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Abstract

Deep learning is the state of the art for several machine learning tasks. Many of
these tasks require large amount of computational resources, which limits their
adoption in embedded devices. The main goal of this dissertation is to study
methods and algorithms that allow to approach problems using deep learning
with restricted computational resources. This work also aims at presenting
applications of deep learning in industry.

The first contribution is a new activation function for deep learning networks:
the modulus function. The experiments show that the proposed activation
function achieves superior results in computer vision tasks when compared with
the alternatives found in the literature.

The second contribution is a new strategy to combine pre-trained models
using knowledge distillation. The results of this chapter show that it is possible
to significantly increase the accuracy of the smallest pre-trained models, allowing
high performance at a lower computational cost.

The following contribution in this thesis tackles the problem of sales fore-
casting in the field of logistics. Two end-to-end systems with two different deep
learning techniques (sequence-to-sequence models and transformers) are pro-
posed. The results of this chapter conclude that it is possible to build end-to-end
systems to predict the sales of multiple individual products, at multiple points
of sale and different times with a single machine learning model. The proposed
model outperforms the alternatives found in the literature.

Finally, the last two contributions belong to the speech technology field. The
former, studies how to build a Keyword Spotting speech recognition system
using an efficient version of a convolutional neural network. In this study, the
proposed system is able to beat the performance of all the benchmarks found in
the literature when tested against the most complex subtasks.

The latter study proposes a standalone state-of-the-art text-to-speech model
capable of synthesizing intelligible voice in thousands of voice profiles, while
generating speech with meaningful and expressive prosody variations. The
proposed approach removes the dependency of previous models on an additional
voice system, which makes the proposed system more efficient at training and
inference time, and enables offline and on-device operations.
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Notation

This section summarizes the notation conventions followed in this dissertation.
As a general note, bold lowercase symbols (e.g. x) have been used to denote
vectors, while bold uppercase (e.g. X) symbols represent matrices. Non bold
symbols (e.g. x) have been used to represent scalars. This convention will be
followed throughout the dissertation unless otherwise specified.

Data

X a matrix with shape N×D containing N input row vectors, represented
as {x1, ...,xi, ...,xN}, where each vector xi ∈ RD.

xi a vector of length D where each element represents a particular feature
(e.g. age, weight, or IQ of a person).

Y a matrix with shape N ×K containing desired output vectors rows
{y1, ...,yi, ...,yK}, where each output vector yi ∈ RK .

yi a vector of length K where each element is one of the scalar desired
outputs (e.g. the probability of an image containing a dog).

T a dataset of examples with inputs and desired outputs for supervised
learning tasks, composed of a set of pairs of vectors from X and
Y, grouped as follows: {(x1,y1), ..., (xi,yi), ..., (xN,yN)}, where each
tuple represents a training example.

U a dataset of examples for unsupervised learning tasks, composed of a
set of input vectors from X, disposed as follows: {x1, ...,xi, ...,xN},
where each element xi ∈ RD represents a training example.

N number of examples in a dataset.

D number of features in a dataset or in a feature vector.

K dimensionality of a desired output variable (multivariate) of a dataset.

T length of a time series (x(1), ...,x(t), ...,x(T )), where x(t) ∈ RD and the
super-index refers to the time step the observation belongs to.

C set of possible labels associated with the examples of a dataset, where
||C|| is used to represent the cardinality of that set.



xvi

Neural networks and machine learning

ŷ predicted response variable, generally the output of a machine learning
model.

z vector representing a variable in a latent space.

b bias term of a neuron.

θ, φ vector containing all the parameters of a neural network model.

fθ(·) neural network model with parameters θ.

J(·, ·) cost function, i.e. function quantifying the error intended to be mini-
mized, often using gradient descent.

W,U weight matrices of a neural network layer whose scalar components are
denoted by wij (uij).

g(·) activation function.

G(·) multilayer perceptron.

S feature map in a convolutional neural network, result of performing a
cross-correlation operation on an input X with a kernel W.

t index that refers to time or sequence steps. Generally used for referring
to an optimization step or to a time series element.

λ learning rate.

m mini-batch size.

L number of layers of a deep learning model.

h output of a hidden layer.

a the attention vector.

Q,K,V the query, key and value matrices in the attention mechanism context,
respectively.

dk the length of a sequence in the attention mechanism context.

Nx the number of blocks in a transformer.

fe, fd encoder and decoder networks of an auto-encoder, respectively.

pθ, qφ encoder and decoder networks of a variational auto-encoder, respec-
tively, with parameter sets θ and φ.

L variational lower bound.

fg, fd generator and discriminator in the context of generative adversarial
networks.

T temperature parameter of a softmax operation.
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Others

DKL Kullback-Leibler (KL) divergence between two distributions.

p(·) probability distribution.

H(·) Heaviside function.

σ(·) sigmoid function.

τ(·) hyperbolic tangent function (tanh(·)).

sgn(·) Sign function.

� Hadamard product (also known as element-wise multiplication).

◦ composition operation.

∇θf gradient of the function f with respect to parameters θ.

T transposition operation.





Chapter 1

Introduction

1.1 Overview

1.1.1 Early artificial intelligence references
Humans are curious by nature. We have the desire to understand everything
around us, from the smallest particle to the vastness of the universe. Our quest
for knowledge is what has allowed us to progress as a species and keep evolving.
In this journey, we have always looked up at the stars, dreaming of discovering
other intelligent beings like us. In this search, we have also looked inward, trying
to understand our thoughts, emotions, and the source of our intelligence and
consciousness.

Since ancient times, the human being has dreamed of artificial intelligence
(AI). One of the first existing records dates back to Aristotle (384–322 BCE) in
his book The Politics, where the author imagined machines that would think
by themselves and act autonomously, with the purpose of allowing humans
enjoy leisure (Nilsson, 2009). In 10-70 CE, the mathematician and engineer
Hero of Alexandria designed several ancient automata (Greenwood & Woodcroft,
1851), among which stands out an automated theater that would play short
performances in front of the audience.

In the 9th century, the three Persian brothers known as Banū Mūsā wrote
the book of ingenious devices (Ibn Shākir, 1979). In their book, they illustrated
hundreds of automata along with other mechanical devices (timing and delay
devices, automated valves, etc.) and described how those would be used.

The philosopher, scientist and bishop Albert Magnus, in the middle ages
(13th century), manufactured several automata. One of the most notorious ones
was an artificial talking head able to imitate human voice and breath (Lacey,
1828).

Later on, in the renaissance (15th century), the polymath Leonardo da Vinci
sketched various automata (Nilsson, 2009). His mechanical knight is one of
the first anthropomorphic automata we have record of. This automaton was
designed to perform basic human-like motions through a system of pulleys and
cables. More recently, these sketches have been studied and the mechanical
knight has been built faithfully following the original design (Rosheim, 2006),
finding that the automaton was fully functional.

During the 18th century, automata reached a new level of sophistication, the
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modern history becoming the golden era of automata. One of the most prolific
creators was the watchmaker Pierre Jaquet-Droz (18th century), who built a
number of automata, including a three-year-old child that could write any letter
of the alphabet (Carrera et al., 1979).

Years later, other illustrious automata builders of the era were Wolfgang von
Kempelen (1734-1804), who built the Turk, an automaton that could beat any
human at chess1 (Jay, 2000), and Jacques de Vaucanson (1709-1782), who built
a number of automata, including a duck that could eat and drink (Murthy, 2022;
Nilsson, 2009). Despite the complexity and ingenuity gained over the years,
these automata were all purely mechanical and human operated, without any
form of artificial intelligence.

Fiction stories have often been used as a way to explore the idea of artificial
intelligence, and the earliest references in literature date back to the middle ages.
In The City of Brass, one of the tales included into the One Thousand and One
Nights (around the 10th century), the main character, a thief, comes across a
city ruled by a wizard who created a brass humanoid automaton that could talk
and move like a human. In the 19th century, E.T.A. Hoffmann (1776-1822)
wrote a story entitled The Sandman (Hoffmann, 1816), where the protagonist
falls in love with an automaton created by a professor, without realizing that
she was actually a machine. He suffered a mental breakdown after finding out.
This automaton, known as Olympia, was able to move, talk and sing. In one
of the most famous science fiction novels of all times, Frankenstein, written by
Mary Shelley in 1818 (Shelley, 1994), the scientist Victor Frankenstein creates
a human-like creature out of body parts of different people. Although, strictly
speaking, Frankenstein’s creature is not a machine, it is often seen as one of the
first examples of intelligent creations in literature.

A century later, the Czech writer, playwright and critic Karel Čapek (1920),
wrote a play named R.U.R. (Rossum’s Universal Robots), which is considered to
be the first recorded use of the term robot2 (Nilsson, 2009). In that play, robots
were manufactured as slaves to do the manual labour that humans disliked. This
is often seen as the beginning of the modern science fiction genre.

In 1941, the science fiction writer Isaac Asimov published a short story called
Runaround (Nilsson, 2009), in which he introduced the three laws of robotics
(depicted below), which are still considered the basis for the ethical design of
robots.

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given to it by human beings, except where
such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Law.

The above examples are only a few of the many references to artificial
intelligence that have been made over the years (Nilsson, 2009). Even though

1Although after his death, it was discovered that it was actually nothing more than a
machine operated by a person from inside a wooden cabinet.

2The word robot is derived from the Czech word robota, which means forced labour or
slaves.



Introduction 3

none of these automata were truly intelligent, they represent the beginning of
the long and arduous process of building machine intelligence.

The yearning for artificial intelligence has come and gone in waves over the
years, but it has never lost its appeal to human imagination. Each time a new
wave of artificial intelligence hits, it brings with it renewed enthusiasm for the
possibility that machines can think and act by themselves.

Recently, artificial intelligence has begun to show significant promise for
actually becoming a reality. The history of artificial intelligence is a long one,
and its future is still to be written.

1.1.2 Modern artificial intelligence

The dream of AI started to become a reality in the 20th century, with the deve-
lopment of the first computers. In the 1950s, the idea of artificial intelligence was
rediscovered by Alan Mathison Turing (1912 - 1954), today known as the father
of computer science. He secretly defeated the German intelligence’s cryptography
system (Enigma machines; Hodges, 2000) and provided a proof showing that it
was not possible to find a general solution for the Hilbert’s Entscheidungsproblem
(an important symbolic logic challenge; Turing, 1936). Later, he published the
famous article entitled Computing Machinery and Intelligence (Turing, 1950)
in which he described a game as a test for machine intelligence. The currently
known as Turing test consists of an interrogation between a human and an entity
(that can either be another human or a machine). The human interrogator’s
objective is to try to determine, by asking a series of questions, whether the
entity it is talking to is a human or a machine. If the interrogator cannot tell
the difference (70% of the times after multiple 5 minutes conversations), then
the machine is said to have passed the test, and hence it can be considered
intelligent.

The “artificial intelligence” term was not coined until 1956 when John Mc-
Carthy (1927 - 2011) Nathaniel Rochester (1919 - 2001) and Claude Shannon
(1916 – 2001) gave a conference at Dartmouth College proposing a 2 month
workshop, called the Dartmouth Summer Research Project on Artificial Intel-
ligence. This workshop was organized to fund the artificial intelligence as an
academic discipline (see the picture in figure 1.1) and the project was fundraised
by the United States Office of Naval Research. This historical event brought
together some of the most prominent computer scientists of the time, including
Marvin Minsky (1927–2016), Arthur L. Samuel (1916–1990), Ray Solomonoff
(1926-2009) and John Nash (1928-2015), between others3.

The recent development of artificial intelligence has not been a linear process
and, during its evolution, there have been ups and downs along the way, with
several so-called AI winters. The first AI winter took place between the late
1970s and early 1980s, when research on artificial intelligence came to a standstill.
Later, Sir James Lighthill, a well-known British scientist, published a report,
today known as the Lighthill report, concluding that artificial intelligence was
a waste of time and money (Lighthill, 1973). This publication, together with
the oversized expectations for artificial intelligence at the time (Russell, 2003),

3John McCarthy, Claude Shannon, Trenchard More, Nathaniel Rochester, Oliver Selfridge,
Julian Bigelow, W. Ross Ashby, W.S. McCulloch, Abraham Robinson, Tom Etter, David Sayre,
Kenneth R. Shoulders, Alex Bernstein, Herbert Simon and Allen Newell.
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Figure 1.1: From left to right: Oliver G. Selfridge, Nathaniel Rochester, Ray Solomonoff,
Marvin Minsky, Trenchard More, John McCarthy and Claude Shannon at the Dartmouth
Summer Research Project on Artificial Intelligence (Photo: Margaret Minsky).

led to a decrease of investment for AI research. As a result, the field of artificial
intelligence went into decline, stalling for several years.

After the first AI winter, the field experienced a revival when several com-
panies started investing in the development of expert systems4. Software and
hardware companies such as Teknowledge and LISP Machines Inc. grew rapidly
during this time in order to meet the rising demand for artificial intelligence
technology, which motivated the AI research community to continue with their
work. One of the most remarkable inventions of the 80s was the successful
application of the backpropagation algorithm to neural networks by David Rumel-
hart and Geoffrey Hinton (Rumelhart et al., 1986), which revived the study of
artificial neural networks. All this sudden success, together to the collapse of
LISP Machines Inc. in 1987, led to the second AI winter.

The 1990s started with a renewed interest in artificial intelligence and,
motivated by the increasing computational power, machine learning algorithms
started to be applied to a wider range of tasks (Tesauro, 1995). Many interesting
applications were developed during that decade across several industries like
medical diagnosis (Cinar et al., 1999; DeClaris, 1991; Klein & Shortliffe, 1991;
Punch, 1992), psychology (Denby & Gammack, 1999; Dorrer et al., 1995; Ogawa
et al., 1999; Perlovsky, 1999), finance and logistics (Benaroch & Dhar, 1991;
Falas et al., 1994; Johnson & Hoback, 1991; Lipshutz et al., 1991) and many
others (Koyama et al., 1998; Mashaly et al., 1994; Smithers et al., 1993; Yoo
et al., 1994). Finally, the most sounded event of the 1990s was the victory of the
IBM super-computer Deep Blue (Campbell et al., 2002) over Garry Kasparov,
the world chess champion, which took place in New York City in 1997. In 1998,
Yann Lecun and his collaborators published their work on convolutional neural
networks (Y. LeCun et al., 1999), a fundamental advance in machine learning
which has been widely used in computer vision and other fields.

The beginning of the 21st century is one of the most fruitful periods for
artificial intelligence, with several major achievements in different areas. Further
research in neural networks (G. E. Hinton et al., 2006; G. E. Hinton et al., 2012)

4A rebranded form of artificial intelligence.
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gave birth to novel techniques that allowed training deeper models, leading to
a rebranding of neural networks as deep learning. In 2011, IBM’s artificial
intelligence program Watson won the quiz game Jeopardy! against two of the
best human players of all time.

In 2012, AlexNet (Krizhevsky et al., 2017), a deep learning model developed
by Geoffrey Hinton and his collaborators, achieved state-of-the-art performance
on the ImageNet classification task (Russakovsky et al., 2015), kickstarting the
current deep learning revolution.

In 2016, Google’s artificial intelligence program AlphaGo (Silver et al., 2016)
defeated the world champion Lee Sedol in the game of Go, a feat that was consid-
ered impossible a few years earlier, by using reinforcement learning algorithms.
Alpha Go Zero, the Alpha Go’s big brother, proved in 2017 to be more power-
ful than its predecessor while not needing human interaction to learn (Silver,
Hubert, et al., 2017; Silver, Schrittwieser, et al., 2017). In 2016, DeepMind
researchers published WaveNet (van den Oord, Dieleman, et al., 2016), a deep
auto-regressive model that was able to produce natural raw audio waveforms
faithfully generating human speech (a modern version of WaveNet has been
used in the experiments described in chapter 7). One year later, the authors of
Vaswani et al. (2017) published the transformer, a new architecture designed
for sequence transduction tasks that allowed parallel training, as opposed to
its sequence-to-sequence predecessors (Sutskever et al., 2014). The transformer
architecture has been used in the experiments described in chapter 5. In 2020,
OpenAI researchers published GPT-3 (Brown et al., 2020), a massive neural net-
work with 175 billion parameters which was able to achieve strong performance
on many NLP tasks5. Later, in 2021, AlphaFold was published by DeepMind
researchers (Jumper et al., 2021) as a method for inferring the 3D structure of a
biological protein based on its genetic sequence, representing one of the major
contributions of artificial intelligence to scientific discovery. Finally, in 2022,
OpenAI researchers published Dall-e 2, a text to image generation model able
to generate high quality images from textual descriptions (Ramesh et al., 2022).

In addition to the mentioned achievements, many algorithms have been
published in the generative modeling field. Generative adversarial networks
(Goodfellow et al., 2014), variational auto-encoders (Kingma & Welling, 2019),
normalizing flows (Kingma et al., 2016; Kobyzev et al., 2021) and diffusion
models (Dhariwal & Nichol, 2021) are some of the most remarkable examples.
Some of these techniques will be discussed in detail in section 2.3.5.

Many more advances have been made in AI in the past few years, which
has led to an increased interest in the technology from both the private and
public sectors. However, the application of artificial intelligence to the most
complex and important problems still faces many challenges. Here is where deep
learning comes into play, as it has shown the ability to achieve state-of-the-art
results on a wide range of tasks. Therefore, the development of democratized
and low-resource deep learning applications is essential for the future of artificial
intelligence.

Many of the last advances in the deep learning research community report
prohibitive amounts of computation needed to train deep learning models (Brown
et al., 2020; Floridi & Chiriatti, 2020; Kechyn et al., 2018; Silver et al., 2016).

5A live example of the power of this model can be found in some of the lines of this chapter,
which have been revisited and rephrased with its help.
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The authors of (Strubell et al., 2019) estimated the amount of CO2 emissions
from training a large transformer network (BERT size) to be equivalent to the
emissions of 5 average cars during all their lifetime, or those of a human during
60 years.

Research in low-resource deep learning (Gao et al., 2018; S. Han et al., 2017;
Howard et al., 2017; Sanchez-Iborra & Skarmeta, 2020; So et al., 2021) has
shown the possibility of training deep learning models with a low amount of
computation, and its necessity for the future of artificial intelligence, as well as
for our planet health.

1.2 Contributions

This dissertation encompasses five contributions to the state of the art of the
field of deep learning. Two of them contribute around training methods, and the
remaining three are examples of novel applications of deep learning algorithms
to industry problems. All the contributions are related to the efficient use of
computational resources. Each of these studies is written as a different chapter.

The first contribution (chapter 3) proposes a new activation function for
deep learning models: the modulus function. The experiments conducted show
that, in line with the current research trends, non-monotonic activation functions
generally produce better results than monotonic ones. Additionally, the modulus
activation function is very efficient to compute, as it consists of a single-bit
operation, and its derivative (being either 1 or -1) has constant 1-norm. These
properties are specially useful for embedded applications. Moreover, the results
show that the proposed activation function achieves superior results in computer
vision tasks when compared with state-of-the-art alternatives.

The second contribution (chapter 4) proposes combining the knowledge of
several large pre-trained models in order to improve the performance of small
low-resource pre-trained models. The results of this chapter show that it is
possible to significantly increase the accuracy of the smallest pre-trained models,
allowing for computational savings and improved performance.

The first application covered in this dissertation (chapter 5) tackles the
problem of sales forecasting in the field of logistics. Two end-to-end systems
with two different deep learning techniques (sequence-to-sequence models and
transformers) are proposed. The results of this chapter conclude that it is
possible to build end-to-end systems to predict the sales of multiple individual
products, at multiple points of sale and different times with a single machine
learning model. The proposed model beats the state-of-the-art alternatives found
in the bibliography. This work has been published in the journal Expert Systems
with Applications (Vallés-Pérez et al., 2022).

Finally, the last two applications belong to the speech technology field. The
former (chapter 6) studies how to build a Keyword Spotting speech recognition
system using an efficient version of a convolutional neural network. In this study,
the proposed system is able to beat the performance of all the benchmarks found
in the literature when tested against the most complex subtasks. This work has
been published in the proceedings of European Symposium of Artificial Neural
Networks (ESANN 2020) (Vallés-Pérez et al., 2021a). The latter study (chapter
7) proposes a standlalone state-of-the-art text-to-speech model capable of synthe-
sizing intelligible voice in thousands of voice profiles, while generating speech
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with meaningful and expressive prosody variations. The proposed approach,
removes the dependency of previous models on a second voice generation system,
which makes it more efficient at training and inference time, and enables offline
and on-device operations. Device-embedded TTS models are important for voice-
activated user interfaces, as they provide a more natural user experience due to
the reduced latency, while using a fraction of the energy of cloud TTS services.
This study was done as part of the work of the author at Alexa AI and has been
published in the proceedings of Interspeech 2020 conference (Vallés-Pérez et al.,
2021b).

The unpublished works referenced in this section have already been submitted
to a journal and, at the time of writing this paragraph, are under revision.

1.3 Thesis structure

This thesis is organized in individual chapters as follows.

• Chapter 2: covers the common background needed to understand the
methods and algorithms applied in the subsequent chapters.

• Chapter 3: introduces the modulus as activation function, showing its
benefits over other alternatives.

• Chapter 4: studies how to combine pre-trained models using knowledge
distillation.

• Chapter 5: explores the application of sequence-to-sequence models and
transformers to approach the sales forecasting problem, from an end-to-end
perspective.

• Chapter 6: presents an end-to-end keyword spotting system with convolu-
tional networks.

• Chapter 7: proposes a state-of-the-art multi-speaker text-to-speech (TTS)
system with prosody modeling.

• Chapter 8: wraps the general conclusions of the studies presented in the
previous chapters.





Chapter 2

Background

2.1 Machine learning

Human beings learn by experience, part of which is inherited from previous
generations. However, in the digital world, experiences can be stored in form of
data, which can be later processed and analyzed.

We live in the middle of a data deluge. The technological progress and the
Internet have boosted our logging and communication capacities. At the time
of writing this paragraph1, every single second 10,000 new tweets are written,
100,000 search queries are sent to Google, 100,000 videos are being viewed in
YouTube, and 3,000,000 emails are sent. All amounts to approximately a 140
terabytes of Internet traffic per second.

This Brobdingnagian amount of data cannot be analyzed without the help
of automated computational assisted tools, and this is exactly the purpose of
machine learning. More formally, we define machine learning as a set of compu-
tational methods designed to automatically learn hidden structures and patterns
from the data and its origin (Murphy, 2012; Theodoridis, 2015). Machine learning
algorithms can serve multiple purposes ranging from informing decision making
under uncertainty to understand and simulate natural processes. Sometimes,
machine learning algorithms are inspired in biological processes (Haykin, 1999)
or in how the brain works and learns (e.g. self-organizing maps; Kohonen, 2000).
Other times, machine learning is driven by specific needs arising from data
analysis problems (e.g. binary decision trees; Hastie et al., 2009; James et al.,
2017).

1https://www.internetlivestats.com/one-second/ on February 6th 2022.
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2.2 Types of learning

Machine learning algorithms are designed to learn from data. However, there
are many ways these data can be treated in the learning process. In this section,
the most common types of learning are described at a high level.

2.2.1 Supervised learning

Supervised learning is the most widely employed methodology to train machine
learning models. It is based on a function-fitting perspective, where the function
fθ is adjusted (or trained, in the machine learning jargon) to map a set of input
vectors X to the corresponding output vectors Y (fθ : X→ Y), given a set of N
input pairs T = {(xi,yi)}Ni=0 known as the training dataset (Theodoridis, 2015).
The learning algorithm adjusts the parameters θ of a function fθ according to
the minimization of a predefined cost function J (for example the mean squared
error between the predicted values and the labels; Hastie et al., 2009). The
vector xi (with length D, xi ∈ RD) represents a set of features (e.g. the age
and the income of a person) and yi (with length K, yi ∈ RK) is the vector of
response variables (representing for instance the probabilities to buy a set of
products)2.

There are two main forms of supervised learning (Murphy, 2012).

• Regression, where the task consists of mapping each input vector xi to a
real-valued vector yi ∈ RK . An example of this task would be predicting
the age of an abalone3 based on physical measurements of the different
parts of its body (Dua & Graff, 2017).

• Classification, where a task consists of mapping the input vectors xi

to nominal variables from a finite set Cj, with yi,j ∈ {1, 2, ..., ||Cj||},
where ||Cj|| is the cardinality of the j-th response set. An example of a
classification task would be determining if a mushroom is poisonous or
edible based of several physical characteristics (Dua & Graff, 2017).

2.2.2 Unsupervised learning

Unsupervised learning techniques are employed when no labeled data is available.
The training dataset is composed of a set of input vectors U = {(xi)}Ni=0, and
the objective consists on finding interesting patterns in the data. Compared to
supervised learning, unsupervised learning comprises a wider range of techniques
and its objective is less well defined: the models have no clear desired output
nor obvious error metric (Goodfellow et al., 2016). However, the unsupervised
learning paradigm seems to be closer to the way animals and humans learn. These
algorithms also provide a cheaper framework for data exploitation, given that
no data annotation is required by human experts, which is generally expensive.

Some of the most common applications of unsupervised learning are described
below.

2Notice that we represent the output yi as a vector although supervised models can be
univariate. However, the multivariate form is a more general case.

3A type of marine snail.
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• Clustering : consists of finding dissimilar subpopulations in the data (also
known as clusters or groups), where the elements within a subpopulation
are more similar between them than to elements in other subpopulations.

• Probability density or mass estimation: the machine learning algorithm
is trained to learn the probability density function of the data (or the
probability mass function in case X is discrete) pmodel(X) : RN → R
(Goodfellow et al., 2016). For this, the model needs to learn the underlying
structure of the data X. The techniques laying in this family can be used
for many downstream applications, such as clustering (Yuzhong et al.,
2006), missing data imputation (Ding et al., 2015) or generation (Yang &
Chakraborty, 2020).

• Manifold learning : is a set of techniques consisting of learning the struc-
ture of high-dimensional data, where the data is assumed to lie on a
low-dimensional manifold in a high-dimensional space (Murphy, 2012).
The objective of these techniques is to discover latent structures in the
data that can be exploited for tasks such as data compression, dimensional-
ity reduction, feature extraction or data visualization. One example of this
task could be reducing the dimensionality of a dataset using principal com-
ponents analysis (PCA). That would project the original dataset linearly
into a lower dimensional one with orthogonal axes, where the structures in
the data could presumably be more easily discernible.

• Data completion: consists of imputing the missing values of a given dataset
(Buuren, 2018). This can be done with different purposes such as inferring
the unfilled optional answers of a survey, or filling the gaps of a time series
with low sampling frequency to get a higher time resolution representation.
Some forms of collaborative filtering (Falk, 2019), for example matrix
factorization algorithms (Koren et al., 2009), can also be seen as a data
completion task where the algorithm needs to fill the blanks of a matrix
representing the ratings of products by customers. In these cases, the
algorithm needs to answer a question similar to: what would be the rating
that a given customer would assign to a given product if they had the
chance?

• Associative learning : is a type of unsupervised learning where the goal
is to discover the relationships between objects in the data (S. Zhang,
2002). These relationships can be expressed in terms of associations (e.g.
if A then B), correlations (e.g. A is positively correlated with B) or co-
occurrence (e.g. A and B are often observed together). One example of
associative learning would be applying the Apriori algorithm (Agrawal
et al., 1996) to a supermarket database in order to discover the most
interesting associations between different products with the aim of deriving
attractive offers for customers, or optimize product placement to improve
customer experience.

• Generative modeling : many forms of generative model also rely on unsu-
pervised learning techniques (Bishop, 2011). This task consists on learning
to approximate p(X) with the objective of generating data that is indistin-
guishable from the original distribution. It is often done by maximizing
the likelihood of the data given the model argmaxθp(X, θ). However, in
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cases where the explicit density function is not needed, other methods
may apply (this topic will be covered more in depth in section 2.3.5). One
example of application of these techniques would be in the field of natural
language processing, where the goal is to learn a model that can generate
text (Kamath et al., 2019) that is realistic and linguistically plausible
(these are commonly known as language models).

2.2.3 Reinforcement learning
Reinforcement learning is a family of machine learning algorithms which, in
contrast to the other types of learning, does not necessarily rely on any previously
gathered knowledge about the task at hand. Instead, the reinforcement learning
agents (or decision makers) learn what to do by mapping situations to actions
(Sutton & Barto, 2018) so that they maximize a numerical reward metric, usually
in presence of uncertainty (Haykin, 1999). For the agent to learn successful
behaviors (referred commonly as policies), it needs to balance exploration and
exploitation while interacting with the environment (Sutton & Barto, 2018), in
simpler terms, reinforcement learning algorithms learn by trial and error.

More formally, the environment is commonly formulated as finite-discrete-
time Markov decision process (Haykin, 1999), which can be represented as a
4-tuple: (S, A, Pa, Ra) where S represents the state space, A is the action
space, Pa(s, s′) is the probability of transitioning from state s to state s′ after
performing the action a, and R(s, s′, a) is the reward received when transitioning
from state s to state s′ after performing action a.

The objective of the learning algorithm is to build an agent such that its policy
πθ(s)maximizes the expected sum of discounted rewards E

[∑T
t=0 γ

tR(st, st+1, a)
]
,

where γ is usually a scalar number between 0 and 1. The reinforcement learning
theory is originally based upon dynamic programming (Szepesvári & Bartok,
2010).

A classical example of a successful reinforcement learning application can be
found in (Tesauro, 1994), where an agent is trained to play Backgammon game.

Detail treatment of the reinforcement learning field lies far beyond the scope
of this thesis. A more detailed introduction is given in (Sutton & Barto, 2018;
Szepesvári & Bartok, 2010).

2.2.4 Other types of learning
There are other learning paradigms (Raghu & Schmidt, 2020) that are worth
mentioning, but either it is not clear where they lay, or they combine elements
from various of the previously discussed types of learning. The following list
describes the most important ones.

• Semi-supervised learning algorithms learn from both labeled and unlabeled
data. This is beneficial in problems where it is difficult or costly to label the
data, and hence the amount of labeled data is scarce (Raghu & Schmidt,
2020). One example of field where semi-supervised learning has many
potential applications is fraud detection (D. Wang et al., 2020), where
these cases are uncommon by nature and difficult to spot.

• Self-supervised learning algorithms aim to solve what is known as a pretext
task : a supervised problem where the data can be automatically labeled
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without human intervention, without extra cost and directly from the raw
instances (Raghu & Schmidt, 2020). One example of pretext task could be
determining the missing word in a partially masked sentence, given a set
of sentences extracted from a collection of books (Devlin et al., 2019), with
the aim of learning latent representations of the words. Other example
could be determining the degree of rotation of an image (Gidaris et al.,
2018) for biasing the model towards learning the latent structure of the
images.

• Transfer learning is a discipline solely applicable to deep learning models.
This methodology consists of two steps: pre-training a model to solve a
large and generic task (e.g. classify large and full-color images into 1000
categories (J. Deng et al., 2009)) and then fine-tuning the pre-trained
model to solve a different target task (Raghu & Schmidt, 2020). This
paradigm has a lot of benefits in multiple applications (for instance when
restricted amounts of labeled data are available, or when the computational
resources available are limited). As an example, the authors of (Souza &
Filho, 2022) show how they got successful results in performing sentiment
analyses over user reviews by using pre-trained word embeddings based on
BERT (Devlin et al., 2019). Further details about transfer learning will
be covered in the chapter 4 of this thesis.

2.3 Deep learning

Deep learning algorithms were motivated by the failure of classical machine
learning algorithms on solving central problems on AI (e.g. speech recognition,
object recognition, text generation, etc). These algorithms have a long history
(figure 2.1 summarizes the most important events in the development process of
deep learning), and have been named differently along the years: connectionist
models, artificial neural networks, deep learning, etc.

Deep learning is a subfield of artificial intelligence and machine learning as
shown in the Venn diagram of figure 2.2 (reproduced from Goodfellow et al.,
2016), and provides a very flexible framework for different machine learning tasks,
spanning all the aforementioned types: supervised, unsupervised, reinforcement
learning and others.

