2 (40%) 12 (54.5%) 

CSF Aβ42 (pg mL-1, median (IQR)) 1346.74 (930, 1421) 517.16 (453.86, 634.45) 

CSF Aβ42/ Aβ40 (median, IQR) 0.1 (0.09, 0.11) 0.05 (0.05, 0.05) 

CSF t-Tau (pg mL-1, median (IQR)) 240 (238, 276) 566 (450, 780) 

CSF p-Tau (pg mL-1, median (IQR)) 35 (35, 40) 81 (64.5, 107) 

CSF NfL (pg mL-1, median (IQR)) 826.94 (791, 847.7) 1428.68 (1123.24, 1555.91) 

CSF t-Tau/ Aβ42 (median (IQR)) 0.2 (0.19, 0.25) 0.99 (0.79, 1.32) 

CDR (score, median (IQR)) 0 (0-0.5) 0.5 (0-1) 

MMSE (score, median (IQR)) 29 (29, 30) 24 (23, 26) 

RBANS_DM (score, median (IQR)) 100 (98, 110) 44 (40, 64) 

FAQ (score, median (IQR)) 1 (0, 2) 7 (4, 9) 

CSF: cerebrospinal fluid; Aβ: amyloid β; IQR: inter-quartile range; CDR: Clinical Dementia Rating; 
MMSE: Mini-Mental State Examination; RBANS_DM: The Repeatable Battery for the Assessment of 
Neuropsychological Status_Delayed Memory; FAQ: Functional Activities Questionnaire. 

Table 32 shows the demographic and clinical data for the participants. As expected, 

CSF biomarkers levels and neuropsychological tests were different between groups. 

In fact, the MCI-AD group showed lower levels for Aβ42, and higher levels for t-Tau 

and p-Tau; also, MCI-AD group showed lower scores for MMSE, and RBANS, and 

higher scores for CDR and FAQ. 
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2.2. Omics integration 

The PLS model integrated two data matrices X (epigenomics) and Y (lipidomics). 

Additionally, PLS performed simultaneous variables selection in the two data sets, 

by means of LASSO penalization on the pair of loading vectors. In this sense, two 

components were chosen, and 25 variables were selected on each dimension and for each 

data set. The X-block represented miRNAs, and the Y-block represented lipids. 

Samples from both sets were represented in the ‘common’ subspace spanned by the 

principal components (PC1, PC2). As can be seen in Figure 34, samples were 

differentiated in the plot according to the participants group, there was not observed a 

clear separation. Among the 25 selected variables for each data set, the miRNAs (block 

X) with higher loadings in the PLS regression were hsa-miR-494-3p, hsa-miR-6894-3p, 

hsa-miR-421 and hsa-let-7a-3p; and the lipids (block Y) with higher loadings were FA 

(20:3), FA (20:4), FA (16:0), FA (20:2), and FA (18:2) (see Figure 35). 

 

Figure 34. Scatter plot for participants samples in PLS analysis. Represent the samples 

distribution in the ‘common’ subspace between the two sets of components (epigenomics 

and lipidomics variables). 
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Figure 35. Horizontal barplot to visualise loading vector. The contribution of each 

variable for each component (comp) is represented in a barplot, where each bar length 

corresponds to the loading weight (importance) of the feature. The loading weight can be 

positive or negative. 

 

The correlation circle plot depicted miRNAs and lipids selected on each component. 

Some subsets of variables were important to define each component. Actually, some 

miRNAs (hsa-miR-5010-5p, hsa- miR-421, hsa-miR-664a, hsa-miR-29b-3p, hsa-let-7a-

3p, hsa-miR-19b-3p) and some lipids (FA (20:4), FA (20:3), FA (18:0)) mainly 

participated in defining the PLS component 2; and some miRNAs (hsa-miR-335-3p, 

hsa-miR-532-3p, hsa-miR-379-5p, hsa-miR-4646-3p, hsa-miR-425-3p) mainly 

participated in defining component 1. Additionally, miRNAs, such as hsa-miR-421 and 

hsa-miR-5010-5p, were positively correlated to the lipids FA (20:4) and FA (20:3); while 

these miRNAs were negatively correlated to the lipid TG (17:0/17:0/17:0). 

