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Overview 
Modelling and simulation strategies are a powerful resource to increase the 
efficiency in the drug discovery and development process. Able to differentiate 
system- and drug-related parameters, physiologically based pharmacokinetics 
(PBPK) allows to “easily” develop mechanistic models to check untested or 
untestable scenarios and to answer “what-if” questions in the safest possible way. 
Open software and designed modelling software tools do exist to develop PBPK 
models, being the latter necessarily qualified for its purpose. Because of its 
algorithmic nature, these software need systems of ordinary differential equations 
defining local processes and relation among the tissues/organs that ultimately 
constitute the system/organism. And these equations must be defined from 
scratch by the modeller or by the designer. 

The present Thesis will start with the validation of a multilevel object-oriented and 
acausal (non-algorithmic) modelling methodology and will be proposed as an 
alternative to algorithmic methodologies because of its re-usability (object-
oriented) and comfort (no need to define ordinary differential equations systems) 
for the modeller. 

In the second part of the Thesis, preclinical utility of PBPK modelling will be 
highlighted through the development of a PBPK/pharmacodynamic model for the 
small molecule MBQ-167 to predict tumour growth inhibition for two breast cancer 
cell lines (i.e., HER2 positive and triple negative) in mice. Additionally, model 
simulations will be performed to explore the effect of more intensive dosing 
regimens in tumour size reduction. 

After an extensive review of the pharmacokinetic parameters driving atorvastatin 
absorption, distribution, metabolism and excretion processes, the development of 
a PBPK model for atorvastatin and its metabolites to in silico assess the drug-gene 
interaction with SLCO1B1 polymorphisms will be presented, moving the 
application of PBPK modelling and simulations to the clinical setting. Finally, the 
last part of the present Thesis will focus on the PBPK modelling of large molecules 
in oncology by means of the development of PBPK models for the monoclonal 
antibodies directed to EGFR family membrane receptors pertuzumab, 
trastuzumab, and cetuximab.





 

Page | iii  

Acknowledgments/Agraïments 
I perfectly remember the first email I wrote to and the first meeting I had with 
Prof. Matilde Merino Sanjuán and Dr. Víctor Mangas Sanjuán. This was five years 
ago now, and after a lot of analyses, reports, conferences, and papers here I am, 
writing probably the most difficult part of the Thesis, as to summarise all the 
feelings, memories and experiences lived during the last years is more than 
challenging. 

I want to start these acknowledgements lines expressing my most sincere 
gratitude to my thesis directors, Víctor and Mati. 

Mati, thanks for the opportunity of joining your team and for putting your trust on 
me. Thanks for all the time we have spent talking about not only 
pharmacokinetics, but also about other topics I have really enjoyed. Thanks for 
being there all the time. 

Víctor, my master, thanks for all the moments we have shared and all you have 
done. Because without you I would never have discovered the amazing and field 
of pharmacometrics. Because you have made that something previously unknown 
becomes a passion. 

It has been a privilege learning from you and a pleasure working with you. 
Thank you very, very much. 

Also, I want to express my gratitude to three brilliant people for the time they 
spent working with me. 

Firstly, I want to thank Dr. Manuel Prado Velasco all the time we shared talking 
about acausal modelling. Manolo, thanks for making easy such difficult concepts. 

To Alfredo García Arieta, my preferred reviewer, whose comments, and 
suggestions, as well as positive and constructive discussions, had always been 
very appreciated. 

Last, but not the least, I want to express my gratitude to Dr. Pradeep Sharma, 
my friend and supervisor at AstraZeneca during my research stay, for sharing with 
me a bit of his huge knowledge in PBPK modelling. 

Many thanks to you three. 



 

Page | iv 

I am also very thankful to Dr. Jorge Duconge Soler, Dr. María del Mar Maldonado 
Montalbán and Dr. Suranganie Dharmawardhane, from the University of Puerto 
Rico (USA), for the opportunity of working with them in the MBQ-167 project. 
Many thanks. 

To my UVmetriX group mates Kike, Aymara, Karine, and Marina: thanks for all 
the moments we have lived around the world. An incredible future is waiting for 
you. 

To my friends and colleagues from CB2 group: many thanks for the coffees, laughs 
and good moments we shared during my stay in Cambridge (UK). So, Carlos T., 
Unai, Itziar, and Lucía, thank you very much. 

A special acknowledgment deserve Dr. Ignacio González García and Dr. Carlos 
Fernández Teruel. 

Nacho, many thanks for being always willing and Ready to help. 

Carlos, thank you so much for an opportunity I will never forget. 

Als meus pares, Elodia i Aurelio, els que sempre han estat al meu costat: 
GRÀCIES, no soles per tot el suport aquests últims anys (reconec que el alguns 
moments he estat insuportable), sinó per tot el que sempre heu fet per mi. 

Gràcies també a tu, Elisa, per tots els moments que hem passat parlant de les 
coses que ens apassionen. 

A Juani i Eduardo vull agrair l’ajuda, sempre incondicional, que en tot moment ens 
han proporcionat. 

A Anna i Edu: moltes gràcies per totes les “guàrdies” que vos ha tocat fer. I 
especialment a tu, “Dr. E. Duard”, exemple de constància, perseverança i, també, 
cabuderia (ves preparant-te que a partir d’ara ja podrem parlar de “tu a tu”). De 
veritat, Edu, gràcies per creure en mi.  

Als quatre: gràcies per estar ahí. 

Per supost, als meus menuts Ada, Gauss, Tesla, i també a Euler (qui va veure 
escomençar aquest projecte però no l’ha pogut veure acabar). 
Gràcies per totes les hores compartides. 



 

Page | v  

Arribat aquest punt, hi haurà dues persones que estaran pensant “i nosaltres 
què?”. Vosaltres aneu a part. 

Al meu germà, “Dr. Mario”: gràcies per estar al meu costat en els bons moments 
però, sobretot, gràcies, moltíssimes gràcies per ajudar-me a superar eixos 
moments no tant bons que hem viscut; i també per tots eixos “fish and chips”. 
Mariet: has sigut i eres una font d’inspiració i motivació. 

I a tu, Cris, la meua millor amiga i companya en la vida: em quede curt donant-
te les gràcies amb paraules però, que anem a fer, el llenguatge és així. Aquests 
últims anys hem passat molt bons moments però, també altres durs i difícils. 
Moments que podrien haver causat que aquest treball no veguera la llum, però 
sempre has mantingut la meua motivació i il·lusió perquè continuara endavant. 

Així que açò és per tu i per a tu. Tres mil gràcies.





 

Page | vii  

List of publications 
The present Thesis is based on the following manuscripts: 

1. A multilevel object-oriented modelling methodology for 
physiologically-based pharmacokinetics (PBPK): Evaluation with 
a semi-mechanistic pharmacokinetic model. 
J. Reig-Lopez, M. Merino-Sanjuan, V. Mangas-Sanjuan, M. Prado-Velasco 
Comput Methods Programs Biomed. 2020 Jun;189:105322 
Journal statistics: IF 5.428, Q1 (Computer Science, Theory and Methods) 
 

2. Physiologically-Based Pharmacokinetic/Pharmacodynamic Model 
of MBQ-167 to Predict Tumor Growth Inhibition in Mice. 
J. Reig-López, MDM Maldonado, M. Merino-Sanjuan, AM. Cruz-Collazo,JF. 
Ruiz-Calderón, V. Mangas-Sanjuán, S. Dharmawardhane, J. Duconge 
Pharmaceutics. 2020 Oct 15;12(10):975 
Journal statistics: IF 6.321, Q1 (Pharmacology & Pharmacy) 
 

3. Current Evidence, Challenges, and Opportunities of Physiologically 
Based Pharmacokinetic Models of Atorvastatin for Decision 
Making. 
J. Reig-López, A. García-Arieta, M. Merino-Sanjuan and V. Mangas-
Sanjuan 
Pharmaceutics. 2021 May 13;13(5):709 
Journal statistics: IF 6.525, Q1 (Pharmacology & Pharmacy)  
 

4. A physiologically based pharmacokinetic model for open acid and 
lactone forms of atorvastatin and metabolites to assess the drug-
gene interaction with SLCO1B1 polymorphisms. 
J. Reig-López, A. García-Arieta, M. Merino-Sanjuan and V. Mangas-
Sanjuan 
Biomed Pharmacother. 2022 Dec;156:113914 
Journal statistics: IF 7.419, Q1 (Pharmacology & Pharmacy) 
 

5. Application of population physiologically based pharmacokinetic 
modelling to optimize target expression and clearance 
mechanisms of therapeutic monoclonal antibodies 
J. Reig-Lopez, W. Tang, C. Fernandez-Teruel, M. Merino-Sanjuan, V. 
Mangas-Sanjuan, D. W. Boulton and P. Sharma 
British Journal of Clinical Pharmacology. 2023;1-12 
Journal statistics: IF 3.716, Q2 (Pharmacology & Pharmacy) 
 
Reprint of all papers is permitted for this purpose. 
 

https://www.sciencedirect.com/science/article/abs/pii/S0169260719318036?via%3Dihub
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=COMPUT%20METH%20PROG%20BIO&year=2021&fromPage=%2Fjcr%2Fhome
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=COMPUT%20METH%20PROG%20BIO&year=2021&fromPage=%2Fjcr%2Fhome
https://www.mdpi.com/1999-4923/12/10/975
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=PHARMACEUTICS&year=2021&fromPage=%2Fjcr%2Fbrowse-journals
https://www.mdpi.com/1999-4923/13/5/709
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=PHARMACEUTICS&year=2021&fromPage=%2Fjcr%2Fbrowse-journals
https://www.sciencedirect.com/science/article/pii/S0753332222013038?via%3Dihub
https://jcr.clarivate.com/jcr-jp/journal-profile?journal=BIOMED%20PHARMACOTHER&year=2021&fromPage=%2Fjcr%2Fbrowse-journals
https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/bcp.15745
https://jcr.clarivate.com/jcr-jp/journal-profile?app=jcr&referrer=target%3Dhttps:%2F%2Fjcr.clarivate.com%2Fjcr-jp%2Fjournal-profile%3Fjournal%3DBRIT%2520J%2520CLIN%2520PHARMACO%26year%3D2021%26fromPage%3D%252Fjcr%252Fbrowse-journals&Init=Yes&journal=BRIT%20J%20CLIN%20PHARMACO&authCode=null&year=2021&fromPage=%2Fjcr%2Fbrowse-journals&SrcApp=IC2LS




 

Page | ix  

List of abbreviations 
2OH-ATS: 2-hydroxy-atorvastatin 
2OH-ATS-L: 2-hydroxy-atorvastatin lactone 
4OH-ATS: 4-hydroxy-atorvastatin 
4OH-ATS-L: 4-hydroxy-atorvastatin lactone 
AAFE: absolute average fold error 
ADME: absorption, distribution, metabolism and excretion 
AFE: average fold error 
ATS: atorvastatin 
ATS-Ca: atorvastatin calcium salt 
ATS-L: atorvastatin lactone 
B/P: blood-to-plasma concentration ratio 
BC: breast cancer 
CLint: intrinsic clearance 
CTX: cetuximab 
CYP450: cytochrome P450 
DDI: drug-drug interaction 
DGI: drug-gene interaction 
ET: extensive transporter 
FIH: first in human 
fu: fraction unbound in plasma 
GI: gastrointestinal 
GUI: graphical user interface 
IP: intraperitoneal 
IT: intermediate transporter 
IVIVE: in vitro-in vivo extrapolation 
kdeg: first order degradation rate constant of receptor (receptor turnover) 
Kpt: tissue-to-plasma concentration ratio 
M&S: modelling and simulation 
mAb: monoclonal antibody 
MAE: mean absolute error 
MID3: model-informed drug discovery and development 
NTCP: sodium-taurocholate transporting polypeptide 



List of abbreviations 

 

Page | x 

OATP: organic anion transporting polypeptide 
ODE: ordinary differential equation 
PBPK: physiologically based pharmacokinetics 
PD: parent drug 
PE: prediction error 
Peff,man: human jejunum effective permeability 
P-gp: P glycoprotein 
PhysPK: PhysPK Biosimulation Software 
PK: pharmacokinetics 
PM: primary metabolite 
popPBPK: population physiologically based pharmacokinetics 
PPE: percent prediction error 
PT: poor transporter 
PTZ: pertuzumab 
RE: relative error 
Rmax: receptor abundance 
RMSE: root mean squared error 
SM: secondary metabolite 
TGI: tumour growth inhibition 
TMDD: target-mediated drug disposition 
TTZ: trastuzumab 
UGT: UDP-glucuronosyltransferase 
UT: ultra-rapid transporter 
vNM: semi-mechanistic version of the theoretical model with extraction-based 
metabolism of parent drug. Ordinary Differential Equations (ODEs) were 
implemented and solved in NONMEM 
vPPK: physiological multilevel version of the theoretical model implemented in 
PhysPK. vPPK uses an acausal object-oriented modelling approach 
vPSEM: model version with the same mathematical approximation that vNM but 
implemented in PhysPK. 
vPSIM: semi-mechanistic version of the theoretical model with intrinsic 
clearance-based metabolism of parent drug implemented in PhysPK



 

Page | 1  

Resum de la tesi 
 
 

Introducció 

Quan parlem de models farmacocinètics basats en la fisiologia (PBPK per les seues 
sigles en anglès) parlem d’estructures matemàtiques definint un organisme (el 
sistema) i construïdes amb una sèrie de compartiments diferenciats que 
representen òrgans i teixits, tots ells connectats per fluxos sanguinis arterials i 
venosos. Aquest tipus de models contenen tota una representació directa dels 
òrgans més rellevants per als processos d’Absorció, Distribució, Metabolisme i 
Excreció (ADME) d’un fàrmac, essent els més habituals pulmons, cervell, cor, 
fetge, tracte gastrointestinal (GI), pàncrees, melsa, gònades, ronyons, pròstata, 
músculs, teixit adipós, tim, ossos i pell. 

Cadascun d’aquests teixits i òrgans està caracteritzat pel seu volum, flux sanguini 
i composició (volums fraccionals d’aigua, fosfolípids, i lípids neutres i la fracció 
intersticial), amb diferent estructures internes que van des de la més simple (el 
teixit com a un tot) a altres més complexes amb espais vascular, intersticial i 
intracel·lular o també arribant a tenir en compte l’espai endosomal (molt apropiat 
quan es treballa amb fàrmacs biològics). A més a més, informació addicional com 
abundàncies enzimàtiques i de transportadors de membrana, hematòcrit, pH i 
temps de buidat gàstrics, filtració glomerular, hepatocel·lularitat (milions de 
cèl·lules hepàtiques per gram de teixit hepàtic), pH plasmàtic, dimensions del 
tracte GI (radi i llargària) s’han de tenir en compte per a poder definir de la millor 
manera possible la fisiologia d’aquests òrgans. A banda d’aquestes 
característiques fisiològiques, informació demogràfica com l’edat, el pes, l’alçada 
i el gènere és afegida al model PBPK per tal de completar la parametrització de 
l’organisme. Cas que la variabilitat interindividual en tots aquests paràmetres siga 
coneguda i estiga quantificada es pot arribar a generar una població virtual per 
tal de representar escenaris més realistes, passant a parlar-se de PBPK 
poblacional o popPBPK. 

Afegits al bloc del sistema, es necessiten dos blocs més per a generar l’entramat 
que constituirà el model PBPK. El primer és el fàrmac. La incorporació de 
propietats fisicoquímiques com el pes molecular, estructura química, caràcter àcid 
o bàsic i la lipofília, així com la fracció lliure en plasma (fu), coeficients de partició 
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sang/plasma (B/P) i teixit/plasma (Kpt), aclariments intrínsecs (CLint) per a 
processos metabòlics i de transport actiu, i excreció renal i/o biliar com a 
paràmetres de l’ADME constitueixen els paràmetres del model PBPK relacionats 
amb el fàrmac. Per últim, la forma farmacèutica a estudiar (comprimit, solució 
oral, etc.), el disseny de l’estudi (dosi i esquema d’administració, duració, etc.) 
així com esdeveniments particulars (ingesta d’aliments, per exemple) defineixen 
el bloc de paràmetres relacionats amb l’assaig clínic o preclínic. Aquesta 
diferenciació per blocs és necessària per a poder desenvolupar models genèrics i 
independents i utilitzar-los en una àmplia varietat d’escenaris. És a dir, el fàrmac 
X (amb la seua parametrització) podrà ser avaluat en la població Y (amb les seues 
característiques) amb un disseny experimental (dosi i freqüència d’administració) 
particular però, sobretot, flexible. O expressat d’altra manera: poder arribar a 
respondre preguntes de l’estil “què passaria si...?”. 

L’ús del modelat PBPK en el procés de descobriment i desenvolupament de 
medicaments ha estat limitat en el passat degut a la complexitat d’aquests models 
i la gran quantitat de dades que són necessàries per a desenvolupar-los. La 
disponibilitat de determinades tècniques experimentals i sistemes in vitro que 
permeten la determinació indirecta d’alguns processos de l’ADME, així com la 
millora de les tècniques d’extrapolació in vitro-in vivo (IVIVE) i de mètodes de 
predicció dels coeficients de partició B/P i Kpt o de la permeabilitat intestinal 
efectiva en humans (Peff,man) ha fet possible la combinació de tots aquests 
paràmetres que venen de fonts diferents (prediccions in silico, experiments in 
vitro o determinacions in vivo) en models fisiològics per tal de predir perfils de 
concentració en funció del temps en plasma sanguini o determinats teixits d’una 
manera mecanística, també conegut baix el terme anglosaxó aproximació 
“bottom-up”. 

Aquesta metodologia mecanística de modelat difereix de les tècniques més 
convencionals d’anàlisi de dades o aproximacions “top-down”, amb les quals els 
models farmacocinètics es desenvolupen un cop els valors de concentració en 
funció del temps estan disponibles. Un avantatge de les aproximacions “bottom-
up” (i per tant dels models PBPK) que es pot deduir ràpidament és que el treball 
de modelat i simulació (M&S) pot començar ben prompte en el procés de 
desenvolupament de medicaments, quan aquests valors de concentració encara 
no hi estan disponibles. No obstant això, no es pretén que ambdues tècniques 
siguen incompatibles, ja que la informació que proporcionen es pot utilitzar per 
reforçar-se mútuament. Aquesta simbiosi és el que es coneix baix el terme 
d’aproximacions “middle-out”. 

El modelat i simulació fisiològic és una tècnica potent (i sobretot, eficient) per tal 
d’accelerar la transició entre les diferents fases del procés de desenvolupament 
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de medicaments i avaluar l’efecte de factors intrínsecs (insuficiències orgàniques, 
edat, embaràs, etc.) i extrínsecs (interaccions entre fàrmacs o DDIs, tabaquisme, 
etc.), aïllades o en combinació, sobre l’exposició al fàrmac en qüestió. El modelat 
i simulació en PBPK pot ajudar en el disseny d’un assaig clínic i reduir els temps 
de decisió interna, així com també rebaixar la incertesa de les agències 
reguladores de medicaments. L’increment en l’ús del modelat PBPK per la 
indústria farmacèutica en els darrers anys i la inclusió cada vegada més freqüent 
de resultats derivats d’aquestes aproximacions a les sol·licituds d’autorització per 
a la comercialització de medicaments ha ocasionat el reconeixement i l’acceptació 
per part de les principals agències reguladores (European Medicines Agency [UE], 
Food and Drug Administration [EEUU], Pharmaceuticals and Medicals Devices 
Agency [Japó]) i la publicació de guies de bones pràctiques en modelat PBPK per 
tal d’estandarditzar els informes presentats, traslladant el modelat i la simulació 
PBPK de la curiositat acadèmica a la pràctica habitual per la indústria farmacèutica 
i l’acceptació a nivell regulador. Tant és així, que aquest tipus de simulacions han 
servit no sols per informar fitxes tècniques de medicaments (posologia, risc de 
DDIs, ús en poblacions específiques com malaltia renal o insuficiència hepàtica), 
sinó que han arribat a substituir la realització de determinats assajos clínics; 
situacions que d’altra manera hagueren ocasionat un buit terapèutic en una 
situació específica. 

El desenvolupament de programes informàtics sofisticats i potents que són 
capaços d’integrar i combinar d’una manera eficient l’estructura fisiològica d’un 
organisme, les propietats fisicoquímiques i de l’ADME del fàrmac i el disseny de 
l’estudi ha suposat un punt d’inflexió per a la difusió i acceptació dels models 
PBPK. Ajudant-se d’una interfície gràfica i col·leccions de poblacions i fàrmacs, el 
principal avantatge d’aquestes eines informàtiques és que poden ser utilitzats per 
professionals que dominen els principis fisiològics i farmacocinètics però, que 
manquen de l’experiència necessària per a la codificació d’aquestes estructures 
matemàtiques des de zero. Entre els programes informàtics més àmpliament 
utilitzats en aquest sector cal destacar SimCYP® (Certara), PK-Sim® (Open 
Systems Pharmacology) i GastroPlus® (Simulation Plus). En aquests programes, 
l’estructura bàsica del model PBPK està prèviament definida pels seus 
desenvolupadors i per tant, no és accessible per a l’usuari final. Açò no vol dir que 
aquests programes no siguen transparents, ja que habitualment se’ls anomena 
“caixes negres” per aquest “blindatge” que porten per defecte. En realitat, totes 
les assumpcions en què es basen estan clarament definides i disponibles per a 
l’usuari. És per això que, el terme “caixes de cristall” recentment definit, potser 
encaixa millor en la definició d’aquests programes. És més, aquesta 
inaccessibilitat ha de ser interpretada en termes de qualitat, ja que tan sols uns 
pocs especialistes (i experts) poden obrir aquesta “caixa”, accedir a l’estructura 
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del model, fer els canvis i millores que corresponguen i requalificar el programa 
per mantenir la confiança en els resultats que proporciona. 
Tots aquests programes es basen en sistemes d’equacions diferencials ordinàries 
(ODE) que bé siga l’usuari final o el desenvolupador ha de definir per a poder 
descriure els processos locals i les relacions entre compartiments (o teixits/òrgans 
en el nostre cas). No obstant això, altres metodologies hi existeixen, com 
programes basats en sistemes d’equacions diferencials algebraiques i tecnologia 
de “machine learning” acausal. El principal avantatge d’aquests llenguatges de 
simulació és que la descripció matemàtica dels components de simulació no és 
algorítmica (acausal) i per tant, les variables d’entrada i eixida no tenen per què 
definir-se en la fase inicial de construcció del model. 
 

Hipòtesi i objectius 

Més enllà de la necessitat constant d’avançar en la millora de les tècniques 
d’extrapolació in vitro-in vivo i en la recopilació de dades fisiològiques per 
perfeccionar la caracterització virtual dels essers vius, existeix també una 
necessitat de perfeccionar i refinar la utilització del modelat farmacocinètic 
fisiològic en el procés de desenvolupament de medicaments informat per models. 

A més a més, els treballs d’investigació que han analitzat els principals programes 
informàtics de modelat farmacocinètic fisiològic han estat centrats en els 
mecanismes fisiològics integrats, les característiques de modelat que satisfan els 
requeriments dels usuaris i de les agències reguladores de medicaments, així com 
la capacitat d’abordar poblacions especials o avaluar interaccions entre fàrmacs, 
però no en els aspectes metodològics en què es basen. 

Per tot el descrit anteriorment, l’objectiu principal de la present Tesi doctoral 
és: 

Desenvolupar, validar i aplicar models farmacocinètics fisiològics des d’un punt de 
vista metodològic i de presa de decisions i enfocat a optimitzar el procés de 
descobriment i desenvolupament de medicaments informat per models. 

En particular, els objectius específics són: 

1. Avaluar la capacitat predictiva del programa per a modelat i simulació 
fisiològiques PhysPK front al software de referència més emprat en 
farmacocinètica poblacional NONMEM. 
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2. Comparar les metodologies de modelat causal i acausal en un model 
farmacocinètic semimecanístic. 

3. Caracteritzar la dinàmica de creixement tumoral de dos línies humanes de 
càncer de pit (HER2+ i Triple Negativa). 

4. Desenvolupar un model PBPK/farmacodinàmic per al fàrmac MBQ-167 
administrat per via intraperitoneal en ratolins. 

5. Desenvolupar un model PBPK per a l’atorvastatina i els seus principals 
metabòlits en forma àcida i lactonitzada. 

6. Avaluar quantitativament l’impacte dels polimorfismes genètics al gen 
SLCO1B1 en la farmacocinètica de l’atorvastatina. 

7. Proposar una estratègia general per al modelat PBPK d’anticossos 
monoclonals i la seua aplicació en l’àmbit de la farmacologia clínica per a 
optimitzar l’expressió de la diana terapèutica al lloc d’acció i també 
mecanismes d’eliminació d’aquests fàrmacs biològics. 

 

Resultats i discussió 

Part 1: aspectes metodològics dels programes informàtics per 
a modelat farmacocinètic fisiològic 

En aquesta part es resolen els obejctius específics 1 i 2. Agafant com a referència 
un model teòric semimecanístic que incorporava un procés d’absorció complex per 
administració oral d’una forma farmacèutica sòlida, trànsit intestinal, dissolució 
del fàrmac limitada per la seua solubilitat, transportadors de secreció intestinal 
activa amb expressió variable al llarg del tracte GI, metabolisme intestinal i 
hepàtic, tres versions del fàrmac administrat per via oral (primera generació o PD 
i dos metabòlits, PM i SM), i excreció renal dels metabòlits, es van generar quatre 
versions o aproximacions a aquesta estructura bàsica teòrica: 

● vNM: versió semimecanística descrita amb un sistema d’ODEs al 
programa NONMEM i definint el metabolisme de PD amb taxes d’extracció. 

● vPSEM: versió idèntica a vNM però, definida al programa PhysPK. 
● vPSIM: versió semimecanística descrita amb un sistema d’ODEs al 

programa PhysPK i definint el metabolisme de PD amb aclariments 
intrínsecs. 

● vPPK: versió fisiològica i multinivell del model teòric definida a PhysPK. 
Aquesta versió fa ús de la metodologia de modelat acausal i orientat a 
objectes. 
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Finalment, es va generar un set de 32 escenaris incloent fàrmacs de classe BCS 
II i IV, dos nivells de dosi, i metabolisme (intestinal i hepàtic) i activitat de la 
glicoproteïna P (P-gp) lineal i no lineal. Aquesta bateria d’escenaris es va sotmetre 
a una avaluació per mitjà de diferents comparacions de les versions del model 
teòric descrites anteriorment. 

Validació del programa PhysPK: vNM vs vPSEM 

L’avaluació gràfica dels perfils concentració plasmàtica en funció del temps (Cp-t) 
generats amb PhysPK són pràcticament idèntics als obtinguts amb NONMEM per 
a PD en tots els escenaris considerats. La correspondència entre programes per a 
PM i SM és bona per a valors baixos-mitjos de concentració, i lleugerament 
diferent per a valors alts de concentració (prop de la concentració plasmàtica 
màxima o Cmax) als escenaris corresponents a una baixa permeabilitat intestinal i 
una activitat lineal de la P-gp. No obstant, el coeficient de correlació lineal (R2) va 
resultar superior a 0.96 en tots els casos i amb errors relatius (RE) mitjos inferiors 
al 7% per a l’àrea baix la corba Cp-t (AUC) i inferiors al 3% per a Cmax. 

Avaluació del metabolisme: vPSEM vs vPSIM 

En aquesta fase es va dur a terme la comparació de dues versions del model 
teòric, ambdues definides al programa PhysPK, diferenciant-se únicament en 
l’abordatge del metabolisme de PD (taxes d’extracció vs aclariment intrínsec). De 
la manera com s’esperava, PD va resultar la versió del fàrmac més sensible als 
canvis en el metabolisme. La saturació del metabolisme hepàtic comporta una 
disminució en la velocitat d’eliminació, fent més gran la diferència en AUC i Cmax 
entre versions degut a la manera com està parametritzat el metabolisme en 
ambdues versions. 

Comparació de metodologies: vPSIM vs vPPK 

Els resultats de la comparació de les versions PSIM i PPK van revelar una 
correspondència excel·lent entre ambdues aproximacions en la predicció de 
l’exposició a PD, sense cap tendència d’infrapredicció o sobrepredicció en cap 
escenari, i amb RE mitjos en la predicció d’AUC i Cmax del -0.02% i -0.04%, 
respectivament. Quant als metabòlits PM i SM, la determinació de diferències 
significatives entre ambdues versions és deguda a la falta de perfusió sanguínia 
en la vPSIM, en la que PM i SM són disposats immediatament als seus 
compartiments un cop formats. A la vPPK, més fisiològica, les prediccions de la 
concentració plasmàtica de PM i SM van resultar superiors a les obtingudes amb 
la vPSIM perquè tant PM com SM circulen pel torrent sanguini abans de ser 



Resum de la tesi 

 

Page | 7  

excretats amb la orina, fenòmen que ocorre immediatament a la versió PSIM tan 
prompte com s’han format, predient-se una exposició menor a la que 
fisiològicament té lloc. 

Part 2: modelat farmacocinètic fisiològic al context preclínic 

Aquesta part dóna resposta als objectius específics 3 i 4. La molècula de síntesi 
MBQ-167 és una candidata a fàrmac anticancerós que inhibeix la metàstasi de 
cèl·lules malignes de càncer de mama in vivo i ha sigut caracteritzada com un 
inhibidor potent de les Rho GTPases Rac i Cdc42. Aquests enzims presenten una 
activitat molt incrementada en diferents tipus de càncer i promouen la migració 
cel·lular, invasió, proliferació i transformació oncogènica. MBQ-167 inhibeix 
ambdues GTPases, amb una concentració responsable del 50% de la capacitat 
inhibitòria màxima (IC50) de 0.1 i 0.08 μM per a Rac i Cdc42, respectivament. 
Diferents assajos preclínics han demostrat que MBQ-167 inhibeix la migració 
cel·lular de cèl·lules malignes de càncer de mama, la seua viabilitat, el creixement 
del tumor (un 91% de reducció en la mida del tumor s’aconsegueix ja amb dos 
mesos de tractament) i la metàstasi in vivo sense una aparent toxicitat. 

Seguint una aproximació de modelat “middle-out”, els resultats del model PBPK 
després de la simulació de l’administració intraperitoneal (IP) de 10 mg/kg van 
posar de manifest la capacitat predictiva del model fisiològic no sols en la predicció 
dels paràmetres d’exposició AUC, Cmax i el temps en què s’arriba a la Cmax (Tmax) 
en plasma, sinó també en altres òrgans com cor, pulmons, fetge, melsa i ronyons, 
amb errors de predicció (Parampred/Paramobs) molt pròxims a la unitat i RE, en 
general, inferiors al 20%. 

El model de creixement tumoral (no pertorbat pel fàrmac) desenvolupat seguint 
l’estructura d’un model de Simeoni, descriu perfectament les dades experimentals 
de les dos línies cel·lulars estudiades (HER2+ i Triple Negativa), ja que el perfil 
simulat cau dins de l’interval de confiança al 95% (95CI) en tots els temps 
d’observació. Quan s’incorpora l’efecte d’MBQ-167 per a pertorbar el creixement 
tumoral, el model PBPK/PD també descriu les dades observades d’inhibició del 
creixement tumoral (TGI) en les dos línies cel·lulars. Concretament per a les 
cèl·lules HER2+, les simulacions del model prediuen amb una bona exactitud 
(RE<20%) la reducció del volum tumoral observat tant amb l’administració IP d’1 
com de 10 mg/kg tres vegades per setmana durant 65 dies, amb una reducció del 
94.3% amb el nivell de dosi més alt. En el cas de les cèl·lules Triple Negatives, el 
model desenvolupat va predir satisfactòriament la reducció en el creixement 
tumoral per al nivell de dosi d’1 mg/kg, mentre que les prediccions per al nivell 
de dosi més alt van resultar en un volum final lleugerament inferior a l’observat 
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després d’administrar MBQ-167 tres vegades per setmana durant 108 dies. No 
obstant, la capacitat predictiva del model va estar confirmada ja que la dinàmica 
de creixement tumoral simulada va caure dins el 95CI de les observacions en els 
dos nivells de dosi i la predicció de la reducció del volum tumoral amb 10 mg/kg 
(89.6%) és molt pròxima a l’observada in vivo (87.0%). 

Verificada la capacitat predictiva del model PBPK/PD, es van realitzar una sèrie de 
simulacions per tal de respondre a les preguntes “Què passaria si MBQ-167 
s’administrara una o dues vegades al dia en lloc de tres vegades per setmana? 
S’incrementaria la reducció de la mida del tumor amb pautes posològiques més 
intensives?” Els resultats d’aquestes simulacions va revelar que la reducció de la 
mida del tumor ( era major quan MBQ-167 s’administra una o dues vegades al 
dia, especialment per a la línia cel·lular HER2+, on l'erradicació del tumor podria 
anticipar-se administrant 1 mg/kg dues vegades al dia o 10 mg/kg una o dues 
vegades al dia. Per a la línia cel·lular Triple Negativa, l’efecte màxim s’aconsegueix 
ja amb 1 mg/kg, anticipant-se una estabilització del creixement tumoral quan 
MBQ-167 s’administra una o dues vegades al dia. 

Part 3: modelat farmacocinètic fisiològic al context clinic 

Avaluant interaccions entre fàrmacs i gens: el cas particular de 
l’ATS 

En aquesta part es dóna resposta als objectius específics 5 i 6 de la present tesi 
doctoral. L’atorvastatina (ATS) és una estatina sintètica de segona generació que 
s’administra en la forma àcida i farmacològicament activa de la salt càlcica (ATS-
Ca). L’ATS és una de les estatines més utilitzades a nivell global per al tractament 
de la hipercolesterolèmia i conseqüent reducció del risc cardiovascular. La 
posologia d’ATS és l’administració diària d’un comprimit d’entre 10-80 mg en 
qualsevol moment del dia. Precisament, aquest és un dels principals avantatges 
d’aquesta estatina ja que, tant per la seua prolongada semivida biològica (t1/2) 
(14 h) com per l’existència de metabòlits actius (als quals s’atribueix un 70% de 
l’activitat inhibidora de l’enzim 3-hidroxi-3-metilglutaril coenzim A reductasa o 
HMG-CoA) no és necessari que l’administració d’aquest fàrmac tinga lloc de 
vesprada-nit, quan l’activitat d’aquest enzim responsable de la síntesi endògena 
de colesterol té una major activitat. A més a més, parlem d’un fàrmac ben tolerat 
i segur, essent l’efecte advers més freqüent (5-10%) la presència de miopaties o 
molèsties musculars. 

L’acumulació hepàtica de les estatines en general i de l’atorvastatina en particular, 
està mediada per estructures proteiques localitzades a les membranes 
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basolaterals i canaliculars dels hepatòcits i que pertanyen a les famílies de 
polipèptids transportadors d’anions orgànics (OATP), polipèptids cotransportadors 
de taurocolat depenent de sodi (NTCP), i per transportadors de secreció activa 
depenent d’ATP (ABC). Estudis in vitro sobre la captació hepàtica d’ATS han 
demostrat que els transportadors OATP1B1 i OATP1B3 són els més rellevants, 
mentre que la contribució del transportador NTCP ha resultat minoritària per als 
processos de disposició d’aquesta estatina. Estudis en humans han posat de 
manifest que tant ATS com els seus metabòlits àcids són sensibles a polimorfismes 
en el gen SLCO1B1, ja que la concentració plasmàtica d’aquests va resultar ser 
superior en individus portadors de la variant al·lèlica SLCO1B1 521C (genotip T/C) 
al comparar-se amb la variant típica o “salvatge” 521 T/T. 

El metabolisme de l’ATS és un procés complex en el qual intervenen reaccions 
enzimàtiques de glucuronidació, lactonització, i oxidació. Tant ATS com els seus 
metabòlits àcids directes, 2-hidroxi-ATS (2OH-ATS) i 4-hidroxi-ATS (4OH-ATS), 
estan en equilibri amb les corresponents formes neutres lactonitzades (ATS-L, 
2OH-ATS-L i 4OH-ATS-L). Aquest procés de lactonització (o formació d’un éster 
cíclic) pot tindre lloc espontàniament a un medi amb pH<6, o catalitzat per enzims 
pertanyents a la família d’UDP-glucuronosiltranferases (UGTs). El mecanisme de 
reacció proposat per aquesta lactonització enzimàtica és la formació d’un acil-β-
D-glucurònid d’ATS, el qual experimenta un procés de ciclació espontània prèvia 
pèrdua del grup glucurònid. El procés contrari, és a dir, la hidròlisi de la lactona 
per obrir la molècula i tornar a donar la forma àcida i farmacològicament activa, 
té lloc espontàniament en medis amb pH>6 o pot estar catalitzada per esterases 
i paraoxonases plasmàtiques. És per això que ambdós processos (lactonització i 
hidròlisi) han de tenir-se en compte a l’hora de desenvolupar models 
farmacocinètics fisiològics per a l’ATS. El procés d’oxidació a través del citocrom 
P450 (CYP450) està considerat com la ruta majoritària per a la biotransformació 
d’estatines en la espècie humana, essent l’isoenzim CYP3A4 el més rellevant en 
el cas de l’ATS. Amb diferents afinitats i velocitats de reacció, aquests processos 
enzimàtics mediats pel CYP450 estan clarament polaritzats cap a les formes 
lactonitzades, essent més eficient l’oxidació d’ATS-L que la d’ATS. És a dir, el 
procés de lactonització d’ATS canvia la preferència del CYP450, essent molt més 
actiu sobre les formes neutres lactonitzades que sobre les formes àcides. 

