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NOTE TO THE READER

According to the University of Valencia Doctorate Regulation1 this PhD dissertation is presented
as a compendium of publications. This regulation requires at least three publications in
international journals containing the results of the conducted research. This thesis includes three
papers and also describes work that has recently been submitted to a scientific journal and is still
under review. Furthermore, in accordance with the aforementioned regulation and with the aim
to foster the language of the University of Valencia in research and education activity, this PhD
dissertation starts with two abstracts in English and Spanish. In addition, a conclusion
dissertation in English and Spanish are included at the end of the Thesis. Following the
regulations, the main body basically included two parts:

PART I: Extended summary: (1) goals, (2) introduction, (3) methods and results, and (4) conclusions.
PART II: Appendix with journal publications (published and under review).

1 Reglament sobre depòsit, avaluació i defensa de la tesi doctoral aprovat pel Consell de Govern
de 28 de Juny de 2016. ACGUV 172/2016.
Pla d’increment de la docència en valencià (ACGUV 129/2012) aprovat i modificat pel Consell
de Govern de 22 de desembre de 2016. ACGUV 308/2016.
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Abstract

Visual perception is a key to understanding how the brain works because most of the in-
formation is processed by the early visual system and then sent to the high-level cognitive
perception brain regions. The brain functions as a self-organizing, bio-dynamic, and chaotic
system that receives outside information and then decomposes it into pieces of information
that can be processed efficiently and independently.

Those with an interest in computers, image processing, or biological vision will find natural
image statistics to be of great value. As natural images form the basic stimuli in most
vision-oriented tasks, it is of great importance to understand their unique properties and
statistical structure. In this thesis, I show a number of results that look at how the statistical
properties of natural images and how people see them are related.

The work connects psychophysics, deep neural networks, and information theory to perceptual
vision systems to explore how vision processes information from the outside world and how
the information communicated drives functional connectivity between visual regions and
even higher-level brain regions.

This Thesis (compendium of publications) specifically addresses the following scientific
questions, where each goal corresponds to a related journal publication.

Goal 1: Quantifying the information flow in the noisy brain is crucial to understand its
functional connectivity. Mutual information or its extension to multiple nodes, such as total
correlation, could capture the information shared by multiple brain regions. The role of
redundancy in the brain is still not explored up to the last consequences due to the practical
problems in its estimation, and how the redundancy explains basic cognitive functions remains
unclear. In this thesis, we try to propose new answers to the question of communication
between brain regions.

Goal 2: In addition to quantifying small-scale functional connectivity with total correlation,
we want to extended our research to include large-scale functional connectivity. On the one
hand, functional networks derived from total correlation can be different from the ones that
one obtains using other measures so it can reveal yet-to-be-known relations. On the other
hand, anomalies in the networks derived from total correlation can be useful to find some
potential biomarkers for brain diseases.

Goal 3: In particular we want to quantify functional connectivity in the early vision system
using new estimates of total correlation because (1) as opposed to other brain regions,
there are well understood analytical models of the early visual pathway (e.g. based on
linear transforms, divisive normalization and pooling), (2) these visual regions have been
extensively studied from information-theoretic perspectives, and (3) these biological vision
models have strong connections with current artificial neural networks that have gained a
lot of attention nowadays. Our aim is obtaining an analytical description of the functional
connectivity. Analytical results for the visual areas not only provide higher insight into
this fundamental brain function but also, as by product, they could represent a realistic and
configurable ground-truth scenario to test empirical estimators of information to be used in
other (less understood) brain regions.

Goal 4: Today, using deep neural networks to study biological vision is a hot research topic
in the neuroscience community, and deep neural networks indeed accelerate both artificial
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intelligence and neuroscience development. There are multiple artificial architectures trained
for specific goals, and some of them do outperform humans on certain vision tasks. However
we need to be cautious in using these models in biological vision given the functional
difference between artificial deep neural networks and natural networks in the visual brain.
Therefore, we want to explore the similarity and differences between some low-level visual
behavior in humans and in deep neural networks devoted to vision. In particular we will try
to understand the functional origin of the bandwidth limits of early human vision (i.e. the
spatio-temporal and chromatic contrast sensitivity) using autoencoders, and we will compare
information degradation in biological visual areas and in standard artificial networks devoted
to vision.

Based on the above goals, here we will quickly summarize each associated paper:

The first goal-related publication appears in the Neural Networks [1] and we find that
interaction information and total correlation do provide an explicit explanation for quantifying
information flow among multiple brain regions. The differences between mutual information,
interaction information, and total correlation are discussed in this article. In addition, we
proposed a new strategy for calculating the interaction information between three variables
by using total correlation and conditional mutual information in neuroscience in parallel
with other labs. Furthermore, it is unclear how to effectively implement it in real-world
scenarios, and we attempt to address these issues using two information theory estimators,
RBIG and CorEX. To estimate functional connectivity in the brain using the aforementioned
three higher-order information-theoretic approaches, we provided data from both simulation
experiments and actual neural studies. We found that interaction information and total
correlation were both robust in their ability to capture redundancy information for multivariate
variables, suggesting that this method may be applicable to the study of both established and
as-yet-unidentified functional brain connections. Our research shows that we could use this
high-order information theory metric to unravel some meaningful neuroscience problems.

The second goal-related publication appears in the Entropy journal [2] where we extended
the above notion in order to infer a large-scale connection network based on total correlation
and demonstrated the potential use of such networks as biomarkers of changes in the brain.
We applied the concept of total correlation in order to capture these multivariate, large-scale
connections between different brain regions. Through the use of experimental testing, it has
been demonstrated that the aforementioned processes are effective in re-creating multivariate
relationships in the brain. In this investigation, the overall correlation was calculated with
the help of CorEx. The CorEx approach is able to accurately capture the intricacies of
functional connectivity when more than simply a pair of regions in the brain are being
investigated at the same time. Moreover, we tested the approach using data from large-scale
fMRI scans taken while the subjects were in a resting condition. We realized that it was not
possible to identify multivariable relationships by relying solely on pairwise correlation and
mutual information values. The total correlation is a useful method that enables us to cluster
multivariate relationships, which may be understood in a broader sense. Total correlation
measures are an essential tool for figuring out the extensive functional connection that exists
between different parts of the brain. We have shown that total correlation may be used to
assess functional connectivity in a real neural dataset as well as uncover biomarkers that can
be utilized to diagnose brain illnesses, as we indicated earlier.

The third goal-related publication is under review in the Neural Networks [3]. Total Cor-
relation is used to describe the functional connectivity in the visual pathway analytically.
The connectivity between the nodes, within the cortex, and the eventual top-down feedback
can all be adjusted in our neural model, which consists of three layers (retina, LGN, and V1
cortex). We derive analytical results for the three-way Total Correlation and for all possible
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pairwise Mutual Information measures in this multivariate setting (three nodes with multidi-
mensional signals). Simulation and analytical analysis results demonstrate that three-way
Total Correlation captures the impact of distinct intra-cortical inhibitory connections, while
pairwise Mutual Information does not. The presented analytical framework can also be used
to validate Total Correlation empirical estimators. Accordingly, once a reliable estimator has
been identified, the behavior with non-Gaussian signals can be investigated. Despite the fact
that the Gaussian assumption cannot be made, the empirical results with RBIG from natural
signals show the same tendencies. Furthermore, we also use real fMRI recordings to look at
the functional connections in real brain visual regions, for instance, V1, V2, V3, and V4.

The fourth goal focused on the study of similarities and differences between human vision
and deep-nets for vision appears in the Journal of Vision [4] and is the subject of additional
on-going work strictly derived from the other publications in this Thesis. While the JoV uses
a psychophysical approach, the on-going work takes an information theory perspective.

First, from a psychophysical perspective, we reevaluate the importance of low-level vision
tasks in explaining the contrast sensitivity functions (CSFs) in light of 1) the recent trend
of using artificial neural networks for studying vision and 2) the current understanding of
retinal image representations. As a first contribution, we show that autoencoders, a popular
type of convolutional neural networks (CNNs), can learn to perform some low-level vision
tasks (such as retinal noise and optical blur removal) with human-like CSFs in the spatial and
temporal dimensions, but not others (such as chromatic adaptation or pure reconstruction
after simple bottlenecks). Second, we show experimentally that, for some functional goals
(at low abstraction level), deeper CNNs that are better at achieving the quantitative goal
are actually worse at replicating human-like phenomena (such as the CSFs). Consistent
with a growing body of research, our findings add a note of caution about CNNs in vision
science, arguing that their oversimplification of visual processing and reliance on unrealistic
architectures for goal optimization may prevent them from being fully utilized in the study of
human vision.

Second, while the parallels and contrasts between the brain and convolution neural networks
are currently investigated on several levels, there are very few studies that explain them from
an information-theoretical standpoint. In this on-going work, we quantify the degradation of
information along pre-trained AlexNet and VGG16 and in biological visual systems.

Keywords: Perception; Human vision system; Deep neural networks; Contrast sensitiv-
ity functions; Divisive normalization; Information theory; Functional connectivity; Total
correlation; Natural images statistics; Large-scale connectivity; Biomarkers;
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Resumen

1 La percepción visual es clave para entender cómo funciona el cerebro, porque la mayor parte
de la información es procesada por el sistema visual primitivo y enviada después a las regiones
cerebrales de percepción cognitiva de alto nivel. El cerebro funciona como un sistema
autoorganizado, biodinámico y caótico que recibe información exterior y luego la descompone
en trozos de información que pueden procesarse de forma eficiente e independiente.

Las personas interesadas en la informática, el tratamiento de imágenes o la visión biológica
encontrarán de gran utilidad la estadística de imágenes naturales. Dado que las imágenes
naturales constituyen los estímulos básicos en la mayoría de las tareas orientadas a la visión,
es de gran importancia comprender sus propiedades únicas y su estructura estadística. En
esta tesis, muestro una serie de resultados que analizan cómo se relacionan las propiedades
estadísticas de las imágenes naturales y cómo las ven las personas.

El trabajo conecta la psicofísica, las redes neuronales profundas y la teoría de la información
con los sistemas de visión perceptiva para explorar cómo la visión procesa la información del
mundo exterior y cómo la información comunicada impulsa la conectividad funcional entre
las regiones visuales e incluso las regiones cerebrales de nivel superior.

Esta Tesis (compendio de publicaciones) aborda específicamente las siguientes cuestiones
científicas, donde cada objetivo corresponde a una publicación en revista relacionada.

Objetivo 1: Cuantificar el flujo de información en el cerebro ruidoso es crucial para com-
prender su conectividad funcional. La información mutua o su extensión a múltiples nodos,
como la correlación total, podría captar la información compartida por múltiples regiones
cerebrales. El papel de la redundancia en el cerebro no se ha explorado hasta las últimas
consecuencias debido a los problemas prácticos que plantea su estimación, y sigue sin estar
claro cómo explica la redundancia las funciones cognitivas básicas. En esta tesis, intentamos
proponer nuevas respuestas a la cuestión de la comunicación entre regiones cerebrales.

Objetivo 2: Además de cuantificar la conectividad funcional a pequeña escala con la cor-
relación total, queremos ampliar nuestra investigación para incluir la conectividad funcional
a gran escala. Por un lado, las redes funcionales derivadas de la correlación total pueden ser
diferentes de las que se obtienen utilizando otras medidas, por lo que pueden revelar rela-
ciones aún por conocer. Por otro lado, las anomalías en las redes derivadas de la correlación
total pueden ser útiles para encontrar algunos biomarcadores potenciales de enfermedades
cerebrales.

Objetivo 3: En particular, queremos cuantificar la conectividad funcional en el sistema
de visión temprana utilizando nuevas estimaciones de la correlación total porque (1) a
diferencia de otras regiones cerebrales, existen modelos analíticos bien comprendidos de
la vía visual temprana (por ejemplo, basados en transformaciones lineales, normalización
divisoria y agrupación), (2) estas regiones visuales han sido ampliamente estudiadas desde
perspectivas de teoría de la información, y (3) estos modelos biológicos de visión tienen
fuertes conexiones con las actuales redes neuronales artificiales que han ganado mucha
atención en la actualidad. Nuestro objetivo es obtener una descripción analítica de la
conectividad funcional. Los resultados analíticos para las áreas visuales no sólo proporcionan
una mayor comprensión de esta función cerebral fundamental sino que también, como

1Traducido del inglés por Qiang Li
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producto derivado, podrían representar un escenario realista y configurable de verdad básica
para probar los estimadores empíricos de información que se utilizarán en otras regiones
cerebrales (menos comprendidas).

Objetivo 4: Hoy en día, el uso de redes neuronales profundas para estudiar la visión biológica
es un tema de investigación candente en la comunidad neurocientífica, y las redes neuronales
profundas aceleran de hecho el desarrollo tanto de la inteligencia artificial como de la
neurociencia. Existen múltiples arquitecturas artificiales entrenadas para objetivos específicos,
y algunas de ellas superan a los humanos en determinadas tareas de visión. Sin embargo,
debemos ser cautos a la hora de utilizar estos modelos en la visión biológica, dada la
diferencia funcional entre las redes neuronales profundas artificiales y las redes naturales
del cerebro visual. Por lo tanto, queremos explorar las similitudes y diferencias entre
algunos comportamientos visuales de bajo nivel en humanos y en redes neuronales profundas
dedicadas a la visión. En particular, intentaremos comprender el origen funcional de los
límites de ancho de banda de la visión humana temprana (es decir, la sensibilidad al contraste
espacio-temporal y cromático) utilizando autocodificadores, y compararemos la degradación
de la información en áreas visuales biológicas y en redes artificiales estándar dedicadas a la
visión.

Basándonos en los objetivos anteriores, a continuación resumiremos rápidamente cada
artículo.

La primera publicación relacionada con objetivos aparece en Neural Networks [1] y descub-
rimos que la información de interacción y la correlación total sí proporcionan una explicación
explícita para cuantificar el flujo de información entre múltiples regiones cerebrales. Las
diferencias entre la información mutua, la información de interacción y la correlación total se
discuten en este artículo. Además, proponemos una nueva estrategia para calcular la informa-
ción de interacción entre tres variables utilizando la correlación total y la información mutua
condicional en neurociencia en paralelo con otros laboratorios. Además, no está claro cómo
aplicarla eficazmente en escenarios del mundo real, e intentamos abordar estas cuestiones
utilizando dos estimadores de la teoría de la información, RBIG y CorEX. Para estimar la
conectividad funcional en el cerebro utilizando los tres enfoques teóricos de la información
de orden superior mencionados, aportamos datos tanto de experimentos de simulación como
de estudios neuronales reales. Descubrimos que tanto la información de interacción como
la correlación total eran robustas en su capacidad de capturar información redundante para
variables multivariantes, lo que sugiere que este método puede ser aplicable al estudio de
conexiones cerebrales funcionales tanto establecidas como aún no identificadas. Nuestra
investigación demuestra que podríamos utilizar esta métrica de la teoría de la información de
alto orden para desentrañar algunos problemas significativos de la neurociencia.

La segunda publicación relacionada con el objetivo aparece en la revista Entropy [2], donde
ampliamos la noción anterior para inferir una red de conexiones a gran escala basada en
la correlación total y demostramos el uso potencial de dichas redes como biomarcadores
de cambios en el cerebro. Aplicamos el concepto de correlación total para captar estas
conexiones multivariantes a gran escala entre diferentes regiones cerebrales. Mediante el uso
de pruebas experimentales, se ha demostrado que los procesos mencionados son eficaces
para recrear relaciones multivariantes en el cerebro. En esta investigación, la correlación
global se calculó con ayuda de CorEx. El enfoque CorEx es capaz de captar con precisión
las complejidades de la conectividad funcional cuando se investigan al mismo tiempo más de
un par de regiones del cerebro. Además, probamos el enfoque utilizando datos de escáneres
fMRI a gran escala tomados mientras los sujetos estaban en estado de reposo. Nos dimos
cuenta de que no era posible identificar relaciones multivariables basándonos únicamente
en los valores de correlación por pares y de información mutua. La correlación total es
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un método útil que nos permite agrupar relaciones multivariables, que pueden entenderse
en un sentido más amplio. Las medidas de correlación total son una herramienta esencial
para averiguar la extensa conexión funcional que existe entre las distintas partes del cerebro.
Hemos demostrado que la correlación total puede utilizarse para evaluar la conectividad
funcional en un conjunto de datos neuronales reales, así como para descubrir biomarcadores
que pueden utilizarse para diagnosticar enfermedades cerebrales, como hemos indicado
anteriormente.

La tercera publicación relacionada con el objetivo está en revisión en la revista Neural
Networks [3]. La correlación total se utiliza para describir analíticamente la conectividad
funcional en la vía visual. La conectividad entre los nodos, dentro de la corteza, y la eventual
retroalimentación descendente pueden ajustarse en nuestro modelo neural, que consta de tres
capas (retina, LGN y corteza V1). Derivamos resultados analíticos para la Correlación Total
de tres vías y para todas las medidas posibles de Información Mutua por pares en este entorno
multivariante (tres nodos con señales multidimensionales). Los resultados de la simulación y
del análisis analítico demuestran que la Correlación Total de tres vías capta el impacto de
las distintas conexiones inhibitorias intracorticales, mientras que la Información Mutua por
pares no lo hace. El marco analítico presentado también puede utilizarse para validar los
estimadores empíricos de Correlación Total. Por consiguiente, una vez que se ha identificado
un estimador fiable, se puede investigar el comportamiento con señales no gaussianas. A
pesar de que no se puede hacer la suposición gaussiana, los resultados empíricos con RBIG
a partir de señales naturales muestran las mismas tendencias. Además, también utilizamos
grabaciones fMRI reales para observar las conexiones funcionales en regiones visuales
cerebrales reales, por ejemplo, V1, V2, V3 y V4.

El cuarto objetivo centrado en el estudio de las similitudes y diferencias entre la visión
humana y las redes profundas para la visión aparece en el Journal of Vision [4] y es objeto de
un trabajo en curso adicional estrictamente derivado de las otras publicaciones de esta Tesis.
Mientras que el JoV utiliza un enfoque psicofísico, el trabajo en curso adopta una perspectiva
de teoría de la información.

En primer lugar, desde una perspectiva psicofísica, reevaluamos la importancia de las tareas
de visión de bajo nivel para explicar las funciones de sensibilidad al contraste (CSFs) a la
luz de 1) la reciente tendencia a utilizar redes neuronales artificiales para estudiar la visión
y 2) la comprensión actual de las representaciones de la imagen retiniana. Como primera
contribución, mostramos que los autocodificadores, un tipo popular de redes neuronales
convolucionales (CNNs), pueden aprender a realizar algunas tareas de visión de bajo nivel
(como la eliminación del ruido retiniano y del desenfoque óptico) con CSFs similares a las
humanas en las dimensiones espacial y temporal, pero no otras (como la adaptación cromática
o la reconstrucción pura después de simples cuellos de botella). En segundo lugar, mostramos
experimentalmente que, para algunos objetivos funcionales (a bajo nivel de abstracción), las
CNNs más profundas que son mejores para alcanzar el objetivo cuantitativo son en realidad
peores para replicar fenómenos similares a los humanos (como los CSFs). En consonancia
con un creciente cuerpo de investigación, nuestros hallazgos añaden una nota de precaución
sobre las CNN en la ciencia de la visión, argumentando que su simplificación excesiva del
procesamiento visual y la dependencia de arquitecturas poco realistas para la optimización
de objetivos pueden impedir que se utilicen plenamente en el estudio de la visión humana.

En segundo lugar, aunque los paralelismos y contrastes entre el cerebro y las redes neuronales
de convolución se investigan actualmente a varios niveles, hay muy pocos estudios que los
expliquen desde el punto de vista de la teoría de la información. En este trabajo, cuantificamos
la degradación de la información a lo largo de AlexNet y VGG16 pre-entrenadas y en sistemas
visuales biológicos.
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Chapter 1

Objectives and Organization of the Thesis

1.1 Research Objectives

1. Objective 1 Solving the problems of pair-wise measures of neural functional con-
nectivity by using multivariate information theory measures, for instance, interaction
information and total correlation. In applied neuroscience research, interaction in-
formation and total correlation are neglected and little explored compared to mutual
information. Interaction information and total correlation do not directly describe
quantification of information flow between brain regions in neuroscience. The goal is
to illustrate the distinctions between the neuroscience concepts of mutual information,
interaction information, and total correlation. On the other hand, how to appropriately
use it in real-world scenarios

2. Objective 2 The development of techniques to estimate total correlation can be applied
to quantify large-scale functional connectivity and biomarkers. We applied total
correlation to large-scale functional connectivity and brain disease.

3. Objective 3 The development of an analytical but realistic neural scenario to check
functional connectivity measures based on information theory. As an analytical tool,
total correlation can be used to characterize the functional connectivity of the visual
pathway. Our neural model consists of three layers, allowing us to modify the connec-
tivity between the nodes, the connectivity within the cortex, and the top-down feedback
that is ultimately implemented. Further, we analyze the functional connections between
real V1, V2, V3, and V4 visual regions of the brain using fMRI recordings.

4. Objective 4 The similarities and differences between the brain and convolutional
neural networks are explored at various levels. There haven’t been many investigations
into this topic that use psychophysical and information theoretical explanations. First,
modeling low-level visual properties, CSF with autoencoder, and when trained to
perform fundamental low-level vision tasks, it may create CSFs in the spatio-chromatic
and temporal dimensions similar to those of humans. Second, we compared the
similarities and differences between pre-trained AlexNet, VGG16 and visual systems
and tried to understand how the visual information processing between pre-trained
neural networks and real visual systems work. We also explored how the redundancy
altered in visual and artificial neural networks. It has significant meaning for us to
understand visual and artificial neural networks from an information-theoretical view.

1



2 Chapter 1. Objectives and Organization of the Thesis

1.2 Organization of the Thesis

The thesis basically includes two parts. PART I consists of goal description, introduction,
methodology and results, and conclusions, respectively. PART II mainly includes scientific
publications. The following is a more detailed structure:

1. PART I

• Abstract (English, and Spanish)

• Chapter 1: Objectives and Organization of the Thesis

• Chapter 2: Introduction: Background

• Chapter 3: Methodology and Results

• Chapter 4: Conclusions in English

• Chapter 5: Conclusions in Spanish

2. PART II

• Appendix with Scientific Publications



Chapter 2

Introduction: Background

Neuroscience over the next 50 years is
going to introduce things that are
mind-blowing.

David Eagleman

In this brief introduction, we will go over some of the most foundational methods and
concepts used in our study of human vision, including psychophysics, deep neural networks,
and information theory.

2.1 Color Vision and Contrast Sensitivity Functions

2.1.1 Color Vision: Opponent Colors Theory

The theory of opponent colors will be applied to a publication paper in the Journal of Vision
[4], specifically when we synthesize achromatic and chromatic sinusoidal waves with varying
frequencies. As a result, we will quickly review the fundamental concepts of opponent color
theory here.

The trichromatic hypothesis is a useful tool for explaining how different types of cone
receptors may sense light of varying wavelengths [5, 6]. On the other hand, the opponent
process theory provides an explanation for how these cones connect to the nerve cells in
our brains that are responsible for determining how we actually experience colors. The
trichromatic hypothesis, on the other hand, describes how color vision takes place at the
receptor level, and the opponent process theory explains how color vision takes place at
the brain level. According to the opponent process theory, white and black, red and green,
and yellow and blue are the three channels that make up the three pairs of opponent color
channels [6–8]. This theory postulates that the manner in which humans perceive colors is
governed by three contrasting systems. Each pair of opponent colors works to suppress the
other.

When the outputs of all three types of cones are added together (L+M+S), an achromatic
response is produced. Due to the fact that the cone signals are differentiated from one another,
it is possible to build red-green (L−M+S) and yellow-blue (L+M−S) opponent signals.
As a result of translating LMS signals into opponent signals, the color information sent over

3
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the three channels is no longer related to each other. This makes signal transmission more
effective and makes noise less of a problem [9].

2.1.2 Color Vision: Color Constancy

The theory of color constancy will be applied to a publication paper in the Journal of Vision
[4], specifically when we explore color constancy in deep neural networks. As a result, we
will quickly review the fundamental concepts of color constancy here.

Vision is the process through which we see color, and color constancy refers to surfaces in
a scene that are unaffected by changes in illumination [10]. When used in a wide variety
of natural settings, digital cameras and machine vision systems face a significant challenge
when it comes to determining how the illumination affects their images. The human visual
system is consistent, can adjust to different levels of illumination, and is a very significant
cognitive mechanism for the processing of color information. There are a wide number of
illumination-independent descriptors that have been produced as a response to varying levels
of physical or biological activity, and every one of these descriptors has proved successful
on certain vision tests. In recent years, there has been a big jump in the number of people
working on deep neural networks. These networks are very good at color constancy [11–13].

2.1.3 Spatial Vision: Contrast Sensitivity Functions

The concept of contrast sensitivity functions will be applied to a publication paper in the
Journal of Vision [4], specifically when we try to reconstruct it from deep neural networks.
As a result, we will quickly review the fundamental concepts of contrast sensitivity functions
here.

The threshold reaction to contrast (sensitivity is the inverse of threshold) is used to build
a contrast sensitivity function [14–16]. This response can be expressed as a function of
either spatial or temporal frequency. Primate vision systems have a high degree of sensitivity
to both spatial and temporal frequency, which is an extremely crucial component of the
cognitive mechanisms underlying vision [17]. Too many psychophysical experiments are
done to study the qualities of human vision, and from these experiments [14–16], the human
contrast sensitivity functions are drawn, as shown in Fig. 1.

It provides a conceptual illustration of typical contrast sensitivity functions for luminance
(black–white) and chromatic (red–green and yellow–blue at constant luminance) contrasts at
constant luminance [14, 16]. The luminance contrast sensitivity function has a band-pass
characteristic, and its peak sensitivity is located somewhere around 5 cycles per degree.
Additionally, the low-pass characteristics of the chromatic mechanisms show that edge
detection and enhancement do not take place along these dimensions [16]. Because there are
fewer S cones in the retina, the blue–yellow chromatic CSF has a lower cutoff frequency than
the red–green chromatic CSF. This is because blue and yellow are complementary colors. It
is also interesting to note that the luminance contrast sensitivity function (CSF) is noticeably
higher than the chromatic contrast sensitivity functions. This suggests that the visual system
is more sensitive to small changes in luminance contrast than in chromatic contrast [14–16].
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Figure 1: Spatial contrast sensitivity functions for luminance and chromatic contrast. The
graphic shows the spatial contrast sensitivity functions for luminance and chromatic contrast in
one-dimensional, two-dimensional, and three-dimensional angles.

2.2 Redundancy and Linear Representation in Visual Brain

The redundancy reduction and linear transform will be used in the paper that is under review
in the Neural Networks [3]. Data processing inequality will be used, specifically when we
investigate information flow in the biological linear plus nonlinear vision model. In order
to do this, we will give a quick overview of some of the most important concepts about
redundancy and the linear transform.

Natural images are redundant, and in order to achieve efficient processing of natural image
information, a sequence of decorrelations will be applied from the retinal image to the primary
visual brain [18, 19]. Because of the information bottleneck in the human visual system and
the efficient coding hypothesis, the neurons will adjust to the statistical features of natural
images to maximize the encoding of useful information while ignoring information that is not
relevant to the task at hand [20, 21]. Principal component analysis is a dimension reduction
and decorrelation approach that is used in digital image processing [22]. It transforms
a correlated multivariate distribution into orthogonal linear combinations of the original
variables. This technique is typically used to decrease redundancy in modeling the visual
system. In comparison to principal component analysis (PCA), independent component
analysis (ICA) is a demixing technique that is more effective at decreasing redundancy and
may separate a multivariate signal into additive subcomponents. Both of the approaches
described above have already seen widespread use to minimize duplication in natural images
represented by neural representation [23–26].

2.3 Divisive Normalization

The normalization and gain control will be applied in the paper that is under review in the
Neural Networks [3], specifically when we explore biological linear plus nonlinear visual
model. In order to do this, we will give a quick overview of some of the most important ideas
in divisive normalization.

There are many linear and nonlinear models used to describe how the visual system works.
The linear parts of these models focus mostly on the early stages of color processing, receptive
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fields, and contrast sensitivity functions of the visual system. The nonlinear parts are often
modeled with divisive normalization, which is a canonical neural computation [27, 28].
The process of normalization involves computing a ratio that compares the response of an
individual neuron to the activity that is totaled across a group of neurons.

Not only has divisive normalization already been widely used to model properties of the visual
system and even some high-level visual functions [29], but it has also been applied to the
evaluation of image quality [30, 31], the representation of images [32], and the development
of deep neural networks, for instance, AlexNet [33]. The matrix computation for the divisive
normalization can be expressed as a formula as follows:

z = f (e) = sign(e) ·κ · |e|γ
b+H · |e|γ (2.1)

where nonlinear signal, z, results from a divisive normalization transform, f (·), of the outputs
of the linear receptive fields at the previous intermediate layer, e. Note that the division,
the exponent, and the absolute values in f (·) are Hadamard (element-wise) operations [34],
and the matrix H in the denominator represents the interaction between the neurons of the
previous cortical layer e.

2.4 Assessing Biological Plausibility through Image Quality

The image quality assessment will be applied to evaluate our biological model’s performance
in the paper that is under review in the Neural Networks [3], specifically when we explore
model performance compared with human vision. In order to do this, we will give a quick
overview of some of the most important ideas in image quality assessment.

Image quality assessment is an open problem for digital equipment and it’s also connected to
digital image or video compression, transmission, and decompression, with the elimination
of coding and spatial redundancy, which use some of the characteristics of the human
visual system [22, 35–37]. Image quality will directly affect the good and the bad of visual
sense because the goal of image quality assessment is to predict the quality of an image as
perceived by human observers. Therefore, there is a large body of image quality models that
were developed based on some general or specific properties of statistics or human vision
perceptual functions [38]. The natural images presented and processed in human vision
systems and feature-based computing in each of the early vision layers were done, then
transmitted information to the cortex for deep processing. There are four main stream image
quality assessment approaches so far: full-reference, reduced-reference, and no-reference
image quality assessment approaches [39, 40], respectively, and the Just-noticeable difference
(JND), which is one of the important metrics, is defined as the smallest intensity change in
an image that can be noticed by the human vision system [41, 42]. As we mentioned earlier,
the assessment of image quality is also connected to the human vision system (HVS). It is
imperative that the JND be greater than any discernible level of distortion.

2.5 Deep Neural Networks and the Visual Cortex

Visual neuroscientists have been studying convolutional neural networks as models of visual
processing to better understand human information processing because it is a shared language
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between machine vision and biological vision [43–45]. However, these models are usually
trained in a supervised manner on object classification, but supervised learning is usually
considered biologically unrealistic. Therefore, unsupervised learning is gradually getting
more attention in the neuroscience field because it works more approximately the brain at
some levels. We try to address these scientific problems in our paper, which was published in
the Journal of Vision [4].

As we mentioned in the beginning, today, with the rise of deep learning, a lot of great
achievements have been made, and many amazing deep learning architectures and related
algorithms are still in development [46–48]. One of the major effect fields is computer
vision [46, 49–51], and to be honest, deep learning accelerates machine vision development,
and it also improves industry efficiency because artificial intelligence has already widely
fusion into our daily lives.

The intersection between deep learning and neuroscience is also getting more and more
attention because many computer vision approaches come from the brain. Some previous
studies have already proved that brains and deep networks share qualitative similarities
and differences [52–55]. In the beginning, the primary neural network was inspired by
the human vision system, and it could model some specific low-level vision properties,
mainly based on the way of feature processing in the human vision system, for instance,
perceptrons [56], neocognitrons [57], and so on. Later, some improved neural networks were
proposed based on neuron properties and hierarchical human vision systems, and all of them
have achieved good performance on some computer vision tasks, such as classification [58,
59], because these neural networks are more approximations of real vision systems [60].
The big milestone event is AlexNet [33]. It competed in the ImageNet Large Scale Visual
Recognition Challenge, and it achieved great performance compared to other previous neural
networks [59]. From here, convolution neural networks have made leaps and bounds, and
they have also achieved great performance on various computer vision tasks, for instance,
classification [59], segmentation [61], saliency prediction [62], and so on. Later researchers
proposed recurrent neural networks, which are considered memory mechanism, and pushed
convolution neural networks to more functionality [63, 64]. As we mentioned above, using
deep learning to study biological vision is a major way to inspire visual neuroscientists
to understand the brain through deep neural networks [65–67]. Such as, can we use deep
learning to advance neuroscience [68]? At the same time, it can inspire computer scientists
to develop more realistic, functional, low-cost deep neural networks. For example, can we
learn from the brain to improve deep learning?

2.6 Functional Connectivity via Information Theory

2.6.1 Information Theory in Neuroscience

The information theory will be applied to a publication paper in the Neural networks [1],
Entropy [2], and Neural Networks [3] under review, specifically when we explore high-
order information communicated in the human brain. In order to do this, we will give a
quick overview of some of the most important ideas in information theory, such as mutual
information and total correlation.

Information theory has a long and distinguished role in cognitive science and neuroscience.
One of the important ways to study the brain is the quantity of information flow or share
between synapses, neurons, and brain regions [69]. With the development of neuroimaging
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techniques and theories, it has become possible to specify the relationship between informa-
tion quantities and brain activation, allowing us to fully study brain functions associated with
information processing [70, 71].

As we mentioned above, quantifying the information that is coupled between neurons or
brain regions has rapidly become an important area of study in the field of neuroscience.
Information theory is usually used to figure out how information is passed between neurons
or parts of the brain. This can be compared to the information that is conveyed in biological
systems such as the stimulus–response, neurons–neurons, or brain regions–brain regions
function, as well as to the highest potential information transfer for effective and low-
cost coding of information. These sorts of comparisons are essential since they validate
the assumptions that are made during any neurophysiological investigation. Signals from
functional magnetic resonance imaging can be used to create a network representation of the
functional connections found in the human brain. Mutual information (MI), often known
as a measure of non-directional connectivity [72–74], is one of the functional connectivity
measures that are utilized in the analysis of fMRI data. It permits the estimation of both
linear and non-linear statistical relationships between time series and can be used to discover
functional coupling [75]. Additionally, it enables the assessment of functional coupling.
MI analysis may be useful in understanding and quantifying the nonlinear transmission of
information within the brain because neural dynamics almost certainly comprises a great
number of highly nonlinear processes [76].

Beyond mutual information, Total Correlation is a generalization of mutual information that
has been studied extensively in the fields of probability theory and information theory. [77].
It is also known as the multivariate constraint or multiinformation [78]. Here we recall the
definitions of the descriptors compared in this work (Mutual Information [79] and Total
Correlation [77]), in terms of Entropy:

I(x,y) = h(x)+h(y)−h(x,y) (2.2)

T (x,y,z) =

(
n

∑
i=1

h(xi)+h(yi)+h(zi)

)
−h(x,y,z) (2.3)

where vector x ∈ Rn is same as vector y, and z, and h(·) stands for the (univariate or joint)
entropy of the corresponding (scalar or vector) variables. From Eq.2.3, we find that total
correlation can be estimated through marginal entropy and joint entropy, and marginal
entropy could be easy to estimate, but joint entropy is hard to directly estimate, but there are
some novelty estimators, for instance, Rotation-based Iterative Gaussianization (RBIG) [80],
Correlation Explanation (CorEx) [81], and the Matrix-based Rényi’s entropy [82]. We
have already used some of the above estimators in our studies to solve some neuroscience
problems.

2.6.2 Functional Connectivity

The functional connectivity will be applied to a publication paper in the Neural networks [1],
Entropy [2], and Neural Networks [3] under review, specifically when we explore information
communicated in the human brain. As a result, we will go over the fundamental concepts of
functional connectivity quickly in the following section.

The brain regions are connected together at a structural and functional level to drive high-level
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Figure 2: Connectivity at multiple scales is functional. The graph illustrates that functional
connectivity happens at multiple scales in the human brain. The three main categories are spatial,
temporal, and topological, respectively. Spatial functional connectivity is mainly estimated based on
spatial brain regions, but temporal functional connectivity mainly considers connectivity alteration
with time involvement, for instance, brain development and so on. Topological functional connectivity
focuses on how each brain region interacts with one another and quantifies that interaction using graph
theories. The figure is adapted from [83].

cognitive behaviors [83, 84] (see Figure. 2). The structure of connectivity exists physically,
and it is primarily through fibers that connect wired brain regions. However, beyond structural
connectivity, there are a lot of mental diseases related to altered functional connectivity, and
since functional connectivity is mainly defined via statistics, it plays a significant role in
understanding both basic cognitive mechanisms and some mental diseases. As previously
stated, the way statistical approaches are defined has a direct impact on functional connectivity
metrics, and there is a large body of metrics used to measure functional connectivity between
brain regions [85]. One common metric is Pearson correlation, and it opens the door to
quantifying information coupled between brain regions [86]. However, based on their own
application limitations, information theory concepts gradually gain researchers’ attention. At
the same time, information theory begins to connect to neuroscience research, allowing us to
find more evidence about information coupled or flowing between or among brain regions [1,
3]. Under the information theory framework, mutual information is one of the most popular
metrics to quantify indirect information shared between brain regions because it captures
both linear and nonlinear information compared to Pearson correlation. In the meantime,
researchers are interested in the direction of information flow or how brain regions cause each
other. Therefore, some directed information flow metrics have been developed, for instance,
Granger causality [87], transfer entropy [88, 89], and so on.

As we mentioned before, if most of the information goes into the brain through vision,
then how does the brain solve vision? One of the important ways is that information is
hierarchically transmitted to other brain regions, which keeps their causal effects separate
from each other. The data we used is from fMRI, and fMRI measures brain activity by
detecting changes associated with blood flow, and this technique relies on the fact that
cerebral blood flow and neuronal activation are coupled [85]. When an area of the brain is in
use, blood flow to that region also increases. It has already been widely used to study brain
functions and some mental diseases [90–92].
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Graphical Summary of the Introduction

Figure 3: A brief summary of the introductory concepts To help the reader more easily
and clearly grasp the important concepts of visual functions. Each concept listed in the circle
is introduced in the introduction section.



Chapter 3

Methodology and Results

3.1 Functional Connectivity Inference using Multivariate Infor-
mation Measures

Without the physical world, Ideas will
not exist.

Joey Lawsin

3.1.1 Open Issues in Using Information Theory for Connectivity

In 1948, Shannon introduced information theory as the first proposal for resolving issues of
information transmission and compression across a noisy communication channel between
a sender and a receiver [93]. Learning how information is transferred between neurons,
whether on a microscopic or macroscopic scale, is a perennially pressing scientific question.
Therefore, understanding brain function requires investigating information exchange across
brain areas and how cell activity couples together to drive cognitive activities. Mutual
information is a typical information-theoretic method used to quantitatively explain the
dependent connection between two random variables [79, 93]. Neuroimaging, an imaging
method used to examine brain function and neurological disorders, has long made use of
mutual information to describe the interaction between various neurons and gain insight into
neural activity [94–96]. The estimation of mutual information from observations may be
done in a number of different ways, each with their own set of advantages. Binned techniques,
continuous methods, such as Kernel Density Estimation (KDE) [97], naive non-parametric-
nearest neighbor (KNN) [98] and various versions of the KNN estimators [99], Gaussian
copula-based estimators [100, 101], and so on are all examples of common estimators. To
better understand how information is exchanged across different parts of the brain, mutual
information has recently emerged as a prominent method for estimating pair-wise functional
connectivity [86, 100, 102].

However, while using the aforementioned mutual information estimators, we ran across
two issues. It is difficult, if not impossible, to reliably estimate mutual information from a
small sample size in many real-world contexts. Finally, we’d want to look at the connections
between neurons beyond the pair-wise level, but the aforementioned issues can’t be remedied
by using generic mutual information.

11
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Total correlation (also known as multi-mutual information) is one expansion of the mutual
information theory offered for addressing the aforementioned multivariate variable connec-
tion [77]. Redundancy in data may be quantified by calculating the total correlation between
a group of variables. It is the disciplines of image statistics and machine learning [103–106],
rather than neurology, that do the vast majority of research on total correlation. In biolog-
ical research, the idea that multivariate variables depend on information is slowly gaining
ground [1–3, 107–110].

3.1.2 Methodology and Our Proposal

The primary objective of the first paper was to define the variations among mutual informa-
tion, interaction information, and total correlation as they apply to the field of neuroscience.
We propose to apply multivariate measures as opposed to bivariate measures. In addition,
we developed a new strategy for calculating the interplay information among three variables
by combining total correlation with conditional mutual information. However, how to use it
effectively in real life. We provided data from both synthetic and anatomically real neural ex-
periments to support our use of the aforementioned three higher-order information-theoretic
methods for functional connectivity estimation in the brain. We found that interaction
information and total correlation were both strong at capturing redundancy information
for multivariate variables, and that this may allow them to capture both well-known and
as-yet-undiscoverable functional brain connections.

3.1.3 Results

In the first paper, our results demonstrated that total correlation was able to represent a more
nuanced kind of reliance than mutual information. At the same time, it provides a new avenue
for research into picture statistics and deep learning tasks including representation learning,
ensemble learning, and model distillation, among others. Second, organizing statistical
dependencies is challenging for the reasons we’ve already given. As a result, we used greedy
clustering and graph theory to depict functional connectivity between (Region of Interests)
ROIs using both resting-state and task-related fMRI data. We demonstrated that high-order
information-theoretic models may represent both established and novel forms of functional
connectivity in the brain.

Graphical Summary of Connectivity from Information Theory

Figure 4: Neural time series of three inter-brain regions and how they are statistically dependent.
(Left figure) Using a complex system like the brain, we attempt to estimate the underlying information
dependencies (Right figure), taking into account linear and nonlinear dependencies.
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3.2 Large Scale Functional Connectivity Inference from Total
Correlation

The history of life is written in terms of
negative entropy.