2.3.1 From the perceptron to its multilayer version
This section introduces the basic feed-forward neural network, from its origin to
the modern trends. The basic component of a modern deep learning model is the
artificial neuron (sometimes called unit). The idea of an artificial neuron has its
origin in the McCulloch-Pitts model from 1943, an attempt to mathematically
model the functionality of a biological neuron (McCulloch & Pitts, 1943). The
McCulloch-Pitts neuron consisted of a linear function of a set of binary inputs
x that are multiplied by a set of weights w (which values are either excitatory
or inhibitory, i.e. 1 or -1), the result is added together, a threshold scalar is
subtracted to the result, and a sign function is applied to produce a binary output
y (see figure 2.3 for a graphical description). The whole model is described
in equation 2.1. This weights and the threshold were meant to be adjusted
manually by an operator.
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yi = sgn

 D∑
j=1

xi,j · wj − threshold

 (2.1)

Some years later, Frank Rosenblatt introduced the perceptron (Rosenblatt,
1958). His idea builds upon the McCulloch-Pitts model, proposing a simple
method to automatically learn the weights of the model (see equation 2.2, where
the desired response is represented by yj , the predicted one is represented by ŷj
and λ is a scalar that controls the size of the weight updates, commonly referred
as the learning rate). This is considered the first primitive neural network.

wj(t+ 1) = wj(t) + λ[yj − ŷj(t)] · xj (2.2)

A couple of years later, Bernard Widrow and his student Ted Hoff proposed
the ADALINE model (ADAptive LINear Element) (Widrow, 1960), a modifica-
tion of the McCulloch-Pitts model that removed the sign function. ADALINE
was trained using gradient descent (Ham & Kostanic, 2000), as described in
equations 2.4 and 2.5, where λ is the learning rate and N is the number of
training examples (these equations are commonly known as the delta rule).

yi =

D∑
j=1

xi,j · wj + b (2.3)

∂J

∂wj
=

1

N

N∑
i=1

xi,j · (ŷi − yi) (2.4)

wj(t+ 1) = wj(t)− λ ·
∂J

∂wj
(2.5)

The combination of multiple ADALINE -style perceptrons with activation
functions such as the sigmoid function (see equation 2.6, where g represents
a non-linear activation function), builds a multilayer perceptron (MLP). More
specifically, a MLP, also known as fully-connected neural network, is a neural
architecture whose building blocks are perceptrons (called neurons in this sce-
nario) which are disposed in layers so that all the elements from a layer l are
connected with all the elements in the next layer l + 1 (refer to figure 2.4 for a
visual example)

hi = g

 D∑
j=0

xi,j · wj + b

 (2.6)

The delta rule, described in equations 2.3 and 2.4, built the basis for the
backpropagation algorithm, a methodology widely used nowadays as standard
method to train neural networks. The backpropagation algorithm (Rumelhart
et al., 1986) was published by David Rumelhart and Geoffrey Hinton in 1986 as
a method to optimize the parameters of multilayer perceptrons. This algorithm
comprises two steps (Haykin, 1999):
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x1

x2

x3

ŷ

W(1) W(2) W(3) W(4) W(5)

Inputlayer OutputlayerHidden layers

Figure 2.4: Example of multilayer perceptron with 3 inputs, 1 output and 3 hidden layers.
Each bubble represents a neuron (figure 2.3), and has an associated bias term. Each arc
represents a weight. In each neuron, the inputs multiplied by their corresponding weights are
added to the neuron’s bias, and then an activation function is applied to produce the output,
according to equation 2.6.

1. Forward pass: consisting on a simple model inference operation, where a
set of features xi are fed to the network as input to get the output ŷi. In
this phase, some of the values of the intermediate neurons can be cached
to use them in the next step.

2. Backward pass: a metric J (often referred as cost or loss function) is
used to compare the outputs of the model ŷi with the desired outputs
(sometimes called targets) yi and then propagate the gradient of the error
backwards (from the output to the input), by using the chain rule, to
adjust the weights of the model.

Before backpropagation, there was no algorithm for training multilayer percep-
trons in an end-to-end manner. The only way to train those models was to fix the
weights of all but one layer, and train the free one with gradient descent or other
methods. These models were called feature analyzers (Rumelhart et al., 1986),
and one of the most interesting examples is the Gamba perceptrons, described in
Minsky and Papert (1969). Although it is out of the scope of this thesis, it may
be worth mentioning that modern versions of the Gamba perceptron (known as
Extreme Learning Machines) are still in the research community spectrum as
alternative training methods to backpropagation see (G.-B. Huang et al., 2012;
G.-B. Huang et al., 2006).

The introduction of backpropagation enabled the neural networks to learn
their own hidden representations automatically, allowing for more complex and
abstract models. One of the most important pieces of multilayer perceptrons and
other modern architectures are the neuron activation functions (also referred
sometimes as nonlinearities). An ADALINE style neuron is a linear function,
and linear functions are closed under composition, therefore the composition of
several ADALINE neurons is a linear function. To break the linearity of the
neurons, the activation functions are introduced. They consist of non-linear
functions which are applied to the output of each neuron. The authors of
(Rumelhart et al., 1986) formulated the backpropagation algorithm with sigmoid
activation functions (defined in equation 2.7), as a differentiable alternative to the
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classical sign function. Later, it was discovered that unbounded and non-smooth
nonlinearities like the Rectified Linear Unit (ReLU ; Nair and Hinton, 2010;
defined in equation 2.8) were more convenient for training deep architectures
(Goodfellow et al., 2016). Activation functions are discussed in depth in chapter
3.

f(x) =
1

1 + e−x
(2.7)

f(x) = max(x, 0) =

{
x, if x ≥ 0,

0, otherwise,
(2.8)

The backpropagation algorithm has certain rules that need to be met (Rumel-
hart et al., 1986): (1) connections from higher level neurons to lower level ones
are forbidden, but connections that skip layers are totally permitted, (2) the
architecture must be fully differentiable to be able to backpropagate the errors,
and (3) the weights must not all be initialized to the same fixed value, but they
must be set to random values instead, to break the symmetrical weights between
layers (which would cause the optimization to stall, see (Rumelhart et al., 1986)
for more details).

Despite meeting these rules, there are no theoretical guarantees for the algo-
rithm to find the global minimum: it can get stuck in local minima. One possible
way to avoid this problem consists of running the optimization several times
with different random parameter initializations (Haykin, 1999). The usage of
gradient-free methods such as evolutionary optimization techniques (Sivanandam
& Deepa, 2008) have also been explored by the deep learning research community,
sometimes leading to promising results (David & Greental, 2014; Vallés-Pérez,
2012). However, these algorithms are usually less computationally efficient than
gradient-based ones, making them unfeasible when the training data or the
model size are large.

2.3.2 Neural networks as universal approximators

Given any continuous function f(x) with arbitrary complexity, it is always
possible to find a multilayer perceptron with a single hidden layer and sigmoid
activations that approximates that function to any desired degree of accuracy.

This problem was originally formulated and solved by Cybenko, 1989. In
particular, the work proves that:

Theorem 1 (2 - Cybenko, 1989) Let σ be any continuous sigmoidal
function. Then finite sums of the form

G(x) =

N∑
j=1

αjσ(w
T
j x+ θj)

are dense in C(In). In other words, given any f ∈ C(In) and ε > 0,
there is a sum, G(x), of the above form for which

|G(x)− f(x)| < ε ∀x ∈ In
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For the sake of gaining intuition (refer to Cybenko, 1989 for a formal proof),
let G be a multilayer perceptron with a single hidden layer, whose neurons have
a sigmoid activation. Assuming the weights of the hidden layer are set to a
sufficiently large number, it can be easily seen that the sigmoid activations
approximate a Heaviside step function H (see equation 2.9, where δ represents a
very large number). Then, by adding infinitely many Heaviside functions with
the proper shift and scaling, one can easily approximate any continuous function.
It can also be seen that the shift and scaling operations correspond to the bias of
the neurons in the hidden layer and the weights of the output layer, respectively.

As it can be seen in figure 2.5, by increasing the number of neurons one can
easily control the fidelity of the approximation. This theorem proves that if we
have arbitrarily many neurons in the hidden layer, a multilayer perceptron with
only one hidden layer can approximate any continuous function to an arbitrary
degree of precision.
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Figure 2.5: In the left side, a toy multilayer perceptron with a single hidden layer, a single
input and a single output, and with the weights of the hidden layer set to a very large number
δ. The bias terms have been indicated inside the bubbles. In the right hand side, a target
function f(x) to be approximated (smooth dashed blue line) and the approximation G(x)
(thick solid line) achieved given the weights and biases in the network of the left. The different
segments of the approximation have been colored with the same color as the last neuron that
fired to set that value, as the value of x increases.

lim
δ→∞

(σ(δx)) = H(x) (2.9)

After Cybenko, other studies (Leshno et al., 1993; Pinkus, 1999) proved
that the theorem holds for non-sigmoid activation functions as well. Despite
the universal approximation theorem (theorem 1) proving that a single hidden
layer is enough to model any arbitrarily elaborated continuous function, deeper
neural networks are motivated by the fact that more sophisticated functions may
approximate complex problems more easily and efficiently, perhaps even needing
less parameters (Nguyen et al., 2021).
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2.3.3 Deeper neural networks

Regardless the emergence of the backpropagation algorithm, training a multilayer
perceptron with many layers was challenging. The first successful methodology for
training deep neural networks consisted on pre-training the weights of the network
in an unsupervised fashion, using stacks of restricted Boltzmann machines (RBM;
Smolensky, 1986) known as deep belief networks (Bengio et al., 2006; G. E. Hinton
et al., 2006). A restricted Boltzmann machine (initially called Harmonium) is a
type of neural network built using a bidirectional bipartite graph architecture,
with symmetric connections of neurons between the two layers and without
connections between neurons within the same layer (as shown in figure 2.6).
This model is trained to learn hidden abstract representations of the input, from
which it is possible to recover the original probability distribution pθ(x|h) ≈ p(x).
The training procedure is based on an approximate maximum-likelihood method
called contrastive divergence (CD; G. Hinton, 2002).
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Figure 2.6: Restricted Boltzmann machine with 5 visible units and 3 hidden units.

Deep belief networks are stacks of RBMs that are trained using a greedy
layer-wise strategy, in which the output of a trained RBM becomes the input of
the following RBM (G. E. Hinton et al., 2006) (see figure 2.7). It was shown
in (Bengio et al., 2006) that, by following this procedure and then fine-tuning
the weights of the full network using the backpropagation algorithm, deeper
networks could be trained.

At the time of writing this thesis, unsupervised pre-training methods are no
longer needed to train deep neural networks. This is thanks to a set of techniques
that have been recently developed (in the 21st century) and that, when combined
together, facilitate the convergence of the backpropagation algorithm when used
to optimize deep architectures. The first technique was the ReLU (Nair & Hinton,
2010) activation functions (see equation 2.8), a non-saturating alternative to
the classical functions like sigmoid (see equation 2.7) or tanh, that showed to
be effective at favoring sparse connectivity, and helped overcome the saturating
gradients problem, a well known failure mode of neural architectures with
saturating nonlinearities when trained by backpropagation (H. H. Tan & Lim,
2019). Another simple technique that helped training deep neural networks is
known as Dropout, a regularization technique that consists of randomly zeroing
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Step 1 Step 2 Step 3

Figure 2.7: Example of deep belief network architecture with three feature detector layers.
In each of the steps shown above, the dashed connections between units represent the RBM
being trained, while the solid connections represent the previously trained RBMs that are
used to compute the input of the next RBM.

out a fraction p of neurons from each layer in each training step (G. E. Hinton et
al., 2012; Srivastava et al., 2014). These two techniques (among others) allowed
Krizhevsky et al., 2017 to successfully train AlexNet without unsupervised layer-
wise pre-training, a deep neural network that won the ImageNet (J. Deng et al.,
2009) computer vision contest in 2012, a problem consisting of classifying millions
of images into 1,000 categories. These techniques are still used today in the
majority of the deep learning models that are published.

Other tricks that are commonly used nowadays to facilitate the parameters
optimization of deep architectures are batch normalization (Ioffe & Szegedy,
2015) and residual learning (He et al., 2016).

• Batch normalization consists of standardizing the output vectors from
hidden layers using the first and the second statistical moments (mean and
variance) of the current mini-batch (Ioffe & Szegedy, 2015). This method
has proved to increase the training stability when high learning rates (λ)
are used (Goodfellow et al., 2016). Additionally, it has been shown that
it provides regularization (Dauphin & Cubuk, 2021) as a side effect, due
to the random fluctuations in the statistical moments from one batch to
another.

• Residual learning consists of adding skip connections between layers of the
neural network, so that the output of one layer l is fed as input to layer
m > l + 1. Figure 2.8 shows an example of a graph with a residual block
skipping two layers. More formally, the output of the residual block becomes
H(x) = F(x)+x where F(x) is the function learned by the composition of
the two layers and the ReLU function4. Obviously one can see that F(x) is
learning a residual mapping F(x) = H(x)−x (He et al., 2016). This method
has empirically shown substantial improvements of the backpropagation
optimization process given that the residual connections allow gradients
to flow more easily, avoiding vanishing gradients (Goodfellow et al., 2016).
He et al., 2016 were able to get the first place in the 2015 ImageNet

4Notation disambiguation: H(x) here does not refer to the Heaviside function.
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contest, improving the performance of AlexNet. Recent studies found that
residual connections help reform the loss landscape leading to more convex
optimization surfaces (Freeman & Bruna, 2017; L. Wang et al., 2020).

layer 1

layer 2

+

ReLU

ReLU

x

H(x) = F(x) + x

Identity F(x)

Figure 2.8: Example of a residual block.

Finally, another difference between modern and classical deep learning models
is the extended use of mini-batch stochastic gradient descent (see equation 2.12),
where successive optimizations steps are performed by backpropagation using
small (m-sized) random subsamples of the dataset named mini-batches (Ruder,
2016). Previous alternatives were stochastic gradient descent, where the updates
are performed for every individual sample, and batch gradient descent, where
the updates are performed over the full dataset T. Mini-batch gradient descent
has shown generalization improvements over the batch method (Hoffer et al.,
2017), while being computationally more efficient than the stochastic gradient
descent method.

θ(t+ 1) = θ(t)− λ · ∇θJ(X,Y |θ(t)) (2.10)

θ(t+ 1) = θ(t)− λ · ∇θJ(xi, yi|θ(t)) where (xi,yi) ∼ T (2.11)

θ(t+1) = θ(t)−λ·∇θJ(xi:i+m, yi:i+m|θ(t)) where (xi:i+m,yi:i+m) ∼ T (2.12)

2.3.4 Modern architectures
In this subsection, three modern building blocks frequently used in the current
deep learning architectures are described from a general perspective: convolu-
tional neural networks (CNN), recurrent neural networks (RNN) and transformers.
These architectures are the backbone of the majority of deep learning applica-
tions and the computational core of the systems presented throughout the next
chapters.



22 Chapter 2

Figure 2.9: LeNet-5 neural architecture, with 7 layers, capable of recognizing handwritten
digits.

Convolutional neural networks

A CNN is a type of feed-forward neural network that is commonly used in
problems where the input data have grid-like topology (Goodfellow et al., 2016).
Common examples of these data are time-series (1D), images (2D) or videos
(3D). CNNs are not new, and one of the most important primitive CNN is
known as neocognitron, a neural architecture published by Fukushima, 1980,
as a model inspired in the primary cortex of the human brain that was able
to recognize Japanese handwritten characters (Fukushima, 1980). This model
was similar to modern convolutional neural networks, and even featured similar
properties like weight sharing and translation equivariance (these properties are
discussed below). The neocognitron inspired future works like LeNet-5, a 7-layer
convolutional neural network (see figure 2.9) trained with backpropagation to
recognize handwritten digits (Lecun et al., 1998).

CNNs use cross-correlation operations5 instead of the general matrix multi-
plication used in fully connected networks. In this context, a convolution is a
linear operation where an input X is correlated with a kernel W to produce a
feature map S (see equation 2.13, where g represents the nonlinearity). The task
of the algorithm is to learn the kernel to solve the target task (Haykin, 1999). In
other words, equation 2.13 describes how the kernel is displaced over the input
image X to determine its similarity with the different regions of the full-color
image.

Si,j.k = g

∑
l,m,n

Xi+l,j+m,k+n ·Wl,m,n + b

 (2.13)

Convolutional neural networks are composed (sometimes partially) of convolu-
tional layers (where several convolutional kernels are applied in parallel). These
layers have several properties that differenciate them from the classical dense
layers, and that become advantageous when the input data can be arranged into
a grid structure. These properties are discussed below (Goodfellow et al., 2016).

• Sparse interactions : the units in a convolutional network are connected to
a small region of neighboring inputs. The size of that region is commonly
referred as receptive field. This property drastically reduces the amount of
parameters of the neural network, and enables parameters sharing.

5Formally, the operation is called cross-correlation. Nevertheless they are more commonly
referred as convolutions by the machine learning community. In this dissertation we use both
terms indistinguishably to refer to the convolutional layers operations.
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• Parameter sharing : consists of using the same parameters for more than
one function in the model. This is also known as tied weights. In a CNN,
each member of the kernel is used at each position in the input (except in
the special case of the boundaries, depending on the setting).

• Equivariance to translation: the convolution operation builds a map rep-
resenting the positions where a certain feature appears in the input (e.g.
a vertical border in the case of an image). If the feature is moved in the
input, its representation will be moved the same amount in the output
representation. Notice that the convolution operation is not equivariant to
other transformations such as rotation and scaling. This lack of properties
inspired the development of the capsule networks (Sabour et al., 2017).

Apart from the convolutions, there is another operation that is commonly
used in CNNs known as subsampling. Its goal is to reduce the size of the
feature maps as more layers are added, so that the representations become more
generic. This helps achieve approximate invariance to translation. There are two
main versions of this operation: pooling or strided convolutions. The pooling
operation (Goodfellow et al., 2016) consists of computing a reducing statistic
(e.g. the max function in max-pooling) over small neighboring regions. The
strided convolutions (Ayachi et al., 2020) are standard convolutions that skip
some of the inputs.

In some CNN architectures, a couple of fully-connected layers are added on
top of the convolutional layers. Although, recent advances in the field have found
that this is not necessary (Long et al., 2015), this pattern is commonly seen in
modern architectures.

Recurrent neural networks

RNNs are one type of neural networks that are designed to process sequential
data such as time-series: x(1), x(2), ..., x(T ), where T represents the time series
length. One of the most important primitive version of RNNs is known as the
Hopfield (1982) network and was published in 1982. This network incorporated a
memory cell that allowed it to process sequential data. However, it was initially
designed to work with binary data.

Inspired by the Hopfield network and its variants, the current RNNs are also
incorporate memory cells (sometimes referred as the RNN internal state) that
allow them to process variable-length sequences such as text sentences or audio
clips (Haykin, 1999).

A RNN shares its weights across several time steps. This may sound simi-
lar to 1-dimensional CNNs (1D-CNNs), but there is one important difference
(Goodfellow et al., 2016): in a 1D-CNN layer, each of the elements of the output
sequence is function of a small number of neighboring elements in the input
sequence, whereas in the basic RNNs each element in the output is function of
all the previous elements in the sequence; in other words, RNNs are causal.

A recurrent neural network takes one input each time step, and then passed to
a hidden layer that produces an output. See equation 2.14 for a basic example of
recurrent neural network (U and W represent the trainable weight matrices, b is
a trainable bias vector, and h represents the hidden intermediate representation).
These hidden representations are designed to retain the important information
of the previous sequence steps in order to solve the required task.
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Figure 2.10: LSTM cell structure. ct and ht represent the long-term and short-term states,
respectively, that the network uses as memory. Its operation is based on 3 gates and an output
unit. (A) is a layer that acts as forget gate, represented as ft, which is responsible for erasing
memory which will no longer be used. The layer (B) is the input gate, represented as it, and
controls how much input goes through the long-term line. The layer (C), represented by zt,
controls the new contribution to the cell state that, in conjunction with the layer B form the
memory addition system. The layer (D), represented as ot is the output gate, which controls
which values are outputted. In the diagram, σ stands for the logistic function and τ for the
hyperbolic tangent.

h(t) = g(Uh(t−1) +Wx(t) + b) (2.14)

The most commonly used type of recurrent neural network nowadays is the
long short term memory (LSTM). LSTMs were published by Hochreiter and
Schmidhuber (Hochreiter & Schmidhuber, 1997) in an attempt to solve the
issues of RNNs when dealing with sequences in problems that required long-term
dependencies. LSTM models contain two hidden state representations: one
intended to retain long term memory and other for short term memory. The
architecture of a LSTM cell is composed of three gates: input gate it, output
gate ot, forget gate ft. These gates control how the information flows through
the network, allowing to write, output and delete the states as needed. This is
made possible due to the sigmoid functions, which act as valves for the different
operations. Figure 2.10 and equations 2.15 describe the LSTM cell more formally.
In the equations, the symbol “�” refers to the Hadamard product, U and W
are trainable weight matrices, and b are the biases.

ft = σ(Wfxt +Ufht−1 + bf )

it = σ(Wixt +Uiht−1 + bi)

ot = σ(Woxt +Uoht−1 + bo)

ct = ft � ct−1 + it ◦ τ(Wcxt +Ucht−1 + bc)

ht = ot � σ(ct)

(2.15)

Apart from the LSTM, there are other more modern variants that are gaining
popularity. One of them is the gated recurrent unit (GRU; Chung et al., 2014)
a recurrent cell similar to the LSTM but more efficient and with a single state
signal that showed to be as effective as its predecessor. Depending on the
application, the recurrent layers can be bidirectional, allowing the network to
process the sequences in a forward and backward fashion (Schuster & Paliwal,
1997).
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Transformer

A transformer (Vaswani et al., 2017) is a neural architecture with encoder-
decoder structure that allows mapping sequence-to-sequence (Sutskever et al.,
2014) problems without the need of sequential models such as RNNs. These
models make use of attention and self-attention mechanisms (Bahdanau et al.,
2015) to process and align the input and output sequences, and allow processing
the sequential data in parallel at training time, at the cost of a higher memory
consumption6. The basic transformer architecture is shown in 2.11. The original
proposal is defined for natural language processing tasks, but it has been shown
that it can be used for other purposes with simple modifications (Bi et al., 2021;
Chen et al., 2021; N. Li et al., 2019).

As opposed to RNNs, that use their state vectors to process the sequence
steps in a sequential manner, transformers use multi-head attention (MHA)
directly on the projected inputs (input embeddings). This removes the sequential
dependencies of the algorithm (needing to run part of the computation graph to
be able to compute the following piece) allowing parallel computation (Kamath
et al., 2019). In this setting, the input and output sequences are computed using
self-attention and, then, the encoder and decoder vector spaces are combined
with another attention mechanism.

Multi-head attention is defined as an operation over three matrices: the query
Q, the key K and the value V. The name of these matrices comes from an
analogy to information retrieval systems, where input queries (usually in form of
a text sequence) are used to find the best matching key and value (representing
a document name and content, respectively; Manning et al., 2008). In the
attention mechanism a similar process happens, where the query is compared
against all the keys to produce an attention vector a ∈ Rdmodel such that∑
i ai = 1 and 0 ≤ ai ≤ 1 ∀ i, which is used to weight the values corresponding

to the keys (Vaswani et al., 2017). See equation 2.16 for a more formal definition.
Notice that the original definition of the transformer (Vaswani et al., 2017) uses
scaled dot product to calculate the similarity between the queries and the keys.
This operation is defined in 2.18 and does not require any parameter: it is a
dot-product operation normalized by the length of the sequences dk (see figure
2.12 for a visual description). Refer to table 2.1 for alternative similarity metrics
that are commonly used in the attention mechanism (Kamath et al., 2019).

MHA(Q,K,V) = Concatenate(head1,head2, ...,heads) (2.16)

headi(Q,K,V) = Attention(QWQ
i ,KWK

i ,VWV
i ) (2.17)

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
·V (2.18)

Figure 2.11 shows how the different modules are arranged in the transformer
architecture. In particular, Nx MHA blocks with residual connections form the
encoder and the decoder modules, and each MHA block is followed by a fully

6The self-attention operation computational and memory complexity depend quadratically
on the length of the sequences.
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Table 2.1: Attention similarity metrics (Kamath et al., 2019).

Name Definition Parameters Ref

Concat score(q,k) = vT tanh(W([q;k]) v,W (Luong et al., 2015)
Linear score(q,k) = vT tanh(Wq+Uk) v,W,U (Bahdanau et al., 2015)

Bilinear score(q,k) = qTWk W (Luong et al., 2015)
Dot score(q,k) = qTk None (Vaswani et al., 2017)

Scaled dot score(q,k) = qTk/
√
dk None (Luong et al., 2015)
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Figure 2.12: Left: the scale dot product computation graph (same as equation 2.18). Right,
the multi-head attention module (see equation 2.16).

connected layer that combines the output of all the heads of the MHA. A very
important detail is that the decoder self-attention needs to be masked so that
the whole operation is causal (i.e. each output element strictly depends on the
previous input elements, and not on the present or future ones; Vaswani et al.,
2017). The mask, together with the shift of the input sequence (so that the
output of the transformer at time step t is calculated taking the 0, ..., t− 1 input
elements into account), allow the parallel training of the transformer.

Given that the scaled dot product operation is not location-aware, positional
encodings are added to the embedding inputs, to allow the model to sort correctly
the input signals if needed.

As it can be noticed in equation 2.18, the dot-product used to compute the
attention similarity scores makes the memory requirements and computational
cost quadratic (for the case of the self-attention) on the length of the input and
output sequences. This is not a desirable property, and the authors warn about
it in the paper (Vaswani et al., 2017), becoming one of the major limitations of
this approach. There are already studies in the literature that discuss how to
reduce that cost (Jaegle et al., 2021; So et al., 2021).
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2.3.5 Deep generative models
Generative modeling with deep learning is one of the most trending topics in
the machine learning research community. The models in this family learn the
probability distribution over multiple variables of the data, in one way or another.
From an intuitive perspective, to generate new data a generative model needs to
grasp a deep understanding of the structure of that data distribution (Goodfellow
et al., 2016).

The goal of the deep generative models is to learn to approximate the
probability of the data (pdata) in an unsupervised way. In other words, the data
generator needs to find θ so that pdata(x) ≈ pθmodel(x) given a metric of similarity
(Goodfellow et al., 2016). The general framework consists on collecting a large
amount of data samples from a specific domain and train a deep learning model
that is able to generate new data that looks like7 the original data.

The family of deep generative models is very diverse, and the models can be
categorized into different types depending on the way they solve the generative
task. Figure 2.13 shows the taxonomy of the type of models discussed in this
subsection. Some of the models allow evaluating the learned probability of data
pθmodel(x) explicitly, others give an approximation for that distribution, and a
third class do not provide a way to interact with the probability density, yet
allowing operations such as sampling from the implicit probability distribution
(Goodfellow et al., 2016). This subsection provides a description of the follow-
ing families of deep generative models: fully visible belief networks (FVBN),
variational auto-encoders (VAE), generative adversarial networks (GAN) and
normalizing flows (NF).

Tractable
density

Approximate
density

Implicit 
densityExplicit

density 

Deep
Generative

Models

Any form of FVBN

- PixelCNN

- CharRNN




Normalizing flows

Variational Auto

Encoders

Generative Adversarial

Networks

Figure 2.13: Taxonomy of the most common deep generative models.

7We will revisit the problem at the end of this chapter.
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Fully Visible Belief Networks

The fully visible belief networks (FVBN) are a family of probabilistic models that
use the chain rule of probabilities to model the probability density of the data
(pmodel(x) ≈ pdata(x); Smith, 2018). For that, pmodel(x) is decomposed into a
set of conditional probabilities p(x(t)|x(1), x(2), . . . , x(t−1)) that when multiplied
together form pmodel(x), as shown in equation 2.19.

pmodel(x) =

T∏
i=1

p(x(t)|x(1), x(2), ..., x(t−1)) (2.19)

The FVBN models provide a fully tractable probability density function
(Goodfellow et al., 2016), and are well suited for modeling sequential data such
as text or speech (R. Liu et al., 2019; Shen et al., 2018; Y. Wang et al., 2017).
They have also been applied to model images, by turning them into sequences
of pixels (van den Oord, Kalchbrenner, Espeholt, et al., 2016; van den Oord,
Kalchbrenner, & Kavukcuoglu, 2016).

The basic operation of FVBN is very simple. At training time, a model is
trained to predict the next sample of a sequence x(t), given the previous samples
x(1), x(2), ..., x(t−1). This operation is known as teacher forcing (Goodfellow
et al., 2016; Goyal et al., 2016; Williams & Zipser, 1989), as the model is feed
with the original samples of the sequence being modeled. At inference time, a
start sample x̂(1) is provided as input for the model to predict a probability
distribution p(x(2)|x̂(1)) from which the next sample is drawn x̂(2). Subsequently,
x̂(1) and x̂(2) are feed into the model to get the probability distribution of the
third sample p(x(3)|x̂(1), x̂(2)), from where x(3) is drawn. The process continues
until a stop criterion is reached. The inference operating mechanism is commonly
referred free running mode (Goodfellow et al., 2016), as the model is feed with
previously generated samples, and does not depend on the ground truth signal.
Normally, a deep learning model is used to train FVBN, in particular RNNs
and transformers are some of the most common choices. Figure 2.14 shows an
example of char-rnn (A. Graves, 2013; Sutskever et al., 2011), a FVBN used to
generate natural language.

As it can be noticed, the training process, provided with the right algorithms,
can be performed in parallel. However, the inference process needs to be done
sequentially, given that to generate future samples, all the past samples need
to have been previously generated. For this reason, FVBN are known to be
inefficient at inference time when used to generate long sequences.

As an example, a shallow version of the char-rnn model of order8 100 has
been trained using 800 books from the open source Gutenberg project9 (Gerlach
& Font-Clos, 2020). The model consists of a recurrent neural network that is
trained to predict the Multinoulli distribution for the next character, conditioned
to the previous 100 characters as input. The code of this model can be found in
the repository linked in the footnote10. The following is an example of generation
where the first 100 characters of the War of the Worlds book from Herbert George
Wells are fed as input.

8The probability distribution of the next character is conditioned to the previous 100
characters.

9https://www.gutenberg.org/
10https://github.com/ivallesp/simple_chatbot

https://github.com/ivallesp/simple_chatbot
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Figure 2.14: Architecture of char-rnn, a deep learning model used for natural language
generation at character level, based on a multilayer recurrent neural network. The nodes
represent RNN cells (e.g. GRU cells) and the rectangles are the inputs and outputs of the
model. The dashed arrows represent the character sampling process.

“No one would have believed in the last years of the
nineteenth century that this world was being watched together
far out to the thought, ’that will cled it announced for them bloody
I have last instant all the strayes as thomass us? This is, and the
single War camp, until we proguted it toward the mouncin to lint
of the enemy respectful, then the ribonament had been their courts
and papers she been ended bent tense freely after good to the eyes to
avole. The gather flooded by Wayer a great time home engaged in
the exhausting day of the dutie of summers and jangers untourant
altogether of mountains. But was the mystery arising half die for
some regarding the raider. This top was a Catelumberhand life by the
river were business, and other ebbsake and septimum at the campaich,
wa, and he showed my brethren.”

- char-rnn, 2017

It can be noticed that the model has been able to generate many grammatically
correct words, although the text generated is not coherent. For that, more
sophisticated approaches would be needed. GPT-3 (Floridi & Chiriatti, 2020) is
a modern example of deep language model.

Other example of modern FVBN application is presented in van den Oord,
Kalchbrenner, and Kavukcuoglu (2016) and van den Oord, Kalchbrenner, Espe-
holt, et al. (2016), an extension of char-rnn to two dimensions, where a set of
pixels of an image are given as input to the model, and its task is to predict the
remaining pixels in an auto-regressive manner.
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Variational auto-encoders

Variational auto-encoders (VAE hereafter) are another alternative family of
methods used to approximate pdata(x) (Kingma & Welling, 2019). VAEs are the
probabilistic versions of auto-encoders (AE). An AE is a deep learning model
that is trained to reconstruct its input x in its output y. The input vector x is
transformed into a compressed representation h = fe(x) using an encoder fe,
and that vector h is feed into the decoder fd to produce ŷ = fd(h) = fd(fe(x)).
The representation h is a vector of lower dimension than x, so the encoder is
forced to prioritize which aspects of the input should be included in h so that
the decoder can recover y ≈ x (Goodfellow et al., 2016) with the minimum error.
The encoder and the decoder are generally deep learning models.