El model PBPK desenvolupat a la plataforma Simcyp® V19 va descriure 
adequadament l’exposició a ATS, ATS-L, 2OH-ATS-L i 4OH-ATS-L després de la 
simulació d’una dosi única per via oral d’un comprimit d’ATS-Ca de 20, 40 o 80 
mg i després de la simulació de l’administració diària de 10 mg d’ATS-Ca durant 
una setmana. Un aspecte important a tindre en compte és que, degut a limitacions 
intrínseques a la plataforma Simcyp® V19, únicament es va considerar el procés 



Resum de la tesi 

 

Page | 10 

de lactonització enzimàtica mediada per UGTs. La lactonització presistèmica pel 
baix pH de l'estómac no es va poder implementar com a via paral·lela de 
l’actonització per limitacions estructurals de la plataforma Simcyp. És per això, 
que el model desenvolupat no contempla processos d’absorció d’ATS-L, ja que la 
seua formació és, en tot moment, sistèmica. 

De la manera com s’ha descrit en altres treballs d’investigació, el mecanisme 
principal per a la formació dels metabòlits hidroxilats 2OH-ATS i 4OH-ATS és la 
lactonizació d’ATS, hidroxilació d’ATS-L pel CYP450 i hidròlisi final dels metabòlits 
lactonitzats. No obstant això, la hidroxilació directa d’ATS pel CYP450 també està 
activa i funciona de manera paral·lela a aquesta ruta principal, encara que 
contribuint de manera minoritària al procés global d’eliminació d’aquesta estatina. 
És per això que la simulació de l’exposició a 2OH-ATS no va poder ser reproduïda 
adequadament pel model desenvolupat, amb errors de predicció de 0.57 per a 
AUC i 0.33 per a Cmax, a l’agarrar els factors d’extrapolació entre sistemes validats 
per al sistema in vitro en el que es van determinar les cinètiques de metabolisme 
per a cada isoforma del CYP450. 

La capacitat predictiva del model desenvolupat es va verificar mitjançant la 
simulació de les DDIs observades en el context clínic amb inhibidors del CYP450 
(itraconazol i claritromicina) i d’OATPs (rifampicina). Com que en tots els escenaris 
considerats l’error de predicció en la variació d’AUC i Cmax com a conseqüència de 
la interacció farmacocinètica resultaren entre 0.66 i 1.45, tant l’estructura de les 
reaccions metabòliques proposada com la contribució relativa de cadascun dels 
transportadors de captació activa a l’interior dels hepatòcits (OATP1B1 (53.2%) 
> OATP1B3 (37.8%) >> OATP2B1 (9%)) va estar confirmada. 

Analitzant l’impacte de l’activitat de l’OATP1B1 sobre l’aclariment, AUC i Cmax 
d’ATS, les simulacions dutes a terme van revelar que aquells individus portadors 
d’una variant d’aquest transportador poc activa (PT), codificada pel polimorfisme 
SLCO1B1*5, presentaven una disminució en l’aclariment d’ATS del 30% (p<0.01) 
respecte a individus amb la variant típica o “salvatge” (ET). Com a conseqüència, 
l’AUC i la Cmax en aquests individus estava incrementada en un 40% (p<0.05) i 
un 33% (p<0.05), respectivament. A més a més, les prediccions del model PBPK 
revelaren que un 34.8% dels individus simulats tindrien un aclariment aparent 
d’ATS inferior a 414.67 L/h, valor que s’ha determinat com a mínim per baix del 
qual s’incrementa el risc de patir efectes adversos a nivell muscular. Entre aquests 
individus, els més afectats serien els PT, ja que el 63% estaria en risc de patir 
miopaties; com era d’esperar, el nombre d’individus en risc va disminuir de 
manera inversa a l’activitat del transportador OATP1B1 (transportadors 
intermitjos (IT), 42%; ET, 32%; transportadors ultraràpids (UT), 21%). 
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Quantitativament, els individus amb un major risc de patir molèsties musculars 
per presentar un aclariment aparent d’ATS inferior a 414.67 L/h tindrien una 
exposició major tant a ATS (220%, p<0.0001) com a ATS-L (176%, p<0.0001). 
Aquests resultats estan en consonància amb l’increment en el risc de patir 
miopaties que s’ha observat en el context de la pràctica clínica diària per a 
pacients portadors de la variant SLCO1B1*5 d’1.4 (95CI: 1.1-1.7, p=0.02) i que 
és causa d’interrupcions en el tractament hipolipemiant amb ATS. És més, les 
prediccions són coherents també amb l’increment observat en l’exposició a ATS-
L (p<0.01) i la prolongació en la t1/2 per a ATS (p<0.01) que presenten els 
pacients amb miopaties respecte els que no refereixen molèsties musculars. 
D’aquesta manera, el model PBPK desenvolupat per a ATS i els seus metabòlits 
anticipa i quantifica una relació exposició-seguretat entre ATS i ATS-L i efectes 
adversos a nivell muscular. 

 
Optimització de l’expressió i la cinètica de receptors i processos 
d’eliminació d’anticossos monoclonals terapèutics utilitzats en 
oncologia. 

Aquesta part inclou la resolució de l’objectiu específic 7 d’aquesta tesi doctoral. 
L’activació de receptors tirosina quinasa transmembrana és clau en la patogènesi 
de molts trastorns neoplàsics. La família de receptors del factor de creixement 
epidèrmic (EGFR) està constituïda per un grup de quatre receptors 
transmembrana involucrats en processos de transducció de senyals que regulen 
la diferenciació i el creixement cel·lular. Aquests receptors (EGFR/HER1/ErbB-1, 
HER2/ErbB-2/neu, HER3/ErbB-3 i HER4/ErbB-4) presenten un domini 
extracel·lular (ECD) voluminós que constitueix una oportunitat terapèutica 
excel·lent per a dirigir fàrmacs biològics racionalment dissenyats per a alterar els 
canvis estructurals desencadenats per la unió natural (encara que en aquest cas, 
patològica) de lligands interns i/o processos de dimerització, fent possible el 
concepte de “magic bullet” proposat per Paul Ehrlich ja al segle 19. 

Modelat farmacocinètic fisiològic d’anticossos monoclonals dirigits a HER2 

La sobreexpressió del receptor HER2 al teixit tumoral va ser incorporada als 
paràmetres del sistema del model PBPK aplicant un factor de 25 vegades 
l’abundància d’aquest als teixits sans (normals), ja que la concentració mitjana 
del receptor HER2 ha estat determinada en 1293.8 i 31656 pg/mg en teixits 
normals i tumorals, respectivament. El model de disposició del fàrmac mediada 
per la unió a la diana terapèutica o TMDD va estar caracteritzat per una 
concentració del receptor (Rmax) no alterada per la unió del fàrmac biològic, ja que 
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ni pertuzumab (PTZ) ni trastuzumab (TTZ), els dos anticossos monoclonals 
(mAbs) escollits per a desenvolupar els corresponents models PBPK, indueixen la 
internalització del receptor com a conseqüència de la interacció farmacodinàmica. 
Degut a la falta de consens en l’impacte dels nivells circulants del domini 
extracel·lular d’aquest receptor (cHER2-ECD) sobre la farmacocinètica d’aquests 
mAbs, no es va incorporar cap procés de “shedding” (pèrdua del ECD) en el model 
PBPK. 

L’optimització de la constant de degradació (kdeg) del receptor HER2 en teixits i 
òrgans normals a un valor de 0.398 h-1 va proporcionar una parametrització 
correcta del model TMDD en particular, i del PBPK en general, per descriure amb 
exactitud i precisió la farmacocinètica de PTZ en diferents nivells de dosi, pautes 
posològiques i trastorns neoplàsics. Aquest procés de degradació accelerada del 
receptor HER2 en teixits normals quan es compara amb el teixit tumoral, és 
coherent amb treballs d’investigació previs on s’ha caracteritzat l’impacte que la 
sobreexpressió del receptor HER2 en un trastorn neoplàsic té sobre la maquinària 
d’endocitosi i transport intracel·lular implicada en la seua degradació i reciclatge, 
aparentment degut a una quantitat limitada d’aquests recursos cel·lulars. El 
nostre model prediu que la constant de velocitat de degradació al teixit tumoral 
és molt probablement 5 vegades inferior (0.079 h-1) que la que presenten els 
teixits sans. Aquests resultats, van també de la mà amb models matemàtics que 
han caracteritzat les rutes intracel·lulars d’aquest receptor i han suggerit que, la 
sobreexpressió del receptor HER2 desviaria el curs fisiològic d’entrada a 
l’endosoma per a la seua degradació cap a rutes de reciclatge i retorn a la 
membrana cel·lular a les cèl·lules tumorals. 

L’avaluació numèrica de la capacitat predictiva del model PBPK desenvolupat per 
a PTZ amb l’optimització de l’expressió i la cinètica del receptor HER2 va resultar 
satisfactòria, amb errors de predicció percentuals (PPE) inferiors al 15%. La 
parametrització del receptor HER2 va estar verificada amb el model PBPK per a 
TTZ, obtenint-se PPEs del 16% per AUC i del 7% per a Cmax.  

Modelat farmacocinètic fisiològic d’anticossos monoclonals dirigits a EGFR 

En el cas del receptor HER1 o EGFR, es va desenvolupar un model PBPK per a 
cetuximab (CTX) amb la finalitat d’optimitzar i avaluar processos d’eliminació de 
fàrmacs biològics. Després d’afegir un aclariment sistèmic addicional de 0.033 L/h 
als processos de catabolisme proteic i als processos d’eliminació pel model TMDD, 
el model PBPK desenvolupat va descriure satisfactòriament l’evolució temporal de 
la concentració plasmàtica de CTX en una àmplia varietat d’esquemes de 
dosificació amb PPEs del 13% i del 10% per a AUC i Cmax, respectivament. El 
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model va ser capaç també de predir adequadament la concentració vall o mínima 
en la majoria dels escenaris simulats, la que ha estat reconeguda com un 
paràmetre d’exposició important en la resposta al tractament. Aquest aclariment 
addicional afegit als processos d’eliminació de CTX pot ser degut a: 1) la unió al 
receptor FcγRIIIA, 2) la unió al subcomponent C1q, i/o 3) als processos d’escissió 
proteolítica de la regió frontissa baixa per metaloproteinasses presents en la 
matriu tumoral. 

L'estratègia de modelat PBPK seguida, tindria dues aplicacions majoritàries en el 
context de la farmacologia clínica d’un programa de desenvolupament 
d’anticossos monoclonals terapèutics. En primer lloc, permet verificar i validar 
l’expressió i la cinètica del receptor (paràmetre del sistema i depenent de la 
malaltia), molt important en el desenvolupament de models prospectius de mAbs 
dirigits a la mateixa diana terapèutica. En segon lloc, verificada la capacitat 
predictiva del model PBPK, aquest es podria aplicar per a respondre preguntes de 
l’estil “què passaria si...?” i predir 1) la farmacocinètica en un escenari concret no 
avaluat, com ara diferents esquemes de dosificació per minimitzar efectes 
adversos, 2) la concentració local en un determinat teixit o òrgan, i 3) l’ocupació 
del receptor aconseguida amb un esquema de dosificació concret. 
 

Conclusions 

1. El programa PhysPK Biosimulation Software ha sigut validat 
satisfactòriament prenent NONMEM com a referència per avaluar 
l’exactitud i la precisió dels resultats. 

2. Els models PBPK amb una aproximació acausal, multinivell i orientada a 
objectes permeten descriure l’evolució temporal de l’exposició sistèmica a 
un fàrmac considerant de manera independent els components de 
simulació i les funcions matemàtiques del sistema fisiològic. 

3. El comportament farmacocinètic i l’activitat antitumoral sobre les línies 
cel·lulars de càncer de mama HER2+ i Triple Negativa de la molècula 
candidata a fàrmac anticancerós MBQ-167 han sigut descrites i 
adequadament caracteritzades desenvolupant un model PBPK/PD. 

4. La simulació de l’administració intraperitoneal de 10 mg/kg una o dues 
vegades al dia anticipa l'eradicació del tumor HER2+ i l’estabilització del 
creixement per a la línia cel·lular Triple Negativa. 

5. El model PBPK de l’atorvastatina descriu l’evolució temporal d’aquest 
fàrmac i els seus metabòlits tant en forma àcida com lactonitzada. 
L'avaluació de la capacitat predictiva del model mitjançant la simulació de 
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les interaccions farmacocinètiques observades en clínica verifica 
l’esquema metabòlic i de transport actiu proposat. 

6. L’avaluació quantitativa de la interacció amb polimorfismes al gen 
SLCO1B1 ha posat de manifest que el 63% de pacients portadors de la 
variant SLCO1B1*5 tindrien un risc elevat de patir efectes adversos 
musculars. 

7. L’optimitzacio de l’abundància i la cinètica de dianes terapèutiques, així 
com dels processos d’eliminació de fàrmacs biològics mitjançant el 
modelat PBPK, ha posat de manifest el potencial d’aquesta tècnica en el 
procés de descobriment i desenvolupament de fàrmacs orientat per 
models
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Introduction 
 
 
 

Pharmacometrics: optimizing the drug discovery 
and development process 

Almost $1000 million [1] and 10 years [2] are the estimated economic and time cost 
of bringing to the market a new drug, highlighting how much expensive and time 
consuming the drug development process is. Because of this, new approaches and 
technologies have been (are being) applied to increase the efficiency of the drug 
development process and among them, model informed drug discovery and 
development (MID3) has positioned itself as more than a valuable methodology to 
achieve such a goal. The basis of MID3 relies on three elemental pillars [3]: 

1. A thorough and mechanistic understanding of the disease and the drug. 
2. The development of mathematical models able to integrate information from 

different sources (e.g., preclinical, clinical, in vitro, in silico). 
3. The ability to apply these strategies to address issues during the drug 

development process, regulatory revision, and clinical use. 

Modelling and simulation (M&S) strategies represent an efficient tool since they allow 
to integrate large, complex, and heterogeneous information datasets with the aim of 
establishing quantitative and predictive relationships for a more efficient and optimal 
model-informed dose selection in the drug discovery and development process. In this 
context, pharmacometrics can be defined as “the science of developing and applying 
mathematical and statistical methods to characterize, understand, and predict a drug’s 
pharmacokinetic, pharmacodynamic, and biomarker–outcomes behaviour” [4]. 
Combining elements from disciplines such as pharmacology and statistics, 
pharmacometrics allows to quantitatively characterize the variability associated with 
drug exposure and effect to provide a temporal description of the pharmacological 
response. Consequently, the contribution of the individual characteristics to the 
response can be differentiated from confounding factors that would otherwise limit data 
interpretation, thus allowing the individualization of drug administration. This feature 
represents the main application of pharmacometrics and an opportunity for 
implementing the MID3 paradigm. 
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Under the umbrella of pharmacometrics, one of the disciplines with the greatest 
recognition and growth in recent years has been physiologically based 
pharmacokinetic (PBPK) modelling. 

 

Physiologically based pharmacokinetics 

It was 1937 when Torsten Teorell1, “the father of pharmacokinetics” [5], proposed 
for the first time a physiological structure for drug absorption, distribution, 
metabolism and excretion (ADME) to derive “general mathematical relations from 
which it is possible, at least for practical purposes, to describe the kinetics of 
distribution of substances in the body” in order to reveal what the body does to 
the drug [6]. To achieve such a challenging work in that time, Teorell developed 
a simplified model of an organism that comprised the site of drug administration, 
eliminating organs (liver and kidneys) and other tissues, all of them with their 
corresponding volumes. Finally, the blood circulation connected all the 
constituting parts of the model and permeability coefficients described drug 
diffusion from the bloodstream to organs and tissues (Figure 1). The analogy with 
present day physiologically based pharmacokinetic (PBPK) models is more than 
evident. 
 

 
Figure 1. Distribution model for extravascular administered drugs proposed by Torsten Teorell in 1937. 
Adapted from [5] 

 
1 One cannot begin to talk about physiologically based pharmacokinetics (PBPK) without honouring which 
is probably the first PBPK model in the history. 



Introduction 

 

Page | 17  

A whole-body PBPK model is a mathematical structure defining an organism (the 
system) and build-up with anatomically differentiated compartments representing 
organs and tissues, all of them connected through the cardiovascular system by 
means of arterial and venous blood flows. This kind of models contain an explicit 
representation of the most relevant organs to the ADME of a drug and typically 
are lungs, brain, heart, liver, gastrointestinal (GI) tract (stomach, small and large 
intestine), pancreas, spleen, kidneys, gonads, prostate, muscles, adipose tissue, 
thymus, bone and skin (Figure 2). 

 

 
Figure 2. Illustration of a generic whole-body physiologically based pharmacokinetic (PBPK) model. 

Each tissue is characterized by its volume, density, blood flow and composition 
(fractional volumes of water, phospholipids, neutral lipids, and interstitial 
fraction), with different structural organizations ranging from a simple whole 
tissue (Figure 3A) to a more complex structure that comprises vascular (Figure 
3B), interstitial and intracellular spaces (Figure 3C) or also considering the 
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endosomal space (Figure 3D) to better account for disposition processes of 
biologic drugs. 

 
Figure 3. Different structural organizations of tissues in a PBPK model. Red-to-blue colour degradation 
represents the sense of the blood perfusing the tissue (i.e., arterial and venous blood). Green arrow 
represents lymph flow. 

Additional information such as enzyme and transporters abundances, 
haematocrit, gastric pH and emptying time, glomerular filtration rate, 
hepatocellularity (as million hepatocytes per gram of liver or HPGL), plasma pH, 
GI tract dimensions (radius and length) are also taken into account to best 
describe the physiology of each tissue of the organism. Thus, an important feature 
of PBPK modelling is the availability of a comprehensive and mechanistic 
representation of the physiology of an organism [7]. Apart from the physiological 
information provided by the system-related parameters previously mentioned, 
demographic and genetic factors (e.g., age, weight, height, sex) are also added 
to the PBPK model to finish with the parameterisation of this building block. Adding 
the known variability of demographic, anatomic, physiological, genetic and tissue-
specific characteristics as well as covariates or correlations between different 
specifications of the population, allows to generate virtual subjects and 
populations (population PBPK or popPBPK) that are more representative of the 
real world [8]. 

Two additional building blocks are needed to ultimately parameterise the PBPK 
model. The first one is the drug itself. Molecular weight (MW), chemical structure 
(number of hydrogen bond donors and/or polar surface area), acidic character 
(neutral, monoprotic acid, monoprotic base, etc…), pKa and lipophilicity (logP) as 
physicochemical properties, and intestinal permeability, fraction unbound in 
plasma (fu), blood-to-plasma ratio (B/P), tissue-to-plasma ratios (Kpt), intrinsic 
clearances (CLint) for metabolic and trasporter-mediated processes, and excretion 
pathways (renal (CLR) or biliary (CLbile) clearances) as ADME parameters will 
define the drug-related parameters of the PBPK model. Finally, study protocol 
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(dose, frequency and route of administration and study duration), formulation 
characteristics (e.g., capsule, oral solution, tablet, etc.) and special events (e.g., 
food intake) will constitute the trial-related parameters and will close the 
parameterisation of the PBPK model. This differentiation is necessary to allow the 
development of general and drug-independent models to be used in a wide range 
of scenarios [9]. 

The use of PBPK modelling in MID3 has been limited in the past because of the 
mathematical complexity of these models and the large amount of in vivo data of 
drug tissue concentrations needed [10]. However, the availability of in vitro 
systems that act as surrogates of in vivo ADME processes (e.g., Caco-2, MDCK, 
Hep, rCYPs) and the development and refinement of in vitro-in vivo (IVIVE) 
extrapolations techniques [11] and in silico methods to predict Kpt [12-15], B/P 
[16,17] and human jejunum effective permeability (Peff,man) [18] have significantly 
influenced the feasibility to combine input parameters from different sources (in 
silico predictions, in vitro experiments or in vivo measurements) [9] in order to 
quantitatively predict plasma and tissues concentration-time profiles, which is 
commonly known as “bottom-up” approach. 

This mechanistic modelling methodology clearly differs from the more classical 
and data-driven “top-down” approach, with which PK models are developed once 
data are generated and are analysed using different approaches including 
population PK (popPK) data analysis. A clear advantage of “bottom-up” 
approaches (and thus of PBPK) is that modelling and simulation work can start at 
early stages of drug development when drug concentrations are not yet available. 
Notwithstanding, there should not be any incompatibility between both 
approaches as they can borrow strengths from each other [19]. This symbiosis 
starts in the middle grey zone and constitutes what is known as “middle-out” 
approaches [20]. As Professor Amin Rostami-Hodjegan states in a brilliant state 
of the art paper [21], “they are not just restricted to explaining the observed data 
but they intend to go backwards (in explaining the clinical observations) in order 
to go forwards beyond the perimeters of the initial clinical study using the prior in 
vitro and system information. This provides the necessary “qualification” for the 
model to be used with confidence for pre-dictions”. 

A general workflow to develop PBPK models is depicted in Figure 4. After 
characterising the ADME processes and pharmacodynamic (PD) properties of the 
drug candidate and elaborating a parameters database, the physiological 
parameters of the system are added, the model structure is defined and the PBPK 
model is build. Simulations of concentration-time profiles are then performed and 
compared with in vivo data. Model refinement is performed to best describe the 
observed PK following an iterative process that can involve multiple cycles of 
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“predict, learn, and confirm” [22] (Step 1). Following is the model verification, a 
process in which the model is tested to predict the PK in a different scenario such 
as drug-drug interactions (DDIs) (Step 2). Now, the model can be used to explore 
untested scenarios and to answer “what if” questions (Step 3). The validation of 
the model (Step 4) comes at much later stages (if at all), when the data from the 
clinical studies the model was intended to anticipate (the question of interest in a 
particular context of use) are available, thus constituting a post-application step 
[19]. 
 

 
Figure 4. A general workflow to develop PBPK models. ADME: absorption, distribution, metabolism and 
excretion; MOA: mechanism of action; logP: logarithm of the octanol:water partition coefficient; pKa: 
minus logarithm of the acidity constant; MW: molecular weight; PSA: polar surface area; HBD: hydrogen-
bond donnors; Peff,man: jejunum effective permeability in humans; fu: fraction unbound in plasma; B/P: 
blood-to-plasma concentration ratio; Kpt: tissue-to-plasma concentration ratio; CLint: intrinsic clearance; 
Jmax: maximum rate of transporter-mediated efflux or uptake; Vmax: maximum rate; KM: concentration at 
half-Vmax; EC50: unbound drug concentration at half-Emax (sensitivity); Emax: maximum drug effect 
(intrinsic activity); ki: absolute inhibition constant; kinact: maximum inactivation rate; KI: concentration 
at half-maximal kinact; IC50: inhibitor concentration required to inhibit 50% of a metabolic pathway; ka: 
absorption rate constant; fa: fraction of dose absorbed; Fg: fraction of absorbed drug scaping gut wall 
metabolism; Fh: fraction of absorbed drug scaping hepatic first pass effect; fm: fraction metabolised; CL: 
clearance; CLR: renal clearance; CLbile: biliary clearance; V: volume of distribution. 
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Relevance and applications of PBPK models 

Physiologically based pharmacokinetic M&S can answer “what-if” questions, 
assess untested or untestable scenarios and make predictions of high 
pharmacological relevance simulating drug concentration not only in plasma, but 
also at the site of drug action, which may be extremely difficult or impossible to 
determine experimentally. It constitutes a powerful technique to advance the 
understanding and transition of data from phase to phase of the drug development 
process [23], and to assess the effect of intrinsic (e.g., organ dysfunction, age, 
pregnancy, genetics) and extrinsic factors (e.g., DDIs), alone or in combination, 
on drug exposure [24]. This pharmacometrics methodology can inform study 
design, guide internal decisions on the timing of different studies and reduce 
regulatory uncertainty [25]. Another important feature of PBPK models is that, as 
they are based on physiology, it is easier to professionals not belonging to the 
clinical pharmacology field to understand model outcomes and results and 
incorporate them in drug development decisions [26]. 

An overview of the main applications of PBPK along the value chain of MID3 is 
detailed below2: 

1. Drug discovery 
o Lead optimization: 

 Data integration for hypothesis testing to identify PK 
mechanisms. 

 Assessment of relevance to humans. 
2. Preclinical drug development: 

o Translation of efficacy and toxicity through PBPK/PD and 
PBPK/safety modelling, respectively. 

o Prediction of starting dose for first in human (FIH) trials. 
o Data integration for human ADME prediction. 
o Assessment of solubility to decide on the need for formulation 

development. 
3. Clinical development 

o Phase I: 
 Update/refine models with first clinical data to allow for 

prospective predictions of absorption, DDIs or 
extrapolation to different populations. 

 Prediction of food and acid reducing agent (ARA) effects* 

 
2 Asterisks indicate PBPK applications with regulatory interest. Adapted from [25]. 
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 Simulation of untested scenarios: for example, modified 
release formulations. * 

o Phase II/III: 
 Incorporation of variability in physiological parameters 

and enzymology to look for extreme individuals (non 
responders or at high risk for toxicity). 

 PK prediction of target population by incorporating all 
known disease-driven changes in physiological 
parameters and enzymology. 

 Virtual bioequivalence. * 
 What-if testing to optimise dosing strategy in DDI studies* 
 Assessment of exposure in vulnerable populations to 

justify their inclusion/exclusion in clinical trials. 
 Supplement clinical data in difficult to recruit subgroups 

(paediatrics, pregnancy). * 
 Assessment of untested scenarios to inform drug labels or 

waive studies. * 
 

Regulatory acceptance of PBPK models 

The increased utilization of PBPK M&S by the pharmaceutical industry and the 
inclusion of results derived from these approaches in regulatory submissions have 
been recognised by the main authorities (European Medicines Agency (EMA) [EU], 
Food and Drugs Administration (FDA) [USA], Pharmaceuticals and Medical Devices 
Agency (PMDA) [Japan]) and have prompted the publication of specific guidelines 
on PBPK [27-29], thus moving PBPK M&S from academic curiosity to industrial 
routine and, ultimately, to regulatory acceptance [30]. Consequently, PBPK 
simulations have been used in lieu of conducting clinical trials or have informed 
the prescribing information of many drugs that otherwise would have result in a 
gap on some specific situations [30,31]. For example, the FDA granted a waiver 
to the sponsor of voxelotor, a haemoglobin S polymerization inhibitor indicated 
for the treatment of sickle cell disease, avoiding the in vivo assessment of its PK 
as a victim drug of cytochrome P450 (CYP450) 3A family-mediated DDI. Extensive 
PBPK analyses using a range of fractions metabolised through CYP3A in 
conjunction with the PK/PD analysis was considered sufficient to inform dose 
adjustment when concomitantly administered with inhibitors or inducers of CYP3A 
without the need of providing any clinical data of the effect of CYP3A modulation 
on the PK of voxelotor. Another example comes from the EMA, who proposed that, 
for very rare diseases or high medical need, paediatric clinical study waiver could 
be allowed based on PopPK and/or PBPK simulations without any clinical PK data 
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in children [32]. More case-studies and lists of drugs with PBPK model-informed 
labelling can be found elsewhere [22,30,31,33]. 

A recent analysis performed by the FDA’s Office of Clinical Pharmacology has 
revealed that the highest number of submissions containing PBPK-related 
information is in oncology, followed by haematology, neurology and psychiatry 
[31]. The distribution of PBPK modelling in regulatory submissions to the FDA 
between 2018 and 2019 by various application areas is shown in Figure 5. 

 
Figure 5. Distribution of PBPK M&S application areas in regulatory submissions to FDA between 2018 
and 2019. Others: prediction of FIH and/or tissue specific PK; DDI: drug-drug interaction; ARA: acid-
reducing agent. 

DDIs assessment ranks position #1 among applications of PBPK models in 
regulatory submissions, with the enzyme-related DDI evaluation covering the 
40% of total applications and is followed by extrapolation to paediatrics (9%) and 
absorption-related assessments (7%). The low presence of PBPK absorption 
modelling in marketing authorisation applications could be attributed to the low 
regulatory acceptance of PBPK analyses for biopharmaceutics and oral drug 
absorption, also called physiologically based biopharmaceutics modelling (PBBM), 
as the lack of a complete understanding of the physiology of the GI tract, the 
frequent overparameterization, and/or the insufficient model validation and/or 
platform qualification compromise their translatability and predictive performance 
[34]. Nonetheless, the regulatory recognition of PBPK modelling and simulation is 
the reason that a great part of the quantitative information contained in the 
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Clinical Pharmacology dedicated section of the United States Prescribing 
Information comes from PBPK assessment [31]. 
 

Software tools for PBPK modelling and simulation 

The development of powerful and sophisticated platforms (PBPK platforms) that 
efficiently allow to merge and integrate the physiological structure, the 
biochemical mechanisms and the drug-related properties and facilitate the 
building and use of PBPK models has been an inflexion point in their spread and 
acceptance. A definition of PBPK platform has already been provided [22]: “a PBPK 
platform is an integrated software environment that allows building and running 
PBPK models that may or may not provide compound or population-specific 
databases. From a software perspective, a platform includes various components 
such as graphical user interface (GUI), data structures, collections of various 
models, computational engine, as well as interfaces for presenting the simulation 
results”. 

Before the advent of such sophisticated PBPK platforms, open-source software 
tools originally developed for engineering and mathematical disciplines were used 
by PBPK modellers. The users were thus conditioned to write from scratch their 
own models, codifying the whole system and the ADME processes, as well as the 
trial design. This work required to have not only an expertise in the fields of 
physiology and pharmacokinetics, but also to learn the specific coding language 
used by the software. Nowadays, software like Matlab-Simulink®, ADAPT5®, 
Berkeley-Madonna® and SAAM II® have specific modules for PBPK modelling, 
with equation libraries and a GUI that allows a rapid generation of standard PBPK 
model templates. This open software PBPK platforms give complete control of 
model structure, equations and development process, so the modeller can adapt 
the framework to include new findings related to the system and/or the drug [35]. 
Notwithstanding, with such power comes great responsibility, as the modeller 
must clearly state the scientific reasons of any change and there is an inherent 
risk of making incorrect assumptions or mathematical errors. Additionally, they 
are time consuming and the databases of physiological parameters must be 
continuously updated by the modeller. 

On the other hand, designed software require less programming skills as they do 
provide a friendly GUI to facilitate the development of the PBPK model. In this 
case, the modeller does not need to learn the programming language to build the 
model: the model structure is already built in the PBPK platform. So, the main 
advantage of these software tools is that they can be used by scientists that have 
the physiological and pharmacokinetic knowledge but lack of the computer 
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programming expertise or time to create their own models [35]. These designed 
PBPK platforms are also provided with libraries of validated populations and 
compounds, allowing the modeller to efficiently response “what if” questions. The 
most used designed PBPK platforms (open source or commercial) are SimCYP® 
(Certara), PK-Sim® (Open Systems Pharmacology) and GastroPlus® (Simulation 
Plus)3. As previously said, the model structure, i.e., the backbone of the PBPK 
model, is already implemented into the software, but it is not accessible to the 
end user. This does not mean these software are not transparent, as they are 
usually called “black boxes”, when in fact all the assumptions they are based on 
are transparently stated and provided to the end user. So, the more appropriate 
term “glass boxes” recently suggested fits better [36]. Moreover, this 
inaccessibility has to be interpreted in terms of quality and confidence, as only a 
few specialists can open the “box”, access to the model structure, make the 
changes and improvements properly and re-qualify the PBPK platform. Extensive 
reviews about quality aspects and credibility of PBPK M&S can be found elsewhere 
[19,22,37]. 

All these software (either open or designed) are based on systems of ordinary 
differential equations (ODE) that the end user or the designer must develop, by 
defining the local processes and the relationships among compartments. However, 
other modelling methodologies do exist, such as software based on differential 
algebraic equations (DAE) and acausal machine learning technology. The main 
advantage of models based on acausal simulation languages is that the 
mathematical formulation of simulation components is not algorithmic (i.e., 
acausal), and therefore output and input variables do not need to be defined at 
the stage of model definition.

 
3A detailed comparison of the main features of these PBPK platforms is provided in Table 2 of [35]. 
However, it must be noted that, as a consequence of new software releases since the date of the referred 
publication, some features have, most probably, changed to improve the software features. 
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Hypothesis and objectives 
 
 
 
Physiologically based pharmacokinetic modelling and simulation has positioned 
itself as a valuable tool in the MID3 paradigm in the last years. The development 
of M&S software that facilitate the building or use of PBPK models has been a key 
issue in their emergence and acceptance. It constitutes a powerful technique to 
advance the understanding and transition of data from phase to phase of the drug 
development process [23], early on the preclinical setting anticipating drug 
efficacy through PBPK/PD modelling and suggesting initial doses for FIH clinical 
trials, as well as assessing the effect of intrinsic (e.g., organ dysfunction, age, 
pregnancy, genetics) and extrinsic factors (e.g., DDIs), alone or in combination, 
on drug exposure [24] later on the clinical phases of drug development. 

Besides the continuous need to bridge the knowledge gaps in both system-related 
(developmental, disease and organ dysfunction-related) and drug-related (ADME 
assumptions and IVIVE) components, there is also a necessity for continued 
research in order to formulate and refine best practices in the use of PBPK 
approaches during drug development and regulatory review [26]. 

Moreover, studies that analyse the most common software tools are mainly 
focused on the modelling features that cope with user and regulatory 
requirements, like the physiological mechanisms supported, type of mathematical 
techniques implemented and the ability to address special populations (e.g., 
paediatrics) and situations (e.g., DDIs) instead of the methodological aspects they 
are based on. In this regard, and to the best of our knowledge, none of the current 
well-known PBPK software tools (open software such as Matlab-Simulink®, 
ADAPT5®, Berkeley-Madonna® and SAAM II® or designed software such as PK-
Sim®, Simcyp®, GastroPlus®) are based on the multilevel object-oriented 
acausal modelling language approach. 

Therefore, the general objective of the present thesis is: 

To develop, validate and apply physiologically based pharmacokinetic models 
from a methodological and decision-making perspectives focused on optimising 

model-informed drug discovery and development processes 
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The specific objectives to achieve such a goal are: 

1. To assess the predictive reliability of the physiologically based software 
PhysPK Biosimulation Software versus the well-known population 
approach software NONMEM. 

2. To compare acausal with algorithmic modelling approaches in the 
framework of semi-mechanistic PK models. 

3. To characterize tumour growth dynamics in two human breast cancer cell 
lines (HER2+ and Triple Negative). 

4. To develop a PBPK/PD model of MBQ-167 after intraperitoneal 
administration in mice. 

5. To develop a full PBPK model for atorvastatin and its metabolites in both, 
open acid and lactone forms. 

6. To quantitatively assess the impact of polymorphisms in SLCO1B1 on 
atorvastatin pharmacokinetics. 

7. To propose a general workflow for PBPK modelling of therapeutic 
monoclonal antibodies and its application in clinical pharmacology to 
optimise target expression and clearance mechanisms
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INTRODUCTION 

Physiologically based pharmacokinetic (PBPK) modelling has emerged in the last 
decade as a valuable tool during model-informed drug discovery and development 
process, gaining recognition by the main regulatory authorities for drug 
approval[1]. Briefly, PBPK models are mathematical representations that 
incorporate drug-related and biological/physiological (system-related) parameters 
able to simulate the behaviour of a drug over time in tissues and blood. This 
“bottom-up” approach contains the knowledge of the anatomical characteristics 
of the body and the mechanisms that are involved[1,2]. This key feature of PBPK 
models expands the spectrum of modelling and simulation from the early drug 
discovery to beyond phase III clinical trials[3]. Despite their evolution in last 
decades, there are still important gaps regarding system-related parameters that 
need filling in order to generate adequate PBPK models[1,3].  

The development of modelling software tools that facilitate the building or use of 
PBPK models has been a key issue in their emergence and acceptance. Studies 
that analyse the most common software tools are mainly focused on the modelling 
features that cope with user and regulatory requirements, like the physiological 
mechanisms supported, type of mathematical techniques implemented and the 
ability to address with special populations (paediatrics) and situations (drug-drug 
interactions)[4]. However, to the best of our knowledge none of the current well-
known PBPK software tools is based on the acausal modelling language 
approach[5]. The main advantage of models based on acausal simulation 
languages is that mathematical formulation of simulation components is not 
algorithmic, and therefore output and input variables do not need to be defined 
at that stage of model definition. In this sense, a simulation component is closer 
to the physiological entity that tries to describe. Modelica standard defines one of 
the most known simulation languages based on the acausal paradigm[6], 
although other proprietary languages exist. This is the case of EcosimPro language 
(EL)[7]. 

