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NOTE TO THE READER

According to the University of Valencia Doctorate Regulation1 this PhD thesis is presented as

a compendium of at least three publications in international journals containing the results of

the conducted work. This Thesis describes four published methods, their results and the context

within they were developed. Those publications are included as an annex of this Thesis (Appendix).

Furthermore, in accordance with the aforementioned regulation, the Thesis also includes an extended

abstract in Spanish (Chapter 7).

1Reglamento sobre el depósito, evaluación y defensa de la tesis doctoral aprovado por el Consell de Govern de 28 de
Juny de 2016. ACGUV 172/2016.
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ABSTRACT

Remote sensing sensors onboard Earth observation satellites provide a great opportunity to
monitor our planet at high spatial and temporal resolutions. Nevertheless, to process all
this ever-growing amount of data, we need to develop fast and accurate models adapted
to the specific characteristics of the data acquired by each sensor. For optical sensors,
detecting the clouds present in the image is an unavoidable first step for most of the land
and ocean applications. Although detecting bright and opaque clouds is relatively easy,
automatically identifying thin semi-transparent clouds or distinguishing clouds from snow
or bright surfaces is much more challenging. In addition, in the current scenario where the
number of sensors in orbit is constantly growing, developing methodologies to transfer
models across different satellite data is a pressing need.

Henceforth, the overreaching goal of this Thesis is to develop accurate cloud detec-
tion models that exploit the different properties of the satellite images, and to develop
methodologies to transfer those models across different sensors. The four contributions of
this Thesis are stepping stones in that direction. In the first contribution, ”Multitemporal
cloud masking in the Google Earth Engine”, we implemented a lightweight multitemporal
cloud detection model that runs on the Google Earth Engine platform and which outper-
forms the operational models for Landsat-8. The second contribution, ”Transferring deep
learning models for Cloud Detection between Landsat-8 and Proba-V”, is a case-study
of transferring a deep learning based cloud detection algorithm from Landsat-8 (30 m
resolution, 12 spectral bands and very good radiometric quality) to Proba-V, which has a
lower 333 m resolution, only four bands and a less accurate radiometric quality. The third
paper, ”Cross sensor adversarial domain adaptation of Landsat-8 and Proba-V images for
cloud detection”, proposes a learning-based domain adaptation transformation of Proba-V
images to resemble those taken by Landsat-8, with the objective of transferring products
designed on Landsat-8 to Proba-V. Finally, the fourth contribution, ”Towards global flood
mapping onboard low cost satellites with machine learning”, tackles simultaneously cloud
and flood water detection with a single deep learning model, which was implemented to
run onboard a CubeSat (ΦSat-1) with an AI accelerator chip. In this case, the model is
trained on Sentinel-2 and transferred to the ΦSat-1 camera. This model was launched in
June 2021 onboard the Wild Ride D-Orbit mission in order to test its performance in space.





RESUMEN

Los satélites de observación de la Tierra proporcionan una oportunidad sin precedentes
para monitorizar nuestro planeta a alta resolución tanto espacial como temporal. Sin
embargo, para procesar toda esta cantidad creciente de datos, necesitamos desarrollar
modelos rápidos y precisos adaptados a las caracterı́sticas especı́ficas de los datos de
cada sensor. Para los sensores ópticos, detectar las nubes en la imagen es un primer
paso inevitable en la mayorı́a de aplicaciones tanto terrestres como oceánicas. Aunque
detectar nubes brillantes y opacas es relativamente fácil, identificar automáticamente nubes
delgadas semitransparentes o diferenciar nubes de nieve o superficies brillantes es mucho
más difı́cil. Además, en el escenario actual, donde el número de sensores en el espacio
crece constantemente, desarrollar metodologı́as para transferir modelos que funcionen con
datos de nuevos satélites es una necesidad urgente.

Por tanto, los objetivos de esta tesis son desarrollar modelos precisos de detección de
nubes que exploten las diferentes propiedades de las imágenes de satélite y desarrollar
metodologı́as para transferir esos modelos a otros sensores. La tesis está basada en cuatro
trabajos los cuales proponen soluciones a estos problemas. En la primera contribución,

”Multitemporal cloud masking in the Google Earth Engine”, implementamos un modelo de
detección de nubes multitemporal que se ejecuta en la plataforma Google Earth Engine y
que supera los modelos operativos de Landsat-8. La segunda contribución, ”Transferring
deep learning models for Cloud Detection between Landsat-8 and Proba-V”, es un caso
de estudio de transferencia de un algoritmo de detección de nubes basado en aprendizaje
profundo de Landsat-8 (resolución 30 m, 12 bandas espectrales y muy buena calidad
radiométrica) a Proba-V, que tiene una resolución de 333 m, solo cuatro bandas y una
calidad radiométrica peor. El tercer artı́culo, ”Cross sensor adversarial domain adaptation
of Landsat-8 and Proba-V images for cloud detection”, propone aprender una transfor-
mación de adaptación de dominios que haga que las imágenes de Proba-V se parezcan a
las tomadas por Landsat-8 con el objetivo de transferir productos diseñados con datos de
Landsat-8 a Proba-V. Finalmente, la cuarta contribución, ”Towards global flood mapping
onboard low cost satellites with machine learning”, aborda simultáneamente la detección
de inundaciones y nubes con un único modelo de aprendizaje profundo, implementado
para que pueda ejecutarse a bordo de un CubeSat (ΦSat-1) con un chip acelerador de
aplicaciones de inteligencia artificial. El modelo está entrenado en imágenes Sentinel-2 y
demostramos cómo transferir este modelo a la cámara del ΦSat-1. Este modelo se lanzó
en junio de 2021 a bordo de la misión WildRide de D-Orbit para probar su funcionamiento
en el espacio.





RESUM

L’observació de la Terra amb sensors de satèl·lits ens proporciona una capacitat sense
precedents per monitoritzar el nostre planeta a alta resolució tant espacial com temporal.
Tot i això, per processar tota aquesta quantitat creixent de dades, necessitem desenvolupar
models ràpids i precisos adaptats a les caracterı́stiques especı́fiques de les dades de cada
sensor. Per als sensors òptics, detectar els núvols a la imatge és un primer pas inevitable
per a la majoria de aplicacions tant terrestres com oceàniques. Encara que detectar núvols
brillants i opaques és relativament fàcil, identificar automàticament núvols semitransparents
o diferenciar núvols de neu o superfı́cies brillants és molt més difı́cil. A més, a l’escenari
actual on el nombre de sensors a l’espai creix constantment, desenvolupar metodologies
per transferir models que funcionen amb dades de nous satèl·lits és una necessitat urgent.

Per tant, els objectius d’aquesta tesi són desenvolupar models precisos de detecció
de núvols que exploten les diferents propietats de les imatges de satèl·lit i desenvolupar
metodologies per transferir aquests models a altres sensors. La tesi està composta de
quatre treballs que proposen solucions a aquests problemes. A la primera contribució,

”Multitemporal cloud masking in the Google Earth Engine”, implementem un model de
detecció de núvols multitemporal que s’executa a la plataforma Google Earth Engine i
que supera els models operatius de Landsat-8. La segona contribució, ”Transferring deep
learning models per Cloud Detection between Landsat-8 and Proba-V”, és un cas d’estudi
de transferència d’un algorisme de detecció de núvols basat en aprenentatge profund
de Landsat-8 (resolució 30 m, 12 bandes espectrals i molt bona qualitat radiométrica) a
Proba-V que té una resolució de 333 m, només quatre bandes i una qualitat radiométrica
pitjor. El tercer article ”Cross sensor adversarial amb domini adaptat de Landsat-8 and
Proba-V images for cloud detection”, proposa aprendre una transformació d’adaptació de
dominis que faci que les imatges de Proba-V s’assemblin a les preses per Landsat -8 amb
l’objectiu de transferir productes dissenyats amb dades de Landsat-8 a Proba-V. Finalment,
la quarta contribució, ”Towards global flood mapping onboard low cost satellites with
machine learning”, aborda simultàniament la detecció d’inundacions i núvols amb un únic
model d’aprenentatge profund; en aquest cas, el model s’implementa per executar-se a
bord d’un CubeSat (ΦSat-1) amb un xip accelerador d’aplicacions d’intel·ligència artificial.
El model està entrenat en imatges Sentinel-2 i es transferit a la càmera del ΦSat-1 que es
va llançar en juny de 2021 a bord de la missió WildRide de D-Orbit per a provar el seu
funcionament a l’espai.





1. Introduction

This Thesis is concerned with the development of algorithms for the automatic detection of
clouds in optical satellite images. In this chapter, we introduce the context and motivation
of this Thesis to the reader: we briefly introduce remote sensing with optical sensors;
the problem of cloud detection together with the existing cloud detection algorithms; the
machine learning and deep learning methodologies for cloud screening; and the rationale
of transfer learning and domain adaptation. Finally, we describe the research objectives
and outline the contributions addressed in the remaining chapters.

1.1 Observing the Earth with satellites

Remote Sensing (RS) is the research field that estimates the properties of objects by
measuring its reflected and emitted radiation at a distance. Remote sensing sensors studied
in this Thesis are observing the Earth onboard orbiting satellite platforms. Remote sensing
sensors are divided in active –when the instrument in the satellite emits radiation that is
reflected by the surface and gets measured back on the sensor– and passive – when the
sensor measures the reflectance emitted by other object which in most cases is the sun1.
All the contributions of this Thesis focus on passive sensors looking at the Earth surface
and measuring the reflected sun light in different wavelengths.

First Earth observation (EO) satellites were launched in the 60s to monitor weather
patterns (Tatem et al., 2008). In 1972, the iconic Landsat-1 took off to monitor land
cover at high resolution, kicking off the Earth observation era. Since then, the number of
satellites observing the Earth has grown remarkably: as of 2021, the number of active EO
satellites is estimated to be 4,550 according to the UCS Satellite Database (2021). This
number has been significantly boosted by constellations of CubeSats –small inexpensive
lightweight satellites– which are increasing the amount of data obtained from space to
unprecedented rates (2,520 out of the 4,550 active satellites were launched between 2020
and 2021). In the last fifteen years we have also witnessed the benefits of open satellite

1There are other examples such as sensors measuring the radiation emitted by the Earth or by night lights.
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Figure 1.1: Image acquisition diagram of a pushbroom scanner.

data archives: in December 2008, the United States Geological Survey (USGS) started to
provide all Landsat scenes at no charge to all users. This led to other major players such as
the European Space Agency (ESA) to embrace the concept of free and open-access data.
Nowadays, free access to satellite imagery is the norm rather than the exception2 and there
are platforms, such as the Google Earth Engine (GEE) (Gorelick et al., 2017), to facilitate
the access and aggregation of different data sources. This Thesis exploits this context of
open multi-sensor data to develop new data-driven cloud detection products for remote
sensing.

There are three main properties, or dimensions, that characterize Earth observation
sensors. These properties determine the time series of images acquired by the satellite and
play a major role in the Thesis. These properties are the spatial resolution, the spectral
resolution characterized by the number of spectral bands acquired by the satellite, and
the temporal resolution, which is determined by the revisit time of the satellite to the
same location. Understanding the trade-offs between these three dimensions is key to
develop methods that exploit all the available information in remote sensing archives and
to propose methodologies for transferring models across different instruments.

1.1.1 The spatial dimension
The spatial dimension of a sensor is characterized by its ground sampling distance (GSD).
The GSD is the size in meters between two consecutive pixels in an image. Since pixels are
squared, the GSD is also the length of the edge of that square; hence, in a 30 m resolution
image, each pixel covers 900 m2 in the surface, theoretically. However, the effective spatial

2High resolution (less than 10 m) image archives remain closed yet; still access for research purposes and prepared
datasets are common.
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resolution of a sensor depends on the optics, type of sensing instrument onboard, and
the height of the satellite. Among the different optical instruments, we will focus on
pushbroom scanners since those are the main sensor of Landsat-8, Proba-V and Sentinel-2
satellites. Pushbroom scanners consist of an array of sensors, usually a charge-coupled
device (CCD), arranged perpendicularly to the flight direction of the spacecraft. Each of
those CCD cells, during a time of exposition, integrates the reflected solar irradiance over
an area on the ground. These quantities are converted to each of the pixel values in the
acquired image. Figure 1.1 shows a simplified diagram of the scanning process: as the
satellite flights over the Earth, one line of the image is captured at a time. In the figure,
we can see that the size of each pixel in the ground depends on the size of the CCD cells
in the cross-track direction and the exposition time in the along-track or flight direction.
Additionally, if the satellite increases its altitude, the ground swath –area imaged on the
surface in the cross-track direction (see Fig. 1.1)– will increase augmenting also the area in
the ground where each CCD detector integrates radiance (depicted in orange in the figure);
this will turn out into a higher GSD (i.e. worse spatial resolution).