The main idea of VAEs consists on replacing the h vector by the parameters
of a distribution (υ), generally chosen to be a Gaussian N(µ, σ), from which a
latent vector is sampled z ∼ p(υ). Once the model is trained, new samples x̂ can
be generated by decoding samples drawn from the prior distribution x̂ = fd(z)
where z ∼ p(υ). The structure of this deep learning architecture is shown in
figure 2.15.

VAEs provide an explicit but intractable density function which cannot
be directly optimized (Goodfellow et al., 2016). Instead, variational Bayesian
methods are used to approximate the intractable probability distributions. In this
setting, the posterior probability pθ(z|x) is intended to be computed. Applying
the Bayes theorem, we can express pθ(z|x) = pθ(x|z)·pθ(z)

pθ(x)
. In this equation,

pθ(x) =
∫
pθ(x) · pθ(x|z) dz is intractable, and hence it is not possible to optimize

the parameters of a model that approximates that distribution using maximum
likelihood. Here is where variational methods take place.

ϵ ~ N(0,I)

x x̂zEncoder

Reparameterization trick

Decoder
+

x

µ
σ

Figure 2.15: Diagram showing how a variational auto-encoder is structured.

A known probability distribution q with parameters φ will be used to ap-
proximate p so that qφ(z|x) ≈ pθ(z|x). With that aim, the Kullback-Leibler
divergence (DKL) metric will be used to minimize the differences between the two
distributions, as shown in equation 2.20 (Kingma & Welling, 2019). L(x, θ, φ),
from equation 2.21, represents a lower bound (often referred as evidence lower
bound, ELBO, or negative free energy), given that DKL (qφ(z | x), pθ(z | x)) is
always greater or equal to zero (see the optimization function in equation 2.22).
As the lower bound is tractable, the optimization problem can be approximated
as shown in equation 2.23. Hence, maximizing the lower bound assures that the
log-likelihood is at least as large as its lower bound (Wei & Mahmood, 2021).
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min
φ
DKL (qφ(z|x), pθ(z|x)) (2.20)

log (pθ(x)) =DKL (qφ(z | x)‖pθ(z | x))︸ ︷︷ ︸
>0

. . .

+ Ez log pθ(x | z)−DKL (qφ(z | x), pθ(z))︸ ︷︷ ︸
L(x,θ,φ)

(2.21)

log p0(x) ≥ Lθ,φ (x) (2.22)

θ, φ← argmax
θ,φ

N∑
i=1

(Lθ,φ(x)) (2.23)

The first term of the lower bound of equation 2.21 (Ez log pθ(x | z)) is known
as the reconstruction error, and measures how dissimilar the input and the output
are. The second term (DKL (qφ(z | x)‖pθ(z))), usually referred as the divergence
error, measures how dissimilar are the prior and the posterior distributions of
the encoder. The probability distributions pθ and qφ are two separated deep
learning models (with parameter sets θ and φ). Normally, the prior distribution
over the latent variables P (z) is chosen to be an isotropic Gaussian (Wei &
Mahmood, 2021) and in order to ensure that the encoder-decoder architecture is
differentiable everywhere, the re-parameterization trick is used as a mechanism
to replace the classical non-differentiable sampling procedure z ∼ N(µ, σ) by an
equivalent version z = µ+ ε · σ where ε ∼ N(0, I), in which z is differentiable
with respect to µ and σ (Kingma & Welling, 2019).

Generative adversarial networks

Generative adversarial networks (GAN hereafter) are a type of deep generative
models first published in 2014 (Goodfellow et al., 2014). They consist of a dual
deep learning model, where the first component, known as the generator, tries to
generate realistic data samples, and the discriminator (the generator’s adversary)
attempts to determine if a given sample is real or generated. As an analogy,
one can think of the generator as playing the role of a counterfeiter, and the
discriminator playing the role of a police officer. The role of the counterfeiter is
to try to fool the police officer, while the latter will try to catch the counterfeiter.
Figure 2.16 summarizes this process graphically.

The training process of a GAN is generally a zero-sum game, where the
optimization succeeds when the system reaches the Nash equilibrium (Nash,
1950). The goal of the algorithm is to learn to represent an estimated distribution
(pmodel) of a given data distribution (pdata). Moreover, GANs are designed to
be unbiased (Goodfellow et al., 2016), in the sense that provided with enough
data, a model with enough capacity and the proper learning algorithm, the true
probability distribution of the data can be perfectly recovered: pmodel = pdata.
As an important practical aspect of GANs, once the algorithm has converged
the generator is able to synthesize samples of pmodel, but the learned probability
density function (PDF) is implicit. GANs provide no access to the learned PDF.

In the GAN systems, the generator fg is a deep learning model with pa-
rameters θg that takes a latent vector z ∼ p(z) as input, where p is a prior
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distribution (usually chosen to be a Gaussian distribution), and produces a
sample x̂ = fg(z). The discriminator fd is another deep learning model with
parameters θd that takes a sample x as input, and produces a binary output
fd(x) that models the probability of the input sample x being real or generated
(Goodfellow et al., 2014). In this setting, the GAN objective can be formulated
as a minimax objective, as shown in equation 2.24. The default loss function
(represented as J), is defined in equation 2.25. Unfortunately, the training
objective is non-convex in θg and θd, which makes training difficult when using
complex neural networks, often leading to underfitted models (Goodfellow, 2016;
Goodfellow et al., 2016). In a simpler manner, when one of the two networks
becomes too strong, the system diverges. Stabilization of the GANs remains
an open problem, although some advances have been recently made (Arjovsky
et al., 2017; Cui & Jiang, 2017; Z. Wang et al., 2022).

f∗g , f
∗
d = argmin

θg
max
θd

J(fg, fd) (2.24)

J(θg, θd) = Ex∼pdata
log(fd(x)) + Ex∼pmodel log(1− fd(x)) (2.25)

The generator and discriminator models must be differentiable everywhere,
otherwise the model cannot be trained with backpropagation. As an important
detail that can be noticed in equation 2.24, both players have a cost function
(equation 2.25) that depends on the superset of parameters {θg, θd}, but every
player can only change its own parameters, and not the adversary’s.

.

.

.
$

Figure 2.16: Generative adversarial network diagram, showing the role of the generator and
the discriminator and the error signals backpropagated through the network.
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Normalizing flows

Normalizing Flows are another type of deep generative models that are used to
approximate data distributions pdata. These models describe the transformation
of a prior density function p(z) into an arbitrarily complex probability distribution
pmodel, through a series of invertible mappings, by repeatedly applying the rule
for change of variables (Rezende & Mohamed, 2015). The output of the series of
invertible functions applied to the prior distribution is still a valid probability
distribution, and hence this type of models is known as normalizing flow.

A flow f : Rd → Rd is an invertible mapping (i.e. ∃f−1) such that
f(f−1(x)) = x. The probability density function p(x) could be approximated by
applying the rule for change of variables, as shown in equation 2.26, where p(z)
is known. Notice that the right hand side of the equation 2.26 comes from the
application of the inverse function theorem (Rezende & Mohamed, 2015).

Invertible and differentiable flows are closed under composition (Kobyzev
et al., 2021). This means that when composing multiple flows, the resulting
function is still a flow. That property is very important for building deep
normalizing flows capable of modeling complex data distributions such as images.
It can be easily seen from equation 2.26 (Rezende & Mohamed, 2015) that
given a composition of F flows, x = fF ◦ ...f1(z), the probability distribution
pF (zF) can be easily obtained through the application of the change of variables
formula, as shown in equation 2.27 (expressed as log-probability for mathematical
convenience), where hk is the output vector of the flow fk.

pθ(x) = pθ(f
−1(x)) ·

∣∣∣∣det ∂f−1(x)∂x

∣∣∣∣ = p(z) ·
∣∣∣∣det ∂f(z)∂z

∣∣∣∣−1 (2.26)

log pθ(x) = log pθ(z) + log

∣∣∣∣det ∂z∂x
∣∣∣∣ = log pθ(z) +

F∑
k=1

log

∣∣∣∣det ∂hk
∂hk−1

∣∣∣∣ (2.27)

The normalizing flow is trained by maximizing the PDF of the samples x,
which can be calculated as the probability density of the normalized samples
p(f−1(x)) with a volume correction term derived from the change of variables
formula, as expressed in 2.27 (Papamakarios et al., 2017). Once the model is
trained, one can sample from the prior distribution z ∼ p(z) and transform that
latent variable into a data sample x̂ = f(z) (Rezende & Mohamed, 2015).

There are two main restrictions that have to be taken into account when
designing neural architectures for normalizing flows. First, each flow block fi
needs to be invertible; and, second, the determinant of the Jacobian of each flow
block must be fast to compute. These two properties are absolutely necessary
for being able to train deep learning based normalizing flows, and they represent
the major difficulty currently under research. The most common solution at
the time of writing this dissertation is to define the flows fi as affine-coupling
layers (Dinh et al., 2016). Their structure is represented in figure 2.17. More
formally, given an input vector x, of size D, an integer d ∈ [2, D − 1], a deep
learning model s and another l, the affine-coupling layers can be defined as
shown in equation 2.28. It can be shown that the determinant of the Jacobian
of the affine-coupling layer transformation does not depend on the parameters
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of the networks l and s, so they can be as complex as one wants (Dinh et al.,
2016). The whole operation can be seen as a scale and shift operation applied
over one part of the input vector xd+1:D, and conditioned over the other x1:d.
The composition of multiple affine-coupling layers with interleaved shuffling
operations builds RealNVP (Dinh et al., 2016), a deep normalizing flow that
achieved remarkable results in computer vision.

y =

{
y1:d = x1:d

yd+1:D = xd+1:D � s (x1:d) + l (x1:d)

x =

{
x1:d = y1:d

xd+1:D = (yd+1:D − l (y1:d))� s (y1:d)

(2.28)

y1 y2

x1 x2

x

+

s

l

y1 y2

x1 x2

÷

-

s

l

Forward propagation Backward propagation

Figure 2.17: Forward and backward computation graphs for affine-coupling layers. Notice
that x1 and x2 represent the input vector x split in two parts, and the affine coupling operation
produces two vectors y1 and y2 of the exact same size as x1 and x2, respectively. The nodes
with the letters l and s are arbitrarily complex neural networks that, conditioned to the first
vector, produce scaling and translation weights to be applied over the second vector.

Other common solutions to the same problem are known as masked auto-
regressive flows (Papamakarios et al., 2017), inverse auto-regressive flows (Kingma
et al., 2016) or glow (Kingma & Dhariwal, 2018). They will not be covered here
because it is out of the scope of this dissertation. More details about glow will
be given in chapter 7.

Evaluation

One of the most important aspects of any discipline in science is the ability
to properly measure the phenomenon under study, and the field of generative
models is not an exception. However, measuring how well a generative model
performs can be an extremely difficult task (Goodfellow et al., 2016). There
are several approximate approaches that aim to quantify the performance of a
generator (Theis et al., 2016), but we still do not have a general way to tackle
this problem.

Many of the applications of generative models deal with multimedia data such
as images, music, speech, etc. Our way of determining if a set of synthetic media
has good or bad quality is through perceptual judgement. Generative models can
be evaluated using perceptual judgement, but as any type of judgement, it may
be subject to biases. To avoid a biased evaluation, the evaluation set and the jury
needs to be carefully chosen. Even if these pieces are designed carefully, there
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is still risk that this subjective evaluation completely fails (Goodfellow et al.,
2016). One possible case is the hypothetical example in which a model learns to
memorize the training data. In that case, the model will not be succeeding at
the generation task, but a perceptual test would score the model with very high
performance. Other example could be a model which is collapsed into a mode in
the data. For example, given a model that is trained to generate images of cats
and dogs, if the model only learns to generate high quality images of cats and
never generates dogs, it may get a high score out of a subjective test, while it is
completely failing to capture the variability of the data. For these reasons, it is
well known that subjective quality of samples is not a reliable way of evaluating
generative models (Denton et al., 2015).

Other common way to evaluate generative models consists of measuring the
log-likelihood of the pmodel over a test set, in the cases in which the log-likelihood
is tractable (Goodfellow et al., 2016). This approach may be informative in
some cases, but it is not a solution at all, as it may often not be correlated
with the perceptual quality. One example could be a speech synthesis network
that models the silences in the recordings with a very small variance. The
probability density in those regions would be extremely high, while perceptually
we would not probably be interested on accurately reproducing background
noise. Additionally, the comparison of log-likelihoods of different models should
be done under the same conditions. Aspects like data processing, the type of
algorithm that is used to approximate the log-likelihood or the choice of the
prior distribution can bias the results (Goodfellow et al., 2016).

This topic is still an open research problem, and many studies have already
provided some insights about it (Sajjadi et al., 2018; Theis et al., 2016). However,
the problem remains still unsolved.
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The modulus as activation
function

3.1 Overview

The idea of decreasing the size of neural networks has been studied since long
time ago (Frankle & Carbin, 2019; Hassibi et al., 1993; Y. LeCun et al., 1989).
Many applications may require to be efficient at training or at inference times,
especially the models that need to be executed on mobile and embedded devices
(Ooko et al., 2021; Zapico et al., 2021). One of the most impressive examples is
the wake word detection system of the Google assistant, which was reported to
weight only 14 kilobytes in size (Warden & Situnayake, 2020).

The subfield of machine learning that researches how to minimize the compu-
tational cost is commonly known as TinyML (H. Han & Siebert, 2022). TinyML
not only brings obvious energy consumption benefits but it can also be used to
reduce the latency of the response of such systems because the devices would no
longer need to query large cloud servers, removing the dependency on Internet
connections and allowing them to work offline. Furthermore, the common privacy
concerns of machine learning applications (Ha et al., 2019) can be easily diluted
if all the sensible data collected are processed solely into the device, and never
leaves home.

This chapter introduces a new non-monotonic activation function –the mod-
ulus– which simplicity makes it specially suitable for TinyML and other low
resource applications: the modulus and its derivative are simply bit-size oper-
ations. Interestingly, the gradient norm does not depend on the input, which
removes some of the problems reported on other nonlinearities (Hochreiter et al.,
2001; Hochreiter, 1998; Lu, 2020; Pascanu et al., 2013). The experiment results
provide evidence that when using the modulus activation function on computer
vision tasks the models generalize better than with other nonlinearities - up to a
15% accuracy increase in CIFAR100 dataset and 4% in CIFAR10 dataset (with
respect to the benchmark activations tested).

The code used along this work has been made available in a public repository1.
1https://github.com/ivallesp/abs

https://github.com/ivallesp/abs
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3.2 Introduction

As discussed in section 2.3.1, the core piece of all deep learning models is the
activation function. They enable the models to produce non-linear abstract
representations when applying linear transformations in cascade (Goodfellow
et al., 2016). The most common choice in modern deep learning models is the
Rectified Linear Unit (ReLU ) (Nair & Hinton, 2010). Among other advantages,
ReLU nonlinearities allow to train deeper neural networks (B. Xu et al., 2015).

3.3 Previous work

Apart from the ReLU in the last years there have appeared many alternative
activation functions. The following studies represent some of the most popular
examples: Leaky-ReLU and PR-ReLU (B. Xu et al., 2015), ELU (Clevert et al.,
2016), Swish (Ramachandran et al., 2018), SELU (Klambauer et al., 2017),
F/PFLU (M. Zhu et al., 2021), RSigElu (Kiliçarslan & Celik, 2021) etc. All
those activation functions have the following properties in common: nonlinearity,
continuity, differentiability and low computational cost (being Swish the most
computationally expensive option). The majority of the activation functions are
monotonic, Swish (Ramachandran et al., 2018), GELU (Hendrycks & Gimpel,
2016), S-ReLU (Jin et al., 2016) and Mish (D. Misra, 2020) are some of the
most popular modern exceptions. Despite the large pool of alternatives, ReLU
still appears as the default choice in many applications due to its simplicity and
low computational cost (Nair & Hinton, 2010).

This chapter delves into the world of the non-monotonic nonlinearities and
proposes the modulus function (aka absolute value) as an activation function,
providing empirical evidences proving that this activation function allows deep
learning models to converge to better solutions in CIFAR10, CIFAR100 and
MNIST datasets.

Compared with other modern non-monotonic nonlinearities such as Mish (D.
Misra, 2020), PFLU and FPFLU (M. Zhu et al., 2021) or Swish (Ramachandran
et al., 2018), the modulus has a very low computational cost (equivalent to ReLU ).
This property makes the modulus specially useful for TinyML (Sanchez-Iborra
& Skarmeta, 2020) and hardware (J. Misra & Saha, 2010) applications.

3.4 Methods

3.4.1 Modulus activation function

This section introduces the proposed activation function, the modulus : f(x) = |x|.
This nonlinearity is a continuous, piecewise-linear function consisting of an
identity mapping for positive values of x, and a negative identity mapping
for negative values of x. Its derivative (defined below) as well as the modulus
function itself, are bit-size operations. This is extremely useful for hardware
implementations. Besides, the modulus function can be expressed as f(x) =
sgn(x) · x, where f ′(x) = sgn(x). In practice, this means that the derivative can
be calculated as part of the forward pass and cached for the backpropagation,
reducing the total computation. This form is also specially useful in hardware
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implementations, given that the whole activation function is fully represented as
a bit-size operation (the sign function).

f ′(x) =

{
1 if x > 0
−1 if x < 0

Notice that the modulus function is differentiable everywhere except in x = 0.
For practical purposes, f ′(0) := 1 so that the derivative is defined for all the
range of x values, similar to the case of ReLU (Goodfellow et al., 2016). See
figure 3.1h for a graphical representation.

The modulus activation function belongs, in essence, to the family of rectifier
functions (Glorot et al., 2011) . In fact, it is equivalent to a Leaky-ReLU with
α = −1. However Leaky-ReLU was originally defined to take values of alpha
strictly higher than 0 (B. Xu et al., 2015). Furthermore, modulus achieves
significantly superior results than the Leaky-ReLU.
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Figure 3.1: Nonlinearities used along this study. (a-g) are benchmark activation functions
that showed good performance in previous studies. (h) is the modulus activation function
proposed in this chapter. For this example, the default hyper-parameters have been used for
the Leaky-ReLU, ELU and Swish activation functions, respectively.

The benefit of this activation function with respect to the other rectifiers is
that the norm of its gradient is constant (||∇xf || = 1 ∀x) and hence it does
not depend on the input value. This property is desirable when optimizing the
parameters of a neural network with gradient descent algorithms, as there are
no input values for which the neuron saturates (Glorot & Bengio, 2010) (i.e.
values of x for which the gradient of the activation function is close to zero).
This naturally removes the dying neurons (Lu, 2020) and vanishing gradient
problems (Hochreiter et al., 2001; Hochreiter, 1998; Pascanu et al., 2013), which
usually appear in activations with zero regions or with asymptotically saturating
regions, respectively.
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3.4.2 Smooth approximations of the modulus function

The modulus function is not differentiable when x = 0. To study if this property
harms the performance of the models in any way, two alternative smooth approx-
imations of the modulus function have been tested as an additional experiment.
See figure 3.2 for a visual representation. The two approximations are defined
below.
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Figure 3.2: Representation of the two SoftModulus activation functions compared with the
original modulus: SoftModulusQ and SoftModulusT.

Quadratic approximation

A fuzzy set approach is chosen as a method to combine the modulus function
with a quadratic function (see figure 3.3) to get a smooth approximation. For
that, three membership functions are defined in figure 3.4 and equations 3.1, 3.2,
3.3.

0 1-1

Figure 3.3: Quadratic and modulus functions, together with the combined one (in blue, red
and green, respectively).
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Figure 3.4: Membership functions used to combine the quadratic and modulus functions.

µxlow =

 1 if x < −1
−x if −1 ≤ x < 0
0 if x ≥ 0

(3.1)

µxmed =


0 if x < −1
x+ 1 if −1 ≤ x < 0
1− x if 0 ≤ x < 1
0 if x ≥ 1

(3.2)

µxhigh =

 0 if x < 0
x if 0 ≤ x < 1
1 if x ≥ 1

(3.3)

Let fxlow = −x, fxmed = x2 and fxhigh = x. These functions are combined with
the membership functions to get the quadratic approximation.

• For x < −1: f̂(x) = fxlow·µ
x
low

µxlow
= −x

• For −1 ≤ x < 0: f̂(x) = fxlow·µ
x
low+fxmed·µ

x
med

µxlow+µxmed
= (x+1)x2+(−x)(−x)

1+x−x = x3 + 2x2

• For 0 ≤ x < 1: f̂(x) = fxmed·µ
x
med+f

x
high·µ

x
high

µxmed+µ
x
high

= (1−x)x2+x·x
1−x+x = −x3 + 2x2

• For x ≥ 1: f̂(x) = fxhigh·µ
x
high

µxhigh
= x

The final activation function is obtained by combining and simplifying all the
above expressions. This approximation is subsequently referred as SoftModulusQ.

f(x) =

{
x2 · (2− |x|) if |x| ≤ 1
|x| if |x| > 1
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Hyperbolic tangent approximation

Starting from the modulus function f(x) = sgn(x) · x, the sgn function is
approximated as follows sgn(x) = limβ→0 tanh(x/β), where β ∈ [0, 1] is a tunable
hyperparameter that controls how acute the “V” transition is (see equation 3.4).
The smaller the β, the closest the approximation is to the modulus. A value of
β = 0.01 is used along all the trained models. In the rest of the chapter, this
approximation is referred as SoftModulusT.

f(x) = x · tanh(x/β) (3.4)

3.4.3 Benchmark activation functions

The following activation functions have been used as benchmarks to compare
the performance of the proposed one.

• Tanh: the hyperbolic tangent has been one of the most popular choices
(together with the sigmoid), before ReLU was proposed (Y. A. LeCun
et al., 2012). Among many other desirable properties, its derivative is very
simple: (tanhx)′ = 1− tanh2 x. This property was very beneficial specially
before automatic differentiation tools appeared. Besides, similar to the
proposed activation function, the derivative can be easily calculated during
forward pass and cached for the backward pass.

• ReLU : this activation function was published in 2010 as an alternative to
train Restricted Boltzman Machines (Nair & Hinton, 2010). It is defined as
f(x) = max(0, x). It allowed training deeper neural networks by solving the
vanishing gradient problems typically happening with saturating activation
functions. As it can be seen in the formula, ReLU outputs zero if the input
is negative. This brings sparsity to the non-linear representation, at the
cost of potentially finding optimization problems due to the fact that the
derivative when x < 0 is zero (dying neurons, for instance).

• Leaky-ReLU : the Leaky-ReLU (B. Xu et al., 2015) attempted to solve
the problem known as dying neurons in the ReLUs by adding a small
linear term in the negative side of x: f(x) = max(x/β, x), where β is a
hyperparameter to be tuned: β > 1 and σ is the logistic function.

• ELU : this is a smooth version of ReLU (Clevert et al., 2016) that ap-
proaches asymptotically to -1 when x = − inf. Unlike ReLUs, it is dif-
ferentiable everywhere and can produce negative values. This activation
function is formally defined as follows. α is a tunable hyperparameter.

f(x) =

{
x if x > 0
α(ex − 1) if x ≤ 0

• Swish: this is one of the few non-monotonic activation functions formally
published (Ramachandran et al., 2018). It is defined as f(x) = x · σ(βx),
where β is a hyperparameter to be tuned. It gained its popularity by
showing promising results in multiple applications.
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• Mish: this is a smooth, non-monotonic and self-regularized activation
function, similar to Swish, showing superior performance in different bench-
marks (D. Misra, 2020). It is defined as f(x) = x tanh [softplus(x)], where
softplus(x) = log(1 + ex) (Dugas et al., 2001).

• PFLU : the Power Function Linear Unit (PFLU) is a non-monotonic activa-
tion function that showed good performance in convolutional architectures
(M. Zhu et al., 2021). It is defined as follows: f(x) = x · 12

(
1 + x√

1+x2

)
.

3.5 Experiments and results

3.5.1 Setup

For the following experiments, CIFAR10, CIFAR100 (Krizhevsky, 2009) and
MNIST (L. Deng, 2012) datasets have been used. CIFAR10 and CIFAR100
images are labeled into 10 and 100 classes, respectively. They are of size 32x32
and full color. In both cases, the datasets contain 50,000 images for training and
10,000 images for testing purposes. MNIST images belong to one of 10 classes
and are in grey scale and 28x28 size. MNIST comes with 50,000 images for
training and 10,000 images for testing purposes. The images of the datasets have
been normalized so that the minimum and the maximum values are -1 and 1.

Four different architectures have been used to test the performance of the
modulus activation function against the other nonlinearities. These architectures,
described in Table 3.1, are inspired on the ones used in the Lottery Ticket
Hypothesis study (Frankle & Carbin, 2019).

Table 3.1: Deep learning architectures used to experiment with different activations. In the
dense layers row, the output size has been represented as C. The fully connected architecture
(FC ) is a multilayer perceptron with 2 hidden layers + the output layer. The Conv2 and
Conv6 architectures are shallow variants of VGG described here: (Simonyan & Zisserman,
2015). The last pooling layer of the VGG-16 original architecture has been trimmed in order
to allow this model to work with smaller image sizes.

Network Fully Connected Conv2 Conv6 VGG-16

Conv layers 64,64,pool 64,64,pool
128,128,pool
256,256,pool

64,64,pool
128,128,pool
256,256,256,pool
512,512,512,pool
512,512,512

Dense Layers 256,256,C 256,256,C 256,256,C 4096,4096,C
Filter sizes 3x3 3x3 3x3
Pooling type max max max
# Parameters 269k-878k 3.3M-4.3M 1.8M-2.3M 33.6M-40.3M
Size 3.1-11MB 38-50MB 21-27MB 385-462MB

The same experimental setup has been used across models, activations and
datasets. All the networks have been trained for 100 epochs, and the best
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Table 3.2: Classification accuracy for all the datasets and activation functions tested (rows),
and for all the models (columns). The results are expressed as mean ± standard deviation
across the 30 random initializations. To facilitate the reading of the table, for each dataset-
model combination, the results have been colored as follows: the best result (highest accuracy)
has been colored in blue, the second in green, the third in yellow and the fourth in red ( first
> second > third > fourth ; from cond to warm colors). Additionally, the cases where any
of the proposed activation functions achieved significantly higher accuracy (with a significance
level of α = 0.05) than the benchmarks is marked in bold. A Wilcoxon one-sided rank sum
test has been used to quantify the statistical significance.

Dataset Activation FC Conv2 Conv6 VGG16

CIFAR10 ReLU 54.65± 0.22 71.40± 0.26 77.09± 1.21 83.66± 0.41
LeakyReLU 54.71± 0.24 71.65± 0.32 77.38± 1.13 83.98± 0.34

Tanh 49.95± 0.23 67.46± 0.34 77.67± 0.24 79.69± 0.26
Swish 55.39± 0.29 69.09± 0.27 71.66± 0.62 80.77± 0.50
ELU 55.16± 0.21 69.34± 0.34 78.98± 0.33 81.21± 0.37

PFLU 55.43± 0.30 70.34± 0.33 80.77± 0.40 81.58± 0.38
Mish 55.44± 0.22 69.66± 0.35 75.66± 0.53 80.98± 0.64

Modulus 53.97± 0.24 73.93± 0.42 84.22± 0.29 84.86± 0.32
SoftModulusQ 54.07± 0.29 71.49± 0.37 81.01± 1.27 10.00± 0.00
SoftModulusT 54.04± 0.24 73.95± 0.40 84.36± 0.28 85.34± 0.36

CIFAR100 ReLU 27.33± 0.25 36.72± 0.31 36.35± 0.89 44.61± 1.11
LeakyReLU 27.24± 0.22 37.03± 0.40 37.15± 0.77 45.19± 1.47

Tanh 23.63± 0.20 35.29± 0.47 42.15± 0.49 44.14± 0.37
Swish 27.59± 0.25 35.20± 0.34 35.75± 0.41 46.02± 1.10
ELU 27.92± 0.26 35.68± 0.31 40.74± 0.48 47.63± 0.71

PFLU 27.73± 0.21 37.51± 0.42 42.25± 0.45 48.22± 0.63
Mish 27.68± 0.25 36.04± 0.41 37.63± 0.75 48.69± 0.69

Modulus 26.29± 0.26 38.66± 0.56 48.73± 0.62 45.83± 0.80
SoftModulusQ 26.23± 0.25 37.48± 0.44 48.16± 1.97 1.00± 0.00
SoftModulusT 26.32± 0.24 38.69± 0.56 48.63± 0.83 48.47± 0.68

MNIST ReLU 98.35± 0.07 99.27± 0.04 99.53± 0.03 99.58± 0.04
LeakyReLU 98.37± 0.06 99.27± 0.04 99.53± 0.03 99.58± 0.03

Tanh 98.34± 0.07 99.06± 0.05 99.48± 0.04 99.48± 0.04
Swish 98.36± 0.05 99.24± 0.04 99.52± 0.03 99.53± 0.03
ELU 98.31± 0.04 99.16± 0.04 99.54± 0.03 99.54± 0.03

PFLU 98.42± 0.05 99.21± 0.04 99.56± 0.03 99.57± 0.03
Mish 98.41± 0.05 99.23± 0.04 99.56± 0.03 99.57± 0.04

Modulus 98.47± 0.07 99.38± 0.04 99.60± 0.03 99.63± 0.04
SoftModulusQ 98.51± 0.06 99.37± 0.03 99.62± 0.03 11.35± 0.00
SoftModulusT 98.47± 0.06 99.39± 0.04 99.61± 0.03 99.62± 0.03

accuracy of each run has been recorded. Each run has been repeated 30 times
with different random weight initializations. No dropout (Srivastava et al., 2014)
nor batch normalization (Ioffe & Szegedy, 2015) have been used. Adam (Kingma
& Ba, 2014) has been used as optimizer, with a learning rate of 10−4, a gradual
warmup (Gotmare et al., 2019) during the first 5 epochs starting from 10−5, and
a cosine annealing (Loshchilov & Hutter, 2017) with a target learning rate of
10−6 in the last epoch. The software versions used in all the chapter are: Python
3.7.3, Pytorch 1.7.1 and TorchVision 0.8.2.
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Figure 3.5: Training curves of all the models. Each line represents the average accuracy of
30 runs of a model. The shade behind to each line shows the 95% confidence interval around
the mean. Notice that the scales in the y-axis are not shared to allow for better zoom in each
figure, comparing the performance across models is not the objective of this study. Details like
the shades are better viewed in a screen.

3.5.2 Results

Table 3.2 summarizes the results of the classifiers for CIFAR10, CIFAR100 and
MNIST datasets. As it can be seen at the tables, the modulus activation function
outperforms significantly the benchmark activations in 9 out of 12 experiments
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(4 architectures x 3 datasets). In 4 of these cases, the accuracy improvement is
3% or higher, in relative terms. The SoftModulusT approximation significantly
outperforms the benchmark in 10 out of 12 experiments.

Figure 3.5 shows the training curves for the 12 experiments (the smooth
approximations curves have been included in figure 3.6 to compare them with
the modulus). As it can be noticed in CIFAR10-Conv2, CIFAR10-Conv6 and
CIFAR100-Conv6, the accuracy of the networks with modulus keeps increasing at
the 100th epoch while the benchmarks have already stabilized. That observation
suggests that, if trained for longer, the accuracy would probably increase.