Semi-mechanistic models have been largely applied to account for the 
concentration-time course profile of a drug within the body. These types of models 
are partially empirically based, as their structure is based on the fitting of 
observed data (“top-down” approach). However, their ability to predict 
longitudinal pharmacokinetic (PK) data have been questioned as they cannot deal 
with the complex physiological and pathophysiological processes that may affect 
the time-course of the drug in the body. In the last years, several semi-
mechanistic models[8-12] have evaluated the most sensitive analyte to changes 
in drug product performance for bioequivalence studies after single or multiple 
administration schedules, assuming one- or two-compartment PK model, with 
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pre-systemic metabolism (intestinal and/or liver) and intestinal efflux 
transporters.  
We have developed a PBPK version of the semi-mechanistic model presented 
in[11] based on the EL acausal simulation language by means of the PhysPK 
Biosimulation Software (PhysPK). The aims of this work are (i) to assess the 
predictive reliability of the physiologically based software PhysPK versus the well-
known population approach software NONMEM for the cited semi-mechanistic PK 
model, (ii) to determine whether both modelling approaches are interchangeable 
and (iii) to compare acausal with causal modelling approaches in the framework 
of semi-mechanistic PK models. 
 
MATERIAL AND METHODS 

Pharmacokinetic model 

The theoretical description of the PK model presented in this work was previously 
published elsewhere[11]. In order to reflect complex absorption processes, the 
model incorporates intestinal transit, dissolution limited by solubility, variable 
efflux transporter expression along the gut and linear and non-linear metabolism 
in gut and liver. Table 1 summarizes the value of each parameter of the model. 
Inter-individual random effects were considered in all PK parameters (CV = 20%). 

In order to achieve the aims mentioned above, different approximations to the 
theoretical model were developed: 

• vNM: semi-mechanistic version of the theoretical model with extraction-
based metabolism of parent drug (PD). Ordinary Differential Equations 
(ODEs) were implemented in NONMEM[13]. 

• vPSEM: model version with the same mathematical approximation that 
vNM but implemented in PhysPK. Accordingly, it was based on the same 
ODEs system that vNM. 

• vPSIM: semi-mechanistic version of the theoretical model with intrinsic 
clearance-based metabolism of PD implemented in PhysPK. This model 
version substitutes extraction based metabolic equations by intrinsic 
clearance functions. The full mathematical formulation of vPSIM appears 
at Supplementary Material B, where it can be compared with the 
mathematical approximation of the vNM (and vPSEM) developed by 
Mangas-Sanjuan et al.[11]. 

• vPPK: physiologic multilevel version of the theoretical model 
implemented in PhysPK. vPPK uses an acausal object-oriented modelling 
approach. This approach is based on two complementary types of 
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descriptions: multilevel diagrams with relationships among simulation 
components and mathematical equations of physiological mechanisms. A 
full definition of vPPK according to this approach appears at 
Supplementary Material B. The parameterization of vPPK agrees with that 
of the others model versions (vNM, vPSEM and vPSIM). 

 
Table 1. Population parameters used in simulations. 

Parameter Units Value 

Operative absorption time of passive diffusion (OAT1) h 7 

Operative absorption time of efflux transporter (OAT2) h 3 

Degradation rate constant in intestinal lumen h-1 0 

Dissolution rate coefficient h-1·mg-1 4 

Maximum soluble amount mg Dose x 0.1 

Intrinsic absorption rate constant of the drug h-1 0.2 
2 

Primary intestinal intrinsic clearance L/h 60 

Secondary intestinal intrinsic clearance L/h 6 

Primary hepatic intrinsic clearance L/h 300 

Secondary hepatic intrinsic clearance L/h 30 

KM intestinal efflux transporter mg 1 
10000 

KM intestinal intrinsic clearance mg/L 1 
10000 

KM hepatic intrinsic clearance mg/L 1 

10000 

Renal clearance of primary metabolite L/h 20 

Renal clearance of secondary metabolite L/h 30 

Intestinal blood flow L/h 72 

Hepatic blood flow L/h 18 

Gut volume L 1 

Liver volume L 1 

Systemic compartment volume L 40 

Peripheral compartment volume L 60 

Primary metabolite compartment volume L 40 

Secondary metabolite compartment volume L 40 

Study design 

Selection of scenarios was based on drug BCS characteristics, efflux, intestinal 
and hepatic metabolism and dose level. As dissolution was limited by the intrinsic 
solubility of the drug (10% of the dose administered), only 2 different BCS drugs 
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were proposed: class II (low solubility, high permeability) and IV (low solubility, 
low permeability). Both BCS drugs, were analysed at high or low dosing regimens 
in order to achieve non-linear or linear kinetics of the efflux transporters at the 
gut wall and/or non-linear or linear gut/liver metabolism. Supplementary Material 
B contains a detailed description of the conditions. A set of 32 different scenarios 
were analysed (BCS drug types II and IV, 2 levels of KM,Pgp, in 4 metabolic 
scenarios and 2 dose levels). Each scenario considered 24 healthy volunteers and 
sample collection for the single dose regimen was stablished at 0.1, 0.2, 0.4, 0.8, 
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, and 48 h after oral administration of the 
drug form. The individual parameters used were obtained from the theoretical 
model presented above in NONMEM 7.3.  

Comparison Strategy 

The comparison strategy followed in this analysis is illustrated in Figure 1. First 
stage involved the validation of PhysPK predictions using a replica model of the 
vNM implemented in PhysPK as a modelling element constructed with the same 
ODEs system (vPSEM). In this stage, 32 scenarios at single dose administration 
regimen were assessed. At second stage, we developed in PhysPK a new version 
of the theoretical model (vPSIM) which incorporated intrinsic gut and liver 
clearance functions for PD metabolism in order to evaluate its predictive capacity 
versus the semi-mechanistic approximation based on extraction ratios (vPSEM) 
using the 32 scenarios at single dose administration regimen. Last stage 
concerned the development of a multilevel physiologic version of the theoretical 
model (vPPK) through an acausal and object-oriented modelling language 
approach (EL language) with the aim of assessing its predictive capability 
compared to previous model versions: vPPK vs vPSEM and vPPK vs vPSIM. Single 
and multiple dose administration regimen of the 32 scenarios were assessed. A 
final comparison between classical modelling approaches of models vNM, vPSEM 
and vPSIM against the multilevel and object-oriented approach of vPPK was 
performed. 
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Figure 1. PBPK model (left) and workflow followed in the analysis (right). PD: Parent Drug; PM: Primary 
Metabolite; SM: Secondary Metabolite; RE: Relative Error; MAE: Mean Absolute Error; RMSE: Root Mean 
Squared Error; vNM: NONMEM implemented semi-mechanistic version of the theoretical model with 
extraction-based metabolism of PD; vPSEM: PhysPK implemented semi-mechanistic version of the 
theoretical model with extraction-based metabolism of PD; vPSIM: PhysPK implemented semi-
mechanistic version of the theoretical model with intrinsic clearance-based metabolism of PD; vPPK: 
physiologic version of the theoretical model developed in PhysPK. 

Numerical and graphical evaluation 

The workflow included graphical correlation of plasmatic concentrations at each 
scenario and numerical analysis through the estimation of the Relative Error (RE), 
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) of AUC0-48 
(calculated by trapezoidal rule) and Cmax. Metrics used for data analysis are 
described as follows: 

𝑅𝑅𝑅𝑅 = 𝑝𝑝𝑖𝑖−𝑎𝑎𝑖𝑖
𝑎𝑎𝑖𝑖

                                                                                      Equation 1, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑝𝑝𝑖𝑖−𝑎𝑎𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                                                         Equation 2 

and 

𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ |𝑝𝑝𝑖𝑖−𝑎𝑎𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                                                              Equation 3, 

where pi is the predicted value, ai is the reference value and n the number of 
individuals in each scenario. For graphical and numerical analysis, the 64 bits R 
software (http://cran.r-project.org, version 3.5.1) was used. 

RESULTS 

Numerical analysis of RE, MAE and RMSE for all analytes and all comparisons are 
summarized in Table 2. Individual AUC0-48 and Cmax for all analytes, scenarios and 
model versions after single dose administration regimen are presented in 
Supplementary Material A Figure 1. 
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Software validation  

Correlations of plasma concentration levels of each analyte (PD, PM, and SM) 
derived from the vPSEM vs vNM comparison after single dose administration for 
each scenario are shown in Figure 2. Graphical analysis demonstrates the ability 
of PhysPK to simulate almost equivalent concentration levels of PD, irrespective 
of the scenario considered (Figure 2a). PM and SM levels (Figure 2b) are in good 
agreement between both software at low-medium concentration values, but small 
discrepancies were observed in scenarios 10, 12, 14, 16, 26, 28, 30, and 32 at 
high concentrations (Cmax). These scenarios are characterized by low ka values 
and linear kinetics of P-gp-mediated intestinal efflux process in both dose levels 
but combine linear and non-linear kinetics for gut and liver metabolism of PD. As 
low drug permeability and linear kinetics of the efflux transporter are the most 
restrictive scenarios in terms of drug absorption, small changes in the predicted 
concentration due to integration errors may dramatically affect the correlation 
between both software, especially at high concentrations. 
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Table 2. Numerical analysis for all versions comparison results. 
Single Dose Administration Regimen 

Model Versions 
 Comparison 

AUC0-48 (mg·h/L) 
Parent Drug Primary Metabolite Secondary Metabolite 

Mean RE (%) 
(Range) 

MAE 
(Range) 

RMSE 
(Range) 

Mean RE 
(Range) 

MAE 
(Range) 

RMSE 
(Range) 

Mean RE 
(Range) 

MAE 
(Range) 

RMSE 
(Range) 

vPSEM vs vNM 3.96 
(-1.45, 9.61) 

2.41·10-2 
(7.90·10-4, 1.74·10-1) 

3.28·10-2 
(8.63·10-4, 2.77·10-1) 

6.61 
(0.93, 13.81) 

3.98·10-1 
(3.76·10-2, 9.36·10-1) 

6.26·10-1 
(4.10·10-2, 1.74) 

5.81 
(0.30, 12.51) 

2.76·10-2 
(2.46·10-3, 7.11·10-2) 

4.02·10-2 
(2.78·10-3, 1.15·10-1) 

vPPK vs vPSEM -4.82 
(-51.57, 13.72) 

2.97·10-1 
(1.36·10-6, 4.08) 

3.20·10-1 
(1.53·10-6, 4.33) 

15.86 
(11.30, 26.83) 

2.91 
(1.35·10-1, 9.36) 

3.51 
(1.67·10-1, 11.22) 

11.73 
(7.23, 22.27) 

1.71·10-1 
(8.25·10-3, 5.60·10-1) 

2.20·10-1 
(1.02·10-2, 7.22·10-1) 

vPSIM vs vPSEM -4.80 
(-51.53, 13.72) 

2.97·10-1 
(1.11·10-6, 4.08) 

3.20·10-1 
(1.52·10-6, 4.32) 

3.81 
(-0.16, 13.64) 

1.49·10-1 
(3.48·10-5, 5.62·10-1) 

2.14·10-1 
(4.15·10-5, 9.37·10-1) 

3.85 
(-0.21, 13.67) 

1.44·10-2 
(3.99·10-6, 5.17·10-2) 

1.96·10-2 
(4.57·10-6, 7.33·10-2) 

vPPK vs vPSIM -0.02 
(-0.10, 0) 

3.83·10-4 
(6.28·10-7, 4.39·10-3) 

5.04·10-4 
(7.76·10-7, 5.69·10-3) 

11.52 
(11.48, 11.55) 

2.84 
(1.14·10-1, 9.12) 

3.45 
(1.40·10-4, 11.04) 

7.52 
(7.48, 7.55) 

1.65·10-4 

(6.30·10-3, 5.43·10-1) 
2.13·10-1 

(7.78·10-3, 7.06·10-1) 
 Cmax (mg/L) 

vPSEM vs vNM 0.16 
(-2.68, 3.79) 

5.76·10-3 
(5.67·10-5, 6.52·10-2) 

8.10·10-3 
(7.57·10-5, 9.53·10-2) 

2.92 
(0.41, 5.72) 

6.26·10-2 
(1.85·10-3, 2.25·10-1) 

8.12·10-2 
(2.29·10-3, 2.94·10-1 

1.53 
(-1.16, 4.09) 

4.52·10-3 
(1.42·10-4, 1.83·10-2) 

5.83·10-3 
(1.74·10-4, 2.16·10-2) 

vPPK vs vPSEM -5.39 
(-52.28, 11.59) 

5.90·10-2 
(1.32·10-6, 8.24·10-1) 

6.58·10-2 
(1.68·10-6, 8.89·10-1) 

14.99 
(9.68, 23.01) 

4.29·10-1 
(1.42·10-2, 1.48) 

5.11·10-1 

(1.72·10-2, 1.79) 
11.42 

(6.52, 18.42) 
2.80·10-2 

(9.51·10-4, 9.96·10-2) 
3.45·10-2 

(1.16·10-3, 1.21·10-1) 
vPSIM vs vPSEM -5.36 

(-52.22, 11.61) 
5.89·10-2 

(1.52·10-6, 8.23·10-1) 
6.57·10-2 

(1.95·10-6, 8.87·10-1) 
4.55 

(0.01, 11.62) 
6.89·10-2 

(4.46·10-5, 5.55·10-1) 
8.13·10-2 

(5.58·10-5, 6.65·10-1) 
4.46 

(-0.02, 10.92) 
5.47·10-3 

(2.64·10-6, 4.17·10-2) 
6.80·10-3 

(3.31·10-6, 5.03·10-2) 
vPPK vs vPSIM -0.04 

(-0.11, -0.01) 
1.42·10-4 

(2.67·10-7, 1.39·10-3) 
2.04·10-4 

(3.44·10-7, 2.18·10-3) 
10.01 

(9.59, 10.26) 
4.13·10-1 

(1.25·10-2 1.47) 
4.93·10-1 

(1.51·10-2, 1.75) 
6.64 

(6.36, 6.80) 
2.60·10-2 

(7.56·10-4, 9.51·10-2) 
3.22·10-2 

(9.08·10-4, 1.19·10-1) 

Multiple Doses Administration Regimen 
 AUClast (mg·h/L) 

vPPK vs vPSIM -0.05 
(-0.27, 0.03) 

1.23·10-3 
(3.66·10-6, 1.11·10-2) 

1.44·10-3 
(4.26·10-6, 1.41·10-2) 

11.47 
(11.45, 11.51) 

2.85 
(1.09·10-1, 9.23) 

3.45 
(1.33·10-1, 11.15) 

7.54 
(7.52, 7.58) 

1.66·10-1 

(6.07·10-3, 5.49·10-1) 
2.14·10-1 

(7.46·10-3, 7.14·10-1) 
 Cmax (mg/L) 

vPPK vs vPSIM -0.07 
(-0.33, 0.03) 

3.11·10-4 
(5.79·10-7, 3.05·10-3) 

3.90·10-4 
(6.81·10-7, 4.23·10-3) 

10.34 
(10.01, 10.59) 

4.39·10-1 
(1.31·10-2, 1.55) 

5.26·10-1 
(1.59·10-2, 1.86) 

6.73 
(6.53, 6.89) 

2.69·10-2 
(7.81·10-4, 9.84·10-2) 

3.35·10-2 
(9.49·10-4, 1.24·10-1) 

MAE and RMSE represents the average of this metrics for all scenarios. 
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Figure 2. Semi-mechanistic vNM concentration results (y-axis) versus semi-mechanistic vPSEM 
concentration results (x-axis). a) Parent Drug; b) Primary Metabolite; c) Secondary Metabolite. Blue 
dashed line represents identity line; red continuous line represents the correlation between both versions. 

Mean RE for AUC0-48 and Cmax of vPSEM and vNM comparison were 3.96, 6.61 and 
5.81% and 0.16, 2.92 and 1.53% for PD, PM, and SM (Table 2), respectively. 
Based on the results from Figure 3, good agreement between both approaches 
can be observed for compounds with high ka value in terms of AUC0-48 for PD, but 
higher individual RE (>10%) are observed for PM and SM in scenarios 5 and 21, 
where non-linear kinetics in both gut and liver metabolism are present. For low ka 
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compounds, differences in AUC0-48 based on individual RE greater than 10 % for 
PM and SM were predicted in most of scenarios (except scenarios 9, 15, 25, and 
31, combining non-linear kinetics for P-gp-mediated intestinal efflux of PD with 
linear and non-linear kinetics of PD Gut and Liver metabolism). Cmax individual RE 
(Figure 3) were within the ±10% threshold for all analytes and scenarios. MAE 
and RMSE values, as negatively oriented scores (lower the values better the 
prediction), demonstrate the accuracy of PhysPK in the estimation of Cmax and 
AUC0-48 (Table 2). 

Although the good agreement between vPSEM and vNM (Supplementary Material 
A Table 1), where vPSEM is a replica of vNM but implemented in PhysPK, supports 
the validation of PhysPK as a simulation software, the above results do not clarify 
the underlying reasons for those small numerical differences. This key issue is 
addressed in discussion section of this paper. 
 
Metabolism Evaluation 

AUC0-48 and Cmax individual RE for all analytes in single dose administration 
regimen scenarios are shown in Figure 4. PD is the most sensitive analyte in this 
comparison as is expected to change due to differences in equations describing 
metabolism. In fact, individual RE for both PD AUC0-48 and Cmax reached up to -
50% in scenarios 17 and 18, corresponding to non-linear kinetics metabolism of 
PD in gut and liver. P-gp-mediated intestinal efflux process works under non-linear 
kinetics in scenario 17 and under linear kinetics in scenario 18, showing here a 
negligible effect. For scenarios with linear kinetics in P-gp activity and gut and 
liver metabolism (8, 16, 24 and 32) individual RE for all analytes in both AUC0-48 
and Cmax are roughly zero, in contrast with scenarios with non-linear kinetics in all 
of these processes (1, 9, 17 and 25), where greatest individual RE in all analytes 
are detected. Scenarios 5, 13, 21 and 29 showed high individual RE in both PK 
parameters (AUC0-48 and Cmax), which describe linear kinetics in gut metabolism 
and non-linear kinetics in P-gp activity and liver metabolism. Mean RE for AUC0-48 
and Cmax for all scenarios were -4.80, 3.81 and 3.85% and -5.36, 4.55 and 4.46% 
for PD, PM and SM (Table 2), respectively. Correlations of plasmatic 
concentrations for PD, PM and SM in this model versions comparison are shown in 
Figures 2-3 of the Supplementary Material A.  
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Figure 3. Relative Error for each analyte in each scenario in the estimation of individual AUC0-48 and Cmax 
for the semi-mechanistic vPSEM version taking vNM as reference. Boxplots represents 50% of the data 
including the median (horizontal line) and the range (whiskers). 
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Figure 4. Relative Error for each analyte in each scenario in the estimation of individual AUC0-48 and Cmax 
for the semi-mechanistic vPSIM version taking vPSEM one as reference. Boxplots represents 50% of the 
data including the median (horizontal line) and the range (whiskers). 

 



Chapter 1 

 

Page | 42 

Modelling Approach Comparison 

Figure 5 shows AUC0-48 and Cmax individual RE for PD, PM and SM in the 32 single 
dose administration regimen scenarios for the multilevel and physiologic (vPPK) 
vs semi-mechanistic (vPSEM) versions comparison, where greater RE (>10%) 
were obtained in all scenarios for AUC0-48 and Cmax as expected. PD AUC0-48 and 
Cmax individual RE were roughly identical in all scenarios than those of the vPSEM 
vs vPSIM comparison, with almost equal MAE and RMSE values for PD AUC0-48 and 
Cmax (Table 2). In fact, mean RE of PD AUC0-48 and Cmax were -4.82 and -5.39%, 
respectively, in agreement with PD AUC0-48 and Cmax mean RE for the vPSEM vs 
vPSIM comparison (-4.80 and -5.36%, respectively). However, individual RE for 
both exposure metrics (AUC0-48 and Cmax) of PM and SM were more pronounced in 
this case, where mean RE of AUC0-48 and Cmax for PM and SM were 15.86 and 
11.73%, and 14.99 and 11.42%, respectively. Correlation of plasmatic 
concentrations for all three analytes is shown in Supplementary Material A Figures 
4-5. 

Results from comparison between vPPK vs vPSIM after single dose administration 
regimen are shown in Figure 6. Individual AUC0-48 and Cmax successfully matched 
between vPPK and vPSIM for PD, with mean RE for AUC0-48 and Cmax of -0.02 and 
-0.04%, respectively. This outcome was independent of the absorption properties, 
dose level, and P-gp, gut and/or liver metabolic kinetics. MAE and RMSE of PD 
AUC0-48 and Cmax also improved in this comparison (Table 2) and agreed with the 
negligible RE detected. Individual RE for AUC0-48 and Cmax of PM and SM were 
greater than 10 % in some scenarios, with mean RE for PM and SM for AUC0-48 
and Cmax of 11.52 and 7.52%, and 10.01 and 6.64%, respectively. However, a 
significant improvement in the estimation of exposure metrics of metabolites can 
be observed with this new metabolism approximation compared to the extraction-
based metabolism (vPSEM) semi-mechanistic version (Table 2). Correlations of 
plasmatic concentrations of PD, PM and SM for this model versions comparison 
are shown in Supplementary Material A Figure 6. 

Comparison between vPPK vs vPSIM after multiple doses administration regimen 
in the 32 scenarios are shown in Supplementary Material A Figure 9. PD shows a 
perfect matching between both modelling approaches, with mean RE of -0.05% 
for AUC0-48 and -0.07% for Cmax. MAE and RMSE agreed with this observation with 
values of 10-3 and 10-4 for AUC0-48 and Cmax, respectively. However, as after single 
dose administration regimen, AUC0-48 and Cmax mean RE of PM (11.47% and 
10.34%) and SM (7.54% and 6.73%), respectively, were higher compared to PD 
(Supplementary Material A Figures 7 and 8). However, no significant differences 
were found in MAE and RMSE for both exposure metrics of both metabolites 
regarding to the single dose administration regimen (Table 2). 
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Figure 5. Relative Error for each analyte in each scenario in the estimation of individual AUC0-48 and Cmax 
for the physiologic PPK version taking semi-mechanistic PSEM version as reference. Boxplots represents 
50% of the data including the median (horizontal line) and the range (whiskers). 
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Figure 6. Relative Error for each analyte in each scenario in the estimation of individual AUC0-48 and Cmax 
for the physiologic vPPK version taking semi-mechanistic vPSIM version as reference. Boxplots represents 
50% of the data including the median (horizontal line) and the range (whiskers). 
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DISCUSSION 

In this work, a semi-mechanistic reference model was used to validate the 
reliability and accuracy of numerical results obtained using a new biosimulation 
software (PhysPK). Secondly several mathematical and modelling approaches to 
the physiological mechanisms were compared using PhysPK. The software 
validation cases included the parent drug and two metabolites (primary and 
secondary) after oral administration. The comparisons among mathematical 
approximations and modelling approaches were conducted with single and 
multiple dosing regimen.  

Software validation  

Every case in which all the pharmacokinetic processes (e.g., absorption, intestinal 
efflux, metabolism, distribution and metabolites excretion) were linear and not 
saturated (i.e. during the first 5 hours of the simulation), resulted in plasma 
concentration RE less than 10% (Supplementary Material A Figure 10-12). A 
relevant feature of numerical errors associated with numerical solutions of 
dynamic systems is their accumulative character[14]. That is, difference between 
simulation predictions by vPSEM (PhysPK) and vNM (NONMEM) should increase 
with time, starting at the softwares’ local error precision of 10-6 for both simulation 
software and climbing toward an upper limit of the absolute value of the numerical 
predictions. The latter is valid because both versions of the theoretical model 
employ the same ODEs system. As such, differences between simulated results 
from the NONMEM and PhysPK softwares should only be due to the numerical 
precision of integrators and solvers. This postulate was confirmed through the 
computation of absolute differences between plasmatic concentrations of PD, PM 
and SM from vPSEM versus vNM. Supplementary Material A Figures 13-15 show 
that, for all analytes and scenarios, the absolute error was lower than 10-5 mg/L 
during the first hour, and that it increased to a maximum value within the range 
10-3 -10-1 mg/L around Cmax (tmax), after which it decreased in agreement with the 
reduction in concentration values. These results attest to the precision and 
reliability of PhysPK Biosimulation Software. 

Metabolism Evaluation 

This stage involved the comparison of two mathematical approximations of the 
theoretical model that can be selected in the PhysPK software (vPSIM vs vPSEM), 
which only differed from each other in their parametrization of metabolism. The 
aim was to visualize how the different mathematical approaches for PD 
metabolism may impact the time-course of analytes, thus providing more than 
strictly a software validation. As expected, results revealed PD to be the most 
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sensitive analyte to changes in metabolism. Low permeability drugs (BCS IV class) 
at both dose levels (scenarios 9-16 and 25-32) show a clear pattern (see Table 3) 
regarding kinetics of P-gp activity: scenarios with non-linear P-gp kinetics of PD 
show greater AUC0-48 and Cmax RE for all analytes, with higher values when hepatic 
metabolism is saturated. On the other hand, scenarios with linear P-gp kinetics 
show negligible differences in AUC0-48 and Cmax, irrespective of the kinetics of both 
gut and liver metabolic processes. For high permeability drugs (BCS II class) at 
both dose levels (scenarios 1-8 and 17-24) this pattern is not so obvious, but a 
tendency is observed for PM and SM with lower AUC0-48 and Cmax RE than PD. 
Further, when non-linear hepatic metabolism appears, the greatest AUC0-48 and/or 
Cmax RE are observed (-50%). The saturation of liver metabolism leads to a 
reduction in the rate of the metabolic process, increasing the differences in AUC0-

48 and Cmax due to the different parametrization between the two approaches 
(hepatic blood flow). 

Modelling Approach Comparison 

When comparing vPPK vs vPSEM, differences in AUC0-48 and Cmax show an 
interesting result: vPPK underestimates PK parameters for PD (-4.82 % in AUC0-

48 and -5.39% in Cmax), while metabolites are overestimated by approximately 
15% for PM and 12% for SM. A detailed revision of vPSEM mathematical 
approximation (Equations 2,3,5,8 and 9 of Mangas-Sanjuan et al.[11]) showed 
that PD results are in agreement with the extraction-based metabolism 
simplification applied in enterocytes and hepatocytes of that model version. 
Metabolites’ differences between the two model versions are due in part to the 
fact that in vPSEM metabolites are immediately distributed to their compartments 
once they are formed and independently of the route of formation (gut or liver). 
In vPPK, on the other hand, metabolites formed in gut passes through the liver 
before reaching systemic circulation, according to a physiological blood perfusion.  
The equivalence of the mathematical approximations in vPSIM and vPPK for PD 
compound was confirmed by comparing the vPPK vs vPSIM mean RE of AUC0-48 
and Cmax. Those values diminished dramatically and MAE and RMSE average 
significantly improved. In the case of metabolites, the existence of differences 
between vPPK and vPSIM point to the lack of a physiological blood perfusion in 
vPSIM, since metabolites in the later are immediately distributed to their 
compartments. This explains the higher mean plasmatic concentrations in vPPK 
(Supplementary Material A Figures 9 and 10) as they are incorporated into the 
systemic circulation before being excreted by kidneys, in contrast of what happens 
in vPSIM where, as mentioned above, they immediately start to be excreted once 
they are formed. 
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A numerical comparison between results from vPPK vs vPSEM/vPSIM agrees with 
expectations, given the mathematical expressions that the respective model 
versions implement. However, there are important differences in the modelling 
methodology that underlies their mathematical approximations. Both vPSEM and 
vPSIM require development of the ODEs that define the temporal variation of each 
analyte in each compartment. These equations include input and output mass flow 
rates associated with different types of physiological mechanisms, together with 
the relationship among the related compartments. Equation B.4 (PD variation in 
liver) clarifies this concept. Variation of 𝐴𝐴3 (PD mass in liver) over time depends 
on PD concentrations in other compartments (systemic and gut) and liver 
metabolism.  

The mathematical model that underlies the vPPK separates the two types of terms 
that define the ODEs: local mechanisms and relationships among entities. The 
relationships among physiological entities are defined by simulation components 
diagrams (interconnected components networks) from the top description level to 
the lowest one. These diagrams define the behavior of complex physiological 
entities. In summary, the modeler does not need to develop the cited ODEs 
system. The final differential equations system of vPPK is built by the simulation 
software tool[7]. The vPPK definition can be accessed in the Supplementary 
Material B and the methodology is referred as multilevel acausal object-oriented 
modelling approach. The ability to build new physiological models from scratch or 
from previous models, without the need to develop the entire ODEs system, is an 
important advantage of the vPPK multilevel and object-oriented methodology over 
the vPSEM-vPSIM methodology. 

The main limitations of the current work are the use of simulated data generated 
from individual parameters and the lack of a proper comparison using 
experimental observations. Further studies are encouraged to validate and 
confirm the conclusion obtained. Additionally, the theoretical model taken into 
consideration is not directly related to any specific drug, so some scenarios might 
not be physiologically/biopharmaceutically plausible. 
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Table 3. Dose level, permeability, gut and liver metabolism and P-gp activity 
characteristics of the different scenarios studied. 

Scenario Dose level Permeability Gut Metabolism Liver Metabolism Pgp activity 

1 Low High Non linear Non linear Non linear 

2 Low High Non linear Non linear Linear 

3 Low High Non linear Linear Non linear 

4 Low High Non linear Linear Linear 

5 Low High Linear Non linear Non linear 

6 Low High Linear Non linear Linear 

7 Low High Linear Linear Non linear 

8 Low High Linear Linear Linear 

9 Low Low Non linear Non linear Non linear 

10 Low Low Non linear Non linear Linear 

11 Low Low Non linear Linear Non linear 

12 Low Low Non linear Linear Linear 

13 Low Low Linear Non linear Non linear 

14 Low Low Linear Non linear Linear 

15 Low Low Linear Linear Non linear 

16 Low Low Linear Linear Linear 

17 High High Non linear Non linear Non linear 

18 High High Non linear Non linear Linear 

19 High High Non linear Linear Non linear 

20 High High Non linear Linear Linear 

21 High High Linear Non linear Non linear 

22 High High Linear Non linear Linear 

23 High High Linear Linear Non linear 

24 High High Linear Linear Linear 

25 High Low Non linear Non linear Non linear 

26 High Low Non linear Non linear Linear 

27 High Low Non linear Linear Non linear 

28 High Low Non linear Linear Linear 

29 High Low Linear Non linear Non linear 

30 High Low Linear Non linear Linear 

31 High Low Linear Linear Non linear 

32 High Low Linear Linear Linear 

 

CONCLUSION 

Successful validation of PhysPK Biosimulation Software was achieved using 
NONMEM as the control basis for judging accuracy and precision of the results. 
Considering that the extraction-based mathematical formulation for saturable 
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metabolisms used in vPSEM is a simplified version of the mathematical description 
used in vPSIM, it is recommended that the vPSEM approximation be limited to 
semi-mechanistic PK studies that deal with BCS class IV drugs in which P-gp-
mediated intestinal efflux may be considered linear. Under other conditions, 
vPSEM’s AUC0-48 and Cmax absolute predictions could be inaccurate. Semi-
mechanistic models that include intrinsic-clearance metabolism may serve as an 
adequate approximation of the physiological system only for parent drug. PBPK 
models with multilevel and acausal object-oriented modelling approaches allow 
for precise description of the time-course of the drug as they differentiate 
simulation components from mathematical functions of the biological system.  
 
Declaration of competing interest: Research partly supported by the 
collaboration agreement (2018) with Empresarios Agrupados Internacional. 
 
Supplementary Materials: Supplementary material associated with this article 
can be found, in the online version, at doi: 10.1016/j.cmpb.2020.105322. 
 
References 

[1] M. Rowland, L.J. Lesko, A. Rostami-Hodjegan, Physiologically Based Pharmacokinetics Is Impacting Drug Development 
and Regulatory Decision Making, CPT Pharmacometrics Syst Pharmacol, 4 (2015) 313-315. 

[2] A.S. Darwich, K. Ogungbenro, A.A. Vinks, J.R. Powell, J.L. Reny, N. Marsousi, Y. Daali, D. Fairman, J. Cook, L.J. Lesko, 
J.S. McCune, C. Knibbe, S.N. de Wildt, J.S. Leeder, M. Neely, A.F. Zuppa, P. Vicini, L. Aarons, T.N. Johnson, J. Boiani, A. 
Rostami-Hodjegan, Why has model-informed precision dosing not yet become common clinical reality? lessons from the 
past and a roadmap for the future, Clin Pharmacol Ther, 101 (2017) 646-656. 

[3] M. Jamei, Recent Advances in Development and Application of Physiologically-Based Pharmacokinetic (PBPK) Models: 
a Transition from Academic Curiosity to Regulatory Acceptance, Curr Pharmacol Rep, 2 (2016) 161-169. 

[4] F. Bouzom, K. Ball, N. Perdaems, B. Walther, Physiologically based pharmacokinetic (PBPK) modelling tools: how to fit 
with our needs?, Biopharm Drug Dispos, 33 (2012) 55-71. 

[5] L.P. Roa, M., Simulation Languages, in: M. Akay (Ed.) Wiley Encyclopedia of Biomedical Engineering, John Wiley and 
Sons, Inc2006, pp. 3186-3198. 

[6] Modelica-Association, A Unified Object-Oriented Language for Physical Systems Modeling, Language Specification, 
ModelicaTM2017. 

[7] E.A. Internacional, EcosimPro 6.0 User Manual, 2019. 

[8] A. Cuesta-Gragera, C. Navarro-Fontestad, V. Mangas-Sanjuan, I. Gonzalez-Alvarez, A. Garcia-Arieta, I.F. Troconiz, 
V.G. Casabo, M. Bermejo, Semi-physiologic model validation and bioequivalence trials simulation to select the best analyte 
for acetylsalicylic acid, Eur J Pharm Sci, 74 (2015) 86-94. 

[9] C. Fernandez-Teruel, I. Gonzalez-Alvarez, C. Navarro-Fontestad, A. Garcia-Arieta, M. Bermejo, V.G. Casabo, Computer 
simulations of bioequivalence trials: selection of design and analyte in BCS drugs with first-pass hepatic metabolism: Part 
II. Non-linear kinetics, Eur J Pharm Sci, 36 (2009) 147-156. 

[10] C. Fernandez-Teruel, R. Nalda Molina, I. Gonzalez-Alvarez, C. Navarro-Fontestad, A. Garcia-Arieta, V.G. Casabo, M. 
Bermejo, Computer simulations of bioequivalence trials: selection of design and analyte in BCS drugs with first-pass hepatic 
metabolism: linear kinetics (I), Eur J Pharm Sci, 36 (2009) 137-146. 

[11] V. Mangas-Sanjuan, C. Navarro-Fontestad, A. Garcia-Arieta, I.F. Troconiz, M. Bermejo, Computer simulations for 
bioequivalence trials: Selection of analyte in BCS class II and IV drugs with first-pass metabolism, two metabolic pathways 
and intestinal efflux transporter, Eur J Pharm Sci, 117 (2018) 193-203. 

[12] C. Navarro-Fontestad, I. Gonzalez-Alvarez, C. Fernandez-Teruel, A. Garcia-Arieta, M. Bermejo, V.G. Casabo, 
Computer simulations for bioequivalence trials: selection of analyte in BCS drugs with first-pass metabolism and two 
metabolic pathways, Eur J Pharm Sci, 41 (2010) 716-728. 

https://doi.org/10.1016/j.cmpb.2020.105322


Chapter 1 

 

Page | 50 

[13] S.L.S. Beal, I.B.; Boeckmann A.; Bauer R.J., NONMEM Users Guides, Icon Development Solutions, Ellicott City, 
Maryland, USA, 2015. 

[14] P.E. Zadunaisky, On the Estimation of Errors Propagated in the Numerical Integration of Ordinary Differential 
Equations, Numerische Mathematik, 27 (1976).