The GSD of a sensor determines the size of the smallest object that can be detected
on an image. Figure 1.2 shows Landsat-8 and Proba-V images over the same date and
location. Landsat-8 GSD is 30 m and Proba-V is 333 m. We can see that in the Landsat-8
image of the top, smaller objects such as the ponds and the cultivated areas in green can be
resolved, whereas in the Proba-V images at the bottom this cannot be reliably observed.

Nevertheless, GSD is not the only factor that influences the resolving quality of the
imaging system: the radiometric resolution, limitations of the optical system and the effect
of diffraction play also an important role in the effective spatial resolution of the instrument.
In order to account to all these effects, the point-spread function (PSF) of the instrument
describes the end-to-end response of the imaging system to a pinpoint source of light.
The PSF and the Modulation transfer function (MTF) –its analogous in the frequency
domain– are used in Chapter 3 for the Thesis contributions Mateo-Garcı́a et al. (2020b)
and Mateo-Garcı́a et al. (2020a) to simulate Proba-V images from Landsat-8 ones.

1.1.2 The temporal dimension
The temporal resolution, aka revisit time, is the time difference between two consecutive
images acquired over the same location. The satellites studied in this Thesis are polar
orbiting sun-synchronous satellites; this means that (a) the satellite passes over the poles
at every revolution around the Earth, and (b) when it passes over a given point of the
Earth’s surface, it does it at the same local solar time. For these satellites, temporal
resolution depends on the orbit followed by the satellite and on the ground swath. The
later can be seen in Figure 1.1: the wider the swath the more likely a given location is
more frequently imaged. We can understand now that there is a trade-off between the
spatial and the temporal resolution of a satellite: if the satellite is flying on a higher orbit,
the swath will we larger but so will be the size of each pixel. Hence, for a given satellite
imaging system, if temporal resolution is high, spatial resolution is low and the other
way around. Figure 1.2 shows this trade-off for Proba-V and Landsat-8 images: Proba-V
images with high temporal resolution (1 day revisit over this location) contrast with its low
spatial resolution (333 m) and Landsat-8 higher spatial resolution (30 m) has lower revisit
frequency (7 to 14 days).

In order to overcome this limitation, i.e. to have high temporal and spatial resolutions,
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Figure 1.2: Landsat-8 (top) and Proba-V images (bottom) over the same 10.5 km2×10.5 km2

location. Landsat-8 image acquired on 20th July 2016 and Proba-V images acquired between 18th
and 22nd July 2016. On one hand, Proba-V has high temporal resolution of 1 day over this location
which contrast with its low spatial resolution (333 m GSD). On the other hand, Landsat-8 higher
spatial resolution (30 m GSD), has a lower temporal resolution: between 7 to 14 days. False color
composites: SWIR, NIR and Red bands of Proba-V and bands B6, B5, B4 of Landsat-8.
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Figure 1.3: Spectral response function of all four Proba-V bands (solid) and B1, B2, B4, B5 and
B6 bands of Landsat-8 (dashed).

the current trend is to launch several identical instruments flying in complementary orbits.
This is the case of the European Copernicus missions Sentinel-1, Sentinel-2 and Sentinel-3
which each of them deployed two satellites with similar instruments. Another example is
the Planet Dove constellation which currently has more than 180 nano-satellites providing
daily 3m resolution imagery. In the first contribution of this Thesis (Mateo-Garcı́a et al.,
2018) we exploit the temporal dimension to develop multi-temporal cloud detection
models and in the last one (Mateo-Garcia et al., 2021) we discuss the potential of large
constellations of CubeSats with low revisit times to speed-up disaster response after
flooding events.

1.1.3 The spectral dimension

The spectral dimension of the satellite images are the different wavelengths in the electro-
magnetic spectrum where the sensor integrates radiances. Optical sensors measuring the
reflected solar light are sensitive to wavelengths from 430 nm to 2300 nm comprising the
visible (VIS), the NIR, the medium infrared (MIR), and the SWIR spectral ranges. Mea-
suring radiance (TOA reflectance) in different parts of the spectrum is used to characterize
the different materials that we observe; this is because different materials have different
spectral signatures: they absorb, reflect and emit electromagnetic radiation at different
wavelengths depending on their composition and structure.

Most of the sensors that we studied in this Thesis are multi-spectral sensors. These
sensors have few pre-defined regions in the electromagnetic spectrum, called bands, where
they integrate the electromagnetic radiation. For instance, the Operational land imager
(OLI) pushbroom sensor onboard the Landsat-8 satellite has 9 different bands. Since all
the bands are measured simultaneously while the satellite is scanning the Earth, for each
of these bands we will have one 2D image that consists of the radiance measured by the
sensor on that band. The spectral response function (SRF) of a band is the function that
indicates which wavelengths, and with which weight, are integrated in the measurement.
Figure 1.3 shows the SRF of the four bands of Proba-V and the corresponding overlapping
bands of Landsat-8 (bands B1, B2, B4, B5 and B6). Landsat-8 bands are narrower than
Proba-V ones, specially the NIR band. The SRF of Landsat-8 and Proba-V is used in
contributions Mateo-Garcı́a et al. (2020b,a) to simulate the reflectance that would be
acquired by Proba-V from a Landsat-8 image.
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Figure 1.4: Global annual mean cloud cover derived from three years (2007–09) of Envisat data.
The map shows areas with little to no cloud coverage (blue) as well as areas that are almost always
cloudy (red). Credits: ESA (https://www.esa.int/ESA Multimedia/Images/2013/09/Cloud cover).

1.2 Cloud detection

Clouds are masses of condensed water vapour or ice particles suspended in the atmosphere
of the Earth (Lohmann et al., 2016). Cloud cover climatological studies estimate that
around 60-70% of the Earth’s surface is covered with clouds and that the cloud cover is
5%-15% higher over oceans than over land (Stubenrauch et al., 2013). Nevertheless, cloud
cover is not equally distributed over all land locations: Figure 1.4 shows the annual global
mean cloud cover derived from Envisat between 2007 and 2009. We can see that, for
instance, the north of Africa and most parts of Australia have very few clouds around the
year whereas equatorial South America and western Africa is almost always cloud covered.

For remote sensing optical applications, clouds can either be seen as a source of
contamination for applications looking at the Earth surface or a source of information for
applications seeking to understand the atmosphere. In both cases, cloud detection (CD) is
an unavoidable first step in their processing chains: from crop detection (Wolanin et al.,
2019), ocean color analysis (Ruescas et al., 2018), to cloud type classification (Zantedeschi
et al., 2019), identifying the cloudy pixels is needed to further proceed in their analysis.
Cloud detection errors in those applications lead to biased analysis in the case of false
negatives (undetected cloudy pixels) (Bulgin et al., 2018) or to discard valid meaningful
data (clear pixels classified as clouds) (Pipia et al., 2019). Given the necessity of cloud
masking, most of the operational satellite missions distribute a cloud mask together with
each image acquired by the satellite. Hence, each optical sensor usually has an official
operational cloud detection algorithm for computing a cloud mask for each acquired image.

1.2.1 Threshold-based cloud detection algorithms

One of the simplest and most common approaches for cloud masking are the so-called
threshold-based. These models are knowledge-based systems based on physically grounded
heuristics (clouds are bright, clouds are cold, high cirrus clouds reflect radiation in the 1.36-

https://www.esa.int/ESA_Multimedia/Images/2013/09/Cloud_cover
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1.39 nm region of the spectrum, etc). These models afterwards set some static or dynamic
thresholds in one or several spectral bands of the image, or band combinations, that exploit
these heuristics to discriminate clouds (i.e. pixels are identified as cloud or clear if the
values on those bands are bellow/above these thresholds). Most optical missions still rely
on threshold-based methods for their operational cloud detection approaches. Although
some threshold-based algorithms perform well when they are highly tuned and the sensor
has several bands (e.g. the FMask algorithm for Landsat-8 (Zhu & Woodcock, 2012)),
these models still missclassify clouds in several critical situations and it is not possible or
difficult to transfer them to other sensors.

In the first contribution of this Thesis (Mateo-Garcı́a et al., 2018), we explore threshold
based algorithms using multi-temporal information (i.e. using previous images over
the same location). Multi-temporal cloud detection is a fundamentally easier problem
than single-scene cloud detection since the Earth surface usually varies slowly with time
and hence, abrupt changes in reflectance are mostly caused by clouds. Nevertheless,
multitemporal algorithms are computationally expensive since they require co-located
information of previous images; thus, all operational CD algorithms are single scene (i.e.
they produce the cloud mask based only on the reflectance in the current image acquisition).
In the rest of this chapter, we focus on single scene CD approaches, which are also the
object of study of the rest of the contributions of this Thesis.

1.2.2 Is really cloud detection a big issue?
Improving the accuracy of cloud detection models is not a theoretical problem but a press-
ing need for some operational satellite missions. In the course of this Thesis, we have been
involved in several projects aiming to improve the operational cloud detection algorithm
of some of those missions. The Proba-V cloud detection Round Robin (Iannone et al.,
2017), organized in 2016, asked to six different institutions to provide a cloud detection
algorithm for Proba-V since their current operational algorithm based on thresholds (Toté
et al., 2018) was failing in several critical situations. In that project, our proposed solution
based on neural networks (Gómez-Chova et al., 2017b) was selected for its operational
implementation. This model will replace the threshold-based algorithm in the C2 repro-
cessing of the Proba-V archive. The Cloud Masking Inter-comparison eXercise (CMIX)
organized in partnership between the ESA and the National Aeronautics and Space Ad-
ministration (NASA) benchmarked ten different cloud detection algorithms for Sentinel-2
and Landsat-8 (European Space Agency, 2019). Again, the goal of this study, which is
submitted for publication (Skakun et al., Submitted), is to find out if current operational
threshold-based models for those satellites could be improved or replaced by more accurate
methodologies.

On the other hand, transferring threshold-based cloud detection algorithms to other
sensors might seem easy if both sensors share similar bands. However, these algorithms are
very tailored to the specific characteristics of each sensor (spectral bands and radiometric
values) and they are usually highly sensitive to their input data. To see this, the first
Proba-V operational CD algorithm (collection CO) was a static threshold technique using
the Blue and the SWIR bands transferred from SPOT-Vegetation (Lisens et al., 2000).
This algorithm was the first CD operational model for Proba-V and their cloud masks
were released together with every Proba-V image. However, when users started to test
the operational Proba-V products, they faced many errors related to the quality of the
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cloud mask, which were eventually reported to the Proba-V Quality Working Group. This
situation led to the development of a completely new dynamic-threshold algorithm for
collection C1 (Toté et al., 2018) that has been recently replaced by the neural networks
approach of Gómez-Chova et al. (2017b) in collection C2 (Toté et al., 2021).

Additionally, the constant growth of satellite launches every year will make developing
a cloud detection model for a new sensor a more and more common task. Thus, contri-
butions of this Thesis Mateo-Garcı́a et al. (2020b) and Mateo-Garcı́a et al. (2020a) show
how to transfer cloud detection models between sensors with high accuracy. These models
could be used at the beginning of satellite missions when little or no data is available.
In Chapter 5 we discuss also a use case of transfer learning for cloud and water detec-
tion which has been deployed onboard the WildRide mission launched in June 2021 (see
section 6.3.7 in Chapter 6).

1.3 Machine learning methods for cloud detection

One of the methodologies to boost cloud detection accuracy is Machine Learning (ML).
Three contributions of this Thesis propose ML models for cloud detection (Mateo-Garcı́a
et al., 2020b,a; Mateo-Garcia et al., 2021). Thus, in this section, we set the foundations of
the ML approach for CD. ML for cloud detection provides a principled paradigm to build
more complex and sophisticated cloud detection algorithms. On its simplest setting, ML
cloud detection is framed as a supervised binary classification problem where a labeled
dataset of pixels is required; i.e. pixels, i = 1, . . . ,N, on some images, must be classified
as cloudy, coded with 1, or clear, coded with 0 (we will denote this as yi ∈ {0,1}). For
each of these pixels some informative features xi are extracted; these features must be
chosen to be useful for the task of discriminating clouds. Examples of these features
include the pixel values of the image, pixel values in the surrounding of the pixel or pixel
value combinations such as spectral indices, e.g. the Normalized difference vegetation
index (NDVI), the Normalized difference snow index (NDSI) or whiteness (Gomez-Chova
et al., 2007).