The results of the SoftModulus approximations compared with the modulus
activation function are summarized in table 3.3. Additionally, figure 3.6 shows
the training curves for the same activations. The SoftModulusQ approximation
achieved significantly better results than the original modulus in several cases (FC
model over CIFAR10 and MNIST dataset, and Conv6 over MNIST dataset);
however it seems to be much more unstable: on VGG16, the gradients of the
models with SoftModulusQ activations vanish at the beginning of the training
process due to the fact that the weights are initialized very close to zero and
the gradients are too small, causing numerical issues. This problem may be
solved tweaking the initialiation. However, the SoftModulusT approximation
seems to be on-par with the original modulus in the majority of cases, while
it performs significantly better for deep architectures like VGG16. A plausible
hypotyhesis explaining that observation is that the difference between the two
approximations is due to the width of the zero gradient region around x = 0:
wider regions lead to more training problems (see figure 3.2). The β parameter in
the hyperbolic tangent approximation allows for easily adjust this zero-gradient
region. Different values of beta were informally tested concluding that for high
values of β (e.g. β = 1.0) the model struggles to train due to numerical precision
problems (small values of weights lead to tiny gradients). A value of β = 0.01
seems to work well for all the tested experiments. Finally, the SoftModulusT
approximation achieves superior results than the original modulus when used in
the VGG16 architecture.

Table 3.3: Accuracy comparison for the soft approximations of themodulus function, compared
with the original modulus definition. The results are expressed as mean ± standard deviation
across the 30 random initializations. The models with highest accuracy are highlighted in bold.
A star is added to those cases where a SoftModulus activation function achieved significantly
higher results than the modulus, with a significance level of α = 0.05.

Dataset Activation FC Conv2 Conv6 VGG16

CIFAR10 Modulus 53.97± 0.24 73.93± 0.42 84.22± 0.29 84.86± 0.32
SoftModulusQ 54.07± 0.29∗ 71.49± 0.37 81.01± 1.27 10.00± 0.00
SoftModulusT 54.04± 0.24 73.95± 0.40 84.36± 0.28 85.34± 0.36∗

CIFAR100 Modulus 26.29± 0.26 38.66± 0.56 48.73± 0.62 45.83± 0.80
SoftModulusQ 26.23± 0.25 37.48± 0.44 48.16± 1.97 1.00± 0.00
SoftModulusT 26.32± 0.24 38.69± 0.56 48.63± 0.83 48.47± 0.68∗

MNIST Modulus 98.47± 0.07 99.38± 0.04 99.60± 0.03 99.63± 0.04
SoftModulusQ 98.51± 0.06∗ 99.37± 0.03 99.62± 0.03∗ 11.35± 0.00
SoftModulusT 98.47± 0.06 99.39± 0.04 99.61± 0.03 99.62± 0.03
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Figure 3.6: Training curves smooth approximations compared with the modulus. Each line
represents the average accuracy of 30 runs of a model. The shade behind to each line shows
the 95% confidence interval around the mean. Notice that the scales in the y-axis are not
shared to allow for better zoom in each figure, comparing the performance across models is
not the objective of this study. Details like the shades are better viewed in a screen.

3.6 Conclusions

This chapter provides evidences of how the proposed modulus activation function
outperforms the benchmark activation functions in 75% of the experiments.
The improvement achieved by the networks with this activation function is
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often significantly higher (3% or higher in 33.3% of the experiments conducted).
Additionally, a smooth version of the modulus activation function is proposed,
even performs better than the first one, at a slightly higher computational cost.

The results of this chapter motivate exploring non-monotonic activation
functions as alternatives to the classical choices.



Chapter 4

Distilling the knowledge of
pre-trained models

4.1 Overview

Since the 2012 ImageNet competition, many convolutional neural networks based
architectures for computer vision have been proposed, leading to a large number
of open source resources in the form of pre-trained models. In this chapter, the
idea of combining the knowledge of multiple pre-trained models into another
simpler pre-trained model using knowledge distillation techniques is studied.

The experiments included in this chapter show improvements in the accuracy
of the lightest pre-trained models when fine-tuning them using the soft-labels of
their superior counterparts. The knowledge transfer is performed by using solely
unlabeled data. Up to a 3.0% and a 1.7% absolute improvement in top-1 and
top-5 accuracy is achieved across several models, suggesting that the trained
architectures are still not at their capacity limit. This technique allows having a
significant improvement of performance in mobile and other TinyML applications
(Sanchez-Iborra & Skarmeta, 2020).

All the code used in this chapter is publicly available in a repository1.

4.2 Introduction

Computer vision systems have evolved dramatically in the last decade due to the
rise of deep learning technologies. In 2012, as described in chapter 2, AlexNet
(Krizhevsky et al., 2017) achieved the first position in the ImageNet yearly
challenge (Russakovsky et al., 2015), becoming the first neural network to get
such position. Since then, the neural solutions prevailed, and many different
architectures were proposed, each of them being better than the previous ones
(Algan & Ulusoy, 2021; Khan et al., 2020). The parameters of many of the best
deep learning models solving the ImageNet problem are publicly available (e.g.
(Chollet, 2017; He et al., 2016; Howard et al., 2017; Pham et al., 2018; Szegedy
et al., 2016; Szegedy et al., 2017; M. Tan & Le, 2019)), in form of pre-trained
models. One of the most common applications of pre-trained models is transfer

1https://github.com/ivallesp/distillnet

https://github.com/ivallesp/distillnet
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learning (Zhuang et al., 2021), as briefly discussed in section 2.2.4, where the
weights of a model trained to solve a large scale task (commonly referred to
as pretext task, such as the ImageNet classification task) are re-utilized and
fine-tuned to exploit them for another task. Usually, although not always, the
first layers of the network are frozen and only the last few layers are adjusted.
This simple idea has been developed in the last years, and many further studies
have been published (see (Evci et al., 2022; X. Wu et al., 2021; P. Zhao et al.,
2021; Y. Zhu et al., 2018)). Transfer learning works under the hypothesis that
lower layers learn simpler and widely applicable patterns that are used by higher
level layers to solve the objective task.

Another very powerful technique, named knowledge distillation, allows trans-
ferring knowledge from a teacher model to a student model. In 2015, a study
showed that it is possible to improve the performance of a simple model (known
as the student) by distilling the knowledge of a more sophisticated model (named
the teacher) (G. Hinton et al., 2015). The technique proposed in the work
of Hinton et al. is very simple and consists on training the student with the
soft-targets of the teacher, given a transfer dataset. The soft-targets are the raw
predictions of the model, which are expressed as probabilities of belonging to
each class. The authors suggest to minimize the cross-entropy with soft-targets,
after dividing the logits by a temperature constant T (process known as warming
the logits, extra details in section 4.4.1) so that the probability distribution gets
less sparse (i.e. more distributed across the classes that are different than the
most probable class). This technique is built under the hypothesis that there is
more information in the soft targets than in the hard targets (i.e. the labels).
This additional information is sometimes known as dark knowledge (Gou et al.,
2021). Knowledge distillation is still a hot topic in nowadays research (see (H. S.
Lee & Wallraven, 2021; C. Tan et al., 2021; H. Zhao et al., 2021)).

This work explores the following hypothesis: the performance of a small pre-
trained model can be improved by leveraging the knowledge of one or multiple
larger pre-trained models, while keeping the computational budget small and
using solely unsupervised data. An ensemble of pre-trained models may be
the most powerful solution in terms of performance but it is obviously energy-
inefficient and may not be applicable for mobile applications, tasks that require
a time-sensitive inference (Sanchez-Iborra & Skarmeta, 2020) or other TinyML
tasks. Therefore, the problem is approached from a knowledge distillation
perspective, with the aim to distill the knowledge of multiple heavy pre-trained
models into a light-weight base model. The experiment results show that not
only it is possible to improve its original accuracy but that some techniques for
combining the knowledge of multiple teachers are better than others.

There is a plethora of applications that can benefit from the results of this
study. The first one is data intense applications such as video event detection
(Chakraborty et al., 2021), for instance in autonomous driving (Swaminathan
et al., 2019), where a large number of frames need to be processed in real
time and with a high performance. The second one is tasks that need to run
necessarily in a low-resource device, like a mobile device (e.g. augmented reality
for map localization (Limmer et al., 2016)), or the time-sensitive tasks (e.g.
facial recognition for security (Aung et al., 2021)). Finally, the proposed models
are more environmental-friendly, as they require less energy for training and
inference (C.-J. Wu et al., 2021).
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4.3 Previous work

A few previous studies have been published where the objective was to combine
multiple deep learning models. The authors of (L. Liu et al., 2019) distill the
knowledge of several teachers into a multitask student in the computational
linguistics domain. Apart from the different domain of application, their approach
differs from the one described in this chapter in the fact that their student and
teachers goals differ: their student learns to combine the different objectives
of the teachers. In (Geyer et al., 2019), the authors present a new technique
that allows merging multiple models using a parameter fusing technique based
on the incremental mode matching (IMM) procedure (S.-W. Lee et al., 2017).
This methodology has an important limitation that makes it unsuitable for
this use case: the pre-trained and the target architecture must have the same
structure. The objective is to improve the performance of a light-weight model
using the knowledge of its greater siblings, which normally have more complex
architectures.

In the work of (Asif et al., 2020), the authors define a framework to learn a
small ensemble of students from a large ensemble of teachers which are combined
linearly. For that, they propose to define a neural network architecture with as
many student branches as teachers. The student branches are trained to minimize
the Kullback-Leibler (KL) divergence with their corresponding teacher branch,
as well as minimizing the KL-divergence between the linear combination of the
students, and the linear combination of the teachers. The approach proposed in
this chapter differs fundamentally in the fact that the base architecture size of
the proposal is independent of the number of teachers. In addition, instead of
using KL-divergence losses, the cross-entropy with soft-targets is used, as defined
by (G. Hinton et al., 2015).

Additionally, multiple works have been found in the literature where the
objective is to design lightweight convolutional neural networks for multiple tasks
(Hui et al., 2018; Jeon et al., 2021; Zhou et al., 2020). Different techniques can
be used to lighten up the high computational cost and memory requirements of
the classical convolutional neural networks architectures. These techniques range
from efficient modifications of the convolution operation, such as depthwise-
separable convolutions (Chollet, 2017), squeeze operations (Qiang et al., 2021)
or dilated convolutions (Yu & Koltun, 2016), to higher level architecture design
choices such as systematically balancing the size of the architecture building
blocks (M. Tan & Le, 2019) or pyramidal feature extraction (T.-Y. Lin et
al., 2017), typically applied in object detection or optical flow inference. In
this work, given the restriction of using publicly available student models pre-
trained on ImageNet dataset, the architecture design is limited to the current
available choices, hence innovative architecture design is out of the scope of this
work. However, the chosen student architectures feature various of the efficiency
techniques discussed in the literature, such as 1x1 convolutions (Szegedy et al.,
2017), depthwise-separable convolutions (Chollet, 2017), efficient model width,
height and resolution scaling (M. Tan & Le, 2019), and compression-expansion
blocks (Howard et al., 2017; Sandler et al., 2018), among others.
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4.4 Methods

This section describes the training methods used as well as the knowledge
distillation framework and the techniques employed to blend the predictions of
different teachers.

4.4.1 Knowledge distillation
The original knowledge distillation method, as defined by (G. Hinton et al., 2015),
consists on using the C class probabilities (known as soft-targets) produced by a
machine learning model (named the teacher) as the training objective for another,
often simpler, machine learning model (named the student). The probabilities
of a deep learning model pi (where i ∈ {1, ..., C}) are normally calculated by
applying the softmax function over the logits vector zi (Goodfellow et al., 2016).
Usually, a temperature parameter T is introduced with the aim of producing a
softer2 probability distribution over the classes (see equation 4.1, where i and j
represent class indices, and t represents a specific teacher).

pi∈{1..C} =
exp(zti/T )∑C
j exp(ztj/T )

(4.1)

The authors of (G. Hinton et al., 2015) also recommend combining two loss
functions: cross-entropy with soft-targets LS and cross-entropy with hard-targets
LH . The first objective is computed with the probabilities of the student p(zs, T )
against the probabilities of a teacher model p(zt, T ), where the temperature T is
artificially increased to inflate the weight of the dark knowledge (G. Hinton et al.,
2015). The second objective is computed using T = 1 on the probabilities of the
student p(zs, T = 1) against the ground-truth label y. See the losses definitions
in equations 4.2 and 4.3, where zt and zs denote the logits for the teacher and
the student models, respectively, and y denotes the ground truth label. The
losses are combined as shown in equation 4.4, where the α parameter is intended
to balance between the two losses (Gou et al., 2021).

LS [p(zt, T ), p(zs, T )] = −
∑
i

pi(zti, T ) log (pi(zsi, T )) (4.2)

LH [y, p(zs, T = 1)] = −
∑
i

yi log (pi(zsi)) (4.3)

L = αLS + (1− α)LH (4.4)

Along all the chapter, α is set to 1 given that only unlabeled data is used for
training, and hence no hard targets are available.

2Closer to a uniform distribution.
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4.4.2 Teachers blending methods
Different models may produce harder or softer posterior probability distributions.
In order to be able to successfully combine different teacher models for building
the teacher signal that will be distilled into the student, the posterior probability
distributions needs to be calibrated.

The hardness or softness of a distribution can be controlled with the tem-
perature parameter T (see equation 4.1). In this case, as different models have
been combined to build the soft target signal, the temperature of each model has
been chosen so that the average probability of the most probable class becomes
S. Hence S represents a hyperparameter that must be chosen before training.
The term s is used to denote a specific choice of S. T has been determined
independently for each pre-trained model so that S = s, on average over the
transfer dataset. The value of T has been found using the bisection method3,
given that the equation 4.1 is continuous in T .

Once the probability distributions have been calibrated, the following tech-
niques have been defined as teacher blending proposals. The term θn is used to
denote the parameter set of the teacher n.

• Mean: following the same idea of ensemble models (Kuncheva, 2004),
averaging all the teachers probabilities is proposed as the simplest method to
combine all teachers knowledge. This is done by computing the arithmetic
mean across the set of N teachers, for every instance x and class c.

pmean(x, c) =
1

N

N∑
n=1

p(c|x, θn)

• Median: with the idea of improving the mean blending method with robust
statistics, the same calculation is repeated but using the median across
the set of N teachers, for every instance x and class c. The result of this
operation needs to be normalized so that the probabilities across the C
different classes sum to 1.

pmedian(x, c) =
mediann p(c|x, θn)∑C
k mediann p(k|x, θn)

• Random: randomly choosing the teacher that provides the soft-target for
each training example, in expectation, should lead to the mean of the
teachers predictions. However, given that stochastic gradient descent based
optimizers are used, this method is included with the hypothesis that it
will increase the variability of the gradients, potentially leading to a more
robust exploration. For that, the class probabilities for each instance x are
selected from a random teacher t̂. The randomization is recalculated after
every training epoch.

t̂ ∼ U(1, T )→ prandom(x) = pt̂(x)

• Maximum correlation: selecting the teacher that has the maximum correla-
tion with the rest of teachers for a given training example will potentially

3T = 1 and T = 6 are used as starting points for the bisection method.
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lead to a more refined training signal. To account for that, the Pearson’s
correlation coefficient between all the possible pairs of teachers (correlation
matrix) is calculated, for every training example. Then, the average of the
correlation coefficients of every teacher with the rest is calculated, in order
to determine to what degree that teacher “agrees” with the rest for that
given training example.

• Minimum entropy : the probability distributions of the teacher predictions
for a given training example can be more or less spread. One possible inter-
pretation of that phenomenon is that the higher the spread of the output
classes distribution is, the lower the confidence of the model prediction
will be. With that assumption in mind, the use of the Shannon entropy is
proposed as a measure of the spread (the higher the entropy, the closer the
class distribution will be to a uniform distribution), and hence choose, for
every training example, the teacher which class probability distribution has
the lowest Shannon entropy. That teacher will be the one that provides a
more confident prediction, under the mentioned assumption.

The methods described above can be categorized in aggregative and selective
techniques depending on their operating principle. The “mean” and “median”
techniques are considered aggregative techniques because for a given training
example xi, they merge information from different teachers to get the final
soft-target probabilities. The “random”, “maximum correlation” and “minimum
entropy” are categorized as selective techniques given that for a training example
xi, they just select which teacher provides the soft-target signal.

4.4.3 Pre-trained models
Some of the pre-trained models included in the Keras library for Python (Chollet
et al., 2015) have been used for the experiments presented in this chapter. One
model from each family has been selected, excluding the VGG family of models,
in favour of more modern and efficient alternatives. A short description about
each of those architectures is included below.

In order to select the pre-trained models that will be used as students, a
combination of the number of parameters and accuracy obtained on the transfer
dataset (with the original model parameters) has been used. Further details,
including the number of parameters and the computational cost of each model,
are included in table 4.1.

1. ResNet (He et al., 2016): convolutional neural network with multiple blocks
where the output of the lth layer is added to the output of the (l + 1)th.
This structure is known as residual connection (or skip connection), and
leads to the following transition: xl+1 = Hl+1(xl)+xl, where H represents
a convolutional layer. Described in the section 2.3.3.

2. Inception ResNet (Szegedy et al., 2017): introduction of the residual
connection structure from (He et al., 2016) to the classical inception
convolutional neural network model, combined with several efficiency tricks.
The inception model is based on the idea of using different convolution
operations (with different receptive field sizes and pooling operations) in
every layer, and concatenating the result together. Additionally, before
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each regular 2D convolution, a 1x1 convolutional layer is introduced to
reduce the number of operations (see figure 4.1). The authors of (M. Lin
et al., 2014) provide a deeper study on 1x1 convolutions.

3. DenseNet (G. Huang et al., 2017): convolutional neural network inspired by
the ResNet model (He et al., 2016) that introduces direct connections from
every layer to all the subsequent ones leading to the following transition:
xl+1 = Hl([x0, x1, ...xl−1]). The square brackets in the previous expression
mean concatenation.

4. NASNet (Pham et al., 2018): convolutional neural network designed using
neural architecture search (NAS) with reinforcement learning algorithms.
The final architecture structure resembles to inception ResNet, but has
been optimized to have a higher inductive bias.

5. Xception (Chollet, 2017): convolutional architecture inspired in incep-
tionV3 (Szegedy et al., 2016) that features depthwise-separable convolutions
for higher computational efficiency.

6. MobileNet V1 and V2 (Howard et al., 2017; Sandler et al., 2018): con-
volutional architecture designed to be efficient and scalable with the ob-
jective of being implemented into mobile devices. These networks feature
depthwise-separable convolutions for reducing the number of parameters,
compression-expansion blocks and the introduction of two parameters α
and ρ, to control the depth of the network and the input image resolution,
respectively.

7. EfficientNet (M. Tan & Le, 2019): highly scalable convolutional architec-
ture that attempts to tie the network depth, width and the input image
resolution together into a compound single parameter referred as φ. The
architecture of the base model (aka EfficientNet) has been designed using
neural architecture search (NAS) techniques.
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Figure 4.1: Building block of inception architecture (Szegedy et al., 2015). Left: inception
block without the dimensionality reduction trick. Right: inception block with convolutions 1D
to reduce the total amount of operations.
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Table 4.1: Pre-trained models used as teachers along this study, taken from Keras imple-
mentations. Some of the input resolutions shown in the table may not correspond to the
resolutions of the original papers, the models have been run in the resolutions indicated in
the table as they showed a substantial performance improvement. The performance metrics
reported in the table are empirical accuracies obtained by measuring the performance of the
models against the ImageNet 2012 validation dataset, using the Keras implementations. They
may differ from the performance reported in the original studies. m means millions (106) and
b means billions (109). The models that were used as students are formatted in bold.

Model Input size #Params FLOPs Top-1 acc. Top-5 acc.

NasNetLarge 331x331 89m 24b 82.44% 96.02%
InceptionResNetV2 299x299 56m 13b 80.44% 95.31%

Xception 299x299 23m 8.4b 78.92% 94.47%
EfficientNetB7 256x256 67m 37b 77.88% 93.87%
DenseNet201 256x256 20m 8.8b 77.75% 93.83%
DenseNet169 256x256 14m 6.7b 76.60% 93.39%
ResNet50 256x256 26m 4.1b 75.53% 92.53%

DenseNet121 256x256 8m 5.7b 75.47% 92.68%
EfficientNetB0 256x256 5m 0.4b 75.17% 92.34%
MobileNetV2 256x256 4m 1.3b 73.11% 91.29%
MobileNetV1 256x256 4m 2.3b 71.73% 90.44%

4.5 Experiments and results

This section provides an overview of the dataset that has been used in the
experiments included in this chapter, describes the experiments performed and
shows the results achieved.

4.5.1 Setup

The ILSVRC2012 ImageNet dataset has been used in all the experiments (Rus-
sakovsky et al., 2015), given its large popularity and numerous available bench-
marks. It is composed of 1.3 million images, each of which belongs to only
one class out of 1000 available classes. The data is provided in three separated
subsets: train, validation and test, with 1.2M, 50,000 and 100,000 images in
each set, respectively. The ground truth labels are provided for the train and
validation sets, but not for the test set (i.e. the test set is unlabeled).

The original dataset comes with images at different sizes and aspect ratios.
Three different sets with the following sizes have been generated: 256x256,
299x299 and 331x331 (see table 4.1 for the detailed model input sizes specifica-
tions). For that, first the images were resized so that their short edge matches
the desired size and then center-cropping has been applied to get a square image,
as it is common in these cases. Pixel values centering and scaling have been
applied as per the functions provided with Keras along with each pre-trained
model. No data augmentation has been used along this study.

In this work, the unlabeled test set is used as transfer dataset and the original
validation set to measure and report performance (leaving 5% out of the latter
for development purposes).

Several experiments have been conducted to prove that the methodology
described in this chapter scales to different settings. In those experiments, the
following factors have been varied:
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• Student : different small models are used as students to analyze how the
methodology works with different students. The models used as students
are: EfficientNetB0, MobileNetV2, DenseNet121 and Xception. The reason
those models are chosen as students and not the strictly smallest models is to
favour variability in the architectures (e.g. MobileNetV1 and MobileNetV2
are very similar architectures, so only one of them was chosen).

• Teachers set : according to the performance shown in table 4.1, different sets
of teachers are selected to build the distillation target: the “best” teacher (i.e.
NasNetLarge), the “3-best” teachers (i.e. NasNetLarge, InceptionResNetV2
and Xception) and “all” the 11 teachers.

• Teachers blending methods : the different sets of teachers are combined with
the methods described in the section 4.4.2. These methods are referred
in the tables below as “mean”, “median”, “random”, “maximum correlation”
and “minimum entropy”. In the results section, the “best” teacher set is
treated as a blending method4, to facilitate the reader to compare how
different blending methods compare with just taking the best teacher as
target (i.e. the NasNetLarge model).

The set of experiments conducted in this study is represented in the schema
of figure 4.2.
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Figure 4.2: Schema representing the combination of techniques tested in this study.

4Indeed, it can be seen as a special case of a selective blending method where the best
teacher model is always selected.
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Each experiment has been repeated 5 times to add more robustness to the
results, totalling to 220 trained models. The students’ initial weights have always
been fixed to the pre-trained weights for the ImageNet classification task, across
all the experiments. During training, no layers have been frozen, allowing the
optimizer to fine-tune all the weights in the student network. The temperature
of the softmax in the output of the last layer has been increased in all the
cases to match the normalized soft-targets distribution, as described in section
4.4.2. Each model has been trained for 100 epochs, and the results are presented
in the next section at the early stopping point (as per its performance in the
development set). An Adam optimizer (Kingma & Ba, 2014) and a learning rate
of 10−6 have been used along all the experiments.

In the experiments the hyperparameter S = 0.35 is fixed, and the value of T
is determined for every pre-trained model using the bisection method with the
transfer dataset. This value of S has been chosen so that it produces an average
temperature across the models of 2.0, which is close to the range recommended
in (G. Hinton et al., 2015). Doubling the temperature parameter showed no
noticeable improvements.

To run the experiments, a single Nvidia RTX 2080ti GPU has been used,
and the code has been implemented in Tensorflow 2.0.

4.5.2 Results

Table 4.2 summarize the results achieved by each of the experiments run over
the ImageNet dataset. The metrics reported are the top-1 accuracy and the
top-5 accuracy, as it is standard in ImageNet benchmarks, at the early stopping
epoch. The results are expressed as the average metric ± the standard error.

As it can be seen in the table, the proposed methodology achieves an absolute
accuracy increase over the student’s original top-1 accuracy of up to +3.10%,
+1.01%, +0.97% and +0.38% for the EfficientNetB0, MobileNetV2, DenseNet
and Xception students, respectively.

The experiments showed that building a teacher signal by combining “all”
the pre-trained models, or combining the “3-best” ones, leads to similar results.
However, in some cases the results of distilling the combination of “all’ the
teachers is superior than the “3-best” (e.g. DenseNet121 as student), but also
the contrary occurs (e.g. EfficientNetB0 as student). Additionally, using only the
“best” model as teacher often leads to overfitting issue, as it can be seen in figure
4.3 (notice how the accuracy quickly degrades after reaching the maximum).

Regarding the teacher combination method, the results show that the “median”
method gets, in general, worse results than the “mean” method. Besides, the
“min entropy” method achieves many of the best results when applied over the
3-best teachers (in 3 out of 4 student models as per the top-1 accuracy), but it
is the winner blending method only once when applied with “all” the teachers.
The results of the “max correlation” method, although they are superior to
the original performance and competitive with the other methods, they do not
seem to work as well as other methods. The techniques that better perform are
the “min entropy” blending method followed by the “mean” blending method
(both of them being the winner methods in 7 out of 8 teachers set and students
combinations, as per top-1 accuracy).

Figure 4.3 shows the training curves for all the cases. As it can be seen in the
figure, there are models for which the accuracy degrades more than the others
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after reaching the maximum accuracy (for instance this is the general trend of
the “best” teacher).

Choosing a very small learning rate was crucial to achieve the performance
reported. Higher learning rates (10−5 and 10−3) were tested leading to worse
performances (sometimes even worse than the original pre-trained model). How-
ever no exhaustive studies are performed around learning rate sensitivity due
to the high resource requirements involved. This effect can be explained by the
presence of catastrophic forgetting (French, 1999), which leads to overfitting to
the transfer set when the learning rate is too large. The results are expressed as
the average metric ± the standard error across the five repeated experiments.

Table 4.2: Results in top-1 and top-5 accuracy (%) for all the experiments. Each column in
the table represents a different teacher set. The experiment that achieved the best performance
for each student is highlighted in bold, a star symbol is added ? in case the difference is
significant with respect to the original accuracy with α = 0.05 (as per a one-sided one-sample
t-test conducted separately for the Top-1 and Top-5 accuracy results). A second star symbol
highlights the experiments that significantly beat the distillation with the best teacher (as per
a one-sided two-samples t-test with α = 0.05)

.

Top 1 accuracy Top 5 accuracy
Student
(Orig accuracy)

Blending
method 3-best teachers all teachers 3-best teachers all teachers

EfficientNetB0 Best 78.14 ± 0.02? 78.14 ± 0.02? 94.17 ± 0.00? 94.17 ± 0.00?
(top1: 75.17) Mean 78.20 ± 0.02 ? ? 78.07 ± 0.01? 94.17 ± 0.01? 94.01 ± 0.00?
(top5: 92.34) Median 78.18 ± 0.01 ? ? 77.98 ± 0.01? 94.10 ± 0.01? 93.93 ± 0.01?

Random 78.21 ± 0.01 ? ? 78.05 ± 0.01? 94.08 ± 0.01? 93.99 ± 0.01?
Min Entropy 78.27 ± 0.01 ? ? 77.94 ± 0.01? 94.16 ± 0.01? 94.07 ± 0.01?
Max Correl. 78.18 ± 0.02? 77.79 ± 0.01? 94.13 ± 0.01? 93.89 ± 0.01?

MobileNetV2 Best 73.85 ± 0.01? 73.85 ± 0.01? 91.83 ± 0.01? 91.83 ± 0.01?
(top1: 73.11) Mean 73.99 ± 0.01 ? ? 74.11 ± 0.02?? 91.86 ± 0.01 ? ? 92.02 ± 0.01 ? ?
(top5: 91.29) Median 73.92 ± 0.00 ? ? 74.04 ± 0.01 ? ? 91.84 ± 0.01? 91.91 ± 0.01 ? ?

Random 73.96 ± 0.01 ? ? 74.03 ± 0.01 ? ? 91.88 ± 0.00 ? ? 91.96 ± 0.01 ? ?
Min Entropy 74.12 ± 0.01 ? ? 73.91 ± 0.02 ? ? 91.87 ± 0.01 ? ? 91.84 ± 0.01?
Max Correl. 73.94 ± 0.01 ? ? 73.84 ± 0.01? 91.78 ± 0.01? 91.77 ± 0.01?

DenseNet121 Best 75.83 ± 0.01? 75.83 ± 0.01? 92.95 ± 0.01? 92.95 ± 0.01?
(top1: 75.47) Mean 75.92 ± 0.01 ? ? 76.44 ± 0.02?? 93.04 ± 0.01 ? ? 93.30 ± 0.01 ? ?
(top5: 92.68) Median 75.87 ± 0.02? 76.42 ± 0.02 ? ? 92.98 ± 0.01 ? ? 93.29 ± 0.01 ? ?

Random 75.92 ± 0.02 ? ? 76.43 ± 0.01 ? ? 93.03 ± 0.01 ? ? 93.30 ± 0.01 ? ?
Min Entropy 76.00 ± 0.01 ? ? 76.09 ± 0.01 ? ? 93.10 ± 0.01 ? ? 93.27 ± 0.01 ? ?
Max Correl. 75.84 ± 0.02? 76.21 ± 0.02 ? ? 92.96 ± 0.01? 93.20 ± 0.02 ? ?

Xception Best 79.11 ± 0.01? 79.11 ± 0.01? 94.55 ± 0.01? 94.55 ± 0.01?
(top1: 78.92) Mean 79.30 ± 0.02?? 79.16 ± 0.02 ? ? 94.70 ± 0.01?? 94.65 ± 0.00 ? ?
(top5: 94.47) Median 79.18 ± 0.01 ? ? 79.19 ± 0.01 ? ? 94.65 ± 0.01 ? ? 94.63 ± 0.01 ? ?

Random 79.27 ± 0.02 ? ? 79.14 ± 0.01 ? ? 94.68 ± 0.01 ? ? 94.59 ± 0.01 ? ?
Min Entropy 79.31 ± 0.02 ? ? 79.17 ± 0.01 ? ? 94.64 ± 0.01 ? ? 94.69 ± 0.01 ? ?
Max Correl. 79.19 ± 0.01 ? ? 78.82 ± 0.01 94.58 ± 0.00 ? ? 94.44 ± 0.00

Finally, the accuracy increase depends substantially on the model being used
as student, where the smaller student models are the ones that show the greatest
accuracy increases.

Challenging the initial assumptions

With the aim of de-biasing the initial assumptions and gaining a better un-
derstanding of the dynamics of the proposed methods, this section includes
the results of combining the teachers with the “minimum correlation” and with
the “maximum entropy” methods (as opposed to the “maximum correlation”
and “minimum entropy” methods described in section 4.4). The results are
summarized in table 4.3, which shows that in the vast majority of cases the
original definition gets significantly higher accuracy than the opposite case. This
observation demonstrates that the assumptions taken upon the original methods
definitions were accurate. The training curves of these experiments can be seen
in figure 4.4, included in the appendix.
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Figure 4.3: Absolute difference of top-1 accuracy (left) and top-5 accuracy (right) with
respect to the baseline. The x-axis represents the number of training epochs, and the y-axis
shows the absolute difference in performance with respect to the baseline. Each row in the
grid represents a different student model. For comparison purposes, the training curve of the
student trained by distilling the knowledge of the best teacher is included as a black line.

4.5.3 Discussion

This chapter shows how it is possible to improve current low-resource pre-trained
models by fine-tuning them on larger teacher soft-targets. This is, presumably, the
first work that attempts to apply knowledge distillation techniques to pre-trained
models. The aforementioned observations lead to the following conclusions: (1)
the smaller the student model, the higher the accuracy increase, (2) increasing
the number of teachers often leads to more stable training process, reducing the
overfitting, and (3) the “min entropy” and the “mean” teacher blending methods
often show significantly superior results compared to the rest of methods.

Smaller pre-trained models generally have lower performance than their larger
counterparts. This is due, among other possible reasons, to the fact that smaller
models have less modeling capacity. Consequently, smaller models have the
highest performance gap with the larger pre-trained models, and this has a
strong implication in conclusion (1). If the performance gap between the original
student model and the teacher signal is large, the student has a larger room for
improvement, and hence the observed accuracy increase is larger.

