

PROGRAMA DE DOCTORADO EN MEDICINA. LÍNEA DE INVESTIGACIÓN INFORMACIÓN Y DOCUMENTACIÓN MÉDICO-SANITARIA Y CIENTÍFICA

LA INFECCIÓN POR VIH: ESTUDIO DE LA PRODUCCIÓN CIENTÍFICA Y SITUACIÓN EPIDEMIOLÓGICA DE BASE HOSPITALARIA EN ESPAÑA

D. Marouane Menchi Elanzi
DIRIGIDA POR:

Dr. Gregorio González Alcaide

Dr. José Manuel Ramos Rincón

UNIVERSIDAD DE VALENCIA OCTUBRE- 2023

INFORME DIRECTORES/AS Y TUTOR/A PARA DEPÓSITO DE TESIS

Director (es) / Codirector (es):

- 1.- Apellidos y nombre: González Alcaide, Gregorio N.I.F. 29184710X, Departamento: Historia de la Ciencia y Documentación Centro: Facultat de Medicina i Odontologia de la Universitat de València
- 2.- Apellidos y nombre: Ramos Rincón, José Manuel N.I.F. 05244675P, Departamento: Medicina Clínica Centro: Facultad de Medicina de la Universidad Miguel Hernández

Directores de la tesis doctoral: "La infección por VIH: estudio de la producción científica y situación epidemiológica de base hospitalaria en España"

de D. Marouane Menchi-Elanzi,

estudiante del Programa de Doctorado 3139 Medicina (RD99/2011) en Medicina de la Universitat de València, emiten informe favorable para la realización del depósito y la defensa de la tesis doctoral.

Fecha: Valencia, 20 de octubre de 2023.

GONZALEZ Firmado digitalmente por GONZALEZ ALCAIDE GREGORIO - 29184710X Fecha: 2023.10.20 22:29:14 +02'00'

Fdo.: Gregorio González Alcaide

Jose Manuel| Ramos| Rincon Digitally signed by JOSE MANUEL| RAMOS|RINCON Date: 2023.10.22 16:58:35 -03'00'

Fdo.: José Manuel Ramos Rincón

Director Director

ESCUELA DOCTORAL UNIVERSITAT DE VALÈNCIA

CONJUNTO DE PUBLICACIONES EN LAS QUE SE BASA LA TESIS DOCTORAL

Nuestro trabajo está basado en 5 artículos originales que detallamos a continuación:

Publicación 1

González-Alcaide G, Menchi-Elanzi M, Nacarapa E, Ramos-Rincón JM. HIV/AIDS research in Africa and the Middle East: participation and equity in North-South collaborations and relationships. Global Health. 2020;16(1):83.

https://doi.org/10.1186/s12992-020-00609-9.

- o Artículo original.
- o Revista: Globalization and Health. /EISSN: 1744-8603
- Factor de Impacto (2020): 4,185
- Cuartil(2020): Posición 25 de 176 (primer cuartil) en la categoría Public, Environmental & Occupational Health del Social Sciences Citation Index Expanded, y 47 de 202 (primer cuartil) la categoría Public, Environmental & Occupational Health en Science Citation Index Expanded.

Publicación 2

Menchi-Elanzi M, Pinargote-Celorio H, Nacarapa E, González-Alcaide G, Ramos-Rincón JM. Scientific HIV research in Africa and the Middle East: a socio-economic demographic analysis. Afr J AIDS Res. 2021;20(1):1-5.

https://doi.org/10.2989/16085906.2020.1830133.

- o Artículo original.
- o Revista: African Journal of AIDS Research / EISSN: 1727-9445
- o Factor de Impacto (2021): 1,816
- Cuartil (2021): Posición 151 de 182 (cuarto cuartil) en la categoría Public, Environmental & Occupational Health del Social Sciences Citation Index, y 172 de 210 (cuarto cuartil) la categoría, Public, Environmental & Occupational Health en Science Citation Index Expanded.

Publicación 3

González-Alcaide G, Menchi-Elanzi M, Bolaños-Pizarro M, Gutiérrez-Rodero F, Ramos-Rincón JM. Caracterización bibliométrica y temática de la investigación sobre VIH-SIDA en España (2010-2019). Enferm Infecc Microbiol Clin. 2022. S2529-993X(23)00099-0. https://doi.org/10.1016/j.eimce.2023.03.006.

- o Artículo original.
- Revista: Enfermedades Infecciosas y Microbiología Clínica.
 EISSN: 1578-1852
- o Factor de Impacto (2022): 2,5
- Cuartil (2022): posición 73 de 96 (cuarto cuartil) en la categoría
 Infectious Diseases del *Sciences Citation Index Expanded.*, y 107
 de 135 (cuarto cuartil) en la categoría *Microbiology* según el
 Science Citation Index Expanded.

Publicación 4

Ramos-Rincon JM, Menchi-Elanzi M, Pinargote-Celorio H, Mayoral A, González-Alcaide G, de Mendoza C, Barreiro P, Gómez-Gallego F, Corral O, Soriano V. Trends in hospitalizations and deaths in HIV-infected patients in Spain over two decades. AIDS. 2022;36(2):249-256.

https://doi.org/10.1097/QAD.000000000003105.

- o Artículo original.
- o Revista: AIDS. EISSN: 1473-5571
- o Factor de Impacto (2022): 3,8
- Cuartil (2021): Posición 82 de 162 (tercer cuartil) en la categoría
 Inmunology del *Sciences Citation Index Expanded.*, 43 de 95
 (segundo cuartil) la categoría, *Infectious Diseases en Science Citation Index Expanded.*

Publicación 5

Menchi-Elanzi M, Mayoral AM, Morales J, Pinargote-Celorio H, González-Alcaide G, Ramos-Rincón JM. *Toxoplasma gondii* infection in hospitalized people living with HIV in Spain, 1997 to 2015. Parasitol Res. 2021;120(2):755-761. https://doi.org/10.1007/s00436-020-07007-5.

- o Artículo original.
- o Revista: Parasitology Research. EISSN: 1432-1955.
- o Factor de Impacto (2021): 2,383.
- Cuartil(2021): Posición 20 de 39 (tercer cuartil) en la categoría
 Parasitology del Sciences Citation Index Expanded..

AGRADECIMIENTOS

En primer lugar y como no puede ser de otra manera agradecer profundamente a mis directores de tesis, Dr. José Manuel Ramos y el Dr. Gregorio González Alcaide por su dedicación, apoyo y ayuda a lo largo de estos 5 años para la realización de esta tesis doctoral. Siempre se han mostrado dispuestos a dedicarme parte de su tiempo para resolver mis dudas y corregir mis fallos con sus acertadas aportaciones que contribuyeron a darle calidad a este trabajo.

Sinceramente ha sido un honor trabajar con personas tan brillantes en su campo y no exagero si digo que sin los cuales este trabajo no hubiera salido adelante. También quiero agradecer a todos los autores que han contribuido en la elaboración de los artículos y en especial a mi compañero y gran amigo el Dr. Héctor Pinargote.

Al equipo del programa de doctorado que han sido siempre dispuestos a resolver mis dudas tanto administrativas como docentes.

Por último, quiero agradecer a mi familia por su apoyo incondicional.

LISTADO DE ABREVIATURAS

Abreviatura	Significado
ADN	Acido desoxirribonucleico
ADVP	Adictos a drogas por via parenteral
ARN	Acido ribonucleico
ART-CC	Antiretroviral therapy cohort collaboration
AZT	Zidovudina
C_{MAX}	Concentraciones plasmáticas máximas
CCC	Quimiocina CC
CCR	Quimiocina receptora
CCR5	Quimiocina receptora tipo 5
CDC	Centros para el Control y la Prevención de Enfermedades
CI	Intervalo de confianza
CIE	Codificación internacional de enfermedades
CMBD	Conjunto Mínimo Básico de Datos
CMV	Citomegalovirus
COHERE	Cohorte hiv epidemiological research europe
CORIS	La cohorte de la red de investigación en Sida
CoRISPe	Cohorte Nacional de Pacientes Pediátricos con Infección VIH
CRFs	Formas circulantes recombinantes
DE	Desviación estándar
EI	Endocarditis infecciosa
EIMC	Enfermedades infecciosas y microbiología clínica
ELISA	Enzyme-Linked immunosorbent Assay
EP	Embolia pulmonar
EPOC	Enfermedad pulmonar obstructive cronica
ETS	Enfermedades de transmisión sexual
FECYT	Fundación Española para la Ciencia y la Tecnología
FI	Factor de impacto
<i>FIPSE</i>	Fundación para la Investigación y Prevención del Sida en España
	Grupo de Estudio de Sida de la Sociedad Española de Enfermedades
GeSIDA	Infecciosas y Microbiología Clínica
GRD	Grupo relacionado con el diagnostico
HSH	Hombres que practican sexo con hombres
HVTN	Vaccine trials network
<i>IGRA</i>	Interferon-gamma release assay
INI	Inhibidores de la integrasa

<i>IP</i>	Inhibidores de la proteasa
IQR	Rango intercuartil
ITIAN	Inhibidores de transcriptasa inversa análogos
ITINN	Inhibidores de transcriptasa inversa no análogos
ITS	Infecciones de transmisión sexual
JCI	Journal citation indicator
JCR	Journal citation reports
KIR	Killer cell Immunoglobulin-like receptors
MHI	La mortalidad intrahospitalaria,
MNT	Micobacterias no tuberculosas
NIAID	National Institute of Allergy and Infectious Diseases
NK OCDE	Natural killer
OCDE	Organización para la Cooperación y Desarrollo Económico
<i>OMS</i> <i>ONUSIDA</i>	Organización mundial de la salud El Programa Conjunto de Naciones Unidas sobre el VIH/SIDA
PCR	Reacción en Cadena de la Polimerasa
PEP	Profilaxis posexposición,
PIB	Producto interior bruto
PID	Personas que se inyectan drogas
<i>PISCIS</i>	Proyecto para la Informatización del Seguimiento Clínico-epidemiológico
	de la Infección por VIH y Sida
PLHIV	People living with HIV
PLWH	Índice de personas que viven con el VIH
<i>PWH</i>	Hospitalizations in persons with HIV
RIC	Rango intercuartil
RIS	Red de Investigación en Sida
RNAH	Registro Nacional de Altas Hospitalarias
SEIMC	Ociedad Española de Enfermedades Infecciosas y Microbiología Clínica
Sida	Síndrome de inmunodeficiencia adquirida
SNRHD	Spanish National Registry of Hospital Discharges
TAR	Terapia antirretroviral
TARGA	Terapia antirretroviral de gran actividad
TBC	Tuberculosis
TCMH	Trasplante alogénico de células madre hematopoyéticas
UCI	Unidad de cuidados intensivos
<i>UDVP</i>	Usuarios de drogas por vía parenteral
UK	United kingdom
UNAIDS	Programa conjunto de las naciones nunidas sobre sida
VACH	VIH y advancedhiv
VEB VH 4	Virus de la hapatitis A
VHA	Virus de la hepatitis A

<i>VHB</i>	Virus de la hepatitis B
VHC	Virus de la hepatitis C
VIH	Virus de la inmunodeficiencia humana
VISCONTI	Control viroinmunológico sostenido tras la interrupción del tratamiento
WoS	Web of Science

ÍNDICE DE TABLAS

Tabla 1. Enfermedades definitorias de SIDA	3
Tabla 2.Fármacos empleados en el tratamiento de la infección por VIH	6
Tabla 3. Tipo de variables incluidas en el CMBD	. 27

Estudio bibliométrico 1

Tabla 1. 1. Producción científica sobre el VIH por regiones geográficas	s (2010-
2017)	53
Tabla 1. 2 Producción científica de África y Oriente Medio sobre el VIH po	r países
(2010-2017).	55
Tabla 1. 3 Colaboración y liderazgo de los 10 primeros países africano	s en los
trabajos de investigación sobre el VIH (2010-2017)	58
Tabla 1. 4 Documentos de investigación sobre el VIH por categorías de	Web of
Science (total de documentos mundiales, documentos de países afric	canos y
documentos de países africanos en colaboración con otras regiones, 2010-20	17). . 62
Tabla 1. 5 Calificadores MeSH de documentos de investigación sobre el VI	H (total
de documentos mundiales, documentos de países africanos y documentos d	e países
africanos en colaboración con otras regiones, 2010-2017).	64
Tabla 1. 6. Términos MeSH de los documentos de investigación sobre el VI	H (total
de documentos mundiales, documentos de países africanos y documentos d	e países
africanos en colaboración con otras Términos MeSH de los docume	ntos de
investigación sobre el V.	65

Estudio bibliométrico 2

Estudio bibliométrico 3

Tabla 3. 1 Producción científica y colaboración internacional sobre VIH-sida en
España (2010-2019)
Tabla 3. 2 Distribución por revista de publicación y participación de la RIS en la
producción científica sobre VIH-sida en España (2000-2019)
Tabla 3. 3 Participación institucional (>99 documentos) en la producción científica
sobre VIH-Sida en España (2010-2019)
Tabla 3. 4 Actividad y desempeño científico de los grupos de la RIS en la Web of
Science (2010-2019)

Estudio epidemiológico 1

Tabla 4. 1 Lista de códigos de diagnóstico según la Clasificación Internacional de
Enfermedades - Novena Revisión y Décima Revisión, Modificación Clínica (CIE-9-
CM)
Tabla 4. 2 Principales datos demográficos de la población del estudio: distribución
por periodos y mortalidad global
Tabla 4. 3 Principales datos demográficos de la población del estudio: distribución
por periodos y mortalidad global
Tabla 4. 4 Tasa de mortalidad por enfermedades y periodo de ingreso en personas
con infección por VIH hospitalizadas en España 116

Estudio epidemiológico 2

ÍNDICE DE FIGURAS

Figura 1. Mapa de la distribución geográfica del mundo
Figura 2. Casos de SIDA en España por sexo, 1981-2020. Registro Nacional de Sida.
Datos corregidos por retraso en la notificación. Fuente: VIGILANCIA
EPIDEMIOLÓGICA DEL VIH y SIDA EN ESPAÑA 2020 ACTUALIZACIÓN 30
de junio de 2021
Estudio bibliométrico 1
Figura 1. 1. Diagrama de flujo del proceso de selección de la muestra de documentos
analizada 50
Figura 1. 2 . Red de colaboración internacional de trabajos de investigación sobre
el VIH de los países de África y Oriente Medio (2010-2017)
Figura 1. 3 Red de coocurrencias del MeSH sobre artículos de investigación del VIH
de países de África y Oriente Medio (2010-2017).
Estudio bibliométrico 2
Estudio bibliométrico 2 Figura 3. 1 Red de coautorías con el núcleo de los autores más productivos (> 9
Figura 3. 1 Red de coautorías con el núcleo de los autores más productivos (> 9
Figura 3. 1 Red de coautorías con el núcleo de los autores más productivos (> 9 documentos y > 9 vínculos de coautoría) sobre VIH-Sida en España (2010-2019) con
Figura 3. 1 Red de coautorías con el núcleo de los autores más productivos (> 9 documentos y > 9 vínculos de coautoría) sobre VIH-Sida en España (2010-2019) con la identificación de los miembros de la Red de Investigación en Sida. El grosor de
Figura 3. 1 Red de coautorías con el núcleo de los autores más productivos (> 9 documentos y > 9 vínculos de coautoría) sobre VIH-Sida en España (2010-2019) con la identificación de los miembros de la Red de Investigación en Sida. El grosor de los nodos refleja el grado de intermediación en la red
Figura 3. 1 Red de coautorías con el núcleo de los autores más productivos (> 9 documentos y > 9 vínculos de coautoría) sobre VIH-Sida en España (2010-2019) con la identificación de los miembros de la Red de Investigación en Sida. El grosor de los nodos refleja el grado de intermediación en la red
Figura 3. 1 Red de coautorías con el núcleo de los autores más productivos (> 9 documentos y > 9 vínculos de coautoría) sobre VIH-Sida en España (2010-2019) con la identificación de los miembros de la Red de Investigación en Sida. El grosor de los nodos refleja el grado de intermediación en la red
Figura 3. 1 Red de coautorías con el núcleo de los autores más productivos (> 9 documentos y > 9 vínculos de coautoría) sobre VIH-Sida en España (2010-2019) con la identificación de los miembros de la Red de Investigación en Sida. El grosor de los nodos refleja el grado de intermediación en la red
Figura 3. 1 Red de coautorías con el núcleo de los autores más productivos (> 9 documentos y > 9 vínculos de coautoría) sobre VIH-Sida en España (2010-2019) con la identificación de los miembros de la Red de Investigación en Sida. El grosor de los nodos refleja el grado de intermediación en la red
Figura 3. 1 Red de coautorías con el núcleo de los autores más productivos (> 9 documentos y > 9 vínculos de coautoría) sobre VIH-Sida en España (2010-2019) con la identificación de los miembros de la Red de Investigación en Sida. El grosor de los nodos refleja el grado de intermediación en la red
Figura 3. 1 Red de coautorías con el núcleo de los autores más productivos (> 9 documentos y > 9 vínculos de coautoría) sobre VIH-Sida en España (2010-2019) con la identificación de los miembros de la Red de Investigación en Sida. El grosor de los nodos refleja el grado de intermediación en la red

definitorias de sida, por sexo.......112

Estudio	epidemio	lógico 2	

Figura 5. 1 Hospitalizaciones anuales por infección por VIH y V	TH-Toxoplasma
gondii en España, 1997-2015.	126
Figura 5. 2 Tasas anuales de mortalidad intrahospitalaria en person	as con infección
por VIH con toxoplasmosis frente a otros diagnósticos en España,	1997-2015. . 128

RESUMEN

Objetivos

Articulo 1: El VIH-Sida ha sido objeto de atención preferente por parte de la investigación desde la década de los ochenta. En el actual contexto de globalización y predominio del trabajo cooperativo, resulta del máximo interés analizar la participación de África en las publicaciones sobre VIH-Sida y el grado de equidad o influencias en las relaciones norte-sur.

Articulo 2: Identificar la productividad de la investigación sobre el VIH/Sida de los países de África y Oriente Medio, en términos absolutos y ajustada en función de las personas que, con infección por VIH, el tamaño de la población y el desarrollo económico.

Articulo 3: La constitución de la Red de Investigación en Sida (RIS) constituyó un hito para el impulso de la investigación sobre el VIH en Espa^{*}na. Se analiza la investigación española en el área, evaluando específicamente el papel que ha desempeñado la RIS en la misma.

Articulo 4: El pronóstico de la infección por VIH mejoró drásticamente tras la introducción de la triple terapia antirretroviral hace 25 años. En este trabajo se analiza el impacto de las mejoras introducidas en el tratamiento del VIH desde entonces, analizando todas las hospitalizaciones de personas con VIH (PSH) en España.

Articulo 5: Evaluar la carga clínica, la coinfección y la mortalidad, así como las tendencias temporales de las personas con VIH hospitalizadas por infección por *Toxoplasma gondii* en España entre 1997 y 2015.

Métodos

Articulo 1: Se han identificado a través del tesauro *Medical Subject Headings de la National Library of Medicine* los artículos y revisiones sobre VIH-SIDA que a su vez estaban recogidos en las bases de datos de la *Web of Science Core Collection*. Se ha analizado la producción científica, la colaboración y la contribución de los países de África y Oriente Medio a la actividad científica de la región. Se ha utilizado el concepto de liderazgo, entendido como la participación como primeros firmantes, para determinar

la equidad o las influencias de unos países sobre otros en los trabajos en colaboración internacional.

Articulo 2: Se identificaron todos los artículos y revisiones sobre VIH y Sida de la *Web of Science Core Collection* en los que habían participado países africanos o de Oriente Medio. Tras determinar el número de documentos producidos por cada país, ajustamos los resultados en función del número de personas que viven con el VIH, el número de habitantes, el producto interior bruto y la renta nacional bruta per cápita.

Articulo 3: Se identificaron las publicaciones sobre VIH-sida con la participación de instituciones españolas en la *Web of Science* a lo largo del período 2010-2019, caracterizando bibliométricamente la actividad investigadora e identificando mediante un análisis de clústeres los ámbitos temáticos de investigación.

Articulo 4: Se trata de un estudio retrospectivo a partir del Registro Nacional de Altas Hospitalarias, con información desde 1997-2018.

Articulo 5: Análisis observacional retrospectivo a partir del Registro Nacional de Altas Hospitalarias. Se recuperó información para el periodo de estudio utilizando la Clasificación Internacional de Enfermedades, 9ª revisión.

Resultados

Artículo 1: Se han analizado 68.808 documentos publicados entre 2010-2017. Norteamérica y Europa han participado en el 82,13% de la producción científica mundial sobre VIH-SIDA frente a tan solo un 21,61% de África and Middle East. Asimismo, la producción científica de esta región se presenta concentrada en un número reducido de países, particularmente Sudáfrica, que ha participado en el 41% de los documentos. Otros rasgos asociados a la investigación de los países de África and Middle East sobre VIH-SIDA son el destacado peso de la colaboración internacional con USA, UK y otros países europeos (75-93% de los documentos) y que presentan un liderazgo reducido (30-36% de los documentos). Finalmente, se ha constatado que la investigación en la que participan los países africanos presenta una orientación disciplinar y temática sensiblemente diferente a la observada en el conjunto de la investigación mundial, con el predominio de la investigación en salud pública, los estudios epidemiológicos y terapéuticos.

Articulo 2: Los países de África y Oriente Medio participaron en el 21,52% (n = 14 808) de los 68 808 documentos analizados. África oriental y meridional produjo el 17,8% de

todos los documentos (n = 12 249), África occidental y central sólo el 3,34% (n = 2 300), y Oriente Medio y África septentrional, el 1,18% (n = 814). Sudáfrica produjo el 40,94% (n = 6 063) de todas las publicaciones. Sólo otros dos países africanos - Uganda (12,97%; n = 1 921) y Kenia (10,71%; n = 1 586) - produjeron más del 10% de estas publicaciones. Los índices utilizados para ajustar la productividad de la investigación pusieron de manifiesto el esfuerzo y la contribución de los demás países.

Articulo 3: Se han identificado 3.960 documentos (promedio de 396 documentos/año), el 42% de los cuales han sido firmados en colaboración internacional. Los investigadores de la RIS han participado en el 60% de los documentos, presentando una producción científica y citación sensiblemente superior a los autores no vinculados a la misma. Cinco clústeres temáticos articulan la investigación, centrados en el abordaje clínico y terapéutico de las personas que viven con el VIH, la coinfección y la comorbilidad con otras enfermedades, la caracterización genética del virus, el desarrollo de vacunas y el estudio de su transmisión en colectivos específicos o asociado a las conductas sexuales.

Articulo 4: De 79 647 783 altas hospitalarias a nivel nacional registradas durante el periodo de estudio, 532 668 (0,67%) incluían el VIH como diagnóstico. La edad media de las PWH hospitalizadasaumentó de 33 a 51 años (P<0,001). La tasa de hospitalizaciones por VIH disminuyó significativamente después de 2008. Comparando las hospitalizaciones durante la primera década (1997-2007) y la última (2008-2018), la tasa de enfermedades no relacionadas con el sida aumentó, principalmente debido a enfermedades hepáticas (del 35,9 al 38,3%), enfermedades cardiovasculares (del 12,4 al 28,2%), cánceres no relacionados con el sida (del 6,4 al 15,5%) e insuficiencia renal (del 5,4 al 13%). Las muertes intrahospitalarias se produjeron en el 5,5% de las PWH, disminuyendo significativamente con el tiempo. Aunque la mayoría de las muertes se debieron a enfermedades relacionadas con el sida (34,8%), las muertes no relacionadas con el SIDA más frecuentes fueron las enfermedades hepáticas (47,1%), los accidentes cardiovasculares (29,2%), los cánceres no relacionados con el SIDA (24,2%) y la insuficiencia renal (20,7%).

Articulo 5: se produjeron 66.451.094 altas hospitalarias en España entre 1997 y 2015, de las cuales 472.269 (0,71%) correspondieron a personas con VIH. La infección por *Toxoplasma gondii* se registró en 9006 de ellos (prevalencia global 1,91%), lo que la convierte en la quinta infección oportunista más frecuente en pacientes seropositivos hospitalizados. La prevalencia de la infección por *Toxoplasma gondii* disminuyó en este

grupo del 4,2% en 1997 al 0,8% en 2015 (p < 0,001), mientras que la edad media aumentó, de 35 años en 1997 a 44 años en 2015. La tasa global de mortalidad intrahospitalaria disminuyó del 13,5% en 1997 al 8,9% en 2015,y fue mayor en presencia concomitante de neumonía bacteriana (28,9% frente a 10,2%, p < 0,001), criptosporidiosis (26,9% frente a 11 .5%; p = 0,03), enfermedad por citomegalovirus (18,2% frente a 11,2%, p < 0,001), neumonía por *Pneumocystis jirovecii* (31,5% frente a 10,5%, p < 0,001), leucoencefalopatía (19,8% frente a 11,78% p < 0,001) y síndrome de emaciación (29,3% frente a 10,9%; p < 0,001).

Conclusiones

- 1. Los resultados presentados en la producción científica en los países de África y Oriente Próximo reflejan un progreso significativo en la investigación sobre la investigación sobre el VIH/Sida, tanto a nivel cuantitativo como a nivel cualitativo,
- 2. La producción científica se centra en un pequeño número de países, entre los que destaca Sudáfrica, mientras que otros países de África y Oriente Medio contribuyen de forma puntual a pesar de la elevada carga de infecciones por el VIH.
- La participación de los países de África y Oriente Medio en la investigación sobre el VIH/Sida se caracteriza por la dependencia y subordinación a los Estados Unidos y a los países europeos.
- Las colaboraciones reflejan un limitado liderazgo de los países africanos, medido por la participación de los investigadores de estos países como primeros firmantes en los estudios publicados.
- 5. La investigación sobre el VIH/Sida realizada con la participación de los países de África y Oriente Medio muestra unos intereses disciplinarios y temáticos que responden a los intereses y líneas de investigación de la investigación de los países más avanzados, con un mayor enfoque en la salud pública, la epidemiología y los tratamientos farmacológicos.
- 6. El uso de indicadores como el número de personas con infección por VIH, el tamaño de la población y el desarrollo económico son útiles para medir con mayor precisión

el esfuerzo y la contribución de cada país más allá de la producción científica en términos absolutos. Los diferentes índices utilizados confirmaron el protagonismo de Sudáfrica, Uganda, Malawi, Botsuana, Zimbabue y Mozambique.

- 7. La investigación española sobre VIH/Sida ha alcanzado un estadio de madurez, con una destacada producción científica e integración en las redes de colaboración internacional, por lo que España y particularmente la iniciativa de la RIS se ha erigido en un destacado referente.
- 8. La tasa de ingresos hospitalarios con diagnóstico de infección por VIH/Sida en las dos últimas décadas en España ha experimentado un descenso significativo desde el año 2008, tras la introducción de los inhibidores de la integrasa como parte del TAR, junto con otras mejoras en el manejo del VIH.
- 9. La edad media de las personas con infección por VIH/Sida hospitalizadas ha aumentado significativamente a lo largo del tiempo.
- 10. La proporción de ingresos con enfermedades definitorias de Sida ha disminuido. Cánceres no relacionados con el VIH/Sida, los eventos cardiovasculares y la enfermedad hepática representan una proporción creciente de ingresos hospitalarios, así como de mortalidad relacionada con los mismos.
- 11. El impacto clínico de la infección por *Toxoplasma gondii* en las personas con infección por VIH hospitalizadas ha disminuido en España durante las dos últimas décadas. *Toxoplasma gondii*. Si bien sigue una causa importante de morbilidad y mortalidad en esta población.

Palabras clave: VIH. Toxoplasmosis. España. Ingresos hospitalarios. Bibliometría. Investigación científica. Países africanos. Colaboración internacional. SIDA. Virus de la inmunodeficiencia humana.

SUMMARY

Objectives

Article 1: HIV/AIDS has attracted considerable research attention since the 1980s. In the current context of globalization and the predominance of cooperative work, it is crucial to analyze the participation of the countries and regions where the infection is most prevalent. This study assesses the participation of African countries in publications on the topic, as well as the degree of equity or influence existing in North-South relations.

Article 2: To identify HIV/AIDS research productivity of countries in Africa and the Middle East, in absolute terms and adjusted for people living with HIV, population size and economic development.

Article 3: The establishment of the Spanish AIDS Research Network (RIS) was a milestone for the promotion of HIV research in Spain. We analyse Spanish HIV research, assessing the role that RIS has played in it.

Article 4: The prognosis of HIV infection dramatically improved after the introduction of triple antiretroviral therapy 25 years ago. Herein, we report the impact of further improvements in HIV management since then, looking at all hospitalizations in persons with HIV (PWH) in Spain.

Article 5: We aimed to assess the clinical load, coinfection, and mortality, as well as time trends for people living with HIV and hospitalized with *Toxoplasma gondii* infection, in Spain from 1997 to 2015.

Methods

Article 1: We identified all articles and reviews of HIV/AIDS indexed in the Web of Science Core Collection. We analyzed the scientific production, collaboration, and contributions from African and Middle Eastern countries to scientific activity in the region. The concept of leadership, measured through the participation as the first author of documents in collaboration was used to determine the equity in research produced through international collaboration.

Article 2: We identified all the articles and reviews on HIV and AIDS in the Web of Science Core Collection in which African or Middle Eastern countries had participated. After determining the number of documents produced by each country, we adjusted the findings for the number of people living with HIV, number of inhabitants, gross domestic product and gross national income per capita.

Article 3: We identified publications on HIV-AIDS with the participation of Spanish institutions in the Web of Science over the period 2010-2019, characterising research activity by means of bibliometrics and identifying the thematic areas of research through a cluster analysis.

Article 4: A retrospective study using the Spanish National Registry of Hospital Discharges. Information was retrieved since 1997–2018.

Article 5: Retrospective observational analysis using the Spanish National Registry of Hospital Discharges. Information was retrieved for the study period using the International Classification of Diseases, 9th revision.

Results

Article 1: A total of 68,808 documents published from 2010 to 2017 were analyzed. Researchers from North America and Europe participated in 82.14% of the global scientific production on HIV/AIDS, compared to just 21.61% from Africa and the Middle East. Furthermore, the publications that did come out of these regions was concentrated in a small number of countries, led by South Africa (41% of the documents). Other features associated with HIV/AIDS publications from Africa include the importance of international collaboration from the USA, the UK, and other European countries (75–93% of the documents) and the limited participation as first authors that is evident (30 to 36% of the documents). Finally, the publications to which African countries contributed had a notably different disciplinary orientation, with a predominance of research on public health, epidemiology, and drug therapy.

Article 2: African and Middle Eastern countries participated in 21.52% (n = 14 808) of all 68 808 documents analysed. East and Southern Africa produced 17.8% of all documents (n = 12 249), West and Central Africa accounted for only 3.34% (n = 2300), and the Middle East and North Africa, 1.18% (n = 814). South Africa produced 40.94%

 $(n = 6\ 063)$ of all publications. Only two other African countries — Uganda (12.97%; n = 1 921) and Kenya (10.71%; n = 1 586) produced more than 10% of these publications. The indices used for adjusting research productivity revealed the effort and contribution of other countries.

Article 3: A total of 3960 documents have been identified (average of 396 documents/year), 42% of which have been signed in international collaboration. RIS researchers have participated in 60% of the documents, presenting a scientific production and citation significantly higher than authors not linked to the RIS. Five thematic clusters articulate the research, focusing on the clinical and therapeutic approach to people living with HIV, co-infection and co-morbidity with other diseases, the genetic characterisation of the virus, the development of vaccines and the study of its transmission in specific groups or associated with sexual behaviour.

Article 4: From 79 647 783 nationwide hospital admissions recorded during the study period, 532 668 (0.67%) included HIV as diagnosis. The mean age of PWH hospitalized increased from 33 to 51 years (P<0.001). The rate of HIV hospitalizations significantly declined after 2008. Comparing hospitalizations during the first (1997–2007) and last (2008–2018) decades, the rate of non-AIDS illnesses increased, mostly due to liver disease (from 35.9 to 38.3%), cardiovascular diseases (from 12.4 to 28.2%), non-AIDS cancers (from 6.4 to 15.5%), and kidney insufficiency (from 5.4 to 13%). In-hospital deaths occurred in 5.5% of PWH, declining significantly over time. Although most deaths were the result from AIDS conditions (34.8%), the most frequent non-AIDS deaths were liver disease (47.1%), cardiovascular events (29.2%), non-AIDS cancers (24.2%), and kidney insufficiency (20.7%).

Article 5: There were 66,451,094 hospital admissions in Spain from 1997 to 2015, including 472,269 (0.71%) in people living with HIV. *Toxoplasma gondii* infection was registered in 9006 of these (overall prevalence 1.91%), making it the fifth most common opportunistic infection in hospitalized HIV-positive patients. Prevalence of *Toxoplasma gondii* infection declined in this group from 4.2% in 1997 to 0.8% in 2015 (p < 0.001), while mean age increased, from 35 years in 1997 to 44 years in 2015. The overall inhospital mortality rate declined from 13.5% in 1997 to 8.9% in 2015, and it was higher in the concomitant presence of bacterial pneumonia (28.9% vs. 10.2%, p < 0.001), cryptosporidiosis (26.9% vs. 11.5%; p = 0.03), cytomegalovirus disease (18.2% vs.

11.2%, p < 0.001), *Pneumocystis jirovecii* pneumonia (31.5% vs. 10.5%, p < 0.001), leukoencephalopathy (19.8% vs. 11.78% p < 0.001), and wasting syndrome (29.3% vs. 10.9%; p < 0.001).

Conclusions

- 1. The results presented in the scientific output in African and Middle Eastern countries reflect significant progress in research on HIV/AIDS research, both quantitatively and qualitatively,
- 2. Scientific output is focused on a small number of countries, most notably South Africa, while other countries in Africa and the Middle East contribute on an ad hoc basis despite the high burden of HIV infections.
- The involvement of African and Middle Eastern countries in HIV/AIDS research
 is characterized by dependence and subordination to the United States and
 European countries.
- Collaborations reflect limited leadership by African countries, as measured by the
 participation of researchers from these countries as first signatories in published
 studies.
- 5. HIV/AIDS research conducted with the participation of African and Middle Eastern countries shows disciplinary and thematic interests that respond to the research interests and lines of research of more advanced countries, with a greater focus on public health, epidemiology and pharmacological treatments.
- 6. The use of indicators such as the number of people with HIV infection, population size and economic development are useful to measure more accurately the effort and contribution of each country beyond scientific production in absolute terms. The different indices used confirmed the prominence of South Africa, Uganda, Malawi, Botswana, Zimbabwe and Mozambique.
- 7. Spanish research on HIV/AIDS has reached a stage of maturity, with an outstanding scientific production and integration in international collaboration networks, so that Spain and particularly the RIS initiative has become an outstanding reference.
- 8. The rate of hospital admissions with a diagnosis of HIV/AIDS infection in the last two decades in Spain has experienced a significant decrease since 2008, following

- the introduction of integrase inhibitors as part of ART, along with other improvements in HIV management.
- 9. The average age of hospitalized persons with HIV/AIDS infection has increased significantly over time.
- 10. The proportion of admissions with AIDS-defining illnesses has decreased. Non-HIV/AIDS-related cancers, cardiovascular events and liver disease account for an increasing proportion of hospital admissions, as well as related mortality.
- 11. The clinical impact of *Toxoplasma gondii* infection in hospitalized HIV-infected persons has decreased in Spain during the last two decades. *Toxoplasma gondii*. Although it continues to be an important cause of morbidity and mortality in this population.

Key words: HIV. Toxoplasmosis. Spain. Hospital admissions. Bibliometrics. Scientific research. African countries. International collaboration. AIDS. Human Immunodeficiency Virus.

INDICE

AGRAD	DECIMIENTOS	I
LISTAD	OO DE ABREVIATURAS	I
ÍNDICE	DE TABLASX	7
ÍNDICE	DE FIGURASXII	I
RESUM	IENX	V
SUMMA	ARYX	X
I.Introd	ucción	1
1.Aspect	tos generales del VIH	1
1.1.	Fisiopatología de la infección por VIH	1
1.2.	Manifestaciones clínicas de la infección por VIH	2
1.3.	Diagnóstico de la infección por VIH	4
1.4.	Evaluación inicial al paciente VIH positivo	5
1.5.	Tratamiento	6
2.Epide	miología del VIH	8
2.1.	Situación epidemiológica en el mundo	8
2.2.	Grupos de población clave	9
2.3.	Mujeres 1	0
2.4.	Programa 95-95-95 1	0
2.5.	Situación epidemiológica de la infección por VIH/Sida en España 1	1
3.Biblio	metría	4
3.1.	Aspectos generales1	4
3.2.	Indicadores bibliométricos 1	6
3.3.	Análisis de redes en ciencias de la salud1	7
3.4. Salud	Fuentes de información para los estudios bibliométricos en Ciencias de l	
3.5.	Estudios bibliométricos sobre VIH-Sida2	0
3.6.	Estudios bibliométricos sobre VIH-Sida en España	5

4.Conjur	nto Mínimo Básico de Datos	26
4.1.	Aspectos generales	26
4.2.	Clasificación internacional de enfermedades	28
4.3.	Funciones del CMBD	30
4.4. dispon	Investigación sobre la infección por VIH/Sida a partir de la ible en el CMBD en España	
5.Investi	gación en el VIH	35
5.1.	Investigación en el VIH en el mundo	35
5.2.	Investigación en el VIH en el España	43
II.Hipóte	esis	
Serie l	oibliometría sobre el VIH//Sida	46
	epidemiológica sobre el VIH/Sida en España	
	ivos	
· ·		
	oibliometría sobre el VIH//Sida	
	epidemiológica sobre el VIH/Sida en España	
IV.Mate	rial y métodos, resultados y discusión	48
Estudio l	bibliométrico 1	
1.	Material y Métodos	48
2.	Resultados	53
3.	Discusión	68
V. Mater	rial y métodos, resultados y discusión	76
Estudio l	bibliométrico 2	76
1.	Material y Métodos	76
2.	Resultados	78
3.	Discusión	84
VI.Mater	rial y métodos, resultados y discusión	86
Estudio l	bibliométrico 3	86
1.	Material y Métodos	86
2.	Resultados	90
3.	Discusión	102
VII.Mate	erial y métodos, resultados y discusión	105
Estudio 6	epidemiológico 1	105

1.	Material y Métodos	105
2.	Resultados	110
3.	Discusión	118
VIII.M	aterial y métodos, resultados y discusió	121
Estudio	epidemiológico 2	
1.	Material y Métodos	121
2.	Resultados	124
3.	Discusión	126
IX.Disc	eusión	
	Serie bibliometría sobre el VIH//Sida	131
	Serie epidemiológica en el VIH/Sida en España	132
	Limitaciones	133
X.Conc	elusiones	
XI.Refe	erencias	
XII.AN	EXOS	160

I. Introducción

1. Aspectos generales del VIH

1.1. Fisiopatología de la infección por VIH

El virus de la inmunodeficiencia humana (VIH) es un virus RNA de la familia *retroviridae*, genero lentivirus, descubierto en 1983 y que se encuentra formado por una membrana lipídica que contiene dos tipos de proteínas, gp41, responsable de su fusión con la membrana de la célula a infectar, y gp120, que se une a la proteína CD4 (1). En el interior presenta un genoma con tres enzimas fundamentales para la replicación del virus que son la transcriptasa inversa que transcribe el genoma ARN en ADN, la integrasa que integra el ADN vírico en la célula infectada y la proteasa que escinde polímeros precurosores de proteínas(2).

Existen dos tipos de VIH, VIH-1 y VIH-2, siendo el VIH-1 el más frecuente a nivel mundial. Existen numerosos subtipos y formas recombinantes del VIH-1, siendo el subtipo B el que predomina en los países económicamente desarrollados, mientras que los diversos subtipos no B y las formas recombinantes circulantes (CRF) son los principales responsables de la infección en los países en desarrollo(3).

La infección por VIH sigue siendo un problema de salud pública de primer orden a nivel mundial, ya que desde su irrupción a principios de los años 80 hasta el día de hoy ha causado una morbimortalidad muy alta, principalmente por infecciones oportunistas (4). El VIH infecta a las células T CD4 produciendo una alteración en su funcionamiento o anulándolo, lo que conlleva un aumento en la predisposición del individuo a sufrir una serie de infecciones oportunistas que, sin tratamiento correcto, pueden causar su muerte (3,5).La infección crónica sin tratamiento produce un deterioro progresivo de duración variable del sistema inmunitario que termina en la mayoría de los casos con la consiguiente "inmunodeficiencia" dando lugar al síndrome de inmunodeficiencia adquirida (SIDA) que se aplica a los estadios más avanzados de la infección por VIH y se define por la presencia de alguna de las más de 20 infecciones oportunistas o de tumores relacionados con el VIH(**Tabla 1**) (3).

El VIH puede transmitirse por distintas vías. La más frecuente es la vía sexual, tanto vaginal, anal como oral con una persona infectada. Otra vía es la transfusión de sangre contaminada, aunque a día de hoy es muy poco frecuente sobretodo en nuestro entorno.

El uso compartido de agujas, jeringuillas u otros instrumentos punzantes era de las principales causas en los años ochenta y noventa del siglo XX. Por último, puede transmitirse de la madre al hijo durante el embarazo, el parto y la lactancia. Esta última vía es un mecanismo de transmisión más frecuente en los países en vías de desarrollo, así como en las madres sin seguimiento durante el embarazo en nuestro entorno (6,7).

1.2. Manifestaciones clínicas de la infección por VIH

Los síntomas producidos por la infección aguda por VIH se producen a las 2-4 semanas aproximadamente desde el contacto inicial, aunque entre el 10-60% de la población se produce de forma asintomática(8). Los casos sintomáticos presentan síntomas y signos clínicos muy diversos, ninguno especifico, que se denomina síndrome mononucleosico o síndrome antiretroviral agudo que consiste en fiebre, adenopatías, molestias faríngeas, exantema, mialgias, artralgias, diarrea, pérdida de peso y cefalea. Asimismo, se han descritos otras alteraciones mucho menos frecuentes como la meningitis aséptica, encefalopatía autolimitada, mielopatía, y síndrome de Guillain-Barré. También se han observado parálisis del nervio facial y braquial, tos seca, neumonitis, rabdomiolisis aguda y vasculitis(8–12).

La infección por VIH no tratada produce una infección crónica y un deterioro progresivo del sistema inmunitario dando lugar a la mayoría de las patologías oportunistas que son criterio SIDA que generalmente aparecen cuando los CD4 descienden por debajo de 200/ul. El tiempo promedio desde la primo infección hasta dicho recuento suele oscilar entre 8 y 10 años.

En la etapa previa al desarrollo de enfermedades oportunistas, la mayoría de las personas infectadas suelen estar asintomáticas. Sin embargo, un grupo de ellas pueden presentar astenia, fatiga, pérdida de peso, infecciones de transmisión sexual (ITS), candidiasis, leucopalsia oral vellosa, herpes zoster, neuropatías periféricas, púrpura trombocitopenica idiopática, aftas orales, vulvovaginitis, displasia cervical, foliculitis eosinofílica, xerosis y prurigo nodularis. Los pacientes con infección por VIH pueden tener además algunas hematológicas, alteraciones como pueden ser la anemia, leucopenia, hipergammaglobulinemia policional, linfopenia y / o trombocitopenia. El molusco contagioso, la angiomatosis bacilar, la exacerbación de la psoriasis y las infecciones por sarna también son más frecuentes con la inmunosupresión avanzada y pueden tener presentaciones atípicas graves(13). Otros pueden presentar adenopatias generalizadas persistentes de 3 a 6 meses(14).

Algunos pacientes con infección crónica por VIH desarrollan otras comorbilidades, como enfermedades cardiovasculares, osteoporosis, deterioro cognitivo y ciertas neoplasias malignas; a edades más tempranas en comparación con las personas seronegativas. Se cree que todo está relacionado con la inflamación crónica y la hiperactivación inmunitaria (15,16). Aunque la TAR atenúa este "envejecimiento prematuro", no lo elimina por completo (17)

Son criterios de SIDA presentar < de 200 CD4/ul y/o presentar una de las enfermedades definitorias de SIDA. Las enfermedades consideradas como definitorias de este cuadro según el centro de control y prevención de enfermedades de Estados Unidos (CDC) se recogen en la tabla 1. Estas patologías se observan generalmente cuando desciende el número de CD4 por debajo de 200/ul aunque pueden ocurrir en pacientes con recuento más alto(18).

Tabla 1. Enfermedades definitorias de Sida

Infecciones bacterianas múltiples o recurrentes				
Candidiasis de tráquea, bronquios o pulmones				
Candidiasis de esófago				
Cáncer de cérvix invasivo				
Coccidioidomicosis diseminada o extrapulmonar				
Criptococosis extrapulmonar				
Criptosporidiosis intestinal crónica (>1 mes)				
Citomegalovirus (CMV) (excepto hígado, bazo o ganglios)				
Retinitis por CMV (con pérdida de visión)				
Encefalopatía por VIH				
Herpes simple: úlceras crónicas (>1mes) con bronquitis, neumonitis o esofagitis				
Histoplasmosis diseminada o extrapulmonar				
Isosporiasis crónica intestinal (> 1 mes)				
Sarcoma de Kaposi				
Linfoma tipo Burkit				
Linfoma inmunoblástico				
Linfoma primario del cerebro				

Mycobacterium tuberculosis (pulmonar o extrapulmonar)

Micobacterias atípicas: *Mycobacterium avium complex, M. Kansasii*, cuadro diseminado o extrapulmonar

Neumonías recurrentes

Neumonía por Pneumocystitis jirovecii

Leucoencefalopatia multifocal diseminada

Salmonella: septicemia recurrente

Toxoplasmosis cerebral

Wasting síndrome

El término infección por VIH avanzada se utiliza a menudo para referirse a una infección cuando el recuento de células CD4 es <50 células /uL(19).

Si bien la mortalidad por enfermedades oportunistas se ha vuelto mucho menos común con el uso generalizado de TAR eficaces, la muerte por Sida todavía ocurre en personas con diagnóstico tardío y en aquellas que tienen dificultades para recibir atención o adherirse al TAR. En ausencia de un TAR eficaz, la mediana de supervivencia de los pacientes con infección por VIH avanzada (recuento de células CD4 <50 células/microL) es de 12 a 18 meses. La mayoría de los pacientes que mueren por complicaciones relacionadas con el Sida tienen recuentos de células CD4 en este rango(20–22). Cuando los pacientes logran la reconstitución inmunitaria con la terapia antirretroviral y no tienen condiciones que definan el Sida, ya no se considera que tengan Sida. Con el TAR, el pronóstico para una persona con Sida o VIH avanzado mejora drásticamente llegando casi a igualar en esperanza de vida a la población general.

1.3. Diagnóstico de la infección por VIH

El diagnostico precoz de la infección por VIH constituye uno de los retos más importantes de salud pública en todo el mundo. Según la OMS, en 2015 solo el 54 % de las personas con infección por VIH conocen su estado serológico (23). Por lo tanto, la identificación de las personas seropositivas es importante porque permite la instauración temprana del TAR que ha demostrado reducir la mortalidad (24–26), la implementación de medidas preventivas con vacunas y antibióticos profilácticos(27); y la reducción de la transmisión del virus (28,29).

Para el diagnóstico se debe realizar inicialmente, al igual que en otras patologías, una anamnesis detallada con una exploración física minuciosa que debe realizarse al menos una vez al año durante el seguimiento. Se debe interrogar al paciente sobre datos clínicos,

sociodemográficos, laborales, personales y familiares. Se debe sospechar infección por VIH en pacientes que presentaron alguno de los síntomas clínicos expuestos en el apartado anterior. Además, se les debe interrogar respecto a sus hábitos sexuales y el uso de drogas por vía parenteral. A su vez, se debe sospechar infección por VIH en pacientes que han tenido un contacto sexual de alto riesgo reciente o aquellos con una ETS reciente sobretodo sífilis. Los pacientes que han tenido un contacto sexual reciente pueden beneficiarse de la PEP en las 72 horas siguientes(30)Se debe excluir el VIH en pacientes con enfermedades definitorias de Sida o enfermedades que son más prevalentes en pacientes VIH positivo. También se debe realizar en pacientes con riesgo de inmunosupresión (trasplante, enfermedades tumorales...).

Se debe proponer realizar pruebas de screening a personas procedentes de países con alta prevalencia, parejas serodiscordantes, usuarios de drogas por vía parenteral (UDVP), hombres que tienen sexo con hombres (HSH), personas que ejercen la prostitución y sus clientes promiscuidad y prácticas de riesgo, personas que desean dejar de usar métodos de barrea con sus parejas, casos de agresión sexual, embarazadas y reclusos en centros penitenciarios.

La detección mediante ELISA es la prueba de *screening* principal que permite la detección de los anticuerpos frente al VIH que aparecen habitualmente sobre las 3-6 semanas. Esta técnica tiene una sensibilidad cercana al 99% pero baja especificidad por lo que cualquier resultado positivo debe confirmarse mediante Western BLOT que es el *gold standard* para el diagnóstico (31,32). A parte de los anticuerpos se puede realizar el diagnostico mediante la detección del antígeno p24 del VIH-1 mediante ELISA de cuarta generación que detecta tanto anticuerpos como antígeno p24(31).

La detección cuantitativa mediante PCR del ARN viral en plasma (carga viral) puede ser útil para confirmar el diagnóstico en algunos casos aunque generalmente se reserva para establecer el pronóstico inicial y monitorizar la respuesta antiretroviral(33). Hay que tener presente que esta técnica no es una prueba diagnóstica ya que no detecta ni el VIH-2 ni el grupo O del VIH-1. El cribado mediante estas técnicas debe realizarse en pacientes donantes de sangre, de órganos o semen y en reproducción asistida.

1.4. Evaluación inicial al paciente VIH positivo

Ante los nuevos diagnósticos y antes de iniciar el tratamiento se debe realizar una evaluación inicial del paciente solicitando carga viral plasmática, serologías de virus de la hepatitis A (VHA), virus de la hepatitis B (VHB), virus de la hepatitis C (VHC), sífilis,

toxoplasma, virus de Ebstein Barr (VEB) y citomegalovirus (CMV); recuento de linfocitos CD4, HLA B5701, descartar tuberculosis (TBC) latente mediante prueba de la tuberculina o IGRA, valorar anoscopia para descartar patología anal (en hombres) y realizar exploraciones ginecológicas en mujeres. Por último, se debe realizar un estudio de resistencias del VIH. La presencia de mutaciones en las cepas transmitidas está fuertemente influenciada por los patrones de uso de medicamentos antirretrovirales en el caso origen.

1.5. Tratamiento

La introducción de la terapia antiretroviral combinada en el año 1996, supuso un cambio drástico en la morbimortalidad por VIH hasta tal punto que un paciente VIH puede llegar a tener una esperanza de vida casi similar a la población general, tanto en países en vías de desarrollo como en países desarrollados (34–36). Todas las guías clínicas actuales recomiendan el inicio de la terapia antiretroviral lo antes posible, independientemente de la clínica, el recuento de CD4 o carga viral. El inicio temprano de la TAR consigue una mejoría del estado clínico, disminución de la carga viral y evita la transmisión(24,25,37). En la actualidad existen 6 familias de tratamientos antirretrovirales, que combinados entre sí mediante las pautas determinadas en las guías de práctica clínica, resultan muy eficaces. En la tabla 2 se recogen de forma resumida los distintos fármacos.

Tabla 2.Fármacos empleados en el tratamiento de la infección por VIH

Inhibidores de transcriptasa inversa análogos (ITIAN)	Análogos de nucleósido	Didanosina Emtricitabina Estavudina Lamivudina
	Análogos de nucleótido	Zidovudina Tenofovir difumarato Tenofovir alafenamida
Inhibidores de transcriptasa inversa no análogos (ITINN)	Doravirina Efavirenz Etravirina Nevirapina Rilpivirina	
Inhibidores de la proteasa (IP)	Atazanavir Darunavir Fosamprenavir Lopinavir Ritonavir Saquinavir Tipranavir	

	Indinavir
	Nelfinavir
Inhibidores de la integrasa (INI)	Bictegravir
	Cabotegravir
	Dolutegravir
	Elvitegravir
	Raltegravir
Inhibidores de la fusión	Enfuvirtide
Inhibidores del correceptor CCR5	Maraviroc
Inhibidor de la entrada	Ibalizumab

Generalmente, las directrices actuales para pacientes sin tratamiento previo establecen la combinación de dos o tres fármacos antirretrovirales. El grupo de estudio del Sida de la SEIMC (GeSIDA) y el Plan Nacional de Sida(38) recomiendan como pautas preferentes la combinación de uno o dos inhibidores análogos de nucleósidos/nucleótidos de la transcriptasa inversa en combinación con un inhibidor de la integrasa. Se recomiendan como pautas preferentes de TAR de inicio las siguientes combinaciones(38):

- Bictegravir/Emtricitabina/Tenofovir alafenamida.
- Dolutegravir/Abacavir/Lamivudina.
- Dolutegravir + Emtricitabina/Tenofovir alafenamida.
- Raltegravir + Emtricitabina/Tenofovir alafenamida.
- Dolutegravir + Lamivudina.

Hay que tener en cuenta que la mayoría de los inhibidores de la proteasa, así como el inhibidor de la integrasa, el bictegravir, se administran en combinación con otro agente (por ejemplo, ritonavir o cobcistat a dosis bajas) para aumentar las concentraciones plasmáticas mínimas y máximas del fármaco, así como aumentar la vida media, todo ello con el fin de aumentar la potencia del fármaco. Todos estos fármacos son de administración oral y diaria, pero recientemente se han aprobado fármacos que se administran de forma intramuscular cada dos meses como es el caso del Cabotegravir+Rilpivirina. Solo se administran en pacientes con carga viral indetectable y sin fracaso farmacológico previo ni resistencias. Este nuevo tratamiento ha demostrado que su eficacia no es inferior al tratamiento oral diario y además mejora la adherencia, dada la comodidad de la administración (39–41).

Tras el inicio del tratamiento se produce un fenómeno paradójico, debido a un aumento del número de los linfocitos y una disminución significativa de la carga viral lo que lleva a un deterioro del estado general con empeoramiento de las infecciones oportunistas

subyacentes. Este fenómeno se denomina síndrome inflamatorio de reconstitución inmune y es más frecuente en pacientes que inician los TAR con recuento de CD4<100 células/μl(42,43).

2. Epidemiología del VIH

2.1. Situación epidemiológica en el mundo

El VIH continúa siendo uno de los mayores problemas para la salud pública en el mundo, y es la única infección junto a la hepatitis B que precisa todavía de tratamiento crónico. Según el informe anual de ONUSIDA, desde el inicio de la epidemia en los años 80 del s. XX, se han infectado alrededor de 84,2 millones personas, de las cuales han fallecido 40,1 millones por enfermedades relacionadas con el VIH. Se estima que a finales de 2021 había en el mundo 38,4 millones de personas con infección por el VIH, de las cuales el 54% eran mujeres (44)

En diciembre de 2021, 28,7 millones (75%) de los infectados tenían acceso al TAR en comparación con los 7,8 millones de 2010. El 81% de las mujeres embarazadas tomaban el tratamiento, lo que no solo protege su salud, sino que también previene que transmitan el virus a sus hijos. Desde el año 1996 en que se alcanzó el pico máximo hasta el año 2021, se han reducido las nuevas infecciones en un 54%. En niños se han reducido en un 52% desde el año 2010. Las mujeres y las niñas representan el 49% de todas las nuevas infecciones. En cuanto a la mortalidad se puede deducir de los datos de 2021 que, desde el pico alcanzado en 2004, los casos de muertes relacionadas con el Sida se han reducido en un 68% y en un 52 % desde 2010. La mortalidad por el Sida ha disminuido un 57% entre las mujeres y niñas y un 47 % entre hombres y niños desde 2010 (44). Todos estos datos corroboran que en los últimos años la prevención, el diagnóstico, el tratamiento y la atención han experimentado una mejoría, tanto en países desarrollados como en los que están en vías de desarrollo, pero sin llegar a un tratamiento curativo todavía, por lo que la infección por VIH se ha convertido en un problema de salud crónico, aunque con una mejoría de la esperanza de vida. El manejo de las infecciones y las neoplasias debidas a la inmunosupresión también ha experimentado mejoría.

A finales de 2019, más de dos tercios de todas las personas con el VIH viven en la Región de África de la OMS (25,7 millones). Si bien el VIH es prevalente entre la población en general en esta región, un número cada vez mayor de nuevas infecciones se produce entre los grupos de población susceptible. El 80% de las personas que viven con el virus se

concentran en 20 países, la mayoría de ellos en África. Estre los países de mayor prevalencia (figura 1) destacan: Sudáfrica, Nigeria, India, Zimbabue, Mozambique, Tanzania, Uganda, Kenia, Estados Unidos, Rusia, Zambia, Malaui, China, Brasil, Etiopía, Indonesia, Camerún, Costa de Marfil, Tailandia y República Democrática del Congo.

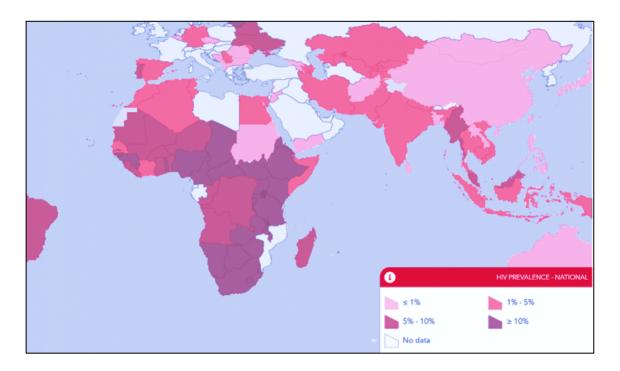


Figura 1. Prevalencia del VIH en el mundo. Fuente: ONUSIDA (Consultado en abril 2023: https://www.unaids.org/fr).

2.2. Grupos de población clave

En 2021, los grupos de población clave: trabajadores/as sexuales y sus clientes, los hombres que mantienen relaciones sexuales con hombres, ADVP, las personas transgénero y sus parejas sexuales representaron el 70% de las nuevas infecciones por VIH a nivel mundial. Estos grupos son los responsables del 94% de las nuevas infecciones por VIH fuera de África subsahariana y del 51% de las nuevas infecciones por VIH en África subsahariana.

El riesgo de infección por VIH aumenta 38 veces para los trabajadores sexuales, 29 veces para los consumidores de drogas por via parenteral, 28 veces para los hombres que tienen relaciones sexuales con hombres y 22 veces para las mujeres transgénero(44).

2.3. Mujeres

Aproximadamente 4.900 mujeres jóvenes de entre 15 y 24 años fueron seropositivas cada semana en 2021, según las estadísticas de ONUSIDA. Las niñas de entre 15 y 19 años representan seis de cada siete nuevas infecciones en el África subsahariana.

Las mujeres jóvenes entre 15 y 24 años tienen el doble de probabilidades de tener VIH que los hombres.

Alrededor del 35% de las mujeres en todo el mundo han sufrido abuso físico o sexual en algún momento de sus vidas, ya sea dentro o fuera del ámbito familiar, según datos de la organización mundial de las Naciones Unidas. Además, en algunas zonas, las mujeres que han sufrido abuso físico o sexual por parte de su pareja tienen 1,5 veces más de probabilidades de contraer el VIH que las mujeres que no lo han sufrido. Por ultimo el 63% de todas las nuevas infecciones por VIH en el África subsahariana en 2021 ocurrieron entre mujeres y niñas (44).

2.4. Programa 95-95-95

El programa 95-95-95 de ONUSIDA es una estrategia global para el año 2030 que tiene como objetivo alcanzar las siguientes metas(45):

- Que el 95% de las personas que viven con VIH conozcan su estado serológico.
- Que el 95% de las personas diagnosticadas con VIH reciban tratamiento antirretroviral sostenido.
- Que el 95% de las personas que reciben tratamiento tengan una carga viral indetectable.

Esta estrategia es parte de la iniciativa "Cero Discriminación" de ONUSIDA, que busca mejorar el acceso a los servicios de prevención, tratamiento y atención del VIH, y reducir el estigma y la discriminación relacionados con esta enfermedad(45). La estrategia 95-95-95 es crucial para poner fin a la epidemia de VIH/Sida, ya que el tratamiento antirretroviral reduce significativamente la transmisión del VIH y mejora la calidad de vida de las personas que viven con VIH(45).

En el año 2021 de todas las personas que viven con el VIH, el 85% [75–97%] conocían su estado, el 75% [66–85%] tenían acceso al tratamiento y el 68% [60–78%] tenían una carga viral indetectable(44,45).

2.5. Situación epidemiológica de la infección por VIH/Sida en España

La infección por VIH continúa siendo un gran problema de salud pública en España por varios motivos, entre los cuales se encuentra su carácter crónico y sus consecuencias sanitarias, sociales y económicas asociadas. A pesar de los avances evidentes en el diagnóstico y el tratamiento que desembocaron en una mejoría sustancial de la supervivencia, el número de nuevos diagnósticos se mantiene estable (aproximadamente 3.200 casos anuales). Cabe destacar que, a pesar de estos avances, todavía no se ha podido lograr reducir su incidencia en HSH. Otro problema añadido es el diagnóstico tardío en algunos colectivos, como las personas infectadas por vía heterosexual y parenteral, mayores de 50 años e inmigrantes, lo que conlleva una peor evolución clínica, menor esperanza y calidad de vida y mayor coste asistencia(46).

El el año 2019 se notificaron 2.698 nuevos diagnósticos de VIH, lo que supone una tasa de 5,94/100.000 habitantes. El 85,8% eran hombres y con una mediana de edad de 36 años (rango intercuartílico: 28-45). La transmisión en HSH fue la más frecuente (56,6%), seguida de la heterosexual (32,3%), y la que se produce en personas que se inyectan drogas (2,6%). El 36,1% de los nuevos diagnósticos de infección por el VIH se realizaron en personas originarias de otros países y el 45,9% presentaron diagnóstico tardío (46).

En el periodo 2010-2019 la tendencia en las tasas totales es descendente (figura 2), así como en hombres y mujeres. Según el modo de transmisión, se aprecia un descenso en las tasas en PID y en casos de transmisión heterosexual en ambos sexos. Sin embargo, las tasas de nuevos diagnósticos en HSH muestran una estabilización entre 2010 y 2017 y a partir de ese año se observa una tendencia descendente; esta tendencia solo es significativa en los HSH españoles(46).

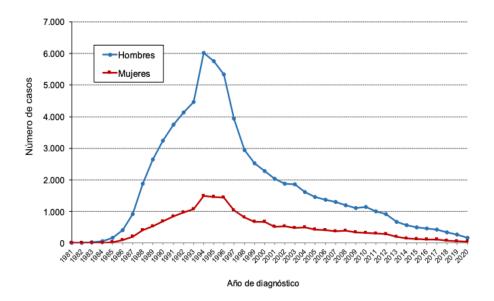


Figura 2. Casos de Sida en España por sexo, 1981-2020. Registro Nacional de Sida. Datos corregidos por retraso en la notificación. Fuente: vigilancia epidemiológica del VIH y Sida en España 2020, actualización 30 de junio de 2021.

El porcentaje de personas extranjeras diagnosticadas osciló entre el 42,8% y el 39,4% en el periodo y el diagnóstico tardío se ha mantenido estable(46).

En cuanto a los casos de Sida se notificaron 273 casos (351 tras corregir por retraso de notificación). Esto supone una tasa de 0,7/100.000 habitantes (0,9/100.000 habitantes ajustada por retraso de notificación). El 81% eran varones, y la mediana de edad al diagnóstico fue de 43 años (RIC: 34-52 años). Del total de casos, el 39,6% se produjeron en hombres y mujeres heterosexuales, el 39,9% en HSH y el 9,2% en PID (46).

Desde el inicio de la epidemia en España hasta el 30 de junio de 2020 se han notificado un total de 88.367 casos de Sida. La proporción de casos de Sida en personas extranjeras ha aumentado progresivamente desde el año 1998 hasta alcanzar el 32,2% en 2019(46).

En el periodo 2012-2019, la neumonía por *Pneumocystis jirovecii* ha sido la enfermedad definitoria de Sida más frecuente (30,4%), seguida de la tuberculosis de cualquier localización (18,3%) y de la candidiasis esofágica (12,8%).

Todos estos datos son similares a las de otros países de la región Europea de la OMS, aunque superiores a la media de los países de la Unión Europea y de Europa Occidental. Desde la introducción de los tratamientos antirretrovirales de gran actividad a mediados de la década de 1990 se ha continuado la tendencia descendente de los nuevos casos. En cuanto a la reducción de la incidencia de Sida en España ha sido enorme.

En cuanto a la mortalidad, se han notificado un total de 418.703 fallecimientos, de los cuales 414 fueron por VIH o Sida (1 por cada 1000 fallecidos). De éstos, 334 (80,7%) se produjeron en hombres y 80 (19,3%) en mujeres. La tasa de mortalidad global por VIH y Sida fue de 0,9 por 100.000 habitantes. La edad media de los fallecidos por VIH y Sida fue de 54,1 años (DE: 11,9), no existiendo diferencia significativa en la edad media entre hombres (54,4 años; DE: 12,0) y mujeres (52,8 años DE: 11,1) (47).

Desde el inicio de la pandemia en 1981 hasta el año 2019 se han notificado en España un total de 59.939 fallecidos por VIH y Sida, de los cuales 80,9 % eran hombres y el 19,1% eran mujeres. El pico máximo de fallecidos se produjo en el año 1995 y a partir de ese año se redujo progresivamente el número de fallecidos, gracias a la introducción de combinaciones de los TAR, aunque ese descenso comenzó a ser más lento desde el año 1998. Respecto al año previo, en el año 2019 se redujo un 2,1%. A lo largo de este periodo la mortalidad siempre ha sido más alta en hombres que en mujeres (47)

Se estima que el 34% de las personas infectadas no tienen su carga viral suprimida. Las personas que están infectadas, pero desconocen su situación, son responsables del 50% de las nuevas infecciones. Por ello, es importante el diagnóstico y tratamiento precoz, que es la estrategia preventiva más eficiente. Además, se deben suprimir las barreras que dificultan el acceso a los servicios de diagnóstico y tratamiento para mejorar la disponibilidad y accesibilidad a las pruebas de VIH en entornos comunitarios más próximos a las poblaciones clave. En el caso concreto de los inmigrantes en situación irregular, las barreras administrativas, culturales y lingüísticas, con frecuencia retrasan o llegan a impedir la atención (48).

3. Bibliometría

3.1. Aspectos generales

El crecimiento de la literatura científica desde mediados del s. XX en el contexto de la Segunda Guerra Mundial y la postguerra, con la consiguiente necesidad de un acceso rápido a la información, conllevó un impulso fundamental de la Bibliometría como herramienta para el análisis y la evaluación de la actividad científica, hasta entonces limitada a una herramienta de investigación, pero que ha ido ganando relevancia y configurando un corpus teórico, adquiriendo los rasgos propios que le confieren un estatus de disciplina científica (49,50).

Bibliometría es un término derivado de la voz griega biblos ("libro") y metría ("medir"), habiendo sido definida de diferentes formas (51,52), si bien, el término de Pritchard ha quedado como principal referente para caracterizarla, cuando propuso identificar así los trabajos centrados en la aplicación de métodos estadísticos y matemáticos para definir los procesos de la comunicación escrita y el desarrollo de las disciplinas científicas (53). La Bibliometría es una disciplina basada en un enfoque cuantitativo, que permite estudiar cualquier fuente documental de carácter académico, aunque con una preeminencia de las revistas científicas, para conocer las diferentes facetas de la comunicación científica (esencialmente la producción, colaboración y el uso o impacto de las publicaciones), a partir de la identificación y cuantifiación de las características bibliográficas explícitas o implícitas de los documentos, tales como autorías, afiliaciones institucionales, terminología de los títulos o palabras clave, etc.

Se suele hacer referencia como primeros trabajos fundamentados específicamente en la aplicación de la metodología bibliométrica a estudios como el de Cole y Eales, que en 1917 analizaron las publicaciones sobre anatomía aplicada desde 1550 y1860; al estudio de Hulme, que en 1923 presentó un análisis estadístico de la historia de la ciencia; a la contribución de Gross y Gross de 1926, que analizó las referencias sobre química hechas en artículos de revistas. Desde entonces, los estudios bibliométricos han ido cobrando un progresivo desarrollo con el desarrollo de técnicas cuantitativas aplicadas al análisis de las características bibliográficas de los documentos científicos, y por extensión, de sus productores y consumidores, y como la herramienta mediante la cual se puede observar el estado de la ciencia y la tecnología, monitorizando la producción global de la literatura científica en un nivel dado de especialización(54–56). La Bibliometría se centra

esencialmente en el cálculo y en el análisis de los valores de lo que es cuantificable en la producción y en el consumo de la información científica (50,57).

El desarrollo a lo largo del s. XX de las bases de datos bibliográficas multidisciplinares internacionales, principalmente las bases de datos de la Web of Science (WoS) como herederas del Institute for Scientific Information creado por Eugene Garfield(58,59), y más recientemente Scopus, ha dado más impulso crucial a esta disciplina, ya que estas fuentes han institucionalizado los procesos evaluativos de las revistas científicas y el uso de los indicadores bibliométricos, ya que incluyen junto a la información bibliográfica, indicadores bibliométricos de producción científica o de impacto, como el número de citas recibidas por los documentos o el "índice h"; además disponen de dos productos asociados que establecen un ranking de las que se considera que son las revistas científicas de mayor prestigio, visibilidad o impacto en sus respectivas disciplinas, productos documentos que se han erigido en destacados referentes para evaluar las actividades de investigación, el Journal Citation Reports en el caso de WoS y el CiteScore vinculado a Scopus. También otras muchas iniciativas bibliométricas que ofrecen diferentes indicadores se basan en estas bases de datos bibliográficas, como el Scimago Journal and Country Rank o el Source Normalized Impact per Paper, entre otras muchas iniciativas de indicadores o ránquines bibliométricos (60,61).

Las críticas a la Bibliometría han sido y siguen siendo frecuentes en la literatura científica, fundamentadas en el cuestionamiento de la validez de los estudios bibliométricos por carencias en la preparación científica y estadística de los investigadores que los han realizado o por la utilización de técnicas cuantitativas demasiado elementales; por la falta de un planteamiento previo que justifique la utilización de este método cuantitativo; por la ausencia de una valoración de los datos de los que se parte y de las bases de datos utilizadas; por el abuso que se ha hecho de los resultados de algunos estudios bibliométricos, utilizados como único criterio o referente de evaluación o para la toma de decisiones o por la extensión que se ha realizado de los indicadores de unos niveles (visibilidad de las revistas científicas) a otros (impacto o desempeño de los investigadores) (62,63). Sin embargo, estos estudios interpretados con cautela, considerando sus limitaciones, con un uso de indicadores estandarizados y con una correcta normalización de resultados (por ejemplo, considerando el tamaño de las disciplinas o sistemas científicos comparados), son bastante útiles a la hora de valorar la actividad científica, las interrelaciones o el rol desempeñado por los diferentes agentes

científicos, para la planificación de unidades de información o situar el estado del arte o el desarrollo de un tema de cara a acometer otro tipo de análisis, entre otros muchos aspectos, lo que se ha puesto reiteradamente en evidencia en la literatura científica (64–66).

La Bibliometría permite valorar los cambios en la actividad de investigación y las colaboraciones entre regiones con similares cuidados de salud de la población y parámetros de desarrollo (67,68). Los datos obtenidos pueden ser útiles para el análisis de la inversión en ciencia y tecnología de la salud para la toma de decisiones clave en la elaboración de políticas públicas sobre investigación y desarrollo, que impulsen el proceso innovador y fomenten la investigación en el sector sanitario (69). Iniciativas de salud pública, basadas en estudios bibliométricos, se han aplicado a enfermedades como la diabetes y la tuberculosis con resultados satisfactorios(70,71).

3.2. Indicadores bibliométricos

Los indicadores utilizados en bibliometría permiten la expresión cuantitativa tanto de las relaciones como de las características del conjunto de documentos objeto de estudio en la bibliografía. Los principales indicadores bibliométricos, considerando los que se utilizan con más frecuencia, son los siguientes(72):

- A. *Indicadores personales*: definen las características de los autores del estudio, tales como la edad, el sexo, la posición profesional, el país o la afiliación institucional, en relación con otros indicadores, por ejemplo, de producción científica o impacto.
- B. *Indicadores de producción*: se obtienen a partir del recuento de las publicaciones científicas. El número de publicaciones se considera una medida de la actividad científica. A partir de los datos de productividad pueden obtenerse indicadores como el número medio de trabajos por autor, el promedio de autores o firmas por trabajo, o el índice de transitoriedad, entre otros muchos.
- C. *Indicadores de dispersión:* refieren cómo se distribuyen las publicaciones en relación con las variables consideradas que son objeto de análisis, siendo la concentración-dispersión uno de los fenómenos más característicos de la Bibliometría. Así, tratan de determinar, por ejemplo, qué revistas constituyen el núcleo de una disciplina científica o temática de investigación o cómo se distribuyen las citas recibidas.
- D. *Indicadores de visibilidad o impacto*: son los que han tenido un mayor desarrollo e incidencia por su utilización y vinculación con los procesos evaluativos. Miden la

influencia de los autores y de los trabajos publicados a partir del número de citas o impacto de las revistas de publicación, y son las magnitudes más conocidas de la Bibliometría, por su efecto directo sobre las carreras profesionales de los investigadores. El número total de citas recibidas, el promedio de citas por documento o el índice h serían los ejemplos más sencillos, pero de uso más extendido para medir el impacto de los documentos e investigadores.

Por otra parte, el principal referente para la visibilidad es el Factor de Impacto (FI) que es la razón entre las citas recibidas por una revista un determinado año y los artículos publicados en esa revista los dos años anteriores. Los factores de impacto se calculan cada año para las revistas que están indexadas en el *Journal Citation Reports* (JCR) de Clarivate Analytics. Pese a que el FI puede verse afectado por prácticas inadecuadas, como autocitas o la generalización de los datos de impacto a nivel de revistas al nivel individual de autores; y que han surgido diferentes alternativas, continúa siendo un destacado referente para la Bibliometría y la evaluación de las actividades de investigación, particularmente en el ámbito de las Ciencias de la Salud.

- E. *Indicadores de colaboración*: miden las relaciones existentes entre los productores científicos que han participado en la publicación conjunta de los resultados. Puede contabilizarse la proporción de trabajos con dos, tres o más autores e identificarse aquellos individuos o instituciones que más han publicado conjuntamente. Una opción más compleja es el análisis de la red social que se establece entre los autores que publican conjuntamente. Este análisis puede hacerse también con otros niveles de agregación tales como instituciones o países.
- F. *Indicadores de obsolescencia*: miden la tendencia en la que las publicaciones científicas caen en desuso.
- G. *Indicadores de forma y contenido:* puesto que la producción científica puede realizarse mediante canales diferentes, se puede considerar el porcentaje de documentos de cada tipología documental (libros y capítulos, comunicaciones de congresos, tesis doctorales y especialmente los artículos de revista —que a su vez también presentan variantes tales como artículos de investigación, revisiones, editoriales o notas—). También se puede considerar la distribución porcentual de temas y de lenguas utilizadas, entre otros aspectos.