 

Page | 51  

Chapter 2 
Physiologically-based 
Pharmacokinetic/Pharmacodynamic model of MBQ-
167 to predict tumor growth inhibition in mice 

Javier Reig-López1*, María del Mar Maldonado2*, Matilde Merino-
Sanjuan1,3, Ailed M. Cruz-Collazo2, Jean F. Ruiz-Calderón2, Victor Mangas-
Sanjuán1,3¶, Suranganie Dharmawardhane2¶, Jorge Duconge4 

Affiliation: 1Department of Pharmacy and Pharmaceutical Technology 
and Parasitology, University of Valencia. Valencia, Spain. 2Department of 
Biochemistry, University of Puerto Rico Medical Sciences Campus. San 
Juan, Puerto Rico. 3Interuniversity Research Institute for Molecular 
Recognition and Technological Development. Valencia, Spain. 4School of 
Pharmacy, University of Puerto Rico Medical Sciences Campus. San Juan, 
Puerto Rico. *Contributed equally. ¶Author jointly supervised work 

 
Pharmaceutics, 2020 Oct 15;12(10):975

https://www.mdpi.com/1999-4923/12/10/975




Chapter 2 

 

Page | 53  

INTRODUCTION 

Drug discovery and development represents an increasing economic and temporal 
cost for the pharmaceutical industry, which does not translate into significant 
increases in the number of approved active ingredients, especially in the oncology 
area.[1,2] One alternative is to develop mathematical models at the preclinical 
stages of the drug development process capable of better predicting efficacy or 
safety outcomes in order to efficiently design clinical trials.[3] Physiologically 
based pharmacokinetic (PBPK) modelling represents a mathematical framework 
that integrates physicochemical, physiological, and biochemical information to 
predict the concentration-time course at target tissues for a wide range of 
exposure conditions in animals or humans. [4] In recent years, the use of PBPK 
models has clearly improved the model-informed drug discovery and development 
process of several drugs [5–7], which has facilitated its recognition by the main 
regulatory agencies (FDA and EMA). [8,9] Currently, the main purposes of PBPK 
models are to qualitatively and quantitatively predict drug-drug interactions and 
to support initial dose selection in pediatric and first-in-human trials. [8] 
The tumor growth inhibition (TGI) model [10] constitutes a highly valuable 
preclinical methodology in oncology for the selection of therapeutic candidates 
and the design of optimal clinical evaluation strategies for the in vivo evaluation 
of anti-tumor effect. [11–16] The Simeoni TGI model has been widely 
implemented to characterize the pharmacological response of drug candidates in 
single-agent and combination experiments by linking drug concentration in the 
target tissue to the inhibition of tumor growth. [17] 
The small molecule MBQ-167 is an anticancer therapeutic candidate that inhibits 
breast cancer metastasis in vivo and has been characterized as a potent inhibitor 
of the Rho GTPases Rac and Cdc42 [18]. These GTPases are overactive in different 
cancer types [19–23] and promote cancer cell migration, invasion, proliferation, 
and oncogenic transformation. MBQ-167 dually inhibits the activation of both 
GTPases, with half-maximal inhibitory concentrations (IC50) of 0.1 µM and 0.08 
µM for Rac and Cdc42, respectively. Preclinical studies have shown that MBQ-167 
inhibits breast cancer cell migration, viability, tumor growth, and metastasis in 
vivo without apparent toxicity. [18,24] Currently, this compound is being 
developed for clinical applications as a potential anti-metastatic therapeutic. 
Nonetheless, further studies are needed to characterize the tumoral 
pharmacokinetics (PK) of MBQ-167, which is essential to improve therapy efficacy 
and success rate further. [25] 
Therefore, the aims of this work are (i) to develop a PBPK model of MBQ-167 after 
intraperitoneal (IP) administration in mice, and (ii) to characterize tumor growth 
dynamics in two human breast cancer cell lines (Her2+ and Triple Negative).  
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MATERIALS AND METHODS 

Materials 

MBQ-167 and EHop-0036 (internal standard) were synthesized as previously 
described [18,26]. Purity (>98%) was verified by thin-layer chromatography 
(TLC), nuclear magnetic resonance (NMR), and gas chromatography/mass 
spectrometry. Sodium chloride, ethyl acetate, heptane, acetonitrile, methanol, 
and all materials required for compound synthesis were also purchased from 
Sigma-Aldrich (Saint Louis, MO, USA). Formic acid was purchased from Fisher 
(Fair Lawn, NJ, USA).  

Animal protocol 

All animal studies were conducted under approved animal protocols (#A8180117, 
#A8180112) by the University of Puerto Rico Medical Sciences Campus 
Institutional Animal Care and Use Committee, in accordance with the principles 
and procedures outlined in the NIH Guideline for the Care and Use of Laboratory 
Animals [27]. Four to five-week-old female BALB/c mice (Charles River 
Laboratories, Inc. Wilmington, MA) were housed under pathogen-free conditions 
in HEPA-filtered cages and kept on a 12 h light/dark cycle, and controlled 
temperature (22-24°C), and humidity (25%). Food and water were given ad 
libitum. MBQ-167 was prepared as a stock solution of 2 mg/mL in 
cremophor:ethanol:PBS (12.5:12.5:75) solution. Each mouse was administered a 
single 0.1 mL dose of MBQ-167 (in 12.5% ethanol, 12.5% Cremophor, 75% 
Phosphate Buffered Saline, pH 7.4) that corresponded to 10 mg/kg body weight 
(BW) by IP injection. 

Tumor pharmacokinetics  

Thirty-five BALB/c mice were injected with 2.5·105 4T1 murine metastatic breast 
cancer cells at the mammary fat pad under isoflurane inhalation (1%–3% in 
oxygen using an inhalation chamber at 2 L/min) to produce primary tumors, as 
described [28]. Following IP treatment with a single dose of MBQ-167 (10 mg/kg), 
five mice/group were sacrificed by cervical dislocation at 0.5, 1, 3, 6, 9,12, and 
24 hours. Following sacrifice, tumors were collected and flushed with normal 
saline, individually wrapped in aluminum foil, snap-frozen in liquid nitrogen, and 
stored frozen at −80°C until use. 

Tumor sample preparation  

Tumor samples were extracted by liquid-liquid extraction method, as previously 
described by [26]. Briefly, frozen tumors were thawed, weighed (100 mg), and 
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homogenized using the Polytron PT 2100 instrument in pH 7.4 saline (1:4 w/v). 
Tumor homogenate (100 µL) was then transferred to another tube, and the 
internal standard EHop-0036 (10 µL from 4,500 ng/mL stock) was added to the 
samples followed by vortex (30 secs). A hundred microliters (100 µL) of sodium 
hydroxide 0.5 M were then added to the mixture, and samples were mixed by 
vortex for 5 minutes. Afterwards, 790 µL of heptane: ethyl acetate mixture (1:1) 
were added, and samples were vortexed again for 10 minutes. The upper layer 
was recovered following centrifugation (5 minutes at 510 x g), and the solvent 
was evaporated for one hour in a Labconco Centrivap console at room 
temperature. Samples were then reconstituted with 100 µL of methanol, vortexed 
for ten minutes, and centrifuged at 1000 x g for 1 minute. 

Instrumentation 

We used a validated bioanalytical method using supercritical fluid chromatography 
coupled with tandem mass spectrometry to quantify MBQ-167 in tumors and 
tissues, as previously described [26]. The analysis was performed on an Acquity 
UPC2 system (Waters Corp., Milford, MA, USA) coupled to a triple quadrupole 
tandem mass spectrometer (MS/MS). An Acquity UPC2 BEH (3.0x100 mm2, 1.7 
µm) column was used for separation purposes.  

Her2/Triple-negative tumor growth study  

As published elsewhere [18], female athymic nude (nu/nu) mice, 4 to 5 weeks old 
(Charles River Laboratories, Inc., Wilmington, MA) were maintained under 
pathogen-free conditions in HEPA-filtered cages (5 mice per cage) under 
controlled light (12 h light and dark cycle), temperature (22-24°C), and humidity 
(25%).  

Mammary fat pad tumors were established using green fluorescent protein (GFP)-
tagged MDA-MB-435 (HER2+) cells in Matrigel (BD Biosciences, San Jose, CA) or 
GFP-MDA-MB-231 (TNBC) cells by injecting at the fourth right mammary fat pad 
under isofluorane inhalation (1-3% in oxygen using an inhalation chamber at 2 
L/min) to produce orthotopic primary tumors. After tumor establishment (1-week 
post-inoculation), the animals from the same litter with similar weight and tumor 
size were randomly divided into experimental treatment groups (n=10 per 
treatment group). 

Mice were treated with vehicle (12.5% ethanol, 12.5% Cremophor (Sigma-
Aldrich, St. Louis, MO), and 75% 1X PBS pH 7.4), or 1, 5, or 10 mg/kg BW MBQ-
167 by IP injection in a 100 µL volume every other day, three times a week. 
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Treatments continued until sacrifice at day 65 for the HER2+ tumors and day 108 
for the Triple Negative cell line. 

Whole body fluorescence image analysis  
Mammary tumor growth was quantified as changes in the integrated density of 
green fluorescent protein (GFP) fluorescence. Mice were imaged one week 
following breast cancer cell inoculation (on day 1 of treatment administration) and 
once a week thereafter. The FluorVivo small animal in vivo imaging system (INDEC 
Systems, Inc., Santa Clara, CA) was used for whole body imaging of GFP 
fluorescence. Tumor fluorescence intensities were analyzed using Image J 
software (National Institutes of Health, Bethesda, MD). Relative tumor growth was 
calculated as the integrated density of fluorescence of each tumor on each day of 
imaging relative to the integrated density of fluorescence of the same tumor on 
day 1 of treatment administration, relative to vehicle controls. 
 
Physiologically based Pharmacokinetic model 

Modelling strategy 

The PBPK model of MBQ-167 in mice after IP administration (Figure 1) was 
developed in Simcyp V19 Animal Simulator. Physicochemical properties and both 
in vitro and in vivo ADME data were incorporated into the software for evaluating 
the drug's exposure and response dynamics. The modelling strategy ("middle-
out" approach) is briefly described as follows and fully depicted in 
Supplementary Material Figure 1. 

Parameter estimation (PE) was performed using the PE Module of the Simcyp 
Animal V19 using the Nelder-Mead method, Weighted Least Squares by the 
reciprocal of Square of Maximum observed value as the objective function and the 
termination criteria defined as the improvement of less than 1% of the objective 
function value. Optimization was manually performed to best fit the observed 
data. 

The physiological parameters of the typical mouse were modified to reproduce the 
mice population used in the experimental procedure. Initial parameter estimation 
of the fraction unbound in plasma (fu) and blood-to-plasma (B/P) ratio was 
performed based on the reported systemic plasma clearance and volume of 
distribution of MBQ-167 [26], assuming an intravenous bolus injection of 30 
seconds, since no IP route of administration is explicitly implemented in Simcyp 
V19 Animal Simulator. After defining the kinetics of the IP absorption process, 
systemic plasma clearance was predicted by scaling the intrinsic clearance from 
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in vitro hepatocytes. Optimization of the tissue-to-plasma partition coefficients 
(Kpt) led to improve predictions of the base PBPK model and extrapolate them to 
other tissues such as the lungs, liver, kidneys, heart, and spleen (advanced PBPK 
model). Finally, modeling of the tumor disposition provided the final MBQ-167 
PBPK model. The key input parameters for the PBPK model of MBQ-167 are 
summarized in Table 1. 

 

 
Figure 1. MBQ-167 PBPK-PD model structure. Light green compartments were included in the full PBPK 
distribution model but not evaluated in the present work. For the Triple Negative cell line, the number of 
transit compartments for the damaged cell resulted in 4 (see Table 2 for more details). 

Physicochemical properties and plasma binding. The molecular weight of 
MBQ-167 is 338.414 g/mol, and the water partition coefficient (logPoctanol:water) 
ratio is 4.944. MBQ-167 is a monoprotic base compound with a pKa of 0.27. The 
fu in plasma was estimated to 0.02. B/P ratio was initially estimated in the base 
PBPK model development phase and then optimized using local sensitivity analysis 
(LSA) with a final value of 1.8. 

Absorption. Since Simcyp V19 Animal Simulator lacks an explicitly implemented 
IP route of administration, the IP absorption was described through a first-order 
process, which included an absorption rate constant (ka) that regulated the 
absorption to the venous blood, assuming an IP bioavailability of 100%, avoiding 
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gut and liver first-pass effect and pre-systemic degradation. In this sense, ka value 
was optimized to 3 h-1 to characterize maximum plasma concentration (Cmax) and 
time to maximum plasma concentration (Tmax). Lag time (0.17 h) was 
incorporated to best reproduce the absorption process.  

Distribution. Rodger and Rowland's method (method 2) within a full PBPK model 
distribution was used. Kpt parameters of the heart, kidney, liver, lungs, and spleen 
were optimized based on the observed data from each tissue. The final values are 
provided in Table 1. A Kpt scalar of 0.29 predicted a volume of distribution at 
steady state (Vss) of 20.21 L/kg, which is in good agreement with that reported in 
the literature of 400 mL [26] for a mice population of 20 g of body weight. 

Elimination. Due to the limited information of any active process in MBQ-167 
renal excretion and/or tubular reabsorption, it was assumed that renal excretion 
was only mediated by glomerular filtration. For this reason, renal clearance (CLR) 
was set as the mean basal glomerular filtration rate for mice (12-18 mL/min) [26]. 
The metabolism of MBQ-167 in the liver includes up to nine metabolites when 
incubated in liver microsomes, and that inhibits CYP3A4, 2C9, 2C19, and 1A2, but 
it is unknown through which isoenzyme this metabolism occurs. In this sense, 
liver metabolism was estimated based on the intrinsic clearance from in vitro 
hepatocytes (79 µL/min/106 cells) and optimizing the incubation unbound fraction 
of the drug (fu_inc) to best predict the reported systemic plasmatic clearance value 
(2.15 mL/min). 

Tumor disposition. Initial parameter estimation of the passive permeability 
clearance between intra- and extracellular water (PS) and the intrinsic clearance 
of an efflux transporter was performed, followed by an optimization of these 
values to best fit the observed data. Final values were set as 1.2 mL/min/mL 
tumor volume and 7 mL/min/mL tumor volume for PS and intrinsic clearance of 
the efflux transporter, respectively. MBQ-167 tumor intrinsic clearance (CLtumour) 
was implemented to improve exposure predictions with a value of 2.2 mL/min/mL 
tumor volume. Vascularization was set as 16% of the tumor volume. 

Population. Physiological parameters of the typical mouse were modified to 
reproduce the mice population used in the experimental procedure. In this sense, 
body weight, tissue volumes, blood flows, cardiac output, and liver and tumor 
density were adapted to the studied population. 

Simulation Trials. Typical mouse predictions were generated, and individual 
simulations in the fed state were performed after a single MBQ-167 IP dose of 10 
mg/kg of body weight for 12 h (plasma and tissues) and 24 h (tumor) duration. 
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Table 1. Parameters of the PBPK model for MBQ-167. 
 Parameter 

(Units) 
Value Source/Reference/Comments 

 Molecular Weight 
(g/mol) 

338.414  

 logPo:w 4.944  
 Compound Type Monoprotic 

Base 
 

 pKa 0.27  
 B/P 1.8 Optimized 
 fu plasma 0.02 Estimated 
Distribution 
Model 

Full PBPK 

 Vss (L/kg) 20.21 Simcyp predicted (Method 2) 
 Kpt Heart 1 Optimized 
 Kpt Kidney 13.94 Optimized 
 Kpt Liver 14.66 Optimized 
 Kpt Lung 1.9 Optimized 
 Kpt Spleen 2.1 Optimized 
 Kpt Scalar 0.29 Optimized 
Tumor Permeability Limited Model 
 PS (mL/min/mL 

tumor volume) 
1.2 Optimized 

 Efflux transporter 
(µL/min/mL 
tumour) 

7 Estimated 

Elimination    
 Hep intrinsic CL 

(µL/min/106 cells) 
79 In vitro determined 

 fu_inc 0.07 Optimized 
 Typical Renal CL 

(mL/min) 
0.3 Assumed based on maximum glomerular 

filtration rate for mice. [26]  
 Tumour CL 

(mL/min/mL 
tumour volume) 

2.2 Optimized 

Administration 
Route 

Other site 

 Dose (mg) 0.2  
 Condition Fed  
 Input site Venous 

Blood 
Optimized 

 Input model First order Optimized 
 Lag time (h) 0.17 Optimized 
 fa 1  
 ka (h-1) 3 Optimized 

CL: clearance. PS: Passive permeability clearance between intra- and extracellular water. Hep: 
Hepatocytes. fu_inc: fraction of unbound drug into the in vitro incubation. ka: absorption rate constant. fa: 
fraction of dose absorbed. 
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MBQ-167 PBPK model verification 

The final MBQ-167 PBPK model was verified through both graphical and numerical 

analysis. Experimental and predicted longitudinal plasma concentration- (Cp) and 

tissue concentration- (Ct) profiles were generated, including the 95% Confidence 

Intervals (95% CI) of the observations at each sampling time and the mean 

predicted concentrations. LSA was performed to evaluate the relative impact of 

B/P, fu, CLR, CLtumour, and PS in the plasma PK exposure parameters (AUC0-t and 

Cmax). The performance of the MBQ-167 PBPK model was assessed by the fold 

error at each tissue, which referred to the ratio of the predicted AUC0-t or Cmax to 

the observed AUC0-t or Cmax, respectively (Equation 1). AUC0-t was calculated by 

the trapezoidal rule. Both graphical and numerical analyses were performed in 

RStudio version 1.2.5019 with R version 3.5.1. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

                                         Equation 1 

MBQ-167 tumor growth inhibition model development 

An unperturbed and perturbed Simeoni tumour growth models [10] were 

developed within the Simcyp V19 Animal Simulator for two breast cancer (BC) cell 

lines, e.g., HER2+ and Triple Negative (Supplementary Material Figure 1. 

Pharmacodynamics). First, the parameters governing tumour growth, e.g., 

exponential growth rate (λ0), linear growth rate (λ1), and shape factor (Ψ), were 

estimated from in vivo experiments of tumor growth volume from the control 

group of HER2+ and Triple Negative cell lines, respectively (unperturbed model). 

Once characterized tumor growth, the inhibition model was developed. Linear and 

non-linear response models, as well as total plasma and whole tumor 

concentration as the input for the drug effect were tested. A parameter estimation 

including all dose levels (1 and 10 mg/kg for the HER2+ and for the Triple Negative 

cell lines) was performed to estimate the parameters governing this perturbed 

model: maximum inhibition (Kmax), IC50 and transit rate of cell damage (k1). The 

number of transit compartments was established regarding the promptness 

appearance of the tumor growth inhibition for each cell line. The initial tumour 
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volume was theoretically set as 0.1 mL for the HER2+ cell line. In the case of the 

Triple Negative cell line, initial tumour volume was estimated using MBQ-167 and 

vehicle-treated mice. Final tumour growth inhibition (TGI) model parameters are 

shown in Table 2. 

Table 2. Parameters of the tumour growth (unperturbed and perturbed) model. 
Parameter\Cell line HER2+ Triple-Negative 

System Related Parameters 
Tumour growth model Simeoni Simeoni 
Initial tumour volume (mL) 0.1c 0.0384b 

λ0 (day-1) 0.2a 0.0393b 
λ1 (g/day) 0.12a 0.5457b 
Ψ 0.7a 0.9985b 
Number of transit compartments 3 4 

Drug Related Parameters 

Response Model Emax Emax 
Drug input Total plasma concentration Total plasma concentration 
k1 (day-1) 0.39a 0.0007b 

IC50 (µM) 0.0187b 0.0001b 
Kmax (day-1) 0.3683b 0.0533a 
H 0.5a 0.5a 

a: optimized to best fit the observed data; b: estimated; c: assumed; λ0: exponential growth rate; λ1: 
linear growth rate; k1: transit rate of cell damage; Ψ: shape factor; Kmax: maximum inhibition; IC50: 
concentration associated with Kmax; H: Hill coefficient. 

Model evaluation of tumor kinetics was performed by calculating the relative error 
(RE) (Equation 2). 

𝑅𝑅𝑅𝑅(%) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉−𝑂𝑂𝑂𝑂𝑂𝑂 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉������������������

𝑂𝑂𝑂𝑂𝑂𝑂 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉������������������ · 100                                                            Equation 2 

 
RESULTS 

MBQ-167 PBPK model 

Model predictions after a single IP administration of 10 mg/kg of MBQ-167 are 
shown in Figures 2 and 3, showing that the PBPK model developed is able to 
capture the longitudinal MBQ-167 observations. Cmax and Tmax were adequately 
characterized in plasma and other organs (heart, lungs, liver, spleen, and 
kidneys), and slightly under-estimated the Cmax and over-estimated the Tmax in 
tumour tissue.  
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Figure 2. Plasma concentration-time profile after the intraperitoneal single dose administration of 10 
mg/kg of MBQ-167 in mice. Red line represents the typical simulated individual. Black dots represent the 
mean of all observations at the sample time with the corresponding 95% Confidence Interval (vertical 
lines). 
 

 

 
Figure 3. Tissue and tumor concentration-time profiles after the intraperitoneal single dose 
administration of 10 mg/kg of MBQ-167 in mice. Red line represents the typical simulated individual. 
Black dots represent the mean of all observations at the sample time with the corresponding 95% 
Confidence Interval (vertical lines). 

These results agree with the numerical analysis (Table 3), as the fold error for 
Cmax is close to the unity in all tissues except from tumour, where a value of 0.8 
arises. AUC0-t fold errors were within the 20% accepted range (0.8-1.2) for heart 
(1.02), lungs (0.97), spleen (0.81), and tumour (1.12). Liver AUC0-t was slightly 
over-predicted, with an AUC0-t fold error of 1.36, possibly due to the over-
prediction of exposure between 1 and 5 hours after the administration of MBQ-
167 (Figure 3). In order to balance the deviation caused by the PBPK model in 
the liver, the predictions in the kidney are under-estimated, leading to an AUC0-t 
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fold error in kidneys equal to 0.63. However, it must be noted that the simulated 
typical profile matched the 95% CI of the observations in all sample times (Figure 
3).  

Table 3. AUC0-t and Cmax values of MBQ-167 with the corresponding fold error 
after IP single dose administration of 10 mg/kg in mice. 

Tissue AUCobs AUCpred AUCpred/AUCobs Cmax,obs Cmax,pred Cmax,pred/Cmax,obs 
Plasma 1417.2 1549.1 1.09 839.9 833.31 0.99 
Lung 1887.6 1838.2 0.97 1540.9 1583.3 1.03 
Liver 8388.5 11444.3 1.36 4793.7 4865.6 1.01 
Spleen 3983.9 3243.5 0.81 1693.4 1718.4 1.01 
Kidneys 34279 21527.9 0.63 11160.4 11231.7 1.00 
Heart 949.2 965.4 1.02 840.8 831.2 0.99 
Tumour 10286.8 11492.8 1.12 1243.6 997.0 0.8 

AUC0-t (ng/mL·h); Cmax (ng/mL). Observed and predicted PK parameters are calculated within the same 
time interval.  

The PBPK model developed predicts a systemic plasma clearance of 2.13 mL/min 
with a clear dominance of liver metabolism (1.83 mL/min) over renal excretion 
(0.3 mL/min) of MBQ-167. 

MBQ-167 tumour growth inhibition model 

Figure 4 shows the PBPK-PD predictions of tumour growth for the HER2+ and 
Triple Negative cell lines in the absence of MBQ-167 (control group) and treated 
groups at 1 and 10 mg/kg dose levels. The unperturbed tumour growth models 
proposed by Simeoni et al. [10] (Figure 4) are capable of describing tumour 
growth with no antitumoral activity in both cell lines (control groups).  



Chapter 2 

 

Page | 64 

 
Figure 4. Tumor growth model (perturbed and unperturbed) for the HER2+ and Triple Negative cell lines. 
Red line represents the typical simulated individual. Black dots represent the mean of all observations at 
the sample time with the corresponding 95% Confidence Interval (vertical lines). 
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In addition, Figure 4 depicts the predicted tumour growth dynamics in HER2+ 
and Triple Negative cell lines after the administration of MBQ-167 (perturbed 
model) at 1 and 10 mg/kg BW dose levels, respectively. The TGI models are in 
good agreement with observed data, with the predicted tumour growth profile 
within the 95% CI of all observations of the study. Figure 5 represents the fold-
error difference between the mean observed profile and model predictions. Based 
on the RE, the structural PBPK-PD is able to predict tumor kinetics of the control 
groups and the 1 mg/kg groups of HER2+ and Triple Negative cell lines, indicating 
that the mean tendency is adequately captured by the model. However, an under-
prediction was observed in the tumor profile of Her2+ cell line at 10 mg/kg 
between days 10 and 30. 

The parameters governing the exponential growth (λ0) were 0.2 and 0.039 day-1, 
which shows a more sustained and prolonged growth of the Triple Negative cell 
line in this phase. However, the zero-order process (λ1) of Triple-Negative was 
higher (0.5457 g/day) compared to HER2+ cells (0.12 g/day). Different initial 
tumor volumes were assumed for the Her2+ cell line (0.1 mL) compared to Triple 
Negative (0.0384 mL) in order to properly capture the exponential growth in both 
cell lines. A different number of damaged cell compartments were considered in 
order to address the delay of death with respect to the drug treatment, assuming 
progressive damage of tumor cells. The different number of damaged 
compartments for each cell line has characterized, in a flexible manner, the 
different death rates of tumor cells for each cell line, allowing to a more sustained- 
and prolonged tumor growth inhibition in Triple-Negative cell line (n=4).  

Different drug effect parameters (k1 and Kmax/IC50) were considered for each cell 
line, showing a higher potency of MBQ-167 in Triple-Negative cells (IC50 = 0.0001 
µM) compared to Her2+ cell line (IC50 = 0.0187 µM). The net effect, which results 
from the ration between Kmax/IC50, was higher for the Triple Negative cell line (533 
mL/ng·day-1) compared to the HER2+ cell line (19.7 mL/ng·day-1).  
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Figure 5. Evaluation of tumor volume predictions in unperturbed and perturbed (1 and 10 mg/kg) groups 
in Her2+ and Triple Negative cell lines. Red dashed lines represent the validation range (0.5 and 2-fold 
error). Green solid line represents the linear regression of the data. Black dots represent the fold-error 
with the mean profile for each group. 
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DISCUSSION 

A PBPK-PD model in mice for the recently developed Rac/Cdc42 inhibitor MBQ-
167 has been developed that is able to describe both the pharmacokinetic and 
pharmacodynamic properties of the drug. The PBPK-PD model properly describes 
the time course of MBQ-167 in plasma and other tissues (e.g., lungs, heart, liver, 
kidneys, spleen) and predicts tumor growth inhibition when administered to mice 
in two BC cell lines, HER2+ and Triple Negative. The model implements the IP 
administration of MBQ-167, full-body distribution, hepatic metabolism, and renal 
excretion. Furthermore, the model considers a permeability-limited tumor 
distribution and implements the Simeoni TGI model to assess the antitumoral 
effect. 

MBQ-167 PBPK model 

The developed PBPK framework is capable of adequately describing the time 
course of MBQ-167 in each of the mouse tissues. The relative error in AUC0-t and 
Cmax in each of the tissues is, in general, less than 20% for the typical profile, 
which shows that the PBPK model is capable of characterizing the average trend 
of behavior. 

The time to reach maximum concentration (Tmax) through IP route resulted in 0.26 
h, showing a rapid absorption that is similar to other reported anticancer small 
molecules. [29–31] The model was able to fit all observations prior to 6 h, with a 
little overprediction from this time up to 12 h. Probably, the overprediction in the 
terminal phase of the Cp-time profile justifies the slight difference between 
predicted (2.13 mL/min) and observed (2.15 mL/min) systemic plasma clearance. 
The rapid elimination of MBQ-167 from plasma, with a predicted elimination half-
life (t1/2) of 2.98 h after IP administration of 10 mg/kg, is consistent with other 
reports of Rac inhibitors like EHop-016 or EHT1864, with t1/2 values of 5.73 h [29] 
and 1.65 h [32] respectively. Predicted plasma exposition PK parameters AUC0-t 
and Cmax were remarkably close to that observed, with fold errors of 1.09 and 
0.99, respectively, showing the optimal prediction performance of the model. The 
predicted Vss (20.21 L/kg) reveals high distribution into peripheral tissues, with 
little remaining of MBQ-167 in the bloodstream. [26] 

Tissue distribution of MBQ-167 was assessed plotting the corresponding 
concentration-time profiles in the liver, lungs, heart, kidneys, and spleen, 
verifying their fitting to the 95% CI of the observed values at each sample time 
and through the computing of the fold error for AUC0-t and Cmax. The highest 
concentration of MBQ-167 was found in the kidneys, with a Cmax value of 11231.7 
ng/mL, reflecting the important role of renal uptake and subsequent clearance in 
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drug disposition [26]. The predicted rank order of tissue drug exposure, 
determined by both AUC0-t and Cmax was kidneys > liver > spleen > lung > heart. 
Tumour concentration was adequately predicted by the model, with AUC0-t and 
Cmax fold errors in the desired range, and the predicted typical profile correctly 
fitting the observed data. However, a slight difference in the tumour disposition 
process is evident, with a predicted rate of distribution slower than that observed, 
as is determined by lower and longer Cmax and Tmax, respectively. 

Regarding the elimination mechanisms, the PBPK-PD model predictions reveal 
liver metabolism as the major route of elimination, as it represents 86% of overall 
systemic clearance. However, these results must be handled with care as no 
additional information is known about renal excretion, and only glomerular 
filtration of unaltered MBQ-167 has been implemented in the model. 

MBQ-167 tumour growth inhibition model 

Tumour growth dynamics of two cell lines of breast cancer (HER2+ and Triple 
Negative) were modelled in the absence (unperturbed) or presence (perturbed) 
of MBQ-167 using the model proposed by Simeoni et al.[10]. There is vast 
scientific evidence regarding the ability of the model to quantitatively characterize 
the time-course of tumor dynamics in xenograft experiments and evaluate the 
efficacy of anticancer drugs early in discovery and development. [15,33–39] The 
mathematical framework allowed for an adequate prediction of the tumor 
dynamics under the different groups considered.  

The PBPK-PD model is able to successfully predict tumor volume (RE<20%) in the 
unperturbed group of both cell lines. The TGI model accurately predicts tumor 
shrinkage (RE<20%) in HER2+ BC cell line after the administration of 1 and 10 
mg/kg BW of MBQ-167 three times a week for 65 days in mice, with a relative 
tumor size reduction of 94.3% at the highest dose level. Model predictions in 
Triple-Negative cell lines agreed with the experimental data for the 1 mg/kg 
group, and a slightly under-prediction of final tumor volume was predicted in mice 
receiving 10 mg/kg three times a week for 108 days. The discrepancy could be 
explained by the fact that differences in λ1 could appear between groups, but the 
overall time-course profile of tumour dynamics of each group is adequately 
captured by the model since mean predictions are within the 95% CI of the 
observed data and the predicted relative reduction in the final tumor size (89.6%) 
agrees with that observed (87.0%) at the 10 mg/kg BW dose level. It has been 
demonstrated that MBQ-167 reduces mammary fat pad tumor size starting 
approximately 3 weeks following treatment at a nontoxic concentration of 10 
mg/kg BW, and resulting in total inhibition of metastases in mice [18]. These 
results could serve as an external validation of the PBPK-PD model due to the 
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accuracy in the prediction of the tumor size reduction, with a negligible difference 
in the final tumor volumes at the studied concentration of 10 mg/kg. 

The use of quantitative structures for the optimal design of dosage regimens is 
one of the most relevant applications during the drug development process. In 
the Simeoni model, k1 and k2 represent the kinetics of cell death and the 
proportionality factor linking the plasma concentration to the effect (drug 
potency), respectively. [10] In this sense, deterministic simulations were 
performed in order to evaluate the influence of intensive dosing strategies on 
tumor dynamics (Figure 6). The results suggested a significant improvement of 
tumor reduction when once daily (QD) and/or twice daily (BID) schedules were 
considered, especially in the Her2+ cell line since tumor eradication is predicted 
at 1 mg/kg BID and 10 mg/kg BID or QD. 

 
Figure 6. Deterministic simulations to evaluate the impact of intensive dosing strategies on tumor 
dynamics of HER2+ and Triple Negative cell lines in mice. 3XW: three times per week; BID: twice daily; 
QD: once daily. 

The dose-dependent tumor shrinkage observed in the Her2+ cell line is negligible 
in the Triple Negative cell line, suggesting that maximal pharmacodynamic 
response is achieved at 1 mg/kg, but tumor stabilization is observed when BID or 
QD schedules are considered. The accumulation of MBQ-167 in plasma achieved 
with BID or QD schedule explains the net greater effect observed in tumor 
dynamics and the significant improvement in terms of tumor eradication (Her2+) 
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or tumor stabilization (Triple Negative). In this sense, the current PBPK-PD model 
allowed to quantitatively characterize system- (λ0, λ1, initial tumor volume, and 
Ψ), which regulate the exponential and linear tumor growth for each cell line, and 
drug-related (IC50, Kmax, and k1) parameters, which helped to guide optimal dosing 
regimens in future preclinical studies. These analyzes can serve as a basis for 
experimentally evaluating other dosing strategies that allow characterizing tumor 
dynamics with greater precision, achieving significant reductions in tumor size in 
both cell lines. 
Among the most relevant limitations of the present work, we highlight the lack of 
an intravenous group, which would have allowed a more precise characterization 
of the disposition of MBQ-167. Secondly, the impossibility of characterizing the 
individual PBPK and PBPK-PD profile and, therefore, the inter-individual random 
components on the parameters of the model since Simcyp V19 Animal Simulator 
does not allow a population approximation of the data for mice. Furthermore, due 
to the study design, it is important to note that the typical PK profile was obtained 
from independent mice since it was not possible to gather the concentration in the 
tissues in the same animal over time. This necessarily increases the variability in 
the data and enhances parameter uncertainty. A major drawback of the current 
analysis was the inability to link concentrations in the tumor tissue as the driving 
force of the tumor dynamics and the negligible drug effect observed in the Triple-
Negative cell line when 1 or 10 mg/kg dose regimens were considered, which 
resulted in an IC50 = 10-4 µM. On the other hand, the current model is limited only 
to the experimental data available in mice without preclinical information in other 
animal models. Prospective analyses are encouraged to externally validate 
predictions of the current PBPK-PD model. 
 

CONCLUSIONS 

In summary, we have been able to successfully develop a PBPK-PD model of MBQ-
167 in mice that accurately characterizes the pharmacokinetic properties of (i) 
MBQ-167 in different mouse tissues, (ii) the dynamics of tumor progression, and 
(iii) the anti-tumor effect of MBQ-167 in HER2+ and Triple Negative breast tumors 
following intraperitoneal administration. Moreover, the optimal dosing strategy 
analysis predicted tumor eradication in HER2+ and tumor stabilization in Triple-
Negative cell lines when intensive schedules (BID and QD) were selected, despite 
the higher potency of MBQ-167 in Triple-Negative vs. Her2+ cell line. The findings 
of this study further support the development of MBQ-167 as a therapeutic for 
breast cancer treatment. 
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INTRODUCTION 

Statins are the first line treatment/treatment of choice/gold-standard in the 
pharmacological management of hypercholesterolemia [1] and they have been 
positioned as the most effective oral drugs for the treatment and prevention of 
cardiovascular diseases associated to dyslipidemia [2,3]. Statins are reversible 
inhibitors of the 3-hydroxy-3-methyl-glutharyl-coenzyme A (HMG-CoA) 
reductase, the enzyme responsible of de novo cholesterol biosynthesis. Statins 
can be administered in the active form (atorvastatin, fluvastatin, pitavastatin, 
pravastatin and rosuvastatin) or as inactive drugs (simvastatin and lovastatin), 
which require activation within the organism. Statins are, in general, safe and well 
tolerated [4,5]. In terms of safety concerns, the most frequent adverse events 
are myopathies (5-10%) [6], ranging from muscle pain to very rare cases of fatal 
rhabdomyolysis [7], and hepatotoxicity, which is present in 1 % of treated 
patients and resolves spontaneously after withdrawal of the drug [5]. 