James Gleick

3.2.1 Methodology and Our Proposal

In our second paper, we propose to use Total Correlation to infer a large-scale (whole-brain)
connection network, and we demonstrate the potential of such networks as biomarkers of
brain changes. In particular, Total Correlation is estimated by the application of Correlation
Explanation (CorEx). To begin, we establish that the overall correlation and clustering result
estimations generated by CorEx are reliable when compared to the truth, and through the
synthetic experiments with known ground truth, we are then ready to address the study of
real data.

3.2.2 Results

We conducted tests on standard resting-state fMRI datasets to determine the efficacy of the
total correlation. First, the larger open fMRI datasets yield an inferred large-scale connectivity
network that is consistent with previous neuroscience research but, intriguingly, can estimate
additional relations beyond pair-wise areas. Lastly, we show that connection graphs based
on total correlation are a good way to find neurological disorders. Second, our research
showed that using only pairwise correlation and mutual information values renders the
detection of multivariate relationships impossible. In a broader sense, total correlation is
the only method that allows for the clustering of multivariate connections. Finding complex
functional connections between brain regions is thus critically important, and total correlation
measurements play a pivotal role in this process.

Graphical Summary of Large-Scale Connectivity

Figure 5: Conceptual scheme of large scale functional connectivity in the human brain. The left
figure indicates the whole brain’s functional areas. The right figures illustrate large-scale functional
connectivity in the brain.
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3.3 Analytical Results on Functional Connectivity in Visual Ar-
eas

All models are wrong, but some are
useful.

George E. P. Box

3.3.1 Methodology and Our Proposal

In our third paper, which is still being reviewed, we provide an analytical illustration of
the benefits of using Total Correlation to characterize the functional connectivity in the
visual pathway. In order to do so, we need an analytical network that we can control. Our
neurological model consists of three distinct regions (retina, LGN, and V1) and allows for the
modification of top-down feedback and inter-nodal connectivity. This analytical framework
may also be used to validate empirical estimators of Total Correlation. When an estimator has
been shown to be reliable in this control situation, it becomes possible to study its behavior
in more general situational settings, for which the analytical conclusions are, in principle, no
longer applicable. As such, (a) we use natural pictures to investigate the impact of connection
and feedback in the analytic retina-cortex network, and (b) we use real fMRI data to evaluate
the functional connectivity in V1, V2, V3, and V4.

3.3.2 Results

Analytical findings demonstrate that whereas the three-way Total Correlation is able to capture
the influence of distinct intra-cortical inhibitory connections, the pairwise Mutual Information
is unable to do so. Moreover, we demonstrate that, in feasible models of the retina-LGN-V1
that include nonlinearities owing to intra-cortical connection and top-down feedback, Total
Correlation is a more accurate descriptor of connectivity than Mutual Information. TC excels
where MI fails because it is more attuned to network connections. However, empirical
estimates verify that the analytic insights obtained for Gaussian signals also apply to natural
inputs. Our TC-scores for responses recorded in visual cortices V1, V2, V3, and V4 show
that feedback linkages are stronger in V1, V2, and V3 than in V2, V3, and V4.

Graphical Summary of Analytical Models with Varying Connectivities

Figure 6: Normalization and gain of control in visual models. The correlation with human opinion
for different cortical connectivity values. The surface shows the correlation before and after divisive
normalization, we see that divisive normalization is critical.
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3.4 Similarities and Differences between Biological Vision and
Deep Nets

The sad thing about artificial
intelligence is that it lacks artifice and
therefore intelligence.

Jean Baudrillard

In this section, we investigate the similarities and differences between biological vision
and deep networks in two ways. The first study takes a psychophysical approach trying to
understand the origin of the Contrast Sensitivity Functions and was published in the Journal
of Vision (JoV). The second study takes an information-theoretic approach and is being
prepared to be sent to Frontiers in Neuroscience.

3.4.1 Contrast Sensitivity Functions in Autoencoders

Open Issues in Using Autoencoders in Vision

Autoencoders are artificial networks that do these two transformations: they convert the
signal into an "inner representation," and then using a decoder, they convert the "inner
representation" back into the input domain. Namely:

x
CNNθ (x)−−−−−−→ y (3.1)

Since x and y are in the image space, the encoding and decoding processes are not made
explicit in Eq. 3.1. No assumptions about the autoencoder’s internal representation are made
here. In autoencoders, the picture domain is both the input and the output, so the fundamental
target function (reconstruction error) is specified there. Convolutional autoencoders are our
main interest since they have been shown to display human-like behaviors as for instance in
computing distances between images [111], or in being deceived by visual illusions [112,
113]. In particular, our goal is to study the emergence of CSFs, as the authors in [113]
suggested that spatio-chromatic illusions could come from CSF-like filters in the artificial
networks.

Different computational aims will be discussed to see if CSFs emerge, and CSF characteri-
zation may also be determined in this picture domain with the right stimulus. But for now
it is sufficient to assume that the parameters θ are learned to adjust for the blur and noise
introduced in the signal during the picture collection process. Given a pristine picture, xc, the
distorted version would be sent into the neural network as input: x = H · xc +nr, where H
is an optical blurring operator and nr is the noise associated with the response of the LMS
photodetectors at the retina. The brain has no concept of H or nr. At this point, the network is
trying to extrapolate xc from x. This may be one of the outcomes of the biological processing
after retinal detection, as shown by accurate models of LGN cells [114].

Methodology and Our Proposal

In the goal of our forth paper is reexamining the importance of simple visual tasks in
providing an explanation for CSFs. We do this in light of (1) the recent rise in the use of
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artificial neural networks in vision research (which include nonlinear behaviors not considered
in classic explanations [115–117]), and (2) the current understanding of how images are
corrupted in the retina [118]. To do so, we did experiments in which different convolutional
neural network autoencoders were trained on natural scenes and cartoon scenes to solve
different low-level vision goals, such as compensating for retinal distortions, changes in
lighting, information loss after simple bottlenecks (or pure reconstruction after bottlenecks),
and combinations of these.

Results
For the most part, we can still make sense of the CSFs by thinking about simple visual
tasks, but we found that architecture is not irrelevant, so the classical implementation and
computational levels or Marr and Poggio are not that independent. To begin, we demonstrate
that autoencoders, a widely used kind of convolutional neural network, may learn to execute
certain essential low-level vision tasks (such as retinal noise and optical blur removal) while
failing at others, resulting in CSFs that are eerily similar to humans’ (such as chromatic
adaptation or pure reconstruction after simple bottlenecks). The CSFs are reproduced with
a root mean square error of 11% of the maximum sensitivity by the best CNN (among the
collection of basic designs evaluated for amplification of the retinal signal). You may use
this as an example. Our second contribution is experimental proof that, for certain functional
purposes (at low abstraction level), more depth in a convolutional neural network (CNN) does
not always result in greater performance when it comes to recreating human-like behavior.
The ability to test this theory in a lab setting allowed us to make this discovery (such as
the CSFs). This result (for the analyzed networks) does not necessarily contradict previous
research that demonstrates the advantages of deeper nets when replicating higher-level vision
goals via modeling. Our results add to the increasing body of literature warning against the
widespread use of CNNs in vision science. This is because it is possible that the modeling
and comprehension of human vision may be hindered if unrealistic designs or simplified
units are used in the process of goal optimization.

Graphical Summary of the Definition of CSFs for Autoencoders

Figure 7: The CSF is here defined as a frequency-dependent attenuation factor in a system to
develop elementary visual tasks. In this diagram, we see how the visual signal is altered as it travels
from the input stimulus (A) to the degraded signal due to optical blur and retinal noise (B) to the
process of the early neural path where the output is still in a spatial LMS representation (C), modeled
here by autoencoders, and other mechanisms that compute a decision on the visibility of an object
(D). Assuming a linear process from A to C, the standard filter model for the CSF assumes that the
amplitude of the response at point C determines whether or not gratings are visible to humans. In
human psychophysics (without access to C), the observer decides on visibility, and attenuation factors
are calculated from thresholds.
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3.4.2 Data Processing Inequality in Biological and Artificial Vision Nets
(on-going work)

As we mentioned at the beginning of this section, this part of the work is still under preparation
to be submitted to Frontiers in Neuroscience. Therefore, it has no associated publication
in PART II yet and results have to be expanded to be conclusive. However, we decided to
include it in as a part of the PhD given its relation with the analysis of information flow in
the visual areas (in Neur. Nets. under review [3]) and with the analysis of the human-like
behavior of some artificial nets (in the JoV paper [4]). As a result, compared to the succinct
summary of other sections, here we will provide more details for this on-going work.

Open Issues in using Information Theory to Compare the Brain and Deep Nets

Given the capacity of the visual brain, redundancy reduction seems key to process information
quickly and efficiently, and a lot of research has been done to figure out its role [119–121].
As stated before in this Thesis, the pair-wise mutual information may be a limited tool given
the complicated multi-node interactions that may happen amongst multiple brain regions.
In parallel, understanding the black box of deep learning is always a key and hot scientific
question. The usual way is by visualizing hidden feature representation in convolutional
neural networks [122, 123]. Here we will do it in a different, more quantitative way: by
measuring information in CNNs. Shannon information supply us a potential chance to do that
and there already large body related studies that investigated it [124–126]. The autoencoder,
which is one of the classical CNN architectures, has attracted a lot of research on information
compression, information bottleneck, and information decompression [127, 128]. Tishby is a
pioneer who explored the alteration of mutual information during training autoencoders, and
first opened the black box of Deep Neural Networks (DNNs) from an information-theoretical
perspective [125, 126, 129]. As previously stated, there is a substantial body of research on
measuring information change in CNNs, but almost all of these studies only used mutual
information to quantify it, and as we go down in the layers of a DNN, the mutual information
between the layer and the input can only decrease since the network is being thought of as a
Markov chain in which information is transmitted from one node to the next. As we know,
mutual information can only measure pair-wise information. It has limitations in scenarios
where there are complicated interactions among multiple nodes.

Our Proposal: Check the data processing inequality in the Visual Brain and in Standard
Deep Nets subject to the Same Visual Stimuli

Here, we propose to use total correlation to quantify redundancy and information flow among
different layers in CNNs and among different cortical regions in the visual brain. In both
cases (visual brain and artificial nets) we will use the same information estimates based on
RBIG [80] because RBIG has been shown to work according to analytical predictions in
plausible vision models: from toy 3-dimensional scenarios [113, 130], to 30-dimensional
scenarios [32], up to to 512-dimensional scenarios [3]. In both cases (visual brain and
artificial nets) we will use the same stimuli as input to the system using the database of the
Algonauts Project [131], using their experimental signals from humans and, in our case,
geting the corresponding signals from the artificial networks. Estimating mutual information
and total correlation between each layer of deep neural networks and each visual region of
cortex using the same stimuli and information estimation has not been done before. This
could open an interesting window to compare similarities between deep neural networks and
biological vision pathways from an information-theoretical perspective.
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Materials I: Signals from the Visual Brain (regions V1, V2, V3, and V4)

In order to compare information flow in artificial neural networks with biological visual
pathways, here we used data from The Algonauts Project 2021 Challenge, in which biological
visual neural signals were collected from V1, V2, V3, and V4 when 10 human participants
viewed a rich set of over 1,000 short video clips depicting everyday events [131]. See
Figure. 8 for the location of V1, V2, V3, and V4.

Figure 8: The low-level and mid-level visual cortex. The visual response of V1, V2, V3, and V4 to
video clips. The figure is adapted from [131].

Materials II: Deep Networks in Vision

AlexNet1: Here we employed a deep CNN (referred to as the "AlexNet") to extract hier-
archical visual information. In the Large Scale Visual Recognition Challenge 20122, the
model had been pre-trained to produce the best object recognition results [59]. Alex net is
an 8-layer convolutional neural network used to classify images and objects, with the first
five layers being convolutional and the latter three being fully linked. See the architecture
in the Figure. 9. Each convolutional plus nonlinear layer and the dimensionality reduction
operations filter out some of the incoming information, and it is interesting to quantify the
amout of neglected information along the way.

Figure 9: The AlexNet architecture. The convolutional layers and max pooling stages are labeled in
different ways. The numbers indicate the size of the feature maps. The last vector refers to a fully
connected layer with 1000 classes and the prediction comes from the class with higher probability
value.

VGG163: A more advanced version of the popular CNN family, VGG16 is widely regarded
as one of the most effective computer vision models available today. To classify 1000 images
into 1000 distinct categories, VGG16 uses an object detection and classification algorithm
with an accuracy of 92.7% [132]. See the architecture in the Figure. 10.

1https://www.mathworks.com/matlabcentral/fileexchange/59133-deep-learning-toolbox-model-for-
alexnet-network

2https://www.image-net.org/challenges/LSVRC/2012/
3https://www.mathworks.com/matlabcentral/fileexchange/61733-deep-learning-toolbox-model-for-vgg-

16-network?s_tid=prof_contriblnk
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The VGG16 network architecture contains a total of 21 layers, consisting of 13 convolutional
layers, 5 max pooling layers, and 3 dense layers, but only 16 layers with weights. There are
64 filters in Conv-1, 128 in Conv-2, 256 in Conv-3, 512 in Conv-4, and 512 in Conv-5. After a
series of convolutional layers, three Fully-Connected layers are applied, the first two of which
have 4096 channels each, and the third of which conducts 1000-way ILSVRC classification
and so it has 1000 channels (one for each class). In our experiments we qualitatively chose
the most similar abstract features in the AlexNet and VGG16 (see Figure. 12).

Figure 10: The VGG16 architecture. The numbers indicate the size of the feature maps. The last
vector refers to fully a connected layer with 1000 classes and the predictions come from the class with
higher probability.

DeepDream: The DeepDream is a standard way of seeing the features that a neural network
has learned [133, 134]. To accomplish this, an initialization image is sent through the network,
and the gradient of the image relative to the activations of a specific layer is computed. After
that, the image is iteratively changed to make these activations stronger (see Figure. 11 and
Figure. 12 for the result for AlexNet and VGG16 using the Matlab implementation of the
method4). This illustrates the kind of images that optimally excite certain neurons (or layers)
of these networks.

These illustrations are kind of consistent with studies that claim that the visual brain and
deep networks share some functional similarities as for instance progressively more abstract
features [65, 67, 135].

Methods I: Information Transmitted in Deep Nets with Inner Noise

Following [32, 42], we are going to study the information lost in the deep nets, given the
fact that the inner representation may be subject to a certain amount of noise. Just for the
sake of the illustration, following [32], we assumed that the amplitude of the noise is 5%
of the amplitude of the responses in each layer. Noise is a relevant factor in the loss of
information because in the transform x→ y, the information about the input x shared by the
noisy response, y is [32]:

I(x,y) = ∑
i

h(yi)−TC(y)−h(n) (3.2)

where h(·) stands for the (univariate or joint) entropy of the corresponding (scalar or vector)
variables, TC(y) refers to total correlation of y, and h(n) indicates the joint entropy of the
noise in the response. When the energy budget is restricted the entropy of the response

4https://www.mathworks.com/help/deeplearning/ref/deepdreamimage.html#d124e47961
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Figure 11: DeepDream features in AlexNet. These features were computed through the current
Matlab implementations of AlexNet and the DeepDream method (see previous footnotes).

Figure 12: DeepDream features in VGG16. These features were computed through the current
Matlab implementations of VGG16 and the DeepDream method (see previous footnotes).
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cannot increase arbitrarily and hence redundancy TC and noise n contribute to the loss of
information.

Methods II: Information Measured with Rotation-Based Iterative Gaussianization

The RBIG is a cascade of L nonlinear+linear layers, and the l-th layer is made of marginal
Gaussianizations, Ψ(l)(x(l)), followed by a rotation, R(l). Each of such layers is applied on
the output of the previous layer:

x(l+1) = R(l) ·Ψ(l)(x(l)) (3.3)

For a big enough number of layers, this invertible architecture is able to transform any input
PDF, p(x(0)), into a zero-mean unit-covariance multivariate Gaussian even if the chosen
rotations are random [80] (see Figure. 13).

Figure 13: RBIG transforms arbitrary data distribution into a Gaussian distribution. The
layer : 0 refers initial data distribution and each dimensional distribution is non-Gaussian (middle left
green figure) then after 60 layers PCA plus marginal Gaussian, the final data distribution become to
Gaussian distribution in each dimensional (middle right green figure).

Theoretical convergence to a Gaussian is obtained when the number of layers tends to infinity.
However, in practical situations early stopping criteria can be proposed taking into account
the uncertainty associated with a finite number of samples [80]. Convergence even with
random rotations implies that both elements of the transform are straightforward: univariate
equalizations and random rotations. The differentiable and invertible nature of RBIG make it
a member of the Normalizing Flow family [136]. Within this general family, differentiable
transforms with the ability to remove all the structure of the PDF of the input data are referred
to as density destructors [137]. By density destruction, the authors in [137] mean a transform
of the input PDF into a unit-covariance Gaussian or into a d-cube aligned with the axes.
The considered Gaussianization [80, 130, 138] belongs to this family by definition. Total
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correlation describes the redundancy within a vector, i.e., the information shared by the
univariate variables [77, 78]. Note that strong relations between variables indicates a rich
structure in the data. Density destruction together with differentiability is useful to estimate
the total correlation within a vector TC(x(0)). Imagine that the considered RBIG transforms
the PDF of the input x(0) into a Gaussian through the application of L layers (L individual
transforms). As the redundancy of the Gaussianized signal, gx(x(0)) = x(L), is zero, the
redundancy of the original signal, TC(x(0)), should correspond to the cumulative sum of the
individual variations, ∆TC(l) with l = 1, . . .L, that take place along the L layers of RBIG,
while converting the original variable x, into the Gaussianized variable gx(x). Interestingly,
the individual variation in each RBIG layer only depends on (easy to compute) univariate
negentropies, therefore, after the L layers of RBIG, the total correlation is [80]:

TC(x) =
L

∑
l=1

∆TC(x(l−1),x(l)) =
L

∑
l=1

Jm(x(l)) (3.4)

where the marginal negentropy of a d-dimensional random vector is given by a set of
d univariate divergences Jm(v) = ∑

d
i=1 DKL(p(vi)|N (0,1)). Therefore, using RBIG, the

challenging problem of estimating one d-dimensional joint PDF to compute TC(x) reduces
to solve d×L univariate problems. RBIG estimate of total correlation has been shown to be
better than previously reported estimates of TC [130], and it has been successfully used in
neuroscience to quantify the redundancy reduction over the visual pathway [32, 113, 130].

Preliminary results

We separately examined the functionalities of artificial neural networks and biological neural
networks, and we compared the flow of information in pre-trained deep convolutional neural
networks, such as AlexNet and VGG16, with the human visual system, such as V1-V2-
V3-V4. It opens the window to comparing similarities between deep neural networks and
biological vision pathways from an information-theoretical perspective. The videos are fed
into pre-trained deep neural networks, and we selected 16 frames in each video. We have a
total of 16×1000 samples. Then we extract the response in each layer of artificial neural
networks; after we save the response in each layer and consider the dimensioning problems
and related computing efficiency, we read the corresponding responses, resample to put all of
them in the same spatial resolution (6×6), and then we concatenate all the responses in each
layer. After this, we are ready to estimate the information measures in deep networks. The
information representation is estimated based on mutual information and total correlation
(see Table. 1, Table. 2, and Table. 3).

I(Vi,Vj)
(in bits/visual region) V1 V2 V3 V4

V1 2.4±0.3 1.3±0.2 1.0±0.2 0.8±0.1
V2 1.3 2.0±0.2 1.2±0.2 0.7±0.1
V3 1.0 1.2 1.7±0.3 0.8±0.1
V4 0.8 0.7 0.8 2.2±0.3

TC(Vi)
(in bits/visual region) V1 V2 V3 V4

3.6±0.3 3.2±0.2 3.0±0.2 3.5±0.3

Table 1: The mutual information and total correlation in biological visual pathways. I(Vi,Vj)
between pairs of areas, TC(Vi) in each area.
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I(Li,Lj)
(in bits/layer) Layer1 Layer2 Layer3 Layer4

Layer1 2.3±0.3 1.3±0.3 0.8±0.1 0.6±0.2
Layer2 1.3 1.9±0.1 1.3±0.3 0.6±0.1
Layer3 0.8 1.3 2.0±0.2 1.8±0.1
Layer4 0.6 0.6 1.8 2.0±0.2

TC(Li)
(in bits/layer) Layer1 Layer2 Layer3 Layer4

3.6±0.1 5.6±0.3 6.0±0.3 5.8±0.2

Table 2: The mutual information and total correlation in artificial neural networks (AlexNet).
I(Li,Lj) between pairs of layers, TC(Li) in each layer.

I(Li,Lj)
(in bits/layer) Layer2 Layer4 Layer6 Layer8

Layer2 2.0±0.3 1.5±0.2 0.1±0.1 0.03±0.2
Layer4 1.5 1.9±0.2 0.1±0.3 0.02±0.3
Layer6 0.1 0.1 0.05±0.2 0.01±0.1
Layer8 0.03 0.02 0.01 0.05±0.1

TC(Li)
(in bits/layer) Layer2 Layer4 Layer6 Layer8

0.33±0.1 0.38±0.2 - -

Table 3: The mutual information and total correlation in artificial neural networks (VGG16).
I(Li,Lj) between pairs of layers, TC(Li) in each layer.

There hasn’t been much research on explaining the similarities between the brain and deep
neural networks via information before. Most of the research focuses on fitting deep neural
networks with real neural signals, then predicting neural response with well-fitted models.
Here, we try to explore this question from an information-theoretical views, and it would
be open a door for us to study brain and deep neural networks via information. From
an information-theoretical perspective, we found that the human brain and deep neural
networks do share information representation similarities. Meanwhile, we found that neural
information processing in the brain also matches the properties of data processing inequality,
for instance, see Table. 1, Table. 2, and Table. 3.

Further Research Directions

Here we only checked information flow in the pre-trained AlexNet and VGG16, and we
collected neural response in each layer of neural networks with fed videos, and it could be
extended to other more deep neural networks with different architectures. On the other hand,
as we mentioned above, we used weights to freeze neural networks, and we could get different
results if we retrained deep neural networks with new image or video datasets, then explored
how the weights affect information representation in deep neural networks. Meanwhile,
we could also measure information representation in neural networks with different visual
tasks. Furthermore, we used fMRI to investigate the circulation of data in the visual cortex;
future research might investigate the use of other modalities’ datasets (e.g., EEG, MEG) to
better estimate the extent to which data is represented in each visual region. All in all, we
can explore information theory in deep neural networks by exploring their architecture and
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functional goals, which would help us understand information altered in neural networks and
the brain.

Graphical Summary of Information Transmission in the Brain and DNNs

Figure 14: Information flow in biological vision pathways and artificial neural networks. The
information representation between deep neural networks and biological vision was evaluated from an
information-theoretical perspective. The information measured in the visual brain and deep networks
was shown with a red and blue curve, respectively.
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Conclusions

The thesis investigated brain functions through psychophysics, deep neural networks, and
information theory. On the one hand, we were very interested in quantifying information
flow among brain regions in general and among layers of the visual system in particular.
We proposed to measure that flow via multi-node concepts, as for instance, total correlation,
as opposed to the conventional (just pair-wise) mutual information. As a consequence of
this advantage, we proposed the use of total correlation to measure functional connectivity
(both in the whole brain, and in the visual regions). We found that total correlation maybe
more sensitive to the connectivity in networks than mutual information. As a result, we
think that this new metric of functional connectivity could be applied in the future to answer
other problems in neuroscience. On the other hand, some low-level visual functions were
studied through the analysis of psychophysics and deep neural networks. In particular we
studied the basic bandwidth of the human vision: the spatio-temporal and chromatic Contrast
Sensitivity Functions (CSFs). We tried to explore possible functional explanations for such
psychophysical bottleneck using current autoencoders which can be trained for different goals.
We found that while some functions (like the enhancement of the retinal signal) are more
likely to be behind the CSFs than others (like chromatic adaptation or like pure reconstruction
after dimensionality reduction), the architecture of the algorithm that optimizes the goal is
also relevant and it cannot be separated from the functional discussion.

Finally, following the above work on information theory in neuroscience (three papers
on total correlation) and on deep nets devoted to vision (one paper on autoencoders for
chromatic video), we presented promising results on the combination of these concepts: the
quantification of the information loss along natural and artificial visual networks.

4.1 Contributions

■ Overcoming the pairwise limitations of mutual information in assessing functional
connectivity through multi-node alternatives like total correlation. It is always a
key problem to quantify the flow of information in biological systems, and information
theories have quickly become important tools in investigating information coupling
among brain regions. Mutual information is a common metric that is used in functional
connectivity, but it only measures shared information between two sets while relations
in the brain involve more than two nodes. In order to overcome this limitation we
proposed concepts like interaction information and total correlation. In addition, we
proposed a novel method for determining the interaction information between three
variables by making use of total correlation and conditional mutual information. On
the other hand, how to correctly apply it in real-world scenarios remains a mystery.

25
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Using the higher-order information-theoretic approaches, we estimated functional
connectivity in the brain using simulation experiments as well as real neural studies.
We discovered that interaction information and total correlation were both robust, and
they could be used to capture both well-known and yet-to-be-discovered functional
brain connections. This contribution was published in Neural Networks [1].

■ Derivation of large-scale functional connectomes and neural biomarkers using
total correlation. We investigated large-scale functional relationships (among hun-
dreds of brain regions) using total correlation. Moreover, we proposed the use of
the networks derived from total correlation as eventual biomarkers of brain disease.
We found that total correlation identifies networks that differ from the ones obtained
by pairwise approaches. As a result, it has the potential to lead to new biomarkers
in a variety of brain diseases. This contribution was published as feature paper in
Entropy [2].

■ Analytical results on functional connectivity among visual areas via total corre-
lation and mutual information. We used a plausible four-layer neural model of the
retina, the LGN and the V1 cortex as an analytical scenario to control the connectivity
between the layers and within V1. Variants of this model include nonlinearities and
feedback. We provide analytical results for all possible pairwise mutual information
measures and total correlation measures among the four layers of this model. The effect
of individual inhibitory connections within the cortex is captured by the multi-node
total correlation but not by the pairwise mutual information, Moreover, in case of
feedback, total correlation is more sensitive to the connectivity than mutual informa-
tion. The above is seen both in the analytical results and in the numerical experiments.
The presented analytical framework can also be used to verify empirical estimators
of the total correlation. Interestingly, empirical results for natural images (which do
not follow the Gaussian assumption of the analytical results) follow the trends of the
analytical expressions. Finally, we used fMRI recordings to examine the functional
connections between real visual regions V1, V2, V3, and V4. This contribution is
under review in Neural Networks [3].

■ Emergence of human-like psychophysical bottlenecks in autoencoders devoted to
vision. We show that a common type of convolutional neural network (the autoencoder),
has the potential to develop human-like contrast sensitivity in the spatio-temporal and
chromatic dimensions when trained to perform some fundamental low-level vision
tasks (such as removing retinal noise and optical blur) but not others (like chromatic
adaptation or pure reconstruction after simple bottlenecks). As an illustration, the
best video-enhancer autoencoder (among the simple architectures that have been
contemplated) is able to reproduce the CSFs with an 11% RMSE error. Our second
finding is that we provide experimental evidence for the fact that, for certain functional
goals (at low abstraction level), deeper CNNs that are better at reaching the quantitative
goal are actually worse at replicating human-like phenomena. This is in line with a
growing body of research that questions the blind use of deep-learning models in vision
science. In particular, if oversimplified units or unrealistic architectures are used in
goal optimization, results may be misleading. This contribution was published in the
Journal of Vision [4].

■ Data processing inequality in the visual brain and in artificial neural networks.
Some researchers have pointed out the qualitative similarity between progressively
deeper layers of networks such AlexNet and VGG and progressively deeper visual
regions such as V1-V4 in the cortex [65, 67, 135]. However, accurate estimations of
mutual information and total correlation between each layer of deep neural networks
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and each visual region of cortex using the same stimuli and the same information
estimates has not been done before. This could be a new way to compare deep neural
networks and biological vision. We presented experiments in which standard pre-
trained artificial networks are stimulated with the same images shown to the human
observers that participated in the Algonauts project [131]. Our preliminary results using
Gaussianization estimates among different layers show similarities and differences
between the visual brain and the artificial networks. Both systems progressively
disregard visual information along the way, but the rate at which this happens is
different: it seems that the visual brain nodes share a bigger fraction of the initial
information than the artificial layers. This is still on-going (unpublished) work, but we
think it perfectly fits in the PhD because of two reasons: (1) its novelty, and (2) it is
connected with the estimations of information-theoretic measures in V1-V4 areas of
our third publication [3], and with our analysis of artificial nets devoted to vision in
our fourth publication [4].

4.2 Future Works

■ In the last part of this thesis, we only showed total correlation application in the visual
system and functional connectivity with fMRI. In the future, we hope to incorporate
the functional connectivity associations discovered through total correlation into ex-
isting graph neural networks for readable brain illness detection. This will enable
medical professionals to look on the subgraphs that provide the most information that
contributes to the overall diagnosis (e.g., autism patients or health-control groups).
In order to evaluate and improve the qualitative results that have been shown here, it
will be necessary to extend the analytical results to a greater number of nodes and
to build quantitative metrics that can quantify differences between graphs. Both of
these things are required. Estimates of pairwise linkages are created using the linear
correlation coefficient in all of the newly provided methods, which generally disregard
high-order dependencies. Furthermore, it is still not widely applied in neuroscience
applications, such as spiking neural data and so on. Future work will involve extending
total correlation and exploring the possibility of applying total correlation to mental
diseases.

■ Although total correlation can reduce the pair-wise problem of other connectivity
measures, it does not quantify the synergy information and instead just measures the
redundant information. In the first place, taking into account higher-order interactions
involving more than three variables makes it possible to quantify the informative content
in terms of its complementary and overlapping relationships. The term "redundancy"
refers to the information that is shared across variables, whereas "synergy" refers to
the statistical interactions that can be found collectively in the whole but not in the
parts when considered in isolation. Therefore, we can extend total correlation to more
deep levels, and through combined dual total correlation, which allows us to instantly
measure redundancy and synergy in the multiple brain networks.

■ Moreover, we should think about adding total correlation to deep neural networks,
either as a metric or a loss function, and then using this to optimize the training of deep
neural networks.

■ Most models only focus on feedforward connectivity and do not consider lateral
and feedback connectivity. Many experiments have already proved that lateral and
feedback connectivity exist in neural pathways. Therefore, we should consider that
sensory-driven information flow is put into context by lateral interaction with related



28 Chapter 4. Conclusions

feature representations and top-down signals to be re-entered at different stages in the
hierarchy, and implement feedforward, lateral, and feedback together when we go to
model visual information processing. On the other hand, we also need to optimize
normalization gain control in the model, and one of the most important components in
the model should be divisive normalization. There are too many flexible parameters
that need to be optimized in order to maximally psycho-physically optimize behaviors.

■ We should not ignore the differences between deep neural networks and biological
vision because they can help us optimize deep neural network architectures and then
make them more functionally similar to the brain. Finally, we should check deep
neural networks’ generality ability with some low-level visual tasks when we compare
them to human vision, and not just keep our eyes on some high-level visual tasks,
for example, classification, segmentation, and so on. While the architecture of CNN
can be used to simulate high-level human visual systems, it is unknown whether or
not it can also be used to model low-level visual functions such as color perception,
orientation, brightness reduction, and adaptation. Last but not least, the reliability of
saliency prediction can be verified by adding further variety deterioration to natural
images that were previously clean as well as images that have been generated using
psychophysical methods. As was previously said, we need human saliency prediction
data on damaged images to serve as a baseline against which the accuracy of the model
can be tested. This may be done by comparing the model’s predictions to human
predictions. And continuing in that direction would be quite exciting for the years to
come. In conclusion, when researching the properties of artificial neural networks,
it is important to take psychophysical techniques into consideration. The numerous
psychophysical experiments on visual attention mechanisms that have been carried
out by scholars in the field of visual neuroscience have been of significant use to the
discipline as a whole. Despite the fact that this area has the potential to improve the
robustness of artificial neural networks, there is a dearth of research being conducted in
it. Incorporating the findings of psychophysical investigations into an artificial neural
network would be fascinating, but it would be even more fascinating if this led to an
increase in our knowledge of both the human visual system and the inner workings of
the network. This would be the case because it would reveal how the network itself
functions. In conclusion, we proposed that the subfields of visual neuroscience and
artificial neural networks might gain something from the further investigation of CNNs
via the lens of psychophysical methods.

■ Finally, we should try to estimate a new total correlation estimator and improve the
accuracy of total correlation performance. we need to construct a new estimate for
total correlation because the two estimators that we utilized in our earlier research
had some limits. This is the reason why we feel it is necessary to do so. For us to be
able to easily and accurately estimate total correlation and dual total correlation, it is
important for us to design a new efficient and less compute-intensive cost estimator.
After we have developed methods for measuring redundancy and synergy, we will be
able to quantify the information representation in artificial neural networks as well
as biological neural networks by using the aforementioned metrics. The similarities
and contrasts between artificial neural networks and biological neural networks are a
major problem for unearthing the mystery behind both the human brain and artificial
neuron networks, as we indicated in the preceding section. Only the AlexNet and
VGG16 architectures of deep neural networks were investigated in this study; however,
it is possible that other architectures, such as recurrent neural networks, might also
be utilized. In addition, the present models have the weights frozen, and then they
extract the features from each layer. This may cause some bias when we compare the
responses from artificial neural networks and the brain. As a result, on the one hand, it
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might be necessary to retrain the neural networks using a dataset that contains several
modalities. On the other hand, we need to measure the information representation
during the training and validating phases, and this will be a more fascinating task than
working with static neural networks. Last but not least, it will be very interesting for
us to investigate the representation of spatial statistics and color information in each
layer of neural networks. All of these aspects are very important for comprehending
low-level and high-level human visual functions, as well as those of artificial neural
networks.
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Chapter 5

Conclusiones

1 La tesis investigó las funciones cerebrales a través de la psicofísica, las redes neuronales
profundas y la teoría de la información. Por un lado, estábamos muy interesados en cuan-
tificar el flujo de información entre regiones cerebrales en general y entre capas del sistema
visual en particular. Propusimos medir ese flujo mediante conceptos multinodales, como por
ejemplo la correlación total, frente a la información mutua convencional (sólo por pares).
Como consecuencia de esta ventaja, propusimos el uso de la correlación total para medir
la conectividad funcional (tanto en todo el cerebro como en las regiones visuales). Descub-
rimos que la correlación total puede ser más sensible a la conectividad en las redes que la
información mutua. Como resultado, pensamos que esta nueva métrica de la conectividad
funcional podría aplicarse en el futuro para responder a otros problemas en neurociencia.
Por otro lado, se estudiaron algunas funciones visuales de bajo nivel mediante el análisis
de la psicofísica y las redes neuronales profundas. En particular, estudiamos el ancho de
banda básico de la visión humana: las funciones de sensibilidad al contraste (CSF) espa-
ciotemporales y cromáticas. Intentamos explorar posibles explicaciones funcionales para
este cuello de botella psicofísico utilizando autocodificadores actuales que pueden entrenarse
para diferentes objetivos. Descubrimos que, aunque algunas funciones (como la mejora de
la señal retiniana) tienen más probabilidades de estar detrás de las CSF que otras (como la
adaptación cromática o la reconstrucción pura tras la reducción de la dimensionalidad), la
arquitectura del algoritmo que optimiza el objetivo también es relevante y no puede separarse
de la discusión funcional.

Por último, tras los trabajos anteriores sobre teoría de la información en neurociencia (tres
artículos sobre correlación total) y sobre redes profundas dedicadas a la visión (un artículo
sobre autocodificadores para vídeo cromático), presentamos resultados prometedores sobre
la combinación de estos conceptos: la cuantificación de la pérdida de información a lo largo
de redes visuales naturales y artificiales.

5.1 Contribuciones

■ Superando las limitaciones pairwise de la información mutua en la evaluación de
la conectividad funcional a través de alternativas multi-nodo como la correlación
total. Siempre es un problema clave para cuantificar el flujo de información en los
sistemas biológicos, y las teorías de la información se han convertido rápidamente
en herramientas importantes en la investigación de acoplamiento de la información
entre las regiones del cerebro. La información mutua es una métrica común que se

1Traducido del inglés por Qiang Li
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utiliza en la conectividad funcional, pero sólo mide la información compartida entre
dos conjuntos, mientras que las relaciones en el cerebro implican a más de dos nodos.
Para superar esta limitación propusimos conceptos como información de interacción
y correlación total. Además, propusimos un método novedoso para determinar la
información de interacción entre tres variables haciendo uso de la correlación total
y la información mutua condicional. Por otro lado, sigue siendo un misterio cómo
aplicarlo correctamente en escenarios del mundo real. Utilizando los enfoques teóricos
de la información de orden superior, estimamos la conectividad funcional en el cerebro
mediante experimentos de simulación, así como estudios neuronales reales. Descubri-
mos que tanto la información de interacción como la correlación total eran robustas
y podían utilizarse para capturar conexiones funcionales cerebrales tanto conocidas
como por descubrir. Esta contribución se publicó en Neural Networks [1].

■ Derivación de conectomas funcionales a gran escala y biomarcadores neuronales
usando correlación total. Investigamos las relaciones funcionales a gran escala (entre
cientos de regiones cerebrales) utilizando la correlación total. Además, propusimos
el uso de las redes derivadas de la correlación total como eventuales biomarcadores
de enfermedades cerebrales. Descubrimos que la correlación total identifica redes
que difieren de las obtenidas mediante enfoques por pares. Como resultado, tiene
el potencial de conducir a nuevos biomarcadores en una variedad de enfermedades
cerebrales. Esta contribución se publicó como feature paper en Entropy [2].

■ Resultados analíticos sobre la conectividad funcional entre las áreas visuales a
través de la correlación total y la información mutua. Utilizamos un modelo neu-
ronal plausible de cuatro capas de la retina, el LGN y la corteza V1 como escenario
analítico para controlar la conectividad entre las capas y dentro de V1. Las variantes de
este modelo incluyen no linealidades y retroalimentación. Proporcionamos resultados
analíticos para todas las posibles medidas de información mutua por pares y medidas
de correlación total entre las cuatro capas de este modelo. El efecto de las conexiones
inhibitorias individuales dentro de la corteza es capturado por la correlación total
multinodo, pero no por la información mutua por pares, Además, en caso de retroali-
mentación, la correlación total es más sensible a la conectividad que la información
mutua. Esto se observa tanto en los resultados analíticos como en los experimentos
numéricos. El marco analítico presentado también puede utilizarse para verificar los
estimadores empíricos de la correlación total. Curiosamente, los resultados empíri-
cos para imágenes naturales (que no siguen el supuesto gaussiano de los resultados
analíticos) siguen las tendencias de las expresiones analíticas. Por último, utilizamos
grabaciones fMRI para examinar las conexiones funcionales entre las regiones visuales
reales V1, V2, V3 y V4. Esta contribución está siendo revisada en Neural Networks [3].

■ Emergencia de cuellos de botella psicofísicos similares a los humanos en autocodi-
ficadores dedicados a la visión. La modelización de funciones visuales de bajo nivel
mejorará la capacidad de generalización de las redes neuronales profundas. Combinar
la psicofísica y las redes neuronales profundas será una vía interesante para investigar
las funciones visuales y, al mismo tiempo, beneficiará la comprensión de las redes
neuronales profundas. Como primera contribución, en el JOV, mostramos que un tipo
común de red neuronal convolucional (el autoencoder), tiene el potencial de desarrollar
una sensibilidad al contraste similar a la humana en las dimensiones espacio-temporal
y cromática cuando se entrena para realizar algunas tareas fundamentales de visión de
bajo nivel (como la eliminación del ruido retiniano y el desenfoque óptico) pero no
otras (como la adaptación cromática o la reconstrucción pura tras simples cuellos de
botella). A modo de ilustración, el mejor autoencoder de mejora de vídeo (entre las
arquitecturas simples que se han contemplado) es capaz de reproducir los LCR con
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un error RMSE del 11%. Nuestro segundo hallazgo es que proporcionamos pruebas
experimentales del hecho de que, para ciertos objetivos funcionales (a bajo nivel de
abstracción), las CNN más profundas que son mejores para alcanzar el objetivo cuan-
titativo son en realidad peores para reproducir fenómenos similares a los humanos.
Esto está en consonancia con un creciente cuerpo de investigación que cuestiona el uso
ciego de modelos de aprendizaje profundo en la ciencia de la visión. En particular, si
se utilizan unidades excesivamente simplificadas o arquitecturas poco realistas en la
optimización de objetivos, los resultados pueden ser engañosos. Esta contribución se
publicó en el Journal of Vision [4].

■ Desigualdad en el procesamiento de datos en el cerebro visual y en las redes
neuronales artificiales. Algunos investigadores han señalado la similitud cualitativa
entre capas progresivamente más profundas de redes como AlexNet y VGG y regiones
visuales progresivamente más profundas como V1-V4 en la corteza [65, 67, 135]. Sin
embargo, hasta ahora no se habían realizado estimaciones precisas de la información
mutua y la correlación total entre cada capa de redes neuronales profundas y cada
región visual de la corteza utilizando los mismos estímulos y las mismas estimaciones
de información. Esta podría ser una nueva forma de comparar las redes neuronales
profundas y la visión biológica. Presentamos experimentos en los que redes artificiales
estándar preentrenadas son estimuladas con las mismas imágenes mostradas a los
observadores humanos que participaron en el proyecto Algonauts [131]. Nuestros
resultados preliminares utilizando estimaciones de gaussianización entre diferentes
capas muestran similitudes y diferencias entre el cerebro visual y las redes artificiales.
Ambos sistemas prescinden progresivamente de la información visual a lo largo del
camino, pero el ritmo al que esto ocurre es diferente: parece que los nodos del
cerebro visual comparten una fracción mayor de la información inicial que las capas
artificiales. Se trata de un trabajo aún en curso (no publicado), pero creemos que
encaja perfectamente en el doctorado por dos razones: (1) su novedad, y (2) está
conectado con las estimaciones de las medidas de la teoría de la información en las
áreas V1-V4 de nuestra tercera publicación [3], y con nuestro análisis de las redes
artificiales dedicadas a la visión en nuestra cuarta publicación [4].