Once we have a dataset of features and target values D = {xi,yi}N
i=1, we could use one

of the different supervised ML algorithms to learn the mapping function f from x to y.
This training process in most cases is an optimization process where some free parameters
θ of the mapping function, fθ , are optimized to minimize a given criteria called loss (L).
In the case of binary classification one of the most common losses is the sum or average3

of the cross-entropy (CE) of the estimated cloud probabilities, fθ (xi) ∈ [0,1], for all the
labeled pixels in the dataset:

L=NLL(θ ;D)= 1
N

N

∑
i=1

CE
(

fθ (xi),yi
)
=

1
N

N

∑
i=1
−yi log( fθ (xi))−(1−yi) log(1− fθ (xi))

(1.1)

This equation follows the maximum likelihood principle (the negative log likelihood (NLL)
loss) for independent binary outputs yi given the inputs xi (Murphy, 2013)4. When the

3Both sum and average yield the same minimum over θ .
4Assuming Yi |Xi follows a Bernoulli distribution: Yi | Xi ∼ B( fθ (Xi)) and Yi |Xi is independent of Y j |X j ∀i 6= j.
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Figure 1.5: ML Classical (top) and deep learning (bottom) methodologies to develop ML based
CD models. The classical approach creates a pixelwise model from a set of manually selected
features for each pixel whereas in the deep learning approach inputs are raw images and the feature
extraction step is learned end to end.

training process ends, the best found weights θ ?, together with the function f , are used to
estimate cloud probabilities of the pixels from new images.

There are tons of ML approaches for cloud masking. The earliest paper found in the
literature is Lee et al. (1990), which proposes neural networks to classify cloud types in
single channel Landsat MSS image subscenes. Also, in the early nineties, Slawinski et al.
(1991) and Yhann & Simpson (1995) already proposed neural networks to mask clear
versus cloud pixels for the Advanced Very High Resolution Radiometer (AVHRR) sensor
and highlighted the benefits of ML compared with threshold based approaches. Since
then, other ML models have been proposed such as kernel methods (Ishida et al., 2018;
Gómez-Chova et al., 2010), random forest (Hollstein et al., 2016), or gradient boosting
machines (Sentinel Hub team, 2017). In this Thesis, we will focus mainly on neural
networks since they are the most predominant ML models nowadays due to their capability
to scale to arbitrarily large datasets.

1.3.1 Classical and deep learning approaches for cloud detection

ML approaches to cloud detection can be further divided into classical and deep learning
approaches. The so called ML classical approach was just described before: briefly, a set of
manually selected spatial and spectral features are extracted for each pixel in the training set,
afterwards a supervised classifier is trained to distinguish the label of those pixels based on
the provided features. Figure 1.5 shows a diagram of the classical approach. As an example
of the classical approach, the CD model proposed in Gómez-Chova et al. (2017b) first
selects forty different spatio-spectral features extracted from Proba-V images. Afterwards,
an Multilayer perceptron (MLP) is trained on a dataset D = {xi,yi} of extracted features
(xi ∈ R40) and labeled pixels yi. Classical ML approaches are normally pixelwise, in
the sense that the trained classifier fθ can be applied independently to each pixel in the
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test image after the feature extraction step. In the Proba-V example, this means that, for
prediction, we first extract the forty spatio-spectral features to create a 40 channel image.
Afterwards the trained MLP is applied independently to every pixel in the image.

Classical Neural Networks (NN) approaches have been used for operational CD; for
instance, as mentioned before, for the Collection C2 Proba-V reprocessing (Toté et al.,
2021) or also for MERIS and AATSR sensors onboard the Envisat satellite. For these
two sensors, the developed NN was implemented in the ESA BEAM/SNAP software.
Gómez-Chova et al. (2013) describes the methodology which was the basis of the work for
Proba-V.

On the other hand, the deep learning approach for cloud masking trains end-to-end
models where the input is the raw image and the output is the cloud mask. These models
seek to learn the feature extraction step directly from the raw data. There are thus two main
differences between the classical and deep learning approach: firstly, in the former, a set of
useful features are manually selected whereas in the later the input is the raw multi-spectral
image; secondly, the classical approach produces a pixelwise model whereas deep learning
models for CD are trained in patches of the images and therefore require subimages as
inputs. The contributions of this Thesis, Mateo-Garcı́a et al. (2020b,a); Mateo-Garcia et al.
(2021), propose models that follow the deep learning approach; henceforth, section 1.5.3
explains neural networks and deep learning in depth and describes fully convolutional
neural networks which are models that we propose in those contributions for segmenting
satellite images.

1.4 Labeled data for cloud detection

Before delving into neural networks formulation, it is worth highlighting what perhaps is
the biggest shortcoming of ML for cloud detection: The need of a representative enough,
accurately labeled dataset D for training the model. However, the need of labeled data
is not exclusive of ML models: labeled datasets are required not only for training but
more importantly for testing and benchmarking cloud detection models. Indeed, not
only ML based algorithms but also threshold based CD models require independent and
representative manually labeled datasets for the validation of their methodologies. This is
because, the most reliable approach to estimate the error of a prediction method is the so
called holdout method. In the holdout method, we create a fresh dataset of labeled data
DS and compute the error in that subset (empirical error). Learning theory shows that this
error is an unbiased estimator of the out-of-sample error (error over any possible data) and
the Hoeffding’s inequality guarantees that the gap between this error and the empirical
error computed in DS is no larger than O

(
1/
√

S
)
; where S is the number of elements in

DS (see the generalization chapter of Hardt & Recht (2021) for a modern approach to
generalization theory for deep learning models).

However, the assumptions needed to prove the Hoeffding inequality require that the
prediction method (the cloud detection method in our case) is fixed before we generate the
dataset DS; in other words, re-using of testing data invalidates the statistical guarantees
of the holdout method (see Hardt & Recht (2021) or Abu-Mostafa et al. (2012)). The
violation of this criteria is what is known as overfitting: the estimation of the error in the
sampled labeled data is no longer a good estimate of the out of sample error. From the
practical point of view, this means that, to construct ML models, we need two samples
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of labeled data: one for training the model and another one to later validate that model
(that we should hold out until model is chosen). Hence, the main difference between ML
and threshold based approaches is that the former doubles (at least) the amount of data
needed. In this Thesis, one of the recurring topics that we will tackle is about alleviating
the data requirements for training ML models. Contributions Mateo-Garcı́a et al. (2020b)
and Mateo-Garcı́a et al. (2020a) propose to use data from a similar satellite for training
(transfer learning) whereas in contribution Mateo-Garcia et al. (2021) the WorldFloods
training dataset is mostly built from ground truths gathered from other satellites at slightly
different acquisition times.

Training and testing splits

As we explained before, splitting the labeled data in different subsets for training and
testing is a required condition to demonstrate generalization of ML models. Yet, carefully
creating this split is one of the most critical points to attain the generalization we are
looking for (in our case, we seek that our cloud detection models generalize to new images
acquired by the sensor). The rule of thumb to create a train/test split suggested in Ng
(2017) is that labeled test data must be as similar as possible to the data where you plan
to deploy your model; in particular, they suggest that correlations between training and
testing data must be the same as correlations between training data and data seen when
the model is deployed. For our application (global cloud detection models), deployment
data are new images acquired by the sensor. Hence, one sensible split in this case is to use
pixels from different image acquisitions for training and testing. Otherwise the models that
we develop might overfit to the particularities of a given acquisition. There is currently
a big concern on the rigour of validation of ML models in RS; for instance, Ploton et al.
(2020) suggested that ignoring the spatial auto correlation of the data in the train/test split
leads to overestimated validation metrics that might invalidate previous published results.
In cloud detection, a common practice in some studies is to divide satellite images in tiles
and later splitting these tiles in training and testing. Although pixels in this split are not
used at the same time for training and testing, correlation between training and testing
pixels could be high for tiles from the same image acquisition. Therefore, in order to avoid
to over-estimate of the accuracy of our methods, in all the contributions of this Thesis we
followed the approach of splitting the data at the satellite image acquisition level; that is,
we always used images from different acquisitions for training and for testing.

1.4.1 Labeling clouds

Labeled datasets that can be used as ground truth for cloud detection are not usually real
‘ground’ measurements as in other RS applications. This is because obtaining co-located
measurements of cloud presence by ground stations is difficult or not feasible given the
complex nature of clouds. A very recent study, Skakun et al. (2021), showed that co-
locating simultaneous ground based and satellite based images is possible; although, to
develop a global dataset, this system should be extended and tested at a dense network
of global observatories. Therefore, as of now, most of the manually labeled ground
truth datasets for cloud detection are derived by photo-interpretation; that is, an operator
manually identifies the pixels on the image as cloudy or clear, normally using some
dedicated software.

In the course of this Thesis, my collaborators and I have curated two big datasets for
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training and testing ML models: the Proba-V manually labeled cloud mask dataset used
in contributions Mateo-Garcı́a et al. (2020b) and Mateo-Garcı́a et al. (2020a), and the
WorldFloods dataset used in Mateo-Garcia et al. (2021). We will delve into the details of
the creation process of the former to illustrate the time and dedication that is needed to
build those datasets.

The Proba-V manually labeled dataset
The Proba-V cloud detection manually labeled dataset (PV72) was developed in two
phases: in the first phase, used for the Proba-V Round Robin exercise (Iannone et al.,
2017), we adapted a semi automatic cloud labeling methodology developed for the Medium
Resolution Imaging Spectrometer (MERIS) sensor proposed by Gomez-Chova et al. (2007).
This methodology consists of labeling clusters of pixels extracted by an expectation-
maximization algorithm. Afterwards, a post-processing of the labeled clusters together
with an unmixing algorithm is applied to obtain a cloud abundance product for every pixel
in the image. This cloud abundance is used as ground truth to train the neural networks that
we presented in Iannone et al. (2017) and Gómez-Chova et al. (2017b). For the Proba-V
ground truth used in contributions Mateo-Garcı́a et al. (2020b), Mateo-Garcı́a et al. (2020a)
and for the development of collection C2 operational Proba-V algorithm, we improved the
aforementioned labels by manually checking and refining them using a custom software
developed by us for this purpose. This was required to remove systematic errors of the
ground truth in thin clouds and over bright surfaces. Figure 1.6 shows three screenshots
of this labeling application: at the top, we show an overlay of the manual cloud mask
and the false RGB composite of Proba-V; in the middle, the map with locations already
reviewed (red) and locations pending to review (green); at the bottom, we display the
labeling refinement tool that we adapted from Tangseng et al. (2017). Using these tools we
labeled 72 Proba-V acquisitions with more than 109 pixels. It took us approximately one
month to label the clusters and two extra months to refine the labels by two persons. We
measured the agreement of this dataset with a completely independent dataset gathered by
Brockmann Consult for the development of the Proba-V C2 cloud mask; the agreement
over 950 pixels in 12 different images was over 93%. Our Proba-V manually labeled
dataset can be seen in this web page: https://isp.uv.es/projects/cdc/probav dataset.html.

Caveats of labeling clouds
Although manually labeled datasets are the golden standard to evaluate CD algorithms
and therefore to measure progress in the field, the process of manually labeling clouds
is not exempt of errors. In Scaramuzza et al. (2012), authors reported a mean overall
disagreement of 7% when creating the Irish dataset in 11 Landsat-7 scenes labeled by three
different experts (following the same labeling methodology). For the PV72 dataset, we
estimated a similar figure (6.62%) over 950 pixels in 12 different Proba-V acquisitions,
in this case, the labeling teams were different and followed different labeling procedures.
These errors are higher than the errors reported in similar computer vision datasets such as
CityScapes (Cordts et al., 2016) (4% error).

Figure 1.7 shows some of those (possible) errors in images from the manually labeled
Biome dataset (Foga et al., 2017) created for the validation of Landsat-8 cloud detection
methods and used in contributions Mateo-Garcı́a et al. (2018, 2020b,a) of this Thesis.
The images at the top show the Landsat-8 RGB composite and the images at the bottom
the same content with labeled cloud pixels in black. We can see that several thin and

https://isp.uv.es/projects/cdc/probav_dataset.html
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Figure 1.6: Labeling application used to refine the cloud labels of Proba-V images. At the top, we
show an overlay of the manual cloud mask (brown clear, white cloud) and the false RGB composite
of Proba-V (red, NIR and blue bands). In the middle, the map with locations reviewed (red) and
pending to review (green) is shown. When a rectangle in the map is clicked, the corresponding
overlay is shown at the top. At the bottom, we display the labeling refinement tool that we adapted
from Tangseng et al. (2017).
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Figure 1.7: Landsat-8 images from the Biome dataset (Foga et al., 2017). Images in the second row
show in black pixels marked as clouds in the ground truth of the Biome dataset. In the three images
we can see thin clouds, small clouds and cloud borders that are not marked as clouds. The Biome
dataset can be explored using our Google Earth Engine script: https://code.earthengine.google.com/
f5ff4b932dbfcdbe242b74938694a9c1.