Among the statins, atorvastatin (ATS) is one of the most prescribed [8] statin 
worldwide for the treatment of hypercholesterolemia in order to diminish the 
cardiovascular risk [9]. ATS is a second-generation synthetic statin that is 
administered as the calcium salt of the active hydroxy-acid form, although some 
generics have been developed with the magnesium salt to avoid the patent 
protection of the calcium salt. According to the desired reduction in low-density 
lipoprotein cholesterol (LDLc) levels, the clinical posology involves the use of 10-
80 mg once daily at any time of the day. Despite of its wide, cost-effective use 
and pharmacological response, several factors undermine the clinical response of 
statins in the treatment of hypercholesterolemia, involving low adherence of 
patients, inadequate selection of the active ingredient, polymorphisms, adverse 
events (myopathies), drug-drug interactions (DDIs), etc. The use of model-based 
strategies able to properly characterize the time-course of the active entities are 
encouraged in order to optimize the dosing strategy in patients. Physiologically 
based pharmacokinetic (PBPK) modelling has emerged as a solid tool in the 
decision-making process during drug development, which has gained regulatory 
recognition in the last years [10,11]. The main applications of PBPK models range 
from drug-drug interactions (DDI), transporter evaluation, food-drug interactions, 
intrinsic factors evaluation, and extrapolation of drug exposure in special sub-
groups of patients. Therefore, the aims of this review are (i) to summarize the 
physicochemical and pharmacokinetic (PK) characteristics involved in the time-
course of ATS, and (ii) to evaluate the major highlights and limitations of the PBPK 
models of ATS published so far. 
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PHYSICOCHEMICAL PROPERTIES 

Solubility 

ATS (546 g/mol, pKa 4.46) belongs to the class II of the Biopharmaceutical 
Classification System (BCS) due to its low solubility in the gastro-intestinal fluid, 
which contributes to its low bioavailability (12%) [12-14]. ATS solubility in 
deionized water is reported to be 0.0206 mg/mL at 37 °C [14]. A tri-hydrated 
calcium salt form of ATS (ATS-Ca) is included in the commercially available tablets 
of ATS. ATS-Ca has been isolated in amorphous and crystalline forms, but it is 
commercialized in its crystalline form due to the higher stability. ATS-Ca solubility 
increases with pH, being insoluble in acidic aqueous solutions of pH < 4 [15]. 
Solubility values in aqueous media for the amorphous and crystalline forms at 37 
°C are 0.11-0.12 mg/mL in water, 0.01 mg/mL in HCl 0.1 N and 0.72 and 0.70 
mg/mL in sodium phosphate 0.05 M pH 7.4, respectively [16]. Great efforts have 
been performed to improve ATS oral bioavailability trough formulation strategies 
to increase the solubility and/or dissolution rate of ATS-Ca such as micronization 
by antisolvent precipitation [15], microcapsulation [17], co-grinding techniques 
[18], co-amorphous formulations with nicotinamide [19], dry emulsions [13], 
inclusion complexes [20] and use of drug resinates [21]. Since ATS is 
administered mainly as the calcium salt, low solubility in the gastrointestinal (GI) 
tract should be considered in order to assess its PK characteristics. 

Lipophilicity 

Chemical structure of ATS (and of statins in general) can be divided into three 
parts: 1) the analogue of the target enzyme substrate (3-hydroxy-3-methyl-
glutaril coenzyme A or HMG-CoA), 2) a complex hydrophobic ring structure 
covalently linked to the substrate analogue, and 3) side groups on the rings that 
define the solubility and PK properties [1]. While the analogue of the HMG-CoA 
(the mevalonate-like pharmacophore) is responsible for the reversible inhibition 
of the HMG-CoA reductase, the ring structure and its substituents lead to 
differences in lipophilicity, absorption properties, plasma protein binding and 
elimination [22]. Lipophilicity of ATS is determined by its logP of 4.1 [22] and its 
logD at pH 7.4 (1.52) [3]. 
 

ABSORPTION 

A rapid oral absorption is expected after ATS administration, since the median 
Tmax is reported to be 1 h, with a range of 0.5-3 h [3]. The oral fraction absorbed 
of ATS is 30% between 10-80 mg and its oral bioavailability is known to be low 
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(12%) [22-25] and dose-independent. Therefore, dissolution and pre-systemic 
metabolism (gut wall and liver first pass effect) are the key relevant processes 
affecting ATS bioavailability. The rate and extent of ATS absorption are influenced 
by the time of administration [26] and the presence of food [23]. A study with 16 
healthy volunteers revealed that ATS maximum plasma concentration (Cmax) and 
area under the plasma concentration-time curve (AUC) diminished by 47.9% and 
12.7%, respectively, when a 80 mg dose was administered with food [27]. This 
reduction in ATS exposure has also been reported at the lowest dose level (10 
mg) [28]. In this sense, the administration of ATS with food decreases its 
bioavailability by 13% [22,23]. Despite the administration of ATS in the evening 
is associated to a lower exposure compared when it is dosed in the morning (with 
mean Cmax and AUC values 31% and 57% lower, respectively) and a food effect 
has been determined, no difference in the clinical response is observed [26,28]. 
For this reason, ATS can be administered at any time of the day and without 
regard to food. Gender is another covariate influencing ATS exposure, but it lacks 
of any clinical relevance, despite the 10% lower AUC and 20% higher Cmax in 
females compared to males [12]. 

The intestinal absorption of ATS is a complex process as the net transport of this 
drug through the gut wall involves multiple mechanisms, being not only restricted 
to passive diffusion. In vitro experiments in Caco-2 cell monolayers revealed an 
apparent permeability (Papp) in the basolateral-to-apical direction 7-fold higher 
than in the apical-to-basolateral direction, showing the role of P-glycoprotein (P-
gp) efflux (Km and Jmax values of 115±19 µM and 141±11 pmol/cm2/min, 
respectively [29]). The interaction of ATS and P-gp has also been demonstrated 
in Madin-Darby canine kidney cells (MDCK) expressing human P-gp [30]. In this 
cell line, the efflux ratio after correcting with parental MDCKII cells resulted in 
4.46 for ATS acid, suggesting ATS acid as a moderate substrate of P-gp. Moreover, 
monocarboxylic acid co-transporter (MCT) has been identified as a relevant 
transporter in the ATS absorption from the gut lumen with a Km value in the mM 
range. As clinically relevant maximal concentrations in the intestinal lumen are 
estimated to be within the 70-550 µM range after doses of 10 to 80 mg [3], ATS 
MCT-mediated absorption may be a linear process at this concentrations, which is 
consistent with the proportional increase in the extent (AUC) of ATS absorption in 
the 10 to 80 mg dose range. 
 

DISTRIBUTION 

The passive membrane permeability of statins increases along with their 
lipophilicity and, consequently, lipophilic statins are distributed into peripheral 
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tissues [31]. ATS has a volume of distribution of 5.4 L/kg [24] and exhibits high 
degree of plasma protein binding (>98 %) [32]. Statins accumulation in the liver 
is mediated by hepatic uptake through the organic anion transporting polypeptide 
(OATP) family, sodium-dependent taurocholate co-transporting polypeptide 
(NTCP), and by efflux transporters of the ATP-binding cassette (ABC) family, 
located on the basolateral and canalicular membranes of the liver, respectively 
[33]. In vitro kinetic studies on ATS hepatic uptake revealed that OATP1B1 and 
OATP1B3 were the major ATS uptake transporters, while NTCP was found to be 
of minor importance in ATS disposition. The average contribution to ATS uptake 
resulted OATP1B1 > OATP1B3 >> OATP2B1 > NTCP and their respective Km (µM) 
and Vmax (pmol/min/mg protein) values are 0.77, 0.73, 2.84 and 185 and 6.61, 
2.29, 24.27 and 2260, respectively [34]. An ATS intrinsic uptake clearance of 
2030 mL/min (95% CI: 1140-2620 mL/min) was predicted and, assuming the 
same passive diffusion across the cell membrane of hepatocytes and HEK293 cells 
(120 µL/min/g of liver), transporter-mediated active uptake of ATS dominates 
overall ATS hepatic uptake [34]. Moreover, polymorphisms in transporters genes 
have been reported to affect the PK of statins and their therapeutic effects 
[35,36]. It has been demonstrated that liver-to-plasma concentration ratio of ATS 
is 2.7-fold higher (p = 0.002) in wild-type when compared to Slco1b2-/- mice 
after 1 mg/kg ATS tail vein injection [33]. In humans, it has been observed that 
ATS and its metabolites are sensitive to polymorphisms in SLCO1B1, as plasma 
concentrations were higher in subjects carrying the reduced function SLCO1B1 
521C allele (T/C genotype) compared with the wild-type subjects (521 T/T) [37]. 
Another example comes from a fixed-order crossover study in 660 Finnish healthy 
volunteers [35], which concluded that individuals carrying the ABCG2 c.421C>A 
single-nucleotide polymorphism (SNP) had a 72% higher ATS AUC0-inf than 
individuals with the c.421CC genotype (p = 0.049), suggesting that the ABCG2 
polymorphisms affect the PK of ATS. As the elimination half-life was not influenced 
by ABCG2 polymorphism, it allowed the authors to conclude that ABCG2 influences 
mostly during the absorption phase, enhancing ATS absorption and bioavailability 
[35]. 
 

METABOLISM 

Metabolism of ATS is an intricated pathway of different reactions that include 
glucuronidation [7,8,38], lactonization  [39], and cytochrome P450-mediated 
oxidation [40,41]. A simplified scheme with the different metabolic pathways of 
ATS is depicted in Figure 1. ATS is administered as the hydroxy acid form (calcium 
salt) and its active metabolites (ortho-hydroxy atorvastatin (2OH-ATS) and para-
hydroxy atorvastatin (4OH-ATS)) are equipotent to the parent compound, being 
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responsible of 70% of the HMG-CoA reductase inhibitory activity of ATS [42]. The 
in vitro HMG-CoA reductase inhibitory activity (IC50) values for ATS, 2OH-ATS and 
4OH-ATS are 3.71, 5.54 and 3.29 nM, respectively [43]. Both metabolites, as the 
parent compound, are equilibrated with the corresponding lactone forms (ATS-L, 
2OH-ATS-L and 4OH-ATS-L) [38,39,41]. It has been demonstrated that 
lactonization might occur non-enzymatically at pH<6 [44] or enzymatically, being 
the former pathway negligible at pH>6. The formation of an acyl-glucuronide prior 
to lactonization is expected to be the major pathway for the enzymatic 
lactonization of ATS in humans, which is catalyzed by UDP-
glucuronosyltransferases (UGTs) UGT1A1, UGT1A3 and UGT2B7. The isoenzyme 
UGT1A3 is the major contributor to this process with 200 times more activity than 
UGT2B7 [7]. The mechanism proposed for the lactonization is the formation of an 
acyl-β-D-glucuronide conjugate of the ATS acid (parent), elimination of the 
glucuronic moiety and final spontaneous cyclization to the corresponding lactone 
[38]. ATS glucuronidation, and thus lactonization, follows a non-linear kinetics 
with Km and Vmax values of 4 and 20 µM and 2280 and 120 pmol/min/mg for 
UGT1A3 and UGT2B7, respectively [7]. ATS lactonization is affected by 
polymorphisms in the UGT1A locus and has been demonstrated both, in vitro and 
in vivo in healthy volunteers [8]. On the other hand, the hydrolysis of the lactone 
forms of ATS and its metabolites to the corresponding carboxylates takes place 
non-enzymatically at pH>6 [44] or can be catalyzed by plasmatic esterases or 
paraoxonases (PONs) [38]. PONs are a family of esterase/lactonase enzymes 
whose encoding genes are located in tandem in the long arm of human 
chromosome 7 (7q 21-22) [45], being PON1, PON2 and PON3 highly involved in 
ATS metabolism. In addition, ATS increases the expression of PON2 [46]. A 3.8-
fold higher ATS-L hydrolysis rate through PON1 and PON3 has been demonstrated 
in vitro when compared to spontaneous hydrolysis in a pooled microsomal fraction 
[47]. Additionally, results from incubation experiments in human liver microsomes 
(HLM) show a median ATS formation rate through hydrolysis of the corresponding 
lactone of 309.70 pmol/min/mg protein [47]. Hydrolysis of lactone forms has been 
demonstrated to occur in plasma [48]. Therefore, this process must be considered 
when modelling ATS and its metabolites to better assess its pharmacokinetics. 
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Figure 1: Metabolic pathways of atorvastatin. Arrows’ thickness informs directly about the relevance of 
the reaction and the sense of the equilibrium. Dashed arrows represent a theoretically possible 
lactonization of 2OH-ATS and 4OH-ATS via an acyl-β-glucuronide. ATS: atorvastatin open acid form; ATS-
L: atorvastatin lactone form. 

Cytochrome P450-mediated oxidative metabolism has been described as a major 
pathway of biotransformation for statins in humans [38], where CYP3A4 is the 
major enzyme involved in the formation of the two hydroxy-metabolites of ATS 
[39,41]. The CYP3A4-mediated oxidation is clearly polarized to the lactone forms, 
with Km and Vmax values of 3.9 and 1.4 µM, and 4235 and 14312 pmol/min/mg for 
the ortho- and para- hydroxylated metabolites, respectively [39]. Differences in 
Km and Vmax values between the acid and lactone form of ATS result in an intrinsic 
clearance ratio lactone/acid equal to 73 [40] and in an specific metabolite 
clearance ratio for ortho-hydroxylation and para-hydroxylation of 20.2 and 83.1, 
respectively [39]. Quantum mechanics/molecular mechanics (QM/MM) have 
revealed that the acid form of ATS must pay a desolvation penalty of 5 Kcal/mol 
to enter in the more hydrophobic active site of the enzyme [39]. Moreover, the 
higher Vmax value for the para-hydroxylation of ATS-L has been attributed to a 
shorter distance to the heme oxygen atom of the CYP3A4 [39]. Inhibition studies 
have demonstrated that ATS-L could be an inhibitor of the metabolism of the acid 
form [39]. It could be concluded that ATS lactonization change its affinity to the 
CYP3A, affect the preferred hydroxylation positions and may be responsible for 
DDIs at this level.  
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EXCRETION 

Mass balance studies with [14C]-ATS have revealed the biliary route as the major 
route of elimination of ATS and its metabolites, with a minor contribution of the 
renal excretion (1-2%) to the overall elimination of the drug [3,22]. In fact, renal 
impairment has no significant effect on the PK parameters of ATS [42], which 
helps the management of complex dyslipidemia in hypercholesterolemic 
hemodialysis patients, since no dose adjustment is required [49]. It has been 
demonstrated that ATS can be reabsorbed from the bile, thus suggesting biliary 
recycling as an important component in ATS metabolism and excretion and may 
contribute to the prolonged duration of ATS effect [43]. 

The involvement of P-gp in the absorption of ATS has been demonstrated in vivo 
due to the influence of polymorphisms in ABCB1 genotypes [50]. However, the 
activity of P-gp affects the PK during the elimination phase more than in the 
absorption phase, as AUC and half-life (t1/2) show greater differences (p<0.05), 
rather than Cmax values, between genotypes [50]. These results suggest that P-
gp affects the enterohepatic circulation of ATS. 
 

PHYSIOLOGYCALLY BASED PHARMACOKINETIC MODELS OF 
ATORVASTATIN 

The PK characteristics of ATS have led to the development of PBPK models that 
can better explain the complexity of each of the LADME processes of this drug. 
The PBPK models of ATS published until now are described below. 

Zhang. 2015 

This is the first PBPK model of ATS that assess not only the parent drug, but also 
the two main metabolites of the open acid form, ATS-L and 2OH-ATS [51]. This 
model is intended to evaluate DDIs between ATS and its metabolites at multiple 
scenarios (e.g., concomitant administration of enzyme inhibitors or inducers such 
as itraconazole, clarithromycin, cimetidine, rifampicin and phenytoin). The PBPK 
model incorporates the Advanced Dissolution, Absorption and Metabolism (ADAM) 
model to characterize the absorption process and a full PBPK distribution model 
for predicting volume of distribution at steady state (Vss) and tissue-to-plasma 
partition coefficients (Kp,t). The intestinal efflux process is implemented using in 
vitro determined maximum rate of transporter-mediated efflux (Jmax) and Km of 
P-gp. The elimination of the open acid form occurs minimally through renal 
excretion (CLR = 0.47 L/h), being the metabolic pathway the most important for 
ATS clearance. Enzymatic processes are mediated by CYP3A4 (ortho- and para-
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hydroxylation) and CYP2C8 (para-hydroxylation) processes and glucuronidation 
reactions mediated by UGT1A1 and UGT1A3. It must be noted that, ATS 
hydroxylation by CYP3A4 incorporated ortho- and para-hydroxylation and the 
resulting metabolite for the ortho-hydroxylation was its active metabolite (2OH-
ATS). However, an important issue here raises as the in vitro assays of ATS 
metabolism reveal lactonization as the critical first step in ATS disposition and 
suggest that ATS-hydroxylated metabolites would be mostly formed after 
hydrolysis of the corresponding lactone products (2OH-ATS-L and 4OH-ATS-L) 
due to the higher affinity of the lactone form of ATS for the active site of CYP450 
isoforms [39]. In this sense, the ATS ortho-hydroxylation may be overestimated 
(Inter System Extrapolation Factors (ISEF) of 7) to reproduce 2OH-ATS levels and 
the resulting predicted CL of 51 L/h largely exceeds the observed after IV 
administration (37.5 L/h), with the corresponding lower predicted bioavailability 
(7% vs 14%). Additionally, 2OH-ATS product is not assessed by the model, but 
the corresponding formation pathway parameters are remarkably close to that of 
the ortho-hydroxylation route (ISEF of 7). This issue will produce higher amounts 
of 4OH-ATS than observed and probably causing an over-prediction of ATS 
systemic clearance. Permeability-limited liver model was used to assess hepatic 
OATP1B1-mediated active uptake and incorporated passive diffusion clearance in 
hepatocytes membrane. Different ISEFs were applied to best reproduce the 
observed data, a well-known approach for in vitro-in vivo extrapolations (IVIVE) 
in enzymatic and transporter-mediated processes. CYP3A4-mediated ortho-
hydroxylation and UGT1A3-mediated glucuronidation generate the primary 
metabolites 2OH-ATS and ATS-L, respectively, which are modelled through 
minimal PBPK distribution models using a Single Adjusting Compartment (SAC). 
As expected, the predicted Vss of ATS-L was higher than the Vss of ATS and 2OH-
ATS. Despite the octanol:water partitions coefficients are not different enough to 
justify this difference, the absence of the carboxylic acid functional group of the 
lactone form and the closed ring of its structure (neutral compound) may increase 
the permeability through cell membranes thus increasing its volume of 
distribution. As there were some physicochemical properties that were not 
available for these metabolites (e.g., B/P and fu), ATS corresponding parameter 
values were assumed. Elimination of both metabolites were parameterized 
through enzyme kinetics, determining CYP3A4-intrinsic clearance with the 
retrograde model after assigning 40% and 30% contribution of CYP3A4 to the 
overall clearance of 2OH-ATS and ATS-L, respectively. The metabolized fractions 
of both metabolites were assigned to reproduce observed clinical DDIs, so they 
can be considered when assessing their elimination. However, in the case of ATS-
L a value of 1892 µL/min/mg protein for its intrinsic clearance by HLMs has been 
published [40] that could have been used and optimized if necessary, in a more 
mechanistic manner. 
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Model performance was evaluated using 13 independent clinical trials (data from 
literature) after oral doses of 20 and 40 mg of ATS (Table 1). The prediction ability 
of the PBPK model was validated using DDIs clinical data with enzyme inhibitors 
and inducers.  

Table 1. Study design and population characteristics of the physiologically based 
pharmacokinetic models of atorvastatin. 

 Zhang. 
2015 

Duan et al. 
2017 

Li et al. 
2019 

Morse et al. 
2019 

Number of independent clinical 
studies 

13a 7b 6c 5d 

Dosing regimen (Number of 
trials) 

SD (12) 
MD (2) 

SD (6) 
MD (2) 

SD (5) 
MD (1) 

SD (5) 

Number of subjects (total) 386 166 180 145 
Clinical status (number of 
subjects) 

HV (386) HV (145) 
RTP (21) 

HV (162) 
RTP (18) 

HV (145) 

Dose level (mg) (number of 
subjects) 

20 (83) 
40 (303) 

10 (33) 
20 (60) 
40 (73) 

10 (36) 
20 (55) 
40 (89) 

10 (12) 
40 (133) 

a: [62-74]; b: [62,70,71,75-78]; c: [69,70,79-82]; d: [69,70,82-84]; SD: single dose schedule; MD: 
multiple dose schedule; HV: healthy volunteers; RTP: renal transplant patients. 

There are some aspects that need further consideration regarding the involvement 
of P-gp and hepatic transporters. The authors stated that ATS exhibits high 
solubility and high permeability, considering the contribution of P-gp to the total 
exposure to be marginal. However, the involvement of P-gp in ATS PK has been 
demonstrated in humans due to the polymorphisms in ABCB1 genotypes, thus 
suggesting that P-gp affects the enterohepatic recirculation of ATS [50]. 
Additionally, ATS is currently considered as a BCS class II (low solubility, high 
permeability) and many efforts have been made to increase its bioavailability 
enhancing its solubility [14,17,20,52,53]. For these reasons, solubility and P-gp 
activity become essential in ATS absorption and disposition. Furthermore, the 
contribution of hepatic transporters to ATS disposition cannot be minimal as stated 
because it has been demonstrated in vitro that transporter-mediated hepatic 
uptake clearly dominates overall ATS hepatic uptake with 90% ± 2% contribution 
[34]. This implication in ATS exposure has been demonstrated in vivo [35,37]. 
Despite of this, the PBPK model of Zhang accurately described the time course of 
ATS, 2OH-ATS and ATS-L after the oral administration of 40 mg of ATS in more 
than 10 independent clinical studies as well as DDIs with enzyme inhibitors and 
inducers, being the model more accurate to reproduce changes in AUC than in 
Cmax. Some of the limitations assumed by the authors are the lack of 
parameterization of the hydrolysis process of the lactone forms to the 
corresponding open acids and the optimization of the OATP1B1 kinetic parameters 
with only data from single dose studies with rifampicin. 
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Duan et al. 2017 

In this work [54], Duan et al developed an ATS PBPK model to assess the role of 
OATP1B1 in ATS disposition evaluating SLCO1B1 polymorphisms and the impact 
of DDIs on ATS exposure when co-administrated with known CYP and/or 
transporters inhibitors such as rifampicin, cyclosporine, gemfibrozil, itraconazole 
and erythromycin. The authors used different data sets to develop and evaluate 
the model using data from the literature. The absorption process was modelled 
using the ADAM model, predicting human effective permeability (Peff,man) from 
Caco-2 cells. A full PBPK approach was considered as the distribution model, using 
Rodgers and Rowland method [55,56] to predict Kp,t and Vss. Metabolism was only 
modelled via CYP3A4 oxidation, calculating CLint,CYP3A4 by means of two 
approaches: the first one, used the retrograde methodology with the reported IV 
ATS clearance of 37.5 L/h and assuming 100% contribution of CYP3A4 to overall 
metabolic clearance, resulting in an intrinsic clearance of 8 µL/min/pmol 
recombinant CYP; the second one, directly used intrinsic clearance from in vitro 
assays and accounted for ortho- and para-hydroxylation pathways. The CLint,T for 
OATP1B1 obtained with both approaches were optimized starting from the 
reported in vivo CLint,T of 910 mL/min/kg or 360 µL/min/million cells (based on 
SimCYP Simulator extrapolation algorithms), which was further decomposed in 
Jmax and Km. Both approaches provided similar simulated ATS profiles and required 
the optimization of CLint,OATP1B1 with an scaling factor of 4 to best reproduce Cmax 
and AUC of the training dataset. These results led to the consideration that hepatic 
uptake seems to be the rate limiting step in ATS elimination, which constitutes an 
important conclusion of this work. No other CYP (CYP2C8 nor CYP3A5) were 
considered to contribute to ATS metabolism, despite the well-known metabolic 
profile previously described. In addition, no lactonization process was 
implemented in the model which constitutes and important limitation (assumed 
by the authors) due to the relevance of the lactone forms of ATS and its 
metabolites, not only in the metabolic process [39], but also in terms of safety 
and toxicity [2,57]. The absence of these processes could explain the slight 
deficiency to accurately reproduce the terminal phase of the 20 and 40 mg oral 
dose of ATS. Regarding to the distribution model, a Vss of 0.226 L/kg is predicted 
by the model, which is notably lower compared to previously reported values of 
381 L [3], 5.4 L/kg [24] and 8.7 L/kg [51]. Therefore, model parameter 
optimizations with observed PK parameters that are largely influenced by volume 
of distribution (e.g., Cmax) should be considered with caution. This PBPK model 
accounts for the first time for Breast Cancer Resistance Protein (BCRP) 
contribution to ATS disposition and it is in line with the available data published 
by Keskitalo et al [35] (subjects with the ABCG2 c.421AA genotype showed a 72% 
and 46% increase in ATS AUC and Cmax, respectively when compared to subjects 
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with the c.421CC genotype). These results, as well as the unchanged t1/2 in both 
genotypes, suggested that the main role of BCRP is linked to the absorption phase. 
For this reason, intestinal BCRP activity was manually optimized to best fit Cmax 
and Tmax of the training dataset. BCRP canalicular efflux activity was also 
incorporated into the model, thus contributing to the biliary excretion of ATS, 
directly adopting the reported in vitro value of 1.4 µL/min/mg protein. A small 
contribution to overall elimination of ATS through the kidneys was also 
implemented. Model performance was determined assessing the ratio of simulated 
(AUCRsim) and observed (AUCRobs) results of AUC with and without the perpetrator 
drug of the DDI (AUCRsim/AUCRobs) according to the two-fold range (0.5-2) due to 
the known inter-study variability. 

The PBPK model developed by Duan et al accurately described the time course of 
single oral doses of 20 mg and 40 mg of ATS in healthy volunteers. The PBPK 
model was able to capture the AUCRs in SCLO1B1 polymorphism (c.521CC vs 
c.521TT) and in the presence of CYP3A4 or OATP1B1 inhibitors reasonably well 
(ratios within 2-fold of the observed value). 

Li et al. 2019 

Li et al. refined the published ATS and ATS-L PBPK models by Zhang (2015) 
incorporating biliary excretion of ATS and OATP1B3-mediated hepatic active 
uptake [58]. The aim of the work was to assess in silico the potential of severe 
and life-threating myopathies such as rhabdomyolysis when ATS is concomitantly 
administered with CYP3A4 and/or OATP inhibitors. Absorption and distribution 
processes were modelled using ADAM and full PBPK models, respectively, 
incorporating a permeability-limited liver model to deal with hepatic transporters. 
Enterohepatic recirculation of ATS was allowed, but the fraction available to be 
reabsorbed was not reported. Metabolism of both ATS and ATS-L was 
enzymatically modelled using Vmax and Km values of CYP3A4 ortho- and para-
hydroxylation. Another important feature of this model is that renal excretion was 
not implemented and thus ATS elimination was restricted to the liver. Passive 
diffusion (CLPD) of ATS in the membrane of hepatocytes was assumed to be 
consistent with in vitro results, while CLint,T was estimated through the Parameter 
Estimation module and each of the transporters involved in hepatic active uptake 
were assigned to contribute almost equally to the total intrinsic clearance (53% 
and 47% contribution for OATP1B1 and OATP1B3, respectively). It is true that 
OATP1B1 and OATP1B3 are the main transporters in ATS hepatic active uptake 
[34], but the protein expression levels are quite different (23.2 vs 3.2 fmol/µg 
membrane protein for OATP1B1 and OATP1B3, respectively), as well as Vmax 
(OATP1B1 Vmax is 3-fold higher than OATP1B3 Vmax). So, the assigned role of each 
of these transporters should be considered with caution. The PBPK model did not 
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incorporate other transporters responsible of ATS hepatic active uptake (e.g., 
NTCP and OATP2B7) that had also demonstrated in vitro activity [34]. On the 
other hand, the ATS-L model needed the incorporation of empirical scaling factors 
to the metabolic pathways and an additional liver microsomal clearance to best fit 
the observed data. Sensitivity analysis on this additional clearance mechanism is 
lacking.  

Model verification was performed by comparing simulated PK parameters AUC and 
Cmax with observed data at different dose levels (10, 20 and 40 mg). Despite all 
simulations were within the desired 2-fold error range, AUC predictions were, in 
general, overpredicted, while Cmax was less variable and closer to the observed 
values. This situation could be explained due to the absence of implementation of 
other metabolic pathways in the elimination of both ATS and ATS-L, such as 
CYP3A5 and CYP2C8-mediated hydroxylation. Model validation was performed 
using DDIs studies with ATS (and ATS-L) as victim drug and inhibitors 
(perpetrators) of CYP3A4 (itraconazole and clarithromycin), OATP1B1 and 
OATP1B3 (rifampicin) or both (cyclosporine). Results revealed an important 
feature of ATS PK: ATS lactonization must not be an immediate process and the 
intermediate of the acid-to-lactone conversion, e.g. acyl-β-D-glucuronide, should 
be present in the bloodstream sufficient enough to be victim of OATP-mediated 
transporter inhibition to increase ATS-L exposure more than 3 times when co-
administered with rifampicin and cyclosporine. Thus, UGT-mediated 
glucuronidation is the main route of ATS lactonization and this metabolic pathway 
should be considered when developing ATS PBPK models. Finally, model 
application to predict ATS and ATS-L exposure in muscle tissues revealed that 
ATS-L levels are 18-fold higher than in plasma and 10- or 14-fold higher than ATS 
exposure in muscles tissues after single or multiple doses of 40 mg. These results 
are consistent with the high Vss of ATS-L predicted by the model (141.3 L/kg).  
However, the model has some limitations that are recognised by the authors and 
are summarized as follows: i) the lack of other recognised transporters implicated 
in ATS disposition such as MDR1 (P-gp) and BCRP; ii) the absence of pre-systemic 
non-enzymatic ATS lactonization at initial segments of the GI tract; iii) the 
impossibility to describe the kinetics of the glucuronide intermediate in the acid-
to-lactone conversion. 
 
Morse et al. 2019 

This is the first PBPK model that considers pre-systemic degradation of ATS [59]. 
The model developed by Morse et al. states that ATS-L is mostly formed non-
enzymatically in the stomach due to the low pH of this region of the GI tract. 
Taking this premise in mind, the authors developed a PBPK model to assess the 
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impact of increasing gastric emptying time after glucagon-like peptide-1 receptor 
agonists (GLP1RAs) administration. Due to the limitation of considering two active 
drugs as substrates in Simcyp v17, two PBPK models were simultaneously 
developed: one considering ATS as substrate and a second model considering 
ATS-L as substrate. This is made by dividing the oral dose of ATS as a function of 
the fraction absorbed (fa) of ATS, since complete absorption of ATS has been 
suggested [3]. The pre-systemic degradation is performed optimising a stomach 
degradation rate constant to reproduce the dose-dependent change in Cmax, which 
is observed in clinical studies. The fraction absorbed of ATS derived from the best 
scenario is considered to determine ATS-L fa. This strategy allowed to manage a 
fraction of the dose administered directly as ATS-L and generating the 
corresponding substrate model file, thus assessing its ADME properties more 
mechanistically. To better characterize ATS pre-systemic degradation, pH-
dependent solubility was added to the model, taking a dissolution profile directly 
from the literature [44]. However, it must be noted that this pH-dependent 
dissolution profile has been characterized for the sodium salt of ATS and at present 
ATS is administered as the tri-hydrated calcium salt of the carboxylic acid, which 
could lead to differences in the dissolution profile when comparing to clinical data. 
ADAM model is used for assessing the absorption of both substrates predicting 
Peff,man from Caco-2 cells and MDCK for ATS and ATS-L, respectively.  

The model structure considers 2OH-ATS as a direct metabolite of ATS and a 
secondary metabolite of ATS-L due to plasmatic hydrolysis of 2OH-ATS-L after 
CYP-mediated hydroxylation. ATS is also considered in the ATS-L model as a direct 
metabolite after plasmatic esterases-mediated hydrolysis. ATS and ATS-L 
metabolism are parameterized by enzyme kinetics mainly through CYP3A4, 
although an additional non-CYP microsomal intrinsic clearance was optimized to 
best reproduce the in vivo interaction with itraconazole. Additionally, UGT1A3-
mediated metabolism is also implemented for ATS, but it does not generate the 
corresponding lactone product. No other CYPs nor UGTs are considered. Plasmatic 
hydrolysis of lactone forms (ATS-L and 2OH-ATS-L) to the corresponding acid 
products (ATS and 2OH-ATS) are included in the model in terms of half-life 
(minutes) for ATS-L and through an esterase intrinsic clearance (µL/min/mg) for 
2OH-ATS-L to best fit the observed data after an oral dose of 40 mg and verified 
with DDIs studies with itraconazole and dulaglutide. Additionally, sensitivity 
analyses on optimized parameters such as esterase activity and non-CYP 
mediated hepatic metabolism were performed. An important feature of this work 
is that some PBPK model parameters were determined in vitro, such as CLint,OATP1B3 
(µL/min/106 cells) for ATS and 2OH-ATS (31.5 and 25, respectively), Papp (10-6 
cm/s) for ATS-L in MDCK cells (33) and CLPD (no units provided) for ATS and 2OH-
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ATS (13 and 5, respectively), thus avoiding some assumptions and optimizations, 
and increasing model identifiability [60].  

Different distribution models are selected for each moiety and a Kp scalar is applied 
to best reproduce Cmax (ATS) or t1/2 (ATS-L and 2OH-ATS-L) at 40 mg dose level. 
ATS model predicted Vss is, as in the PBPK model developed by Duan et al., quite 
lower (0.69 L/kg) than those previously published [51,58], so caution must be 
paid to the values of the model parameters optimised with observed PK 
parameters largely influenced by the volume of distribution. ATS-L exhibits a 
higher Vss (18.182 L/kg), which is in line with its higher lipophilicity and neutral 
acid-base properties. Permeability-limited liver model is only used for ATS and 
2OH-ATS, which incorporates a hepatic OATP1B3-mediated active uptake process 
optimized through a scaling factor. Biliary excretion, as well as sinusoidal efflux, 
of 2OH-ATS is added to the model with the corresponding optimized intrinsic 
clearance values. Model performance was finally verified comparing simulated PK 
parameters AUC, Cmax and Tmax with those obtained in clinical DDI studies with 
itraconazole and the GLP1RA dulaglutide. 

The model developed by Morse et al. fills an important gap of the above PBPK 
models of ATS as it accounts for a non-enzymatic lactonization process due to the 
low pH of the stomach that takes place pre-systemically and is responsible of the 
rapid appearance of ATS-L in plasma (Tmax range 2-3 h). In this line, a potential 
novel DDI with proton pump inhibitors (PPI) has been robustly identified and 
associated with increased plasma concentrations of ATS, 2OH-ATS, ATS-L and 
2OH-ATS-L [61]. Despite some PPI like omeprazole and lansoprazole are known 
CYP substrates and enzyme inhibitors, the increase in the exposure was explained 
through an increase in ATS bioavailability secondary to an increase in ATS 
solubility and a decrease in the pre-systemic lactonization due to the PPI-induced 
rise in gastric pH. 
 

DISCUSSION 

The development of PBPK models, commonly known as “bottom-up approach”, 
largely rely on previously gather in vitro and/or in vivo information to build-up the 
mechanisms able to reproduce the experimental evidence from clinical trials. 
Minimal parameter estimation/optimization is, therefore, required to characterize 
the time-course of the analyte(s). In this sense, adequate external experimental 
evidence is needed in order to properly assess the mechanisms implemented in 
order to use the PBPK as a predictive tool for dose optimization in patients and/or 
special sub-groups of populations. The published PBPK models of ATS were 
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developed using an ATS dose range between 10 and 40 mg, but no information 
was incorporated into the models of the highest dose strength (80 mg). 
Additionally, clinical trials incorporated mainly healthy volunteers (n= 434) with 
no information regarding patients with hypercholesterolemia. Moreover, most of 
the clinical trials were conducted after single dose regimens (n= 17), whereas 
limited evidence was gathered after multiple dose regimens (n= 3). The multiple 
PK pathways affecting ATS could be partially influenced due to disease status and 
chronic administration of ATS. This limitation could impact the simulation-based 
dose selection in patients.  

The low solubility of ATS is a major drawback affecting its absorption, and 
consequently, its bioavailability. The lack of adequate reported information 
regarding the solubility profile of ATS-Ca represents a limitation in the 
development of mechanistic models of ATS dissolution throughout the GI tract. 
Available information on the solubility profile of ATS-Na [44] could be used as a 
provisional input during model development, but additional efforts should be 
performed to properly provide experimental evidence about ATS-Ca on this 
regard. Due to the multiple processes affecting ATS-Ca within the GI lumen 
(lactonization, hydrolysis, drug dissolution), a detailed characterization of its 
solubility would enhance the prediction of its bioavailability and, therefore, the 
evaluation of new oral formulations of ATS incorporating mechanisms improving 
the solubility of ATS-Ca.  

A relevant aspect that Li et al. incorporated into the PBPK model is the assumption 
that ATS lactonization might be a non-immediate process within the bloodstream, 
which was observed when OATP-mediated transporters inhibitors were co-
administered with ATS. Acyl-β-D-glucuronide is an intermediate compound during 
the lactonization process, and it is a substrate of OATP transporters for hepatic 
uptake, which is inhibited in the presence of compounds with higher affinity to 
OATP transporters (i.e. rifampicin and cyclosporine). The kinetic equilibrium in 
plasma is, therefore, displaced to the more lipophilic form (ATS-L), affecting the 
distribution into low-perfused tissues. On the other hand, the PBPK model 
developed by Morse et al. incorporates the alternative lactonization pathway that 
occurs at low pH values (stomach). This process explains the rapid appearance of 
ATS-L in plasma due to pre-systemic lactonization. The higher permeability of 
ATS-L because of its higher lipophilicity compared to ATS enables to shorter Tmax 
in plasma. In this sense, the incorporation of the lactonization process (UGT-
mediated) is clearly required to properly characterize the disposition of ATS and 
ATS-L in plasma and other tissues.  