5.2 Trabajo Futuro

■ En la última parte de esta tesis, sólo mostramos la aplicación de la correlación total
en el sistema visual y la conectividad funcional con fMRI. En el futuro, esperamos
incorporar las asociaciones de conectividad funcional descubiertas a través de la
correlación total en las redes neuronales de grafos existentes para la detección legible
de enfermedades cerebrales. Esto permitirá a los profesionales de la medicina fijarse
en los subgrafos que proporcionen más información que contribuya al diagnóstico
global (por ejemplo, pacientes con autismo o grupos de control de salud). Para evaluar
y mejorar los resultados cualitativos que se han mostrado aquí, será necesario ampliar
los resultados analíticos a un mayor número de nodos y construir métricas cuantitativas
que puedan cuantificar las diferencias entre gráficos. Ambas cosas son necesarias. Las
estimaciones de los vínculos entre pares se crean utilizando el coeficiente de correlación
lineal en todos los métodos recién proporcionados, que por lo general no tienen en
cuenta las dependencias de alto orden. Además, todavía no se aplica ampliamente en
aplicaciones de neurociencia, como los datos neuronales de spiking, etc. El trabajo
futuro consistirá en ampliar la correlación total y explorar la posibilidad de aplicarla a
las enfermedades mentales.
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■ Aunque la correlación total puede reducir el problema de pares de otras medidas
de conectividad, no cuantifica la información de sinergia y en su lugar sólo mide la
información redundante. En primer lugar, tener en cuenta las interacciones de orden
superior en las que intervienen más de tres variables permite cuantificar el contenido
informativo en términos de sus relaciones complementarias y de solapamiento. El
término "redundancia" hace referencia a la información que comparten las variables,
mientras que "sinergia" se refiere a las interacciones estadísticas que pueden encon-
trarse colectivamente en el conjunto, pero no en las partes cuando se consideran de
forma aislada. Por lo tanto, podemos ampliar la correlación total a niveles más pro-
fundos, y mediante la correlación total dual combinada, lo que nos permite medir
instantáneamente la redundancia y la sinergia en las múltiples redes cerebrales.

■ Además, deberíamos pensar en añadir la correlación total a las redes neuronales
profundas, ya sea como una métrica o una función de pérdida, y luego usar esto para
optimizar el entrenamiento de las redes neuronales profundas.

■ La mayoría de los modelos sólo se centran en la conectividad feedforward y no tienen
en cuenta la conectividad lateral y de retroalimentación. Muchos experimentos ya
han demostrado que la conectividad lateral y de retroalimentación existe en las vías
neuronales. Por lo tanto, deberíamos considerar que el flujo de información impulsado
por los sentidos se contextualiza mediante la interacción lateral con representaciones
de rasgos relacionados y señales descendentes que se reintroducen en diferentes etapas
de la jerarquía, e implementar el feedforward, el lateral y el feedback conjuntamente
cuando vayamos a modelar el procesamiento de la información visual. Por otro lado,
también necesitamos optimizar el control de la ganancia de normalización en el modelo,
y uno de los componentes más importantes del modelo debería ser la normalización
divisoria. Hay demasiados parámetros flexibles que necesitan ser optimizados para
optimizar al máximo los comportamientos psicofísicos.

■ No debemos ignorar las diferencias entre las redes neuronales profundas y la visión
biológica porque pueden ayudarnos a optimizar las arquitecturas de las redes neu-
ronales profundas y hacerlas más similares funcionalmente al cerebro. Por último,
deberíamos comprobar la capacidad de generalidad de las redes neuronales profun-
das con algunas tareas visuales de bajo nivel cuando las comparamos con la visión
humana, y no quedarnos sólo con algunas tareas visuales de alto nivel, por ejemplo,
la clasificación, la segmentación, etc. Aunque la arquitectura de las CNN puede uti-
lizarse para simular sistemas visuales humanos de alto nivel, se desconoce si también
puede utilizarse para modelar funciones visuales de bajo nivel, como la percepción del
color, la orientación, la reducción del brillo y la adaptación. Por último, pero no por
ello menos importante, la fiabilidad de la predicción de la saliencia puede verificarse
añadiendo un mayor deterioro de la variedad a imágenes naturales previamente limpias,
así como a imágenes generadas mediante métodos psicofísicos. Como se ha dicho
anteriormente, necesitamos datos de predicción de la saliencia humana en imágenes
deterioradas para que sirvan de referencia con la que se pueda comprobar la precisión
del modelo. Esto puede hacerse comparando las predicciones del modelo con las
predicciones humanas. Y continuar en esa dirección sería muy emocionante para los
próximos años. En conclusión, al investigar las propiedades de las redes neuronales
artificiales, es importante tener en cuenta las técnicas psicofísicas. Los numerosos
experimentos psicofísicos sobre los mecanismos de la atención visual que han llevado
a cabo los estudiosos del campo de la neurociencia visual han sido de gran utilidad
para la disciplina en su conjunto. A pesar de que esta área tiene el potencial de mejorar
la robustez de las redes neuronales artificiales, hay una escasez de investigación que
se lleva a cabo en ella. Incorporar los resultados de las investigaciones psicofísicas a
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una red neuronal artificial sería fascinante, pero lo sería aún más si ello condujera a un
mayor conocimiento tanto del sistema visual humano como del funcionamiento interno
de la red. Esto sería así porque revelaría cómo funciona la propia red. En conclusión,
hemos propuesto que los subcampos de la neurociencia visual y las redes neuronales
artificiales podrían obtener algún beneficio de la investigación de las CNN a través de
métodos psicofísicos.

■ Por último, debemos tratar de estimar un nuevo estimador de correlación total y mejorar
la precisión del rendimiento de la correlación total. necesitamos construir una nueva
estimación para la correlación total porque los dos estimadores que utilizamos en
nuestra investigación anterior tenían algunos límites. Esta es la razón por la que
creemos que es necesario hacerlo. Para que podamos estimar con facilidad y precisión
la correlación total y la correlación total dual, es importante que diseñemos un nuevo
estimador de costes eficiente y que consuma menos recursos informáticos. Una vez
que hayamos desarrollado métodos para medir la redundancia y la sinergia, podremos
cuantificar la representación de la información en las redes neuronales artificiales, así
como en las redes neuronales biológicas, utilizando las métricas mencionadas. Las
similitudes y contrastes entre las redes neuronales artificiales y las redes neuronales
biológicas son un problema importante para desentrañar el misterio que se esconde
tras el cerebro humano y las redes neuronales artificiales, como hemos indicado en
la sección anterior. En este estudio sólo se investigaron las arquitecturas AlexNet
y VGG16 de redes neuronales profundas; sin embargo, es posible que también se
utilicen otras arquitecturas, como las redes neuronales recurrentes. Además, los
modelos actuales tienen los pesos congelados y luego extraen las características de
cada capa. Esto puede causar cierto sesgo cuando comparamos las respuestas de las
redes neuronales artificiales y el cerebro. Como resultado, por un lado, podría ser
necesario volver a entrenar las redes neuronales utilizando un conjunto de datos que
contenga varias modalidades. Por otro lado, necesitamos medir la representación de la
información durante las fases de entrenamiento y validación, y esta será una tarea más
fascinante que trabajar con redes neuronales estáticas. Por último, pero no por ello
menos importante, nos resultará muy interesante investigar la representación de las
estadísticas espaciales y la información del color en cada capa de las redes neuronales.
Todos estos aspectos son muy importantes para comprender las funciones visuales
humanas de bajo y alto nivel, así como las de las redes neuronales artificiales.
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a b s t r a c t

Shannon’s entropy or an extension of Shannon’s entropy can be used to quantify information
transmission between or among variables. Mutual information is the pair-wise information that
captures nonlinear relationships between variables. It is more robust than linear correlation methods.
Beyond mutual information, two generalizations are defined for multivariate distributions: interaction
information or co-information and total correlation or multi-mutual information. In comparison to
mutual information, interaction information and total correlation are underutilized and poorly studied
in applied neuroscience research. Quantifying information flow between brain regions is not explicitly
explained in neuroscience by interaction information and total correlation. This article aims to clarify
the distinctions between the neuroscience concepts of mutual information, interaction information, and
total correlation. Additionally, we proposed a novel method for determining the interaction information
between three variables using total correlation and conditional mutual information. On the other
hand, how to apply it properly in practical situations. We supplied both simulation experiments
and real neural studies to estimate functional connectivity in the brain with the above three higher-
order information-theoretic approaches. In order to capture redundancy information for multivariate
variables, we discovered that interaction information and total correlation were both robust, and it
could be able to capture both well-known and yet-to-be-discovered functional brain connections.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Shannon launched information theory in 1948 (Shannon, 1948),
and it is firstly proposed for solving information transmission and
compaction in the communicate noise channel between source
and receiver. Shannon’s entropy quantities uncertainty of system
and has been widely used in many branches of science. Under-
standing information flowing or coupled among neurons in the
micro-level or macro-level is always a critical research problem.
Entropy can be used to quantify information representation and
capacity in the brain. There is a long history of applying entropy
to interpret brain function (Garcia, Fernández-Caballero, & Mar-
tinez Rodrigo, 2021; Keshmiri, 2020; Saxe, Calderone, & Morales,
2018; Timme & Lapish, 2018). On the one hand, entropy has been
widely used to analyze neural data and interpret information
capacity in the brain. The Principle of maximum entropy is one of
the classical theories in the statistics and neuroscience (Jaynes,
1957; Rosenkrantz, 1989). On the other hand, entropy-based
brain models or hypotheses also became one of the critical top-
ics in neuroscience. The Entropic Brain Hypothesis is one of the
classic representatives to model brain mechanisms that posits

E-mail address: qiang.li@uv.es.

a relationship between total entropy in the brain and long-
term psychological states based on recent brain imaging re-
search (Carhart-Harris et al., 2014). Both aforementioned theories
have been explained specific neuroscience problems. However,
cognitive function is derived by population neural activity or
interaction with other neurons in the brain rather than single
neuron. Therefore, exploring information interaction between
brain regions and how the neuron activity coupled to drive cog-
nitive behaviors is necessary to understand brain function. One
of the common information-theoretic tools is mutual information
which mainly statistically described two random variables depen-
dencies relationship (Cover & Thomas, 1991; Shannon, 1948). The
mutual information has been used to study neural activity (Cutts
& Eglen, 2014; Mijatović et al., 2021), characterize different neu-
rons relationship (Ince, Montani, Arabzadeh, Diamond, & Panzeri,
2009), and apply to neuroimaging (Functional Magnetic Reso-
nance Imaging (fMRI) is an imaging technique applied to study
human brain function and neurological diseases) studies for a
long time (Bandettini, 2012; Gao et al., 2021; Li, 1990; Stozer
et al., 2013; Tedeschi et al., 2003). There are different practical
approaches for estimating mutual information from observations.
The standard estimators are binned method, continuous meth-
ods, e.g., Kernel Density Estimation (KDE) (Moon, Rajagopalan,
& Lall, 1995), naive non-parametric k-nearest neighbor (KNN)

https://doi.org/10.1016/j.neunet.2021.11.016
0893-6080/© 2021 Elsevier Ltd. All rights reserved.
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(Singh, Hnizdo, Demchuk, & Misra, 2003) and other variants KNN
estimators (Kraskov, Stögbauer, & Grassberger, 2004), Gaussian
copula-based estimators (Ince et al., 2016; Ma & Sun, 2011) and so
on. Mutual information already became a popular way to estimate
pair-wise functional connectivity then based on it to understand
information interaction across brain regions (Eqlimi, riyahi alam,
Sahraian, Eshaghi, & Rad, 2014; Hlinka, Palus, Vejmelka, Mantini,
& Corbetta, 2011; Ince et al., 2016). However, we faced two
challenges when we used above mentioned mutual information
estimators. First, in a typical scenario, we estimate that mutual in-
formation from a limited number of samples is often infeasible in
many practical situations. Second, like the amount and variety of
big data growth, mutual information is not performing very well
for identifying or picking strong relationships from dependence
data, but in some cases, we are interested in understanding these
strong dependences rather than independence (Gao, Ver Steeg, &
Galstyan, 2015). Last but not least, we want to investigate the
relationship of neurons beyond pair-wise, but general mutual
information cannot solve the above problems.

Considered aforementioned general mutual information lim-
itations, two generalizations of mutual information theory pro-
posed for solving multivariate variables relationship and they are
interaction information (McGill, 1954) (also called co-information
Bell, 2003) and total correlation (Watanabe, 1960) (also noted
multi-mutual information Studený & Vejnarová, 1999), respec-
tively. The mathematics expression of interaction information
and total correlation will be introduced in Section 2. Therefore,
we only describe both applications in the neuroscience field here.
First, interaction information quantifies the amount of informa-
tion (redundancy or synergy) shared among variables, and it can
be used to measure redundancy information in the set of neurons.
However, there are fewer studies in empirical neuroscience done
with interaction information. One reason is hard interpretation
from both information theory and neuroscience perspectives be-
cause it can be positive or negative. Second, it will be hard
to estimate from real neural dataset. However, since not many
studies were done in neuroscience with interaction information,
but it still has been used in the feature selection and machine
learning fields (Jakulin & Bratko, 2004; Jakulin, Bratko, Smrke,
Demsar, & Zupan, 2003). Furthermore, understanding the role
of redundancy information is a significant problem, and it can
help us further understanding brain function. As we mentioned
above, another generalization of mutual information is total cor-
relation. Total correlation can be used to measured redundancy
information within a set of variables. The difference of total
correlation and interaction information can be directly visual-
ized with Venn diagrams in Fig. 1. The total correlation-related
studies are mostly done in the image statistics and machine
learning fields (Chan, Al-Bashabsheh, & Zhou, 2020; Gao, Brekel-
mans, Steeg, & Galstyan, 2019; Ver Steeg, 2017; Walczak, 2008)
instead of neuroscience. However, it gradually gets attention
in understanding information dependence of multivariate vari-
ables in biological studies (Ferenci & Kovács, 2014; Gomez-Villa,
Bertalmío, & Malo, 2020; Li, 2021; Li, Johnson, Esteve-Taboada,
Laparra, & Malo, 2021).

I will quickly review some clustering algorithms used for clus-
tering information or statistics relationships among multivariate
variables in the following contents. Clustering analysis is a good
way for us to group similar variables into a set (Saxena et al.,
2017). There has varieties type of clustering algorithms for solving
different practical problems. I will only review some standard
clustering models which are usually used in brain neuroimaging
researches. The first one is agglomerative hierarchical clustering
which is based on variables distance, then merges nearest clusters
from beginning in which variables are considered a single cluster
then until group all similarity objects into one group (Everitt,

Landau, Leese, & Stahl, 2011; Fischer, 1995). The way to visualize
the clustering is called dendrogram, and it already has been
widely used in biostatistics (Everitt et al., 2011; Nowak & Tib-
shirani, 2007). In brain imaging, it also can be used for measure
of functional connectivity in the brain Akiki and Abdallah (2019)
and Wang, Msghina, and Li (2016). However, hierarchical clus-
tering always uses only pair-wise distances, hence, it is unable to
utilize interaction information and total correlation’s possibility
to describe to correlation of n > 2 variables. To address the above
problem, one way in which we can replace cluster criterion with
interaction information or total correlation. This may be called
greedy clustering as it retains the greedy nature of hierarchical
clustering (Cormen, Leiserson, Rivest, & Stein, 2001). In another
way, we can solve it with graph theory-based models. In graph
theory and complex networks, the network structure is encoded
in the edges between nodes, and weights represent the strength
of the connection between nodes. The graph can supply between
or beyond pair-wise relationships for variables, and it has been
a growing interest in brain neuroimaging studies over the recent
years (Mansoory, Oghabian, Jafari, & Shahbabaie, 2017; Uehara,
Tobimatsu, Kan, & Miyauchi, 2012; Wang, Zuo, & He, 2010). The
graph-theoretic analyses play a significant role in exploring the
brain’s intrinsic, task-related activity and help us to describe
and predict dysfunction using a network perspective (Farahani,
Karwowski, & Lighthall, 2019; Uehara et al., 2012).

This paper explored mutual information, interaction informa-
tion, and total correlation information-theoretic methods from
a neuroimaging perspective. Section 2, we review the defini-
tion of entropy, mutual information, interaction information, and
total correlation and their application mainly in neuroimaging.
Moreover, we present a novel interaction information estima-
tor through total correlation and condition mutual information.
Section 3, we supplied simulation studies and explored redun-
dancy with mutual information, interaction information, and total
correlation. Section 4 then showed some applications in brain
development. Section 5 gives a general discussion and concludes
with some directions for future research.

In this study, our main contributions are threefold,

• Considered mutual information can only capture pairwise
dependency (n = 2) as opposed to beyond two variables
(n>2). We estimate statistics associated among variables
(n>2) via interaction information and total correlation. We
proposed new estimators for interaction information based
on total correlation and conditional mutual information
based on previous works.

• In computational neuroimaging analysis, such as Functional
Connectivity (FC), one of the immense challenges is high-
dimensional fMRI data. We showed that interaction in-
formation and total correlation could capture more rich
dependency than mutual information. Meanwhile, it also
opens a door for our study in image statistics, deep learning
tasks, such as disentangled representation learning, ensem-
ble learning, and model distillation.

• As we stated before, it is hard to structure statistics
relationships among variables. Therefore, we used greedy
clustering and graph theory to represent functional con-
nectivity among (Region of Interests) ROIs with resting-
state and task-related fMRI data. We proved that high-order
information-theoretical could capture both some known
functional connectivity and some unknown functional con-
nectivity in the brain.

2. Theory and method

This section will first introduce the definition of entropy, mu-
tual information, and multivariate mutual information under dif-
ferent cases. As we know, mutual information cannot satisfy
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Fig. 1. Venn diagrams illustrating mutual information, interaction information, and total correlation. (a) Information content of 2 variables and their mutual
information, MI(X; Y). (b) Information content of 3 variables and their common information, which are interaction information, II(X; Y; Z) and total correlation,
TC(X, Y, Z). The H(X), H(Y ), and H(Z) indicate entropy of X , Y and Z , respectively.

needs in specific conditions (N>2). Therefore, we will introduce
interaction information and total correlation and differences be-
tween them in the following contents. (Fig. 1).

2.1. Entropy

Entropy H(X) indicates how surprising it is, on average, to get
a symbol x from a random variable X that can take the possible
symbols x1, x2, . . . , xn each with probability p(xi):

H(X) = E[− log p(X)] = −

k∑
i=1

p (xi) log p (xi)

entropy can be analogously defined for multivariable case (Cover
& Thomas, 1991), i.e., for a n-dimensional random vector X , called
joint entropy:

H (X1, X2, . . . , Xn) = E [− log p (X1, X2, . . . , Xn)]
= −

∑k1
i1=1 · · ·

∑kp
ip=1 p

(
xi1 , . . . , xip

)
log p

(
xi1 , . . . , xin

)
The corresponding units of entropy are bits for the base is 2. The
entropy of Gaussian variables depends on the variables dimen-
sional d and determinant of the covariance matrix Σ . The entropy
of Gaussian variables can be defined as,

H(X) =
1

2 ln 2
ln
[
(2πe)d|Σ |

]
(1)

The above-limited approach to estimate entropy exists bias be-
cause limited data used, and this effect can be avoided via analytic
correction (Goodman, 1963; Misra, Singh, & Demchuk, 2005). The
bias-corrected entropy estimate is given by,

H(X) =
1

2 ln 2

(
ln
[
(2πe)d|Σ |

]
− d ln

2
N − 1

−

d∑
i=1

Ψ

(
N − i
2

))
where N is the total samples and d is the dimentionality of X with
covariance matrix Σ .

Entropy measured the stochastic system uncertain state. Shan-
non’s entropy is widely used in the communication system and
quantifies lossless information compression and transmission.
The entropy concept is also already widely applied across various
research fields. In this research, we are interested in explain-
ing neural information flow among brain regions and how each
region functional coupled with each other.

Fig. 2. The relationship between correlation and mutual information. The linear
correlation could be negative but mutual information is always positive.

2.2. Mutual information (2-variate case)

The mutual information of pair-wise variables mainly de-
scribed amount of information that one variable contained about
another random variables (Cover & Thomas, 1991; Shannon,
1948). It quantifies how much information is shared between
variables. The amount of information that is contained in two
variables X , Y is given by the joint entropy,

I(X; Y ) =

∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

If x = [X1, X2] satisfies a bivariate Gaussian distribution x ∼

N (0, 1), then mutual information between X1 and X2 is given by,

I (X1; X2) = −
1
2
log
((
1 − ρ2

X1X2

))
(2)

where ρ is the correlation coefficient between X1 and X2. There-
fore, mutual information can be thought of as a nonlinear func-
tion of correlation (see Fig. 2). Compared to correlation, mutual
information captures not only nonlinear dependencies but also
handles discrete random variables. From Eq. (2). For the multi-
variate Gaussian case, the mutual information between X and Y
is given by,

I(X; Y ) =
1

2 ln 2
ln
[

|ΣX | |ΣY |

|ΣXY |

]
(3)
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Fig. 3. Estimated dependencies on linear and nonlinear variables with correlation and mutual information. The correlation between the two variables is shown on
the left, and the MI is shown on the right side; (discrete method, 16 bins, no bias correction). The top row shows linear dependencies, for which MI and correlation
both detect a relationship. The distributions in the bottom row have no correlation because they are nonlinear.

where ΣX and ΣY are the covariance matrices of variable X and Y ,
respectively. ΣXY is the covariance matrix for joint variable (X, Y ).
Eq. (3) can be further expressed (Scharf & Mullis, 2000) in terms
of correlation coefficients ρi as follows,

MI(X; Y ) = −
1
2

∑
i

ln
(
1 − ρ2

i

)
(4)

Comparison with linear correlation, mutual information capture
not only pair-wise linear relationships but also nonlinear de-
pendencies. Following the simulation experiments in Ince et al.
(2016), we simulated varying bivariate distribution with 104

samples, and measured their dependency with linear correlation
and mutual information. In Fig. 3, The correlation and mutual in-
formation both capture dependencies in the bivariate distribution
variables. However, mutual information still captures informa-
tion from nonlinear distribution signal, but correlation of all
nonlinear signal get zeros. Therefore, as we mentioned above,
mutual information only estimates pair-wise relationships in the
system. However, we usually faced more than two variables in
real situations. e.g., neurons in the brain. Multivariate mutual in-
formation is an extension of mutual information that can estimate
relationship beyond two variables.

2.3. Multivariate mutual information (N-variate case, N > 2)

Two high-order information-theoretic generalizations of mu-
tual information are presented in this section. They are interac-
tion information and total correlation, respectively. The difference
among mutual information, interaction information and total cor-
relation were illustrated in Fig. 1. The detail of the concept about
interaction information and total correlation will be introduced
in the following sections.

2.3.1. Interaction information or co-information (3-variate case)
Interaction information (McGill, 1954), also named co-

information (Bell, 2003), is used to describe the information
shared among three variables. The definition of interaction in-
formation relies on conditional mutual information that mutual
information of two random variables (X and Y) condition on a
third one (Z) (Wyner, 1978). It can be expressed as,

II(X; Y | Z) =

∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) log
p(x, y | z)

p(x | z)p(y | z)
(5)

it can be negative compared to mutual information, and Eq. (5)
could be rewritten as,

II(X; Y | Z) =

∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) log
p(z)p(x, y, z)
p(x, z)p(y, z)

(6)

In the 3-variate case, the interaction information is defined by
conditional mutual information among three variables subtracted
standard mutual information between variables.

II(X; Y ; Z) = I(X; Y | Z) − I(X; Y )
= I(X; Z | Y ) − I(X; Z)

= I(Y ; Z | X) − I(Y ; Z) (7)

According to Eqs. (2) and (6), Eq. (7) can be rewritten as,

II(X; Y ; Z) =

∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) log
p(z)p(x, y, z)
p(x, z)p(y, z)

−

∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

(8)

Therefore, from Eq. (8), we can measure interaction information
through estimate variables of probability and joint probability.

Estimating interaction information for Gaussian variables We
estimate interaction information for Gaussian variables through
total correlation and conditional mutual information in the
simulation study. From Fig. 1, it can be mathematically expressed
as,

II(X; Y ; Z) = TC(X, Y , Z) − (I(X; Y |Z) + I(X; Z |Y ) + I(Y ; Z |X)) (9)

The conditional mutual information between two Gaussian vari-
ables conditioned on a third, I(X; Y |Z), I(X; Z |Y ), and I(Y ; Z |X)
can be measured with function cmi_ggg1 which supplied by
Ince (Ince et al., 2016). Total correlation among X, Y , Z can be es-
timated with Rotation-Based Iterative Gaussianization (RBIG) (La-
parra, Camps-Valls, & Malo, 2011; Laparra, Johnson, Camps-Valls,
Santos-Rodríguez, & Malo, 2020) that introduced in the later sec-
tion. Now from Eq. (9), we can estimate interaction information
for three variables via total correlation and conditional mutual
information.

1 https://github.com/robince/gcmi/blob/master/matlab/cmi_ggg.m.
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2.3.2. Total correlation or multi-mutual information (N-variate case
(N ≥ 3))

Total correlation is one of several generalizations of mutual in-
formation, and the multivariate constraint, or multi-information
constraint, is another name for it. Total correlation firstly pro-
posed by Wantanable in 1996 (Watanabe, 1960), and also noted
as multi-mutual information by Studený (Studený & Vejnarová,
1999). The concept of total correlation, TC(X1, X2, . . . , XN ), pro-
vides a direct and effective way of assessing the dependency
among multiple variables (N > 3): It determines how redundant
or dependent a set of n random variables is.

TC (X1, X2, . . . , XN) =

N∑
i=1

H (Xi) − H (X1, X2, . . . , XN) (10)

Based on Eq. 2.1, it can be rewritten as,

TC (X1, X2, . . . , Xn)

=
∑

x1∈X1,x2∈X2,...,xn∈Xn p (x1, x2, . . . , xn) log
p(x1,x2,...,xn)∏n

i=1 p(xi)
(11)

It can be noted that for the case of N = 2 (Bivariate Case), total
correlation is equivalent to the well-known mutual information.
However, we are interested in investigating variables normally
N > 2 (N-variate Case) in the biological neural network. In the
N-variate Case situation, we used total correlation to measured
redundancy among variables in the system, and only under all
variables are independent then total correlation will get zeros. In
this study, total correlation is estimated through the definition of
total correlation and two advanced information-theoretical esti-
mators: Rotation-Based Iterative Gaussianization (RBIG) (Laparra
et al., 2011, 2020) and the unsupervised learning model, CorEX.
Ver Steeg and Galstyan (2014), respectively.

Estimating total correlation based on definition
The total correlation can be estimated directly from its defi-

nition. From Eq. (11), in order to get total correlation, we only
need to estimate margin and joint entropies from variables and
practically possible. If X be a random variable with a probability
density function f whose support is a set X . The continuous
variable of differential entropy (Cover & Thomas, 1991) can be
given as,

H(X) = −

∫
X
f (x) log f (x)dx (12)

The primary step is first to discretize the continuous variable and
then apply a James–Stein-type shrinkage which is an effective
way in many scenarios with p = 1000 variables even with less
than 100 to estimate entropy (Hausser & Strimmer, 2008). The
discretization was performed by equal width binning, with 4
bins for each variable. The higher number of bins will give more
accurate representation of original data distribution, but it will
face dimensional and computing complexity problems because
dimensional is increasing exponentially with the number of bins.
After we estimate entropy and joint entropies, we can directly
get total correlation from the definition of total correlation. Based
on the definition of total correlation in the Eq. (11), the mono-
tonicity property of total correlation could be used in the greedy
clustering. The monotonicity property of total correlation could
be written as,

TC
(
X1, . . . , Xp

)
=

[ p∑
i=1

H (Xi)

]
− H

(
X1, . . . , Xp

)
≥ TC

(
X1, . . . , Xp−1

)
(13)

RBIG2 The RBIG approach was firstly proposed in 2011 by Laparra
et al. (2011, 2020). The nature of RBIG is to convert any non-
Gaussian distribution data into Gaussian distribution format (see

2 https://www.uv.es/vista/vistavalencia/RBIG.htm.

Fig. 4). The RBIG is a cascade nonlinear plus linear transform for
the input PDF of data.

X0 → X1 → X2 → · · · Xn−1
→ Xn

X (l+1)
= R(l)

· Ψ (l)
(
X (l)

0

) (14)

where l indicates l-layer in the RBIG transform. R represents ro-
tation after marginal Gaussization, Ψ of input data. Furthermore,
variables of total correlation can calculate in any differentials
transform the situation with:
∆TC

(
x, x′

)
= TC(x) − TC

(
x′
)

=

Dx∑
i=1

H (xi) −

Dx′∑
i=1

H
(
x′

i

)
+

1
2
Ex

×
(
log
⏐⏐∇Gx(x)⊤ · ∇Gx(x)

⏐⏐)
(15)

Based on Eq. (15), the TC depends on the marginal entropy of
variables and the Jacobin of transform function (G) with each vari-
ables. After RBIG with non-Gaussian distribution data, TC(x′

= 0)
and TC can be defined as:

TC(x) =

Dx∑
i=1

H (xi) −
Dx

2
log(2πe) + Ex (log |∇Gx(x)|) (16)

The TC measure will be easy calculate if you know Ex(log∇Gx(x)).
However, the Jacobin of transform function with variable not easy
to calculate because of its a multi-variable object, but RBIG algo-
rithm through marginal Gaussian and rotation can easily solve the
above problem, and TC will be:

TC(x) =

N−1∑
n=0

∆TC (n)
=

(N − 1)Dx

2
log(2πe)−

N∑
n=1

Dx∑
i=1

H
(
x(n)i

)
(17)

where N is total samples and D indicates dimensionality of data.

CorEx3 The unsupervised learning model named with Total Cor-
relation Ex-planation, CorEx, which can be used for clustering
variables via TC and it initially proposed by Greg in 2014 (Steeg &
Galstyan, 2014, 2015). The main idea is to capture input data in-
formation hierarchical representations maximally in each hidden
layer. The anatomy of the model is a bottom-up optimization pro-
cedure to capture maximum information of input data (see Fig. 5).
The layer structure defined depends on input data distribution,
and each hidden layer will maximum give a representation of
the input data information. CorEx are given both upper and lower
bounds to characterize the informativeness of the representation.
In other words, the more profound layers can tighten bounds on
the information in the data. In the following content, we will
shortly introduce core mathematical equations of CorEx.

Basic decomposition of information: Assuming Y is a representation
of X then we have,

TCl(X; Y ) =

n∑
i=1

I(Y : Xi) −

m∑
j=1

I(Yj : X) (18)

where TCl indicate hidden layers, then the bound and decompo-
sition hold.

TC(X) ≥ TC(Xi; Y ) = TC(Y ) + TCl(X; Y ) (19)

Hierarchical Lower Bound on TC(X): Assuming Y 1:l refers a latent
layer which hierarchical representation of X then we have,

TC(X) ≥

l∑
l=1

TCl(Y l−1, Y l) (20)

3 https://github.com/gregversteeg/CorEx.
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Fig. 4. The work processes of RBIG. RBIG transforms any non-Gaussian data distribution into a Gaussian distribution. The left side graph shows initial probability
density distribution (PDF) and each dimensional distribution is non-Gaussian distribution. The middle figure shows data distribution after a transform (marginal
Gaussization plus PCA rotation) through RBIG. The last figure shows data density distribution became to Gaussian distribution in each dimensional.

Fig. 5. The work processes of CorEx. The information flow in the inner of CorEx and core mechanism maximizes representation information in the CorEx. Edge
thickness indicates the strength of dependence between factors, and node thickness indicates how each latent factor explains much total correlation.

Hierarchical Upper Bound on TC(X): Assuming Y 1:l refers a latent
layer which hierarchical representation of X , and additionally
ml = 1 and all variables are discrete, then we define,

TC(X) ≤

l∑
k=1

(
TCl
(
Y k−1

; Y k)
+

mk−1∑
i=1

H
(
Y k−1
i | Y k)) (21)

The CorEx uses iterative solutions to optimize and tight bounds
until each latent layer maximum represents previous data infor-
mation.

3. Application in the neuroscience

3.1. Synthetic neural data

We have generated BOLD signals with 2000 trails, and 10000
times points for simulating neural signals from brain’s A, B and
C areas. In order to investigate how each component affects

functional connectivity among brain regions, we used the same
previous studies simulation approach (Cole, Yang, Murray, Re-
povs, & Anticevic, 2015), but we considered nonlinear case in our
simulation. The time series for A, B and C mainly consist with
shared neural signal (Sabc), non-shared neural signal (NSa, NSb,
NSc), and noise (na, nb, nc) across brain regions (Fig. 6). The basic
neural time series can be formula as:

TA = SSabc + NSa + na

TB = |SSabc + NSb + nb|
e

TC = |SSabc + NSc + nc |
e (22)

where S indicates shared weights, N indicates non-shared weights
and na ∼ N (0, σ 2), nb ∼ N (0, σ 2), and nc ∼ N (0, σ 2), symbols
∥ indicates absolute value computing, here e is constant value,
2.5. We generated 10000 normally distributed time points. In
order to investigate sensitivity of information-theoretical under
different functional connectivity states, we through adjusted the
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Fig. 6. Simulated neural signal of three inter-brain regions (e.g., three nodes). (Left figure) formed a complex system such as the brain, we try to estimate the
underlying information dependencies (Right figure), accounting for linear and nonlinear dependencies. Coupled discovery aims to unveil such dependencies, leading
to estimated information coupled networks..

Fig. 7. The simulated functional connectivity states in the inter-brain regions under different situations. The functional connectivity affects by changing noise, shared
and non-shared neuron pool activity in the brain. The blue dot infers functional connectivity states before, and the red dot indicates functional connectivity states
changed via control parameters in the models. Here constant value e = 1. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Coupled information among three brain regions under various situations. We reported pair-wised mutual information, such
as I(A; B), I(A; C), I(B; C), interaction information, II(A; B; C), total correlation, TC(A, B, C) and their percentage of information
changed comparison with baseline under different situations. Where ↑ SSabc (0.8×) refers to increase shared activity 0.8×, ↑

(NSa,NSb,NSc )(2.5×) indicates increase non-shared activity 2.5×, ↑ SSabc& ↑ (NSa,NSb,NSc )(2.5×) indicates increase both shared
and non-shared activity 0.8×, and ↑ (na, nb, nc )(1.8×) indicates increase noise activity 1.8×, respectively. When we increased shared
activity (0.8×), we found that mutual information was not very sensitivity of connectivity as opposed to interaction information
and total correlation. The same situation also happened in the other three cases. All values with 2 decimal places were presented
in the table.
States Information/bits

I(A; B) I(A; C) I(B; C) II(A; B; C) TC(A, B, C)

Baseline 0.76 0.78 1.68 4.72 6.54

↑ SSabc (0.8×) 0.76 [0.00%] 0.78[0.00%] 1.08[35.71%] 8.51[80.30%] 9.12[39.45%]
↑ (NSa, NSb, NSc ) (2.5×) 0.75[1.32%] 0.75[3.85%] 0.90[46.43%] 1.98[58.05%] 2.28[65.14%]
↑ SSabc& ↑ (NSa, NSb, NSc ) (0.8×) 0.78[2.56%] 0.77[1.28%] 1.55[7.74%] 7.99[69.28%] 9.77[49.39%]
↑ (na, nb, nc ) (1.8×) 0.76[0.00%] 0.76[0.00%] 1.21[27.98%] 2.48[47.46%] 3.32[49.24%]

weights of shared neural activity, non-shared neural activity and
noise amplitude to study it, and mutual information, interaction
information and total correlation measured under below four
conditions (see Fig. 7).

From Table 1, we can get mutual information, interaction
information, and total correlation under various functional con-
nectivity changed among triplet neurons compared to original
signals. We found that multivariate mutual information capture
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Fig. 8. Hierarchical clustering dendrograms. The graph was depicted the hierarchical clustering dendrograms for linear correlation coefficient and mutual information
with a threshold of 0.02.

more information compared to mutual information in the high
dimensional and nonlinear distribution neural signals. It also
can be confirmed from Venn Diagram Fig. 1. If we increase the
information coupled among triplet neurons, there will be an
increase in mutual information, interaction information, and total
correlation. The opposite will be true if we increase non-shared
activity. Briefly stated, we have demonstrated that multivariate
information measures are more robust and sensitive than mutual
information measures. However, interaction information is more
difficult to interpret when it is negative as compared to total
correlation.

3.2. Real neural datasets

3.2.1. Resting-state fMRI
The data came from a resting-state fMRI experiment in which

a single participant kept alert wakefulness while watching across
but did not perform any other behavioral activity. The data was
preprocessed, and time series from various brain regions of inter-
est (ROIs) were collected. The ROIs are listed as follows,

Cau, Caudate; Pau, Paudate; Thal, Thalamus; Fpol, Frontal
pole; Ang, Angular gyrus; SupraM,Supramarginal Gyrus; MTG,
Middle Temporal Gyrus; Hip, Hippocampus; PostPHG, Poste-
rior Parahippocamapl gyrus; APHG, Anterior parahippocamapl
gyrus; Amy, Amygdala; ParaCing, Paracingulate gyrus; PCC, Pos-
terior cingulatecortex; Prec, Precuneus.

The dendrograms of Pearson correlation and mutual informa-
tion were computed with hierarchical clustering method using

linkage methods ward.D2. In Fig. 8, the connectivity matrix was
measured with Pearson correlation and mutual information, re-
spectively. The mutual information capture more dependence
compared to Pearson correlation (see Fig. 8). Meanwhile, on the
right side of the hierarchical clustering tree, revealing more clear
dependency among ROIs in the brain, e.g., The LPCC-RPCC, LPrec-
RPrec, are clustered together in correlation and mutual informa-
tion. The left and right hemispheres have symmetric connectivity
except for a few subcortical ROIs, e.g., Put, Cau, Amy, Hip, et al.

Next, we applied the method that takes the multivariate de-
pendences measure with total correlation from definition into
account. However, the greedy clustering results in a single cluster
merger variables and being grown larger and larger. Namely, the
merges in the first eight steps cluster are the following:

{LParaCing, RParaCing} → {LParaCing, RParaCing, LPut} →

{LParaCing, RParaCing, LPut, LCau} →

{LParaCing, RParaCing, LPut, LCau, RCau} →

{LParaCing, RParaCing, LPut, LCau, RCau, LAmy} →

{LParaCing, RParaCing, LPut, LCau, RCau, LAmy,APHG} →

{LParaCing, RParaCing, LPut, LCau, RCau, LAmy,APHG, RMTG}

The merges in the second eight steps cluster are the following
(see Table 2):

{RPrec, LPrec} → {RPrec, LPrec, RPCC} →

{RPrec, LPrec, RPCC, LPCC} →
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Fig. 9. Graph of latent factors for functional connectivity measures constructed by correlation, mutual information and total correlation. The tree graphs illustrated
correlation (left tree), mutual information (right tree), and total correlation (bottom tree) derived functional connectivity in the brain in which corresponding to
connectivity matrix in Fig. 8. The diagram presented bottom graphs with thresholded weights at 0.19 for visualizing. The edge thickness is proportional to mutual
information and node size, reflecting the total correlation among child ROIs.

Table 2
Multivariate mutual information measured with minimally connected clusters.
Cluster size Cluster members Information theoretic measures/bits

2 {LThal, RThal} 0.1064
2 {LPCC, RPCC} 0.1813
2 {LPrec, RPrec} 0.2170
2 {RAng, RSupraM} 0.1057
2 {LFpol, RFpol} 0.1714
3 {LCau, RCau, RAmy} 0.1007
3 {RHip, RAntPHG, RAmy} 0.1976
3 {RHip, RPostPHG, RAmy} 0.1369

{RPrec, LPrec, RPCC, LPCC, LSupraM} →

{RPrec, LPrec, RPCC, LPCC, LSupraM, LAng} →

{RPrec, LPrec, RPCC, LPCC, LSupraM, LAng, RAmy} →

{RPrec, LPrec, RPCC, LPCC, LSupraM, LAng, RAmy, RHip}

This can be readily explained by the monotonicity of the total
correlation already discussed: clusters with a high number of
variables have an advantage when their total correlation is com-
pared to smaller clusters because of inflation of total correlation.
For the CorEx approach, we fit the CorEx model consisting of
three layers, 10, 3, and 1 unit, to measure multivariate mu-
tual information among neurons. We found that total correlation
capture more relationship among ROIs.

In Fig. 9, while the dendrogram trees are globally different,
many similar structures can be observed: LPCC-RPCC, LPCC-RPCC-
LPrec-RPrec, LFpol-RFpol, LThal-RThal are examples for struc-
tures that remain unchanged, indicating no strong presence of
non-linear relationships. Meanwhile, some unknown relation-
ships were found under total correlation measures, e.g., LCau-
RCau-RFpol-LFpol, RHip-LMTG-RAmy-RAntPHG. In summary, the-
oretical information approaches can quantify information coupled
states in the brain, but interpreting results with information-
theoretic results is always challenging.

3.2.2. Brain development fMRI

Datasets
The data was taken from a task-related fMRI experiment in

which participants watched a silent version of ‘‘Partly Cloudy’’, a
5.6-min animated movie (Jacoby, Bruneau, Koster-Hale, & Saxe,
2015) (see Fig. 10). A short description of the plot can be found
online.4 Meanwhile, the BOLD signal was recorded. The data
was pre-processed, and time series were extracted from different
regions of interest (ROIs) with pre-defined atlas (Richardson,
Lisandrelli, Riobueno-Naylor, & Saxe, 2018). The data is down-
sampled to 4 mm resolution for convenience with a repetition
time (TR) of 2 secs. The origin of the data is coming from Open-
Neuro.5 In the experiments, the prepossessed data included 122
children with ages 3–12 and can be directly downloaded with
nilearn.datasets function.6

BOLD signal construction
A spatially constrained parcellation, MSDL, was used for ex-

tracting BOLD signals, and it can be download from here7
(Varoquaux & Craddock, 2013; Varoquaux, Gramfort, Pedregosa,
Michel, & Thirion, 2011) (see Fig. 11). We extract time-series
for each ROI in each subject, then weighted average fMRI BOLD
signals over all voxels within that specific region. Furthermore,
each region’s BOLD signal is normalized and detrended for the
following information-theoretical measures.