Figure 1.8: Sentinel-2 RGB (left) and SWIR, NIR, Red (right) composites. This image is covered
by thin clouds, still we can see the devastating effects of a riverine flood of the Cauca river in Nechi,
Colombia in May 2018. The s2cloudless CD method identifies all the pixels in this image as clouds;
nevertheless this image can still be used to estimate the extent of the flood. This image was not
included in the WorldFloods dataset of contribution Mateo-Garcia et al. (2021) for the problems
with the cloud mask.

https://code.earthengine.google.com/f5ff4b932dbfcdbe242b74938694a9c1
https://code.earthengine.google.com/f5ff4b932dbfcdbe242b74938694a9c1
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� Clear � Cloud � Invalid

Figure 1.9: Proba-V image (left) and manually labeled cloud mask (right) over the Andes mountains.
In the right image, pixels in black are areas where the analyst could not decide whether those pixels
are cloud contaminated or not. These pixels are excluded when computing the metrics and losses
for training the models. Image from the PV-72 dataset.

semi-transparent clouds are not labeled in the ground truth. At this point, it is worth to
highlight that, at the end of the day, ML models are only as good as the data they are
trained on and that they inherit the biases of the training data. The slogan “garbage in,
garbage out”, or more recently “bias in, bias out”, synthesizes very well this situation. In
particular, in the case of the Biome dataset, we have observed that several thin clouds are
unlabeled. Hence, models using this data for training will exhibit the same kind of biases
as the dataset, i.e. omission errors in thin and semi-transparent clouds (see our latest paper
with models trained on this data (López-Puigdollers et al., 2021)).

The problems with thin and semitransparent clouds happen, to some extent, because
cloud detection is an ill-posed problem. Indeed, the cloud definition at the beginning of
section 1.2 is rather vague: how many suspended particles of water vapour are needed to
be a cloud? In Lohmann et al. (2016), authors refine later that definition using the concept
of optical depth, which is the amount of radiation removed from a Sun’s light beam by
scattering and absorption. Still, this definition does not help either to label semi-transparent
clouds where we have mixed radiation from the cloud and from the surface (which is
difficult or not possible to quantify). Additionally, for land applications, thin clouds might
or might not be an issue. Figure 1.8 shows the RGB channels of a Sentinel-2 image
covered by thin clouds. For biophysical parameters retrieval, this image should be masked,
however, to estimate the flood extent, this image is perfectly valid. Additionally, in this
figure we can see another problem with thin clouds, which is that they affect different
spectral bands in a different way. Indeed, the RGB composite on the left is much more
affected than the SWIR, NIR, Red composite on the right.

Finally, when manually labeling by photo-interpretation there are some errors caused
by the inability of the labeler to identify certain pixels. Figure 1.9 shows an example of a
partially cloud covered Proba-V image over a snowy area in the Andes mountains. This is a
particularly challenging scene where clouds and snow are difficult to distinguish. For these
scenes, one practice that we undertake in the PV-72 dataset is to leave undefined pixels in
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the ground truth when the labeler is unsure of the class (black pixels in the ground truth
mask of the left). Those pixels are then masked (not used) for training and for validating
the models.

1.5 Deep learning

Deep learning (DL) models are at the core of the works of this Thesis: Mateo-Garcı́a
et al. (2020b,a); Mateo-Garcia et al. (2021). In particular, in all of these, we propose fully
convolutional neural networks, which is a type of deep learning model, to segment clouds
(and floods) in satellite imagery. Why do we choose deep learning? in a nutshell, the main
benefit of DL models is that their accuracy scale with data; in other words, they can grow
to accommodate large amounts of (labeled) data. That means that these models a) are able
to exploit large labeled datasets such as the Biome or the PV-72 datasets mentioned in the
previous section, and b) if we provide them with even more labeled data, their accuracy
will increase. The reader should be warned that this is an empirically based statement:
actually what has been shown is that for some problems with very large labeled datasets,
the most accurate models by a large margin are based on DL. Henceforth, the hypothesis
of this Thesis is that, since some of these problems are very similar to cloud detection in
satellite images, DL models should also outperform other approaches for this task provided
a large and accurately labeled dataset5.

Therefore, in this section, we delve into the details of deep learning to expedite how
these models of the so called deep learning approach for cloud detection are constructed
(see sec. 1.3.1). Deep learning is just a term to refer to neural networks with many
intermediate layers; hence, in the next subsections we explain neural networks incremen-
tally starting from the basics (subsec. 1.5.1), going through the multilayer-perceptron
(subsec. 1.5.2) and convolutional neural networks (subsec. 1.5.3), to finally reach fully
convolutional neural networks which is our proposal for cloud detection (subsec. 1.5.4).

1.5.1 Neural Networks building blocks
NN trained with the back-propagation algorithm became popular in the late eighties after
the highly influential paper of Rumelhart et al. (1986). NN models consist of an stack of
differentiable operations applied to an input x and some parameters (aka weights that we
will denote by θ ). The training procedure of NN consists of optimizing those weights to
minimize a differentiable training loss (such as the loss of equation (1.1) in section 1.3).
The reason why differentiability is required is because NN use gradient based optimization
algorithms. These algorithms work by iteratively optimizing θ using at each iteration the
gradient of the loss with respect to those weights. Algorithm 1 shows the pseudocode of
gradient descent which is the simplest gradient based optimization method; we use the
notation of section 1.3 and equation (1.1); in particular, we denote with NLL(θ ;D) the
scalar negative log likelihood (NLL) loss function that we seek to minimize,

Using this simple algorithm, NN models produce powerful prediction functions fθ?

that we use for detecting clouds in images. Nevertheless, there are two concepts that are
behind the success of NN. The first one is the back-propagation algorithm which gives a
procedure to evaluate gradients of arbitrarily multi-layered complex functions. The second
one is using the stochastic gradient, which allows to scale the optimization procedure of

5Ways to go around this requirement are also tackled in this Thesis (see sec. 1.6).



1.5 Deep learning 17

Algorithm 1 Gradient descent
θ1← random
for s ∈ 1...K do

θs+1← θs− γ
∂

∂θ
NLL(θs;D)

end for
θ ?← θK

algorithm 1 to arbitrarily large datasets. We delve into the details of both of them in this
section.

Back-propagation: the magic behind computing gradients

The back-propagation algorithm proposed in Rumelhart et al. (1986) is an efficient al-
gorithm to do backwards differentiation; that is, to evaluate the gradient of a differ-
entiable but arbitrarily complex function, such as NLL of equation (1.1), w.r.t. its in-
puts. It assumes that this function is an stack of simple functions with known gradients
(NLL(θ) = h1 ◦ h2... ◦ hK(θ)) and that the function is an scalar function6. We call a
function scalar when it has a vector input but a single scalar output (NLL : Rd → R). The
back-propagation algorithm is just the algorithm to evaluate the gradient of such a function
following a computationally inexpensive procedure (see e.g. chapter 6 of Goodfellow et al.
(2016) for a detailed explanation).

Nowadays, back-propagation is implemented at the core of most machine learning
libraries such as TensorFlow (Abadi et al., 2015) and PyTorch (Paszke et al., 2019). This
has the advantage that NN users only have to implement the error function, NLL(θ)
(referred as forward pass of the network) and simply calling a method of the library to
obtain the evaluation of the gradient of that function in that θ (The .backward()method
in Pytorch or .compute gradients() in TensorFlow). Although this is extremely
handy, understanding what goes under-the-hood of the back-propagation is still highly
recommended to design effective learning algorithms (see Karpathy (2016) for a good set
of reasons).

Stochastic gradient: the secret of the scalability of NN

Stochastic gradient descent (SGD) (Robbins & Monro, 1951) is a simple, yet very powerful
procedure to reduce the computational cost to compute gradients of standard machine
learning losses. Using previous notation of section 1.3, we denote with f the differentiable
function with inputs x and θ , and fθ (x) the output of that function. The (full) gradient of
the negative log likelihood (NLL) loss of equation (1.1) with respect to its weights θ is:

∂

∂θ
NLL(θ ;D) = 1

N

N

∑
i=1

∂

∂θ
CE
(

fθ (xi),yi
)

(1.2)

The stochastic gradient used in NN consists simply on sampling randomly B elements
of D and computing the gradient of the loss function on that subset. Under very mild
conditions, it can be shown that such gradient is an unbiased estimator of the gradient of
equation (1.5.1) (see e.g. Bottou (1998)). Formally, this just means that, if we denote DB

6Although it can be easily extended to vector functions
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as a random subset of size B from D

EDB∼D

[
∂

∂θ
NLL(θ ;DB)

]
=EDB∼D

[
1
B

B

∑
i=1

∂

∂θ
CE
(

fθ (xi),yi
)
]
=

∂

∂θ
NLL(θ ;D) (1.3)

Using the stochastic gradient instead of the full gradient massively reduces the amount
of computation to obtain a sufficiently good estimation of the gradient: in eq. (1.5.1) we
can see that with SGD we reduce the number of gradient evaluations from N to B. In
modern ML problems, this is a huge gain since the dataset D could have in the order of
N = 106 samples, however, practitioners estimate gradients using at each step subsamples
(aka batches) of size as little as B = 32 (B is known as batch size). Algorithm 2 shows the
pseudo-code of stochastic gradient descent:

Algorithm 2 Stochastic Gradient descent
θ1← random
for s ∈ 1...K do
DB← sample(D,S) . Sample S elements from D
θs+1← θs− γ

∂

∂θ
NLL(θs;DB)

end for
θ ?← θK

1.5.2 Multilayer perceptron
Multi-layer perceptrons (MLP) are the simplest NN models that we can encounter. Math-
ematically, they are functions that receive a d dimensional vector and apply a series of
linear transformations intertwined with non-linear functions to produce an l dimensional
output vector. The building blocks of MLP are fully connected layers (FullyConnected).
FullyConnected layers consist of a matrix of weights w ∈Rl×d and biases b∈Rl followed
by a non-linear per-item function σ .

FullyConnected(x) = σ (wx+b)

Before the deep learning revolution, the non-linear function used to be the tanh or
sigmoid functions; however, nowadays it is the reLU function or its derivations (PreLU,
LeakyReLU,..). The reLU function for an input x ∈ R is just reLU(x) = max(x,0). Fol-
lowing this notation, an MLP is thus a composition of FullyConnected layers:

MLP(x) = (FullyConnectedK ◦ ...◦FullyConnected1)(x) (1.4)

In the MLP model we seek to learn all the weight and biases matrices of all the
FullyConnected layers using back-propagation and the SGD algorithm. To be more explicit,
in the cloud detection case formalized in section 1.3, the fθ function of equations (1.1)
and (1.5.1) is the MLP function defined before in equation (1.4)7 and the θ parameters
are all the weights and biases of all the neurons of the FullyConnected layers: θ =
{w1,b1, ..,wK,bK}.

7Composed with a sigmoid function to output probabilities; i.e. fθ (x) = (sigmoid◦MLP)(x) ∈ [0,1].
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MLP are the models that we used in the so called ML classical approach of section 1.3.1,
in particular, as described in that section, MLP are implemented operationally for detecting
clouds in Proba-V (Gómez-Chova et al., 2017b) and in MERIS/AATSR (Gómez-Chova
et al., 2013).

1.5.3 Convolutional neural networks

Convolutional Neural Networks (CNN) were proposed by LeCun et al. (1989) in the
late eighties. However it wasn’t until 2012 when the breakthrough of Krizhevsky et al.
(2012) in the ImageNet image classification challenge (Russakovsky et al., 2015) kicked
off the deep learning revolution and popularized them. The building blocks of CNN are
convolutional layers which work in the image domain (i.e. its inputs are images) and learn
filters that exploit the correlations of the spatial dimensions of images. The effectiveness
of CNN in ML image problems is attributed to the hierarchical feature representations
imposed by CNN architectures. These architectures seem to be good priors for vision
systems. For instance, it is well known that the filters learned by convolutional layers are
similar to those found in biological vision systems: LeCun et al. (1989) already pointed
out that these filters resemble those described in Hubel & Wiesel (1962). Therefore, given
their success with natural images, the RS community has also adopted CNN models to
tackle ML problems with satellite images as we also do in this Thesis. Henceforth, to get
some insights on the mechanics of these models, in the rest of this section we delve into
the details of CNN.

The most important layer of CNN are convolutions. The convolution operation is
actually a discrete spatial cross-correlation between an image of height H, width W , and C
channels, x ∈ RC×H×W , and some weights ω ∈ RC×K×K×L that produce an output image
z with L channels. The value of this image for a pixel in (a,b) spatial position and channel
l is given by the following equation:

z[l,a,b] =
C−1

∑
c=0

K−1

∑
i=0

K−1

∑
j=0

ω[c, i, j, l]x[c,a+ i,b+ j] (1.5)

We denote this operation as z = x ∗ω . An standard convolutional layer, Conv2d,
consists of the convolutional operation plus a bias followed by a pixelwise non-linear
function:

Conv2d(ω,b;x) = σ (x∗ω +b)

The building blocks of CNN are these layers where ω and b are learned weights.
These weights are optimized following the stochastic gradient descent algorithm explained
before. Modern deep learning libraries have highly optimized implementations of this
operation and the derivative of this operation w.r.t. its inputs (ω , b and x) (these derivatives
are needed for running the back-propagation algorithm explained before). These fast
implementations are one of the reasons of the success of deep learning; actually, part of
the breakthrough of Krizhevsky et al. (2012) was due to the use of graphic cards for the
implementation of convolutional layers.