3.3. Análisis de redes en ciencias de la salud

Actualmente las redes de colaboración científica se han convertido en una herramienta fundamental para el impulso de la investigación académica y para propiciar el avance del conocimiento. Los científicos han pasado de ser actores independientes a formar parte de redes de cooperación científica, que buscan soluciones a problemas sociales, políticos, económicos y tecnológicos complejos, que, por lo general, requieren enfoques multidisciplinares (73). Cada vez más, los investigadores deben establecer redes de comunicación, compartir ideas, recursos e información, generar y entregar nuevos conocimientos, ya que, en última instancia, todas estas acciones resultan cruciales debido a la creciente especialización de la ciencia, las infraestructuras requeridas, así como por la necesidad de combinar diferentes tipos de conocimientos y habilidades(73–76).

Las redes de colaboración científica son particularmente relevantes para propiciar la innovación o para abordar problemas de salud complejos, que requieren involucrar a las múltiples partes interesadas o porque el progreso del conocimiento cada vez es más dependiente de la investigación interdisciplinaria (77). También las redes de innovación en salud se han destacado como las estrategias más eficientes para ayudar a los países en desarrollo a abordar los desafíos de las enfermedades infecciosas(78)

El análisis de la coautoría o participación conjunta de dos autores en un documento, proporciona una visión de los patrones de cooperación entre individuos y organizaciones (79,80). A pesar del debate sobre su significado e interpretación (74,81), el análisis de las coautorías, y por extensión de las colaboraciones institucionales derivadas de las mismas, todavía se usa ampliamente para comprender y evaluar los patrones de colaboración científica.

La Bibliometría dispone de diferentes indicadores para medir la colaboración científica, pudiendo ser complementada en este caso con el concurso de otras herramientas analíticas, como los análisis de redes, que permiten caracterizar las formas, la extensión y la intensidad y relevancia de las prácticas cooperativas a través de numerosos indicadores específicos o mediante la determinación de la posición o la influencia de los agentes científicos en las redes generadas a partir de la información bibliográfica. En estas redes de colaboración, los nodos representan a autores, organizaciones o países, que están conectados cuando comparten la autoría o la participación en un artículo(80,82,83)

3.4. Fuentes de información para los estudios bibliométricos en Ciencias de la Salud

Los estudios bibliométricos se basan generalmente en el análisis de los documentos recuperados de bases de datos, con el fin de realizar un examen retrospectivo de cómo quedan plasmados a través de las publicaciones los avances científicos, evaluar el potencial de investigación de los autores, instituciones o países involucrados, caracterizar el desarrollo de disciplinas científicas y sus líneas de investigación, así como la obsolescencia y dispersión de las publicaciones científicas en un área del conocimiento, entre otros muchos aspectos(84).

Existen múltiples bases de datos utilizadas para la realización de estudios bibliométricos, si bien, en el ámbito de las Ciencias de la Salud la más importante por su especialización en el área es la base de datos *Medline*, creada por la *National Library of Medicine* de Estados Unidos como recurso de información de acceso gratuito. Su carácter especializado, gratuidad y otros aspectos, como el hecho de que utiliza un lenguaje preciso para caracterizar el contenido de los documentos, el tesauro de descriptores *Medical Subject Headings* (MeSH) o que sus contenidos se han integrado en otras bases de datos de referencia a nivel internacional, la han convertido en una fuente de referencia de extendido uso, siendo habitual que muchos estudios bibliométricos en Salud la utilicen con fuente de información (85).

También encontramos bases de datos multidisciplinares de uso extendido para estudios bibliométricos en Ciencias de la Salud, como la Web of Science (WoS), que incluye a *Medline*, a la que se puede acceder en el caso de España desde las instituciones relacionadas con la investigación gracias a la suscripción y el acceso concedido por la Fundación Española para la Ciencia y la Tecnología (FECYT). Tiene como principal ventaja que permite identificar las citas recibidas por cada uno de los documentos recuperados o en relación con los autores, instituciones o países. La base de datos Scopus que incluye más revistas que las dos previas, también se utiliza, en particular para recoger los aspectos psico-sociales o la literatura publicada en revistas españolas, dada su mayor cobertura de revistas(86).

Los estudios bibliométricos en Medicina han ido adquiriendo una importancia creciente a lo largo de las últimas décadas, siendo España un referente a nivel internacional en este ámbito, ya que se han realizado estudios en todas las especialidades médicas, entre ellas también en el área de las enfermedades infecciosas, con numerosos estudios publicados

sobre la tuberculosis, Chagas, leishmaniasis y particularmente sobre el VIH-Sida, tal y como se detalla más adelante en relación con la revisión de la literatura bibliométrica en este ámbito (87,88)

3.5. Estudios bibliométricos sobre VIH-Sida

Existe una amplia literatura bibliométrica que ha analizado la investigación sobre VIH a nivel geográfico por regiones, países o considerando el nivel de renta o las características sociodemográficas de la población.

Una de las contribuciones pioneras que analizaron la dispersión geográfica de la investigación es la Pratt (89), que publicó una carta breve en la que destacó el interés de la Bibliometría para analizar el desarrollo de la investigación sobre VIH-Sida y su extensión a diferentes idiomas y países, resaltando que cerca del 60% de las revistas indexadas en MEDLINE publicaron al menos un artículo sobre el Sida entre 1981 y 1991.

En una carta al director, Mackenzie (90) analizó la vinculación del Sida con los afroamericanos en la literatura médica, realizando una búsqueda de toda la literatura médica publicada entre 1980 y 1999. Los afroamericanos representaron el 45% de todos los casos de Sida en adultos o adolescentes, y el 62% de todos los casos entre mujeres que se informaron a los Centros para el Control y la Prevención de Enfermedades (CDC) en 1998. Estos datos contrastaban con la reducida presencia de literatura médica relacionada con el Sida que refiere explícitamente su vinculación con los afroamericanos.

Ese mismo año, Macias-Chapula(91) realizó un análisis bibliométrico sobre la investigación del Sida en Haití en la base de datos de AIDSLINE para el período de 1980 a 1998. Según este análisis, casi el 40% de los registros en Haití correspondieron a artículos relacionados con la etnia, las infecciones por VIH, el comportamiento sexual, el embarazo y los trastornos relacionados con el abuso de sustancias.

Macías-Chapula y Mijangos-Nolasco(92) realizaron un análisis bibliométrico de la literatura sobre el Sida realizada en el África subsahariana, limitándose en este estudio a África central, para el período 1980-2000. En este análisis concluyeron que la investigación sobre VIH en África central se centraba, sobretodo, en Camerún, Estados Unidos, República Democrática del Congo, Francia y Bélgica. En este estudio, las fuentes corporativas correspondieron principalmente a instituciones académicas y gubernamentales.

Onyancha y Ocholla(93) presentaron un estudio bibliométrico comparativo de la literatura sobre el VIH-Sida en Kenia y Uganda. Aunque la mayoría de las publicaciones se centraban en las mujeres como un colectivo especialmente relevante y vulnerable, una gran parte de los documentos se publicaron fuera de África. También se constató el desequilibrio de que las actividades de investigación se centraron en Uganda más que en Kenia.

Falagas et al. (94) analizaron la contribución y colaboración entre diferentes regiones del mundo sobre la investigación en Sida entre 1986 y 2003. En este análisis se detectó que la gran mayoría de las investigaciones mundiales sobre el Sida se produjeron en el mundo desarrollado. Aunque la producción de investigación fue mínima en los países en vías de desarrollo, estas regiones mostraron una mayor proporción de aumento en la productividad de la investigación que los países desarrollados. Ante estos hallazgos Falagas et al.(94) recomendaron que las colaboraciones internacionales deberían aumentar y expandirse significativamente más allá de las barreras culturales y políticas.

Patra y Chand(95) analizaron el crecimiento a lo largo del tiempo de los resultados de la investigación india sobre el Sida, basado en datos bibliográficos de PubMed y la *Web of Science*. El estudio identificó las instituciones activas y las distribuciones estatales de los resultados de la investigación india sobre el Sida. Aunque el análisis anual de los datos mostró que hubo un rápido crecimiento de la literatura desde 1992, a nivel mundial la productividad relativa de la India fue baja y se requería impulsar más la investigación y el desarrollo.

Uthman (96) identificó la producción científica de Nigeria en el período 1980-2006, observando un crecimiento significativo de las publicaciones a lo largo de este período. Este mismo autor (97) analizó la producción científica en los países del África Subsahariana en el período 1981-2009, determinando un liderazgo de la investigación en Sudáfrica, Uganda y Kenia y una elevada dispersión de las publicaciones entre el resto de países de la región.

Caballero et al. (98) analizaron la producción científica sobre VIH/Sida en Perú en el período 1985-2010, donde se objetivó un crecimiento significativo sobre la investigación científica.

Rosas et al. (99) realizaron un análisis sobre la investigación realizada por las redes de ensayos clínicos de VIH-Sida, cuyos resultados sugieren que las redes están produciendo

un trabajo altamente reconocido, participando en colaboraciones interdisciplinarias extensas y teniendo un impacto en varias áreas de la ciencia relacionada con el VIH.

Mancini et al. (100) analizaron el impacto de la investigación sobre el Sida, revelando un mayor interés en el tema del VIH-Sida entre las revistas con mayores factores de impacto.

Drewes et al. (101) describieron las publicaciones realizadas desde 1989 sobre la calidad de vida de los pacientes VIH-Sida, concluyendo que existía cada vez más interés por parte de la comunidad científica en las investigaciones sobre la calidad de vida de estos pacientes.

Tizón Bouza et al. (102) evaluaron la contribución de la enfermería iberoamericana en la actividad científica y la producción del VIH en español entre los años 2008 y 2012, concluyendo que existía una contribución asimétrica de la enfermería en los países iberoamericanos, siendo muy destacada en Brasil mientras la enfermería española ha contribuido menos en las publicaciones científicas.

Uusküla et al. (103) analizaron la productividad de la investigación del VIH-Sida en los 27 países de la Unión Europea y los factores a nivel estructural asociados con los niveles de productividad de la investigación, determinando que la productividad de la investigación sobre el VIH varía notablemente en estos países y que esta variación está asociada con factores estructurales reconocibles, como su nivel de desarrollo.

Liu et al.(104) realizaron un análisis bibliométrico sobre la investigación del VIH-Sida en China para el período 2000-2014, destacando el incremento de la investigación, muy superior al promedio mundial desde 2008. El análisis reveló publicaciones importantes que actuaron como puntos de inflexión intelectuales de la evolución de la investigación del VIH-Sida en China durante 2000-2014 y que la investigación se centraba en la epidemiología del VIH-Sida y en los mecanismos moleculares de la infección.

Kelaher et al.(105) analizaron las tendencias en la primera autoría de ensayos controlados aleatorios entre investigadores de países de ingresos bajos y medios entre 1990-2013 y concluyeron que el aumento absoluto en el número de ensayos en VIH-Sida, malaria y tuberculosis en África ha llevado a un aumento modesto en los primeros autores pertenecientes a dichos países y un aumento mucho mayor en los autores de fuera de esos países.

Mugomeri et al. (106) estudiaron la investigación en Lesoto realizando una revisión bibliométrica de los estudios sobre el VIH-Sida recuperados de las bases de datos Scopus

y PubMed, publicados en un período de 30 años entre 1985 y 2016. Se detectó una deficiente publicación científica sobre VIH-Sida en este país y sobre todo en medidas preventivas y planificación nacional.

En una carta al director, Ríos-González (107) evaluó la producción científica del VIH en pueblos indígenas de 1989 a 2016. Concluyó que existía una baja producción científica relacionada con el VIH en esta población, lo que demuestra claramente la falta de información sobre la distribución del VIH en este grupo de población. Ríos-González (107) invitaba a traducir los resultados de la investigación generada en acciones que permitan el diagnóstico, el tratamiento temprano y la distribución de la transmisión de este virus en esta población tan poco estudiada.

Fajardo-Ortiz et al.(108) analizaron la aparición y evolución de los frentes de investigación en la investigación del VIH-Sida. El objetivo era comprender el surgimiento y la evolución de estos frentes de investigación o núcleos activos y de referencia para el impulso del conocimiento.

Aves et al. (109) describieron y resumieron los informes de equidad en las revisiones sistemáticas del VIH y exploraron en qué medida se abordaban y notificaban los problemas de equidad en las revisiones del VIH. Concluyeron que la investigación no se realiza de manera consistente desde el punto de vista de la equidad.

Hodes y Morrel(110) estudiaron la contribución de las ciencias sociales en la investigación sobre el VIH y analizaron las publicaciones de alto impacto de las ciencias sociales en el ámbito de VIH en Sudáfrica centrándose en dos temas clave en la evolución del conocimiento del VIH a nivel socio-demográfico: (1) la importancia de contexto y localización, el "escenario" de la investigación del VIH; y (2) sexo, raza y riesgo como ideas sociales determinantes de la transmisión del VIH. Concluyeron que los científicos sociales que trabajan sobre el VIH y el Sida en Sudáfrica han enfatizado que los imperativos del contexto permiten o limitan la eficacia de las intervenciones contra el VIH, además han contribuido a comprender la pandemia del VIH y a garantizar que los medicamentos disponibles tengan un efecto óptimo.

Sweileh (111) en su análisis de los documentos recogidos en la base de datos Scopus entre 1980 y 2017 que estudiaron el estigma y la discriminación asociada al VIH-Sida, puso de manifiesto el carácter limitado de la investigación pese a la incidencia de estas problemáticas, una infrarrepresentación de la literatura que aún es más acusada en la

región de África pese a que es la que concentra el mayor número de personas infectadas por VIH.

Tran et al. analizaron en una serie de trabajos basados en enfoques bibliométricos la existencia de lagunas en la investigación asociadas a diferentes facetas en relación con el VIH: calidad de vida, servicios para los niños afectados por el VIH-Sida, evaluaciones económicas para la planificación estratégica y la toma de decisiones y abordaje interdisciplinar de la investigación (112–115).

Alzate-Ángel et al. (116) caracterizaron el desarrollo de la investigación sobre el VIH en Colombia mediante la identificación de los estudios publicados entre 1983 y 2018, concluyendo que había una escasa atención por parte de la investigación y una desatención de aspectos que deberían ser clave (diagnóstico tardío, estigma y prevención de la enfermedad).

El estudio de Gray Neils et al.(117) (analizó la evolución de la producción científica en la Unión Soviética y la Federación Rusa en el período 1991-2016, destacando la existencia de importantes diferencias entre las diferentes regiones de este ámbito territorial y tasas de publicación menores de las esperables considerando el incremento de la prevalencia del VIH.

Vu et al.(118) estudiaron las publicaciones sobre la calidad de vida de las personas infectadas por VIH-Sida entre 1996 y 2017 recogidas en las bases de datos de la Web of Science-Core Collection, refiriendo que los estudios que han analizado los factores socioculturales asociados a esta faceta son escasos.

Doan et al.(119) en su análisis de la relevancia de las redes sociales para hacer frente a las conductas de riesgo y la transmisión del VIH en los estudios recogidos en la Web of Science, llamaron la atención acerca de las diferencias en la distribución geográfica de las publicaciones a nivel mundial y en la necesidad de potenciar la colaboración y la capacidad de investigación regional para reducir los daños asociados al VIH en los países de menor desarrollo económico.

Okoroiwu et al. (120) analizaron la producción científica sobre VIH-Sida en Nigeria recogida en PubMed en el período 1986-2021, constatando la evolución del foco investigador del diagnóstico al tratamiento y llamando la atención acerca de la existencia de áreas inexploradas pese al destacado crecimiento de la investigación en el país.

3.6. Estudios bibliométricos sobre VIH-Sida en España

En relación con la investigación sobre VIH-Sida en España, Aleixandre et al. (121) realizaron un análisis bibliométrico sobre las publicaciones de VIH entre los años 1983-1992, observando un crecimiento exponencial de las publicaciones desde 1983, el primer año en que se publicó un artículo sobre el Sida en España. El crecimiento era similar al observado en otros países, existiendo un paralelismo entre el incremento en el número de publicaciones sobre el tema y el aumento de casos notificados en España.

Osca (122) realizó un análisis de la producción española de los libros publicados en España sobre el Sida. Los resultados confirmaban el aumento de las publicaciones españolas sobre el Sida en la década de los 90.

Ramos Rincón et al. (123) estudiaron la producción científica española en el período 1991-1999, actualizando los datos aportados por los trabajos anteriores, destacando una diversificación de la producción científica (revistas nacionales e internacionales), que la investigación se centraba en mayor medida en los abordajes terapéuticos y el rol de los centros asistenciales como principales impulsores de la investigación.

Posteriormente, Civera et al.(124) confirmaron la evolución creciente de la investigación española en el área y el incremento de la colaboración internacional.

4. Conjunto Mínimo Básico de Datos

4.1. Aspectos generales

En el contexto de una conferencia sobre sistemas de información sanitaria, en 1969 se propuso por primera vez en Estados Unidos el Conjunto Mínimo Básico de Datos (CMBD) (125,126). Siguiendo el modelo americano y dada su utilidad clínica y administrativa, la Comunidad Económica Europea, definió en 1981, con el apoyo de la OMS y el Comité Hospitalario de las Comunidades Europeas, el CMBD como un núcleo de información mínima y común sobre los episodios de hospitalización. Posteriormente, el Consejo de Europa lo integró como parte indispensable del sistema de información hospitalario (127).

El CMBD fue aprobado para su implantación como parte fundamental del actual sistema de información de atención especializada por el Consejo Interterritorial del Sistema Nacional de Salud de España en su reunión del 14 de diciembre de 1987. Fue ampliado a nivel nacional en 1992 e incluido en la operación estadística del Estado. de cumplimentación obligatoria(127). Desde entonces hasta la actualidad, el CMBD ha ido evolucionando para mejorar sus prestaciones, perfeccionando su información tanto a nivel de datos administrativos como clínicos.

El CMBD, constituye un elemento clave para el conocimiento de la morbilidad hospitalaria y una fuente de datos de gran interés en diversos campos relacionados con la salud. Su uso permite el conocimiento de datos sanitarios y la evaluación de la eficacia clínica. Según el Real Decreto 69/2015, en su artículo 6, el CMBD ofrece información estadística a nivel estatal que concierne a los casos atendidos en los centros sanitarios de atención especializada y, en concreto, a los centros hospitalarios, ambulatorios y centros de especialidades dependientes de los mismos. Se trata de un registro de la actividad de la atención sanitaria especializada que reúne información poblacional y que utiliza como unidad de registro cada contacto asistencial con un paciente(127).

El uso por parte del CMBD de la Clasificación Internacional de Enfermedades (CIE) posibilita que su información sea comparable a nivel nacional e internacional. De hecho, una parte importante de las estadísticas sanitarias de la Unión Europea, OCDE y la OMS entre otras, proceden del análisis de los diferentes CMBD nacionales (128) La información recogida por el CMBD debe ser viable, homogénea y de calidad y para ello

la información clínica que recoge de la historia clínica debe ser válida, fiable y exhaustiva de cada uno de los episodios asistenciales por los que pasa el paciente.

Por tanto, podemos afirmar que el CMBD es una base de datos clínica y administrativa que recoge distintas variables durante el episodio asistencial, codificadas por las unidades administrativas de los centros hospitalarios. Las variables identifican al centro sanitario, al paciente y los procedimientos diagnósticos y terapéuticos realizadosen todos los hospitales públicos y privados como se recoge en la (129).

Tabla 3. Tipo de variables incluidas en el CMBD

Tipo de	Variables
variables	
Variables del centro sanitario	
	Centro sanitario donde se realiza la atención
	- Comunidad Autónoma del centro sanitario
Variables de id	lentificación del paciente
	- Tipo de código de Identificación Personal
	Código de Identificación Personal
	Número de historia clínica
	- Fecha de nacimiento
	- Sexo
	- País de nacimiento
	- Código postal del domicilio habitual del paciente
	- Municipio del domicilio habitual del paciente identificado por
	Provincia y Municipio – Zona básica de salud a la que pertenece el
	paciente
Variables del contacto	
	Régimen de financiación
	- Tipo de contacto (modalidad asistencial)
	- Tipo de visita (sólo para Hospital de día)
	- Procedencia (dispositivo, servicio sanitario o entidad que solicita el
	contacto)
	- Centro de procedencia
	- Circunstancias del contacto

- Fecha y hora de inicio del contacto - Número de autorización - Fecha y hora de la orden de ingreso Variables de alta - Fecha y hora de fin del contacto - Tipo de alta (Destino tras el contacto/Circunstancia del alta) - Centro de traslado (Hospital donde se traslada al paciente tras el alta - Dispositivo de continuidad asistencial (ámbito para el que s programa un nuevo contacto del paciente tras el alta o el fin de
Fecha y hora de la orden de ingreso Variables de alta Fecha y hora de fin del contacto Tipo de alta (Destino tras el contacto/Circunstancia del alta) Centro de traslado (Hospital donde se traslada al paciente tras el alta Dispositivo de continuidad asistencial (ámbito para el que s
Variables de alta - Fecha y hora de fin del contacto - Tipo de alta (Destino tras el contacto/Circunstancia del alta) - Centro de traslado (Hospital donde se traslada al paciente tras el alta - Dispositivo de continuidad asistencial (ámbito para el que s
Fecha y hora de fin del contacto Tipo de alta (Destino tras el contacto/Circunstancia del alta) Centro de traslado (Hospital donde se traslada al paciente tras el alta Dispositivo de continuidad asistencial (ámbito para el que s
Tipo de alta (Destino tras el contacto/Circunstancia del alta) Centro de traslado (Hospital donde se traslada al paciente tras el alta Dispositivo de continuidad asistencial (ámbito para el que s
Centro de traslado (Hospital donde se traslada al paciente tras el alta Dispositivo de continuidad asistencial (ámbito para el que s
- Dispositivo de continuidad asistencial (ámbito para el que s
programa un nuevo contacto del paciente tras el alta o el fin de
episodio)
- Servicio responsable de la atención
- Sección responsable de la atención
Médico responsable del alta
Variables del proceso asistencial
- Fecha y hora de intervención
- Ingreso en Unidad de Cuidados Intensivos
– Días de estancia en Unidad de Cuidados Intensivos
- Diagnóstico principal
- Diagnósticos secundarios
_Procedimientos realizados en el centro
- Procedimientos realizados en otros centros
- Morfología de las neoplasias
- Número de episodio
- Tipo de anestesia
- Hora de entrada en quirófano
– Hora de salida de quirófano
- Tipo de actividad sanitaria de los procedimientos ambulatorios d
especial complejidad

4.2. Clasificación internacional de enfermedades

La codificación de las enfermedades usada por las unidades de codificación de los centros sanitarios se realiza utilizando la codificación internacional de enfermedades (CIE). La CIE ha servido durante décadas como un instrumento esencial en el campo de la salud pública para la comparación, tanto a nivel nacional como internacional, de enfermedades con una finalidad principalmente estadística.

Este sistema de codificación ha evolucionado a lo largo de las décadas, pasando de una clasificación limitada principalmente a las causas de muerte, a extenderse a los datos e información de morbilidad. La clasificación sigue un sistema jerárquico, con clases, subclases y otras divisiones que se etiquetan mediante códigos que pueden ser numéricos, alfabéticos, o alfanuméricos. Suele presentar una estructura lógica de un tema en concreto clasificándolo de lo más genérico a lo más específico. La CIE presenta un sistema de categorías mutuamente excluyentes a las cuales se asignan enfermedades, lesiones y motivos de consulta de acuerdo con criterios previamente establecidos. La clasificación abarca todas las enfermedades existentes en la terminología médica siguiendo la nomenclatura internacional de enfermedades. La CIE-9 fue utilizada hasta el año 2015 en España en el CMBD y desde el año 2016 se utiliza la CIE-10. La CIE-10 fue aprobada en la Asamblea Mundial de la Salud realizada en mayo de 1990 y consta de más de 14.400 códigos diferentes, cada uno de los cuales se refiere a una categoría específica de enfermedad o problema de salud. Los códigos constan de letras y números y están organizados en capítulos y secciones. Cada código de la CIE-10 se compone de tres a siete caracteres alfanuméricos, lo que permite una mayor precisión en la codificación. Consta de 21 capítulos, 2.036 categorías y 12.154 subcategorías en su versión original presentada internacionalmente en octubre de 1989. A continuación, se detallan las principales categorías y subcategorías de la CIE-10(130):

- A00-B99: Enfermedades infecciosas y parasitarias.
- C00-D48: Tumores (neoplasias).
- D50-D89: Enfermedades de la sangre y de los órganos hematopoyéticos, y algunos trastornos inmunológicos.
- E00-E90: Enfermedades endocrinas, nutricionales y metabólicas.
- F00-F99: Trastornos mentales y del comportamiento.

- G00-G99: Enfermedades del sistema nervioso.
- H00-H59: Enfermedades del ojo y sus anexos.
- H60-H95: Enfermedades del oído y de la apófisis mastoides.
- I00-I99: Enfermedades del sistema circulatorio.
- J00-J99: Enfermedades del sistema respiratorio.
- K00-K93: Enfermedades del sistema digestivo.
- L00-L99: Enfermedades de la piel y del tejido subcutáneo.
- M00-M99: Enfermedades del sistema osteomuscular y del tejido conjuntivo.
- N00-N99: Enfermedades del sistema genitourinario.
- O00-O99: Embarazo, parto y puerperio.
- P00-P96: Ciertas afecciones originadas en el período perinatal.
- Q00-Q99: Malformaciones congénitas, deformidades y anomalías cromosómicas.
- R00-R99: Síntomas, signos y hallazgos anormales clínicos y de laboratorio, no clasificados en otra parte.
- S00-T98: Lesiones, envenenamientos y algunas otras consecuencias de causas externas.
- V01-Y98: Causas externas de morbilidad y de mortalidad.
- Z00-Z99: Factores que influyen en el estado de salud y contacto con los servicios de salud.

Cada categoría se divide en subcategorías más específicas para permitir una mayor precisión en la codificación de los diagnósticos médicos.

4.3. Funciones del CMBD

La información del CMBD registrada en cada centro hospitalario, es enviada de forma anual al Ministerio de Sanidad y Consumo, que a su vez se encarga de la gestión de la base de datos. La importancia del CMBD radica en que es la base más amplia de la que se dispone en nuestro sistema de salud y, por tanto, se puede afirmar que el análisis de sus datos entraría dentro de la investigación *big data*(127). A partir de esta base de datos se pueden realizar multitud de preguntas de investigación.

El CMBD se utiliza para varios fines, entre los que se incluyen los siguientes(128):

- Registro de datos: el CMBD permite recopilar información sobre los pacientes, incluyendo su edad, género, diagnósticos, procedimientos y otros datos relevantes.
 Estos datos se utilizan para registrar la información clínica y administrativa de los pacientes en el sistema de salud.
- Evaluación de la calidad de la atención médica: el CMBD se utiliza para evaluar la calidad de la atención médica. Los datos del CMBD se pueden analizar para identificar patrones de atención y comparar el rendimiento de diferentes hospitales y establecimientos de atención médica.
- Investigación médica: los datos del CMBD también se utilizan para investigaciones médicas. Los investigadores pueden utilizar los datos para estudiar las tendencias en la atención médica, identificar factores de riesgo para diferentes enfermedades y desarrollar nuevos tratamientos.
- Planificación de políticas de salud: el CMBD también se utiliza para la planificación de políticas de salud. Los datos se pueden utilizar para identificar las necesidades de atención médica de la población y desarrollar políticas y programas para abordar esas necesidades.
- Gestión de recursos: el CMBD se utiliza para gestionar los recursos en el sistema de salud. Los datos se pueden utilizar para planificar la utilización de los recursos médicos, incluyendo camas de hospital, personal y equipos.

4.4. Investigación sobre la infección por VIH/Sida a partir de la información disponible en el CMBD en España

El CMBD se ha usado como fuente para realizar numeras investigaciones en el campo de la medicina hospitalaria en diferentes enfermedades y situaciones clínica, con más de 300 publicaciones recogidas en PubMed. De forma específica, el CMBD fue usado como fuente para la realización de varios estudios retrospectivos relacionados con la población con infección por el VIH. Usando los términos MeSH "HIV" y "Minimum Basic Data Set" se han identificado las publicacones relacionadas con el VIH/Sida que se describen a continuación.

Álvaro-Meca et al. (131) evaluaron las tendencias epidemiológicas de los diagnósticos de cáncer en niños infectados por el VIH en España de 1997 a 2008. Los niños infectados

por el VIH experimentaron un drástico descenso en la tasa de diagnósticos de neoplasias definitorias de Sida y un aumento en la tasa de diagnósticos de neoplasias definitorias de Sida. La tasa global de diagnósticos de cáncer no disminuyó y la incidencia seguía siendo elevada en los niños infectados por el VIH en España.

Medrano et al. (132) analizaron la mortalidad entre los pacientes infectados por el VIH en la unidad de cuidados intensivos (UCI) y el impacto de la coinfección por el VIH/VHC y la sepsis grave en la mortalidad entre los años 2005 y 2010. La infección por VIH se relacionó con una mayor frecuencia de sepsis grave y muerte entre los pacientes ingresados en la UCI. Además, la coinfección VIH/VHC contribuyó a un mayor riesgo de muerte tanto en presencia como en ausencia de sepsis grave.

Álvaro-Meca et al. (133) estudiaron la incidencia y la mortalidad de la enfermedad por tuberculosis en España, así como su recurrencia, tendencia y mortalidad desde 1997 hasta 2010 en pacientes infectados por el VIH en comparación con sujetos no infectados. Se objetivó una diminución en las tasas del diagnóstico y de la mortalidad en ambos grupos; sin embargo, dichas tasas siguieron siendo más altas en los pacientes seropositivos.

Álvaro Meca et al. (134) evaluaron la tasa de candidiasis en niños infectados por el VIH en España en la era de la terapia antirretroviral de gran actividad entre los años 1997 y 2008. Aunque la tasa de candidiasis seguía siendo superior a la de la población general (de 1997 a 2008), los diagnósticos de candidiasis disminuyeron entre los niños infectados por el VIH a lo largo de la era de la TAR, dejando de ser un problema sanitario importante entre los niños con infección por el VIH.

Álvaro-Meca et al. (135) estudiaron la incidencia de la enfermedad por micobacterias no tuberculosas y la tasa de mortalidad relacionada con dicha infección, además analizaron las tendencias de estas variables según la infección por el VIH entre los años 1997 y 2010. La infección por el VIH se asoció a una mayor incidencia de la enfermedad por micobacterias no tuberculosas y a una mayor mortalidad que en la población general, pero estas tasas disminuyeron en el grupo seropositivo desde 1997-1999 hasta 2004-2010, mientras que la incidencia de la enfermedad por micobacterias no tuberculosas aumentó en el grupo seronegativo.

Álvaro Meca et al. (136) evaluaron las variaciones estacionales y si la exposición a corto plazo a factores de riesgo ambientales (como el clima y la contaminación del aire) estaba asociada con los ingresos hospitalarios relacionados con la tuberculosis pulmonar en

pacientes infectados por el VIH en España durante la era de la TARc. Los datos obtenidos sugieron una aparente variación estacional en los ingresos hospitalarios de pacientes infectados por el VIH con diagnóstico de tuberculosis pulmonar (verano/otoño frente a invierno/primavera), así como una relación con la exposición a corto plazo a factores de riesgo ambientales, como la temperatura y el dióxido de nitrógeno y el dióxido de azufre ambientales.

Miguel-Diez et al. (137) estudiaron las tendencias de la incidencia de ingresos hospitalarios y mortalidad intrahospitalaria en pacientes infectados por el VIH con EPOC en la era TARc en España durante el periodo comprendido entre 1997 y 2012. Los autores concluyeron que hubo un aumento constante y significativo de la incidencia de ingresos hospitalarios por EPOC y mortalidad intrahospitalaria entre los individuos coinfectados por el VIH/VHC y una disminución entre los individuos no infectados por el VIH.

Álvaro-Meca et al. (138) estudiaron las tendencias del tromboembolismo pulmonar en pacientes infectados por el VIH durante la era de la TARc en España entre los años 1997 y 2013. Las tendencias epidemiológicas de la tromboembolismo pulmonar en los pacientes con infección por VIH/Sida cambiaron, con un aumento en la incidencia y la mortalidad en los pacientes coinfectados por el VIH/VHC y una disminución en los no infectados por el VIH.

Mayoral Cortés et al. (139) estudiaron la incidencia de la tuberculosis pulmonar en pacientes con infección por VIH en la provincia de Sevilla en España en el año 1998. Se observó una elevada incidencia de la tuberculosis pulmonar en adultos jóvenes, lo que sugirió un alto grado de endemicidad de la tuberculosis entre la población de dicha localidad. Los autores destacaron el interés del uso de los registros hospitalarios como el CMBD para estimar la incidencia de la enfermedad como un medio fácilmente accesible y de bajo coste.

Javier Marco et al. (140)describieron con qué frecuencia los informes de alta de las unidades de Medicina Interna incluían la desnutrición entre los pacientes con VIH. También se valoraron los factores asociados a este diagnóstico y sus implicaciones pronósticas. Se concluyó que la infección por VIH era un factor de riesgo de desnutrición.

Jensen et al. (141) estudiaron el cambio en la tasa de infección por micobacterias en niños y adolescentes infectados por el VIH en la era TARGA entre los años 1997 y 2008. La

tasa de enfermedad micobacteriana disminuyó entre los niños infectados por el VIH, pero la incidencia seguía siendo mayor que en la población general.

Latasa Zamalloa et al. (142) describieron la causa de ingreso y las comorbilidades asociadas de las personas transgénero en España entre 2001 y 2013. Los autores recomendaron abordar la salud de las personas transgénero de una forma integral, teniendo en cuenta sus necesidades sanitarias específicas, incluidas las modificaciones corporales, la salud mental, el VIH y otras infecciones, mediante estrategias que incluyesen la mejora de la investigación, la adaptación de los sistemas de información sanitaria y el desarrollo de directrices y la formación de los proveedores de atención sanitaria en la salud de la persona transgénero.

Jiménez de Ory et al. (143) estudiaron los cambios sociodemográficos y las tendencias en las tasas de diagnóstico de VIH y transmisión perinatal en España desde 1997 hasta 2015. Se observó un descenso de los diagnósticos y la transmisión perinatal del VIH. Sin embargo, se detectó un aumento de los diagnósticos de VIH en adolescentes con enfermedad de transmisión sexual Los autores recomendaron realizar campañas de concienciación dirigidas a los adolescentes para prevenir la infección por VIH por contacto sexual.

Muñoz Moreno et al (144) estudiaron la tendencia temporal de la endocarditis infecciosa en pacientes infectados por el VIH en España entre los años 1997 y 2014, concluyendo que las tasas de ingresos hospitalarios, la incidencia y la mortalidad relacionadas con el diagnóstico de endocarditis infecciosa en pacientes con infección por VIH/Sida en España disminuyeron de 1997 a 2014, mientras que se produjeron otros cambios en las características clínicas, el modo de adquisición y los patógenos durante ese período.

Monreal et al. (145) evaluaron las tendencias temporales en la proporción de infección por VIH entre pacientes con ictus en España entre los años 1997 y 2012. En este período, se produjo un aumento de la proporción de la infección por VIH entre los pacientes hospitalizados por ictus, independientemente de los factores de riesgo vascular clásicos, lo que refuerza el papel de la infección por VIH como factor de riesgo cerebrovascular.

Podemos concluir a tenor de todo lo expuesto, que el CMBD es una herramienta que ha demostrado una utilidad extraordinaria en la investigación clínica y que ha permitido un conocimiento más profundo del sistema nacional de salud para un posterior diseño de políticas sanitarias efectivas sobre todo de la población VIH.

5. Investigación en el VIH

5.1. Investigación en el VIH en el mundo

La larga historia de la investigación sobre el VIH comenzó en 1981, cuando se publicaron por vez primera casos de lo que más tarde se conocería como Sida(146). La comunidad médica y científica mundial se mostró inicialmente impotente ante esta enfermedad y rápidamente aunó esfuerzos y movilizó recursos con el fin de obtener algún conocimiento. A principios de 1983, se aisló en el Instituto Pasteur de París (Francia) un nuevo retrovirus humano a partir de un cultivo derivado de una muestra de biopsia de un paciente con adenopatías (147). Al cabo de un año, se habían aislado virus similares de pacientes con Sida(148,149) y se había desarrollado una prueba serológica para llevar a cabo grandes estudios epidemiológicos, que confirmaron que el VIH causaba el Sida(150,151). La clonación y la posterior secuenciación molecular del virus en 1985 (152–154) sentó las bases para desarrollar pruebas de carga viral y resistencia para controlar a los pacientes infectados por el VIH. El genoma del VIH también constituyó la base para la identificación de la diversidad, el origen y la evolución del VIH, y fue crucial para demostrar que tanto el VIH-1 como el VIH-2, son el resultado de transmisiones entre especies del virus de la inmunodeficiencia en los simios (155,156).

Poco después del aislamiento del VIH-1, se identificó la molécula de superficie celular CD4 como el principal receptor del VIH(157–159). Este descubrimiento reforzó la justificación del control de los recuentos de células CD4+ en el seguimiento clínico de los pacientes infectados por el VIH. Varios años más tarde, a mediados de la década de los 90, se identificaron los principales correceptores del VIH: El receptor 4 de quimiocinas CXC (CXCR4) y el receptor 5 de quimiocinas CCC (CCR5)(160,161). Posteriormente, se identificaron las dianas de los fármacos antirretrovirales utilizados desde mediados de la década de 1990 para prevenir y tratar eficazmente la infección por VIH.

En 1993, una técnica de PCR utilizada para medir los niveles virales en plasma durante la fase inicial de la infección por VIH detectó hasta 20 millones de copias de ARN por ml de plasma (162). En 1998, se demostró el agotamiento inicial de los CD4+ en el tracto gastrointestinal en el momento agudo mediante estudios realizados en monos Rhesus a los pocos días de la infección por el VIS (virus de Inmunodeficiencia en simios)(163).

Otros estudios en modelos de simios fueron cruciales para determinar que la replicación vírica no es el único factor implicado en la progresión de la enfermedad (164–166)

La infección por VIH se relacionó con la activación inmunitaria en los primeros días de la investigación, después de que un estudio de 1983 informara de la hiperactivación de los linfocitos B (167). Con el tiempo se ampliaron los estudios sobre el sistema inmunitario y se demostró como las citocinas y las quimiocinas proinflamatorias contribuyen a la activación crónica del sistema inmunitario. En 2011, un informe demostró que las células natural killer (NK) pueden contribuir al control del VIH mediante el reconocimiento del virus por los receptores de inmunoglobulina KIR(168). El mismo estudio demostró que el virus elude estas respuestas mediante la selección de polimorfismos de secuencia en los KIR(168).

A lo largo de los años, numerosos estudios han demostrado la relación entre la genética del huésped y las variaciones en la infección por VIH, la respuesta al tratamiento, el desarrollo de resistencias y la progresión de la enfermedad. Las variaciones en los resultados inmunológicos y virológicos dependen de un complejo equilibrio de factores virales y del huésped, incluidas las variantes del antígeno leucocitario humano (HLA), que pueden modular las respuestas inmunitarias innatas y adaptativas. Varios alelos HLA-B (incluidos HLA-B*57, HLA-B*27 y HLA-B*13) se han asociado sistemáticamente con el control vírico, incluso en interacción con genotipos KIR (169–171).

Otro de los retos de la investigación es la eliminación de los reservorios del VIH. El conocimiento de los reservorios del VIH y los mecanismos de persistencia han allanado el camino para el uso de enfoques innovadores para intentar eliminar el virus latente. A mediados de la década de 1990, una serie de informes arrojaron luz sobre los reservorios del VIH, demostrando la existencia de provirus en las células T CD4+ en reposo infectadas de forma latente (172) y que, incluso después de un tratamiento antirretroviral satisfactorio, estos reservorios pueden producir virus tras la activación celular (173–175) Estudios clínicos demostraron que los inhibidores de la histona deacetilasa, *Vorinostat*, junto con un tratamiento antirretroviral intensificado, pueden inducir la transcripción del VIH, lo que se traduce en mayores niveles de ARN no asociado a las células en más del 80% de los pacientes del ensayo(176).

En las últimas décadas, la evolución de la infección por VIH se ha visto revolucionada por los avances en las opciones terapéuticas disponibles, que han transformado la infección por VIH de una enfermedad mortal en una enfermedad crónica que apenas afecta a la esperanza de vida. El primer paso en el tratamiento del VIH se produjo en 1987, cuando un ensayo clínico demostró que la zidovudina (AZT) reducía la mortalidad y las infecciones oportunistas en pacientes con Sida (177). Una década más tarde, se produjo un gran avance con la introducción de una terapia que combinaba varios fármacos para limitar el desarrollo de resistencia. Los estudios demostraron que la introducción de un inhibidor de la proteasa junto con dos inhibidores de la transcriptasa inversa en la terapia antirretroviral combinada reducía notablemente la morbimortalidad(178–180). La investigación clínica sigue mejorando las opciones terapéuticas disponibles, con el objetivo de controlar con éxito la replicación vírica con unos efectos secundarios mínimos y unos regímenes de tratamiento manejables. Varios estudios han demostrado que el inicio precoz de la terapia antirretroviral tras la infección tiene efectos beneficiosos, y la OMS ha actualizado sus directrices consolidadas para recomendar el inicio del TAR a todo paciente con infección por VIH independientemente de los recuentos de CD4+. El éxito del TAR crónico es una evidencia más que demostrada y un estudio realizado a principios de 2013 mostró que la esperanza de vida adulta en Sudáfrica aumentó en 11 años en el período comprendido entre 2003 (justo antes de que la TAR estuviera disponible en el sistema sanitario de Sudáfrica) y 2011, lo que pone de relieve el beneficio global para la salud y su rentabilidad(181).

A pesar del éxito de la TAR, que produce una supresión viral duradera para las personas que viven con el VIH, se requiere un tratamiento de por vida y no hay cura. El VIH se integra en las células del huésped y permanece ahí durante toda la vida de la célula. Estas células no se reconocen como extrañas porque son silentes desde el punto de vista de la transcripción, sin embargo, contienen virus competentes para la replicación que pueden provocar la reaparición de la infección si se interrumpe la TAR. Por todo ello, una nueva prioridad científica es la búsqueda de una posible cura para el VIH tras algunos resultados científicos importantes que sugieren que una cura, o al menos una cura "funcional" (es decir, el control permanente de la infección por VIH sin erradicarla por completo), podría estar al alcance de la mano:

 Los controladores de elite (0,1-0,5% del número total de individuos infectados por el VIH) permanecían asintomáticos y mantenían recuentos normales de linfocitos T CD4+ durante más de una década. Estos individuos controlan espontáneamente la replicación vírica, lo que da lugar a niveles víricos indetectables en el plasma (182,183). Se han estudiado y a día de hoy se dispone de información detallada sobre la predisposición genética y las características inmunológicas de estos individuos que les permiten controlar la infección vírica; por ejemplo, tienen una sobrerrepresentación de alelos HLA-B específicos y potentes respuestas inmunitarias supresoras mediadas por células T CD8+(184–186).

- En 2013, los investigadores publicaron el informe del estudio VISCONTI (control viroinmunológico sostenido tras la interrupción del tratamiento), en el que se identificaba a un grupo de pacientes que habían iniciado el tratamiento antirretroviral en la fase aguda de la infección por VIH y que posteriormente habían controlado la replicación vírica (187). Estos pacientes pudieron seguir controlando la replicación viral 10 años después, a pesar de la interrupción de la TAR.
- Otro caso adicional que reforzó la idea de lograr una cura funcional del VIH es el de un lactante nacido de una madre seropositiva e infectada por el VIH, que recibió tratamiento a las 30 horas de nacer y, a pesar de la interrupción del tratamiento a los 18 meses de edad, los niveles plasmáticos de ARN del VIH permanecieron indetectables (188).
- Trasplantes de células madre. Una noticia que hizo que la búsqueda de una cura para el VIH volviera a estar en la agenda científica fue el caso del llamado "paciente de Berlín". Este paciente tuvo una supresión viral de larga duración a pesar de la ausencia de tratamiento antirretroviral tras el trasplante de células madre de un donante portador de la mutación protectora CCR5 (189).
- Trasplante alogénico de células madre hematopoyéticas (TCMH). En un caso más reciente, se descubrió que el ADN del VIH-1 era indetectable en las células mononucleares de sangre periférica y en el tejido rectal de personas que tomaban tratamiento antirretroviral pero que habían recibido un trasplante de donantes con CCR5 de tipo salvaje (los "pacientes de Boston"). Cabe destacar que el virus seguía siendo indetectable incluso unas semanas después de finalizar la terapia antirretroviral, lo que sugiere que la infección de las células del donante (incluso de las células CCR5 de tipo salvaje potencialmente susceptibles) se había evitado mediante la terapia antirretroviral previa (190). Sin embargo, es importante señalar que otro estudio reciente informó de que el TCMH autólogo para el linfoma relacionado con el VIH no dio lugar a la eliminación del VIH; de hecho, se detectó ARN del VIH en nueve de cada diez participantes en el estudio y ADN del VIH en los diez pacientes(191).

La comunidad científica del VIH necesita considerar enfoques innovadores para lograr una posible cura del VIH, incluidos el tratamiento inmunológico, las vacunas terapéuticas, la terapia génica y el trasplante de médula ósea, y acercarse a otras disciplinas científicas, como la oncología, para obtener nuevos conocimientos. En 2011 y 2016, la Sociedad internacional de Sida convocó a grupos de trabajo de expertos con el fin de esbozar una estrategia para desarrollar una cura eficaz (192,193).

Recientemente se ha reunido a un grupo de expertos del mundo académico, la industria y la comunidad, para evaluar los avances recientes y esbozar las prioridades de investigación relacionadas con la cura para los próximos cinco años A continuación se resumen las principales recomendaciones para cada componente de la estrategia (194):

- Comprender los reservorios del VIH.

- Definir y caracterizar las fuentes de los virus competentes para la replicación y el rebote durante la terapia antirretroviral.
- Definir el fenotipo de las células que albergan genomas del VIH intactos.
- Definir la importancia clínica de los provirus defectuosos pero inducibles.
- Definir los mecanismos de proliferación clonal.
- Determinar si las células infectadas que persisten en la terapia antirretroviral son resistentes a la muerte celular.
- Definir el impacto del sexo y otros factores sobre el reservorio y las terapias específicas contra el virus.

- Medición del reservorio del VIH.

- Desarrollar y validar un ensayo de alto rendimiento para cuantificar el reservorio competente para el rebote.
- Desarrollar ensayos que cuantifiquen los lugares de integración.
- Desarrollar ensayos que tengan en cuenta las diferencias cualitativas clave en los transcritos virales.
- Desarrollar métodos para cuantificar la expresión de proteínas del VIH en células y tejidos.
- Desarrollar modalidades de obtención de imágenes que cuantifiquen el tamaño, la distribución y la actividad del reservorio en los tejidos.

- Definir la relación entre los reservorios celulares, la viremia plasmática residual y el virus de rebote.
- Desarrollar ensayos para la monitorización de la carga vírica en el punto de atención y, eventualmente, en el hogar.

- Mecanismos de control del virus.

- Identificar los mecanismos que contribuyen al control del VIS/VIH.
- Definir el papel de los anticuerpos específicos del VIH, las células B y la respuesta inmunitaria innata en la eliminación o el control del virus.
- Definir la dinámica viral y los biomarcadores asociados al control postratamiento.
- Optimizar los modelos de organoides humanos, así como los modelos de ratones y primates no humanos, para estudios relacionados con la curación y la remisión.

- Dirigirse al provirus.

- Desarrollar estrategias mejoradas para revertir la latencia.
- Desarrollar estrategias para silenciar permanentemente el provirus.
- Determinar el impacto de atacar el provirus en el momento de iniciar la terapia antirretroviral.
- Definir el papel del subtipo viral en la eficacia de las intervenciones dirigidas al provirus.

- Atacar el sistema inmunitario.

- Desarrollar enfoques de "reducción y control.
- Desarrollar moduladores inmunitarios.
- Llevar a cabo ensayos clínicos para determinar si las inmunoterapias combinadas darán lugar a una remisión segura y duradera del VIH.

- Terapia celular y génica.

- Definir el nivel de expresión de antígenos necesario para que las inmunoterapias reconozcan las células infectadas.
- Desarrollar estrategias de edición genética dirigidas al provirus.

- Desarrollar estrategias para la producción sostenida in vivo de anticuerpos antivirales.
- Aprovechar los avances en otros campos biomédicos para desarrollar enfoques más seguros y escalables.

- Remisión y curación pediátricas.

- Caracterizar el establecimiento, la persistencia y el potencial para prevenir o revertir la latencia del VIH en lactantes y niños en tratamiento antirretroviral.
- Desarrollar ensayos para supervisar e identificar biomarcadores que permitan predecir la eficacia de los tratamientos de curación del VIH-1.
- Probar inmunoterapias contra el VIH y otras estrategias en lactantes y niños
 Aspectos sociales, conductuales y éticos de la curación.
- Ampliar la participación y la capacitación de la comunidad y las partes interesadas.
- Desarrollar la investigación de la curación del VIH teniendo en cuenta la equidad, la representación y la escalabilidad.
- Establecer normas para la realización segura de investigaciones clínicas.
- Integrar la investigación social, conductual y ética como parte de los ensayos de curación del VIH.
- Desarrollar la capacidad para la investigación básica y los ensayos clínicos en entornos de alta carga y recursos limitados.

En cuanto a los métodos de prevención de la transmisión, durante varios años el uso del preservativo junto con la educación y los cambios de comportamiento fueron los únicos medios de prevención eficaz contra la infección por VIH. El primer hito en términos de prevención medica fue la prueba de que el TAR podía ser eficaz en la prevención de la transmisión materno-infantil del VIH (195). Una década después, en 2005 y 2007, una serie de importantes ensayos clínicos aleatorizados demostraron que la circuncisión masculina proporciona cierto grado de protección frente a la infección (196–198). Se evaluó la eficacia y la seguridad geles vaginales de tenofovir aplicado localmente antes y después del coito, lo que demostró que la infección por VIH podía reducirse hasta un 54% en función de los niveles de adherencia(199). En 2011, un estudio aplicó el concepto de

utilizar una terapia antirretroviral eficaz para hacer indetectable la carga viral y limitar así la infección por transmisión sexual en parejas serodiscordantes, y sus resultados se encuentran entre los más importantes en la prevención del VIH, ya que se demostró una reducción del 96% en la tasa de transmisión (200).

A pesar de los muchos éxitos conseguidos que se han detallado previamente, todavía quedan por abordar varias cuestiones fundamentes para el manejo global de esta epidemia. En primer lugar, a pesar de la disminución de su incidencia, la epidemia mundial de Sida sigue teniendo una gran relevancia, sobre todo en las poblaciones de mayor riesgo. En segundo lugar, aunque el tratamiento proporciona un control vírico satisfactorio, el VIH sigue siendo persistente y no está erradicado, y las pruebas y el tratamiento siguen sin aplicarse lo suficiente a muchas personas en entornos con recursos limitados. En tercer lugar, la terapia antirretroviral no restablece por completo el sistema inmunitario y, por consiguiente, la salud. Además, se asocia a efectos secundarios considerables y sigue siendo un compromiso de por vida. Por otra parte, el Sida se asocia a una inflamación crónica y a una activación inmunitaria, que probablemente provocan inmunosenescencia y envejecimiento, así como a coinfecciones que a menudo dan lugar a complicaciones. Por último, una vacuna eficaz contra el VIH sigue siendo difícil de encontrar.

5.2. Investigación en el VIH en el España

La investigación en relación con la infección por el VIH en España ha abordado diferentes retos desde el descubrimiento del virus en la década de los ochenta del s. XX hasta la actualidad, que se han centrado en el control de la epidemia y la mejora de la salud de los infectados, incidiendo en ámbitos como la prevención, la detección temprana, su abordaje clínico y tratamiento.

También los grupos de investigación españoles han desarrollado una importante labor en el ámbito de la investigación básica, para la determinación de las bases genéticas del virus y su incidencia de cara a favorecer el desarrollo de tratamientos y la creación de una vacuna, integrándose y vinculándose progresivamente con los grupos y redes internacionales del área(201,202).

La investigación sobre el VIH en España en el período 1997-2020 ha estado marcada por tres hitos modélicos:

- La creación en 1997 del Grupo de Estudio de Sida de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GeSIDA), cuyos estudios han sido publicados en prestigiosas revistas constituyéndose en un importante referente de la investigación española sobre el VIH.
- La creación en 1999 de la Fundación para la Investigación y Prevención del Sida en España (FIPSE), dependiente de la Secretaria del Plan Nacional sobre el Sida a instancias del Ministerio de Sanidad y Consumo, que fue la primera agencia financiadora específica de la investigación sobre el Sida en nuestro país.
- La apuesta en 2003 por parte del Fondo de Investigaciones Sanitarias por la creación de las Redes Temáticas de Investigación Cooperativa, que posibilitó la constitución de la Red de Investigación en Sida (RIS), que agrupaba a los principales grupos de investigación sobre el VIH en España(202). La RIS ha sido desde su creación la red mejor evaluada por parte de comités científicos nacionales e internacionales, siendo hasta hoy un referente a nivel internacional, con una creciente presencia en los grandes consorcios de investigación global y la excelencia de la investigación que realizan sus grupos(203)

La RIS está formada por 37 grupos de investigación distribuidos en tres áreas de investigación (básica, clínica y epidemiológica) (https://www.redris.es). A partir de la RIS, desde el año 2004 se ha creado la cohorte CoRIS de personas con VIH sin

tratamiento previo asociada con muestras biológicas (biobanco) procedentes de 43 centros españoles y que, al igual que el resto de cohortes existentes en España, trata de mejorar los resultados del sistema sanitario español a través de la investigación en servicios de salud(203).

Asimismo, la participación de los investigadores españoles y particularmente de los integrantes de la RIS en iniciativas como cohortes, biobancos, o el impulso de estudios multicéntricos. En total, España cuenta con 4 cohortes relevantes de pacientes infectados por VIH y Sida:

- a) La Cohorte de Red de investigación en Sida CoRIS.
- b) La Cohorte Nacional de Pacientes Pediátricos con Infección VIH (CoRISPe).
- c) Proyecto para la Informatización del Seguimiento Clínico-epidemiológico de la Infección por VIH y Sida (PISCIS).
- d) La cohorte VIH y AdvanCedHIV (VACH).

Todas ellas están coordinadas con otras cohortes a nivel internacional, como COHERE, ART-CC y EuroCOORD(203–205).

Los investigadores españoles participan activamente en ensayos internacionales como SPARTAC, MARAVIBOOST, ChAd-MVA.HIVconsv-BCN01 VACCINE o CombiVacS Study Group, lo que constituye un destacado impulso para la colaboración internacional.

Existe una amplia literatura bibliométrica que ha analizado la investigación sobre el VIH, tanto de forma global(206–209), como a nivel de áreas geográficas (83,92,210)o países(91,93,95,97,104,106,116,117,211).

De forma más específica, algunos trabajos se han centrado en el análisis de la extensión de las prácticas cooperativas y de las redes de colaboración científica(94,212), la identificación de los núcleos temáticos de documentos más citados o "frentes de investigación" en el área (108) o la literatura centrada en aspectos sociales, psico-sociales o económicos, como la estigmatización y discriminación de las personas infectadas(111) (Sweileh, 2019), los programas de intervención centrados en los niños infectados con VIH/Sida(213) (Tran et al., 2019a) o su incidencia en términos demográficos o el impacto de los recursos económicos dedicados a la investigación (214).

Los estudios bibliometricos centrados en la investigación VIH desarrollada en España son de hace dos décadas(121,122,124,215).

Sin embargo, son mucho menos frecuentes las aproximaciones que han tratado de analizar la actividad científica vinculada con las redes de investigación formales articuladas para el impulso de la investigación sobre el VIH, pese al rol esencial que tienen las mismas como organismos que fijan las líneas temáticas de investigación y como instrumentos para la articulación de las interacciones y las prácticas cooperativas de los investigadores.

En este sentido, se puede destacar el estudio de Rosas et al. (2011)(99) que analizó las publicaciones generadas por las diferentes redes o grupos de investigación de ensayos clínicos sobre HIV/AIDS vinculadas al National Institute of Allergy and Infectious Diseases (NIAID) publicados en el período 2006-2008, concluyendo que las mismas presentaban un destacado grado de reconocimiento e impacto y un importante grado de colaboración interdisciplinar; y la contribución de Nye et al. (2021)(201), que evaluó globalmente la producción, influencia y colaboración de la producción científica de la HIV Vaccine Trials Network (HVTN) en relación con la investigación global de las vacunas sobre VIH, constatando la evolución creciente de la producción científica de la red y particularmente la mayor productividad de los investigadores vinculados a la misma, una presencia más extendida de las prácticas cooperativas, con un destacado número de autores ocupando posiciones relevantes en la red de coautorías científicas así un grado de citación y visibilidad de las publicaciones sensiblemente superior en relación con el resto de la producción científica del área.

II. Hipótesis

Esta tesis doctoral se compone de dos partes: un análisis bibliométrico de la producción científica sobre el VIH que hemos denominado serie bibliometría sobre el VIH/Sida; y una segunda parte de aspectos epidemiológicos de pacientes con infección por VIH ingresados en los hospitales españoles, denominada serie epidemiológica sobre el VIH/Sida en España. Por lo tanto, la hipótesis, objetivos, material y métodos, resultados y discusión se han dividido en estos dos apartados, cada uno de los cuales cuenta con diferentes publicaciones como se ha indicado.

Esta tesis doctoral tiene tres hipótesis, dos hipótesis de la serie bibliométrica y una de la serie epidemiológica.

Serie bibliometría sobre el VIH//Sida

Hipótesis 1.

La producción científica sobre el VIH se realiza principalmente en el primer mundo, mientras que, en los países con bajos recursos, la producción científica es más relevante asociada a la colaboración internacional con los países de altos ingresos o entre países en la misma situación de desarrollo económico.

Hipótesis 2.

La producción científica de la investigación española sobre VIH tiene un destacado peso y relevancia a nivel internacional, particularmente asociada al impulso por parte de los investigadores de la Red Española de Investigación del Sida (RIS).

Serie epidemiológica sobre el VIH/Sida en España

Hipótesis 3.

Debido a los cambios epidemiológicos y los avances terapéuticos, el perfil de los pacientes con VIH ingresado en España ha cambiado a lo largo de años, con un aumento de los ingresos por enfermedades no Sida y una disminución de las enfermedades definitorias.

III. Objetivos

Los **objetivos generales y específicos** de la tesis han sido redactados siguiendo las dos series de la investigación planteadas.

Serie bibliometría sobre el VIH//Sida

- 1. Analizar la producción científica mundial sobre el VIH/Sida y la contribución de España a la investigación en el área.
 - 1.1. Cuantificar la actividad científica sobre el VIH/Sida, su evolucion a los largo de los años, identificando las temáticas y la existencia de diferencias en las temáticas o líneas de investigación en los países africanos.
 - 1.2. Evaluar las prácticas cooperativas en los países africanos y la colaboración internacional en el área.
 - 1.3. Describir la investigación española sobre VIH, caracterizando de forma específica la contribución a la misma de la Red Española de Investigación del Sida.

Serie epidemiológica sobre el VIH/Sida en España

- Evaluar la tendencia de ingresos hospitalarios, la comorbilidad asociada y la mortalidad por el VIH/Sida en España según el registro del Conjunto Mínimo Básico de Datos (CMBD).
 - 2.1. Cuantificar la tendencia de la edad y género los ingresos, y de las enfermedades diagnosticas de Sida y de los eventos no definitorios de Sida incluido las neoplasias no Sida.
 - Medir la tendencia de ingresos por infección por VIH/Sida con toxoplasmosis y su epidemiologia.

IV. Material y métodos, resultados y discusión

Estudio bibliométrico 1

Investigación científica sobre el VIH/Sida en África y Oriente Medio: participación y equidad en las colaboraciones y relaciones Norte-Sur.

González-Alcaide G, Menchi-Elanzi M, Nacarapa E, Ramos-Rincón JM. HIV/AIDS research in Africa and the Middle East: participation and equity in North-South collaborations and relationships. Global Health. 2020;16(1):83.

1. Material y Métodos

El proceso seguido a nivel metodológico ha sido el siguiente:

Identificación de la producción científica mundial sobre VIH.

Para la identificación de la literatura científica sobre VIH, se ha tomado como referencia el tesauro *Medical Subject Headings* (MeSH) de la *National Library of Medicine*, seleccionando todos los descriptores relacionados con el virus del VIH, la inmunodeficiencia humana asociada a la infección por VIH y el desarrollo de vacunas para la prevención o el tratamiento clínico de la inmunodeficiencia. En este sentido, se han considerado los siguientes descriptores en el proceso de búsqueda mediante el tesauro que incluyen diferentes variantes y sinónimos en el proceso de búsqueda: *HIV*, *HIV Infections*, *Acquired Immunodeficiency Syndrome* y *AIDS Vaccines*.

Aunque el tesauro MeSH está vinculado a la base de datos *Medline*, a la que se puede acceder de forma gratuita a través de la plataforma *Pubmed*, se ha efectuado una segunda búsqueda de los documentos identificados en *Medline* que a su vez estaban recogidos en las bases de datos de la *Web of Science Core Collection* (WoS-CC). Aunque estas bases de datos no recogen la totalidad de documentos indexados en *Medline/Pubmed*, el hecho de que recojan todas las afiliaciones institucionales (un aspecto solamente considerado desde 2014 en Medline) la convierte en una fuente más idónea para caracterizar la

producción por países y la colaboración de África y Medio Oriente en la investigación sobre VIH en el período analizado.

Las revistas recogidas en WoS-CC constituyen asimismo las fuentes de información de mayor visibilidad a nivel internacional, con lo que el hecho de calcular todos los indicadores del presente estudio a partir de esta fuente de información, ofrece una visión del desarrollo de la investigación de mayor relevancia y repercusión a nivel mundial.

Delimitación de la muestra de documentos analizada

Las búsquedas efectuadas ofrecieron los siguientes resultados: HIV (93.031 documentos), HIV Infections (265.354), Acquired Immunodeficiency Syndrome (76.359) y AIDS Vaccines (7.528). Considerados conjuntamente, al menos uno de estos descriptores fue asignado a 298.718 documentos. A continuación, se restringieron los resultados a los documentos publicados en el período 2010-2017 (n=83.316 documentos) con el propósito de centrar el análisis en la investigación más reciente. No se consideró el año 2018 para evitar el retraso en la indización de documentos, ya que se requiere al menos de un año para disponer de información actualizada en relación a la asignación de los términos MeSH a los documentos (las búsquedas se efectuaron en noviembre de 2018). Posteriormente, se identificaron los documentos estaban a su vez incluidos en las bases de datos de la WoS-CC. Para ello, se buscaron todos los documentos recuperados en la búsqueda inicial a partir de su PMID (identificador unívoco de documentos utilizado como referencia en Medline que está recogido a su vez como un campo bibliográfico en los documentos de la WoS-CC). Un 89,29% (n=74.375) de los documentos estaban recogidos en la WoS-CC. Este conjunto de documentos se ha restringido a su vez seleccionando únicamente las tipologías documentales artículo, revisión y carta (n=68.808). Se trata de los documentos más destacados por el hecho de que transmiten los resultados de investigaciones originales (artículos), sitúan y evalúan el desarrollo de la investigación y resultan de gran relevancia a nivel investigador (revisiones) o aportan críticas, comentarios, información relevante o valoraciones en relación con los estudios publicados (cartas). En la figura 1.1. se recoge el diagrama de flujo seguido para delimitar la muestra de documentos analizada.

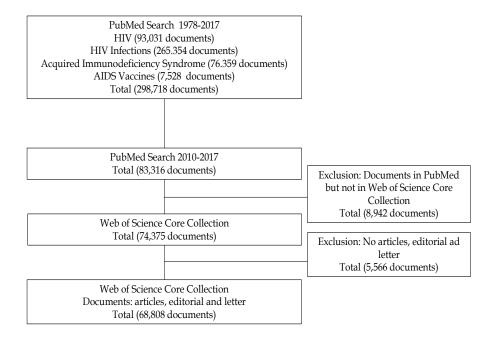


Figura 1. 1. Diagrama de flujo del proceso de selección de la muestra de documentos analizada.

Descarga de la información bibliográfica y revisión de la homogeneidad de los datos

Se descargó la información de los registros bibliográficos seleccionados tras efectuar las búsquedas y aplicar las limitaciones indicadas (n=68.808), generando una base de datos relacional en Microsoft Access, con el propósito de individualizar las instancias múltiples de algunos campos bibliográficos: es el caso de las afiliaciones institucionales, ya que un único campo recoge todas las instituciones y países de los autores firmantes de los documentos; del campo categoría temática de las revistas de publicación, ya que algunas revistas están multiasignadas a más de una categoría; y de los términos MeSH, ya que los documentos presentan múltiples términos MeSH y calificadores asignados para referir los contenidos abordados en los mismos.

Se revisó asimismo la homogeneidad y la calidad de los datos. En este sentido, se revisaron los años de publicación ya que puntualmente en algunos documentos difería la fecha de difusión pública del documento en la web de la revista de la fecha de publicación definitiva en la revista, tomada como referente válido; o se unificó bajo de la denominación de UK los ámbitos geográficos England, Scotland, Wales y Nord Ireland (Inglaterra, Escocia, Gales e Irlanda del Norte), que se presentan individualizados en la WoS-CC.

Identificación de la participación de África y Medio Oriente en la investigación sobre VIH.

Para analizar la participación de África y Medio Oriente en la investigación sobre VIH, se tomó como referente la distribución geográfica de países y regiones de UNAIDS (2018), asignando cada país a su ámbito geográfico tal y como se recoge en esta fuente: América del Norte, Europa Occidental y Central, Asia y el Pacifico, África Oriental y Meridional, América Latina y el Caribe, África Occidental y Central, Oriente Medio y Norte de África, Europa del Este y Asia Central.

Indicadores obtenidos y análisis efectuados

Los indicadores obtenidos y los análisis efectuados se presentan estructurados en tres bloques.

Análisis de la producción científica, colaboración y liderazgo investigador por regiones geográficas.

Para obtener una primera aproximación a la producción científica global sobre VIH, se identificó la producción científica absoluta en número de documentos a partir de las regiones recogidas en UNAIDS, así como la colaboración interregional e internacional y el liderazgo investigador, entendido este último como el grado de participación como primer firmante de los documentos en colaboración.

Análisis de la producción, colaboración y liderazgo investigador de los países de África y Oriente Medio.

Con el objeto de analizar de forma específica la producción sobre VIH de los países de las regiones de África y Oriente Medio, se ha determinado su aporte (número de documentos) y el porcentaje que representa en la producción global del área. En relación con la colaboración y liderazgo investigador, se complementan los valores numéricos y porcentuales de la colaboración internacional con un análisis específico del liderazgo investigador de los top-10 países africanos más productivos, que identifica los principales colaboradores africanos y a nivel mundial de estos países, generando una red de colaboración dirigida, en la que los nodos representan los países y los vínculos la participación de los diferentes países como primeros firmantes, lo que permite identificar

la posición que ocupan en la red los diferentes países y analizar visualmente los vínculos cooperativos establecidos.

Áreas y ámbitos temáticos de investigación en la producción mundial y de África y Oriente Medio.

Se han analizado las áreas y ámbitos temáticos de investigación a partir de las disciplinas que contribuyen en mayor medida a la producción científica sobre VIH (determinadas a partir de la clasificación temática de revistas científicas de la WoS-CC) y de los calificadores y los descriptores MeSH asignados a los documentos. Con el objeto de efectuar un análisis comparativo que permita determinar diferentes orientaciones en la investigación, se presentan los datos globales a nivel mundial y desagregados en función de la participación únicamente de países africanos en las publicaciones y de la participación de países africanos en colaboración con países de otras regiones geográficas. Se ha estimado el coeficiente de correlación de Pearson existente entre estas tres agrupaciones de datos para determinar el grado de afinidad entre la producción científica africana y mundial.

Finalmente, se ha generado una red de co-ocurrencia de términos MeSH, con el propósito de analizar las interrelaciones establecidas entre los mismos e identificar las diferentes orientaciones o ámbitos temáticos más específicos de la investigación sobre VIH en África y Medio Oriente.

Para la realización de todos los procesos y la obtención de los indicadores descriptos se han utilizado los programas de análisis y generación de redes Pajek y VoSViewer (Version 1.6.8, Center for Science and Technology, Leiden University).

2. Resultados

Producción científica por regiones y grado de colaboración internacional

La producción científica sobre VIH está dominada por América del Norte (que ha participado en el 55,6% de los documentos analizados) y por Europa Occidental y Central (35,79%). Ambas regiones totalizan conjuntamente una participación en el 82,13% de la producción científica mundial sobre VIH en la fuente analizada. Por su parte, las tres regiones de África y Oriente Medio han participado en el 21,61% de los documentos, si bien, la contribución de África Oriental y Meridional (17,8%) se sitúa muy por encima de la observada en África Occidental y Central (3,34%) y en Oriente Medio y el Norte de África (1,18%) (tabla 1.1.). Esta reducida producción científica contrasta con los elevados porcentajes de colaboración observados en estas regiones, ya que el 82,42% de los documentos fueron firmados en colaboración con países de otras regiones en el caso de África Oriental y Meridional y el 78,39% en África Occidental y Central, frente a un 43,22% de documentos en colaboración en América del Norte y un 47,99% en Europa Occidental y Central. También resulta muy llamativo el análisis de la participación como primeros firmantes en los documentos en colaboración de los países de las regiones de África and Oriente Medio (30-36%), al ser valores muy inferiores comparados con los valores observados en el caso de los países de Europa occidental y América del Norte (45-54%) (tabla 1.1.).

Tabla 1. 1. Producción científica sobre el VIH por regiones geográficas (2010-2017)

Área geográfica	Docume totales			ción onal	Colabora interregion primer au	onal como
	N	%	N	%	N	%
América del Norte	38259	55,60	16535	43,22	8914	53,91
Europa Occidental y Central	24625	35,79	11817	47,99	5342	45,21
Asia y el Pacífico	12473	18,13	6019	48,26	2760	45,85
África Oriental y Meridional	12249	17,80	10096	82,42	3633	35,98
América Latina y El Caribe	4358	6,33	2073	47,57	724	34,93
África Occidental y Central	2300	3,34	1803	78,39	546	30,28
Oriente Medio y el Norte de África	814	1,18	467	57,37	156	33,40
Europa del Este y Asia Central	632	0,92	496	78,48	104	20,97
Total	68808	100	22082	32,0922	N/A	N/A

Producción científica por países y grado de colaboración internacional

La producción de los países de África y Medio Oriente se presenta concentrada fundamentalmente en Sudáfrica, que ha participado en el 40,94% de los documentos firmados por los países de este ámbito geográfico. A continuación, aunque a mucha distancia se sitúan Uganda (12,97%), Kenia (10,71%), Malawi (6,19%) y Tanzania (6,03%), todos ellos países de África Oriental y Meridional. La producción de otros 13 países se situó con valores comprendidos entre el 1,31% y el 4,73% de los documentos, con Nigeria como principal referente de África Occidental y Central (4.59%) e Irán de Oriente Medio y Norte de África (2,02%). Finalmente, otros 45 países han participado en menos del uno por ciento de la producción científica de África y Oriente Medio (tabla 1. 2.). Entre los países más productivos (>100 documentos), la producción científica de Irán, Etiopía, Nigeria y Sudáfrica es la que presenta un menor grado de colaboración internacional y una participación más destacada como primeros firmantes frente a los valores observados en el caso de otros países, muchos de ellos con valores de colaboración internacional por encima del 90% de los documentos y con una participación como primeros firmantes por debajo del 30%. Esta situación es similar e incluso más acentuada en la mayoría de los países de menor producción científica (tabla 1. 2.).

Tabla 1. 2. Producción científica de África y Oriente Medio sobre el VIH por países (2010-2017)

Dofe	Región	Total do	cumentos	Colabora internaci		Colaboración internacional y primer autor		
País	UNAIDS*	N	% Documentos africanos	N	%	N	%	
Sudáfrica	E & SA	6063	40,94	4620	76,2	1769	38,29	
Uganda	E & SA	1921	12,97	1797	93,55	550	30,61	
Kenia	E & SA	1586	10,71	1521	95,9	327	21,5	
Malawi	E & SA	916	6,19	865	94,43	214	24,74	
Tanzania	E & SA	893	6,03	832	93,17	189	22,72	
Zimbabue	E & SA	700	4,73	672	96	134	19,94	
Zambia	E & SA	697	4,71	684	98,13	140	20,47	
Nigeria	W & CA	679	4,59	425	62,59	144	33,88	
Etiopia	E & SA	555	3,75	332	59,82	132	39,76	
Camerún	W & CA	421	2,84	363	86,22	111	30,58	
Botsuana	E & SA	375	2,53	356	94,93	77	21,63	
Mozambique	E & SA	303	2,05	293	96,7	80	27,3	
Irán	ME & NA	299	2,02	102	34,11	57	55,88	
Ghana	W & CA	270	1,82	229	84,81	50	21,83	
Ruanda	E & SA	269	1,82	264	98,14	78	29,55	
Senegal	W & CA	231	1,56	214	92,64	39	18,22	
Costa de Marfil	W & CA	225	1,52	206	91,56	40	19,42	
Burkina Faso	W & CA	196	1,32	180	91,84	49	27,22	
República democrática del Congo	W & CA	119	0,80	106	89,08	27	25,47	
Egipto	ME & NA	108	0,73	89	82,41	7	7,87	
Arabia Saudí	ME & NA	107	0,72	81	75,7	23	28,4	
Namibia	E & SA	100	0,68	95	95	11	11,58	
Suazilandia	E & SA	98	0,66	95	96,94	10	10,53	
Qatar	ME & NA	89	0,60	89	100	38	42,7	
Benín	W & CA	79	0,53	75	94,94	6	8	
Gambia	W & CA	78	0,53	75	96,15	19	25,33	
Gabón	W & CA	76	0,51	68	89,47	17	25	
Guinea Bissau	W & CA	69	0,47	69	100	32	46,38	
Mali	W & CA	69	0,47	65	94,2	10	15,38	
Togo	W & CA	67	0,45	59	88,06	14	23,73	
Lesoto	E & SA	58	0,39	57	98,28	17	29,82	
Marruecos	ME & NA	55	0,37	26	47,27	9	34,62	
Líbano	ME & NA	52	0,35	42	80,77	11	26,19	
Emiratos Árabes Unidos	ME & NA	44	0,30	39	88,64	4	10,26	
Guinea	W & CA	36	0,24	31	86,11	5	16,13	
República del Congo	W & CA	32	0,22	25	78,13	3	12	
República de África Central	W & CA	23	0,16	20	86,96	4	20	
Sudan	ME & NA	23	0,16	21	91,3	5	23,81	
Túnez	ME & NA	23	0,16	10	43,48	5	50	
Angola	E & SA	19	0,13	18	94,74	3	16,67	

Kuwait	ME & NA	16	0,11	10	62,5	2	20
Omán	ME & NA	16	0,11	10	62,5	2	20
Madagascar	E & SA	15	0,10	13	86,67	1	7,69
Níger	W & CA	15	0,10	15	100	1	6,67
Iraq	ME & NA	13	0,09	10	76,92	0	0
Sierra Leona	W & CA	13	0,09	13	100	2	15,38
Jordania	ME & NA	12	0,08	9	75	4	44,44
Liberia	W & CA	12	0,08	12	100	1	8,33
Libia	ME & NA	12	0,08	7	58,33	3	42,86
Burundi	W & CA	11	0,07	11	100	1	9,09
Chad	W & CA	9	0,06	8	88,89	1	12,5
Cabo Verde	W & CA	5	0,03	5	100	2	40
Mauritania	W & CA	5	0,03	5	100	3	60
Mauricio	E & SA	5	0,03	5	100	0	0
Argelia	ME & NA	4	0,03	2	50	1	50
Bahréin	ME & NA	4	0,03	3	75	1	33,33
Guinea Ecuatorial	W & CA	4	0,03	4	100	0	0
Siria	ME & NA	4	0,03	4	100	0	0
Yemen	ME & NA	4	0,03	4	100	1	25
Djibouti	ME & NA	2	0,01	2	100	2	100
Somalia	ME & NA	2	0,01	2	100	2	100
Territorios Palestinos	ME & NA	1	0,01	1	100	0	0
Santo Tomé y Príncipe	W & CA	1	0,01	0	0	0	0
TOTAL	-	14808	100	11964	80,79	N/A	N/A
				l	l	1	

E & SA: África Oriental y Meridional; W & CA: África Central y Occidental; ME & NA: Oriente Medio y Norte de África. N/A: No aplicable

Aunque la investigación africana sobre VIH se caracteriza, tal y como se ha indicado, por los vínculos cooperativos establecidos, particularmente con Estados Unidos, Reino Unido y otros países europeos (75-93% de las colaboraciones), se pueden destacar las colaboraciones intrarregionales de Sudáfrica, que se ha erigido en el principal referente cooperativo de la región, ya que ha colaborado con 34 países diferentes, ha liderado el 41,44% de los vínculos cooperativos y ha participado en un 35,76% de trabajos liderados por investigadores de otros países africanos, siendo el principal país colaborador para los top-10 países africanos más productivos sobre VIH. Ya a mucha distancia y con valores mucho más modestos se sitúa Uganda, con el 14,06% de colaboraciones lideradas y que ha participado en un 11,11% de trabajos liderados por otros países africanos. El resto de países aportan menos de un 10% de vínculos cooperativos. Más allá de Sudáfrica, Uganda y puntualmente de algún otro país como Zimbabue, los vínculos cooperativos que

mantienen los países africanos entre sí presentan valores muy reducidos, constituyendo, por tanto, vínculos de colaboración débiles o esporádicos (tabla 1. 3.).