Functional connectivity of brain development with informa-
tion-theoretical measures

Understanding functional connectivity altered with brain de-
velopment is a crucial researches field in which not only help us

4 https://www.pixar.com/partly-cloudy#partly-cloudy-1.
5 https://openneuro.org/datasets/ds000228/versions/1.0.0.
6 https://nilearn.github.io/modules/generated/nilearn.datasets.fetch_

development_fmri.html.
7 https://team.inria.fr/parietal/files/2015/01/MSDL_rois.zip.
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Fig. 10. Visual stimuli frames. Example frames for the six events from Partly Cloudy. Images ©2009 Pixar, reused with permission. These images are not covered
under the CC BY license for this article.

Fig. 11. Pre-defined ROI atlas. MSDL atlas which including 39 ROIs in total.

further study brain function and help us diagnose neurodevelop-
mental disorders and learning disabilities.

In Fig. 12, while the dendrogram trees are globally differ-
ent, many similar structures can be observed: LSTS-RSTS, LDMN-
RDMN, LLOC-RLOC, LTPJ-RTPJ, LAud-RAud, et al. are examples
for structures that remain unchanged, indicating no strong pres-
ence of nonlinear relationships. The result of correlation, mu-
tual information, and total correlation is most consistent because
they all capture the pair-wise relationship. However, total cor-
relation gives more intuitive results than correlation and mu-
tual information cluster trees, e.g., LIns-RIns-V ACC LSTS-RSTS-
Cing. Multivariate information-theoretic approaches do not find
more relationships than correlation and mutual information with
brain development fMRI because function connectivity or infor-
mation coupled among brain regions is not fully developed in the
children.

4. Discussion and conclusion

Information theory provides a principled methodology for
studying and quantifying functional connectivity based on sta-
tistical relationships between variables. As we have reviewed,
the foundational quantities of information theory are entropy
and mutual information. Here we have tried to use multivariate
mutual information approach to the synthetic and practical esti-
mation of these quantities. We proved that multivariate mutual
information results are consistent with traditional methods and
found some unknown relationships when estimated functional
connectivity. However, there are also have some limitations in
this study are presented in the following contents.

Firstly, In the simulation study, we simulated neural signals
under Gaussian distribution. The reason for that is that com-
parison under different functional connectivity states how the

information coupled between or among neurons changed. While
we found multivariate information theory could capture more
relationships among neurons, the neural signal could not fit Gaus-
sian distribution or even more complex distribution under real
cases. Secondly, we applied interaction information and total
correlation in the simulation studies, which proved that both
high-order information-theoretic methods could be used to quan-
tify information flow derived functional connectivity among brain
regions. However, we have not applied interaction information
in practical studies because it is hard to interpret it when it
becomes negative properly. As we aforementioned, theoretical in-
formation approaches are easy to apply to analyze neural signals,
but it is very hard to properly interpret it from statistics and
neuroscience perspectives. Thirdly, we used a pre-defined atlas,
MSDL, to extract neural signals, and it only includes 39 ROIs,
so we only explored the limited relationships with these ROIs.
Moreover, considering the dense overlap and distribution proper-
ties of neural signals, multivariate mutual information could not
find more prosperous relationships because of the dataset itself
problems, specific fMRI datasets because it supplied more spatial
information than time-order information. Fourthly, estimating
total correlation from its definition, we will have a memory
problem when we have a larger-scale neural signal with a larger
bin value, and the accuracy of total correlation estimated were
not considered in this research. It could be as extension work for
the future studies.

This paper presented two multivariate generalizations of mu-
tual information, interaction information, and total correlation.
Firstly, quantitative measures intra-cortex regions dependent or
independent from others from the information-theoretic views.
Secondly, Total correlation is an efficient way to assess the func-
tional connectivity of human brain, according to the findings.
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Fig. 12. Correlation, mutual information, and total correlation are used to generate a graph of latent variables for functional connectivity metrics. The tree graphs
illustrated correlation (left tree with red color), mutual information (right tree with green color), and total correlation (bottom tree with blue color) derived functional
connectivity in the development brain. The diagram presented bottom graphs with threshold weights at 0.16 for visualizing, and edge thickness is proportional to
mutual information and node size, reflecting the total correlation among child ROIs. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Thirdly, total correlation is a powerful clustering method with a
graph to find multivariate independence, and it has the potential
to apply to other field investigations in the future. Moreover,
the main goal of this paper is to show that there is not just
one straightforward generalization of pair-wise mutual infor-
mation for the multivariate cases, and neuroscience researchers
that want to exploit high-order information measures in an
information-theoretic framework should take this fact into ac-
count. Moreover, we have applied the two different measures
to the functional connectivity in the brain, and demonstrated
that the results might differ significantly. These are just exper-
imental and rudimentary observations; more research into the
exact nature of both generalizations and their repercussions for
neuroscience – as well as a proper quantitative evaluation –
is imperative. This brings us to some avenues for future work.
More research needs to be carried about the exact nature of the
dependencies that both measures capture. Preliminary results
show that they extract different information, but it is unclear
what the exact nature of that information is. Secondly, we want
to conduct a proper quantitative evaluation on different cognitive
behavior tasks to indicate which measure works best and which
measure might be more suitable for a particular task.

5. Code

In this study, there is hybrid software used to study multi-
variate mutual information. The Matlab libraries are used to esti-
mate conditional mutual information is listed as follows, GCMI.8

Python libraries are used to download dataset and estimate multi-
variate mutual information are listed as follows, Nilearn,9 RBIG,10

CorEx.11 R packages used to visualize tree graph in this studies
are listed as follows: factoextra,12 igraph,13 entropy,14 cluster,15

and gplots.16 Furthermore, the source code for all experiments
can be found at: https://github.com/sinodanishspain/MI_II_TC_
2021.

8 https://github.com/robince/gcmi/blob/master/matlab/.
9 https://nilearn.github.io/.

10 https://isp.uv.es/RBIG4IT.htm.
11 https://github.com/gregversteeg/CorEx.
12 https://cran.r-project.org/web/packages/factoextra/index.html.
13 https://igraph.org/r/.
14 http://www.strimmerlab.org/software/entropy/.
15 https://svn.r-project.org/R-packages/trunk/cluster/.
16 https://cran.r-project.org/web/packages/gplots/index.html.
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Appendix

This paper also a extension research for my poster17 which
was presented at entropy2021 conference.18 The preliminary
findings were summarized in a poster at the entropy2021 con-
ference. Furthermore, we only compared Pearson correlation and
Total correlation (n > 3)/Mutual information (n = 2) application
on the measure of information flow in the human intra-cortex.
However, In this manuscript, We mainly tried to do three things.
First, we mainly explored the difference between mutual infor-
mation, interaction information, and total correlation. Second,
we explored how to estimate it correctly. Third, we investigated
this high-order information-theoretical approach to measuring
human functional connectivity with fMRI data and confirmed that
above mentioned high-order information theory could capture
rich dependency.
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Abstract: Recent studies proposed the use of Total Correlation to describe functional connectivity
among brain regions as a multivariate alternative to conventional pairwise measures such as correla-
tion or mutual information. In this work, we build on this idea to infer a large-scale (whole-brain)
connectivity network based on Total Correlation and show the possibility of using this kind of
network as biomarkers of brain alterations. In particular, this work uses Correlation Explanation
(CorEx) to estimate Total Correlation. First, we prove that CorEx estimates of Total Correlation and
clustering results are trustable compared to ground truth values. Second, the inferred large-scale
connectivity network extracted from the more extensive open fMRI datasets is consistent with existing
neuroscience studies, but, interestingly, can estimate additional relations beyond pairwise regions.
And finally, we show how the connectivity graphs based on Total Correlation can also be an effective
tool to aid in the discovery of brain diseases.

Keywords: Total Correlation; CorEx; fMRI; functional connectivity; large-scale connectome; biomarkers

1. Introduction

The human brain is a complex system comprised of interconnected functional units.
Millions of neurons in the brain interact with each other at both a structural and functional
level to drive efficient inference and processing in the brain. Furthermore, the functional
connectivity among these regions also reveals how they interact with each other in specific
cognitive tasks. Functional connectivity refers to the statistical dependency of activation
patterns between various brain regions that emerges as a result of direct and indirect
interactions [1,2]. It is usually measured by how similar neural time series are to each other,
and it shows how the time series statistically interact with each other.

A variety of ways to analyze functional connectivity exist. A seedwise analysis can be
performed by selecting a seed-driven hypothesis and analyzing its statistical dependencies
with all other voxels outside its limits. It is a common tool for studying how different
parts of the brain are connected to one another. Connectivity is determined by calculating
the correlation between the time series of each voxel in the brain and the time series of
a single seed voxel. Another option is to perform a wide analysis of the voxel or Region
Of Interest (ROI), where statistical dependencies on all voxels or ROIs are studied [3].
Structural connectivity refers to the anatomical organization of the brain by means of
fiber tracts [4]. The sharing of communication between neurons in multiple regions is
coordinated dynamically via changes in neural oscillation synchronizations [5]. When it
comes to the brain connectome, functional connectivity refers to how different areas of the
brain communicate with one another during task-related or resting-state activities [6]. The
use of information-theoretic metrics can efficiently detect their interaction in dynamical
brain networks, and it is widely used in the field of neuroscience [7], for instance to
quantify information encoding and decoding in the neural system [8–11], measure visual
information flow in the biological neural networks [12,13] and color information processing
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in the neural cortex [14], and so on. However, although functional connectivity has already
become a hot research topic in neuroscience [15,16], systematic studies on the information
flow or the redundancy and synergy amongst brain regions remain limited. One extreme
type of redundancy is full synchronization, where the state of one neural signal may be
used to predict the status of any other neural signal, and this concept of redundancy is thus
viewed as an extension of the standard notion of correlation to more than two variables [17].
Synergy, on the other hand, is analogous to those statistical correlations that govern the
whole, but not its constituent components [18]. High-order brain functions are assumed
to require synergies, which give simultaneous local independence and global cohesion,
but are less suitable for them under high synchronization situations, such as epileptic
seizures [19]. Most functional connectivity approaches until now have mainly concentrated
on pairwise relationships between two regions. The conventional approach used to estimate
indirect functional connectivity among brain regions is the Pearson Correlation (CC) [20]
and Mutual Information (I) [8,21–23]. However, real brain network relationships are often
complex, involving more than two regions, and the pairwise dependencies measured by
correlation or mutual information cannot reflect these multivariate dependencies. Therefore,
recent studies in neuroscience focus on the development of information-theoretic measures
that can handle more than two regions simultaneously such as Total Correlation [24,25].

Total Correlation (TC) [26] (also known as multi-information [27–29]) mainly describes
the amount of dependence observed in the data and, by definition, can be applied to
multiple multivariate variables. Its use to describe functional connectivity in the brain was
first proposed as an empirical measure in [24], but in [25], the superiority of TC over mutual
information was proven analytically. The consideration of low-level vision models allows
deriving analytical expressions for TC as a function of the connectivity. These analytical
results show that pairwise I cannot capture the effect of different intra-cortical inhibitory
connections, while TC can. Similarly, in analytical models with feedback, synergy can be
shown using TC, while it is not so obvious using mutual information [25]. Moreover, these
analytical results allow calibrating computational estimators of TC.

In this work, we build on these empirical and theoretical results [24,25] to infer a
larger-scale (whole-brain) network based on TC for the first time. As opposed to [24,25],
where the number of considered nodes was limited to the range of tens and focused
on specialized subsystems, here, we consider wider recordings [30,31], so we use signals
coming from hundreds of nodes across the whole brain. Additionally, we apply our analysis
to data of the same scale for regular and altered brains (http://fcon_1000.projects.nitrc.
org/indi/ACPI/html/ accessed on 12 March 2021). We also show the possibility of using
this kind of wide-range networks as biomarkers. From the technical point of view, here,
we use Correlation Explanation (CorEx) [32,33] to estimate TC in these high-dimensional
scenarios. Furthermore, graph theory and clustering [15,16] are used here to represent the
relationships between the considered regions.

The rest of this paper is organized as follows: Section 2 introduces the necessary
information-theoretic concepts and explains CorEx. Sections 3 and 4 show two synthetic
experiments that prove that the CorEx results are trustable. Section 5 estimates the large-
scale connectomes with fMRI datasets that involve more than 100 regions across the whole
brain. Moreover, we show how the analysis of these large-scale networks based on TC may
indicate brain alterations. Sections 6 and 7 give a general discussion and the conclusion of
the paper, respectively.

2. Total Correlation as Neural Connectivity Descriptor
2.1. Definitions and Preliminaries

Mutual Information: Given two multivariate random variables X1 and X2, the mutual
information between them, I(X1; X2), can be calculated as the difference between the sum
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of individual entropies, H(Xi), and the entropy of the variables considered jointly as a
single system, H(X1, X2) [34]:

I(X1; X2) = H(X1) + H(X2)−H(X1, X2) (1)

where, for each (multivariate) random variable v, the entropy is H(v) = 〈− log2 p(v)〉
and the brackets represent expectation values spanning random variables. The mutual
information also can be seen as the information shared by the two variables or the reduction
of uncertainty in one variable given the information about the other [35].

Mutual information is better than linear correlation: For Gaussian sources, mutual
information reduces to linear correlation because the entropy factors in Equation (1) just
depend on |〈X1 ·X>2 〉|. However, for more general (non-Gaussian) sources, mutual informa-
tion cannot be reduced to covariance and cross-covariance matrices. In these (more realistic)
situations, I is better than the linear correlation because I captures nonlinear relations that
are ruled out by |〈X1 · X>2 〉|. For an illustration of the qualitative differences between I and
linear correlation, see the examples in Section 2.2 of [24].

As a result, mutual information has been proposed as a good alternative to linear
correlation for estimating functional connectivity [8,21]. However, mutual information
cannot capture dependencies beyond pairs of nodes. This may be a limitation in complex
networks [36].

Total Correlation: This magnitude describes the dependence among n variables, and
it is a generalization of the mutual information concept from two parties to n parties. The
Venn diagram in Figure 1 qualitatively illustrates this for three variables. The definition of
Total Correlation from Watanabe [26] can be denoted as:

Figure 1. Conceptual scheme of information-theoretic measures of neural information flow. The left
circle areas represent the amounts of information, and intersections represent shared information
among the corresponding variables, X0, X1, X2. Examples of entropy, H(X0), H(X1), H(X2), Total
Correlation (red color), and TC[X0, X1, X2] are given. The middle figures show some neural time
series extracted from brain regions, which correspond to the nodes in the right figure. The right figures
illustrate large-scale time series in the brain and how the coupled information is transmitted among
the brain regions. The blue and green lines show Linear Correlation (CC) and Mutual Information
(I), respectively, between different parts of the brain. The modules represent the lobes of the human
brain. Each module has specific brain regions, and each module works with the others.

TC(X1, . . . , Xn) ≡
n

∑
i=1

H(Xi)−H(X1, . . . , Xn) = DKL

(
p(X1, . . . , Xn)‖

n

∏
i=1

p(Xi)

)
(2)

where X ≡ (X1, . . . , Xn) and TC can also be expressed as the Kullback–Leibler divergence,
DKL, between the joint probability density and the product of the marginal densities. From
these definitions, if all variables are independent, then TC will be zero.

For the conditional Total Correlation, which is similar to the definition of Total Cor-
relation, but with a condition appended to each term, the Kullback–Leibler divergence of
the two conditional probability distributions can also be used to define the conditional
Total Correlation. The estimation method used in this work (CorEx presented in the next
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subsection) uses TC after conditioning on some other variable Y, which can be defined
as [34]:

TC(X|Y) = ∑
i

H(Xi|Y)− H(X|Y) = DKL(p(x|y)‖
n

∏
i=1

p(xi|y)) (3)

Total Correlation is better than mutual information: This superiority is not only due
to the obvious n-wise versus pairwise definitions in Equations (1) and (2). It also has to do
with the different properties of these magnitudes. To illustrate this point, let us recall one
of the analytical examples in [25]. Consider the following feedforward network:

X1 −→ X2 −→ e
f−→ X3 (4)

where the nodes X1, X2, e, and X3 can have any number of neurons, the first two trans-
forms, X1 −→ X2 −→ e, are linear and affected by additive noise, and the last transform,
f (·), is nonlinear, but deterministic. Imagine that, in this network, one is interested in
the connectivity between the neurons in the hidden layer, e; however, the nonlinear func-
tion f (·) is unknown, and one only has experimental access to the signal in the regions
X1, X2, and X3. In this situation, one could think of measuring I(X1, X3) = I(X1, f (e))
or I(X2, X3) = I(X1, f (e)). However, the invariance of I under arbitrary nonlinear re-
parametrization of the variables [35] implies that these measures are insensitive to f and
the connectivity therein. On the contrary, as pointed out in [25], using the expression
for the variation of TC under nonlinear transforms [13,37], the variation of H under non-
linear transforms [34], and the definition in Equation (2), one obtains TC(X1, X2, X3) =
[TC(X1, X2, e)− TC(e)] + TC(X3), where the term in the bracket does not depend on f (·),
but the last term definitely does, which proves the superiority of TC over I in describing
connectivity.

In [25], the network in Equation (4) specifically refers to the flow from the retina, X1,
to the LGN, X2, and finally, to the visual cortex, e and X3. However, the result of the
superiority of TC over I to describe the connectivity in the hidden layer is totally general
for every network with the generic properties listed after Equation (4).

2.2. Total Correlation Estimated from CorEx

Straightforward application of the direct definition of TC is not feasible in high-
dimensional scenarios, and alternatives are required [28,29]. A practical approach to
estimate Total Correlation is via latent factor modeling. A latent factor model is a statistical
model that relates a set of observable variables to a set of latent variables. The idea is to
explicitly construct latent factors, Y, that somehow capture the dependencies in the data. If
we measure dependencies via Total Correlation, TC(X), then we say that the latent factors
explain the dependencies if TC(X|Y) = 0. We can measure the extent to which Y explains
the correlations in X by looking at how much Total Correlation is reduced:

TC(X)− TC(X|Y) =
n

∑
i=1

I(Xi; Y)− I(X; Y) (5)

Total Correlation is always non-negative, and the decomposition on the right in terms
of mutual information can be verified directly from the definitions. Any latent factor model
can be used to lower-bound Total Correlation, and the terms on the right-hand side of
Equation (5) can be further lower-bounded with tractable estimators using variational
methods; Variational Autoencoders (VAEs) are a popular example [38].

Although latent factor models do not give a direct Total Correlation estimation as the
Rotation-based Iterative Gaussianization (RBIG) [28,29] and the matrix-based Rényi en-
tropy [39] did, the approach can be complementary because the construction of latent factors
can help in dealing with the curse of dimensionality and for interpreting the dependencies
in the data. Compared to CorEx, the main goal of (RBIG https://isp.uv.es/RBIG4IT.htm (ac-
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cessed on 12 October 2022)) is to convert any non-Gaussian-distributed data into a Gaussian
distribution through marginal Gaussianization and rotation to obtain TC. The matrix-based
Rényi entropy (http://www.cnel.ufl.edu/people/people.php?name=shujian (accessed on
12 October 2022)) is mainly used for estimating multivariate information based on Shan-
non’s entropy, which is Rényi’s α-order entropy [40]. With these goals in mind, we now
describe a particular latent factor approach known as Total Correlation Explanation (CorEx
(https://github.com/gregversteeg/CorEx) (accessed on 12 October 2022)) [32].

CorEx constructs a factor model by reconstructing latent factors using a factorized prob-
abilistic function of the input data, p(y|x) = ∏m

j=1 p(yj|x), with m discrete latent factors, Yj.
This function is optimized to give the tightest lower bound possible for Equation (5).

TC(X) ≥ max
p(Yj |x)

n

∑
i=1

I(Xi; Y)− I(X; Y) =
m

∑
j=1

(
n

∑
i=1

αi,j I(Xi; Yj)− I(Yj; X)

)
(6)

The factorization of the latent factors leads to the terms I(X; Y) = ∑j I(Yj; X), which
can be directly calculated. The term I(Xi; Y) is still intractable and is decomposed using
the chain rule into I(Xi; Y) ≈ ∑ αi,j I(Xi; Yj). Each I(Xi; Yj) can then be tractably esti-
mated [32,33]. There are free parameters αi,j that must be updated while searching for
latent factors and achieving objective functions. When t = 0, the αi,j initializes and then
updates according to:

αt+1
i,j = (1− λ)αt

i,j + λα∗∗i,j (7)

The second term α∗∗i,j = exp
(
γ
(

I
(
Xi : Yj

)
−maxj I

(
Xi : Yj

)))
, and λ and γ are con-

stant parameters. This decomposition allows us to quantify the contribution to the Total
Correlation bound from each latent factor, which can aid interpretability.

CorEx can be further extended into a hierarchy of latent factors [33], helping to reveal
the hierarchical structure that we expect to play an important role in the brain. The latent
factors at layer k explain the dependence of the variables in the layer below.

TC(X) ≥
r

∑
k=1

(
m

∑
j=1

(
n

∑
i=1

αk
i,j I(Y

k−1
i ; Yk

j )−
m

∑
j=1

I(Yk
j ; Yk−1)

))
(8)

Here, k gives the layer and Y0 ≡ X denotes the observed variables. Ultimately, we
have a bound on TC that becomes tighter as we add more latent factors and layers and
for which we can quantify the contribution for each factor to the bound. We exploit this
decomposition for interpretability [41], as illustrated in Figure 2. CorEx prefers to find
modular or tree-like latent factor models, which are beneficial for dealing with the curse
of dimensionality [42]. For neuroimaging, we expect this modular decomposition to be
effective because functional specialization in the brain is often associated with spatially
localized regions. We explore this hypothesis in the experiments.
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Figure 2. CorEx learns a hierarchical latent factor as illustrated above. Edge thickness indicates
strength of the relationship between factors, and node thickness indicates how much Total Correlation
is explained by each latent factor.

3. Experiment 1: Total Correlation for Independent Mixtures

In this experiment, we estimated the Total Correlation of three independent vari-
ables X, Y, and Z, and each follows a Gaussian distribution. For this setup, the ground
truth of TC should satisfy TC(X, Y, Z) = 0, and we generated various samples with
different lengths. Then, the estimated Total Correlation values are shown in Figure 3.
Here, we compared CorEx with other different Total Correlation estimators, such as
RBIG [28,29], matrix-based Rényi entropy [39], Shannon discrete entropy (https://github.
com/nmtimme/Neuroscience-Information-Theory-Toolbox accessed on 12 October 2022),
and the ground truth. The left figure (2-dimensional) is mutual information, and the
middle (3-dimensional) and right figure (4-dimensional) are Total Correlation. As we
mentioned above, the simulation data are totally Gaussian-distributed. Therefore, their
dependency should be zero. We find that CorEx and RBIG both perform very well and
are very stable, and matrix-based Rényi entropy’s performance becomes more and more
nice with increased dimensions, while Shannon discrete entropy becomes more and more
accurate with an increase of the samples. All these make sense, and it also explains the
accuracy of Total Correlation estimation with CorEx. Here, compared to other estimators,
the main functionality goal of CorEx is to cluster statistical dependency variables based on
Total Correlation. However, other estimators mainly focus on directly obtaining the Total
Correlation value and do not supply very nice visualization results. The CorEx gives us a
nice connection with graph theory to visualize and show their functional relationship.

Figure 3. The estimated Total Correlation values for three independent variables. The various Total
Correlation estimators are compared with the ground truth value (red line), for example matrix-based
Rényi entropy (black line), Shannon discrete entropy (cyan line), RBIG (magenta line), and CorEx
(green line). See the main text for more information.

4. Experiment 2: Clustering by Total Correlation for Dependent and
Independent Mixtures

To evaluate the performance of CorEx in clustering tasks. The elements in group X
include X1, X2, and X3, which satisfy Gaussian distributions and are completely indepen-
dent of each other and of group Y, and the variables in group Y include Y1, Y2 from Y1,
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and Y3 from Y2, which are connected to each other. Then, we compared the CorEx cluster
results with the pairwise Pearson correlation, pairwise mutual information, and partial
correlation, which consider confounding effects to find the groups.

In Figure 4, we find that CorEx based on Total Correlation has high accuracy in estimat-
ing their dependencies (Figure 4e) compared to pairwise Pearson correlation (Figure 4b),
pairwise mutual information (Figure 4c), and partial correlation (Figure 4d). As we es-
tablished in this experiment, the elements in group Y should be clustered together, and
the elements in group X should be completely independent of each other and of group Y.
The ground truth is presented in Figure 4a. Then, we estimated the cluster result with the
pairwise Pearson correlation with a threshold of 0.1, pairwise mutual information with
a threshold of 0.4, and partial correlation without a threshold. Obviously, we found that
pairwise approaches have high errors in accurately estimating their statistical dependencies,
and pairwise mutual information is better than pairwise Pearson correlation, but still has
high errors in correctly clustering tasks. When we considered the confounding effect of the
third variables, we still did not obtain a better clustering result compared to TC. Therefore,
the clustering results with CorEx by Total Correlation obtain the best performance com-
pared to pairwise approaches. Moreover, we used purity as a criterion of clustering quality
to qualify the performance of clustering because it is a straightforward and transparent
evaluation metric [43]. To calculate purity, each cluster is allocated to the class that occurs
most frequently within it, and the accuracy of this assignment is determined by counting
the number of correctly assigned elements and dividing by N(N = 6). Formally:

Purity(X, Y) =
1
N ∑

i
max

j

∣∣Xi ∩Yj
∣∣ (9)

where X = {X1, X2, X3} is the set of clusters and Y = {Y1, Y2, Y3} is the set of classes.
Figure 4f presents the clustering performance of pairwise approaches and CorEx with
purity as a criterion. Poor clusters have near-zero purity ratings (lower bound). A perfect
cluster possesses a purity of one (maximum value). Based on Equation (9), we obtain purity
values of 0.17 and 0.33 for pairwise approaches and partial correlation, and the purity value
for CorEx is 0.83. All in all, we show that CorEx based on Total Correlation has the best
performance compared to pairwise approaches.

Figure 4. Clustering performance for dependent and independent mixtures. The top row: (a) displays
the ground truth of variable clustering in two groups. (f) shows the purity value of each approach.
The second row: (b) shows the clustering result based on Pearson correlation. (c) shows the clustering
result by pairwise mutual information. (d) shows the clustering result by partial correlation. (e) shows
clustering results by CorEx based on Total Correlation.
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5. Experiment 3: Brain Functional Connectivity Analysis Using Total Correlation

A network is a collection of nodes and edges, where nodes represent fundamental
elements (e.g., brain regions) within the system of interest (e.g., the brain) and edges repre-
sent the dependencies that exist between those fundamental elements with the considered
weights. Typically, the threshold is chosen based on the visual effect on functional connec-
tivity, and here, we set the optimal threshold for community detection in brain connectivity
networks. We used it to identify a threshold that maximizes information on the network
modular structure, removes the weakest edges, and keeps the largest connected component.
Figure 5 illustrates the schematic representation of network construction using fMRI. Firstly,
the time series were extracted from fMRI data based on a selected structural atlas, and then,
functional connectivity was estimated with CC, I, and CorEx, respectively. The results are
presented with a graph that includes both brain nodes and their functional connectivity
with weight edges.

Figure 5. A flowchart for the construction of a functional brain network by fMRI. 1© Time series
extraction from fMRI data within each anatomical unit (i.e., network node). 2© Estimation of
functional connectivity with CC, I, and TC (CorEx), respectively. 3© Visualization of functional
connectivity as tree and circle graphs (i.e., network edges and network nodes).

5.1. First Total-Correlation-Based Clustering Example from fMRI Data

The data were taken from a resting-state fMRI experiment in which a subject was
watching and maintaining alert wakefulness, but not performing any other behavioral
task. Meanwhile, the BOLD signal was recorded. These data were downloaded from
Nitime (https://nipy.org/nitime/index.html accessed on 12 October 2022). The data were
preprocessed, and time series were extracted from different Regions Of Interest (ROIs)
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in the brain. The ROIs’ abbreviations and related full names are listed as follows: Cau,
Caudate; Pau, Paudate; Thal, Thalamus; Fpol, Frontal pole; Ang, Angular gyrus; SupraM,
Supramarginal gyrus; MTG, Middle Temporal Gyrus; Hip, Hippocampus; PostPHG, Poste-
rior Parahippocamapl Gyrus; APHG, Anterior Parahippocamapl Gyrus; Amy, Amygdala;
ParaCing, Paracingulate gyrus; PCC, Posterior Cingulate Cortex; Prec, Precuneus; R, Right
hemisphere; L, Left hemisphere. First, we estimated the pairwise functional connectivity
metrics with Pearson correlation, mutual information, and the corresponding functional
connectivity, a circle-weighted graph used to visualize the outcome of pairwise functional
connectivity. In Figure 6, top row (left and right), Pearson correlation and mutual infor-
mation estimate the same pairwise dependencies, but later approaches capture stronger
weights between ROIs, such as LPCC and RPCC, LThal and RThal, and LAmy and RAmy.

(a)

(b)

Figure 6. Functional connectivity representation with graph-based networks. The functional connec-
tivity is represented in the cycle (a) and tree (b) graphs. Top row: the left and right figures correspond
to Pearson correlation with a threshold of 0.14 and mutual information with a threshold of 0.02,
respectively. Bottom row: the figures show the Total Correlation with a threshold of 0.16 that was
estimated by CorEx. To more directly display the statistical dependencies of brain regions, we here
converted the circle graph to a tree graph. The weights are shown by the thickness of the edges,
which shows how strongly information is coupled between or among brain regions.

Meanwhile, we also used weighted graph theory to cluster dependence among ROIs,
and we thresholded edges with a weight of less than 0.16 for legibility with the CorEx
approach. As we mentioned above, mutual information only estimates a more robust
relationship between ROIs compared to correlation. However, when we go beyond pairwise
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ROIs, CorEx captures richer information among all ROIs (see Figure 6 (bottom row)). Here,
we selected m1 = 10, m2 = 3, m3 = 1 as the latent dimension for each layer in our estimate
of TC with CorEx, and their corresponding convergent curves are plotted in Figure 7; it
shows the Total Correlation lower bound stops increasing. Figure 6 (bottom row) shows
the overall structure of the learned hierarchical model. Edge thickness is determined by
αi,j I

(
Xi : Yj

)
. The size of each node is proportional to the Total Correlation that a latent

factor explains about its children. The discovered structure captures several significant
relationships among ROIs that are consistent with correlation and mutual information
results, e.g., LPCC and RPCC, LThal and RThal, LParaCing and RParaCing, and LPut
and RPut. Furthermore, TC discovered some beyond pairwise unknown relationships;
for example, LCau, RCau, LFpol, and RFpol are clustered under Node 0, which explains
why they have dense dependency during this cognitive task compared to other ROIs in
the brain.

Figure 7. The Total Correlation convergence curve of CorEx in Layers 1, 2, and 3 is shown above.
From left to right, their corresponding Layer 1, Layer2, and Layer3 parameters are selected in event-
related experiments, and it shows that the Total Correlation lower bound stops increasing and tends
to converge.

5.2. Large-Scale Connectome with Resting-State fMRI
5.2.1. A Selection of Pre-Defined Atlas

We used the Automated Anatomical Labeling (AAL) atlas [44], a structural atlas with
116 ROIs identified from the anatomy of a reference subject (see Figure 8).

Figure 8. Automated Anatomical Labeling (AAL) atlas. The graph shows the volume of AAL
(116 regions) mapped to the smoothed Colin27 brain surface template. The different brain areas are
labeled on the brain surface with different colors, and detailed ROI/purple node information can be
found in the Appendix A with Table A1.
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5.2.2. Time Series Signals Extraction

The HCP and ACPI can access raw and preprocessed data, as well as phenotypic
information about data samples. The raw rs-fMRI data were preprocessed using the
Configurable Pipeline for the Analysis of Connectomes, an open-source software pipeline
that allows for automated rs-fMRI data preprocessing and analysis. We extracted time
series for each ROI in each subject after defining anatomical brain ROIs with the AAL atlas.
We calculated the weighted average of the fMRI BOLD signals across all voxels in each
region. Furthermore, the BOLD signal in each region was normalized and subsampled by
the repetition time. Finally, we averaged all of the subjects’ time series signals in each ROI.

5.2.3. HCP900

The Human Connectome Project contains imaging and behavioral data from healthy
people [30]. To investigate resting-state functional connectivity, we used preprocessed rest-
fMRI data from the HCP900 (https://www.humanconnectome.org/ (accessed on 12 March
2021)) release [31]. Here, we selected m1 = 10, m2 = 5, m3 = 1 as the latent dimension for
each layer in our estimate of TC with CorEx. We thresholded edges with a weight of less
than 0.16 for legibility. Figure 9 shows that whole-brain resting-state functional connectivity
is estimated with CorEx compared to Pearson correlation and mutual information. It mostly
captures relationships among brain regions, and neighboring brain regions cluster together
and communicate with other areas, e.g., Node 0 has a bigger node size than other nodes.

From Figure 9, we found that brain regions are functionally clustered together, which
is also consistent with structure connectivity based on their physical connectivity distance.
For example, under Node 0, the cerebellum and vermis regions densely cluster together,
while under Node 1, the frontal lobes cluster together and are also densely functionally
connected with the temporal lobe, and so on. The different colors indicate different brain
regions, which are based on Table A1. In addition, we can see that functional integration
and separation exist in our brain from Figure 9.
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(a)

(b) (c)

Figure 9. Large-scale functional connectivity with the HCP900. The functional connectivity is
represented in the tree (a) and cycle (b,c) graphs. Top row: A weighted threshold graph with a
max of 86 edges showing the overall structure of the representation learned from AAL ROIs (a
high-resolution figure is represented in the appendix with Figure 10). Edge thickness is proportional
to mutual information, and node size represents Total Correlation among children. In the node with
red color, the frontal lobe is represented, while green color represents the insula and cingulate regions,
blue color the temporal lobe, cyan color the central areas, gold color the occipital lobe, purple color
the parietal lobe, and deep pink color the cerebellum and vermis. Bottom row: Two representative
connectomes are presented in the form of a circular chord that shows the connections of all 116 nodes
with (b) correlation and (c) mutual information of the HCP dataset. Each lobe was labeled with a
different color.
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Figure 10. Functional connectivity of HCP900.
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5.2.4. Computational Psychiatry Applications with ACPI

The Addiction Connectome Preprocessed Initiative is a longitudinal study to inves-
tigate the effects of cannabis use among adults with a childhood diagnosis of ADHD. In
particular, we used readily preprocessed rest-fMRI data from the Multimodal Treatment
Study of Attention Deficit Hyperactivity Disorder (MTA).We attempted to use functional
connectivity as a bio-marker to discriminate whether individuals have consumed marijuana
or not (62 in the marijuana group vs 64 in the control group). In a comparison of whole-
brain functional connectivity between the control and patient groups, we found altered
functional connectivity in the patient group compared to the healthy group (see Figure 11).
We quantified the difference between the patient group and the healthy group, and the
purity of the patient group compared to the control group was 0.85± 0.23. The significant
altered functional connectivity happened between the frontoparietal and motor regions.
Meanwhile, we found sparse functional connectivity in the patient group compared to
the control group in general. Meanwhile, we also discovered that marijuana users had
more interaction between neural time series in particular ROIs such as the cerebellum,
frontoparietal, and default model regions than controls, e.g., cerebellum regions mainly
densely cluster around Node 0 compared to the control group. It also may explain differ-
ences in behavior in marijuana users because the frontoparietal network controls cognitive
behavior execution and decision-making, cerebellum-related action, and default model
network dysfunction in addicted users. All the above results are consistent with previous
related research [45–47]. Moreover, we found some unknown disconnect between some
visual regions and other brain areas. Based on related research [48,49], we suggest that
marijuana patients may have altered visual perception as well.
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Figure 11. Functional connectivity between healthy group and patient group. A weighted threshold graph showing the overall structure of the representation
learned from ALL ROIs. Edge thickness is proportional to mutual information, and node size represents Total Correlation among children. Here, we selected
m1 = 20, m2 = 3, m3 = 1 as the latent dimension for each layer in our estimate of TC with CorEx. (a) refers to normal people’s functional connectivity, and (b) shows
the marijuana group’s functional connectivity in the brain. Both groups were measured with a TC that used the same parameters in the model. In comparison with
the healthy group, we found less functional connectivity happened in the patient group, e.g., frontoparietal lobe and default model regions. (A high-resolution
figure is represented in the appendix with Figures 12 and 13).
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Figure 12. Functional connectivity of healthy group.
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Figure 13. Functional connectivity of patient group.
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6. Discussion

This manuscript presents a higher-order information-theoretic measure to estimate
functional connectivity. We estimated Total Correlation with CorEx under different sit-
uations. However, the approach has its own pros and cons, which we will discuss later.
Furthermore, we found that Total Correlation can be a metric to estimate functional connec-
tivity in the human brain. It can identify some well-known functional connectivities and
capture a few unknown nonlinear relationships among brain regions as well. To the best of
our knowledge, this is the first time that Total Correlation has been used to estimate larger-
scale functional connectivity for a whole-brain AAL atlas with 116 structural ROIs. Total
Correlation can also be a tool to find biomarkers to help us diagnose brain-related diseases.

Here, we discuss some advantages and limitations of this research now. Firstly, given
the curse of dimensionality of fMRI, we need to find a low-dimensional representation that
helps us characterize the connectivity. Traditional General Linear Models (GLMs), such
as expert-defined ROIs or the ALL atlas, are frequently used to find ROIs in resting-state
experiments. However, we should be able to do better with a data-driven approach. Sample
sizes and statistical thresholds are known to have a major impact on the statistical power
and accuracy of GLM-based ROI selection. Previous research has revealed that the GLM
has limited statistical power when inferring from fMRI data [50,51]. However, we used
GLM-based ROI selection in the real fMRI datasets, which may affect the final result when
we estimate functional connectivity.

Second, CorEx is model-independent, which means no anatomical or functional prior
knowledge is required to estimate the ROIs. The method is entirely data-driven; this
way, it is possible to analyze networks that have not been investigated and could be a
future extension of work. It is also possible to use Total Correlation as a pre-analysis for
other techniques such as dynamic causal modeling, which need constraints about the
underlying network [52]. What differentiates the CorEx algorithm is that it tries to break
the variables into clusters with high TC. In other words, CoRex finds a tree of latent factors
that explain Total Correlation, so this tree of clusters based on TC is a more data-driven way
to define regions and then connectivity than ROIs predefined by hand. This prioritization
of “modular” solutions in CorEx was not realized or emphasized in the original research.
The second reason why we used CorEx to estimate functional connectivity on larger-scale
fMRI datasets is that it is a clustering approach via TC. Furthermore, CorEx estimates Total
Correlation via hierarchical maximization correlation between previous layer and current
layer variables with a tight information bound that estimates a more accurate relationship
among variables in real neural signals.

Third, TC is an indirect information quantitative tool that cannot determine the direc-
tion of information flow between brain regions. Meanwhile, we discovered some unknown
functional connectivity in the real fMRI dataset before.

Fourth, given the irregularity of neural time series and the difficulties in quantifying
graph signals when brain networks are represented by graphs, we should avoid quantifying
too many graph signals. However, there is a metric called permutation entropy that gives
us the possibility to quantify the graph signal in complex systems [36]. It could be very
interesting to apply this metric to brain networks to check how much information could
be obtained from the complex graph signals, which could then help us more deeply
understand brain networks in the future. Moreover, as we mentioned the complexity of
neural time series, one of the important potential problems is the length of time series,
except for the additional dimensional problem. It is a significant challenge when you are
processing long lengths of time series, but it could be solved by transforming the time series
into embedding space or segmenting the long time series into specific time windows [53].

Finally, we applied TC to estimate large-scale functional connectivity with the real
fMRI dataset across the HCP and ACPI. The functional connectivity with the HCP900
gives us the potential to estimate a full brain atlas with TC in the future, and our result
shows that TC can capture the right functional connectivity; beyond this, it could also
give us some unknown functional connectivity. Therefore, it could be a future extension
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project. Furthermore, we used TC as a possible method to find biomarkers of brain
disease with the ACPI dataset. We compared whole-brain functional connectivity between
control and patient groups. We found altered functional connectivity in the patient group
compared to the healthy group, and we quantified this difference with purity metrics
because it is a simple and transparent evaluation measure. The purity in the patient group
compared to the control group is not too large, and it shows that there is some altered
functional connectivity in the patient group; for instance, we mentioned brain networks in
the cerebellum, frontoparietal, and default model regions. However, it was just examined
with one dataset with a small number of subjects and does not consider within-subject
variability, and it could be extended with more large datasets in the future.

7. Conclusions

We introduced Total Correlation to capture multivariate large-scale interactions within
brain regions. They were experimentally verified as effective steps for reconstructing
multivariate relationships in the brain. In this study, CorEx was adopted to estimate Total
Correlation. The CorEx approach can capture functional connectivity characteristics when
going beyond pairwise brain regions. On the other hand, we evaluated the method with
resting-state fMRI datasets. We found that multivariable relationships cannot be detected if
we use pairwise correlation and mutual information quantities only. More generally, multi-
variable relationships can be clustered only if we use Total Correlation. Therefore, Total
Correlation measures are significant to find complicated functional connectivity among
brain regions. Furthermore, we showed that Total Correlation can estimate functional
connectivity in the real neural dataset and find biomarkers for diagnosing brain diseases.