In computer vision (CV), the image classification problem consists of assigning a class,
or category, to an input image. The ImageNet (Russakovsky et al., 2015) challenge is
perhaps the most famous image classification problem. In ImageNet, we have a training
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set of 1M images each of them with a given category among 1,000 possible classes. CNN
architectures used to solve this problem stack repeatedly Conv2d operations and pooling
operations until they produce an output value. Specifically, if we call x ∈ RC×H×W to the
input image, the output in an image classification CNN with L classes is an L dimensional
vector of probabilities CNNθ (x)∈ [0,1]L; i.e. a vector where the l output is the probability
of the image to belong to class l (with θ we denote the weights of all the Conv2d layers
of the network). Note that, since the output of Conv2d layers and pooling layers are
also images, at some point a global pooling operation is needed to get rid of the spatial
dimensions (i.e. to convert a 3-D tensor Cz×Hz×Wz to a 1-D tensor). In the latest
state-of-the-art CNN architectures this step is tackled by a global average pooling layer:

GlobalAveragePooling(z) =
1

HW

H−1

∑
i=0

W−1

∑
j=0

z[:, i, j] ∈ RC
z (1.6)

After the GlobalAveragePooling step, the CNN becomes a MLP with fully connected
layers which will eventually output the L dimensional vector with the estimated prob-
abilities for each of the L classes. Hence, conceptually, CNN models could be de-
scribed as an arbitrary concatenation of Conv2d and MaxPool operations followed by
a GlobalAveragePooling and a MLP:

CNN(x)= (MLP◦GlobalAveragePooling◦Conv2d◦MaxPool◦ ...◦Conv2d◦MaxPool)(x)

By now, a couple of considerations remain for designing effective CNN. These are the
number and order of the stack of operations of the network (aka architecture of the network)
and the hyperparameters of the operations (e.g. number and size of the convolutional filters
ω). In practice, in the field of RS, neural networks architectures are mostly inherited from
successful computer vision applications; that is, architectures that obtain high accuracy
in computer vision problems are used later on to solve RS problems. Indeed, most of the
networks that we propose in this Thesis are adaptations of networks proposed for computer
vision problems.

1.5.4 Fully Convolutional Neural Networks
In computer vision, semantic segmentation is the problem that seeks to classify every pixel
in an input image. Note that, this is a fundamentally more difficult problem than image
classification since the later only outputs a class for the whole image whereas in image
segmentation we have to predict a class for every single pixel of the image. We can see
that CD is a semantic segmentation problem where the number of output classes is two
(clear and cloud)8. Therefore, the techniques used to address semantic segmentation can
be used for cloud detection.

The success of CNN for image classification, followed its adaptation to other computer
vision problems such as semantic segmentation. First naive adaptations of CNN to semantic
segmentation consists of classifying the center pixel of the image. Specifically, first, we
build a dataset of sampled patches from the image and assign the class of its center pixel
as the category of that image. Afterwards, the image classification CNN is trained on

8It could be more than two if we want to e.g. discriminate between thin and thick clouds or also detect cloud shadows
but in most parts of this Thesis we only consider two classes: clear and cloud.
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this data. Finally, in order to obtain predictions for the whole image, the CNN model is
slided over all the input image to obtain a dense per-pixel prediction. The work of Farabet
et al. (2013) followed this approach and the CNN that we presented in Mateo-Garcı́a et al.
(2017) conference paper too. It is worth to mention that to our knowledge, Mateo-Garcı́a
et al. (2017) is the first approach of CNN to cloud detection in the literature. That work
was the seed of the contribution of this Thesis Mateo-Garcı́a et al. (2020b).

The problem of the so called naive approach described before is that the prediction
step is computationally expensive. This is because we need to run the CNN model every
time over every single pixel of the image. To make the point, for a 5,000×5,000 Proba-V
image, the models that we trained in Mateo-Garcı́a et al. (2017) had to be run on the 25M
of pixels of the image; which took in the order of several hours to produce the cloud mask.

Fortunately, the works of Long et al. (2015) and Chen et al. (2015) came up with
a simple solution to this problem. The key insight of their approach is to realize that
the features that are extracted by a convolutional layer for computing the center pixel
prediction can be reused to predict the nearby pixels. Hence, they suggest to remove
the GlobalAveragePooling layer of a CNN and replace the fully connected layers of the
MLP part with Conv2d layers with kernel size 1 (K = 1 in equation (1.5) which boils
down to a pixelwise scalar product on the channels of the image). With those changes,
the output of the network will be a tensor of L×Hz ×Wz where L is the number of
outputs of the MLP part and Hz and Wz are the spatial sizes of the feature map z used as
input to the GlobalAveragePooling layer (see equation (1.6)). Since all the operations in
this new architecture are convolutions, this model is called Fully Convolutional Neural
Networks (FCNN).

The first advantage of this model is that it is much faster for inference than the center
pixel approach since with the same convolutional features z we obtain Hz×Wz predictions
instead of just one. Additionally, since all operations are convolutions, the trained network
could be applied to images of arbitrary sizes. Furthermore, another advantage of this model
is that it can be trained end-to-end with the full ground truth mask y without the sampling
described in the so called naive approach. To see this, let FCNNθ be the FCNN model
with the aforementioned replacements, if the spatial dimensions of z are the same as the
dimensions of the input image x (i.e. z ∈ RK×H×W ), we could use the ground truth mask
y to compute the loss in all those output pixels. For the binary classification task where
L = 1, using the notation of eq. (1.1), this loss boils down to:

NLL(FCNNθ ;DB) =
1

BHW

B−1

∑
b=0

H−1

∑
i=0

W−1

∑
j=0

CE
(
FCNNθ (xb)[i, j],yb[i, j]

)

Note that, in this equation, the size of the tensors are xb ∈ RC×H×W , FCNNθ (xb) ∈
[0,1]H×W and yb ∈ {0,1}H×W . Unfortunately, the CNN used for image classification, the
spatial sizes of the feature map z before the GlobalAveragePooling layer is usually lower
than the size of the input image x because CNN networks use convolutions with strides
and/or pooling operations to reduce the spatial size of the feature maps of the network
(to save computational time and to learn long range dependencies between the pixels of
the image). Therefore, in order to train with the ground truth mask y (of size H×W ), we
should upsample these feature maps back to the H×W shape. For upsampling, Long et al.
(2015) and Chen et al. (2015) propose to use fractionally strided convolutions (also named



22 Introduction

3232

1

64 64

1/
2

128 128
1/
4

Bottleneck

64 64

1/
2

64

1/
2

64

1/
2

32 32

1

32

1

32

1

1

1

sigmoid

Figure 1.10: U-Net architecture used in works Mateo-Garcı́a et al. (2020b,a)

deconvolutions or transpose convolutions). Other works propose simple bilinear or bicubic
interpolation or pixel-shuffling (i.e. transposing channels to spatial dimensions).

Arguably, the most famous fully convolutional architecture for semantic segmentation
is the U-Net. The U-Net architecture, originally proposed for medical imaging segmen-
tation (Ronneberger et al., 2015), has been widely used in a plethora of RS applications
(e.g. Schuegraf & Bittner (2019); Drönner et al. (2018); Kruitwagen et al. (2021)). In
particular, after our works, it has also been used for cloud detection in Jeppesen et al.
(2019) and Wieland et al. (2019) for Landsat-8. It has 5 pooling/unpooling stages and it
adds skip connections between feature maps of the same resolution. Overall, the U-Net is
conceptually simple yet accurate. In this Thesis we extensively used the U-Net architecture
in works Mateo-Garcı́a et al. (2020b,a); Mateo-Garcia et al. (2021). In particular, in
contributions Mateo-Garcı́a et al. (2020b,a) we used a simplified architecture shown in
Figure 1.10 that reduces the number of pooling steps from five to two and which uses
separable convolutions layers (Chollet, 2017). In Mateo-Garcia et al. (2021), we used the
original U-Net but changing from the transpose convolutions to bilinear interpolation.

1.6 Transfer learning and Domain Adaptation

At this point, we have explained the models (FCNN) that we apply for cloud detection and
we have also described or mentioned some of the large manually annotated datasets that
we used to train and validate our models: the Biome dataset of Foga et al. (2017), the PV72
dataset explained in section 1.4.1, or the WorldFloods dataset of contribution Mateo-Garcia
et al. (2021). With this data and these models very accurate cloud detection models can be
trained that generalize to new image acquisitions of Proba-V (Mateo-Garcı́a et al., 2020b),
Landsat-8 (Jeppesen et al., 2019; López-Puigdollers et al., 2021), or Sentinel-2 (Mateo-
Garcia et al., 2021), respectively. In our view, these models work well because they operate
in the regime where DL models succeed: that is, when large amounts of accurate data
are available for training the very complex models (with hundred of thousands of free
parameters to estimate). However, the price to pay to build them is high: we have to label
clouds in several different images which is hard, time-consuming, and it is not exempt of
errors (see sec. 1.4.1). Additionally, every time a new sensor is launched, we will have to
gather images and label manually their clouds again. Henceforth, one of the main goals of
this Thesis is to explore strategies to transfer deep learning models to other sensors and to
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explore methodologies to alleviate their data requirements.
To this end, in this section, we briefly introduce the concepts of Transfer learning

(TL) and Domain adaptation (DA) and their subtle differences. These concepts are very
intertwined and sometimes they are used to refer similar things depending on the context;
hence, in this Thesis, as we did in contribution Mateo-Garcı́a et al. (2020b), we will follow
the definitions of Pan & Yang (2010).

Let S be the source domain and T the target domain. In TL, we are interested in
learning a model for T ; however, data in T is scarce, hence, TL schemes seek to exploit
data in a similar domain S to learn a better model for T . In the context of the contributions
of this Thesis, the model is a CD model and the domains could be the images and manual
labels of Landsat-8 (source domain S) and the images and labels of Proba-V (target domain
T ). Using mathematical notation similar to rest of this chapter, we use DS = {xS

i ,y
S
i }N

i=1
to denote the dataset of the source domain, XS = {xS

i }N
i=1 to denote the dataset of only

the inputs in the source domain, and YS = {yS
i }N

i=1 to denote the dataset of only the labels.
Similarly, for the target domain DT = {xT

i ,y
T
i }M

i=1 represents the dataset of inputs and
labels in the target domain and XT = {xT

i }M
i=1 and YT = {yT

i }M
i=1 to only the inputs and

the labels, respectively. In this setting, we assume that data in the source domain is much
more abundant than in the target domain (i.e. N >> M); hence, the approach in TL is to
train a model in the source data DS in a manner that works well in T . TL violates one main
assumption of ML which is that the distribution of the training data should be the same as
the distribution of the test data. It does so in order to circumvent other limitation that is
that training data must be a large enough representative sample of the distribution of the
data. Hence, there are little theoretical guarantees of TL and, in practice, its effectiveness
relies on the assumed similarity between the source and target domains.

The work of Pan & Yang (2010) categorizes transfer learning depending on different
factors of the source and the target domains. One of these factors is the task aimed to
solve; a transfer learning scheme is called multi-task if the problem to address in the source
domain is different than in the target domain. One example of multi-task transfer learning
is to use the weights of the models trained in ImageNet as starting point for other tasks.
In RS instead of using ImageNet, the work of Neumann et al. (2020) suggests to use
BigEarthNet Sumbul et al. (2019) or more recently its multilabeled version (Sumbul et al.,
2021) as initial weights for multi-task TL. Conversely, in single-task TL the problem in
the source and target domains is the same. The contributions of this Thesis, Mateo-Garcı́a
et al. (2020b) and Mateo-Garcı́a et al. (2020a), are single-task TL where the task addressed
is cloud detection in both domains.

A second categorization in Pan & Yang (2010) is based on the type of data available
in the target domain. Here TL schemes are divided in transductive transfer learning and
inductive transfer learning. In transductive transfer learning, we assume that there is no
labeled data in the target domain at training time (i.e. YT =∅). Transductive TL is called
in other works unsupervised domain adaptation (Tuia et al., 2016; Ganin et al., 2016). In
inductive transfer learning, it is assumed to have, in addition to the source data DS, some
labeled data in the target domain. To highlight the differences, in transductive transfer
learning we only have DS and XT to train a model whereas in inductive transfer learning
we have DS and DT .