In conclusion (2), distilling the knowledge of multiple teachers often leads to
better results than using a single one. The intuition behind that observation is
that the variability in the soft-targets increases as more models are combined,
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and that increases the amount of dark knowledge, helping the student model
reach a better solution.

In addition, from the training curves of figure 4.3, it can be concluded that
the training processes of the experiments that use larger sets of teachers seem to
be more robust, in the sense that the accuracy does not quickly degrade after
reaching the maximum accuracy. The hypothesis behind this phenomenon is that
when several teachers are combined to build the distillation target, the complexity
of the classification task increases and that has, in essence, a regularization effect.

.

Table 4.3: Results in top-1 and top-5 accuracy (%) comparing the original “min entropy” and
“max correlation” methods with their opposite counterparts. In each comparison, the method
that achieved the maximum accuracy is highlighted in bold, and a star symbol ? is added
where the difference was statistically significant with α = 0.05 (as per a one-sided two-sampled
t-test).

Top 1 accuracy Top 5 accuracy
Student Blending method

best-3 teachers all teachers best-3 teachers all teachers

EfficientNetB0 Min Entropy (original) 78.27 ± 0.01? 77.94 ± 0.01? 94.16 ± 0.01? 94.07 ± 0.01?
Max Entropy (opposite) 78.0 ± 0.01 77.56 ± 0.02 94.0 ± 0.01 93.75 ± 0.00
Max Correl. (original) 78.18 ± 0.02? 77.79 ± 0.01? 94.13 ± 0.01? 93.89 ± 0.01?
Min Correl. (opposite) 78.07 ± 0.02 77.26 ± 0.01 94.08 ± 0.01 93.66 ± 0.01

MobileNetV2 Min Entropy (original) 74.12 ± 0.01? 73.91 ± 0.02? 91.87 ± 0.01? 91.84 ± 0.01?
Max Entropy (opposite) 73.69 ± 0.01 73.38 ± 0.02 91.65 ± 0.01 91.44 ± 0.01
Max Correl. (original) 73.94 ± 0.01? 73.84 ± 0.01? 91.78 ± 0.01 91.77 ± 0.01?
Min Correl. (opposite) 73.83 ± 0.01 72.57 ± 0.01 91.77 ± 0.02 91.29 ± 0.01

DenseNet121 Min Entropy (original) 76.00 ± 0.01? 76.09 ± 0.01? 93.10 ± 0.01? 93.27 ± 0.01?
Max Entropy (opposite) 75.55 ± 0.02 75.49 ± 0.02 92.8 ± 0.01 92.86 ± 0.01
Max Correl. (original) 75.84 ± 0.02? 76.21 ± 0.02? 92.96 ± 0.01 93.20 ± 0.02?
Min Correl. (opposite) 75.66 ± 0.01 75.29 ± 0.02 92.94 ± 0.01 92.83 ± 0.01

Xception Min Entropy (original) 79.31 ± 0.02? 79.17 ± 0.01? 94.64 ± 0.01? 94.69 ± 0.01?
Max Entropy (opposite) 78.78 ± 0.02 78.40 ± 0.01 94.46 ± 0.01 94.16 ± 0.01
Max Correl. (original) 79.19 ± 0.01? 78.82 ± 0.01? 94.58 ± 0.00? 94.44 ± 0.00?
Min Correl. (opposite) 78.76 ± 0.02 77.45 ± 0.02 94.44 ± 0.01 93.82 ± 0.0

Another important observation is that the standard error of the results is
very small (see table 4.2) because the initial weights in each student are the same
across the 5 repetitions: the weights of the pre-trained model. The variability
reported is produced by stochastic processes other than the initialization, such
as dropout, the mini-batches arrangement, or the random teacher selection.

In conclusion (3), the “min entropy” and the “mean” methods seem to be
the ones producing the best results more often. Also, the “median” and “max
correlation” methods do not perform as well as the rest. In the “median” case,
this may be happening because, when using this blending method to combine
the teacher predictions, the probability distribution is not preserved (i.e. the
output probabilities for every class do not sum to 1), having to apply a posterior
renormalization step. This process may add some noise to the new distillation
target. However, it is not clear why the “max correlation” method is not as good
as the rest of methods.

The results reported by this study are relevant given that the methods
described are able to increase the performance of pre-trained models, leading
to classifiers with significantly higher performance for the same computational
budget. For instance, it was shown that by distilling the knowledge of the
3-best teachers into the EfficientNetB0 student using the “random” teachers
combination method (one of the best results achieved, as shown in table 4.2),
the student ends up performing better than the EfficientNetB7, as per the top-1
accuracy (see table 4.1), while only requiring less than 7.5% of the parameters
and 1.05% of the computation (around 100× fewer FLOPs) than EfficientNetB7
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(M. Tan & Le, 2019).
The training process described on this study is also advantageous from the

computational standpoint. The ImageNet training dataset is roughly 12.8×
larger than the transfer dataset used to fine-tune the students. Additionally,
the number of FLOPs of the students is, on average, 3.5× smaller than the
teachers’. The compound effect of needing less data to train and having less
computationally intensive models, leads to a process that needs 3.5 ·12.8 = 44.8×
less computation. This means that provided with same-size batch sizes and the
same number of training steps, the training process of the teachers would need,
on average, about 44.8× more operations than the students fine-tuning.

4.6 Conclusions

The experiments of this chapter show how by using simple knowledge distillation
techniques, the accuracy of the smallest pre-trained models increase in just
few training epochs. This discovery opens potential new research lines towards
more sophisticated teacher blending techniques or distillation methodologies.
This can also motivate the research of novel training techniques, alternative or
complementary to backpropagation given that, as empirically demonstrated, the
pre-trained models still did not reach their maximum capacity.

4.7 Appendix

This section includes the training curves for comparing the “min entropy” and
“max correlation” methods with their opposite counterparts.
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Figure 4.4: Absolute difference of top-1 accuracy (left) and top-5 accuracy (right) with
respect to the baseline. The x-axis represents the number of training epochs, and the y-axis
shows the absolute difference in performance with respect to the baseline. Each row in the
grid represents a different student model.





Chapter 5

End to end sales forecast with
deep learning models

5.1 Overview

Accurate and fast demand estimation is one of the key processes in supply chain
that enables the precise execution of the corresponding downstream processes
(inbound and outbound planning, inventory placement, network planning, etc).

In this chapter, three alternatives are proposed to tackle the problem of
forecasting the customer sales at day/store/item level using deep learning tech-
niques and the Corporación Favorita dataset, published as part of a Kaggle
competition. This chapter focuses on building a single end-to-end model, which
is more convenient than a multi-model strategy from energy efficiency and model
maintenance perspectives. The empirical results show how good performance can
be achieved by using a simple sequence-to-sequence architecture with minimal
data pre-processing effort. Additionally, a training trick for making the model
more time independent is described, and it showed evidences towards improving
generalization over time. The proposed solution achieves a RMSLE of around
0.54, which is competitive with other more specific solutions to the problem
proposed in the Kaggle competition.

The development and usage of a standalone forecasting model that generalizes
across time, locations and items requires less computational resources than fitting
models for all the combinations. One of the main reasons is that a single global
hyper-parameters search effort is required. In that search it is shown that for
this particular case study simpler models (RNN-based) perform better or equal
than large ones (transformer-based). In addition, evidences are found about the
ineffectiveness of providing the models with historical information beyond the
last 75 days, and this drastically reduces the amount of computation needed at
inference time.

All the code used in the experimentation part of this work has been made
publicly available in a repository1.

1https://github.com/ivallesp/cFavorita

https://github.com/ivallesp/cFavorita
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5.2 Introduction

The retail industry economic activity is moving online. In the last years, e-
commerce companies are gaining more and more adepts every day. E-Marketer
(Cramer-Flood, 2020; Lipsman, 2019) reported consistent year on year growths
in number of sales, being more than 13% between 2015 and 2020 in the US. The
percentage of total sales in the US owned by e-commerce companies increased
from 8,9% to 14,5% in 2020 (Cramer-Flood, 2020; Lipsman, 2019).

The continuously increasing demand requires the online industries to con-
stantly improve their supply chain systems. This process entails multiple chal-
lenges such as: optimal inventory placement (S. Graves & Willems, 2008)accurate
network expansion (Badri et al., 2017), precise inbound and outbound planning
(Kaipia, 2009), etc. One of the most important wires that enables all those
improvements is the ability to accurately forecast the customer demand for
different products, locations and times (Forslund & Jonsson, 2007).

This study proposes several alternatives to solve the demand forecast problem
in an end-to-end manner using deep learning techniques (Goodfellow et al., 2016).
The generalization power of these algorithms enables solving the problem using
a single model for all the different locations and products time series, while other
algorithms like the ARIMA family of models (Hyndman, 2018) only can tackle
one product-location time series at a time.

Two approaches are described in this chapter: (1) a sequence-to-sequence
(seq2seq hereafter) architecture with product and (2) location conditioning and
an adapted transformer architecture for time series forecasting.

5.2.1 Data

The Corporación Favorita Grocery Sales dataset has been used to conduct
this study (Corporación Favorita, 2018). Corporación Favorita, an Ecuadorian
company owner of multiple supermarkets across Latin America, released this
dataset around 2017 as a Kaggle competition to challenge the community to
forecast their sales. It contains daily sales records for 4,400 unique items, in
54 different Ecuadorian stores from January 1st 2013 to August 15th 2017.
Additional data provided along with the number of sales are described below.

• ID variables: date, store number and item number.

• Promotions: a binary variable indicating if a given item, in a given store
at a given time was on promotion.

• Store information: location (city and state) and segment (type and cluster).

• Item information: item family, class, and a binary variable indicating if
the item is perishable.

• Transactions: number of total sales for each store at each date.

• Oil price: price of the oil on each date.

• Holidays and events: dates, locations and types of holidays.
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Figure 5.1: Long tail distributions for items (left) and stores (right). Y axes represent total
sells across all the history (around 5 years).

As it is usual in the supply chain organizations, the distribution of sales
across products is very uneven (see Figure 5.1-left where the top 10% of the
products bring the 44% of the sales). The same characteristic is observed in the
case of the stores (see Figure 5.1-right where the top 10 stores bring 40% of the
sales). The sales for some products are very sparse: during the test period, the
probability of having any sells for a given product in a given day is 47.6%, i.e.
more than half of the days in the time series will have value of zero.

As it can be noticed in Figure 5.2, the total sales show clear year on year
trends as well as a very remarkable weekly seasonality (see Figure 5.3). There is
also a peak of sales at the end of each year
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Figure 5.2: Daily total sales for the 5 years included in the data.

The dataset does not contain records for items in days when there were zero
unit sales. It also lacks information about the available inventory. These two
factors together make the forecast effort more complicated, given that when
there are zero sales of a given product in a store at a given date, it can be either
because there was not available inventory, or because there was inventory but
not demand (or both of them at the same time).

Estimating the actual demand of a retailer is not a straightforward task
(Deep & Salhi, 2018). In this case, the quantity being forecasted is the number of
sales. That would have an important implication in the demand estimation: the
number of sales represent the demand as long as there exists available inventory.
Hence, the quantity estimated by the machine learning model will be the demand
bounded by the inventory min(demand(i, s, d), inventory(i, s, d)), where i, s
and d are the inventory, the store and the date. There are techniques to correct
the demand in these cases (e.g. (Bell, 2000)), however this chapter focuses on
building a forecast model. It is out of the scope to deal with that inconvenience.
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Figure 5.3: Weekly pattern detail, including the 2014 sales.

5.3 Previous work

Several works have been published discussing the application deep learning
techniques for demand and sales forecast in the supply chain environment. The
authors of (Kilimci et al., 2019) use several multilayer perceptrons (MLP) to
build a unified forecast and compare it with more classical techniques. The main
disadvantage of this approach is that it requires heavy feature engineering work,
as the MLPs are not suitable to deal with time series. In a supply chain problem,
this is not practical given the huge quantity of data normally available. In the
work by (Talupula, 2018), different deep learning architectures based on CNNs,
LSTMs and MLPs are compared over an outbound demand forecast task, using
data from a retailer.

Similarly, (Helmini et al., 2019) compare a deep learning model based on
LSTMs with peephole connections with more classical approaches using tree-
based models. The difference with the proposed approach is that it offers a set of
flexible architectures capable to deal with multi-modal data more efficiently, while
the models proposed in these works can only deal with time series. Furthermore,
the proposed approach uses sequence-to-sequence modeling, which minimizes
the error across all the predicted sequence. The authors of the aforementioned
papers use a next-step prediction auto-regressive model, which only optimizes
the error of the next time step.

However, only a few reports were found where this dataset was used for
benchmarking. In (Kechyn et al., 2018), the authors used the WaveNet (van den
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Oord, Dieleman, et al., 2016) architecture to build an auto-regressive forecast.
They achieved the 2nd position in the Kaggle competition that published the
Corporación Favorita data. The authors only show some charts summarizing their
results, pointing to root mean squared weighted logarithmic errors (RMSWLE)
of around 0.578 (see metrics definitions in section 5.5.2). However, they do not
give many details about the architecture used and the experimental framework.
They also do not specify the period of time used to measure the errors.

The authors of (Calero & Caro, 2018) used multiple classical techniques
(historical average, ARIMA/SARIMA, seasonal-naïve and exponential smooth-
ing) to forecast the daily sales. These techniques do not consider multiple sale
points and products at the same time. They reach a minimum RMSWLE of
0.555. These solutions achieve competitive results, however, they require training
one model per item and store (around 238,000 models), which is not a scalable
approach for a production environment and constitute a non energy efficient
alternative. The methods proposed in this chapter consist of a single model that
is used over all the time periods, items and points of sale.

Other studies using the same dataset have been found: (Curtin et al., 2020;
Khamis et al., 2020; Kuleshov et al., 2018; Lim et al., 2019; Malik et al., 2019;
Schleich et al., 2019; Shaikhha et al., 2020; J. Wang et al., 2020). Although
some of them may be interesting for the supply chain goals, they deviate from
the demand/sales forecast goal, hence they will not be covered in this section.

5.4 Methods

The size of the chosen dataset (around 4 · 108 samples) enables the use of deep
learning models. Two different neural architectures have been designed: a seq2seq
model and a transformer model.

5.4.1 Seq2seq

A sequence-to-sequence architecture (abbreviated as seq2seq) is a model that is
trained to map an input sequence to an output sequence (also known as sequence
transduction), without any length restriction in both sides (input and output
sequences can be of different length) (Sutskever et al., 2014). This architecture
contains two main blocks: one encoder and one decoder. The encoder consists
of a recurrent neural network which processes the input sequence, one sample
at a time, condensing all the relevant input sequence information into a fixed
length context vector. This vector is usually the last hidden state of the encoder
ht (Kamath et al., 2019). The decoder, also consisting of a recurrent neural
network, generates the output sequence conditioned to the context vector. Both
modules are trained together to minimize an error term over the output.

For the purpose of the current objective, the original seq2seq architecture
has been slightly modified to condition the context vector to a set of static
(non time-dependent) features (see Figure 5.4 for a graphical representation
of the architecture). To achieve that, the original context vector ht has been
concatenated with the static features (item and store embeddings and related
features) and then passed into a feed-forward neural network with two hidden
layers. The context conditioning module is an important part of the network
because it allows the model to adapt the predictions to each product and store.
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Figure 5.4: Seq2seq architecture diagram. The left box shows the encoder, which takes
the historical actual sales yi as input as well as other exogenous time-dependent features (i.e.
oil price, holidays and events, transactions and promotions) denoted by xi, and returns the
hidden vector ht of the last recurrent module as output (aka context vector). The middle of
the figure shows the context conditioning module, which is the variation proposal over the
original sequence-to-sequence proposal. This module receives the context vector ht from the
encoder module and concatenates it with static data x̂ producing a conditioned context vector
ĥt = (ht, x̂). Finally, on the right, the decoder module receives as initial state the conditioned
context vector and provides the first recurrent cell with a go symbol (constant input indicating
the input of the decoded sequence). The decoder generates the sequence prediction in an
auto-regressive way and f is a stack of two fully-connected layers applied to each output of
the decoder.

The output of the feed-forward neural network has been used as the initial hidden
state of the decoder. Other possible alternative would be to concatenate the
static information along with every element of the input sequence. However the
former approach was favoured given its benefit in terms of energy efficiency. The
input of the first recurrent cell of the decoder is a special symbol that indicates
the model that it is the first step of the output sequence. In this case, the special
symbol is a vector containing all zeros.

The decoder module is an auto-regressive model trained to predict the
immediate next step, i.e. the predicted value for time step t is used as input for
the prediction of time step t+ 1.

5.4.2 Transformer

Transformer architectures were firstly published in 2017 (Vaswani et al., 2017).
This architecture removes the need to use recurrent neural networks by imple-
menting attention and self-attention mechanisms (Bahdanau et al., 2015). Like
seq2seq architectures, the transformers are able to map an input sequence to
an output sequence, with potentially different lengths. Similar to the seq2seq
models, they also consist of two blocks: the encoder and the decoder; which
function similarly as in the seq2seq architecture.

The attention mechanism can be described as shown in equation 2.16. Where
Q, K, V stand for query, key and value, respectively. These three pieces represent
an analogy, introduced by (Vaswani et al., 2017), of the information retrieval
systems where a query is used in order to look for the matching key (or the
most similar one) and retrieving its value. The attention mechanism working
principle is similar to those systems (refer to section 2.3.4 for a deeper review
of the attention mechanism). There are many possible differentiable similarity
functions (f) that can be used (Kamath et al., 2019). The authors of (Vaswani
et al., 2017) propose the scaled dot product as similarity function, given that
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it is scaled so that different length sequences can be easily compared together.
The scaled dot product is defined in equation 2.18, where dK represents the
length of the key vector K. This version was adopted as it showed to work well
in the initial transformer publication. The original transformer architecture is
described in detail in section 2.3.4.
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Figure 5.5: Transformer architecture used to perform time series forecasting. In the diagram,
the || symbol stands for the concatenation operation, and similarly as in (Vaswani et al., 2017),
NX represents the number of repetitions of the encoder and decoder blocks.

A slight modification has been performed over the original transformer,
removing the softmax operation of the output and only using the categorical
embeddings for the categorical inputs. This is necessary in this case because the
task is a regression and not a classification.

Following the information retrieval analogy and as illustrated in the figure
5.5, there are two types of attention being used in this architecture.

• encoder-encoder attention: this is a form of self-attention that is used in
the encoder module. In it, the query, the key and the value come from the
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same time series.

• decoder-decoder masked attention: also a form of self-attention with the
particularity that the operation is forced to be causal, i.e. it only uses time
steps from the past, the future ones are masked out. The query, key and
value come from the same time series.

• encoder-decoder attention: this attention mechanism compares the decoder
information with the encoder one, hence it is not self-attention. The query
comes from the decoder while the key and value are taken from the encoder
output.

To train the transformer architecture the teacher forcing technique is used
(Goyal et al., 2016; Williams & Zipser, 1989). It consists of feeding the decoder
with the target sequence, right-shifted by one sample so that the training can
be done in one single calculation per batch. This technique is commonly used
in auto-regressive models to improve the speed of training, and showed good
results in the literature (Vaswani et al., 2017).

At inference time, teacher forcing is no longer available (because the future
time steps of the time series are unknown) so auto-regression is used to compute
the next steps recursively (i.e. the predicted sample is fed back to the input
in order to predict the next sample). For a more detailed discussion of the
transformer architecture, refer to section 2.3.4.

5.4.3 Random max time step trick
At training time and with the aim of improving generalization over different
periods of time, each mini-batch has been constructed so that the maximum
time step (the most recent one) is drawn randomly from the time line. This trick
allows the algorithm to learn a model that generalizes over different periods of
time, preventing it to overfit to a single time span.

5.5 Experiments and results

5.5.1 Setup
The dataset provided has intentionally been minimally pre-processed as one of
the goals of the current study is to provide a simple and flexible solution to the
sales forecast problem. The most important transformation consisted of filling
the zero sales records, as the dataset was provided without them. The numerical
input variables have been standardized (N(0, 1)) while the categorical variables
have been turned into one hot encoding representations. The target variable has
been scaled using a logarithmic transformation, as suggested by the authors of
the dataset in the Kaggle competition (Corporación Favorita, 2018). The ID
variables corresponding to the store and the item have been used as an input to
an embedding lookup layer to give the model the opportunity to learn store or
item related information.

The model has been trained using daily data from January 1st 2013 to May
27th 2017, to produce daily forecasts of the next 16 days2 from any present

2This is not an arbitrary decision, the 16 days were chosen because that was the requirement
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day. Data from June 13th 2017 to June 28th 2017 have been used for validation
purposes and the next 3 16-days time spans (June 29th to July 14th, July 15th
to July 30th and July 31st to August 15th, referred subsequently as period 1, 2
and 3 respectively) have been used to test the performance of the algorithms.

The random max time step has been constrained not to lay before October
29th 2013, to assure that the model has at least 300 days of history to learn
from.

In the seq2seq model all the history (from January 1st 2013) has been used as
input. In the transformer model, given the quadratic computational complexity
dependence on the length of the input sequence, the history had to be shortened
to 200 days. In the spirit of fair comparison, an alternative seq2seq version
(referred subsequently as seq2seq trimmed) has been trained using the 200 most
recent time steps in every mini-batch. To facilitate the interpretation of the
results, two baselines have been included: random and average. The first one
consists of measuring the accuracy of a naïve prediction built by randomly
permuting the target variable. The second one consists of predicting the average
of the target variable for all the instances.

5.5.2 Results
The results have been measured using the root mean squared logarithmic error
(RMSLE, defined in equation 5.1), root mean squared weighted logarithmic error
(RMSWLE, defined in equation 5.2, where the perishable items are given a
weight of 1.25, and 1.0 to the rest), and mean absolute logarithmic error (MALE,
defined in equation 5.3).

RMSLE =

√√√√ 1

N

N∑
i=1

(log(ŷi + 1)− log(yi + 1))
2 (5.1)

RMSWLE =

√√√√√√√√√
n∑
i=1

wi (log(ŷi + 1)− log(yi + 1))
2

n∑
i=1

wi

(5.2)

MALE =

√√√√ 1

N

N∑
i=1

|log(ŷi + 1)− log(yi + 1)| (5.3)

In the previous equations, ŷi represents the predicted sales, yi represents the
actual sales and N is the total number of samples. The logarithmic component
of the error metrics was introduced because different products at different shops
have arbitrarily different demand levels. The usage of the logarithm scales the
unit sales distribution and makes the whole problem easier to measure. A natural
logarithm has been used along all this chapter. The RMSWLE error metric has
been introduced for easier comparison and benchmarking with future studies.

Figure 5.6 shows how the errors evolve in every epoch. Figure 5.7 decomposes
the error at store and item level, in order to show in detail how the errors vary

in the Kaggle competition. That choice would make sense for bi-monthly forecast publications,
as it would be applicable for months with 28, 29, 30 and 31 days.
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along these dimensions. Finally, Figures 5.8 and 5.9 show examples of actual
and forecasted time series in log and linear scales, respectively.
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Figure 5.6: Evolution of the train and validation (dev) error during the process of training,
for all the models.
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Figure 5.7: Distribution of the error across stores (left) and accross items (right) for every
model and for the three different test periods used.

As shown in figure 5.7, the performance is very similar across models. A
numerical comparison of the errors obtained for every model is presented in
Table 5.1. Additionally, a deeper daily analysis is provided in Figure 5.10. From
these figures, it can be noticed that the error is not distributed uniformly across
products, stores and time.

Table 5.1 shows that the three models perform similarly. However, the daily
figures show that the transformer error has more variability around the second
and fourth day of forecast. This may be due to the fact that the model has
been trained using teacher forcing (Goyal et al., 2016; Williams & Zipser, 1989),
and at inference time, an auto-regressive strategy has been used to compute
the forecasted sales. This may cause distribution shifts that impact the quality
of the forecast. Besides, the seq2seq models were much faster at training and
inference time. This is due to the quadratic complexity dependence on the
sequence length in the transformer architecture; in seq2seq it is linear. The
simplest model (seq2seq trimmed) was the fastest of the three alternatives, with
no noticeable decrease in performance, either in the general picture or in the
daily figures.
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Figure 5.8: Actual and forecasted sales in log scale for six examples of store-item combinations
representing the 0th (best prediction), 1st, 2nd, 5th 15th and 50th percentiles of RMSLE
(relative to the target variable average) from top to bottom. The three test periods have been
concatenated along the X axis. The error bars show the standard deviation across the 5 runs.
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Figure 5.9: Actual and forecasted sales in linear scale for six examples of store-item combina-
tions representing the 0th (best prediction), 1st, 2nd, 5th 15th and 50th percentiles of RMSLE
(relative to the target variable average) from top to bottom. The three test periods have been
concatenated along the X axis. The error bars show the standard deviation across the 5 runs.
Some of the examples are better viewed in log-scale (refer to figure 5.8).
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Figure 5.10: Daily RMSLE for the three test periods (in chronological order, from top to
bottom). The error bars shown in the figures represent the standard deviation of the three runs.
Despite the error spikes in the 2nd day of the forecast, an ANOVA test shows non-significant
differences between the average performance of the three models (with the following p-values:
0.0947, 0.1823 and 0.6181 for periods 1, 2 and 3, respectively).
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Table 5.1: Results of the models trained for three different time spans. All the models have
been trained five times to reduce the effect of different random initialization. The errors are
represented as mean ± standard deviation, across the five runs. The rows corresponding with
the models that achieved the lowest RMSLE have been highlighted in bold. At the bottom
of the table two benchmark metrics extracted from the previous works have been included.
However, the authors of those works do not clearly specify the period of time used to measure
the results, hence they should be used only as a reference.

Period Model RMSLE RMSWLE MALE
1 Seq2seq 0.5380± 0.0016 0.5376± 0.0016 0.3450± 0.0024

Seq2seq trimmed 0.5381± 0.0008 0.5377± 0.0008 0.3442± 0.0008
Transformer 0.5439± 0.0024 0.5436± 0.0023 0.3386± 0.001
Baseline: random 1.474± 0.0003 1.4795± 0.0003 1.0691± 0.0002
Baseline: average 1.0422 1.05 0.8744

2 Seq2seq 0.5431± 0.0014 0.5421± 0.0013 0.3475± 0.0012
Seq2seq trimmed 0.5413± 0.0019 0.5403± 0.0018 0.3444± 0.0012
Transformer 0.5495± 0.0021 0.5486± 0.0021 0.3415± 0.0012
Baseline: random 1.4649± 0.0002 1.4702± 0.0002 1.0577± 0.0003
Baseline: average 1.0358 1.0433 0.8655

3 Seq2seq 0.544± 0.0021 0.5431± 0.0021 0.3502± 0.0028
Seq2seq trimmed 0.5423± 0.0015 0.5414± 0.0016 0.3481± 0.0017
Transformer 0.5414± 0.0015 0.5407± 0.0014 0.3366± 0.0012
Baseline: random 1.4555± 0.0002 1.4606± 0.0002 1.0517± 0.0002
Baseline: average 1.029 1.0363 0.8616

Benchmark (Kechyn et al., 2018) - 0.5780 -
Benchmark (Calero & Caro, 2018) - 0.5550 -

5.5.3 Ablation study
This subsection contains an analysis of the effect of two core pieces of the
proposed architecture: the random max time step trick and the length of the
input sequences in the seq2seq trimmed model.

Random max time step trick

The seq2seq trimmed model is retrained without the random max time step trick.
Table 5.2 summarizes the errors obtained at the best iteration of each model,
averaged across five repeated runs. From the results one can conclude that when
the random max time step trick is used, the model achieves significantly superior
performance. This is due to the fact that randomizing the max time step helps
the model to capture behaviors of the target signal at different times. Figure
5.11, shows the training curves when the trick is used and when it is not used,
suggesting that the trick may also act as a regularization technique, as the model
is much less prone to overfitting when the trick is used.

Table 5.2: Results of the models trained with and without the random max time step trick.
All the models have been trained five times to reduce the effect of different random initialization.
The errors are represented as mean ± standard deviation, across the five runs. The rows
corresponding with the models that achieved the lowest RMSLE have been highlighted in bold.

Period Trick/No trick RMSLE RMSWLE MALE
1 Trick 0.5381± 0.0008 0.5377± 0.0008 0.3442± 0.0008

No trick 0.6077± 0.0055 0.6073± 0.0054 0.4037± 0.0171
2 Trick 0.5413± 0.0019 0.5403± 0.0018 0.3444± 0.0012

No trick 0.5895± 0.0042 0.5886± 0.0042 0.3892± 0.0216
3 Trick 0.5423± 0.0015 0.5414± 0.0016 0.3481± 0.0017

No trick 0.5929± 0.0127 0.5922± 0.0125 0.3938± 0.0318



End to end sales forecast with deep learning models 79

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
AL

E

Train MALE - Trick
Validation MALE - Trick
Train MALE - No trick
Validation MALE - No trick

Figure 5.11: Training and validation MALE curves of the seq2seq trimmed when using the
random max time step trick and when disabling it.

Input sequences length

As showed in the Table 5.1, the seq2seq model can be further simplified by
trimming the length of the input sequences. This subsection studies the minimum
length of the input sequence without significant performance degradation. For
that, the seq2seq model was retrained with different input sequence lengths to
determine where is the optimum. The Table 5.3 shows the results of the model
with the full sequences, and with sequences trimmed to 200, 75, 10, 1 and 0 time
steps (where 0 time steps means not using any input sequence information at
all, only static features).

The results show that it is possible to reduce the history sequence lengths
to up to 75 time steps without losing performance (and even slightly improving
the generalization). Further reductions to 10 and 1 time steps start showing
performance degradation. When not using input sequences (length=0) the
performance degrades notably, as compared to using only one time step. The
most plausible hypothesis is that this happens because the model needs some
reference level of number of sales per product to produce accurate forecasts.

5.6 Conclusions

Along this chapter, a seq2seq and a transformer architecture were proposed
as a set of models capable of solving the problem of sales forecasting for the
Corporación Favorita problem. Additionally, a trick (named random max time
step trick) is introduced, allowing to train the model to adapt to different time
steps, not requiring to retrain the model every time a prediction is needed.

It has been empirically proven, through the experiments described in this
chapter, that it is possible to build a forecast for different products, at different
points of sale and at different points in time using a single model. The seq2seq
trimmed model achieved the best performance at the lowest theoretical compu-
tational cost. For that reason, its usage is recommended for this type of use
cases.

Exploring smaller and more efficient architectures is left as future work (for
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Table 5.3: Results of the seq2seq models trained with different input sequence lengths. All
the models have been trained five times to reduce the effect of different random initialization.
The errors are represented as mean ± standard deviation, across the five runs. The rows
corresponding to the models that achieved the lowest RMSLE have been highlighted. An
asterisk is added to the experiments where the metric is significantly different than the full
sequence error (as per a two-tail T-test with α = 0.05).

Period Sequence length RMSLE RMSWLE MALE
1 Full 0.5380± 0.0016 0.5376± 0.0016 0.3450± 0.0024

200 0.5381± 0.0008 0.5377± 0.0008 0.3442± 0.0008
75 0.5372± 0.0016 0.5369± 0.0016 0.3458± 0.0034
10 0.5452± 0.0008∗ 0.5447± 0.0009∗ 0.3478± 0.0017
1 0.5812± 0.0042∗ 0.5807± 0.0042∗ 0.3795± 0.0029∗
0 0.8411± 0.0016∗ 0.8453± 0.0015∗ 0.5408± 0.0028∗

2 Full 0.5431± 0.0014 0.5421± 0.0013 0.3475± 0.0012
200 0.5413± 0.0019 0.5403± 0.0018 0.3444± 0.0012∗
75 0.5400± 0.0010∗ 0.5392± 0.001∗ 0.3458± 0.0009
10 0.5510± 0.0049∗ 0.5501± 0.0048∗ 0.3509± 0.0038
1 0.6162± 0.0035∗ 0.6156± 0.0037∗ 0.4011± 0.0032∗
0 0.8426± 0.0016∗ 0.8461± 0.0015∗ 0.5388± 0.0027∗

3 Full 0.5440± 0.0021 0.5431± 0.0021 0.3502± 0.0028
200 0.5423± 0.0015 0.5414± 0.0016 0.3481± 0.001
75 0.5418± 0.0026 0.5411± 0.0025 0.3499± 0.0047
10 0.5560± 0.0051∗ 0.5548± 0.0051∗ 0.3562± 0.0049
1 0.6360± 0.0058∗ 0.6352± 0.0062∗ 0.4163± 0.0041∗
0 0.8387± 0.0017∗ 0.8419± 0.0016∗ 0.5373± 0.0027∗

instance, smaller RNNs with shorter historical sequences), to further reduce
the computational cost of the proposed solution. In a real case, where more
information about the input variables is available, feature engineering may also be
useful in order to help finding better representations. Finally, more sophisticated
normalization methods for the target variable might be useful to deal with
different magnitudes and sparsity.
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Keyword Spotting with
efficient convolutions

6.1 Overview

Speech commands recognition is a very relevant task for human-computer in-
teraction at this time, due to the increase of the global interest in personal
assistants. The field of conversational agents is growing fast and there is an
increasing need for algorithms that perform well in order to enhance natural
interaction.