In the future, we plan to use the functional connectivity relationships discovered
by Total Correlation as an input to existing Graph Neural Networks (GNNs) [54] for the
purpose of interpretable brain disease diagnosis, such that practitioners or doctors can
identify the most informative subgraphs (or modules) to the decision (e.g., autism patients
or healthy control groups). In this regard, quantitative measures to define differences be-
tween graphs [55] and the extension of analytical results in [25] to a larger number of nodes
will be critical to assess and improve the qualitative results presented here. The recently
proposed approaches (e.g., [56,57]) all rely on pairwise relationships estimated by the linear
correlation coefficient as the input, which ignores high-order dependence essentially. In this
sense, we believe our approach has the potential to improve the explanation performances
of existing GNNs on brains.
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Abbreviations

TC Total Correlation
CorEx Correlation Explanation
CC Linear Correlation
I Mutual Information
VAEs Variational Autoencoders
fMRI functional Magnetic Resonance Imaging
BOLD Blood-Oxygen-Level-Dependent Imaging
DCM Dynamic Causal Modeling
GLM General Linear Model
ROI Region Of Interest
HCP Human Connectome Project
MTA Multimodal Treatment of Attention Deficit Hyperactivity Disorder
GNNs Graph Neural Networks

Appendix A

Table A1. Information of 116 brain regions that comprises the AAL atlas.

Brain Area AAL Regions AAL Index No.

Precentral gyrus 1, 2
Superior frontal gyrus, dorsolateral 3, 4
Superior frontal gyrus, orbital part 5, 6
Middle frontal gyrus 7, 8
Middle frontal gyrus, orbital part 9, 10
Inferior frontal gyrus, opercular part 11, 12
Inferior frontal gyrus, triangular part 13, 14

Frontal Lobe Inferior frontal gyrus, orbital part 15, 16
Rolandic operculum 17, 18
Supplementary motor area 19, 20
Olfactory cortex 21, 22
Superior frontal gyrus, medial 23, 24
Superior frontal gyrus, medial orbital 25, 26
Gyrus rectus 27, 28
Paracentral lobule 69, 70

Insula 29, 30
Insula and Anterior cingulate and paracingulate gyri 31, 32
Cingulate Median cingulate and paracingulate gyri 33, 34

Posterior cingulate gyrus 35, 36

Hippocampus 37, 38
Parahippocampal gyrus 39, 40
Amygdala 41, 42
Fusiform gyrus 55, 56

Temporal Heschl gyrus 79, 80
Lobe Superior temporal gyrus 81, 82

Temporal pole: superior temporal gyrus 83, 84
Middle temporal gyrus 85, 86
Temporal pole: middle temporal gyrus 87, 88
Inferior temporal gyrus 89, 90
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Table A1. Cont.

Brain Area AAL Regions AAL Index No.

Caudate nucleus 71, 72
Central Lenticular nucleus, putamen 73, 74
Structures Lenticular nucleus, pallidum 75, 76

Thalamus 77, 78

Calcarine fissure and surrounding cortex 43, 44
Cuneus 45, 46

Occipital Lingual gyrus 47, 48
Lobe Superior occipital gyrus 49, 50

Middle occipital gyrus 51, 52
Inferior occipital gyrus 53, 54

Postcentral gyrus 57, 58
Superior parietal gyrus 59, 60

Parietal Inferior parietal, but supramarginal and angular
gyri 61, 62

Lobe Supramarginal gyrus 63, 64
Angular gyrus 65, 66
Precuneus 67, 68

Cerebellum Crus 1 91, 92
Cerebellum Crus 2 93, 94
Cerebellum 3 95, 96
Cerebellum 4, 5 97, 98
Cerebellum 6 99, 100
Cerebellum 7b 101, 102
Cerebellum 8 103, 104
Cerebellum 9 105, 106

Cerebellum
and Vermis Cerebellum 10 107, 108

Vermis 1, 2 109
Vermis 3 110
Vermis 4, 5 111
Vermis 6 112
Vermis 7 113
Vermis 8 114
Vermis 9 115
Vermis 10 116
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ABSTRACT

A recent study invoked the superiority of the Total Correlation concept over the conventional pairwise
measures of functional connectivity in neuroscience. That seminal work was restricted to show
that empirical measures of Total Correlation lead to connectivity patterns that differ from what is
obtained using linear correlation and Mutual Information. However, beyond the obvious multivariate
versus bivariate definitions, no theoretical insight on the benefits of Total Correlation was given. The
accuracy of the empirical estimators could not be addressed because no controlled scenario with
known analytical result was considered either.

In this work we analytically illustrate the advantages of Total Correlation to describe the functional
connectivity in the visual pathway. Our neural model includes three layers (retina, LGN, and V1
cortex) and one can control the connectivity among the nodes, within the cortex, and the eventual
top-down feedback. In this multivariate setting (three nodes with multidimensional signals), we
derive analytical results for the three-way Total Correlation and for all possible pairwise Mutual
Information measures. These analytical results show that pairwise Mutual Information cannot capture
the effect of different intra-cortical inhibitory connections while the three-way Total Correlation can.
The presented analytical setting is also useful to check empirical estimators of Total Correlation.
Therefore, once certain estimator can be trusted, one can explore the behavior with natural signals
where the analytical results (that assume Gaussian signals) are no longer valid. In this regard (a) we
explore the effect of connectivity and feedback in the analytical retina-cortex network with natural
images, and (b) we assess the functional connectivity in V1-V2-V3-V4 from actual fMRI recordings.

Keywords Functional Connectivity, Information in Networks, Total Correlation, Mutual Information, Visual Brain,
Retina-Cortex Pathway, Linear Receptive Fields, Divisive Normalization, Intra-Cortical Connections.

1 Introduction

Functional connectivity in neural networks goes beyond structural links: it is related to the way information is
shared among multiple neural nodes [1, 2]. Quantifying the communication between multiple neural regions is key
to understand brain function. However, most of the literature on functional connectivity just describes pairwise
relationships because the conventional measures (such as correlation and mutual information) cannot cope with more
than two nodes simultaneously. As a result, studies involving more than two brain regions at the same time are rare.

A recent study proposed the use of Total Correlation as a way to overcome the intrinsic pairwise limitation of the
conventional measures of functional connectivity in neuroscience [3]. The multivariate nature of Total Correlation, T [4]
is a by-definition advantage over Mutual Information, I [5]. However, the seminal work that proposed T as a measure
of functional connectivity [3] had a fundamental limitation: beyond the obvious multivariate definition of T , no extra
theoretical insight on its benefits was given. As a result of the lack of analytical models, the accuracy of the empirical
estimators could not be addressed because no controlled scenario was considered either.
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The goal of this work is addressing the limitations of [3] in the context of the visual brain. We do it through the
consideration of simple but plausible analytical models of the retina-V1-cortex pathway.

The three-node model considered here (retina-LGN-V1) consists of the conventional linear receptive fields plus Divisive
Normalization nonlinearities [6–9]. Following [10, 11] we keep the dimensionality relatively small so that reliable
estimations of information-theoretic variables can be done. However, the biological plausibility of the considered setting
is explicitly checked against human data of visual psychophysics. In this general setting every node (or layer) has noisy
neurons so that part of the visual information is lost along the way. We consider two variations of this theoretical setting:
Model I is a nonlinear network with intra-cortical connections, and Model II is its linear version with top-down feedback.
When considering Gaussian signals both Model I (nonlinear) and Model II (recurrent) are analytically tractable.

In this work we derive expressions for T and I depending on the feedforward and feedback structural connectivity.
The key issue is the sensitivity of the descriptor: the bigger the variation of the descriptor in the range of explored
connectivity the better. In that way, the representation of the connectivity will be more robust to errors in the estimation
of the descriptor. Our analytical results show that while I is insensitive to some of the connectivity parameters, T is
sensitive to the connectivity. These analytical results explicitly show the superiority of T over I as a description of the
connectivity in a biologically plausible network.

On the other hand, the presented analytical results constitute a test-bed to check the accuracy of different empirical
estimators for T (or I). In this way, available estimators (as for instance [12–17]) can be reliably applied to real data
where theoretical results are not available (for instance because the Gaussian assumption is no longer valid [18–21]).
Finally, in this paper we discuss the shared information between cortical areas using a recent fMRI dataset [22].

The structure of the paper is as follows. Section 2 describes the structural connectivity in the neural models considered
throughout the work and their biological plausibility through the reproduction of visual psychophysics. In Section 3 we
derive the analytical results for the functional connectivity (both I and T ) in terms of the structural connectivity and
the properties of the signal. In the analytical results we consider both feedforward nonlinear models and models with
feedback. Section 4 presents T and I results computed with empirical estimators that can be compared to the theoretical
results of Section 3. Moreover, results for real signals (natural images and and actual responses measured using fMRI)
are also presented here. Finally, Section 5 summarizes the results and discusses the implications of the work.

2 Models of the retina-cortex pathway

Expanding and making explicit the multi-node scenario first considered in [3], all the theoretical results of this work
will be derived for the following early vision setting that may include feedforward and feedback connections, as for
instance:

Retina // LGN // V1ff
��

(1)

In this diagram the arrows represent structural connections between regions (or layers). Right-arrows represent
feedforward flow of the visual information, and the left-arrows represent eventual feedback.

More specifically, the signal at the retina will be represented by the n-dimensional random vector, x, the signal at the
LGN, will be represented by the n-dimensional random vector, y, and the signal at the cortex will be represented by two
n-dimensional random vectors, e and z. In this way, the intra-cortical connectivity is represented by the communication
between e and z. In the following diagram the strength of the structural connections between layers i and j is represented
by the variables, cij :

x
cxy // y

cye // e
cez // z

czx

ff

czy

}}
(2)

In the above setting, the study of functional connectivity through information-theoretic measures (such as I or T ) could
be useful to describe the unknown strengths, cij , from recordings of the neural signal done at the different nodes or
layers. In this context, proper measures of statistical relation should be sensitive to cij . And the bigger the sensitivity to
the strength of the connections, the better.
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2.1 Model I: Nonlinear and noisy model with focus on intra-cortical interactions

Our first specific example of the retina-cortex framework outlined in Eq. 2, which we will refer to as Model I, tries to be
analytically simple yet biologically plausible. To do so, this models includes: (a) center-surround receptive fields in
the LGN [23], (b) local-frequency receptive fields in the (linear) V1-cortex, approximated here as block-DCT basis
functions [24, 25], (c) a Divisive Normalization transform to model cortical nonlinearities [8], and (d) noise in each of
the neural layers is scaled in a way compatible with the psychophysical results in [26] and the physiological model
in [27].

In Section 2.4 we will see that the above elements (the considered layers and noise levels) are critical for the correlation
with human opinion in visual psychophysics. In this regard, the intra-cortical connectivity in the Divisive Normalization
transform is particularly relevant. Therefore, eventual measures of the statistical relation between neural nodes should
be sensitive to this intre-cortical connectivity.

The class of networks under Model I follows these equations:

x(t) = s(t) + nx(t) +
czx

cxy cye
F−1 · z(t−∆t)

y(t) = cxyK · x(t) + ny(t) = cxy F
−1 · λCSF · F · x(t) + ny(t) (3)

e(t) = cye F · y(t) + ne(t)

z(t) = f (e(t)) = sign(e(t)) · κ · |e(t)|γ
b + cezH · |e(t)|γ

where, the input to the system is the retinal image: the source vector s ∈ Rn, and its dimension n corresponds to the
number of photoreceptors. In the models considered in this work, the networks preserve the dimension of the signal1.

The retinal signal, the vector x ∈ Rn, is influenced by the input image s, but it is also affected by the white noise nx

and in this formulation, by a top-down feedback signal given by the term weighted by czx, that describes the strength of
this feedback connection. Due to the eventual variations in the input and the eventual feedback, all the multivariate
signals may depend on time, t. We will come back to the feedback term once we introduce the frequency meaning of
vector z.

The signal at the LGN is described by the vector y ∈ Rn. The matrix K contains the center-surround receptive fields of
LGN [23]. According to the relation between these receptive fields and the Contrast Sensitivity Function (CSF) [30–32],
we implement them using a local-frequency transform (basis in the matrix F ), a diagonal matrix with CSF-related
weights, λCSF , and coming back to the spatial domain using F−1. The LGN signal is also affected by white noise
through ny.

The (intermediate) linear signal at the V1-cortex, e, is computed from the LGN signal through a set of local-frequency
receptive fields in the matrix F . This linear signal is also affected by the white noise ne.

Finally, the nonlinear signal at V1, z, results from a Divisive Normalization transform, f(·), of the outputs of the linear
receptive fields at the previous intermediate layer, e. Note that the division, the exponent, and the absolute values in f(·)
are Hadamard (element-wise) operations [33], and the matrix H in the denominator represents the interaction between
the neurons of the previous cortical layer e. Specifically, the intra-cortical connectivity between the k-th and the l-th
neurons is represented by cezHkl. In this way, the k-th row of H , Hkl ∀l = 1, . . . , n, describes how the responses of
the neighbor linear neurons, el, affect the nonlinear response of the k-th neuron, zk. This interaction is assumed to be
local in space and frequency [9, 33, 34]. And cez controls the global strength of all these local interactions.

Finally, a comment on the top-down feedback term in the first equation. The Divisive Normalization changes the
relative magnitude of the responses zi but the rough qualitative meaning of the responses in z is still given by the
(local-frequency) receptive fields in F . Therefore, the F−1 matrix in the top-down feedback term in the first equation of
the system just converts the previous cortical response z(t−∆t) back into the spatial domain (where the input images
s are). Additionally, the top-down term has been scaled by the other connectivity strengths (cxy and cye) just to keep
the scale of the feedback term comparable to the source independently of the (arbitrary) gains introduced along the
retina-cortex path. In this way the effective weight of the feedback term only depends on czx.

The parameters that control the feedforward structural connections between retina, LGN, and the linear V1, (i.e. the
strengths cxy and cye) actually control the size of the signal with regard to the noise, and hence their functional role is

1Preservation of dimension along the pathway is convenient but it doesnt reduce the generality neither biologically, the spatial
subsampling affects the extrafovea, but not the fovea [28], nor mathematically because changes of dimension could be addressed by
the Jacobians of rectangular transforms [29].
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quite evident: the bigger the signal compared to the noise, the stronger the information flow from one node/layer to the
next. However, the role of the intra-cortical interaction cezH is more interesting. There is a large body of literature that
suggests that the role of the denominator in Divisive Normalization is capturing-and-removing the statistical relations
between the responses of the linear local-frequency sensors [20, 21, 35–38].

The first set of analytical results derived in Section 3.1 shows how T is sensitive to this (eventually interesting)
intra-cortical connectivity, while the sensitivity of I to these intra-cortical connections is equal to zero. This is an
analytical example (for a biologically plausible nonlinear network) of the genuine superiority of the Total Correlation
over the conventional Mutual Information.

2.2 Model II: Linear noisy model with focus on feedback

Model II is just a variation of Model I intended to simplify the analytical study of feedback. The convenience of this
variation will become apparent in Section 3 when we derive the analytical results. By comparing the Eqs. 3 of Model I
and Eqs. 4 of Model II it is easy to see that our second class of networks is just a linear version of the first where we
disregarded the Divisive Normalization. Specifically, in the last equation of Model II the cortical nonlinearity f(·) has
been substituted by a trivial identity, I, and the input cortical signal is scaled by the strength cez with regard to the inner
noise nz, which was not present before:

x(t) = s(t) + nx(t) +
czx

cxy cye cez
F−1 · z(t−∆t)

y(t) = cxyK · x(t) + ny(t) = cxy F
−1 · λCSF · F · x(t) + ny(t) (4)

e(t) = cye F · y(t) + ne(t)

z(t) = cez I · e(t) + nz(t)

Recurrence implied by feedback (both in Model I and Model II) implies a nontrivial evolution of the signals when the
system faces dynamic inputs with fast variations compared with the updating time constant ∆t. In this work we will
restrict ourselves to slow-varying sources s(t) and we wait till the convergence of the signals to a stationary state to
measure the statistical dependence between the signals at the different layers.

In the setting described by Model II the information about the input image (or source s) flows through the feedforward
links while being contaminated by the noise injected at each layer. However, for the slow-varying inputs described
above, part of the source is injected back into the retinal signal. As a result, the scenario in Model II is convenient to
analyze the joint effect of the strength of the feedforward links and the feedback links. For example, one may study the
effect of the intra-cortical connectivity cez (that scales the signal wrt the inner noise) together with the strength of the
feedback czx that reinforces the presence of the source at the retina. From a naive perspective, increasing cez and czx
seems to lead to an increase of the Signal-to-Noise ratio in all the responses. Analytical results of information-theoretic
descriptors can confirm or refute this intuition and provide a tool to understand a variety of situations.

The second set of analytical results derived in Section 2.2 show that while T strongly depends on the feedforward and
feedback strengths cez and czx, the sensitivity of I is smaller. In this case, the sensitivity of I is just smaller (not zero)
but the substantial difference in sensitivities (in a biologically plausible recurrent scenario) illustrates the conceptual
superiority of T over the conventional I .

2.3 Model parameters: receptive fields, divisive normalization and responses

In this section we present and illustrate the range of parameters that we considered in Eqs. 3 and 4 of Model I and
Model II.

First, note that the throughout the work we consider that the input to our system are achromatic image patches of 8× 8
pixels. This means that vectors s, x, y, e, and z live in R64, and we consider layers (or nodes) with n = 64 neurons.
Therefore, matrices K, F , λCSF , and H (that represent relations between neurons) are 64× 64 matrices.

Figure 1 illustrates the parameters involved in the retina-to-LGN transform (x→ y) and in the LGN-to-cortex transform
(y→ z), as well as in the intra-cortical nonlinearity (e→ z) of Model I.

First, regarding x→ y we follow the relation between the center-surround cells in LGN and the CSF, and hence we
compute K from the CSF of the Standard Spatial Observer [39] transformed from the original Fourier domain into the
(more convenient) DCT domain using the procedure in [40] (second panel in Fig. 1). The result (in the spatial domain)
are center-surround receptive fields which are consistent with the physiological measurements [23] (first panel in 1).
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Figure 1: Center-surround receptive fields in LGN and equivalent Contrast Sensitivity Function. Local frequency filters
tuned to different orientations in linear V1 and interaction kernel Hff ′ in the divisive normalization nonlinearity in V1.

Then, the linear cortical transform y→ e uses the local-DCT representation following previous results on biologically-
inspired image compression [41, 42] and subjective image quality [43, 44]. The 64 × 64 local-frequency receptive
fields in F (DCT-like basis functions) are shown in the third panel of Fig. 1.

Finally, regarding the intra-cortical Divisive Normalization, e→ z, here we also follow models used in biologically-
inspired image compression methods [37, 45]. In this case, the structural connectivity between different local-frequency
sensors decays with distance in frequency according to a Gaussian [33, 34]:

Hff ′ = e
− (f−f′)2

σ(f)2 (5)

where the width σ(f) increases with the frequency f , according to σ(f) = σ0 + αHf , as illustrated in the example
of the fourth panel of Fig. 1. In that case, the connectivity neighborhood is wider for sensors of high frequency
(bottom right of the plot) than for sensors of low frequency (top left of the plot). Finally, in our experiments we set the
semi-saturation constant b and the constant κ according to the method in [10] so that the Divisive Normalization is
compatible with classical non-linearities such as the Wilson-Cowan recurrent model [46].

In the experiments we consider a range of intra-cortical connectivity values in Model I (section 3.1), and we modify the
width of the kernel H by varying the constant αH ∈ [0.35, 4], and by varying the strength cez ∈ [0.01, 300]. This has
an effect in the nonlinearity of the cortical responses and, as a consequence, on the statistical effect of f(·).

Figure 2 illustrates the transformations of the signal along the layers of Model I for a representative set of parameters
(those that maximize correlation with human psychophysics). The top panel shows (i) the input image s: in this case the
achromatic image of an eye in the range [0,200] cd/m2, spatially sampled at 64 cycles/degree, (ii) how this input is
distorted with the noise at the retina (leading to x), (iii) the response of center-surround cells distorted by noise in y,
(iv) the response to 3× 3 regions of local-frequency sensors in e (with the corresponding noise) in e, and finally, (v) the
result of the Divisive Normalization in z. Additionally, for a qualitative understanding of the information lost along the
way, the cortical signals (e and z) are represented back in the spatial domain by transforming them using the linear
inverse F−1.

Following the argument in [26] the standard deviation of the noise injected at each layer has been selected such as
it remains barely visible. This is because just-noticeable-differences are determined by this amount of noise [47].
Specifically, the standard deviation of the white noise at the different layers in Model I is σ(nx) = 5cd/m2 (for images
with luminance in the range [0, 200]cd/m2), σ(ny) = 0.1, σ(ne) = 0.01, and (on top of these values), in Model II we
have σ(nz) = 0.01.

Finally, the scatter plots at the bottom left of Fig. 2 illustrate the nonlinearities introduced by the considered Divisive
Normalization. From the local DC components of the representation we can see the saturation of (perceived) brightness
as a function of the input luminance, where we can see the Weber Law [48]. Similarly, the other plots for low, medium,
and high, frequency coefficients, illustrate the nonlinearity of the perceived contrast as a function of the input contrasts.
This sigmoidal and signal-dependent behavior is consistent with the psychophysics of contrast perception [34], and the
amplitide of the responses for the different frequencies is consistent with the CSF [32, 40].
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Figure 2: Responses to a sample image with the optimal set of parameters. Optimal means maximum correlation with
human opinion among the considered discrete set of cortical connectivity values.

2.4 Model plausibility: image quality psychophysics

Qualitative Weber law, saturation of perceived contrast, and compatibility with the CSF displayed in Fig. 2 suggest that
the parameters selected from the literature make sense. However, a more comprehensive/quantitative test is necessary
particularly if a range of parameters has to be considered. To this end, in this section we assess the plausibility of the
models according to their ability to predict experimental data on subjective image quality, specifically the ratings given
by humans in the TID database [49]. This way of determining biologically plausible parameters is not new [21, 39, 50]
and it has been subject to criticism as a single measurement of performance [9]. However, in the context presented here,
prediction of subjective quality is enough to highlight the general behavior of the model and to (roughly) identify which
regions of the parameter space make more biological sense.

In this regard, the scatter plots in Figure 3 show how well Euclidean distances at the different layers of Model I
(abscisas), predict the subjective ratings (ordinates). The strong correlation obtained in the inner cortical representation
ρ = 0.84, which is not far from the state-of-the-art in subjective image quality metrics [51] prove the plausibility of the
transforms and the levels of the Gaussian noise introduced at each layer.

Specifically, the poor result for the input representation (s in luminance) implies that the visual brain certainly does
something else to the input signal [52, 53]. The progressive improvement of the correlation along deeper layers means
that the set of considered transforms is biologically meaningful. In fact, the consideration of the center-surround cells
(or the CSF) is a major fact in explaining image quality [39, 43], and this is incorporated in both models leading to a
reasonable Pearson correlation, ρ = 0.71, only with linear transforms. Then, we study the intra-cortical connectivity of
model I in more detail: we consider the plausibility of a range of strengths cez and a range of widths in H .

The result shows that all the family of Divisive Normalization transforms make sense because they substantially improve
the correlation with human opinion. Note that the correlation at the linear cortical layer e (surface in light blue at 0.71)
is raised by the different z layers to be in the range [0.76, 0.84]. Moreover, the final correlation surface for the different
intra-cortical connectivity values has strong curvature and a clear maximum (green dot) in the middle of the considered
region. This means that it is interesting to study the behavior of the statistical descriptors of connectivity in this region
of parameters.

3 Analytical results: T and I in terms of intra-layer connectivity and feedback

Here we present results for Model I and Model II which address different interesting situations that may happen in
natural or artificial neural nets: (i) nonlinear intra-layer connectivity, and (ii) feedback or recurrence. In order to simplify
the analytical tractability, in each case we focus on a specific feature of the models, either the nonlinearity (in Model I)
or the feedback-recurrence (in Model II).
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Figure 3: Correlation with human opinion for different cortical connectivity values (surfaces on top) and correlations
in previous (linear) layers (scatter plots at the bottom). In the nonlinear cortical case the scatter plot is the one
corresponding to the optimum connectivity.

For both models (I and II) analytical tractability is simple if one considers Gaussian signals. The Gaussian assumption
for natural images has been acknowledged as a too rough approximation both in Visual Neuroscience [18–21] and in
Image Processing [54, 55]. However, in this section we are going to take this assumption for the sake of analytical
tractability. In the experimental section we will compare the results with (synthetic) Gaussian signals and natural inputs.
The Gaussian assumption is appropriate and illustrative in this case because (as shown below using a trustable empirical
estimator) results for natural images are (1) similar to the Gaussian results, and more important for this work, (2) they
confirm the superiority of the description using T also for natural signals.

For the reader convenience, lets recall the definitions of the descriptors considered here: Total Correlation [4], and
Mutual Information [5] in terms of Entropy:

T (x,y, z) =

(
n∑

i=1

h(xi) + h(yi) + h(zi)

)
− h(x,y, z) (6)

I(x,y) = h(x) + h(y)− h(x,y) (7)

The biggest conceptual difference between these magnitudes is, of course, that T can be applied to any number of
nodes (or layers). However, even in the case of just two nodes, T (x,y) 6= I(x,y) because, for multivariate nodes, T
considers the redundancy among the coefficients (or neurons) of each node, which is disregarded by I . This difference
is key when the signals in each layer are not independent, which is the more interesting situation in visual neuroscience.

As joint and marginal entropy are easily computed for Gaussian signals from the covariance matrices or from the
marginal variances [5], Eqs. 6 and 7 imply that, if variables are Gaussian, analytical results are straightforward. This is
the case in Model II, but, due to the nonlinearity, it is not the case in Model I.
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3.1 T and I as descriptors of intra-cortical connectivity (Model I)

For the sake of simplicity, in this section, on top of the Gaussian assumption mentioned above, we will also consider
czx = 0 in our nonlinear Model I, i.e. it does not consider feedback. We leave feedback for the results of Model II in
Section 3.2.

With these assumptions, the variables x, y, and e are Gaussian because they are sum of linearly-transformed Gaussian
variables plus white Gaussian noise. However, the Divisive Normalization nonlinearity f(·) implies that the variable z
is non-Gaussian. In this setting, expressions for T and I involving z (where the intra-cortical connectivity is) require
the application of specific properties of these magnitudes under transforms of the random variables.

The Total Correlation does depend on intra-cortical connectivity:

In order to get an analytical result for T (x,y, z), lets concatenate the variables that represent the considered nodes into
column vectors of dimension 3n: a = [x; y; e], and a′ = [x; y; z] = [x; y; f(e)], and consider,

a
F−−−→ a′

where we are interested in computing T (a′). In this situation, one may use the following property of the variation of
Total Correlation when the variables undergo a transformation F [11, 56]:

∆T (a,a′) = T (a)− T (a′) =
3n∑

i

h(ai)−
3n∑

i

h(a′i) +
1

2
Ea

{
log|∇aF> · ∇aF|

}
(8)

where Ea

{
·
}

is the average over the samples a. Then, taking into account that,

∇aF =

(
I 0

0 ∇ef

)

and considering that T (a) = T (x,y, e) only depends on Gaussian variables and hence with known entropy in terms of
the covariance matrix2, we obtain the desired result (in nats):

T (x,y, z) =
1

2

3n∑

i

log(Σaii)−
1

2
log|Σa| − n

2
− n

2
log(2π)− 1

2
log|Σe|+

n∑

i=1

h(zi)−
1

2
Ee{ log|∇ef · ∇ef

>| } (9)

where the covariance matrices Σe and Σa do not depend on the intra-cortical connectivity, because they only depend on
x, y, and e:

Σa = Σxye =




Σx cxy · Σx ·K> cye · cxy · Σx · (F ·K)>

cxy ·K · Σx Σy cye · Σy · F>
cye · cxy · F ·K · Σx cye · F · Σy Σe




but, according to [33], ∇ef does depend on the intra-cortical connectivity due to the interactions in the Divisive
Normalization, cez and H:

∇ef = Dsign(e) · D−1(
b+cez·H·|e|

) · [I− cez · Dz ·H] · D(
γ sign(e)|e|γ−1

) (10)

where Dv is a diagonal matrix with the vector v in the diagonal.

Eqs. 9 and 10 explicitly show that T (x,y, z) does depend on the intra-cortical connectivity.

Another way to see the dependence with the intra-cortical connectivity consist of identifying these two terms in Eq. 9:
the (Gaussian) T (x,y, e), using the definition in Eq. 6, and the variation of T under the transform z = f(e), using the
property in Eq. 8. By doing that, it is easy to see that:

T (x,y, z) =
(
T (x,y, e)− T (e)

)
+ T (z) (11)

where the term in the parenthesis obviously does not depend on the intra-cortical connectivity (because x, y and e are
previous to that interaction), but T (z) does depend on the Divisive Normalization.

The Mutual Information measures do not capture the effect of intra-cortical connectivity: This is easy to see using
the following property: the mutual information is invariant to non-singular differentiable transforms of the random
vectors [57]:

I(a, f(b)) = I(a,b) (12)
2If x is a Gaussian variable, its entropy in nats is h(x) = 1

2
log|2πeΣx| where Σx is the covariance of x [5].
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This property is easy to see by considering that I(a,b) measures the KL-divergence between the densities p(a,b) and
p(a)p(b) [5]. Taking into account that the Jacobian that appears in the variation of the probability under transforms [58]
is compensated (in the integral of the KL-divergence) by the change of the differential volume, one gets the invariance.

As a result, no pairwise measure I involving x, y, and z depends on the intra-cortical connectivity:

I(x,y) = 1
2 log |Σx|+ 1

2 log |Σy| − 1
2 log |Σxy|

I(x, z) = I(x, f(e)) = I(x, e) = 1
2 log |Σx|+ 1

2 log |Σe| − 1
2 log |Σxe|

I(y, z) = I(y, f(e)) = I(y, e) = 1
2 log |Σy|+ 1

2 log |Σe| − 1
2 log |Σye|

(13)

where,

Σxy =

(
Σx cxy · Σx ·K>

cxy ·K · Σx Σy

)

Σxe =

(
Σx cye · cxy · Σx · (F ·K)>

cye · cxy · F ·K · Σx Σe

)

Σye =

(
Σy cye · Σy · F>

cye · F · Σy Σe

)

Therefore, we have demonstrated an important concept: in the biologically plausible Model I, Eq. 13 means that the
conventional I measures do not capture the intra-cortical connectivity, which is critical to get that high correlation with
biology. On the contrary, Eqs. 9 and 10 explicitly show that T does depend on the intra-cortical connectivity.

3.2 T and I as descriptors of feedback (Model II)

In Model II there is no nonlinearity so, if the source s is Gaussian and so are the noises injected at the different layers,
all the variables (in the forward pass) will be Gaussian including z. Then, the considered feedback from z to x just
injects an extra Gaussian variable back into x. As a result, x will be Gaussian too for any strength of the feedback.
For slow-varying inputs (as natural images at the retina) the feedback signal (coming from the past) is not totally
independent of the current value of the source, so the covariance at the retina is not the sum of the covariance matrices of
the separate terms in the sum in the first equation of Model II. However, this does not modify the Gaussian assumption.

All these considerations imply that the definitions in terms of entropy given in Eqs. 6 and 7 can be applied together with
the expression of the entropy for Gaussian signals that only depends on the corresponding covariance matrices. As a
result, in order to make explicit the dependence on feedforward and feedback connectivity one only has to consider all
possible covariance matrices, which is what we list below for Model II.

Assuming that signal and noise are not correlated, the covariance matrices of the signal at each isolated layer are:

Σx = E
{
x · x>

}
= Σs + Σnx +

( czx
cxycyecez

)2
F−1 · Σz · F−1> +

czx
cxycyecez

M(s, z)

Σy = c2xy ·K · Σx ·K> + σ2(ny) I (14)

Σe = c2ye · F · Σy · FT + σ2(ne) I
Σz = c2ez · Σe + n2e · Id

where M(s, z) is a symmetric matrix that describes the relation between s and z (they are not independent), and it is
given by: M(s, z) = F−1 · E

{
s · z>

}
+
(
F−1 · E

{
s · z>

})>
.

Additionally, the covariance matrices of two concatenated vectors that have not been given in Section 3.1 are:

Σxz =

(
Σx cye · cxy · cez · Σx · (F ·K)>

cye · cxy · cez · F ·K · Σx Σz

)

Σyz =

(
Σy cye · cez · Σy · F>

cye · cez · F · Σy Σz

)
(15)

Σez =

(
Σe cez · Σe

cez · Σe Σz

)
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Similarly, the covariance matrices of three and four concatenated vectors that have not been given in Section 3.1 are:

Σxyz =




Σx cxy · Σx ·K> cye · cxy · cez · Σx · (F ·K)>

cxy ·K · Σx Σy cye · cez · Σy · F>
cye · cxy · cez · F ·K · Σx cye · cez · F · Σy Σz




Σxez =




Σx cxy · cye · Σx · (F ·K)> cye · cxy · cez · Σx · (F ·K)>

cxy · cye · F ·K · Σx Σe cez · Σe
cye · cxy · cez · F ·K · Σx cez · Σe Σz


 (16)

Σxyez =




Σx cxy · Σx ·K> cye · cxy · Σx · (F ·K)> cye · cxy · cez · Σx · (F ·K)>

cxy ·K · Σx Σy cye · Σy · F> cye · cez · Σy · F>
cye · cxy · F ·K · Σx cye · F · Σy Σe cez · Σe

cye · cxy · cez · F ·K · Σx cye · cez · F · Σy cez · Σe Σz




Given the matrices in Eqs. 14-16, in Model II both variables T and I depend on the intra-cortical connectivity cez and
on the feedback czx. However, the sensitivity of the descriptors is not that obvious from these equations plugged into
Eqs. 6 and 7. Therefore, in order to figure out which descriptor is better (which one is more sensitive) one should
consider specific values of the parameters (as for instance what we considered in Section 2), and compute T and I in a
range of connectivity values.

We do that in the next experimental section where we find that, in Model II, our descriptor, T , is substantially more
sensitive than I to the feedback, czx, and the intra-cortical connectivity, cez . And this happens both for Gaussian signals
and also for natural images.

4 Empirical results

In this experimental section3 we address the following points:

• We use the theoretical expressions to illustrate the behaviors of T and I , both in the case where the superiority
of T is analytically obvious (as in Eqs. 9-11 versus Eqs. 13 for the intra-cortical connectivity in Model I), and
in the case where the behavior is not easy to see directly from Eqs. 14-16 plugged into Eqs. 6-7 (in Model II).
In these experiments we use Gaussian sources with the same mean and covariance as natural images and the
model parameters discussed in Section 2.4.

• We confirm the theoretical results presented in Section 3 for both models (I and II) through a specific empirical
estimator of T and I [12, 59] that has been already used in visual neuroscience [10, 11]. This empirical
confirmation of the theory uses sets of 0.5 · 105 Gaussian samples injected into the models (I and II), and then,
the empirical estimator is applied to the responses of the models. Incidentally, the presented pair theory-data
is a good test-bed for empirical estimators of T and I .

• We explore how the empirical estimations of T and I behave for natural (non-Gaussian) images where, in
principle, the theory would not be applicable. We also use sets of 0.5 · 105 natural image patches and the same
variations of Model I and Model II.

• We explore the behavior of T and I in real fMRI signals from cortical regions V1, V2, V3, V4 responding to
natural images so that we can discuss possible connectivity schemes.

The structure of this section is as follows: (1) We describe the experimental methods: the empirical estimator, the
natural and synthetic image data, and computational issues of the theoretical expressions. (2) We present T and I
surfaces for different intra-cortical connectivity cez and αH that controls H in Model I. (3) We present T and I surfaces
for different feedforward and feedback connectivity cez and czx in Model II. Finally, (4) we present the empirical
estimations of T and I from real fMRI recordings.

4.1 Methods: empirical estimator, data, and computational issues

Empirical estimation of T and I from samples: here we use the Rotation-Based Iterative Gaussianization (RBIG).
This method, originally proposed for PDF estimation [12], is able to transform data following any multivariate PDF

3Code and data at http://isp.uv.es/docs/CODE_connectivity.zip, Samples.tar.gz, and DATA_connect_2.zip
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into data that follows a unit-covariance multivariate Gaussian. In this way, RBIG is useful to estimate the redundancy
among coefficients because it accumulates the variations in redundancy while transforming the original dataset into the
final Gaussian dataset where all coefficients are independent. The advantages of RBIG with regard to other information
estimators [16, 17] has been shown in [11, 59, 60]. RBIG has also been used in visual neuroscience to check the
Efficient Coding Hypothesis in Wilson-Cowan networks [10], in Divisive Normalization networks [11], and in color
appearance networks [61]. However, any other empirical estimator of T and I from samples [13–17] could be used in
the experiments below.

Natural and synthetic data: In the experiments we used 0.5 · 105 image patches of size 8× 8, i.e. n = 64, randomly
taken from the luminance component of two colorimetrically-calibrated datasets: the IPL dataset [62, 63], and the
Barcelona dataset [64]. In the IPL dataset only images under the CIE D65 (daylight-like) illuminant were considered.
The two datasets were linearly scaled so that the average luminance in both was equal to 40 cd/m2. This separate global
normalization ensures that image patches from both sets are equivalent and can be safely mixed. Then, we randomly
extracted the samples 0.25 · 105 from each dataset, and we computed the covariance from this joint set of 0.5 · 105

samples: see Σs in Fig. 4. This matrix, Σs, is the starting point of all the theoretical results presented in Section 3. Our
data has the classical covariance of the luminance in natural images (see for instance [65]), which is diagonalized by
DCT-like basis functions (see Fig. 4, consistently with [25, 63, 66]). Then, we generated 0.5 · 105 Gaussian vectors of
dimension n = 64 with the mean and covariance of the natural samples. Of course, both sets (natural and synthetic) are
not the same (as can be seen in Fig. 4, consistently with [18, 19]). Then, we inject the synthetic and natural samples
through Model I and Model II to get the corresponding responses x, y, e, and z, for the range of connectivity values
considered in Section 2.

Computational issues: All the analytical results (e.g. Eq. 9) depend on the computation of determinants of large
matrices (either covariance matrices or the Jacobian∇ef

> ·∇ef ). The computation of determinants in high-dimensional
scenarios is very prone to divergences to 0 or∞. Therefore, it is better to avoid its computation: given the fact that the

Figure 4: Natural and synthetic image data (the source s). The bottom-left mosaic shows illustrative samples from
the colorimetrically-calibrated databases IPL and Barcelona. The top-left scatter plot illustrates the joint PDF of the
luminance at neighbor photoreceptors. Images and scatter plot show the (non-Gaussian) bias towards low-luminance,
and the spatial smoothness of the signal (predominance of low spatial frequency). The non-diagonal nature of the
covariance matrix (at the top-right) captures the spatial smoothness, and its eigenfunctions (bottom-right) are similar to
the frequency analyzers in the cortex models (in Fig. 1). The order of the functions according the eigenvalue confirms
the low-frequency nature of the signal. The central column shows Gaussian samples with the same mean and covariance.
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considered matrices, A, are symmetric (either Σ or ∇ef
> · ∇ef ), they are diagonalizable by an orthonormal transform

(with unit determinant). Therefore, it holds log|A| = ∑d
i=1 log(λi) where λi are the eigenvalues of A (whatever the

dimension d× d of the matrix A). Note that this sum is more robust than the naive computation of the determinant.

4.2 Results for I and T in terms of nonlinear intra-cortical connectivity (Model I)

Figure 5 shows the results of Mutual Information for different intra-cortical connectivity scenarios in the nonlinear
Model I. Specifically, we show (a) the theoretical results for Gaussian signals, (b) the empirical results computed with
RBIG for Gaussian signals, and (c) the empirical results computed with RBIG for natural signals.

We see two basic trends in the results (both in the theory and in the empirical estimations):

1. I(x,y) ≈ I(x, z) � I(y, z). This could be expected because the shared information is reduced with the
noise introduced in each layer and σ(ny) � σ(ne), and no noise is introduced in z, i.e. f(·) is invertible.
Therefore, more information is lost between x and inner layers (either y or z), than the information lost
between y and z, which have an almost invertible relation: only a small fraction of bits is lost due to ne.

2. More important for the description of connectivity is the fact that (as predicted by the theory), Mutual
Information is totally insensitive to the differences in intra-cortical connectivity. Therefore, this pairwise
measure is not a good descriptor of connectivity for this kind of nonlinearity.

It is important to note that these global trends in the theory are consistently confirmed by the empirical estimations.
Beyond a small bias (overestimation) in IRBIG, it identifies the substantially bigger connection between y and z rather
than between x and inner layers. Moreover, IRBIG is also constant over the range of nonlinear connectivity values.

Interestingly, the empirical results for natural images also follow these trends even though the signals are no longer
Gaussian. In this case, the non-Gaussianity only introduces a reduction in the IRBIG estimates and a small variation
over the explored models, which is negligible in terms of describing changes in the connectivity.

Figure 5: Mutual Information does not describe intra-cortical connectivity in Model I. Plots of I as a function of
intra-cortical connectivity for Gaussian signals (theory and RBIG estimates), and empirical results for natural images.
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Figure 6: Total Correlation does capture variations in intra-cortical connectivity in Model I. Plots of T (z) as a function
of intra-cortical connectivity for Gaussian signals (theory and RBIG estimates), and empirical results for natural images.

Figure 6 shows the part of T (x,y, z) that depends on the nonlinear connectivity: T (z) according to Eq. 11. In this
case, as opposed to I , the Total correlation strongly depends on the intra-cortical connectivity.

Again, (beyond a subestimation bias in RBIG) the general trend of the empirical estimations over the connectivity range
confirms the theoretical predictions. The non-Gaussianity of natural signals does not introduce major deviations in the
trend of the surface.

A technical comment on the estimation of T (z): as the variables z = f(e) are non-Gaussian, and this non-Gaussianity
is particularly strong in some regions of the explored domain of connectivity, it is important to use a large number of
iterations in the Gaussianization algorithm to get a good estimate of T . In particular here we used 500 iterations.