Tabla 1. 3. Colaboración y liderazgo de los 10 primeros países africanos en los trabajos de investigación sobre el VIH (2010-2017)

		Colaboraci	ón con países africanos		Colaboració	n con países no africanos	
País	Total colaboraciones	N países	N Colaboraciones	Principales colaboradores africanos (n Colaboraciones)	N Países	N Colaboraciones	Principales colaboradores no africanos (n colaboraciones)
Sudáfrica	2810	34	392 (13,95)	Zimbabue (n=44); Uganda (n=39); Malawi (n=34)	43	2418 (86,05)	EEUU (n=961); RU (n=566); Suiza (n=133)
Uganda	896	15	133 (14,84)	Sudáfrica (n=49); Zimbabue (n=18); Tanzania (n=16)	27	763 (85,16)	EEUU (n=309); RU (n=175); Canadá (n=40)
Kenia	537	14	94 (17,50)	Sudáfrica (n=41); Uganda (n=13); Zambia (n=7)	19	443 (82,50)	EEUU (n=227); RU (n=77); Canadá y Países Bajos (n=37)
Malawi	387	14	65 (16,80)	Sudáfrica (n=29); Zimbabue (n=9); Uganda (n=5)	20	322 (83,20)	RU (n=106); EEUU (n=101); Canadá (n=29)
Tanzania	324	13	53 (16,36)	Sudáfrica (n=15); Uganda (n=11); Kenia y Zambia (n=5)	21	271 (83,64)	EEUU (n=93); RU (n=49); Suecia (n=35)
Zimbabue	216	12	54 (25)	Sudáfrica (n=31); Malawi (n=7); Uganda (n=5)	18	162 (75)	RU (n=56); EEUU (n=49); Noruega(n=19)
Zambia	257	14	52 (20,23)	Sudáfrica (n=21); Zimbabue (n=7); Uganda (n=6)	20	205 (79,77)	EEUU (n=85); RU (n=53); Suiza (n=14)
Nigeria	190	10	32 (16,84)	Sudáfrica (n=17); Ghana (n=4); Kenia, Arabia Saudí y Uganda (n=2)	20	158 (83,16)	EEUU (n=89); RU (n=29); Alemania (n=6)
Etiopía	194	9	29 (14,95)	Sudáfrica (n=17); Uganda (n=3); (Sudan y Kenia n=2)	21	165 (85,05)	EEUU (n=34); Bélgica (n=31); RU (n=18)
Camerún	166	12	42 (25,30)	Sudáfrica (n=21); Burkina Faso (n=4); (Costa de Marfil y Madagascar n=3)	14	124 (74,70)	Francia (n=43); EEUU (n=33); Italia (n=13)
No líder de la	colaboración	Colaboració	on con países africanos		Colaboración	con países no africanos	
País	Total colaboraciones	N países	N Colaboraciones	Principales colaboradores africanos (n Colaboraciones)	N países	N Colaboraciones	Principales colaboradores no africanos (n colaboraciones)
Sudáfrica	2862	25	309 (10,80)	Uganda (n=49); Kenia (n=41); Zimbabue (n=31)	37	2553 (89,20)	EEUU (n=1418); RU (n=439); Suiza (n=134)
Uganda	1248	16	96 (7,69)	Sudáfrica (n=39); Kenia (n=13); Tanzania (n=11)	21	1152 (92,31)	EEUU (n=741); RU (n=176); Canadá (n=69)
Kenia	1194	19	80 (6,70)	Sudáfrica (n=27); Uganda (n=16); Botsuana y Tanzania (n=5)	22	1114 (93,30)	EEUU (n=789); RU (n=95); Canadá (n=83)
Malawi	652	12	65 (9,97)	Sudáfrica (n=34); Uganda (n=8); Zimbabue (n=7)	21	587 (90,03)	EEUU (n=328); RU (n=122); Italia (n=34)
Tanzania	643	9	53 (8,24)	Sudáfrica (n=19); Uganda (n=16); Botsuana (n=6)	18	590 (91,76)	EEUU (n=335); RU (n=95); Dinamarca (n=26)
Zimbabue	538	9	88 (16,36)	Sudáfrica (n=44); Uganda (n=18); Malawi (n=9)	20	450 (83,64)	EEUU (n=216); RU (n=156); Países Bajos y Suiza (n=17)
Zambia	544	12	66 (12,13)	Sudáfrica (n=28); Kenia (n=7); Uganda (n=6)	19	478 (87,87)	EEUU (n=297); RU (n=77); Suiza(n=27)
Nigeria	281	12	50 (17,79)	Sudáfrica (n=27); Uganda (n=6); Ghana y Kenia (n=3)	14	231 (82,21)	EEUU (n=155); RU (n=27); Países Bajos(n=17)
Etiopía	200	8	20 (10)	Sudáfrica (n=7); Botsuana y Kenia (n=3)	15	180 (90)	EEUU (n=65); Suecia (n=40); Países Bajos (n=18)
Camerún	252	10	37 (14,68)	Sudáfrica (n=22); Burkina Faso y Gabón (n=3)	15	215 (85,32)	Francia (n=88); EEUU (n=73); Alemania (n=13)

EEUU: Estados Unidos; RU: Reino Unido.

La figura 1. 2. recoge gráficamente la red de colaboraciones, que muestra a Estados Unidos en el centro de la misma como principal referente de la colaboración internacional en la producción científica sobre VIH en África, con una destacada presencia también de Reino Unido, Canadá y de países europeos como Francia, Suiza, Países Bajos y Bélgica. Como se ha indicado, Sudáfrica constituye el principal referente africano de la investigación en VIH en la red, ya que además de las colaboraciones que ha establecido con Estados Unidos, Canadá y los países europeos, desempeña un destacado papel en las colaboraciones intrarregionales.

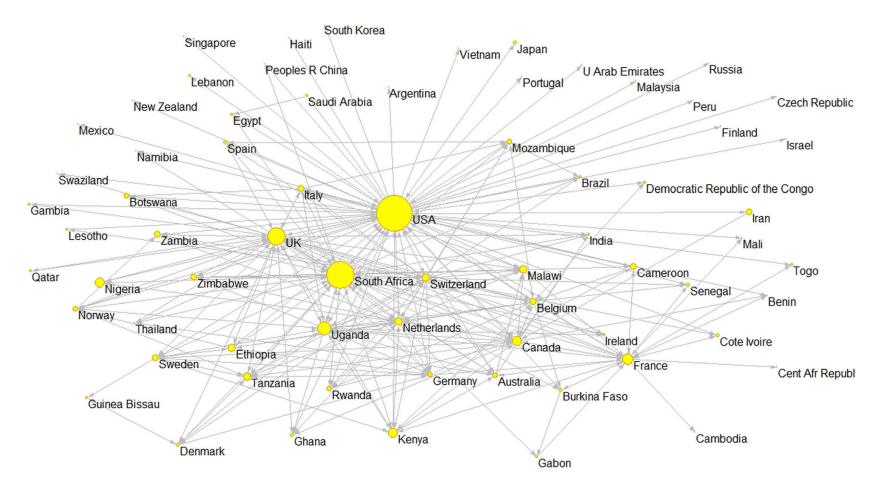


Figura 1. 2. Red de colaboración internacional de trabajos de investigación sobre el VIH de los países de África y Oriente Medio (2010-2017).

Ámbitos temáticos abordados en la investigación sobre VIH en África y Oriente Medio

El análisis de correlaciones efectuado entre la producción científica mundial sobre VIH y la generada únicamente por países africanos o las investigaciones en la que estos países participan en colaboración con países de otras regiones geográficas, ha puesto de manifiesto que existen diferentes orientaciones disciplinares y temáticas en la investigación. Así, el menor grado de correlación a nivel de disciplinas involucradas en la investigación (tabla 1. 4.), se produce al comparar la producción científica mundial y la investigación en la que únicamente participan países africanos (n=0,73); valor que contrasta cuando se compara la afinidad entre la investigación mundial y la investigación en la que participan los países africanos en colaboración con países de otros ámbitos geográficos (n=0,97). También muestra cierto grado de disimilitud (n=0,79) la correlación entre la producción científica de países africanos comparada con la participación de países africanos en colaboración con países de otros ámbitos geográficos. Uno de los aspectos más llamativos del análisis disciplinar de la partición de los países de África y Oriente Medio en la producción mundial sobre VIH es que la categoría temática Public, Environmental & Occupational Health es la que concentra el mayor número de publicaciones cuando participan únicamente países de este ámbito geográfico, por encima de Infectious Diseases e Immunology, que se sitúan como los principales referentes tanto en la producción global sobre VIH como en los documentos en los que los países africanos participan en colaboración con países de otros ámbitos geográficos. También destaca la relevancia de Medicine, General & Internal y Health Policy & Services en las publicaciones en las que únicamente participan países de África y Oriente Medio (tabla 1.4.).

Tabla 1. 4. Documentos de investigación sobre el VIH por categorías de Web of Science (total de documentos mundiales, documentos de países africanos y documentos de países africanos en colaboración con otras regiones, 2010-2017).

	Total do	cumentos	Sólo los africanos		Colaboración entre los países africanos y otras regiones		
	N	%	N	%	N	%	
Infectious Diseases	20671	21,60	485	17,05	4471	37,37	
Immunology	15369	16,06	311	10,94	3290	27,50	
Public, Environmental & Occupational Health	11853	12,38	742	26,09	2672	22,33	
Virology	10165	10,62	164	5,77	1417	11,84	
Multidisciplinary Sciences	5620	5,87	188	6,61	1467	12,26	
Microbiology	4989	5,21	60	2,11	824	6,89	
Social Sciences, Biomedical	4737	4,95	171	6,01	1023	8,55	
Pharmacology & Pharmacy	4155	4,34	62	2,18	380	3,18	
Medicine, General & Internal	3473	3,63	278	9,77	623	5,21	
Health Policy & Services	2845	2,97	216	7,59	673	5,63	
Respiratory System	2657	2,78	168	5,91	752	6,29	
Biochemistry & Molecular Biology	2582	2,70	50	1,76	88	0,74	
Psychology, Multidisciplinary	1973	2,06	87	3,06	439	3,67	
Medicine, Research & Experimental	1872	1,96	41	1,44	204	1,71	
Pediatrics	1239	1,29	147	5,17	348	2,91	
Health Care Sciences & Services	1207	1,26	98	3,45	311	2,60	
Tropical Medicine	1197	1,25	93	3,27	473	3,95	
Biotechnology & Applied Microbiology	1075	1,12	40	1,41	111	0,93	
Nursing	918	0,96	44	1,55	102	0,85	
Obstetrics & Gynecology	775	0,81	94	3,31	197	1,65	

También al considerar los calificadores (tabla 1. 5.), las menores correlaciones se producen al comparar la producción científica mundial y la participación únicamente de países africanos (0,68); y la producción científica mundial y la participación de países africanos en colaboración con otros países (0,69). Sin embargo, existe una correlación elevada al comparar la producción científica de los países africanos y de aquellos documentos en los que estos países participan en colaboración con países de otros ámbitos geográficos (0,97). En relación con los calificadores MeSH, aunque los estudios epidemiológicos se sitúan como principal referente de la investigación, tanto a nivel mundial como en África y Oriente Medio, la *Inmmunology*, *Genetics y Metabolism* quedan relegadas por detrás de *Drug therapy* y *Therapeutic use* en la investigación en la que participan únicamente países africanos (tabla 1. 5.).

Tabla 1. 5. Calificadores MeSH de documentos de investigación sobre el VIH (total de documentos mundiales, documentos de países africanos y documentos de países africanos en colaboración con otras regiones, 2010-2017).

Calificador	Total docu	mentos	Sólo los p	aíses africanos	Colaboración entre los países africanos y otras regiones		
	N	%	N	%	N	0/0	
Epidemiology	53262	77,41	1220	42,90	5293	44,24	
Inmmunology	49149	71,43	378	13,29	1805	15,09	
Genetics	38248	55,59	264	9,28	1584	13,24	
Metabolism	33536	48,74	174	6,12	668	5,58	
Drug therapy	30764	44,71	978	34,39	4783	39,98	
Therapeutic use	29749	43,23	681	23,95	3798	31,75	
Virology	28082	40,81	462	16,24	2478	20,71	
Complications	25058	36,42	728	25,60	2338	19,54	
Psychology	22690	32,98	529	18,60	1930	16,13	
Prevention & control	18924	27,50	639	22,47	3212	26,85	
Statistics & numerical data	18496	26,88	498	17,51	2255	18,85	
Diagnosis	17732	25,77	605	21,27	2362	19,74	
Drug effects	17645	25,64	224	7,88	1106	9,24	
Blood	15949	23,18	301	10,58	1262	10,55	
Chemistry	15720	22,85	119	4,18	346	2,89	
Administration & dosage	15703	22,82	218	7,67	1461	12,21	
Methods	15141	22,00	437	15,37	2223	18,58	
Pharmacology	14377	20,89	135	4,75	739	6,18	
Pathology	11124	16,17	186	6,54	654	5,47	
Adverse effects	11122	16,16	213	7,49	798	6,67	
Physiology	10677	15,52	106	3,73	511	4,27	
Isolation & purification	8327	12,10	261	9,18	1310	10,95	
Transmission	8090	11,76	296	10,41	1546	12,92	
Etiology	6038	8,78	249	8,76	579	4,84	
Economics	5835	8,48	84	2,95	577	4,82	
Therapy	5416	7,87	196	6,89	525	4,39	
Microbiology	5377	7,81	181	6,36	718	6,00	
Ethnology	5007	7,28	66	2,32	237	1,98	
Mortality	4689	6,81	148	5,20	712	5,95	
Pharmacokinetics	4033	5,86	21	0,74	220	1,84	
Physiopathology	3912	5,69	89	3,13	255	2,13	

Finalmente, en cuanto a los descriptores MeSH, cabe destacar el mayor protagonismo de la investigación en África y Oriente Medio de los términos relacionados con el estudio de la prevalencia y el abordaje terapéutico de la enfermedad (tabla 1. 6.). También se ha observado que mientras en el conjunto de la literatura mundial sobre VIH hay un equilibrio entre los documentos referidos a hombres y mujeres (ambos descriptores han sido asignados al 55% de los documentos), la presencia de la mujer asciende al 73,38% de los documentos en el caso de las publicaciones generadas únicamente con la participación de países africanos y al 76,71% en el caso de los documentos en colaboración entre África y países de otras regiones.

Tabla 1. 6. Términos MeSH de los documentos de investigación sobre el VIH (total de documentos mundiales, documentos de países africanos y documentos de países africanos en colaboración con otras regiones.

Término MeSH	Total do	cumentos	Sólo los j	países africanos	Colaboración entre los países africanos y otras regiones		
	N	%	N	%	N	%	
HIV Infections	55609	80,82	2431	85,48	10876	90,91	
HIV-1	19945	28,99	378	13,29	2284	19,09	
Anti-HIV Agents	12114	17,61	434	15,26	2647	22,12	
Risk Factors	7494	10,89	390	13,71	1525	12,75	
Viral Load	6839	9,94	159	5,59	1290	10,78	
Antiretroviral Therapy, Highly Active	6758	9,82	327	11,50	1293	10,81	
CD4 Lymphocyte Count	6296	9,15	296	10,41	1604	13,41	
Prevalence	6172	8,97	463	16,28	1643	13,73	
Treatment Outcome	5074	7,37	200	7,03	1091	9,12	
Sexual Behavior	4636	6,74	179	6,29	949	7,93	
Anti-Retroviral Agents	4529	6,58	196	6,89	1266	10,58	
Surveys and Questionnaires	4137	6,01	313	11,01	859	7,18	
Acquired Immunodeficiency Syndrome	4047	5,88	253	8,90	524	4,38	
Homosexuality, Male	3986	5,79	22	0,77	239	2,00	
HIV	3802	5,53	138	4,85	537	4,49	
Pregnancy	3728	5,42	287	10,09	1557	13,01	
HIV Seropositivity	3604	5,24	241	8,47	787	6,58	
RNA, Viral	3497	5,08	48	1,69	467	3,90	
Health Knowledge, Attitudes, Practice	3468	5,04	268	9,42	761	6,36	
Risk-Taking	3418	4,97	90	3,16	505	4,22	
United States	3332	4,84	9	0,32	159	1,33	
Coinfection	3238	4,71	204	7,17	673	5,63	
South Africa	3197	4,65	832	29,25	2179	18,21	

CD4-Positive T-Lymphocytes	3186	4,63	63	2,22	356	2,98
Sexual Partners	3042	4,42	103	3,62	725	6,06
Socioeconomic Factors	2872	4,17	191	6,72	664	5,55
Incidence	2758	4,01	113	3,97	723	6,04
Drug Resistance, Viral	2750	4,00	42	1,48	500	4,18
Virus Replication	2693	3,91	17	0,60	105	0,88
Time Factors	2615	3,80	93	3,27	566	4,73
Genotype	2577	3,75	64	2,25	473	3,95

La figura 1. 3. permite visualizar los principales términos MeSH que representan las temáticas abordadas en las publicaciones científicas y analizar las vinculaciones que mantienen entre sí. Aunque con carácter general los estudios que analizan los agentes anti-VIH, la prevalencia y los factores de riesgo constituyen el núcleo temático principal que articula la investigación, cabe destacar la incidencia que se realiza en relación con las conductas sexuales y la educación para la Salud (conocimiento, prevención y aceptación del tratamiento de la enfermedad); o la destacada vinculación de la investigación con el embarazo, la salud materna y los cuidados prenatales. Otros focos de atención se centran en aspectos como la co-infección (Tuberculosis, Hepatitis B, Hepatitis C, Meningitis); estudios que abordan la resistencia del virus a los agentes antivirales; o el uso de determinados medicamentos para el tratamiento de la infección (lamivudina, tenofovir etc.).

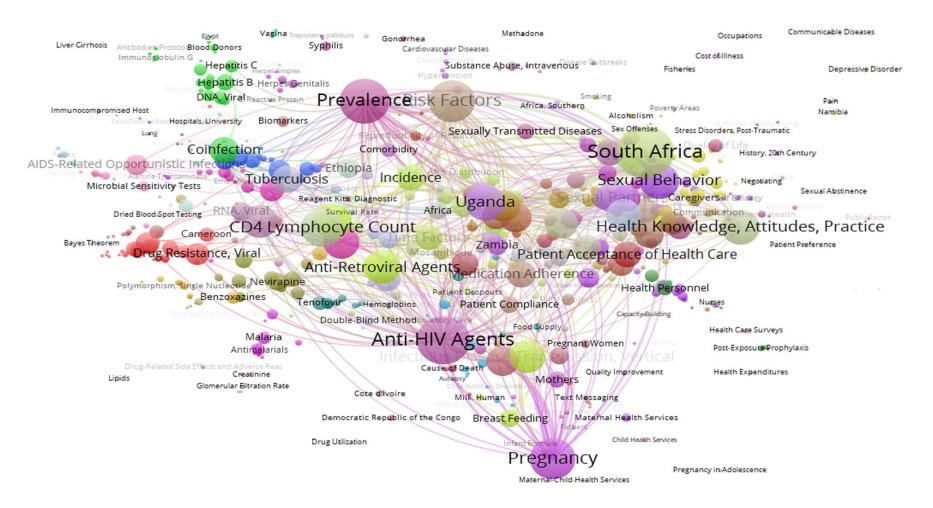


Figura 1. 3. Red de coocurrencias del MeSH sobre artículos de investigación del VIH de países de África y Oriente Medio (2010-2017).

3. Discusión

Crecimiento, visibilidad y concentración de la producción científica

El análisis efectuado ha puesto de manifiesto que la producción científica sobre VIH sigue siendo impulsada fundamentalmente por América del Norte y Europa, que han participado en el 82% de los documentos, lo que contrasta con el hecho que solo el 6% de las personas con HIV viven en estas regiones. En cambio, los países de África y Medio Oriente, que han participado en algo menos de una de cada cuatro publicaciones sobre VIH en el período 2010-2017 (22%), concentran la mayor incidencia de la epidemia, con dos terceras partes de las personas infectadas. No obstante, el análisis comparativo de los resultados aportados en el presente estudio en relación con los trabajos previos que han analizado la literatura sobre AIDS generada por los países africanos, pone de manifiesto dos aspectos de gran relevancia: a) el notable crecimiento de la producción científica sobre VIH generada por estos países; y b) una destacada participación en las publicaciones científicas de mayor visibilidad e impacto internacional.

Así, por ejemplo, en el presente estudio se ha duplicado en términos absolutos el número de documentos identificados en el estudio de Macías-Chapula & Mijangos-Nolasco(216) basado en el análisis de la literatura sobre AIDS del África subsahariana recogidos por la National Library of Medicine correspondientes al período 1980-2000 o en el trabajo de Uthman (97) que analizó la producción científica sobre AIDS del África subsahariana recogida en Pubmed en el período 1981-2009. A nivel de países resultan aún más significativos los avances experimentados por la investigación. En el estudio de Onyancha & Ocholla (93) referido a Uganda y Kenia que identifica la literatura sobre Sida recogida en las bases de datos de la National Library of Medicine apenas hay una contribución testimonial en forma de artículos de revista de estos dos países en el período 1989-1998 (n=11 y n=16, respectivamente), habiendo pasado a situarse como el segundo y tercer país más productivos con un destacado número de contribuciones en el presente estudio, basado en las bases de datos de la WoS que recogen las revistas científicas de mayor visibilidad internacional (n=1921 en el caso de Uganda y n=1586 de Kenia). El trabajo de Uthman(96) que analizó la producción científica de Nigeria en el período 1987-2006 identificó 254 artículos en las bases de datos de la WoS, habiendo ascendido el aporte de este país a 679 documentos en el presente estudio, casi triplicándose por tanto la producción científica pese a tratarse de un período de tiempo mucho menor. La producción de Sudáfrica en el período 2010-2017 correspondiente alpresente estudio

(n=6063) se sitúa próxima a la identificada por Uthman(97) generada en el conjunto del período 1981-2009 (n=8361).

Los resultados del presente estudio ponen de manifiesto una tendencia a la concentración de la investigación, con el incremento del peso relativo de los países de más elevada productividad y particularmente de Sudáfrica, Uganda y Kenia, que se erigen como los principales referentes de la producción científica africana sobre VIH, con más del 50% de las publicaciones del continente y con una tendencia al incremento de su peso relativo. Así, en el estudio de Uthman (97), el aporte de Sudáfrica en relación con el conjunto de países del África subsahariana era del 34% de los documentos, valor que asciende al 43% en el presente estudio. De forma similar, el peso relativo de Uganda y de Kenia (2º y 3er países más productivos) ha pasado de representar el 8% y 7% de los documentos, respectivamente, al 14% y 11%. Esta observación es similar a la constatada en otras áreas de la investigación(217) y particularmente del área biomédica (218,219), poniendo de manifiesto que el mayor desarrollo económico y las inversiones en investigación constituyen el factor clave para explicar la mayor productividad científica(220).

La tendencia observada en favor de la concentración de la investigación en un número reducido de países, alerta acerca de la necesidad de incidir en políticas que faciliten una mayor integración de los países menos productivos y de menor desarrollo económico en las actividades de investigación. En este sentido, algunos factores apuntados en la literatura científica para estimular la investigación en las áreas o países menos desarrollados más allá de las inversiones económicas, destacan la relevancia de formar y retener a los investigadores experimentados o de fomentar alianza a largo plazo fundamentadas en una investigación cooperativa equilibrada en la que los investigadores de estos países puedan adquirir las destrezas metodológicas necesarias y se favorezca su rol de liderazgo impulsando o dirigiendo las investigaciones (221).

De forma específica, el trabajo de Uthman(97) que analizó los factores asociados a la productividad científica sobre VIH en el África subsahariana, también asoció el número de personas viviendo con el VIH y el número de revistas indexadas como factores predictivos del incremento de las publicaciones, poniendo de manifiesto que las políticas científicas de los países que inciden en sus agendas políticas en la investigación en este ámbito y en una adecuada integración y participación en el sistema de publicación y difusión del conocimiento científico, constituyen otros factores relevantes asociados a la productividad científica por encima de otras variables como el número de instituciones

de educación superior o el número de investigadores. El hecho de que Sudáfrica sea el país de África con más número de personas infectadas por VIH y que haya pasado a ser un tema prioritario de su agenda de investigación(222) ha incidido, sin duda, en su destacada productividad científica en el campo, complementando el impulso favorecido por el crecimiento de su economía como país emergente, que junto a otros países, particularmente Brasil y China, han fundamentado su desarrollo en el incremento de las inversiones en investigación, en el fortalecimiento de sus sistemas educativos y asistenciales (223,224) y en el establecimiento de vínculos cooperativos con las economías más desarrolladas a nivel científico (225,226). No obstante, tal y como ha señalado el estudio de Adams et al.(227), en la producción y colaboración científica de los diferentes países del continente africano inciden una multiplicidad de factores, además de los estrictamente estructurales como el nivel de desarrollo económico o el volumen de población. Así, los países africanos bajo la esfera de la Commonwealth, situados mayoritariamente en África oriental y meridional y con el inglés como segundo idioma, presentan con carácter general un mayor grado de producción científica y de investigación cooperativa frente a otros países, como los de la comunidad francófona (219). En el presente estudio, 10 de los 12 países más productivos se vinculan con la Commonwealth.

A pesar de que algunos países como Nigeria o Etiopía han realizado un importante esfuerzo investigador, con un destacado incremento de su producción científica, diferentes estudios han destacado la necesidad de que sigan incidiendo en el establecimiento de vínculos de colaboración con los países de su entorno, que posibiliten el intercambio de conocimiento y experiencias y el impulso de determinadas facetas de la investigación, como los programas de detección y tratamiento de la enfermedad(96,228).

Elevado grado de colaboración internacional y reducido liderazgo

Los dos principales rasgos bibliométricos observados en el presente estudio asociados a la actividad investigadora sobre VIH de los países africanos son: a) que se presenta asociada a un elevado grado de colaboración internacional con países de otros ámbitos geográficos, principalmente Estados Unidos y Europa (81% de los documentos); y b) que se caracteriza por un reducido liderazgo investigador, constatado en las bajas participaciones de autores africanos como primeros firmantes de los documentos en colaboración (20-38% entre los top-10 países más productivos).

Estos dos rasgos pueden constituir el reflejo de una dependencia y subordinación científica de los países africanos en relación con los países más desarrollados. Esta misma situación de subordinación en términos de liderazgo de las publicaciones en colaboración se ha constatado en otros campos de la investigación biomédica especialmente sensibles para los países en menos desarrollados, como las enfermedades tropicales, las enfermedades infecciosas o la Pediatría(226,229,230). De forma más específica, el estudio de Kelaher et al.(105) que analizó los ensayos controlados aleatorios en Sida-VIH, malaria y tuberculosis desarrollados en los países de ingresos económicos medios y bajo desde 1990 a 2013 determinó la existencia de tres rasgos relevantes asociados a la noción de liderazgo de las investigaciones: una proporción mucho más elevada de los países de ingresos económicos medios y bajo en los estudios financiados en estos países (90%) frente a los estudios financiados en Estados Unidos (32%); que la participación como primeros firmantes de autores de los países de ingresos económicos medios y bajos era mucho más baja en las investigaciones sobre VIH.-Sida (33%) en relación con otros ámbitos como la malaria (67%); así como una presencia mucho más baja de investigadores africanos como primeros firmantes en relación con los países de ingresos económicos medios y bajos de otros ámbitos geográficos, como Latinoamérica o Asia. En la literatura se han apuntado diferentes barreras que dificultan que los investigadores de los países de ingresos económicos medios y bajos asuman roles de liderazgo, algunas de ellas relacionadas con el escaso desarrollo de los sistemas científicos y la ausencia de un marco institucional estable que posibilite la creación de grupos consolidados y ofrezca servicios de asesoría y apoyo para que los investigadores puedan concurrir a las convocatorias de financiación o que velen por una adecuada coordinación y que monitoricen que se tienen presentes las prioridades de las agendas de investigación locales (221,231-233) y en otros casos se trata de deficiencias relacionadas con la necesidad de desarrollar habilidades metodológicas (diseños metodológicos, análisis estadísticos etc.), de redacción o un mayor dominio del inglés, que son algunos de los factores que pesan en mayor medida de cara a determinar el liderazgo y la autoría de los documentos(234-236). Los factores estructurales relacionados con el modelo centroperiferia, con la concentración de los recursos económicos y humanos y la fijación de los temas de investigación en Estados Unidos y los países europeos; los sesgos editoriales o el efecto Mateo o de la ventaja acumulada que favorece un mayor reconocimiento y éxito de los países situados en el centro de la investigación, completarían el panorama de la infrarrepresentación de los investigadores del sur en las posiciones de liderazgo de las publicaciones científicas(229,234).

Los dos países que constituyen el eje que articula la red de colaboración científica de la investigación africana sobre VIH son Estados Unidos y Sudáfrica. Estados Unidos destaca por el elevado número de vínculos de colaboración que ha establecido, ya que ha firmado algún trabajo en colaboración con la mayoría de los países africanos y de Oriente medio (52 países), totalizando 7693 vínculos de colaboración con un 70% de vínculos de liderazgo asociados a ocupar la primera posición en el orden de las firmas en las publicaciones en colaboración en las que ha participado. Otros estudios bibliométricos han constatado el papel relevante que tiene Estados Unidos en la producción colaborativa sobre VIH, tanto con África(96), como con países de Latinoamérica y el Caribe (91) y Asia (237); o el destacado grado de colaboración de Estados Unidos en otros campos de la investigación biomédica (238).

Por su parte, Sudáfrica, se sitúa como el país de referencia que lidera la actividad investigadora sobre VIH en el continente, con un peso cuantitativo muy por encima del observado en otras áreas biomédicas en las que también ejerce un destacado liderazgo. En este sentido, el estudio de Nachega et al. (219) que identificó la participación de los países africanos en las publicaciones sobre epidemiología y salud pública en las bases de datos de la WoS determinó una participación de Sudáfrica en el 22% de los documentos, seguido por Kenya (10%) y Nigeria (9%), frente al 41% observado en el presente estudio.

También destaca Sudáfrica, junto a Etiopía, por su liderazgo (38% de documentos como primer firmante), que puede hacerse extensivo a otros campos de las Ciencias de la Salud como las enfermedades infecciosas (218,239). Además de por sus destacadas colaboraciones con Estados Unidos y diferentes países europeos (94,240); Sudáfrica se ha erigido en el centro de las colaboraciones intra-regionales entre los países africanos, ya que ha establecido vínculos de colaboración con 35 países, muy por encima de las colaboraciones del resto de países africanos, siendo el principal colaborador de la totalidad de los top-10 países más productivos aunque estas colaboraciones representan únicamente el 12% del total de las colaboraciones de Sudáfrica. En este sentido, algunos trabajos han alertado acerca de que los países emergentes, y Sudáfrica entre ellos, deberían realizar mayores contribuciones para resolver los problemas que afectan al desarrollo conjunto de los países en vías de desarrollo (223), lo que pasaría en el caso de Sudáfrica por fomentar las redes de colaboración intra-regionales en el África

subsahariana, ya que la investigación impulsada en los ámbitos locales es el principal tipo de investigación que posibilita beneficios socio-económicos y de salud de estas regiones (224,241). En este sentido, Hernández-Villafuerte et al. (242) que analizaron las colaboraciones de los países subsaharianos sobre las evaluaciones económicas de las intervenciones en Salud Pública alertaron, tal y como se constata también en los resultados del presente estudio, acerca de que los análisis de redes mostraron vínculos cooperativos débiles en los investigadores de esta región, estando estos más orientados y predispuestos a colaborar con investigadores de países europeos y de América del Norte que con investigadores de otros países africanos (242).

Interés focalizado en la Salud pública, estudios epidemiológicos y abordaje terapéutico.

Las diferentes orientaciones disciplinares y temáticas observadas en los documentos sobre VIH-Sida en los que únicamente participan países africanos, con el predominio de la investigación en salud pública, los estudios epidemiológicos y terapéuticos, alertan acerca de la necesidad de considerar las particularidades y los intereses regionales, nacionales o locales en la investigación. En este sentido, numerosos estudios han apuntado que no hay una correspondencia entre la financiación y las temáticas de la investigación y las prioridades fijadas en las agendas de investigación nacionales de los países africanos(106,110,219,243–245).

En lo referente al abordaje de la investigación desde el punto de vista de la salud pública, Uthman (96)llamó la atención acerca de que es necesaria una mayor investigación en prevención y programas de control del VIH, resultando en este sentido llamativa la fortaleza de algunos países africanos en este ámbito, particularmente el caso de Sudáfrica tal y como ha puesto de manifiesto el estudio de Wright et al. (246)que contrasta con la limitada investigación en otras áreas, como la zona francófona de África (247).

Los estudios epidemiológicos y el abordaje terapéutico de la enfermedad presentan una especial relevancia en la investigación de los países africanos frente a la investigación mundial sobre VIH, en la que tienen un peso relativo cuantitativamente menor. El estudio de Nachega et al. (219) destacó que pese al incremento de la investigación sobre VIH, tuberculosis y malaria como principales temas de investigación abordados en las publicaciones sobre epidemiología y salud pública en los países africanos, era necesario

un peso mucho más destacado en las agendas de investigación de los países de África, dado el interés mundial y el impacto regional de las enfermedades no transmisibles (incluida la salud materna, neonatal e infantil), siendo un aspecto especialmente relevante en el caso del África Sub-sahariana, donde la formación en epidemiología ha servido sobre todo para controlar las enfermedades transmisibles en general y el control del VIH/Sida, la tuberculosis y la malaria. Este estudio también incide en la necesidad de fomentar los conocimientos epidemiológicos regionales para identificar y dilucidar las causas de las enfermedades en lugar de limitarse a controlar las enfermedades transmisibles y los brotes (219).

Junto a los estudios epidemiológicos, la investigación sobre las terapias farmacológicas también tiene una destacada presencia en la investigación africana sobre HIV, lo que responde a que el control de la infección constituye un aspecto prioritario en las políticas y agendas de investigación de los países africanos(106).

De forma más específica, la literatura previa sobre VIH-Sida ha determinado una mayor presencia de trabajos centrados en las mujeres en los países en los que participan investigadores africanos(93), cuyo interés se confirma en el presente estudio (73-77% de los documentos frente a únicamente un 55% en el conjunto de la literatura mundial), lo que se explica porque las mujeres son más vulnerables a la infección a nivel biológico, económico, social y cultural, como lo pone de manifiesto que la ratio de infección en África es de doce a trece mujeres africanas por cada diez hombres africanos. La OMS señala además que el 55% de los adultos infectados en el África subsahariana son mujeres y que medio millón de niños son infectados por sus madres seropositivas (93). En este sentido, resulta especialmente significativa la presencia en la red temática del descriptor pregnancy y otros como sexual behavior, reflejo de la respuesta que trata de dar la investigación en los países africanos a aspectos como la transmisión materno fetal en la infección por VIH(248) o al conocimiento y la prevención de las prácticas sexuales de riesgo, cambiando las preconcepciones y las ideas que todavía existen acerca de los determinantes sociales de la transmisión del VIH (110). La destacada presencia de descriptores relacionados con la prevención de la transmisión de madre a hijo contrasta, sin embargo, con la ausencia de descriptores referidos a niños y jóvenes, que son colectivos especialmente sensibles que experimentan importantes efectos físicos y psicosociales de la infección por el VIH, por lo que deberían hacerse más esfuerzos para

suplir la falta de investigación sobre los jóvenes que corren el riesgo de infectarse o que ya están infectados por el VIH, tal y como se ha apuntado en un reciente estudio(249).

V. Material y métodos, resultados y discusión

Investigación científica sobre el VIH/Sida en África y Oriente Medio: análisis demográfico socioeconómico

Estudio bibliométrico 2

Menchi-Elanzi M, Pinargote-Celorio H, Nacarapa E, González-Alcaide G, Ramos-Rincón JM. Scientific HIV research in Africa and the Middle East: a socio-economic demographic analysis. Afr J AIDS Res. 2021;20(1):1-5. doi:10.2989/16085906.2020.1830133.

1. Material y Métodos

Se identificaron los documentos sobre VIH indexados en la Web of Science Core Collection (WoS-CC) desde 2010 hasta 2017 realizando búsquedas basadas en los siguientes descriptores MESH relacionados con el virus del VIH: VIH (*HIV*), infecciones por VIH (*HIV Infections*), síndrome de inmunodeficiencia adquirida (*Acquired Immunodeficiency Syndrome*) y el desarrollo de vacunas para la prevención o el tratamiento clínico de la inmunodeficiencia (*AIDS Vaccines*). Las búsquedas efectuadas ofrecieron los siguientes resultados: 74,375 y tras restringirlo a artículos, revisión y cartas fueron 68.808 documentos.

Para analizar la participación en la investigación sobre el VIH/Sida, utilizamos la distribución geográfica por países y regiones de ONUSIDA (2018), que agrupa a los países de África y Oriente Medio en tres regiones: África Oriental y Meridional (E & SA), África Occidental y Central (W & CA), y Oriente Medio y África del Norte (ME & NA). Como referencia comparativa, analizamos la producción científica de 12 países situados en otras regiones geográficas: Australia, Brasil, Canadá, China Francia, Alemania, India, Italia, Pakistán, España, Reino Unido y Estados Unidos.

Se determinaron indicadores estandarizados de la producción de cada país (número de artículos) con respecto a:

- Índice de personas que viven con el VIH (PLWH): número de publicaciones por cada mil PLWH.

- Índice de población: número de publicaciones por millón de habitantes.
- Índice de producto interior bruto (PIB): número de publicaciones por cada mil millones de dólares de PIB.

Los datos de población y económicos se obtuvieron de los Indicadores de Desarrollo Mundial de 2017 que se encuentran en las bases de datos del Banco Mundial (http://datatopics.worldbank.org/world-development-indicators/).

2. Resultados

De todos los documentos analizados (n=68 808), E & SA participaron en el 17,8% (n=12.249), W & CA en el 3,34% (n=2.300), y ME & NA en el 1,18% (n=814). En conjunto, todos los países de las tres regiones que componen África y Oriente Medio participaron en el 21,52% (n=14.808) de las investigaciones publicadas sobre el VIH/Sida en todo el mundo. La producción científica se concentró en Sudáfrica, con un 40,94% (n = 6 063) de los documentos producidos por África y Oriente Medio.

A cierta distancia de Sudáfrica se situó Uganda (12,97%; n=1.921), Kenia (10,71%; n=1.586), Malawi (6,19%; n=916) y Tanzania (6,03; n=893), que están todos ellos en E & SA. Los dos principales países de W & CA fueron Nigeria (4,59%; n=679) y Camerún (2,84%; n=421); mientras que el país líder de ME & NA fue Irán (2,02%; n=299).

La tabla 2. 1. clasifica la productividad investigadora de los países de África y Oriente Medio en términos absolutos (número de documentos publicados) y ajustados al número de personas que viven con el VIH, el tamaño de la población y el desarrollo económico.

Los países se dividieron en tres grupos según el número de documentos publicados. En el primer grupo (>300 documentos), Sudáfrica, Uganda, Kenia y Malawi mantuvieron sus altas posiciones en la mayoría de los índices, aunque sus posiciones exactas en la tabla variaron. Uganda y Malawi fueron los líderes respectivos del índice de personas viven con la infección por VIH y del PIB, y ambos países se situaron por encima de Sudáfrica en ambos índices. Algunos países con menor productividad absoluta dentro de este grupo se encontraban cerca de los primeros puestos de la clasificación del índice de personas viven con la infección por VIH/Sida y del índice de población (Botsuana) o de la clasificación del índice de renta nacional bruta (RNB) per cápita (Zimbabue).

Cuando el volumen de investigación producido por Mozambique se consideró en el contexto del desarrollo económico, el país pasó del último lugar (dentro de este grupo de 12 países) al quinto.

En el grupo de productividad intermedia (51-300 documentos) también se produjeron algunas variaciones significativas entre los distintos índices. Por ejemplo, Qatar fue el primero en el índice de personas viven con la infección por VIH, Guinea-Bissau el tercero en el índice de población y Gambia y Lesoto ocuparon los cuatro primeros puestos de los índices económicos, a pesar de que todos tienen una baja producción científica dentro de este grupo.

Tabla 2. 1. Países de África y Oriente Medio y comparación de los países según el número de documentos, el índice de personas que viven con el VIH (PLWH), el índice de población, el índice del producto interior bruto (PIB), el índice de la renta nacional bruta (RNB)

País	Región UNAIDS *	Total Docs	País	Índice PLWH ^a	País	Índice De Población ^b	País	Índice PIB	País	Índice RNB Per cápita ^c
Sudáfrica	E & SA	6063	Qatar	178.00	Botsuana	170.06	Malawi	145.32	Zimbabue	477.93
Uganda	E & SA	1921	Kuwait	29.63	Sudáfrica	106.37	Uganda	73.90	Sudáfrica	76.56
Kenia	E & SA	1586	Jordania****	24.00	Suazilandia	87.13	Gambia	51.83	Zambia	49.92
Malawi	E & SA	916	Líbano	23.64	Malawi	51.84	Guinea Bissau	51.23	Etiopía	32.42
Tanzania	E & SA	893	Bahréin	8.00	Zimbabue	49.17	Zimbabue	30.68	Ghana	31.47
Zimbabue	E & SA	700	Túnez	7.67	Uganda	46.67	Ruanda	29.43	Liberia	18.92
Zambia	E & SA	697	Egipto	6.75	Namibia	41.62	Zambia	26.94	Mozambique	10.64
Nigeria	W & CA	679	Siria****	6.45	Zambia	41.36	Mozambique	22.92	Kenia	9.86
Etiopía	E & SA	555	Senegal	5.37	Guinea Bissau	37.74	Lesoto	22.61	Botsuana	4.75
Camerún	W & CA	421	Omán****	5.16	Gabón	36.81	Suazilandia	22.04	Jordania	4.08
Botsuana	E & SA	375	Irán	4.98	Gambia	35.23	Botsuana	21.54	Malawi	3.53
Mozambique	E & SA	303	Gambia	3.71	Qatar	32.66	Kenia	20.14	Lesoto	3.14
Irán	ME & NA	299	Marruecos	2.75	Kenia	31.58	Sudáfrica	17.34	Egipto	3.06
Ghana	W & CA	270	Burkina Faso	2.09	Lesoto	27.73	Tanzania	16.75	Túnez	2.82
Ruanda	E & SA	269	Cabo verde	2.08	Ruanda	22.45	Burkina Faso	15.90	Omán	2.77
Senegal	W & CA	231	Guinea Bissau	1.73	Camerún	17.14	Togo	13.93	Gambia	2.51
Costa de Marfil	W & CA	225	Uganda	1.48	Tanzania	16.34	Camerún	12.06	Marruecos	1.91
Burkina Faso	W & CA	196	Gabón	1.36	Senegal	14.98	República centroafricana	11.13	Suazilandia	1.89
República democrática del Congo	W & CA	119	Libia****	1.35	Mozambique	10.58	Senegal	10.96	Kuwait	1.52

Egipto	ME & NA	108	Ruanda	1.22	Burkina Faso	10.21	Benín	8.52	Libia	1.45
Arabia Saudí	ME & NA	107	Benín	1.13	Cabo Verde	9.30	Namibia	7.37	Namibia	1.37
Namibia	E & SA	100	Kenia	1.06	Ghana	9.27	Etiopía	6.79	Arabia Saudí	1.35
Suazilandia	E & SA	98	Botsuana	0.99	Costa de Marfil	9.21	Costa de Marfil	5.91	Sudán	1.25
Qatar	ME & NA	89	Malawi	0.92	Togo	8.70	Gabón	5.10	Nigeria	1.16
Benín	W & CA	79	Etiopía	0.91	Líbano	7.63	Ghana	4.58	Uganda	0.89
Gambia	W & CA	78	Ghana	0.87	Benín	7.07	Mali	4.50	Burkina Faso	0.54
Gabón	W & CA	76	Mauritania****	0.86	República del Congo	6.26	República del Congo	3.68	Camerún	0.52
Guinea Bissau	W & CA	69	Sudáfrica	0.84	Etiopía	5.22	Liberia	3.65	Bahréin	0.48
Mali	W & CA	69	Camerún	0.83	República Centroafricana	5.00	Guinea	3.49	Ruanda	0.43
Togo	W & CA	67	Zambia	0.63	Santo Tomé & Príncipe	4.83	Sierra Leona	3.48	Tanzania	0.41
Lesoto	E & SA	58	Togo	0.61	Emiratos Árabes Unidos	4.64	Burundi	3.47	Qatar	0.40
Marruecos	ME & NA	55	Tanzania	0.60	Mauricio	3.95	República democrática del Congo	3.13	Emiratos Árabes unidos	0.30
Líbano	ME & NA	52	Zimbabue	0.54	Kuwait	3.94	Cabo Verde	2.83	Senegal	0.30
Emiratos Árabes Unidos	ME & NA	44	Mali	0.53	Mali	3.73	Santo Tomé y Príncipe	2.67	Costa de marfil	0.26
Guinea	W & CA	36	Namibia	0.50	Irán	3.71	Níger	1.85	Togo	0.19
República del Congo	W & CA	32	Sudán	0.45	Nigeria	3.56	Nigeria	1.81	República Democrática del Congo	0.18
República Centroafricana	W & CA	23	Costa de Marfil	0.45	Omán	3.43	Madagascar	1.14	Benín	0.17
Sudán	ME & NA	23	Suazilandia	0.45	Arabia Saudí	3.23	Mauritania	1.02	Guinea Bissau	0.16

Túnez	ME & NA	23	Madagascar	0.43	Guinea Ecuatorial	3.17	Líbano	0.97	Mali	0.15
Angola	E & SA	19	Mauricio****	0.42	Guinea	2.98	Chad	0.90	Mauritania	0.12
Kuwait	ME & NA	16	Níger	0.42	Bahréin	2.68	Djibouti	0.72	República centroafricana	0.08
Omán	ME & NA	16	Yemen****	0.40	Liberia	2.55	Irán	0.66	Níger	0.07
Madagascar	E & SA	15	República del Congo	0.32	Djibouti	2.12	Túnez	0.58	República del Congo	0.04
Níger	W & CA	15	República democrática del Congo	0.31	Túnez	2.01	Qatar	0.53	Angola	0.03
Iraq	ME & NA	13	Guinea	0.30	Libia	1.82	Marruecos	0.50	Santo Tomé y Príncipe	0.03
Sierra Leona	W & CA	13	Liberia	0.30	Sierra Leona	1.74	Egipto	0.46	Chad	0.02
Jordania	ME & NA	12	Argelia	0.29	Marruecos	1.55	Somalia	0.44	Burundi	0.02
Liberia	W & CA	12	Djibouti	0.22	República democrática del Congo	1.46	Mauricio	0.38	Gabón	0.02
Libia	ME & NA	12	Nigeria	0.22	Jordania	1.23	Guinea Ecuatorial	0.33	Cabo Verde	0.02
Burundi	W & CA	11	Sierra Leona	0.21	Mauritania	1.17	Libia	0.32	Mauricio	0.01
Chad	W & CA	9	República Centroafricana	0.21	Egipto	1.12	Jordania	0.29	Madagascar	0.01
Cabo verde	W & CA	5	Somalia	0.18	Burundi	1.02	Omán	0.23	Argelia	0.01
Mauritania	W & CA	5	Lesoto	0.18	Níger	0.69	Sudan	0.19	Guinea	0.00
Mauricio	E & SA	5	Mozambique	0.14	Angola	0.64	Angola	0.16	Líbano	0.00
Argelia	ME & NA	4	Burundi	0.14	Chad	0.60	Arabia Saudí	0.16	Djibouti	0.00
Bahréin	ME & NA	4	Chad	0.08	Madagascar	0.59	Yemen	0.15	Sierra Leona	0.00
Guinea Ecuatorial	W & CA	4	Guinea Ecuatorial	0.08	Sudán	0.56	Kuwait	0.13	Iraq	0.00

Siria	ME NA	&	4	Angola	0.06	Iraq	0.35	Emiratos Árabes Unidos	0.12	Irán	0.00
Yemen	ME NA	&	4	Iraq	N/D	Siria	0.23	Bahréin	0.11	Guinea Ecuatorial	0.00
Djibouti	ME NA	&	2	Santo Tomé y Príncipe	N/D	Yemen	0.14	Iraq	0.07	Somalia	0.00
Somalia	ME NA	&	2	Arabia Saudí	N/D	Somalia	0.14	Argelia	0.02	Siria	N/D
Santo Tomé y Príncipe	W & 0	CA	1	Emiratos Árabes Unidos	N/D	Argelia	0.10	Siria	N/D	Yemen	N/D
Países para cor	ı nparar										
EEUU			35623	Australia	101.88	Reino Unido	116.52	Reino Unido	2.89	EEUU	584.09
Reino Unido			7697	Reino Unido**	75.76	Canadá	111.88	España	2.49	Reino Unido	248.39
Francia			4255	Canadá****	64.78	EEUU	109.56	Canadá	2.48	España	130.72
Canadá			4088	EEUU *	31.72	Australia	107.67	Australia	1.99	Francia	121.08
China			3866	Alemania****	29.76	España	69.95	EEUU	1.83	Italia	106.96
España			3259	Francia ****	25.03	Francia	63.64	Francia	1.65	Brasil	80.07
Italia			3085	Italia	23.73	Italia	50.96	Italia	1.58	Canadá	70.59
Australia			2649	España	21.73	Alemania	30.61	Brasil	1.21	China	65.36
Alemania			2530	China***	5.10	Brasil	11.92	India	0.83	Alemania	62.84
Brasil			2478	Brasil	2.88	China	2.79	Alemania	0.69	Australia	37.99
India			2208	India	1.05	India	1.65	Pakistán	0.44	India	17.48
Pakistán			133	Pakistán	0.89	Pakistán	0.64	China	0.32	Pakistán	0.82

E & SA = África Oriental y Meridional; ME & NA = Oriente Medio y Norte de África; W & CA = África Occidental y Central

- ^a Índice personas viven con la infección por VIH/Sida: Número de publicaciones por cada 1000 personas viven con la infección por VIH/Sida
- bÍndice de población: Número de publicaciones por millón de habitantes
- cÍndice del PIB: Número de publicaciones por cada mil millones de dólares de PIB

Los datos de las PLWH se obtuvieron de varios recursos: Programa Conjunto de las Naciones Unidas sobre el VIH/Sida (https://www.unaids.org/); *Centro de Control de Enfermedades (https://www.cdc.gov/); †Servicio Nacional de Salud del Reino Unido (https://www.nhs.uk/); ‡Centro Nacional para el Control y Prevention, (http://ncaids.chinacdc.cn/); National Council Tourism Directors(https://www.ustravel.org/programs/nationalcouncil-state-tourism-directors-ncstd); **§Chinese** Centre for Disease Control and Prevention (http://www.chinacdc.cn/); Chinese Journal of AIDS & STD(http://www.chinacdc.cn/en/publication/cj/); +Agencia de Salud Pública Canadá (https://www.canada.ca/en/public-health.html).

3. Discusión

Dentro de África y Oriente Medio, Sudáfrica fue el principal país que contribuyó a la investigación sobre el VIH en términos absolutos, cuatro veces más publicaciones que el segundo país más productivo. Sin embargo, nuestros resultados muestran que, aunque Sudáfrica obtuvo una alta puntuación en los índices normalizados asociados con el número de personas viven con la infección por VIH/Sida, según el tamaño de la población y la renta per cápita, otros países obtuvieron puntuaciones más altas.

En el índice de personas que viven con la infección por VIH/Sida, Uganda y Kenia ocuparon el primer y segundo lugar, respectivamente, y Botsuana había subido varios puestos hasta el tercero. Estos resultados se debieron a que los investigadores de estos países con alta incidencia del VIH, participaron en estudios multicéntricos y de colaboración. A su vez forman parte de la Commonwealth y colaboran regularmente con países de habla inglesa, especialmente el Reino Unido, lo que ayuda a compensar sus sistemas científicos menos desarrollados(250)

En el índice de población, diferentes países del sur de África, como Botsuana y Zimbabue, se unieron a Sudáfrica en la parte superior de la tabla en el grupo de alta productividad. De los países de productividad intermedia, Eswatini, Namibia, Guinea-Bissau y Gabón ascendieron varios puestos para ocupar las cinco primeras posiciones. En relación con el tamaño de su población, estos países contribuyeron considerablemente a la reducción de la incidencia y las muertes por VIH(251).

Por último, el ajuste de los resultados en función de los parámetros económicos destaca el papel de los países pequeños en W & CA y E & SA: Malawi, Uganda, Gambia, Guinea-Bissau, Zimbabue y Ruanda. Todos estos países tienen un PIB bajo, pero una alta prevalencia de las personas que viven con la infección por VIH/Sida, que intentan abordar mediante la investigación (252,253).

La inversión y el crecimiento económico en investigación son factores que explican el aumento de la productividad científica(254). El avance hacia una mayor concentración de producción científica en los países de bajo rendimiento requiere políticas que promuevan la integración de los países de menor producción científica y los países de renta media. Los expertos describen algunas medidas para estimular la investigación científica en estos países que van más allá del crecimiento económico, incluyendo la formación, retener a los científicos experimentados, y una cooperación equitativa a largo

plazo. Estas estrategias pueden permitir a los investigadores de estos países adquirir las habilidades metodológicas que necesiten y poder fomentar su liderazgo de trabajos de investigación (83,255)

VI. Material y métodos, resultados y discusión

Estudio bibliométrico 3.

Caracterización bibliométrica y temática de la investigación sobre VIH-Sida en España (2010-2019)

González-Alcaide G, Menchi-Elanzi M, Bolaños-Pizarro M, Gutiérrez-Rodero F, Ramos-Rincón JM. Caracterización bibliométrica y temática de la investigación sobre VIH-Sida en España (2010-2019). Enferm Infecc Microbiol Clin. 2022.

1. Material y Métodos

El proceso metodológico seguido ha sido el siguiente:

Identificación de la producción científica española sobre VIH

Para la identificación de la población documental objeto de estudio se ha optado por plantear una búsqueda tomando como referencia el tesauro del MeSH, ya que este instrumento de control terminológico permite identificar con precisión los documentos del ámbito analizado. La búsqueda se ha efectuado a través de las bases de datos de la Web of Science (WoS) Core Collection de Clarivate Analytics, ya que esta fuente recoge todas las afiliaciones institucionales de los autores, así como las citas de los documentos y está vinculada con los datos del impacto y la visibilidad de las revistas de publicación a partir del ranking recogido en el Journal Citation Reports. La ecuación de búsqueda ha quedado definida como sigue:

Encabezado MeSH:EXPLODE: HIV OR HIV Infections OR Acquired Immunodeficiency Syndrome OR AIDS Vaccines AND Dirección: Spain. Posteriormente, se han limitado los resultados obtenidos a las tipologías documentales artículo y revisión y al período cronológico 2010-2019.

Revisión de la homogeneidad y calidad de los datos y determinación de la producción científica de la Red Española de Investigación del Sida (RIS)

Con el propósito de asegurar la representatividad de los datos, se han revisado manualmente las formas de identificación de las autorías, subsanando los problemas detectados, como el diferente grado de información aportado (uno o dos apellidos o iniciales de nombres), erratas u homonimias, etc. Asimismo, se han revisado las afiliaciones institucionales para unificar las diferentes variantes con las que es identificada una misma institución e individualizar las instancias recogidas en este campo bibliográfico, ya que es muy habitual recoger dos o más instituciones con entidad propia en una firma. En estos casos, se ha efectuado una asignación completa, duplicando las firmas, por ejemplo, en el caso de los institutos de investigación vinculados a hospitales, lo que puede dar una impresión de redundancia en los resultados, pero que estimamos necesario para no perder una información relevante de afiliaciones que se han hecho constar por parte de los autores de las publicaciones y que en ocasiones se presentan como única firma.

Para determinar la producción científica vinculada a la RIS, se han identificado los integrantes de los grupos de investigación de la red recogidos en la página web de la misma en septiembre de 2021 (https://redris.es), integrando en el análisis efectuado algunos grupos que han formado parte de la RIS a lo largo del período analizado. A continuación, se han vinculado con las autorías de las publicaciones científicas de la WoS.

Cálculo de indicadores e interpretación de los resultados

A) Caracterización bibliométrica de la investigación española sobre VIH-Sida.

Producción y colaboración científica. Con el propósito de disponer de una visión global de la actividad investigadora generada sobre el VIH-Sida en España a lo largo del período analizado, así como de la colaboración científica en el área, se han calculado los siguientes indicadores:

- Número de documentos publicados por año.
- Distribución del número de documentos publicados entre los diferentes agentes científicos: autores, instituciones, revistas y categorías temáticas o áreas de conocimiento en las que se han publicado los trabajos.
- Índice de transitoriedad. Refiere el porcentaje de autores con una única publicación. Diferentes estudios han tomado este indicador, que se relaciona con la distribución de la

productividad, como referente para analizar el grado de consolidación de una comunidad investigadora, en función de la mayor o menor proporción de autores transitorios.

- Promedio del número de autores por documento.
- Número documentos en colaboración nacional e internacional.
- B) Impacto y visibilidad.

La evaluación del desempeño científico de la actividad investigadora se ha efectuado a partir de indicadores de citación de los documentos y de la visibilidad de las revistas o fuentes de publicación de los estudios:

- Número de citas recibidas por los documentos agrupados por categorías temáticas y revistas.
- Promedio de citas por documento.
- Factor de Impacto y *Journal Citation Indicator* (JCI) de las revistas de publicación. El JCI constituye una medida de impacto normalizada de las citas que han recibido los artículos y las revisiones de una revista en su categoría temática, de forma que el valor medio se sitúa en 1, por lo que una revista con un JCI superior a ese valor ha recibido un grado de citación superior al promedio de su categoría.
- Posición relativa de las revistas en sus categorías temáticas y distribución por cuartiles en relación con el Factor de Impacto y el JCI. Para ello, se ha tomado como referencia el ranking de 2020 recogido en la plataforma de la WoS de Clarivate Analytics.
- C) Producción y desempeño científico de los grupos de la RIS.

Con el propósito de analizar específicamente la producción e impacto de la RIS, se han presentado los indicadores mencionados referidos al subconjunto de documentos en los que han participado los investigadores vinculados a esta red, además de efectuar un análisis específico de la actividad desarrollada por estos grupos:

- Número de documentos.
- Número de citas.
- Promedio de citas/documento.
- Índice h.

Se ha generado una red de coautorías, identificando los vínculos de colaboración establecidos entre los autores más productivos (> 9 documentos) y con un mayor grado de colaboración con otros investigadores (> 9 documentos), con el propósito de analizar las posiciones ocupadas por los investigadores de la RIS en la misma. Para ello, se ha calculado una medida de centralidad (el grado de intermediación), estimando asimismo la producción científica y la citación de los investigadores integrados en la red generada.

D) Clústeres temáticos de la investigación.

Finalmente, se han caracterizado los ámbitos temáticos abordados por parte de la investigación española sobre VIH-Sida, generado para ello una matriz con la co-ocurrencia de los descriptores MeSH asignados a los documentos, sobre la que se ha aplicado un análisis de clústeres para la identificación de las diferentes líneas temáticas y su representación visual.

Para la generación de la red de temas no ha sido necesario efectuar un proceso de homogenización de la terminología, al utilizarse los descriptores del tesauro MeSH, si bien, para favorecer la identificación de los clústeres y una óptima visualización de la red, reduciendo la elevada densidad de vínculos entre los descriptores, sí que se ha efectuado una «poda» de los descriptores excesivamente genéricos, como los utilizados en el proceso de búsqueda, los referidos al sexo o grupos etarios. La información aportada por estos descriptores, ha sido analizada de forma específica.

Para la generación de la red de coautorías y el cálculo de la intermediación de los investigadores se ha utilizado el programa Pajek y la determinación y representación de los clústeres temáticos de investigación ha sido realizada con VOSViewer.

2. Resultados

Producción científica española sobre VIH

Se han identificado 3.960 documentos, con una producción científica estable en torno a los 300-450 documentos publicados por año (tabla 3. 1.).

Tabla 3. 1. Producción científica y colaboración internacional sobre VIH-Sida en España (2010-2019).

		N docs en	
Año	N docs	colaboración	%
		internacional	
2010	380	133	35
2011	450	166	36,89
2012	425	157	36,94
2013	411	160	38,93
2014	429	155	36,13
2015	444	197	44,37
2016	370	180	48,65
2017	390	187	47,95
2018	308	152	49,35
2019	353	178	50,42
Total	3960	1665	42,04

Veintiuna categorías temáticas reúnen más del 1% de los documentos, entre las que destaca enfermedades infecciosas, con el 46,04% de los documentos y otras 5 categorías que reúnen entre el 15-25% de los documentos (inmunología, virología, microbiología, farmacología y farmacia y ciencias multidisciplinares). Aunque con carácter general, las disciplinas vinculadas con la investigación básica presentan un mayor grado de citación, cabe destacar que las publicaciones de los diferentes grupos e investigadores sobre VIH en revistas de medicina general e interna son las que se sitúan con los promedios de citas por trabajo más elevados (tabla 3. 2.).

Tabla 3. 2. Número de documentos publicados sobre VIH-Sida en España (2010-2019) distribuidos en función de la adscripción temática de las revistas de publicación.

Categoría	N docs (%)	%	N Citas	Promedio citas/doc.
Infectious Diseases	1823	46,04	25947	14,23
Immunology	987	24,92	17383	17,61
Virology	744	18,79	12054	16,20
Microbiology	699	17,65	9916	14,19
Pharmacology & Pharmacy	577	14,57	6890	11,94
Multidisciplinary Sciences	346	8,74	4884	14,12
Public, Environmental & Occupational Health	253	6,39	2417	9,55
Medicine, General & Internal	198	5,00	7813	39,46
Biochemistry & Molecular Biology	133	3,36	2534	19,05
Gastroenterology & Hepatology	102	2,58	1806	17,71
Respiratory System	82	2,07	872	10,63
Medicine, Research & Experimental	81	2,05	1711	21,12
Social Sciences, Biomedical	78	1,97	785	10,06
Chemistry, Medicinal	74	1,87	1039	14,04
Pediatrics	67	1,69	416	6,21
Health Policy & Services	57	1,44	428	7,51
Health Care Sciences & Services	55	1,39	368	6,69
Biotechnology & Applied Microbiology	54	1,36	532	9,85
Cell Biology	49	1,24	1140	23,27
Tropical Medicine	48	1,21	445	9,27
Psychology, Multidisciplinary	42	1,06	391	9,31

La revista multidisciplinar *Plos One* es la que ha publicado el mayor número de documentos, si bien, destacan entre las revistas más productivas diferentes revistas especializadas en VIH/Sida (como AIDS, HIV Medicine, JAIDS: Journal of Acquired Immune Deficiency Syndromes y Aids Research and Human Retroviruses), además de las revistas españolas Enfermedades Infecciosas y Microbiología Clínica y Medicina Clínica. También cabe resaltar la presencia en el ranking de las revistas más productivas de una especializada en revisiones (AIDS reviews) y otra en ensayos clínicos (HIV Clinical Trials). Entre las revistas de más elevada productividad, destacan seis revistas con un JCI superior a uno y 8 revistas situadas en el primer cuartil de sus categorías temáticas (tabla 3. 3.).

Tabla 3. 3. Distribución por revista de publicación y participación de la RIS en la producción científica sobre VIH-Sida en España (2000-2019).

	N		NI I		Factor	ICI		
Revista	N docs	%	N docs RIS	%	de Impacto (2020)	JCI (2020)	Posición-Impacto	Posición-JCI
Plos One	281	7,10	205	72,95	3,240	0,57	26/72-multi-Q2	29/128 Q1
AIDS	267	6,74	213	79,77	4,177	1,09	32/93-ID-Q2 Immunology 84/62 Q3 Virology 14/67 Q2	26/118-ID-Q1 Immunology 41/177 Q1 Virology 9/39 Q1
Enfermedades Infecciosas y Microbiologia Clinica	210	5,30	115	54,76	1,731	0,45	82/93-ID-Q4 Microbiology 124/136 Q4	83/118-ID-Q3 Microbiology 120/151 Q4
Journal of Antimicrobial Chemotherapy	148	3,74	124	83,78	5,790	1,51	14/93-ID-Q1 Microbiology 26/136 Q1 P&P 43/276 Q1	8/118-ID-Q1 Microbiology 16/151 Q1 P&P 25/357 Q1
HIV Medicine	138	3,48	107	77,54	3,180	0,97	54/93-ID-Q3	35/118-ID-Q2
JAIDS: Journal of Acquired Immune Deficiency Syndromes	125	3,16	101	80,80	3,731	0,94	40/93-ID-Q2 Immunology 95/162 Q3	39/118-ID-Q2 Immunology 56/177 Q2
Clinical Infectious Diseases	100	2,53	77	77,00	9,079	2,13	3/93-ID-Q1 Microbiology 18/162 Q1 Immunology 12/136 Q1	3/118-ID-Q1 Microbiology 11/177 Q1 Immunology 7/151 Q1
Aids Research and Human Retroviruses	90	2,27	72	80,00	2,205	0,52	75/93-ID-Q4 Virology 31/37 Q4 Immunology 142/162 Q4	78/118-ID-Q3 Virology 32/39 Q4 Immunology 134/177 Q4
Antiviral Therapy	83	2,10	70	84,34	2,400	0,64	70/93-ID-Q4 P&P 204/276 Q3 Virology 27/37 Q3	68/118-ID-Q3 P&P 195/357 Q3 Virology 24/39 Q3
AIDS Reviews	72	1,82	53	73,61	2,500	0,37	67/93-ID-Q3 Immunology 131/162 Q4	150/177Q4
Journal of Virology	72	1,82	58	80,56	5,103	1,24	9/37-Virology-Q1	7/39 Q1
Journal of Infectious Diseases	58	1,46	41	65,52	5,226	1,40	18/93-ID-Q1 Immunology 56/162 Q2 Microbiology 38/136 Q2	13/118-ID-Q1 Immunology 29/177 Q1 Microbiology 18/151 Q1
Antiviral Research	57	1,44	42	73,68	5,970	1,49	8/37-Virology-Q1 P&P 35/276 Q1	6/39 Virology-Q1 P&P 26/357Q1
BMC Infectious Diseases	51	1,29	34	66,67	3,090	0,82	57/93-ID-Q3	50/118-ID-Q2
Medicina Clinica	48	1,21	17	35,42	1,725	0,40	105/167-Medicina General e Interna-Q3	131/315-Q2
HIV Clinical Trials	45	1,14	33	73,33	1,821	n/a	75/92-ID-Q4-2019	n/a

							P&P 210/271 Q4- 2019	
Scientific	41	1,04	27	65,85	4,380	0,80	17/72-multi-Q1	19/128 Q1
Reports								
Pediatric	41	1,04	24	58,54	2,129	0,73	79/93-ID-Q4	59/118-ID-Q2
Infectious							Pediatrics 69/129 Q3	Pediatrics 76/177 Q2
Disease							Immunology 143/162	Immunology 85/177
Journal							Q4	Q2

Se han identificado 15.703 autores, de los que 323 están vinculados a la RIS. El índice de transitoriedad se sitúa en el 64,56% de los autores (n=10.140). De los 753 autores de más elevada producción científica (> 9 documentos), 186 son de la RIS. La tabla 3. 4. recoge la distribución de los autores por umbrales de productividad. Cabe destacar la elevada productividad de todos los autores vinculados a la RIS, ya que el 57,58% de los mismos (n = 186) han publicado > 9 documentos. Estos autores se sitúan, asimismo, con un promedio de documentos publicados muy superior (41,56) a los grandes productores (> 9 documentos) no vinculados a la RIS (15,37).

Tabla 3. 4. Distribución del número de autores con "n" documentos en la investigación española sobre VIH-Sida (2010-2019).

N° de documentos	N autores	0/0	N autores vinculados a la RIS	0/0
1	10096	64,29	15	4,64
2	2378	15,14	13	4,02
3	1022	6,51	24	7,43
4	518	3,30	22	6,81
5	340	2,16	20	6,19
6	224	1,43	10	3,09
7	154	0,98	10	3,09
8	128	0,81	9	2,79
9	90	0,57	14	4,33
>9	753	4,79	186	57,58
Total	15703	100	323	100

En relación con la colaboración, el promedio de autores por documento se ha situado en $11,29\pm17,8$, si bien, ha pasado de $9,74\pm14,62$ en el período 2010-2014 a $13,04\pm20,67$ en 2015-2019, destacando el notable incremento del número de trabajos en multi-autoría en los que han participado un número muy elevado de autores, ya que por ejemplo los trabajos con más de 20 autores han pasado de representar el 4,5% de los documentos en el período 2010-2014 (n = 95) al 10,72% de los documentos en 2015-2019 (n = 200).

En la tabla 3. 5. se recoge el listado con las instituciones más productivas (> 100 documentos). El porcentaje de documentos en colaboración internacional ha pasado del 35% de los documentos en 2010 hasta situarse en el 50,42% en 2019 (tabla 3. 5.).

Tabla 3.5. Participación institucional (>99 documentos) en la producción científica sobre VIH-Sida en España (2010-2019).

Afiliación institucional	N docs	Índice h	N citas	Promedio Citas/doc
Univ Autònoma de Barcelona	669	46	11142	16,65
Univ de Barcelona	638	45	11181	17,53
HC de Barcelona	628	48	11143	17,74
HU Germans Trias i Pujol	623	50	11973	19,22
Instituto de Salud Carlos III	502	38	6807	13,56
IrsiCaixa: Institut de Recerca de la Sida	475	49	10589	22,29
HGU Gregorio Marañón	416	31	5248	12,62
HU Ramón y Cajal	385	32	5056	13,13
Institut d'Investigacions Biomèdiques August Pi i Sunyer	365	35	6169	16,90
HU La Paz	331	36	5764	17,41
CIBER de Epidemiología y Salud Pública	274	25	3243	11,84
H Carlos III*	254	36	5812	22,88
Univ College London**	232	42	8018	34,56
HU Vall d'Hebron	223	25	2894	12,98
Fundació Lluita Contra la Sida	215	29	3595	16,72
HU 12 de Octubre	214	27	3110	14,53
H de la Santa Creu i Sant Pau	207	25	3043	14,70
HU Virgen del Rocío	194	25	2406	12,40
HU Virgen de Valme	186	19	1782	9,58
HU de Bellvitge	183	26	3088	16,87
Institució Catalana de Recerca i Estudis Avançats	178	35	4638	26,06
Univ de Vic - Univ Central de Catalunya	166	22	1998	12,04
Instituto Ramón y Cajal de Investigación Sanitaria	160	20	1755	10,97
HC San Carlos	143	21	1757	12,29
Instituto de Biomedicina de Sevilla	141	19	1378	9,77
Instituto de Investigación Sanitaria del Hospital Universitario La Paz	140	26	2612	18,66
Instituto de Investigación Sanitaria Gregorio Marañón	137	21	1271	9,28
Univ Sevilla	127	20	1515	11,93
HU Reina Sofia	124	21	1611	12,99
Univ Complutense de Madrid	119	19	1554	13,06

Centre de Recerca en Salut Internacional de Barcelona	117	20	1771	15,14
Univ Autónoma de Madrid	116	19	1268	10,93
HU Virgen de la Victoria	116	15	939	8,09
HU y Politécnico de La Fe	112	22	1602	14,30
Univ Copenhagen**	111	28	4162	37,50
Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol	109	20	1447	13,28
HU de Donostia	105	18	1076	10,25
Univ Miguel Hernández de Elche	105	21	1988	18,93
Consejo Superior de Investigaciones Científicas	105	24	2066	19,68
Univ Ámsterdam	104	32	4503	43,30
HGU de Elche	103	24	2223	21,58
Univ Alcalá de Henares	102	20	1426	13,98

Univ: Universidad; HC: Hospital Clínic/o; HU: Hospital Universitario; HGU: Hospital General Universitario; H: Hospital;

Participación de la RIS en la investigación española sobre VIH

Los 38 grupos de investigación de la RIS analizados se distribuyen en 19 grupos vinculados con la investigación básica, 21 vinculados con la investigación clínica y otros 18 grupos que desarrollan una investigación epidemiológica, si bien, cabe destacar que numerosos grupos participan simultáneamente en más de un tipo de orientación investigadora tabla 3. 6.. Globalmente, los investigadores de la RIS han participado en el 60,43% (n=2393) de la producción científica española sobre VIH, situándose con un promedio de citas por documento ligeramente superior (15,92 frente a 14,15, en el caso de la producción científica no vinculada a estos grupos) y con un menor grado de documentos no citados (únicamente el 7,19% de los documentos frente al 13,34% en el caso de la producción científica en la que no ha participado ningún investigador de la RIS).