This chapter shows that state-of-the-art results can be achieved by adapting
and tweaking the Xception algorithm (Chollet, 2017), which achieved outstanding
results in several computer vision tasks. This architecture is designed to exploit
the computational benefits and efficiency of the depthwise-separable convolutions,
leading to a solution with significantly lower computational requirements than a
regular convolutional neural network. The solution obtained about 96% accuracy
when classifying audio clips belonging to 35 different categories, beating human
performance at the most complex benchmarks proposed. The source code that
has been used for this chapter has been uploaded to GitHub and can found in
the url of the footnote1.

6.2 Introduction

The world of voice-activated virtual assistants is booming mainly due to the fact
that several giant technological companies, (such as Amazon, Google, Microsoft,
Apple and Baidu) have already developed their own version. There is a huge
research community surrounding this field, potentially promoted by the recent
growth of the artificial intelligence (AI) paradigm.

There has been an outstanding evolution in this field, leveraging AI and
machine learning (ML) advances for making virtual assistants behave as close as
humans as possible. There are multiple open research lines, such as increasing
the accuracy and the relevance of the responses (Serban et al., 2017), reducing
the answer delay (S. Han et al., 2017) or increasing their variability of the

1https://github.com/ivallesp/Xception1d

https://github.com/ivallesp/Xception1d
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responses (J. Li et al., 2017). In particular, deep learning (DL) models have
revolutionized the field of automatic speech recognition (Nassif et al., 2019), as
language features are highly hierarchical.

This chapter focuses on studying the usage of DL models to increase the
accuracy of a voice command recognition task using a limited vocabulary.

An important factor to take into account is the small size and low power
specifications of the usual virtual assistants, which limit the complexity of the
models to implement. Furthermore, a low latency is needed to avoid harming
the users’ experience. DL models usually contain millions of parameters. For
that reason, the right choice of number of layers and their architecture is critical.
Using the cloud for processing audio commands can partially mitigate this.
However, continually transmitting to and from the cloud increases latency and
may not be an energy-efficient solution, as well as potentially hurting user
experience. Additionally, continuously streaming audio from a device to the
cloud may raise privacy concerns (Iqbal et al., 2022). Therefore, at least the
models that process the most common words in a vocabulary, such as keyword
spotting (KWS), should always be implemented on-device.

6.3 Previous work

The current commercial virtual assistants are still not as accurate as humans at
identifying human voice commands (Michaely et al., 2017). Although substantial
efforts have been made and nearly human performance has been reported in
several studies (Coimbra de Andrade et al., 2018; McMahan & Rao, 2017;
Warden, 2018; Y. Zhang et al., 2017), there is still room for improvement.

Bidirectional recurrent models with attention have been used (Coimbra de
Andrade et al., 2018) as these kind of structures are able to accurately model
past and future dependencies in the time domain, while attention focuses on
important parts of the audio clip. However, the authors state that there are
word pairs that are difficult to identify without extra context.

Gated convolutional long-short term memory (LSTM) structures have also
proven useful by other authors (D. Wang et al., 2018) to improve the state-of-
the-art results on the same data. According to this work, gated convolutions
help further learn the local features of speech, improving the model prediction
accuracy.

Due to their architecture, convolutional neural networks (CNNs) provide a
good approach to optimize computational resources for KWS. In (Sainath &
Parada, 2015), CNNs outperform other deep neural networks (DNNs) architec-
tures, such as recurrent reural networks (RNN), for the constrained KWS task.
Other works focus on the hardware implementation of neural networks for KWS
(Y. Zhang et al., 2017), comparing not only their accuracy, but also their memory
usage and computation efficiency. According to this work, depthwise-separable
(DS) CNNs achieve both the best accuracy and scalability among the tested
architectures. Transfer learning has also been applied to CNN architectures
(McMahan & Rao, 2017), showing substantial improvements in accuracy.
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6.4 Materials and methods

6.4.1 Data set

One of the major contributions to the collection of open datasets in the field of
speech commands recognition has been made by Google with the release of the
Google Tensorflow speech commands dataset (Warden, 2017; Warden, 2018). It
consists of a collection of thousands of utterances with a length of one second
containing short words, recorded by thousands of people. The recordings were
collected remotely, in uncontrolled environments (i.e. without any specific quality
requirements). The subjects were asked to say a chain of words during a minute.
Then, the recordings were split in clips of one second by extracting the loudest
sections of the signal using a voice activity detection system (Warden, 2017;
Warden, 2018).

Two different versions of the Google Tensorflow speech commands dataset
have been used for quantifying the performance of the algorithm across the
different tasks, as described subsequently. The versions 0.01 and 0.02 of the
dataset contain 64,721 and 105,829 audio clips of one second (each one containing
the recording of one voice command), respectively, with a sample rate of 16 kHz
and 16-bit resolution. Each of them is stored in wav format. The first data
version has up to 30 different commands while the second one has 35 of them.
The frequency distribution of the labels is described in Figure 6.1. For simplicity,
versions 0.01 and 0.02 will be referred as V1 and V2, respectively, from now on.

Four different tasks have been defined in order to benchmark the proposed
algorithm. They are thoroughly described below in decreasing complexity order.

• 35-words-recognition: consists of classifying all the different existing clips
(commands and plain words) in each of the different categories ( “left”,
“right”, “yes”, “no”, “down”, “up”, “go”, “stop”, “on”, “off”, “zero”, “one”, “two”,
“three”, “four”, “five”, “six”, “seven”, “eight”, “nine”, “dog”, “cat”, “wow”,
“house”, “bird”, “happy”, “sheila”, “marvin”, “bed”, “tree”, “visual”, “follow”,
“learn”, “forward”, “backward”). In the version V1 of the dataset there are 5
missing commands and hence, the task consists of a 30-class classification
task even though it is called 35-words-recognition.

• 20-commands-recognition: entails the categorization of all the clips repre-
senting the most commonly used commands in robotics (Warden, 2018)
and numbers (“left”, “right”, “yes”, “no”, “down”, “up”, “go”, “stop”, “on”,
“off”, “zero”, “one”, “two”, “three”, “four”, “five”, “six”, “seven”, “eight”, “nine”),
while the remaining words are grouped together in a synthetic category
named “unknown”.

• 10-commands-recognition: requires categorizing all the clips representing
the typical commands in robotics (“left”, “right”, “yes”, “no”, “down”, “up”,
“go”, “stop”, “on”, “off”), while the remaining clips are grouped together in
a synthetic category named “unknown”.

• left-right-recognition: consists of categorizing the clips belonging to the
“left” and “right” categories, while the rest of clips are grouped under a new
“unknown” category.



84 Chapter 6

Figure 6.1: Command frequency distribution for both versions of the dataset. The V2 is
a refined and extended version of V1. In the left, the four different tasks that have been
benchmarked in this work: (a) referred as 35-words-recognition and comprising in both cases
all the words for classification, (b) referred as 20-commands-recognition (c) referred as 10-
commands-recognition (d) referred as left-right recognition.

While it is true that, as more unrecognized words are grouped under the
“unknown” category the imbalance grows, in this kind of systems (KWS), the
precision should be optimized at the expense of a worse recall (in general, the
cost of a false positive is higher than that of a false negative). Thus, for this
purpose, having a positive imbalance towards the “unknown” class does not
represent an inconvenience. A summary of the percentage of words grouped
under the “unknown” category for each task is shown in Table 6.1.

Table 6.1: Percentage of words represented by the “unknown” category in each one of the
proposed speech recognition tasks.

Data set version 35-words 20-commands 10-commands left-right
V1 0.00% 26.84% 63.41% 92.71%
V2 0.00% 26.81% 63.58% 92.84%
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6.4.2 Data augmentation

Five different augmentations2 consisting of the application of a set of distortions
have been performed to each and every audio clip. These distortions consist of a
set of transformations being applied together over all the clips randomizing their
parameters and intensities in each case. The different distortions used in this
step are described below.

• Resampling : the audio clip is resampled extending or contracting its length
and hence changing its pitch (Proakis, 2007). If the resampling factor is
lower than one, the audio clip is contracted and then the audio duration
is zero-padded to keep the original duration of the original clips. On the
contrary, if the resampling factor is greater than one, the audio clip is
extended and a center-crop operation is performed in order to keep the
original length of one second.

• Saturation: the amplitude of the clip is increased by a given factor, po-
tentially saturating the audio clip. The higher the factor, the larger the
saturation of the clip (Proakis, 2007).

• Time offset : the audio clip is displaced in time by appending a set of zeros
to the beginning of the signal and cropping the end (right offset), or by
cropping a set of samples from the beginning, and adding the same number
of zeros at the end (left offset) (Proakis, 2007).

• White noise addition: white noise (with gaussian distribution) is added to
the clips with a given amplitude (Proakis, 2007).

• Pitch shift : the pitch of the clips is increased or decreased a given amount,
producing higher or lower-pitched sounds (Buś & Jedrzejewski, 2016;
Proakis, 2007).

All the distortions are applied together with random intensities only to the
training data, producing 5 new transformations of the original recordings with
high variability of results. These new versions are appended to the original
dataset.

6.4.3 Depthwise-separable convolutions
The use of a CNN with depthwise-separable convolution layers and residual
connections is proposed, based on the Xception architecture described by François
Chollet in 2017 (Chollet, 2017). This model is a CNN-based architecture which
achieved state-of-the-art results in multiple computer vision tasks (C. Liu et al.,
2019; Nazaré et al., 2018; Song et al., 2018).

The regular convolution operation consists of the application of a filter over
a signal along the spatial/temporal dimension(s) and along the channels in a
single operation.

A depthwise-separable convolution performs an operation which, given an
input tensor, produces an output tensor of the same shape that the regular
convolution would produce, but in a more efficient way; i.e. it reduces the number
of sums and multiplications needed to produce the output (Chollet, 2017). This

2Meaning distorted versions of each of the clips in the original data.
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is achieved by following the two steps described below (the whole operation is
shown in the Figure 6.2).

1. Depthwise convolution (Guo et al., 2019): consists of convolving a separate
filter per channel. It produces an output tensor with potentially a different
spatial/temporal dimensions size than the input (depending on the stride,
the size and the padding of the convolution operation to be applied).
However, the number of channels of the output tensor is constrained to be
the same as the input.

2. Pointwise convolution (Gao et al., 2018): consists of applying a set of
size-1 convolutions (as many as number of output channels desired). This
operation can modify the channels dimension, leaving the spatial/temporal
dimensions intact.

m>1

n>1

c=1c=1
c=1

c=7

m=1
n=1

DEPTHWISE
CONVOLUTION

POINTWISE
CONVOLUTION

Figure 6.2: Depthwise-separable convolution diagram showing how the whole computation is
done in two steps: the depthwise convolution followed by the pointwise convolution.

The depthwise convolution does not combine different channels for producing
the output, and hence always produces an output tensor which has the same
number of channels as the input tensor. This difference makes the operation
much more efficient than the regular convolution, at the cost of loosing the ability
to generate new features by combining different channels. That is the reason why
the pointwise convolution is applied after the depthwise convolution constituting
the depthwise-separable convolution. The separable term is used in the name of
the operation because it is effectively separating between the channel-wise and
the spatial/temporal-wise computations.

The number of sums and multiplications required by this operation is 1
R ·

1
O

times the number of operations required by a regular convolution (details below)
(Howard et al., 2017), where O is the size of the depthwise convolution filters and
R is the number of output channels after the pointwise convolution is applied.
This represents a meaningful performance improvement for big networks.

More formally, the regular convolution and depthwise convolution operations
(Howard et al., 2017) are defined3 in equations 6.1 and 6.2 for illustrative purposes,
where

• X is the feature map over which the convolution operation is intended to be
applied. It has a shape of D×M , where D represents the spatial/temporal
dimension and M the number of input channels.

• W is the convolution kernel and has a shape of O×M where O is the size
of the kernel.

3In both cases assuming a stride of one, SAME padding and odd size convolution kernels.
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• S is the output tensor produced by applying the regular convolution
operation with the filter W over the input X resulting in a vector of
length D.

• Ŝ is the output tensor produced by applying the depthwise convolution
with the filterW over the input X, resulting in a matrix with shape D×M .
The number of output channels is restricted to be equal to the number of
input channels M .

Sx =

O,M∑
o,m

Wo,m ·Xx+o−O−1
2 ,m (6.1)

Ŝx,m =

O∑
o

Wo,m ·Xx+o−O−1
2 ,m (6.2)

See that Sx =
∑M
m Ŝx,m. A pointwise convolution would be equivalent of

applying a regular convolution with O = 1.
The depthwise-separable convolution is composite function of a pointwise

convolution and a depthwise convolution as follows: PW (DW (X,Wd),Wp) where
PW and DW refer to the pointwise and depthwise convolutions, and Wp, Wd to
their weights, similarly.

The regular convolution layer targeting R output channels has a computa-
tional cost of D ·M ·R ·O. The depthwise convolution has a computational cost
of D ·M ·O, and the separable convolution D ·M ·R. Therefore the depthwise-
separable convolution has a computational cost of D ·M ·O +D ·M ·R, i.e. the
sum of its two constituting operations. Hence, by using the depthwise-separable
convolution in place of the regular one, the cost reduces as follows:

D ·M ·O +D ·M ·R
D ·M ·R ·O

=
1

R
+

1

O

6.4.4 Xception-1d architecture

The proposed architecture exploits the gain in computational efficiency of the
depthwise-separable convolution operation over the regular convolution in the
same way original Xception does (Chollet, 2017). That allows a more efficient
resource and time management and hence, a more complex architecture can be
defined.

The Xception-1d architecture is depicted in Figure 6.3. It has a total of
37 layers, 34 of which are depthwise-separable convolutional layers, 2 of them
are regular convolutions, and the last one is a dense layer performing a logistic
regression. The network contains 12 residual connections, one in each residual
block, as shown in Figure 6.4. All of it builds up a network with up to 21 million
parameters in the case of the left-right recognition task and 23 million parameters
in the 35-words recognition one4.

4The difference lays on the last layer implementing the logistic regression of the architecture.
Depending on the number of outputs required by each task, the number of parameters in this
layer varies. The maximum difference occurs between the 35-words recognition task and the
left-right recognition.
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Figure 6.3: Diagram of the architecture used in this work where n refers to the number of
channels, s is the stride of the convolutions (which in the case of the Xception-1d blocks is
applied through the final pooling operation), m is the size of the convolution filters, nmod is
the number of the depthwise convolutional layers stacked in the Xception-1d blocks (see Figure
6.4) and nclasses is the number of outputs of the network (i.e. the number of classes to predict,
which depends on the task being solved). The architecture is built up in 3 main modules: (a)
the entry module is the part of the network responsible for adapting the input wave into a
condensed representation (by applying strides after each operation), (b) the middle module is
responsible for learning the representation extracting the useful features that will allow the
next module to distinguish between classes and (c) the classification module is responsible for
mapping the extracted features into the number of outputs required for every task.

Considering that the last dense layer can be prone to overfitting due to the
high number of parameters (∼ 65, 000), a strong dropout (Goodfellow et al., 2016;
Srivastava et al., 2014) has been applied after the last convolution (p = 75%). In
addition, a small weight decay (Goodfellow et al., 2016; Haykin, 1999; Krogh &
Hertz, 1991) has been applied over all the network weights (specifically ω = 10−3)
in order to enhance regularization. Adam optimizer has been used to train the
network (Kingma & Ba, 2014). The initial learning rate has been fixed to
λ = 10−4. It has been decreased by a factor of 1

2 when no improvement was
observed (i.e. when a plateau is reached) with a patience of 4 epochs.

Instance normalization has been used to normalize the intermediate outputs
of each convolution (Ulyanov et al., 2016; Z. Xu et al., 2018). It simply consists
of standardizing separately each of the channels of every instance. Although it is
typically used in generative modeling and style transfer efforts, it demonstrated to
be very useful to improve training time of convergence and it has no undesirable
effects at test time5 (Ulyanov et al., 2016); it is considered a key element of
this architecture. The input of the dense layer has been normalized using layer
normalization (Ba et al., 2016). Batch normalization (Ioffe & Szegedy, 2015)
has been avoided because it is prone to introduce covariance shift, degrading
generalization (Ba et al., 2016). In figure 6.5 the way these three normalization
techniques operate is represented.

5In the case of batch normalization, there can appear big differences of performance between
train time and test time (Ba et al., 2016).



Keyword Spotting with efficient convolutions 89

DWS-Conv-1d

ReLU
InstanceNorm

...

DWS-Conv-1d

ReLU
InstanceNorm

+

Conv-1d

AvgPooling-1d

nmod M = 1 
O = 1 

O = 1 

O = 1 
M = m             

M = m             

O = o

Figure 6.4: Neural network module refered as Xception-1d block. The Xception-1d block
represents the building block of the architecture proposed in this work. It consists of a set
of nmod 1-D depthwise-separable convolution layers with a residual connection and with a
1-D average pooling layer at the end. The activation function used is the rectified linear
unit (ReLU) and the normalization procedure after each convolutional layer is the instance
normalization for one dimensional sequence.

6.5 Experiments and results

6.5.1 Setup
The train/development/test split provided by the authors of the dataset (Warden,
2017) has been adopted as cross validation (CV) setting in order to facilitate
future benchmarking efforts. A simple split CV has been used instead of k-fold
CV for the following reasons: (1) these models are expensive to train. Forty deep
models (2 dataset versions × 4 tasks × 5 random initializations) were trained
per experiment. If k-fold CV was used it would become unfeasible; (2) for the
sake of reproducibility and benchmarking, as the authors of the dataset provide
a default list of clips to use as validation and test.

Versions V1 and V2 of the dataset have 16,000 and 9,981 hold out samples
for development purposes and 16,000 and 11,005 hold out samples for testing
purposes, respectively. The development set has been used to manually tune
the hyper-parameters and for early stopping purposes. The model has been
trained for 50 epochs in each case, with a batch size of 32 clips, and the weights
of the epoch that achieved the best performance in the development set were
checkpointed. The checkpointed models have been used to calculate and report
the performance of the algorithm.
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Figure 6.5: Each cube represents a batch of data where B is the instances axis (with the batch
size), M is the channels axis and D is the spatial/temporal dimension. (a) represents batch
normalization, (b) is layer normalization and (c) shows instance normalization. The shaded
areas in the cubes represent the dimensions that are aggregated in each case for computing
the statistics used to normalize the data (generally the mean and the standard deviation). As
it can be noticed, the only normalization technique that depends on instances of data in the
batch is the batch normalization, that is why it is more sensitive to train-test distribution
differences. As it can be noticed in the picture, instance normalization is a specific version of
layer normalization where each channel is normalized separately.

6.5.2 Results

All the results shown in this section have been measured over the test set. Five
different models have been trained for each task in order to explore and report
the effect of different random initializations of the weights of the network. With
the aim of providing a baseline, human performance has been measured by 4
human subjects, who manually labeled ∼ 1000 commands achieving different
results. These results are reported in Table 6.2 along with the results of the
proposed algorithm and the results reported by (Coimbra de Andrade et al.,
2018; McMahan & Rao, 2017; Warden, 2018; Y. Zhang et al., 2017) on the
matching tasks.

Besides the global results, figure 6.6 shows the precision and the recall
obtained for the most complex model (35-words-recognition for data version V2).
In conjunction with this figure, precision, recall and f1-score metrics for the
task left-right and 35-commands have been included in the tables 6.3 and 6.4,
respectively. These results are discussed in detail in section 6.6.

6.6 Discussion

The presented method, Xception-1d, offers better performance than the existing
methods in the literature for three out of the four tested tasks, using different sets
of limited-size vocabularies. According to the results in Table 6.2, Xception-1d
performed voice recognition better than the state-of-the-art methods (Coimbra
de Andrade et al., 2018; McMahan & Rao, 2017; Warden, 2018; Y. Zhang
et al., 2017) in three out of four tasks: 35-words-recognition, 20-commands-
recognition, and 10-commands-recognition. In the only task where Xception-1d
did not achieve the best results (left-right), the leading method was the one
proposed by Andrade et al. (Coimbra de Andrade et al., 2018) which was
only marginally better (<0.5% performance difference on the test set) than
the presented method. Xception-1d even surpassed human performance (with
statistical significance level) in the two first tasks, including the most difficult
one (35-words-recognition).
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Figure 6.6: Precision and recall for each of the different classes using the 35-words-recognition
model trained with data version V2. Classes are sorted by descending f1-score.

Table 6.2: Accuracy (mean ± standard deviation) obtained by the proposed solution on the
different tasks compared to other benchmark algorithms (described in (Coimbra de Andrade
et al., 2018; McMahan & Rao, 2017; Warden, 2018; Y. Zhang et al., 2017)) and compared
to the measurement of human accuracy (through 4 manual evaluations). The results of best
performing algorithms for each task have been highlighted in bold in each case. Results better
than human performance (given a statistical significance level of α = 0.05) have been tagged
with a star mark (*).

(a) Results for version 1 of the dataset.

Coimbra McMahana Warden Xception-1d Human p-valueb

35-words 94.30 84.35 - 95.85 ± 0.12 * 94.15 ± 1.03 1.46 · 10−2
20-commands 94.10 85.52 - 95.89 ± 0.06 * 94.56 ± 0.98 3.14 · 10−2
10-commands 95.60 - 85.40 97.15 ± 0.03 97.22 ± 0.85 8.75 · 10−1
left-right 99.20 95.32 - 98.96 ± 0.09 99.54 ± 0.16 5.24 · 10−4

(b) Results for version 2 of the dataset.

Coimbra Zhanga Warden Xception-1d Human p-value b

35-words 93.90 - - 95.85 ± 0.16 * 94.15 ± 1.03 1.50 · 10−2
20-commands 94.50 - - 95.96 ± 0.16 * 94.56 ± 0.98 2.70 · 10−2
10-commands 96.90 95.40 88.20 97.54 ± 0.08 97.22 ± 0.85 4.84 · 10−1
left-right 99.40 - - 99.25 ± 0.07 99.54 ± 0.16 1.27 · 10−2

aThe best results obtained among all the trials performed by the autors have been selected .
bStudent’s t-test for the comparison of two means. α = 0.05 .

With regard to per-class accuracy, it can be noticed from Figure 6.6 that
the algorithm performs generally well for all the classes in the most difficult
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scenario (35-words task) as the majority of precision and recall values lay between
90-100%. Nonetheless, the algorithm has more difficulties differentiating some
groups of similar words like the following pairs: “three” and “tree”, “follow” and
“four”, “bed” and “bird”, etc. No comparison with other existing models has been
included because no such detailed results have been found in the related work.

Finally, the findings show that the per-class performance of the speech
commands in the left-right task is lower than for the other tasks (in particular
the recall values) (see tables 6.4 and 6.3). However, the per-class performance for
these two classes was higher when they were included in a multiclass classification
task like the 35-words-recognition task (Caruana, 1997). This evidence motivates
the hypothesis that auxiliary tasks (in this case the 35-words vocabulary task)
are benefiting primary tasks (left-right), as more features may be extracted from
more complex tasks. This hypothesis has been proven for reinforcement learning
(Jaderberg et al., 2016), but may also apply to DL efforts.

6.7 Conclusions

This chapter provided the insights of the study and implementation of an Xception
based architecture (Chollet, 2017), named Xception-1d, to the speech commands
recognition problem.

The experiments conducted give empirical evidence on how a neural network
architecture which succeeded in the computer vision field, with an adaption and
a set of tweaks, is able to surpass human performance at a speech recognition
task with limited vocabulary achieving state-of-the-art results. This motivates
the suggestion of Xception-1d as the de facto architecture when facing a voice
command recognition task with restricted vocabulary. The algorithm presented
can have multiple applications for improving voice-controlled systems.

A possible future line of work could be the use of Xception-1d architecture
with a global pooling layer at the end as an encoder of a sequence-to-sequence
architecture for tackling a speech recognition task with free vocabulary (e.g. a
speech to text engine). In addition to the usage of efficient convolutions, exploring
pruning and complexity reduction techniques is recommended to further reduce
the computational cost of the proposed solution.

Table 6.3: Detailed results for task left-right and data version V2, sorted by decreasing
f1-score order. The columns “precision”, “recall” and “f1-score” have been represented as the
mean ± the standard deviation in percentage scale.

precision recall f1-score support

left 95.80±0.98 94.00±0.89 95.00±0.63 412
right 98.20±1.47 90.60±2.65 94.00±1.10 396
unknown 99.40±0.49 100.00±0.00 100.00±0.00 10197
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Table 6.4: Detailed results for task 35-words-recognition and V2 dataset, in decreasing
f1-score order. The columns “precision”, “recall” and “f1-score” have been represented as the
mean ± the standard deviation in percentage scale.

precision recall f1-score support

yes 99.20±0.40 98.60±0.49 99.00±0.00 419
stop 98.00±1.10 99.40±0.80 98.60±0.49 411
seven 97.60±0.49 98.80±0.40 98.40±0.49 406
six 96.40±0.49 98.60±0.49 97.60±0.49 394
right 98.40±0.49 96.20±0.75 97.40±0.49 396
sheila 97.60±0.49 97.20±0.75 97.20±0.75 212
nine 97.40±0.49 96.80±0.40 97.20±0.40 408
eight 97.60±0.49 97.00±0.63 97.20±0.40 408
marvin 98.00±0.89 96.40±0.49 97.20±0.40 195
five 96.80±0.40 97.40±0.80 97.00±0.00 445
house 96.80±0.98 97.00±0.63 96.80±0.75 191
happy 97.60±0.49 96.00±0.63 96.80±0.40 203
zero 97.20±0.98 96.20±0.40 96.60±0.49 418
left 94.60±1.50 98.00±0.63 96.40±0.80 412
backward 94.60±0.49 98.20±0.75 96.40±0.49 165
one 96.60±0.80 96.20±0.75 96.40±0.49 399
two 95.40±1.02 97.40±1.02 96.20±0.75 424
wow 97.20±0.75 94.40±0.80 96.00±0.89 206
off 97.00±1.26 94.80±1.17 95.80±0.75 402
on 96.00±0.89 95.40±1.02 95.80±0.40 396
visual 96.00±1.67 95.20±1.33 95.60±0.80 165
go 96.00±0.63 95.20±0.98 95.40±0.49 402
no 93.80±1.72 96.80±0.75 95.40±0.49 405
up 94.20±2.32 96.20±0.75 95.20±0.98 425
cat 96.00±0.00 94.00±0.89 95.20±0.75 194
three 93.60±1.02 97.40±0.80 95.20±0.75 405
four 94.60±1.02 93.00±1.10 94.00±0.63 400
bird 92.60±1.02 95.60±0.49 94.00±0.63 185
down 94.40±0.80 93.60±0.49 94.00±0.00 406
dog 93.40±2.24 93.40±1.36 93.40±0.80 220
bed 94.40±1.36 91.60±2.06 93.20±1.17 207
follow 90.80±2.32 92.00±1.10 91.60±1.36 172
tree 94.80±1.72 86.20±1.72 90.40±1.20 193
forward 86.60±2.15 90.00±2.10 88.20±1.72 155
learn 90.80±1.47 84.40±1.36 87.60±1.02 161





Chapter 7

Multi-speaker text-to-speech
modeling

7.1 Overview

Text-to-speech systems recently achieved almost indistinguishable quality from
human speech. However, the prosody of those systems is generally flatter than
natural speech, producing samples with low expressiveness. Disentanglement of
speaker id and prosody is crucial in speech generation systems to improve on
naturalness and produce more variable syntheses (Marković et al., 2015).

This chapter proposes a new neural text-to-speech model that approaches
the disentanglement problem by conditioning a Tacotron2 -like architecture on
flow-normalized speaker embeddings, and by substituting the reference encoder
with a new learned latent distribution responsible for modeling the prosody-
driven variability. By removing the reference encoder dependency, not only the
speaker-leakage problem typically happening in this kind of systems disappears,
producing more variable syntheses at inference time, but the system becomes
much more lightweight, not depending on a production TTS system to be
executed. This is a first step that enables low-resource on-device offline execution
The new model achieves significantly higher prosody variance than the baseline
in a set of quantitative prosody features, as well as higher speaker distinctiveness,
without decreasing the speaker intelligibility. Finally, the normalized speaker
embeddings enable much richer speaker interpolations, substantially improving
the distinctiveness of the new interpolated speakers.
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7.2 Introduction

In the last five years speech technologies have improved considerably. The
text-to-speech (TTS hereafter) field has been largely benefited by the rise of
deep learning (Sisman et al., 2021), which allowed these systems to achieve near-
human performance at synthesizing speech that is almost indistinguishable from
human’s. One of the first achievements was WaveNet (van den Oord, Dieleman,
et al., 2016), a neural vocoder based on dilated causal convolutions that was
able to surpass its predecessors in naturalness in 2016. With the rise of the
attention mechanism and its variants (Bahdanau et al., 2015; Chaudhari et al.,
2021; Vaswani et al., 2017), Tacotron (Y. Wang et al., 2017) and Tacotron 2 (R.
Liu et al., 2019; Shen et al., 2018) proposed a sequence-to-sequence architecture
as an end-to-end TTS solution. These models were able to map input text (or
phonemes) to a spectrogram that, given the right neural vocoder (WaveNet for
instance), would be converted into a sequence of waveform samples.

TTS is fundamentally a generative modeling problem because a given sentence
can be mapped to multiple utterances with different prosody and speaker charac-
teristics (Taylor, 2009). Tacotron, in its initial form, is a supervised model that
performs a hard mapping between the input text and the output spectrograms.
Therefore, the utterances generated using Tacotron-like architectures, although
natural, they follow the average prosody of the training set, not allowing to
generate utterances of a sentence with multiple speaking styles.

7.3 Previous work

The authors of (Skerry-Ryan et al., 2018) attempt to remediate the lack of
expressiveness of the model by introducing a reference encoder consisting of a
latent distribution that is conditioned on a reference mel-spectrogram (usually the
target spectrogram, at training time). This distribution is learned by the model
through a bottleneck that is intended to capture prosody aspects of the target
spectrogram, preventing phonetic or speaker information to flow through. In
practice, specially when using this approach in multi-speaker settings, the model
tends to leak speaker information to the output. This represents a problem
at inference time, when a synthetic neutral reference is provided (generally
synthesized using a production system similar to Amazon Polly), given that the
synthesized speaker identity tends to resemble the reference instead of the target
voice. This problem is known as speaker leakage and it was already reported
in (Skerry-Ryan et al., 2018), where the authors emphasize the importance of
properly tuning the size of the reference bottleneck to amend it. In addition,
the usual dependence of this model in a production TTS system makes them
unfeasible for low resource, on-device or offline implementations, besides their
obvious negative impact in energy efficiency.