4.3 Results for I and T in terms of feedforward and feedback connectivity (Model II)

Figure 7 shows the results of Mutual Information for different feedforward and feedback connectivity scenarios:
different combinations of cez and czx in Model II. Specifically, we show: (a) the theoretical results for Gaussian signals,
(b) the empirical results computed with RBIG for Gaussian signals, and (c) the empirical results computed with RBIG
for natural signals.

As in the recurrent Model II the interpretation of the analytical results is more complicated, in this section each
surface is given in a relative scale with regard to its maximum so that the sensitivity of the different descriptors can
be fairly compared. Moreover, the variation of the descriptor, ∆, both in percentage and in bits, is also given. As the
explored range is the same for every descriptor, ∆ is a good measure of the sensitivity to the considered variation of the
connectivity.

In Model II, due to the top-down feedback signal, x czx←−−− z, in principle, all the layers can be affected by an enhanced
transmission at a deep layer such as, e cez−−−→ x. Specifically, the results show the following trends:

1. In general, the shared information increases with cez . This is obvious in the cases where z is one of the
considered nodes (e.g. the last three columns I(x, z), I(y, z) or I(e, z)) because an increased cez improves
the presence of the source in the inner representation. More interestingly, we can see that when z is not
considered, the effect of cez is only relevant when there is also significant feedback (as in the two first columns
I(x,y) and I(x, e)). This is also the case when considering nodes that are far away, as in I(x, z).

2. When considering nodes that are far from the considered interactions (e.g. y and e) the descriptor is insensitive
to the variations of connectivity (see I(y, e) in the third column).

3. In summary, the average percentage of variation of the measures based on I in the theoretical expressions is
∆I = 47± 30 %.

For Model II the global trends in the theory are consistently confirmed by the empirical estimations. Similarly to what
we found in Model I, parallel results in the theory and empirical estimates also form Model II confirm the correctness of
the theory and the appropriateness of RBIG in this application.
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Figure 7: Mutual Information has mild dependence with feedforward and feedback connectivity in Model II. Plots of I
as a function of the feedforward connectivity, cez , and feedback, czx, for Gaussian signals (theory and RBIG estimates),
and empirical results for natural images. The plots display relative values of I in percentage with regard to the maximum
together with a factor (e.g. ×0.3 in the top-left plot) that allows to express this percentage in absolute values (in bits).
Moreover, the plots display the variation (in bits) of the considered descriptor over the range of connectivity values (e.g.
∆ = 9.7 bits in the top-left plot). This is a measure of the sensitivity of the descriptor.

Moreover, the empirical results for natural images also follow these trends even though the signals are no longer
Gaussian. In this case, the non-Gaussianity only introduces a noticeable variation in I(y, e). However, this does not
change much the global sensitivity of I , as described by ∆.

Figure 8 shows the results of Total Correlation for different feedforward and feedback connectivity scenarios: different
combinations of cez and czx in Model II. As above, we show: (a) the theoretical results for Gaussian signals, (b) the
empirical results computed with RBIG for Gaussian signals, and (c) the empirical results computed with RBIG for
natural signals. Here we also present the T surfaces in relative scale for a simpler comparison with the I surfaces in
Fig. 7.

The overall percentage of variation of the measures based on T in the theoretical expressions is ∆T = 75± 11 %.

In the recurrent Model II, the sensitivity of T to connectivity and feedback is stronger than the sensitivity of I . Note
that ∆T > ∆I with substantially lower variance over the considered nodes. Therefore, T is more appropriate than I to
describe the connectivity in the recurrent Model II.
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Figure 8: Total Correlation strongly depends on the feedforward and feedback connectivity in Model II. Plots of T as a
function of the feedforward connectivity, cez , and feedback, czx, for Gaussian signals (theory and RBIG estimates), and
empirical results for natural images. The plots display relative values of T in percentage with regard to the maximum
together with a factor (e.g. ×2.6 in the top-left plot) that allows to express this percentage in absolute values (in bits).
Moreover, the plots display the variation (in bits) of the considered descriptor over the range of connectivity values (e.g.
∆ = 195 bits in the top-left plot). This is a measure of the sensitivity of the descriptor.

Moreover, as in the previous examples, the empirical estimates from the samples confirm the general trends of the
theory, and the results for natural signals approximately follow the results for Gaussian sources.

4.4 Results with real fMRI signals from visual regions V1, V2, V3 and V4

Here we measure the information shared by different visual regions the visual cortex starting from V1. This represents
an interesting application because (1) there is a debate on how these regions actually interact [67–71], and (2) there
is a long-standing concept in visual neuroscience that relates neural connectivity with information transmission: the
Efficient Coding Hypothesis, where redundancy reduction has a central role [72, 73]. Specifically, here we take neural
data from the Algonauts Project 2021 challenge [22], and we consider fMRI signals from V1, V2, V3 and V4 while the
observers were looking at natural videos. In our experiments we consider pairwise and multivariate relations among
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Figure 9: Examples of the (a) pairs of nodes, and (b) groups of nodes, that we consider in our measurements. The
top row (a) considers the relation between certain node (in this case V1), and, from left to right, nodes progressively
distant: V2, V3, and V4. The bottom row (b), from left to right, adds nodes to the group under consideration. If we
start from Vi, the added nodes can be close to it, e.g. (Vi, Vi+1, Vi+2) in the 2nd diagram, or they can be progressively
farther away, as (Vi, Vi+1, Vi+3) or (Vi, Vi+2, Vi+3), as in the 3rd and 4th diagrams. Finally, the last diagram at the
right shows that we can consider all nodes at the same time, namely (V1, V2, V3, V4).

regions which (anatomically) are progressively farther away. However, our descriptors of functional links do not make
any prior assumption of the possible feedforward or feedback connections.

Ensembles: The considered dataset provides 3 responses of 9 observers for 1000 natural videos in a number of voxels
of the considered regions (V1, V2, V3 and V4). In this database there is a one-to-one relation between input and
responses, but the number of available voxels depends on the observer and the cortical region. Therefore, just for
illustrative purposes, we take 20 randomly selected voxels per region for each observer. This means 20-dimensional
signals associated to one input. By considering the data of all trials, all observers, and all input videos, we have
3× 9× 1000 = 27000 samples of these 20-dimensional vectors for each region. In these ensembles, the i-th vector of
each region corresponds to the same input and the same observer, but the j-th dimension of the vector is the response of
a randomly chosen voxel in that region (and observer). We assume all the observers and all the voxels in a region are
equivalent. By rerunning this random selection of voxels we get equivalent ensembles.

Empirical estimation: Given the fact that the marginal PDFs of the signals are approximately Gaussian (results not
shown), in the estimations of T and I based on iterative Gaussianization we chose only 20 iterations (as opposed to the
500 iterations used in Model I where z is non-Gaussian). We re-estimate T and I from equivalent, randomly chosen,
ensembles 30 times and we report the average and standard deviation of the results.

Measurements of functional links: we measured I and T in all possible distinct combinations of nodes. Figure 9
illustrates pairwise and multivariate relations among regions which (anatomically) are progressively farther away. Note
that the functional link of the configurations in the top row can be addressed by the pairwise I(vi,vj) or T (vi,vj).
However, progressive consideration of additional nodes, as in the bottom row, can only be quantified using a multivariate
descriptor T (vi,vj ,vk, . . .). Note that in a case where the connections are unknown, the shared information (either I
or T ) is not only affected by the direct connections between the considered nodes (in our figure direct connections
are in color), but also by all other possible indirect connections (depicted in gray). The indirect connections imply
communication through alternative regions that may re-inject the relevant signal into the considered nodes and have a
positive effect in the functional link.

On top of the two-node and multi-node cases, mono-mode references are convenient to know if the information is lost
through the network or, on the contrary, there are positive synergies. To this end, we report three additional numbers:
T (vi), which is a measure of the redundancy within the node vi; and also I(vi,vi), and T (vi,vi). In principle, the
information shared by a variable with itself, as in I(vi,vi), and T (vi,vi), is∞ 4. However, given the uncertainty we
introduce when using random voxels from each region/observer, two (randomly chosen) sets of vi are not aligned and
then I(vi,vi), and T (vi,vi) do not diverge to∞. Instead, they are measures of the common information present in
every realization of the ensemble of responses of that node vi. Therefore, they are a convenient reference to know if the
consideration of extra nodes increases or decreases this mono-mode amount of information.

4Given any n-dimensional variable a, the samples of (a,a) are aligned in a 2n-dimensional space, and then the joint differential
entropy terms of Eqs. 6-7 is −∞, leading to I(a,a) = T (a,a) =∞.
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For a more intuitive comparison of the results corresponding to configurations with different number of nodes, we report
the shared information per node. This means: I(vi,vj)/2, T (vi,vj)/2, T (vi,vj ,vk)/3, and, T (v1,v2,v3,v4)/4.
In the case of T (vi) the definition already has a single node, so bits and bits/node are the same.

Finally, we report not only the absolute values in bits/node, but (more interestingly to describe the connectivity) how the
information per node increases or decreases when we go way from one node or include progressively distant nodes in
the measure. We give this deviation in % with regard to the information per node in V1 (either I(v1,v1) or T (v1,v1)).

Results: Tables 1-2 show the measures of shared information in three panels: the top panel shows the pair-wise
measures I(vi,vj), the middle panel shows the single-node measure T (vi), and the bottom panel shows the multi-node
measures T (vi,vj , . . .). Table 1 has absolute measures in bits/node, and Table 2 displays the variation (in %) of the
considered configuration with regard to the corresponding measure in V1. The T (vi,vj , . . .) panels have a pair-wise
part (at the left) and a multi-node part (the last four columns). This multi-node parts have to be read row-wise: each
number reports how the node in the row interacts with the nodes in the different columns. Moreover, the consideration
of extra nodes is done in cyclic way: in the 3rd row vi = v3, and hence the 5th column, (vi+1, vi+2) = (v4, v1), refers
to the connectivity among the nodes (v3, v4, v1).

Not all the values in the tables are independent because of the symmetry of the measures. Note that I and T are invariant
to the permutation of the variables: I(vi,vj) = I(vj ,vi), and T (vi,vj ,vk) = T (vj ,vk,vi) = . . . This implies that
the I panels are symmetric and so it is the pairwise part of the T panels. Also as a consequence of the invariance to
permutation, some multi-node configurations are equivalent. As the order does not matter, we have combinations of 4
nodes taken 3 at a time, i.e. only 4 independent node configurations. For the sake of clarity the non-redundant values of
the tables are highlighted in blue. Also for clarity, the standard deviation over the 30 realizations of the estimation has
been reported only in the independent values of Table 1.

The discussion of the results will be focused on the variations of information as we depart from a node (Table 2).
Departure, as in the top row of Fig. 9, means moving away from the diagonal (along rows/columns) in the pairwise
parts of the tables. Departure, as in the bottom row of Fig. 9, means moving to the right (for the highlighted numbers) in
the multi-node parts. Table 1, with the original absolute measures, is just given for completeness and for the reader
convenience.

A final comment on the absolute magnitudes: in every case, the estimated T (vi,vj) > I(vi,vj), which is consistent
with the definitions because (as discussed in Eqs. 6-7) T includes the redundancy within the nodes and hence the
information is necessarily bigger.

Information flow and conjectures on connectivity: Results show that the redundancy within each node T (vi) is
smaller in deeper layers than in V1 (see the negative increments in the middle panel of Table 2). This is consistent with
the Efficient Coding Hypothesis [72, 73].

I(vi,vj)
(in bits/node) v1 v2 v3 v4

v1 2.4± 0.3 1.3± 0.2 1.0± 0.2 0.8± 0.1
v2 1.3 2.0± 0.2 1.2± 0.2 0.7± 0.1
v3 1.0 1.2 1.7± 0.3 0.8± 0.1
v4 0.8 0.7 0.8 2.2± 0.3

T(vi)
(in bits/node) v1 v2 v3 v4

3.6± 0.3 3.2± 0.2 3.0± 0.2 3.5± 0.3

T(vi,vj, . . .)
(in bits/node) v1 v2 v3 v4 vi+1, vi+2 vi+1, vi+3 vi+2, vi+3 vi+1, vi+2, vi+3

v1 6.0± 0.3 5.0± 0.2 4.7± 0.2 4.6± 0.3 6.1± 0.2 5.9± 0.3 5.7± 0.3 6.6± 0.2
v2 5.0 5.4± 0.3 4.7± 0.3 4.5± 0.3 5.7± 0.3 6.1 5.9 6.6
v3 4.7 4.7 5.1± 0.2 4.5± 0.2 5.7 5.7 6.1 6.6
v4 4.6 4.5 4.5 5.9± 0.3 5.9 5.7 5.7 6.6

Table 1: I(vi,vj) between pairs of areas, T (vi) in each area, and T (vi,vj , . . .) among multiple areas in bits/node.
See the Results paragraph in the text for the interpretation of pairs and triplets with progressively distant nodes.
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Reduction in T (vi) in the middle panel is not the same as the reductions of T (vi,vi) or I(vi,vi) along the diagonal of
the pairwise parts of the top and the bottom panels. While redundancy reduction in T (vi) means better information
encoding, reduction in T (vi,vi) or I(vi,vi) means a decay in the information content. This decay is more apparent
in I(vi,vi), because the reduction of T (vi,vi) is biased by the simultaneous reduction of the intra-node redundancy
in T (vi). Actually, if we discount ∆T (vi) from ∆T (vi, vi), the corrected T (vi, vi) is more constant5. This smaller
reduction in the information content may be a positive effect of connectivity seen in T and not in I .

However, the mono-node measures mentioned above only describe the information in each node, but not how much of
this information comes from another region. This second concept, more related to connectivity, is measured by pairwise
and multi-node measures. In this regard, progressively bigger reductions in the pairwise ∆I(vi,vj) and ∆T (vi,vj)
away from the diagonal mean information loss along the way (or reduced functional connectivity). This information
loss seems consistent with the data processing inequality [5] to a certain extent. However, as discussed below, the
results (particularly T in multiple nodes) confirm the existence of relevant feedback in these regions.

The data processing inequality [5] states that information lost between two nodes cannot be recovered by further
processing (with no additional input from the original node). This inequality strictly holds in purely feedforward
schemes v1 → v2 → v3 → v4, where, due to the absence of feedback connections and skip connections, the
response in inner layers conditioned to the previous layer is independent of the early layers. In such systems, it holds
I(v1,v2) > I(v1,v3) > I(v1,v4). This behavior is what is observed in the rows of the I panel when moving away
from the diagonal to inner layers. This suggest that the feedforward component of the connectivity can be strong, and in
such simplistic situation, one could deduce the strength of each connection from the different decays in I(vi, vj).

However, in our case (where feedback and skip connections may exist) the data processing inequality may not hold.
Reductions in I do not necessarily mean that the other connections are not present. This is more clear looking at the
results of T . While the behavior of the pairwise T moving to deeper layers is negative (similarly to I), something
different happens by considering extra nodes. Under the purely feedforward assumption extra nodes should share less
information with the previous and the global T should decrease, particularly if the intra-node redundancy does not
increase (as in this pathway). However, we see that in some cases the consideration of extra nodes implies an increase of
the shared information per node, as for instance when going from (v1, v2) to (v1, v2, v3) or from there to (v1, v2, v3, v4)
(see the positive increments highlighted in blue in Table 2).

Multi-node results obtained from the proposed measure T are interesting because we can see that the connections in the
group (v1, v2, v3) are substantially stronger than the connections in the group (v2, v3, v4) despite they are at similar
anatomical distance. This suggests some top-down feedback from v3 or v2 or feedforward skip connections from v1 to
v3. The same is true when considering all the nodes together with a substantial increment (by 11%).

These two different synergistic behaviors that can be seen using the proposed Total Correlation clearly mean that one
can rule out a pure feedforward scheme in the V1, V2, V3, V4 regions, and more complex connectivity schemes do exist.
This is not that obvious just using the conventional I .

5 Discussion and conclusions

Analytical results: T is a better descriptor of connectivity than I . The goal of this paper is addressing the
fundamental limitation of the seminal work that proposed T as a measure of functional connectivity [3]: namely the
lack of analytical results that can justify the superiority of the T over the conventional I beyond the multivariate versus
pairwise definitions. Here we did that analytical study in the context of the early visual brain with simple models of the
retina-V1 cortex pathway.

For mathematical convenience we considered two variations of the general framework presented in Eq. 2: Model I and
Model II. These models were chosen to illustrate two fundamental properties of neural architectures in early vision:
(1) the Divisive Normalization nonlinearity in Model I, in Section 2.1, and (2) an eventual top-down recurrence in
Model II in Section 2.2.

It is important to stress again that the models are not arbitrary: according to the results in Section 2.4 the nonlinearity in
Model I is key to improve the explanation of the psychophysics, and the explored range of intra-cortical connectivity
actually covers different behaviors (with substantial differences in the explained variance of human data). The top-down
connection in Model II was not specifically justified, but given the observed behavior of the steady state in e, the
explored feedback does not reduce substantially the ρ = 0.7 result. This indicates that Model II has certain biological
plausibility, so that it can be used to illustrate the study of recurrent connections. The plausibility of the models and the

5Losses ∆T corrected in this way (-8.3%, -12.5%, and 0%, for v2, v3, v4), are smaller than the original values (-8.8%, -14.5%,
-0.1%), seen in the diagonal of the pairwise part of the T panel (Table 2).
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∆I(vi,vj)
(in %) v1 v2 v3 v4
v1 0.0 -45.0 -55.6 -67.0
v2 -45 -16.1 -47.7 -71.4
v3 -55.6 -47.7 -26.1 -67.8
v4 -67.0 -71.3 -67.8 -7.1

∆T(vi)
(in %) v1 v2 v3 v4

0.0 -11.1 -15.5 -2.1

∆T(vi,vj, . . .)
(in %) v1 v2 v3 v4 vi+1, vi+2 vi+1, vi+3 vi+2, vi+3 vi+1, vi+2, vi+3

v1 0.0 -16.0 -21.3 -21.7 2.3 -1.4 -3.8 11.3
v2 -16.0 -8.8 -21.4 -23.8 -3.9 2.3 -1.4 11.3
v3 -21.3 -21.4 -14.5 -24.9 -3.8 -3.9 2.3 11.3
v4 -21.7 -23.8 -24.9 -0.1 -1.4 -3.8 -3.9 11.3

Table 2: Variations of I and T (in % with regard to V1) when considering progressively distant nodes or adding extra
nodes. See the Results paragraph in the text for the interpretation of pairs and triplets with progressively distant nodes.

generality and relevance of the facts they illustrate (nonlinearities and recurrence) implies that a proper descriptor of
functional connectivity should be sensitive to the different variations of the models.

Sections 3.1, 4.2, and 4.3 explicitly show the superiority of T over I in the considered nonlinear and recurrent models.
The conclusion of these analytical results (confirmed by the experimental simulations) is that while the conventional
Mutual Information is not useful to capture the intra-cortical connections in Model I, the proposed measure, Total
Correlation, is quite sensitive to this connectivity. Similarly, the proposed Total Correlation is more sensitive than
Mutual Information to the feedforward and feedback connectivity explored in the recurrent Model II. From a general
perspective, the considered nonlinearity is ubiquitous in the visual pathway [8, 33, 34, 74, 75]. Therefore, the success
of the proposed multivariate Total Correlation in describing this connectivity is a substantial advantage with regard to
the conventional, pairwise, Mutual Information.

Results with real data: T highlights synergies in V1, V2, V3, V4. The positive results of T (and the corresponding
RBIG estimates) in the analytical settings presented above not only address a limitation of [3], but really justify its use
in real scenarios. In the case of fMRI data from the visual regions V1, V2, V3, V4, our measurements of T show that:
(1) the redundancy within each layer, T (vi), is reduced along the way, which is consistent with the Efficient Coding
Hypothesis, (2) the information content measured through T (vi, vi) is more stable along the way than the measures
given by I(vi, vi), particularly if the inner redundancy is discounted. (3) The variation of the pairwise measures of
I(vi, vj) seems compatible with the data processing inequality in a purely feedforward setting v1 → v2 → v3 → v4,
however, (4) the multi-node T shows synergies that rule out the purely feedforward scheme. Moreover, it suggests
stronger functional connectivity between the nodes V1, V2, V3 than between V2, V3, V4 despite a similar anatomical
distance. All this complex behavior is not easy to see just using the conventional I .

Relations with previous work. Firstly, this is the necessary analytical companion of the proposal of Total Correlation
to measure connectivity [3]. Then, here we have applied this tool to visual areas extending the works that first used
Mutual Information to assess the connectivity between pairs of visual areas [76] or those that measured Mutual
Information between V1 and MT (or V5) under Divisive Normalization transforms [77]. The analysis of Mutual
Information between progressively deeper visual layers is also related with previous works focused on quantifying
the information flow in different nonlinear models of retina-V1 pathway [10, 11], which were restricted to purely
feedforward models.

On the other hand, the approach we took here (quantifying the statistical properties of the responses of real brains
or psychophysically plausible models) is is related with a body of literature that follows Barlow’s Efficient Coding
Hypothesis in a non-classical direction. Note that the classical direction is from-statistics-to-biology: a system optimized
for a sensible statistical goal may display biological-like behavior [72, 73]. This is the direction that explained linear
receptive fields [18, 31, 32, 63] and sensory nonlinearities [20, 36, 56, 62, 78, 79] from statistics. However, there
is literature that reasons in the opposite direction from-biology-to-statistics: look at the statistical properties of the
responses of biologically plausible systems and you will find statistically interesting behavior. In this regard, redundancy
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reduction [21, 37, 80], and efficient information transmission [10, 11, 61, 81] has been found in in real and biologically
plausible models. And this is similar to the information-theoretic analysis that we did of real and simulated responses.

Limitations and future research. This study has three main limitations that should be addressed by future research.
First (and most important) is the limitation of the analytical examples: they addressed fundamental issues such
as nonlinearities and recurrence, but they did it in separate examples (Model I and Model II). Moreover, Model I
didn’t include noise after the divisive normalization so that one could apply the property of the variation of T under
deterministic transforms, Eq. 8, and the invariance of I under transforms of one of the variables, Eq. 12. Future research
should try to get unified expressions for a general nonlinear and recurrent model with noise at all layers.

The second, more instrumental, limitation is related to the specific empirical estimator of T which is necessary in real
scenarios. Here we used our Rotation-Based Iterative Gaussianization [12, 59], and it proved to follow the trends of the
theoretical surfaces in the analytical scenarios. However, RBIG may suffer from errors when the signals are strongly
non-Gaussian with multiple modes separated by low probability regions as may happen after Divisive Normalization
(see the PDFs of natural images in [11, 21]). An approximate knowledge of the PDF of the signals is required to set the
number of iterations in RBIG. Of course, future research can use other empirical estimators as for instance [13–17]. In
this regard, the analytical results presented here are a good test-bed for current or future empirical estimators.

Finally, regarding the results with real data, it is important to acknowledge that there are more comprehensive databases.
The one we used (the Algonauts 2021 Challenge [22]) only considers 1000 videos and has a restricted set of voxels
because we wanted a simple proof of concept for our measure T and estimator RBIG on low level regions. The work
done here could be extended in different ways. First, the database could be segmented depending on the properties of
the stimuli (e.g. color, texture and motion content) because the functional connectivity between the considered regions
may depend on these low-level features of the input. This could tell us about the specialization of these regions in
different dimensions of the stimuli. Moreover, the computation of connectivity based on T depending on the structure
of the scene could clarify the differences in the feedback signals found in figure-ground contexts [69, 71]. And second,
larger databases (such as [82]) may be convenient to confirm the current results and be more appropriate to study
the connectivity depending on the properties of the input so that the subsets are big enough to trust the information
estimates. Databases like [83] can be used to address the relation between V1 and higher-level regions (FFA, PPA,...).

Conclusions: In this work we derived analytical results that show that Total Correlation is a better descriptor of
connectivity than Mutual Information in plausible models of the retina-LGN-V1 that include nonlinearities due to
intra-cortical connectivity and top-down feedback. T is better because it is more sensitive than I to connectivity.
Analytical results are derived for Gaussian signals but, as confirmed by empirical estimates, they also hold for natural
inputs. Our T results for real responses recorded from V1,V2,V3,V4 rule out a naive feedforward-only information
flow and suggest stronger feedback connections in V1,V2,V3, than in V2,V3,V4.

The proposed measure opens several possibilities: (1) it can be applied to assess the connectivity in complex models
that have been developed to reproduce feedforward and feedback oscillations [70], and (2) it can be used to examine
signal-dependent feedback in stimuli with figure-ground or spatially segregated textures, which is an interesting open
question in visual neuroscience [69, 71].
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Three decades ago, Atick et al. suggested that human
frequency sensitivity may emerge from the
enhancement required for a more efficient analysis of
retinal images. Here we reassess the relevance of
low-level vision tasks in the explanation of the contrast
sensitivity functions (CSFs) in light of 1) the current
trend of using artificial neural networks for studying
vision, and 2) the current knowledge of retinal image
representations. As a first contribution, we show that a
very popular type of convolutional neural networks
(CNNs), called autoencoders, may develop human-like
CSFs in the spatiotemporal and chromatic dimensions
when trained to perform some basic low-level vision
tasks (like retinal noise and optical blur removal), but
not others (like chromatic) adaptation or pure
reconstruction after simple bottlenecks). As an
illustrative example, the best CNN (in the considered set
of simple architectures for enhancement of the retinal
signal) reproduces the CSFs with a root mean square
error of 11% of the maximum sensitivity. As a second
contribution, we provide experimental evidence of the
fact that, for some functional goals (at low abstraction
level), deeper CNNs that are better in reaching the
quantitative goal are actually worse in replicating
human-like phenomena (such as the CSFs). This
low-level result (for the explored networks) is not
necessarily in contradiction with other works that report
advantages of deeper nets in modeling higher level
vision goals. However, in line with a growing body of
literature, our results suggests another word of caution
about CNNs in vision science because the use of
simplified units or unrealistic architectures in goal
optimization may be a limitation for the modeling and
understanding of human vision.

Introduction

The human contrast sensitivity function (CSF)
characterizes the psychophysical response to visual
gratings of different frequency (Campbell & Robson,
1968). Filter characterizations in the Fourier domain
are complete only for linear, shift-invariant systems.
Human vision certainly is more complicated than that,
however, this simple measure of the bandwidth of the
system is still of paramount significance in biological
vision: the CSF filter is an image-computable model
that roughly describes the kind of visual information
that is available for humans (Watson & Ahumada,
2016). Moreover, although it is defined for threshold
conditions, there are many examples that illustrate
the relevance of the CSF in more general situations
(Watson et al., 1986; Watson & Malo, 2002; Watson &
Ahumada, 2005), so it has shaped image engineering
over decades (Mannos & Sakrison, 1974; Hunt, 1975;
Wallace, 1992; Taubman & Marcellin, 2001). This
theoretical and practical relevance motivated the
measurement of CSFs, not only for spatial gratings
(Campbell & Robson, 1968), but also for moving
gratings (Kelly, 1979), chromatic gratings (Mullen,
1985), spatiotemporal chromatic gratings (Díez-Ajenjo
et al., 2011), at different luminance levels (Wuerger
et al., 2020), and for alternative basis of the image space
(Malo et al., 1997).

Principled explanations of the human CSFs

Of course, the psychophysical CSFs have
physiological roots in the spatiotemporal bandwidths
of the center-surround cells tuned to achromatic and
chromatic stimuli (Enroth-Cugell & Robson, 1966;
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de Valois & Pease, 1971; Ingling & Martinez-Uriegas,
1983; Martinez-Uriegas, 1994; Cai et al., 1997; Reid &
Shapley, 1992, 2002). However, the physiological basis
of psychophysical phenomena does not explain the
functional role (or goal) of the underlying computation
(Marr & Poggio, 1976; Marr, 1982). The discussion
about the goal of certain mechanism relies on deriving
the biological behavior from a computational principle.
In the specific case of the CSFs, the classical work of
Atick et al. (Atick et al., 1992; Atick & Redlich, 1992;
Atick, 2011) derived the spatiochromatic CSFs from
the maximization of the information transferred from
the input to the response of the system that, under
certain conditions, is equivalent to optimal deblurring
and denoising of the retinal signals. These classical
explanations were based on clever observations about
the 2nd order properties of natural images, but relied
on linear filtering models. As a result, the consideration
of more flexible (nonlinear) models could lead to
a better fulfillment of the computational goal and,
eventually to better explanations of the CSFs. A step
forward in a more general (nonlinear) derivation of
these phenomena from low-level principles was given
by Karklin and Simoncelli (2011), where they obtained
sensors with center-surround receptive fields optimizing
the information transferred by a linear+nonlinear
layer of neurons with noisy inputs. However, this
work did not consider the chromatic or the temporal
dimensions of the problem, and no explicit comparison
with the psychophysical CSFs was done. Similarly,
(Lindsey et al., 2019) also reproduced center-surround
sensors close to the retina when training anatomically
constrained artificial neural nets (in this case, training
for a higher level task, such as object recognition).
Again, these center-surround cells eventually would
induce CSFs, but this was not analyzed in that paper.

Emergence of CSFs in artificial neural networks

Automatic differentiation (Baydin et al., 2018) has
simplified the search of computational principles in
vision science because it allows the optimization of
complex models according to different goals without
the burden of obtaining the analytical derivatives
of the goals w.r.t. the model parameters. Automatic
differentiation is at the core of the current explosion
of deep learning (Goodfellow et al., 2016). A full
analytical description of the derivatives of realistic
nonlinearities in visual neuroscience is certainly possible
(Martinez et al., 2018), but the widespread availability
of deep-learning tools for simplified neurons makes the
exploration of these artificial architectures much easier.
Conventional convolutional neural networks (CNNs)
are too simplistic from the neuroscience perspective,1
but the freedom to combine multiple of such simplified
layers in any possible way may compensate this
shortcoming. In the end, one has a flexible system that

can be optimized with automatic differentiation to fulfill
whatever computational goal under consideration. As
a result, deep learning models are becoming standard
in visual neuroscience (Kriegeskorte, 2015; Yamins &
DiCarlo, 2016; Cadena et al., 2019).

According to the above, the study of the CSF of
artificial neural networks is interesting for two reasons:
1) CNNs are flexible and easily optimizable tools that
may allow us to investigate principled explanations of
the human CSFs with more generality than the classical
methods considered, and 2) given the widespread use of
CNNs in computer vision and their recent use in visual
neuroscience, the eventual emergence of human-like
sensitivities in these artificial systems has intrinsic
interest.

Very recently, two groups have reported
complementary results on the emergence of CSFs in
deep networks: first, in order to explain the human-like
nature of some of the brightness and color illusions
in CNNs trained for low-level visual tasks found in
Gomez-Villa et al. (2019), a novel eigenanalysis of the
networks was proposed (Gomez-Villa et al., 2020).
This analysis revealed the emergence of human-like
chromatic channels and achromatic and chromatic
CSFs in these channels. Then Akbarinia et al. (2021)
have found that networks trained for high-level visual
tasks, such as classification, also may develop an
achromatic CSF, in this case not explicitly imposing
low-level constraints.

Contributions and scope of this work

• First, following Atick et al. (1992), Atick and
Redlich (1992), Atick (2011), Karklin and
Simoncelli (2011), we reconsider principled
explanations of the CSFs from low-level visual
tasks in light of new available methods: i) the
current tools from deep-learning, and ii) the
current knowledge of retinal image representations.
We check the emergence of spatiotemporal
chromatic CSFs in a wider range of low-level
(goal/architecture) situations with more realistic
inputs.

Regarding the retinal input, we use recent models
of the human modulation transfer function (MTF)
(Watson, 2013), and recent calibrated estimations of
the noise in the cones (Esteve et al., 2020) obtained
via the retina models implemented in ISETbio
(Cottaris et al., 2019, 2020). In this way, here we
generate realistic spatiotemporal noisy inputs to the
visual pathway in a plausible representation: the
cones of (Stockman & Sharpe, 2000) tuned to long,
medium, and short wavelengths (LMS cones).

Regarding the deep learning tools, we use
spatiotemporal extensions of the convolutional
autoencoders used in our analysis of color illusions
in CNNs (Gomez-Villa et al., 2019, 2020). We
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elaborate on the proper determination of the CSF
for convolutional autoencoders: instead of the
linear characterization of the autoencoder used in
Gomez-Villa et al. (2020), which hides its nonlinear
nature into a single matrix, here we stimulate the
networks with gratings of different contrast. In
this way, the changes of the attenuation functions
describe the nonlinearities of the system.

Regarding the architectures, in this work we focus
on autoencoders that reconstruct the signal in the
input domain as opposed to the consideration of
more general architectures that encode the images
into more abstract representations to achieve higher
level tasks, such as classification. This limitation
in scope is reasonable if one wants to model early
vision stages like the lateral geniculate nucleus
(LGN), which do not imply change of domain and
may function according to error minimization and
signal enhancement principles (Martinez-Otero
et al., 2014). If the CSFs are related to the
response of LGN neurons, as is usually assumed,
autoencoders seem a reasonable computational
framework to use.

Regarding the tasks, in this low-level context
with autoencoder tools, we consider different visual
tasks which may be implemented as early as in
the retina-LGN path: a) the enhancement of the
retinal signal (related to information maximization)
when the input is subject to different degrees of
degradation owing to different pupil diameters
or different plausible levels of retinal noise, b)
the compensation of changes in the spectral
illumination of the scene in a reasonable range of
color temperature, and c) the reconstruction of
the signal when some information may be lost in
eventual bottlenecks.

• Second, here we provide experimental evidence
of “deeper CNNs are not necessarily better” (in
representing this abstraction level). The bigger
generality of flexible CNN models over fixed linear
models is obvious, but one may ask: do more
flexible architectures necessarily lead to more
human CSFs? or does better accuracy in the goal
imply more human CSFs and masking behavior?
Consistently with previous results in low-level tasks
(Flachot et al., 2020; Gomez-Villa et al., 2020), our
CSF results presented also seem to favor shallow
networks (in the explored range of architectures).

Our findings at this low level of abstraction
complement other results where deeper
architectures actually imply closer resemblance to
human behavior (Yamins et al., 2014; Cichy et al.,
2016; Cadena et al., 2019; Lindsey et al., 2019).
But this is not contradictory because they refer
to different abstraction levels (high-level object
recognition vs. our low-level color constancy and
error minimization goals).

The structure of this article is as follows. We used
estimating contrast sensitivity in autoencoders that
extends the theory proposed in Gomez-Villa et al.
(2020) to obtain the CSFs of autoencoders with an
analysis of the energy (or standard deviation) of the
input and the output gratings. Experiments describe
the considered low-level visual tasks (compensation
of biodistortions, chromatic adaptation, and signal
reconstruction after bottlenecks) and the setting of the
numerical experiments. Results show the main empirical
findings of the work: the emergence of human-like
CSFs in the spatiotemporal and chromatic dimensions
in shallow CNN autoencoders trained to minimize the
distortion introduced by the optics of the eye and the
noise in the cones. Finally, we discuss the implications
of the empirical results: on the one hand, statements
about the goal or organization principles are difficult
to separate from the implementation because the final
behavior very much depends on the algorithmic level (or
selected architecture). On the other hand, special care
has to be taken in using deep models in low-level vision
science: their ability for function approximation may
make them excel in the performance of a sensible score,
but without the appropriate architecture constraints,
this does not guarantee the similarity with humans.
Appendix A provides details of the implementation
of the models. Appendix B describes the image/video
datasets to train the models and the sinusoids used to
probe the networks. Appendix C illustrates the proper
training and convergence of all the considered CNNs in
all experiments. It shows the learning curves and explicit
examples of the responses (reconstructed signals in test)
for all the considered goal/architecture scenarios.

Methods: Estimating contrast
sensitivity in autoencoders

Here we consider different linear characterizations of
the autoencoders including the eigenanalysis proposed
in Gomez-Villa et al. (2020). That theory is extended
with the explicit consideration of the image acquisition
process in the human eye, which leads us to propose
a procedure to estimate the autoencoder CSF that is
more connected to the definition of the CSF in human
observers.

Autoencoders

Autoencoders are artificial networks that transform
the signal into an inner representation through
an encoder, and a decoder transforms this inner
representation back in the input domain.

x
Nθ (x)−→ y (1)
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In Equation 1, we do not made explicit the encoding
and decoding operations, that is, x and y are in the
image space. In this work, we will not make any
assumption on the nature of the inner representation of
the autoencoder. This is because the basic goal function
in autoencoders (reconstruction error) is defined in the
image domain, shared by input and response. Moreover,
with the appropriate stimuli, the CSF characterization
can be defined in this image domain.

Following Gomez-Villa et al. (2019, 2020), we
focus on convolutional autoencoders. We discuss and
explore different computational goals, but, for now,
let’s consider that the parameters θ are trained to
compensate the blur and noise introduced in the signal
by the image acquisition process. In this context, given
a clean image, xc, the input to the neural system would
be a distorted version: x = H · xc + nr, where H is a
blurring operator related to the optics of the eye and
nr is the noise associated with the response of the
LMS photodetectors at the retina. Both H and nr are
unknown to the neural system. The goal of the network
at this early stage is inferring xc from x. Accurate
models of LGN cells show that this may be one of the
goals of the biological processing after retinal detection
(Martinez-Otero et al., 2014).

In the supervised learning setting of artificial
neural networks, the parameters θ of the network
are selected so that the average reconstruction error
ε = |xc − Nθ (x)|2 is minimized over a set of training
images (Goodfellow et al., 2016). In our case, we refer
to the average reconstruction error as εLMS because
the input signal is expressed in the LMS cone space
(Stockman & Sharpe, 2000). Of course, supervised
learning and parameter updates using backpropagation
may not be biologically plausible (Lillicrap et al., 2020).
However, our initial aim here is looking for statistical
explanations of human frequency sensitivity and hence
artificial neural networks can be seen as convenient
tools to optimize the selected goal. With this focus
on the goal, the specific learning algorithm is not as
important as ensuring that the final network actually
fulfills the goal. We will see that the situation may not
be that simple because networks optimizing the same
goal with equivalent performance may display human or
non-human CSFs, depending on their architecture.

Filter definition of the CSF and linearized
autoencoders

The CSF describes the linear response of human
viewers for low-contrast sinusoids (Campbell &Robson,
1968; Kelly, 1979; Mullen, 1985). In that linear setting,
the CSF describes an input-output mapping where an
input sinusoid of frequency f , the basis function b f ,
leads to an output, y f , with attenuated contrast (or
attenuated standard deviation, σ ). The output standard
deviation is given by, σ (y f ) = CSF( f ) σ (b f ). In the

case of humans the attenuation factor, CSF( f ), has to
be obtained from contrast thresholds because there is
no access to the output. However, for autoencoders, the
computation of the output is straightforward. If the
degradation of the acquisition is taken into account,
the sinusoids, b f , used to simulate the measurement of
the CSF have to undergo the degradation as well, and
we should consider an eye+network system, S:

(2)

Therefore, one could check the attenuation factor by
comparing the standard deviation of output and input:

CSF( f ) = σ (Sθ (b f ))
σ (b f )

= σ (Nθ (H · b f + nr))
σ (b f )

(3)

Note that the CSF ratio in Equation 3 (which uses
degraded sinusoids to probe the network) is different
from checking the Fourier response of the network,
where one would use clean sinusoids at the input:

N F ( f ) = σ (Nθ (b f ))
σ (b f )

(4)

The relation of Equation 3 with the regular
determination of the CSF in humans is illustrated in
Figure 1. Of course, the ratio in Equation 3 should be
computed for low-contrast sinusoids to keep parallelism
with human CSF and keep the (eventually) nonlinear
autoencoder in the low-energy range. For chromatic
sinusoids the deviations have to be computed separately
over the achromatic, red–green, and blue–yellow color
channels (Mullen, 1985). In this work we use a classical
opponent color space (Hurvich & Jameson, 1957) to
generate achromatic and purely chromatic gratings and
to decompose the corresponding responses.

Of course, plain attenuation for sinusoids in
Equation 3 may not provide a full description of the
action of nonlinear systems. In principle, it is not
obvious why we should perform the analysis in a specific
basis. Therefore, one should check to what extent waves
are indeed eigenfunctions of the system.

A way to test this point is linearizing the response of
the autoencoders in the low-contrast regime and check
that it is shift invariant. Using a Taylor expansion, the
response for low-contrast images can be approximated
by the Jacobian around the origin (the zero-contrast
image, 0, which is just a flat gray patch):

y = Sθ (x)
ylow = Sθ (0 + xlow)

≈ Sθ (0) + ∇xSθ (0) · xlow (5)

ylow ≈ ∇xSθ (0) · xlow
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Figure 1. Definition of the CSF as a frequency-dependent attenuation factor in a system to develop low-level vision tasks. The diagram
illustrates transforms in the visual signal from the input stimulus (A), the degraded signal owing to optical blur and retinal noise (B),
the process of the early neural path where the output is still in a spatial LMS representation (C) modeled here by autoencoders, and
additional mechanisms that compute a decision on the visibility (D). In the conventional view of the CSF as a filter, the process from A
to C is assumed to be linear and (in humans) the visibility of gratings is assumed to be based on the amplitude of the response at the
point C. In human psychophysics (with no access to C) the observer makes visibility decisions, and the attenuation factors are
determined from the thresholds. When dealing with artificial systems we do have access to the response in C so we do not need to
model the decision mechanism and we can simply estimate the CSF from the ratio in Equation 3.

where we assumed that the response for zero-contrast
images is zero. If the behavior of the system at this
low-energy regime is shift invariant, the Jacobian
matrix can be diagonalized as ∇xSθ (0) = B · λ · B−1,
with extended oscillatory basis functions in the columns
of B (and rows of B−1). Fourier basis and cosine
basis are examples of extended (nonlocal) oscillatory
functions that diagonalize shift invariant systems. The
reason for this result is equivalent to the emergence of
cosine basis when computing the principal components
of stationary signals (shift-invariant autocorrelation)
(Clarke, 1981). As a result, the slope of the response
for low-contrast sinusoids (the CSF) will be related to
the eigendecomposition of the Jacobian of the system
at 0. Let’s compute the response for a sinusoid in this
Taylor/Fourier setting to see the relation. A basis
function b f with specific frequency f is orthogonal
to all rows (sinusoids) in B−1 except that of the same
frequency, that is, B−1 · b f = δ f ′ f . And this delta selects
the corresponding column (of frequency f ) among all
the columns in the matrix B:

y f = Sθ (b f ) ≈ ∇xSθ (0) · b f

≈ B · λ · B−1 · b f

≈ B · λ · δ f ′ f

≈ λ f b f (6)

So the slope of the response for basis functions of
frequency f is λ f (the corresponding eigenvalue of the
Jacobian of the autoencoder). As a result, for systems
with shift invariance in the low-contrast regime, the
eigenvalues of the linear approximation of the system
(eigenvalues of the Jacobian) are conceptually similar

to the CSF. A direct comparison of the eigenvalue
spectrum with the CSF may not be simple because
the eigenfunctions may differ from Fourier sinusoids.
Examples of this include isotropic systems (with
a constant sensitivity for certain | f | independent
of orientation). In this case, the eigenbasis may be
not sinusoids, but arbitrary linear combinations
of sinusoids of the same frequency and different
orientation.