Simcyp simulator represents one of the most used PBPK software currently 
available with scientific [85-87] and regulatory [60,88-90] agreement for the 
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establishment of quantitative PBPK frameworks allowing dose selection in special 
sub-groups of populations, DDI and transporter evaluation and biopharmaceutical 
specifications characterization. Nevertheless, the development of a PBPK model 
able to simultaneously predict the PK profile of the 6 analytes (ATS, 2OH-ATS, 
4OH-ATS, ATS-L, 2OH-ATS-L, and 4OH-ATS-L) with the current version of Simcyp 
(v20) represents a major challenge, since it only allows to consider simultaneously 
one parent drug (substrate), two primary metabolites and a secondary metabolite. 
Considering the lactonization/hydrolysis equilibrium and the parallel formation of 
metabolites from ATS and ATS-L, the prediction ability of the PBPK model is clearly 
affected when more than 4 analytes are considered. 

To the best of our knowledge, these are the four PBPK models of ATS published 
(Table 2). All of them consider ATS as a lipophilic monoprotic acid of 559 g/mol 
with a pKa of about 4.4. The ADAM model is used to characterize the absorption 
of the drug and predict the human permeability from Caco-2 cells experiments. 
Full PBPK distribution models for ATS are used in all of them, being the Rodgers 
and Rowland method (#2) the most used to predict Vss and Kp,t. This selection 
agrees with the physicochemical properties of ATS because of its degree of 
ionization at physiological pH (pKa ≈ 4.4), as this method can deal with the 
different fractions of the drug (ionized or non-ionized). Metabolism is modelled 
through enzyme kinetics in all cases and mainly by means of CYP3A4. However, 
some models use another CYP isoform (CYP2C8 in Zhang. 2015) or an unspecific 
metabolism through HLM (Morse et al. 2019). Lactonization is modelled 
enzymatically through UGT1A1 and UGT1A3 in the models of Zhang and Li et al., 
while it is considered to occur non-enzymatically in the stomach in Morse et al. As 
both processes have been demonstrated to contribute to ATS-L formation, any 
PBPK model of ATS should consider them to best reproduce the PK of ATS. 
Regarding to transport processes, it must be noted that all the models use the 
Permeability Limited Liver Model to account for active transport added to the 
passive diffusion through the cell membranes of the hepatocytes. OATP1A1 is 
incorporated in all the models, while OATP1B3 is only considered in the models of 
Li et al. and Morse et al. Efflux processes are implemented in the gut wall through 
P-gp and BCRP only in the model of Zhang and a canalicular efflux process 
mediated by BCRP is assessed only in the model of Duan et al. As stated 
previously, the role of P-gp [50] and BCRP [35] in the PK of ATS have been 
demonstrated in vivo so, the PBPK models of ATS should incorporate them to best 
characterize its absorption and enterohepatic recirculation. Renal excretion of ATS 
contributes to the overall elimination of the drug to a lesser extent so, its presence 
in PBPK models is not mandatory. For this reason, only 2 of the 4 models 
implemented it. However, as enterohepatic recirculation has been suggested (and 
demonstrated in pre-clinical species [43]), bile excretion is a route that could be 
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considered to best characterize this process as it occurs with the models of Duan 
et al. and Li et al. 

Table 2. Parameters of each physiologically based pharmacokinetic model of 
atorvastatin. 

Model parameter Zhang. 2015 Duan et al. 
2017 

Li et al. 2019 Morse et al. 
2019 

Physicochemical properties 
Molecular weight 
(g/mol) 

558.66 558.64 558.64 559.00 

logPo:w 5.7 4.07 4.434 5.39 
Compound type Monoprotic Acid Monoprotic 

Acid 
Monoprotic 
Acid 

Monoprotic Acid 

pKa 4.46 4.46 4.46 4.33 
B/P 0.61 0.61 0.61 0.55 
fu 0.051 0.024 0.050 0.022 

Absorption 
Model ADAM ADAM ADAM ADAM 
Peff,man (10-4 cm/s) 2.05 NR 1.05 4.49 
In vitro assay Caco-2 Caco-2 Caco-2 Caco-2 
pHapical:pHbasolateral 7.4:7.4 7.4:7.4 7.4:7.4 6.5:7.4 
Papp (10-6 cm/s) 8.6 7.9 4.9 28.4 
Refference compound Propranolol NR NR NR 
Papp refference (10-6 
cm/s) 

20 NR NR NR 

Distribution 
Model Full PBPK Full PBPK Full PBPK Full PBPK 
Method 1 and 2 2 2 2 
Vss (L/kg) 8.7 0.226 2.67 0.690 
Kp scalar (model) 2(1) and 4.6(2) NR NR 2 
Lipid Binding Scalar NR NR 4.15 NR 

Metabolism 
Model Enzyme kinetics Enzyme 

kinetics 
Enzyme 
kinetics 

Enzyme kinetics 

CYP3A4 
Metabolite 2OH-ATS   2OH-ATS 
Km (µM) 29.7  34.8 34.8 
Vmax (pmol/min/pmol 
isoform) 

29.3  1048 1048 

fu,mic  1  NR NR 
Scaling Factor 7 (ISEF)  NR NR 
Km (µM) 25.6  33 33 
Vmax (pmol/min/pmol 
isoform) 

29.8  1353 1353 

fumic  1  NR NR 
CLint (µL/min/pmol 
isoform) 

 8 NR NR 

Scaling Factor 7 (ISEF)    
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Table 2. cont. 
Model parameter Zhang. 2015 Duan et al. 

2017 
Li et al. 
2019 

Morse et al. 
2019 

CYP2C8 
Km (µM) 35.9    
Vmax (pmol/min/pmol 
isoform) 

0.29    

fu,mic  1    
Scaling Factor 4 (ISEF)    
UGT1A1 
Metabolite ATS-L  ATS-L  
Km (µM) 11  2  
Vmax (pmol/min/pmol 
isoform) 

72  2  

fu,mic  1  NR  
Scaling Factor 2 (ISEF)  NR  
UGT1A3 
Metabolite ATS-L  ATS-L  
Km (µM) 11  4  
Vmax (pmol/min/pmol 
isoform) 

72  38  

fu,mic  1  NR  
Scaling Factor 2 (ISEF)  NR  
CLint (µL/min/mg protein)    6.2 
Other HLM 
CLint (µL/min/mg protein)    65 

Transport 
Intestine 
P-gp  Efflux (gut wall)    
Km (µM) 115    
Jmax (pmol/cm2/min) 141    
Scaling Factor 1 (RAF/REF)    
BCRP Efflux (gut wall)    
CLint,T (µL/min) 6    
Liver 
CLPD (mL/min/106 cells) 0.023 0.017 0.023 0.013 
fu,IW 0.324    
fu,EW 0.038    
OATP1B1 Uptake 

(sinusoidal) 
   

CLint (µL/min/106 cells)   1000 31.5 
CLint,T (µL/min) 55    
Km (µM)  0.77   
Jmax (pmol/min/106 cells)  277.2   
Scaling Factor  10 (RAF/REF) 4  30 
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Table 2. cont. 
Model parameter Zhang. 2015 Duan et 

al. 2017 
Li et al. 2019 Morse et al. 

2019 
OATP1B3 Uptake 

(sinusoidal) 
   

CLint (µL/min/106 

cells) 
  900 31.5 

Scaling Factor    30 
BCRP Efflux 

(canalicular) 
   

CLint,T (µL/min/106 
cells) 

 1.4   

Excretion 
CLR (L/h) 0.47 0.375   
CLint,bile (µL/min/106 
cells) 

  10  

Green: data from literature; Blue: in situ determined value; Yellow: predicted value; Orange: optimized 
value according to observations; Red: assumed value; B/P: blood-to-plasma ratio; fu: fraction unbound 
in plasma; ADAM: Advanced Dissolution, Absorption and Metabolism model; Peff,man: human effective 
permeability; NR: not reported; Papp: apparent permeability; Method 1: Poulin and Theil method [91]; 
Method 2: Rodgers and Rowland method [55,56]; Vss: volume of distribution at steady state; Km: 
Michaelis-Menten constant; Vmax: maximum rate of the enzymatic process; fu,mic: fraction unbound in the 
microsomal incubation; CLint: intrinsic clearance; HLM: human liver microsomes; P-gp: P-glycoprotein; 
Jmax: maximum transport rate of the transporter; BCRP: breast cancer resistance protein; CLint,T: total 
intrinsic clearance of the transporters; CLPD: passive diffusion clearance through cell membranes; fu,IW: 
fraction unbound in the intracellular water; fu,EW: fraction unbound in the extracellular water; CLR: renal 
clearance; CLint,bile: biliary intrinsic clearance. 

According to Table 2, there is no consensus between models regarding 
physicochemical parameters such as logPo:w (ranging from 4.07 to 5.7) and fu 
(values from 2.2 to 5.1%). As a result, different Vss values raise, ranging from 
0.226 to 8.7 L/kg, despite using the same method for its prediction. Therefore, 
both parameters (logPo:w and fu) influence the Vss obtained. However, in the case 
of Vss predicted by the model of Li et al. and Morse et al., the Lipid Binding Scalar 
overweights the logPo:w and enhances the distribution of ATS. B/P is homogeneous 
in all models with the exception of that of Morse et al., in which a default value of 
0.55 and no distribution into red blood cells is assumed. Peff,man is another 
parameter highly variable between models depending on the value of the Papp 
introduced in the platform and the conditions of the in vitro experiment. 

P-gp activity is only assessed in the model of Zhang, suggesting little confidence 
on the relevance of this transporter in ATS PK. Several studies with in vitro models 
have demonstrated that ATS is an inhibitor of P-gp and may be a substrate of this 
transporter [92]. Additionally, concomitant administration of 80 mg of ATS with 
digoxin increased digoxin AUC0-24 and Cmax by 15% and 20%, respectively [93]. 
As neither digoxin Tmax nor renal clearance were affected, it has been suggested 
that the mechanism of this DDI is the inhibition of the P-gp mediated intestinal 
efflux of digoxin by ATS. So, modelling of P-gp-mediated transport processes in 
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ATS PBPK is important to better characterize potential DDIs at this level not only 
as a perpetrator, but also as a victim drug, to avoid high exposures that could 
lead to the development of adverse events like myopathies. The model of Duan 
et al. confirms that ATS hepatic uptake by members of the OATP family is the rate 
limiting step in ATS elimination, as previously described. However, lactonization 
is not implemented in this model, which constitutes an important limitation to 
better characterize ATS metabolism.  

The relative contribution of the hepatic uptake transporters OATP1B1 and 
OATP1B3 is assigned almost equally (53% and 47%, respectively) in the model of 
Li et al. after estimating total intrinsic uptake clearance instead of using enzymatic 
or intrinsic clearance values determined in vitro as Zhang, Duan et al. and Morse 
et al. did. Because protein expression levels and Vmax of these transporters are 
quite different, this statement should be managed with caution when developing 
a PBPK model of ATS. 

CONCLUSION 

The development of solid physiologically based pharmacokinetic models clearly 
enhances the decision-making process, helping to understand and infer how PK 
processes may affect the optimal posology in the target population. Several 
aspects have been highlighted as critical elements in the complex 
pharmacokinetics of atorvastatin that could compromise its efficacy/safety in 
patients with hypercholesterolemia: (i) the integration of the lactonization 
process, which occurs within the GI lumen and plasma and represents a major 
kinetic process that affects the formation of additional active moieties (2OH-ATS 
and 4OH-ATS); (ii) the contribution of P-gp has been undermined in most of the 
PBPK models developed so far, limiting the evaluation of DDI effects; (iii) the 
varying effect of ATS-Ca solubility within the GI tract; (iv) the inclusion of 
additional experimental evidence in patients and multiple regimen schedules; and, 
(v) the simultaneous management of multiple analytes within the PBPK platforms 
in order to optimize the benefit/risk balance of ATS. 
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1. INTRODUCTION 

Atorvastatin (ATS) is one of the most worldwide prescribed 3-hydroxy-3-
methylglutaryl-coenzyme A (HMG-CoA) reductase reversible inhibitors for the 
treatment of hypercholesterolemia and lowering the cardiovascular risk [1]. ATS 
chemical characteristics [2], as well as pharmacological [3-5], pharmacokinetics 
(PK) [6,7], and safety and tolerability [8,9], have been extensively reviewed in 
the last years. Most common side effects are statin-induced myopathies (SIM), 
which constitute a heterogeneous clinical manifestation such as muscle weakness, 
muscle pain (myalgia), muscle tenderness, cramps, and arthralgia, with or without 
an elevation in serum creatine kinase (CK). The most severe form is 
rhabdomyolysis, a fatal and life-threating adverse effect that occurs in a very low 
percentage of treated patients (0.1–8.4/100,000 patients-year) [10]. It has been 
reported that patients with SIM have increased levels of atorvastatin lactone (ATS-
L) (p < 0.01) and a 2.3-fold prolonged ATS half-life (t1/2) (p < 0.01), when 
compared with patients without muscle related side effects [8]. 

Physiologically-based pharmacokinetic (PBPK) models integrate experimental (in 
vitro and/or in vivo) information together with a scientifically well-founded 
mechanistic framework of physiological and biological processes using implicit and 
explicit assumptions by incorporating drug-, system- and trial design-related 
parameters [11]. The intended use of PBPK models range from first-in-humans 
(FIH) dose selection and assessment of drug-drug interaction (DDI) to dose 
extrapolation in special populations (paediatrics, pregnancy, obese, ethnicities, 
etc.), formulation-related, drug product quality attributes, and food effects [12-
14]. More recently, the evaluation of drug-gene interactions (DGIs) and drug-
drug-gene interactions (DDGIs) has become a new research field and utility of 
PBPK models [15]. The exponential growth of PBPK models could be related to its 
mechanistic conceptualization, the prediction of drug concentrations in multiple 
unobserved physiological compartments and the more reliable implications of the 
forward projections of what-if or experimentally untested scenarios [11,16,17], 
which has led to a rapid adoption for drug development applications [13,18]  and 
its recognition by the FDA [19,20] and EMA [21] regulatory authorities.  

Recently, several PBPK models of ATS have been published, assessing the PK 
properties of ATS [22] and its main circulating metabolites 2-hydroxy-atorvastatin 
(2OH-ATS) and ATS-L [23]. Morse et al. proposed an innovative strategy 
developing a two-file PBPK model that included ATS and 2OH-ATS (model 1) and 
ATS-L, ATS, 2-hydrosy-atorvastatin lactone (2OH-ATS-L) and 2OH-ATS (model 2) 
[24] to account for the time-course of parent and metabolites. However, none of 
these PBPK models have assessed both ATS-L metabolites (i.e., 2OH-ATS-L and 
4-hydroxy-atorvastatin lactone (4OH-ATS-L)) nor considered the administration 
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of a solid oral dosage form to reproduce its solubility-limited absorption, clinical 
trial design and real-life administration schedules. 

The aims of this work are (i) to develop a full PBPK model for ATS and its 
metabolites in both, open acid and lactone forms able to predict the observed 
exposure from Phase I clinical trials and (ii) to quantitatively assess the impact of 
polymorphisms in SLCO1B1 on ATS exposure. 
 
2. MATERIALS AND METHODS 

The ATS PBPK model was developed in the platform Simcyp® Simulator V19 [25] 
following a “bottom-up” approach and the “predict, confirm, learn and refine” 
rationale [13]. In vitro and in vivo properties of ATS and its metabolites together 
with the ADME properties of each compound have been extensively characterized 
in the literature [7], which serve as a scientific basis for the development of the 
PBPK model. The modelling workflow implemented in the current analysis is 
depicted in Figure 1. Firstly, a PBPK model of ATS was developed and its prediction 
ability was assessed with clinical observations after single oral dose administration 
of 20 mg ATS [26]. Secondly, we developed the ATS-L, 2OH-ATS, 2OH-ATS-L and 
4OH-ATS-L model files sequentially and verified model performance globally in 
each step with observed clinical data by Riedmaier et al [26]. As this observed 
dataset for model development did not include the metabolite 4-hydroxy 
atorvastatin (4OH-ATS), this compound was not further assessed. A diagram 
including the description of the metabolic pathways of ATS, ATS-L and their 
pharmacologically active metabolites can be found elsewhere [7]. Simulations 
were conducted using the healthy volunteer population file available in Simcyp® 
Simulator V19. Model performance was assessed by the prediction error 
(Parameterpredicted/Parameterobserved) in exposure PK parameters (AUC and Cmax). 
Internal model validation was conducted with clinical data from Phase I studies at 
40 and 80 mg dose level after single oral dose administration of the calcium salt 
form of ATS (ATS-Ca) and external validation was performed using steady-state 
data after one week of daily administrations of 10 mg ATS-Ca in healthy 
volunteers. The model was also validated through the simulation of clinically 
relevant DDIs with known cytochrome P450 (CYP) and organic anion-transporting 
polypeptides (OATPs) inhibitors that have been observed in vivo. Finally, the full 
PBPK model was used to investigate the different ATS exposure regarding the 
activity of OATP1B1 to quantitatively assess the drug-gene interaction (DGI) 
between SLCO1B1 polymorphisms and ATS. The development of each model file 
as well as their validation and application processes are described in more detail 
below. 
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Figure 1. Workflow for the development of the atorvastatin full PBPK model. HV: healthy volunteers; 
SD: single dose; MD: multiple dose; DDI: drug-drug interaction; DGI: drug-gene interaction. 

2.1. Development of ATS model file 

The modelling parameters of the ATS model file are listed in Table 1. The model 
file represents the immediate release solid oral dosage form of ATS-Ca, which is 
the actual salt included in the commercially available medicines. In vitro ATS-Ca 
dissolution profiles at pH 1 and 6.8 were incorporated to better account for 
dissolution in the stomach and small intestine, respectively. The Advanced 
Dissolution, Absorption and Metabolism (ADAM) model already available in 
Simcyp® was used and the effective permeability in humans (Peff,man = 2.046·10-

4 cm/s) was predicted from the apparent permeability (Papp) determined in Caco-
2 cells [27]. Absorption was restricted to the upper part of the gastrointestinal 
(GI) tract [28], with an extremely low absorption rate at the colon. Efflux 
processes to the intestinal lumen through breast cancer resistant protein (BCRP) 
and P-glycoprotein (P-gp), both expressed at the apical side of enterocytes, were 
also included. A full PBPK distribution model was selected to better assess ATS 
disposition in vivo. Additionally, the permeability limited liver model was used to 
account for active uptake through OATPs in hepatocytes, which is known to be the 
rate determining step for ATS elimination [29]. Sodium-taurocholate transporting 
polypeptide (NTCP) activity was not included as its contribution to the overall 
active uptake of ATS has been reported to be negligible when compared to that 
of OATPs [30]. 

Elimination was assessed enzymatically, involving different CYPs- and UDP-
glucuronosyl transferases (UGT)-mediated pathways. CYP-mediated metabolic 
reactions of ATS included hydroxylation in position 2 (ortho-hydroxylation) and 4 
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(para-hydroxylation). However, only 2OH-ATS was tracked as a metabolite as the 
model development dataset did not contain information about 4OH-ATS. So, 
development of the 4OH-ATS compound file was no further performed. Inter 
System Extrapolation Factors (ISEFs) for CYPs pathways were set depending on 
the in vitro system where the determinations were performed, with no parameter 
optimisation at this point and, thus, increasing model identifiability. Recombinant-
expressed human UGT (rUGT) scalars were kept with default values with the 
exception of UGT1A3 in the liver, which was diminished by 50% to best reproduce 
observed ATS-L AUC0-inf at 20 mg. Excretion was incorporated into the model 
mainly through the bile with an optimized biliary clearance (CLbile) of 50 
µL/min/106 cells to reproduce observed AUC0-inf at 20 mg. Enterohepatic 
recirculation was allowed with all the biliary excreted ATS being available for 
reabsorption, as the extent of ATS absorption from the bile remains unknown 
[31]. Renal excretion contributed minimally to the systemic clearance with a 2% 
of the reference value of 37.5 L/h [6]. 

Table 1. Atorvastatin model file parameters. 
Parameter Value Source 

Physicochemical Properties 
MW (g/mol) 558.64 Drugbank 
Compound type Monoprotic Acid  
logP 5.39 Drugbank 
pKa 4.33 Drugbank 

System-Drug Parameters 
fu 0.022  [24] 
B/P 0.61  [29] 

Absorption 
Model ADAM  
Papp (Caco-2) (10-6 cm/s) 8.6  [32] 
Reference compound  Propranolol  [32] 
Ref. Comp. Papp (10-6 cm/s) 20.0  [32] 
Peff,man 2.046 Simcyp predicted 
Formulation Immediate Release  
Dissolution Type Dissolution profile  
Absorption Scalars SI Regional  
Absorption Scalar Duodenum 1.000 Default 
Absorption Scalar Jejunum I 1.000 Default 
Absorption Scalar Jejunum II 1.000 Default 
Absorption Scalar Ileum I 1.000 Default 
Absorption Scalar Ileum II 1.000 Default 
Absorption Scalar Ileum III 1.000 Default 
Absorption Scalar Ileum IV 1.000 Default 
Absorption Scalar Colon 0.001 Assumed 

Distribution 
Model Full PBPK  
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Table 1. cont. 
Parameter Value Source 
Vd,ss (L/kg)  2.945 Simcyp Predicted 
Prediction Method 2 (Rodgers and Rowland)  
Kp scalar 1.00 Default 
Lipid Binding Scalar 10.476 Simcyp Predicted 

Transport 
Intestine (efflux)   
P-gp Jmax (pmol/min) 141.00  [33] 
P-gp Km (µM) 115.00  [33] 
System Caco-2  [33] 
RAF/REF 0.99 Default 
BCRP CLint (µL/min) 6.00  [22] 
Liver (passive difussion) 
(mL/min/106 cells) 

0.013 Simcyp Predicted 

Drug concentration available Unbound and unionised  
Liver (active uptake; 
sinusoidal) 

  

OATP1B1 CLint (µL/min/106 
cells) 

1011.00 Optimized as explained in 
Section 2.1 

OATP1B3 CLint              
(µL/min/106 cells) 

718.00 Optimized as explained in 
Section 2.1 

OATP2B7 CLint              
(µL/min/106 cells)  

171.00 Optimized as explained in 
Section 2.1 

Metabolism 
CYP-mediated pathways (Recombinant) 
CYP3A4 Vmax 
(pmol/min/pmol) (ortho-
hydroxylation) 

29.30  [34] 

CYP3A4 Km (µM) (ortho-
hydroxylation) 

29.70  [34] 

System Baculovirus  
fu,mic 1.00 Default 
ISEF 0.98 Default 
CYP3A4 Vmax 

(pmol/min/pmol) (para-
hydroxylation) 

29.80  [34] 

CYP3A4 Km (µM) (para-
hydroxylation) 

25.60  [34] 

System Baculovirus  
fu,mic 1.00 Default 
ISEF 0.98 Default 
CYP3A5 Vmax 
(pmol/min/pmol) (ortho-
hydroxylation) 

7.20  [35] 

CYP3A5 Km (µM) (ortho-
hydroxylation) 

54.90  [35] 

System BD SUP  
fu,mic 1.00 Default 
ISEF 0.24 Default 
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Table 1. cont. 
Parameter Value Source 
CYP3A5 Vmax 
(pmol/min/pmol) (para-
hydroxylation) 

10.40  [35] 

CYP3A5 Km (µM) (para-
hydroxylation) 

42.60  [35] 

System BD SUP  
fu,mic 1.00 Default 
ISEF 0.24 Default 
CYP2C8 Vmax 
(pmol/min/pmol) (para-
hydroxylation) 

0.29  [34] 

CYP2C8 Km (µM) (para-
hydroxylation) 

35.90  [34] 

System Baculovirus  
fu,mic 1.00 Default 
ISEF 0.98 Default 
UGT-mediated pathways (Recombinant) 
UGT1A1 Vmax (pmol/min/mg 
protein) 

120.00  [36] 

UGT1A1 Km (µM) 2.00  [36] 
rUGT Scalars 
(Liver:Intestine:Renal) 

1:1:1 Default 

UGT1A3 Vmax (pmol/min/mg 
protein) 

2280.00  [36] 

UGT1A1 Km (µM) 4.00  [36] 
rUGT Scalars 
(Liver:Intestine:Renal) 

0.5:1:1 Optimized as explained in 
Section 2.1 

UGT2B7 Vmax (pmol/min/mg 
protein) 

222.00  [36] 

UGT2B7 Km (µM) 20.00  [36] 
rUGT Scalars 
(Liver:Intestine:Renal) 

1:1:1 Default 

Excretion 
CLbiliary (µL/min/106 cells) 50.00 Optimized as explained in 

Section 2.1 
CLR (L/h) 0.75  [6] 

2.2. Development of ATS-L model file 

The ATS-L model file consisted of a refinement of those previously published by 
Morse et al [24] and Li et al [23]. Physicochemical properties were derived from 
Morse’s model. Enzymatic lactonization via UGTs was implemented within the 
enterocyte to account for the formation of ATS-L from ATS. The distribution 
process was modelled with a full PBPK model, setting the Kp scalar to 5 to best 
predict the reported Vd,ss value (141.3 L/kg) [23]. ATS-L elimination was assessed 
enzymatically through CYP3A4 to form the corresponding hydroxylated forms, i.e. 
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2OH-ATS-L and 4OH-ATS-L. Additionally, lactone hydrolysis in plasma was 
implemented optimizing the half-life of this process to best predict ATS-L AUC0-inf 
at 20 mg. The final value of 3 min of this process agrees with previously published 
values [24]. Renal excretion of ATS-L was not implemented because of its lower 
hydrophilicity when comparing to ATS, which already has a minimal renal 
clearance. Final model parameters are listed in Table 2. 

Table 2. Atorvastatin-lactone model file parameters. 
Parameter Value Source 

Physicochemical Properties 
MW (g/mol) 540.62 Drugbank 
Compound type Neutral  
logP 6.05  [24] 

System-Drug Parameters 
fu 0.012  [24] 
B/P 1.00  [24] 

Distribution 
Model Full PBPK  
Vd,ss (L/kg)  129.90 Simcyp Predicted 
Prediction Method 2 (Rodgers and Rowland)  
Kp scalar 5.00 Optimized as explained in 

Section 2.2 
Lipid Binding Scalar 0.029 Simcyp Predicted 

Metabolism 
CYP-mediated pathways (HLM) 
CYP3A4 Vmax (pmol/min/mg 
protein) (ortho-
hydroxylation) 

1397.00  [34] 

CYP3A4 Km (µM) (ortho-
hydroxylation) 

1.60  [34] 

fu,mic 1.00 Default 
CYP3A4 Vmax (pmol/min/mg 
protein) (para-
hydroxylation) 

3229.00  [34] 

CYP3A4 Km (µM) (para-
hydroxylation) 

1.80  [34] 

fu,mic 1.00 Default 
ES t1/2 (min) 3.00 Optimized as explained in 

Section 2.2 

 
2.3. Development of 2OH-ATS model file 

Model parameterisation of 2OH-ATS is shown in Table 3. Regarding red blood cells 
and plasma protein binding, we assumed the same values than those assigned to 
ATS, as no direct determination of these parameters has been found in the 
literature. The distribution model selected was a minimal PBPK model with a single 
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adjusting compartment (SAC) volume (Vsac) of 0.0032 L/kg. CYP3A4-mediated 
metabolism of 2OH-ATS was implemented, assuming a CLint of 3.22 µL/min/pmol 
and an unspecific HLM CLint of 663 µL/min/mg protein [27]. Additionally, biliary 
and renal excretion of this metabolite was incorporated, assuming equal CLbile and 
CLR as for ATS, since preclinical information of this metabolite was available [31] 
and renal excretion is a possible elimination pathway due to its higher 
hydrophilicity compared to ATS. 

Table 3. 2-hydroxy-atorvastatin model file parameters. 
Parameter Value Source 

Physicochemical Properties 
MW (g/mol) 574.64  [27] 
Compound type Monoprotic Acid  
pKa 4.33  [27] 
logP 5.080  [27] 

System-Drug Parameters 
fu 0.022 Assumed 
B/P 0.55 Assumed 

Distribution 
Model Minimal PBPK  
Vsac (L/kg) 0.0032  [27] 
SAC kin (1/h) 0.0016  [27] 
SAC kout (1/h) 2.78  [27] 
Vd,ss (L/kg)  4.036 Simcyp Predicted 
Prediction Method Method 1 (Poulin)  
Kp scalar 1.00 Default 

Metabolism 
CYP-mediated pathways (Recombinant) 
CYP3A4 CLint (mL/min/pmol) 3.22  [27] 
fu,mic 1.00 Default 
Additional HLM CLint (µL/min/mg protein) 663.00  [27] 

Excretion 
CLbiliary (µL/min/106 cells) 50.00 Assumed 
CLR (L/h) 0.75 Assumed 

 
2.4. Development of 2OH-ATS-L model file 

The physicochemical properties of 2OH-ATS-L were adapted to the values 
previously published by Morse et al [24]. A full PBPK model for distribution was 
selected and a Vd,ss of 52 L/kg was predicted when setting the Kp scalar to 2, to 
best reproduce 2OH-ATS-L Cmax at 20 mg dose level. As no CYP-mediated 
metabolism has been determined for this metabolite, elimination was defined 
through plasma estherases (assuming equal half-life as for ATS-L) and biliary 
clearance. 2OH-ATS-glucuronide conjugate is an intermediate reaction product of 
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lactonization as spontaneous cyclization occurs after elimination of the glucuronic 
moiety [7] and it has been determined in dog bile after oral administration of ATS 
[31]. For that reason, a CLbile of 10 µL/min/106 cells was optimized to best predict 
its AUC0-inf at 20 mg dose level. Following the same rationale as with the 
development of the ATS-L file, no renal clearance was considered for this 
metabolite. 2OH-ATS-L model file parameters are listed in Table 4.  

Table 4. 2-hydroxy-atorvastatin-lactone model file parameters. 
Parameter Value Source 

Physicochemical Properties 
MW (g/mol) 556.64 Drugbank 
Compound type Neutral  
logP 6.05 Assumed 

System-Drug Parameters 
fu 0.012 Assumed 
B/P 1.00 Assumed 

Distribution 
Model Full PBPK  
Vd,ss (L/kg)  52.002 Simcyp Predicted 
Prediction Method 2 (Rodgers and Rowland)  
Kp scalar 2.00 Optimized as explained in Section 2.4 
Lipid Binding Scalar 0.029 Simcyp Predicted 

Metabolism 
ES t1/2 (min) 3.00 Assumed 

Excretion 
CLbiliary (µL/min/106 cells) 10.00 Optimized as explained in Section 2.4 

2.5. Development of 4OH-ATS-L model file 

The 4OH-ATS-L model file was developed from 2OH-ATS-L, assuming the same 
physicochemical properties, plasma protein and red blood cell binding. A minimal 
PBPK distribution model was selected with Vsac of 10 L/kg and SAC 
intercompartment clearance (Q) of 1 L/h to best fit the observed data at 20 mg 
dose level. 4OH-ATS is the less abundant metabolite of ATS and it is mainly formed 
after ATS-L para-hydroxylation through CYP3A4 and subsequent hydrolysis of the 
hydroxylated lactone. The rate of para-hydroxylation of ATS-L is faster than the 
ortho-hydroxylation of ATS-L [7], but systemic exposure to 2OH-ATS is higher. 
This prompted us to consider a higher elimination rate of 4OH-ATS-L rather than 
a deeper distribution of the metabolite to other tissues/organs. In this regard, an 
optimized unspecific HLM CLint of 4000 µL/min/mg protein and a plasma esterases-
mediated hydrolysis t1/2 of 2 min reproduced the observed AUC0-inf at 20 mg dose 
level. Equal biliary clearance as for 2OH-ATS-L and no renal excretion were 
considered. Parameterisation of 4OH-ATS-L is listed in Table 5. 
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Table 5. 4-hydroxy-atorvastatin-lactone model file parameters. 
Parameter Value Source 

Physicochemical Properties 
MW (g/mol) 556.64 Drugbank 
Compound type Neutral  
logP 6.05 Assumed 

System-Drug Parameters 
fu 0.012 Assumed 
B/P 1.00 Assumed 

Distribution 
Model Minimal PBPK  
Vsac (L/kg) 10 Optimized as explained in 

Section 2.5 
SAC kin (1/h) 0.0003 Optimized as explained in 

Section 2.5 
SAC kout (1/h) 0.001 Optimized as explained in 

Section 2.5 
Vd,ss (L/kg)  52.002 Simcyp Predicted 
Prediction Method 2 (Rodgers and Rowland)  
Kp scalar 2.00 Assumed 
Lipid Binding Scalar 0.029 Simcyp Predicted 

Metabolism 
ES t1/2 (min) 2.00 Optimized as explained in 

Section 2.5 
Additional HLM CLint 
(µL/min/mg protein) 

4000.00 Optimized as explained in 
Section 2.5 

Excretion 
CLbiliary (µL/min/106 cells) 10.00 Assumed 

 
2.6. Verification of model performance 

Single oral dose administration of 20 mg of ATS-Ca to healthy volunteers was 
tested during model development to assess model accuracy in predicting AUC0-inf 
and Cmax for ATS, ATS-L, 2OH-ATS, 2OH-ATS-L and 4OH-ATS-L. Due to structural 
limitations of the Simcyp® Simulator, verification of hydroxylated forms of ATS-L 
(i.e. 2OH-ATS-L and 4OH-ATS-L) were performed independently (two separated, 
but structurally identical, simulations) as the PBPK platform could only work with 
one of them as secondary metabolites at a time. 

2.7. Internal validation 

Single oral dose administration of 40 and 80 mg of ATS-Ca to 500 healthy 
volunteers (20 trials of 25 individuals each) aged between 20 and 50 years old 
with a female proportion of 50% was tested to validate the PBPK model developed 
with clinical observations from Phase I studies. Prediction error in AUC0-48 and Cmax 
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was determined for ATS and 2OH-ATS, and simulated versus observed 
concentration-time profiles were graphically assessed. 
 
2.8. External validation 

2.8.1. Predicting the PK at steady state in healthy volunteers 

Multiple oral dose (q.d.) administrations during 1 week of 10 mg ATS-Ca to 18 
healthy volunteers aged between 30 and 60 years old with a female proportion of 
50% were performed to assess model predictions at steady state conditions. 
Prediction errors in AUClast and Cmax were computed and compared with clinical 
observations [37]. 

2.8.2. Predicting the outcome of DDI clinical trials 

To verify the ability of the PBPK model to predict clinically relevant DDIs, different 
simulations of administration of ATS-Ca with known CYP (itraconazole and 
clarithromycin) and OATP (rifampicin at a single dose) inhibitors were performed 
and compared with clinical observations. Itraconazole is a known CYP3A4 
inhibitor and both ATS and ATS-L are substrates of CYP3A4. The itraconazole 
model file already available in Simcyp® Simulator was directly used to perform 
the simulation in 50 healthy volunteers (5 trials of 10 individuals each). The trial 
design and subject characteristics were kept consistent with clinical observations 
reported by Kantola et al [38]. To assess the impact of ATS-Ca co-administered 
with clarithromycin (CYP3A4 inhibitor) a simulation of 65 healthy volunteers (5 
trials of 13 individuals each) was performed to reproduce clinical observations 
reported by Shin et al [39], taking the clarithromycin model file directly from the 
Simcyp® Simulator inhibitors library. Regarding OATP mediated DDI, a simulation 
of a single dose administration of rifampicin (OATP1B1, OATP1B3 and OATO2B1 
inhibitor) followed by a single dose of ATS-Ca was simulated in 55 healthy 
volunteers (5 trials of 11 individuals each), keeping the trial design as well as 
population characteristics consistent with the paper by Lau et al [40]. No 
optimisation of Ki values was performed to run the simulations. Prediction errors 
in PK exposure parameters, AUC and Cmax, in the presence and absence of the 
perpetrator (PKparamInh/PKparam) were computed.  

2.9. Application of the PBPK model to assess DGIs 

The PBPK model was ultimately applied to quantitatively evaluate the impact of 
OATP1B1 activity in ATS exposure, as it has been reported that the SLCO1B1 
genotype influences patients’ adherence to ATS therapy as well as increases the 
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risk of SIMs [41]. Since SLCO1B1 genotyping is not implemented in the Simcyp® 
Simulator V19, OATP1B1 phenotypes were considered. In this regard, we stratified 
the ATS exposure for poor (PT), extensive (ET), intermediate (IT) and ultra-rapid 
(UT) transporters, assuming that the SLCO1B1*5 variant represents a loss-of-
function allele that codifies a low OATP1B1 activity (i.e., PT). This analysis was 
performed through the simulation of a single oral dose administration of 40 mg of 
ATS-Ca to 500 individuals (20 trials of 25 individuals each) in the internal 
validation step. 