In (R. Liu et al., 2020), the authors propose using a multi-task version of
Tacotron to enhance the prosody of the syntheses. The approach described in
the paper consists of jointly learning the target mel-spectrogram as well as the
probability distribution of the phrase break patterns for each word. The work of
(R. Liu et al., 2020) proposes a novel training schema for Tacotron where deep
style features are extracted using the SER framework ((Lotfian & Busso, 2019;
S. Zhang et al., 2018)). These features are later used for minimizing the style
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differences between the real and synthesized samples.
This chapter’s contribution builds upon a multi-speaker Tacotron architecture

with a reference encoder (similar to (Skerry-Ryan et al., 2018)) and propose two
modifications: (1) replaces the pre-trained speaker embedding with a normalized
speaker embedding using normalizing flows (Kingma & Dhariwal, 2018), that
allows sampling from the learned Gaussian distribution and (2) substitutes the
reference encoder with a residual encoder, which learns a latent distribution
conditioned on the input phonetic information, allowing the model to capture
and encode the residual attributes not present in the linguistic input and the
speaker embedding.

Inspired by the work of (Raitio et al., 2020), the proposed model achieves
significantly higher prosody variation by measuring the difference in variance
between the baseline and the proposed model across a set of features derived
from the fundamental frequency, the energy, the signal to noise ratio and the
speaking rate. These features capture most of the prosody variables (pitch,
speed, loudness and timbre) (Raitio et al., 2020) and allow performing objective
comparisons between systems.

7.4 Methods

A Tacotron2 -based sequence-to-sequence model with location-based attention
(Y. Wang et al., 2017) is used as a baseline throughout this study. This baseline
architecture is represented in figure 7.1-top. A couple of encoder branches are
added over the initial Tacotron architecture to allow the model to synthesize
multiple speakers: the speaker branch and the reference branch. The first one
takes as input a pre-trained speaker embedding vector representing the speaker
characteristics. This vector is obtained from the output of a speaker verification
model trained to minimize a triplet loss. This speaker verification model is pre-
trained using pairs of utterances, similar to (Ren et al., 2019). For every speaker,
the vectors corresponding to all their utterances are pre-computed and then
averaged to form the speaker vectors. As a result, a fixed size vector is produced
for every speaker in the dataset. Additionally, the proposed architecture includes
a reference branch that is conditioned on the target spectrogram (at training
time) and is intended to learn a latent distribution summarizing the prosody
information, similar to the proposal of (Skerry-Ryan et al., 2018).

The proposed architecture builds upon the baseline model, removing the
dependency of the reference branch on the target spectrogram, because it tends
to cause speaker/phonetic leakage (read the section 4 of the samples included
in (Skerry-Ryan et al., 2018)). It also slows down the inference process as it
requires a production TTS system to provide the references. Instead, a learnable
variational latent space conditioned on the phonetic information is learned
together with a set of learnable free parameters (named residual branch). The
purpose of this branch is to encode the prosody information not present in the
input linguistic features or in the speaker embedding vector in a new latent
space (i.e. the residual prosody variance). Moreover, the speaker embedding
vectors are normalized using normalizing flows based on the work of (Kingma &
Dhariwal, 2018), so that the normalized vectors follow a Gaussian distribution.
That change enables sampling from the speaker embedding latent space instead
of just using the average embedding vector. This increases the coverage of the
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speaker embedding space, allowing smoother interpolations between speaker
embedding vectors. The architecture proposed is depicted in figure 7.1-bottom
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Figure 7.1: Top: the baseline architecture. Bottom: the proposed architecture. The blue
blocks represent pre-trained parts of the network and the blocks with round corners are tensor
operations.

7.4.1 Speaker embedding normalization with flows
Normalizing flows (Rezende & Mohamed, 2015) are powerful methods for pro-
ducing tractable distributions from which one can sample. Through a sequence
of invertible functions (named flows) they transform a complex data distribution
to a tractable probability distribution. The output distribution is usually chosen
to be an isotropic unit Gaussian (with mean 0 and variance 1) to allow for
smooth interpolations and efficient sampling. A more detailed description of
these models is given in chapter 2.3.5.

Glow (Kingma & Dhariwal, 2018), a flow-based generative model, has shown
significant improvements in computer vision generative modeling by adding
invertible 1x1 convolutions to the sequence of transformations applied to the
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input. To train this model on one-dimensional speaker embedding vectors, the
2-dimensional convolutions from the original architecture, designed for computer
vision tasks, have been replaced with 1-dimensional ones.

A normalizing flow has been trained to normalize the pre-trained speaker
embeddings described previously. The trained model attains a Gaussian dis-
tributed latent space of speaker embeddings from which one can easily sample to
create embeddings representing new, unseen speakers. The proposed architecture
samples speaker representations from the Gaussian distribution defined by the
normalized embeddings, both at training time and at inference time.

7.4.2 Residual branch
The new residual branch is designed with the idea of giving the model the
capability to learn the prosody-induced variance that cannot be explained by
the linguistic features and the speaker embedding vector alone. It takes as input
the linguistic features and a set of learnable free parameters1, conditioning on
the target sentence and on a global prior. The motivation behind this design
is to help the network learn different ways of uttering a given input sentence
(linguistic features conditioning), and the potential global biases existing in the
training dataset (free parameters).

The output of the phonetic encoder hph is piped into a bidirectional recurrent
neural network (A. Graves et al., 2005; Schuster & Paliwal, 1997) in order to get
a representation independent of time. The last output of the recurrent neural
network of both, forward and reverse passes (represented in equations 7.1 and
7.2 as of and or, respectively), are concatenated to form a fixed-size phonetic
representation [of ,or].

The joined output vector of the bidirectional RNN stage is concatenated
with a vector of free parameters vf and the result is passed through two stacked
dense layers to form the parameters of the residual latent distribution (as shown
in equation 7.3, where g represents the ReLU activation function). The hresidual
vector is split in two vectors hµresidual and h

σ
residual from where a latent vector z

is sampled using the re-parametrization trick (Kingma & Welling, 2019).
Finally, a Kullback-Leibler divergence loss is included to assure that the

distribution of the latent representation approximates an isotropic Gaussian
distribution.

of = RNNf (hph) (7.1)

or = RNNr(hph) (7.2)

hresidual = W2(g(W1 · ([of ,or,vf ]) + b1)) + b2 (7.3)
1Notice that the dense layers that produce the residual latent distribution parameters do

not have bias terms, so that all the bias is learned in the free parameters vector.
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7.5 Experiments and results

7.5.1 Setup
A combination of two internal datasets is used to train the models, one of them
containing 2860 non-professional speakers, with 200 utterances per speaker on
average, and the other containing 10 professional speakers, with 13,000 studio-
recorded utterances per speaker – totaling to 2870 speakers and more than
700,000 utterances. The audio utterances are downsampled at 16kHz and 80
dimensional mel-spectrograms are extracted. The frame width is defined as a
50ms window, with an overlap of 12.5ms. A universal neural vocoder is used to
synthesize the wav samples (Lorenzo-Trueba et al., 2019). The linguistic features
have been extracted using a proprietary internal front-end which takes the text
as input and extracts the phonemes, that are used as input for the model. The
speaker embedding, the free parameters and the residual distribution parameters
µ and σ vectors were defined to have a length of 192 elements.

The models have been trained for one million steps, with a mini-batch
size of 24. Then 50 unseen sentences are synthesized with each of the 2870
speakers voices. The syntheses have been evaluated in 3 ways: intelligibility,
distinctiveness and prosody variability.

Additionally, 50 speakers are randomly sampled from the pool of 2870 speakers
and generated interpolations (linear) between all the possible pairs, in order to
study how the proposed model and the baseline behave in this setting.

7.5.2 Intelligibility
AWS transcribe system is used to transcribe each of the syntheses, and then
measure the word error rate (WER) between the target sentence and the tran-
scription (Kamath et al., 2019). These metrics are aggregated as the average
WER per speaker. A median word error rate of 8.5% is achieved in the baseline,
while a 8.3% WER is achieved by the proposed architecture. Although signi-
ficative, this difference is very small, concluding that both models are roughly
equivalent in terms of intelligibility.

Figure 7.2: Speaker intelligibility of the baseline and proposed models, measured as word
error rate of the target and the transcribed synthesis, showing a slightly smaller error for
the proposed architecture (Wilcoxon’s p = 0.0305). The solid lines represent a kernel density
estimate (KDE) over the histograms.
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7.5.3 Distinctiveness
To measure how distinct the synthesized speakers are, Alexa’s internal speaker
verification system is used. Each utterance is compared with 4 samples randomly
drawn from the full pool of samples. The false acceptance rate (FAR) is used as
a metric to quantify the percentage of speaker pairs incorrectly identified as the
same speakers by the speaker verification model. Equation 7.4 shows how FAR
is computed in detail, where C(i) is 1 if the ith pair of samples is misclassified
as different speakers and N is the total number of pairs in the pool. Figure 7.3
shows how the FAR metric varies for both, the proposed model and the baseline
as the classification threshold varies. Table 7.1 shows the FAR score for four
arbitrarily picked thresholds. Lower values of FAR mean higher distinctiveness.

FAR =
1

N

N∑
i=1

C(i) (7.4)

Figure 7.3: False acceptance rate distribution at different speaker verification model thresh-
olds.

Table 7.1: False acceptance rate metric for different thresholds

Threshold FAR-Baseline model FAR-Proposed model

85% 31.49% 30.27%
90% 29.50% 28.21%
95% 26.23% 24.77%
99% 19.05% 16.93%
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7.5.4 Prosody variability
To measure how much prosody and quality variability the new model introduces
with respect to the baseline, a set of objective metrics has been defined inspired
on the work of (Raitio et al., 2020). Those metrics are listed in table 7.2.

Table 7.2: Metrics used to quantify the prosody variation and quality across different models.

Metric Description

f0 mean Mean of the fundamental frequency (calculated using SPTK (Imai
et al., 2017) considering only the vocal sounds (non-zero components),
with frame skip of 12.5ms.

f0 range Difference between the 5th and 95th percentiles of f0.
speaking rate Calculated as the number of phonemes in the sentence divided by total

duration of the synthesis.
f0 slope Calculated as the slope of a linear fit using least squares in the f0

trajectory.
snr Signal to noise ratio calculated using SOX (“Sound eXchange (SOX)”,

2015) as the difference in RMS dBs between the loudest and the
quietest windows, using windows size of 50ms.

power mean 20 log 10(x̂), where x̂ is the average absolute amplitude with frame
skip of 12.5ms. Only considering the vocal sounds.

power range Difference between the 5th and 95th percentiles of the power along
time.

power slope Calculated as the slope of a linear fit using least squares in the power
plot.

For this experiment, 50 speakers and 50 sentences have been picked. Then,
30 samples have been synthesized for every speaker-sentence pair varying the
random seed, so different latent vectors are drawn from the latent distributions
in each repetition. This procedure is repeated four times: (1) with the baseline
model, (2) with the proposed model multiplying the σ parameter of the speaker
embedding distribution by zero (so that the latent vector becomes the mean of the
speaker embedding latent distribution), (3) with the proposed model multiplying
the σ parameter of the residual distribution by zero, and (4) allowing sampling
from both branches in the proposed model. Then the following comparisons are
performed: the syntheses of (1) vs (2), (1) vs (3) and (1) vs (4) .

For the comparison, as the focus of this study is to measure differences of
variance for the variables defined in the table, the bootstraping technique is used
to approximate the variance distribution for every variable in every speaker-
sentence pair, and then a one-way Wilcoxon Signed-Rank sum test between the
groups is conducted. A significance level of α = 5% is used, over which the
Bonferroni correction (α = 0.05/2500 = 0.002%) is applied. The results of the
tests are summarized in the figure 7.4.

Informal listening tests of the syntheses confirm that when sampling from
the residual distribution (keeping the speaker embedding distribution constant),
the variations in the syntheses are related with prosody aspects like the speaking
rate, syllable duration or intonation, keeping the speaker identity untouched.
When sampling from the speaker embedding distribution, small variations on
the speaker identity are noticed.
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Figure 7.4: Baseline model vs proposed model when sampling from the residual latent
distribution (blue) or from the speaker embedding distribution (orange), keeping the other
constant. The results are represented as proportion of speaker-sentence pairs for which the
proposed model shows significantly higher variance than the baseline, for each of the previously
defined prosody features.

7.5.5 Speakers interpolation

The proposed model and the baseline are tested using interpolated speakers to
study how the speaker embedding normalization affects the intelligibility and
distinctiveness of the new speakers. For that, 50 speakers have been chosen. All
the pairs of speakers have been interpolated using linear interpolation, generating
1225 new voice profiles. Fifty sentences have been synthesized using those new
voices and then evaluated distinctiveness and intelligibility (results in figure 7.5).

The proposed model achieves 13.11% lower FAR than the baseline. The
rationale behind this is that the normalized speaker embedding space has a
denser latent distribution than the one in the baseline. Given that the proposed
model is trained on samples drawn from the normalized speaker embedding
distribution (as opposed of using average vectors as in the baseline model), the
denser latent space leads to a better generalization.

From the intelligibility perspective, the baseline shows an average WER of
6.42% while the proposed model achieved a 7.35%. That difference is attributed
to the fact that the interpolated speakers in the baseline are less distinctive and
resemble much more to one of the two actual speakers, hence its intelligibility is
naturally higher at the cost of a worse distinctiveness. Although significative,
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Figure 7.5: Top: false acceptance rate distribution at different speaker verification thresholds,
for all the interpolated speakers. Bottom: speaker intelligibility of the baseline and residual
models, measured as word error rate of the target and the transcribed synthesis, showing a
slightly smaller error for the baseline architecture (Wilcoxon’s p = 5.2263 · 10−6). The solid
lines represent a KDE over the histograms.

the difference in practice is negligible.

7.6 Conclusions

This chapter presents a new TTS architecture that allows increasing the prosody
variance of a multi-speaker TTS system by learning the residual prosody into a
new latent distribution.

It has been also showed that by sampling from the residual and normalized
speaker latent distribution the model produces syntheses with significantly
different prosodies as measured by a set of quantitative metrics. The inclusion
of the residual distribution also enables removing the reference spectrogram
dependency. This does not only allow for a faster and cheaper inference, but
also solves potential speaker leakage issues, given that the model does no longer
depend on a voice production system to work.

Finally, the normalization of the speaker embedding latent space allows
for better speaker interpolation when compared with the baseline model, thus
producing more diverse and unseen synthetic speakers.
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General conclusions

This dissertation ecompasses five contributions related to the low-resource deep
learning field, showing how improvements of state of the art can be made without
necessarily resorting to prohibitive amount of resources.

• The modulus activation function, introduced in chapter 3, is a living
example of the premise of this thesis, showing that a bit-size operation
can outperform the most novel and complex activation functions in 75%
of the experiments conducted, despite its simplicity. The computational
cost of the modulus activation function is equivalent to the ReLU ’s, but
its gradient constant norm guarantees a better utilization of the network
parameters, removing the “dying neurons” problem and often leading to
more efficient training processes.

• Transfer learning also showed recently that impressive results can be
achieved by just fine-tuning a few thousands of the millions of weights of
a large network which has been previously trained on a general pretext
task. Knowledge distillation techniques allow leveraging the knowledge of
big networks to implant it into small ones. Combining both techniques
has been a clear objective for the study line of this thesis. Chapter 4
provides evidences around the benefit of increasing the accuracy of a small
pre-trained neural network up to 3% (in absolute terms), by just learning
from their large counterparts and using solely unlabeled data. This case
study motivates the idea that the small neural networks are not yet at
their capacity limit. Based on the results of this study, a possible future
research line may be looking for more efficient learning techniques that
enable the use all the modeling capacity of the parameters of a neural
network.

• Thinking of applications, the outstanding generalization capacity of deep
learning models, combined with the flexibility and customizability of their
architecture, enables one to design models that solve many tasks at once.
One of the main benefits of having a single model, as opposed to train
standalone models for each individual task, is that the amount of total
parameters, the effort required and the computational cost of tuning the
hyper-parameters is smaller than tackling each problem with a different
model. Besides, recent studies have shown that when a neural network is
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asked to perform many tasks, the overall performance increases (Jaderberg
et al., 2016) as if the model had more appeal to learn. These ideas motivated
the design of the sales forecasting problem as an end-to-end solution, as
described in chapter 5. It presents a methodology to train a single model
to predict the daily number of sales each of 4400 items in 54 different
points of sale, and show that the proposed solution is better than all the
published benchmarks. In a production environment, this means that a
company like Corporación Favorita (the owners of the open-source dataset
used in the experiments) would be able to deploy the model in a single
machine which would serve all their points of sale (as opposed of having
to build 4400 products × 54 points of sale = 237600 standalone models).
Overall, this would result in lower infrastructure and computational costs.

• Speech technologies also got benefited by the fast development of deep
learning technologies of the last years. Generally speaking, the computa-
tional speech field is divided in two main branches: speech recognition and
speech generation. Deep learning has revolutionized both of them.

– The contribution to the first branch, developed in chapter 6 in form
of a keyword spotting model, was motivated by the outstanding
performance of CNNs in the computer vision field. An architecture
designed for computer vision tasks has been adapted to the problem
of keyword spotting, achieving state-of-the-art results when compared
with all the reported benchmarks. The Xception architecture is
designed to work with depthwise-separable convolutions, which is an
efficient modification of the classical convolutional layers used in deep
learning (as shown in section 6.4.3). Along with this case comes the
design and implementation of a (i) depthwise-separable CNN-based
architecture able to surpass the current state-of-the-art results and
the human performance, (ii) the development of a methodology for
augmenting audio data to increase the size of a dataset (5x in this
work), and therefore enhance generalization, (iii) the quantification of
the human performance across the different classification tasks to use
it as an additional baseline for checking the results achieved by the
algorithm and (iv) the creation of a public repository where further
contributions could be handled to enhance the project functionalities
and to facilitate reproducibility.

– Chapter 7 describes the contribution of this thesis to the speech
generation field by proposing a modification to a baseline architec-
ture that brings computational and quality improvements in form of
prosody variation. The computational improvements come from the
dependency of the baseline architecture on another speech generation
system: for generating a new audio clip, the baseline model needed
to get an example of that utterance as input in order to use it as
a reference. For that, a commercial solution is normally used (e.g.
Amazon Polly). The proposed architecture replaces the reference
encoder by a residual branch and a normalizing flow, which together
build a new TTS architecture that, as empirically proven in this
chapter, generates syntheses with more varied prosody. The proposed
architecture is capable of working on a single offline computer, not
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depending on a production TTS service.

The potential of deep learning has not yet been fully explored, and there is
still much research to be done. The recent success of deep learning has stood
out by the amount of resources these algorithms require, which has made it
inaccessible to many individuals and organizations. The work described in this
dissertation shows that the aforementioned statement is not necessarily true.
The computational requirements are not an impediment for solving real-life
problems. The research on low-resource deep learning has recently started to
gain traction and it is expected to snag the attention of many researchers and
practitioners in the coming years.

As the momentum grows, the amount and variety of problems that will be
solved using deep learning will also increase, bringing new challenges with it.
Looking back at the work reported in this dissertation, relevant contributions have
been made to the research field focused on lowering the resource requirements
of the deep learning models: two general contributions and three applications
showing that many problems can be solved while using a reasonable use of
resources.

This is a very important area of study, because lowering the bar of the
resources requirements will open the door to the use of deep learning technologies
in a larger set of use cases and application domains. The area of low-resource
deep learning will probably be one of the most important areas of research in the
coming years, and hopefully the work reported in this dissertation will contribute
to the advancement of this area of study.





Summary in Spanish

Los algoritmos de aprendizaje profundo representan el quid de la cuestión en lo
que a aprendizaje automático se refiere. Muchas de sus aplicaciones requieren una
gran cantidad de recursos computacionales, lo cual limita su uso a dispositivos
de alto rendimiento. El objetivo principal de esta tesis es estudiar métodos y
algoritmos que permitan abordar problemas de aprendizaje profundo cuando
se tienen recursos computacionales limitados. Este trabajo también tiene como
objetivo presentar aplicaciones de aprendizaje profundo en la industria.

Se presentan un total de cinco contribuciones de vanguardia en el campo del
aprendizaje profundo, con aplicación a problemas que precisan de hardware de
baja potencia, tales como teléfonos inteligentes, asistentes de voz, televisores
inteligentes u otras máquinas de bajo rendimiento. Estas contribuciones se
materializan en, o bien una serie de mejoras de los métodos tradicionales, o bien
una serie de aplicaciones que demuestran la posibilidad de usar este tipo de
tecnología sin requerir de un sistema distribuido con muchas máquinas. Cada
capítulo de esta tesis (del 3 al 7) presenta una contribución distinta, siendo los
capítulos 1 y 2 introductorios y el capítulo 8 un resumen de las conclusiones
de cada una de las contribuciones descritas. En este resumen, por razones de
brevedad, solo se va a describir el contenido de los capítulos 3 al 7, ambos
inclusive. Por la misma razón, se omiten las referencias bibliográficas, que se
pueden encontrar en los respectivos capítulos de la tesis.

Contribución 1: el módulo como función de acti-
vación

Esta contribución consiste en el diseño y estudio de una nueva función de
activación para redes de aprendizaje profundo: la función módulo, f(x) =
|x|. Esta función de activación tiene una serie de ventajas frente a las demás
alternativas. A continuación se detallan las más importantes.

• El módulo es una operación de bit a nivel de hardware, es decir, sólo se
requiere un bit para implementarla. Nótese que la función puede expresarse
como f(x) = sgn(x) · x, donde sgn(x) es la función signo aplicada sobre
la variable x y dicha función solo ocupa un único bit. Esto hace la hace
equivalente a la función ReLU en términos computacionales.

• El módulo es una sencilla operación lineal a trozos, lo cual facilita el cálculo
de su derivada, haciendo que su cómputo en tiempo de entrenamiento sea
eficiente. La derivada del módulo es f ′(x) = sgn(x) (excepto cuando
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x = 0, donde no existe la derivada), por lo que en tiempo de entrenamiento,
durante la propagación hacia delante, se pueden guardar los signos de las
salidas para ser usados en la fase de retropropagación, sin necesidad de
ocupar mucha memoria.

• La derivada de la función módulo tiene norma 1 para cualquier valor
de x, lo cual es ventajoso en diferentes aspectos: (1) los problemas de
desvanecimiento de gradiente, observados en las funciones de activación con
regiones asintóticas horizontales desaparecen por construcción en el caso
del módulo, pues el gradiente nunca es cercano a cero, (2) por la misma
razón que en el punto 1, los problemas de muerte de neuronas observado en
funciones de activación tipo ReLU, donde se tiene una región 0, no ocurren
con el módulo, (3) la derivada de la función, curiosamente, no depende
del módulo de x, haciendo que la optimización de la red neuronal sea más
estable (no pueden aparecer gradientes con norma mayor que 1).

Para estudiar el rendimiento de la función de activación propuesta, se propone
una comparativa con 7 funciones de activación publicadas en otros estudios:
ReLU, Leaky ReLU, Tanh, ELU, Swish, PFLU y Mish. Dicha comparación se
realiza mediante el entrenamiento de 4 arquitecturas distintas de red neuronal,
que se entrenan para resolver 3 tareas clásicas de clasificación de imágenes
usando los siguientes conjuntos de datos: MNIST, CIFAR10, CIFAR100. Cada
experimento se repite 30 veces con distintas inicializaciones de pesos aleatorias
para estudiar la significancia estadística de los resultados. A través de los
experimentos realizados se observa que la función de activación propuesta mejora
significativamente los resultados de todas las demás funciones de activación en
el 75% de los experimentos realizados.

Como estudio adicional, y con el objetivo de estudiar el efecto de que la
función módulo no sea suave (su derivada no está definida cuando x = 0) se
repiten los experimentos con dos aproximaciones suaves: la tangencial, que
usa la función tanh como aproximación a la función sgn(x), y la cuadrática,
que usa técnicas de lógica borrosa para combinar la función módulo con la
función cuadrática. Se observan resultados en la misma dirección, superando
significativamente los resultados de la función módulo original en el 42% de los
casos.

Contribución 2: destilando el conocimiento de mo-
delos pre-entrenados

En segundo lugar, se presenta un nuevo método para combinar modelos pre-
entrenados usando técnicas de destilación de conocimiento. Actualmente se
dispone de una gran librería de pesos de modelos que se han pre-entrenado para
resolver tareas de ámbito general. Por ejemplo, existe una colección de modelos
públicos entrenados para resolver la tarea ImageNet, un problema que consiste
en aprender a clasificar imágenes a color en 1000 categorías distintas a partir de
más de 10 millones de imágenes debidamente etiquetadas.

Como puede intuirse, entrenar estos modelos requiere de mucho tiempo,
energía y hardware capaz de realizar esta tarea. La presente contribución se
centra en transferir el conocimiento de varios de estos modelos pre-entrenados
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grandes (llamados modelos profesores), en modelos pre-entrenados más pequeños
(modelos estudiantes), de modo que se puedan usar clasificadores de imágenes
muy potentes con un bajo coste computacional. Para realizar dicha transferencia
de conocimiento entre modelos se usan los procedimientos conocidos como
técnicas de destilación del conocimiento, que, brevemente, consisten en entrenar
los modelos estudiantes sobre las predicciones de los modelos profesores.

Para este estudio se han seleccionado un total de 11 modelos profesores
(que se han agrupado en grupos de “el mejor”, “los tres mejores” y “todos”,
según su rendimiento sobre un conjunto de validación) y 4 estudiantes distintos.
Adicionalmente, se han definido 5 métodos para la combinación de los profesores:
la media de las predicciones de los distintos profesores, la mediana, selección
aleatoria, selección de la predicción con menor entropía de Shannon y selección
de la predicción con mayor correlación con el resto de modelos.

Para estudiar estos factores, se han entrenado todas las combinaciones posi-
bles de modelo estudiante, grupo de profesores y método de combinación de
profesores. Cada entrenamiento se ha repetido 5 veces con inicializaciones de
pesos aleatorios para posteriormente estudiar la significancia estadística de los
resultados. Resultados que muestran que el uso de las técnicas propuestas per-
mite aumentar significativamente el desempeño de los modelos pre-entrenados
más pequeños (hasta un 3.0% de incremento en la tasa de acierto, en térmi-
nos absolutos). Esto proporciona mejoras computacionales y de rendimiento,
reduciendo el número de operaciones de coma flotante hasta en 44.8×.

Como observación final, este trabajo concluye con la siguiente hipótesis. Los
modelos pre-entrenados con las técnicas habituales toadavía no han llegado a su
máxima capacidad de aprendizaje, puesto que mediante el uso de las técnicas
descritas en este capítulo se concluye que el rendimiento de dichos modelos
todavía tiene rango de mejora. Conclusión que motiva la investigación y el
desarrollo de mejores técnicas de entrenamiento para los modelos de aprendizaje
profundo.

Contribución 3: sistema integral de predicción de
ventas con modelos de aprendizaje profundo

La tercera aportación de esta tesis aborda el problema de la predicción de
ventas en el campo de la logística. Este es un problema importante en la
industria de las cadenas de suministro, ya que permite a estos negocios planificar
adecuadamente el tráfico en sus almacenes, la mano de obra necesaria y sus
relaciones con las compañías de transporte. Junto con una correcta ejecución
de los equipos operacionales, la predicción de la demanda de los clientes de un
negocio hace posible la orquestación a escala de la logística, lo cual es esencial
para el suministro de bienes en un mundo con una población tan elevada como
la actual y con una creciente demanda digital.

Para el desarrollo de la solución propuesta se usa un conjunto de datos con
los registros de ventas diarias de una compañía llamada Corporación Favorita
que se ubica en Ecuador. Este conjunto de datos resume el número de ventas
diarias de 4400 productos distintos, en cada uno de sus 54 puntos de venta,
entre enero de 2013 y agosto de 2017 (4 años y medio). Además del número
de productos vendidos, se tiene información de promociones, detalles cada uno
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de los puntos de venta y de los productos, el precio diario del combustible en
Ecuador, y las fechas vacacionales globales, regionales y locales. No se tiene
información del inventario disponible en cada punto de venta, por lo que la
estimación de demanda está sesgada: las ventas representan una cota inferior de
la demanda, puesto que cuando no hay existencias de un producto no se puede
producir una venta. La tarea estudiada en este capítulo consiste en la predicción
de las ventas de los siguientes 16 días desde cualquier instante temporal para
cualquier producto o punto de venta. Esta decisión no ha sido arbitraria, pues
se ha diseñado acorde con los estudios encontrados en la bibliografía, de modo
que los resultados sean lo más comparables posible.

Para resolver este problema, se propone el estudio de dos sistemas candidatos
basados en dos técnicas diferentes de aprendizaje profundo (modelos de secuencia-
a-secuencia y transformers). Los modelos secuencia-a-secuencia, pese a no ser
posible su paralelización a la hora de entrenar, requieren de mucha menos
memoria y número de operaciones que los modelos transformer. En cambio,
se ha observado que los modelos transformer proporcionan mejores resultados
en distintos campos como visión computacional, procesado de lenguaje natural
o habla computacional. Pese a que esta tesis doctoral tiene como objetivo el
estudio de técnicas de bajos recursos, se ha incluido el estudio del transformer
para entender el potencial de mejora de los modelos de secuencia-a-secuencia.

En ambos casos se propone una solución integral, es decir, un modelo único
capaz de predecir las ventas de todos los productos, puntos de venta e instantes
temporales. Esto también tiene beneficios computacionales que cabe destacar,
dado que, frente a la solución de tener modelos independientes para cada producto
o punto de venta, el modelo único requiere de un solo proceso de búsqueda de
hiperparámetros. Además, dada la simplicidad de la solución propuesta, el
modelo puede ser implementado en una simple máquina, sin necesidad de usar
grandes sistemas complejos en la nube.

De los resultados de este capítulo se concluye que es posible construir sistemas
integrales para la predicción de ventas de múltiples productos, en múltiples
puntos de venta y en diferentes momentos en el tiempo, mediante el uso de un
único modelo de aprendizaje automático. Los resultados obtenidos demuestran
que el modelo propuesto supera significativamente el desempeño de todas las
soluciones encontradas en la literatura. Además, se ha observado que, en contra
de la intuición inicial, los modelos de secuencia-a-secuencia proporcionan mejores
resultados que los transformers. Además, el estudio de ablación incluido concluye
que pese a disponer de las series temporales de las ventas de casi 5 años, solo se
necesitan las ventas de los últimos 75 días para predecir las ventas futuras.

Contribución 4: sistema de detección de comandos
de voz mediante el uso de convoluciones eficientes

Tanto esta contribución como la siguiente pertenecen al campo de la tecnología
del habla. En esta contribución se estudia cómo construir un sistema de detección
de comandos de voz (conocido como Keyword Spotting, en inglés) utilizando
una versión eficiente de una red neuronal convolucional. Los sistemas de re-
conocimiento del habla son cruciales hoy en día, especialmente en asistentes de
voz, pero también en sistemas de asistencia a personas con discapacidades auditi-
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vas, en entornos donde se requiere atención visual (por ejemplo en automóviles),
en centros de telefonía donde se requiere transcribir llamadas de clientes para la
posterior explotación de datos o la trazabilidad de experiencia de usuario.

Muchas de las soluciones actuales requieren de la asistencia de potentes
ordenadores en la nube. En este caso particular, esto tiene múltiples desventajas
frente a un sistema integrado en el dispositivo.

• La comunicación con un servidor en la nube está sujeta a una latencia, la
cual tiene un efecto directo en la experiencia de usuario.

• El uso de un servidor en la nube requiere que tanto los comandos de
voz como su transcripción se transmitan a través de Internet, y que en
algunos casos incluso se almacenen en el servidor durante un tiempo.
Esto comúnmente suscita preocupación en los clientes con respecto a su
privacidad.

• Un servidor en la nube normalmente requiere de mucha más energía que
un dispositivo integrado.

Para este estudio se usa un conjunto de datos llamado Google tensorflow
speech-commands dataset el cual se distribuye en dos versiones (V1 y V2). Este
consta de un conjunto de grabaciones etiquetado, de un segundo de duración,
de palabras que se corresponden con los distintos comandos de voz a detectar.
Se dispone de 64.721 y de 105.829 clips de audio en las versiones V1 y V2,
respectivamente. Entre estas grabaciones hay 30 (en la versión V1) o 35 (en la
versión V2) comandos distintos. Los distintos comandos de voz registrados por
los locutores se corresponden con las siguientes palabras: “left”, “right”, “yes”,
“no”, “down”, “up”, “go”, “stop”, “on”, “off”, “zero”, “one”, “two”, “three”, “four”,
“five”, “six”, “seven”, “eight”, “nine”, “dog”, “cat”, “wow”, “house”, “bird”, “happy”,
“sheila”, “marvin”, “bed”, “tree”, “visual”, “follow”, “learn”, “forward”, “backward”.
Estos clips de audio están registrados con una frecuencia de muestreo de 16kHz.