La participación de los investigadores de la RIS en las revistas más productivas y de elevado impacto y visibilidad se sitúa en casi todos los casos con valores muy por encima de su participación global en el conjunto de la producción científica analizada (tabla3. 6.).

^{*} Aunque está integrado desde el año 2013 en el HU La Paz se ha mantenido esta institución diferenciada, en tanto que se mantiene como afiliación institucional en las publicaciones científicas. ** En la tabla aparecen instituciones extranjeras porque autores de las mismas han colaborado frecuentemente con autores de instituciones españolas.

Aunque con carácter general la investigación básica se sitúa con los valores más destacados de producción y citación, cabe destacar que los grupos que se definen por un tipo de investigación transversal (básica y clínica/epidemiológica o clínica y epidemiológica) presentan un mayor grado de citación que los grupos especializados en un único tipo de investigación.

Dos grupos de elevada productividad y citación se destacan sensiblemente por encima del resto (con un promedio de 19-21 citas por documento e índices-h de 45-48), situándose a continuación otros 17 grupos con más de cien documentos publicados y también un destacado grado de citación (tabla3. 6.).

Tabla 3. 6. Actividad y desempeño científico de los grupos de la RIS en la Web of Science (2010-2019).

Compa DIC*	Ting investigación	N	N	Promedio	Índice-
Grupo RIS*	Tipo investigación	docs	citas	citas/doc	h
Grupos del IrsiCaixa Instituto de	Básica	489	10200	20,86	48
Investigación del Sida					
Hospital Clínic – IDIBAPS	Básica/clínica	489	9312	19,04	45
Hospital Universitario Ramón y Cajal,	Básica/clínica	289	4386	15,18	32
Servicio de Enfermedades Infecciosas					
Instituto de Investigación del Hospital	Básica/clínica	155	3784	24,41	32
Sanitario La Paz (IdiPAZ), Unidad VIH					
Hospital General Universitario de Elche	Clínica/epidemiológica	150	2868	19,12	27
Hospital Universitario 12 de Octubre,	Básica/clínica	184	2703	14,69	26
Grupo de Investigación en Virología-					
VIH/Sida					
Hospital General Universitario Gregorio	Básica	191	2553	13,37	25
Marañón, BioBanco VIH					
Hospital Universitario Vall d'Hebron,	Básica/clínica	181	2633	14,55	25
Unidad de Investigación en VIH/Sida					
Hospital Universitario de Bellvitge, unidad	Clínica/epidemiológica	157	2820	17,96	25
de HIV y ETS, Servicio de Enfermedades					
Infecciosas					
Instituto de Investigación Sanitaria Galicia	Clínica/epidemiológica	190	2251	11,85	24
Sur					
Instituto de Investigación del Hospital de la	Básica/clínica	186	2848	15,31	24
Santa Creu i Sant Pau, Grupo de					
investigación en VIH y Sida					
Centro Nacional de Epidemiología (ISCIII)	Clínica/epidemiológica	151	2065	13,67	24
/ Centro Sanitario Sandoval, Unidad de la					
Cohorte de la Red de Investigación en Sida					
(CoRIS)					
Hospital General Universitario Gregorio	Básica/clínica	215	2340	10,88	23
Marañón, Grupo de aspectos clínicos y					

epidemiológicos del VIH y condiciones					
asociadas					
Hospital Universitario Reina Sofia, Unidad	Clínica/epidemiológica	159	1918	12,06	23
de Enfermedades Infecciosas				,	
Hospital Universitario Virgen del Rocío,	Básica/epidemiológica	172	1920	11,16	20
Grupo de Investigación VIH					
Centro Nacional de Microbiología	Básica	101	1314	13,01	20
(Instituto de Salud Carlos III), Unidad de					
inmunopatología del Sida					
Hospital Universitario de Valme, Unidad de	Clínica	141	1558	11,05	19
Enfermedades Infecciosas y Microbiología					
Hospital Universitario San Cecilio	Clínica/epidemiológica	84	1157	13,77	19
Centro Nacional de Biotecnología,	Básica	50	990	19,8	19
Poxvirus y vacunas					
Hospital General Universitario de Alicante,	Clínica/epidemiológica	114	1083	9,5	18
Grupo de investigación sobre VIH					
Enfermedades Infecciosas					
Instituto de Investigación Sanitaria-	Básica	90	1056	11,73	17
Fundación Jiménez Díaz	D/ '	115	0.72	0.45	1.6
Centro Nacional de Microbiología	Básica	115	972	8,45	16
(Instituto de Salud Carlos III), Unidad de infección viral e inmunidad					
	Básica/clínica	95	837	8,81	16
Hospital Universitario Joan XXIII de Tarragona, Grupo de investigación en	Basica/cililica	93	837	0,01	10
infección e inmunidad (INIM)					
Hospital Universitario de La Princesa,	Clínica	75	814	10,85	16
Servicio de Medicina Interna-Infecciosas	Cimica	, 5		10,02	10
Hospital Universitario Donostia	Clínica/Epidemiológica	71	690	9,72	14
Hospital Universitario Virgen de la Victoria	Epidemiológica	77	557	7,23	11
Hospital Universitario y Politécnico de La	Epidemiológica	51	478	9,37	11
Fe					
Hospital San Pedro, Unidad de VIH	Epidemiológica	51	403	7,9	10
Hospital Universitario Son Espases	Clínica/Epidemiológica	49	491	10,02	10
Hospital Universitario Mutua Terrassa,	Clínica/Epidemiológica	31	307	9,9	10
Grupo de investigación VIH+/Sida					
Centro Nacional de Microbiología	Básica/Epidemiológica	30	255	8,5	9
(Instituto de Salud Carlos III), Unidad de					
Biología y variabilidad del VIH					
Hospital Universitario Parc Taulí, Grupo de	Epidemiológica	28	230	8,21	8
investigación en retrovirus	D(:	2.5	255	10.5	
Centro Nacional de Microbiología	Básica	25	265	10,6	8
(Instituto de Salud Carlos III), Unidad de					
Virología molecular	D' -: /-1':	11	272	24.72	0
Instituto de Salud Carlos III, Unidad de	Básica/clínica	11	272	24,73	8
investigación en salud digital	Enidomiológica	20	105	6.61	7
Hospital Universitario Reina Sofía	Epidemiológica Epidemiológica	28	185	6,61	
Hospital Universitario de Canarias	Epidemiológica	27	163	6,04	6

Universidad de La Laguna, Inmunología	Básica	8	81	10,12	6
celular y viral					
Complejo Hospitalario de Navarra, Grupo	Epidemiológica	11	63	5,73	4
de investigación en infección por VIH					

* Aunque no están recogidos en la web de la RIS, se han integrado en el análisis los grupos del Instituto de Investigación del Hospital Sanitario La Paz (IdiPAZ) y el grupo del Instituto de Investigación del Hospital de la Santa Creu i Sant Pau, dada su vinculación a la Red. Asimismo, no se ha considerado el grupo "La Doctora Álvarez", por estar centrado en el desempeño de actividades de comunicación científica.

La generación de la red de coautorías con los autores de más elevada productividad (>9 documentos) e intensidad de vínculos cooperativos (>9 documentos en colaboración con otros investigadores) (figura 3. 1.) ha permitido determinar que el componente principal que aglutina el mayor número de autores vinculados entre sí está conformado por 482 autores, de los que 158 (32,78%) están vinculados a la RIS. Los autores del componente principal vinculados a la RIS presentan un promedio de intermediación (4,97-03) muy superior al resto de autores (1,18-03), así como una productividad sensiblemente superior (44,26 documentos por autor frente a 25,65 del resto de autores).

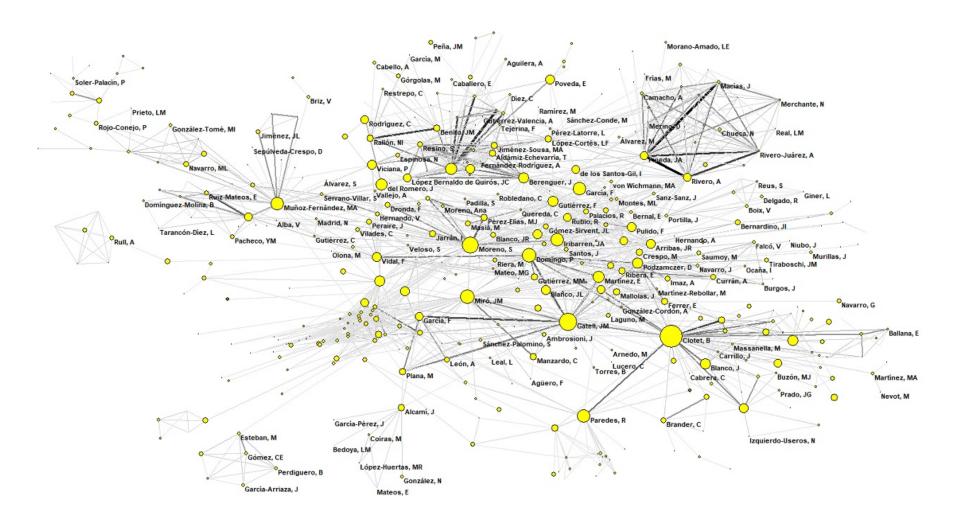


Figura 3. 1. Red de coautorías con el núcleo de los autores más productivos (> 9 documentos y > 9 vínculos de coautoría) sobre VIH-Sida en España (2010-2019) con la identificación de los miembros de la Red de Investigación en Sida. El grosor de los nodos refleja el grado de intermediación en la red.

Análisis temático de la investigación española sobre VIH-Sida

Se han identificado cinco destacados clústeres temáticos de investigación (figura 3. 2.), entre los que destaca uno vinculado con la terapia antirretroviral y sus complicaciones y otro centrado en el estudio de la coinfección (hepatitis B, hepatitis C, leishmaniosis) y la comorbilidad con otras enfermedades (cirrosis hepática, tuberculosis, infecciones oportunistas y comorbilidades no infecciosas). La investigación básica vinculada a la caracterización genética del virus (variaciones genéticas, replicación, mutaciones, inhibidores, efectos de los fármacos, etc.) concentra el interés de otro destacado clúster de investigación. También se ha identificado otro clúster que aborda aspectos relacionados con el desarrollo de vacunas y otro relacionado el estudio de la transmisión en colectivos específicos o asociado a las conductas sexuales.

No se han observado diferencias por género (H=2513, M=2409) y la investigación se centra mayoritariamente en la población adulta (n=2161) y preferentemente en el grupo poblacional de entre 45-64 años (n=1656) frente a los adultos jóvenes (19-24 años, n=582). Los estudios centrados en los adolescentes (n=458) y ancianos (n=428) tienen una presencia menor, al igual que en los grupos poblacionales de entre 0 y 12 años (97-199 documentos).

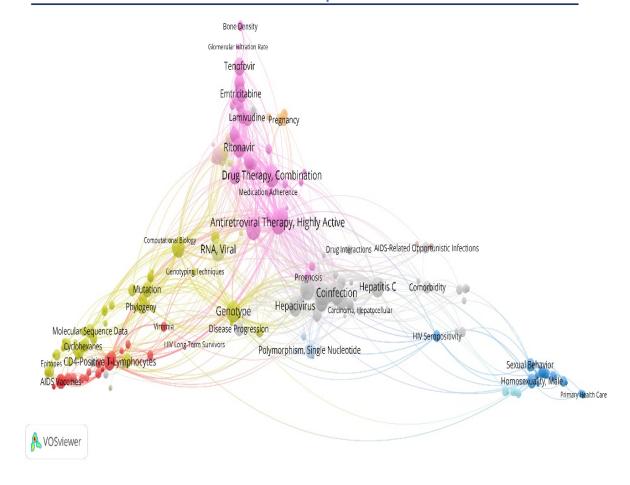


Figura 3. 2. Mapa de los clústeres temáticos de la investigación española sobre el VIH-Sida (2010-2019) generado a partir de la co-ocurrencia de los descriptores MeSH asignados a los documentos.

3. Discusión

Los resultados del presente estudio permiten actualizar los trabajos previos que han analizado la evolución de la investigación española sobre el VIH-Sida desde la década de 1980. Se ha puesto de manifiesto la continuidad de la evolución creciente de la producción científica española en el área, ya que se ha pasado de los 1821 artículos de revista identificados en bases de datos nacionales en el período 1983-1992 en el estudio de Aleixandre et al. (121) (promedio de 182,1 documentos/año); de los 2254 documentos publicados en las bases de datos de la WoS en el período 1985-2001 en el estudio de Civera et al.(124)(132,59 documentos/año); o de los 2065 documentos recogidos en Medline en el período 1991-1999 en el estudio de Ramos Rincón et al. (256)(229,44 documentos/año); a los 3960 documentos analizados en el presente estudio correspondientes al período 2010-2019 (promedio de 396 documentos/año). También cabe resaltar que la participación de los investigadores españoles en publicaciones especializadas en VIH ha experimentado un crecimiento en relación con el estudio de Uusküla et al.(103) correspondiente al período 2002-2011, ya que han pasado de representar el 17,91% al 24,12% de los documentos.

La distribución de la investigación española sobre VIH-Sida por áreas de investigación se corresponde con la observada a nivel global, tanto en relación con las principales disciplinas responsables del impulso de la investigación (enfermedades infecciosas, inmunología y virología) como a nivel de revistas científicas, ya que en todas las revistas más productivas sobre VIH identificadas en el estudio de Tran et al. (257) han participado en mayor o menor medida investigadores españoles. Destaca la continuidad de la investigación sobre VIH-Sida en las revistas españolas, particularmente en EIMC, cuya investigación triplicaba en el período 2003-2007 a otras enfermedades infecciosas(258)y que continúa siendo la revista española más productiva (n=211). Asimismo, la investigación ha alcanzado una importante proyección global, con el 88,89% de los documentos (n=3520) publicados en revistas internacionales. También es especialmente significativo el incremento de los artículos publicados en revistas de elevado impacto, ya en el estudio de Uusküla et al. (103) que estimó que las publicaciones españolas sobre VIH en revistas con un Factor de Impacto ≥3 era únicamente el 7,88% de las publicaciones en el período 2002-2011, se ha pasado al 69,43% de los documentos en el presente estudio. Utilizando el indicador normalizado JCI, el 38,56% de los documentos han sido publicados en revistas que reciben un grado de citación superior al promedio de sus categorías, lo que confirma la evolución positiva que ha experimentado el grado de visibilidad e impacto de la investigación española sobre VIH-Sida.

También se ha constatado un aumento significativo de la colaboración científica. A nivel de autores, el estudio de Lakeh y Ghaffarzadegan(206)destacó que el promedio de autores por documento en las publicaciones sobre VIH a nivel global se incrementó progresivamente de 4,2 en las décadas de 1980 y 1990 hasta situarse en torno a los 6,2 autores por documento en 2012, un valor superado ampliamente en el presente estudio (11, 29), con un destacado crecimiento de los estudios en multi-autoría con un número muy elevado de autores. También destaca el elevado grado de documentos en colaboración internacional, que se sitúa muy por encima de otras áreas de la investigación biomédica. La colaboración científica y la participación en redes internacionales resulta de especial relevancia en un área compleja de abordaje multidisciplinar como la investigación sobre el VIH-Sida, ya que favorece compartir conocimiento, pericia, recursos y datos (201). La destacada participación de los investigadores españoles y particularmente de los integrantes de la RIS en iniciativas como cohortes, biobancos, o el impulso de estudios multicéntricos puede contribuir a explicar el elevado grado de colaboración observado (259). En total, España cuenta con 4 cohortes relevantes de pacientes infectados por VIH y Sida la CoRIS, la Cohorte Nacional de Pacientes Pediátricos con Infección VIH (CoRISPe) [2008], el Proyecto para la Informatización del Seguimiento Clínico-epidemiológico de la Infección por VIH y Sida (PISCIS) [1998], todas ellas coordinadas con otras cohortes a nivel internacional como COHERE, ART-CC and EuroCOORD(204,259,260)

La relevancia de la RIS resulta incuestionable, en tanto que aglutina el 60% de la producción científica analizada. Los grupos e investigadores vinculados a esta red presentan valores de producción científica y de citación sensiblemente superiores a los autores y documentos en los que no han participado, aspectos también constatados en otros estudios que han caracterizado bibliométricamente las redes vinculadas con la investigación sobre VIH, como el trabajo de Nye et al.(201) que analizó la red de ensayos de vacunas HVTN, mostrando que los investigadores vinculados a la misma duplicaron en una década su producción científica y que sus publicaciones recibieron un grado de citación sensiblemente superior, situándose muchas de sus contribuciones entre los trabajos de más elevada visibilidad.

El presente estudio ha identificado y caracterizado bibliométricamente el conjunto de la producción científica española sobre VIH-Sida en el período 2010-2019, si bien, en relación con el análisis específico de los grupos de la RIS, hay que tener presente el carácter dinámico de la misma, con grupos e investigadores que han estado en la red todo el período y otros solo una parte del mismo. En cualquier caso, creemos que la evaluación efectuada ofrece una información relevante acerca de la actividad investigadora desempeñada por estos grupos en un momento de reformulación de las estructuras de investigación en el área.

Otra limitación del presente estudio es que al efectuar el proceso de búsqueda utilizando el tesauro MeSH, se ha ofrecido fundamentalmente una visión de la investigación biomédica sobre el VIH-Sida, que puede ser complementada con un análisis de la investigación centrada en los aspectos psico-sociales, destacando ámbitos como las medidas de prevención o educativas. En relación con este aspecto, el estudio de Lakeh y Ghaffarzadegan(206) constató la mayor orientación biomédica de la investigación sobre el VIH/Sida en los países con una menor incidencia y mortalidad de la enfermedad en relación con los aspectos sociales y conductuales, estimando que en el caso de España la investigación de estos aspectos se sitúa por debajo del 30%. En el actual contexto de globalización, sin dejar de lado la investigación biomédica, básica y clínica, en la que España con el liderazgo de la RIS se ha convertido en un destacado referente internacional, se debe integrar en la misma e incidir en mayor medida en aspectos como el análisis de la percepción y las conductas de riesgo (consumidores de drogas, prácticas sexuales etc.), la identificación de los infectados, la salud mental, el apoyo social o en iniciativas que permitan limitar la discriminación y estigmatización de los contagiados.

La principal conclusión del estudio efectuado es que la investigación española sobre VIH-Sida ha alcanzado un estadio de madurez, con una destacada producción científica e integración en las redes de colaboración internacional, por lo que España y particularmente la iniciativa de la RIS analizada en el presente estudio pueden erigirse en un destacado referente para otros países cuya investigación en el área presenta un carácter más incipiente (104,116,117)

VII. Material y métodos, resultados y discusión

Estudio epidemiológico 1

Evolución de las hospitalizaciones y muertes de pacientes infectados por el VIH en España durante dos décadas a través de la Base de Datos Nacional de Altas Hospitalaria de España

Ramos-Rincon JM, Menchi-Elanzi M, Pinargote-Celorio H, Mayoral A, González-Alcaide G, de Mendoza C, Barreiro P, Gómez-Gallego F, Corral O, Soriano V. Trends in hospitalizations and deaths in HIV-infected patients in Spain over two decades. AIDS. 2022;36(2):249-256.

1. Material y Métodos

Se realizó un estudio retrospectivo con datos de los diagnósticos de alta hospitalaria de base poblacional en CMBD del RNAH. Se trata de un registro público nacional que pertenece al Ministerio de Sanidad español. Registra la información de todos los pacientes dados de alta en los hospitales públicos y privados de todo el país desde principios de los años noventa (261). Se han realizado estudios previos con este registro para otras enfermedades, incluidas las infecciosas donde se ha detectado su gran valor para predecir la carga asistencial actual y las tendencias temporales de diferentes entidades clínicas a nivel nacional(262–269).

El estudio se realizó con todos los datos incluidos en el Registro Nacional de Altas Hospitalarias desde el 1 de enero de 1997 hasta el 31 de diciembre de 2018, abarcando 22 años en total. Cabe destacar que la información del país de origen no estaba disponible en el registro del Registro Nacional de Altas Hospitalarias hasta enero de 2016.

Los criterios de las enfermedades y procedimientos se definieron según la Clasificación Internacional de Enfermedades (CIE)- Novena Revisión, Modificación Clínica (CIE-9-CM), que era la utilizada por el Registro Nacional de Altas Hospitalarias hasta 2015. Desde 2016, se utiliza la CIE-10-CM actualizada.

Se seleccionaron los ingresos hospitalarios de 1997 a 2015 de los pacientes con los siguientes diagnósticos de la CIE-9-CM: código 042 (enfermedad por VIH) o V08 (estado de infección por VIH asintomática). De 2016 a 2018, se seleccionaron los ingresos hospitalarios de pacientes con los siguientes diagnósticos de la CIE-10- CM diagnósticos: B20 (enfermedad por VIH) o Z21 (estado de infección por VIH asintomática). Se consideraron todos estos diagnósticos independientemente de su posición en la lista de diagnósticos para cada episodio de ingreso hospitalario.

Se recuperaron los datos sobre las comorbilidades utilizando las versiones modificadas de la CIE-9-CM y la CIE-10-CM. La lista de códigos de la CIE-9-CM y la CIE-10 que utilizamos para las enfermedades definitorias de Sida, enfermedades no definitorias de Sida y las neoplasias no relacionados con el Sida se recoge en la tabla 4, 1. Se examinaron además varias variables de resultados hospitalarios de la hospitalización y la mortalidad intrahospitalaria. Esta última se expresó como tasa de mortalidad (CFR), o como la proporción de muertes intrahospitalarias con respecto al número total de pacientes hospitalizados con esa enfermedad.

Tabla 4. 1. Lista de códigos de diagnóstico según la Clasificación Internacional de Enfermedades - Novena Revisión y Décima Revisión, Modificación Clínica (CIE-9-CM)

	ICD-9-CM	ICD-10-CM
Enfermedades definitorias de Sida		
Candidiasis traqueobronquial o	112.4	B20.4; B37.1; J99.8
pulmonar		
Candidiasis esofágica	112.84	B37.0
Cáncer de cérvix invasivo	180	C53
Coccidioidomicosis diseminada o extrapulmonar	114.1; 114.2; 114.3	B38.7
Criptococosis extrapulmonar	117.5	B45.7
Criptosporidiosis intestinal crónica (>1 mes)	007.4	A07.2
Retinitis y Citomegalovirus diseminado	078.5; 363.20	B25.9; H30.9
Encefalopatía por VIH	348.30	G93.49
Infección crónica por Virus Herpes	054.71; 054.9	A60; B00.1; B00.2;
Simple		B00.52; B00.9;
		B35.4
Histoplasmosis diseminada o	115.00 to 115.04	B39.3; B39.4; B39.5;
extrapulmonar	115.09 to	B39.9
	115.14;115.19	
	115.90 to 115.94;	
	115.99	
Isosporidiasis intestinal crónica	007.8; 007.9	A07.3

Sarcoma de Kaposi	058.89; 176	B21.0; C46
Linfoma no Hodking y linfoma de	200.2; 200.8	C83.7
Burkit.	200.2, 200.0	C03.7
Linfoma cerebral primario	200.5	B21.2; B21.3; C83.31
Mycobacterium tuberculosis	010 to 018	A15 to A19; B20.0
(pulmonar o extrapulmonar)		,
Infección por Micobacterias atípicas	031	A31
extrapulmonares		
Neumonía Pneumocystitis jirovecii	136.3	B5; B20.6
Leucoencefalopatia multifocal	046.3	A81.2
diseminada Infección recurrente por Salmonella	003.1	A02.1
Toxoplasmosis cerebral		
Toxopiasinosis cerebrai	130.0	B20.8; B58; B58.2;
Síndrome de Wasting	799.4	B58.89 B22.2; R64
Enfermedades no definitorias de Sida		B22.2, R04
Enfermedades no definitorias de Sida Enfermedades cardiovasculares	390 to 459	I00 to I99
Enfermedades neurológicas	320 to 389	G00 to G99
Enfermedades hepáticas	070.0 to 070.9; 271.0;	
Enformedades nepaticas	277.39; 452; 570 to	K/UWK//
	573; 751.62; 789.1	
Enfermedades renales	275.4; 580 to 592;	N00 to N08
Emermedades renaies	593.0; 593.1; 593.2;	N10 to N23
	593.6; 593.81; 593.9;	N25 to N39
	753.1;753.22; 791.0	1123 10 1137
Enfermedades mentales y psiquiátricas	290 to 299	F00 to F99
2 memerates y porquiatreas	310.0 to 310.9	100 10199
	317 to 319	
Endocarditis	424.9	I33.0; I33.9
Neumonía bacteriana	011.6; 021.2; 083.9;	J13; J14; J15 to J15.9; J18
	104.8; 415.1; 466.19;	, ,
	481; 482.0; 482.1;	
	482.2; 482.30;	
	482.39; 482.40;	
	482.41; 482.42;	
	482.49; 482.81;	
	482.82; 482.83;	
	482.89; 482.9; 483.0;	
	483.1; 483.8; 484.3;	
	484.5; 486; 507.0;	
	513.0; 518.3; 516.8;	
	770.0; 997.31	
Celulitis	682.9	L00 to L99
Cirugías	00.30 to 00.35; 00.39	Y83 to Y84
	17.40 to 17.45; 17.49	
	654.2; 654.6; 654.7;	
	654.8; 654.9; 660.2;	
	760.63; 763.1	
	V50.0 to V50.4;	
	V50.8; V50.9; V51.0;	

	V51.8; V64.1 to V64.3	
Efectos adversos de medicamentos	977.9; 995.0; 995.1; 995.27; 995.3; 999.42	Y40 to Y59
Fracturas y traumatismos	800 to 829	S00 to S99 T00 to T19
Infección por virus de la Hepatitis C	070.44; 070.51; 070.54; 070.70; 070.71; V02.62	B17.1; B17.11; B18.2; B19.20; B19.21
Infección por virus de la Hepatitis B	070.20 to 070.23 070.30 to 070.33 V02.61	B16; B16.0; B16.1; B16.2; B16.9; B18.0; B18.1; B19.10; B19.11
Neoplasias No Sida		
Neoplasia de labio, cavidad oral y faringe	140 to 149	C00 to C14
Neoplasia maligna de órganos digestivos y peritoneo	150 to 159	C15 to C26 C78.7; C7B.04
Neoplasias de Colon	153.x; 154.x	C18.0 to C18.9
Hepatocarcinoma	155.0	C22 to C22.9
Neoplasias de Pulmón	160 to 165	C30 to C39.9 C76.1
Neoplasia maligna hueso, conectivo y piel*	170 to 175	C40 to C41.9 C43 to C50
Neoplasias de Mama	174.x	C50 to C50.929
Neoplasias Genitourinarias	179 to 189	C51 to C58 C60 to C68
Neoplasias Malignas hematopoyéticas **	200 to 208	D50 to D89
Otras neoplasias	190 to 199	D37 to D49

^{*} Excluido el sarcoma de Kaposi

Análisis estadístico

Las tasas de incidencia de las hospitalizaciones por VIH se calcularon por cada 100000 ingresos por año de hospitalización. Las cifras se obtuvieron de la información pública disponible en las páginas web del Instituto Nacional de Estadística (270). Los cambios a lo largo del tiempo se analizaron comparando las tasas anuales. Además, se realizaron comparaciones de varias variables cualitativas utilizando dos periodos, definidos en intervalos de 1997 a 2007 y de 2008 a 2018. Las variables cuantitativas y cualitativas se describen como medianas con rango intercuartil (IQR) o como proporciones.

Las comparaciones bivariadas de las variables cuantitativas y cualitativas se realizaron mediante la prueba de Mann-Whitney la prueba de chi-cuadrado o la prueba de Fisher.

^{**} Excluyendo el linfoma de Burkitt y el linfoma inmunoblástico: 200.8, 200.2; y el linfoma cerebral primario: 200.5, todos ellos neoplasias definitorias de Sida.

Todos los análisis estadísticos se realizaron con el paquete IBM SPSS para Windows v25.0 (IBM Corp., Armonk, Nueva York, EE.UU.). Los gráficos se realizaron con el paquete estadístico R v.3.6.3 (R Foundation, Viena, Austria) y RStudio v1.2.1578 para Mac. Sólo se consideraron significativos los valores P < 0,05.

Aspectos éticos

De acuerdo con la legislación española, no fue necesaria la aprobación de un comité ético para este estudio. Para garantizar el anonimato de los pacientes, la base de datos nos fue proporcionada por el Ministerio de Sanidad español tras eliminar todos los posibles identificadores de los pacientes. De acuerdo con la legislación española, no fue necesario el consentimiento informado de los pacientes para este análisis.

2. Resultados

En España se registraron un total de 79.647.851 ingresos hospitalarios durante el periodo de estudio, que abarca 22 años (1997-2018). En este estudio retrospectivo, observacional y poblacional, un total de 532.668 (0,67%) altas hospitalarias incluyeron el VIH como diagnóstico.

La figura 4. 1. registra las tendencias de las hospitalizaciones en personas con infección por VIH durante el periodo de estudio. Se observó un descenso significativo principalmente desde 2008, cuando se produjeron cambios importantes en el manejo del VIH, incluyendo la introducción de los inhibidores de la integrasa, la consideración de la terapia antirretroviral y la sustitución de la zidovudina, la estavudina, la didanosina y la nevirapina. La reducción de las hospitalizaciones por VIH se observó tanto en números absolutos como en la proporción del total de hospitalizaciones.

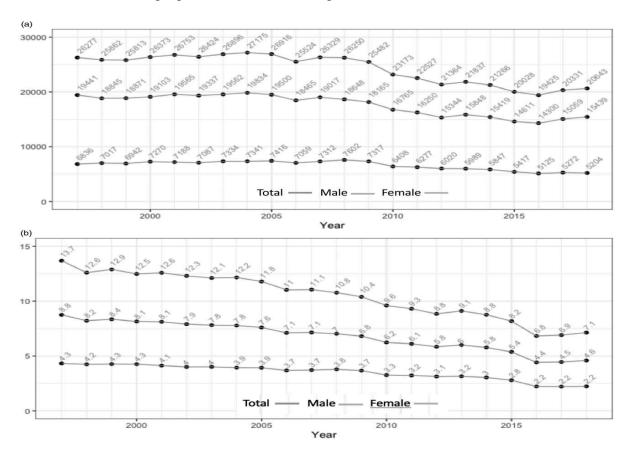


Figura 4. 1. Hospitalizaciones anuales por VIH según sexo. (a) Números absolutos. (b) Tasa (considerando el número total de hospitalizaciones).

La tabla 4. 2. recoge los principales datos demográficos de la población del estudio. En general, el sexo masculino representaba el 72,7%, disminuyendo ligeramente durante el período de estudio (Figura 4. 1.).

Tabla 4. 2. Principales datos demográficos de la población del estudio: distribución por periodos y mortalidad global.

			Comparación de las hospitalizaciones entre dos períodos			
	Ingresos hospitalarios	Mortalidad intrahospitalaria	1997–2007	2008–2018	P	
No.	532 668	29 426 (5.5%)	290 342	242 326	0.01	
Sexo (n, %)			I	1		
Masculino	387 388 (72.7)	23 465	211 540 (72.9)	175 848 (72.6)	0.017	
Femenino	145 280 (27.3)	5957	78 802 (27.1)	66 478 (27.4)		
Edad (años) (n,%)			l			
<45	338 286 (63.5)	16 472	238 474(82.1)	99 812 (41.2)	< 0.001	
45–64	175 621 (33)	11 268	46 473 (16)	129 148 (53.3)	< 0.001	
≥65	18 761 (3.5)	1682	5395 (1.9)	13 366 (5.5)	< 0.001	
UDVP (<i>n</i> , %)	118 720 (22.3)	5226 (17.8)	67 674 (23.3)	51 046 (21.1)	< 0.001	
Mediana de la duración de la hospitalización (IQR) (días)	7 (3–13)	11 (4–24) ^a	7 (3–14)	6 (3–12)	<0.001	

^aEstancia hospitalaria media de los pacientes fallecidos.

La edad media de la población hospitalizada de personas con infección por VIH fue de 38,4 años, con un aumento significativo de la edad media a lo largo del tiempo, independientemente del sexo (figura 4. 2.). De hecho, la proporción de hospitalizaciones en personas con infección por VIH menores de 45 años disminuyó significativamente del 82,1% durante la primera década (1997-2007) al 41,2% durante la última década (2008-2018) (tabla 4. 2.). El uso anterior o actual de drogas por vía parenteral se registró en el 22,3% de las personas con infección por VIH hospitalizadas y disminuyó significativamente con el tiempo (tabla 4. 2.). La mediana de la duración de la hospitalización para personas con infección por VIH fue aproximadamente de 1 semana y se acortó ligeramente durante el período de estudio.

En general, se diagnosticaron enfermedades definitorias de Sida en el 18,6% de las hospitalizaciones por VIH, que disminuyeron del 22,2% durante el primer período al 14,4% en la última década (figura 4. 3.). En cambio, las neoplasias no relacionadas con el Sida aumentaron del 6,4 al 15,5% (tabla 4. 3.).



Figura 4. 2. Edad media anual de las personas con VIH hospitalizadas en España por sexo.

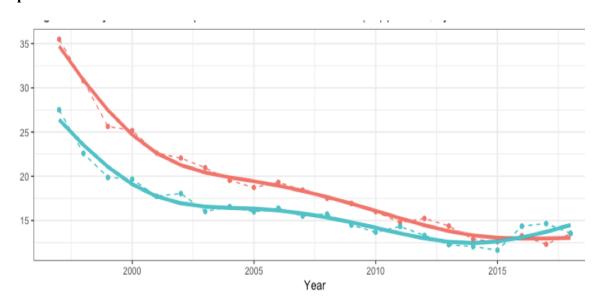


Figura 4. 3. Tasa anual de ingresos hospitalarios por VIH debido a enfermedades definitorias de Sida, por sexo.

Tabla 4. 3. Principales datos demográficos de la población del estudio: distribución por periodos y mortalidad global.

			Comparación	n de	las
			hospitalizacio	ones entre dos j	períodos
	Ingresos	Mortalidad	1997–2007	2008–2018	P
		intrahospitalaria			
No. (%)	532 668	29 426 (5.5)	290 342	242 326	0.01
Enfermedades definitorias de Sida	99.251	10.226 (34.8)	64.445 (22.2)	34.806 (14.4)	0.0001
	(18.6)				
Candidiasis traqueobronquial o	917 (0.2)	204 (0.7)	480 (0.2)	437 (0.2)	0.188
pulmonar					
Candidiasis esofágica	12 444 (2.3)	1007 (3.4)	7045 (2.4)	5399 (2.2)	< 0.001
Cáncer de cérvix invasivo	1560 (0.3)	15(0.5)	737 (0.3)	823 (0.3)	< 0.001
Coccidioidomicosis diseminada o	4 (0.0)	1(0.0)	2 (0.0)	2 (0.0)	1
extrapulmonar					
Criptococosis extrapulmonar	2374 (0.4)	412 (1.4)	1719 (0.6)	655 (0.3)	< 0.001
Criptosporidiosis intestinal crónica	960 (0.2)	85 (3.1)	645 (0.2)	315 (0.1)	< 0.001
(>1 mes)					
Retinitis y Citomegalovirus	6584 (1.2)	926 (14.1)	3,962 (1.4)	2622 (1.1)	< 0.001
diseminado					
Encefalopatía por VIH	965 (0.2)	115 (0.4)	127 (0.04)	838 (0.3)	< 0.001
Infección crónica por Virus Herpes	4374 (0.8)	181 (0.6)	2615 (0.9)	1759 (0.7)	< 0.001
Simple					
Histoplasmosis diseminada o	202 (0)	36 (0.1)	81 (0.03)	121 (0.05)	< 0.001
extrapulmonar					
Isosporidiasis intestinal crónica	311 (0.1)	22 (0.1)	223 (0.1)	88 (0.03)	< 0.001
Sarcoma de Kaposi	6499 (1.2)	756 (2.6)	3629 (1.2)	2870 (1.2)	0.030
Linfoma no Hodking, linfoma	3695 (0.7)	373 (1.3)	1629 (0.6)	2066 (0.9)	< 0.001
cerebral primario y linfoma de					
Burkit.					
Mycobacterium tuberculosis	29 862 (5.6)	2,203 (7.5)	22 556 (7.8)	7306 (3)	< 0.001
(pulmonar o extrapulmonar)					
Infección por Micobacterias atípicas	4598 (0.9)	491 (1.7)	3256 (1.1)	1342(0.6)	< 0.001
extrapulmonares					
Neumonía Pneumocystitis jirovecii	17681(3.3)	2326 (7.9)	11411(3.9)	6270(2.6)	< 0.001
Leucoencefalopatia multifocal	7702(1.4)	1268 (4.3)	4866(1.7)	2836(1.2)	< 0.001
diseminada					
Infección recurrente por Salmonella	791 (0.1)	85 (0.3)	715 (0.2)	76 (0.02)	< 0.001
*					

Toxoplasmosis cerebral	5835(1.1)	675 (2.3)	4201(1.4)	1634(0.7)	< 0.001
Síndrome de Wasting	10194(1.9)	1863 (6.3)	5666 (2)	4528(1.9)	0.028
Enfermedades no definitorias de	430.814	26 697 (5.0)	224.963	205.851	< 0.001
Sida (n, %)	(80.9)		(77.5)	(84.9)	
Enfermedades cardiovasculares	104 447	8605 (29.2)	36 119 (12.4)	68 328 (28.2)	< 0.001
	(19.6)				
Enfermedades neurológicas	68 608 (12.9)	5722 (19.4)	32 964 (11.4)	35 644 (14.7)	< 0.001
Enfermedades hepáticas	197 121 (37)	13 855 (47.1)	104 308 (35.9)	92 813 (38.3)	< 0.001
Enfermedades renales	47 153 (8.9)	6081 (20.7)	15 647(5.4)	31 506 (13)	< 0.001
Enfermedades mentales y psiquiátricas	65 804 (12.4)	3047 (10.4)	16 890 (5.8)	48 914 (20.2)	< 0.001
Endocarditis	446 (0.1)	56 (0.2)	226 (0.1)	22 (0.1)	0.104
Neumonía bacteriana	66450(12.5)	6553 (22.3)	40007(13.8)	26443(10.9)	< 0.001
Celulitis	5030 (0.9)	251 (0.9)	398 (0.1)	4632 (1.9)	< 0.001
Cirugías	6833 (1.3)	159 (0.5)	3089 (1.1)	3744 (1.5)	< 0.001
Efectos adversos de medicamentos	831 (0.2)	23 (0.1)	435 (0.2)	396 (0.2)	0.211
Fracturas y traumatismos	13 812(2.6)	522 (1.8)	5642 (1.9)	8170 (3.4)	< 0.001
Infección por virus de la Hepatitis C	21187(39.8)	11 512 (39.1)	106 049 (36.5)	105 830 (43.7)	< 0.001
Infección por virus de la Hepatitis B	42 010 (7.9)	2350 (8)	24 092 (8.3)	17 918 (7.4)	< 0.001
Neoplasias no Sida (n, %)	56 272 (10.6)	13 618 (24.2)	18 728 (6.4)	37 544 (15.5)	<0.001
Neoplasia de labio, cavidad oral y	1584 (0.3)	176 (0.6)	579 (0.2)	1005 (0.4)	< 0.001
faringe					
Neoplasia maligna de órganos	9962 (1.9)	1667 (5.7)	2236 (0.8)	7726 (3.2)	< 0.001
digestivos y peritoneo					
Neoplasia de Colon	2853 (0.5)	254 (0.9)	913 (0.3)	1940 (0.8)	< 0.001
Hepatocarcinoma	4249 (0.8)	813 (2.8)	806 (0.3)	3443 (1.4)	< 0.001
Neoplasia maligna órganos	7971 (1.5)	1527 (5.2)	2727 (0.9)	5244 (2.2)	< 0.001
respiratorios y tórax					
Neoplasia maligna hueso, conectivo	3297 (0.6)	260 (0.9)	969 (0.3)	2328 (1.0)	< 0.001
y piel					
Mama	798 (0.1)	59 (0.2)	241 (0.1)	557 (0.2)	< 0.001
Genitourinario	3789 (0.7)	269 (0.9)	1005 (0.3)	2784 (1.1)	< 0.001
Malignas hematopoyéticas	29 020 (5.4)	3118 (10.6)	10 371 (3.6)	18 649 (7.7)	< 0.001

Las enfermedades definitorias de Sida más frecuentes entre las personas con infección por VIH hospitalizadas fueron la tuberculosis, la neumonía por *Pneumocystis jirovecii*, la candidiasis esofágica, el síndrome consuntivo asociado al VIH, el sarcoma de Kaposi y la infección diseminada por citomegalovirus. Todos disminuyeron significativamente al comparar el primer y el segundo período (tabla 4. 3.).

La tasa de enfermedades no definitorias de Sida aumentó entre las personas con infección por VIH hospitalizadas a lo largo del periodo de estudio. Las más frecuentes son las enfermedades hepáticas, los eventos cardiovasculares, las complicaciones neurológicas y la insuficiencia renal. La hepatitis viral es diagnosticada en una elevada proporción de las personas con infección por VIH hospitalizadas. La hepatitis se debió a la hepatitis C en aproximadamente el 40% y a la hepatitis B en el 8%. El elevado número de diagnósticos de hepatitis C va en paralelo con una alta proporción de personas que se inyectan drogas (tabla 4. 3.).

Se diagnosticaron neoplasias no relacionados con el Sida en aproximadamente el 10% de las hospitalizaciones durante el periodo de estudio, con un aumento significativo comparando la primera y la última década (del 6,4 al 15,5%). Este aumento se produjo junto con un envejecimiento significativo de la población hospitalizada por el VIH.

Las neoplasias gastrointestinales y pulmonares fueron las más frecuentes. Cabe destacar que el carcinoma hepatocelular se multiplicó casi por cinco comparando los dos periodos.

La muerte intrahospitalaria se registró en 29.426 (5,5%) de las hospitalizaciones por VIH, con un ligero descenso a lo largo del tiempo (figura 4. 3.). La introducción de los inhibidores de la integrasa junto con otras mejoras en el tratamiento del VIH entorno a 2008, fue acompañada de una reducción transitoria más profunda de la mortalidad intrahospitalaria.

En general, se produjeron 17 375 muertes durante el primer periodo y 12 051 muertes durante el último período (P<0,001), que representaron el 6 y el 5% de las hospitalizaciones, respectivamente.

Como se resume en la tabla 4. 3., las muertes intrahospitalarias en las personas con infección por VIH fueron el resultado de enfermedades definitorias de Sida en el 34,8% de los casos.

Las infecciones oportunistas más comunes entre las personas con infección por VIH fallecidas fueron el citomegalovirus (14,1%), *Pneumocystis jirovecii* (7,9%) y la tuberculosis (7,5%).

Las muertes debidas a enfermedades no relacionadas con el Sida fueron en su mayoría el resultado de enfermedades hepáticas en fase terminal (47,1%), eventos cardiovasculares (29,2%) o insuficiencia renal (20,7%).

La tasa de mortalidad de las personas con infección por VIH se resume en la tabla 4. 4. Como era de esperar, la mortalidad hospitalaria global por enfermedades definitorias de Sida fue más frecuente que por enfermedades no definitorias de Sida (10,3 frente a 6,1%, respectivamente).

Entre las enfermedades definitorias de Sida, la candidiasis broncopulmonar, la histoplasmosis diseminada, leucoencefalopatía multifocal y el síndrome consuntivo por el VIH tuvieron la mayor tasa de mortalidad intrahospitalaria. Esta osciló de 16 a 22% de los ingresos hospitalarios con cada enfermedad. Entre las neoplasias no relacionados con el Sida, los ingresos por carcinoma hepatocelular tuvieron la mayor tasa de mortalidad que se aproxima al 20%.

Tabla 4. 4. Tasa de mortalidad por enfermedades y periodo de ingreso en personas con infección por VIH hospitalizadas en España.

Enfermedades	Tasa de mortalio	lad (fallecidos/hosp	Diferencia de riesgo (IC 95%)	P	
	Total	Periodo 1997- 2007	Periodo 2008- 2018	(10.7370)	
Enfermedades definitorias de Sida	10.3	10.4	10.1	-0.28	< 0.001
(%)	(10,226/9,251)	(6,703/64,445)	(3,523/34,806)	(-0.67 to -0.12)	
Candidiasis traqueobronquial y de	22.2	24.3	19.9	-4.47	< 0.001
pulmón	(204/917)	(117/480)	87/437	(-9.97 to -0.93)	
Candidiasis esofágica	8.0	8.4	7.5	-0.88	< 0.001
	(1,007/12,444)	597/7045	(410/5,399)	(-1.83 to 0.09)	
Cáncer de cérvix invasivo	9.7	9	10.3	1.24	< 0.001
	(152/1,560)	67/737	85/823	(-1.74 to 4.17)	
Coccidioidomicosis diseminada o	25	0	50	50	1
extrapulmonar	(1/4)	(0/2)	(1/2)	(-13.59 to 90.55)	
Criptococosis extrapulmonar	17.3	17.6	16.6	-1	< 0.001
	(412/2,374)	(303/1,719)	(109/655)	(-4.24 to -2.52)	
Criptosporidiosis intestinal crónica (>1	8.8	9.4	7.6	-1.84	< 0.001
mes)	(85/960)	(61/645)	(24/315)	(-5.34 to -2.18)	
Retinitis y Citomegalovirus diseminado	14	14.1	13.9	-0.11	< 0.001
, .	(926/6,584)	(559/3,962)	(367/2,622)	(-1.81 to -1.62)	
Encefalopatía por VIH	11.9	12.5	11.8	-0.78	< 0.001
1 1	(115/965)	(16/127)	(99/838)	(-7.96 to -4.47)	
Infección crónica por Virus Herpes	4.1	3.7	4.7	1.07	< 0.001
Simple	(181/4,374)	(97/2,615)	(84/1,759)	(-0.14 to 2.35)	0.001
Histoplasmosis diseminada o	17.8	18.5	17.3	-1.16	< 0.001
extrapulmonar	(36/202)	(15/81)	(21/121)	(-12.52 to -9.24)	0.001
Isosporidiasis intestinal crónica	7	8.9	2.2	-6.7	< 0.001
F	(22/311)	(20/223	(2/88)	(-11.47 to -0.27)	0.001
Sarcoma de Kaposi	11.6	12.7	10.2	-2.49	0.030
2 11 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(756/6,499)	(462/3,629)	(294/2,870)	(-4.03 to -0.92)	0.050
Linfoma no Hodking, linfoma cerebral	10	13.6	7.2	-6.43	< 0.001
primario y linfoma de Burkit.	(373/3,695)	(223/1,629)	(150/2,066)	(-8.47 to 4.44)	-0.001
Mycobacterium tuberculosis	7.3	7.5	6.7	-0.78	< 0.001
(pulmonar o extrapulmonar)	(2,203/29,862)	(1.707/22,556)	(496/7,306)	(-1.44 to -0.09)	`0.001
Infección por Micobacterias atípicas	10.6	11.3	8.9	-2.45	< 0.001
extrapulmonares	(491/4,598)	(371/3,256)	(120/1,342)	(-4.27 to -0.5)	-0.001

Neumonía Pneumocystitis jirovecii	13.15	13.2	12.9	-0.39	< 0.001
	(2,326/17,681)	(1,517/11,411)	(809/6,270)	(-1.42 to -0.6)	
Leucoencefalopatia multifocal	16.4	16.7	15.9	-0.78	< 0.001
diseminada	(1,268/7,702)	(815/4,866)	(453/2,836)	[-2.46 to -0.95)	
Infección recurrente por Salmonella	10.7	10.6	11.8	1.21	< 0.001
	(85/791)	(76/715)	(9/76)	(-4.8 to 10.6)	
Toxoplasmosis cerebral	11.5	12.1	9.9	-2.21	< 0.001
	(675/5,835)	(512/4,201)	(163/1,634)	[-3.91 to -0.39)	
Síndrome de Wasting	18.2	18.4	17.9	-0.5	0.028
_	(1,863/10,194)	(1,048/5,666)	(815/4,528)	[-2.0 to -1.02)	
Enfermedades no definitorias de	6.1	6.7	5.6	-1.13	< 0.001
Sida (<i>n</i> , %)	(26,693/430,743)	(15,152/224,919)	(11,541/205,824)	(-1.27 to -0.99)	
Enfermedades cardiovasculares	8.2	10.7	6.9	-3.81	< 0.001
	(8,605/104,447)	(3,877/36,119)	(4,728/68,328)	[-4.19 to -3.45)	
Enfermedades neurológicas	8.3	8.8	7.9	-0.9	< 0.001
	(5,722/68,608)	(2,903/32,964)	(2,819/35,644)	(-1.31 to -0.48)	0.001
Enfermedades hepáticas	7	7.2	6.7	-0.58	< 0.001
Emermedades nepatrous	(13,855/197,121)	(7,614/104,308)	(6,241/92,813)	(-0.8 to -0.35)	\0.001
Enfermedades renales	12.8	16.4	11.1	-5.31	< 0.001
Emermedades renares	(6,081/47,153)	(2,573/15,647)	(3,508/31,506)	(-5.99 to -4.64)	<0.001
Enfermedades mentales y psiquiátricas	4.6	5.2	4.4	-0.82	< 0.001
Emermedades mentales y psiquiatricas					<0.001
Endocarditis	(3,047/65,804)	(885/16,890)	(2,162/48,914)	(-1.21 to -0.44)	0.104
Endocardius	12.5	14.6	10.4	-4.15	0.104
N. / 1 / '	(56/446)	(33/226	(23/220)	(-10.35 to 2.07)	0.001
Neumonía bacteriana	9.8	9.6	10.2	0.63	< 0.001
	(6,553/66,450)	(3,845/40,007)	(2,708/26,443)	(0.17 to 1.1)	
Celulitis	4.9	4.2	5	0.78	< 0.001
	(251/5,030)	(17/398)	(234/4,632)	(-1.75 to 2.5)	
Cirugías	2.3	1.7)	2.8	1.12	< 0.001
	(159/6,833)	(53/3,089	(106/3,744)	(0.4 to 1.82)	
Reacciones adversas a medicamentos	2.7	2.7	2.7	- 0.02	0.211
	(23/831)	(12/435)	(11/396)	(-2.45 to 2.32)	
Fracturas y traumatismos	3.7	3.4	4	0.55	< 0.001
	(522/13,812)	(195/5,642)	(327/8,170)	(-0.11 to 1.18)	
Infección por virus de la Hepatitis C	5.4	5.5	5.3	-0.16	< 0.001
	(11,512/211,879)	(5,845/106,049)	(5,667/105,830)	(-0.35 to 0.04)	
Infección por virus de la Hepatitis B	5.5	5.9	5.1	-0.79	< 0.001
1	(2,350/42,010)	(1,429/24,092)	(921/17,918)	(-1.23 to -0.35)	
Neoplasias no Sida (n, %)	12.7	15.6	11.2	-4.43	< 0.001
(',' ')	(7124/56,272)	(2,924/18,728)	(4,200/37,544))	[-5.50 to-3.82)	0.001
Neoplasia de labio, cavidad oral y	11.1	9.8	11.8	2.00	< 0.001
faringe	(176/1,584)	(57/579)	(119/1,005)	(1.28 to 5.05)	10.001
Neoplasia maligna de órganos	16.7	19.2	16	-3.22	< 0.001
digestivos y peritoneo	(1,667/9,962)	(430/2,236)	(12,37/7,726)	[-5.09 to -1.43)	<0.001
Colon	(1,007/9,902)		8.35	-1.73	< 0.001
Colon	9.0			1 -1./3	
	8.9	10			١٥.001
Hanatagarainama	(254/2,853)	(92/913)	(162/1,940)	(- 4.14 to 0.49)	
Hepatocarcinoma	(254/2,853) 19.1	(92/913) 25.6	(162/1,940) 17.6	(- 4.14 to 0.49) -8.08	<0.001
-	(254/2,853) 19.1 (813/4,249)	(92/913) 25.6 (207/806)	(162/1,940) 17.6 (606/3,443)	(- 4.14 to 0.49) -8.08 (-11.44 to -4.9)	<0.001
Neoplasia maligna órganos	(254/2,853) 19.1 (813/4,249) 19.1	(92/913) 25.6 (207/806) 19.6	(162/1,940) 17.6 (606/3,443) 18.8	(- 4.14 to 0.49) -8.08 (-11.44 to -4.9) -0.81	
Neoplasia maligna órganos respiratorios y tórax	(254/2,853) 19.1 (813/4,249) 19.1 (1,527/7,971)	(92/913) 25.6 (207/806) 19.6 (537/2,727)	(162/1,940) 17.6 (606/3,443) 18.8 (990/5,244)	(- 4.14 to 0.49) -8.08 (-11.44 to -4.9) -0.81 (-2.67 to 1.00)	<0.001
Neoplasia maligna órganos respiratorios y tórax Neoplasia maligna hueso, conectivo y	(254/2,853) 19.1 (813/4,249) 19.1 (1,527/7,971) 7.8	(92/913) 25.6 (207/806) 19.6 (537/2,727) 8.2	(162/1,940) 17.6 (606/3,443) 18.8 (990/5,244) 7.7	(- 4.14 to 0.49) -8.08 (-11.44 to -4.9) -0.81 (-2.67 to 1.00) -0.52	<0.001
Neoplasia maligna órganos respiratorios y tórax Neoplasia maligna hueso, conectivo y piel	(254/2,853) 19.1 (813/4,249) 19.1 (1,527/7,971) 7.8 (260/3,297)	(92/913) 25.6 (207/806) 19.6 (537/2,727) 8.2 (80/969)	(162/1,940) 17.6 (606/3,443) 18.8 (990/5,244) 7.7 (180/2,328)	(- 4.14 to 0.49) -8.08 (-11.44 to -4.9) -0.81 (-2.67 to 1.00) -0.52 (-2.68 to 1.43)	<0.001 <0.001 <0.001
Neoplasia maligna órganos respiratorios y tórax Neoplasia maligna hueso, conectivo y piel	(254/2,853) 19.1 (813/4,249) 19.1 (1,527/7,971) 7.8 (260/3,297) 7.3	(92/913) 25.6 (207/806) 19.6 (537/2,727) 8.2 (80/969) 7.05	(162/1,940) 17.6 (606/3,443) 18.8 (990/5,244) 7.7 (180/2,328) 7.5	(- 4.14 to 0.49) -8.08 (-11.44 to -4.9) -0.81 (-2.67 to 1.00) -0.52 (-2.68 to 1.43) 0.4	<0.001 <0.001 <0.001
Neoplasia maligna órganos respiratorios y tórax Neoplasia maligna hueso, conectivo y piel	(254/2,853) 19.1 (813/4,249) 19.1 (1,527/7,971) 7.8 (260/3,297)	(92/913) 25.6 (207/806) 19.6 (537/2,727) 8.2 (80/969)	(162/1,940) 17.6 (606/3,443) 18.8 (990/5,244) 7.7 (180/2,328)	(- 4.14 to 0.49) -8.08 (-11.44 to -4.9) -0.81 (-2.67 to 1.00) -0.52 (-2.68 to 1.43)	<0.001 <0.001 <0.001
Neoplasia maligna órganos	(254/2,853) 19.1 (813/4,249) 19.1 (1,527/7,971) 7.8 (260/3,297) 7.3	(92/913) 25.6 (207/806) 19.6 (537/2,727) 8.2 (80/969) 7.05	(162/1,940) 17.6 (606/3,443) 18.8 (990/5,244) 7.7 (180/2,328) 7.5	(- 4.14 to 0.49) -8.08 (-11.44 to -4.9) -0.81 (-2.67 to 1.00) -0.52 (-2.68 to 1.43) 0.4	<0.001 <0.001 <0.001 <0.001
Neoplasia maligna órganos respiratorios y tórax Neoplasia maligna hueso, conectivo y piel Mama	(254/2,853) 19.1 (813/4,249) 19.1 (1,527/7,971) 7.8 (260/3,297) 7.3 (59/798) 7.09	(92/913) 25.6 (207/806) 19.6 (537/2,727) 8.2 (80/969) 7.05 (17/241) 8.3	(162/1,940) 17.6 (606/3,443) 18.8 (990/5,244) 7.7 (180/2,328) 7.5 (42/557) 6.6	(- 4.14 to 0.49) -8.08 (-11.44 to -4.9) -0.81 (-2.67 to 1.00) -0.52 (-2.68 to 1.43) 0.4 (-3.9 to 4.09) -1.71	<0.001 <0.001 <0.001 <0.001
Neoplasia maligna órganos respiratorios y tórax Neoplasia maligna hueso, conectivo y piel Mama	(254/2,853) 19.1 (813/4,249) 19.1 (1,527/7,971) 7.8 (260/3,297) 7.3 (59/798)	(92/913) 25.6 (207/806) 19.6 (537/2,727) 8.2 (80/969) 7.05 (17/241)	(162/1,940) 17.6 (606/3,443) 18.8 (990/5,244) 7.7 (180/2,328) 7.5 (42/557)	(- 4.14 to 0.49) -8.08 (-11.44 to -4.9) -0.81 (-2.67 to 1.00) -0.52 (-2.68 to 1.43) 0.4 (-3.9 to 4.09)	<0.001

3. Discusión

La carga de la infección por VIH en los sistemas de salud pública ha disminuido en todo el mundo, gracias al éxito de la terapia antirretroviral. Sin embargo, sigue siendo relativamente alta en las regiones con recursos limitados.

Una revisión sistemática y un metaanálisis de 106 cohortes han demostrado que el Sida sigue siendo una causa importante de hospitalización en los países de renta baja, aunque los ingresos no relacionados con el Sida se han vuelto más comunes en Europa y América del Norte(271).

En España, durante dos décadas, el VIH formó parte de los diagnósticos aproximadamente en una de 150 hospitalizaciones.

En los países en desarrollo, el diagnóstico tardío del VIH sigue siendo un reto importante. Como ejemplo, un análisis retrospectivo de 2085 hospitalizaciones en Georgia realizado durante 5 años (2012-2017) destacó que hasta el 65% de los ingresos se producían en personas con infección por VIH con recuentos de células CD4 inferiores a 200 células/ml. De hecho, las enfermedades definitorias de Sida representaron el 45% de las hospitalizaciones y la muerte se produjo en el 8% de ellas (272).

En cambio, en nuestro estudio, las enfermedades definitorias de Sida supusieron el 18,6% de las hospitalizaciones de las personas con infección por VIH en España durante un largo período de tiempo.

Nuestros resultados están en consonancia con los hallazgos recientes del Reino Unido, donde un estudio realizado entre 2011 y 2018 informó de 274 hospitalizaciones en una cohorte de 798 personas con infección por VIH, siendo sólo 10% debidas a enfermedades definitorias de Sida (273).

Las muertes se produjeron en general en el 5,5% de nuestros pacientes. Esta cifra disminuyó significativamente durante el periodo de estudio. Las enfermedades definitorias de Sida más frecuentes en los pacientes que fallecieron fueron la infección diseminada por citomegalovirus, la neumonía por *Pneumocystis jirovecii* y la tuberculosis. La introducción de los inhibidores de la integrasa como parte del TAR en el año 2008 fue acompañada de una marcada reducción de la mortalidad entre las personas con infección por VIH hospitalizadas.

En nuestro estudio, el éxito de la terapia antirretroviral se reflejó principalmente en dos resultados clave. En primer lugar, la edad media de las personas con infección por VIH

hospitalizadas aumentó de forma constante de 33 a 45 años en las dos últimas décadas. En segundo lugar, las enfermedades definitorias de Sida disminuyeron considerablemente como causa de hospitalización durante el periodo de estudio. En cambio, las enfermedades no definitorias del Sida, incluidos las neoplasias no relacionados con el Sida, aumentaron constantemente.

Hay que tener en cuenta que el consumo de drogas por vía parenteral había impulsado en gran medida la pandemia del VIH en España hasta mediados de los años noventa. Desde entonces el VIH adquirido por vía sexual, principalmente entre los HSH, se convirtió en el comportamiento de riesgo predominante. Dada que la infección por VIH y las hepatitis víricas comparten las mismas vías de transmisión (por ejemplo, en el caso de los consumidores de drogas por vía parenteral), una gran proporción de los pacientes hospitalizados en España tenían hepatitis virales crónicas B, C y/o D. Este hecho podría explicar que la enfermedad hepática fuera la enfermedad no definitoria de Sida más frecuente entre las personas con infección por VIH hospitalizadas en España. Además, la insuficiencia hepática fue la causa más frecuente de muerte debida a enfermedades no definitorias de Sida, y con diferencia, las hepatitis virales B, C y/o delta fueron la principal causa (274).

Las neoplasias no relacionadas con el Sida representaron más del 10% de los diagnósticos en las personas con infección por VIH hospitalizadas en España durante el período del estudio. Se detectó un aumento significativo a lo largo del tiempo, pasando del 6,4% antes de 2008 al 15,5% después de la introducción de los inhibidores de la integrasa. En general, las neoplasias no relacionadas con el Sida representaron el 24% de las muertes entre las personas con infección por VIH hospitalizadas. Los cánceres gastrointestinales y pulmonares fueron los más comunes. Cabe destacar que la tasa de carcinoma hepatocelular se multiplicó por cuatro o cinco durante el periodo de estudio, lo que probablemente refleja la alta proporción de hepatitis viral crónica en esta población(275). Desde la llegada de los nuevos antivirales de acción directa hace un par de años, la mayoría de los pacientes con hepatitis C crónica se curan, y por lo tanto, es de esperar que la tasa de carcinoma hepatocelular de carcinoma hepatocelular disminuya en esta población (276).

Debemos reconocer varias limitaciones de nuestro estudio. En primer lugar, debido a que los datos del SNRHD son anónimos no pudimos reconocer si un paciente había sido hospitalizado en diferentes centros -incluidos los traslados de un centro a otro, dentro del

mismo año natural (264–268). Por lo tanto, puede haber causado una ligera sobreestimación de las personas con infección por VIH hospitalizada, ya que podemos haber interpretado reingresos como nuevos ingresos. En segundo lugar, se trata de un estudio retrospectivo y no tuvimos la oportunidad de acceder a las historias clínicas de los pacientes, lo que nos habría permitido comprobar con mayor precisión cualquier información dudosa. En tercer lugar, las cifras de los diagnósticos durante los últimos 2 años del período de estudio (2017 y 2018) muy probablemente no se han completado y deben considerarse como subestimaciones, ya que una revisión definitiva de los diagnósticos clínicos se cierra a los 5 años. En cuarto lugar, no pudimos aportar más información sobre la proporción de hospitalizaciones y muertes en las personas con infección por VIH debidas a enfermedades no definitorias de Sida, incluyendo la cardiovascular y el cáncer. En particular, no pudimos hacer estimaciones sobre la contribución del envejecimiento, comorbilidades como la hepatitis viral, o cualquier efecto directo del VIH, a pesar de la supresión de la viremia con la terapia antirretroviral.

A pesar de todas estas limitaciones, el SNRHD ha demostrado ser útil para la investigación epidemiológica, cubriendo más del 98% de los ingresos hospitalarios en España. La precisión de este registro ha sido garantizada por las auditorías periódicas realizadas por el Ministerio de Sanidad(261). Por lo tanto, la información en nuestro estudio, que es de ámbito nacional y abarca 22 años debe ser considerada como representativa del impacto clínico del VIH/Sida en los ingresos hospitalarios en España.

En resumen, se ha registrado una tasa de 6,7 por cada 1.000 de ingresos hospitalarios con diagnóstico de infección por VIH en las últimas dos décadas en España. Se produjo un descenso significativo desde el año 2008, tras la introducción de los inhibidores de la integrasa como parte de la terapia antirretroviral, junto con otras en el manejo del VIH. La edad media de las personas con infección por VIH hospitalizadas ha aumentado significativamente con el tiempo, mientras que la proporción de ingresos con enfermedades definitorias de Sida ha disminuido. La mortalidad hospitalaria por cánceres no relacionados con el Sida ha aumentado de forma constante durante los últimos años.

VIII. Material y métodos, resultados y discusión

Estudio epidemiológico 2

Infección por *Toxoplasma gondii* en personas con infección por VIH/Sida en España, 1997-2015

Menchi-Elanzi M, Mayoral AM, Morales J, Pinargote-Celorio H, González-Alcaide G, Ramos-Rincón JM. *Toxoplasma gondii* infection in hospitalized people living with HIV in Spain, 1997 to 2015. Parasitol Res. 2021;120(2):755-761.

1. Material y Métodos

Este estudio retrospectivo utilizó datos basados en la población con diagnóstico de infección por *Toxoplasma gondii* de la base de datos del Registro Nacional de Altas Hospitalarias(128,277). El periodo de estudio fue del 1 de enero de 1997 al 31 de diciembre de 2015, abarcando un total de 19 años. La base de datos usa códigos de diagnóstico de la Clasificación Internacional de Enfermedades-Novena Revisión, Modificación Clínica (CIE-9- MC). Se seleccionaron los ingresos hospitalarios de pacientes con un diagnóstico bajo el código CIE-9-MC 042 (Enfermedad por el virus de la inmunodeficiencia humana inmunodeficiencia humana) o V08 (Virus de la inmunodeficiencia humana asintomático) y 130.X (Infección por *Toxoplasma gondii*) en cualquier posición de la lista de diagnósticos para cada episodio de ingreso hospitalario.

Además, se examinaron varias variables de resultados hospitalarios incluyendo los reingresos en los 30 días siguientes al alta del mismo centro y la mortalidad intrahospitalaria (MHI), definida por la base de datos de altas hospitalarias. La base de datos no contiene datos de identificación personal. Como algunos pacientes tienen varios ingresos hospitalarios al año en el transcurso del periodo de estudio, se asumió la independencia durante el análisis.

En la tabla 5. 1. se enumeran los códigos CIE-9-MC para las infecciones oportunistas utilizados en nuestro estudio.

La prevalencia se expresa en porcentaje. Las pruebas de Chi-cuadrado se utilizaron para comparar los ingresos de las personas con infección por VIH infectadas por *Toxoplasma gondii* frente a otros diagnósticos y para comparar MHI en las personas con infección por VIH hospitalizadas con infección por *Toxoplasma gondii* además de otras infecciones frente a la infección por *Toxoplasma gondii* como único diagnóstico. Los intervalos de confianza (IC) para las tasas se calcularon usando el método de Wilson, con la biblioteca DescTools en R. La prueba t de student se utilizó para comparar las medias (edad de los pacientes). El nivel de significación utilizado para las pruebas de hipótesis fue del 5%, aunque se han detectado niveles más bajos. Las pruebas estadísticas descriptivas y los gráficos se realizaron con el paquete estadístico R (versión 3.6.3) y RStudio (versión 1.2.1578).

Tabla 5. 1. Lista de códigos de diagnóstico según la Clasificación Internacional de Enfermedades - Novena Revisión, Modificación Clínica (CIE-9-MC).

Enfermedades	Códigos CIE-9-MC	
VIH	042, V08	
Enfermedades definitorias de Sida (%)		
Candidiasis traqueobronquial y de pulmón	112.4	
Candidiasis esofágica	112.84	
Cáncer de cérvix invasivo	180.0	
Coccidioidomicosis diseminada o extrapulmonar	114.1; 114.3	
Criptococosis extrapulmonar	117.5	
Criptosporidiosis intestinal crónica (>1 mes)	007.4	
Retinitis y Citomegalovirus diseminado	078.5 and 363.20	
Encefalopatía por VIH	348.3, 348.30, 348.	
Herpes simplex: Ulcera(s) crónica (> de un mes); o	054.9; 054.71	
bronquitis, neumonitis o esofagitis.		
Histoplasmosis diseminada o extrapulmonar	115.90; 115.94, 115.99; 115.91, 115.93,	
	115.92, 115.10, 115.14, 115.19, 115.11,	
	115.13, 115.12, 115.00, 115.04, 115.09,	
	115.01, 115.03, 115.02	
Isosporidiasis intestinal crónica (Mayor de 1 mes)	007.8 y 007.9	
Sarcoma de Kaposi	176.9; 176.1; 058.89; 176.8; 176.5, 176.2,	
	176.0, 176.4, 176.3	
Leishmaniasis visceral	085.9 y 0.85.0	
linfoma de Burkit o inmunoblástico	200.8, 200.2	
Linfoma cerebral primario	200.5	
Mycobacterium avium complex y Mycobacterium	031.0, 031.2, 031.9	
spp, diseminado o extrapulmonar		
Neumonía por <i>Pneumocystis carinii</i> *	136.3	
Neumonía (recurrente)**	480.X, 481.X, 482.X, 483.X, 484.X, 485.X,	
	486.X	
Leucoencefalopatia multifocal progresiva	046.3	
Sepsis por Salmonella (recurrente)	003.9	
Toxoplasmosis cerebral	130.X	

m 1 1 1	04000 04400 044 04 04400 01100
Tuberculosis	010.00, 011.00, 011. 01, 011.02, 011.03,
	011.04, 011.05, 011.06, 011.9, 011.10, 011.11,
	011.12, 011.12, 011.13, 011, 14, 011.15, 011.16,
	011.2, 011.20, 011.21, 011.22, 011.23, 011.24,
	011.25, 011.26, 011.3, 011.30, 011.31, 011.32,
	011.33, 011.34, 011.35, 011.36, 011.4, 011.40,
	011.41, 011.42, 011.43, 011.44, 011.45,
	011.46, 011.5, 011.50, 011.51, 011.52, 011.53,
	011.54, 011.55, 011.56, 011.6, 011.60, 011.61,
	011.62, 011.63, 011.64, 011.65, 011.66, 011.7,
	011.70, 011.71, 011.72, 011.73, 011.74,
	011.75, 011.76, 011.8, 011.80, 011.81, 011.82,
	011.83, 011.84, 011.85, 011.86, 011.9, 011.90,
	011.91, 011.92, 011.93, 011.94, 011.95,
	011.96, 012.0, 013.0, 014, 015, 016, 017, 018.
Síndrome de Wasting asociado a VIH	799.4
Otras enfermedades analizadas	
Virus Hepatitis C	070.44,070.51, 070.54, 070.7, 070.70, 070.71;
	V02.62
Virus Hepatitis B	070.2, 070.20, 070.21, 070.22, 070.23, x,
	070.3x, 070.31, 070.31, 070.32, 070.33 or
	V02.61

^{*} Neumonía por *Pneumocystis jirovecii*

^{**}Consideramos la neumonía recurrente como "neumonía" porque era posible saber si era recurrente.

2. Resultados

Se registraron un total de 66.451.094 ingresos hospitalarios en España durante el periodo de estudio de 19 años (1997-2015). La infección por VIH se registró en 472.269 (0,71%); entre ellos, La infección por *Toxoplasma gondii* estaba presente en 9006 (prevalencia 1,91%; IC 95% 1,87% a 1,95%). En general, la infección por *Toxoplasma gondii* fue la quinta enfermedad más frecuente en las personas con infección por VIH hospitalizadas, después de la tuberculosis (13,3%), la neumonía por *Pneumocystis jirovecii* (3,5%), la candidiasis esofágica (2,3%) y el síndrome de consunción secundario al VIH (1.99%).

El número de ingresos en personas con infección por VIH infectadas por *Toxoplasma gondii* disminuyó en un 85,9%, pasando de 1115 en 1997 a 157 en 2015. Los demás diagnósticos en las personas con infección por VIH hospitalizadas experimentaron una reducción más modesta (- 21,0%, de 25.162 a 19.873; p < 0.001). En términos de prevalencia, las tasas anuales de infección por *Toxoplasma gondii* disminuyeron del 4,2% en 1997 al 0,78% en 2015 (p < 0,001; figura 5. 1.).

De los 9006 casos totales de infección por *Toxoplasma gondii*, el 74,1% fueron en hombres y el 25,9% en mujeres. La edad media de los pacientes infectados por el VIH con *Toxoplasma gondii* aumentó a lo largo del periodo de estudio, de 35 años (desviación estándar [DE] 8,4) en 1997 a 44 años (DE 8,9) en 2015 (p < 0,001). Las personas con infección por VIH y con otros diagnósticos aumentaron todavía más su edad media, desde una media de 33 años (DE 9,9) en 1997 a 48 (DE 10,5) en 2015 (p < 0,001).

En cuanto a los reingresos dentro de los 30 días del alta inicial se produjeron 1.835 (20,4%) durante el periodo de estudio, una tasa mayor que la de otros diagnósticos (16,5%) (p < 0,001).

La presencia de otras enfermedades definitorias de Sida, además de la infección por *Toxoplasma gondii* era frecuente, en particular la tuberculosis (14,5%), la neumonía bacteriana (7,1%) y la candidiasis esofágica (5,1%). La coinfección con el virus de la hepatitis C (23,1%) y el virus de la hepatitis B (5,5%). (tabla 5. 2.).

La tasa global de mortalidad hospitalaria en los pacientes con infección por *Toxoplasma gondii* fue del 11,5% (IC del 95%: 10,9% a 12,2%), pero parece haber una tendencia a la baja durante el periodo de estudio (de 13,5% [IC 95% 11,6 a 15,7%] en 1997 a 8,9% [IC 95% 5,4% a 14,4%] en 2015; p = 0,137). La tasa de mortalidad hospitalaria en las personas con infección por VIH ingresadas por otros diagnósticos fue significativamente

menor (5,6%, IC del 95%: 5,5 IC del 95%: 5,5 a 5,6%; p < 0,001), y esta tasa también mostró un descenso significativo, pasando del 7,1% (IC del 95%: 6,7 a 7,3%) en 1997 al 4,8% (IC del 95%: 4,5 a 5,1%) en 2015 (p < 0,001; figura 5. 2.).

La tasa de mortalidad hospitalaria fue significativamente mayor en las personas con infección por VIH infectadas con *Toxoplasma gondii* más otras enfermedades que en aquellos con infección por *Toxoplasma gondii* únicamente. Esto fue particularmente con la presencia concomitante de neumonía bacteriana, criptosporidiasis, infección por citomegalovirus, P. jiroveci leucoencefalopatía y síndrome de emaciación (tabla 5. 2.).

3. Discusión

La prevalencia global de personas infectadas por *Toxoplasma gondii* fue del 1,91% entre 1997 y 2015, similar a la reportada en series españolas(277). Esta prevalencia es sustancialmente inferior al rango del 10 al 20% observado en series de personas con infección por VIH hospitalizadas en África, Oriente Medio o China(278–280), pero superior al 0,4% observado en Corea del Sur(280,281).