In this context, the term Domain adaptation (DA) is used in this work to refer to the
transformation functions applied mainly to the inputs in the source and target domains to
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Figure 1.11: High level overview of the domain adaptation scheme of Mateo-Garcı́a et al. (2020a):
we use the physically based domain adaptation transformation (U , corresponding to the transfor-
mation of Fig. 3.1) to transform Landsat-8 images to the Landsat-8 Upscaled (LU) domain where
images have the same spatial resolution and spectral bands as Proba-V. Afterwards, the learned
transformation between Proba-V and Landsat-8 Upscaled (LU) A = GPV→LU is applied to obtain
Proba-V adapted images. These images have a spectral distribution and radiometry statistically
similar to images in the LU domain.

transform them to the opposite domain. These transformations are needed for different
reasons: one could be just to match the spatial resolution and the number of spectral
bands between the domains. As an example, suppose that we have a classifier trained
in the source domain; images in that domain have certain bands an spatial resolution,
if we wish to apply such classifier to an image from another target sensor with other
bands and spatial resolution, we need to select the spectral bands in the target image that
correspond to the bands in the source domain and reproject the image to the source domain
resolution. Notice that we assume here that the spectral bands used by the classifier in
the source domain are compatible with the spectral bands of the target sensor (i.e. for
each band used by the classifier we have a compatible band, or set of bands, in the target
image). In Chapter 3, Fig. 3.1, we show a domain adaptation transformation based on the
known properties of Proba-V and Landsat-8 that is used to match the spatial and spectral
characteristics of Proba-V from a Landsat-8 image. Another reason to apply a domain
adaptation transformation to an input image is to make it look similar to images in the other
domain. Using the same example, when we have a classifier trained in data of the source
domain, if images in the target domain are statistically different from those in the source
training data, it is expected to have a drop in performance since we are no longer in the
assumptions of learning theory to work (see section 1.4.1). This is often called data-shift
problem (Torralba & Efros, 2011), i.e. training and testing distributions are different. In
order to mitigate this, domain adaptation transformations are applied to (statistically) align
source and target input distributions. The contribution of this Thesis Mateo-Garcı́a et al.
(2020a) proposes to learn such transformations using generative adversarial networks. In
that work, we propose to use two domain adaptation transformations described in Fig. 1.11:
one used for training, to match the spatio-spectral characteristics of Proba-V from Landsat
(U transformation in Fig. 1.11 to go to the L8-upscaled domain) and, at test phase, A
transformation is used to make Proba-V images statistically similar to L8-upscaled ones.
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1.7 Research objectives

We propound that novel cloud detection models based on deep learning are significantly
more accurate predictors of clouds specially in challenging situations. Nevertheless, these
models, in order to truly excel, require large amounts of labeled training data; thus, transfer
learning and domain adaptation methodologies are needed to overcome this limitation.

“The overarching goal of this Thesis is to improve cloud detection models by exploiting
the spatio-temporal dimensions of the data and to propose methodologies to transfer
those models to images acquired by other sensors.”

This goal is pursued by proposing novel multitemporal models that exploit computing
platforms resources such as the GEE; proposing FCNN models that exploit the spatial and
spectral correlations in satellite images to boost cloud detection accuracy; developing new
methodologies to run these models in images from other satellite instruments; learning
domain adaptation transformations to improve the performance of the trained models; and
showing that these models can be deployed even onboard the target satellites.

Why is the topic important?
The constant growth in the number of optical sensors orbiting the Earth makes deploying a
new CD mask for a particular sensor a more and more common task. Threshold-based CD
approaches are highly tailored to the specifics of each sensor; this makes those algorithms
brittle to small changes in input reflectance. This is a real necessity; for instance, the
errors in cloud detection of the pre-launching CD mask of Proba-V hampered the usability
of its data and the new ML-based CD model has not been ready until almost the end
of the mission. Unfortunately, errors in threshold-based CD models developed in the
commissioning phase of satellite missions are not new: with Envisat MERIS the ESA
had also to provide an alternative to the CD mask with an ML-based one (Gómez-Chova
et al., 2013) which also took several years to deploy. Similarly, the USGS changed
the automatic cloud cover assessment (ACCA) (Scaramuzza et al., 2012) algorithm with
FMask (Foga et al., 2017) two years after the launching of Landsat-8. Hence, we argue that,
in order to expedite the development of CD models for future missions, we need to develop
methodologies to reliably transfer models across similar instruments. Additionally, clear
protocols must be established to fine-tune these models once they start retrieving images.
We believe that this is a pressing need since now, with CubeSats, we are witnessing an
explosion in deployed Earth observation orbiting devices, which needs reliable algorithms
to produce useful Earth observation products.

How do we plan to address it?
In order to develop accurate cloud detection models, we propose data-driven solutions that
take advantage of the open-access large archives of remote sensing optical images. We first
propose (Chapter 2) multi-temporal models to exploit the temporal dimension of remote
sensing data. We also propose FCNN models, which have shown to excel in remote sensing
and computer vision applications. One advantage of FCNN is that they are patch-based
models, i.e. its input is an image patch and its output is a patch with the same spatial size.
This allows the model to exploit the spatial auto-correlations of images. We propose to
transfer FCNN models across satellites. For this task, as a representative example, we use
labeled data from Landsat-8 and Proba-V which have different spatial resolution, different
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radiometric quality and compatible spectral responses –as well as representative and large
enough labeled datasets to validate the quality of the transferred models. We show how
to transfer those models (Chapter 3) and how to improve the quality of transfer learning
approaches using learning-based domain adaptation transformations (Chapter 4). Finally,
we show that FCNN can also be used in specific RS applications for joint flood and cloud
detection, and that these models can be deployed onboard satellites to reduce the latency
to obtain RS products required by emergency response systems (Chapter 5).

1.8 Outline

The remainder of the Thesis is organized as follows:

Chapter 2 we present a simple yet powerful multi-temporal cloud detection model that is
implemented in the Google Earth Engine platform. The model compares favorably against
state-of-the-art single-scene threshold based approaches in Landsat-8 scenes.

Chapter 3 describes transfer learning of FCNN cloud detection models between Landsat-8
and Proba-V. It showcases results on transferring models in both directions (from Proba-V
to Landsat-8 and from Landsat-8 to Proba-V).

Chapter 4 presents a learning-based domain adaptation transformation to statistically
align Proba-V and Landsat-8 images. We show that this transformation produces Proba-V
images with improved radiometry and produces a boost in cloud detection performance of
the models presented in the previous chapter.

Chapter 5 covers a recent on onboard cloud and water segmentation in a real use-case
of transductive transfer learning, proposed in Chapter 3, and highlights the potential of
FCNN for onboard applications.

Chapter 6 summarizes the contributions of this Thesis, discusses the main conclusions,
and provides a set of related projects, outcomes and other publications that resulted from
the work performed during this PhD Thesis.

Chapter 7 provides a summary of the Thesis in Spanish.



2. Multitemporal Cloud Masking in the
Google Earth Engine

2.1 Motivation of the work

As we introduced in the previous chapter, currently, most of operational missions rely on
(over-simplistic) single-scene threshold-based methods to mask clouds. In the previous
chapter, we showed some of the limitations of these algorithms and the necessity to improve
them. In this first contribution of the Thesis, Mateo-Garcı́a et al. (2018) [Appendix I], the
goal was to understand the cloud detection problem and their limitations, the existing single-
scene and multi-temporal cloud detection models and the methodologies and datasets to
validate them. As a hands-on experiment, we decided to build on previous work of Gómez-
Chova et al. (2017a) on multi-temporal cloud masking and implementing and validating
their methodology on global, recently published, manually labeled cloud detection datasets
for Landsat-8 (Foga et al., 2017). In the course of this work, we improved and expanded
the methodology of Gómez-Chova et al. (2017a), implemented the model in the Google
Earth Engine and demonstrated on the validation data state-of-the-art cloud detection
performance. All these results were presented in what is now the journal publication
Mateo-Garcı́a et al. (2018)[Appendix I].

The choice to implement the multi-temporal cloud detection scheme (Fig. 2.1) in the
Google Earth Engine platform was initially to fulfill the requirements of the Google Earth
Engine Award project Cloud detection in the cloud granted to Prof. Luis Gómez-Chova.
Nevertheless, this proved to be an excellent choice since one of the main limitations of
multi-temporal models is the access to the catalog of images over a given location: without
the Google Earth Engine the existing approaches when we did this work were limited to
download full Landsat-8 acquisitions from the USGS Earth Explorer catalog. On the other
hand, using the Google Earth Engine, no data downloading is needed and the processing
to get the cloud mask is limited to the area of interest; additionally, the process runs
on the Google servers. The result is a multi-temporal CD algorithm that could be used
operationally without the computational constrains of other multi-temporal methods.
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Figure 2.1: Proposed multi-temporal cloud detection scheme: a set of images with low cloud cover
is filtered to estimate the expected reflectance of the surface (estimated background). A pixelwise
difference between the input image and the background is used as input to the change detection
module. In this module, we cluster the pixels of the difference image and apply two thresholds to
the clustered values. Cluster values above these two thresholds are marked as clouds.

2.2 Summary and main results

In the contribution of this Thesis, Mateo-Garcı́a et al. (2018), we propound a lightweight
multi-temporal cloud detection algorithm for Landsat-8 that is validated in the Google
Earth Engine using a large dataset of manually labeled clouds. This algorithm is based
on two steps (see Fig. 2.1). In the first step, called multi-temporal regression, we estimate
the reflectance of the surface using previous (almost) cloud free images over the area of
interest (AoI). These images are filtered using a simple single-scene CD algorithm over the
AoI 1. In order to estimate the reflectance of the surface, we tested four different methods:
on the one hand, linear and kernel ridge regressions as proposed in Gómez-Chova et al.
(2017a), on the other hand, simpler approaches such as the pixelwise percentile of the
cloud free scenes or the previous cloud free image (persistence). For the second step, once
we have an estimation of the background (see Fig. 2.1), the cloudy input image and the
difference in reflectance of the image with the background is fed to the change detection
module. This module first clusters the difference image and then, for each cluster three
simple values or features are calculated. These features are: α , the averaged difference in
norm over the RGB channels of the Landsat-8 image, β the average difference over the
same channels, and γ the mean brightness of them. Finally, we used a simple decision rule
based on thresholds over those features to produce a binary cloud mask.

The rationale of the proposed method is that the reflectance of the surface usually
changes slowly over time and abrupt changes are mostly caused by clouds specially if the
brightness of those pixels is high. It is worth noting that the proposed methodology is
very similar to many other works, e.g. Hagolle et al. (2010); Zhu & Woodcock (2014);
Frantz et al. (2015); Candra et al. (2017), which are also based on a very similar two-
step methodology: estimation of surface reflectance plus thresholding of the differences.
Nevertheless, the differentiating factors of our approach are that the models are adapted
to run operationally using the GEE platform and that the models are validated over a
large amount of different scenes (see Figure 2.2). None of the previous multi-temporal
approaches were shown to work over such a large variety of locations and biomes.

1In this work we used the ACCA algorithm (Scaramuzza et al., 2012) which was formerly present in the BQA mask
of Landsat-8 TOA scenes, but it can be replaced by any other single-scene cloud mask.
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Figure 2.2: Biome dataset of Foga et al. (2017) ingested in the Google Earth Engine to validate
the proposed multi-temporal cloud detection algorithm. This dataset can be browsed at: https:
//code.earthengine.google.com/f5ff4b932dbfcdbe242b74938694a9c1

-

After a thoughtful reflection, one of the most illuminating results of this work is shown
in Figure 2.3. Here we show in the left and in the center the Receiver operator curve (ROC)
which shows the trade-off in commission and omission errors as we change the threshold
in the difference on reflectance (α). We show with a cross the commission and omission
errors of our methods with the selected threshold and of the methods used as a baseline:
FMask (Zhu & Woodcock, 2012) and ACCA (Scaramuzza et al., 2012). On the right of
Figure 2.3, we show the same data on a different dimension, here we show the difference
in radiance (α in x-axis) and the brightness (γ in y-axis) for each of the clusters in all the
validation database. We show in blue the clusters where most of the pixels are clear and in
orange the cloudy ones. In this figure, we can see how both dimensions help to discriminate
cloudy pixels and how the selected thresholds are well aligned with the task aiming to
solve (the dotted blue lines). For further details the journal publication Mateo-Garcı́a et al.
(2018) is included in Appendix I of this Thesis.

2.3 Reproducibility

The proposed implementation as well as the benchmarking code is open-source and
reasonably well documented in a GitHub repository https://github.com/IPL-UV/ee ipl
uv. In addition to the package with the multi-temporal cloud detection models, the
aforementioned repository contains a set of notebook tutorials that can be run directly on
Google Colab. In this tutorials, we cover different use-cases and details of the methodology:
• There are ready-to-use examples of the proposed cloud detection scheme for a given

Landsat-8 scene.
• There are also ready-to-use examples for Sentinel-2. Although the original publica-

tion did not cover Sentinel-2, the method can be easily extended to this sensor. This
extension has been implemented and it can be checked in one of the tutorials.

https://code.earthengine.google.com/f5ff4b932dbfcdbe242b74938694a9c1
https://code.earthengine.google.com/f5ff4b932dbfcdbe242b74938694a9c1
https://github.com/IPL-UV/ee_ipl_uv
https://github.com/IPL-UV/ee_ipl_uv
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Figure 2.3: Left and center: Receiver operator curve of the proposed detection models. This curve
shows the trade-offs in commission and omission errors when we change the threshold in the
difference of reflectance (α) for different background estimation methods (left) and for different
thresholds in brightness (γ) (right). The crosses correspond to the selected thresholds for each
of the methods and for the single scene baselines (FMask and ACCA). Right: Scatter plot of the
clusters over all the validation scenes. In the y-axis we show the norm of TOA reflectance of the
visible bands (γ) and on the x-axis the norm of difference in reflectance (α) (see Mateo-Garcı́a et al.
(2018) for further details).