The integration results were depicted by means of a heatmap. The similarity matrix was 

obtained from the PLS results [367] and agglomerative hierarchical clustering was 

derived using the Euclidean distance as the similarity measure, and the Ward 
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methodology [368]. In this sense, Figure 36 shows the heatmap for the correlations 

between miRNAs and lipids selected from PLS. The red color corresponded to positive 

correlation, while the blue color corresponded to negative correlation. Most of the 

correlations were positive. In general, Figure 37 showed a positive correlation between 

studied miRNAs and lipids. However, the lipid TG (17:0/17:0/17:0) showed a negative 

correlation with all the described miRNAs. In addition, similar miRNAs were grouped, 

showing clusters for miR-29a-3p, let-7a-3p, miR-576-5p, miR-185-5p, miR-6894-3p, miR-

5010-5p; for miR-29b-3p, miR-877-5p, miR-494-3p, miR-4433a-3p, miR-4433b-5p; and 

for miR-421, miR-450b-5p, miR-664a-3p, miR-432-5p, miR-654-5p, miR-2110, miR-

329-3p. In addition, similar lipids were grouped, showing clusters for FA (18:0)/FA 

(14:0)/FA (18:0)/FA (16:0)/FA (18:2) and FA (20:3)/FA (20:4)/FA (18:2)/FA (20:2)/FA 

(16:0). 

Figure 3 6 . Heatmap representing correlations between miRNAs and lipid 

variables. Red colour represents positive correlations and blue colour represents negative 

correlations. 
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Figure 37. Relevance associations network for PLS. Pair-wise similarity matrix directly 

obtained from the latent components was calculated. The similarity value between a pair 

of variables is obtained by calculating the sum of the correlations between the original 

variables and each of the latent components of the model. The values in the similarity 

matrix can be seen as a robust approximation of the Pearson correlation. 

 

2.3. Potential pathways involved in AD 

In Table 33, the predicted target genes for the selected miRNAs were described paying 

special attention to the genes that are implied in lipid metabolism, specifically in fatty 

acids pathways, which showed correlation with the miRNAs. In fact, fatty acids 

family showed the strongest correlations with miRNAs (see Figure 37). Among the 

identified target genes, several enzymes, such as elongases (ELOVL1, ELOVL2, 

ELOVL3, ELOVL4, ELOVL5, ELOVL6, ELOVL7), fatty acid desaturase (FADS6), 

fatty acyl-CoA reductases (FAR 1, FAR 2), fatty acid binding protein (FABP7), and 

fatty acid 2-hydroxylase (FA2H) were highlighted. 
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Table 33. Predicted target genes related to fatty acids for the selected miRNAs 

(miRBase). 

miRNA  Target Genes 

hsa−miR−494−3p ELOVL3 (ELOVL fatty acid elongase 3) 

ELOVL5 (ELOVL fatty acid elongase 5) 

hsa−miR−6894−3p - 

hsa−miR−421 ARV1 (ARV1 homolog, fatty acid homeostasis 
modulator) 

FAR1 (fatty acyl-CoA reductase 1) 

ELOVL2 (ELOVL fatty acid elongase 2) 

hsa−let−7a−3p ELOVL2 (ELOVL fatty acid elongase 2) 

FA2H (fatty acid 2-hydroxylase) 

ELOVL7 (ELOVL fatty acid elongase 7) 

hsa−miR−664a−3p FAR1 (fatty acyl-CoA reductase 1) 

ELOVL4 (ELOVL fatty acid elongase 4) 

ELOVL7 ELOVL fatty acid elongase 7 

ELOVL5 ELOVL fatty acid elongase 5 

hsa−miR−329−3p - 

hsa−miR−450b−5p ELOVL6 (ELOVL fatty acid elongase 6) 

hsa−miR−323a−3p - 

hsa−miR−382−5p - 

hsa−miR−199b−3p - 

hsa−miR−654−5p FADS6 (fatty acid desaturase 6) 

ELOVL1 (ELOVL fatty acid elongase 1) 

hsa−miR−2110 ELOVL4 (ELOVL fatty acid elongase 4) 

hsa−miR−432−5p - 

hsa−miR−505−3p ELOVL4 (ELOVL fatty acid elongase 4) 

hsa−miR−29a−3p ELOVL4 (ELOVL fatty acid elongase 4) 

hsa−miR−19b−3p ELOVL5 (ELOVL fatty acid elongase 5) 

hsa−miR−185−5p ELOVL4 (ELOVL fatty acid elongase 4) 
 

ELOVL2 (ELOVL fatty acid elongase 2) 

FAR1 (fatty acyl-CoA reductase 1) 

hsa−miR−576−5p FAR2 (fatty acyl-CoA reductase 2) 

hsa−miR−877−5p - 

hsa−miR−29b−3p ELOVL4 (ELOVL fatty acid elongase 4) 

hsa−miR−143−3p FADS6 (fatty acid desaturase 6) 