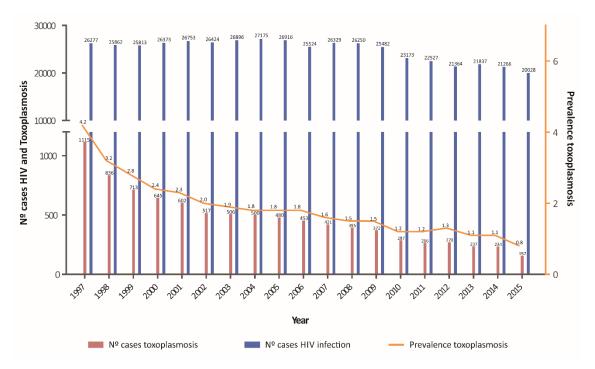


Figura 5. 1. Hospitalizaciones anuales por infección por VIH y VIH-*Toxoplasma* gondii en España, 1997-2015.

Tabla 5. 2. Coinfección y mortalidad intrahospitalaria hospitalaria en personas que viven con el VIH infectadas con el *Toxoplasma gondii* más otras enfermedades definitorias del Sida, hepatitis B o C.

Coinfección	Prevalencia de la coinfección	Mortalidad en PWT con toxoplasmosis + co-infección n/N (%)	P valor
Virus Hepatitis B			0.8
No		981/8515 (11.5%)	
Sí	5.5	59/491 (12.0%)	
Virus Hepatitis C			0.9
No		797/6907 (11.5%)	
Sí	23.1	243/2099 (11.6%)	
Candidiasis esofágica			0.3
No		980/8547 (11.5%)	

Sí	5.1	60/459 (13.1%)	
Candidiasis traqueobronq	uial y de pulmón		0.3
No		1037/8994 (11.5%)	
Sí	0.1	3/12 (25.0%)	
Criptococosis extrapulmo	nar		0.1
No		1026/8925 (11.5%)	
Sí	0.9	14/81 (17.3%)	
Criptosporidiosis intestina	al crónica (>1 mes)		0.032
No		1033/8980 (11.5%)	
Sí	0.3	7/26 (26.9%)	
Infección por CMV inclui	da la retinitis		< 0.001
No		967/8605 (11.2%)	
Sí	4.5	73/401 (18.2%)	
Encefalopatía asociada a	VIH		0.3
No		1025/8906 (11.5%)	
Sí	1.1	15/100 (15.0%)	
Herpes simple: úlcera cró		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.07
No		1029/8843 (11.6%)	
Sí	1.8	11/163 (6.8%)	
Histoplasmosis diseminad		11/100 (0.070)	1
No		1040/9005 (11.6%)	
Sí	0.0	0/1 (0.0%)	
Isosporidiasis intestinal ci		0/1 (0.0/0)	0.7
No	Omea	1037/8989 (11.5%)	0.7
Sí	0.2	3/17 (17.7%)	
Sarcoma Kaposi's	0.2	3/17 (17.770)	1
No		1015/8790 (11.6%)	1
Sí	2.4	25/216 (11.6%)	
Leishmaniasis visceral	2.4	23/210 (11.0/0)	0.9
No		1036/8966 (11.6%)	0.9
Sí	0.4	4/40 (10.0%)	
		4/40 (10.078)	<.0.001
Linfoma cerebral primario)	1026/0000 (11.59/)	<.0.001
No Sí	0.1	1036/9000 (11.5%)	
	0.1	4/6 (66.7%)	0.7
Linfoma de Burkitt's (imn	nunobiastico)	1027/9099 (11 50/)	0.7
No Sí	0.2	1037/8988 (11.5%)	
	I .	3/18 (16.7%)	0.0
Mycobacterium avium complex y otras <i>Mycobacterium</i> spp.			0.8
No St	1.5	1026/8873 (11.6%)	
Sí Navaranía man Bu sussa su	1.5	14/133 (10.5%)	-0 001
Neumonía por <i>Pneumocys</i>	sus jiroveci	040/0700 (10.50/)	<0.001
No S'	2.5	940/8689 (10.5%)	
Sí	3.5	100/317 (31.5%)	-0.004
Neumonía		055/02/// (10.20/)	<0.001
No	7.1	855/8366 (10.2%)	
Sí	7.1	185/640 (28.9%)	
Leucoencefalopatia multifocal diseminada			< 0.001
No		984/8723 (11.8%)	
Sí	3.1	56/283 (19.8%)	
Sepsis por Salmonella (recurrente)			0.5
No		1040/8997 (11.5%)	

Sí	0.1	0/9 (0.0%)	
Tuberculosis			0.3
No		902/7706 (11.7%)	
Sí	14.4	138/1300 (10.6%)	
Síndrome de Wasting asociado a VIH		< 0.001	
No		958/8726 (10.9%)	
Sí	3.1	82/280 (29.3%)	

No se ha encontrado ningún caso de cáncer cervical invasivo en personas infectadas por *Toxoplasma gondii*.

Nuestros resultados muestran que la prevalencia de la infección por *Toxoplasma gondii* ha disminuido con el tiempo, como se ha visto en otras series(282). Este descenso puede atribuirse al efecto del TARGA, que ha contribuido a una reducción significativa de las infecciones oportunistas y, en concreto, de la infección por *Toxoplasma gondii* en las personas con infección por VIH (283,284). Un estudio danés de cohortes de VIH analizó la infección por *Toxoplasma gondii* antes (1995-1996) y después (1997-2014) de la era del TARGA, encontrando una reducción de la infección por *Toxoplasma gondii*(285). Sin embargo, nuestro estudio sugiere que esta disminución puede ser más moderada si se compara con otras complicaciones asociadas al VIH.

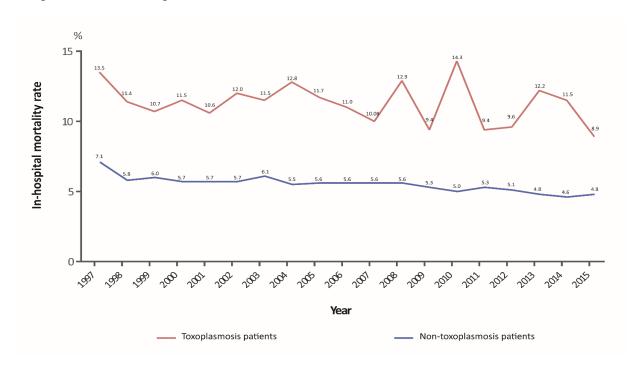


Figura 5. 2. Tasas anuales de mortalidad intrahospitalaria en personas con infección por VIH con toxoplasmosis frente a otros diagnósticos en España, 1997-2015.

Se ha informado que la infección por *Toxoplasma gondii* es la segunda causa de ingreso en personas con VIH(279). Además, en nuestra serie, la tasa de reingreso fue también considerable. Debido a que la evolución de las personas con infección por VIH infectadas por *Toxoplasma gondii* es desigual, las personas que son hospitalizadas una vez, a menudo tienen que volver al hospital, a pesar de haber recibido tratamiento y profilaxis postexposición. Las posibles razones del reingreso incluyen do cefalea, náuseas y vómitos, ataxia o ataxia cognitiva, disartria y paresia facial (279,285).

Incluso en la era del TARGA, la infección por *Toxoplasma gondii* es una causa importante(285) y predictor de mortalidad en las personas con infección por VIH (286). La mortalidad hospitalaria disminuyó en nuestros pacientes a lo largo del periodo de estudio gracias a los avances en el diagnóstico y el tratamiento. Sin embargo, seguía siendo considerablemente más alta que otras infecciones oportunistas y sigue siendo relevante, ya que un sistema nervioso central comprometido se asocia con una mayor mortalidad (279,286,287).

Muchas personas con VIH están infectadas con varios patógenos(288). En las personas con infección por VIH infectadas por el *Toxoplasma gondii* en nuestro estudio, la principal coinfección fue la hepatitis C (23,3%), seguida de la tuberculosis (14,4%). Esta última asociación está bien documentada en África (128,278,279,289,290). Las otras coinfecciones más comunes en nuestros pacientes fueron las neumonías, la neumonía por *P. jiroveci*, la candidiasis esofágica y la hepatitis B.

Las coinfecciones con neumonía por *P. jiroveci*, neumonía bacteriana, síndrome de consunción secundario al HIV, criptosporidiasis e infección por citomegalovirus se asociaron con un riesgo significativamente mayor de mortalidad hospitalaria que la infección por *Toxoplasma gondii* por sí sola. Esta mayor mortalidad puede ser consecuencia de una inmunosupresión más pronunciada en los pacientes coinfectados.

Una limitación de nuestro estudio es su carácter retrospectivo. Sólo tuvimos acceso a la información de la base de datos de altas hospitalarias, por lo que no es posible descartar errores o sesgos en la manipulación, interpretación o transcripción de los datos o sesgos comparativos. Otra limitación es la codificación de la enfermedad en la base de datos. Por ejemplo, la leucoencefalopatía multifocal progresiva es una entidad clínica considerada en el diagnóstico diferencial de la infección cerebral por *Toxoplasma gondii*, pero un mismo ingreso puede ser codificado con ambos diagnósticos porque el verdadero diagnóstico del paciente no está claro. Por último, el registro de altas hospitalarias recoge

datos anónimos, por lo que no fue posible identificar a los pacientes que habían sido hospitalizados en diferentes hospitales en el mismo año natural(278). Esto puede haber dado lugar a una ligera sobreestimación en nuestros resultados, ya que podríamos haber interpretado algunos reingresos como nuevos ingresos(128).

Otra limitación intrínseca fue que los resultados de las pruebas serológicas (título de IgG, presencia de IgM y avidez de IgG) no estaban disponibles, por lo que no fue posible determinar si la invasión del parásito pasó de su forma primaria a una forma latente, o si era el resultado de la reactivación de la infección del parásito. Además, sin pruebas genéticas, no pudimos determinar si las infecciones procedían de la reactivación del parásito o de una coinfección con otra cepa.

IX. Discusión

• Serie bibliometría sobre el VIH//Sida

Las tres publicaciones bibliométricas de la tesis doctoral han puesto de manifiesto las aportaciones que puede realizar esta metodología para conocer aspectos como cuáles son las temáticas y las tendencias de investigación a lo largo de los años, la producción y el grado de la colaboración entre los países o la relación entre los organismos financiadores y los investigadores.

Cabe destacar que el estudio sobre el VIH centrado en el contexto de África y Oriente Medio ha permitido determinar un marcado aumento del volumen de la investigación a lo largo de los años. Con la globalización y las conexiones de las redes Norte-Sur, se ha visto un gran trabajo colaborativo que ha fomentado una estrecha relación investigadora entre los países del Norte y el Sur, además de entre los propios países africanos.

Sin embargo, hay que llamar la atención que la balanza de la colaboración se inclina más hacia los países de altos ingresos, que son los que marcan las temáticas y lideran las publicaciones. Por ello, consideramos que deben aunarse esfuerzos para que sean realmente los países en vía de desarrollo con ayuda de los investigadores de los países de ingresos altos, quienes lideren la actividad investigadora ya que la Bibliometría ha puesto de manifiesto que, pese a que existe una destacada participación en las publicaciones científicas de mayor visibilidad e impacto internacional de estos países, casi siempre está liderada por países de primer mundo.

La tendencia observada en favor de la concentración de la investigación en un número reducido de países (ya que el 50% a aproximadamente de la investigación sobre VIH del área se concentra en Sudáfrica, Uganda y Kenia) alerta acerca de la necesidad de incidir en políticas que faciliten una mayor integración de los países menos productivos y de menor desarrollo económico en las actividades de investigación. Los esfuerzos investigadores se deben centrar en mayor medida en los países con bajos índices de investigación y alta incidencia y prevalencia de la infección por VIH, como, por ejemplo, Namibia, Mozambique, Angola o Zambia.

También se debe seguir potenciando la colaboración interregional entre los países africanos, incidiendo en el establecimiento de vínculos que posibiliten el intercambio de conocimiento y experiencias y el impulso de determinadas facetas de la investigación, como los programas de detección y tratamiento de la enfermedad.

El estudio bibliométrico que ha cuantificado las prácticas colaborativas entre los países africanos asociadas a su desarrollo económico y características sociodemográficas ha puesto de manifiesto que la colaboración está excesivamente concentrada en Sudáfrica, ya que es el de mayor producción, además de ser el país con una mayor red de colaboración a nivel regional e internacional, lo que puede distorsionar la colaboración real del conjunto de la región. Sudáfrica es líder en investigación gracias a la financiación y la ayuda que recibe de países de altos ingresos con la perspectiva de potenciar el equilibrio investigador en África. Las investigaciones realizadas en dicho país son las que más nos acercan hacia una mayor producción científica en el tema del VIH en África. En nuestro estudio también se objetiva la contribución de otros países africanos como Uganda, Malawi, Botsuana, Zimbabue y Mozambique que son países con una prevalencia alta de VIH y con alto número de publicaciones que permiten transmitir el grado de conocimiento que tienen de la experiencia de ver pacientes seropositivos.

El análisis bibliométrico de la investigación española en el campo del VIH ha puesto de manifiesto un aumento significativo de la investigación a lo largo de los años, asociada en gran medida a la colaboración y al impulso propiciado por las Redes telemáticas de la investigación del Sida. Se puede afirmar en este sentido, que España se encuentra entre los líderes mundiales de la investigación.

• Serie epidemiológica en el VIH/Sida en España

Las investigaciones epidemiológicas que conforman la tesis han permitido caracterizar algunos aspectos relevantes sobre la incidencia del VIH en España: se ha estudiado la evolución de los ingresos de los pacientes con VIH/Sida; y la evolución de la infección por toxoplasmosis como infección oportunista debida a la inmunosupresión causada por VIH/Sida.

La investigación basada en la información obtenida de la base de datos del Conjunto Mínimo Básico de Datos del Ministerio de Sanidad que registra todos los ingresos en centros nacionales desde la década de 1990, permite analizar de forma retrospectiva la incidencia de las diferentes patologías. En el estudio realizado se ha obtenido una visión general de los ingresos de pacientes con la infección por VIH, además de la toxoplasmosis como una patología criterio de Sida. Se han estudiado los ingresos entre el año 1997 y 2018 donde se registraron un total de 79.647.851 ingresos hospitalarios durante el periodo de estudio, que abarca 22 años (1997-2018). Un total de 532.668 (0,67%) altas

hospitalarias incluyeron el VIH como diagnóstico. Se ha objetivado una disminución del número de ingresos a partir del año 2008 con la introducción de la TARGA. También se ha visto una disminución de las infecciones oportunistas como la neumonía por *Pneumocistis joroveci* y un aumento de los ingresos por enfermedades no definitorias de Sida como las neoplasias no-Sida, los eventos cardiovasculares y las enfermedades hepáticas.

Se ha analizado la evolución de la toxoplasmosis como enfermedad oportunista relevante de la infección por VIH que a su vez ha visto disminuida su prevalencia e incidencia con el inicio de los TARGA.

Limitaciones

Como limitaciones de las aproximaciones bibliométricas de la tesis doctoral cabe señalar que una parte importante del esfuerzo investigador sobre VIH-Sida de los países africanos se ha podido difundir a través de tipologías documentales no consideradas en los estudios realizados, particularmente en revistas no indexadas en la *Web of Science Core Collection*. Asimismo, tomar como fuente de referencia para la identificación de los documentos un tesauro de Ciencias de la Salud ha podido infravalorar ámbitos relevantes en relación con la temática analizada, como la investigación de los ámbitos psico-sociales del VIH-Sida. Además, el análisis bibliométrico se ha centrado en la obtención de macroindicadores de producción y colaboración científica por regiones y países, por lo que futuras líneas de trabajo pueden tomar en consideración otros niveles analíticos a nivel meso o micro, que analicen por ejemplo la participación institucional o de autores en la investigación africana sobre VIH-Sida, así como analizar el impacto de las publicaciones.

A nivel epidemiológico, como limitaciones cabe destacar que los datos del SNRHD son anónimos, por lo que no es posible reconocer si un paciente ha sido hospitalizado en diferentes centros incluidos los traslados de un centro a otro, dentro del mismo año natural. Por lo tanto, puede haber causado una ligera sobreestimación de las personas con infección por VIH hospitalizadas, ya que se pueden haber interpretado reingresos como nuevos ingresos. Además, se trata de estudios retrospectivos y no se pudo acceder a las historias clínicas de los pacientes, lo que habría permitido comprobar con mayor precisión cualquier información dudosa. Otra limitación es que las cifras de los diagnósticos durante los últimos 2 años del período de estudio (2017 y 2018) muy probablemente no se han completado y deben considerarse como subestimaciones, ya que una revisión

definitiva de los diagnósticos clínicos se cierra a los 5 años. Por último, no fue posible aportar más información sobre la proporción de hospitalizaciones y muertes en las personas con infección por VIH motivadas por enfermedades no definitorias de Sida, incluyendo la cardiovascular y el cáncer. En particular, no fue posible hacer estimaciones sobre la contribución del envejecimiento, comorbilidades como la hepatitis viral, o cualquier efecto directo del VIH, a pesar de la supresión de la viremia con la terapia antirretroviral. Sin embargo, el SNRHD ha demostrado ser útil para la investigación epidemiológica, cubriendo más del 98% de los ingresos hospitalarios en España. La precisión de este registro ha sido garantizada por las auditorías periódicas realizadas por el Ministerio de Sanidad(261). Por lo tanto, la información analizada, que es de ámbito nacional y abarca 22 años, debe ser considerada como representativa del impacto clínico del VIH/Sida en los ingresos hospitalarios en España.

X. Conclusiones

- Los resultados presentados en la producción científica en los países de África y
 Oriente Próximo reflejan un progreso significativo en la investigación sobre la
 investigación sobre el VIH/Sida, tanto a nivel cuantitativo como a nivel
 cualitativo.
- La producción científica se centra en un pequeño número de países, entre los que destaca Sudáfrica, mientras que otros países de África y Oriente Medio contribuyen de forma puntual a pesar de la elevada carga de infecciones por el VIH.
- 3. La participación de los países de África y Oriente Medio en la investigación sobre el VIH/Sida se caracteriza por la dependencia y subordinación a los Estados Unidos y a los países europeos.
- 4. Las colaboraciones reflejan un limitado liderazgo de los países africanos, medido por la participación de los investigadores de estos países como primeros firmantes en los estudios publicados.
- 5. La investigación sobre el VIH/Sida realizada con la participación de los países de África y Oriente Medio muestra unos intereses disciplinarios y temáticos que responden a los intereses y líneas de investigación de la investigación de los países más avanzados, con un mayor enfoque en la salud pública, la epidemiología y los tratamientos farmacológicos.
- 6. El uso de indicadores como el número de personas con infección por VIH, el tamaño de la población y el desarrollo económico son útiles para medir con mayor precisión el esfuerzo y la contribución de cada país más allá de la producción científica en términos absolutos. Los diferentes índices utilizados confirmaron el protagonismo de Sudáfrica, Uganda, Malawi, Botsuana, Zimbabue y Mozambique.
- 7. La investigación española sobre VIH/Sida ha alcanzado un estadio de madurez, con una destacada producción científica e integración en las redes de colaboración

internacional, por lo que España y particularmente la iniciativa de la RIS se ha erigido en un destacado referente.

- 8. La tasa de ingresos hospitalarios con diagnóstico de infección por VIH/Sida en las dos últimas décadas en España ha experimentado un descenso significativo desde el año 2008, tras la introducción de los inhibidores de la integrasa como parte del TAR, junto con otras mejoras en el manejo del VIH.
- La edad media de las personas con infección por VIH/Sida hospitalizadas ha aumentado significativamente a lo largo del tiempo.
- 10. La proporción de ingresos con enfermedades definitorias de Sida ha disminuido. Cánceres no relacionados con el VIH/Sida, los eventos cardiovasculares y la enfermedad hepática representan una proporción creciente de ingresos hospitalarios, así como de mortalidad relacionada con los mismos.
- 11. El impacto clínico de la infección por *Toxoplasma gondii* en las personas con infección por VIH hospitalizadas ha disminuido en España durante las dos últimas décadas. *Toxoplasma gondii*. Si bien sigue una causa importante de morbilidad y mortalidad en esta población.

XI. Referencias

- 1. Kahn JO, Walker BD. Acute Human Immunodeficiency Virus Type 1 Infection. 1998; 339(1):33–9.
- 2. Turner BG, Summers MF. Structural biology of HIV. J Mol Biol. 1999;285(1):1–32.
- 3. Fanales-Belasio E, Raimondo M, SuligoI. B, Buttò S. HIV virology and pathogenetic mechanisms of infection: a brief overview. Ann Ist Super Sanita. 2010;46(1):5–14.
- 4. German Advisory Committee Blood (Arbeitskreis Blut) S 'Assessment of PT by B. Human Immunodeficiency Virus (HIV). Transfusion Medicine and Hemotherapy. 2016;43(3):203.
- 5. Perrin L. Primary HIV Infection. Antivir Ther. 1999;4(3 suppl):13–8.
- 6. Quinn TC, Wawer MJ, Sewankambo N, Serwadda D, Li C, Wabwire-Mangen F, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai Project Study Group. N Engl J Med. 2000;342(13):921–9.
- 7. Gray RH, Wawer MJ, Brookmeyer R, Sewankambo NK, Serwadda D, Wabwire-Mangen F, et al. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. The Lancet. 2001;357(9263):1149–53.
- 8. Enée R, Idzon R, Allagher AG, Arol C, Iesielski C, Ast REM, et al. Simultaneous Transmission of Human Immunodeficiency Virus and Hepatitis C Virus from a Needle-Stick Injury. 1997;336(13):919–22. https://doi.org/101056/NEJM199703273361304.
- 9. Robb ML, Eller LA, Kibuuka H, Rono K, Maganga L, Nitayaphan S, et al. Prospective Study of Acute HIV-1 Infection in Adults in East Africa and Thailand. N Engl J Med. 2016;374(22):2120–30.
- 10. Kared H, Lelièvre JD, Donkova-Petrini V, Aouba A, Melica G, Balbo M, et al. HIV-specific regulatory T cells are associated with higher CD4 cell counts in primary infection. AIDS. 2008;22(18):2451–60.
- 11. Niu MT, Stein DS, Schnittman SM. Primary human immunodeficiency virus type 1 infection: review of pathogenesis and early treatment intervention in humans and animal retrovirus infections. J Infect Dis. 1993;168(6):1490–501.
- 12. Daar ES, Little S, Pitt J, Santangelo J, Ho P, Harawa N, et al. Diagnosis of primary HIV-1 infection. Los Angeles County Primary HIV Infection Recruitment Network. Ann Intern Med. 2001;134(1):25–9.
- 13. Farizo KM, Buehler JW, Chamberland ME, Whyte BM, Froelicher ES, Hopkins SG, et al. Spectrum of Disease in Persons With Human Immunodeficiency Virus Infection in the United States. JAMA. 1992;267(13):1798–805.

- 14. D O, R C, A M, P B, W K. Lymphadenopathy in asymptomatic patients seropositive for HIV. N Engl J Med. 1987;317(4):246–246.
- 15. Greene M, Covinsky KE, Valcour V, Miao Y, Madamba J, Lampiris H, et al. Geriatric Syndromes in Older HIV-Infected Adults. J Acquir Immune Defic Syndr. 2015;69(2):161–7.
- 16. Aberg JA. Aging, Inflammation, and HIV Infection. Top Antivir Med. 2012;20(3):101.
- 17. Pathai S, Bajillan H, Landay AL, High KP. Is HIV a model of accelerated or accentuated aging? J Gerontol A Biol Sci Med Sci. 2014;69(7):833–42.
- 18. Hanson DL, Chu SY, Farizo KM, Ward JW. Distribution of CD4+ T Lymphocytes at Diagnosis of Acquired Immunodeficiency Syndrome—Defining and Other Human Immunodeficiency Virus—Related Illnesses. Arch Intern Med. 1995;155(14):1537–42.
- 19. Projections of the Number of Persons Diagnosed with AIDS and the Number of Immunosuppressed HIV-Infected Persons -- United States, 1992-1994.
- 20. Easterbrook, P. J., Emami, J., Moyle, G., & Gazzard, B. G. Progressive CD4 cell depletion and death in zidovudine-treated patients. J Acquir Immune Defic Syndr. 1993;6(8), 927–929.
- 21. Phillips AN, Elford J, Sabin C, Bofill M, Janossy G, Lee CA. Immunodeficiency and the Risk of Death in HIV Infection. JAMA. 1992;268(19):2662–6.
- 22. Yarchoan R, Venzon DJ, Pluda JM, Lietzau J, Wyvill KM, Tsiatis AA, et al. CD4 count and the risk for death in patients infected with HIV receiving antiretroviral therapy. Ann Intern Med. 1991;115(3):184–9.
- 23. Consolidated guidelines on HIV testing services: 5Cs: consent, confidentiality, counselling, correct results and connection 2015.
- 24. INSIGHT START Study Group, Lundgren JD, Babiker AG, et al. Initiation of Antiretroviral Therapy in Early Asymptomatic HIV Infection. N Engl J Med. 2015;373(9):795-807. doi:10.1056/NEJMoa1506816
- 25. Grinsztejn B, Hosseinipour MC, Ribaudo HJ, Swindells S, Eron J, Chen YQ, et al. Effects of early versus delayed initiation of antiretroviral treatment on clinical outcomes of HIV-1 infection: results from the phase 3 HPTN 052 randomised controlled trial. Lancet Infect Dis. 2014;14(4):281–90.
- 26. Walensky RP, Paltiel AD, Losina E, Mercincavage LM, Schackman BR, Sax PE, et al. The survival benefits of AIDS treatment in the United States. J Infect Dis. 2006;194(1):11–9.
- 27. Losina E, Schackman BR, Sadownik SN, Gebo KA, Walensky RP, Chiosi JJ, et al. Racial and sex disparities in life expectancy losses among HIV-infected persons in the united states: impact of risk behavior, late initiation, and early discontinuation of antiretroviral therapy. Clin Infect Dis. 2009;49(10):1570–8.

- 28. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365(6):493–505.
- 29. Marks G, Crepaz N, Janssen RS. Estimating sexual transmission of HIV from persons aware and unaware that they are infected with the virus in the USA. AIDS. 2006; 20(10):1447–50.
- 30. Phanuphak N, Gulick RM. HIV treatment and prevention 2019: current standards of care. Curr Opin HIV AIDS. 2020; 15(1):4–12.
- 31. Cohen MS, Gay CL, Busch MP, Hecht FM. The Detection of Acute HIV Infection. J Infect Dis. 2010;202(Supplement 2):S270–7.
- 32. Daar ES, Little S, Pitt J, Santangelo J, Ho P, Harawa N, et al. Diagnosis of primary HIV-1 infection. Ann Intern Med. 2001;134(1):25–9.
- 33. Fiebig EW, Wright DJ, Rawal BD, Garrett PE, Schumacher RT, Peddada L, et al. Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS. 2003;17(13):1871–9.
- 34. Samji H, Cescon A, Hogg RS, Modur SP, Althoff KN, Buchacz K, et al. Closing the gap: increases in life expectancy among treated HIV-positive individuals in the United States and Canada. PLoS One . 2013;8(12).
- 35. Lohse N, Obel N. Update of Survival for Persons With HIV Infection in Denmark. Ann Intern Med. 2016;165(10):749–50.
- 36. Johnson LF, Mossong J, Dorrington RE, Schomaker M, Hoffmann CJ, Keiser O, et al. Life expectancies of South African adults starting antiretroviral treatment: collaborative analysis of cohort studies. PLoS Med. 2013; 10(4).
- 37. A Trial of Early Antiretrovirals and Isoniazid Preventive Therapy in Africa. New England Journal of Medicine. 2015;373(9):808–22.
- 38. Guías clínicas GeSIDA. https://gesida-seimc.org/category/guias-clinicas/
- 39. Margolis DA, Gonzalez-Garcia J, Stellbrink HJ, Eron JJ, Yazdanpanah Y, Podzamczer D, et al. Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1 infection (LATTE-2): 96-week results of a randomised, openlabel, phase 2b, non-inferiority trial. Lancet. 2017;390(10101):1499–510.
- 40. Orkin C, Oka S, Philibert P, Brinson C, Bassa A, Gusev D, et al. Long-acting cabotegravir plus rilpivirine for treatment in adults with HIV-1 infection: 96-week results of the randomised, open-label, phase 3 FLAIR study. Lancet HIV. 2021;8(4):e185–96.
- 41. Overton ET, Richmond G, Rizzardini G, Jaeger H, Orrell C, Nagimova F, et al. Long-acting cabotegravir and rilpivirine dosed every 2 months in adults with HIV-1 infection (ATLAS-2M), 48-week results: a randomised, multicentre, open-label, phase 3b, non-inferiority study. Lancet . 2021;396(10267):1994–2005.

- 42. French MA. HIV/AIDS: immune reconstitution inflammatory syndrome: a reappraisal. Clin Infect Dis. 2009;48(1):101–7.
- 43. DeSimone JA, Pomerantz RJ, Babinchak TJ. Inflammatory reactions in HIV-1-infected persons after initiation of highly active antiretroviral therapy. Ann Intern Med. 2000;133(6):447–54.
- 44. https://www.unaids.org/es/resources/fact-sheet
- 45. https://www.who.int/es/news-room/fact-sheets/detail/hiv-aids. Infección por el VIH.
- 46. Unidad de vigilancia de VIH, ITS y hepatitis. Vigilancia Epidemiológica del VIH y sida en España 2020: Sistema de Información sobre Nuevos Diagnósticos de VIH y Registro Nacional de Casos de Sida. Plan Nacional sobre el Sida División de control de VIH, ITS, Hepatitis virales y tuberculosis-DG de Salud Pública / Centro Nacional de Epidemiología ISCIII. Madrid; 2021.
- 47. Unidad de Vigilancia de VIH, ITS y hepatitis. Vigilancia Epidemiológica del VIH y sida en España 2019: Sistema de Información sobre Nuevos Diagnósticos de VIH y Registro Nacional de Casos de Sida. Plan Nacional sobre el Sida D.G. de Salud Pública / Centro Nacional de Epidemiología ISCIII. Madrid; 2020.
- 48. del Amo J, Pérez-Molina JA. Introducción. La infección por VIH en España: situación actual y propuestas frente a los nuevos desafíos. Enfermedades infecciosas y microbiologia clinica (English ed). 2018; 2023;36 Suppl 1:1–2.
- 49. Keathley-Herring H, van Aken E, Gonzalez-Aleu F, Deschamps F, Letens G, Orlandini PC. Assessing the maturity of a research area: bibliometric review and proposed framework. Scientometrics. 2016;109(2):927–51.
- 50. López Piñero JM, Terrada ML. [Bibliometric indicators and evaluation of the medical-scientific activity. I. Use and abuse of bibliometrics]. Med Clin (Barc). 1992;98(2):64–8.
- 51. Carrizo Sainero G. Hacia un concepto de Bibliometría. Revista de Investigación Iberoamericana en Ciencia de la Información y Documentación. 2000;1.
- 52. Hood WW, Wilson CS. The literature of bibliometrics, scientometrics, and informetrics. Scientometrics. 2001;52(2):291–314.
- 53. Pritchard Alan. Statistical Bibliography or Bibliometrics? Journal of Documentation. 1969;25(4):348–9.
- 54. Alexander Castillo-Leyva Y, Armenteros Vera I, Guerrero Ramos L, Morales Morejón M, Naranjo Fonseca KMa. Aproximación al estudio bibliométrico de las recopilaciones médicas cubanas. 2002.
- 55. Spinak E. Indicadores cienciométricos. 2001.
- 56. de filippo Daniela FFMT. Bibliometría. Importancia de los indicadores bibliométricos. In: Red Iberoamericana de Indicadores de Ciencia y Tecnología

- (RICYT)., editor. El Estado de la Ciencia Principales indicadores de Ciencia y Tecnología Iberoamericanos/Interamericanos. 2002. p. 69–76.
- 57. Spinak E. Diccionario enciclopédico de bibliometría, cienciometría e informetría. (UNESCO); 1996.
- 58. Garfield Eugene. Citation indexing its theory and application in science, technology, and humanities. 1979;274.
- 59. Garfield E. The History and Meaning of the Journal Impact Factor. JAMA. 2006;295(1):90–3.
- 60. Waltman L, van Eck NJ. Source normalized indicators of citation impact: An overview of different approaches and an empirical comparison. Scientometrics. 2013;96(3):699–716.
- 61. Moed HF. A critical comparative analysis of five world university rankings. Scientometrics. 2017;110(2):967–90.
- 62. Ardanuy J. Breve introducción a la bibliometría . Universitat de Barcelona, editor. Barcelona; 2012.
- 63. Jiménez Contreras Evaristo. Los métodos bibliométricos Estado de la cuestión y aplicaciones. In: Universidad de Granada, editor. Cuadernos de Documentación Multimedia. 2001. p. 757–71.
- 64. Sancho' R. indicadores bibliometricos utilizados en la evaluación de la ciencia y la tecnologia. revision bibliografica. Vol. 13. Consejo Superior de Investigaciones Científicas (España); 1990. 3–4 p.
- 65. Smith LC. Citation Analysis. 198.
- 66. Wallin JA. Bibliometric methods: pitfalls and possibilities. Basic Clin Pharmacol Toxicol. 2005;97(5):261–75.
- 67. Traynor M, Rafferty AM. Bibliometrics and a culture of measurement. J Adv Nurs. 2001; 36(2):167–8.
- 68. Smith K, Marinova D. Use of bibliometric modelling for policy making. Math Comput Simul. 2005;69(1-2 SPEC. ISS.):177–87.
- 69. Alvis-Guzmán N, De La Hoz-Restrepo F. Producción científica en ciencias de la salud en Colombia, 1993-2003. Rev salud pública. 2006;25–37.
- 70. Arunachalam S, Gunasekaran S. Diabetes Research in India and China Today: From Literature-based Mapping to Health-care Policy. 2005.
- 71. Subbiah A, Subbiah G. Tuberculosis research in India and China: From bibliometrics to research policy. Botanical Survey of India, Kolkata. 2002;82(8):688–97.

- 72. Moreno C. Técnicas bibliométricas aplicadas a los estudios de usuarios. Revista General de Información y Documentación. 1997.
- 73. Sonnenwald DH. Scientific collaboration. Annual Review of Information Science and Technology. 2007;41(1):643–81.
- 74. Beaver DDB. Reflections on Scientific Collaboration (and its study): Past, Present, and Future. Scientometrics. 2001;52(3):365–77.
- 75. Royal Society (Great Britain). Knowledge, networks and nations: global scientific collaboration in the 21st century. 2011;113.
- 76. Katz JS, Martin BR. What is research collaboration? Res Policy. 1997;26(1):1–18.
- 77. Medicine I of M (US) C on TI in, Rosenberg N, Gelijns AC, Dawkins H. The Changing Nature of Medical Technology Development. 1995;
- 78. Morel CM, Acharya T, Broun D, Dangi A, Elias C, Ganguly NK, et al. Health innovation networks to help developing countries address neglected diseases. Science. 2005;309(5733):401–4.
- 79. Melin G, Persson O. Studying research collaboration using co-authorships. Scientometrics. 2005;36(3):363–77.
- 80. Newman MEJ. Coauthorship networks and patterns of scientific collaboration. Proc Natl Acad Sci U S A. 2004;101 Suppl 1(Suppl 1):5200–5.
- 81. Laudel G. What do we measure by co-authorships? Res Eval. 2002;11(1):3–15.
- 82. Abbasi A, Altmann J, Hossain L. Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures. J Informetr. 2011;5(4):594–607.
- 83. González-Alcaide G, Menchi-Elanzi M, Nacarapa E, Ramos-Rincón JM. HIV/AIDS research in Africa and the Middle East: participation and equity in North-South collaborations and relationships. Global Health. 2020;16(1).
- 84. Sanz-Valero J, Tomás Casterá V, Wanden-Berghe C. [Bibliometric study of scientific output published by the Revista Panamericana de Salud Pública/Pan American Journal of Public Health from 1997-2012]. Rev Panam Salud Publica. 2014;35(2):81–8.
- 85. Gasparyan AY, Yessirkepov M, Voronov AA, Trukhachev VI, Kostyukova EI, Gerasimov AN, et al. Specialist Bibliographic Databases. J Korean Med Sci. 2016;31(5):660–73.
- 86. Pranckutė R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today's Academic World. Publications 2021, Vol 9, Page 12. 2021;9(1):12.

- 87. González-Alcaide G. Bibliometric studies outside the information science and library science field: uncontainable or uncontrollable? Scientometrics. 2021;126(8):6837–70.
- 88. Ramos JM, González-Alcaide G, Gutiérrez F. Análisis bibliométrico de la producción científica española en Enfermedades Infecciosas y en Microbiología [Bibliometric analysis of the Spanish scientific production in Infectious Diseases and Microbiology]. Enferm Infecc Microbiol Clin. 2016;34(3):166-76. doi: 10.1016/j.eimc.2015.04.007
- 89. Pratt GF, Liaison DDSB. A decade of AIDS literature. Bull Med Libr Assoc. 1992;80(4):380.
- 90. Mackenzie S. Scientific silence: AIDS and African Americans in the medical literature. Am J Public Health. 2000;90(7):1145–6.
- 91. Macias-Chapula CA. AIDS in Haiti: a bibliometric analysis. Bull Med Libr Assoc. 2000;88(1):56.
- 92. Macías-Chapula CA, Mijangos-Nolasco A. Bibliometric analysis of AIDS literature in Central Africa. Scientometrics. 2002;54(2):309–17.
- 93. Onyancha OB, Ocholla DN. A comparative study of the literature on HIV/AIDS in Kenya and Uganda: A bibliometric study. 2004; 26(4): 434-447.
- 94. Falagas ME, Bliziotis IA, Kondilis B, Soteriades ES. Eighteen years of research on AIDS: contribution of and collaborations between different world regions. AIDS Res Hum Retroviruses. 2006;22(12):1199–205.
- 95. Patra SK, Chand P. HIV/AIDS research in India: A bibliometric study. Libr Inf Sci Res. 2007;29(1):124–34.
- 96. Uthman OA. HIV/AIDS in Nigeria: a bibliometric analysis. BMC Infect Dis. 2008;8.
- 97. Uthman OA. Pattern and determinants of HIV research productivity in sub-Saharan Africa: bibliometric analysis of 1981 to 2009 PubMed papers. BMC Infect Dis. 2010;10.
- 98. Ñopo PC, Gutiérrez C, Rosell G, Yagui M, Alarcón J, Espinoza M, et al. [Bibliometric analysis of scientific production about HIV/AIDS in Peru 1985-2010]. Rev Peru Med Exp Salud Publica. 2011;28(3):470–6.
- 99. Rosas SR, Kagan JM, Schouten JT, Slack PA, Trochim WMK. Evaluating research and impact: a bibliometric analysis of research by the NIH/NIAID HIV/AIDS clinical trials networks. PLoS One. 2011;6(3).
- 100. Mancini R, Girardi E, Costa C. Impact factor in AIDS and other infectious diseases. J Biol Regul Homeost Agents. 2001;15(3):343–7.
- 101. Drewes J, Gusy B, Von Rüden U. More than 20 years of research into the quality of life of people with HIV and AIDS--a descriptive review of study characteristics

- and methodological approaches of published empirical studies. J Int Assoc Provid AIDS Care. 2013;12(1):18–22.
- 102. Tizón Bouza E, Couto Caldelas N, Álvarez Díaz M, Marcos Espino MP, Eiroa Mejuto ME, Doimínguez Blanco V, et al. Virus de inmunodeficiencia humana: ¿qué se ha publicado en Iberoamérica entre 2008-2012? Evaluando la producción enfermera. Rev Rol enferm. 2015;590–9.
- 103. Uusküla A, Toompere K, Laisaar KT, Rosenthal M, Pürjer ML, Knellwolf A, et al. HIV research productivity and structural factors associated with HIV research output in European Union countries: a bibliometric analysis. BMJ Open. 2015;5(2):e006591.
- 104. Liu P, Mu X, Hao X, Liu P, Mu X, Xie H. China's scientific footprint in the global HIV/AIDS research: Productivity, impact and collaboration. Malaysian Journal of Library & Information Science. 2016;21(1):83–108.
- 105. Kelaher M, Ng L, Knight K, Rahadi A. Equity in global health research in the new millennium: trends in first-authorship for randomized controlled trials among lowand middle-income country researchers 1990-2013. Int J Epidemiol. 2016;45(6):2174–83.
- 106. Mugomeri E, Bekele BS, Mafaesa M, Maibvise C, Tarirai C, Aiyuk SE. A 30-year bibliometric analysis of research coverage on HIV and AIDS in Lesotho. Health Res Policy Syst. 2017;15(1).
- 107. Rios-González CM. Evaluation of the scientific production on HIV in indigenous people, from 1989 to 2016. Travel Med Infect Dis. 2017;18:83–4.
- 108. Fajardo-Ortiz D, Lopez-Cervantes M, Duran L, Dumontier M, Lara M, Ochoa H, et al. The emergence and evolution of the research fronts in HIV/AIDS research. PLoS One. 2017;12(5).
- 109. Aves T, Kredo T, Welch V, Mursleen S, Ross S, Zani B, et al. Equity issues were not fully addressed in Cochrane human immunodeficiency virus systematic reviews. J Clin Epidemiol. 2017;81:96–100.
- 110. Hodes R, Morrell R. Incursions from the epicentre: Southern theory, social science, and the global HIV research domain. Afr J AIDS Res. 2018;17(1):22–31.
- 111. Sweileh WM. Bibliometric analysis of literature in AIDS-related stigma and discrimination. Transl Behav Med. 2019;9(4):617–28.
- 112. Tran BX, Nathan KI, Phan HT, Hall BJ, Vu GT, Vu LG, et al. A global bibliometric analysis of services for children affected by HIV/AIDS: Implications for impact mitigation programs (GAPresearch). AIDS Rev. 2020;22(1):34–43.
- 113. Tran BX, Nguyen LH, Turner HC, Nghiem S, Vu GT, Nguyen CT, et al. Economic evaluation studies in the field of HIV/AIDS: Bibliometric analysis on research development and scopes (GAPRESEARCH). BMC Health Serv Res. 2019;19(1):1–12.

- 114. Tran BX, Vu GT, Ha GH, Phan HT, Latkin CA, Cyrus SHH, et al. Global Mapping of Interventions to Improve the Quality of Life of People Living with HIV/AIDS: Implications for Priority Settings. AIDS Rev. 2020;23(3): 91-102.
- 115. Tran BX, Wong FY, Huy-Pham KT, Latkin CA, Hai-Ha G, Thu-Vu G, et al. Evolution of interdisciplinary landscapes of HIV/AIDS studies from 1983 to 2017: Results from the global analysis for policy in research (GAPresearch). AIDS Rev. 2019;21(4):184–94.
- 116. Alzate-Ángel J, Arroyave A, Gómez A, Pericàs J, Benach J. What have we researched about HIV infection in Colombia? A bibliometric review 1983 2018. Infectio. 2020;24(1):35–41.
- 117. Gray Neils ME, Pfaeffle HOI, Kulatti AT, Titova A, Lyles GS, Plotnikova Y, et al. A geospatial Bibliometric review of the HIV/AIDS epidemic in the Russian federation. Front Public Health. 2020;8:75.
- 118. Vu GT, Tran BX, Hoang CL, Hall BJ, Phan HT, Ha GH, et al. Global Research on Quality of Life of Patients with HIV/AIDS: Is It Socio-Culturally Addressed? (GAPRESEARCH). Int J Environ Res Public Health. 2020;17(6):2127.
- 119. Doan LP, Nguyen LH, Auquier P, Boyer L, Fond G, Nguyen HT, et al. Social network and HIV/AIDS: A bibliometric analysis of global literature. Front Public Health. 2022;10.
- 120. Okoroiwu HU, Umoh EA, Asanga EE, Edet UO, Atim-Ebim MR, Tangban EA, et al. Thirty-five years (1986–2021) of HIV/AIDS in Nigeria: bibliometric and scoping analysis. AIDS Res Ther . 2022;19(1):1–15.
- 121. Aleixandre R, De La Cueva A, Almero A, Osca J, Gimenez J V. DIEZ ANOS DE LITERATURA SOBRE EL SIDA (1983-1992): ANALISIS BIBLIOMETRICO. Enferm Infecc Microbiol Clin. 1995;13(6):338–44.
- 122. Osca J. [Spanish bibliographic production on AIDS. Bibliometric approach]. Enferm Infecc Microbiol Clin. 1997;15(8):407–10.
- 123. Ramos Rincún JM, Belinchún Romero I, Gutièrrez Rodero F. La producción científica española respecto a la infección por el virus de la inmunodeficiencia humana/sida. Un estudio a través de MedLine (1991–1999). Med Clin (Barc). 2001;117(17):645–53.
- 124. Civera C, Osca Lluch J, Tortosa F, Martínez R, Mateo E, Cano L. La investigación española sobre SIDA y su difusión en las revistas nacionales e internacionales. Revista Española de Drogodependencias. 2002;27:249–66.
- 125. Trevino FM. Uniform minimum data sets: in search of demographic comparability. Am J Public Health. 1988;78(2):126–7.
- 126. Foster J, Conrick M. Nursing Minimum Data Sets: Historical Perspective and Australian Development. 1998;437–43.

- 127. Marco Cuenca G, Salvador Oliván JA. Del CMBD al Big Data en salud: un sistema de información hospitalaria para el siglo XXI. Scire: Representación y organización del conocimiento, ISSN 1135-3716, Vol 24, Nº 1, 2018, págs 77-89.
- 128. Ministerio de Sanidad Portal Estadístico del SNS Registro de Altas de los Hospitales Generales del Sistema Nacional de Salud. CMBD. Norma Estatal.
- 129. "Garrote Sastre T, "Medina Luezas AM, "Peña Ruiz F, "Sanz Bachiller T", "Sañudo García S. Manual de procedimiento del conjunto mínimo básico de datos. 2019th ed. Junta de Castilla y León, Gerencia Regional de Salud, Dirección General de Innovación y Resultados en Salud, editors. 2020. 5–8 p.
- 130. eCIE-Maps-CIE-10-ESDiagnósticos. https://eciemaps.mscbs.gob.es/ecieMaps/browser/index_10_mc.html. Acceso: 04/06/2023
- 131. Álvaro-Meca A, Micheloud D, Jensen J, Díaz A, García-Alvarez M, Resino S. Epidemiologic trends of cancer diagnoses among HIV-infected children in Spain from 1997 to 2008. Pediatr Infect Dis J. 2011;30(9):764–8.
- 132. Medrano J, Álvaro-Meca A, Boyer A, Jiménez-Sousa MA, Resino S. Mortality of patients infected with HIV in the intensive care unit (2005 through 2010): significant role of chronic hepatitis C and severe sepsis. Crit Care. 2014;18(4):475
- 133. Álvaro-Meca A, Rodríguez-Gijón L, Díaz A, Gil Á, Resino S. Incidence and mortality of tuberculosis disease in Spain between 1997 and 2010: impact of human immunodeficiency virus (HIV) status. J Infect. 2014;68(4):355–62.
- 134. Álvaro-Meca A, Jensen J, Micheloud D, Díaz A, Gurbindo D, Resino S. Rate of candidiasis among HIV-infected children in Spain in the era of highly active antiretroviral therapy (1997-2008). BMC Infect Dis. 2013;13:115.
- 135. A ÁM, L RG, A D, Á G, S R. Trends in nontuberculous mycobacterial disease in hospitalized subjects in Spain (1997-2010) according to HIV infection. HIV Med. 2015;16(8):485–93.
- 136. Álvaro-Meca A, Díaz A, De Miguel Díez J, Resino R, Resino S. Environmental Factors Related to Pulmonary Tuberculosis in HIV-Infected Patients in the Combined Antiretroviral Therapy (cART) Era. PLoS One. 2016;11(11): e0165944
- 137. De Miguel-Díez J, López-de-Andrés A, Jiménez-García R, Puente-Maestu L, Jiménez-Trujillo I, Hernández-Barrera V, et al. Trends in Epidemiology of COPD in HIV-Infected Patients in Spain (1997–2012). PLoS One. 2016;11(11):e0166421.
- 138. Alvaro-Meca A, Ryan P, Martínez-Larrull E, Micheloud D, Berenguer J, Resino S. Epidemiological trends of deep venous thrombosis in HIV-infected subjects (1997-2013): A nationwide population-based study in Spain. Eur J Intern Med. 2018;48:69–74.
- 139. Mayoral Cortés JM, García Fernández M, Varela Santos MC, Fernández Merino JC, García León J, Herrera Guibert D, et al. Incidence of pulmonary tuberculosis

- and HIV coinfection in the province of Seville, Spain, 1998. Eur J Epidemiol. 2001;17(8):737–42.
- 140. Marco J, Barba R, Zapatero A, Matía P, Plaza S, Losa JE, et al. Prevalence of the notification of malnutrition in the departments of internal medicine and its prognostic implications. Clin Nutr . 2011;30(4):450–4.
- 141. Jensen J, Álvaro-Meca A, Micheloud D, Díaz A, Resino S. Reduction in mycobacterial disease among HIV-infected children in the highly active antiretroviral therapy era (1997-2008). Pediatr Infect Dis J. 2012;31(3):278–83.
- 142. Zamalloa PL, Muñoz CV, Mármol CI, de Beltrán Gutierrez P, Ramos JC, Gil-Borrelli CC. [Approach to the causes of discharge and health needs of transgender people through the National Hospital Discharge Survey in Spain during the period 2001 to 2013]. Rev Esp Salud Publica. 2019;93:e201905031–e201905031.
- 143. Jiménez De Ory S, Ramos JT, Fortuny C, González-Tomé MI, Mellado MJ, Moreno D, et al. Sociodemographic changes and trends in the rates of new perinatal HIV diagnoses and transmission in Spain from 1997 to 2015. PLoS One. 2019;14(10).
- 144. Muñoz-Moreno MF, Ryan P, Alvaro-Meca A, Valencia J, Tamayo E, Resino S. National Temporal Trend Analysis of Infective Endocarditis among Patients Infected with HIV in Spain (1997-2014): A Retrospective Study. J Clin Med. 2019;8(8).
- 145. Monreal E, Gullón P, Pérez-Torre P, Escobar-Villalba A, Acebron F, Quereda Rodríguez-Navarro C, et al. Increased HIV infection in patients with stroke in Spain. A 16-year population-based study. Enfermedades infecciosas y microbiologia clinica (English ed). 2020;38(5):219–25.
- 146. Barré-Sinoussi F, Ross AL, Delfraissy JF. Past, present and future: 30 years of HIV research. Nat Rev Microbiol . 2013;11(12):877–83.
- 147. Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):868–71.
- 148. Popovic M, Sarngadharan MG, Read E, Gallo RC. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984;224(4648):497–500.
- 149. Levy JA, Hoffman AD, Kramer SM, Landis JA, Shimabukuro JM, Oshiro LS. Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science .1984; 225(4664):840–2.
- 150. Schüpbach J, Popovic M, Gilden R V., Gonda MA, Sarngadharan MG, Gallo RC. Serological analysis of a subgroup of human T-lymphotropic retroviruses (HTLV-III) associated with AIDS. Science . 1984;224(4648):503–5.
- 151. Brun-Vezinet F, Barre-Sinoussi F, Saimot AG, Christol D, Montagnier L, Rouzioux C, et al. Detection of IgG antibodies to lymphadenopathy-associated

- virus in patients with AIDS or lymphadenopathy syndrome. Lancet. 1984;1(8389):1253–6.
- 152. Sanchez-Pescador R, Power MD, Barr PJ, Steimer KS, Stempien MM, Brown-Shimer SL, et al. Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2). Science. 1985;227(4686):484–92.
- 153. Rabson AB, Martin MA. Molecular organization of the AIDS retrovirus. Cell. 1985;40(3):477–80.
- 154. Wain-Hobson S, Sonigo P, Danos O, Cole S, Alizon M. Nucleotide sequence of the AIDS virus, LAV. Cell. 1985;40(1):9–17.
- 155. Peeters M, Honoré C, Huett T, Bedjabaga L, Ossari S, Bussi P, et al. Isolation and partial characterization of an HIV-related virus occurring naturally in chimpanzees in Gabon. AIDS. 1989;3(10):625–30.
- 156. Hirsch VM, Olmsted RA, Murphey-Corb M, Purcell RH, Johnson PR. An African primate lentivirus (SIVsm) closely related to HIV-2. Nature. 1989;339(6223):389–92.
- 157. Dalgleish AG, Beverley PCL, Clapham PR, Crawford DH, Greaves MF, Weiss RA. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984;312(5996):763–7.
- 158. Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature. 1984;312(5996):767–8.
- 159. Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 1986;47(3):333–48.
- 160. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272(5263):872–7.
- 161. Weiss RA. Thirty years on: HIV receptor gymnastics and the prevention of infection. BMC Biol. 2013; 11.
- 162. Piatak M, Saag MS, Yang LC, Clark SJ, Kappes JC, Luk KC, et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science. 1993; 259(5102):1749–54.
- 163. Veazey RS, DeMaria MA, Chalifoux L V., Shvetz DE, Pauley DR, Knight HL, et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science. 1998;280(5362):427–31.
- 164. Rey-Cuillé MA, Berthier JL, Bomsel-Demontoy MC, Chaduc Y, Montagnier L, Hovanessian AG, et al. Simian immunodeficiency virus replicates to high levels in sooty mangabeys without inducing disease. J Virol. 1998;72(5):3872–86.

- 165. Müller-Trutwin MC, Corbet S, Dias Tavares M, Hervé VMA, Nerrienet E, Georges-Courbot MC, et al. The evolutionary rate of nonpathogenic simian immunodeficiency virus (SIVagm) is in agreement with a rapid and continuous replication in vivo. Virology. 1996; 223(1):89–102.
- 166. Sodora DL, Allan JS, Apetrei C, Brenchley JM, Douek DC, Else JG, et al. Toward an AIDS vaccine: lessons from natural simian immunodeficiency virus infections of African nonhuman primate hosts. Nat Med. 2009;15(8):861–5.
- 167. Lane HC, Masur H, Edgar LC, Whalen G, Rook AH, Fauci AS. Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N Engl J Med. 1983;309(8):453–8.
- 168. Alter G, Heckerman D, Schneidewind A, Fadda L, Kadie CM, Carlson JM, et al. HIV-1 adaptation to NK-cell-mediated immune pressure. Nature. 2011;476(7358):96–101.
- 169. Saah AJ, Hoover DR, Weng S, Carrington M, Mellors J, Rinaldo CR, et al. Association of HLA profiles with early plasma viral load, CD4+ cell count and rate of progression to AIDS following acute HIV-1 infection. Multicenter AIDS Cohort Study. AIDS. 1998; 12(16):2107–13.
- 170. Migueles SA, Sabbaghian MS, Shupert WL, Bettinotti MP, Marincola FM, Martino L, et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci U S A. 2000;97(6):2709–14.
- 171. Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet. 2002;31(4):429–34.
- 172. Chun TW, Finzi D, Margolick J, Chadwick K, Schwartz D, Siliciano RF. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med. 1995;1(12):1284–90.
- 173. Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JAM, Baseler M, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 1997;94(24):13193–7.
- 174. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science . 1997;278(5341):1295–300.
- 175. Wong JK, Hezareh M, Günthard HF, Havlir D V., Ignacio CC, Spina CA, et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science. 1997;278(5341):1291–5.
- 176. Lehrman G, Hogue IB, Palmer S, Jennings C, Spina CA, Wiegand A, et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet. 2005;366(9485):549–55.

- 177. Fischl MA, Richman DD, Grieco MH, Gottlieb MS, Volberding PA, Laskin OL, et al. The Efficacy of Azidothymidine (AZT) in the Treatment of Patients with AIDS and AIDS-Related Complex. N Engl J Med. 1987;317(4):185-191
- 178. Hammer SM, Squires KE, Hughes MD, Grimes JM, Demeter LM, Currier JS, et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N Engl J Med. 1997;337(11):725–33.
- 179. Palella FJ, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998;338(13):853–60.
- 180. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995;373(6510):123–6.
- 181. Bor J, Herbst AJ, Newell ML, Bärnighausen T. Increases in adult life expectancy in rural South Africa: valuing the scale-up of HIV treatment. Science. 2013;339(6122):961–5.
- 182. Rinaldo C, Huang XL, Fan ZF, Ding M, Beltz L, Logar A, et al. High levels of anti-human immunodeficiency virus type 1 (HIV-1) memory cytotoxic T-lymphocyte activity and low viral load are associated with lack of disease in HIV-1-infected long-term nonprogressors. J Virol. 1995;69(9):5838–42.
- 183. Lambotte O, Boufassa F, Madec Y, Nguyen A, Goujard C, Meyer L, et al. HIV controllers: a homogeneous group of HIV-1-infected patients with spontaneous control of viral replication. Clin Infect Dis. 2005;41(7):1053–6.
- 184. Migueles SA, Sabbaghian MS, Shupert WL, Bettinotti MP, Marincola FM, Martino L, et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci U S A. 2000;97(6):2709–14.
- 185. Sáez-Cirión A, Lacabaratz C, Lambotte O, Versmisse P, Urrutia A, Boufassa F, et al. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc Natl Acad Sci U S A. 2007;104(16):6776–81.
- 186. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood . 2006;107(12):4781–9.
- 187. Sáez-Cirión A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 2013;9(3): e1003211

- 188. Persaud D et al. in Conference on Retroviruses and Opportunistic Infections. In: International Antiviral Society-USA. 2013.
- 189. Hütter G, Nowak D, Mossner M, Ganepola S, Müßig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.
- 190. Henrich T. in 7th International Conference on HIV pathogenesis, treatment and prevention. Abstract WELBA05. (International Antiviral Society-USA, 2013). In.
- 191. Cillo AR, Krishnan A, Mitsuyasu RT, McMahon DK, Li S, Rossi JJ, et al. Plasma viremia and cellular HIV-1 DNA persist despite autologous hematopoietic stem cell transplantation for HIV-related lymphoma. J Acquir Immune Defic Syndr. 2013;63(4):438–41.
- 192. Deeks SG, Autran B, Berkhout B, Benkirane M, Cairns S, Chomont N, et al. Towards an HIV cure: a global scientific strategy. Nat Rev Immunol. 2012;12(8):607–14.
- 193. Deeks SG, Lewin SR, Ross AL, Ananworanich J, Benkirane M, Cannon P, et al. International AIDS Society global scientific strategy: towards an HIV cure 2016. Nat Med. 2016;22(8):839–50.
- 194. Deeks SG, Archin N, Cannon P, Collins S, Jones RB, de Jong MAWP, et al. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nat Med. 2021;27(12):2085–98.
- 195. Connor EM, Sperling RS, Gelber R, Kiselev P, Scott G, O'Sullivan MJ, et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med. 1994;331(18):1173–80.
- 196. Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya S, Nalugoda F, et al. Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet. 2007;369(9562):657–66.
- 197. Bailey RC, Moses S, Parker CB, Agot K, Maclean I, Krieger JN, et al. Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet. 2007;369(9562):643–56.
- 198. Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta R, Puren A. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. PLoS Med. 2005;2(11):1112–22.
- 199. Karim QA, Karim SSA, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science. 2010;329(5996):1168–74.
- Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365(6):493–505.

- Nye J, D'Souza MP, Hu D, Ghosh D. Research productivity and collaboration of the NIH-funded HIV vaccine trials network: A bibliometric analysis. Heliyon. 2021 Jan 1;7(1):e06005.
- Carratalà J, Alcamí J, Cordero E, Miró JM, Ramos JM. Investigación en enfermedades infecciosas. Enferm Infecc Microbiol Clin. 2008;26(SUPPL. 15):40–50.
- AlcamK J, Alemany A, Dodero J, Llibre JM. Current situation of HIV research in Spain. Enfermedades infecciosas y microbiologia clinica (English ed). 2018;36 Suppl 1:26–30.
- 204. Jaén Á, Casabona J, Esteve A, Miró JM, Tural C, Ferrer E, et al. Características clinicoepidemiológicas y tendencias en el tratamiento antirretroviral de una cohorte de pacientes con infección por el virus de la inmunodeficiencia humana. Cohorte PISCIS. Med Clin (Barc). 2005;124(14):525–31.
- 205. Suárez-Lozano I, Fajardo JM, Garrido M, Roca B, García-Alcalde ML, Geijo P, et al. Epidemiological trends of HIV infection in Spain: preventative plans have to be oriented to new target populations (Spanish VACH Cohort). AIDS. 2002;16(18):2496–9.
- 206. Baghaei Lakeh A, Ghaffarzadegan N. Global Trends and Regional Variations in Studies of HIV/AIDS. Scientific Reports 2017;7:1. 2017;7(1):1–8.
- 207. Ramos JM, Gutiérrez F, Padilla S, Masiá M, Martín-Hidalgo A. Geography of medical publications. An overview of HIV/AIDS research in 2003. AIDS. 2005;19(2):219–20.
- 208. Sengupta IN, Kumari L. Bibliometric analysis of AIDS literature. Scientometrics. 1991;20(1):297–315.
- 209. Self PC, Filardo TW, Lancaster FW. Acquired immunodeficiency syndrome (AIDS) and the epidemic growth of its literature. Scientometrics. 1989;17(1–2):49–60.
- 210. Macias-Chapula CA, Rodea-Castro IP, Narvaez-Berthelemot N. Bibliometric analysis of aids literature in Latin America and the Caribbean. Scientometrics. 1998;41(1–2):41–9.
- 211. Uthman OA. HIV/AIDS in Nigeria: a bibliometric analysis. BMC Infect Dis. 2008;8.
- 212. Vanni T, Mesa-Frias M, Sanchez-Garcia R, Roesler R, Schwartsmann G, Goldani MZ, et al. International Scientific Collaboration in HIV and HPV: A Network Analysis. PLoS One. 2014;9(3):e93376.
- 213. Tran BX, Nathan KI, Phan HT, Hall BJ, Vu GT, Vu LG, et al. A Global Bibliometric Analysis of Services for Children Affected by HIV/Acquired Immune Deficiency Syndrome: Implications for Impact Mitigation Programs (GAPRESEARCH). AIDS Rev. 2019;21(3).

- 214. Menchi-Elanzi M, Pinargote-Celorio H, Nacarapa E, González-Alcaide G, Ramos-Rincón JM. Scientific HIV research in Africa and the Middle East: a socio-economic demographic analysis. Afr J AIDS Res. 2021;20(1):1–5.
- 215. Ramos Rincún JM, Belinchún Romero I, Gutièrrez Rodero F. La producción científica española respecto a la infección por el virus de la inmunodeficiencia humana/sida. Un estudio a través de MedLine (1991–1999). Med Clin (Barc). 2001;117(17):645–53.
- 216. Macías-Chapula CA, Mijangos-Nolasco A. Bibliometric analysis of AIDS literature in Central Africa. Vol. 54, Budapest Scientometrics. Kluwer Academic Publishers; 2002.
- 217. Tijssen RJW. Africa's contribution to the worldwide research literature: New analytical perspectives, trends, and performance indicators. Scientometrics. 2007;71(2):303–27.
- 218. Uthman OA, Uthman MB. Geography of Africa biomedical publications: an analysis of 1996-2005 PubMed papers. Int J Health Geogr. 2007;6:46.
- 219. Nachega JB, Uthman OA, Ho YS, Lo M, Anude C, Kayembe P, et al. Current status and future prospects of epidemiology and public health training and research in the WHO African region. Int J Epidemiol. 2012;41(6):1829–46.
- 220. Rahman M, Fukui T. Biomedical research productivity: factors across the countries. Int J Technol Assess Health Care. 2003;19(1):249–52.
- 221. Chu KM, Jayaraman S, Kyamanywa P, Ntakiyiruta G. Building research capacity in Africa: equity and global health collaborations. PLoS Med. 2014;11(3).
- 222. Dwyer-Lindgren L, Cork MA, Sligar A, Steuben KM, Wilson KF, Provost NR, et al. Mapping HIV prevalence in sub-Saharan Africa between 2000 and 2017. Nature. 2019;570(7760):189–93.
- 223. Bai J, Li W, Huang YM, Guo Y. Bibliometric study of research and development for neglected diseases in the BRICS. Infect Dis Poverty. 2016;5(1):89.
- 224. Sun J, Boing AC, Silveira MPT, Bertoldi AD, Ziganshina LE, Khaziakhmetova VN, et al. Efforts to secure universal access to HIV/AIDS treatment: a comparison of BRICS countries. J Evid Based Med. 2014;7(1):2–21.
- 225. Bornmann L, Wagner C, Leydesdorff L. BRICS countries and scientific excellence: A bibliometric analysis of most frequently cited papers. undefined. 2015;66(7):1507–13.
- 226. González-Alcaide G, Park J, Huamaní C, Ramos JM. Dominance and leadership in research activities: Collaboration between countries of differing human development is reflected through authorship order and designation as corresponding authors in scientific publications. PLoS One. 2017;12(8).
- 227. Adams J, Gurney K, Hook D, Leydesdorff L. International collaboration clusters in Africa. undefined. 2013;98(1):547–56.

- 228. Deribew A, Biadgilign S, Deribe K, Dejene T, Tessema GA, Melaku YA, et al. The Burden of HIV/AIDS in Ethiopia from 1990 to 2016: Evidence from the Global Burden of Diseases 2016 Study. Ethiop J Health Sci. 2019;29(1):859–68.
- 229. Keiser J, Utzinger J, Tanner M, Singer BH. Representation of authors and editors from countries with different human development indexes in the leading literature on tropical medicine: survey of current evidence. BMJ. 2004;328(7450):1229–32.
- 230. Keiser J, Utzinger J. Trends in the core literature on tropical medicine: A bibliometric analysis from 1952-2002. Budapest Scientometrics, and Springer. 2005;62(3):351-65.
- 231. Feldacker C, Pintye J, Jacob S, Chung MH, Middleton L, Iliffe J, et al. Continuing professional development for medical, nursing, and midwifery cadres in Malawi, Tanzania and South Africa: A qualitative evaluation. PLoS One. 2017;12(10): e0186074
- 232. Nchinda TC. Research capacity strengthening in the South. Soc Sci Med. 2002;54(11):1699–711.
- 233. Wight D, Ahikire J, Kwesiga JC. Consultancy research as a barrier to strengthening social science research capacity in Uganda. Soc Sci Med. 2014;116:32–40.
- 234. Langer A, Díaz-Olavarrieta C, Berdichevsky K, Villar J. Why is research from developing countries underrepresented in international health literature, and what can be done about it? Bull World Health Organ. 2004;82(10):802.
- 235. Smith E, Hunt M, Master Z. Authorship ethics in global health research partnerships between researchers from low or middle income countries and high income countries. BMC Med Ethics. 2014;15(1).
- 236. Yousefi-Nooraie R, Shakiba B, Mortaz-Hejri S. Country development and manuscript selection bias: a review of published studies. BMC Med Res Methodol. 2006;6:37.
- 237. Chen TJ, Chen YC, Hwang SJ, Chou LF. International collaboration of clinical medicine research in Taiwan, 1990-2004: a bibliometric analysis. J Chin Med Assoc. 2007;70(3):110–6.
- 238. Ramos-Rincón JM, Pinargote-Celorio H, Belinchón-Romero I, González-Alcaide G. A snapshot of pneumonia research activity and collaboration patterns (2001-2015): a global bibliometric analysis. BMC Med Res Methodol. 2019;19(1):184.
- 239. Badenhorst A, Mansoori P, Chan KY. Assessing global, regional, national and subnational capacity for public health research: a bibliometric analysis of the Web of Science(TM) in 1996-2010. J Glob Health. 2016;6(1).
- 240. Breugelmans JG, Makanga MM, Cardoso AL V., Mathewson SB, Sheridan-Jones BR, Gurney KA, et al. Bibliometric Assessment of European and Sub-Saharan African Research Output on Poverty-Related and Neglected Infectious Diseases from 2003 to 2011. PLoS Negl Trop Dis. 2015;9(8): e0003997.

- 241. Ettarh R. Patterns of international collaboration in cardiovascular research in sub-Saharan Africa. Cardiovasc J Afr. 2016;27(3):194–200.
- 242. Hernandez-Villafuerte K, Li R, Hofman KJ. Bibliometric trends of health economic evaluation in Sub-Saharan Africa. Global Health. 2016;12(1).
- 243. Mayosi BM, Lawn JE, Van Niekerk A, Bradshaw D, Abdool Karim SS, Coovadia HM. Health in South Africa: changes and challenges since 2009. Lancet. 2012;380(9858):2029–43.
- 244. Esser DE, Keating Bench K. Does Global Health Funding Respond to Recipients' Needs? Comparing Public and Private Donors' Allocations in 2005-2007. World Dev. 2011;39(8):1271–80.
- 245. Swingler GH, Pillay V, Pienaar ED, Ioannidis JPA. International collaboration, funding and association with burden of disease in randomized controlled trials in Africa. Bull World Health Organ. 2005;83(7):511.
- 246. Wright CY, Dominick F, Kunene Z, Kapwata T, Street RA. Bibliometric trends of South African environmental health articles between 1998 and 2015: Making local research visible and retrievable. S Afr Med J. 2017;107(10):915–24.
- 247. Benie-Bi J, Cambon L, Grimaud O, Kivits J, Alla F. Health needs and public health functions addressed in scientific publications in Francophone sub-Saharan Africa. Public Health. 2013;127(9):860–6.
- 248. Poreau B. Prenatal diagnosis, care and management in Africa: bibliometric analysis. Pan Afr Med J. 2018;29.
- 249. Tran BX, Nathan KI, Phan HT, Hall BJ, Vu GT, Vu LG, et al. A Global Bibliometric Analysis of Services for Children Affected by HIV/Acquired Immune Deficiency Syndrome: Implications for Impact Mitigation Programs (GAPRESEARCH). AIDS Rev. 2019;21(3).
- 250. Slogrove AL, Schomaker M, Davies MA, Williams P, Balkan S, Ben-Farhat J, et al. The epidemiology of adolescents living with perinatally acquired HIV: A cross-region global cohort analysis. PLoS Med. 2018;15(3).
- 251. Marukutira T, Scott N, Kelly SL, Birungi C, Makhema JM, Crowe S, et al. Modelling the impact of migrants on the success of the HIV care and treatment program in Botswana. PLoS One. 2020;15(1): e0226422.
- 252. Rabkin M, Strauss M, Mantell JE, Mapingure M, Masvawure TB, Lamb MR, et al. Optimizing differentiated treatment models for people living with HIV in urban Zimbabwe: Findings from a mixed methods study. PLoS One. 2020;15(1): e0228148.
- 253. Korenromp EL, Gobet B, Fazito E, Lara J, Bollinger L, Stover J. Impact and Cost of the HIV/AIDS National Strategic Plan for Mozambique, 2015-2019--Projections with the Spectrum/Goals Model. PLoS One. 2015;10(11): 0142908.

- 254. Rahman M, Fukui T. Biomedical research productivity: factors across the countries. Int J Technol Assess Health Care. 2003;19(1):249–52.
- 255. Chu KM, Jayaraman S, Kyamanywa P, Ntakiyiruta G. Building research capacity in Africa: equity and global health collaborations. PLoS Med. 2014;11(3): e1001612.
- 256. Ramos Rincón JM, Belinchón Romero I, Gutiérrez Rodero F. La producción científica española respecto a la infección por el virus de la inmunodeficiencia humana/sida. Un estudio a través de MedLine (1991-1999) [The Spanish scientific production about human immunodeficiency virus infection/AIDS. A study through MedLine (1991-1999)]. Med Clin (Barc). 2001;117(17):645-53.
- 257. Tran BX, Wong FY, Huy-Pham KT, Latkin CA, Hai-Ha G, Thu-Vu G, et al. Evolution of interdisciplinary landscapes of HIV/AIDS studies from 1983 to 2017: Results from the global analysis for policy in research (GAPresearch). AIDS Rev. 2019;21(4):184–94.
- 258. González-Alcaide G, Valderrama-Zurián JC, Ramos-Rincn JM. Producción científica, colaboración y ámbitos de investigación en Enfermedades Infecciosas y Microbiología Clínica (2003–2007). Enferm Infecc Microbiol Clin. 2010;28(8):509–16.
- 259. Sobrino-Vegas P, Gutiérrez F, Berenguer J, Labarga P, García F, Alejos-Ferreras B, et al. La cohorte de la red española de investigación en sida y su biobanco: organización, principales resultados y pérdidas al seguimiento. Enferm Infecc Microbiol Clin. 2011;29(9):645–53.
- 260. Alcamí J, Alemany A, Dodero J, Llibre JM. Current situation of HIV research in Spain. Enferm Infecc Microbiol Clin (Engl Ed). 2018 Sep;36 Suppl 1:26-30. English, Spanish. doi: 10.1016/S0213-005X(18)30243-X. PMID: 30115404
- 261. Núm. Disposición 1235 del BOE núm. 35 de 2015. 2015;
- 262. Ramos-Rincon JM, Pinargote H, Ramos-Belinchón C, de Mendoza C, Aguilera A, Soriano V. Hepatitis delta in patients hospitalized in Spain (1997–2018). AIDS. 2021;35(14):2311–8.
- 263. Menchi-Elanzi M, Mayoral AM, Morales J, Pinargote-Celorio H, González-Alcaide G, Ramos-Rincón JM. Toxoplasma gondii infection in hospitalized people living with HIV in Spain, 1997 to 2015. Parasitol Res. 2021;120(2):755–61.
- 264. Ramos JM, De Mendoza C, Aguilera A, Barreiro P, Benito R, Eiros JM, et al. Hospital admissions in individuals with HTLV-1 infection in Spain. AIDS. 2020;34(7):1019–27.
- 265. Pereira-Díaz E, Moreno-Verdejo F, de la Horra C, Guerrero JA, Calderón EJ, Medrano FJ. Changing Trends in the Epidemiology and Risk Factors of Pneumocystis Pneumonia in Spain. Front Public Health. 2019;7:275.