• There are detailed explanations of the different background estimation methods and
the different configurations for the clustering and thresholding procedure.

The Biome dataset was ingested on the GEE platform and can be used by other users,
e.g. in the script https://code.earthengine.google.com/f5ff4b932dbfcdbe242b74938694a9c1.
We also developed a viewer to show the output of our model compared with FMask in the
considered locations: https://isp.uv.es/projects/cdc/viewer l8 GEE.html.

We believe that the effort carried out to document and maintain all these sources is one
of the main reasons of the relatively good metrics of the article (69 citations according
to Google Scholar, 2022/01/10). Thanks to this we have received several queries for
users which show interest in the work and highlight the necessity of more accurate cloud
detection models for Landsat-8 and Sentinel-2.

https://code.earthengine.google.com/f5ff4b932dbfcdbe242b74938694a9c1
https://isp.uv.es/projects/cdc/viewer_l8_GEE.html


3. Transferring deep learning models for
CD between Landsat-8 and Proba-V

3.1 Motivation of the work

Proba-V is a small one cubic meter satellite launched in May 2013 which main goal has
been to provide continuity to Envisat/MERIS and SPOT-5 observations until the launch of
Sentinel-3. Proba-V has three cameras, one pointing at nadir and the other two on its sides.
Each of these instruments is a pushbroom sensor (see sec 1.1) which measures radiance
in four spectral bands whose wavelengths are depicted in Fig. 1.3. The limited amount
of spectral information of Proba-V makes detecting clouds specially challenging. As we
covered in the introduction, the errors in Proba-V cloud detection led to the development of
a dedicated study funded by ESA, the Proba-V Round Robin experiment, with the aim of
improving cloud detection for Proba-V. We participated in this study and in its continuation
for the operational implementation of the proposed cloud detection algorithm (Proba-V
Collection C2). In order to build an accurate ML based model for Proba-V, we created the
PV72 dataset, which has manually labeled cloud masks for 72 Proba-V acquisitions (see
sec. 1.4.1). Creating this dataset made us aware of the huge amount of time and dedication
that is needed to produce an accurately labeled and diverse dataset (we estimated at least
three months of dedicated work see sec. 1.4.1). Henceforth, in this second contribution
of the Thesis, Mateo-Garcı́a et al. (2020b) [Appendix II], we decided to explore transfer
learning to find out if models trained on data from other satellites would also work in
Proba-V and to understand the trade-offs of using such models. Demonstrating that models
trained on data from other sensors work well for a new instrument defines a clear path to
develop ML based models for those new instruments.

3.2 Summary and main results

The main goal of this contribution is to demonstrate inductive and transductive transfer
learning for detecting clouds in Proba-V (see sec. 1.6 for definition of inductive and trans-
ductive TL). To this end, we chose Landsat-8 as a suitable source domain since Landsat-8
has higher spatial resolution and radiometric quality than Proba-V and, additionally, there
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Figure 3.1: Sensor-based domain adaptation transformation applied to Landsat-8 images to resemble
the Proba-V instrument characteristics.

exist several manually labeled CD datasets for Landsat-8. In this work, we used the
L8Biome (Foga et al., 2017) and L8SPARCS (Hughes & Hayes, 2014) datasets. In order
to adapt Landsat-8 images to the spatio-spectral characteristics of Proba-V, we used a
transformation based on the specifications of the sensors (see Fig. 3.1). Afterwards, we
designed a set of experiments to benchmark inductive and transductive transfer learning
of FCNN for CD. Although the original goal was to investigate TL using Landsat-8 and
Proba-V as the source and target domains, respectively, we ended up testing TL in both
directions: from Proba-V to Landsat-8 and from Landsat-8 to Proba-V. For training the
FCNN models, we used the L8Biome and the training split of the PV72 dataset (PV48).
For testing the models, we used the L8SPARCS dataset and the L8Biome for the Landsat-8
domain and the testing split of the PV72 (PV24) for the Proba-V. We compared these mod-
els with the operational cloud detection models of Landsat-8 (FMask (Zhu & Woodcock,
2012)) and Proba-V (Toté et al., 2018), and with other deep learning based models for
Landsat-8 (Jeppesen et al. (2019) and Li et al. (2019)). For this Thesis, we also included
the comparison with our new operational Proba-V algorithm of collection C2.

Most of the experiments of this article are focused on transductive transfer learning.
Specifically, we tested transductive transfer learning from Proba-V to Landsat-8 and from
Landsat-8 to Proba-V. As explained in the introduction (Chapter 1.6), in transductive
transfer learning, we assume there is no labeled data available from the target domain
during the training. Hence, the transductive TL experiments of this work use data only
from Landsat-8 (Proba-V) for training and labelled Proba-V (Landsat-8) data is only used
to evaluate the models (resp.). Table 3.1 shows a comprehensive set of results of the
proposed transfer learning models compared with the same models trained with data of the
same domain and many other different models of the literature. Results in this table are
grouped based on the test set where models are evaluated. The first group shows the results
of the models tested on the Proba-V domain. We compare the FCNN models trained on the
L8Biome dataset using the proposed spatio-spectral transformation TLL8,333 against the
models using only the spectral transform TLL8,30 (i.e. without upsampling to the Proba-V
spatial resolution). We see that the former (TLL8,333) performs significantly better than the
later (much higher accuracy and lower omission errors). Comparing this model (TLL8,333)
with the same architecture but trained on the Proba-V domain (TLPV,333), we see that there
is a significant boost in accuracy for the models trained with real Proba-V data (4-5 points).
This shows that training in Landsat-8 adapted images is still not optimal; i.e. Proba-V
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and Landsat-8 adapted images are still different even though we transformed Landsat-8
images according to the physical specifications of the sensors. In the third contribution of
this Thesis, Mateo-Garcı́a et al. (2020a), we propose a learning based domain adaptation
to reduce this gap. It is worth noting that the ranges shown in the table correspond
to models trained with different random seeds. This dependency is often neglected in
most deep learning studies; nevertheless we see that there are significant discrepancies
specially when we test on a different domain (2 points) and around 0.3 if testing in the
same domain. Comparing with the operational model of Collection 1 (Toté et al., 2018),
the model transferred from Landsat-8 is significantly better (+5 points in accuracy and half
commission errors). This demonstrates that transferred models could be more accurate than
threshold based approaches and that they can be safely used at the commissioning phase of
the mission when no data from the satellite is available. Additionally, in this Thesis, we
have included the results of the model presented in the Round Robin experiment (Gómez-
Chova et al., 2017b) and the model developed for collection C2. Those models follow the
ML classical approach (see sec.1.3.1 of introduction chapter). In this case, we see that
deep learning models trained in Proba-V (TLPV,333) still perform slightly better than the
highly tuned models that we developed with the ML classical approach for collection C2.
The inference time of the proposed architecture (shown in Figure 1.10) is very similar to
the C2 model and even faster if using a GPU.

Table 3.1: Table with results over the different test sets of the transductive transfer learning models
and selected models of the literature. Ranges show minimum and maximum values obtained in 10
runs changing the random seed value for the training of the network.

Train Test Commission Omission Overall F1
Model Set Set Error% Error% Accuracy% score%

TLL8,333 L8Biome PV24 5.10 - 12.18 8.42 - 14.63 88.84 - 91.87 87.20 - 90.69
TLL8,30 L8Biome PV24 5.00 38.23 80.37 73.48
TLPV,333 PV48 PV24 4.32 - 5.61 4.66 - 6.01 94.81 - 95.10 94.14 - 94.43
Oper. PV C1 (Toté
et al., 2018)

- PV24 25.86 5.70 83.01 83.00

Round
Robin (Gómez-
Chova et al.,
2017b)

PV48 PV24 5.57 8.69 93.08 91.96

Oper. PV C2 PV48 PV24 5.72 4.77 94.69 93.95
TLL8,333 L8Biome (73) L8Biome (19) 6.78 7.67 92.90 93.11
TLL8,30 L8Biome (73) L8Biome (19) 6.63 5.58 93.92 94.17
TLPV,333 PV48 L8Biome (19) 7.32 - 10.5 6.83 - 9.79 90.85 - 91.89 91.11 - 92.22
FMask (Foga et al.,
2017)

- L8Biome (19) 13.18 6.99 89.59 89.3

MSCFF (Li et al.,
2019) (all bands)

L8Biome (73) L8Biome (19) 4.16 6.07 94.96 94.5

MSCFF (Li et al.,
2019) (NRGB)

L8Biome (73) L8Biome (19) 6.35 5.48 93.94 92.6

TLPV,333 PV48 L8Biome 10.99 - 17.13 6.01 - 10.55 87.79 - 89.77 87.95 - 89.71
FMask (Foga et al.,
2017)

- L8Biome - 9.69 88.48 85.03

RS-Net (Jeppesen
et al., 2019)

L8SPARCS L8Biome - 5.51 91.59 91.52

TLL8,333 L8Biome L8SPARCS 1.16 - 1.86 36.34 - 37.82 91.25 - 91.81 73.48 - 74.73
TLL8,30 L8Biome L8SPARCS 1.24 29.91 93.20 79.98
TLPV,333 PV48 L8SPARCS 1.05 - 3.26 33.08 - 40.84 90.93 - 92.14 71.68 - 76.27
FMask (Foga et al.,
2017)

- L8SPARCS 6.03 13.79 92.47 81.61

RS-Net (Jeppesen
et al., 2019)

L8Biome L8SPARCS 2.19 27.66 93.26 80.62
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The rest of the groups of Table 3.1 show the results of the models tested in the Landsat-8
domain. The first of those groups show models tested on the 19 scenes of the L8Biome
used in the split proposed in the work of Li et al. (2019). These show the model trained in
Proba-V (TLPV,333) and evaluated in the Landsat-8 domain using this split. To perform the
comparison in the Landsat-8 domain, we need to resample the predicted cloud mask to
the Landsat-8 30m resolution (see the journal paper Mateo-Garcı́a et al. (2020b) included
in Appendix II for further details on the training and testing schemes). In this case, we
also see that the accuracy of the models transferred from Proba-V have high accuracy,
which is slightly higher than threshold based approaches for Landsat-8 (FMask). In this
case, we see a smaller gap between the transfer model and the models trained on data of
the same domain (TLL8,333 and TLL8,30; 2-3 points difference respectively); additionally,
we show the results of the models trained by Li et al. (2019) (called MSCFF) which
use all the Landsat-8 bands at its nominal spatial resolution. The last two groups show
models tested on the full L8Biome and L8SPARCS datasets, respectively. Again, we reach
similar conclusions: the model transferred from Proba-V (TLPV,333) performs as good as
FMask (slightly better in L8Biome and slightly worse in L8SPARCS) and deep learning
approaches trained on data from the same domain obtain the highest accuracy. For further
details, the reader is recommended to go over the published contribution Mateo-Garcı́a
et al. (2020b), which is included in Appendix II.

The main conclusion extracted from the transductive transfer learning results is that
FCNN CD models trained on data from a different (but related) sensor work better or
on-par with highly-tuned threshold based models. In the case of Proba-V, this is expected
since threshold-based cloud detection for Proba-V is very challenging due to the limited
amount of spectral information. In the case of Landsat-8, the results are surprising,
since FMask (Zhu & Woodcock, 2012) is a very-well established algorithm with several
improvements proposed over the years to adapt to the characteristics of the Landsat-8
imagery. The takeaway message, in our opinion, is the same in both cases: FCNN CD
models could be trained on data from a similar sensor and deployed at the commissioning
phase of the mission.

In this contribution we also explored inductive transfer learning, in this case using
Landsat-8 as the source domain and Proba-V as the target. In inductive TL, we want to
demonstrate that using few labeled data from the target domain together with data from the
source domain we can boost the accuracy of transductive transfer learning models. For this,
we made 8 balanced subsets of the training data each of those with 6 images. For each of
those subsets, we trained models with consecutive numbers of Proba-V images. We trained
models using only the target data (Proba-V images) and jointly on the source (Landsat-8
adapted) and target data. Figure 3.2 shows the results of this experiment. For each number
of Proba-V images used for training (x-axis), we show in the y-axis the accuracy over the
PV24 dataset. For each element in the x-axis, we show on the left the accuracy of models
trained only on Proba-V data and on the right the models trained on that data together with
adapted data from the L8Biome dataset. We see that models trained jointly consistently
outperform models trained only in Proba-V. Additionally, we see that by using only three
or four labeled images from Proba-V we already outperform transductive models (models
trained only on Landsat-8). With 6 images or more we observed that the effect of joint
training is negligible and it is sufficient with training with only data from the target domain
(Proba-V).
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Figure 3.2: Test accuracy of models trained using different number of Proba-V images. For each
value, on the left, only Proba-V data is used; on the right, models trained jointly on Landsat-8 and
Proba-V data. Blue shaded area depicts the accuracy of the models trained only in the L8Biome
dataset. Orange area depicts the accuracy of models trained on all Proba-V images (PV48).