3. RESULTS 

Table 6 shows the exposure PK parameters for all the metabolites in both PBPK 
model development (20 mg dose) and validation (10, 40 and 80 mg dose) steps. 
Prediction error of AUC and Cmax of ATS, ATS-L, 2OH-ATS-L and 4OH-ATS-L fell 
within the 2-fold range in all cases. Simulated concentration-time profiles versus 
observations for ATS, ATS-L, 2OH-ATS-L and 4OH-ATS-L can be found in the 
Supplementary Material. Additionally, the model was able to properly describe 
ATS exposure at steady state conditions after the administration of 10 mg q.d. for 
one week. However, the exposure predictions for 2OH-ATS were lower than those 
observed after 20, 40 and 80 mg dose administration with mean fold errors of 0.6 
for AUC and 0.3 for Cmax. At steady state conditions, model accuracy in the 
prediction of 2OH-ATS Cmax increased up to 0.72, while maintaining the prediction 
error of 0.6 for AUC.  
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Table 6. Predicted and observed AUC and Cmax for ATS, ATS-L, 2OH-ATS, 2OH-
ATS-L and 4OH-ATS-L in each model development step. 

 Analyte Dose Regimen AUCobs AUCpred  PE Cmax,obs Cmax,pred PE 

M
o

d
el

 d
ev

el
o

p
m

en
t 

ATS 20 SD 26.3a 34.9b 1.33 6.2c 5.4d 0.87 

ATS-L 20 SD 21.9a 19.6b 0.89 1.5c 2.5d 1.67 

2OH-
ATS 20 SD 29.8a 17.1b 0.57 3.9c 1.3d 0.33 

2OH-
ATS-L 20 SD 34.1a 37.2b 1.01 2.4c 1.9d 0.79 

4OH-
ATS-L 20 SD 7.0a 10.1b 1.44 0.2c 0.2d 1.05 

In
te

rn
al

 
va

li
d

at
io

n
 

ATS 40 SD 50.0e 79.0e 1.58 14.0f 15.0f 1.07 

2OH-
ATS 40 SD 62.0e 35.0e 0.56 10.0f 3.0f 0.30 

ATS 80 SD 130.0e 157.0e 1.21 34.0f 29.0f 0.85 

2OH-
ATS 80 SD 157.0e 82.0e 0.52 27.0f 7.0f 0.26 

E
xt

er
n

al
 

va
li

d
at

io
n

 ATS 10 MD 26.0g 22.5g 0.86 3.5h 4.1h 1.17 

2OH-
ATS 10 MD 14.0g 9.0g 0.64 1.1h 0.8h 0.73 

Dose (mg); AUC (ng·h/mL); Cmax (ng/mL); PE: prediction error; a: AUC0-inf for the wild type *1/*1; b: 
AUC0-inf for a population representative; c: Cmax for the wild type *1/*1; d: Cmax for a population 
representative; e: AUC0-48 geometric mean value; f: Cmax geometric mean value; g: AUC0-24 for the las 
dose mean value; h: Cmax for the last dose mean value. 

 

Figure 2 shows the simulated mean, 5th and 95th percentiles profiles as well as 
observed data from Phase I clinical trials at 40 and 80 mg dose levels.  
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Figure 2. Plasma concentration-time profiles after the administration of ATS-Ca to healthy volunteers. 
Green line represents the median profile of all simulated individuals; red lines represent the 5th and 95th 
percentiles of the simulated individuals; circles represent observed data. The low limit of quantification 
of ATS was 0.5 ng/mL (orange dotted line). 

The ATS PBPK model was able to properly describe clinically relevant DDIs with 
both CYP3A4 and OATPs inhibitors. Table 7 summarizes the observed and 
predicted ATS and ATS-L AUC and Cmax ratios as well as the corresponding 
prediction error. According to these results, the mechanisms involved in the 
metabolic processes linked to CYP3A4 (perturbed by itraconazole and 
clarithromycin) are adequately characterized for both ATS and ATS-L, since the 
prediction errors are between 0.66 and 1.45. On the other hand, there is a slight 
underprediction of ATS exposure in the presence of OATP inhibitors (rifampicin), 
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although the results obtained are within the accepted range (0.61 and 0.79 for 
AUC and Cmax, respectively). This outcome demonstrates the validity of the role 
played by this transporter as an uptake carrier in the elimination of ATS with the 
current PBPK framework. Simulation details of the DDI trials in silico performed, 
PK profiles of ATS alone and in the presence of these perpetrators and changes in 
the fraction metabolised through CYP3A4 are reported in the Supplementary 
Material of this publication. 

Table 7. Predicted versus observed changes in AUC and Cmax of ATS and ATS-L 
after concomitant administration of different perpetrators of DDIs. 

Perpetrator/ 
Victim 

AUC ratio Cmax ratio 
Observed Predicted Ratio P/O Observed Predicted Ratio P/O 

Itraconazole 
ATS 3.31a 2.20a 0.66 1.2c 1.19c  0.99 
 3.11b 2.08b 0.67    
ATS-L 3.98a 3.84a 0.96 2.26c 2.72c 1.20 
 4.11b 3.85b 0.94    

Rifampicin 
ATS 7.25a 5.74a 0.79 10.46c 6.35c 0.61 

Clarithromycin 
ATS 3.08d 2.90d 0.94 2.16e 1.89e 0.88 
ATS-L 2.67d 3.86d 1.45 1.5e 2.04e 1.36 

a: for AUC0-inf mean values; b: for AUC0-72 mean values; c: for Cmax mean values; d: for AUC0-48 geometric 
mean values; e: for Cmax geometric mean values 

The impact of OATP1B1 activity on ATS CL, AUC and Cmax is shown in Table 8. The 
analysis revealed a statistically significant difference in ATS CL (p < 0.01), as PT 
have a 30% lower clearance than ET individuals. Consequently, ATS AUC and Cmax 
are increased by 40 and 33% (p < 0.05), respectively, in individuals carrying the 
SLCO1B1*5 allele. Figure 3A shows the CL distribution values regarding OATP1B1 
activity among the population simulated, showing that patients with lower CL than 
the CL threshold (414.67 L/h) estimated through a population PK analysis could 
be at higher risk of suffering muscle discomfort [1]. The clinical impact of OATP1B1 
phenotypes on exposure endpoints (AUC and Cmax) of ATS and ATS-L at 80 mg 
dose level is depicted in Figure 3B. The corresponding plots after single dose 
administration of 10, 20 and 40 mg ATS-Ca are provided in the Supplementary 
Material. 
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Table 8. Comparison of ATS exposure in extensive (ET) and poor (PT) 
transporters for OATP1B1 activity at 40 mg dose level. 

PK param\Phenotype ET (wild type) PT (SLCO1B1*5) Fold changea p-valueb 
AUC0-48 (ng·h /mL) 86.77 121.60 1.40 < 0.05 
Cmax (ng/mL) 15.68 20.86 1.33 < 0.05 
CL (L/h) 593.47 414.36 0.70 < 0.01 
N (%) 304 (60.8) 16 (3.2) - - 

a: fold change in AUC0-48, Cmax and CL was kept at 10, 20 and 80 mg dose levels; b: statistical significance 
in the differences was kept at 10, 20 and 80 mg dose levels. N: number of individuals with the 
corresponding phenotype. 
 
 

 
Figure 3. Clearance, AUC and Cmax distribution values regarding OATP1B1 phenotype in the simulated 
population. A: Clearance distribution regarding OATP1B1 phenotype. Red dashed line indicates the CL 
threshold of 414.67 L/h. The percentage of patients at risk of suffering muscle discomfort is indicated 
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above each box; B: ATS and ATS-L AUC (left plots) and Cmax (right plots) distribution values regarding 
OATP1B1 phenotype. Green boxes indicate patients with ATS CL above 414.67 L/h; red boxes indicate 
patients with ATS CL below 414.67 L/h; exposure shown for the 80 mg dose level. ET: Extensive 
transporter; IT: Intermediate transporter; PT: Poor transporter; UT: Ultra-rapid transporter. 

4. DISCUSSION 

The PBPK model here presented can describe within a 2-fold prediction error the 
exposure metrics, Cmax and AUC, of ATS and its metabolites ATS-L, 2OH-ATS-L 
and 4OH-ATS-L, after single dose administration of 20, 40 and 80 mg and multiple 
administrations of 10 mg of ATS-Ca once daily for one week. 

As AUC and Cmax of ATS increase more than proportionally in the dose range from 
0.5 to 80 mg/day [6], these results suggest good model performance, since AUC 
(1.33, 1.58 and 1.21) and Cmax (0.87, 1.07 and 0.85) prediction errors at 20, 40 
and 80 mg dose levels are randomly distributed within the accepted range (0.5-
2). 

The PBPK framework was able to characterize ATS-L observed data with prediction 
errors of 0.89 and 1.67 for AUC and Cmax, respectively. It has to be noted that 
lactonization has only been assessed enzymatically through UGTs. Pre-systemic 
lactonization due to the low pH in the stomach has not been incorporated into the 
model due to structural limitations of the Simcyp® Simulator, as only one 
formation pathway can work at a time. For this reason, we did not account for 
ATS-L absorption in ATS-L model file. Hydroxylated ATS-L metabolites (i.e., 2OH-
ATS-L and 4OH-ATS-L) were also well characterized by the model, with prediction 
errors of 1.01 and 1.44 for AUC and 0.79 and 1.05 for Cmax, respectively. As they 
are directly formed after CYP-mediated hydroxylation of ATS-L, these results 
suggest that considering enzymatic lactonization as the main, but not the only, 
pathway of ATS-L formation is a good approximation to global ATS PK. 

It had been previously suggested that the main formation pathway of 
hydroxylated metabolites of ATS (i.e., 2OH-ATS and 4OH-ATS) is the ATS 
lactonization, CYP-mediated hydroxylation and subsequent hydrolysis of the 
hydroxylated isomers of ATS-L [7]. Direct hydroxylation of ATS would run 
simultaneously to this metabolic route but playing a minor role in overall ATS 
elimination. In this sense, we directly used Vmax values for CYP3A4-, CYP3A5- and 
CYP2C8-mediated hydroxylation after adjustment with the corresponding ISEF 
regarding the in vitro system used. It is not surprising, therefore, that exposure 
to 2OH-ATS is not accurately predicted by our model, with AUC and Cmax prediction 
errors of 0.57 and 0.33, respectively, at 20 mg dose level. These results were also 
observed at higher dose levels in the same magnitude (see Table 6) and differed 
from those reported by Zhang et al [27]. However, it must be noted that these 



Chapter 4 

 

Page | 120 

authors increased CYP3A4 ISEF up to 7 and CYP2C8 ISEF up to 4 to reproduce the 
observed 2OH-ATS exposure. In our case, the PBPK model has not been 
optimized, and the validated ISEFs have been used directly for each CYP isoform. 

Successful external validation of the PBPK model with observed data after daily 
administration of 10 mg ATS-Ca for one week was achieved, with ATS prediction 
errors of 0.87 and 1.17 for AUC and Cmax, respectively. To the best of our 
knowledge, this is the first time that an ATS PBPK model can predict ATS exposure 
at steady state conditions, thus suggesting good model parameterization and 
performance. For 2OH-ATS, the PBPK model adequately predicted the exposure 
in the external validation step, with prediction errors for AUC and Cmax of 0.64 and 
0.72, respectively. The prediction error in AUC at 10 mg after a multiple dose 
regimen (0.64) is close to the prediction errors obtained after single dose regimen 
at 20 (0.57), 40 (0.56), and 80 mg (0.52), but the Cmax prediction after 10 mg 
ATS daily improved (0.73) compared to single dose regimens (0.33, 0.30, and 
0.26), which may be due to a combination of factors: (i) the less sensitivity of 
Cmax steady-state observations to detect differences in the absorption process, 
and (ii) the lower amount of ATS within the enterocyte that favours linear 
conditions more than at higher dose levels, increasing the lactonization process 
over CYP-mediated hydroxylation, thus leading to lower Cmax levels of 2OH-ATS. 

As previously mentioned, ATS is a substrate CYP450 [31,35] and special care 
should be taken during the concomitant administration of substrates and/or 
inhibitors of this metabolic pathway [42]. Additionally, ATS is also a substrate of 
the OATPs family [30] and P-gp [33]. In this regard, many efforts had been made 
to assess the impact of concomitant medications on ATS exposure as a 
consequence of DDI at metabolic [38,43-45] and/or transporter levels [46-48]. 
Overall, the model can also predict increases in both, ATS and ATS-L exposures, 
when co-administered with CYP or OATP inhibitors, thus increasing its 
performance. Predicted ratios when co-administering ATS with itraconazole or 
clarithromycin (CYP3A4 inhibitors) suggest that increases in ATS exposure mainly 
originated from the plasma hydrolysis of the increased levels of circulating ATS-L 
due to the metabolism inhibition caused by the DDI. This back-conversion to the 
parent drug has been recommended when modelling ATS [7] and is consistent 
with the stability of the lactone in plasma [49]. 

It has been reported that ATS intrinsic uptake clearance is 1900 mL/min/106 cells 
[23] and that the relative contribution to overall uptake clearance is OATP1B1 
(52.5%) > OATP1B3 (35%) >> OATP2B1 (8.75%) > NTCP (3.75%) [47]. 
However, NTCP contribution was negligible when compared to those OATPs. 
Consequently, OATPs relative contribution was set to 53.2, 37.8 and 9% for 
OATP1B1, OATP1B3 and OATP2B1, respectively, with no contribution of NTCP. 
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Good prediction of the DDI between ATS and rifampicin by this model structure 
justifies the assignment of the relative contribution of each OATP to overall uptake 
clearance. 

The probability of suffering a drug-related adverse event increases as the number 
of medicines taken by patients does, as inhibition/induction of metabolic routes 
and/or transport processes can be altered by concomitant medications. 
Additionally, other factors such as age, renal function, comorbidities, and genetic 
variation also play a crucial role in the development of adverse effects. In this 
sense, the presence of polymorphisms in genes codifying transporters or 
metabolic enzymes involved in drug absorption or disposition processes may 
represent a relevant area of research in order to explain possible drug-related 
adverse effects. [50]. PBPK modelling merges system- and drug-related 
parameters with clinical trial designs, revealing itself as a powerful tool for 
assessing not only DDIs, but also DGIs [15]. In this work we have applied a full 
PBPK model of ATS to quantify the impact of different OATP1B1 phenotypes in 
ATS exposure and confirmed that poor transporter (carrying SLCO1B1*5 allele) 
patients are at higher risk of suffering SIMs due to 30% lower clearance compared 
to extensive transporter patients, which is in line with the 2.3-fold longer ATS 
half-life observed in patients suffering SIMs [8]. This result is consistent with the 
reported hazard ratio of 1.4 (95% CI: 1.1-1.7, p = 0.02) for suffering SIMs and 
could explain the treatment discontinuation among these patients (odds ratio 
1.67, p = 0.0001) observed in the context of routine clinical care [41]. 
Additionally, it has been reported that patients with ATS apparent clearance (CL/F) 
values below 414.67 L/h are at increased risk for suffering muscle discomfort [1] 
and that the prevalence of mild myalgia among patients taking statins ranges 
from 0.3-33% [10]. Our model predictions reveal that 34.8% of patients have an 
apparent clearance lower than 414.67 L/h and increased ATS and ATS-L exposure. 
Among these patients, the most affected are PT as 63% would be at risk of SIMs 
and the probability of muscle discomfort would decrease as OATP1B1 activity 
increases (IT, 42%; ET, 32%; UT, 21%) (Figure 3A). In this regard, patients at 
higher risk of suffering muscle discomfort (CL/F ≤ 414.67 L/h) would have 2.2- 
and 1.76-fold (p < 0.0001) higher ATS and ATS-L AUC, respectively (Figure 3B). 

The PBPK model has some limitations that the authors realise and must be 
mentioned to avoid a misinterpretation of both, model parameterisation and 
results. In this regard, the PBPK framework does not account for all ATS active 
metabolites, as 4OH-ATS has not been modelled and 2OH-ATS model predictions 
are not accurately predicted due to a structural limitation in the PBPK platform, 
as only one second-generation metabolite can be modelled from the substrate and 
our proposal is to consider it as a third-generation metabolite mainly formed after 
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the hydrolysis of 2OH-ATS-L. Thus, extending the model to a PBPK/PD structure 
that could predict the lipid-lowering effect of ATS would not be feasible at the 
moment. Additionally, the model does not implement pre-systemic lactonization 
of ATS due to the low pH in the stomach because the Simcyp® Simulator V19 
does not allow to track of a metabolite from an endogenous and exogenous 
pathway at a time. Notwithstanding, our work deepens in mechanistic processes 
that govern ATS PK, highlights the importance of enzymatic lactonization and 
predicts a higher probability of suffering muscle discomfort due to an 
approximately 2-fold increase in ATS and ATS-L exposure. The impact of SLCO1B1 
polymorphisms to predict muscle toxicity is highly dependent on the CL/F 
threshold considered (414.67 L/h) and, therefore, prospective analyses are 
encouraged to evaluate the relevance of PK endpoints on muscle toxicity. Clinical 
evidence would be highly appreciated to externally validate model predicted 
exposures in SLCO1B1 polymorphisms after ATS administration. 

5. CONCLUSIONS 

The developed PBPK model was able to mechanistically characterize the exposure 
metrics of ATS, ATS-L, 2OH-ATS-L and 4OH-ATS-L at different dose levels and 
after single and multiple dose regimens after oral administration of ATS-Ca. The 
external validation through the successful prediction of the clinically relevant DDI 
between ATS and itraconazole, clarithromycin and rifampin endorses the role of 
the metabolic and transporters pathways here proposed. The model has been also 
applied to quantitatively assess the DGI between ATS and SLCO1B1*5, which 
originates a 30% decrease in mean ATS clearance when compared to the wild 
type. As a consequence of this interaction, 63% of patients with the PT phenotype 
(codified by SLCO1B1*5) could be at a higher risk of suffering muscle discomfort 
because of an apparent clearance below the previously reported value of 414.67 
L/h. Using this cut-off we have been able to mechanistically predict the exposure 
change to ATS and ATS-L resulting in a 2.2- and 1.76-fold increase in AUC, 
respectively. 

Despite more data are needed to validate model predictions in the different 
phenotypes for OATP1B1, the model here presented can anticipate an exposure-
safety relationship between ATS and/or ATS-L and muscle-related adverse events 
from the mechanistical point of view of physiologically based pharmacokinetics. 
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INTRODUCTION 

The activation of transmembrane tyrosine kinases receptors underlies the 
pathogenesis of many human malignancies [1]. Epidermal growth factor receptor 
(EGFR) family constitutes a group of four transmembrane receptors involved in 
signal transduction reactions that regulate cell growth and differentiation [2] and 
has developed in parallel with the evolution of complex organisms [3]. These four 
highly related receptors (i.e., HER1/ErbB-1/EGFR, HER2/ErbB-2/neu, HER3/ErbB-
3 and HER4/ErbB-4) comprise a cysteine-rich extracellular ligand binding site, a 
transmembrane lipophilic segment, and an intracellular domain with tyrosine 
kinase catalytic activity [4]. The large extracellular domains (ECD) of theses 
receptors constitute an excellent opportunity to target biotherapeutics agents 
rationally designed to disrupt ligand-induced structural changes or dimerization 
as well as to selectively deliver cytotoxic drugs to malignant cells, making possible 
the concept of “magic bullet” proposed by Paul Ehrlich in the 19th century. The 
receptors are found in a variety of tissues as monomers and can associate with 
each other after ligand binding to form homodimers (i.e., HERx-HERx) or 
heterodimers (i.e., HERx-HERy) [2]. A range of growth factors serve as ligands, 
but none is specific for HER2 [2,3]. For this reason, HER2 is considered as a co-
receptor able to heterodimerize (e.g., HER1-HER2) and participate in signal 
transduction in the absence of a specific ligand [2]. This heterodimerization does 
not occur randomly and there is a hierarchy that positions HER2 as the preferred 
dimerization partner [2,5]. 

Overexpression of EGFR and HER2 could result in reciprocal effects on the 
trafficking between both receptors [6] and has been associated with cell 
transformation and tumorigenesis [7]. Increased HER2 expression contributes to 
cell transformation, anchorage-independent cell growth, increased proliferation 
and mitogenic sensitivity, as well as tumour cell migration and invasiveness [6]. 
For example, breast cancers (BC) can have up to 40-100-fold increase in HER2 
protein yielding in 2 million receptors expressed at the tumour cell surface [8]. 
The amplification of the expression of HER2 in BC has been associated with poor 
prognosis [9,10], shorter disease-free survival and overall survival [11] as well as 
more aggressive disease [12]. Despite HER2 is almost ubiquitously expressed [6], 
the difference in HER2 expression levels between normal tissues and tumours 
helps to target treatments to cancerous cells, thus minimising toxicity [8]. 
Increased levels of EGFR of an order of magnitude or greater have been found in 
many human malignancies including lung, head and neck, colorectal, prostate, 
breast and bladder cancers and correlate with poorer clinical outcome [4,13]. 
Trastuzumab (TTZ) is a humanized IgG1 monoclonal antibody (mAb) directed to 
the domain IV of the ECD of the HER2 receptor. TTZ mechanisms of action include 

https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=320
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1797
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2019
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1798
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1799
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5082
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inhibition of HER2 shedding, inhibition of PI3K-AKT pathway, attenuation of cell 
signalling, antibody-dependent cellular cytotoxicity (ADCC) and inhibition of 
tumour angiogenesis [14]. Thus, binding of TTZ to HER2 blocks growth-
stimulating intracellular signalling, decreases the cellular repair capacity, and 
possibly improves the apoptosis capacity [15]. 

Pertuzumab (PTZ), a recombinant humanized IgG1 mAb directed to the domain 
II of the ECD of HER2, inhibits the formation of HER2 homo- and heterodimers 
independently of HER2 expression levels without overlapping the binding site of 
TTZ [16]. Thus, minimising the formation of the most potent signalling HER dimer 
(i.e., HER2-HER3 heterodimer), PTZ affects key signalling pathways for cell 
growth and can also activate immune effectors functions such as ADCC because 
of its extracellular binding location [17]. 

Cetuximab (CTX) is a chimeric mouse-human mAb directed to the ECD of EGFR. 
After binding, CTX inhibits ligand-dependent activation of the EGFR thus inhibiting 
the downstream pathways that cause cell cycle progression, cell growth, and 
angiogenesis [13] . Additionally, CTX induces internalization and down-regulation 
of EGFR (leading to signal termination) [18] and initiates immunologic antitumor 
effects like ADCC [13]. 

Physiologically based pharmacokinetic (PBPK) modelling and simulation has 
positioned itself as a valuable tool in the model informed drug discovery and 
development paradigm in the last years. This modelling technique merges drug- 
and system-related parameters as well as clinical trial design and allows to 
virtually assess unexplored scenarios and answer “what-if” questions in the safest, 
fastest, and cheapest way. However, to get the highest confidence level in the 
PBPK model predictions that could impact clinical decisions, PBPK models need to 
be previously verified and subsequently validated, and this process is sometimes 
accomplished following multiple cycles of “predict, learn and confirm” and can be 
finally refined with available clinical data to improve model performance and 
prediction ability [19]. 

The aim of this work was to apply PBPK modelling and simulation to i) identify the 
most relevant system and/or drug related parameters in the disposition of EGFR 
family-directed mAbs and ii) optimise their values to best describe the observed 
clinical data in cancer patients. 
 
 
 
 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5046
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6882
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METHODS 

Simulations were performed in the PBPK platform Simcyp® Simulator V21R1 
following a “middle-out” approach and the “predict, confirm, learn and refine” 
rationale [19]. Cancer population file already available in the simulator was used 
in all simulations to better characterise the physiologic changes in these patients. 
Data collection of physicochemical and pharmacokinetic parameters of PTZ, TTZ 
and CTX was performed searching in the literature values for molecular weight 
(MW), isoelectric point (pI), net charge, hydrodynamic radius, clearance, 
bioavailability, neonatal Fc receptor (FcRn) affinity, and binding kinetics to their 
corresponding targets (e.g., KD, kon, koff, and kint). In the same way, target 
abundance and synthesis and degradation rate constants were collected for HER2 
and EGFR. Data from Phase I clinical trials were collected from literature to 
optimise target kinetics and/or mAb disposition processes after single-dose 
administration of PTZ and CTX to cancer patients overexpressing HER2 or EGFR, 
respectively. Finally, validation of the optimised biologic and/or target was 
performed with different datasets from Phase I, II or III clinical trials after single 
or multiple-dose administration schedules of PTZ, TTZ and CTX. Modelling 
strategies of PTZ/TTZ-HER2 and CTX-EGFR are described in more detail below. 

PBPK modelling of HER2 directed monoclonal antibodies 

HER2 target development and validation workflow are illustrated in Figure 1. 
Firstly, two locations of the receptor were added to the Cancer population file to 
better account for the distribution of this receptor over the body by creating two 
different targets, i.e., “HER2 tumour” and “HER2 normal tissues”. Initial target 
concentrations (Rmax) in tumor and normal tissues were set as 0.04 and 0.0016 
µM, respectively [20]. Normal tissues expressing HER2 were adipose, bone, brain, 
gut, heart, kidney, liver, lung, pancreas, muscle, skin, and spleen. As no specific 
receptor concentration at each tissue has been reported, the concentration was 
assumed to be equally distributed among them. Then, a full PBPK model for PTZ 
was developed to describe the PK after single IV infusions of 0.5, 2, 5, 10 and 15 
mg/kg to cancer patients overexpressing HER2 in a wide variety of tumour 
locations (e.g., breast, colorectal, lung, ovarian, pancreas and prostate) [21] with 
an FcRn-binding as a recycling pathway for PTZ non-specific catabolic clearance 
modelled in a 1:1 stoichiometry and governed by a KD value of 0.57 µM [22]. A 
full TMDD model was incorporated to best describe the observed data (dose-
dependent clearance) with kon and koff values of 403.2 µM-1⋅h-1 and 3.42 h-1, 
respectively [23]. A constant option for Rmax in tumoral and normal tissues was 
selected. Manual optimisation of HER2 expression was preformed to better 
describe PTZ exposure after single-dose administration at different dose levels 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2985
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[21]. Finally, a full PBPK model for TTZ was developed incorporating non-specific 
catabolic clearance as well as target-mediated clearance through a full TMDD 
model with kon and koff values of 740 µM-1⋅h-1 and 4.07 h-1 [20] and a constant 
option for Rmax. After optimising HER2 parameterisation in tumour and normal 
tissues with PTZ PBPK modelling, it was validated by running different simulations 
after single IV infusions of TTZ at 1, 2, 4, and 8 mg/kg dose levels. Additionally, 
simulations of multiple IV infusions of PTZ were compared with observed data in 
Phase I, II, and III clinical trials [24,25] and after sub-cutaneous (SC) single-dose 
administration to cancer patients [25] as well.  

 
Figure 1: Workflow followed to validate HER2 target through PBPK modelling of PTZ and TTZ. Rmax: 
abundance; kdeg: degradation rate constant for the target; ksyn: target synthesis rate constant (kdeg⋅Rmax); 
MW: molecular weight; CLcat: non-specific catabolic clearance; FcRn KD: equilibrium dissociation constant 
for FcRn-mAb 1:1 complex; TMDD: target-mediated drug disposition; kon: rate constant for binding to 
the free target; koff: rate constant for dissociation of mAb-target complex. 

Numerical validation of PTZ PBPK model was also computed with data from 
another Phase Ib clinical study [26]. A first-order absorption model for PTZ SC 
administration was selected and parameterized with ka and fa. As no value for fa 
has been found in the literature, estimated bioavailability (F) through this route 
of administration [25] was used instead. Final model parameters for PTZ/TTZ-
HER2 PBPK framework are shown in Table 1. 
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Table 1. Final PBPK model parameters for PTZ/TTZ-HER2 framework. 
Monoclonal Antibody 

 Pertuzumab Trastuzumab 
Parameter (units) Value Reference Value Reference 

Physicochemical Properties 
MW (KDa) 148.000 DrugBank 145.531 DrugBank 
pI 8.48 [27]  8.39 [27]  
Hydrodynamic 
Radius (nm) 

- Simcyp Predicted - Simcyp Predicted 

fu 1 Default 1 Default 
B/P 0.55 Default 0.55 Default 

Absorption 

Fa 0.712 [25] - - 
ka (h-1) 0.0145 [25] - - 

Distribution 
Model Full PBPK  Full PBPK  
Krc1 16.7 Default 16.7 Default 
KD FcRn (µM) 0.57 [22] 0.773 [28] 

Elimination 
CLcat (L/h) 0.00979 [24]  0.00938 [23]  

Target-Mediated Drug Disposition 
kon (µM-1⋅h-1) 403.2 [23]  740.0 [20]  
koff (h-1) 3.42 [23]  4.07 [20]  

Target 
HER2 Tumour value Reference Normal tissues 

value 
Reference 

MW (KDa) 185.000 [3]  185.000 [3] 
Rmax (µM) 0.04 [20] 0.0016 [20] 
kdeg (h-1) 0.079 [20] 0.398 Optimised (see 

Methods section) 
ksyn - Simcyp Predicted - Simcyp Predicted 

MW: molecular weight; pI: isoelectric point; fu: fraction unbound in plasma; B/P: blood-to-plasma 
concentration ratio; Fa: fraction of the dose absorbed; ka: first order absorption rate constant; Krc1: 
recycling rate of FcRn-mAb 1:1 complex from endothelial space; KD: equilibrium dissociation constant for 
FcRn-mAb 1:1 complex; CLcat: catabolic non-specific clearance; kon: rate constant for binding to free 
target; koff: rate constant for dissociation of mAb-target complex; Rmax: abundance; kdeg: degradation 
rate constant for the target; ksyn: target synthesis rate constant (kdeg⋅Rmax). 

PBPK modelling of EGFR-directed monoclonal antibodies 

CTX PBPK model development and validation was perform sequentially. We first 
created the EGFR target in the Cancer population file already available in the 
Simcyp® Simulator by characterising its abundance in tumour tissues as well as 
its synthesis and degradation kinetics. Data from literature estimating Rmax and 
kdeg of EGFR through modelling the dynamics of CTX-EGFR binding in living 
tumours was taken [29] and set to 2⋅10-6 µM and 0.013 h-1, respectively. Then we 
developed a full PBPK model for CTX that accounted for non-specific and specific 
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elimination processes and a salvage pathway by binding to FcRn in the endosomal 
space with a KD of 0.34 µM [22]. A full TMDD model characterised by kon and koff 
with an internalization process governed by kint was added to the model. An 
additional systemic clearance (CLadd) value of 0.033 L/h was added to the CTX 
elimination processes to best describe the observed data in a Phase I clinical trial 
[30] in the optimisation step. No other changes were performed to the target. 
Finally, the model was validated numerically and through the simulation of a 
multiple-dose administration of CTX to cancer patients and compared with 
observations from Phase I/II clinical studies [31,32]. Model parameters for the 
CTX-EGFR PBPK model can be found in Table 2. 

Table 2. Final PBPK model parameters for CTX-EGFR framework. 
Monoclonal Antibody 

 Cetuximab 
Parameter (Units) Value Reference 

Physicochemical Properties 
MW (KDa) 145.781 DrugBank 
pI 8.48 DrugBank 
Hydrodynamic Radius (nm) - Simcyp Predicted 
fu 1 Default 
B/P 0.55 Default 

Distribution 
Model Full PBPK  
Krc1 16.7 Default 
KD FcRn (µM) 0.34 [22]  

Elimination 
CLcat (L/h) 0.02375 [33]  
CLadd (L/h) 0.033 Optimized (see Methods 

section) 
Target-Mediated Drug Disposition 

kon (µM-1⋅h-1) 30 [29]  
koff (h-1) 0.0017 [29]  
kint (h-1) 0.14 [29]  

Target 
EGFR Value Reference 
MW (KDa) 134.276 DrugBank 
Rmax (µM) 0.000002 [29]  
kdeg (h-1) 0.013 [29]  
ksyn - Simcyp Predicted 

MW: molecular weight; pI: isoelectric point; fu: fraction unbound in plasma; B/P: blood-to-plasma 
concentration ratio; Krc1: recycling rate of FcRn-mAb 1:1 complex from endothelial space; KD: equilibrium 
dissociation constant for FcRn-mAb 1:1 complex; CLcat: catabolic non-specific clearance; CLadd: additional 
systemic clearance; kon: rate constant for binding to free target; koff: rate constant for dissociation of 
mAb-target complex; kint: rate constant for mAb-target complex internalisation; Rmax: abundance; kdeg: 
degradation rate constant for the target; ksyn: target synthesis rate constant (kdeg⋅Rmax). 
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Simulations 

All simulations included 100 cancer patients (10 trials of 10 subjects each) and 
matched trial design and population demographic characteristics of the 
corresponding clinical study. Initial tumour volume was set to 20 mL in all 
scenarios [34,35]. No lymph flow was considered to the tumour tissue because 
the lack of functional lymphatic vessels inside this neoplastic tissue [36]. Between-
subject variability for optimised parameter values was set to 30% to reproduce 
the variability observed in the clinical setting [24,25,30]. More details about the 
simulations (age range, female proportion, dosing schedule, study duration, etc…) 
are provided in the Supplementary Material to allow reproducibility of the work 
here presented. 

Model validation 

Graphical assessment of simulated versus observed concentration-time profiles 
was performed to validate the optimised target expression or the mAb PBPK 
model. Simulations were considered satisfactory if observations fell within the 5th 
and 95th percentiles of the simulated concentration-time profiles. Additionally, 
following metrics (Equations 1-3) were computed to numerically assess the 
predictive power of the PBPK frameworks developed: 

• Average Fold Error (AFE): 
 

𝐴𝐴𝐴𝐴𝐴𝐴 = 10
1
𝑛𝑛∑ log

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖                                                                          (1) 

 
• Absolute Average Fold Error (AAFE): 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 10
1
𝑛𝑛∑�log

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖

�                                                                    (2) 
 

• Percent Prediction Error (PPE%): 
 

𝑃𝑃𝑃𝑃𝑃𝑃(%) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ��
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖  − 𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖

𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖
� × 100�                               (3) 

 

Where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 and 𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 are the predicted and observed PK parameter been 
evaluated, respectively. In general, model predictions were considered 
satisfactory if 0.8≤AFE≤1.25, acceptable if 0.5≤AFE<0.8 or 1.25<AFE≤2 and 
poor if AFE<0.5 or AFE>2. Following the same rationale, AAFE≤1.25, 1.25<AFE≤2 
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and AAFE>2 were considered satisfactory, acceptable and poor, respectively. For 
PPE%, the lower the value, the better the prediction. 

Nomenclature of Targets and Ligands 

Key protein targets and ligands in this article are hyperlinked to corresponding 
entries in http://www.guidetopharmacology.org, and are permanently archived in 
the Concise Guide to PHARMACOLOGY 2019/20 [37]. 
 
RESULTS 

PBPK modelling of HER2-directed monoclonal antibodies 

Simulated versus observed concentration-time profiles of PTZ and TTZ at different 
dose levels, schedules and routes of administration are depicted in Figure 2. 
Optimisation of HER2 kdeg in normal tissues to a final value of 0.398 h-1 led to a 
PBPK model structure able to properly describe the time course of PTZ across 
different dose levels (Figure 2A). The model was validated through the simulation 
of four additional scenarios combining different dosing schedules (Figure 2B) and 
routes of administration (Figure 2C). Numerical assessment of the predictive 
power of the model further validated PTZ-HER2 PBPK framework as computed AFE 
and AAFE fell between the desired range of satisfactory results for PK exposure 
parameters AUC and Cmax with PPE% below 15% (see Table 3).  

https://www.guidetopharmacology.org/
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Figure 2. Graphical assessment of model performance: observed PTZ (dark red dots) and observed TTZ 
(dark green) versus median (continuous grey line) and 5th and 95th percentiles (dashed grey lines) of 
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predicted concentration-time profiles of PTZ and TTZ. PTZ: pertuzumab; TTZ: trastuzumab; Q3W. every 
three weeks; SC: sub-cutaneous. 

HER2 final parameterisation from the PBPK modelling of PTZ was successfully 
cross validated through PBPK modelling of TTZ both graphically, with all 
observations at different dose levels after single IV infusion falling between 5th 
and 95th percentiles of the simulated profiles (Figure 2D), and numerically, with 
AFE, AAFE and PPE% values for AUC and Cmax of 1.13, 1.16 and 16, and 1.01, 
1.07 and 7, respectively (Table 3). 

Table 3. Numerical validation of the PBPK models developed for PTZ, TTZ and 
CTX. 

Monoclonal 
Antibody 

Pertuzumaba Trastuzumabb Cetuximabc 

Metric/PK 
parameter 

AUC0-last 
(mg⋅h/mL) 

Cmax 
(mg/mL) 

AUC0-inf 
(ng⋅h/mL) 

Cmax 
(ng/mL) 

AUC0-last 

(mg⋅h/mL) 
Cmax 

(mg/mL) 
AFE 1.14 0.94 1.13 1.01 0.88 0.87 
AAFE 1.14 1.12 1.16 1.07 1.16 1.15 
PPE% 14 11 16 7 13 10 

a: observed data from [26]; b: observed data from: [38]; c: observed data from [30]; AFE: average fold 
error; AAFE: absolute average fold error; PPE%: percent prediction error. 