- 266. Boix R, Cano R, Gallego P, Vallejo F, Fernández-Cuenca R, Noguer I, et al. Hepatitis C hospitalizations in Spain, 2004-2013: a retrospective epidemiological study. BMC Health Serv Res. 2017;17(1).
- 267. De Miguel-Díez J, López-de-Andrés A, Jiménez-García R, Puente-Maestu L, Jiménez-Trujillo I, Hernández-Barrera V, et al. Trends in Epidemiology of COPD in HIV-Infected Patients in Spain (1997–2012). PLoS One. 2016;11(11):e0166421.
- 268. Herrador Z, Gherasim A, Jimenez BC, Granados M, San Martín JV, Aparicio P. Epidemiological Changes in Leishmaniasis in Spain According to Hospitalization-Based Records, 1997–2011: Raising Awareness towards Leishmaniasis in Non-HIV Patients. PLoS Negl Trop Dis. 2015; 9(3):e0003594.
- 269. De Miguel-Díez J, López-De-Andrés A, Hernández-Barrera V, Jiménez-Trujillo I, Méndez-Bailón M, De Miguel-Yanes JM, et al. Decreasing incidence and mortality among hospitalized patients suffering a ventilator-associated pneumonia: Analysis of the Spanish national hospital discharge database from 2010 to 2014. Medicine. 2017;96(30).
- 270. INEbase / Demography and population /Population figures and Demographic Censuses /Population figures / Results.
- 271. Ford N, Vitoria M, Penazzato M, Doherty M, Shubber Z, Meintjes G, et al. Causes of hospital admission among people living with HIV worldwide: A systematic review and meta-analysis. Lancet HIV. 2015;2(10):e438–44.
- 272. Rukhadze N, Kirk O, Chkhartishvili N, Bolokadze N, Sharvadze L, Gabunia P, et al. Causes and outcomes of hospitalizations among people living with HIV in Georgia's referral institution, 2012–2017. Int J STD AIDS. 2021;32(7):662–70.
- 273. Rein SM, Lampe FC, Chaloner C, Stafford A, Rodger AJ, Johnson MA, et al. Causes of hospitalisation among a cohort of people with HIV from a London centre followed from 2011 to 2018. BMC Infect Dis. 2021;21(1):395–395.
- 274. Fernández-Montero JV, Vispo E, Barreiro P, Sierra-Enguita R, De Mendoza C, Labarga P, et al. Hepatitis delta is a major determinant of liver decompensation events and death in HIV-infected patients. Clin Infect Dis. 2014;58(11):1549–53.
- 275. Puoti M, Bruno R, Soriano V, Donato F, Gaeta GB, Quinzan GP, et al. Hepatocellular carcinoma in HIV-infected patients: epidemiological features, clinical presentation and outcome. AIDS. 2004;18(17):2285–93.
- 276. Soriano V, Tefferi A. Prevention of liver cancer with new curative hepatitis C antivirals: Real-world challenges. Cancer. 2018;124(8):1647–9.
- 277. San-Andrés FJ, Rubio R, Castilla J, Pulido F, Palao G, De Pedro I, et al. Incidence of acquired immunodeficiency syndrome-associated opportunistic diseases and the effect of treatment on a cohort of 1115 patients infected with human immunodeficiency virus, 1989-1997. Clinical Infectious Diseases. 2003;36(9):1177–85.

- 278. Raberahona M, Razafinambinintsoa T, Andriananja V, Ravololomanana N, Tongavelona J, Rakotomalala R, et al. Hospitalization of HIV positive patients in a referral tertiary care hospital in Antananarivo Madagascar, 2010-2016: Trends, causes and outcome. PLoS One. 2018;13(8):e0203437.
- 279. Saavedra A, Campinha-Bacote N, Hajjar M, Kenu E, Gillani FS, Obo-Akwa A, et al. Causes of death and factors associated with early mortality of HIV-infected adults admitted to Korle-Bu Teaching Hospital. PAMJ 2017; 27:48. 2017;27(48).
- 280. Balkhair AA, Al-Muharrmi ZK, Ganguly S, Al-Jabri AA. Spectrum of AIDS Defining Opportunistic Infections in a Series of 77 Hospitalised HIV-infected Omani Patients. undefined. 2012;12(4):442–8.
- 281. Kim YJ, Woo JH, Kim MJ, Park DW, Song JY, Kim SW, et al. Opportunistic diseases among HIV-infected patients: a multicenter-nationwide Korean HIV/AIDS cohort study, 2006 to 2013. Korean J Intern Med. 2016;31(5):953–60.
- 282. Podlasin RB, Wiercinska-Drapalo A, Olczak A, Beniowski M, Smiatacz T, Malolepsza E, et al. Opportunistic Infections and Other AIDS-defining Illnesses in Poland in 2000–2002. Infection 2006 34:4. 2006;34(4):196–200.
- 283. Guidelines for Prevention and Treatment of Opportunistic Infections in HIV-Infected Adults and Adolescents </P><P>Recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America.
- 284. Soriano V, Ramos JM, Barreiro P, Fernandez-Montero J V. AIDS Clinical Research in Spain—Large HIV Population, Geniality of Doctors, and Missing Opportunities. 2018;10(6):293.
- 285. Martin-Iguacel R, Ahlström MG, Touma M, Engsig FN, Stærke NB, Stærkind M, et al. Incidence, presentation and outcome of toxoplasmosis in HIV infected in the combination antiretroviral therapy era. Journal of Infection. 2017;75(3):263–73.
- 286. Lakoh S, Jiba DF, Kanu JE, Poveda E, Salgado-Barreira A, Sahr F, et al. Causes of hospitalization and predictors of HIV-associated mortality at the main referral hospital in Sierra Leone: A prospective study. BMC Public Health. 2019;19(1):1–9
- 287. Xiao J, Gao G, Li Y, Zhang W, Tian Y, Huang Y, et al. Spectrums of Opportunistic Infections and Malignancies in HIV-Infected Patients in Tertiary Care Hospital, China. PLoS One. 2013;8(10):e75915.
- 288. da Silva BEB, Santos VS, Santos IER, Batista MV de A, Gonçalves LLC, de Lemos LMD. Prevalence of coinfections in women living with human immunodeficiency virus in Northeast Brazil. Rev Soc Bras Med Trop. 2019;53.
- 289. Unidad de Vigilancia de VIH y Comportamientos de Riesgo (2019) Vigilancia Epidemiológica del VIH y sida en España 2018: Sistema de Información sobre Nuevos Diagnósticos de VIH y Registro Nacional de Casos de Sida. Plan Nacional sobre el Sida D.G. de Salud Pública, Calidad e Innovación / Centro Nacional de Epidemiología ISCIII. Madrid. In.

290. Shalaka NS, Garred NA, Zeglam HT, Awasi SA, Abukathir LA, Altagdi ME, Rayes AA. Clinical profile and factors associated with mortality in hospitalized patients with HIV/AIDS: a retrospective analysis from Tripoli Medical Centre, Libya,2013.East Mediterr Health J.2015;21(9):635-46.

XII. ANEXOS

- ANEXOS 1. Publicación 1

González-Alcaide G, Menchi-Elanzi M, Nacarapa E, Ramos-Rincón JM. HIV/AIDS research in Africa and the Middle East: participation and equity in North-South collaborations and relationships. Global Health. 2020;16(1):83. https://doi.org/10.1186/s12992-020-00609-9

- o Artículo original.
- o Revista: Globalization and Health. /EISSN: 1744-8603
- Factor de Impacto (2020): 4,185
- Cuartil: Posición 25 de 176 (primer cuartil) en la categoría Public, Environmental & Occupational Health del Social Sciences Citation Index Expanded, y 47 de 202 (primer cuartil) la categoría Public, Environmental & Occupational Health en Science Citation Index Expanded.

González-Alcaide et al. Globalization and Health https://doi.org/10.1186/s12992-020-00609-9 (2020) 16:83

Globalization and Health

RESEARCH Open Access

HIV/AIDS research in Africa and the Middle East: participation and equity in North-South collaborations and relationships

Gregorio González-Alcaide^{1†}, Marouane Menchi-Elanzi^{2†}, Edy Nacarapa^{3,4} and José-Manuel Ramos-Rincón^{2,5*}

Abstract

Background: HIV/AIDS has attracted considerable research attention since the 1980s. In the current context of globalization and the predominance of cooperative work, it is crucial to analyze the participation of the countries and regions where the infection is most prevalent. This study assesses the participation of African countries in publications on the topic, as well as the degree of equity or influence existing in North-South relations.

Methods: We identified all articles and reviews of HIV/AIDS indexed in the Web of Science Core Collection. We analyzed the scientific production, collaboration, and contributions from African and Middle Eastern countries to scientific activity in the region. The concept of leadership, measured through the participation as the first author of documents in collaboration was used to determine the equity in research produced through international collaboration.

Results: A total of 68,808 documents published from 2010 to 2017 were analyzed. Researchers from North America and Europe participated in 82.14% of the global scientific production on HIV/AIDS, compared to just 21.61% from Africa and the Middle East. Furthermore, the publications that did come out of these regions was concentrated in a small number of countries, led by South Africa (41% of the documents). Other features associated with HIV/AIDS publications from Africa include the importance of international collaboration from the USA, the UK, and other European countries (75–93% of the documents) and the limited participation as first authors that is evident (30 to 36% of the documents). Finally, the publications to which African countries contributed had a notably different disciplinary orientation, with a predominance of research on public health, epidemiology, and drug therapy.

Conclusions: It is essential to foster more balance in research output, avoid the concentration of resources that reproduces the global North-South model on the African continent, and focus the research agenda on local priorities. To accomplish this, the global North should strengthen the transfer of research skills and seek equity in cooperative ties, favoring the empowerment of African countries. These efforts should be concentrated in countries with low scientific activity and high incidence and prevalence of the disease. It is also essential to foster (Continued on next page)

Full list of author information is available at the end of the article

© The Author(s). 2020 **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

^{*} Correspondence: gregorio.gonzalez@uv.es

[†]Gregorio González-Alcaide and Marouane Menchi-Elanzi contributed equally to this work.

²Department of Internal Medicine, General University Hospital of Alicante, Alicante, Spain

⁵Department of Clinical Medicine, Miguel Hernandez University of Elche, Alicante, Spain

(2020) 16:83

Page 2 of 18

(Continued from previous page)

intraregional collaborations between African countries.

Keywords: Scientific research, Human immunodeficiency virus infection, Acquired immune deficiency syndrome, African countries, Bibliometrics, International collaboration, Leadership

Background

HIV infection and its clinical manifestation, AIDS, are considered a pre-eminent challenge for global public health [1], affecting populations worldwide since the 1980s. Despite the progress made in prevention and treatment programs, the disease is still pandemic, with the African continent being the hardest hit [2]. An estimated 37.9 million people were living with HIV in 2018, of whom 20.6 million lived in Eastern and Southern Africa, 5 million in Western and Central Africa, and 240, 000 in the Middle East and North Africa. The same year saw about 770,000 deaths from this disease and 1.7 million new infections, 61% of which occurred in sub-Saharan Africa. Over half of the new cases in Eastern and Southern Africa were concentrated in Mozambique, South Africa, and Tanzania, while 71% of new infections in Western and Central Africa were in Cameroon, the Côte d'Ivoire, and Nigeria. In the Middle East and North Africa, two-thirds of new cases were registered in Egypt, Iran and Sudan [3]. In response to this challenge, researchers worldwide have worked to produce evidence on HIV/AIDS across a wide range of biomedical disciplines, including epidemiology, virology, immunology, and pharmacology, as well as in non-biomedical fields such as social sciences and the humanities. This body of work has situated HIV/AIDS among the most studied infectious diseases today [4].

Bibliometrics is a method that enables the quantitative and qualitative assessment of scientific research in any area of knowledge, at an individual, institutional, or national level [5]. In that sense, ample literature has been published on bibliometric analyses of HIV/AIDS research since the 1980s [6, 7], including some papers that focus specifically on the regions most affected by the virus and the infection, like Central Africa [8]; sub-Saharan Africa [9]; or on countries like Kenya, Uganda, Nigeria, or Lesotho [10-12]. However, many of these papers were published more than a decade ago and investigated the scientific production in the geographical areas analyzed. In the current context of globalization and predominance of cooperative work, Africans are under-represented in terms of authorship in collaborative research publications. This situation has led some investigators to call for studies that quantify authorship equity [13] and explore North-South relationships in research collaboration [8].

The overarching objective of the present study is to provide an up-to-date description of participation from Africa and the Middle East in the literature on HIV/AIDS published in high-visibility journals, and of the role played by researchers from African countries in publications produced in international collaboration. Our specific research questions were: (1) What was the contribution from Africa and the Middle East, both overall and by country, to the global scientific research output on HIV/AIDS? (2) Is North-South participation balanced international collaboration papers? and (3) Are there differences in the subject-area orientation between publications produced with or without participation from African and Middle Eastern authors on HIV/AIDS research?

Methods

The methodological process was as follows.

Identification of global scientific research production on HIV/AIDS

To identify the scientific literature on HIV/AIDs, we used the Medical Subject Headings (MeSH) thesaurus of the National Library of Medicine, selecting all of the descriptors related to HIV, human immunodeficiency related to HIV infection, and the development of vaccines for preventing or clinically treating the immunodeficiency. The final MeSH (plus their variants and synonyms) were: HIV, HIV Infections, Acquired Immunodeficiency Syndrome, and AIDS Vaccines.

Although the MeSH thesaurus is linked to the MEDL INE database, which is freely available through the PubMed platform, we performed a second search of the documents identified in MEDLINE and which were also indexed in the Web of Science Core Collection (WoSCC) databases. Although this database does not cover all of the documents indexed in MEDLINE/PubMed, it does include all of the institutional affiliations (which MEDLINE started listing only in 2014), making it an ideal source for characterizing scientific production by country and the collaboration from Africa and the Middle East in HIV/AIDS publications during the study period.

The collection of journals in the WoS-CC, moreover, represents the information sources with the highest visibility at an international level. Thus, using that source to calculate our bibliometric study indicators allows a

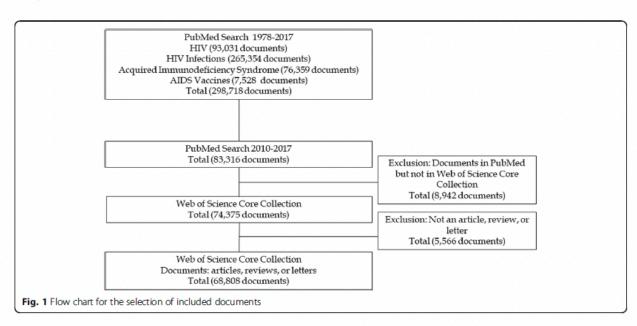
(2020) 16:83

Page 3 of 18

vision of the development of the most relevant and impactful research worldwide.

Definition of the document sample analyzed

Our literature search yielded 93,031 documents on HIV, 256,354 on HIV Infections, 76,359 on Acquired Immunodeficiency Syndrome, and 7528 on AIDS Vaccines. After removing duplicate descriptors, there were 298,718 unique documents. We then restricted the results to those published from 2010 to 2017 (n = 83,316) in order to focus the analysis on the most recent research. We ruled out the inclusion of documents from 2018 to avoid delays related to indexation, as at least a year is needed to ensure updated information related to the assignment of MeSH terms. We subsequently identified the documents that were also included in the WoS-CC databases by searching for all of the documents from the initial sample using their PMIDs (the PubMed identifier used as a reference in MEDLINE and included as a bibliographic field in WoS-CC). In total, 89.29% (n = 74,375) of the MEDLINE documents were also in the WoS-CC. This set of papers was further restricted to three document types: articles, reviews, and letters (n = 68,808), chosen because they are the most prominent papers for transmitting the results of original research (articles); situating and evaluating the development of research in a highly relevant way for other researchers (reviews); and contributing critical viewpoints, comments, relevant information, and perspectives on published studies (letters). The searches took place in November 2018. Figure 1 presents a flow chart showing the selection process for the sample of documents analyzed in the study.


Download of bibliographic information and review of the standardization of data

Following the bibliographic search and document selection, we downloaded the bibliographic information from the selected records (n = 68,808), generating a relational database in Microsoft Access in order to enumerate and individualize the multiple entries contained in certain bibliographic fields. This is the case of institutional affiliations, as a single field collates the data for all coauthors' institutions and countries. Likewise, the subject area field for the journal of publication may also have several assigned topics, and various MeSH and other text words are assigned to different documents to describe their content.

We also reviewed the standardization and quality of the data. For example, we looked at the years of publication, as the date of some documents' public dissemination on the journal website differed from the definitive date of publication in the journal (the latter was taken as the reference). Likewise, we consolidated all the information on geographic origins from England, Scotland, Wales, and North Ireland—presented individually in the WoS-CC—under the UK.

Identification of participation from Africa and the Middle East in HIV/AIDS publications

To analyze the participation from Africa and the Middle East in HIV/AIDS publications, we took as a reference the UNAIDS (2018) definitions of geographical regions, assigning each country to its respective region as defined in that source. The regions were: North America, Western and Central Europe, Asia and Pacific, Eastern and Southern Africa, Latin America and the Caribbean, West

(2020) 16:83

Page 4 of 18

and Central Africa, the Middle East and North Africa, and Eastern Europe and Central Asia.

Indicators obtained and analyses performed

The indicators and analyses applied in our study are structured in three blocks.

Analysis of the scientific production, research collaboration and leadership, by geographical region

As an introductory step to understanding global HIV/AIDS research, we quantified absolute scientific production by UNAIDS regions, calculating the number of documents authored by researchers from these areas. Moreover, we assessed inter-regional and international collaboration along with research leadership. The concepts used in the present study are defined as follows:

- International collaboration: joint participation in the authorship of a document by researchers from two or more countries.
- Inter-regional collaboration: joint participation in the authorship of a document by researchers from countries in two or more regions.
- Leadership: the degree of participation as the first author of documents in collaboration (number or % with respect to the total documents produced in collaboration).

Geographical affiliations were based, therefore, on authors' institutional affiliations. The section on limitations includes an in-depth discussion on the shortcomings of this procedure, which should be considered when interpreting the results.

Analysis of research production, collaboration and leadership from countries in Africa and the Middle East

To specifically analyze HIV/AIDS research publications from African and Middle Eastern countries, we determined the number of documents authored by researchers from these countries as well as the proportion of total publications with their participation. With regard to research collaboration and leadership, the absolute and relative values on international collaboration are complemented by a specific analysis of research leadership in the top 10 most productive countries in Africa. Furthermore, a directed collaboration network was generated, representing the main African countries collaborating in global HIV/AIDS research. The nodes represent countries, and the links represent countries' participation in the first positions of authorship. This visual representation clarifies the position that different countries occupy in the network and the collaborative links that they have established.

Subject areas and research fields in global HIV/AIDS research production

We analyzed the research subject areas and fields according to the disciplines that contributed most to scientific production on HIV/AIDS, as identified by means of the subject area classification of scientific journals in the WoS-CC as well as the MeSH descriptors and qualifiers assigned to the documents. To compare research orientations, we present data for global research output, for publications produced solely by researchers from African countries, and publications produced through collaborations between researchers from African countries and others (Africa+global collaboration). Pearson's correlation coefficient was estimated for these three groupings to determine the affinity between African and global research production.

Finally, a co-occurrence network of MeSH terms was generated to analyze the relationships between them and to identify the specific subject areas or research orientations on HIV/AIDS in Africa and the Middle East.

Pajek and VoSViewer (Version 1.6.8, Center for Science and Technology, Leiden University) software were used to perform all processes (analysis, network generation) and obtain all descriptive indicators.

Results

Scientific production by region and degree of international collaboration

Scientific production on HIV/AIDS is dominated by North America (which participated in 55.60% of all documents analyzed) and by Western and Central Europe (35.79%). Together, these regions participated in 82.13% of global scientific research production on HIV/AIDS that was indexed in the sources consulted. For their part, the three regions of Africa and the Middle East participated in 21.61% of the documents, albeit contributions from Eastern and Southern Africa (17.80%) were much higher than those from Western and Central Africa (3.34%) and Middle East and North Africa (1.18%) (Table 1). This limited scientific production contrasts with the high percentages of collaboration observed in these regions; in Eastern and Southern Africa, 82.42% of the papers were published in collaboration with authors from countries in other regions, and in Western and Central Africa, 78.39%. In contrast, 43.22% of the documents from North America were produced in inter-regional collaboration, and 47.99% from Western and Central Europe. Looking only at documents produced with interregional collaboration, authors from Africa and the Middle East occupied the first position on just 30 to 36% of the papers, compared to 45% for Western and Central Europe and 54% for North America (Table 1).

(2020) 16:83

Page 5 of 18

Table 1 Scientific production on HIV/AIDS, by geographical region (2010–2017)

Geographical area	Total docu	iments	Inter-regiona	l collaborations	First author in i	nter-regional collaboration
	N	%	N	% (1)	N	% (2)
North America	38,259	55.60	16,535	43.22	8914	53.91
Western and Central Europe	24,625	35.79	11,817	47.99	5342	45.21
Asia and Pacific	12,473	18.13	6019	48.26	2760	45.85
astern and Southern Africa	12,249	17.80	10,096	82.42	3633	35.98
atin America and the Caribbean	4358	6.33	2073	47.57	724	34.93
West and Central Africa	2300	3.34	1803	78.39	546	30.28
Middle East and North Africa	814	1.18	467	57.37	156	33.40
astern Europe and Central Asia	632	0.92	496	78.48	104	20.97
Total	68,808	100	22,082	32.09	N/A	N/A

(1) Percentage of documents produced in collaboration by authors from countries in two or more regions, relative to the total number of documents produced with the involvement of at least a country from that region (data in first column); (2) Percentage of documents with a first author from that region, relative to the total number of documents produced in inter-regional collaboration (data in second column)

Scientific production by country and degree of international collaboration

Research production in Africa and the Middle East is concentrated in South Africa, whose researchers participated in 40.94% of the documents from these regions. At some distance are several other countries from Eastern and Southern Africa: Uganda (12.97%), Kenya (10.71%), Malawi (6.19%) and Tanzania (6.03%). Thirteen other countries show values ranging from 1.32 to 4.73%. Nigeria is the most prominent producer in Western and Central Africa, at 4.59%, while Iran leads production in the Middle East and North Africa (2.02%). Another 45 countries in Africa and the Middle East contributed to less than 1 % of the total research output (Table 2). Among the most productive countries (> 100 documents), Iran, Ethiopia, Nigeria, and South Africa present the lowest degree of international collaboration and the highest participation as first authors. Many of these show values of international collaboration that exceed 90%, with participation as first author under 30%. This situation is similar or even more pronounced in most low-producing countries (Table 2).

Generally speaking, African research output on HIV/ AIDS is characterized by its cooperative links, particularly with the USA, UK, and other European countries (75 to 93% of the collaborations). However, South Africa also stands out for its intraregional ties, and it has become the main reference for research collaboration on HIV/AIDS, both in Eastern and Southern Africa and among the top 10 most productive African countries. It has collaborated with 34 different countries, led 41.44% of the collaborations, and participated in 35.76% of the papers led by other African countries. Uganda ranks second in terms of collaborative leadership within Africa, albeit with values that are much more modest, having led 14.06% of its collaborative research and participated in 11.11% of papers led by other African countries. The

rest of the countries contribute less than 10% to the total collaborative links established. Except for South Africa, Uganda, and a few other countries like Zimbabwe, the collaborative links between different countries in Africa are few and far between, constituting weak and sporadic ties (Table 3).

Figure 2 shows a graphic representation of the collaboration network. The USA is in the center as the main reference for international collaboration on scientific output on HIV/AIDS, while the UK, Canada, and other European countries like France, Switzerland, the Netherlands, and Belgium also occupy prominent locations. South Africa is the main African reference for HIV/AIDS publications, reflecting not only its collaborations with the USA, Canada and the European countries but also its prominent role in intraregional collaborations.

Subject areas addressed in publications on HIV/AIDS in Africa and the Middle East

The correlation analysis on scientific HIV/AIDS output, produced by all countries worldwide, by African countries alone, and through Africa+global collaborations, shows differences in disciplinary orientations and research topics. In terms of disciplines involved, the lowest degree of correlation pertains to global publications versus solely African publications (k = 0.73; Table 4). There is also certain discordance between solely African publications and Africa+global collaborations (k = 0.79). In contrast, there is great affinity between global research output and output from Africa+global collaborations (k = 0.97). Of note, HIV/AIDS publications from Africa alone was dominated by papers in the field of "Public, Environmental & Occupational Health," while the disciplines of "Infectious Diseases" and "Immunology" occupy the first rankings both globally and in African+ global collaborations. The disciplines of "Medicine,

(2020) 16:83

Page 6 of 18

Table 2 Africa and Middle East scientific production on HIV/AIDS, by country (2010–2017)

Country	UNAIDS	Total de	ocuments	Internation	al collaborations	First author in	n international collaboration
	region*	N	% African documents	N	%	N	%
South Africa	E & SA	6063	40.94	4620	76.2	1769	38.29
Jganda	E & SA	1921	12.97	1797	93.55	550	30.61
Kenya	E & SA	1586	10.71	1521	95.9	327	21.5
Malawi	E & SA	916	6.19	865	94.43	214	24.74
Tanzania	E & SA	893	6.03	832	93.17	189	22.72
Zimbabwe	E & SA	700	4.73	672	96	134	19.94
Zambia	E & SA	697	4.71	684	98.13	140	20.47
Nigeria	W & CA	679	4.59	425	62.59	144	33.88
Ethiopia	E & SA	555	3.75	332	59.82	132	39.76
Cameroon	W & CA	421	2.84	363	86.22	111	30.58
Botswana	E & SA	375	2.53	356	94.93	77	21.63
Mozam bique	E & SA	303	2.05	293	96.7	80	27.3
ran	ME & NA	299	2.02	102	34.11	57	55.88
Ghana	W & CA	270	1.82	229	84.81	50	21.83
Rwanda	E & SA	269	1.82	264	98.14	78	29.55
Senegal	W & CA	231	1.56	214	92.64	39	18.22
Côte d'Ivoire	W & CA	225	1.52	206	91.56	40	19.42
Burkina Faso	W & CA	196	1.32	180	91.84	49	27.22
DR Congo	W & CA	119	0.80	106	89.08	27	25.47
gypt	ME & NA	108	0.73	89	82.41	7	7.87
Saudi Arabia	ME & NA	107	0.72	81	75.7	23	28.4
Namibia	E & SA	100	0.68	95	95	11	11.58
Swaziland	E & SA	98	0.66	95	96.94	10	10.53
Qatar	ME & NA	89	0.60	89	100	38	42.7
Benin	W & CA	79	0.53	75	94.94	6	8
Gambia	W & CA	78	0.53	75	96.15	19	25.33
Gabon	W & CA	76	0.51	68	89.47	17	25
Guinea Bissau	W & CA	69	0.47	69	100	32	46.38
Mali	W & CA	69	0.47	65	94.2	10	15.38
Годо	W & CA	67	0.45	59	88.06	14	23.73
Lesotho	E & SA	58	0.39	57	98.28	17	29.82
Morocco	ME & NA	55	0.37	26	47,27	9	34.62
Lebanon	ME & NA	52	0.35	42	80.77	11	26.19
U Arab Emirates	ME & NA	44	0.30	39	88.64	4	10.26
Guinea	W & CA	36	0.24	31	86.11	5	16.13
Republic of the Congo	W & CA	32	0.22	25	78.13	3	12
Cent Afr Republ	W & CA	23	0.16	20	86.96	4	20
Sudan	ME & NA	23	0.16	21	91.3	5	23.81
Sudan Funisia	ME & NA		0.16	10	43.48	5	50
		23					
Angola	E & SA	19	0.13	18	94.74	3	16.67
Kuwait	ME & NA	16	0.11	10	62.5	2	20
Oman	ME & NA	16	0.11	10	62.5	2	20
Madagascar	E & SA	15	0.10	13	86.67	1	7.69

(2020) 16:83

Page 7 of 18

Table 2 Africa and Middle East scientific production on HIV/AIDS, by country (2010-2017) (Continued)

Country	UNAIDS	Total do	ocuments	Internationa	al collaborations	First author in	n international collaboration
	region*	N	% African documents	N	%	N	%
Niger	W & CA	15	0.10	15	100	1	6.67
Iraq	ME & NA	13	0.09	10	76.92	0	0
Sierra Leone	W & CA	13	0.09	13	100	2	15.38
Jordan	ME & NA	12	0.08	9	75	4	44.44
Liberia	W & CA	12	0.08	12	100	1	8.33
Libya	ME & NA	12	0.08	7	58.33	3	42.86
Burundi	W & CA	11	0.07	11	100	1	9.09
Chad	W & CA	9	0.06	8	88.89	1	12.5
Cape Verde	W & CA	5	0.03	5	100	2	40
Mauritania	W & CA	5	0.03	5	100	3	60
Mauritius	E & SA	5	0.03	5	100	0	0
Algeria	ME & NA	4	0.03	2	50	1	50
Bahrain	ME & NA	4	0.03	3	75	1	33.33
Equat Guinea	W & CA	4	0.03	4	100	0	0
Syria	ME & NA	4	0.03	4	100	0	0
Yemen	ME & NA	4	0.03	4	100	1	25
Djibouti	ME & NA	2	0.01	2	100	2	100
Somalia	ME & NA	2	0.01	2	100	2	100
Palestinian Ter	ME & NA	1	0.01	1	100	0	0
Sao Tome & Prin	W & CA	1	0.01	0	0	0	0
TOTAL	-	14,808	100	11,964	80.79	N/A	N/A

E & SA: Eastern and Southern Africa; W & CA: West and Central Africa; ME & NA: Middle East and North Africa, N/A: Not applicable

General & Internal" and "Health Policy & Services" were also of great relevance in the publications from African countries alone (Table 4).

Our comparison of the MeSH qualifiers revealed similar disparities (Table 5). The lowest degrees of correlation were between global versus solely African research output (k=0.68) and between global versus Africa+global collaborations (k=0.69). However, there was a high degree of correlation between solely African publications and Africa+global collaborations (k=0.97). With regard to the most prominent MeSH qualifiers, epidemiological studies occupy the top spot in both global and solely African publications. However, "Drug therapy" and "Therapeutic use" are more popular orientations in solely African publications than "Inmmunology," "Genetics," and "Metabolism" (Table 5).

Finally, with regard to MeSH descriptors, publications from Africa and the Middle East reflects the high prioritization of terms related to prevalence and treatment approaches (Table 6). Furthermore, global scientific production on HIV/AIDS suggests gender parity in terms of the research focus (both the "Male" and "Female" terms were assigned to 55% of the documents). However, for publications produced by researchers from

solely African countries, the "Female" term is present in 73.38% of the documents, and for publications produced by Africa+global collaborations, this MeSH appeared in 76.71% of the documents.

Figure 3 presents a visualization of the main MeSH terms used to represent Africa and Middle East HIV/AIDS research topics and the links between them. Overall, studies that analyze anti-HIV agents, prevalence, and risk factors constitute the main subject areas that articulate the research. Incidence and its relation to sexual behaviors and health education (knowledge, prevention, acceptance of treatment for the disease) is also an important topic, as is research on pregnancy, maternal health, and prenatal care. Other relevant areas focus on co-infection (with tuberculosis, hepatitis B, hepatitis C, meningitis), resistance to anti-viral agents, and the use of certain medicines to treat the infection (lamivudine, tenofovir etc.).

Discussion

Growth, visibility, and concentration of scientific production

Our analysis shows that scientific production on HIV/ AIDS is still dominated by researchers from North

(2020) 16:83

Page 8 of 18

34 392 (13.95) 15 133 (14.84) 15 133 (14.84) 14 94 (17.50) 15 133 (14.84) 14 65 (16.80) 12 54 (25) 14 52 (20.23) 15 29 (14.95) 17 42 (25.30) 18 N Collaborations with African coun ountries (%) 19 N Collaborations with African countries (%) 10 32 (16.84) 12 42 (25.30) 13 16.84 14 52 (20.23) 15 42 (25.30) 15 96 (7.69) 16 96 (7.69) 16 96 (7.69) 17 96 (7.69) 18 96 (7.69) 19 96 (7.69) 19 96 (7.69) 10 96 (7.60) 10 96 (7.69) 10 96 (7.60) 10	Collaborative leadership	8	ollaborations w	Collaborations with African countries	Se	Collaboratio	Collaborations with non-African countries	ountries
15 133 (14.84) 15 133 (14.84) 15 133 (14.84) 15 133 (14.84) 15 133 (14.84) 15 133 (14.84) 16 12 12 13 (16.36) 16 12 12 16 (16.80) 16 12 16 (16.84) 190 10 32 (16.84) 190 10 32 (16.84) 190 10 32 (16.84) 190 10 32 (16.84) 190 10 32 (16.84) 160 12 42 (25.30) 16 12 42 (25.30) 16 12 12 12 12 12 12 12			countries N c		Main African collaborators (n collaborations)	N countries	N countries N collaborations (%)	Main non-African collaborators (n collaborations)
896 15 133 (14.84) 537 14 94 (17.50) 324 14 65 (16.80) 324 13 53 (16.36) 190 10 32 (16.84) 194 9 29 (14.95) 194 9 29 (14.95) 194 9 29 (14.95) 194 9 29 (14.95) 170tal N N Collaborations countries (%) 1124 125 309 (10.80) 11248 16 96 (7.69) 11258 96 (7.69) 11268 96 (7.69)	Africa 2810	34		2 (13.95)	Zimbabwe ($n = 44$); Uganda ($n = 39$); Malawi ($n = 34$)	43	2418 (86.05)	USA (n = 961); UK (n = 566); Switzerland (n = 133)
14 94 (17.50) 324 14 65 (16.80) 324 13 53 (16.36) 15 54 (25) 15 54 (25) 194 97 32 (16.84) 194 9 29 (14.95) 194 9 29 (14.95) 194 9 29 (14.95) 104 105 12 42 (25.30) 105 105 106 106 105 105 106 106 105 105 106 106 105 105 106 105 105 106 105 105 106 105 105 106 105 105 106 105 105 106 105 105 106 105 105 105 105 1		15		3 (14.84)	South Africa ($n = 49$); Zimbabwe ($n = 18$); Tanzania ($n = 16$)	27	763 (85.16)	USA (n=309); UK (n=175); Canada (n=40)
324 13 53 (16.80) ye 216 12 54 (25) 257 14 52 (20.23) 194 9 29 (14.95) nn 166 12 42 (25.30) dership collaboration Collaborations countries (%) rica 2862 25 309 (10.80) 1148 16 96 (7.69)		41		(17.50)	South Africa ($n = 41$); Uganda ($n = 13$); Zambia ($n = 7$)	61	443 (82.50)	USA (n=227); UK (n=77); Canada & Netherlands (n=37)
324 13 53 (16.36)		41		(16.80)	South Africa ($n = 29$); Zimbabwe ($n = 9$); Uganda ($n = 5$)	20	322 (83.20)	UK ($n = 106$); USA ($n = 101$); Canada ($n = 29$)
15 12 54 25 257 14 52 20.23 190 10 32 (16.84) 194 9 29 (14.95) 194 9 29 (14.95) 194 9 29 (14.95) 194 12 42 (25.30) 104 N N Collaborations ountries (%) 105 2862 309 (10.80) 1148 16 96 (7.69) 1148 16 96 (7.69) 1144 1154 16 96 (7.69) 1154 1154 16 96 (7.69) 1154 1154 16 96 (7.69) 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155		13		(16.36)	South Africa (n = 15): Uganda (n = 11): Kenya & Zambia (n = 5)	21	271 (83.64)	USA (n=93); UK (n=49); Sweden (n=35)
157 14 52 (20.23) 190 10 32 (16.84) 190 10 32 (16.84) 194 9 29 (14.95) 194 12 42 (25.30) 194 10 10 10 10 10 10 10 1		12		(25)	South Africa ($n = 31$); Malawi ($n = 7$); Uganda ($n = 5$)	81	162 (75)	UK (n = 56); USA (n = 49); Norway (n = 19)
190 32 (16.84) 194 9 29 (14.95) 194 9 29 (14.95) 194 12 42 (25.30) 194 194 194 194 194 194 194 196 196 (7.69) 194		14		(20.23)	South Africa ($n = 21$); Zimbabwe ($n = 7$); Uganda ($n = 6$)	20	205 (79.77)	USA (n=85); UK (n=53); Switzerland (n=14)
194 9 29 (14.95) In 166 12 42 (25.30) dership collaboration Collaborations with African coun Total N N Collaborations collaborations countries (%) rica 2862 25 309 (10.80) 1248 16 96 (7.69)		10		(16.84)	South Africa (n = 17); Ghana (n = 4); Kenya. Saudi Arabia & Uganda (n = 2)	20	158 (83.16)	USA (n=89); UK (n=29); Germany (n=6)
on 166 12 42 (25.30) dership collaboration Collaborations with African countrol Total N N Collaborations collaborations countries (%) 100 rica 2862 25 309 (10.80) 1248 16 96 (7.69)		6	29	(14.95)	South Africa (n = 17); Uganda (n = 3); (Sudan & Kenya n = 2)	21	165 (85.05)	USA (n = 34); Belgium ($n = 31$); UK ($n = 18$)
Total N Collaborations with African coun Total N Collaborations collaborations countries (%) rica 2862 25 309 (10.80) 1248 16 96 (7.69)		12		(25.30)	South Africa (n = 21); Burkina Faso (n = 4); (Côte d'Ivoire & Madagascar n = 3)	41	124 (74.70)	France ($n = 43$); USA ($n = 33$); Italy ($n = 13$)
Total N Collaborations collaborations countries (%) rica 2862 25 309 (10.80) 1248 16 96 (7.69)	adership collabo		laborations	with African cour	ntries	Collaborati	Collaborations with non-African countries	countries
rica 2862 25 309 (10.80) 1248 16 96 (7.69)				Collaborations)	Main African collaborators (n collaborations)	N countries	N Collaborations (%)	Main non-African collaborators (n collaborations)
1248 16 96 (7.69)	Africa 2862	25		(10.80)	Uganda (n = 49); Kenya (n = 41); Zimbabwe (n = 31)	37	2553 (89.20)	USA (n = 1418); UK (n = 439); Switzerland (n = 134)
1104 01 01 100		16		(7.69)	South Africa (n = 39); Kenya (n = 13); Tanzania (n = 11)	21	1152 (92.31)	USA (n=741); UK (n=176); Canada (n=69)
(0.70)	1194	19		80 (6.70)	South Africa (n = 27); Uganda (n = 16); Botswana & Tanzania (n = 5)	22	1114 (93.30)	USA $(n = 789)$; UK

(2020) 16:83

Page 9 of 18

Table 3 Collaboration Collaborative	Table 3 Collaboration and leadership of top 10 Collaborative leadership Collaborative leadership	dership of top 10 / Collaborations with	op 10 African countrie ons with African countries	African countries in research papers on HIV/AIDS (2010–2017) (Continued) African countries	Collaborations	Collaborations with non-African countries	untries
Country	Total collaborations	N countries	N countries N collaborations (%)	Main African collaborators (n collaborations)	N countries N	N countries N collaborations (%)	Main non-African collaborators (n collaborations)
							(n = 95); Canada $(n = 83)$
Malawi	652	12	65 (9.97)	South Africa (n = 34); Uganda (n = 8); Zimbabwe (n = 7)	21 58	587 (90.03)	USA (n = 328); UK (n = 122); Italy (n = 34)
Tanzania	643	6	53 (8.24)	South Africa (n = 19); Uganda (n = 16); Botswana (n = 6)	18 59	590 (91.76)	USA (n=335); UK (n=95); Denmark (n=26)
Zimbabwe	538	6	88 (16.36)	South Africa (n = 44); Uganda (n = 18); Malawi (n = 9)	20 45	450 (83.64)	USA (n=216); UK (n=156); Netherlands & Switzerland (n=17)
Zambia	544	12	66 (12.13)	South Africa ($n = 28$); Kenya ($n = 7$); Uganda ($n = 6$)	19 47	478 (87.87)	USA $(n = 297)$; UK $(n = 77)$; Switzerland $(n = 27)$
Nigeria	281	12	50 (17.79)	South Africa ($n=27$); Uganda ($n=6$); Ghana & Kenya ($n=3$)	14 23	231 (82.21)	USA (n= 155); UK (n= 27); Netherlands (n= 17)
Ethiopia	200	∞	20 (10)	South Africa (n = 7); Botswana & Yenya (n = 3)	15 18	180 (90)	USA $(n = 65)$; Sweden $(n = 40)$; Netherlands $(n = 18)$
Cameroon	252	10	37 (14.68)	South Africa (n = 22); Burkina Faso & Gabon (n = 3)	15 21	215 (85.32)	France (n = 88); USA (n = 73); Germany (n = 13)

(2020) 16:83

Page 10 of 18

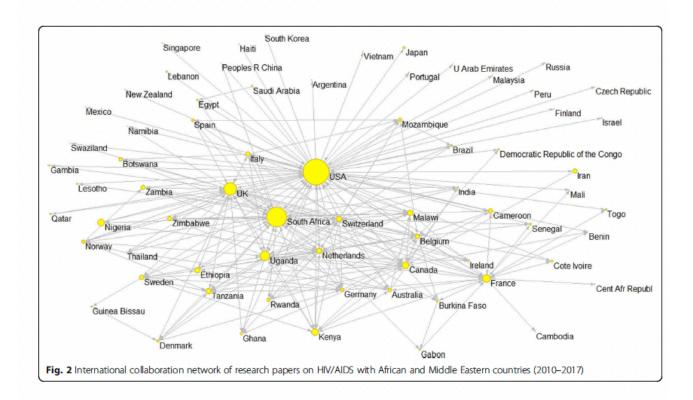


Table 4 HIV/AIDS research papers by Web of Science categories, according to African involvement, 2010–2017

WoS Category	Global pub	olications	Solely Afri	can publications	African + glo	bal collaborations
	N	96	N	%	N	%
Infectious Diseases	20,671	21.60	485	17.05	4471	37.37
Immunology	15,369	16.06	311	10.94	3290	27.50
Public. Environmental & Occupational Health	11,853	12.38	742	26.09	2672	22.33
Virology	10,165	10.62	164	5.77	1417	11.84
Multidisciplinary Sciences	5620	5.87	188	6.61	1467	12.26
Microbiology	4989	5.21	60	2.11	824	6.89
Social Sciences. Biomedical	4737	4.95	171	6.01	1023	8.55
Pharmacology & Pharmacy	4155	4.34	62	2.18	380	3.18
Medicine. General & Internal	3473	3.63	278	9.77	623	5.21
Health Policy & Services	2845	2.97	216	7.59	673	5.63
Respiratory System	2657	2.78	168	5.91	752	6.29
Biochemistry & Molecular Biology	2582	2.70	50	1.76	88	0.74
Psychology. Multidisciplinary	1973	2.06	87	3.06	439	3.67
Medicine. Research & Experimental	1872	1.96	41	1.44	204	1.71
Pediatrics	1239	1.29	147	5.17	348	2.91
Health Care Sciences & Services	1207	1.26	98	3.45	311	2.60
Tropical Medicine	1197	1.25	93	3.27	473	3.95
Biotechnology & Applied Microbiology	1075	1.12	40	1.41	111	0.93
Nursing	918	0.96	44	1.55	102	0.85
Obstetrics & Gynecology	775	0.81	94	3.31	197	1.65

(2020) 16:83

Page 11 of 18

Table 5 MeSH qualifiers of HIV/AIDS research papers, according to African involvement, 2010–2017

Qualifier	Global publi	cations	Solely African	publications	African + glob	al collaborations
	N	%	N	%	N	%
Epidemiology	53,262	77.41	1220	42.90	5293	44.24
Immunology	49,149	71.43	378	13.29	1805	15.09
Genetics	38,248	55.59	264	9.28	1584	13.24
Metabolism	33,536	48.74	174	6.12	668	5.58
Drug therapy	30,764	44.71	978	34.39	4783	39.98
Therapeutic use	29,749	43.23	681	23.95	3798	31.75
Virology	28,082	40.81	462	16.24	2478	20.71
Complications	25,058	36.42	728	25.60	2338	19.54
Psychology	22,690	32.98	529	18.60	1930	16.13
Prevention & control	18,924	27.50	639	22.47	3212	26.85
Statistics & numerical data	18,496	26.88	498	17.51	2255	18.85
Diagnosis	17,732	25.77	605	21.27	2362	19.74
Drug effects	17,645	25.64	224	7.88	1106	9.24
Blood	15,949	23.18	301	10.58	1262	10.55
Chemistry	15,720	22.85	119	4.18	346	2.89
Administration & dosage	15,703	22.82	218	7.67	1461	12,21
Methods	15,141	22.00	437	15.37	2223	18.58
Pharmacology	14,377	20.89	135	4.75	739	6.18
Pathology	11,124	16.17	186	6.54	654	5.47
Adverse effects	11,122	16.16	213	7.49	798	6.67
Physiology	10,677	15.52	106	3.73	511	4.27
solation & purification	8327	12.10	261	9.18	1310	10.95
Transmission	8090	11.76	296	10.41	1546	12.92
Etiology	6038	8.78	249	8.76	579	4.84
Economics	5835	8.48	84	2.95	577	4.82
Therapy	5416	7.87	196	6.89	525	4.39
Microbiology	5377	7.81	181	6.36	718	6.00
Ethnology	5007	7.28	66	2.32	237	1.98
Mortality	4689	6.81	148	5.20	712	5.95
Pharmacokinetics	4033	5.86	21	0.74	220	1.84
Physiopathology	3912	5.69	89	3.13	255	2.13

America and Western and Central Europe, which together participated in 82% of the documents analyzed, although just 6% of people with HIV live in these regions. In contrast, researchers from countries in Africa and the Middle East participated in less than a quarter of the research papers on HIV/AIDS published between 2010 and 2017 (22%), although two-thirds of all people who are infected with the virus live there. Nevertheless, in relation to previous studies analyzing HIV/AIDS publications produced by researchers from African countries, our results indicate two highly relevant trends: (a) the notable growth in scientific production on HIV/AIDS in this region and (b) the elevated participation in

scientific publications with greater visibility and international impact. In absolute terms, the number of documents we identified are double those reported by Macías-Chapula & Mijangos-Nolasco [8], based on their analysis of HIV/AIDS literature from sub-Saharan Africa included in the National Library of Medicine from 1980 to 2000, and by Uthman [9] analyzing scientific production on HIV/AIDS from sub-Saharan Africa and indexed in PubMed from 1981 to 2009.

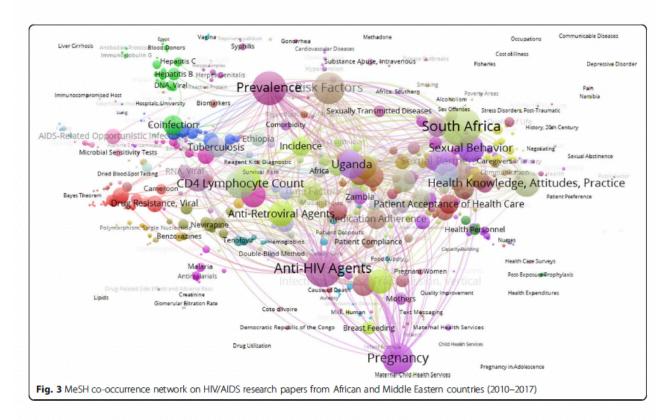
At a country level, the advances made in research are even more significant. In their study on HIV/AIDS literature included in the National Library of Medicine, Onyancha & Ocholla [10] reported negligible contributions from

(2020) 16:83

Page 12 of 18

Table 6 MeSH terms of HIV/AIDS research papers

MeSH Term	Global pub	lications	Solely Afric	an publications	African + glob	oal collaborations
	N	%	N	%	N	%
HN Infections	55,609	80.82	2431	85.48	10,876	90.91
HN-1	19,945	28.99	378	13.29	2284	19.09
Anti-HIV Agents	12,114	17.61	434	15.26	2647	22,12
Risk Factors	7494	10.89	390	13.71	1525	12.75
Viral Load	6839	9.94	159	5.59	1290	10.78
Antiretroviral Therapy, Highly Active	6758	9.82	327	11.50	1293	10.81
CD4 Lymphocyte Count	6296	9.15	296	10.41	1604	13.41
Prevalence	6172	8.97	463	16.28	1643	13.73
Treatment Outcome	5074	7.37	200	7.03	1091	9.12
Sexual Behavior	4636	6.74	179	6.29	949	7.93
Anti-Retroviral Agents	4529	6.58	196	6.89	1266	10.58
Surveys and Questionnaires	4137	6.01	313	11.01	859	7.18
Acquired Immunodeficiency Syndrome	4047	5.88	253	8.90	524	4.38
Homosexuality, Male	3986	5.79	22	0.77	239	2.00
HM	3802	5.53	138	4.85	537	4.49
Pregnancy	3728	5.42	287	10.09	1557	13.01
HIV Seropositivity	3604	5.24	241	8.47	787	6.58
RNA, Viral	3497	5.08	48	1.69	467	3.90
Health Knowledge, Attitudes, Practice	3468	5.04	268	9.42	761	6.36
Risk-Taking	3418	4.97	90	3.16	505	4.22
United States	3332	4.84	9	0.32	159	1.33
Coinfection	3238	4.71	204	7.17	673	5.63
South Africa	3197	4.65	832	29.25	2179	18.21
CD4-Positive T-Lymphocytes	3186	4.63	63	2.22	356	2.98
Sexual Partners	3042	4.42	103	3.62	725	6.06
Socioeconomic Factors	2872	4.17	191	6.72	664	5.55
ncidence	2758	4.01	113	3.97	723	6.04
Drug Resistance, Viral	2750	4.00	42	1.48	500	4.18
Virus Replication	2693	3.91	17	0.60	105	0.88
Time Factors	2615	3.80	93	3.27	566	4.73
Genotype	2577	3.75	64	2.25	473	3.95


Uganda and Kenya in the form of journal articles published from 1989 to 1998 (n = 11 and n = 16, respectively). Our results show that these two countries have now become the second and third most productive on the continent, with a high number of contributions to journals indexed in the WoS-CC (n = 1921 documents from Uganda and n = 1586 in Kenya). Uthman [11] studied HIV/AIDS research production from Nigeria between 1987 and 2006, identifying 254 articles in the WoS databases. Our findings, of 679 documents, nearly triple that number, even though the study period is substantially shorter. In South Africa, the production we identified from 2010 to 2017 (n = 6063) is close to that reported by

Uthman [9] for the entire period from 1981 to 2009 (n = 8361).

Our results also show a trend toward greater research concentration, with an increase in the relative weight of high-producing countries (particularly South Africa, Uganda, and Kenya), which stand out as the main references for African scientific production on HIV/AIDS. Indeed, these countries now account for over half of all publications from Africa, and their relative contributions are trending upward. Thus, while Uthman [9] reported that South Africa participated in 34% of the HIV/AIDS publications produced by sub-Saharan Africa, in our results this figure stands at 43%. Similarly, the relative

(2020) 16:83

Page 13 of 18

weight of Uganda and Kenya (the second and third most productive countries) has risen from 8 and 7% of the total contributions, respectively, to 14 and 11%. Similar observations have been made in other research fields [14] and particularly in the biomedical area [15, 16], demonstrating that economic development and investments in research constitute key factors explaining the rise in scientific productivity [17].

The trend toward a greater concentration of research production in a few countries indicates the need to develop policies that facilitate a greater integration of lower-producing and less-developed countries in research activities. The literature describes some measures to stimulate research in these countries that go beyond economic investments, including training and retaining experienced researchers and fostering long-term partnerships based on equitable collaborative research ties. These strategies can enable researchers from these countries to acquire the methodological skills they need and can favor their leadership in spearheading or directing the research [13].

More specifically to the field of HIV/AIDS, Uthman [9] analyzed the factors associated with scientific productivity on HIV/AIDS in sub-Saharan Africa. His results showed that the number of people living with HIV and the number of indexed journals published in the country were predictive of an increase in publications. Other relevant factors include national scientific policies

related to countries' research agendas for this area, plus the adequate integration and participation in the system for publication and dissemination of scientific knowledge. These variables are more closely associated with scientific productivity on HIV/AIDS than others like the number of higher institutions or the number of physicians. The fact that South Africa is the country with the highest number of HIV-positive people and that this subject area has become a priority on the national research agenda [18] is clearly related to the country's high research productivity in the field. Its economic growth has complemented this boost; together with other BRICS countries, especially China and Brazil, South Africa has laid the groundwork for development by strengthening its educational, healthcare, and social systems [19, 20]. Increased investments in research go hand in hand with this strategy, including through establishing collaborative links with the most advanced economies at a scientific level [21, 22]. However, as Adams et al. [23] signaled in their study, a myriad of factors affect scientific productivity and collaboration in African countries apart from structural factors like the level of economic growth or population size. For example, countries in the Commonwealth sphere, mostly situated in Eastern and Southern Africa and using English as a second language, generally present a higher level of scientific production and collaborative research than other African countries, like those in the Francophone community [16]. Our results are

(2020) 16:83

Page 14 of 18

consistent with this trend: 10 of the 12 most productive countries are linked with the Commonwealth.

Although some countries like Nigeria or Ethiopia have made important research efforts, with corresponding increases in their scientific productivity, different studies have highlighted the need for increasing ties with neighboring countries. This would enable a more fluid exchange of knowledge and experience and foster research in key areas like detection and treatment [11, 24].

High degree of international collaboration, low level of leadership

The two main bibliometric features we observed to be associated with HIV/AIDS research activity in Africa were: (a) a high degree of international collaboration with countries from other geographical regions, dominated by the USA and Europe (81% of the documents) and (b) a low level of research leadership, as seen through the low participation of African investigators as the first authors of documents produced in collaboration (20 to 38% among the top 10 most productive countries).

These two features may reflect a certain scientific dependence and subordination among African countries in relation to more developed countries. Moreover, the same situation has been observed in other biomedical research fields that are of special importance to the global South, like tropical diseases, infectious diseases, and pediatrics [22, 25, 26]. More specifically, Kelaher et al. [27] analyzed randomized controlled trials in the fields of HIV/AIDS, malaria, and tuberculosis that were undertaken in low- and middle-income countries (LMICs) from 1990 to 2013, identifying three relevant features associated with research leadership. First, there was a much higher proportion of first authors from LMICs in studies funded by LMICs (90%) than in studies funded by the USA (32%). Second, participation as first authors from LMICs was sensibly lower in the field of HIV/AIDS (33%) than for other diseases like malaria (67%). Finally, among first authors from all LMICs worldwide, those from Africa authored fewer papers than those from other regions like Latin America or Asia.

The literature describes different barriers that hinder researchers in LMICs from assuming leadership roles. Some of these are related to the absence of infrastructures or adequate financing [28]. Without an established institutional framework, stable research groups cannot be created or sustained; researchers cannot access the technical and financial support they need to submit research tenders; and coordination and monitoring of research priorities in relation to local research agendas is inadequate [13, 29–31]. Other barriers have to do with deficits in methodological skills (like research design and statistical interpretation) or language (composition of

articles or fluency in English). All of these factors can affect researchers' capacity to lead studies and authorship [32–34].

At the same time, there are structural factors related to the hub-and-spoke model that favor the increased recognition and success of countries conducting main-stream research. Economic and human resources are concentrated in North America and Europe, and these regions also establish priority research topics. Editorial bias and the Matthew effect of accumulated advantage cement the structural forces perpetuating the underrepresentation of researchers from the global South from assuming positions of leadership in scientific publications [26, 32].

The two countries constituting the axis of the collaborative research network on HIV/AIDS are the USA and South Africa. The former stands out for the high number of collaborative links it has established, with its researchers co-authoring papers with most African and Middle Eastern countries (52 countries). In total, 7693 collaborative ties (co-authored papers) were established in the study period, 70% of which were led by researchers in American institutions. Other bibliometric studies have also described the relevance of the USA in collaborative HIV/AIDS research output in Africa [11], Latin America and the Caribbean [35], and Asia [36]. Our own group have highlighted this role in other biomedical research fields [37].

For its part, South Africa is clearly the country of reference for HIV/AIDS research activity on the African continent, with a quantitative weight that is well above that observed in other biomedical areas in which it also exercises leadership. Nachega et al. [16] assessed the participation of African countries in publications on epidemiology and public health in the WoS databases, reporting that South Africa was represented in 22% of the documents, Kenya in 10%, and Nigeria in 9%. In our study, 41% of the documents on HIV/AIDS were authored by researchers in South Africa. This country, along with Ethiopia, is also notable for its leadership, figuring in the affiliations of 38% of the first authors. A similar phenomenon has also been observed in other fields of the health sciences, such as infectious diseases [15, 38].

In addition to maintaining important collaborative ties with the USA and different European countries [39, 40], South Africa has also emerged as a hub for intraregional collaborations within Africa. It has established links with 35 countries—far more than other African countries. Indeed, it is the main collaborator for all the other African countries in the top 10 for HIV/AIDS research productivity, even though these collaborations represent just 12% of the total collaborations in which South Africa participates. In that sense, some papers have called for BRICS countries, including South Africa, to increase

(2020) 16:83

Page 15 of 18

their efforts to tackle the challenges primarily affecting the developing world [19]. In the case of South Africa, this could be done by promoting intraregional collaborations in sub-Saharan Africa, as research undertaken at a local level has the most potential to produce benefits, both for population health and socioeconomic development [20, 41]. Hernandez-Villafuerte, Li & Hofman [42] analyzed collaborations among sub-Saharan countries conducting economic evaluations of healthcare interventions, reporting results consistent with ours: researchers in this region tend to collaborate more with Europeans and North Americans than with each other.

The literature highlights specific barriers impeding equitable research collaboration for African researchers, for example the paper by Okeke [43], who pointed to the limited duration of research programs, which should be longer in order to nurture stable collaborations that build hard and leadership capacities. In addition to infrastructure, other aspects mentioned include managerial expertise, administrative capabilities, and the capacity to improvise at African partner institutions. In the same line, Boum II [44] and Boum II et al. [45] discuss the difficulties in harmonizing conflicting interests between Western and African countries, making it essential to prioritize financing for equitable initiatives that lay out specific goals and expectations for partnerships, or which promote initiatives like mentorship programs and investment in Africa-based researchers that strengthen institutional capacity.

Some examples of successful collaborations for promoting equitable research partnerships and African leadership in HIV research include initiatives like the Academic Model Providing Access to Healthcare (AMPATH) in Kenya, the International Epidemiology Databases to Evaluate AIDS (IeDEA) consortium, and different initiatives coordinated and driven by the Africa Centres for Disease Control and Prevention (Africa CDC) or the Joint United Nations Programme on HIV and AIDS (UNAIDS), among others.

Research interests in public health, epidemiology, and treatment approaches

HIV/AIDS research produced by solely African countries differed from global research in terms of disciplinary and subject area orientations, with a greater focus on public health, epidemiology, and treatment. This finding indicates the need to consider regional, national, and local specificities and interests when determining research priorities. In fact, numerous studies have already signaled the poor alignment between the priorities laid out in African countries' national research agendas and the research topics that are actually financed [12, 16, 46–49].

From a public health perspective, for example, Uthman [11] pointed out the need for further research evidence to inform HIV prevention and control programs. In this field, some countries perform better than others: South Africa is particularly strong in public health research [50], while other African countries and regions, such as French Africa, have made limited contributions [51].

Studies on epidemiology and treatment approaches for HIV/AIDS are very relevant for research produced in Africa, in contrast to what occurs on a global scale, where these orientations have a relatively limited weight. Nachega et al. [16] pointed out that research on HIV/ AIDS, tuberculosis, and malaria have become the main research topics addressed in epidemiological and public health publications in African countries. However, these authors argued for moving epidemiology and public health research beyond the limited sphere of communicable disease control in order to address the regional impact of non-communicable diseases, for example in maternal and child health. This is especially relevant in the case of sub-Saharan Africa, where epidemiologists are overwhelmingly deployed to control infectious diseases, especially HIV/AIDS, tuberculosis, and malaria. The study also calls for strengthening regional expertise in epidemiology in order to shed light on the underlying causes of ill health, rather than to merely control infections and outbreaks [16].

In addition to epidemiological studies, African research also reflects an intense interest in drug therapies for HIV/AIDS, illustrating that control of the infection is a priority for research agendas and policies in African countries [12].

More specifically, previous literature on HIV/AIDS research has shown a greater focus on women in studies carried out with the participation of African researchers [10]. Our study confirms this finding: 73 to 77% of the documents investigated women, compared to 55% in the global literature. One possible explanation for this includes the fact that women are more biologically, economically, socially, and culturally vulnerable to infection. Indeed, for every 10 African men who are HIV-positive, there are 12 to 13 infected women; moreover, 55% of adults who acquire HIV are women, with profound implications for mother-to-child transmission [10]. In consonance with this fact, a greater number of women participate and work on HIV care programs in Africa, and a large proportion of the clinicoepidemiological investigations in these settings are based on care program data [52].

The different epidemiological patterns of HIV/AIDS transmission in North America and Western and Central Europe must also be taken into account, that motivate a greater interest of research in these regions on sexual transmission between men and intravenous drug

(2020) 16:83

Page 16 of 18

users. These epidemiological patterns are less important in Africa [53]. The presence in the MeSH co-occurrence network of the descriptors "pregnancy" and "sexual behavior" are noteworthy, reflecting how African researchers are investigating aspects like maternal-fetal transmission of HIV [54] or knowledge and prevention of sexual risk, and changing the preconceptions that still persist about the social determinants of transmission [47]. The prominence of topics related to preventing mother-to-child transmission stands in contrast to the near absence of topics related to children and young people. These groups are especially sensitive to the physical and psychosocial impacts of HIV and AIDS, indicating the need for increased research on young people who are at risk of or living with HIV [55].

The greater research attention to topics related to public health, epidemiology, and treatment may also respond to limited laboratory capacity, which is needed for virologic, immunological, and basic research. In that sense, it is essential to promote initiatives that strengthen these research structures and capacities in African countries, rather than only supporting programs and projects on preventive and clinical approaches.

Limitations and future lines of research

Limitations of the present study include the fact that a considerable portion of HIV/AIDS research in African countries is disseminated using document types and media that we did not consider, such as meeting abstracts and journals that are not indexed in the WoS-CC. Moreover, using the MeSH thesaurus from the field of health sciences could have resulted in an underestimation of research spheres related to our subject area, such as research in the social sciences. In that sense, some papers have indicated that stigma and discrimination still constitute the main barriers to controlling HIV/AIDS [56]. The process used to assign geographic place variables to the papers included in the sample was based on authors' stated institutional affiliation; this method has the inherent limitation of not being able to measure the author's origin, nationality, or identification with the country, but rather the institution's (and the country's) capacity to generate outputs in the form of scientific publications. Thus, many researchers of African origin who work at institutions in the USA and Europe would be coded as US/European researchers. Furthermore, the use of first author status as a proxy for African leadership may be misleading, as an African senior author may be the last author on a publication or may have played a leadership role in some aspects other than the manuscript preparation.

Our study focused on obtaining macro indicators on scientific collaboration and output by regions and countries. Future lines of research could conduct meso- or microlevel analyses, for example focusing on the participation of institutions or authors in African HIV/AIDS research or on the impact of the publications. It would also be of great interest to identify the organisms or programs that have funded the research inspiring the publications about HIV, measuring resource contributions according to domestic versus international as well as public versus private origins.

Conclusions

The main conclusions of our study are as follows.

- 1. Our results reflect significant progress in Africanproduced HIV/AIDS research, at both a quantitative
 level (with notable increases in the number of publications) and qualitative level (through participation in
 journals indexed in a bibliographic database that brings
 together the most high-impact and high-visibility international publications). Despite these advances, however,
 scientific output is still concentrated in a small number
 of countries, chief among them South Africa, while other
 countries in Africa and the Middle East make only negligible contributions, despite the high burden of HIV
 infections.
- 2. The participation of African countries conducting HIV/AIDS research is characterized by a dependence on and subordination to the USA and European countries. Collaborations between these regions reflect limited leadership by African countries, as measured by the participation of African researchers as the first authors of published studies.
- 3. HIV/AIDS research conducted with participation from African countries shows appreciably different disciplinary and subject-area interests than global HIV/AIDS research, with a stronger focus on public health, epidemiology, and drug treatments.

It is essential to promote balanced North-South research that properly addresses the most acute needs and gaps in the places where HIV/AIDS has the largest impact. To achieve this balance, it is necessary to transfer research skills to African partners, promote equitable collaborative ties, and empower African countries, especially those with less scientific activity and more disease prevalence. In the same way, the lack of investment in research infrastructure by African governments likely makes it more difficult for African investigators to lead their own research. Intraregional collaborations among African countries can also help to avoid the further concentration of research capacity, reproducing the global North-South model on the African continent.

(2020) 16:83

Page 17 of 18

Acknowledgements

We gratefully acknowledge the assistance of Meggan Harris in translating our manuscript from Spanish.

Authors' contributions

GGA: study conception, data collection, data analysis, manuscript writing and final manuscript approval; MME: study conception, data collection, data analysis, manuscript writing and final manuscript approval; NE: data analysis, manuscript writing and final manuscript approval; JMRR: study conception, manuscript writing and final manuscript approval.

Authors' information

Two of the four authors of the present study are European (GGA and JMRR), including the first author of the study. In addition, a third author (MME) working at a European institution has signed with this affiliation. As we were aware of this imbalance, these three authors sought the collaboration of an African researcher (EN), who is from one of the most affected countries by HIV/AIDS and has extensive knowledge of the subject matter at a clinical and epidemiological level. His participation facilitated the acquisition of the methodological skills necessary for leading a study like the present one, and it strengthened our commitment to seek future collaborators enabling more balanced representation among our author teams. However, African research teams wishing to perform similar studies would likely face a range of problems, such as the lack of recognition for their research activities; time constraints due to clinical workload; and economic barriers impeding access to bibliographic databases, full-text articles for many scientific journals, translation services, and publishing costs. Indeed, although BMC "offers waivers and discounts for article processing charges (APCs) for papers whose corresponding authors are based in low-income countries," the publication itself is only the culmination of the research process, which includes numerous processes and activities requiring economic resources or financing.

Funding

Open access funding provided by University of Valencia, Special Research Actions Program (UV-19-INV-AE19).

Availability of data and materials

The datasets generated and/or analysed during the current study are available in the Harvard Dataverse repository, https://doi.org/10.7910/DVN/RJMAY5.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

¹Department of History of Science and Documentation, University of Valencia, Valencia, Spain. ²Department of Internal Medicine, General University Hospital of Alicante, Alicante, Spain. ³Infectious Disease Division, Carmelo Hospital of Chókwè – Daughters of Charity, Saint Vincent of Paul, Chókwè, Gaza Province, Mozambique. ⁴Tinpswalo Association, Research Unit, Vincentian Association to Fight AIDS and TB, Chókwè, Gaza Province, Mozambique. ⁵Department of Clinical Medicine, Miguel Hernandez University of Elche, Alicante, Spain.

Received: 31 December 2019 Accepted: 11 August 2020 Published online: 17 September 2020

References

- GBD 2015 HIV Collaborators. Estimates of global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2015: the global burden of disease study 2015. Lancet HIV. 2016;3:e361–87.
- Galvani AP, Pandey A, Fitzpatrick MC, Medlock J, Gray GE. Defining control of HIV epidemics. Lancet HIV. 2018;5:e667–70.
- UNAIDS Data 2018. https://www.unaids.org/sites/default/files/media_asset/ unaids-data-2018_en.pdf.

- Fajardo-Ortiz D, López-Cervantes M, Duran L, Dumontier M, Lara M, Ochoa H, et al. The emergence and evolution of the research fronts in HIV/AIDS research. PLoS One. 2017;12:e0178293.
- González-Alcaide G, Salinas A, Ramos JM. Scientometrics analysis of research activity and collaboration patterns in Chagas cardiomyopathy. PLoS Negl Trop Dis. 2018;12e0006602.
- Macias-Chapula CA, Rodeo-Castro IP, Narvaez-Berthelemot N. Bibliometric analysis of AIDS literature in Latin America and the Caribbean. Scientometrics. 1998;41:41–9.
- Sengupta IN, Kumari L. Bibliometric analysis of AIDS literature. Scientometrics. 1991;20:297–315.
- Macías-Chapula CA, Mijangos-Nolasco A. Bibliometric analysis of AIDS literature in Central Africa. Scientometrics. 2002;54:309–17.
- Uthman OA. Pattern and determinants of HIV research productivity in sub-Saharan Africa: bibliometric analysis of 1981 to 2009 Pubmed papers. BMC Infect Dis. 2010:10:47.
- Onyancha OB, Ocholla DN. A comparative study if the literature on HIV/ AIDS in Kenya and Uganda: a bibliometric study. Libr Inf Sci. 2004;26:434–47.
- Uthman OA, HIV/AIDS in Nigeria: a bibliometric analysis. BMC Infect Dis. 2008:8:19.
- Mugomeri E, Bekele BS, Mafaesa M, Maibvise C, Tarirai C, Aiyuk SE. A 30-year bibliometric analysis of research coverage on HIV and AIDS in Lesotho. Health Res Policy Syst. 2017;15:21.
- Chu KM, Jayaraman S, Kyamanywa P, Ntakiyiruta G. Building research capacity in Africa: equity and global health collaborations. PLoS Med. 2014; 11:e1001612.
- Tijssen R. Africa's contribution to the worldwide research literature: new analytical perspectives, trends, and performance indicators. Scientometrics. 2007;71:303–27.
- Uthman OA, Uthman MB. Geography of Africa biomedical publications: an analysis of 1996–2005 PubMed papers. Int J Health Geogr. 2007;6:46.
- Nachega JB, Uthman OA, Ho Y-S, Lo M, Anude C, Kayembe P. Current status and future prospects of epidemiology and public health training and research in the WHO African region. Int J Epidemiol. 2012;41:1829–46.
- Rahman M, Fukui T. Biomedical research productivity: factors across the countries. Int J Technol Assess Health Care. 2003;19:249–52.
- Dwyer-Lindgren L, Cork MA, Sligar A, Steuben KM, Wilson KF, Provost NR, et al. Mapping HIV prevalence in sub-Saharan Africa between 2000 and 2017. Nature. 2019;570:189–93.
- Bai J, Li W, Huang YM, Guo Y. Bibliometric study of research and development for neglected diseases in the BRICS. Infect Dis Poverty. 2016;5:89.
- Sun J, Boing AC, Silveira MPT, Bertoldi AD, Ziganshina LE, Khaziakhmetova VN, et al. Efforts to secure universal access to HIV/AIDS treatment: a comparison of BRICS countries. J Evid Based Med. 2014;7:2–21.
- Bornmann L, Wagner C, Leydesdorff L. BRICS countries and scientific excellence: a bibliometric analysis of most frequently cited papers. J Assoc Inf Sci Technol. 2015;66:1507–13.
- González-Alcaide G, Park J, Huamaní C, Ramos JM. Dominance and leadership in research activities: collaboration between countries of differing human development is reflected through authorship order and designation as corresponding authors in scientific publications. PLoS One. 2017;12: e0182513.
- Adams J, Gumey K, Hook D, Leydesdorff L. International collaboration clusters in Africa. Scientometrics. 2014;98:547–56.
- Deribew A, Biadgilign S, Deribe K, Dejene T, Tessema GA, Melaku YA, et al. The burden of HIV/AIDS in Ethiopia from 1990 to 2016: evidence from the global burden of diseases 2016 study. Ethiop J Health Sci. 2019;29:859–68.
- Keiser J, Utzinger J. Trends in the core literature on tropical medicine: a bibliometric analysis from 1952-2002. Scientometrics. 2005;62:351–65.
- Keiser J, Utzinger J, Tanner M, Singer BH. Representation of authors and editors from countries with different human development indexes in the leading literature on tropical medicine: survey of current evidence. BMJ. 2004;328:1229–32.
- Kelaher M, Ng L, Knight K, Rahadi A. Equity in global health research in the new millennium: trends in first-authorship for randomized controlled trials among low- and middle-income country researchers 1990-2013. Int J Epidemiol. 2016;45:2174–83.
- Zakumumpa H, Bennett S, Ssengooba F. Leveraring the lessons learned from financing HIV programs to advance the universal health coverage (UHC) agenda in the east African community. Glob Health Res Policy. 2019; 4:27.

(2020) 16:83

Page 18 of 18

- Feldacker C, Pintye J, Jacob S, Chung MH, Middleton L, Iliffe J, et al. Continuing professional development for medical, nursing, and midwifery cadres in Malawi, Tanzania and South Africa: a qualitative evaluation. PLoS One. 2017;12(10):e0186074.
- Nchinda TC. Research capacity strengthening in the south. Soc Sci Med. 2002:54:1699–711.
- Wight D, Ahikireb J, Kwesigac JC. Consultancy research as a barrier to strengthening social science research capacity in Uganda. Soc Sci Med. 2014;116:32–40.
- Langer A, Díaz-Olavarrieta C, Berdichevsky K, Villar J. Why is research from developing countries underrepresented in international health literature, and what can be done about it? Bull World Health Organ. 2004;82:802–3.
- Smith E, Hunt M, Master Z. Authorship ethics in global health research partnerships between researchers from low or middle income countries and high income countries. BMC Med Ethics. 2014;15:42.
- Yousefi-Nooraie R, Shakiba B, Mortaz-Hejri S. Country development and manuscript selection bias: a review of published studies. BMC Med Res Methodol. 2006;6:37.
- Macias-Chapula CA. AIDS in Haiti: a bibliometric analysis. Bull Med Libr Assoc. 2000;88:56–61.
- Chen TJ, Chen YC, Hwang SJ, Chou LF. International collaboration of clinical medicine research in Taiwan, 1990–2004: a bibliometric analysis. J Chin Med Assoc. 2007;70:110–6.
- Ramos-Rincón JM, Pinargote-Celorio H, Belinchón-Romero I, et al. A snapshot of pneumonia research activity and collaboration patterns (2001– 2015): a global bibliometric analysis. BMC Med Res Methodol. 2019;19:184.
- Badenhorst A, Mansoori P, Chan KY. Assessing global, regional, national and sub-national capacity for public health research: a bibliometric analysis of the web of science in 1996-2010. J Glob Health. 2016;6:010504.
- Falagas ME, Bliziotis IA, Soteriades ES. Eighteen years of research on AIDS: contribution of and collaborastion between different world regions. AIDS Res Hum Retrovir. 2006;22:1199–205.
- Breugelmans JG, Makanga MM, Cardoso AL, Mathewson SB, Sheridan-Jones BR, Gumey KA, et al. Bibliometric assessment of European and sub-Saharan African research output on poverty-related and neglected infectious diseases from 2003 to 2011. PLoS Negl Trop Dis. 2015;9:e0003997.
- Ettarh R. Pattems of international collaboration in cardiovascular research in sub-Saharan Africa. Cardiovasc J Afr. 2016;27:194–200.
- Hernandez-Villafuerte K, Li R, Hofman KJ. Bibliometric trends of health economic evaluation in sub-Saharan Africa. Glob Health. 2016;12:50.
- Okeke IN. Partnerships for now? Temporality, capacities, and the durability of outcomes from global health 'partnerships'. Med Anthropol Theory. 2018; 5(2):7–24.
- Boum Y II. Is Africa part of the partnership? Med Anthropol Theory. 2018; 5(2):25–34.
- Boum Y II, Burns BF, Siedner M, Mburu Y, Bukusi E, Haberer JE. Advancing equitable global health research partnerships in Africa. BMJ Glob Health. 2018;3:e000868.
- Mayosi BM, Lawn JE, van Niekerk A, Bradshaw D, Abdool Karim SS, Coovadia HM, et al. Health in South Africa: changes and challenges since 2009. Lancet. 2012;380:2029–43.
- Hodes R, Morrell R. Incursions from the epicentre: southern theory, social science, and the global HIV research domain. Afr J AIDS Res. 2018;17:22–31.
- Esser DE, Bench KK. Does global health funding respond to recipients' needs? Comparing public and private donors' allocations in 2005–2007. World Dev. 2011;39:1271–80.
- Swingler GH, Pillay V, Pienaar ED, loannidis JP. International collaboration, funding and association with burden of disease in randomized controlled trials in Africa. Bull World Health Organ. 2005;83:511–7.
- Wright CY, Dominick F, Kunene Z, Kapwata T, Street RA. Bibliometric trends of south African environmental health articles between 1998 and 2015: making local research visible and retrievable. S Afr Med J. 2017;107:915–24.
- Benie-Bi J, Cambon L, Grimaud O, Kivits J, Alla F. Health needs and public health functions addressed in scientific publications in francophone sub-Saharan Africa. Public Health. 2013;127:860–6.
- Nnko S, Nyato D, Kuringe E, Casalini C, Shao A, Komba A, et al. Female sex workers perspectives and concerns regarding HIV self-testing: an exploratory study in Tanzania. BMC Public Health. 2020;20(1):959.
- Beyrer C, Baral SD, van Griensven F, Goodreau SM, Chariyalertsak S, Wirtz AL, et al. Global epidemiology of HIV infection in men who have sex with men. Lancet. 2012;380:367–77.