FAR1 (fatty acyl-CoA reductase 1) 

hsa−miR−7976 - 

hsa−miR−5010−5p - 

hsa−miR−4433b−5p - 

hsa−miR−4433a−3p FABP7 (fatty acid binding protein 7) 

ELOVL4 (ELOVL fatty acid elongase 4) 

ELOVL2 (ELOVL fatty acid elongase 2) 

 

Another representation for the integration results is based on relevance network for PLS 

regression, showing simultaneously positive and negative correlations between the two 

variable types (microRNAs, lipids). As can be seen in Figure 37, most of these 

correlations were positive. Specifically, the highest positive correlations corresponded to 
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these pairs of variables (FA (16:0) and FA (20:2) with hsa-miR-664, hsa-miR-432, hsa-

miR-421, and hsa-miR-450b-5p; FA (18:0) and FA (18:2) with hsa-miR-664, hsa-miR-421 

and hsa-miR-450b-5p; FA (20:3) and FA (20:4) with hsa-miR- 664, hsa-miR-211, hsa-

miR-432, hsa-miR-329, hsa-miR-654, hsa-let-7a-3p, hsa-miR-29a-3p, hsa-miR-421, and 

hsa-miR-450b-5p). On the other hand, the highest negative correlations corresponded to 

the lipid TG (17:0/17:0/17:0) with some miRNAs (hsa-miR-664-3p, hsa- miR-2110, hsa-

miR-432-5p, hsa-miR-329-3p, hsa-miR-654-5p, hsa-miR-185-5p, hsa-let-7a-3p, hsa-miR-

576-5p, hsa-miR-29a-3p, hsa-miR-6894-3p, hsa-miR-421, hsa-miR-450b-5p). 

2.4. Lipidomics and epigenomics in AD 

From the univariate analysis, differences between groups were not obtained for miRNAs 

nor individual lipids. In addition, the analysis between age/gender and biomarkers 

levels showed no correlations for any miRNA or lipid analysed. 

3. Discussion 

Epigenomics and lipidomics analyses were carried out in plasma samples from early AD 

patients, identifying microRNAs and lipids, respectively. From these results, integration 

analysis was carried out in order to study associations between both compounds families; 

to evaluate their potential relationship with early AD development; and identify the 

potential pathways altered in early stages of the disease. 

Some studies in literature are focused on multi-omics integration, mainly based on 

proteomics and miRNAs [369]. However, few studies are focused on lipidomic and 

miRNAs integration, which allow us to identify different biological activities 

involved in cell communication [370]. In general, the integration of omics results 

(lipidomics, metabolomics, proteomics, epigenomics) helps to give a global image of 

the mechanisms involved in complex diseases [371]. Nevertheless, this field of 

research is still underdeveloped in AD and few studies are based on this integration 

[59]. 

In the present study, integration and selection of variables from each dimension 

showed that some microRNAs (hsa-miR-494-3p, hsa-miR-6894-3p, hsa-miR-421 and 

hsa-let-7a-3p) and some lipids (FA (20:3), FA (20:4), FA (16:0), FA (20:2), FA (18:2)) 
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had higher loadings in the regression model. Similarly, a previous study carried out 

in plasma from amyloid positive and amyloid negative participants obtained a 

signature of 71 miRNAs differentially expressed between groups, highlighting the 

hsa-miR-421 and hsa-let-7a- 3p [372]. In addition, a previous study from Hojati et al. 

revealed that hsa-miR-494-3p was slightly up-regulated in AD patients and that it was 

related to metabolic and cellular response to stress pathways [373]; while Lv et al., 

found that levels of hsa-let-7a-3p were elevated in patients with early onset familiar 

AD [374]. The up-regulation of hsa-let-7a-3p showed an increase in neurotoxicity in 

AD cell model [375]. On the other hand, previous studies found several fatty acids 

levels increased or decreased in AD [376,377]. Specifically, AD was related to lower 

levels of myristic 14:0, palmitic 16:0, stearic 18:0 and oleic 18:1 acid and a higher 

proportion of linoleic acid 18:2n - 6 [376]. However, this study was limited to FAs from 

14:0 to 22:6 and did not determine all lipidic profiles. In addition, Conquer et al. 