Nevertheless, if the linearized version of the system
(the Jacobian at 0) is shift invariant, which can be seen
from a convolutional structure in the Jacobian matrix,
oscillatory waves are eigenfunctions of the system, and
hence Equation 3 may provide a good description of
the behavior of the system.

Alternative linear characterizations of the
autoencoders

A two-dimensional (2D) cartoon of the impact of the
degradation and restoration processes in the probability
density function (PDF) of the signal can illustrate
alternative characterizations of the neural networks
optimized to enhance the retinal signal (see Figure 2).
In this diagram, two-pixel natural scenes (left) follow
a PDF obtained from independent Student t-sources
mixed by a matrix that introduces strong correlation
between the luminance of the pixels. This kind of
two-pixel representations is common to describe the
statistics of natural images (Simoncelli & Olshausen,
2001), and mixtures of sparse components is a widely
accepted model for natural scenes (Hyvärinen et al.,
2009; van den Oord & Schrauwen, 2014; Malo, 2020),
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Figure 2. Degradation of the signal PDF and linear and nonlinear strategies to compensate the degradation. The axes of the plots
represent the luminance in each of the photodetectors of two-pixel images as in Simoncelli and Olshausen (2001). (A) The PDF of
natural scenes: marginal heavy tailed distributions of oscillatory functions mixed to have strong correlation in the pixel domain.
Optical blur (second panel) implies contraction of the high frequencies. Additive retinal noise implies the convolution by the PDF of
the noise leading to the PDF in (B). The solutions to the restoration problem at point C may include i) nonlinear transforms such as the
one represented by the PDF at the right-top, and ii) linear transforms as the one at the right-bottom.

and appropriate enough for this illustration. In this
diagram, the low-frequency direction corresponds
with the main diagonal (where the two pixels have the
same luminance) and the high-frequency direction
is orthogonal (for images where one of the pixels is
brighter than the other). The zero-contrast image is at
the crossing point of the frequency axes.

Optical blur implies the attenuation of high-
frequency versus low-frequency components and hence
the contraction of the dataset as shown in the second
panel. Assuming linear and noisy photoreceptors,
the PDF of the retinal response results from the
convolution of the PDF of the blurred images with the
PDF of the noise (the function with circular support).
The result (third panel) is the input to the autoencoder,
whose goal is recovering the distribution at the first
panel. Linear solutions are limited to global scaling of
the domain (for instance, by inverting the contraction
introduced by the blur), whereas nonlinear solutions
may twist the domain in arbitrary ways.

In this setting, the computation of the CSF according
to Equation 3 means putting low-contrast sinusoids
(e.g., the samples highlighted in green in the third
panel) through the system, and checking the amplitude
of the output (green dots at the panels at the right) over
the directions of the input. This nonlinear example
illustrates the fact that the behavior can be contrast
dependent (see the different twist in the concentric
contours). This graphical view illustrates the difference
between three possible linear characterizations, with
y = M · x:

• The optimal linear solution: The matrix M that
better relates the input x with the desired output
xc. This is the M that minimizes the expected value
E{|xc − M · x|2}. Assuming a representative set
of N clean/distorted pairs stacked in the matrices
X c = [x(1)

c x(2)
c . . . x(N )

c ] and X = [x(1)x(2) . . . x(N )],
the optimal solution in Euclidean terms is given by
the pseudoinverse:

M = X c · X † (7)

• Globally linearized network: The matrix M that
better describes the nonlinear behavior of the
network over the whole set of natural images. This
is the M that minimizes E{|S(x, θ ) − M · x|2}.
Assuming a representative set of N input/output
pairs stacked in the matrices X = [x(1)x(2) . . . x(N )],
and Y = [y(1)y(2) . . . y(N )], the solution is given by
the pseudoinverse:

M = Y · X † (8)

• Locally linearized network at 0: The matrix M
that better describes the nonlinear behavior of the
network for low-contrast images. This is the M
that minimizes E{|∇xS(0, θ ) · xlow − M · xlow|2}. Of
course, this could be empirically approximated by
M = Y low · X †

low, but in this case the obvious exact
solution is:

M = ∇xSθ (0) (9)
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Although the optimal linear solution (or the optimal
linear network) is a convenient reference to describe
the problem, the other two options are different
characterizations of the autoencoder. Equation 8
summarizes the behavior of the network in a single
matrix, and Equation 9 is a description only valid
around 0, and hence more closely connected to the
low-contrast regime of the CSF. The eigenanalysis
cited for ∇xS in Equation 6 can be applied for the three
matrix characterizations, but it is important to note the
differences between them.

The Jacobian of cascades of linear+nonlinear layers
(as in autoencoders based on CNNs) can be obtained
either analytically,2 or it can be obtained via automatic
differentiation or alternative methods based on system
identification (Berardino et al., 2017). However, these
procedures are tedious, so in Gomez-Villa et al. (2020),
we took the more straightforward approach represented
by Equation 8.

The different linear characterizations considered
in this section and the diagram in Figure 2 illustrate
that the behavior of a nonlinear autoencoder for
high contrasts may be substantially different from
the threshold behavior. Therefore, the attenuation
of sinusoids by the linearized system (by the matrix
Equation 8) will be compared with the result of
Equation 3.

Limitation of the proposed CSF definition in
autoencoders

To maximize the equivalence to human CSFs, the
proposed procedure (the ratio in Equation 3, which
compares the signals at points C and A in Figure 1)
implies the consideration of the retinal degradation
process. This consideration of the retinal noise will be
shown to improve similarity with human CSFs in the
experiment 3, but it comes at a cost. Note that, even if
the role of the autoencoder is compensating the retinal
noise, complete removal is not possible. Therefore,
there is some residual distortion in the response after
the autoencoder. As a result, the standard deviation in
the numerator of the proposed Equation 3 not only
measures the contrast of the output grating, but also
measures the energy of the residual noise. In this way,
when the contrast of the sinusoids b f is very small, as
expected in threshold conditions, the standard deviation
maybe measuring more the residual noise than the
contrast of the output. The limitation of Equation 3 is
that it has to be applied to sinusoids of relatively high
contrasts so that the energy of the response coming
from the sinusoid is bigger than the energy of the
response coming from the noise.

One can overcome this limitation in two ways: 1)
by computing the response many times for different
noise evaluations and cancelling the residual noise by

averaging over the realizations, and 2) by using relatively
high-contrast sinusoids so that the effect of the residual
noise is negligible.

In this work (for computational convenience) we
used the second approach: we probed the models
with sinusoids with contrasts in the range [0.07, 0.6].
The lower limit is certainly higher than the minimum
absolute threshold of the standard spatial observer
(which is approximately 0.005) (Watson & Malo, 2002;
Watson & Ahumada, 2005). Nevertheless, we choose
this range for two reasons: first, 0.07 is the average of
the threshold achromatic contrasts in the standard
spatial observer, and second, we empirically checked
that the effect of the noise was negligible above this
value.

Experiments

The Introduction raised questions on the role
of low-level vision goals to explain the CSFs, the
emergence of the CSFs in autoencoders working
to solve these goals, and the eventual advantage of
progressively more flexible models in explaining the
CSFs. To address these issues in the more general
spatiotemporal chromatic case, 1) we perform two
extensive experiments (one with images, and one with
video) to compensate biologically sensible degradation
of the retinal signal (compensation of biodistortion),
using a range of CNN architectures of different
depth or flexibility, 2) we consider alternative low-level
functional goals such as chromatic adaptation and
the compensation of the effect of bottlenecks, 3) we
consider different levels of biodistortion, chromatic
shifts in different directions, and bottlenecks with
different restrictions, and 4) we consider the consistency
of the results under changes in the statistics of the
signal. In this section, we describe the experimental
setting of these simulations.

Functional goals

Compensation of retinal biodistortion (biological
blur and noise) consists of overcoming the degradation
introduced in the acquisition of the visual signal.
Specifically, the top panel in Figure 3 shows how a
natural scene is degraded at the output of the retina
according to the variations of the eye MTF for different
pupil diameters (from top to bottom, d = 2 mm,
d = 4 mm and d = 6 mm), and a sensible range of
Poisson retinal noise levels (from left to right, Fano
factors F = 0.25, F = 0.5 and F = 1). Variations of
the MTF have been simulated with the expression
in Watson (2013), and the noise in LMS sensors has
been estimated in the discrete representation of the

Downloaded from jov.arvojournals.org on 07/13/2022



Journal of Vision (2022) 22(6):8, 1–45 Li, Gomez-Villa, Bertalmío, & Malo 8

Figure 3. Functional goals. Possible low-level goals of the autoencoders are compensating the following distortions in the visual input.
Top panel: different levels of retinal biodistortion. Bottom panel (first row) Changes in the spectral illumination. Bottom panel (second
row) Changes in illumination + retinal biodegradation. An alternative low-level goal is the reconstruction of the signal in presence of
bottlenecks (as in the architectures considered below, Figure 4 right). Note: This selfie of the corresponding author was sent to the
first author to test the models on a copyright-free image.

input digital image as in Esteve et al. (2020). In that
work, noise was obtained by stimulating the ISETBio
retinal model (Cottaris et al., 2019, 2020) with flat
stimuli of controlled size and tristimulus values over
short and long exposure times. Cartesian resampling
of the random cone mosaic of the retinal model and

integration of the photocurrents over space/time
reveals the effective Poisson nature of the noise (in the
original LMS units) and allows the estimation of the
effective Fano factor in the original discrete grid of
the input image. In that way, we can easily generate
calibrated noisy retinal images by adding this effective
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Poisson noise in the LMS representation of the digital
image. The illustrations in Figure 3 come from the
transformation of the LMS tristimulus images into the
RGB digital counts for proper display.

Chromatic adaptation
Consists of the compensation of the deviations of

the signal induced by the change of illuminant. The
bottom panel shows how the image of a natural scene
changes under changes in the shape of the spectral
radiance of the illuminant. The change of illuminant
in a digital image was simulated in this way: each pixel
of the image was associated with a reflectance chosen
from a large database of natural reflectances so that
under an equienergetic illuminant led to the tristimulus
values of the pixel. Then, a black-body radiator, which
simulates natural ambient light along the day, was used
to generate spectra of the same energy but different
shape. From there, we could get versions of the scene
under arbitrary color temperatures. This process is
straightforward using the functionalities and databases
of Colorlab (Malo & Luque, 2002). Of course, this
process is just an approximation because it disregards
the (unknown) geometry of the scene and assumes a
flat Lambertian world. Nevertheless, as illustrated in
the examples in Figure 3, it does a good qualitative
job to generate controlled samples to check chromatic
adaptation in large image databases.

Compensation of chromatic shifts and biodistortions
The reason to consider this combination is that

pure chromatic shifts with no additional distortion is
not a realistic input for the visual pathway: the image
acquisition front-end does exist and, hence, what we
called biodistortion has to be taken into account. Such
combination of distortions is illustrated by the second
row of the bottom panel in Figure 3. Note that in
the examples involving chromatic deviations (bottom
panel) we introduced a flat-reflectance frame to help the
models to cope with the chromatic adaptation3.

Compensation of bottlenecks (pure reconstruction)
Consists of recovering the input after the signal has

gone through a bottleneck. Examples of bottlenecks
include the restriction of the spatial resolution or the
restriction of the number of features (or channels)
in the representation. Figure 4 (right panel) shows
an illustrative range of architectures: from cases that
expand the number of features (no bottleneck) to a
variety of cases that introduce local pooling, reduce
the number of features, or try to compensate the effect
of spatial undersampling by increasing the number of
features. Bottlenecks may imply severe information loss
if the representation is not optimized. Therefore, pure

reconstruction of the signal in presence of bottlenecks
is a sensible low-level goal to explore.

Compensation of bottlenecks and biodistortion
As stated, errors in the acquisition front end

(biodistortion) do exist, so their consideration together
with bottleneck compensation makes the goal more
realistic.

All in all, we explored nine levels of biodegradation,
chromatic adaptation in the blueish and the reddish
directions (T = 8600 K and T = 4400 K, respectively),
and the combination of the central biodistortion with
the considered chromatic deviations. We considered
a pure reconstruction task with the eight bottleneck
configurations in Figure 4, and the compensation of
these bottlenecks was also combined with the central
biodistortion case. The optical/retinal degradation
in movies was applied in a frame-by-frame basis.
No experiments involving chromatic adaptation or
bottlenecks were done in movies, but only in natural
and cartoon images.

The above computational goals are all measured
in distortion terms, or how well the deviations εLMS
were compensated. However, even within this low
abstraction level, other computational goals could be
considered together with the distortion, as for instance
the information or the energy of the signal. In the
experiments we restrict ourselves to the considered cases
of distortion minimization and purely architectural
bottlenecks. The discussion suggests how the goals
considered here could be related or combined with other
kind of goals or more general (energy or information)
bottlenecks.

Architectures

In this work, we consider 2D CNNs that act on
spatiochromatic signals and three-dimensional (3D)
CNNs that act on spatiotemporal signals (color images
and color videos).

The set of explored architectures is shown in
Figure 4. These are variations of the basic toy networks
studied in Gomez-Villa et al. (2019, 2020): autoencoders
with convolutional layers made of 8 feature maps with
kernels of spatial size 5 × 5 and sigmoids or rectified
linear units (ReLU) as activation functions. From that
starting point, here we consider a range of nets of
increasing depth and flexibility: from the linear network
in Equation 7 (as a convenient baseline reference of one
layer with no flexibility), and CNNs with two layers to
eight layers, both for the 2D and 3D cases. Moreover,
we also consider a range of architectures with different
bottlenecks, in this case, only 2D.

Of course, the range of possible architectures is
virtually infinite and an exhaustive exploration of the
architecture space is out of the scope of this work.
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Figure 4. Architectures. (Left) Range of architectures of different depth following the basic structure of the nets studied in Gomez-Villa
et al. (2019, 2020): three channels at the input and at the last (output) layer. In this work the input is in an LMS color representation.
The rest of the layers have eight features with no undersampling or bottleneck, as represented by the eight blue lines of the same
length. These architectures of increasing depth are used to study the compensation of the biodistortion in images and videos. The
best of these architectures in terms of CSFs (which turns out to be the two layers example) is used with images to explore chromatic
adaptation. (Right) Range of architectures used to illustrate the effect of bottlenecks. In this case, the inner layer in the four layer
architecture at the left is systematically expanded (in A) or contracted (from C to G, either in the number of features or in the spatial
resolution. See numbers and indications of pooling/upsampling and corresponding length of the layers-) to generate a range of
bottlenecks. Finally, an illustrative U-Net with no residual connections is also considered in the experiments with bottlenecks.

However, note that the considered set of architectures
of progressive flexibility and constraints is appropriate
for the aim of this work for two reasons: 1) these
architectures do a good job in fulfilling the goal so
they are good examples to reason about systems that
work according to the considered function, and 2)
they display a range of flexibility and accuracy in the
goal which is appropriate to illustrate the proposed
questions (eventual emergence of the CSF and other
nonlinearities, and qualitative effect in the CSF of
increased flexibility and improvements in the goal
accuracy).

The first point (the considered toy models do a
reasonably good job in fulfilling the goal) is a technical
issue that is demonstrated by the performance tables
shown below and by the specific learning curves and
reconstructions included in Appendix A. However,
to put this quantitative performance in context, it
is interesting to note that the retinal biodistortion
is not an easy task to solve for general-purpose
state-of-the-art image restoration CNNs. In particular,
following Gomez-Villa et al. (2020), on top of the
described toy networks, the computation of the CSFs
of cutting-edge deeper models designed for restoration
could be an illustrative limit to consider. However, we
found that the combination of representative examples

of generic CNNs for denoising (Zhang et al., 2017;
Soh & Cho, 2021) and deblurring (Tao et al., 2018),
which gave excellent results with arbitrary Gaussian
noise and blur in Gomez-Villa et al. (2020), is not
satisfactory with biological distortion. In particular,
generic enhancement algorithms did not produce
better results than the considered simple architectures
(specifically trained for this biodistortion).

Of course, this does not mean that the toy models
used here are better than the state of the art, nor that
state-of-the-art models are intrinsically unable to deal
with this biological degradation. One could certainly
fine-tune these deep architectures for the biodistortion
and then get a better result than with the considered set
of architectures, but that is not the goal of this work.
The relevant argument in favor of the considered (toy)
architectures for our purposes here is this: the fact that
generic blind restoration CNNs need to be retrained
to get better results than the proposed models means
that these simple models can be considered as good
(enough) examples of systems actually fulfilling the
goal.

Regarding the second point (the considered set of
architectures is good enough to illustrate interesting
questions), consider that i) according to the results
presented below (Results, Tables 1 and 4) the toy
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nonlinear models decrease by up to 35% and 48% the
error of the optimal linear solution in images and video,
respectively, and ii) the best nonlinear model reduces
the error of the shallower nonlinear model by 21% and
12% in images and video respectively.

In summary, the considered set of architectures
(progressively deeper CNNs and a range of bottlenecks)
does a reasonable job in optimizing the goals, and it is
wide enough to illustrate changes in the achievement of
the goals. As a result, the considered set of architectures
is appropriate to address the questions raised in the
introduction.

See Appendix A for implementation details. Data and
code are available at http://isp.uv.es/code/visioncolor/
autoencoderCSF.html

See Appendix B for details on the databases to
generate the training stimuli and the stimuli used to
probe networks.

Assessing the quality of the CSF results

The CSFs defined for the autoencoders may be
subject to two arbitrary scale factors. On the one hand,
the response of the network could be multiplied by an
arbitrary global scale factor and hence, the numerator
in Equation 3 (and the CSF amplitude) would be
multiplied by this scale factor as well. We refer to this
global scale factor in the amplitude as αCSF. On the
other hand, the sampling assumptions (or assumptions
on the extent of the signal, or the viewing distance)
introduced in the description of the stimuli are arbitrary
and they imply an arbitrary scaling in the frequency
axis of our Fourier domains. We refer to this scale
factor on frequency as α f .

The factor on amplitude is not a major problem:
one network and a modified version with its outputs
multiplied by αCSF are equivalent and their quality
should be rated the same. The factor on frequency does
not reduce the validity of the results either as long as
it is moderate. Note that using the MTF expressions
in Watson (2013), if the filter corresponding with a
pupil of 3.5 mm is modified by applying α f = 0.75 or
α f = 4.5, the resulting MTF is similar to what would
have been obtained with d = 2 mm or d = 6 mm,
respectively. Therefore, as changes in the MTF (the only
element where the scaling in frequency matters) are
plausible if α f ∈ [0.75, 4.5], one should also discount
moderate variations of this factor when assessing the
quality of the CSFs.

The similarity between the model and the human
CSFs will be measured by the Euclidean distance
between the CSF vectors, averaging over the frequency,
f , and the chromatic channels, c (achromatic, red–green
and yellow–blue), which will be referred to as:

RMSE=
(∑

f , c
(CSFscaledc ( f ) − CSFhuman

c ( f ))2
) 1

2

, (10)

where the scaled attenuation factors of the model are
related to the raw attenuation factors of the model as:

CSFscaled( f ) = αCSF · CSFraw(α f · f ) (11)

In the following, we report the scaled CSFs together
with the scaling factors that minimize the distance with
human CSFs.

It is important to mention that the relative scaling
between the CSFs in the three chromatic channels is a
characteristic feature of a network (or system) and it
should not be modified. Therefore, the same factors in
Equation 11 are applied to the three CSFs. With these
considerations, the CSFs reported below represent
the closest approximation the models may give to the
human CSFs, and hence the comparison between them
is fair.

The magnitude of the RMSE errors has to be
understood in reference to the maximum value of
the human sensitivity. As a convenient example
to have in mind, RMSE – 22 corresponds with an
average deviation of 10% of the scale of the human
spatiotemporal CSF at every frequency and chromatic
channel. This is because the maximum sensitivity is
approximately 200 for stationary gratings and about
220 for moving gratings (Watson & Malo, 2002; Kelly,
1979).

List of experiments

The empirical exploration of the considered
architectures consists of six experiments. Experiments
1 through 5 deal with spatiochromatic stimuli and 2D
networks, and experiment 6 deals with spatiotemporal
chromatic stimuli and 3D networks. As stated, the
computational goals are measured by the Euclidean
distance between the reconstructed image and the
original image, referred to as εLMS. The similarity
with the human behavior is measured in terms of the
Euclidean distance between the model CSFs and the
human CSFs, that is, the RMSE defined in Equation 10.

• Experiment 1: Spatiochromatic CSFs from
biodistortion compensation by a range of
architectures. This experiment is focused on the
central degradation shown in the first panel of
Figure 3 (d = 4 mm, F = 0.5) and analyzes in
detail the CSFs for nine architectures: the optimal
linear network, and eight CNN architectures with
two, four, six, and eight layers with either sigmoid
or ReLU activations, all optimized according
to this distortion–compensation goal. Once
the architectures are properly trained (using 20
·103 images of the ImageNet database cited in
Appendix B, 18 ·103 for training and 2 ·103 for
validation), we get the numerical performance
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of the models in the independent test set of 103
images. The sizes of the train/validation/test
sets are the same in all experiments with images,
experiments 1 to 5. Throughout all the experiments,
the performance is expressed as the average εLMS
of the reconstruction in LMS space over 20 batches
of 50 randomly chosen images per batch. The
standard deviation over these 20 computations is
also reported. The learning curves (train/validation)
and the reconstructions of one representative test
image are given in Appendix C. Then, the CSFs
(attenuation factors) of the trained models are
computed according to the method described in
the Methods: Estimating contrast sensitivity in
autoencoders for gratings of different contrasts.
The eventual variation of the attenuation reveals
the nonlinear nature of the contrast response
for gratings. In experiment 1, we also show the
CSFs of the linear network and the linearized
versions of the nonlinear networks introduced in
the Methods: Estimating contrast sensitivity in
autoencoders. From the results of experiment 1,
one of the nonlinear models is chosen as having
representative resemblance with human behavior
in terms of the CSFs (two layers with ReLU
activation). Experiments 2, 3, and 4 further explore
the behavior of this specific model in a number of
conditions.

• Experiment 2: Consistency of the CSFs from
biodistortion compensation over a range of
distortion levels. This experiment is focused on the
representative architecture selected after experiment
1, and checks its CSFs when trained for the nine
different degradation levels considered in the first
panel of Figure 3.

• Experiment 3: CSFs from chromatic adaptation
and biodistortion compensation. This experiment
checks the CSFs of the representative architecture
selected after experiment 1, when it is trained
for i) the biodegradation compensation alone
ii) the degradation compensation together
with compensation of a bluish illuminant, iii)
the degradation compensation together with
compensation of a reddish illuminant, iv) pure
compensation of a bluish illuminant, and v) pure
compensation of a reddish illuminant. In the
illustration of Figure 3, these correspond with
the five distorted versions closer to the clean
image under equienergetic illuminant. As stated,
the purely chromatic deviations are not realistic
because they disregard the optics and retinal noise.
However, they represent an illustrative reference.
In the same vein, as a convenient reference, in this
experiment we compute the CSF in two ways: a)
the proposed (realistic) way, Equation 3, by putting
the clean gratings through the retinal degradation
before entering the network, and b) the idealized

way, Equation 4, in which we simply put the clean
gratings through the considered network. This will
stress the difference in the obtained CSFs when
considering realistic spatial degradations or not.

• Experiment 4: Consistency of the human/non-human
CSFs under change in signal statistics. Here we
reconsider the chromatic adaptation and the
degradation–compensation goals of experiment 3
now using stimuli of (apparently) quite different
spatiochromatic statistics: the images from the Pink
Panther cartoons. All the other settings remain the
same as in experiment 3.

• Experiment 5: CSFs from bottleneck–compensation
and biodistortion compensation. This experiment
shows the CSFs of the systems that emerge from
imposing pure reconstruction of the signal in
presence of bottlenecks in the network (the eight
examples in Figure 4, right). Pure reconstruction is
compared with the compensation of biodistortion
in the same architectures. Given the similarity
between activation options found in experiment 1,
here we just explore the ReLU case.

• Experiment 6: Spatiotemporal chromatic CSFs
from biodistortion compensation by a range of
architectures. Here we check the fundamental
findings of experiment 1 for spatiotemporal
chromatic gratings on 3D networks optimized for
degradation–compensation. Given the similarity
between activation options found in experiment 1,
here we just explore the sigmoid case. Therefore,
we explored five architectures: the linear one and
two, four, six, and eight layers with sigmoid. In this
spatiotemporal case we used 22 ·103 video patches
in the learning (20 ·103 for training and 2 ·103 for
validation), and 3 ·103 for test.

Results

Results in all the experiments have two parts: 1)
the perception part, with the CSFs and the contrast
responses of the networks, and 2) the technical part,
with evidences of the convergence of the models,
numerical performance in reconstruction, and visual
examples of the performance in reconstructing images.
The main text is focused on the perception part, while
all the technical material is given in the Appendix C.

Experiment 1: Spatiochromatic CSFs from
biodistortion compensation

Figure 5 shows the achromatic and chromatic CSFs
of the considered models (the linear solution and
the eight CNNs) together with the human CSFs for
convenient reference. The human data come from
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Comput. goal CSFs Comput. goal CSFs
εLMS RMSE εLMS RMSE

Distortion 15.5 ± 0.2
Linear net 13.1 ± 0.1 24.4

CNNs Sigmoid ReLU Sigmoid ReLU Sigmoid ReLU Sigmoid ReLU
nonlinear nonlinear nonlinear nonlinear linearized linearized linearized linearized

2 Layers 10.3 ± 0.1 10.8 ± 0.1 26.9 24.5 ± 0.3 12.5 ± 0.1 12.6 ± 0.2 24.1 22.8
4 Layers 8.9 ± 0.1 9.1 ± 0.1 26.6 28.5 12.5 ± 0.1 12.5 ± 0.1 23.2 23.1
6 Layers 8.7 ± 0.1 8.5 ± 0.1 29.7 ± 0.7 33.1 12.5 ± 0.2 12.5 ± 0.2 23.2 23.1
8 Layers 8.9 ± 0.2 8.7 ± 0.1 31.2 31.6 12.6 ± 0.1 12.7 ± 0.1 27.0 27.4

Table 1. Experiment 1: Emergence of CSFs from biodistortion compensation (computational goal and error in CSFs). The achievement
of the computational goal is described by εLMS (error of the reconstructed signal in LMS) for batches of images of the independent
test set (averages and standard deviations from 20 realizations with 50 images/batch). The distance between the CSFs of the
networks and the human CSFs is measured by the RMSE between the functions, Equation 10. Uncertainty of the RMSE was estimated
only in two cases (two layer ReLU and six layer sigmoid) and is represented here by the standard error of the corresponding means. It
is interesting to note that the optimal linear solution (computed from the train set) has worse performance in the test set than the
linearized versions of the networks. Numbers in bold style refer to nonlinear networks and numbers in regular style refer to linearized
networks.

the achromatic standard spatial observer (Watson &
Malo, 2002; Watson & Ahumada, 2005) and from
the measurements in Mullen (1985). The plots for the
nonlinear models show the attenuation factors (CSFs)
for gratings of different contrast (dark to light colors
mean lower to higher contrasts).

These plots include the RMSE measure of the
difference of the artificial CSFs with the human CSFs.
The insets also show the optimal values of the arbitrary
scaling factors (α f , αCSF) applied to the axes of the
raw CSFs of the network to minimize the distance
with the human CSFs. Because these optimal scaling
factors values were found exhaustively in all cases, the
comparison of the final CSFs and RMSE values is fair.

Results show the emergence of a band-pass sensitivity
in the achromatic channel and low-pass sensitivities
in the chromatic channels. The bandwidth of the
chromatic channels is always substantially narrower
than the achromatic bandwidth. These properties are
qualitatively in line with human behavior.

Shallower networks (either ReLU or sigmoid)
display a greater resemblance with human CSFs. In
particular, deeper nets introduce substantial distortion
in the chromatic channels: note that the red–green
channel is over attenuated (particularly for the eight
layer architectures but also in the six layer cases). The
RMSE scores summarize these differences and show
that shallower nets (two and four layers) provide better
explanations of the CSFs than deeper nets (six and
eight layers).

Interestingly, the optimal linear solution (a single
dense layer with identity activation) is the one that
better reproduces the CSFs. However, by its linear
nature, it cannot include contrast-dependent behavior.

In this regard, the shallow networks (two layers) display
a consistent decay of the gain (attenuation factor) with
contrast. This decay has an impact on the contrast
response curves for gratings. The contrast response
curves describe the evolution of the amplitude of the
response to a grating as a function of the contrast of
the grating. In humans, contrast response curves are
increasing saturating functions both for achromatic
gratings (Legge & Foley, 1980; Legge, 1981) and for
chromatic gratings (Martinez-Uriegas, 1997). The decay
found in two layer CNNs implies a saturation of the
contrast response curves for these shallow CNNs, in line
with human behavior. Figure 6 shows representative
examples of these response curves: Although the
two layer network (top row) consistently displays
saturating behavior for every frequency, the deeper net
(bottom row) shows non-human (linear or expansion)
responses.

Finally, Figure 7 shows the CSFs corresponding
with the linearized versions of the nonlinear CNNs,
Equation 8. Of course, the linear approximations have
contrast-independent behavior and hence the same
CSF for all contrasts. The global linear approximations
of the nonlinear models improve the resemblance of
the CSFs with human behavior: the linearized shallow
nets are closer to humans than the linear model, and
linearization corrects over attenuation of the chromatic
channels in the six layer models. However this increased
similarity with human CSF comes at the cost of a
significant drop in the performance (see the increase
in εLMS error in Table 1). The linearization leads to
rigid models that disregard the differences between the
original nonlinear models and behave more similarly.
In any case, linearization does not overcome the

Downloaded from jov.arvojournals.org on 07/13/2022



Journal of Vision (2022) 22(6):8, 1–45 Li, Gomez-Villa, Bertalmío, & Malo 14

Figure 5. Experiment 1 (spatiochromatic CSFs from the compensation of biodistortion). Attenuation factors for gratings of different
contrast for a range of CNN autoencoders trained for biodistortion compensation. Achromatic, blue, and red lines refer to the CSFs of
the achromatic, red–green, and blue–yellow channels, respectively. Dark to light colors refer to progressively higher contrasts (evenly
spaced in the range [0.07–0.6]). The human CSFs (top left) and the CSFs of the optimal linear solution (bottom left) are also shown as
a convenient reference. RMSE measures describe the differences between the model and the human CSFs. The plots also display the
values for the scaling factors in frequency and amplitude described in the text, Equation 11.
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Figure 6. Experiment 1 (Illustrative contrast responses from the compensation of biodistortion). Representative examples of nonlinear
responses for achromatic and chromatic sinusoids found. Saturation in these responses comes from the decay in the attenuation
factors with contrast in Figure 5. Similarly, expansion comes from the increase in the attenuation factors. The linear behavior at the
low-contrast regime has been plotted with dashed line as useful reference to highlight the nonlinear behavior. It is interesting to note
that the saturating or expansive nature of the final contrast nonlinearity is a collective behavior that is not trivially attached to the
specific (saturating or expansive) nonlinearities in individual neurons.

overattenuation of the red–green channel in the eight
layer models.

Table 1 shows that while deeper networks are
significantly better at fulfilling the computational goal
(as expected from their increased flexibility), they are
worse than shallow nets in reproducing the human
behavior (as seen in Figures 5–7).

Progressive improvement in the goal for increasing
depth is numerically substantial (and also visible in the
reconstructed signals in Figure 14 in Appendix A) from
two, four, to six layers, and the numerical performance
stays (statistically) the same for eight layers. For this
last case, there are chromatic issues in line with what
was been found in the CSFs: the colorfulness of the
reconstruction in Figure 14 is related to the relative gain
of the chromatic channels. In particular, the consistent
underestimation of the red–green CSF by the eight
layer CNNs (either using ReLU or sigmoid activation)
leads to low-saturation images. Interestingly, this effect
is also visible in the reconstructed images coming from
the linearized CNNs (Figure 15) and is consistent
with the strong attenuation of the RG channel in the
linearized eight layer architectures in Figure 7.

It is important to stress that the deviations in the
chromatic CSFs in deep models do not come from
not fulfilling the goal or having poor convergence in
the training. First, all models (even the linear one) do
reduce the error of the original retinal degradation

(Table 1) so they are fulfilling the goal. And second,
the learning curves in the Appendix C (Figure
14) show that all models achieved a plateau in the
training thus indicating proper convergence. Moreover,
the asymptotic values achieved in the learning are
consistent with the εLMS in test shown in Table 1.

As stated, RMSE errors in Table 1 have to be
interpreted in terms of the scale of the human CSF. For
example, the best and the worst CNNs (RMSE = 24.4
and RMSE = 33.1, respectively) have average deviations
of 11% and 15% with regard to the maximum human
sensitivity. Of course, a single figure of merit averaged
over frequencies and chromatic channels may hide
an uneven distribution of the errors. For instance,
consider the specific six layer sigmoid CSF shown
in Figure 5, which displays a clear over attenuation
of the red–green channel. In that case, if the global
RMSE = 30.2 is broken down into its chromatic
components we have 29.0, 35.0, and 26.8 for the
achromatic, red–green, and yellow–blue errors, which
clearly point out that the biggest problem is in the
red–green sensitivity. The same is true for the average
over spatial frequencies: the global description does
not stress the discrepancy in the low frequencies of
the achromatic channel. That is why the (necessarily
limited) description in the tables comes together
with the explicit plots of the three CSFs for different
contrasts.
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Figure 7. Experiment 1 (spatiochromatic CSFs for linearized networks in biodistortion compensation). The human CSFs and the CSF of
the optimal linear network are also included as reference.
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Another important technical issue is the consistency
of the CSFs over random initialization. This is easy
to check by training a number of times the same
architecture for the same computational task and
over the same set of stimuli but from different initial
values of the model parameters. Given the intensive
computation required,4 we checked this variability
only in two illustrative models: one with reasonably
human-like behavior (two layer ReLU), and another
with less-human CSFs (six layer sigmoid). In these
two models, we retrained them 20 additional times
and recomputed the corresponding CSFs (results not
plotted). In the six layer case, all the explored seeds
lead to a flat red–green CSF of too low sensitivity (i.e.,
a non-human behavior), and in some cases even the
blue–yellow sensitivity was strongly attenuated too. On
the contrary, the two layer case systematically leads to
better CSFs, as summarized by the RMSE in Table 1,
where the uncertainty is represented by the standard
error of the mean. The shape of the sensitivities is
pretty consistent in both cases, always better for the
two layer case. At the same time, and not surprisingly,
the six layer architectures systematically led to lower
εLMS error. Only 1 of the 42 realizations (21 per model)
led to a clear outlier (RMSE = 43.8 in the six layer
case) and even for this CSF-outlier the distortion
εLMS was not off the distribution. According to the
observed consistency, the remaining 49 configurations
of task/architecture in the work were studied using a
single random initialization of the parameters.

The next experiments explore the consistency of the
human-like behavior found in shallow autoencoders in
a number scenarios. According to the results found in
experiment 1, we select the two layer ReLU autoencoder
as a representative example of shallow architecture with
reasonable human-like behavior (RMSE of 11% of the
maximum sensitivity) so we focus on this architecture
in experiments 2 through 4.

Experiment 2: Consistency of CSFs over a range
of biodistortions

Figure 8 shows the CSFs obtained when training
the two layer ReLU net to compensate a range of
retinal degradations (as described by the different pupil
diameters and Fano factors). Learning curves that show
the good convergence of the models and representative
visual examples of the reconstructions are given in the
Appendix C (Figures 16 and 17).

The results in Figure 8 show that band pass /
low-pass channels with distinct bandwidths consistently
appear in all cases, and the RMSE with human CSF
(25 ± 2), mean and standard deviation, stays in the low
range of the values found in experiment 1.

Regarding the evolution of the CSFs with contrast,
it is important to note that for some conditions (low
blur and high noise) the gain in the achromatic CSF

increases with contrast, which is equivalent to contrast
response curves that are not saturating.

Experiment 3: CSFs from chromatic adaptation
versus biodistortion compensation

Figure 9 (top row) shows the CSFs emerging
when the representative shallow network with
human-like behavior in experiment 1 is trained
for a range of alternative low-level tasks, some
involving compensation of the retinal degradation
(first, second, and third cases), and some others only
involving chromatic adaptation (fourth and fifth). The
corresponding learning curves for the models and visual
examples of reconstruction are given in the Appendix A
(Figure 18). Table 2 (top) summarizes the numerical
performance of the models in this experiment (εLMS for
the computational goal, and RMSE for the CSFs).

First, lets focus on the case where the determination
of the CSF faithfully follows Equation 3 and hence
we have a realistic eye+retina degradation (solid
lines). Results show that only the cases where the task
involves the biodegradation imply a clear difference in
bandwidth between the achromatic and the chromatic
channels. In the cases where there is only chromatic
adaptation, the three CSFs are wider and of similar
bandwidth. This behavior is clearly non-human, as
confirmed by the RMSE measures in the fourth and
fifth panels at the right.

Second, this difference is more clear in the idealized
cases, Equation 4, where clean sinusoids are used to
determine the CSFs (dashed lines). In this situation,
the CSFs of the purely chromatic goals are wider and
flatter indicating that the networks are not performing
any particular spatial modification in any chromatic
channel. As a result, the RMSE values for the chromatic
adaptation cases (light style numbers below the
frequency axis) substantially increase indicating poorer
description of human CSFs. In this regard, the errors
for the cases in which the task involves biodegradation
are lower, but they are even lower if the CSF is
measured considering the realistic degradation in the
input.

In summary, the results show two trends. On the one
hand, human-like features emerge in the CSFs if the
degradation–compensation task is considered, but they
do not if only chromatic adaptation is considered. On
the other hand, the CSFs are closer to human in RMSE
if the determination takes the retinal degradation into
account in the sinusoids.

Finally, there is an interesting human chromatic
feature that is well-captured by all the CNN models
that were trained for chromatic adaptation: all of
them display a sort of Von-Kries modification of the
red–green and yellow–blue channels. Note that, when
the red illuminant has to be compensated (third and
fifth cases), the red–green CSF is attenuated while the
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Figure 8. Experiment 2: Consistency of human-like result over a range of retinal degradations. Spatiochromatic CSFs of the two layer
ReLU net for a range of retinal degradations. The RMSE distortion over the nine retinal conditions is 25 ± 2 (mean and standard
deviation). The line style conventions and meaning of the numbers is the same as in experiment 1.

blue–yellow CSF is boosted, and the other way around
in in the compensation of a bluish illuminant (second
and fourth cases, where the blue–yellow channel is
attenuated).

Experiment 4: Consistency of spatiochromatic
CSFs under changes of signal statistics

Figure 9 (bottom row) shows the CSFs emerging
when the representative shallow network with
human-like behavior in experiment 1 is trained for
the range of low-level tasks considered in experiment
3 optimizing the performances over cartoon images

(as opposed to regular photographic images). The
corresponding learning curves for the models and visual
examples of reconstruction are given in the Appendix C
(Figure 19). Table 2 (bottom) summarizes the numerical
performance of the models in this experiment.

The parallelism in the results of experiments 3 and
4 confirms the robustness of the behaviors shown in
experiment 3 to certain changes in signal statistics.
Note that this parallelism does not mean that the CSFs
are independent of the signal statistics. It just means
that they are invariant to this change of statistics. It
is important to remark that the low-level statistics
of these (apparently different) sources may not be
that different. Colors of the Pink Panther images are
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Figure 9. Experiment 3 (top row): CSFs from biodistortion compensation versus chromatic adaptation in natural images. From left to
right, we consider the CSFs that emerge from (a) the compensation of biodegradation (left plot), (b) combinations of chromatic
adaptation and degradation compensation (second and third plots), and (c) pure chromatic adaptation panels (fourth and fifth plots
at the right). The cases in the columns first-to-third involve retinal degradation (with or without color adaptation) while the cases in
the fourth and fifth columns only involve chromatic adaptation. For the sake of clarity, only low contrast results are shown. Solid lines

→
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←
correspond with CSFs determined using Equation 3 (where the input to the network includes realistic acquisition process). Dashed
lines correspond with CSFs determined using Equation 4 (where the network is probed with clean sinusoids). The RMSE values in bold
correspond with the CSFs determined in realistic conditions (curves in bold). The RMSE values displayed below the frequency axis
correspond to the CSFs determined with clean sinusoids (dashed lines). In the cases involving chromatic adaptation the input
sinusoids were color shifted according to the corresponding change in the illuminant. Experiment 4 (bottom row): Consistency of the
results for different signal statistics (cartoon images). The computational goals are the same as above. The only difference is that the
models are trained with cartoon images (from the Pink Panther show) as opposed to regular photographic images from ImageNet
(used in experiments 1–3).