- Poreau B. Prenatal diagnosis, care and management in Africa: bibliometric analysis. Pan Afr Med J. 2018;29:146.
- Tran BX, Nathan KI, Phan HT, Hall BJ, Vu GT, Vu LG, et al. A global bibliometric analysis of services for children affected by HIV/acquired immune deficiency syndrome: implications for impact mitigation programs (GAPRESEARCH). AIDS Rev. 2019:21.
- Sweileh WM. Bibliometric analysis of literature in AIDS-related stigma and discrimination. Transl Behav Med. 2019;9:617–28.

Publisher's Note

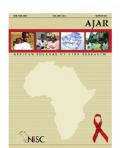
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- · fast, convenient online submission
- · thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



- ANEXOS 2. Publicación 2

Menchi-Elanzi M, Pinargote-Celorio H, Nacarapa E, González-Alcaide G, Ramos-Rincón JM. Scientific HIV research in Africa and the Middle East: a socio-economic demographic analysis. Afr J AIDS Res. 2021;20(1):1-5.

 $\underline{https://doi.org/10.2989/16085906.2020.1830133}$

- o Artículo original.
- o Revista: African Journal of AIDS Research / EISSN: 1727-9445
- o Factor de Impacto (2020): 1,300
- Cuartil: Posición 156 de 176 (cuarto cuartil) en la categoría Public, Environmental & Occupational Health del Social Sciences Citation Index, y 177 de 203 (cuarto cuartil) la categoría, Public, Environmental & Occupational Health en Science Citation Index Expanded.

African Journal of AIDS Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/raar20

Scientific HIV research in Africa and the Middle East: a socio-economic demographic analysis

Marouane Menchi-Elanzi, Hector Pinargote-Celorio, Edy Nacarapa, Gregorio González-Alcaide & José-Manuel Ramos-Rincón

To cite this article: Marouane Menchi-Elanzi, Hector Pinargote-Celorio, Edy Nacarapa, Gregorio González-Alcaide & José-Manuel Ramos-Rincón (2021) Scientific HIV research in Africa and the Middle East: a socio-economic demographic analysis, African Journal of AIDS Research, 20:1, 1-5, DOI: 10.2989/16085906.2020.1830133

To link to this article: https://doi.org/10.2989/16085906.2020.1830133

	Published online: 04 Feb 2021.
Ø,	Submit your article to this journal 🗷
ılıl	Article views: 84
α	View related articles ☑
CrossMark	View Crossmark data ☑
4	Citing articles: 3 View citing articles ☐

Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=raar20

African Journal of AIDS Research 2021, 20(1): 1-5

Copyright © NISC (Pty) Ltd

AJ AR

ISSN 1608-5906 EISSN 1727-9445
https://doi.org/10.2989/16085906.2020.1830133

Brief Report

Scientific HIV research in Africa and the Middle East: a socio-economic demographic analysis

Marouane Menchi-Elanzi¹o, Hector Pinargote-Celorio¹o, Edy Nacarapa²³o, Gregorio González-Alcaide⁴o & José-Manuel Ramos-Rincón¹.⁵⁵o

Background: In Africa, HIV/AIDS research is concentrated in certain countries, particularly South Africa. This distribution may not accurately reflect the disease prevalence or the true research efforts of countries.

Objectives: To identify HIV/AIDS research productivity of countries in Africa and the Middle East, in absolute terms and adjusted for people living with HIV, population size and economic development.

Methods: We identified all the articles and reviews on HIV and AIDS in the Web of Science Core Collection in which African or Middle Eastern countries had participated. After determining the number of documents produced by each country, we adjusted the findings for the number of people living with HIV, number of inhabitants, gross domestic product and gross national income per capita.

Results: African and Middle Eastern countries participated in 21.52% (n = 14.808) of all 68.808 documents analysed. East and Southern Africa produced 17.8% of all documents (n = 12.249), West and Central Africa accounted for only 3.34% (n = 2300), and the Middle East and North Africa, 1.18% (n = 814). South Africa produced 40.94% (n = 6.063) of all publications. Only two other African countries — Uganda (12.97%; n = 1.921) and Kenya (10.71%; n = 1.586) — produced more than 10% of these publications. The indices used for adjusting research productivity revealed the effort and contribution of other countries.

Conclusion: Our study confirmed the leading role of South Africa in driving HIV/AIDS research, but also highlighted the contribution of countries such as Uganda, Malawi, Botswana, Zimbabwe and Mozambique.

Keywords: acquired immunodeficiency syndrome, bibliometrics, epidemiology, IDS, South Africa

Introduction

HIV infection and the resulting spectrum of conditions known as acquired immunodeficiency syndrome (AIDS) constitute one of the greatest public health challenges worldwide (UNAIDS, 2018). The global distribution of the disease is unequal. Of the estimated 37.9 million people living with HIV (PLWH), and of the 1.7 million new cases, 67.5% and 61% respectively were reported to be in sub-Saharan Africa (Galvani et al., 2018), where there are also significant regional differences. Together, Mozambique, South Africa and Tanzania account for more than half of new HIV cases in the region (UNAIDS, 2018). In many African countries, there is little correlation between the prevalence of HIV and the volume of research conducted (Sweileh, 2018).

Different bibliometric analyses have measured the scientific output on HIV/AIDS in regions like Central or sub-Saharan Africa (Macías-Chapula & Mijangos-Nolasco,

2002; Uthman, 2010), or in specific countries such as Kenya, Uganda, Nigeria or Lesotho (Mugomeri et al, 2017; Onyancha & Ocholla, 2004; Uthman, 2008). These studies focus on the absolute productivity of the countries; however, a more accurate picture of each country's research effort can be achieved by considering the volume of published research in relation to other variables. The object of our study was to analyse the contribution of African and Middle Eastern countries to the scientific output on HIV/AIDS, taking into account the number of PLWH, population size and the economic development of each country.

Methods

We identified documents about HIV indexed in the Web of Science Core Collection (WoS-CC) from 2010 to 2017 by performing searches based on the following medical subject headings: HIV, HIV infections, acquired immunodeficiency

African Journal of AIDS Research is co-published by NISC (Pty) Ltd and Informa UK Limited (trading as Taylor & Francis Group)

¹Department of Internal Medicine, General University Hospital of Alicante, Alicante, Spain

²Infectious Disease Division, Carmelo Hospital of Chókwe – Daughters of Charity of Saint Vincent de Paul, Chókwe, Mozambique

³Tinpswalo Association, Research Unit, Vincentian Association to Fight AIDS and TB, Chókwe, Mozambique

⁴Department of History of Science and Documentation, University of Valencia, Valencia, Spain

Department of Clinical Medicine, Miguel Hernandez University of Elche, Alicante, Spain

^{*}Correspondence: jose.ramosr@umh.es

Menchi-Elanzi, Pinargote-Celorio, Nacarapa, González-Alcaide & Ramos-Rincón

2

syndrome and AIDS vaccines. The process of searching the database implies that documents have been considered only once (no duplicates). Although the WoS-CC databases do not include all documents indexed in MEDLINE/PubMed, we chose this source because it shows the institutional affiliations (and countries) of all authors. This information, which we needed for our study, was not included in MEDLINE documents until 2014. We recovered 74 375 documents that we then limited by document type to include only research articles, reviews and letters, leaving 68 808 documents.

To analyse participation in HIV/AIDS research, we used the 2018 UNAIDS geographical distribution of countries and regions, which groups African and Middle Eastern countries into three regions: East and Southern Africa (E & SA), West and Central Africa (W & CA), and Middle East and North Africa (ME & NA). As a comparative reference, we analysed the scientific production of 12 countries located in other geographical regions: Australia, Brazil, Canada, China, France, Germany, India, Italy, Pakistan, Spain, United Kingdom (UK) and the United States of America (USA).

We determined standardised indicators of each country's output (number of articles) with respect to:

- PLWH index: number of publications per thousand PLWH.
- Population index: number of publications per million inhabitants.
- Gross domestic product (GDP) index: number of publications per billion US dollars of GDP.

Population and economic data were obtained from the 2017 World Development Indicators found in the online databases of the World Bank (http://datatopics.worldbank.org/world-development-indicators/).

Results

Of all the documents analysed ($N=68\,808$), E & SA participated in 17.8% ($n=12\,249$), W & CA in 3.34% ($n=2\,300$), and ME & NA in 1.18% (n=814). Together, all the countries in the three regions making up Africa and the Middle East participated in 21.52% ($n=14\,808$) of published research on HIV/AIDS worldwide. Scientific output was concentrated in South Africa, which accounted for 40.94% ($n=6\,063$) of documents produced by Africa and the Middle East. Some distance behind South Africa came Uganda (12.97%; n=1,921), Kenya (10.71%; $n=1\,586$), Malawi (6.19%; n=916) and Tanzania (6.03; n=893), which are all in E & SA. The two leading countries of W & CA were Nigeria (4.59%; n=679) and Cameroon (2.84%; n=421); while the leading country of ME & NA was Iran (2.02%; n=299).

Table 1 ranks the research productivity of African and Middle Eastern countries in absolute terms (number of documents published) and adjusted for the number of people living with HIV, population size and economic development. The countries were divided into three groups according to the number of documents published. In the first group (>300 documents), South Africa, Uganda, Kenya and Malawi maintained their high positions in most indices, although their exact positions in the table varied. Uganda and Malawi were the respective leaders of the PLWH index and the GDP index — and both countries were above South Africa in both of these indices. Some countries with lower absolute

productivity within this group were near the top of the PLWH index and population index rankings (Botswana) or the gross national income (GNI) per capita index ranking (Zimbabwe). When the volume of research produced by Mozambique was considered in the context of economic development, the country jumped from last place (within this group of 12 countries) to fifth place.

There was also some significant variation between the different indices in the intermediate productivity group (51–300 documents). For example, Qatar was first in the PLWH index, Guinea-Bissau third in the population index, and Gambia and Lesotho were in the top four places of the economic indices — despite all having low scientific output within this group.

Discussion

Within Africa and the Middle East, South Africa was the leading contributor to research on HIV in absolute terms, producing four times as many publications as the second-most productive country. However, our findings show that, although South Africa scored high in the normalized indices associated with the number of PLWH, population size and per capita income, other countries scored higher.

In the PLWH index, Uganda and Kenya were first and second, respectively, and Botswana had climbed several places to third. These results were due to researchers responding to the high incidence of HIV by participating in multicentre and collaborative studies. These countries are part of the Commonwealth and collaborate regularly with English-speaking countries, especially the UK, helping to make up for their less developed scientific systems (CIPHER Global Cohort Collaboration, 2018).

In the population index, different countries of Southern Africa, such as Botswana and Zimbabwe, joined South Africa at the top of the table in the high productivity group. Of the intermediate productivity countries, Eswatini, Namibia, Guinea-Bissau and Gabon all climbed several places to occupy the first five positions. Relative to their population sizes, these countries make considerable contributions towards reducing HIV incidence and deaths (Marukutira et al. 2020)

Lastly, adjusting the results for economic parameters highlights the role of small countries in W & CA and E & SA: Malawi, Uganda, Gambia, Guinea-Bissau, Zimbabwe and Rwanda. These countries all have a low GDP but a high prevalence of PLWH, which they are trying to tackle through research (Rabkin et al, 2020; Korenromp et al, 2015).

Investment and economic growth in research are key factors explaining the rise in scientific productivity (Rahman & Fukui 2003). Moves towards greater concentrations of scientific production in low-yield countries requires policies that promote the integration of lower producers of scientific research and middle-income countries. Experts describe some measures to stimulate scientific investigation in these countries that go beyond economic growth including training, retaining experienced scientists, and hosting long-term equitable cooperation. These strategies can enable researchers in these countries to acquire the methodological skills they need and can foster their leadership in research direction (Gonzalez-Alcaide et al, 2020; Chu et al, 2014).

African Journal of AIDS Research 2021, 20(1): 1-5

Table 1: Productivity of African and Middle Eastern countries in absolute terms and according to the people living with HIV (PLWH) index, population index, and gross domestic product (GDP) index

Country	UNAIDS region	Total documents	Country	PLWH indexa	Country	Populatior indexb	Country	GDP index ^c
Most productive count	•							
South Africa	E & SA	6 063	Uganda	1.48	Botswana	170.06	Malawi	145.32
Uganda	E & SA	1 921	Kenya	1.06	South Africa	106.37	Uganda	73.90
Kenya	E & SA	1 586	Botswana	0.99	Malawi	51.84	Zimbabwe	30.68
Malawi	E & SA	916	Malawi	0.92	Zimbabwe	49.17	Zambia	26.94
Tanzania	E & SA	893	Ethiopia	0.91	Uganda	46.67	Mozambique	22.92
Zimbabwe	E & SA	700	South Africa	0.84	Zambia	41.36	Botswana	21.54
Zambia	E & SA	697	Cameroon	0.83	Kenya	31.58	Kenya	20.14
Nigeria	W & CA	679	Zambia	0.63	Cameroon	17.14	South Africa	17.34
Ethiopia	E & SA	555	Tanzania	0.60	Tanzania	16.34	Tanzania	16.75
Cameroon	W & CA	421	Zimbabwe	0.54	Mozambique	10.58	Cameroon	12.06
Botswana	E & SA	375	Nigeria	0.22	Ethiopia	5.22	Ethiopia	6.79
Mozambique	E & SA	303	Mozambique	0.14	Nigeria	3.56	Nigeria	1.81
Intermediate productiv								
Iran	ME & NA	299	Qatar	178.00	Eswatini	87.13	Gambia	51.83
Ghana	W & CA	270	Egypt	6.75	Namibia	41.62	Guinea-Bissau	51.23
Rwanda	E & SA	269	Senegal	5.37	Guinea-Bissau	37.74	Rwanda	29.43
Senegal	W & CA	231	Iran	4.98	Gabon	36.81	Lesotho	22.61
Côte d'Ivoire	W & CA	225	Gambia	3.71	Gambia	35.23	Eswatini	22.04
Burkina Faso	W & CA	196	Lebanon	23.64	Qatar	32.66	Burkina Faso	15.90
DR Congo	W & CA	119	Morocco	2.75	Lesotho	27.73	Togo	13.93
Egypt	ME & NA	108	Burkina Faso	2.09	Rwanda	22.45	Senegal	10.96
Saudi Arabia	ME & NA	107	Guinea-Bissau	1.73	Senegal	14.98	Benin	8.52
Namibia	E & SA	100	Gabon	1.36	Burkina Faso	10.21	Namibia	7.37
Eswatini	E & SA	98	Rwanda	1.22	Ghana	9.27	Côte d'Ivoire	5.91
Qatar	ME & NA	89	Benin	1.13	Côte d'Ivoire	9.21	Gabon	5.10
Benin	W & CA	79	Ghana	0.87	Togo	8.70	Ghana	4.58
Gambia	W & CA	78	Togo	0.61	Lebanon	7.63	Mali	4.50
Gabon	W & CA	76	Mali	0.53	Benin	7.07	DR Congo	3.13
Guinea-Bissau	W & CA	69	Namibia	0.50	Mali	3.73	Lebanon	0.97
Mali	W & CA	69	Côte d'Ivoire	0.45	Iran	3.71	Iran	0.66
Togo	W & CA	67	Eswatini	0.45	Saudi Arabia	3.23	Qatar	0.53
Lesotho	E & SA	58	DR Congo	0.31	Morocco	1.55	Morocco	0.50
Morocco	ME & NA	55	Lesotho	0.18	DR Congo	1.46	Egypt	0.46
Lebanon	ME & NA	52	Saudi Arabia	No data	Egypt	1.12	Saudi Arabia	0.16
Low productivity coun	tries (1–50 do	ocuments)						
UAE	ME & NA	44	Kuwait	29.63	Cape Verde	9.30	Central African Rep.	11.13
Guinea	W & CA	36	Jordan [§]	24.00	Congo	6.26	Congo	3.68
Congo	W & CA	32	Bahrain	8.00	Central African Rep.	5.00	Liberia	3.65
Central African Rep.	W & CA	23	Tunisia	7.67	São Tomé & Príncipe	4.83	Guinea	3.49
Sudan	ME & NA	23	Syria§	6.45	United Arab Emirates	4.64	Sierra Leone	3.48
Tunisia	ME & NA	23	Oman [§]	5.16	Mauritius	3.95	Burundi	3.47
Angola	E & SA	19	Cape Verde	2.08	Kuwait	3.94	Cape Verde	2.83
Kuwait	ME & NA	16	Libya§	1.35	Oman	3.43	São Tomé & Príncipe	2.67
Oman	ME & NA	16	Mauritania§	0.86	E. Guinea	3.17	Niger	1.85
Madagascar	E & SA	15	Sudan	0.45	Guinea	2.98	Madagascar	1.14
Niger	W & CA	15	Madagascar	0.43	Bahrain	2.68	Mauritania	1.02
Iraq	ME & NA	13	Niger	0.42	Liberia	2.55	Chad	0.90
Sierra Leone	W & CA	13	Mauritius§	0.42	Djibouti	2.12	Djibouti	0.72
Libya	ME & NA	12	Yemen§	0.40	Tunisia	2.01	Tunisia	0.58
Liberia	W & CA	12	Congo	0.32	Libya	1.82	Somalia	0.44
Jordan	ME & NA	12	Liberia	0.30	Sierra Leone	1.74	Mauritius	0.38
Burundi	W & CA	11	Guinea	0.30	Jordan	1.23	Equatorial Guinea	0.33
Chad	W & CA	9	Algeria	0.29	Mauritania	1.17	Libya	0.32
Cape Verde	W & CA	5	Djibouti	0.22	Burundi	1.02	Jordan	0.29
Mauritania	W & CA	5	Central African Rep.	0.21	Niger	0.69	Oman	0.23
Mauritius	E & SA	5	Sierra Leone	0.21	Angola	0.64	Sudan	0.19
Algeria	ME & NA	4	Somalia	0.18	Chad	0.60	Angola	0.16
Bahrain	ME & NA	4	Burundi	0.14	Madagascar	0.59	Yemen	0.15
Equatorial Guinea	W & CA	4	Chad	0.08	Sudan	0.56	Kuwait	0.13
							continued on r	

Menchi-Elanzi, Pinargote-Celorio, Nacarapa, González-Alcaide & Ramos-Rincón

Table 1 (continued): Productivity of African and Middle Eastern countries in absolute terms and according to the people living with HIV

Country	UNAIDS region	Total documents	Country	PLWH indexa	Country	Population index ^b	Country	GDP index ^c
Syria	ME & NA	4	Equatorial Guinea	0.08	Iraq	0.35	United Arab Emirates	0.12
Yemen	ME & NA	4	Angola	0.06	Syria	0.23	Bahrain	0.11
Djibouti	ME & NA	2	Iraq	No data	Yemen	0.14	Iraq	0.07
Somalia	ME & NA	2	São Tomé & Príncipe	No data	Somalia	0.14	Algeria	0.02
São Tomé & Príncipe	W & CA	1		No data	Algeria	0.10	Syria	No data
USA		35 623	Australia	101.88	United Kingdom	116.52	United Kingdom	2.89
United Kingdom		7 697	United Kingdom [†]	75.76	Canada+	111.88	Spain	2.49
France		4 255	Canada+	64.78	USA	109.56	Canada	2.48
Canada		4 088	USA*	31.72	Australia	107.67	Australia	1.99
China		3 866	Germany§	29.76	Spain	69.95	USA	1.83
Spain		3 259	France§	25.03	France	63.64	France	1.65
Italy		3 085	Italy	23.73	Italy	50.96	Italy	1.58
Australia		2 649	Spain	21.73	Germany	30.61	Brazil	1.21
Germany		2 530	China [‡]	5.10	Brazil	11.92	India	0.83
Brazil		2 478	Brazil	2.88	China	2.79	Germany	0.69
India		2 208	India	1.05	India	1.65	Pakistan	0.44
Pakistan		133	Pakistan	0.89	Pakistan	0.64	China	0.32

E & SA = East and Southern Africa; ME & NA = Middle East and North Africa; W & CA = West and Central Africa

(PLWH) index, population index, and gross domestic product (GDP) index

PLWH data were obtained from several resources: Joint United Nations Programme on HIV/AIDS (https://www.unaids.org/); *Center for Disease Control (https://www.cdc.gov/); †UK National Health Service (https://www.nhs.uk/); †National Center for AIDS/STD Control and Prevention, China (http://ncaids.chinacdc.cn/); National Council of State Tourism Directors (https://www.ustravel.org/programs/national-council-state-tourism-directors-ncstd);
§Chinese Centre for Disease Control and Prevention (http://www.chinacdc.cn/); Chinese Journal of AIDS & STD (http://www.chinacdc.cn/en/publication/cj/);
†Public Health Agency of Canada (https://www.canada.ca/en/public-health.html)

Conclusion

The results of our study demonstrate the relevance of using indicators such as PLWH, population size and economic development to measure more precisely the effort and contribution of each country beyond scientific output in absolute terms. The different indices used in our analysis confirm the leading role of South Africa, Uganda, Malawi, Botswana, Zimbabwe and Mozambique. This research should impose and encourage the transmission of knowledge about HIV from researchers from African countries with less scientific reputation, and this knowledge from these countries will allow a better understanding of the disease in all areas of Africa.

ORCIDs

Marouane Menchi-Elanzi: https://orcid.org/0000-0003-0919-0130 Hector Pinargote-Celorio: https://orcid.org/0000-0002-3300-5807 Edy Nacarapa: https://orcid.org/0000-0002-0617-9609 Gregorio González-Alcaide: https://orcid.org/0000-0003-3853-5222 José-Manuel Ramos-Rincón: https://orcid.org/0000-0002-6501-9867

References

Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) Global Cohort Collaboration, Slogrove, A. L., Schomaker, M., Davies, M. A., Williams, P., Balkan, S., Ben-Farhat, J., Calles, N., Chokephaibulkit, K., Duff, C., Eboua, T. F., Kekitiinwa-Rukyalekere, A., Maxwell, N., Pinto, J., Seage, G., 3rd., Teasdale, C. A., Wanless, S., Warszawski, J., Wools-Kaloustian, K., Yotebieng, M., ... Leroy, V. (2018). The epidemiology of adolescents living with perinatally acquired HIV: A cross-region global cohort analysis. *PLoS Medicine*, 15(3), e1002514. https://doi.org/10.1371/journal.pmed.1002514

Chu, K. M., Jayaraman, S., Kyamanywa, P., & Ntakiyiruta, G. (2014).
Building research capacity in Africa: Equity and global health collaborations. *PLoS Medicine*, 11(3), e1001612. https://doi.org/10.1371/journal.pmed.1001612

Galvani, A. P., Pandey, A., Fitzpatrick, M. C., Medlock, J., & Gray, G. E. (2018). Defining control of HIV epidemics. *The Lancet. HIV*, 5(11), e667–e670. https://doi.org/10.1016/S2352-3018(18)30178-4

González-Alcaide, G., Menchi-Elanzi, M., Nacarapa, E., & Ramos-Rincón, J-M. (2020). HIV/AIDS research in Africa and the Middle East: participation and equity in North-South collaborations and relationships. Globalization and Health 16, 1–18. https://doi. org/10.1186/s12992-020-00609-9

Korenromp, E. L., Gobet, B., Fazito, E., Lara, J., Bollinger, L., & Stover, J. (2015). Impact and Cost of the HIV/AIDS National Strategic Plan for Mozambique, 2015–2019 – Projections with the Spectrum/ Goals Model. *PLoS One*, 10(11), e0142908. https://doi.org/10.1371/journal.pone.0142908

Macías-Chapula, C. A., & Mijangos-Nolasco, A. (2002). Bibliometric analysis of AIDS literature in Central Africa. Scientometrics, 54, 309–317. https://doi.org/10.1023/A:1016074230843

^aPLWH index: Number of publications per 1000 PLWH

Population index: Number of publications per million inhabitants

[°]GDP index: Number of publications per billion US dollars of GDP

African Journal of AIDS Research 2021, 20(1): 1-5

5

- Marukutira, T., Scott, N., Kelly, S. L., Birungi, C., Makhema, J. M., Crowe, S., Stoove, M., & Hellard, M. (2020). Modelling the impact of migrants on the success of the HIV care and treatment program in Botswana. PLoS One, 15(1), 1–14. https://doi.org/10.1371/journal. pone.0226422
- Mugomeri, E., Bekele, B. S., Mafaesa, M., Maibvise, C., Tarirai, C., & Aiyuk, S. E. (2017). A 30-year bibliometric analysis of research coverage on HIV and AIDS in Lesotho. *Health Research Policy and Systems*, 15, 1–9. https://doi.org/10.1186/s12961-017-0183-y
- Onyancha, O. B., & Ocholla, D. N. (2004). A comparative study if the literature on HIV/AIDS in Kenya and Uganda: A bibliometric study. Library & Information Science Research, 26(4), 434–447. https://doi. org/10.1016/j.lisr.2004.04.005
- Rabkin, M., Strauss, M., Mantell, J. E., Mapingure, M., Masvawure, T. B., Lamb, M. R., Zech, J. M., Musuka, G., Chingombe, I., Msukwa, M., Boccanera, R., Gwanzura, C., George, G., & Apollo, T. (2020). Optimizing differentiated treatment models for people living with HIV in urban Zimbabwe: Findings from a mixed methods study. *PLoS One*, 15(1), 1–14. https://doi.org/10.1371/journal.pone.0228148
- Rahman, M., & Fukui, T. (2003). Biomedical research productivity: Factors across the countries. *International Journal of Technology Assessment in Health Care*, 19(1), 249–252. https://doi.org/10.1017/S0266462303000229
- Sweileh, W. M. (2018). Global research output on HIV/AIDS-related medication adherence from 1980 to 2017. BMC Health Services Research, 18(1), 1–13. https://doi.org/10.1186/s12913-018-3568-x UNAIDS. (2018, July). Data 2018. https://www.unaids.org/en/
- resources/documents/2018/unaids-data-2018
- Uthman, O. A. (2008). HIV/AIDS in Nigeria: A bibliometric analysis. *BMC Infectious Dis*eases, 8, 1–7. https://doi.org/10.1186/1471-2334-8-19 Uthman, O. A. (2010). Pattern and determinants of HIV research productivity in sub-Saharan Africa: Bibliometric analysis of 1981 to 2009 PubMed papers. *BMC Infectious Dis*eases, 10, 1–8. https://doi.org/10.1186/1471-2334-10-47

- ANEXOS 3. Publicación 3

González-Alcaide G, Menchi-Elanzi M, Bolaños-Pizarro M, Gutiérrez-Rodero F, Ramos-Rincón JM. Caracterización bibliométrica y temática de la investigación sobre VIH-SIDA en España (2010-2019). Enferm Infecc Microbiol Clin. 2022. https://doi.org/10.1016/j.eimce.2023.03.006

- o Artículo original.
- Revista: Enfermedades Infecciosas y Microbiología Clínica.
 EISSN: 1578-1852
- o Factor de Impacto (2021): 1,994
- Cuartil: posición 82 de 95 (cuarto cuartil) en la categoría *Infectious Diseases* del *Sciences Citation Index Expanded.*, y 124 de 137
 (cuarto cuartil) en la categoría *Microbiology* según el *Science Citation Index Expanded.*

G Model

EIMC-2597; No. of Pages 10

ARTICLE IN PRESS

Enfermedades Infecciosas y Microbiología Clínica xxx (xxxx) xxx-xxx

Enfermedades Infecciosas y Microbiología Clínica

www.elsevier.es/eimc

Original

Caracterización bibliométrica y temática de la investigación sobre VIH-sida en España (2010-2019)

Gregorio González-Alcaide ^{a,*}, Marouane Menchi-Elanzi ^b, Máxima Bolaños-Pizarro ^a, Félix Gutiérrez-Rodero ^{c,d,e} y José-Manuel Ramos-Rincón ^{b,d}

- ^a Departamento de Historia de la Ciencia y Documentacion, Universitat de València, Valencia, España
- ^b Departamento de Medicina Interna, Hospital General Universitario de Alicante, Alicante, España
- c Unidad de Enfermedades Infecciosas, Hospital General Universitario de Elche, Elche, Alicante, España
- d Departamento de Medicina Clínica, Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, Alicante, España
- e Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, España

INFORMACIÓN DEL ARTÍCULO

Historia del artículo: Recibido el 9 de marzo de 2022 Aceptado el 2 de mayo de 2022 On-line el xxx

Palabras clave:
Bibliometría
VIH
Síndrome de inmunodeficiencia adquirida
Red de Investigación del SIDA (RIS)
Investigación
España

Keywords:
Bibliometrics
HIV
Acquired immunodeficiency syndrome
Spanish AIDS Research Network (RIS)

Research

Spain

RESUMEN

Introducción: La constitución de la Red de Investigación en Sida (RIS) constituyó un hito para el impulso de la investigación sobre el VIH en España. Se analiza la investigación española en el área, evaluando específicamente el papel que ha desempeñado la RIS en la misma.

Métodos: Se identificaron las publicaciones sobre VIH-sida con la participación de instituciones españolas en la Web of Science a lo largo del período 2010-2019, caracterizando bibliométricamente la actividad investigadora e identificando mediante un análisis de clústeres los ámbitos temáticos de investigación. Resultados: Se han identificado 3.960 documentos (promedio de 396 documentos/año), el 42% de los cuales han sido firmados en colaboración internacional. Los investigadores de la RIS han participado en el 60% de los documentos, presentando una producción científica y citación sensiblemente superior a los autores no vinculados a la misma. Cinco clústeres temáticos articulan la investigación, centrados en el abordaje clínico y terapéutico de las personas que viven con el VIH, la coinfección y la comorbilidad con otras enfermedades, la caracterización genética del virus, el desarrollo de vacunas y el estudio de su transmisión en colectivos específicos o asociado a las conductas sexuales.

Conclusión: La investigación española sobre el VIH, impulsada en gran medida por los grupos de la RIS ha alcanzado un estadio de madurez, con un notable incremento de la producción científica, la participación en redes cooperativas internacionales y un destacado impacto y visibilidad.

© 2022 Los Autores. Publicado por Elsevier España, S.L.U. en nombre de Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. Este es un artículo Open Access bajo la licencia CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Bibliometric and thematic characterization of the research on HIV-aids in Spain (2010-2019)

ABSTRACT

Introduction: The establishment of the Spanish AIDS Research Network (RIS) was a milestone for the promotion of HIV research in Spain. We analyse Spanish HIV research, assessing the role that RIS has played in it.

Methods: We identified publications on HIV-aids with the participation of Spanish institutions in the Web of Science over the period 2010-2019, characterising research activity by means of bibliometrics and identifying the thematic areas of research through a cluster analysis.

Results: A total of 3960 documents have been identified (average of 396 documents/year), 42% of which have been signed in international collaboration. RIS researchers have participated in 60% of the documents, presenting a scientific production and citation significantly higher than authors not linked to the RIS. Five thematic clusters articulate the research, focusing on the clinical and therapeutic approach to

https://doi.org/10.1016/j.eimc.2022.05.002

0213-005X/© 2022 Los Autores. Publicado por Elsevier España, S.L.U. en nombre de Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. Este es un artículo Open Access bajo la licencia CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Cómo citar este artículo: G. González-Alcaide, M. Menchi-Elanzi, M. Bolaños-Pizarro et al., Caracterización bibliométrica y temática de la investigación sobre VIH-sida en España (2010-2019), Enferm Infecc Microbiol Clin., https://doi.org/10.1016/j.eimc.2022.05.002

 ^{*} Autor para correspondencia.
 Correo electrónico: gregorio.gonzalez@uv.es (G. González-Alcaide).

G Model

EIMC-2597; No. of Pages 10

ARTICLE IN PRESS

G. González-Alcaide, M. Menchi-Elanzi, M. Bolaños-Pizarro et al.

Enfermedades Infecciosas y Microbiología Clínica xxx (xxxx) xxx-xxx

people living with HIV, co-infection and co-morbidity with other diseases, the genetic characterisation of the virus, the development of vaccines and the study of its transmission in specific groups or associated with sexual behaviour.

Conclusion: Spanish HIV research, largely driven by RIS groups, has reached a stage of maturity, with a notable increase in scientific production, participation in international cooperative networks and an outstanding impact and visibility.

© 2022 The Authors. Published by Elsevier España, S.L.U. on behalf of Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introducción

La investigación sobre el VIH-sida en España ha abordado diferentes retos desde el descubrimiento del virus en la década de los 80, que se han centrado en el control de la epidemia y la mejora de la salud de las personas que viven con el VIH, incidiendo en ámbitos como la prevención, la detección temprana y su abordaje clínico¹. También los grupos de investigación españoles han desarrollado una importante labor en el ámbito de la investigación básica, para determinar las bases genéticas del virus y su incidencia, de cara a favorecer el desarrollo de tratamientos y la creación de una vacuna, integrándose y vinculándose progresivamente con los grupos y redes internacionales del área².

El desarrollo de la investigación ha estado marcado por 3 hitos modélicos: a) la creación en 1997 del Grupo de Estudio de Sida de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GeSIDA), que se constituyó en un destacado referente para el impulso de la investigación; b) la creación en 1999 de la Fundación para la Investigación y Prevención del Sida en España (FIPSE), que fue la primera agencia financiadora específica de la investigación en el área, y c) la creación en 2003 de las Redes Temáticas de Investigación Cooperativa (RETIC), que posibilitó la constitución de la Red de Investigación en Sida (RIS)². La RIS se ha erigido en un destacado referente a nivel internacional, con una creciente presencia en los grandes consorcios de investigación global, en paralelo a la excelencia de la investigación realizada por sus grupos¹.

Existe una amplia literatura bibliométrica que ha analizado la investigación sobre el VIH, tanto de forma global^{3–6}, como a nivel de áreas geográficas^{7–9} o países^{10–12}. De forma más específica, algunos trabajos se han centrado en el análisis de la extensión de las prácticas cooperativas y de las redes de colaboración científica^{13,14}, la identificación de los núcleos temáticos de documentos más citados o frentes de investigación en el área¹⁵ o la literatura centrada en aspectos sociales, psico-sociales o económicos, como la estigmatización y discriminación de las personas que viven con el VIH¹⁶, los programas de intervención centrados en los niños con VIH-sida¹⁷ o su incidencia en términos demográficos o el impacto de los recursos económicos dedicados a la investigación¹⁸.

También diferentes estudios bibliométricos han analizado la investigación sobre VIH-sida desarrollada en España¹⁹⁻²², si bien, son trabajos que no recogen la investigación más reciente generada tras la creación de la RIS. A nivel internacional, solo un número puntual de trabajos ha tratado de analizar la actividad científica vinculada con las redes de investigación formales articuladas para el impulso de la investigación sobre el VIH, pese al rol esencial que han adquirido las mismas como organismos que fijan las líneas temáticas de investigación y como instrumentos para la articulación de las interacciones y las prácticas cooperativas de los investigadores. En este sentido, se puede destacar el estudio de Rosas et al.²³ que analizó las publicaciones generadas por las diferentes redes o grupos de investigación de ensayos clínicos sobre HIV/AIDS vinculadas al National Institute of Allergy and Infectious Diseases (NIAID) publicados en el período 2006-2008, concluyendo que las mismas presentaban un destacado reconocimiento e impacto y un importante grado de colaboración interdisciplinar; y la contribución de

Nye et al.²⁴, que evaluó globalmente la producción, la influencia y la colaboración de la producción científica de la *HIV Vaccine Trials Network* (HVTN) en relación con la investigación global de las vacunas sobre VIH, constatando la evolución creciente de la producción científica de la red, y particularmente la mayor productividad de los investigadores vinculados a la misma, una presencia más extendida de las prácticas cooperativas, un destacado número de autores ocupando posiciones relevantes en la red de coautorías científicas así un grado de citación y visibilidad de las publicaciones sensiblemente superior en relación con el resto de la producción científica del área.

El objetivo del presente estudio consiste en analizar la investigación española sobre VIH-sida, caracterizando de forma específica la contribución a la misma de la RIS. Se tratará, en este sentido, de dar respuesta a las siguientes cuestiones:

- ¿Cuál es el peso y la evolución de la investigación en la que han participado los investigadores de la RIS en relación con el conjunto de la investigación española generada en el área de conocimiento?
- ¿En qué medida estar integrado en la RIS se puede asociar a un mejor desempeño científico?
- ¿Cuál es el rol desempeñado por los investigadores de la RIS en la red de coautoría y en relación con la colaboración internacional?

Métodos

El proceso metodológico seguido para abordar el objetivo y dar respuesta a las preguntas de investigación planteadas ha sido el siguiente:

Identificación de la producción científica española sobre VIH

Para la identificación de la población documental objeto de estudio se ha optado por plantear una búsqueda tomando como referencia el tesauro del MeSH, ya que este instrumento de control terminológico permite identificar con precisión los documentos del ámbito analizado. La búsqueda se ha efectuado a través de las bases de datos de la Web of Science (WoS) Core Collection de Clarivate Analytics, ya que esta fuente recoge todas las afiliaciones institucionales de los autores, así como las citas de los documentos y está vinculada con los datos del impacto y la visibilidad de las revistas de publicación a partir del ranking recogido en el Journal Citation

La ecuación de búsqueda ha quedado definida como sigue:

Encabezado MeSH: EXPLODE: HIV OR HIV Infections OR Acquired Immunodeficiency Syndrome OR AIDS Vaccines AND Dirección:

Posteriormente, se han limitado los resultados obtenidos a las tipologías documentales article y review y al período cronológico 2010-2019.

G Model

EIMC-2597; No. of Pages 10

ARTICLE IN PRESS

G. González-Alcaide, M. Menchi-Elanzi, M. Bolaños-Pizarro et al.

Enfermedades Infecciosas y Microbiología Clínica xxx (xxxx) xxx-xxx

Revisión de la homogeneidad

y calidad de los datos y determinación de la producción científica de la RIS

Con el propósito de asegurar la representatividad de los datos, se han revisado manualmente las formas de identificación de las autorías, subsanando los problemas detectados, como el diferente grado de información aportado (uno o 2 apellidos o iniciales de nombres), erratas u homonimias, etc. Asimismo, se han revisado las afiliaciones institucionales para unificar las diferentes variantes con las que es identificada una misma institución e individualizar las instancias recogidas en este campo bibliográfico, ya que es muy habitual recoger 2 o más instituciones con entidad propia en una firma. En estos casos, se ha efectuado una asignación completa, duplicando las firmas, por ejemplo, en el caso de los institutos de investigación vinculados a hospitales, lo que puede dar una impresión de redundancia en los resultados, pero que estimamos necesario para no perder una información relevante de afiliaciones que se han hecho constar por parte de los autores de las publicaciones y que en ocasiones se presentan como única firma.

Para determinar la producción científica vinculada a la RIS, se han identificado los integrantes de los grupos de investigación de la red recogidos en la página web de la misma en septiembre de 2021 (https://redris.es), integrando en el análisis efectuado algunos grupos que han formado parte de la RIS a lo largo del período analizado. A continuación, se han vinculado con las autorías de las publicaciones científicas de la WoS.

Cálculo de indicadores e interpretación de los resultados

Caracterización bibliométrica de la investigación española sobre VIH-sida

Producción y colaboración científica. Con el propósito de disponer de una visión global de la actividad investigadora generada sobre el VIH-sida en España a lo largo del período analizado así como de la colaboración científica en el área, se han calculado los siguientes indicadores:

- Número de documentos publicados por año.
- Distribución del número de documentos publicados entre los diferentes agentes científicos: autores, instituciones, revistas y categorías temáticas o áreas de conocimiento en las que se han publicado los trabajos.
- Índice de transitoriedad. Refiere el porcentaje de autores con una única publicación. Diferentes estudios han tomado este indicador, que se relaciona con la distribución de la productividad, como referente para analizar el grado de consolidación de una comunidad investigadora, en función de la mayor o menor proporción de autores «transitorios»²⁵.
- Promedio del número de autores por documento.
- Número documentos en colaboración nacional e internacional.

Impacto y visibilidad. La evaluación del desempeño científico de la actividad investigadora se ha efectuado a partir de indicadores de citación de los documentos y de la visibilidad de las revistas o fuentes de publicación de los estudios:

- Número de citas recibidas por los documentos agrupados por categorías temáticas y revistas.
- Promedio de citas por documento.
- Factor de Impacto y Journal Citation Indicator (JCI) de las revistas de publicación. El JCI constituye una medida de impacto normalizada de las citas que han recibido los artículos y las revisiones de una revista en su categoría temática, de forma que el valor medio se sitúa en 1, por lo que una revista con un JCI superior a

ese valor ha recibido un grado de citación superior al promedio de su categoría.

Posición relativa de las revistas en sus categorías temáticas y distribución por cuartiles en relación con el Factor de Impacto y el JCI. Para ello, se ha tomado como referencia el ranking de 2020 recogido en la plataforma de la WoS de Clarivate Analytics.

Producción y desempeño científico de los grupos de la RIS

Con el propósito de analizar específicamente la producción e impacto de la RIS, se han presentado los indicadores mencionados referidos al subconjunto de documentos en los que han participado los investigadores vinculados a esta red, además de efectuar un análisis específico de la actividad desarrollada por estos grupos:

- Número de documentos.
- Número de citas.
- Promedio de citas/documento.
- Índice h.

Se ha generado una red de coautorías, identificando los vínculos de colaboración establecidos entre los autores más productivos (> 9 documentos) y con un mayor grado de colaboración con otros investigadores (> 9 documentos), con el propósito de analizar las posiciones ocupadas por los investigadores de la RIS en la misma. Para ello, se ha calculado una medida de centralidad (el grado de intermediación), estimando asimismo la producción científica y la citación de los investigadores integrados en la red generada.

Clústeres temáticos de la investigación.

Finalmente, se han caracterizado los ámbitos temáticos abordados por parte de la investigación española sobre VIH-sida, generado para ello una matriz con la co-ocurrencia de los descriptores MeSH asignados a los documentos, sobre la que se ha aplicado un análisis de clústeres para la identificación de las diferentes líneas temáticas y su representación visual.

Para la generación de la red de temas no ha sido necesario efectuar un proceso de homogenización de la terminología, al utilizarse los descriptores del tesauro MeSH, si bien, para favorecer la identificación de los clústeres y una óptima visualización de la red, reduciendo la elevada densidad de vínculos entre los descriptores, sí que se ha efectuado una «poda» de los descriptores excesivamente genéricos, como los utilizados en el proceso de búsqueda, los referidos al sexo o grupos etarios. La información aportada por estos descriptores ha sido analizada de forma específica.

Para la generación de la red de coautorías y el cálculo de la intermediación de los investigadores se ha utilizado el programa Pajek y la determinación y representación de los clústeres temáticos de investigación ha sido realizada con VOSViewer.

Resultados

Producción científica española sobre VIH

Se han identificado 3.960 documentos, con una producción científica estable en torno a los 300-450 documentos publicados por año (tabla 1). Veintiuna categorías temáticas reúnen más del 1% de los documentos, entre las que destaca enfermedades infecciosas, con el 46,04% de los documentos y otras 5 categorías que reúnen entre el 15-25% de los documentos (inmunología, virología, microbiología, farmacología y farmacia y ciencias multidisciplinares). Aunque con carácter general, las disciplinas vinculadas con la investigación básica presentan un mayor grado de citación, cabe destacar que las publicaciones de los diferentes grupos e investigadores sobre VIH en revistas de medicina general e interna son las que se sitúan con los promedios de citas por trabajo más elevados (anexo 1).

3

EIMC-2597; No. of Pages 10

ARTICLE IN PRESS

G. González-Alcaide, M. Menchi-Elanzi, M. Bolaños-Pizarro et al.

Enfermedades Infecciosas y Microbiología Clínica xxx (xxxx) xxx-xxx

Tabla 1Producción científica y colaboración internacional sobre VIH-sida en España (2010-2019)

Año	Número de documentos	Número de documentos en colaboración internacional	Porcentaje
2010	380	133	35
2011	450	166	36,89
2012	425	157	36,94
2013	411	160	38,93
2014	429	155	36,13
2015	444	197	44,37
2016	370	180	48,65
2017	390	187	47,95
2018	308	152	49,35
2019	353	178	50,42
Total	3.960	1.665	42,04

Tabla 2
Distribución por revista de publicación y participación de la RIS en la producción científica sobre VIH-sida en España (2000-2019)

Revista	Número de documentos	Porcentaje	Número de documentos RIS	Porcentaje	Factor de impacto (2020	JCI (2020)	Posición-ranking Factor de Impacto	Posición-JCI
Plos One	281	7,10	205	72,95	3,240	0,57	26/72-multi-Q2	29/128 Q1
AIDS	267	6,74	213	79,77	4,177	1,09	32/93-ID-Q2 Immunology 84/62 Q3 Virology 14/67 Q2	26/118-ID-Q1 Immunology 41/177 Q1 Virology 9/39 Q1
Enfermedades Infecciosas y Microbiología Clínica	210	5,30	115	54,76	1,731	0,45	82/93-ID-Q4 Microbiology 124/136 Q4	83/118-ID-Q3
lournal of Antimicrobial Chemotherapy		3,74	124	83,78	5,790	1,51	14/93-ID-Q1 Microbiology 26/136 Q1 P&P 43/276 Q1	8/118-ID-Q1 Microbiology 16/151 Q1 P&P 25/357 Q1
HIV Medicine	138	3,48	107	77,54	3,180	0,97	54/93-ID-Q3	35/118-ID-Q2
JAIDS: Journal of Acquired Immune Deficiency Syndromes	125	3,16	101	80,80	3,731	0,94	40/93-ID-Q2 Immunology 95/162 Q3	39/118-ID-Q2 Immunology 56/177 Q2
Clinical Infectious Diseases	100	2,53	77	77,00	9,079	2,13	3/93-ID-Q1 Microbiology 18/162 Q1 Immunology 12/136 O1	3/118-ID-Q1 Microbiology 11/177 Q1 Immunology 7/151 Q
Aids Research and Human Retroviruses	90	2,27	72	80,00	2,205	0,52	75/93-ID-Q4 Virology 31/37 Q4 Immunology 142/162 O4	78/118-ID-Q3 Virology 32/39 Q4 Immunology 134/177 O4
Antiviral Therapy	83	2,10	70	84,34	2,400	0,64	70/93-ID-Q4 P&P 204/276 Q3 Virology 27/37 Q3	68/118-ID-Q3 P&P 195/357 Q3 Virology 24/39 Q3
AIDS Reviews	72	1,82	53	73,61	2,500	0,37	67/93-ID-Q3 Immunology 131/162 O4	94/118-ID-Q4
Journal of Virology	72	1,82	58	80,56	5,103	1,24	9/37-Virology-Q1	7/39 Q1
Journal of Infectious Diseases	58	1,46	41	65,52	5,226	1,40	18/93-ID-Q1 Immunology 56/162 Q2 Microbiology 38/136 Q2	13/118-ID-Q1 Immunology 29/177 Q1 Microbiology 18/151 Q1
Antiviral Research	57	1,44	42	73,68	5,970	1,49	8/37-Virology-Q1 P&P 35/276 Q1	6/39 Virology-Q1 P&P 26/357Q1
BMC Infectious Diseases	51	1,29	34	66,67	3,090	0,82	57/93-ID-Q3	50/118-ID-Q2
Medicina Clinica	48	1,21	17	35,42	1,725	0,40	105/167-Medicina General e Interna-Q3	131/315-Q2
HIV Clinical Trials	45	1,14	33	73,33	1,821	n/a	75/92-ID-Q4-2019 P&P 210/271 Q4-2019	n/a
Scientific Reports	41	1,04	27	65,85	4,380	0,80	17/72-multi-Q1	19/128 Q1
Pediatric Infectious Disease Journal	41	1,04	24	58,54	2,129	0,73	79/93-ID-Q4 Pediatrics 69/129 Q3 Immunology 143/162 Q4	59/118-ID-Q2 Pediatrics 76/177 Q2 Immunology 85/177 Q2

ID: Infectious Diseases; JCI: Journal Citation Indicator; Multi: multidisciplinar; P&P: Pharmacology & Pharmacy; RIS: Red de Investigación en Sida; VIH: virus de la inmunodeficiencia humana

EIMC-2597; No. of Pages 10

ARTICLE IN PRESS

G. González-Alcaide, M. Menchi-Elanzi, M. Bolaños-Pizarro et al.

Enfermedades Infecciosas y Microbiología Clínica xxx (xxxx) xxx-xxx

Tabla 3Participación institucional (> 99 documentos) en la producción científica sobre VIH-sida en España (2010-2019)

Afiliación institucional	Número de documentos	Índice h	Número de citas	Promedio citas/documento
Univ Autònoma de Barcelona	669	46	11.142	16,65
Univ de Barcelona	638	45	11.181	17,53
HC de Barcelona	628	48	11.143	17,74
HU Germans Trias i Pujol	623	50	11.973	19,22
nstituto de Salud Carlos III	502	38	6.807	13,56
rsiCaixa: Institut de Recerca de la Sida	475	49	10.589	22,29
HGU Gregorio Marañón	416	31	5.248	12,62
HU Ramon y Cajal	385	32	5.056	13,13
nstitut d'Investigacions Biomèdiques August Pi i Sunyer	365	35	6.169	16,90
HU La Paz	331	36	5.764	17,41
CIBER de Epidemiología y Salud Pública	274	25	3.243	11,84
H Carlos III ^a	254	36	5.812	22,88
Univ College London ^b	232	42	8.018	34,56
HU Vall d'Hebron	223	25	2.894	12,98
Fundació Lluita Contra la Sida	215	29	3.595	16,72
HU 12 de Octubre	214	27	3.110	14,53
H de la Santa Creu i Sant Pau	207	25	3.043	14,70
HU Virgen del Rocío	194	25	2.406	12,40
HU Virgen de Valme	186	19	1.782	9,58
HU de Bellvitge	183	26	3.088	16,87
institució Catalana de Recerca i Estudis Avançats	178	35	4.638	26,06
Jniv de Vic - Univ Central de Catalunya	166	22	1.998	12.04
nstituto Ramón y Cajal de Investigación Sanitaria	160	20	1.755	10,97
HC San Carlos	143	21	1.757	12,29
nstituto de Biomedicina de Sevilla	141	19	1.378	9,77
nstituto de Biomedicina de Sevina nstituto de Investigación Sanitaria del Hospital Universitario La Paz	140	26	2.612	18,66
	137	26	1.271	
Instituto de Investigación Sanitaria Gregorio Marañón				9,28
Univ Sevilla	127	20	1.515	11,93
HU Reina Sofia	124	21	1.611	12,99
Univ Complutense de Madrid	119	19	1.554	13,06
Centre de Recerca en Salut Internacional de Barcelona	117	20	1.771	15,14
Univ Autónoma de Madrid	116	19	1.268	10,93
HU Virgen de la Victoria	116	15	939	8,09
HU y Politécnico de La Fe	112	22	1.602	14,30
Jniv Copenhagen ^b	111	28	4.162	37,50
nstitut d'Investigació en Ciències de la Salut Germans Trias i Pujol	109	20	1.447	13,28
HU de Donostia	105	18	1.076	10,25
Jniv Miguel Hernández de Elche	105	21	1.988	18,93
Consejo Superior de Investigaciones Científicas	105	24	2.066	19,68
Jniv Amsterdam	104	32	4.503	43,30
HGU de Elche	103	24	2.223	21,58
Univ Alcalá de Henares	102	20	1.426	13,98

H: hospital; HC: hospital clínic/o; HGU: hospital general universitario; HU: hospital universitario; Univ: universidad.

La revista multidisciplinar *Plos One* es la que ha publicado el mayor número de documentos, si bien, destacan entre las revistas más productivas diferentes revistas especializadas en VIH/sida (como *AIDS*, *HIV Medicine*, *JAIDS: Journal of Acquired Immune Deficiency Syndromes y Aids Research and Human Retroviruses*), además de las revistas españolas Enfermedades Infecciosas y Microbiología Clínica y *Medicina Clínica*. También cabe resaltar la presencia en el *ranking* de las revistas más productivas de una especializada en revisiones (*AIDS reviews*) y otra en ensayos clínicos (*HIV Clinical Trials*). Entre las revistas de más elevada productividad, destacan seis revistas con un JCI superior a uno y 8 revistas situadas en el primer cuartil de sus categorías temáticas (tabla 2).

Autorías y colaboración internacional

Se han identificado 15.703 autores, de los que 323 están vinculados a la RIS. El índice de transitoriedad se sitúa en el 64,56% de los autores (n = 10.140). De los 753 autores de más elevada producción científica (> 9 documentos), 186 son de la RIS. El anexo 2 recoge la distribución de los autores por umbrales de productividad. Cabe destacar la elevada productividad de todos los autores vinculados a la RIS, ya que el 57,58% de los mismos (n = 186) han publicado

> 9 documentos. Estos autores se sitúan, asimismo, con un promedio de documentos publicados muy superior (41,56) a los grandes productores (> 9 documentos) no vinculados a la RIS (15,37).

En relación con la colaboración, el promedio de autores por documento se ha situado en $11,29\pm17,8$, si bien, ha pasado de $9,74\pm14,62$ en el período 2010-2014 a $13,04\pm20,67$ en 2015-2019, destacando el notable incremento del número de trabajos en multi-autoría en los que han participado un número muy elevado de autores, ya que por ejemplo los trabajos con más de 20 autores han pasado de representar el 4,5% de los documentos en el período 2010-2014 (n = 95) al 10,72% de los documentos en 2015-2019 (n = 200). En la tabla 2015-2019 (n = 20015-2019). En la tabla 2015-2019 (n = 2015-2019) al 2015-2019 (n = 2015-2019) al 2015-2019 (n = 2015-2019) and the results of 2015-2019) and the results of 2015-2019 (n = 2015-2019). El porcentaje de documentos en 2015-20190 hasta situarse en el 2015-20190 (tabla 2015-20190) hasta situarse en el 20

Participación de la RIS en la investigación española sobre VIH

Los 38 grupos de investigación de la RIS analizados se distribuyen en 19 grupos vinculados con la investigación básica, 21 vinculados con la investigación clínica y otros 18 grupos que desarrollan una investigación epidemiológica, si bien, cabe destacar

a Aunque está integrado desde el año 2013 en el HU La Paz se ha mantenido esta institución diferenciada, en tanto que se mantiene como afiliación institucional en las publicaciones científicas.

b En la tabla aparecen instituciones extranjeras porque autores de las mismas han colaborado frecuentemente con autores de instituciones españolas.

EIMC-2597; No. of Pages 10

ARTICLE IN PRESS

G. González-Alcaide, M. Menchi-Elanzi, M. Bolaños-Pizarro et al.

Enfermedades Infecciosas y Microbiología Clínica xxx (xxxx) xxx-xxx

que numerosos grupos participan simultáneamente en más de un tipo de orientación investigadora (anexo 3). Globalmente, los investigadores de la RIS han participado en el 60,43% (n = 2.393) de la producción científica española sobre VIH, situándose con un promedio de citas por documento ligeramente superior (15,92 frente al 14,15, en el caso de la producción científica no vinculada a estos grupos) y con un menor grado de documentos no citados (únicamente el 7,19% de los documentos frente al 13,34% en el caso de la producción científica en la que no ha participado ningún investigador de la RIS)

La participación de los investigadores de la RIS en las revistas más productivas y de elevado impacto y visibilidad se sitúa en casi todos los casos con valores muy por encima de la participación global del conjunto de investigadores en la producción científica analizada (tabla 2).

Aunque con carácter general la investigación básica se sitúa con los valores más destacados de producción y citación, cabe destacar que los grupos que se definen por un tipo de investigación transversal (básica y clínica/epidemiológica o clínica y epidemiológica) presentan un mayor grado de citación que los grupos especializados en un único tipo de investigación (anexo 3).

Dos grupos de elevada productividad y citación se destacan sensiblemente por encima del resto (con un promedio de 19-21 citas por documento e índices-h de 45-48), situándose a continuación otros 17 grupos con más de 100 documentos publicados y también un destacado grado de citación (tabla 4).

La generación de la red de coautorías con los autores de más elevada productividad (> 9 documentos) e intensidad de vínculos cooperativos (> 9 documentos en colaboración con otros investigadores) (fig. 1) ha permitido determinar que el componente principal que aglutina el mayor número de autores vinculados entre sí está conformado por 482 autores, de los que 158 (32,78%) están vinculados a la RIS. Los autores del componente principal vinculados a la RIS presentan un promedio de intermediación (0,00497) muy superior al resto de autores (0,00118), así como una productividad sensiblemente superior (44,26 documentos por autor frente a 25,65 del resto de autores).

Análisis temático de la investigación española sobre VIH-sida

Se han identificado 5 destacados clústeres temáticos de investigación (fig. 2), entre los que destaca uno vinculado con la terapia antirretroviral y sus complicaciones y otro centrado en el estudio de la coinfección (hepatitis B, hepatitis C, leishmaniasis) y la comorbilidad con otras enfermedades (cirrosis hepática, tuberculosis, infecciones oportunistas y comorbilidades no infecciosas). La investigación básica vinculada a la caracterización genética del virus (variaciones genéticas, replicación, mutaciones, inhibidores, efectos de los fármacos, etc.) concentra el interés de otro destacado clúster de investigación. También se ha identificado otro clúster que aborda aspectos relacionados con el desarrollo de vacunas y otro relacionado el estudio de la transmisión en colectivos específicos o asociado a las conductas sexuales.

No se han observado diferencias por género (H=2.513, M=2.409) y la investigación se centra mayoritariamente en la población adulta (n=2.161) y preferentemente en el grupo poblacional de entre 45-64 años (n=1.656) frente a los adultos jóvenes (19-24 años, n=582). Los estudios centrados en los adolescentes (n=458) y ancianos (n=428) tienen una presencia menor, al igual que en los grupos poblacionales de entre 0 y 12 años (97-199 documentos).

Discusión

Los resultados del presente estudio permiten actualizar los trabajos previos que han analizado la evolución de la investigación española sobre el VIH-sida desde la década de 1980. Se ha puesto de manifiesto la continuidad de la evolución creciente de la producción científica española en el área, ya que se ha pasado de los 1.821 artículos de revista identificados en bases de datos nacionales en el período 1983-1992 en el estudio de Aleixandre et al. 19 (promedio de 182,1 documentos/año); de los 2.254 documentos publicados en las bases de datos de la WoS en el período 1985-2001 en el estudio de Civera et al.20 (132,59 documentos/año); o de los 2065 documentos recogidos en Medline en el período 1991-1999 en el estudio de Ramos Rincón et al.²² (229,44 documentos/año); a los 3.960 documentos analizados en el presente estudio correspondientes al período 2010-2019 (promedio de 396 documentos/año). También cabe resaltar que la participación de los investigadores españoles en publicaciones especializadas en VIH ha experimentado un crecimiento en relación con el estudio de Uusküla et al.26 correspondiente al período 2002-2011, ya que han pasado de representar el 17,91 al 24,12% de los documentos.

La distribución de la investigación española sobre VIH-sida por áreas de investigación se corresponde con la observada a nivel global, tanto en relación con las principales disciplinas responsables del impulso de la investigación (enfermedades infecciosas, inmunología y virología) como a nivel de revistas científicas, ya que en todas las revistas más productivas sobre VIH identificadas en el estudio de Tran et al.²⁷ han participado en mayor o menor medida investigadores españoles. Destaca la continuidad de la investigación sobre VIH-sida en las revistas españolas, particularmente en EIMC, cuya investigación triplicaba en el período 2003-2007 a otras enfermedades infecciosas28 y que continúa siendo la revista española más productiva (n=211). Asimismo, la investigación ha alcanzado una importante proyección global, con el 88,89% de los documentos (n = 3.520) publicados en revistas internacionales. También es especialmente significativo el incremento de los artículos publicados en revistas de elevado impacto, va en el estudio de Uusküla et al.²⁶, que estimaron que las publicaciones españolas sobre VIH en revistas con un Factor de Impacto ≥ 3 era únicamente el 7.88% de las publicaciones en el período 2002-2011, se ha pasado al 69,43% de los documentos en el presente estudio. Utilizando el indicador normalizado JCI, el 38,56% de los documentos han sido publicados en revistas que reciben un grado de citación superior al promedio de sus categorías, lo que confirma la evolución positiva que ha experimentado el grado de visibilidad e impacto de la investigación española sobre VIH-sida.

También se ha constatado un aumento significativo de la colaboración científica. A nivel de autores, el estudio de Lakeh y Ghaffarzadegan3 destacó que el promedio de autores por documento en las publicaciones sobre VIH a nivel global se incrementó progresivamente de 4,2 en las décadas de 1980 y 1990 hasta situarse en torno a los 6,2 autores por documento en 2012, un valor superado ampliamente en el presente estudio (11,29), con un destacado crecimiento de los estudios en multi-autoría con un número muy elevado de autores. También destaca el elevado grado de documentos en colaboración internacional, que se sitúa muy por encima de otras áreas de la investigación biomédica. La colaboración científica y la participación en redes internacionales resulta de especial relevancia en un área compleja de abordaje multidisciplinar como la investigación sobre el VIH-sida, ya que favorece compartir conocimiento, pericia, recursos y datos24. La destacada participación de los investigadores españoles y particularmente de los integrantes de la RIS en iniciativas como cohortes, biobancos, o el impulso de estudios multicéntricos puede contribuir a explicar el elevado grado de colaboración observado²⁹. En total, España cuenta con diferentes cohortes relevantes de pacientes infectados por VIH v sida la CoRIS, como la Cohorte Nacional de Pacientes Pediátricos con Infección VIH (CoRISPe), o el Proyecto para la Informatización del Seguimiento Clínico-epidemiológico de la Infección por VIH y

EIMC-2597; No. of Pages 10

ARTICLE IN PRESS

G. González-Alcaide, M. Menchi-Elanzi, M. Bolaños-Pizarro et al.

Enfermedades Infecciosas y Microbiología Clínica xxx (xxxx) xxx-xxx

Tabla 4 Actividad y desempeño científico de los grupos de la RIS en la Web of Science (2010-2019)

Grupo RIS ^a	Tipo investigación	Número de documentos	Número de citas	Promedio citas/documentos	Índice-l
Grupos del IrsiCaixa Instituto de Investigación del sida	Básica	489	10.200	20,86	48
Hospital Clínic-IDIBAPS	Básica/clínica	489	9.312	19,04	45
Hospital Universitario Ramón y Cajal, Servicio de Enfermedades Infecciosas	Básica/clínica	289	4.386	15,18	32
Instituto de Investigación del Hospital Sanitario La Paz (IdiPAZ), Unidad VIH	Básica/clínica	155	3.784	24,41	32
Hospital General Universitario de Elche	Clínica/epidemiológica	150	2.868	19,12	27
Hospital Universitario 12 de Octubre, Grupo de	Básica/clínica	184	2.703	14,69	26
Investigación en Virología-VIH/sida	,				
Hospital General Universitario Gregorio Marañón, BioBanco VIH	Básica	191	2.553	13,37	25
Hospital Universitario Vall d'Hebron, Unidad de Investigación en VIH/sida	Básica/clínica	181	2.633	14,55	25
Hospital Universitario de Bellvitge, Unidad de HIV y ETS, Servicio de Enfermedades Infecciosas	Clínica/epidemiológica	157	2.820	17,96	25
Instituto de Investigación Sanitaria Galicia Sur	Clínica/epidemiológica	190	2.251	11,85	24
Instituto de Investigación del Hospital de la Santa Creu i Sant Pau, Grupo de investigación en VIH y sida	Básica/clínica	186	2.848	15,31	24
Centro Nacional de Epidemiología (ISCIII)/Centro Sanitario Sandoval, Unidad de la Cohorte de la Red de Investigación en Sida (CoRIS)	Clínica/epidemiológica	151	2.065	13,67	24
Hospital General Universitario Gregorio Marañón, Grupo de aspectos clínicos y epidemiológicos del VIH y condiciones asociadas	Básica/clínica	215	2.340	10,88	23
Enfermedades Infecciosas Enfermedades Infecciosas	Clínica/epidemiológica	159	1.918	12,06	23
Hospital Universitario Virgen del Rocío, Grupo de Investigación VIH	Básica/epidemiológica	172	1.920	11,16	20
Centro Nacional de Microbiología (Instituto de Salud Carlos III), Unidad de inmunopatología del sida	Básica	101	1.314	13,01	20
Hospital Universitario de Valme, Unidad de Enfermedades Infecciosas y Microbiología	Clínica	141	1.558	11,05	19
Hospital Universitario San Cecilio	Clínica/epidemiológica	84	1.157	13,77	19
Centro Nacional de Biotecnología, Poxvirus y vacunas	Básica	50	990	19,8	19
Hospital General Universitario de Alicante, Grupo de investigación sobre VIH Enfermedades Infecciosas	Clínica/epidemiológica	114	1.083	9,5	18
Instituto de Investigación Sanitaria-Fundación Jiménez Díaz	Básica	90	1.056	11,73	17
Centro Nacional de Microbiología (Instituto de Salud Carlos III), Unidad de infección viral e inmunidad	Básica	115	972	8,45	16
Hospital Universitario Joan XXIII de Tarragona, Grupo de investigación en infección e inmunidad (INIM)	Básica/clínica	95	837	8,81	16
Hospital Universitario de La Princesa, Servicio de Medicina Interna-Infecciosas	Clínica	75	814	10,85	16
Hospital Universitario Donostia	Clínica/epidemiológica	71	690	9,72	14
Hospital Universitario Virgen de la Victoria	Epidemiológica	77	557	7,23	11
Hospital Universitario y Politécnico de La Fe	Epidemiológica	51	478	9,37	11
Hospital San Pedro, Unidad de VIH	Epidemiológica	51	403	7,9	10
Hospital Universitario Son Espases	Clínica/epidemiológica	49	491	10,02	10
Hospital Universitario Mútua Terrassa, Grupo de investigación VIH*/sida	Clínica/epidemiológica	31	307	9,9	10
Centro Nacional de Microbiología (Instituto de Salud Carlos III), Unidad de Biología y variabilidad del VIH	Básica/epidemiológica	30	255	8,5	9
Hospital Universitario Parc Taulí, Grupo de investigación en retrovirus	Epidemiológica	28	230	8,21	8
Centro Nacional de Microbiología (Instituto de Salud Carlos III), Unidad de Virología molecular	Básica	25	265	10,6	8
nstituto de Salud Carlos III, Unidad de investigación en salud digital	Básica/clínica	11	272	24,73	8
Hospital General Universitario Reina Sofía	Epidemiológica	28	185	6,61	7
Hospital Universitario de Canarias	Epidemiológica	27	163	6,04	6
Universidad de La Laguna, Inmunología celular y viral	Básica	8	81	10,12	6
Complejo Hospitalario de Navarra, Grupo de investigación en infección por VIH	Epidemiológica	11	63	5,73	4

RIS: Red de Investigación en Sida.

Sida (PISCIS), todas ellas coordinadas con otras cohortes a nivel internacional como COHERE, ART-CC y EuroCOORD^{1,29,30}.

La relevancia de la RIS resulta incuestionable, en tanto que aglutina el 60% de la producción científica analizada. Los grupos e investigadores vinculados a esta red presentan valores de producción científica y de citación sensiblemente superiores a los autores y documentos en los que no han participado, aspectos también constatados en otros estudios que han caracterizado

a Aunque no están recogidos en la web de la RIS, se han integrado en el análisis los grupos del Instituto de Investigación del Hospital Sanitario La Paz (IdiPAZ) y el grupo del Instituto de Investigación del Hospital de la Santa Creu i Sant Pau, dada su vinculación a la Red. Asimismo, no se ha considerado el grupo "La Doctora Álvarez", por estar centrado en el desempeño de actividades de comunicación científica.

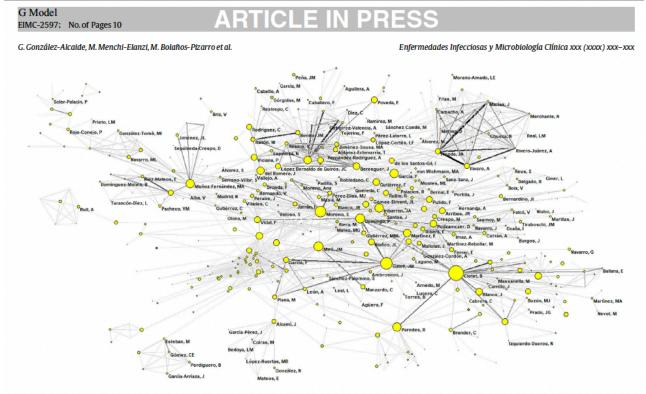


Figura 1. Red de coautorías con el núcleo de los autores más productivos (> 9 documentos y > 9 vínculos de coautoría) sobre VIH-sida en España (2010-2019) con la identificación de los miembros de la Red de Investigación en Sida. El grosor de los nodos refleja el grado de intermediación en la red.

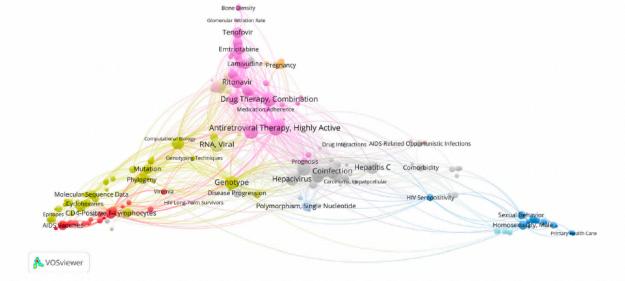


Figura 2. Mapa de los clústeres temáticos de la investigación española sobre el VIH-sida (2010-2019) generado a partir de la co-ocurrencia de los descriptores MeSH asignados a los documentos.

bibliométricamente las redes vinculadas con la investigación sobre VIH, como el trabajo de Nye et al. ²⁴ que analizaron la red de ensayos de vacunas HVTN, mostrando que los investigadores vinculados a la misma duplicaron en una década su producción científica y que sus publicaciones recibieron un grado de citación sensiblemente superior, situándose muchas de sus contribuciones entre los trabajos de más elevada visibilidad.

El presente estudio ha identificado y caracterizado bibliométricamente el conjunto de la producción científica española sobre VIH-sida en el período 2010-2019, si bien, en relación con el análisis específico de los grupos de la RIS, hay que tener presente el carácter dinámico de la misma, con grupos e investigadores que han estado en la red todo el período y otros solo una parte del mismo. En cualquier caso, creemos que la evaluación efectuada ofrece una información relevante acerca de la actividad investigadora desempeñada por estos grupos en un momento de reformulación de las estructuras de investigación en el área.

Otra limitación del presente estudio es que al efectuar el proceso de búsqueda utilizando el tesauro MeSH, se ha ofrecido fundamentalmente una visión de la investigación biomédica sobre el VIH-sida, que puede ser complementada con un análisis de la investigación centrada en los aspectos psico-sociales, destacando ámbitos

EIMC-2597; No. of Pages 10

ARTICLE IN PRESS

G. González-Alcaide, M. Menchi-Elanzi, M. Bolaños-Pizarro et al.

Enfermedades Infecciosas y Microbiología Clínica xxx (xxxx) xxx-xxx

como las medidas de prevención o educativas. En relación con este aspecto, el estudio de Lakeh y Ghaffarzadegan³ constató la mayor orientación biomédica de la investigación sobre el VIH-sida en los países con una menor incidencia y mortalidad de la enfermedad en relación con los aspectos sociales y conductuales, estimando que en el caso de España la investigación de estos aspectos se sitúa por debajo del 30%. En el actual contexto de globalización, sin dejar de lado la investigación biomédica, básica y clínica, en la que España con el liderazgo de la RIS se ha convertido en un destacado referente internacional, se debe integrar en la misma e incidir en mayor medida en aspectos como el análisis de la percepción y las conductas de riesgo (consumidores de drogas, prácticas sexuales, etc.), la identificación de los infectados, la salud mental, el apoyo social o en iniciativas que permitan limitar la discriminación y estigmatización de los contagiados.

La principal conclusión del estudio efectuado es que la investigación española sobre VIH-sida ha alcanzado un estadio de madurez, con una destacada producción científica e integración en las redes de colaboración internacional, por lo que España y particularmente la iniciativa de la RIS analizada en el presente estudio pueden erigirse en un destacado referente para otros países cuya investigación en el área presenta un carácter más incipiente¹⁰⁻¹².

Conflicto de intereses

Los autores declaran no tener ningún conflicto de intereses.

Appendix A.

Anexo 1. Número de documentos publicados sobre VIH-sida en España (2010-2019) distribuidos en función de la adscripción temática de las revistas de publicación

Categoría	Número de documentos	Porcentaje	Número de citas	Promedio citas/doc.
Infectious Diseases	1.823	46,04	2.5947	14,23
Immunology	987	24,92	1.7383	17,61
Virology	744	18,79	1.2054	16,20
Microbiology	699	17,65	9.916	14,19
Pharmacology & Pharmacy	577	14,57	6.890	11,94
Multidisciplinary Sciences	346	8,74	4.884	14,12
Public, Environmental & Occupational Health	253	6,39	2.417	9,55
Medicine, General & Internal	198	5,00	7.813	39,46
Biochemistry & Molecular Biology	133	3,36	2.534	19,05
Gastroenterology & Hepatology	102	2,58	1.806	17,71
Respiratory System	82	2,07	872	10,63
Medicine, Research & Experimental	81	2,05	1.711	21,12
Social Sciences, Biomedical	78	1,97	785	10,06
Chemistry, Medicinal	74	1,87	1.039	14,04
Pediatrics	67	1,69	416	6,21
Health Policy & Services	57	1,44	428	7,51
Health Care Sciences & Services	55	1,39	368	6,69
Biotechnology & Applied Microbiology	54	1,36	532	9,85
Cell Biology	49	1,24	1.140	23,27
Tropical Medicine	48	1,21	445	9,27
Psychology, Multidisciplinary	42	1,06	391	9,31

Anexo 2. Distribución del número de autores con el número de documentos en la investigación española sobre VIH-sida (2010-2019)

Número de documentos	Número de autores	Porcentaje	Número de autores vinculados a la RIS	Porcentaje
1	10.096	64,29	15	4,64
2	2.378	15,14	13	4,02
3	1.022	6,51	24	7,43
4	518	3,30	22	6,81
5	340	2,16	20	6,19
6	224	1,43	10	3,09
7	154	0,98	10	3,09
8	128	0,81	9	2,79
9	90	0,57	14	4,33
>9	753	4,79	186	57,58
Total	15.703	100	323	100

Anexo 3. Distribución de la investigación de la actividad científica y citación en función de la orientación de la investigación de los grupos de la RIS (2010-2019)

Tipo de investigación	Número de grupos	Número de autores	Número de documentos	Número de citas	Promedio citas/documentos
Básica	8	72	945	16.096	17,03
Básica/clínica	9	104	1.234	20.673	16,75
Básica/epidemiología	2	18	202	2.175	10,77
Clínica	3	24	302	4.526	14,99
Clínica/epidemiología	9	75	716	9.658	13,49
Epidemiología	7	30	206	1.730	8,4
Total	38	323	2.393	38.089	15,92

9

EIMC-2597; No. of Pages 10

G. González-Alcaide, M. Menchi-Elanzi, M. Bolaños-Pizarro et al.

Enfermedades Infecciosas y Microbiología Clínica xxx (xxxx) xxx-xxx

Bibliografía

- Alcamí J, Alemany A, Dodero J, Llibre JM. Current situation of HIV research in Spain. Enferm Infecc Microbiol Clin. 2018;36 Suppl 1:26–30, http://dx.doi.org/10.1016/S0213-005X(18)30243-X.
 Carratalà J, Alcamí J, Cordero E, Miró JM, Ramos JM. Investigación en enfer-
- medades infecciosas. Enferm Infecc Microbiol Clin. 2008;26 Supl 15:40–50, http://dx.doi.org/10.1016/S0213-005X(08)76599-6.
- Lakeh AB, Ghaffarzadegan N. Global trends and regional variations in studies of HIV/AIDS. Sci Rep. 2017;7:4170, http://dx.doi.org/10.1038/s41598-017-04527-6. nal variations
- http://dx.doi.org/10.1038/\$41598-017-04527-6.
 4. Ramos JM, Gutiérrez F, Padilla S, Masiá M, Martín-Hidalgo A. Geography of medical publications An overview of HIV/AIDS research in 2003. AIDS. 2005;19:219-20, http://dx.doi.org/10.1097/00002030-200501280-00020.
 5. Self P, Filardo W, Lancaster FW. Acquired immunodeficiency syndrome (AIDS)
- and the epidemic growth of its literature. Scientometrics. 1989;17:49-60, http://dx.doi.org/10.1007/BF02017722.
- Sengupta IN, Kumari L. Bibliometric analysis of AIDS literature. Scientometrics. 1991;20:297–315, http://dx.doi.org/10.1007/BF02018160.
- Gonzalez-Alcaide G, Menchi-Elanzi M, Nacarapa E, Ramos-Rincon JM, HIV/AIDS research in Africa and the Middle East: participation and equity in North-South collaborations and relationships. Global Health. 2020;16:83, http://dx.doi.org/10.1186/s12992-020-00609-9.
- Macias-Chapula CA, Rodeo-Castro IP, Narvaez-Berthelemot N. Bibliometric analysis of AIDS literature in Latin America and the Caribbean. Scientometrics.
- analysis of AIDS interactine in Latin America and the Caribbean. Scientometrics. 1998;41:41–9, http://dx.doi.org/10.1007/BF02457965.