described lower levels of phospholipid, PC 20:5n-3, DHA, total n-3 fatty acids, the 

n-3/n-6 ratio and phospholipid 24:0 compared to controls [377]. Moreover, Conquer et 

al. did not find differences for FA (20:3), FA (20:4), FA (20:2) and FA (18:2) in plasma 

samples from AD, cognitive impairment, and patients with other neurodegenerative 

diseases [377]. This discrepancy with the present results could be due to differences in 

AD diagnosis methods, since the previous study did not use CSF biomarkers to 

identify AD patients. In fact, these participants were classified by amyloid PET, and 

biomarkers were measured in erythrocytes. In addition, erythrocyte fatty acid 

composition varied according to disease development, showing differences between 

AD and non-AD participants for FA (20:4) but not for FA (20:3), FA (20:2) nor FA 

(18:2) [378]. 

Regarding correlations between microRNAs and lipids, and similarities among them 

in each omics data group, they showed that most of these correlations were positive. 

However, previous studies that correlated epigenomics (DNA hydroxymethylation) 

and metabolomics showed more variety between positive and negative correlations [379]. 

More specifically, several studies in neurodegeneration revealed the interaction between 

miRNAs expression and lipids regulation, mainly focussed on cholesterol metabolism 

[380]. Jauouen et al. described miR-33 function modulating ABCA1 and interfering 

with Aβ plaque formation through cholesterol metabolism regulation [381].  In the 
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present study, some miRNAs (miR-29a-3p, let-7a-3p, miR-576-5p, miR-185-5p, miR-

6894-3p, miR-5010-5p; for miR-29b-3p, miR-877-5p, miR-494-3p, miR-4433a-3p, miR-

4433b-5p; for miR-421, miR-450b-5p, miR-664a-3p, miR-432-5p, miR-654-5p, miR-

2110, miR-329-3p) were grouped reflecting their similarity. Taking into account previous 

works, Kumar et al. found different miRNAs clustered expression, differentiating AD and 

control participants (hsa-miR-4741, hsa-miR-4668-5p, hsa-miR-3613-3p, hsa-miR-5001-

5p, miR-4674) [382]. The discrepancies with present results may be due to the 

difference in the diagnosis of the patients, since the study from Kumar et al. was not 

based on CSF biomarkers. Moreover, Denk et al. showed clustered expression of 

miRNAs in control, AD and frontotemporal dementia participants, showing that some 

clusters included miRNAs from the same family, while others included different families 

in the same cluster, as in the present study [383]. However, the set of analysed miRNAs 

was limited. On the other hand, some lipids were grouped in the present paper (FA 

(18:0)/FA (14:0)/FA (18:0)/FA (16:0)/FA (18:2); FA (20:3)/FA (20:4)/FA (18:2)/FA 

(20:2)/FA (16:0)). In this sense, previous findings in an AD mice model showed different 

lipids expression clusters along the disease progression (two, three, seven months), 

showing mainly PEs in two months progression and a predomination of TG at seven 

months [384]. In addition, Kumar et al. described the co-regulation of different lipid 

sets, among which 17 were fatty acids [385]. 

Finally, the highest positive correlations between microRNAs and lipids were mainly 

for hsa-miR-664, hsa-miR-432, hsa-let-7a-3p, hsa-miR-29a-3p, hsa-miR-421 and has-

miR-450b-5p with some fatty acids (FA (16:0), FA (18:0), FA (20:2), FA (20:3), FA 

(20:4)). In general, the described miRNAs showed a positive correlation with fatty acids. 

Of note, these miRNAs targeted sequences in genes implied in fatty acids metabolism. 

In this sense, previous studies showed a relationship between AD and fatty acids 

metabolism, demonstrating differential levels of fatty acids (FA (16:0), FA (18:0), FA 

(18:1), FA (18:2), FA (20:4), FA (20:5), FA (22:6)) similar to the present results [386]. 

Regarding hsa-miR-421, it showed a positive correlation with some detected lipids (FA 

(16:0), FA (20:2), FA (18:2), FA (20:4), FA (20:3), FA (18:0), FA (14:0)). Previous works 

identified the relationship between this miRNA and lipid metabolism regulation, 

specifically with triacylglycerol levels [387].On the other hand, the highest negative 

correlations corresponded to the triglyceride (TG (17:0/17:0/17:0)) with some miRNAs 



Results, discussion and conclusions   Chapter 12 

219 
 

(hsa-miR-664-3p, hsa-miR-432-5p, hsa-miR-329-3p, hsa-miR-654-5p, hsa-miR-185-5p, 

hsa-let-7a-3p, hsa-miR-576-5p, hsa-miR-29a-3p, hsa-miR-421, hsa-miR-450b-5p). 