Natural images
Comput. goals Degradat. only Degradat. + blue adapt. Degradat. + red adapt. Blue adapt. Red adapt.
Original εLMS 12.1 ± 0.2 18.1 ± 0.2 15.2 ± 0.3 13.2 ± 0.2 10.2 ± 0.3
εLMS after 2-layers ReLU 9.79 ± 0.08 8.7 ± 0.1 8.9 ± 0.1 1.92 ± 0.05 1.01 ± 0.01
RMSE of CSFs
CSFrealist. 28.4 27.3 29.3 34.9 42.6
CSFsimplist. 32.4 33.2 40.2 47.2

Cartoon Images
Comput. Goals Degradat. Only Degradat. + Blue Adapt. Degradat. + Red Adapt. Blue Adapt. Red Adapt.
Original εLMS 12.9 ± 0.2 18.1 ± 0.1 15.6 ± 0.2 13.4 ± 0.3 9.1 ± 0.3
εLMS after 2-layers ReLU 10.14 ± 0.08 9.5 ± 0.1 9.2 ± 0.1 1.34 ± 0.02 0.837 ± 0.06
RMSE of CSFs
CSFrealist. 26.0 26.6 29.3 35.3 42.7
CSFsimplist. 37.7 33.1 41.4 47.9

Table 2. Experiment 3 (top). Compensation of biodegradation versus chromatic adaptation in natural images. Performance in the
goals and eventual human-like CSFs are described by εLMS and RMSE, respectively. CSFrealist. and CSFsimplist. refer to the way the
CSF is computed (taking into account or neglecting the retinal degradation in the sinusoidal stimuli). Experiment 4 (bottom).
Consistency under change of image statistics. The considered goals and magnitudes have the same meaning as in experiment 3. The
only difference is in the scenes used to train the models.

certainly more saturated, but beyond this obvious
fact, other differences may be subtle. In particular,
we took precautions to get frames from a 5-hour
compilation where backgrounds around the whole
chromaticity range appear not to bias the chromatic
CSFs. Regarding the spatial content, note that there
are plenty of edges of arbitrary orientations and also
low-frequency transitions and shadows in the cartoons.
More radical modifications of spatial information (e.g.,
edit the cartoon images to make them isoluminant; i.e.,
zero contrast in the achromatic channel) could lead to
substantial variation of the CSFs, but the goal of this
illustration is to point out the robustness of the result
more than look for its limits.

Experiment 5: CSFs from bottleneck
compensation versus biodistortion
compensation

Figure 10 shows the CSFs of the systems that emerge
from the architectures with bottlenecks considered

in Figure 4 (right), when considering two different
functional goals: 1) pure reconstruction of the input
signal, that is, compensation of the information loss
imposed by the bottleneck, and 2) compensation of
the bottleneck together with compensation of the
biodistortion. Table 3 summarizes the distortions
in the CSFs, RMSE, and the performance in the
reconstruction, εLMS.

The Appendix C, Figure 20, confirms that these
architectures converged to a plateau of εLMS. Moreover,
consistently with the data in Table 3, Figures 20 and
21 show that these systems achieve the computational
goals to an extent that depends on the severity of the
bottleneck in a very intuitive fashion (see comments in
Appendix C).

More interesting is what happens to the emerging
CSFs in Figure 10. In the absence of a bottleneck,
pure reconstruction leads to wide filters equal in
the three chromatic channels, a clearly non-human
result with RMSE approximately 40 (architectures
A and B). Similarly to pure chromatic adaptation,
unconstrained pure reconstruction induces no spatial
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Figure 10. Experiment 5: CSFs from architectures with bottlenecks. Notation of the architectures with bottlenecks (letters in blue)
refers to the diagrams shown in Figure 4. (Top row) CSFs emerging from bottleneck compensation and biodistortion degradation in
progressively more restrictive bottlenecks in a four-later architecture. (Middle row) CSFs emerging from pure reconstruction of the
signal in the same architectures. (Bottom row) CSFs emerging in U-Nets from biodistortion compensation (left) or pure reconstruction
(right).
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No bottleneck Bottlenecks

A B C D E F G U-Net

Bio-Distort.
εLMS 9.1 ± 0.3 9.2 ± 0.2 9.6 ± 0.1 9.8 ± 0.2 10.3 ± 0.4 11.2 ± 0.2 15.6 ± 0.5 12.3 ± 0.3
RMSE 25.4 25.5 24.6 25.8 23.8 30.5 33.0 25.3

Pure Recons.
εLMS 1.2 ± 0.1 2.2 ± 0.1 4.8 ± 0.3 3.0 ± 0.5 12.8 ± 0.7 5.6 ± 0.8 11.9 ± 0.5 12.2 ± 0.6
RMSE 39.2 39.2 30.4 36.3 29.3 42.4 34.9 33.2

Table 3. Experiment 5: Compensation of biodistortion versus pure reconstruction in networks with bottlenecks. The bottlenecks in the
architectures A through G and U-Net are described in Figure 4 (right). Performance in the reconstruction goals is measured by the
εLMS error (in a test set) and the quality of the CSFs is given by the RMSE error. The considered biodistortion was the central case in
Figure 3 with an original level of εLMS = 15.5, which is reduced to the values reported in the first row after the application of the
models. In the pure reconstruction case the original retinal distortion is εLMS = 0 so the errors reported in the 3rd row come from
poor reconstruction or an incomplete compensation of the bottleneck.

selectivity and hence small similarity with human vision.
Mild bottlenecks restricting the number of features
and/or the spatial resolution do introduce differences
in the bandwidth of the achromatic/chromatic
channels, but the shape of the filters is far from
human (RMSE ≥ 30 in architectures C and D).
Then, more severe bottlenecks (architectures E–G
and U-Net) quickly leads to over-attenuation of
one or both chromatic CSFs (and hence non-human
behavior with a RMSE of approximately 35 in
these architectures for reconstruction). On the
other hand, the very same architectures trained for
the compensation of biodistortion lead to more
human-like CSFs. See the band-pass/low-pass shape
of the achromatic/chromatic CSFs and the RMSE of
approximately 25, except for architectures F and G that
overattenuate the chromatic CSFs but still preserve the
band-pass nature of the achromatic channel. Better
preservation of chromatic CSFs by the systems tuned
to compensate the biodistortion is visually confirmed
by the reconstructions of a representative image in
Appendix C, Figure 21.

In summary, pure reconstruction with the explored
bottlenecks induces a difference between the relative
bandwidths of the achromatic and chromatic CSFs.
However, the results become closer to human (both in
the shape of the filters and in RMSE) when considering
the compensation of the biodegradation of the retinal
signal. And this resemblance remains even if the system
is not constrained by a bottleneck.

Experiment 6: Spatiochromatic–temporal CSFs
from biodistortion compensation

Figure 11 shows the attenuation factors found for
low-contrast moving sinusoids (both achromatic and
chromatic) in the plane ( fx, ft ) for a range of 3D
CNN autoencoders and for the optimal linear solution.

Experimental human CSFs for achromatic moving
gratings (Kelly, 1979), and for chromatic moving
gratings (Díez-Ajenjo et al., 2011) are also included as
a useful reference. The learning curves for the models
and visual examples of reconstructions are given in
the Appendix C (Figure 22). Table 3 summarizes
the numerical performance of the models in this
experiment.

The CSF results show that the main feature of
the spatiotemporal human window of visibility (its
diamond shape), with smaller spatial bandwidth
for higher temporal frequencies (or speeds) (Kelly,
1979; Watson, 2013) is reproduced by all the models
as well as the substantially lower bandwidth of the
chromatic channels, focused on very low spatiotemporal
frequencies. The error of the best net is a RMSE of
17% of the maximum sensitivity.

Consistently with the results found in images
(experiment 1), resemblance with human CSFs is bigger
in shallower models (linear, two layers with a RMSE
of approximately 17% or 18%, respectively) than in
deeper models (six layers, and eight layers with a RMSE
of approximately 22%) despite the performance of
the deeper models in the goal is substantially better
than the performance of the linear or the two layer
model. The major differences are in the scaling of the
chromatic CSFs: note that deeper models over attenuate
the chromatic patterns. The RMSE measures confirm
the superiority of the shallower solutions. For instance,
note that the over attenuation of the red–green channel
in the CNNs implies that the greenish hue of the
background in the visual example of Figure 22 fades
away, while it does not in the linear solution (which has
obvious problems in other respects).

The linear solution cannot display a contrast
dependent behavior, but the two layer architecture
displays a consistent decay of the gain with contrast
that is in line with the saturating nature of contrast
response curves of humans for moving sinusoids
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Figure 11. Experiment 6: Spatiotemporal chromatic CSFs from biodistortion compensation. The first row shows the human CSFs in
( fx, ft ), and the following show the model CSFs. The RMSE numbers (average over channels) represent the distance between them. In
this experiment, α f = 1 in all cases.
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Figure 12. Experiment 6: Representative examples of nonlinear responses for spatiotemporal achromatic and chromatic gratings in
shallow (top) and deeper (bottom) networks for biodistortion compensation.

Comput. goal CSFs
εLMS RMSE

Distortion 5.2 ± 0.1
Linear Net 3.5 ± 0.2 38.2

CNNs Sigmoid Sigmoid
nonlinear nonlinear

2-Layers 2.07 ± 0.06 41.6
4-Layers 1.96 ± 0.07 45.5
6-Layers 1.83 ± 0.06 47.4
8-Layers 1.89 ± 0.07 47.5

Table 4. Experiment 6: Emergence of spatiotemporal chromatic
CSF in 3D CNNs for compensation of biodistortion. The
measures of the achievement of the goal εLMS and the distance
with human behavior (RMSE difference between model and
human CSF) have the same meaning as in the rest of
experiments. The degradation included in the movies was the
same as the considered for images (same pupil diameter and
Fano factor). However, the numerical εLMS deviations turned
out to be lower because the considered movies are darker and
hence smaller LMS values lead to substantially smaller Poisson
noise.

(Simoncelli & Heeger, 1998; Morgan et al., 2006).
Figure 12 shows illustrative examples of these response
curves: Although the two layer network (top row)
consistently displays saturating behavior, the deeper net
(bottom row) shows greater variability on the shape of
the response.

As in the image case, the deviations in the chromatic
CSFs in deep models do not come from not fulfilling the
goal or having poor convergence in the training. First,
all models (even the linear one) do reduce the error
of the original retinal degradation so they are solving
the computational problem. And second, the learning
curves in the Appendix C (Figure 22) show that all
models achieved a plateau in the training thus indicating
proper convergence. Moreover, the asymptotic values
achieved in the learning are consistent with the εLMS in
test shown in Table 4.

Discussion

Summary of results

In these experiments, we trained a range of CNN
autoencoders over natural scenes to solve different
low-level vision goals: the compensation of retinal
distortions, the compensation of changes in the
illumination, the compensation of information loss
after simple bottlenecks (or pure reconstruction after
bottlenecks), and combinations of these.

Following the analysis of linearized networks
presented in Gomez-Villa et al. (2020), it makes sense
to stimulate these nets with achromatic, red–green
and yellow–blue isoluminant sinusoids and moving
sinusoids. The attenuation suffered by these gratings
shows that:
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• Human-like CSFs may emerge in systems that
compensate retinal distortion: specifically, 2D
shallow autoencoders trained to compensate
retinal distortion display narrow low-pass behavior
in the chromatic channels and wider band-pass
behavior in the achromatic channel, so the shape
and relative bandwidth of these artificial CSFs
resemble those of humans (Figures 5, 7, and 8). Of
course the match is not complete: the best CSFs
obtained from the explored CNNs still deviate
from human CSFs (RMSE of approximately 11%
of the maximum sensitivity). Deeper autoencoders
for the same goal also show CSFs with these basic
shapes but the resemblance with human CSFs is
consistently lower (RMSE of approximately 15%
of the maximum sensitivity), particularly due to
poor scaling of the chromatic CSFs (Figures 5
and 7).

• Artificial CSFs obtained from the compensation
of retinal distortion differ from human CSFs in
two qualitative aspects: a) The decay of network
sensitivity found at low frequencies for achromatic
gratings is not as big as in humans, and b) The
relative amplitude of the red–green and the
yellow–blue CSFs in the networks is inverted
with regard to the humans. In our networks,
the yellow–blue CSF is always bigger than the
red–green CSF, and interestingly, this is pretty
consistent over different architectures and datasets
with different image statistics.

• Similar sensitivities consistently appear in shallow
autoencoders for a range of levels in retinal
distortions (Figure 8).

• Human-like CSFs with distinct bandwidths in
achromatic/chromatic channels do not appear in
pure chromatic adaptation tasks, but they do as
soon as the retinal distortion compensation goal is
considered (with or without chromatic adaptation).
The compensation of chromatic shifts together with
the compensation of biodistortion leads to systems
in which the chromatic CSFs change their global
gain similarly to a Von-Kries mechanism (Figure 9,
top).

• CSFs emerging from chromatic adaptation and
degradation compensation goals are similar for
natural images and cartoon images (Figure 9,
bottom).

• Pure reconstruction in architectures with a
restrictive bottleneck induces changes in the relative
bandwidths of the achromatic and chromatic CSFs
with regard to trivial all-pass filters found in systems
without bottleneck. However (in the explored
cases), these CSFs are remarkably non-human.
Interestingly, the very same architectures lead
to more human-like CSFs as soon as the retinal
distortion compensation goal is considered
(Figure 10).

• The 3D autoencoders for retinal degradation
compensation display a wide diamond-shaped
achromatic bandwidth and very narrow chromatic
bandwidths in the spatiotemporal Fourier domain,
in parallel with humans. And this similarity is larger
in the linear and shallow autoencoders (RMSE of
approximately 17% of the maximum sensitivity)
while it decays for deeper networks (RMSE of
approximately 22% of the maximum sensitivity),
again owing to poor scaling of the chromatic CSFs
(Figure 11).

• The gain in shallow autoencoders decays with
contrast and hence the contrast responses for
gratings saturate with contrast. This happens
both in the spatial and the spatiotemporal cases
(Figures 6 and 12). This resembles contrast masking
in humans. However, in deeper autoencoders this
consistent saturation (and hence similarity with
humans) is not found.

The emergence of human-like features in the CSFs
(distinct bandwidth and shape of achromatic and
chromatic channels) is related to the different properties
of achromatic and chromatic patterns in visual scenes.
The statistical unbalance towards achromatic patterns is
known from long ago in terms of variance (Ruderman
et al., 1998) and, more recently, it has been quantified
in accurate information theoretic units (Malo, 2020).
The eventual problems in preserving the saturation (or
poor scaling of chromatic CSFs) in deeper models,
do not come from training. Note that, according to
the learning curves, all the models achieved proper
convergence. On the contrary, the problems may come
from the small (statistical) relevance of chromatic
textures as opposed to the achromatic textures and the
inability of deeper models to deal with this unbalance
with a low-level εLMS goal: (too) flexible networks
optimized to compensate the distortions focus (too
much) on the spatial achromatic information to
optimize the goal and are likely to distort chromatic
information. The consequence is a negative impact
on the chromatic CSFs. This does not seem to be a
problem for more rigid shallower architectures and even
the linear solution.

At this low abstraction level, where the minimization
of distortion in LMS is simply connected with
information maximization, and in the set of
architectures considered, shallow networks seem more
appropriate to explain the CSFs.

Relation to other accounts of the CSFs

Our results revisit classical work on the statistical
grounds of the CSFs (Atick et al., 1992; Atick
& Redlich, 1992; Atick, 2011) in light of the new
possibilities provided by automatic differentiation.
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From the technical point of view, a number of
assumptions that had to be done in the 1990s, either
have been confirmed with the use of large data sets,
or are not necessary with the use of more flexible
models. In particular, regarding the signal, Atick
et al. assumed translation invariance, independence
between color and space-time, and second-order
relations (autocorrelation with 1/| f |2 decay). Moreover,
regarding the model, they restricted themselves to linear
solutions similar to Wiener filters. More recent studies
with colorimetrically calibrated scenes (Gutmann
et al., 2014) have confirmed the correctness of the
color/space independence assumption. However,
the focus on the power spectrum and the linear
solutions has proven to be too limited for denoising
(Gutiérrez et al., 2006). Adaptive (nonlinear) models
that take into account additional features of the signal
are required. Nevertheless, the nonlinear networks
considered here turn out to be roughly translation
invariant (Gomez-Villa et al., 2020), as expected from
their convolutional architectures and the stationary
nature of the problems they face. Another technical
difference is in the formulation of the statistical goal:
Atick et al. maximized the mutual information between
the clean signal and the response I (xc, y); while here
we minimized εLMS between the clean signal and the
response, |X c −Y |2. These goals are exactly equivalent
when the difference between clean signal and the
response is Gaussian, which is not the case in general.
However, note that these goals are always related
because the limit |X c −Y |2 → 0 implies I (xc, y) → ∞.
Beyond the spatiochromatic case, in our work we check
the emergence of the CSFs with spatiotemporal signals,
which was mentioned but not addressed by Atick et al.
Finally, the consideration of nonlinear models allows
us to show that the error-minimization goal may also
lead to saturation of the contrast responses that, of
course, was not possible in the linear framework of
Atick et al.

As stated in the Introduction, other group has been
working independently on the emergence of CSFs in
artificial neural networks (Akbarinia et al., 2021). Their
results are restricted to the spatial CSF (no chromatic
nor spatiotemporal cases) and are based on networks
trained for higher level goals, such as classification.
Therefore, their results from higher level goals are
complementary to ours, obtained from lower-level
goals intended for the analysis of early visual stages
such as the LGN. More generally, higher level goals
such as classification performance may be an indirect
way to impose preservation of colorfulness or a proper
scaling of the chromatic CSFs. Although chromatic
information may have small relevance to minimize
εLMS in reconstruction, it may be more crucial for
recognition.

Other works have obtained center surround sensors
by optimizing a linear+nonlinear network with a

low-level infomax+energy goal (Karklin & Simoncelli,
2011), or deeper nets with higher level classification
goals (Lindsey et al., 2019). These sensors could induce
CSF-like bandwidths in the corresponding models but
this aspect was not addressed in these works.

Individual non-Euclidean distances from the
optimization of average Euclidean distance

An interesting consequence of our low-level result is
that the Euclidean measure, εLMS, averaged over the
set of natural images leads to systems that measure
individual differences in non-Euclidean ways. Note that
in the systems that we trained given two input signals x
and x + �x, the difference between the corresponding
responses is �y ≈ M · �x. As a network should assess
the difference between the two signals from �y, the
perceived difference for the system will depend on M.
Specifically (Epifanio et al., 2003; Laparra et al., 2010),
the perceived distance for the system will depend on the
metric, M
 · M, and hence it will depend on λ2 (the
eigenspectrum of M) or, as seen here, on the CSF2. This
metric is non-Euclidean: for instance, high-frequency
distortions will be less relevant for the network than
medium or low-frequency distortions. Even though
here we did not check the correlation between the image
distortions perceived by humans and networks, the
observed CSFs in the networks are consistent with the
fact that the Euclidean distance between images at the
retina is not a good representation of human distortion
metrics (Wang & Bovik, 2009; Laparra et al., 2010;
Hepburn et al., 2020).

The emergence of a non-Euclidean distance from
the minimization of the average Euclidean distance
over natural images is a counterintuitive consequence
of the highly nonuniform distribution of natural
scenes: distortions in less populated regions of the
image space (e.g., in high-frequency directions or in
chromatic channels) have to be under-rated to favor
the average match to the data in highly populated or
more informative regions (low-frequency, achromatic
patterns).

Recent work on autoencoders with low-level
rate-distortion constraints on natural images has shown
the emergence of non-Euclidean distances correlated
with human opinion of distortion (Hepburn et al.,
2022). Human opinion of distortion is known to be
strongly mediated by the CSFs, but the bandwidth of
this autoencoder and its eventual similarity with the
CSF was not explored in that work.

Alternative low-level computational goals

Here we considered different low-level alternatives to
the retinal signal enhancement goal proposed by Atick
et al.: although our results are conclusive regarding the
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role of chromatic adaptation, more research is definitely
required about the relative relevance of bottlenecks in
shaping the CSFs.

On the one hand, given the small role of spatial
information in the changes of the LMS image purely
owing to changes in illumination, it is not surprising
that systems designed for pure chromatic adaptation
have wide (all-pass) behavior in all channels (i.e., no
spatial effect). As a consequence (as confirmed by
our results), pure chromatic adaptation does not lead
to CSFs with a human-like shape. This shape and
relative bandwidths have to be related to other goals
(e.g., the compensation of biodistortion). However,
training for chromatic adaptation does introduce
an important human-like behavior (which may not
emerge from other tasks): it leads to adaptive global
scaling of the red–green or yellow–blue CSFs. This
effect is consistent with the observations done on
spatiochromatic adaptation under changes in spectral
illumination (Gutmann et al., 2014): the spatial
structure of the receptive fields remains almost constant
but their chromatic tuning basically changes according
to Von-Kries adaptation.

On the other hand, as opposed to chromatic shifts,
the spatial effect of bottlenecks is relevant. However,
we only explored a small range of architectural
bottlenecks: the toy examples of Figure 4-right. In this
restricted set our results suggest that the compensation
of the biodegradation at the retina plays a stronger
role in the emergence of human-like CSFs than the
consideration of the bottlenecks. However, bottlenecks
in architectures C, D, and U-Net favor the emergence
of nontrivial frequency selectivity. This would be
consistent with Lindsey et al. (2019), who reported
positive effects of bottlenecks in the emergence of
center surround receptive fields. Nevertheless, the
specific configuration of the bottleneck that maximizes
the human nature of the CSFs and the relative role
of bottlenecks in the compensation of the retinal
distortion are interesting matters for further research.

More generally, other low-level goals could be
considered together with the distortion, as for
instance the information or the energy of the signal.
Architectural bottlenecks considered here or in Lindsey
et al. (2019) indirectly constrain the energy and the
entropy of the signal by reducing the dimensionality of
the signal. However, one could consider more general
factors beyond the dimensionality as for instance the
neural noise, the PDFs of signal and noise and the
redundancy of the visual signals in the representation.
In fact, transmitted information may be modulated
by changes of the representation and by the amount
of noise even without changes in the dimensionality
(Malo, 2020).

In a separate study (Hepburn et al., 2022) we have
shown that rate-distortion bottlenecks in autoencoders
induce distance measures which are correlated with

subjective opinion of distortion. The autoencoders
we presented here do not include constraints on
information, but the emergence of a non-Euclidean
metric depending on M (and hence on the CSFs)
suggests that the distance will be correlated with human
opinion in line with Hepburn et al. (2022).

Alternative low-level goals could include non-human
retinal degradation. Other species have different optical
quality and noise in their retinas may be substantially
different. This may affect the kind of computations
required to extract the appropriate information from
this degraded input, and hence their corresponding
CSFs.

All these issues, the specific impact of more
sophisticated bottlenecks in the CSFs, which was not
analyzed here or in Karklin and Simoncelli (2011),
Lindsey et al. (2019), or Hepburn et al. (2022), the
emergence of human-like image distortion measures
from the enhancement of retinal signals, and the
consideration of retinal degradation for other species, is
a matter for future research.

Goal and architecture are not independent

More important than the technical generalizations
over Atick et al. (1992), Atick and Redlich (1992), and
Atick (2011), is that the current freedom to explore
different linear and nonlinear architectures stresses
the relevance of the architectural constraints. The
conventional interpretation of the efficient coding
hypothesis (Barlow et al., 1961) is the following:
obtaining human-like results from certain statistical
goal seems to suggest that the human visual system
has been shaped by this goal. However, it is important
to realize that the results have been obtained via the
optimization of certain model. In the case of Atick
et al., it was a single model (the linear filter), but in our
case here we tried a range of models (architectures).
Because the results for the different architectures is
markedly different, the conclusion can not be about
the goal, but about specific combinations of goal and
architecture. Our results are a specific illustration of the
fact that the computational and the algorithmic levels of
analysis of visual processing systems (Marr & Poggio,
1976; Marr, 1982) are not independent (Poggio, 2021).
This dependence prevents about premature conclusions
about the organization principles at the computational
level if sensible architectures are not adopted.

Beyond accuracy

Human-like CSFs are obtained for shallow
autoencoders (two layers), or even linear networks,
despite deeper architectures achieving similar
or better performance in the goal. The previous
literature has warned about the limitations of a single
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accuracy/performance measure to identify human-like
behavior. Achieving similar performance on a task
does not guarantee that two models actually use the
same strategy (Firestone, 2020). For instance, different
strategies may become evident if performance degrades
in different ways when changing the experimental
setting (Wichmann et al., 2017; Geirhos et al., 2019).
Therefore, additional checks different from the
optimization goal have to be done in order to confirm
the human-like behavior of a model. Examples include
verifying additional psychophysics not included in
the goal (Martinez et al., 2019), or disaggregating the
results checking the consistency between model and
humans in individual trials, not on averages over the
data set (Geirhos et al., 2020).

In this complexity/accuracy discussion, it is
important to stress that our results (shallower networks
better reproduce the scale of human chromatic CSFs)
is in line with the results of Gomez-Villa et al. (2020)
and Flachot et al. (2020), which also show that
shallower networks obtain more human-like colour
representation. In a similar vein, although using higher
level classification goals, Kubilius et al. (2019) show that
lower performance networks may correlate better with
human brain activity or psychophysics.

Final remarks

In visual neuroscience, deep models are emerging as
the new standard to reproduce the activity of visual
areas under natural scene stimulation. On the one hand,
conventional deep models driven by object recognition
goals reproduce the response from V1 (Güçlü and van
Gerven, 2015; Kriegeskorte, 2015), dorsal and ventral
streams (Cichy et al., 2016), and IT (Cadieu et al.,
2014; Yamins et al., 2014). On the other hand, deep
networks are powerful enough to fit the mappings
between stimuli and measured responses (Prenger et al.,
2004; Antolík et al., 2016; Batty et al., 2017). These
two approaches (goal-driven and measurement-driven
deep models) have been thoroughly compared in V1
and were found to be superior to linear filter-banks and
simple linear–nonlinear models (Cadena et al., 2019).
However, more recently, the same team has shown
that linear–nonlinear models with general divisive
normalization make a significant step towards the
performance of state-of-the-art CNNwith interpretable
parameters (Burg et al., 2021).

In our low-level goal-driven case, the emergence
of human-like CSFs for certain CNN autoencoders
generalizes in different ways previous statistical
explanations of the CSF based on linear models (Atick
& Redlich, 1992; Atick et al., 1992; Atick, 2011), and
is consistent with optimizations of nonlinear encoders
using alternative low-level (Karklin & Simoncelli, 2011;
Hepburn et al., 2022) or higher level (Lindsey et al.,
2019; Akbarinia et al., 2021) goals. However, we find a

strong dependence of the CSFs on the architecture with
better results for shallower autoencoders (although they
have similar or lower performance in the goal).

This is not in contradiction with the literature cited
elsewhere in this article showing that deep networks
with object recognition goals match very well higher
visual areas. Note that the scope of our low-level goal
is restricted to early visual stages (e.g., the retina–LGN
path), and hence simpler architectures may be required
there.

Beyond this difference in abstraction level, our
results do illustrate the relevance of using appropriate
architectures when checking a statistical goal. Following
the move from conventional CNNs in Cadena et al.
(2019) to more realistic divisive normalization models
in Burg et al. (2021), we think that future goal-driven
derivations of low-level visual psychophysics (e.g.,
pattern masking or perceptual distortion) should
include more realistic architectures too, as opposed
to conventional CNNs (although they may be flexible
enough to fulfill the goal). Examples include divisive
normalization with parametric interaction between
features (Martinez et al., 2018, 2019) and generalizations
of Wilson–Cowan interactions (Bertalmío et al., 2020).
Learning frameworks with rate-distortion bottlenecks
are already available (Ballé et al., 2017; Hepburn
et al., 2022), and we advocate for the study of their
artificial psychophysics using realistic and interpretable
architectures.

Keywords: spatiotemporal and chromatic contrast
sensitivity, convolutional autoencoders, modulation
transfer function, noisy cones, deblurring and denoising,
chromatic adaptation, natural images, statistical goals,
architectures
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Footnotes
1For example, neurons in conventional CNNs have fixed nonlinearities, as
opposed to the known adaptive nature of real neurons (Wilson & Cowan,
1973; Carandini & Heeger, 2012).
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2For optical blur where the linear operator H can be obtained
from the MTF (Watson, 2013), and the retinal noise is Poisson,
nr = F · D

(|H ·x| 12 ) · n, where Dv is a diagonal matrix with vector
v in the diagonal, F is the Fano factor, and n is drawn from a
unit-variance Gaussian (Esteve et al., 2020); the Jacobian in Equation 9, is
∇xSθ (0) = ∇xNθ (0) · (I − F

2 · D
(n�|H ·0| 12 ) ) · H , where the Jacobian of the

network, ∇xNθ (0), can be obtained analytically (Martinez et al., 2018).
3We prepared the samples that way before actually knowing how well the
networks are able to cope with this distortion.
4In our computer cluster typical training of the 2D models takes
approximately 10 to 20 hours.
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Appendix A: Implementation
details

As stated in the main text, all the models follow the
the basic toy networks studied in Gomez-Villa et al.
(2019, 2020): autoencoders with convolutional layers
made of eight feature maps with kernels of spatial size
5 × 5 and sigmoids or ReLUs as activation functions.
As illustrated in Figure 4, the last reconstruction
layer, has three features in every case (the three color
channels) so that the input and output domains are
the same. Following our purpose of using biologically
plausible image representations the input to the
networks and the output signals are expressed in the
LMS color space (as opposed to generic RGB digital
counts used in the cited references).

The spatiotemporal models follow the same spirit,
in this case also including convolution in the temporal
dimension: autoencoders with 3D convolutional
layers made of eight feature maps with kernels of size
5 × 5 × 5 and sigmoid activation functions (we did not
explore ReLU in videos because in images we found no
qualitative difference between the ReLU and sigmoid
results). As in the image case, the last (reconstruction)
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layer for every architecture (two, four, six and
eight layers) only has three feature maps (the LMS
channels).

Implementation and training is done in the same way
as in Gomez-Villa et al. (2019, 2020): mean squared
error is used as loss function in all cases and all the
models are implemented using Tensorflow (Abadi et al.,
2016). We train our models using ADAM stochastic
gradient descent (Kingma & Ba, 2017) with a batch
size of 32 examples, momentum of 0.9, and a weight
decay of 0.001. In principle, a standard early stopping
criterion for convergence was used based on the number
of iterations with no improvement in the validation
set. However, to ensure appropriate convergence, we
visualized the learning curves and we let the iteration
continue until train and validation error reached a
common plateau. All the learning curves are explicitly
shown in the Appendix C, these show that all the CSF
considered in the main text come from models with the
proper convergence.

Appendix B: Training stimuli and
stimuli for CSF estimation

The natural stimuli to train the networks are regular
photographic images from the same dataset used in
Gomez-Villa et al. (2019, 2020): the Large Scale Visual
Recognition Challenge, 2014 CLS-LOC validation
dataset (which contains 50 ·103 images), leaving 10 ·103
images for validation purposes. This dataset is a subset
of the whole ImageNet dataset (Russakovsky et al.,
2015). The experiments with cartoon images were done
using 25 · 103 frames taken from The Pink Panther

Show (Freleng, 1963) reproduced with permission of
the MGM. In every case we take 128 × 128 images and
assume a sampling frequency f s = 70 cpd, that is, we
assume that the images subtend 3.6°.

The spatiotemporal models are trained over 25 · 103
patches of size 32 × 32 × 25 from classical Hollywood
films which are in public domain: the color movies
Charade (Donen, 1963) and The FBI story (LeRoy,
1959), and the achromatic movie The Stranger (Welles,
1946). In all the video cases we assume a spatial
sampling of 30 cpd and temporal sampling of 25 Hz,
that is, we assume the patches subtend 1.06° and last
for 1 second. These somewhat arbitrary selections of
the sampling frequencies (or extent of the stimuli) have
mild consequences on the quantitative evaluation of the
CSFs as discussed elsewhere in this appendix.

The transform from digital counts to LMS
tristimulus values was done assuming the primaries and
gamma curves of a standard CRT display (Malo &
Luque, 2002).

Regarding the stimuli for the estimation of the CSFs
according to Equation 3, our b f are gratings in the
classical opponent space of Hurvich and Jameson
(1957). Figure 13 shows a representative subset of the
gratings used to feed the networks for the estimation
of the spatiochromatic CSFs. The justification of the
use of these waves to probe the autoencoders follows
the eigenanalysis of the linearized networks introduced
in Gomez-Villa et al. (2020): the eigenfunctions of the
matrices in Equation 8 were shown to be oscillating
functions in space with chromatic variations in
luminance and opponent red–green and yellow–blue
directions. Consistently with Gomez-Villa et al. (2020)
the corresponding spatiotemporal oscillations of
increasing frequency for decreasing eigenvalue are

Figure 13. Representative spatiochromatic stimuli to feed the 2D networks. The 3D networks were probed with equivalent gratings
mooving at different speeds (see text).
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obtained when the considered Jacobian corresponds to
spatiotemporal autoencoders.

The full spatiochromatic set included gratings of 60
spatial frequencies linearly spaced in the range [0.5, 35]
cpd (the Nyquist region assuming fs = 70 cpd), and
nine contrasts linearly spaced in the range (0.07, 0.6).
The average color was the white of the color system
with 30 cd/m2. The stimuli for the computation of
the spatiotemporal CSFs were moving sinusoids with
16 spatial frequencies in the range of 0 to 15 cpd, 10
temporal frequencies in the range or 0 to 10 Hz, and
9 contrasts in the range of 0.07 to 0.6. The average
color and luminance were the same as in the image
case.

The lower limit of the explored contrast range
comes from the limitation owing to noise discussed
in Methods: Estimating contrast sensitivity in
autoencoders. The upper contrast limit and the average
luminance were selected to ensure that corrupted signals
are reproducible in regular displays (which is the range
of the scenes used in the training).

Appendix C: Convergence and
Performance of the models

To guarantee that the presented CSF results
do not come from eventual training artifacts, this
appendix illustrates the proper convergence and proper
performance of all the considered CNNs in all the
goal/architecture scenarios. For each considered case
in the Experiments, we show the learning curves and
explicit examples of the responses (reconstructed
signals in test). Finally, as an illustrative example, we
also show one extra case (for video, experiment 6) where
convergence was not complete in one of the networks
and the consequences in the reconstructions and in the
CSFs.

Experiment 1: Distortion compensation from a
range of CNN architectures

Figure 14 shows the learning curves of all the CNN
models used in experiment 1. Throughout the Appendix
the gray/black curves refer to the εLMS distortion of the
retinal signal in the LMS color space of Stockman and
Sharpe (2000), which is constant along the learning.
The cyan–blue curves show the evolution of the error
in the response of the networks. The light color curve
describes the error over image batches in the training
phase while the dark color describes the same error in
the validation set. The error of the response (solution)
significantly drops below the error of the input signal
(problem), thus indicating that the network is actually

achieving the functional goal it has been designed for.
The plateau achieved by the blue curves (not only in
training but, more significantly in validation) implies
that a steady convergence was achieved and the resulting
model is ready to be tested. Consistency between the
train and validation sets is apparent from the parallel
behavior of the light and dark curves. Performance
tables in the main text (Table 1 for experiment 1)
and performance in the visual examples shown here
(Figure 14 for experiment 1) refer to an independent
test set not used in the learning (training/validation)
phase. In all CNNs used in experiment 1, the training
has been done in a representative set because the errors
in the independent test phase (Table 1 and Figure 14)
are consistent with the asymptotic behavior of the
learning curves shown in Figure 14. Figure 15 shows
visual examples of the performance of the linearized
versions of the nonlinear models in experiment 1. It
is interesting to note that the optimal linear solution
(computed from the train set) has worse behavior than
the linearized versions of the networks (as also seen
in Table 1).

Experiment 2: Architecture trained on a range
of distortion levels

Figure 16 shows the learning curves of the model
trained in experiment 2 (two layer ReLU) for different
levels of retinal degradation (noise/blur). Note that the
specific cases where the iteration was stopped owing
to the activation of the early stopping criterion (top
left and bottom center), the convergence plateau was
already reached. Figure 17 shows examples of the
performance in test of the model considered in every
training scenario considered in experiment 2.

Experiment 3: Chromatic adaptation versus
distortion compensation

Figure 18 (top) demonstrates that the model
trained for the five computational goals considered in
experiment 3 actually achieves the goals and has proper
convergence. Figure 18 (bottom) shows visual examples
of the performance.

Experiment 4: Robustness under change of
signal statistics

Figure 19 (top) demonstrates that the model
trained for the five computational goals considered in
experiment 4 actually achieves the goals and has proper
convergence. Figure 19 (bottom) shows visual examples
of the performance.
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Figure 14. Experiment 1: Convergence and trained models. Learning curves (training/validation) and examples of visual performance
(test) of all the models trained in experiment 1. The distortion εLMS-Problem refers to the original degradation of the images (previous
to the application of the net). This distortion describes how difficult the compensation problem is. The distortion εLMS-solution refers
to the degradation remaining in the signal after the application of the net. It describes how close the output is to the ideal result.
Performance numbers have been truncated to the significance of the standard deviation in the test set.
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Figure 15. Experiment 1: linearized models. Examples of visual
performance (in test) for the linearized CNNs of experiment 1.

Experiment 5: CSFs from bottleneck
compensation and biodistortion compensation

Figure 20 demonstrates that the models trained
for the goals considered in experiment 5 have proper
convergence and actually achieve the goals within the
constraints imposed by the bottlenecks of progressive
severity. Figure 21 shows visual examples of the
performance.

The reconstruction error εLMS behaves quite
intuitively (see Figure 20 here and Table 3 in the
main text): On the one hand, in the cases that involve
biodistortion all the architectures do reduce the original
value of εLMS except the architecture G, which has a
single feature in its bottleneck. On the other hand,
the pure reconstructions cases introduce negligible
distortion εLMS when the inner representation does not
restrict spatial resolution nor number of features (the
no-bottleneck cases A and B). And, as expected, more
severe bottlenecks imply higher εLMS.

Experiment 6: Spatiotemporal temporal CSFs

The main text includes the CSF results from a range
of models trained in Charade (1963). Figure 22 shows
the regular evidences on convergence (top) and visual
performance in test (bottom) shown for the other
Experiments.

In this Appendix, we also include a replication
of experiment 6 trained on a movie with higher
spatial resolution (The FBI Story, 1959). We give
the corresponding learning curves (Figure 23) and
CSFs (Figure 24). This is interesting for two reasons:
1) it confirms the superiority of shallower nets even
for different resolution, and 2) it shows an example
of failure in convergence (see that the eight layer
model in Figure 23 got stuck in a local minimum
(with poor performance) and this has consequences
in the complete loss of chromatic information
(frame not shown because of copyright issues). Also
interesting is the fact that models with four or six
layers (which converged as well as the two layer model),
substantially over attenuate the red–green channel
with the corresponding yellowish–bluish look of the
reconstruction and the corresponding impact on the
relative scaling of channels in the CSFs, which is not
the case for the linear and the 2-layer solutions. This
is consistent in the other image/video examples in the
main text.
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Figure 16. Experiment 2: Convergence and performance. Learning curves (training/validation) and numerical performance (in test and
in the reproduction of the CSFs) of the CNN model trained in all conditions considered in experiment 2.
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Figure 17. Experiment 2: Visual performance. Examples of reconstruction (in test) for the CNN in all the degradation scenarios
considered in experiment 2.
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Figure 18. Experiment 3: Convergence and visual performance: Top, learning curves (train/validation) for the considered architecture
in the different goals. Bottom: Visual example (test) for the CNNs in experiment 3 (natural images).
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Figure 19. Experiment 4: Convergence and visual performance: Top, learning curves (train/validation) for the considered architecture
in the different goals. Bottom: Visual example (test) for the CNNs in experiment 4 (cartoon images). Original image from The Pink
Panther Show (Freleng, 1963) courtesy of MGM. Similar images (Malo, 2022) lead to equivalent performance in the networks.
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Figure 20. Experiment 5: Bottleneck compensation and biodistortion compensation. Learning curves (train/validation) for the
considered architectures in reconstruction with compensation of biodistortion (top row and bottom row, left) and pure
reconstruction (middle row and bottom row, right). The cases including biodistortion show the original εLMS of the problem. See
Figure 4 for the structure of the architectures referred by the letters in blue.
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Figure 21. Experiment 5: Bottleneck compensation and biodistortion compensation. Examples of visual performance (in test) for the
CNNs of experiment 5. See Figure 4 for the structure of the architectures referred by the letters in blue.
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Figure 22. Experiment 6 (spatiotemporal chromatic CSFs in main text): Convergence and visual performance. Top, learning curves for
the considered architectures. Visual example (test) for the linear solution and the CNNs (Charade, low-resolution movie). The original
frame comes from the film Charade (Donen, 1963), which is in the public domain.
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Figure 23. Extended experiment 6: Spatiotemporal chromatic
CSFs with different training set (not shown in the main text):
Convergence. Figure shows the learning curves for the
considered architectures on a higher resolution movie (the film

→

←
The FBI story; LeRoy, 1959). All models converge except the
8-layer architecture. Visual results are not shown due to
copyright issues. Interested readers can obtain these specific
results from the authors. The local minimum in which the eight
layer architecture was trapped has consequences in the
complete loss of chromatic information (frame not shown
because of copyright issues). Also interesting is the fact that
models with four and six layers (which converged as well as the
two layer model), substantially over attenuate the red–green
channel with the corresponding yellowish–bluish look of the
reconstruction and the corresponding impact on the relative
scaling of channels in the CSFs, which is not the case for the
linear and the two layer solutions.
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Figure 24. Extended experiment 6 (spatiotemporal chromatic CSFs of a high-resolution movie not shown in the main text). Note that
in this case (see Figure 23) all models converged except the eight layer architecture, which totally removes the yellow–blue channel
and almost removed the red–green channel.
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