PBPK modelling of EGFR-directed monoclonal antibodies 

Figure 3 shows observed versus predicted concentration-time profiles after single 
and multiple IV infusions of CTX at different dose levels. Graphical assessment of 
model performance after the incorporation of an additional systemic clearance of 
0.033 L/h revealed good model parameterisation as observed data fell within the 
5th and 95th percentiles of the simulated profiles regardless the dose level (Figure 
3A). Additionally, numerical validation through the determination of AFE and AAFE 
showed a satisfactory predictive power of AUC and Cmax of the PBPK model 
developed with PPE% 13% for AUC and 10% for Cmax (see Table 3). Simulation of 
weekly IV infusions of CTX followed by a loading dose also described the observed 
data among multiple cycles of CTX treatment to squamous cell carcinoma of the 
head and neck patients alone (Figure 3B) [31] or in combination with radiation 
therapy (Figure 3C) [32], thus validating CTX PBPK model in a multiple dose 
administration schedule as well. The model properly described the elimination 
phase of CTX during all simulation time and accurately captured Cmax and Ctrough 
at steady state. 
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Figure 3. Graphical assessment of model performance: observed (black diamonds) versus median 
(continuous grey line) and 5th and 95th percentiles (dashed grey lines) of predicted concentration-time 
profiles of CTX; CTX: cetuximab; Q1W: every week. 

 

DISCUSSION 

A PBPK model for PTZ has been developed in cancer patients overexpressing 
HER2. Target parameterization has been optimized through PBPK modelling and 
simulation and cross-validated by PBPK modelling of TTZ in cancer patients. The 
PBPK framework developed can accurately reproduce the time course of both 
mAbs in cancer patients after single and multiple dose administrations and 
different dose levels. During model development, a 25-fold factor was applied to 
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HER2 concentration in normal tissues to calculate the concentration of the 
receptor in the cell membrane of malignant cells as median HER2 concentration 
in normal and cancerous tissues have been determined to be 1293.8 and 31656 
pg/mg protein, respectively [11]. The TMDD model developed incorporates a 
constant option in Rmax because neither TTZ nor PTZ binding to HER2 does 
increase the internalization or degradation rate of the receptor [5,7,39]. 
Additionally, it has been reported that treatment with a polyclonal anti-HER2 
antibody induced rapid HER2 internalization probably due to multi-epitope 
interactions with the membrane receptor [40]. Following this rationale, anti-HER2 
bispecific antibodies (anti-HER2-Bs) have been developed to target both domain 
II and IV in a non-overlapping manner to induce rapid internalization and efficient 
down-regulation of the receptor [41]. As this approach has been used in TTZ PBPK 
modelling previously [20,42], our decision of selecting a constant option for Rmax 
is strongly supported. 

Despite previously published PBPK models of HER2-directed mAbs, our TMDD 
model does not incorporate HER2 shedding because of the following reasons: 

• The cleavage of the ECD of HER2 is slow and inefficient, even in the 
presence of activators [43] 

• Baseline circulating HER2-ECD (cHER2-ECD) levels do not correlate with 
clinical response [10,12,44] 

• Decreases in cHER2-ECD concentration because of treatment initiation are 
not sufficient to discriminate between patients with different clinical 
outcomes; measurable cHER2-ECD levels does not preclude clinical 
response [12,44]  

• The role of cHER2-ECD as a predictor of response to TTZ therapy or 
tumour progression still unknown. The clinical utility of cHER2-ECD for 
predicting safety and efficacy is low [20]  

• Serum HER2-ECD levels cannot be recommended to make TTZ decisions 
for individual patients [12]  

• The effects of cHER2-ECD over time on TTZ exposure are overall small 
and the parameter most influencing TTZ clearance is the concentration of 
membrane bound HER2 [20]  

• cHER2-ECD is unlikely to significantly affect TTZ pharmacokinetics as 
steady-state molar plasma concentration of TTZ are much higher than 
those of cHER2-ECD [12] 

The role of cHER2-ECD on circulating levels of anti-HER2 mAbs is unclear due to 
incoherent reports [12,38,43,44]. Therefore, the shedding process was not 
included in the PBPK modelling of HER2-directed mAbs to increase model 
parsimony and structural and model parameters identifiability. Notwithstanding, 
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the impact of the cHER2-ECD on receptor occupancy (membrane-attached) and 
thus, on pharmacological effect, should be carefully evaluated to stablish an 
optimal dosing regimen in a case-by-case basis [45]. 

HER2 overexpression has been demonstrated to inhibit down-regulation of EGFR 
and of itself probably because the endocytic and endosomal sorting machinery 
can be impaired via saturation at high receptor levels, as the regulatory molecules 
involved in these processes have limited levels [6,7]. The optimised HER2 kdeg 
value in normal tissues of 0.398 h-1 is in good agreement with that reported by 
Hendriks et al (0.252 h-1) [6]. In line with previous reports highlighting the impact 
of HER2 overexpression in disease on impairment of endocytic and endosomal 
sorting machinery, apparently because of limiting levels of the regulatory 
molecules involved in these processes [46-48], our model-based findings suggest 
that HER2 degradation rate constant in tumour tissue is likely to be 5-fold lower 
than in normal tissues. This is also in agreement with mathematical models on 
HER2 intracellular routing where overexpression of HER2 has been shown to shunt 
ligand-activated receptors to recycling fates [6], which is likely to lower the 
degradation rate. 

The PBPK model developed for CTX in cancer patients with tumours 
overexpressing EGFR properly describes the observed data in a high variety of 
dosing schedules. Our model is able to predict reasonably well Ctrough over time, 
what is clinically relevant as trough levels have been suggested to be important 
in response [30]. Understanding the biotransformation processes of therapeutic 
proteins (which must be clearly differentiated from specific or target-mediated 
and non-specific or catabolic elimination pathways) is of high value early on in 
drug discovery and development in order to detect vulnerable positions, re-
engineer the molecule to replace the labile motive and ultimately design more 
stable drug candidates with better in vivo PK properties [49]. In this regard, the 
unexpected rapid clearance of CTX (with an unusually short half-life of 3-4 days) 
can be suggestive of alternative elimination processes not assessed by the 
mechanisms above mentioned. 

In current CTX model, Rmax expression from Tang et al [29] was used which is 
1000-fold lower then Malik et al [20]. Sensitivity analysis conducted at CTX lowest 
dose clinically assessed (50 mg/m2) revealed that there was no significant impact 
on PK profiles of CTX (Supplementary Material Table 2 and Figure 4). This is in 
agreement with fact that at clinically relevant therapeutic doses, TMDD of CTX is 
saturated [30]and hence it is unlikely that changes in Rmax will influence CTX 
clearance. 
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The need for the additional systemic clearance of 0.033 L/h added to the PBPK 
model in the optimisation step could be related to: i) the efficient binding to 
FcgRIIIA receptor, ii) the binding to C1q subcomponent, and/or iii) the proteolytic 
cleavage of the lower hinge region by tumour-matrix metalloproteinases (MMPs) 
[50]. These non-specific non-catabolic elimination (biotransformation) pathways 
could also be related to the non-saturable, first-order elimination process that 
added to a zero-order and saturable clearance has been used to describe the 
population pharmacokinetics of CTX in head and neck cancer patients [33]. 
Additionally, it has been reported that polymorphisms in FCGR2A and FCGR3A are 
associated with clinical outcome in colorectal cancer patients treated with CTX as 
single agent thus suggesting these molecular markers could be useful to predict 
clinical outcome in metastatic colorectal cancer patients [51]. It is easily 
understood that an underlying mechanism not covered by catabolic clearance in 
the lysosomes nor specific target-mediated elimination processes contributes to 
CTX elimination in vivo and need to be accounted for when modelling its 
pharmacokinetics. Figure 4 illustrates our general proposal and the rationale 
followed to optimise biologic PK processes and/or target expression and kinetics 
through PBPK modelling and simulations. Initial data collection (or generation for 
in house data) and model parameterisation is verified and, if necessary, optimised 
by early modelling of Phase I clinical trials to assess the impact of different dose 
levels in biologic disposition processes, aimed to characterise non-linear kinetics 
of these large molecules. PBPK modelling easily allows it by differentiating target 
from biologic parameters, thus facilitating this optimisation step with a “middle-
out” approach. Finally, the optimised framework is validated (or cross-validated 
in case a different biologic is used to confirm target parameterisation) using larger 
datasets coming from Phase II and III clinical trials and assessing different dosing 
schedules in the target population to increase the confidence in model 
parameterisation and predictions [52]. 

PopPBPK modelling strategy proposed had two major applications in clinical 
pharmacology development of therapeutics mAbs. Firstly, this PBPK modelling 
strategy provides clinical validation of target expression data which is then useful 
in developing prospective PBPK models for mAbs targeting same receptors in 
preclinical stage or as ‘back-up’ lead molecules [53]. Secondly, validated PBPK 
models may be directly employed to predict PK in various clinical scenarios of 
interest (e.g. different dosage regimens to mitigate safety related issues) and to 
predict local concentrations of mAb in local tissues or at target tissues [54]. 
Finally, these mechanistic frameworks are useful to explore the level of receptor 
occupancy (RO) achieved with a particular dosing schedule. Simulations at 
clinically relevant doses using optimised PBPK models of PTZ, TTZ or CTX, reveal 
persistently high (≥89%) of mean RO at steady state PK (see Supplementary 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3017
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=984&objId=3190#3190
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3017
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Material, Figures 1-3). Other indirect areas of application may warrant further 
research on feasibility to perform scaling to other populations groups e.g. from 
adults to paediatrics [55], or patient populations with comorbidities e.g. 
renal/hepatic impaired populations.  

 
Figure 4. Optimisation of drug and system-related parameters through PBPK modelling and simulations. 
mAb: monoclonal antibody. 

In conclusion, full PBPK models for PTZ, TTZ and CTX have been developed that 
are able to describe the time course of these biologics in a different set of 
scenarios. TMDD processes have also been added to model structures to account 
for non-linear PK. Optimisation of both system- and drug-related parameters have 
been performed through PBPK modelling and simulation to improve model 
performance and identifiability, highlighting the potential of this modelling 
technique in model informed drug discovery and development.  
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Results and discussion 
 
 
 

Part 1: methodological aspects of PBPK platforms. 

This part summarizes the main findings of the research work previously described 
in Chapter 1. 

A theoretical model previously published [38] incorporating complex absorption 
processes, intestinal transit, dissolution limited by solubility, variable expression 
of efflux transporter along the gut, and linear and non-linear metabolism in gut 
and liver was taken as reference. The model considered oral administration of the 
parent drug (PD) as an immediate release formulation, metabolism of PD to two 
metabolites (i.e., primary metabolite [PM] and secondary metabolite [SM]) and 
renal excretion of the metabolites. 

Different approximations to the theoretical model were developed: 

• vNM: semi-mechanistic version of the theoretical model with extraction-
based metabolism of PD. ODE system was implemented and solved in 
NONMEM. 

• vPSEM: model version with the same mathematical approximation that 
vNM but implemented in PhysPK Biosimulation Software (PhysPK). 
Accordingly, it was based on the same ODE system that vNM. 

• vPSIM: semi-mechanistic version of the theoretical model with intrinsic 
clearance-based metabolism of PD implemented in PhysPK. This model 
version substitutes extraction based metabolic equations by intrinsic 
clearance functions. 

• vPPK: physiological multilevel version of the theoretical model 
implemented in PhysPK. vPPK uses an acausal object-oriented modelling 
approach. 

A set of 32 different scenarios (2 dose levels, BCS drug types II and IV, 4 
metabolic scenarios and linear and non-linear P glycoprotein (P-gp) activity) were 
generated and analysed. 
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Validation of PhysPK Biosimulation Software 

Graphical analysis of the correlations of plasma concentration levels of PD, PM and 
SM from the vPSEM vs vNM comparison after single dose administration in each 
of the scenarios generated demonstrated the ability of PhysPK to simulate almost 
equivalent concentration levels of PD, regardless of the scenario considered. PM 
and SM levels were also in good agreement between both software at low-medium 
concentration values, but small discrepancies were observed at high 
concentrations (Cmax) in scenarios corresponding to low permeability and linear 
activity in P-gp. Nonetheless, linear correlation coefficient (R2) was higher than 
0.96 in all cases. 

Mean relative error (RE) for AUC0-48 and Cmax of vPSEM and vNM comparison were 
3.96, 6.61 and 5.81% and 0.16, 2.92 and 1.53% for PD, PM, and SM, respectively. 
Based on these results good agreement between both software was 
demonstrated. 

 

Metabolism Evaluation 

This stage involved the comparison of two mathematical approximations of the 
theoretical model that can be selected in PhysPK (vPSIM vs vPSEM), which only 
differed from each other in their parametrization of metabolism.  

As expected, results revealed PD to be the most sensitive analyte to changes in 
metabolism. In fact, individual RE for both PD AUC0-48 and Cmax reached up to -
50% in scenarios corresponding to non-linear kinetics in the metabolism of PD in 
gut and liver. Thus, the saturation of liver metabolism leads to a reduction in the 
rate of the metabolic process, increasing the differences in AUC0-48 and Cmax due 
to the different parametrization between the two approaches (hepatic blood flow). 

 

Modelling Approach Comparison: algorithmic vs 
acausal modelling 

Individual AUC0-48 and Cmax successfully matched between vPPK and vPSIM for PD, 
with mean RE for AUC0-48 and Cmax of -0.02 and -0.04%, respectively. This 
outcome was independent of the absorption properties, dose level, P-gp activity, 
and gut and liver metabolic kinetics. Mean absolute error (MAE) and root mean 
squared error (RMSE) of PD AUC0-48 and Cmax also improved in this comparison 
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and agreed with the negligible RE detected. Individual RE for AUC0-48 and Cmax of 
PM and SM were greater than 10 % in some scenarios, with mean RE for PM and 
SM for AUC0-48 and Cmax of 11.52 and 7.52%, and 10.01 and 6.64%, respectively. 

The equivalence of the mathematical approximations in vPSIM and vPPK for PD 
compound was confirmed by comparing the vPPK vs vPSIM mean RE of AUC0-48 
and Cmax. Those values dramatically diminished and MAE and RMSE significantly 
improved. In the case of metabolites, the existence of exposure differences 
between vPPK and vPSIM point to the lack of a physiological blood perfusion in 
vPSIM, since in this model version metabolites are directly generated in their 
respective compartments. This explains the higher mean plasmatic concentrations 
in vPPK, as in this case, PM and SM are incorporated into the bloodstream before 
being excreted by kidneys, in contrast of what happens in vPSIM where they 
immediately start to be excreted once they are formed. 

 

Part 2: PBPK modelling in the preclinical setting 

This part summarizes the main findings of the research work previously described 
in Chapter 2. 

Drug discovery and development represents an increasing economic and temporal 
cost for the pharmaceutical industry, which does not translate into significant 
increases in the number of approved active ingredients, especially in the oncology 
area [39,40]. One alternative is to develop mathematical models at the preclinical 
stages of the drug development process capable of better predicting efficacy or 
safety outcomes in order to efficiently design clinical trials [41]. Tumour growth 
inhibition (TGI) models [42] constitute a highly valuable preclinical methodology 
in oncology for the selection of therapeutic candidates and the design of optimal 
clinical evaluation strategies for the in vivo assessment of antitumor effect [43-
48]. 

The anti-cancerous drug candidate MBQ-167 has been characterized as a potent 
inhibitor of the Rho GTPases Rac and Cdc42 [49]. These GTPases are overactive 
in different cancer types and promote cancer cell migration, invasion, 
proliferation, and oncogenic transformation [50-54]. MBQ-167 dually inhibits the 
activation of both GTPases, with half-maximal inhibitory concentrations (IC50) of 
0.1 µM and 0.08 µM for Rac and Cdc42, respectively. Preclinical studies have 
shown that MBQ-167 inhibits breast cancer (BC) cell migration, viability, tumour 
growth (91% reduction in tumour size is achieved in 2 months of treatment, with 
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the drug effect starting as early as 3 weeks of the first dose), and metastasis in 
vivo without apparent toxicity [49,55]. 

MBQ-167 PBPK/PD modelling strategy designed is illustrated in Figure 6 and 
briefly described as follows. First, physiological parameters of the typical mouse 
already available in Simcyp® Animal Simulator V19 were modified to reproduce 
the mice population used in the experimental procedure, physiochemical 
properties of MBQ-167 were introduced into the PBPK platform and the 
intraperitoneal (IP) route of administration was defined as a first order absorption 
process to the venous blood with a lag time of 0.17 h. Disposition processes were 
then modelled to generate an advanced PBPK model. Modelling of tumour tissue 
PK provided the final MBQ-167 PBPK model. 

 
Figure 6. Modelling strategy followed to develop the PBPK/PD framework. MW: molecular weight; fu: 
fraction unbound in plasma; B/P: blood-to-plasma concentration ratio; Hep: in vitro determined 
hepatocytes intrinsic clearance; CLR: renal clearance; BW: body weight; IP: intraperitoneal 

Pharmacodynamics of MBQ-167 was assessed with the Simeoni TGI model [42], 
developing first an unperturbed model for the BC cell lines HER2+ and Triple 
Negative describing tumour growth in control groups, and finally characterizing 
the inhibition properties through the estimation of maximum inhibition (Kmax), IC50 
and transit rate of cell damage (k1). The number of transit compartments was 
established regarding the promptness appearance of the tumour growth inhibition 
for each cell line and resulted in 3 and 4 for HER2+ and Triple Negative cell lines, 
respectively. 

Model predictions after a single IP administration of 10 mg/kg of MBQ-167 showed 
that the PBPK model developed was able to capture the longitudinal MBQ-167 
observations. Cmax and Tmax were adequately characterized in plasma and other 
organs (heart, lungs, liver, spleen, and kidneys), and slightly biased in tumour 
tissue. These results agreed with the numerical analysis, as the fold error for Cmax 
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was close to the unity in all tissues except in the tumour, where a value of 0.8 
arised. Additionally, the RE in AUC0-t and Cmax in each tissue was, in general, less 
than 20% for the typical profile, showing that the PBPK model was able to 
characterize the average PK of MBQ-167. 

The unperturbed model proposed by Simeoni et al. [42] was able to adequately 
describe tumour growth in both cell lines (control groups). The TGI model 
accurately predicted tumor shrinkage (RE<20%) in HER2+ cell line after the 
administration of 1 and 10 mg/kg of MBQ-167 three times a week for 65 days, 
with a relative tumor size reduction of 94.3% at the highest dose level. Model 
predictions in the Triple-Negative cell line agreed with the experimental data for 
the 1 mg/Kg group, and a slightly under-prediction of final tumor volume was 
predicted in mice receiving 10 mg/kg three times a week for 108 days. The 
discrepancy could be explained by the fact that differences in linear growth rate 
constant (λ1) could appear between groups, but the overall time-course profile of 
tumour dynamics of each group was adequately captured by the model since mean 
predictions were within the 95% CI of the observed data and the predicted relative 
reduction in the final tumor size (89.6%) agreed with that observed (87.0%) at 
the 10 mg/kg dose level. 

Different simulations were performed in order to evaluate the influence of more 
intensive dosing regimens on tumor size reduction. The results anticipated a 
significant improvement in tumor reduction when once daily (QD) and/or twice 
daily (BID) schedules were considered, especially in the HER2+ cell line since 
tumor eradication is predicted at 1 mg/kg BID and 10 mg/kg BID or QD. In the 
Triple Negative cell line, maximal pharmacodynamic effect is already achieved at 
1 mg/kg, predicting tumour growth stabilization when BID or QD schedules are 
considered. 

 

Part 3: PBPK modelling in the clinical setting 

Assessing potential drug-gene interactions (DGI): a 
case-study with atorvastatin 

This section summarizes the main findings of the research work previously 
described in Chapter 3 and Chapter 4. 

Atorvastatin (ATS) is a second-generation synthetic statin that is administered as 
the calcium salt (ATS-Ca) of the active hydroxy-acid form and is one of the most 
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prescribed statins for the treatment of dyslipemia in order to diminish the 
cardiovascular risk. 

Statins accumulation in the liver is mediated by hepatic active uptake through the 
organic anion transporting polypeptide (OATP) family, sodium-dependent 
taurocholate co-transporting polypeptide (NTCP), and by efflux transporters of the 
ATP-binding cassette (ABC) family, located on the basolateral and canalicular 
membranes of the liver, respectively [56]. In vitro kinetic studies on ATS hepatic 
uptake revealed that OATP1B1 and OATP1B3 are the major ATS uptake 
transporters, while NTCP was found to be of minor importance in ATS disposition. 
The average contribution to ATS uptake resulted OATP1B1 > OATP1B3 >> 
OATP2B1 > NTCP [57]. An ATS intrinsic uptake clearance of 2030 mL/min (95% 
CI: 1140-2620 mL/min) was predicted and, assuming the same passive diffusion 
across the cell membrane of hepatocytes and HEK293 cells (120 µL/min/g of 
liver), transporter-mediated active uptake of ATS was concluded to dominate 
overall ATS hepatic uptake [57]. Moreover, polymorphisms in transporters genes 
have been reported to affect the PK of statins and their therapeutic effects 
[58,59]. It has been demonstrated, for example, that Kpt,liver of ATS is 2.7-fold 
higher (p = 0.002) in wild-type when compared to Slco1b2-/- mice after 1 mg/kg 
ATS tail vein injection [56]. In humans, it has been observed that ATS and its 
metabolites are sensitive to polymorphisms in SLCO1B1, as plasma concentrations 
were higher in subjects carrying the reduced function SLCO1B1 521C allele (T/C 
genotype) compared with the wild-type subjects (521 T/T) [60]. 

Metabolism of ATS is an intricated pathway of different reactions that include 
glucuronidation [61-63], lactonization [64], and CYP450-mediated oxidation 
[65,66]. ATS is administered as the hydroxy acid form and has equipotent active 
metabolites (ortho-hydroxy atorvastatin (2OH-ATS) and para-hydroxy 
atorvastatin (4OH-ATS)) that are responsible of 70% of the 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) reductase inhibitory activity [67]. Both 
metabolites, as well as the parent compound, are equilibrated with the 
corresponding lactone forms (ATS-L, 2OH-ATS-L and 4OH-ATS-L) [63,64,66]. It 
has been demonstrated that lactonization might occur non-enzymatically at pH<6 
[68] or enzymatically, being the former pathway negligible at pH>6. The 
formation of a glucuronide prior to lactonization is expected to be the major 
pathway for the enzymatic lactonization of ATS in humans, which is catalyzed by 
UDP-glucuronosyltransferases (UGTs) 1A1, 1A3 and 2B7. The isoenzyme UGT1A3 
is the major contributor to this process with 200 times more activity than UGT2B7 
[61]. The mechanism proposed for the lactonization is the formation of an acyl-β-
D-glucuronide of ATS acid, elimination of the glucuronic moiety and final 
spontaneous cyclization to the corresponding lactone [63]. ATS lactonization is 



Results and discussion 

 

Page | 153  

affected by polymorphisms in the UGT1A locus and has been demonstrated both, 
in vitro and in vivo [62]. On the other hand, the hydrolysis of the lactone forms 
of ATS and its metabolites to the corresponding carboxylates takes place non-
enzymatically at pH>6 [68] or can be catalyzed by plasmatic esterases or 
paraoxonases (PONs) [63]. Hydrolysis of lactone forms has been demonstrated to 
occur in plasma [69]. Therefore, this process must be considered when modelling 
ATS and its metabolites to better assess their PK. 

CYP450-mediated oxidative metabolism has been proposed as the main pathway 
of biotransformation for statins in humans [63], where CYP3A4 is the major 
enzyme involved in the formation of the hydroxy-metabolites of ATS [64,66]. The 
CYP3A4-mediated oxidation is clearly polarized to the lactone forms, with 
significant differences in maximum rates (Vmax) and concentration associated with 
half-Vmax (KM) between open acid and lactone forms that result in an intrinsic 
clearance ratio lactone/acid equal to 73 [65]. Additionally, quantum 
mechanics/molecular mechanics have revealed that the acid form of ATS must 
pay a desolvation penalty of 5 Kcal/mol to enter in the more hydrophobic active 
site of the enzyme [64]. Moreover, the higher Vmax value for the para-
hydroxylation of ATS-L has been attributed to a shorter distance to the heme 
oxygen atom of the CYP3A4 [64]. Thus, ATS lactonization changes its affinity to 
the CYP450 and affects the preferred hydroxylation positions. 

The PBPK model developed in Simcyp® Simulator V19 described within a 2-fold 
prediction error (PE) the exposure metrics, Cmax and AUC, of ATS and its 
metabolites ATS-L, 2OH-ATS-L and 4OH-ATS-L, after single dose administration 
of 20, 40 and 80 mg and multiple administrations of 10 mg of ATS-Ca QD over 
one week. 

The PBPK framework was able to characterize ATS-L observed data with prediction 
errors of 0.89 and 1.67 for AUC and Cmax, respectively. It has to be noted that, in 
our model, lactonization has only been assessed enzymatically through UGTs. Pre-
systemic lactonization due to the low pH in the stomach had not been incorporated 
into the PBPK model due to structural limitations of the Simcyp® Simulator, as 
only one formation pathway can work at a time. Hydroxylated ATS-L metabolites 
(i.e., 2OH-ATS-L and 4OH-ATS-L) were also well characterized, with PE of 1.01 
and 1.44 for AUC and 0.79 and 1.05 for Cmax, respectively. As these metabolites 
are directly formed after CYP450-mediated hydroxylation of ATS-L, these results 
suggest that considering enzymatic lactonization as the main, but not the only, 
pathway of ATS-L formation is a good approximation to global ATS PK.  

It had been previously suggested that the main formation pathway of 
hydroxylated metabolites of ATS (i.e., 2OH-ATS and 4OH-ATS) is the ATS 
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lactonization, CYP450-mediated hydroxylation and subsequent hydrolysis of the 
hydroxylated isomers of ATS-L [70]. Direct hydroxylation of ATS would run 
simultaneously to this metabolic route but playing a minor role in overall ATS 
elimination. Therefore, it is not surprising that exposure to 2OH-ATS was not 
accurately predicted by our model, with AUC and Cmax PE of 0.57 and 0.33, 
respectively, at 20 mg dose level. In our PBPK model inter-system extrapolation 
factors (ISEF) for the IVIVE have not been optimised, and validated ISEFs for the 
corresponding in vitro system have been directly used. 

The ATS PBPK model was able to properly describe clinically relevant DDIs with 
both CYP3A4 and OATPs inhibitors. According to these results, the mechanisms 
involved in the metabolic processes linked to CYP3A4 (perturbed by itraconazole 
and clarithromycin) were adequately characterized for both ATS and ATS-L, since 
the PE were between 0.66 and 1.45. On the other hand, there was a slight 
underprediction of ATS exposure in the presence of OATP inhibitors (rifampicin), 
although the results obtained were also within the accepted 2-fold error range 
(0.61 and 0.79 for AUC and Cmax, respectively). Nonetheless, this outcome 
confirmed the validity of the relative contribution assigned to each OATP isoform 
to overall ATS hepatic uptake that was set to OATP1B1 (53.2%) > OATP1B3 
(37.8%) >> OATP2B1 (9%). 

As Simcyp® Simulator V19 lacked the different genotypes in SLCO1B1, 
phenotypes were considered to better assess the DGI with SLCO1B1 
polymorphisms. In this regard, we stratified the ATS PK for poor (PT), extensive 
(ET), intermediate (IT) and ultra-rapid (UT) transporters, assuming that the 
SLCO1B1*5 variant represents a loss-of-function allele that codifies an OATP1B1 
isoform with reduced activity (i.e., PT). 

The simulations performed revealed a statistically significant difference in ATS CL 
(p < 0.01), as PT would have a 30% lower clearance than ET individuals. 
Consequently, ATS AUC and Cmax would be increased by 40 and 33% (p < 0.05), 
respectively, in individuals carrying the SLCO1B1*5 allele (PT).  

Additionally, our model-based predictions revealed that up to 34.8% of patients 
would have an apparent clearance lower than 414.67 L/h (a threshold that has 
been determined to increase muscle-related adverse events [71]) and, 
consequently, increased ATS and ATS-L exposure. Among these patients, the 
most affected would be individuals carrying the SLCO1B1*5 variant (i.e., PT), as 
63% would be at risk of muscle-related adverse events. In this regard, patients 
at higher risk of suffering muscle discomfort (CL/F ≤ 414.67 L/h) would have 2.2- 
and 1.76-fold (p < 0.0001) higher ATS and ATS-L AUC, respectively. These results 
are consistent with the reported hazard ratio of 1.4 (95% CI: 1.1-1.7, p = 0.02) 
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for suffering statin-induced myopathies (SIMs) and could explain the treatment 
discontinuation among these patients (odds ratio 1.67, p = 0.0001) observed in 
the context of routine clinical care [41]. Our predictions are also in agreement 
with the reported increased levels of ATS-L (p < 0.01) and the 2.3-fold prolonged 
ATS t1/2 (p < 0.01) that patients with SIM have when compared with patients not 
suffering from muscle-related adverse events [72], thus being able to anticipate 
and mechanistically assess an exposure-safety relationship. 

 

Optimising target expression and elimination 
mechanisms of therapeutic monoclonal antibodies in 
oncology indication: case-studies with pertuzumab, 
trastuzumab and cetuximab 

This section summarizes the main findings of the research work previously 
described in Chapter 5. 

The activation of transmembrane tyrosine kinases receptors underlies the 
pathogenesis of many human malignancies [73]. Epidermal growth factor receptor 
(EGFR) family constitutes a group of four transmembrane receptors involved in 
signal transduction reactions that regulate cell growth and differentiation [74] and 
has developed in parallel with the evolution of complex organisms [75]. These 
four highly related receptors (i.e., EGFR/HER1/ErbB-1, HER2/ErbB-2/neu, 
HER3/ErbB-3 and HER4/ErbB-4) comprise a cysteine-rich extracellular ligand 
binding site, a transmembrane lipophilic segment, and an intracellular domain 
with tyrosine kinase catalytic activity [76]. The large extracellular domains (ECD) 
of theses receptors constitute an excellent opportunity to target biotherapeutics 
agents rationally designed to disrupt ligand-induced structural changes or 
dimerization as well as to selectively deliver cytotoxic drugs to malignant cells, 
making possible the concept of “magic bullet” proposed by Paul Ehrlich in the 19th 
century. The receptors are found in a variety of tissues as monomers and can 
associate with each other after ligand binding to form homodimers (i.e., HERx-
HERx) or heterodimers (i.e., HERx-HERy) [74].  

 

PBPK modelling of HER2-directed monoclonal antibodies 

HER2 overexpression in tumour tissue was implemented applying a 25-fold factor 
to HER2 concentration in normal tissues, as median HER2 concentration in normal 
and cancerous tissues have been determined to be 1293.8 and 31656 pg/mg 
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protein, respectively [77]. The target-mediated drug disposition (TMDD) model 
developed incorporates a constant option in receptor abundance (Rmax) because 
neither pertuzumab (PTZ) nor trastuzumab (TTZ) binding to HER2 does increase 
the internalization or degradation rate of the receptor [78-80]. 

The role of circulating HER2-ECD (cHER2-ECD) on plasmatic levels of anti-HER2 
monoclonal antibodies (mAbs) is unclear due to incoherent reports [81-84]. 
Therefore, the shedding process was not included in the PBPK modelling of HER2-
directed mAbs to increase model parsimony and structural and model parameters 
identifiability. 

Optimisation of HER2 degradation rate constant (kdeg) in normal tissues to a final 
value of 0.398 h-1 led to a PBPK model structure able to properly describe the time 
course of PTZ across different dose levels. In line with previous reports 
highlighting the impact of HER2 overexpression in disease on impairment of 
endocytic and endosomal sorting machinery, apparently because of limiting levels 
of the regulatory molecules involved in these processes [85-87], our model-based 
findings suggest that HER2 kdeg in tumour tissue is likely to be 5-fold lower than 
in normal tissues (i.e., 0.079 h-1). This is also in agreement with mathematical 
models on HER2 intracellular routing, where overexpression of HER2 has been 
shown to shunt ligand-activated receptors to recycling fates [88], which is likely 
to lower the kdeg. 

Numerical assessment of the predictive power of the model further verified PTZ-
HER2 PBPK framework as computed average fold error (AFE) and absolute AFE 
(AAFE) fell between the desired range of satisfactory results for PK exposure 
parameters AUC and Cmax and with PPE% below 15%. HER2 final parameterisation 
from the PBPK modelling of PTZ was successfully cross validated through PBPK 
modelling of TTZ, with AFE, AAFE and PPE% values for AUC and Cmax of 1.13, 1.16 
and 16%, and 1.01, 1.07 and 7%, respectively. 

 

PBPK modelling of EGFR-directed monoclonal antibodies 

Graphical assessment of cetuximab (CTX) model performance after the 
incorporation of an additional systemic clearance of 0.033 L/h revealed good 
model parameterisation as observed data fell within the 5th and 95th percentiles 
of the simulated profiles regardless the dose level. Additionally, numerical 
validation through the determination of AFE and AAFE showed a satisfactory 
predictive power of AUC and Cmax of the PBPK model developed, with PPE% 13% 
for AUC and 10% for Cmax. 
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The unexpected rapid clearance of CTX (with an unusually short t1/2 of 3-4 days) 
can be suggestive of alternative elimination processes not assessed by the non-
specific (catabolic clearance) nor specific (target-mediated) routes of elimination. 
So, the need for the non-specific non-catabolic systemic clearance of 0.033 L/h 
added to the above-mentioned elimination mechanisms could be related to: i) the 
efficient binding to FcγRIIIA receptor, ii) the binding to C1q subcomponent, and/or 
iii) the proteolytic cleavage of the lower hinge region by tumour-matrix 
metalloproteinases [89]. Understanding the biotransformation processes of 
therapeutic proteins (which must be clearly differentiated from specific or target-
mediated and non-specific or catabolic elimination pathways) is of high value early 
on in drug discovery and development in order to detect vulnerable positions, re-
engineer the molecule to replace the labile motive and ultimately design more 
stable drug candidates with better in vivo PK properties [90].  

The PopPBPK modelling strategy proposed (see Figure 7 below) would have two 
major applications in the clinical pharmacology program of therapeutic mAbs 
development process. Firstly, this PBPK modelling strategy provides clinical 
validation of target expression data which is then useful in developing prospective 
PBPK models for mAbs targeting same receptors in preclinical stage or as “back-
up” lead molecules [91]. Secondly, validated PBPK models may be directly 
employed to predict i) PK in various clinical scenarios of interest (e.g., different 
dosage regimens to mitigate safety related issues), ii) local concentrations of mAb 
in specific tissues or at target tissues, and iii) receptor occupancy achieved with a 
particular dosing regimen. 

 
Figure 7. Optimisation of drug and system-related parameters through PBPK modelling and simulations. 
mAb: monoclonal antibody; B/P: blood-to-plasma concentration ratio; fu: fraction unbound in plasma; 
CL: clearance; fa: fraction of dose absorbed; F: bioavailability; KD: mAb-target binding equilibrium 
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constant; kon: second-order mAb-target association rate constant; koff: first-order mAb-target dissociation 
rate constant; kint: mAb-target internalization rate constant; Rmax: target abundance; kdeg: first-order 
degradation rate constant of the target (target turnover); ksyn: zero-order production/synthesis rate 
constant of the target 
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Conclusions 
 
 
 

1. Successful validation of PhysPK Biosimulation Software was achieved 
using NONMEM as the control basis for judging accuracy and precision of 
the results. 

2. PBPK models with multilevel and acausal object-oriented modelling 
approaches allow for precise description of the time-course of the drug by 
independently considering simulation components from mathematical 
functions of the biological system. 

3. A PBPK/PD model accurately describing the pharmacokinetic properties of 
MBQ-167 in different mouse tissues and its anti-tumour effect in HER2+ 
and Triple Negative breast cancer cell lines following intraperitoneal 
administration has been successfully developed. 

4. Tumour eradication for HER2+ cell line and tumour stabilization for Triple 
Negative cell line are anticipated when MBQ-167 is administered at 10 
mg/kg once or twice daily. 

5. The atorvastatin PBPK model developed properly describes the time 
course of atorvastatin and its metabolites in both open acid and lactone 
forms. The external validation through the prediction of clinically relevant 
DDIs endorses the role of the metabolic and transporters pathways 
considered. 

6. The quantitative assessment of the DGI between SLCO1B1 
polymorphisms and atorvastatin has revealed that up to 63% of patients 
carrying the SLCO1B1*5 variant are at increased risk of suffering muscle-
related adverse events. 

7. Optimisation of target abundance and clearance mechanisms of biologic 
drugs through PBPK modelling and simulation highlights the potential of 
this modelling technique in model informed drug discovery and 
development
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