Con el objetivo de comparar con los estudios encontrados en la literatura, se
agrupan estos comandos en grupos de 35, 20, 10 y 2 comandos, definiendo un
total de 4 tareas a resolver. En cada caso, los comandos no correspondientes con
cada tarea se agrupan en una nueva clase llamada “unknown” (desconocido), la
cual representará una clase extra en las tareas de clasificación. Además, cada
clip de audio se distorsiona (mediante la combinación aleatoria de varios tipos
de transformaciones de la señal: cambio de frecuencia, remuestreo, adición de
ruido, corte, etc) generando 5 nuevas versiones de las grabaciones originales, que
se combinan con los datos originales sin distorsionar para entrenar el modelo.

Se diseña una arquitectura basada en redes convolucionales separables en
profundidad (depthwise separable convolutions, en inglés), la cual está basada en
una arquitectura comunmente usada en tareas de visión computacional, bautizada
como Xception. Este tipo de convoluciones se diferencia de la operación original
en que separa la computación de los canales de la computación espacial, lo cual
hace que sea sustancialmente más eficiente.

Para estudiar la significancia estadística del desempeño de esta nueva arqui-
tectura se entrena el modelo neuronal propuesto 5 veces, con inicializaciones
aleatorias, de modo que se pueda calcular la significancia estadística de los
resultados obtenidos. Además, a modo de punto de comparación adicional, cua-
tro sujetos etiquetaron 1000 comandos aleatorios manualmente. Los resultados
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de este experimento demuestran que el sistema propuesto no solo es capaz de
superar el rendimiento de las alternativas en la literatura, sino que en dos de las
cuatro tareas es capaz de superar el rendimiento humano significativamente.

Contribución 5: sistema de generación de habla de
múltiples perfiles de voz

La última contribución propone el diseño y estudio de un modelo independiente de
generación de habla capaz de sintetizar voz natural e inteligible usando miles de
perfiles de voz distintos. La generación del habla es, al igual que el reconocimiento
del habla (la tarea opuesta), una importante aplicación en diferentes escenarios:
asistentes de voz, asistencia a personas con discapacidades visuales, asistencia
en actividades que requieren concentración visual tales como la conducción, el
ocio (por ejemplo la lectura de noticias mientras el usuario realiza cualquier
acción), etc. A diferencia de la tarea de reconocimiento del habla, esta es una
tarea generativa: no hay una única forma de leer una frase. Por lo tanto, el
modelo generativo tiene que ser capaz de generar voces usando distintos perfiles
de voz, además de modelar correctamente las distintas variaciones prosódicas
de cada frase. Si el modelo no es capaz de modelar esta variabilidad, las voces
sintéticas no serán naturales, lo cual empeorará la experiencia del usuario.

Este estudio parte de una de las arquitecturas más conocidas en el campo
de generación del habla bautizada como Tacotron. Esta arquitectura cuenta
con dos módulos: un codificador y un decodificador. El codificador recibe como
entrada el texto que se quiere leer, un vector latente representando el perfil de
voz deseado, así como una referencia acústica a partir de la que se extrae la
información prosódica que se quiere implantar en la síntesis. El decodificador
es un módulo autoregresivo que se usa para generar el espectrograma con la
información acústica deseada. El alineamiento de la información acústica y la
léxica se consigue mediante el uso de un mecanismo de atención.

Sobre esta arquitectura se proponen los siguientes cambios.

• Se sustituye el codificador de la referencia acústica por un auto-encoder
variacional, el cual es responsable de modelar las distintas formas de leer
una frase dada. De este modo, aparte de mejorar la generalización del
modelo, se elimina la dependencia en un sistema de generación suplente en
tiempo de inferencia.

• Se normaliza el vector latente correspondiente con el perfil de voz deseado
usando técnicas de flujos de normalización. Estos se usan de modo que el
espacio latente donde se hallan las representaciones de los perfiles de voz
se distribuya de acuerdo a una normal N (0, I).

Se entrenan ambos sistemas, en igualdad de condiciones, usando un conjunto
de datos consistente en más de 700.000 clips de audio grabados por alrededor de
3000 distintos locutores. Estos clips de audio están registrados con una frecuencia
de muestreo de 16kHz.

Una vez entrenado el sistema, se realizan los siguientes experimentos:

1. Con cada uno de los sistemas, se sintetizan 50 frases para cada uno de los
perfiles de voz disponibles (2870) y se estudia su inteligibilidad (mediante
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la comparación de la frase objetivo y la transcripción automática del audio
generado) y cómo de distintos son entre ellos (mediante el uso de un modelo
de verificación del locutor).

2. Se realiza una síntesis repetida (con distintas semillas aleatorias) de una
serie de frases para determinar la capacidad de cada sistema de modelar
distintas prosodias. Para ello se miden una serie de variables cuantitativas
sobre las síntesis que representan aspectos relacionados con la prosodia
(por ejemplo la frecuencia fundamental).

3. Se estudia cómo los sistemas reaccionan ante perfiles de voz sintéticos
obtenidos mediante la interpolación lineal de sus representaciones latentes.

Los resultados de los experimentos descritos concluyen que el modelo pro-
puesto es capaz de generar habla expresiva, con variaciones de prosodia significati-
vamente mayores con respecto al modelo base. Además, se prueba empíricamente
que ambos modelos tienen el mismo nivel de inteligibilidad y generan timbres de
voz distintos por igual. El modelo propuesto generaliza mejor ante perfiles de
voz interpolados.

Este nuevo enfoque elimina la dependencia de los modelos anteriores de un
sistema de voz auxiliar, lo que lo hace más eficiente en el tiempo de entrenamiento
e inferencia.





Bibliography

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A. I., et al. (1996).
Fast discovery of association rules. Advances in knowledge discovery and
data mining, 12 (1), 307–328.

Algan, G., & Ulusoy, I. (2021). Image classification with deep learning in the pres-
ence of noisy labels: A survey. Knowledge-Based Systems, 215, 106771.
https://doi.org/10.1016/j.knosys.2021.106771

Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein Generative Adver-
sarial Networks. Proceedings of the 34th International Conference on
Machine Learning (ICML), 70, 214–223.

Asif, U., Tang, J., & Harrer, S. (2020). Ensemble Knowledge Distillation for
Learning Improved and Efficient Networks. Proceedings of the 24th
European Conference on Artificial Intelligence (ECAI).

Aung, H., Bobkov, A. V., & Tun, N. L. (2021). Face Detection in Real Time Live
Video Using YOLO Algorithm Based on VGG16 Convolutional Neural
Network. Proceedings of the International Conference on Industrial
Engineering, Applications and Manufacturing (ICIEAM), 697–702. https:
//doi.org/10.1109/ICIEAM51226.2021.9446291

Ayachi, R., Afif, M., Said, Y., & Atri, M. (2020). Strided Convolution Instead of
Max Pooling for Memory Efficiency of Convolutional Neural Networks. In
M. S. Bouhlel & S. Rovetta (Eds.), Proceedings of the 8th International
Conference on Sciences of Electronics, Technologies of Information and
Telecommunications (SETIT). Springer International Publishing.

Ba, J., Kiros, R., & Hinton, G. E. (2016). Layer Normalization. Proceedings of
the 30th Neural Information Processing Systems conference (NIPS).

Badri, H., Ghomi, S., & Hejazi, T. H. (2017). Supply Chain Network Design:
A Value-based Approach. Transportation Research Part E, 1–17. https:
//doi.org/10.1016/j.tre.2017.06.012

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation
by Jointly Learning to Align and Translate. Proceedings of the 3rd
International Conference on Learning Representations (ICLR).

Bell, P. C. (2000). Forecasting Demand Variation when there are Stockouts.
The Journal of the Operational Research Society, 51 (3), 358–363. http:
//www.jstor.org/stable/254094

Benaroch, M., & Dhar, V. (1991). An intelligent assistant for financial hedg-
ing. Proceedings of the 7th IEEE Conference on Artificial Intelligence
Application, 1, 168–174. https://doi.org/10.1109/caia.1991.120865

https://doi.org/10.1016/j.knosys.2021.106771
https://doi.org/10.1109/ICIEAM51226.2021.9446291
https://doi.org/10.1109/ICIEAM51226.2021.9446291
https://doi.org/10.1016/j.tre.2017.06.012
https://doi.org/10.1016/j.tre.2017.06.012
http://www.jstor.org/stable/254094
http://www.jstor.org/stable/254094
https://doi.org/10.1109/caia.1991.120865


118 Chapter 8

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2006). Greedy layer-wise
training of deep networks. Proceedings of the 20th Neural Information
Processing Systems Conference (NIPS).

Bi, J., Zhu, Z., & Meng, Q. (2021). Transformer in Computer Vision. Proceedings
of the IEEE International Conference on Computer Science, Electronic
Information Engineering and Intelligent Control Technology, 178–188.
https://doi.org/10.1109/CEI52496.2021.9574462

Bishop, C. M. (2011). Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York Inc. https://www.
ebook.de/de/product/5324937/christopher_m_bishop_pattern_
recognition_and_machine_learning.html

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-
Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler,
D., Wu, J., Winter, C., . . . Amodei, D. (2020). Language Models are
Few-Shot Learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, & H. Lin (Eds.), Procedings of the 33rd conference in Neural
Information Processing Systems conference (NeurIPS) (pp. 1877–1901).
Curran Associates, Inc. https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Buś, S., & Jedrzejewski, K. (2016). Digital signal processing techniques for
pitch shifting and time scaling of audio signals. Proceedings of SPIE -
The International Society for Optical Engineering, 10031, 1003157–1.
https://doi.org/10.1117/12.2249374

Buuren, S. (2018). Flexible imputation of missing data. CRC Press. https :
//doi.org/10.1201/9780429492259

Calero, A. S. M., & Caro, J. M. B. (2018). Corporación Favorita Grocery
Sales Forecasting (Master Thesis). Universidad Autónoma de Andalucía.
https://dspace.unia.es/handle/10334/3921

Campbell, M., Hoane, A. J., & Hsu, F.-h. (2002). Deep Blue. Artificial Intelligence,
134, 57–83. https://doi.org/10.1016/s0004-3702(01)00129-1

Carrera, R., Loiseau, D., & Roux, O. (1979). Androides.
Caruana, R. (1997). Multitask Learning. Machine Learning, 28 (1), 41–75. https:

//doi.org/10.1023/A:1007379606734
Chakraborty, D., Chiracharit, W., & Chamnongthai, K. (2021). Video shot

Boundary Detection using Principal Component Analysis (PCA) and
Deep Learning. Proceedings of the 18th International Conference on
Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), 272–275. https://doi.org/10.
1109/ECTI-CON51831.2021.9454775

Chaudhari, S., Mithal, V., Polatkan, G., & Ramanath, R. (2021). An Attentive
Survey of Attention Models. ACM Transactions on Intelligent Systems
and Technology, 12 (5), 1–32. https://doi.org/10.1145/3465055

Chen, S., Wu, Y., Chen, Z., Wu, J., Li, J., Yoshioka, T., Wang, C., Liu, S.,
& Zhou, M. (2021). Continuous Speech Separation with Conformer.
Proceedings of the 46th IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 5749–5753. https://doi.org/10.
1109/ICASSP39728.2021.9413423

Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convo-
lutions. Proceedings of the IEEE Conference on Computer Vision and

https://doi.org/10.1109/CEI52496.2021.9574462
https://www.ebook.de/de/product/5324937/christopher_m_bishop_pattern_recognition_and_machine_learning.html
https://www.ebook.de/de/product/5324937/christopher_m_bishop_pattern_recognition_and_machine_learning.html
https://www.ebook.de/de/product/5324937/christopher_m_bishop_pattern_recognition_and_machine_learning.html
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1117/12.2249374
https://doi.org/10.1201/9780429492259
https://doi.org/10.1201/9780429492259
https://dspace.unia.es/handle/10334/3921
https://doi.org/10.1016/s0004-3702(01)00129-1
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1109/ECTI-CON51831.2021.9454775
https://doi.org/10.1109/ECTI-CON51831.2021.9454775
https://doi.org/10.1145/3465055
https://doi.org/10.1109/ICASSP39728.2021.9413423
https://doi.org/10.1109/ICASSP39728.2021.9413423


Bibliography 119

Pattern Recognition (CVPR), 1800–1807. https://doi.org/10.1109/
CVPR.2017.195

Chollet, F. et al. (2015). Keras. https://github.com/fchollet/keras
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of

Gated Recurrent Neural Networks on Sequence Modeling. Proceedings
of the 28th Neural Information Processing Systems Conference (NIPS),
Deep Learning and Representation Learning Workshop.

Cinar, A., Tatura, E., DeCicco, J., Raj, R., Aggarwal, N., Chesebro, M., Evans, J.,
Shah-Khan, M., & Zloza, A. (1999). Automated patient monitoring and
diagnosis assistance by integrating statistical and artificial intelligence
tools. 2, 700. https://doi.org/10.1109/IEMBS.1999.803855

Clevert, D., Unterthiner, T., & Hochreiter, S. (2016). Fast and Accurate deep
Network Learning by Exponential Linear Units (ELUs). In Y. Bengio
& Y. LeCun (Eds.), Proceedings of the 4th International Conference
on Learning Representations (ICLR), San Juan, Puerto Rico. http :
//arxiv.org/abs/1511.07289

Coimbra de Andrade, D., Leo, S., Loesener Da Silva Viana, M., & Bernkopf,
C. (2018). A neural attention model for speech command recognition.
ArXiv e-print, abs/1808.08929, Article arXiv:1808.08929.

Corporación Favorita, K. (2018). Corporación Favorita Grocery Sales Forecasting
Data Set [Available in the following link: https://www.kaggle.com/c/
favorita-grocery-sales-forecasting/data].

Cramer-Flood, E. (2020). Global Ecommerce 2020: Ecommerce Decelerates amid
Global Retail Contraction but Remains a Bright Spot. E-marketer.

Cui, S., & Jiang, Y. (2017). Effective Lipschitz constraint enforcement for
Wasserstein GAN training. Proceedings of the 2nd IEEE International
Conference on Computational Intelligence and Applications (ICCIA),
74–78. https://doi.org/10.1109/ciapp.2017.8167183

Curtin, R. R., Moseley, B., Ngo, H. Q., Nguyen, X., Olteanu, D., & Schleich, M.
(2020). Rk-means: Fast Clustering for Relational Data. In S. Chiappa &
R. Calandra (Eds.), Proceedings of the 23rd International Conference
on Artificial Intelligence and Statistics (AISTATS), Virtual, Palermo,
Sicily, Italy (pp. 2742–2752). http : //proceedings .mlr .press/v108/
curtin20a.html

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2 (4), 303–314. https:
//doi.org/10.1007/bf02551274

Dauphin, Y., & Cubuk, E. D. (2021). Deconstructing the regularization of
batchnorm. Proceedings of the 9th International Conference on Learning
Representations (ICLR), Virtual Event, Austria. https://openreview.
net/forum?id=d-XzF81Wg1

David, O. E., & Greental, I. (2014). Genetic Algorithms for Evolving Deep
Neural Networks. Proceedings of the Companion Publication of the 2014
Annual Conference on Genetic and Evolutionary Computation, 1451–
1452. https://doi.org/10.1145/2598394.2602287

DeClaris, N. (1991). A systems approach to medical decision aiding. Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics,
2103–2107 vol.3. https://doi.org/10.1109/icsmc.1991.169924

https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2017.195
https://github.com/fchollet/keras
https://doi.org/10.1109/IEMBS.1999.803855
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
https://www.kaggle.com/c/favorita-grocery-sales-forecasting/data
https://www.kaggle.com/c/favorita-grocery-sales-forecasting/data
https://doi.org/10.1109/ciapp.2017.8167183
http://proceedings.mlr.press/v108/curtin20a.html
http://proceedings.mlr.press/v108/curtin20a.html
https://doi.org/10.1007/bf02551274
https://doi.org/10.1007/bf02551274
https://openreview.net/forum?id=d-XzF81Wg1
https://openreview.net/forum?id=d-XzF81Wg1
https://doi.org/10.1145/2598394.2602287
https://doi.org/10.1109/icsmc.1991.169924


120 Chapter 8

Deep, K., & Salhi, M. J. S. (2018). Logistics, Supply Chain and Financial
Predictive Analytics. Springer Singapore. https://doi.org/10.1007/978-
981-13-0872-7

Denby, E., & Gammack, J. (1999). The naming of colours: Investigating a
psychological curiosity using AI. Proceedings of the 6th Neural In-
formation Processing Systems conference (NIPS), 3, 964–973. https:
//doi.org/10.1109/iconip.1999.844667

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet:
A large-scale hierarchical image database. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 248–
255.

Deng, L. (2012). The MNIST database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine, 29 (6), 141–142.

Denton, E. L., Cintala, S., Szlam, A., & Fergus, R. (2015). Deep Generative
Image Models using Laplacian Pyramid of Adversarial Networks. Pro-
ceedings of the 29th Neural Information Processing Systems confer-
ence (NIPS), 28. https://proceedings.neurips.cc/paper/2015/file/
aa169b49b583a2b5af89203c2b78c67c-Paper.pdf

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. Pro-
ceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, 4171–4186. https://doi.org/10.18653/v1/N19-1423

Dhariwal, P., & Nichol, A. (2021). Diffusion Models Beat GANs on Image
Synthesis. Proceedings of the 35th Neural Information Processing Systems
conference (NeurIPS), abs/2105.05233. https://arxiv.org/abs/2105.
05233

Ding, Q., Han, J., Zhao, X., & Chen, Y. (2015). Missing-Data Classification with
the Extended Full-Dimensional Gaussian Mixture Model: Applications
to EMG-Based Motion Recognition. IEEE Transactions on Industrial
Electronics, 62 (8), 4994–5005. https://doi .org/10.1109/TIE.2015.
2403797

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using
Real NVP. Proceedings of 4th International Conference of Learning
Representations (ICLR). http://dblp.uni-trier.de/db/journals/corr/
corr1605.html#DinhSB16

Dorrer, M., Gorban, A., & Zenkin, V. (1995). Neural networks in psychol-
ogy: Classical explicit diagnoses. Proceedings of the 2nd International
Symposium on Neuroinformatics and Neurocomputers, 281–284. https:
//doi.org/10.1109/isninc.1995.480869

Dua, D., & Graff, C. (2017). UCI Machine Learning Repository. http://archive.
ics.uci.edu/ml/datasets/abalone

Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., & Garcia, R. (2001). Incorpo-
rating Second-Order Functional Knowledge for Better Option Pric-
ing. In T. Leen, T. Dietterich, & V. Tresp (Eds.), Proceedings of
the 15th Neural Information Processing Systems conference (nips).
MIT Press. https : / / proceedings . neurips . cc / paper / 2000 / file /
44968aece94f667e4095002d140b5896-Paper.pdf

https://doi.org/10.1007/978-981-13-0872-7
https://doi.org/10.1007/978-981-13-0872-7
https://doi.org/10.1109/iconip.1999.844667
https://doi.org/10.1109/iconip.1999.844667
https://proceedings.neurips.cc/paper/2015/file/aa169b49b583a2b5af89203c2b78c67c-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/aa169b49b583a2b5af89203c2b78c67c-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2105.05233
https://doi.org/10.1109/TIE.2015.2403797
https://doi.org/10.1109/TIE.2015.2403797
http://dblp.uni-trier.de/db/journals/corr/corr1605.html#DinhSB16
http://dblp.uni-trier.de/db/journals/corr/corr1605.html#DinhSB16
https://doi.org/10.1109/isninc.1995.480869
https://doi.org/10.1109/isninc.1995.480869
http://archive.ics.uci.edu/ml/datasets/abalone
http://archive.ics.uci.edu/ml/datasets/abalone
https://proceedings.neurips.cc/paper/2000/file/44968aece94f667e4095002d140b5896-Paper.pdf
https://proceedings.neurips.cc/paper/2000/file/44968aece94f667e4095002d140b5896-Paper.pdf


Bibliography 121

Evci, U., Dumoulin, V., Larochelle, H., & Mozer, M. C. (2022). Head2toe:
Utilizing Intermediate Representations for Better Transfer learning.
ArXiv Preprint, abs/2201.03529. https://arxiv.org/abs/2201.03529

Falas, T., Charitou, A., & Charalambous, C. (1994). The application of artificial
neural networks in the prediction of earnings. Neural Networks, 6, 3629–
3633. https://doi.org/10.1109/ICNN.1994.374920

Falk, K. (2019). Practical Recommender Systems (Illustrated). Manning. https:
/ / www . ebook . de / de / product / 28452266 / kim_ falk_ practical _
recommender_systems.html

Floridi, L., & Chiriatti, M. (2020). GPT-3: Its Nature, Scope, Limits, and
Consequences. Minds and Machines, 30 (4), 681–694. https://doi.org/10.
1007/s11023-020-09548-1

Forslund, H., & Jonsson, P. (2007). The impact of forecast quality on supply
chain performance. International Journal of Operations & Production
Management, 27, 90–107. https://doi.org/10.1108/01443570710714556

Frankle, J., & Carbin, M. (2019). The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks. Proceedings of the 7th International
Conference on Learning Representations (ICLR).

Freeman, C. D., & Bruna, J. (2017). Topology and Geometry of Half-Rectified
Network Optimization. Proceedings of the 5th International Confer-
ence on Learning Representations (ICLR), Toulon, France. https://
openreview.net/forum?id=Bk0FWVcgx

French, R. (1999). Catastrophic forgetting in connectionist networks. Trends
in Cognitive Sciences, 3 (4), 128–135. https://doi.org/10.1016/s1364-
6613(99)01294-2

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.
Biological Cybernetics, 36 (4), 193–202. https : / / doi . org / 10 . 1007 /
bf00344251

Gao, H., Wang, Z., & Ji, S. (2018). ChannelNets: Compact and Efficient Convolu-
tional Neural Networks via Channel-Wise Convolutions. Proceedings of
the 32nd Neural Information Processing Systems conference (NeurIPS).

Gerlach, M., & Font-Clos, F. (2020). A Standardized Project Gutenberg corpus
for Statistical Analysis of Natural Language and Quantitative Linguistics.
Entropy, 22 (1), 126. https://doi.org/10.3390/e22010126

Geyer, R. C., Wegmayr, V., & Corinzia, L. (2019). Transfer Learning by Adaptive
Merging of Multiple Models. Proceedings of the International Conference
on Medical Imaging with Deep Learning.

Gidaris, S., Singh, P., & Komodakis, N. (2018). Unsupervised Representation
Learning by Predicting image Rotations. Proceedigns of the 6th Interna-
tional Conference of Learning Representations (ICLR).

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Y. W. Teh & M. Titterington (Eds.),
Proceedings of the 13th international conference on artificial intelligence
and statistics (pp. 249–256). http://proceedings.mlr.press/v9/glorot10a.
html

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse Rectifier Neural
Networks. In G. Gordon, D. Dunson, & M. Dudík (Eds.), Proceedings of
the 14th International Conference on Artificial Intelligence and Statistics
(pp. 315–323). http://proceedings.mlr.press/v15/glorot11a.html

https://arxiv.org/abs/2201.03529
https://doi.org/10.1109/ICNN.1994.374920
https://www.ebook.de/de/product/28452266/kim_falk_practical_recommender_systems.html
https://www.ebook.de/de/product/28452266/kim_falk_practical_recommender_systems.html
https://www.ebook.de/de/product/28452266/kim_falk_practical_recommender_systems.html
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1108/01443570710714556
https://openreview.net/forum?id=Bk0FWVcgx
https://openreview.net/forum?id=Bk0FWVcgx
https://doi.org/10.1016/s1364-6613(99)01294-2
https://doi.org/10.1016/s1364-6613(99)01294-2
https://doi.org/10.1007/bf00344251
https://doi.org/10.1007/bf00344251
https://doi.org/10.3390/e22010126
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v15/glorot11a.html


122 Chapter 8

Goodfellow, I. (2016). Generative Adversarial Networks. Proceedings of the
31st Neural Information Processing Systems conference (NIPS), tutorial.
http://arxiv.org/abs/1701.00160

Goodfellow, I., Bengio, J., & Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Nets.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q.
Weinberger (Eds.), Proceedings of the 28th Neural Information Processing
Systems conference (NIPS) (pp. 2672–2680). Curran Associates, Inc.
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Gotmare, A., Shirish Keskar, N., Xiong, C., & Socher, R. (2019). A Closer
Look at Deep Learning Heuristics: Learning rate restarts, Warmup
and Distillation. Proceedings of the 7th International Conference on
Learning Representations (ICLR). https://openreview.net/forum?id=
r14EOsCqKX

Gou, J., Yu, B., Maybank, S. J., & Tao, D. (2021). Knowledge Distillation: A
Survey. International Journal of Computer Vision, 129 (6), 1789–1819.
https://doi.org/10.1007/s11263-021-01453-z

Goyal, A., Lamb, A., Zhang, Y., Zhang, S., Courville, A., & Bengio, Y. (2016).
Professor Forcing: A New Algorithm for Training Recurrent Networks.
Proceedings of the 30th International Conference on Neural Information
Processing Systems (NIPS), 4608–4616.

Graves, A. (2013). Generating Sequences with Recurrent Neural Networks. ArXiv
e-print, abs/1308.0850. https://doi.org/10.48550/ARXIV.1308.0850

Graves, A., Fernández, S., & Schmidhuber, J. (2005). Bidirectional LSTM Net-
works for Improved Phoneme Classification and Recognition. Proceedings
of the International Conference of Artificial Neural Networks: Formal
Models and Their Applications (ICANN), 799–804.

Graves, S., & Willems, S. (2008). Strategic Inventory Placement in Supply
Chains: Nonstationary Demand. Manufacturing & Service Operations
Management, Vol. 10, 278–287. https://doi.org/10.1287/msom.1070.0175

Greenwood, J., & Woodcroft, B. (1851). The Pneumatics of Hero of Alexandria:
From the Original Greek. Taylor, Walton; Maberly. https://books.google.
co.uk/books?id=O8PVAAAAMAAJ

Guo, Y., Li, Y., Feris, R., Wang, L., & Rosing, T. (2019). Depthwise Convolution
is All You Need for Learning Multiple Visual Domains. Association for
the Advancement of Artificial Intelligence.

Ha, T., Dang, T. K., Dang, T. T., Truong, T. A., & Nguyen, M. T. (2019).
Differential Privacy in Deep Learning: An Overview. Proceedings of
the International Conference on Advanced Computing and Applications
(ACOMP), 97–102. https://doi.org/10.1109/ACOMP.2019.00022

Ham, F. M., & Kostanic, I. (2000). Principles of Neurocomputing for Science
and Engineering (1st). McGraw-Hill Higher Education.

Han, H., & Siebert, J. (2022). TinyML: A Systematic Review and Synthesis
of Existing Research. Proceedings of the International Conference on
Artificial Intelligence in Information and Communication (ICAIIC),
269–274. https://doi.org/10.1109/ICAIIC54071.2022.9722636

Han, S., Kang, J., Mao, H., Hu, Y., Li, X., Li, Y., Xie, D., Luo, H., Yao, S.,
Wang, Y., Yang, H., & Dally, W. ( J. (2017). ESE: Efficient Speech

http://arxiv.org/abs/1701.00160
http://www.deeplearningbook.org
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://openreview.net/forum?id=r14EOsCqKX
https://openreview.net/forum?id=r14EOsCqKX
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.48550/ARXIV.1308.0850
https://doi.org/10.1287/msom.1070.0175
https://books.google.co.uk/books?id=O8PVAAAAMAAJ
https://books.google.co.uk/books?id=O8PVAAAAMAAJ
https://doi.org/10.1109/ACOMP.2019.00022
https://doi.org/10.1109/ICAIIC54071.2022.9722636


Bibliography 123

Recognition Engine with Sparse LSTM on FPGA. Proceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 75–84. https://doi.org/10.1145/3020078.3021745

Hassibi, B., Stork, D., & Wolff, G. (1993). Optimal Brain Surgeon and general
network pruning. Proceedings of the IEEE International Conference on
Neural Networks, 1, 293–299. https://doi.org/10.1109/ICNN.1993.
298572

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical
learning : Data mining, inference, and prediction. Springer. https://
books.google.co.uk/books?id=eBSgoAEACAAJ

Haykin, S. (1999). Neural networks : A comprehensive foundation (2nd). Prentice
Hall.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image
Recognition. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/
CVPR.2016.90

Helmini, S., Jihan, N., Jayasinghe, M., & Perera, S. (2019). Sales forecasting using
multivariate long short term memory network models. PeerJ Preprints,
7, e27712v1. https://doi.org/10.7287/peerj.preprints.27712v1

Hendrycks, D., & Gimpel, K. (2016). Bridging Nonlinearities and Stochastic
Regularizers with Gaussian Error Linear Units. Proceedings of the 4th
International Conference on Learning Representations (ICLR), San
Juan, Puerto Rico. https://openreview.net/forum?id=Bk0MRI5lg

Hinton, G. (2002). Training Products of Experts by Minimizing Contrastive
Divergence. Neural Computation, 14 (8), 1771–1800. https://doi.org/10.
1162/089976602760128018

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural
network. Proceedings of the Neural Information Processing Systems con-
ference (NIPS), Deep Learning and Representation Learning Workshop.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A Fast Learning Algorithm
for Deep Belief Nets. Neural Computation, 18 (7), 1527–1554. https:
//doi.org/10.1162/neco.2006.18.7.1527

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov,
R. R. (2012). Improving neural networks by preventing co-adaptation of
feature detectors. https://doi.org/10.48550/ARXIV.1207.0580

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). A Field
Guide to Dynamical Recurrent Networks. A Field Guide to Dynamical
Recurrent Neural Networks. IEEE Press. https://ml.jku.at/publications/
older/ch7.pdf

Hochreiter, S. (1998). The Vanishing Gradient Problem During Learning Re-
current Neural Nets and Problem Solutions. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 6 (2), 107–116.
https://doi.org/10.1142/s0218488598000094

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9 (8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.
1735

Hodges, A. (2000). Alan Turing : The enigma. Walker.
Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better:

Closing the generalization gap in large batch training of neural networks.

https://doi.org/10.1145/3020078.3021745
https://doi.org/10.1109/ICNN.1993.298572
https://doi.org/10.1109/ICNN.1993.298572
https://books.google.co.uk/books?id=eBSgoAEACAAJ
https://books.google.co.uk/books?id=eBSgoAEACAAJ
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.7287/peerj.preprints.27712v1
https://openreview.net/forum?id=Bk0MRI5lg
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.48550/ARXIV.1207.0580
https://ml.jku.at/publications/older/ch7.pdf
https://ml.jku.at/publications/older/ch7.pdf
https://doi.org/10.1142/s0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735


124 Chapter 8

Proceedings of the 31st Neural Information Processing Systems conference
(NIPS). http://arxiv.org/abs/1705.08741

Hoffmann, E. T. A. (1816). Der Sandmann.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent

collective computational abilities. National Academy of Sciences of the
United States of America, 79 (8), 2554–2558. http://view.ncbi.nlm.nih.
gov/pubmed/6953413]

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications. https://doi.org/10.
48550/arXiv.1704.04861

Huang, G., Liu, Z., Maaten, L. V. D., & Weinberger, K. Q. (2017). Densely
Connected Convolutional Networks. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2261–2269. https:
//doi.org/10.1109/cvpr.2017.243

Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme Learning
Machine for Regression and Multiclass Classification. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), 42 (2), 513–
529. https://doi.org/10.1109/tsmcb.2011.2168604

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine:
Theory and applications. Neurocomputing, 70 (1-3), 489–501. https :
//doi.org/10.1016/j.neucom.2005.12.126

Hui, T.-W., Tang, X., & Loy, C. C. (2018). LiteFlowNet: A Lightweight Con-
volutional Neural Network for Optical Flow Estimation. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Hyndman, R. (2018). Forecasting : Principles and practice (2nd). OTexts.
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