 9. Macias-Chapula CA, Mijangos-Nolasco A. Bibliometric analysis of AIDS literature in Central Africa. Scientometrics. 2002;54:309–17, http://dx.doi.org/10.1023/A: 1016074230843.
- Alzate-Ángel J, Arroyave A, Gómez A, Pericás J, Benach J. What have we researched about HIV infection in Colombia? A bibliometric review 1983-2018.

- ched about filV infection in Colombia? A bibliometric review 1983-2018. Infection. 2020;24:35–41, http://dx.doi.org/10.22354/in.v2411.825.

 11. Liu P, Mu X, Xie H, China's scientific footprint in the global HIV/AIDS research: Productivity, impact and collaboration. Mal J Libr Inf Sci. 2016;21:83–108, http://dx.doi.org/10.22452/mjlis.vol21no1.6.

 12. Neils MEG, Pfaeffle HOI, Kulatti AT, Titova A, Lyles GS, Plotnikova Y, et al. A geospatial bibliometric review of the HIV/AIDS epidemic in the Russian Federation. Front Public Health. 2020;8:75, http://dx.doi.org/10.3389/fpubh.2020.00075.

 13. Falagas ME, Bliziotis IA, Kondilis B, Soteriades ES, Eighteen years of research on AIDS: Contribution of and collaborations between different world regions. AIDS Res Hum Retroviruses. 2006;22:1199–205, http://dx.doi.org/10.1089/aid.2006.22.1199.

 14. Vanni T, Mesa-Frias M, Sanchez-Garcia R, Roesler R, Schwartsmann G, Goldani M7 et al. International scientific collaboration in HIV and HPV: A network analy-
- MZ, et al., International scientific collaboration in HIV and HPV: A network analy-
- sis. PLoS One. 2014;9:e93376, http://dx.doi.org/10.1371/journal.pone.0093376.

 15. Fajardo-Ortiz D, López-Cervantes M, Duran L, Dumontier M, Lara M, Ochoa H, et al. The emergence and evolution of the research fronts in HIV/AIDS research.
- et al. The emergence and evolution of the research fronts in HIV/AIDS research.

 Plos One. 2017;12:e0178293, http://dx.doi.org/10.1371/journal.pone.0178293.

 16. Sweileh WM. Bibliometric analysis of literature in AIDS-related stigma and discrimination. Transl Behav Med. 2019;9:617–28, http://dx.doi.org/10.1093/tbm/iby072.

- 17. Tran BX, Nathan KI, Phan HT, Hall BJ, Vu GT, Vu LG, et al. A Global Bibliometric Analysis of Services for Children Affected by HIV/Acquired Immune Deficiency Syndrome: Implications for Impact Mitigation Programs (GAPRESEARCH). AIDS ev 2019:21
- 18. Menchi-Elanzi M. Pinargote-Celorio H. Nacarapa E. González-Alcaide G. Mencin-Laizizi M, Pinargote-Cetono H, Naciapa E, Conzalez-Arcaide C, Ramos-Rincón JM, Scientific HIV research in Africa and the Middle East: A socio-economic demographic analysis. Afr J AIDS Res. 2021;20:1–5, http://dx.doi.org/10.2989/16085906.2020.1830133.
 Aleixandre R, De la Cueva A, Almero A, Osca J, Giménez JV. Diez años de literatura sobre el Sida (1983-1992): análisis bibliométrico. Enferm Infecc Microbiol Clin. 1995;13:338–44.
- Civera C, Osca Lluch J, Tortosa F, Martínez R, Mateo E, Cano L. La investigación española sobre SIDA y su difusión en las revistas nacionales e internacionales. Rev Esp Drogodep. 2002;27:249–66.
 Osca J. Producción bibliográfica española sobre el Sida: acercamiento bibliomé-
- Osca J. Producción bibliografica española sobre el sida: acercamiento biblionietrico. Enferm Infecc Microbiol Clin. 1997;15:407–10.
 Ramos Rincón JM, Belinchón Romero I, Gutiérrez-Rodero F. La producción científica española respecto a la infección por el virus de la inmunodeficiencia humana/sida: un estudio a través de Medline. Med Clin (Barc). 2001;117:645-53.
- 23. Rosas SR, Kagan JM, Schouten JT, Slack PAS, Trochim WMK. Evaluating research and impact: A bibliometric analysis of research by the NIH/NIAID HIV/AIDS clinical trials networks. PloS One. 2011;6:e17428, /journal.pone.0017428.
- 24. Nye J, D'Souza MP, Hu D, Ghosh D, Research productivity and collaboration of the NIH-funded HIV vaccine trials network: A bibliometric analysis. Heliyon.
- 2021;7:e6005, http://dx.doi.org/10.1016/j.heliyon.2021.e06005.

 25. Gordon A. Transient and continuant authors in a research field: the case of terrorism. Scientometrics. 2007;72:213–24, http://dx.doi.org/10.1007/s11192-007-1714-z.

 26. Uusküla A, Toompere K, Laisaar KT, Rosenthal M, Pürjer ML, Knellwolf A, et al. LM, presents productivity and controlled to the controlled authors. 2007;72:213-24,
- et al. HIV research productivity and structural factors associated with HIV
- research output in European Union countries: A bibliometric analysis. BMJ Open. 2015;5:e006591, http://dx.doi.org/10.1136/bmjopen-2014-006591.

 27. Tran BX, Wong FY, Huy-Pham KT, Latkin CA, Hai-Ha G, Thu-Vu G, et al. Evolution of interdisciplinary landscapes of HIV/AIDS studies from 1983 to 2017: Results from the global analysis for policy in research (GAP research). AIDS Rev. 2019;21:184–94, http://dx.doi.org/10.24875/AIDSRev.19000083.
- Conzález-Alcaide G, Valderrama-Zurián JC, Ramos-Rincón JM. Producción científica, colaboración y ámbitos de investigación en Enfermedades Infecciosas y Microbiología Clínica (2003-2007). Enferm Infecc Microbiol Clin. 2010;28:509–16, http://dx.doi.org/10.1016/j.eimc.2009.12.011.
- Sobrino-Vegas P, Gutiérrez F, Berenguer J, Labarga P, García F, Alejos-Ferreras B, et al. La cohorte de la red española de investigación en Sida y su biobanco: organización, principales resultados y pérdidas al seguimiento. Enferm Infecc Microbiol Clin. 2011;29:645–53, http://dx.doi.org/10.1016/j.eimc.2011.06.002.
- Jaén A, Casabona J, Esteve A, Miró JM, Tural C, Ferrer E, et al. Características clini-coepidemiológicas y tendencias en el tratamiento antirretroviral de una cohorte de pacientes con infección por el virus de la inmunodeficiencia humana. Cohorte PISCIS. Med Clin (Barc). 2005;124:525-31, http://dx.doi.org/10.1157/13073938.

- ANEXOS 4. Publicación 4

Ramos-Rincon JM, Menchi-Elanzi M, Pinargote-Celorio H, Mayoral A, González-Alcaide G, de Mendoza C, Barreiro P, Gómez-Gallego F, Corral O, Soriano V. Trends in hospitalizations and deaths in HIV-infected patients in Spain over two decades. AIDS. 2022;36(2):249-256.

https://doi.org/10.1097/QAD.000000000003105.

- o Artículo original.
- o Revista: AIDS. EISSN: 1473-5571
- o Factor de Impacto (2020): 4,177
- Cuartil: Posición 84 de 162 (tercer cuartil) en la categoría
 Inmunology del *Sciences Citation Index Expanded.*, y 32 de 93
 (segundo cuartil) la categoría, *Infectious Diseases en Science Citation Index Expanded.*

Trends in hospitalizations and deaths in HIV-infected patients in Spain over two decades

José-Manuel Ramos-Rincon^{a,*}, Maroune Menchi-Elanzi^{b,*},
Héctor Pinargote-Celorio^a, Asunción Mayoral^c,
Gregorio González-Alcaide^d, Carmen de Mendoza^e, Pablo Barreiro^f,
Félix Gómez-Gallego^g, Octavio Corral^g and Vicente Soriano^g

Background: The prognosis of HIV infection dramatically improved after the introduction of triple antiretroviral therapy 25 years ago. Herein, we report the impact of further improvements in HIV management since then, looking at all hospitalizations in persons with HIV (PWH) in Spain.

Methods: A retrospective study using the Spanish National Registry of Hospital Discharges. Information was retrieved since 1997–2018.

Results: From 79 647 783 nationwide hospital admissions recorded during the study period, $532\,668\,(0.67\%)$ included HIV as diagnosis. The mean age of PWH hospitalized increased from 33 to 51 years (P < 0.001). The rate of HIV hospitalizations significantly declined after 2008. Comparing hospitalizations during the first (1997–2007) and last (2008–2018) decades, the rate of non-AIDS illnesses increased, mostly due to liver disease (from 35.9 to 38.3%), cardiovascular diseases (from 12.4 to 28.2%), non-AIDS cancers (from 6.4 to 15.5%), and kidney insufficiency (from 5.4 to 13%). In-hospital deaths occurred in 5.5% of PWH, declining significantly over time. Although most deaths were the result from AIDS conditions (34.8%), the most frequent non-AIDS deaths were liver disease (47.1%), cardiovascular events (29.2%), non-AIDS cancers (24.2%), and kidney insufficiency (20.7%).

Conclusion: Hospital admissions in PWH significantly declined after 2008, following improvements in HIV management and antiretroviral therapy. Non-AIDS cancers, cardiovascular events and liver disease represent a growing proportion of hospital admissions and deaths in PWH.

Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

AIDS 2022, 36:249-256

Keywords: cancer, cirrhosis, HIV, liver cancer, opportunistic infections, tuberculosis

DOI:10.1097/QAD.0000000000003105

ISSN 0269-9370 Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved. Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

^aInternal Medicine Department, General University Hospital of Alicante-ISABIAL & Miguel Hernández University of Elche, ^bEmergency Department, General University Hospital of Alicante-ISABIAL, ^cCIO Research Institute, Miguel Hernández University of Elche, Alicante, ^dHistory of Science and Documentation Department, University of Valencia, Valencia, ^eLaboratory of Internal Medicine, Puerta de Hierro Research Institute & University Hospital, Majadahonda, ^fTropical Medicine Unit, Carlos III-La Paz University Hospital, and ^gUNIR Health Sciences School & Medical Center, Madrid, Spain.

Correspondence to Vicente Soriano, MD, PhD, UNIR Health Sciences School & Medical Center, Calle Almansa 101, Madrid 28040, Spain.

Tel: +34 659687981; e-mail: vicente.soriano@unir.net

^{*}José-Manuel Ramos-Rincon and Maroune Menchi-Elanzi contributed equally to this study.

Received: 23 July 2021; revised: 9 September 2021; accepted: 21 September 2021.

250 AIDS 2022, Vol 36 No 2

Introduction

HIV infection represents a large burden on public health systems worldwide. The prognosis of HIV/AIDS improved dramatically since 1997 with the advent of combination antiretroviral therapy (ART) [1,2]. Another major breakthrough occurred around 2008, following major changes in HIV management including the approval of the first integrase inhibitors [3,4], the wide replacement of drugs such as zidovudine, stavudine, didanosine, and nevirapine [5,6], and the recommendation for earlier initiation of ART [7].

Continuous improvements in drug therapy have allowed to consider ART for all persons living with HIV (PWH) regardless of CD4⁺ cell counts and as soon as the HIV diagnosis is made [8]. As a result of this widespread use of ART, nowadays, survival and estimates of life expectancy for PWH under ART approach those seen in HIV-negative counterparts living in the same region [9].

In Spain, HIV widely spread during the 80s and 90s, largely driven by an epidemic of injection drug use [10], which fortunately declined thereafter [11]. Current estimates are of 150 000 PWH and roughly 60 000 cumulative deaths since the beginning of the AIDS pandemic [12,13]. Herein, we examined the clinical burden and time trends in PWH hospitalized in Spain during the last two decades.

Materials and methods

A retrospective study with data from population-based hospital discharge diagnoses at the Minimum Basic Data Set (MBDS) of the Spanish National Registry of Hospital Discharges (SNRHD) was performed. This is a national public registry that belongs to the Spanish Ministry of Health. It records information from all patients discharged at hospitals/clinics across the country since the early nineties [14]. Prior studies have been performed on this registry for other illnesses, including infectious diseases, and have recognized its high value for producing estimates of current burden and time trends for different clinical conditions at national level [15–22].

Our study was conducted with all data included at the SNRHD from January 1, 1997, to December 31, 2018, covering 22 years in total. Of note, information for the country of origin was not available at the SNRHD registry until January 2016.

The criteria for diseases and procedures were defined according to the International Classification of Diseases-Ninth Revision, Clinical Modification (ICD-9-CM), which was the one used by the SNRHD until 2015. Since 2016, the updated ICD-10-CM is being used. We

selected hospital admissions from 1997 to 2015 for patients with the following ICD-9-CM diagnoses: code 042 (HIV disease) or V08 (asymptomatic HIV infection status). From 2016 to 2018, we selected hospital admissions for patients with the following ICD-10-CM diagnoses: B20 (HIV disease) or Z21 (asymptomatic HIV infection status). All these diagnoses were considered regardless their position in the diagnostic list for each episode of hospital admission.

Regardless the position within the diagnostic coding list, we retrieved data about comorbid conditions using the enhanced ICD-9-CM and ICD-10-CM tools. The list of ICD-9-CM and ICD-10 codes we used for the identification of AIDS-defining illnesses, non-AIDS-defining conditions and non-AIDS cancers is recorded in a supplementary Table 1, http://links.lww.com/QAD/C342. We further examined several hospital outcome variables, including length of hospitalization and inhospital mortality. The latest was expressed as case fatality rate (CFR), or as the proportion of in-hospital deaths with respect to the total number of patients hospitalized with that clinical condition.

Statistical analysis

The incidence rates of hospitalizations with HIV were calculated per 100 000 hospitalizations by year of hospitalization. We retrieved numbers from the public information available at the websites of the National Institute of Statistics [23]. Changes over time were analyzed comparing yearly rates. In addition, comparisons were performed for several qualitative variables using two periods, as defined using intervals from 1997 to 2007 and from 2008 to 2018.

Quantitative and qualitative variables are described as medians with interquartile range (IQR) or as proportions. Bivariate comparisons of quantitative and qualitative variables were performed using the Mann–Whitney *U*-test, chi-square test, or Fisher test.

All statistical analyses were performed using the IBM SPSS package for Windows v25.0 (IBM Corp., Armonk, New York, USA). Graphics were performed with the R statistical package v.3.6.3 (R Foundation, Vienna, Austria) and the RStudio v1.2.1578 for Mac. All tests were two-tailed and only *P* values less than 0.05 were considered as significant.

Ethical aspects

According to the Spanish law, approval by an ethics committee was not necessary for this study. To warranty patient's anonymity, the database was provided to us by the Spanish Ministry of Health after removal of all potential patient's identifiers. In accordance with the Spanish legislation, patient's informed consent was not needed for this analysis.

Trends in HIV hospitalizations in Spain Ramos-Rincon et al.

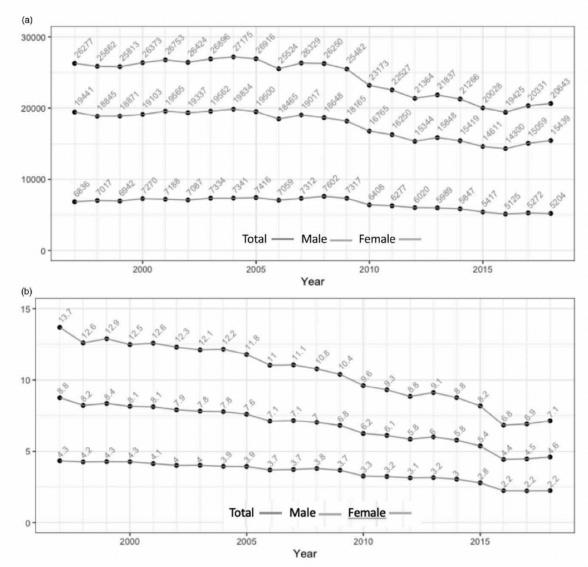


Fig. 1. Yearly HIV hospitalizations by sex. (a) Absolute numbers. (b) Rate (considering the total number of hospitalizations).

Results

A total of 79 647 851 hospital admissions were recorded in Spain during the study period, covering 22 years (1997–2018). In this retrospective, observational, population-based study, a total of 532 668 (0.67%) hospital discharges included HIV as diagnosis.

Figure 1 records trends in hospitalizations in PWH during the study period. A significant decline was noticed, mostly since 2008 when important changes in HIV management occurred, including the introduction of integrase inhibitors, the consideration of earlier ART initiation, and the replacement of zidovudine, stavudine, didanosine, and nevirapine. The reduction in HIV hospitalizations was noticed in both absolute numbers and proportion of total hospitalizations.

Table 1 records the main demographics of the HIV study population. Overall, male represented 72.7%, declining slightly during the study period (Fig. 1).

The mean age of PWH hospitalized population was 38.4 years, with significant increases in mean age over time, regardless of sex (Fig. 2). Indeed, the proportion of hospitalizations in PWH younger than 45 years declined

252 AIDS 2022, Vol 36 No 2

Table 1. Main demographics of the study population: calendar distribution and overall mortality.

			Comparison hospitalizations between two periods		
	Hospital admissions	In-hospital mortality	1997-2007	2008-2018	P
No.	532 668	29426 (5.5%)	290342	242326	0.01
Sex (n, %)					
Male	387 388 (72.7)	23 465	211 540 (72.9)	175 848 (72.6)	0.017
Female	145 280 (27.3)	5957	78 802 (27.1)	66 478 (27.4)	
Age (years) (n,%)					
<45	338286 (63.5)	16472	238 474 (82.1)	99 812 (41.2)	< 0.001
45-64	175 621 (33)	11268	46 473 (16)	129148 (53.3)	< 0.001
>65	18761 (3.5)	1682	5395 (1.9)	13 366 (5.5)	< 0.001
Injection drug use (n, %)	118720 (22.3)	5226 (17.8)	67 674 (23.3)	51 046 (21.1)	< 0.001
Length of hospitalization, median (IQR) (days)	7 (3-13)	11 (4-24) ^a	7 (3-14)	6 (3-12)	< 0.001

^aMedian hospital stay for patients who died.

significantly from 82.1% during the first decade (1997–2007) to 41.2% during the last decade (2008–2018) (Table 1). Former or current injection drug use was recorded in 22.3% of PWH hospitalized and significantly declined over time (Table 1). The median length of hospitalization for PWH was roughly of 1 week and shortened only slightly during the study period.

Overall AIDS-defining conditions were diagnosed in 18.6% of HIV hospitalizations, declining from 22.2% during the first period to 14.4% in the last decade (Supplementary Figure 1, http://links.lww.com/QAD/C341). In contrast, non-AIDS cancers increased from 6.4 to 15.5% (Table 2).

The most frequent AIDS-defining illnesses among PWH hospitalized were tuberculosis, Pneumocystis pneumonia, esophageal candidiasis, wasting syndrome, Kaposi's

sarcoma and disseminated cytomegalovirus infection. All declined significantly comparing the first and second periods (Table 2).

The rate of non-AIDS-defining conditions increased among PWH hospitalized over time. The most frequent were liver disease, cardiovascular events, neurological complications, and renal impairment. Viral hepatitis was diagnosed in a high proportion of PWH hospitalized. It was due to hepatitis C in roughly 40% and to hepatitis B in 8%. The high number of hepatitis C diagnoses run in parallel with a high proportion of people that injected drugs (Table 2).

Non-AIDS cancers were diagnosed in roughly 10% of PWH hospitalized during the study period, with a significant increase comparing the first and last decades (from 6.4 to 15.5%). This increase occurred along with a

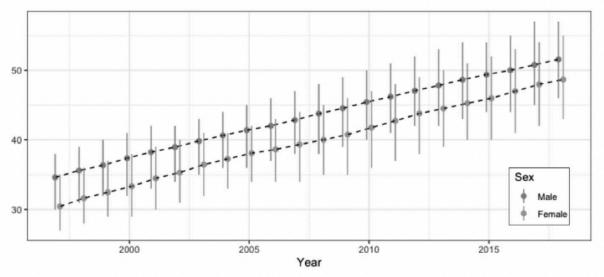


Fig. 2. Yearly mean age of persons living with HIV hospitalized in Spain by sex.

Trends in HIV hospitalizations in Spain Ramos-Rincon et al.

Table 2. Clinical diagnoses in persons living with HIV hospitalized in Spain: mortality and calendar distribution.

-		• • • • • • • • • • • • • • • • • • • •				
			Comparison hosp	Comparison hospitalizations between two perio		
	Hospital admissions	In-hospital mortality	1997-2007	2008-2018	P	
No. (%)	532 668	29 426 (5.5)	290342	242 326	0.01	
AIDS-defining illnesses (n, %)	99.251 (18.6)	10.226 (34.8)	64.445 (22.2)	34.806 (14.4)	0.000	
Tracheo-bronchial and lung candidasis	917 (0.2)	204 (0.7)	480 (0.2)	437 (0.2)	0.188	
Esophageal candidasis	12 444 (2.3)	1007 (3.4)	7045 (2.4)	5399 (2.2)	< 0.001	
Cervical cancer	1560 (0.3)	152 (0.5)	737 (0.3)	823 (0.3)	< 0.001	
Disseminated coccidioimycosis	4 (0.0)	1 (0.0)	2 (0.0)	2 (0.0)	1	
Extrapulmonary criptoccocosis	2374 (0.4)	412 (1.4)	1719 (0.6)	655 (0.3)	< 0.001	
Chronic intestinal	960 (0.2)	85 (3.1)	645 (0.2)	315 (0.1)	< 0.001	
criptosporidiasis						
Retinitis and disseminated citomegalovirus	6584 (1.2)	926 (14.1)	3,962 (1.4)	2622 (1.1)	< 0.001	
HIV encephalopaty	965 (0.2)	115 (0.4)	127 (0.04)	838 (0.3)	< 0.001	
Chronic herpes simplex virus	4374 (0.8)	181 (0.6)	2615 (0.9)	1759 (0.7)	< 0.001	
infection						
Disseminated histoplasmosis	202 (0)	36 (0.1)	81 (0.03)	121 (0.05)	< 0.001	
Chronic intestinal Isosporidiasis	311 (0.1)	22 (0.1)	223 (0.1)	88 (0.03)	< 0.001	
Kaposi's sarcoma	6499 (1.2)	756 (2.6)	3629 (1.2)	2870 (1.2)	0.030	
Systemic non-Hodgkin	3695 (0.7)	373 (1.3)	1629 (0.6)	2066 (0.9)	< 0.001	
lymphoma, primary cerebral lymphoma, and Burkitt's lymphoma						
Mycobacterium tuberculosis	29 862 (5.6)	2,203 (7.5)	22 556 (7.8)	7306 (3)	< 0.001	
Extrapulmonary atypical mycobacteria	4598 (0.9)	491 (1.7)	3256 (1.1)	1342 (0.6)	<0.001	
Pneumocystitis jirovecii pneumonia	17 681 (3.3)	2326 (7.9)	11411 (3.9)	6270 (2.6)	<0.001	
Multiphocal leukoencephalopaty	7702 (1.4)	1268 (4.3)	4866 (1.7)	2836 (1.2)	<0.001	
Recurrent Salmonella infection	791 (0.1)	85 (0.3)	715 (0.2)	76 (0.02)	< 0.001	
Cerebral toxoplasmosis	5835 (1.1)	675 (2.3)	4201 (1.4)	1634 (0.7)	< 0.001	
Wasting syndrome	10 194 (1.9)	1863 (6.3)	5666 (2)	4528 (1.9)	0.028	
Non-AIDS-defining conditions (n,	430.814 (80.9)	26 697 (5.0)	224.963 (77.5)	205.851 (84.9)	< 0.001	
%)						
Cardiovascular diseases	104 447 (19.6)	8605 (29.2)	36119 (12.4)	68 328 (28.2)	< 0.001	
Neurological disorders	68 608 (12.9)	5722 (19.4)	32 964 (11.4)	35 644 (14.7)	< 0.001	
Liver diseases	197 121 (37)	13 855 (47.1)	104308 (35.9)	92 813 (38.3)	< 0.001	
Kidney abnormalities	47 153 (8.9)	6081 (20.7)	15 647 (5.4)	31 506 (13)	< 0.001	
Mental and psychiatric disorders	65 804 (12.4)	3047 (10.4)	16890 (5.8)	48 914 (20.2)	< 0.001	
Endocarditis	446 (0.1)	56 (0.2)	226 (0.1)	22 (0.1)	0.104	
Bacterial pneumonia	66 450 (12.5)	6553 (22.3)	40 007 (13.8)	26 443 (10.9)	< 0.001	
Cellulitis	5030 (0.9)	251 (0.9)	398 (0.1)	4632 (1.9)	< 0.001	
Surgery	6833 (1.3)	159 (0.5)	3089 (1.1)	3744 (1.5)	< 0.001	
Drug-related adverse effects	831 (0.2)	23 (0.1)	435 (0.2)	396 (0.2)	0.211	
Fractures and traumatisms	13 812 (2.6)	522 (1.8)	5642 (1.9)	8170 (3.4)	< 0.001	
Hepatitis C virus infection	21,187 (39.8)	11 512 (39.1)	106 049 (36.5)	105 830 (43.7)	< 0.001	
Hepatitis B virus infection	42 010 (7.9)	2350 (8)	24092 (8.3)	17 918 (7.4)	< 0.001	
Non-AIDS cancers (n, %)	56 272 (10.6)	13 618 (24.2)	18728 (6.4)	37 544 (15.5)	< 0.001	
Oropharyngeal	1584 (0.3)	176 (0.6)	579 (0.2)	1005 (0.4)	< 0.001	
Gastrointestinal	9962 (1.9)	1667 (5.7)	2236 (0.8)	7726 (3.2)	<0.001	
Colon	2853 (0.5)	254 (0.9)	913 (0.3)	1940 (0.8)	< 0.001	
Hepatocarcinoma	4249 (0.8)	813 (2.8)	806 (0.3)	3443 (1.4)	<0.001	
Lung	7971 (1.5)	1527 (5.2)	2727 (0.9)	5244 (2.2)	< 0.001	
Bone, skin, and soft tissues	3297 (0.6)	260 (0.9)	969 (0.3)	2328 (1.0)	<0.001	
Breast	798 (0.1)	59 (0.2)	241 (0.1)	557 (0.2)	<0.001	
Genitourinary Hematopoietic malignancies	3789 (0.7) 29 020 (5.4)	269 (0.9) 3118 (10.6)	1005 (0.3) 10371 (3.6)	2784 (1.1) 18 649 (7.7)	<0.001 <0.001	

significant aging of the HIV hospitalized population. Gastrointestinal and lung neoplasms were the most frequent. Of note, there was a nearly five-fold increase in hepatocellular carcinoma comparing the two periods.

In-hospital death was recorded in 29 426 (5.5%) of HIV hospitalizations, declining slightly over time (Fig. 3). The introduction of integrase inhibitors along with other improvements in HIV management around 2008 was

254 AIDS 2022, Vol 36 No 2

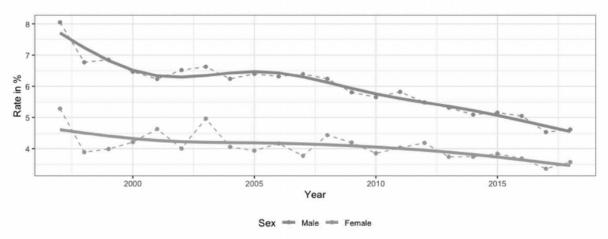


Fig. 3. Yearly in-hospital mortality in persons living with HIV in Spain by sex.

accompanied by a transient deeper reduction of inhospital mortality. Overall, there were 17 375 deaths during the first period and 12 051 deaths during the last period (P < 0.001), which represented 6 and 5% of HIV hospitalizations, respectively.

As summarized in Table 2, in-hospital deaths in PWH were the result from AIDS-defining conditions in 34.8% of cases. The most common opportunistic infections among deceased PWH were cytomegalovirus (14.1%), *Pneumocystis jirovecii* (7.9%), and tuberculosis (7.5%). Deaths due to non-AIDS illnesses were largely the result from end-stage liver disease (47.1%), cardiovascular events (29.2%), or kidney insufficiency (20.7%).

The CFR in PWH hospitalized for different conditions is recorded in Supplementary Table 2, http://links.lww.-com/QAD/C343. As expected, the overall in-hospital mortality for AIDS-defining illnesses was more frequent than for non-AIDS-defining conditions (10.3 versus 6.1%, respectively). Among AIDS-defining illnesses, bronchio-pulmonar candidiasis, disseminated histoplasmosis, multiphocal leukoencephalopathy, and wasting syndrome had the highest in-hospital death rate. It ranged from 16 to 22% of hospital admissions with each condition. Among non-AIDS cancers, admissions with hepatocellular carcinoma had the highest fatality rate, approaching 20%.

Discussion

The burden of HIV infection on public health systems has declined worldwide, thanks to the success of ART. However, it remains relatively high in resource-limited regions. A systematic review and meta-analysis of 106 cohorts has shown that AIDS remains a major cause of

hospitalization in lower income countries, although non-AIDS admissions have become more common in Europe and North America [3]. In Spain, over two decades, HIV was part of the diagnoses roughly in one out of 150 hospitalizations.

In developing countries, late HIV diagnosis still remains a significant challenge. As example, a retrospective analysis of 2085 hospitalizations in Georgia conducted over 5 years (2012–2017) highlighted that up to 65% of admissions occurred in PWH with CD4⁺ cell counts below 200 cells/µl. Indeed, AIDS-defining illnesses accounted for 45% of hospitalizations and death occurred in 8% of them [24].

In contrast, in our study, AIDS-defining conditions overall accounted for only 18.6% of hospitalizations in PWH in Spain across a long period. Our results are in line with recent findings from the UK, where one study conducted between 2011 and 2018 reported 274 hospitalizations in a cohort of 798 PWH, being only 10% due to AIDS-defining illnesses [25].

Deaths occurred overall in 5.5% of our HIV hospitalized patients. It declined significantly during the study period. The most frequent AIDS-defining illnesses in patients who died were cytomegalovirus disseminated infection, *Pneumocystis jirovecii* pneumonia and tuberculosis. The introduction of integrase inhibitors as part of ART in year 2008 was accompanied by a marked reduction in mortality among PWH hospitalized.

In our study, the success of ART was mostly reflected in two key findings. First, the mean age of PWH hospitalized steadily increased from 33 to 45 years over the last two decades. Second, AIDS-defining illnesses significantly declined as a cause of hospitalization during the study period. In contrast, non-AIDS-defining

Trends in HIV hospitalizations in Spain Ramos-Rincon et al.

conditions, including non-AIDS cancers, steadily increased.

It should be noted that IDU had largely driven the HIV pandemic in Spain until the mid-nineties [11]. Since then, sexually acquired HIV mostly among MSM became the predominant risk behavior. Given the sharing of transmission routes for HIV and viral hepatitis (e.g., especially IDU), a large proportion of PWH hospitalized in Spain had chronic viral hepatitis B, C, and/or D. This fact might explain that liver disease was the most frequent non-AIDS-defining illness among PWH hospitalized in Spain. Furthermore, liver failure was the most frequent cause of death due to non-AIDS-defining conditions, and by far, viral hepatitis B, C, and/or delta were the main cause [26].

Non-AIDS cancers represented more than 10% of diagnosis in PWH hospitalized in Spain during the study period. A significant increase was noticed over time, going up from 6.4% before 2008 to 15.5% after the introduction of integrase inhibitors. Overall, non-AIDS cancers accounted for 24% of deaths among PWH hospitalized. Gastrointestinal and pulmonary cancers were the most common. Of note, the rate of hepatocellular carcinoma increased four to five-fold during the study period, most likely reflecting the high proportion of chronic viral hepatitis in this population [27]. Since the advent of new direct-acting antivirals a couple of years ago, most chronic hepatitis C patients are cured, and therefore, we should expect a steadily decline in the rate of hepatocellular carcinoma in this population [28].

We should acknowledge several limitations of our study. First, due to the fact that SNRHD data are anonymous, we could not recognize whether a patient had been hospitalized at different sites – including transfers from one clinic to another – within the same calendar year [16,20]. Thus, it may have caused a slight overestimation of PWH hospitalized, because we may have interpreted readmissions as new admissions. Second, this was a retrospective study and we had no opportunity to access patient's clinical charts, which could have allowed us checking more accurately any doubtful information. Third, figures for diagnoses during the last 2 years of the study period (2017 and 2018) most likely are uncompleted and should be considered as underestimates, as a definitive review of clinical diagnoses is closed at 5 years.

Fourth, we could not provide further insights about the increased proportion of hospitalizations and deaths in PWH due to non-AIDS-defining conditions, including cardiovascular events and cancers. In particular, we could not make estimates about the contribution of aging, comorbidities such a viral hepatitis, or any direct HIV effect despite suppressed viremia under ART. Despite all these limitations, the SNRHD has proved to be useful for epidemiological investigation, covering over 98% of hospital admissions in Spain. The accuracy of this register

has been guaranteed by periodic audits conducted by the Ministry of Health [14]. Therefore, the information given in our study, which is nationwide and covers 22 years, must be considered as a representative of the clinical impact of HIV/AIDS on hospital admissions in Spain.

In summary, we report a rate of 6.7 per 1000 hospital admissions with a diagnosis of HIV infection over the last two decades in Spain. A significant decline occurred since year 2008, following the introduction of integrase inhibitors as part of ART along with other improvements in HIV management. The average age of PWH hospitalized has increased significantly over time, while the proportion of admissions with AIDS-defining illnesses has declined. In-hospital mortality with non-AIDS cancers has steadily increased during recent years.

Acknowledgements

J.-M.R.-R. and V.S. designed the study. J.-M.R-R., M.M.-E., H.P., A.M. and G.G.-A. cleaned the database. J.-M.R.-R. M.M.-E. H.P., and A.M. did the statistical analyses. Cd.M, P.B., F.G.-G. and O.C. contributed with comments and revised the data. V.S. and J.-M.R.-R. wrote the first draft of the manuscript. All authors revised and contributed to the final submission.

Conflicts of interest

All authors acknowledge no conflicts of interest with this work.

References

- Mocroft A, Monforte A, Kirk O, Johnson MA, Friis-Moller N, Banhegyi D, et al. Changes in-hospital admissions across Europe: 1995–2003. Results from the EuroSIDA study. HIV Med 2004; 5:437–447.
- Buchacz K, Baker R, Moorman AC, Richardson JT, Wood KC, Holmberg SD, Brooks JT, HIV Outpatient Study (HOPS) Investigators. Rates of hospitalizations and associated diagnoses in a large multisite cohort of HIV patients in the United States, 1994–2005. AIDS 2008: 22:1345–1354
- alarge multisite cohort of HIV patients in the United States, 1994–2005. AIDS 2008; 22:1345–1354.
 Ford N, Shubber Z, Meintjes G, Grinsztejn B, Eholie S, Mills EJ, et al. Causes of hospital admission among people living with HIV worldwide: a systematic review and meta-analysis. Lancet HIV 2015; 2:e438–e444.
- Davy-Mendez T, Napravnik S, Wohl D, Durr A, Zakharova O, Farel C, et al. Hospitalization rates and outcomes among persons living with HIV in the Southerneastern United States, 1996–2016. Clin Infect Dis 2020; 71:1616–1623.
- 1996–2016. Clin Infect Dis 2020; 71:1616–1623.
 De Mendoza C, Jimenez-Nacher I, Garrido C, Barreiro P, Poveda E, Corral A, et al. Changing patterns in HIV reverse transcriptase resistance mutations after availability of tenofovir. Clin Infect Dis 2008; 46:1782–1785.
- Vispo E, Morello J, Rodriguez-Novoa S, Soriano V. Noncirrhotic portal hypertension in HIV infection. Curr Opin Infect Dis 2011; 24:12–18.
- Hammer S, Eron J, Reiss P, Schooley R, Thompson M, Walmsley S, et al. Antiretroviral treatment of adult HIV infection: 2008 recommendations of the International AIDS Society-USA Panel. JAMA 2008; 300:555–570.

AIDS 2022, Vol 36 No 2 256

- Saag M, Gandhi R, Hoy J, Hoy JF, Landovitz RJ, Mugavero MJ, et al. Antiretroviral drugs for treatment and prevention of HIV infection in Adults: 2018 recommendations of the International Antiviral Society-USA Panel. JAMA 2020; 324:1651–1669. Teeraananchai S, Kerr S, Amin J, Ruxrungtham K, Law M. Life expectancy of HIV-positive people after starting combination antiretroviral therapy: a meta-analysis. HIV Med 2017; 18:256–266. De La Fuente L, Bravo MJ, Barrio G, Parras F, Suárez M, Rodés A, Noguer I. Lessons from the history of the HIV/AIDS epidemic among Spanish drug injectors. Clin Infect Dis 2003; 37 (Suppl 5):410–415. Perez-Cachafeiro S, Del Amo J, Iribarren JA, Salavert Lleti M, Guttérrez F, Moreno A, et al. Decrease in serial prevalence of

- demic among Spanish drug injectors. Clin Infect Dis 2003; 37. Suppl 5):410–415.
 Perez-Cachafeiro S, Del Amo J, Iribarren JA, Salavert Lleti M, Gutiérrez F, Moreno A, et al. Decrease in serial prevalence of coinfection with hepatitis C virus among HIV-infected patients in Spain, 1997–2006. Clin Infect Dis 2009; 48:1467–1470. Ministerio de Sanidad Vigilancia epidemiológica VIH/SIDA [Ministry of Health. HIV/AIDS Epidemiological Surveillance]. Available at https://www.mscbs.gob.es/ciudadanos/erifl.esiones/erifl ransmisibles/sida/vigil-ancia/doc/MortalidadXVIH-2017.pdf. [Accessed 31 March 2021]
 Soriano V, Ramos JM, Barreiro P, Fernandez-Montero JV. AIDS clinical research in Spain-large HIV population, geniality of doctors, and missing opportunities. Viruses 2018; 10:293. Ministerio de Sanidad. Información estadística de Hospitales: Estadística de Centros Sanitarios de Atención Especializada. Registro de Actividad de Atención Especializada. RAE-CMBD. Real Decreto 69/2015 (April 6). Registro de Actividad de Atención Sanitaria Especializada, [Ministry of Health. Hospital Statistics Surveillance]. Available at https://www.mscbs.gob.es/estadfstudios/estadísticas/docs/BOE_R.
 D-69_2015_RAE_CMBD.pdf. [Accessed 31 March 2021] de Miguel-Díez J, Lopez-de-Andrés A, Hernandez-Barrera V, Jiménez-Trujillo J, Méndez-Bailón M, Miguel-Yanes JM, et al. Decreasing incidence and mortality among hospitalized patients suffering a ventilator-associated pneumonia: analysis of the Spanish national hospital discharge database from 2010 to 2014. Medicine (Baltimore) 2017; 96:e7625.
 Herrador Z, Cherasim A, Jimenez B, Granados M, San Martín JV, Aparicio P. Epidemiological changes in leishmaniasis in Spain according to hospitalization-based records, 1997–2011: raising awareness towards leishmaniasis in non-HIV patients. PLoS Negl Trop Dis 2015; 9:e0003594. de Miguel-Díez J, López-de-Andrés A, Jiménez-García R, Puente-Maestu L, Jiménez-Trujillo I, Hemández-Barrera V, et al. Trends in epidemiology of COPD in HIV-infected patients in Spain (1997–201

- Boix R, Cano R, Gallego P, Vallejo F, Fernández-Cuenca R, Noguer I, Larrauri A. Hepatitis C hospitalizations in Spain, 2004–2013: a retrospective epidemiological study. *BMC Health Serv Res* 2017; 17:461.

 Pereira-Díaz E, Moreno-Verdejo F, de la Horra C, Guerrero JA,
- Calderón E, Medrano F. Changing trends in the epidemiology and risk factors of Pneumocystis pneumonia in Spain. Front Public Health 2019; 7:275.
- Public Health 2019; 7:275.

 Ramos JM, de Mendoza C, Aguilera A, Barreiro P, Benito R, Eiros JM, et al. Hospital admissions in individuals with HTLV-1 infection in Spain. AIDS 2020; 34:1019–1027.

 Menchi-Elanzi M, Mayoral AM, Morales J, Pinargote-Celorio H, González-Alcaide G, Ramos-Rincón JM. Toxoplasma gondii infection in hospitalized people living with HIV in Spain, 1997 to 2015. Parasitol Res 2021; 120:755–761.

 Ramos JM, Pinargote H, Ramos-Belinchón C, de Mendoza C, Aguilera A, Soriano V. Hepatitis delta in patients hospitalized in Spain (1997–2018). AIDS (in press).
- Spain (1997–2018). ALDS (in press).

 Spanish Statistics National Institute. INEbase Demography and population. Population figures and Demographic Censuses. Population figures. Available at https://www.ine.es/dyngs/INEbase/en/operacion.htm?c=Estadistica_C&-cid=1254736176951&menu=resultado-s&idp=1254735572981. [Accessed 31 March 2021]
- s&idp=1254735572981. [Accessed 31 March 2021] Rukhadze N, Kirk O, Chkhartishvili N, Bolokadze N, Sharvadze L, Gabunia P, et al. Causes and outcomes of hospitalizations among people living with HIV in Georgia's referral institution, 2012–2017. Int J 5TD AIDS 2021;32:662–670. Rein S, Lampe F, Chaloner C, Stafford A, Rodger A, Johnson M, et al. Causes of hospitalization among a cohort of people with HIV from a London centre followed from 2011 to 2018. BMC Infect Dis 2021; 21:395.
- Infect Dis 2021; 21:395.
 Femández-Montero JV, Vispo E, Barreiro P, Sierra-Enguita R, de Mendoza C, Labarga P, Soriano V. Hepatitis delta is a major determinant of liver decompensation events and death in HIV-infected patients. Clin Infect Dis 2014; 58:1549–1553.
 Puoti M, Bruno R, Soriano V, Donato F, Gaeta G, Quinzán G, et al. HIV HCC Cooperative Italian-Spanish Group. Hepato-cellular carcinoma in HIV-infected patients: epidemiological features, clinical presentation and outcome. AIDS 2004; 18:2285–2293.
- Soriano V, Tefferi A. Prevention of liver cancer with new curative hepatitis C antivirals: real-world challenges. Cancer 2018; 124:1647-1649.

- ANEXOS 5. Publicación 5

Menchi-Elanzi M, Mayoral AM, Morales J, Pinargote-Celorio H, González-Alcaide G, Ramos-Rincón JM. *Toxoplasma gondii* infection in hospitalized people living with HIV in Spain, 1997 to 2015. Parasitol Res. 2021Feb;120(2):755-761.

https://doi.org/10.1007/s00436-020-07007-5.

- Artículo original.
- o Revista: Parasitology Research. EISSN: 1432-1955.
- o Factor de Impacto (2020): 2,289.
- Cuartil: Posición 19 de 38 (segundo cuartil) en la categoría
 Parasitology del Sciences Citation Index Expanded..

Parasitology Research (2021) 120:755-761 https://doi.org/10.1007/s00436-020-07007-5

PROTOZOOLOGY - SHORT COMMUNICATION

Toxoplasma gondii infection in hospitalized people living with HIV in Spain, 1997 to 2015

Marouane Menchi-Elanzi ¹ · Asunción M. Mayoral ² · Javier Morales ² · Hector Pinargote-Celorio ³ · Gregorio González-Alcaide ⁴ · José-Manuel Ramos-Rincón ^{3,5}

Received: 19 October 2020 / Accepted: 7 December 2020 / Published online: 14 January 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract

Toxoplasma gondii infection was one of the most frequent AIDS-defining conditions in HIV-infected individuals until the advent of combination antiretroviral therapy. We aimed to assess the clinical load, coinfection, and mortality, as well as time trends for people living with HIV and hospitalized with Toxoplasma gondii infection, in Spain from 1997 to 2015. Retrospective observational analysis using the Spanish National Registry of Hospital Discharges. Information was retrieved for the study period using the International Classification of Diseases, 9th revision. There were 66,451,094 hospital admissions in Spain from 1997 to 2015, including 472,269 (0.71%) in people living with HIV. Toxoplasma gondii infection was registered in 9006 of these (overall prevalence 1.91%), making it the fifth most common opportunistic infection in hospitalized HIV-positive patients. Prevalence of Toxoplasma gondii infection declined in this group from 4.2% in 1997 to 0.8% in 2015 (p < 0.001), while mean age increased, from 35 years in 1997 to 44 years in 2015. The overall in-hospital mortality rate declined from 13.5% in 1997 to 8.9% in 2015, and it was higher in the concomitant presence of bacterial pneumonia (28.9% vs. 10.2%, p < 0.001), cryptosporidiosis (26.9% vs. 11.5%; p = 0.03), cytomegalovirus disease (18.2% vs. 11.2%, p < 0.001), Pneumocystis jiroveci pneumonia (31.5% vs. 10.5%, p < 0.001), leukoencephalopathy (19.8% vs. 11.78% p < 0.001), and wasting syndrome (29.3% vs 10.9%; p < 0.001). Toxoplasma gondii infection prevalence has significantly declined among hospitalized HIV-infected patients in Spain during the last two decades, coinciding with the widespread use of combination antiretroviral therapy.

Keywords HIV · Toxoplasmosis · Toxoplasma gondii infection · Spain · Hospital admissions · Mortality · Opportunistic infections

Marouane Menchi-Elanzi and Asunción M. Mayoral contributed equally to this work.

Section Editor: Kevin S.W. Tan

José-Manuel Ramos-Rincón jose.ramosr@umh.es

> Marouane Menchi-Elanzi menchi ma@hotmail.com

Asunción M. Mayoral asun.mayoral@umh.es

Javier Morales j.morales@umh.es

Hector Pinargote-Celorio hectorpinargote@gmail.com

Gregorio González-Alcaide gregorio.gonzalez@uv.es

- ¹ Emergency Department, General University Hospital of Alicante-ISABIAL, Alicante, Spain
- ² CIO Research Institute, Miguel Hemandez University of Elche, Alicante, Spain
- ³ Internal Medicine Department, General University Hospital of Alicante-ISABIAL, Pintor Baeza, 11, 03010 Alicante, Spain
- ⁴ History of Science and Documentation Department, University of Valencia, Valencia, Spain
- ⁵ Clinical Medicine Department, Miguel Hernandez University of Elche, Alicante, Spain

756 Parasitol Res (2021) 120:755–761

Introduction

HIV/AIDS is an ongoing epidemic, affecting people worldwide since the early 1980s (Ghosn et al. 2018; Simon et al. 2006). The epidemiology of infection has changed over the years in relation to different factors, especially the introduction of combination antiretroviral therapy (cART) since 1997. The most relevant change brought on by the introduction of cART has been the decrease in opportunistic infections (Kaplan et al. 2009; Soriano et al. 2018).

Toxoplasma gondii infection, principally acquired in humans by eating raw or undercooked meat (San-Andrés et al. 2003), is the most relevant cause of parasitic diseases in hospital admission in Spain and a serious problem for pregnant women and people with immunodeficiency (Gironé et al. 2015). In people living with HIV (PLHIV) who have a CD4 count under 200 T-cells/µL (Renold et al. 1992; Le and Spudich 2016; Falusi et al. 2002), it is also the most common central nervous system infection.

Given the high morbidity and mortality from cerebral Toxiplasma gondii infections, primary Toxoplasma gondii prophylaxis is warranted. The Expert Panel of the Working Group on AIDS and the National Plan for AIDS recommends trimethoprim-sulfamethoxazole (cotrimoxazole, 160-800 mg for 3 days per week or 80-400 mg/day) in patients with CD4+ lymphocyte counts under 100/mm³ with IgG antiToxoplasma+, or alternatively dapsone plus pyrimethamine (Panel de expertos de Grupo de Estudio del Sida; Plan Nacional sobre el Sida 2008). These regimens also protect against Pneumocystis jirovecii infection. Discontinuing prophylaxis in patients on cART who have a CD4 count of more than 200 Tcells/µL is safe, and this scheme has been used ever since cART has been available (Miro et al. 2006). In a study in Spain that evaluated the presentation of HIV-infected patients to health services from 1985 to 1999, PLHIV whose first contact with the hospital was through admission had lower CD4 counts than those not admitted and higher rates of AIDS diagnosis (Collazos et al. 2001).

With regard to cerebral *Toxoplasma gondii* infection, its epidemiology in patients on cART has changed in Europe (Kaplan et al. 2009; San-Andrés et al. 2003) and now represents approximately 6.6% of the AIDS-defining infections in Spain (Unidad de Vigilancia de VIH y Comportamientos de Riesgo 2019). Despite its relevance, however, the clinical burden of *Toxoplasma gondii* infection in admitted PLHIV has not been examined in Spain. This study aimed to assess the clinical load, coinfection, mortality, and time trends in hospitalized PLHIV infected with the *Toxoplasma gondii* from 1997 to 2015.

Springer

Materials and methods

This retrospective study used population-based data on *Toxoplasma gondii* infection diagnoses from the minimum basic dataset of the Spanish National Registry of Hospital Discharges (San-Andrés et al. 2003; Ministerio de Sanidad 2020). The study period was 1 January 1997 to 31 December 2015, covering 19 years in total. The database uses diagnostic codes from the International Classification of Diseases-Ninth Revision, Clinical Modification (ICD-9-CM). We selected hospital admissions for patients with a diagnosis under the ICD-9-CM code 042 (Human immunodeficiency virus [HIV] disease) OR V08 (Asymptomatic human immunodeficiency virus [HIV] infection status) and 130.X (*Toxoplasma gondii* infection) at any position in the diagnostic list for each episode of hospital admission.

Furthermore, we examined several hospital outcome variables, including readmissions within 30 days after discharge from the same center and in-hospital mortality (IHM), as defined by the hospital discharge database. The database does not contain any personal identifiers. As some people would have several hospital admissions per year, and over the course of the study period, independence was assumed during analysis. Table S1 lists the ICD-9-CM codes for opportunistic infections used in our study.

Prevalence is expressed as a percentage. Chi-squared tests were used to compare admissions in PLHIV infected with the *Toxoplasma gondii* versus other diagnoses and to compare IHM in hospitalized PLHIV with *Toxoplasma gondii* infection plus other infections versus *Toxoplasma gondii* infection alone. Confidence intervals (CIs) for rates were calculated using the Wilson method, with library DescTools in R. The student *t* test was used to compare means (patients' age). The significance level used for hypothesis tests was 5%, though smaller levels are reported when observed. The descriptive statistical tests and graphics were performed with the R statistical package (version 3.6.3) and RStudio (version 1.2.1578) for Mac.

Results

A total of 66,451,094 hospital admissions were recorded in Spain during the 19-year study period (1997–2015). HIV infection was recorded in 472,269 (0.71%); among these, *Toxoplasma gondii* infection was present in 9006 (overall prevalence 1.91%; 95% CI 1.87% to 1.95%). Overall, *Toxoplasma gondii* infection was the fifth most common AIDS-defining condition in hospitalized PLHIV, after tuberculosis (13.3%), *Pneumocystis jiroveci* pneumonia (3.5%), esophageal candidiasis (2.3%), and wasting syndrome (1.99%).

Parasitol Res (2021) 120:755–761 757

The number of admissions in PLHIV infected with the *Toxoplasma gondii* decreased by 85.9%, from 1115 in 1997 to 157 in 2015. Other diagnoses in hospitalized PLHIV saw a more modest reduction (-21.0%, from 25,162 to 19,873; p < 0.001). In terms of prevalence, annual rates of *Toxoplasma gondii* infection declined from 4.2% in 1997 to 0.78% in 2015 (p < 0.001; Fig. 1).

Of the 9006 total cases of *Toxoplasma gondii* infection, 74.1% were in men and 25.9% in women. The mean age of HIV patients infected with the *Toxoplasma gondii* increased over the study period, from 35 years (standard deviation [SD] 8.4) in 1997 to 44 years (SD 8.9) in 2015 (p < 0.001). PLHIV with other diagnoses aged even more, from a mean 33 years (SD 9.9) in 1997 to 48 (SD 10.5) in 2015 (p < 0.001).

Regarding readmissions within 30 days of initial discharge, there were 1835 (20.4%) over the study period, a sensibly higher rate than for other diagnoses (16.5%) (p < 0.001). The presence of other AIDS-defining conditions in addition to *Toxoplasma gondii* infection was common, particularly tuberculosis (14.5%), bacterial pneumonia (7.1%), and esophageal candidiasis (5.1%). Coinfection with hepatitis C virus (23.1%) and hepatitis B virus (5.5%) was also frequent (Table 1).

The overall IHM rate for *Toxoplasma gondii* infection patients was 11.5% (95% CI 10.9% to 12.2%), but there appeared to be a downward trend over the study period (from

13.5% [95% CI 11.6 to 15.7%] in 1997 to 8.9% [95% CI 5.4% to 14.4%] in 2015; p = 0.137). The IHM rate in PLHIV admitted for other diagnoses was significantly lower (5.6%, 95% CI 5.5 to 5.6%; p < 0.001), and this rate also showed a more significant decline, from 7.1% (95% CI 6.7 to 7.3%) in 1997 to 4.8% (95% CI 4.5 to 5.1%) in 2015 (p < 0.001; Fig. 2).

The IHM rate was significantly greater in PLHIV infected with the *Toxoplasma gondii* plus other conditions than in those with *Toxoplasma gondii* infection alone. This was particularly true for the concomitant presence of bacterial pneumonia cryptosporidiosis, cytomegalovirus disease, *P. jiroveci* pneumonia, leukoencephalopathy, and wasting syndrome (Table 1).

Discussion

The overall prevalence of PLHIV infected with the *Toxoplasma gondii* was 1.91% from 1997 to 2015, similar to that reported in Spanish series (San-Andrés et al. 2003). This prevalence is substantially lower than the range of 10 to 20% observed in series of hospitalized PLHIV set in Africa, the Middle East, or China (Raberahona et al. 2018; Saavedra et al. 2017; Balkhair et al. 2012), but higher than the 0.4% seen in South Korea (Balkhair et al. 2012; Kim et al. 2016).

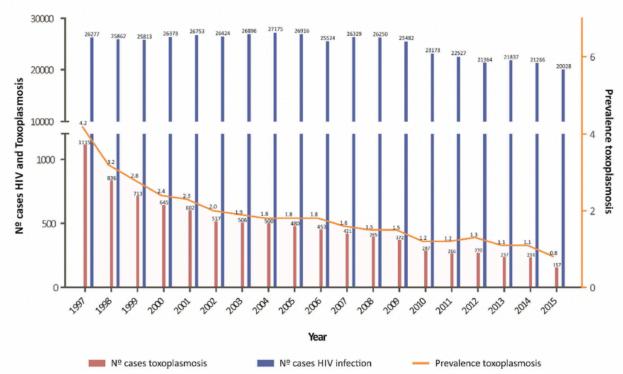


Fig. 1 Yearly HIV and HIV-Toxoplasma gondii infection hospitalizations in Spain, 1997-2015.

758 Parasitol Res (2021) 120:755–761

Table 1 Coinfection and inhospital mortality in hospitalized people living with HIV (PLHIV) infected with the *Toxoplasma gondii* plus other AIDS-defining conditions, hepatitis B or C

Coinfection	Prevalence of coinfection	In-hospital mortality in PLHIV infected with the <i>Toxoplasma</i> gondii + coinfection n/N (%)	P value
Hepatitis B virus			0.8
No		981/8515 (11.5%)	
Yes	5.5	59/491 (12.0%)	
Hepatitis C virus		707/(007/11/50/)	0.9
No Yes	23.1	797/6907 (11.5%)	
Esophageal candidiasis	23.1	243/2099 (11.6%)	0.3
No No		980/8547 (11.5%)	0.5
Yes	5.1	60/459 (13.1%)	
Candidiasis of bronchi, trachea	or lungs		0.3
No		1037/8994 (11.5%)	
Yes	0.1	3/12 (25.0%)	
Extrapulmonary cryptococcosis	S	100 (0005 (11 50))	0.1
No Yes	0.9	1026/8925 (11.5%)	
		14/81 (17.3%)	0.032
Chronic intestinal cryptosporid No	IOSIS	1033/8980 (11.5%)	0.032
Yes	0.3	7/26 (26.9%)	
Cytomegalovirus disease, inclu	iding retinitis		< 0.001
No		967/8605 (11.2%)	
Yes	4.5	73/401 (18.2%)	
HIV-related encephalopathy		10050000 (11.50)	0.3
No Yes	1.1	1025/8906 (11.5%)	
	1,1	15/100 (15.0%)	0.07
Herpes simplex, chronic ulcer No		1029/8843 (11.6%)	0.07
Yes	1.8	11/163 (6.8%)	
Histoplasmosis, disseminated			1
No		1040/9005 (11.6%)	
Yes	0.0	0/1 (0.0%)	
Chronic intestinal isosporiasis		1027/0000 (11.5%)	0.7
No Yes	0.2	1037/8989 (11.5%)	
	0.2	3/17 (17.7%)	1
Kaposi's sarcoma No		1015/8790 (11.6%)	1
Yes	2.4	25/216 (11.6%)	
Visceral leishmaniasis			0.9
No		1036/8966 (11.6%)	
Yes	0.4	4/40 (10.0%)	
Primary brain lymphoma		100 (0000 (11 50))	<.0.001
No	0.1	1036/9000 (11.5%)	
Yes	0.1	4/6 (66.7%)	0.7
Burkitt's (immunoblastic) lymp No	pnoma	1037/8988 (11.5%)	0.7
Yes	0.2	3/18 (16.7%)	
Mycobacterium avium comple			0.8
No		1026/8873 (11.6%)	
Yes	1.5	14/133 (10.5%)	
Pneumocystis jiroveci pneumo	nia	0.40.07.00.410.5773	< 0.001
No	2.5	940/8689 (10.5%)	
Yes	3.5	100/317 (31.5%)	

Parasitol Res (2021) 120:755–761 759

m		•
Table	1 (continued	1)

Coinfection	Prevalence of coinfection	In-hospital mortality in PLHIV infected with the <i>Toxoplasma</i> gondii + coinfection n/N (%)	P value
Pneumonia			< 0.001
No		855/8366 (10.2%)	
Yes	7.1	185/640 (28.9%)	
Progressive multifocal leu	koencephalopathy		< 0.001
No		984/8723 (11.8%)	
Yes	3.1	56/283 (19.8%)	
Salmonella sepsis (recurre	nt)		0.5
No		1040/8997 (11.5%)	
Yes	0.1	0/9 (0.0%)	
Tuberculosis			0.3
No		902/7706 (11.7%)	
Yes	14.4	138/1300 (10.6%)	
HIV-associated wasting sy	yndrome		< 0.001
No		958/8726 (10.9%)	
Yes	3.1	82/280 (29.3%)	

No cases of invasive cervical cancer were found in PLHIV infected with the Toxoplasma gondii

Our results show that the prevalence of *Toxoplasma gondii* infection has decreased over time, as seen in other series (Podlasin et al. 2006). This decline can be attributed to the effect of cART, which has contributed to a significant reduction in opportunistic infections and specifically *Toxoplasma gondii* infection in PLHIV (Kaplan et al. 2009; Soriano et al.

2018). The Danish HIV Cohort Study analyzed *Toxoplasma gondii* infection before (1995–1996) and after (1997–2014) the cART era, finding a reduction in *Toxoplasma gondii* infection (Martin-Iguacel et al. 2017). However, our study suggests that this decrease may be more moderate than for other HIV-associated complications.

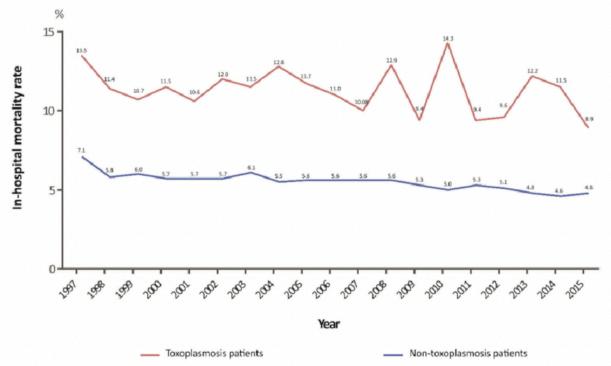


Fig. 2 Yearly in-hospital mortality rates in PLHIV infected with the Toxoplasma gondii versus other diagnoses in Spain, 1997–2015

Springer

760 Parasitol Res (2021) 120:755–761

Toxoplasma gondii infection has been reported as the second cause of admission in PLHIV (Saavedra et al. 2017). Moreover, in our series, the readmission rate was also considerable. Because the evolution of PLHIV infected with the Toxoplasma gondii is uneven, people who are hospitalized once often have to return to hospital, despite receiving treatment and post-exposure prophylaxis. Possible reasons for readmission include headache, nausea and vomiting, ataxia or cognitive ataxia, dysarthria, and facial paresis (Saavedra et al. 2017; Martin-Iguacel et al. 2017).

Even in the cART era, *Toxoplasma gondii* infection is an important cause (Martin-Iguacel et al. 2017) and predictor of mortality in PLHIV (Lakoh et al. 2019). IHM declined in our patients over the study period thanks to advances in diagnosis and treatment. However, it was still considerably higher than for other opportunistic infections and remains relevant, as a compromised central nervous system is associated with higher mortality (Saavedra et al. 2017; Lakoh et al. 2019; Xiao et al. 2013).

Many PLHIV are infected with various pathogens (Silva et al. 2019). In the PLHIV infected with the *Toxoplasma gondii* in our study, the main coinfection was hepatitis C (23.3%), followed by tuberculosis (14.4%). The latter association has been well documented in Africa (Unidad de Vigilancia de VIH y Comportamientos de Riesgo 2019; Ministerio de Sanidad 2020; Raberahona et al. 2018; Saavedra et al. 2017; Shalaka et al. 2015). The other most common coinfections in our patients were pneumonia, *P. jiroveci* pneumonia, esophageal candidiasis, and hepatitis B virus.

Coinfections with *P. jiroveci* pneumonia, bacterial pneumonia, wasting syndrome, cryptosporidiosis, and cytomegalovirus infection were associated with a significantly higher risk of IHM than infection with *Toxoplasma gondii* infection alone. This higher mortality may be a consequence of more pronounced immunosuppression in co-infected patients.

One limitation of our study is its retrospective nature. We had access only to information from the hospital discharge database, so it is not possible to rule out errors or biases in the manipulation, interpretation, or transcription of the data or comparative biases. Another limitation is the disease coding in the database. For example, progressive multifocal leukoencephalopathy is a clinical entity considered in the differential diagnosis of cerebral Toxoplasma gondii infection, but a single admission can be coded with both diagnoses because the patient's true diagnosis is not clear. Finally, the hospital discharge registry collects anonymized data, so it was not possible to identify patients who had been hospitalized at different hospitals in the same calendar year (Raberahona et al. 2018). This may have led to a slight overestimation in our results, as we could have interpreted some readmissions as new admissions (Ministerio de Sanidad 2020).

Another intrinsic limitation was that serological test results (IgG titer, IgM presence of IgG avidity) were not available, so it was not possible to determine whether the parasite invasion passed from its primary form to a latent form, or whether it was the result of reactivation of the parasite infection. Moreover, without genetic testing, we were not able to determine whether infections stemmed from parasitic reactivation or coinfection with another strain.

Conclusions

The clinical impact of *Toxoplasma gondii* infection in hospitalized PLHIV decreased in Spain over the past two decades. Despite significant declines in yearly incidence following the widespread use of antiretroviral therapy, *Toxoplasma gondii* infection remains an important cause of morbidity and mortality in this population.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00436-020-07007-5.

Author contributions Conceptualization: J.M.R.R., A.M.M. and G.G.A. Methodology: M.M.E, A.M.M., and G.G.A. Software: M.M.E and A.M.M. Formal analysis: A.M.M. and J.M.S. Investigation: M.M.E. Resources: M.M.E. and H.P.C. Data curation: M.M.E, A.M.M. and J.M.S. Writing—original draft preparation: J.M.R.R., A.M.M., M.M.E, and G.G.A. Writing—review and editing: M.M.E, A.M.M., J.M.S. I.B.R., G:G:A, and J.M.R.R.

Data availability J.M. Ramos-Rincon has full access to and is the guarantor for the data. The datasets generated are available from the corresponding author on reasonable request.

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

Ethics approval According to the Spanish law, approval by an ethics committee was not necessary for this study. To guarantee patients' anonymity, the database was provided to us by the Spanish Ministry of Health after removal of all potential identifiers. In accordance with Spanish legislation, patients' informed consent was not needed for this analysis.

Consent to participate For this type of study, formal consent to participate was not required.

Consent for publication

All the authors give their consent for publication.

References

Balkhair AA, Al-Muharrmi ZK, Ganguly S, Al-Jabri AA (2012) Spectrum of AIDS defining opportunistic infections in a series of 77 hospitalised HIV-infected Omani patients. Sultan Qaboos Univ Med J 12(4):442–448. https://doi.org/10.12816/0003169

Parasitol Res (2021) 120:755–761 761

- Collazos J, Mayo J, Martinez E (2001) The evolving mode of presentation of HIV-infected patients to health services of northem Spain: 1985 through December 1999. AIDS Patient Care STDs 15(2):67– 71. https://doi.org/10.1089/108729101300003654
- Falusi O, French AL, Seaberg EC, Tien PC, Watts DH, Minkoff H, Piessens E, Kovacs A, Anastos K, Cohen MH (2002) Prevalence and predictors of Toxoplasma seropositivity in women with and at risk for human immunodeficiency virus infection. Clin Infect Dis 35(11):1414–1417. https://doi.org/10.1086/344462
- Ghosn J, Taiwo B, Seedat S, Autran B, Katlama C (2018) HIV. Lancet 392(10148):685–697. https://doi.org/10.1016/S0140-6736(18) 31311.4
- Gironé G, Mateo C, Gaya V, Usó J, Mínguez C, Roca B, Ramos JM (2015) Admissions for imported and non-imported parasitic diseases at a general hospital in Spain: a retrospective analysis. Travel Med Infect Dis 13(4):322–328. https://doi.org/10.1016/j.tmaid.2015.04. 008
- Kaplan JE, Benson C, Holmes KK, Brooks JT, Pau A, Masur H, Centers for Disease Control and Prevention (CDC); National Institutes of Health; HIV Medicine Association of the Infectious Diseases Society of America (2009) Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep 58(RR-4):1–207 quiz CE1-4
- Kim YJ, Woo JH, Kim MJ, Park DW, Song JY, Kim SW, Choi JY, Kim JM, Han SH, Lee JS, Choi BY, Lee JS, Kim SS, Kee MK, Kang MW, Kim SI (2016) Opportunistic diseases among HIV-infected patients: a multicenter-nationwide Korean HIV/AIDS cohort study, 2006 to 2013. Korean J Intern Med 31(5):953–960. https://doi.org/10.3904/kjim.2014.322
- Lakoh S, Jiba DF, Kanu JE, Poveda E, Salgado-Barreira A, Sahr F, Sesay M, Deen GF, Sesay T, Gashau W, Salata RA, Yendewa GA (2019) Causes of hospitalization and predictors of HIV-associated mortality at the main referral hospital in Sierra Leone: a prospective study. BMC Public Health 19(1):1320. https://doi.org/10.1186/s12889-019-7614-3
- Le LT, Spudich SS (2016) HIV-associated neurologic disorders and central nervous system opportunistic infections in HIV. Semin Neurol 36(4):373–381. https://doi.org/10.1055/s-0036-1585454
- Martin-Iguacel R, Ahlström MG, Touma M, Engsig FN, Stærke NB, Stærkind M, Obel N, Rasmussen LD (2017) Incidence, presentation and outcome of toxoplasmosis in HIV infected in the combination antiretroviral therapy era. J Inf Secur 75(3):263–273. https://doi.org/ 10.1016/j.jinf.2017.05.018
- Ministerio de Sanidad, Consumo y Bienestar Social Portal Estadístico del SNS Registro de Altas de los Hospitales Generales del Sistema Nacional de Salud. CMBD. Norma Estatal. 2020. https://www.mscbs.gob.es/estadEstudios/estadisticas/cmbd.htm
- Miro JM, Lopez JC, Podzamczer D, Peña JM, Alberdi JC, Martínez E et al (2006) GESIDA 04/98 Study Group. Discontinuation of primary and secondary Toxoplasma gondii prophylax is is safe in HIV-infected patients after immunological restoration with highly active antiretroviral therapy: results of an open, randomized, multicenter clinical trial. Clin Infect Dis 43(1):79–89. https://doi.org/10.1086/504872
- Panel de expertos de Grupo de Estudio del Sida; Plan Nacional sobre el Sida (2008) 2008 prevention of opportunistic infections in HIVinfected adolescents and adults guidelines. Recommendations of GESIDA/National AIDS Plan AIDS Study Group (GESIDA) and

- National AIDS Plan. Enferm Infece Microbiol Clin 26(7):437–464. https://doi.org/10.1157/13125642
- Podlasin RB, Wiercinska-Drapalo A, Olczak A, Beniowski M, Smiatacz T, Malolepsza E, Juszczyk J, Leszczyszyn-Pynka M, Mach T, Mian M, Knysz B, Horban A (2006) Opportunistic infections and other AIDS-defining illnesses in Poland in 2000-2002. Infection 34(4): 196–200. https://doi.org/10.1007/s15010-006-5030-y
- Raberahona M, Razafinambinintsoa T, Andriananja V, Ravololomanana N, Tongavelona J, Rakotomalala R, Andriamamonjisoa J, Andrianasolo RL, Rakotoarivelo RA, Randria MJD (2018) Hospitalization of HIV positive patients in a referral tertiary care hospital in Antananarivo Madagascar, 2010-2016: trends, causes and outcome. PLoS One 13(8):e0203437. https://doi.org/10.1371/journal.pone.0203437
- Renold C, Sugar A, Chave JP, Perrin L, Delavelle J, Pizzolato G et al (1992) Toxoplasma encephalitis in patients with the acquired immunodeficiency syndrome. Medicine (Baltimore) 71(4):224–239. https://doi.org/10.1097/00005792-199207000-00005
- Saavedra A, Campinha-Bacote N, Hajjar M, Kenu E, Gillani FS, Obo-Akwa A, Lartey M, Kwara A (2017) Causes of death and factors associated with early mortality of HIV-infected adults admitted to Korle-Bu Teaching Hospital. Pan Afr Med J 27:48. https://doi.org/10.11604/pamj.2017.27.48.8917
- San-Andrés FJ, Rubio R, Castilla J, Pulido F, Palao G, de Pedro I et al (2003) Incidence of acquired immunodeficiency syndromeassociated opportunistic diseases and the effect of treatment on a cohort of 1115 patients infected with human immunodeficiency virus, 1989-1997. Clin Infect Dis 36(9):1177–1185. https://doi.org/10. 1086/374358
- Shalaka NS, Garred NA, Zeglam HT, Awasi SA, Abukathir LA, Altagdi ME et al (2015) Clinical profile and factors associated with mortality in hospitalized patients with HIV/AIDS: a retrospective analysis from Tripoli Medical Centre, Libya, 2013. East Mediterr Health J 21(9):635–646. https://doi.org/10.26719/2015.21.9.635
- Silva BEBD, Santos VS, Santos IER, Batista MVA, Gonçalves LLC, Lemos LMD (2019) Prevalence of coinfections in women living with human immunodeficiency virus in Northeast Brazil. Rev Soc Bras Med Trop 53:e20190282. https://doi.org/10.1590/0037-8682-0282-2019
- Simon V, Ho DD, Abdool Karim Q (2006) HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet 368(9534):489– 504. https://doi.org/10.1016/S0140-6736(06)69157-5
- Soriano V, Ramos JM, Barreiro P, Femandez-Montero JV (2018) AIDS clinical research in Spain-large HIV population, geniality of doctors, and missing opportunities. Viruses 10(6):293. https://doi.org/10.
- Unidad de Vigilancia de VIH y Comportamientos de Riesgo (2019)
 Vigilancia Epidemiológica del VIH y sida en España 2018:
 Sistema de Información sobre Nuevos Diagnósticos de VIH y
 Registro Nacional de Casos de Sida. Plan Nacional sobre el Sida D.G. de Salud Pública, Calidad e Innovación / Centro Nacional de
 Epidemiología ISCIII. Madrid
- Xiao J, Gao G, Li Y, Zhang W, Tian Y, Huang Y, Su W, Han N, Yang D, Zhao H (2013) Spectrums of opportunistic infections and malignancies in HIV-infected patients in tertiary care hospital, China. PLoS One 8(10):e75915. https://doi.org/10.1371/journal.pone.0075915

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