Similarly, in literature it was shown that hsa-miR-29a could regulate the lipoprotein lipase 

(LPL) that catalyses hydrolysis of the triglycerides [388]. 

The main limitation of this study is the reduced number of healthy control patients. 

However, the availability of biologically identified (CSF biomarkers) patients with 

MCI due to AD provides a great potential in the identification of potential pathways 

involved in early AD. Other limitations in this study are: (i) the analytical method is a 

semiquantitative approach, (ii) the ApoE genotype has not been taken into account, 

although it is known that ApoE is involved in lipid homeostasis. 

4. Conclusions  

The present study highlights the potential of a multi-omics approach in the 

development of a signature of biomarkers of MCI-AD, as well as the description of 

potential metabolic pathways involved in AD since its early stages. Specifically, 

epigenomics and lipidomics integration allowed us to identify some associations 

between microRNAs and lipids, showing their relationship with early AD 

development. In fact, fatty acids impairment could be an important pathway involved 

in early AD. However, further work based on targeted analysis should be carried out 

in a larger cohort in order to validate these preliminary results, as well as to study the 

proposed pathways in detail. 
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1. OS and specifically lipid peroxidation seems to play a relevant role in AD from the 

earliest AD stages (preclinical and MCI). In addition, these pathways could provide 

biomarkers from minimally invasive samples (urine, plasma).  

2. Some lipid peroxidation compounds (isoprostanes, neuroprostans, isofurantes, 

neurofurans and dihomo-isoprostanes) have been determined satisfactorily in urine, 

plasma and CSF samples employing newly validated analytical methods.  

3. Multivariate linear and non-linear models developed including the levels of lipid 

peroxidation compounds in urine and plasma samples are promising screening tools to 

identify individuals with high risk of suffering from AD, especially the non-linear models 

such as ANN.  

4. The levels of lipid peroxidation compounds determined in plasma show a better 

predictive capacity for AD compared to those in urine samples, despite the plasma levels 

do not correlate with the CSF levels. 

5. Lipid peroxidation compounds could be potential diagnosis biomarkers for AD in 

preclinical stages, as well as potential differential diagnosis biomarkers, detecting patients 

with AD among individuals with other neurodegenerative diseases, showingsimilar 

clinical manifestations, or without cognitive impairment.  

6. Plasma lipid peroxidation compounds levels are related to brain atrophy, cognitive 

status of patients and the CSF AD standard biomarker levels.  

7. Omics techniques (metabolomics, lipidomics, epigenomics) are useful tools for the 

search of new biomarkers, as well as for advance in the knowledge of new pathological 

pathways altered in AD.  

8. Metabolomic analysis revealed pathways altered in early AD stages (neurotransmitters, 

energy metabolism, lipids and amino acids). Also, other pathways with neuroprotective 

or antioxidant effects could be activated in the initial stages of the disease as 

compensatory mechanisms against the cellular damage.  

9. The genotype ApoE is associated to lipid metabolomic profile and must be taken into 

account as a modifying variable in lipidomic and metabolomic studies. 
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10. Lipid metabolism is dysregulated in AD and plasma lipid profiling could help in AD 

diagnosis.  

11. Epigenomics (miRNA) analysis revealed a potential dysregulation of pathways such 

as synaptic transmission, cell signalling, structure maintenance or cell metabolism in 

early AD stages. 

12. The integrated study of biomarkers of different nature (lipids, miRNAa) may provide 

information about altered pathways in AD and thus provide new therapeutic targets. 

Future work:  

Lipid peroxidation compounds, metabolites, lipids and miRNAs in plasma samples have 

shown potential as early AD biomarkers. However, to assess the usefulness of the 

proposed biomarkers, a validation in an external cohort including general population 

should be performed. 

On the other hand, the diagnostic capacity of lipids, miRNAs and lipid peroxidation 

compounds is not completely accurate due to the complexity of the disease. So, a wider 

characterization of different pathological pathways of the disease would be required. 

Therefore, one of the lines of future work would be a complete characterization of 

patients, including OS and lipid metabolism pathways but also different proteinopathies 

such as amyloid, Tau, neuroimaging patterns or omics profiles.  

Moreover, the high degree of co-pathologies in neurodegenerative diseases, requires a 

complete characterization of all pathological pathways in order to develop therapies that 

could be applied specifically depending on the needs. 
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