To conclude, in this work we demonstrated inductive and transductive transfer learning
of cloud detection models between Landsat-8 and Proba-V. We show for the first time
that it is possible to transfer CD models between sensors of significantly different spa-
tial resolutions (30 m Landsat-8 and 333 m Proba-V) and compatible spectral responses.
Moreover, such models are as good as state-of-the-art threshold-based CD models. We
believe this work paves the way for developing CD for forthcoming satellites; in particular,
in Chapter 5 we will show an example of transfer learning that has been deployed onboard
a new CubeSat satellite.





4. Cross-Sensor Adversarial Domain Adap-
tation of Landsat-8 and Proba-V Images

4.1 Motivation of the work

The transfer learning results of the previous chapter show a good performance of the models
trained only on data from the source domain (transductive transfer learning). Nevertheless,
in the case of using Landsat-8 as the source and Proba-V as the target, if we look back
at Table 3.1, we see that there is still a significant gap between models trained on target
data (Proba-V data from the PV48 split) and the transferred models. This gap is around
almost 5 points in accuracy and between 4 and 10 points in omission error. A closer look
at transformed Landsat-8 images comparing them with real Proba-V ones show that colors
and texture on those images are different; even when images are retrieved on the same
location and with less than one hour between acquisitions (see two first columns of Fig. 4.3
or first image of Mateo-Garcı́a et al. (2020a)). In particular, we see that Proba-V images
are more blueish and more noisy (lower radiometric quality) than Landsat-8 ones.

In order to inspect further this discrepancy, we downloaded the closest in time Proba-V
image overlapping each scene in the L8Biome dataset. We found 65 Proba-V images
from the same date as the Landsat-8 images in the L8Biome dataset. For those, the time
difference between Landsat-8 and Proba-V acquisitions is on average 50 minutes with
a minimum and maximum difference of 2 and 200 minutes, respectively. Using those
images, we computed the histograms of reflectances of the four overlapping bands of
Proba-V and Landsat-8. We found those histograms significantly different even when we
used the upscaling transformation of Fig. 3.1, which takes into account the PSF and SRF
of Landsat-8 and Proba-V (Mateo-Garcı́a et al., 2019).

Henceforth, in this third contribution of the Thesis, Mateo-Garcı́a et al. (2020a) [Ap-
pendix III], we propose to learn a domain adaptation transformation to make Proba-V
images similar to upscaled Landsat-8 ones. With this, we seek to bridge the gap in perfor-
mance of the cloud detection models transferred from Landsat-8 to Proba-V. Unfortunately,
learning such transformation cannot be done in a paired supervised way. If we look again
at the images in Fig. 4.3, we see that even though those images are from the same location
and close in time, clouds have moved significantly. In next section, we detail how to



38 Cross-sensor Adversarial Domain Adaptation

Proba-V 

Landsat-8 
upscaled

real/fake
probability
LU

real/fake
probability
LU

real/fake
probability
PV

real/fake
probability
PV

Cloud 
probability

Cloud
probability

Cloud 
probability

Cloud 
probability

Figure 4.1: Scheme of the forward passes for the training procedure of the proposed cycle consistent
adversarial domain adaptation method. The four networks (GPV→LU, GLU→PV, DPV, DLU) have a
different color. Losses are depicted with circles and their fill color corresponds to the color of the
network that they penalize.

tackle this problematic scenario with cycle consistent generative adversarial networks
(Cycle-GANs).

4.2 Summary and main results

Obtaining simultaneous co-located images over the same area it is not always possible
for most optical sensors onboard different satellites. For Proba-V and Landsat-8, images
acquired the same day are common since Proba-V revisit time is between 1 to 2 days due to
the high swath obtained when combining its three cameras. Nevertheless, the differences in
time between those same-day Landsat-8 and Proba-V images is still high enough to observe
large displacements in clouds between the two acquisitions. In this work, we propose
Cycle-consistent generative adversarial networks to learn DA transformations between
Proba-V images and Landsat-8 images upscaled to the Proba-V resolution (denoted as
Landsat Upscaled, LU), which are obtained with the transformation shown in Fig. 3.1. The
proposed scheme is unpaired, i.e. it does not require simultaneous co-located images to
learn such transformation. Additionally, we propose some specific penalties to the loss
function in order to preserve the calibrated input values of input images, i.e. to avoid
hallucination artifacts common in GANs.

The procedure used to train the DA transformations (denoted as GPV→LU GLU→PV) is
shown in Figure 4.1. This scheme is based on CyCADA (Hoffman et al., 2018) which
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Figure 4.2: Left: TOA refectance distribution on each of the spectral bands for Proba-V (green),
Proba-V images transformed using the proposed DA method (orange) and pseudo-simultaneous
Landsat-8 Upscaled images (blue). Center: 2D Fourier transform in dB for each of the four spectral
channels averaged across all patches of 64×64 pixels. Right: Differences in TOA reflectance for
Proba-V images before and after applying the proposed DA transformation (XPV−GPV→LU(XPV))
stratified by the quality indicator of Proba-V QA band. Values in all figures measured across all
image patches in the 38-Clouds pseudo-simultaneous dataset

proposes a simultaneous adaptation between both domains with different losses. In
our approach, which can be explored in greater detail in the presented publication in
Appendix III, we include adversarial losses (LGAN) learned through domain discriminators
(DLU and DPV ) which are trained simultaneously and we also include the cycle-consistency
losses (Lcyc) as in CyCADA (Hoffman et al., 2018). Additionally, we include an identity
consistency loss Lid which seeks to avoid large changes in input values. This is used, as
mentioned before, to preserve the calibrated top of atmosphere (TOA) values of Proba-V
and Landsat-8 images since those adapted images might be further used for other remote
sensing applications that require calibrated values. Additionally, as an optional loss,
specific for our CD application, we include a segmentation consistency loss as in CyCADA.
This loss slightly improves the performance on the cloud detection task although it could
be excluded if we prefer to be task agnostic (see Table III of the publication for an ablation
study on the different losses).

Using the aforementioned scheme, we trained the DA transformations GPV→LU and
GLU→PV using images from the L8Biome pseudo-simultaneous dataset which contains
around 38,000 pairs of close in time subimages of Proba-V and Landsat Upscaled of
size 64× 64. Afterwards, we test the performance of the models over the 38-Clouds
pseudo-simultaneous dataset which contains Landsat Upscaled and Proba-V images over
35 different acquisitions not used for training (images are from different years and different
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L8-Upscaled (LU) Proba-V (PV) PV→ LU Clouds with DA

Figure 4.3: From left to right: Pseudo-simultaneous Landsat-8 Upscaled (LU) image, Proba-V
image, Proba-V as LU, Clouds from Proba-V as Landsat-8 upscaled. See https://isp.uv.es/projects/
cloudsat/pvl8dagans for more examples.

locations). Figure 4.2 shows the distribution of the reflectances in this dataset with and
without the proposed DA transformation (Proba-V to Landsat upscaled, GPV→LU). The
figure in the right shows in green the distribution of Proba-V reflectances for each of the
four common bands in Proba-V and Landsat-8, in blue we show the distribution of Landsat-
8 Upscaled images, and in orange the distribution after applying the DA transformation
to Proba-V images. Here, we see that the DA transformation is successful at its task of
making the adapted images (orange) statistically similar to the Landsat radiance (blue); in
particular, it is quite remarkable that the transformation is able to smooth out the saturated
values of Proba-V (the spikes in the largest TOA reflectances which are quite high in the
blue and red channels). In the middle, we show the 2D Fourier transform for each of the
four bands. In this case, it is also clear that Landsat-8 Upscaled images and the adapted
images (PV→ LU center column) have more high frequency components than Proba-V
images (Proba-V values in the corner are darker). This shows that the transformation
is adding high-frequency components in order to make Proba-V images more similar to
Landsat-8 Upscaled ones. Finally, in the right hand side of Fig. 4.2, we show the difference
in radiance between Proba-V and DA adapted data. This difference is the one that is
penalized with the proposed identity loss (Lid , which uses the `1 norm of this difference).
Pixel differences used to compute these histograms are stratified by the quality indicator
included in the Proba-V quality assessment band (BQA). In this case, what we see is that
even though the network did not use the BQA information as input, in general, it learned to
maintain the TOA values of quality ”good” pixels. This is quite encouraging since we see
that most changes in pixels values are very small and in many cases within the Proba-V
error sensitivity.

https://isp.uv.es/projects/cloudsat/pvl8dagans
https://isp.uv.es/projects/cloudsat/pvl8dagans
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The results in Figure 4.2 show cues that highlight that the proposed transformation is
making Proba-V images more statistically similar to Landsat-8 Upscaled ones without
modifying significantly the TOA reflectance of Proba-V. Nevertheless, having good aggre-
gate statistics is not enough to demonstrate that the transformation has been successful.
Figure 4.3 shows some examples of the proposed transformation (the full dataset can be
inspected at: https://isp.uv.es/projects/cloudsat/pvl8dagans). In these examples, what we
see is that the images after the proposed transformation (column PV→ LU) maintain the
content of Proba-V images with the colors and texture of LU. It is remarkable to see here
that the adapted images indeed reduced the amount of saturation specially in the blue
channel (adapted images are less blueish compared to Proba-V ones). Finally, in the last
column, we show the cloud mask calculated with the PV→ LU image. The CD model that
we used to compute this cloud masks is the model trained in Landsat Upscaled images of
the L8Biome dataset (model TLL8,333 of previous chapter in Table 3.1). In these cases, we
see that the cloud masks are very accurate. Table II of the paper in the Appendix III shows
the results of cloud detection accuracy in the PV24 dataset. The takeaway message of this
table is that the overall accuracy of the models after the DA transformation is 91.87-93.10
which is around 2 points higher in accuracy than models without DA (88.84-91.87 in
Table 3.1).

4.3 Reproducibility

We published the data and code to reproduce our results; in particular, we published
the L8Biome pseudo-simultaneous dataset and the code to train and run inference with
the implemented DA transformations (https://github.com/IPL-UV/pvl8dagans). We also
included the Landsat to Proba-V physically-based domain adaptation transformation, the
CD model trained on the L8Biome Upscaled dataset (TLL8,333). Additionally, we included
checkpoints with the trained DA transformation and the cloud detection model and a script
to produce Proba-V corrected images with the proposed cloud mask. Last but not least, the
PV72 dataset can be browsed at https://isp.uv.es/projects/cdc/probav dataset.html and it is
available upon request.

https://isp.uv.es/projects/cloudsat/pvl8dagans
https://github.com/IPL-UV/pvl8dagans
https://isp.uv.es/projects/cdc/probav_dataset.html




5. Towards global flood mapping onboard
low cost satellites with machine learning

5.1 Motivation of the work

The Frontier Development Lab (FDL) is a research program organized in partnership
with ESA in Europe and NASA in the United States1. It takes place during summer
in a fully-funded eight weeks research sprint. During that time a set of researchers are
selected and paired with domain and ML experts in small groups of 5-8 people. Each
group is assigned to one pre-defined challenge in the Earth or Space Sciences to be tackled
with ML. I participated in the 2019 Europe research sprint in the ‘disaster prevention,
progress and response’ team, where we worked on onboard flood segmentation. The
current research publication Mateo-Garcia et al. (2021) was originated during this sprint
and was consolidated over the follow-up months.

The overreaching goal of this fourth contribution of the Thesis, Mateo-Garcia et al.
(2021) [Appendix IV], is to demonstrate an end-to-end flood segmentation application to
be run onboard small CubeSats to produce fast maps for disaster response applications.
The long-term vision is that with a constellation of CubeSats we could significantly reduce
the time to obtain detailed maps after an emergency event. This response time is currently
bounded by the revisiting time of the satellite. Since CubeSats are relatively cheap,
launching such constellation would be feasible for countries and organizations which
will reduce revisit time massively: we estimated that with the cost of a mission such a
Sentinel-2 we could launch 30 CubeSats which would reduce the revisit time from 5 days
to 8 hours. Nevertheless, large constellations of satellites require a higher amount of data
transfer between the satellite and ground stations, which is expensive and introduce other
bottlenecks. In this contribution, we argue that onboard processing is a potential solution
to overcome some of these limitations. With onboard processing we can offset part of
the product generation to the hardware in order to get lighter products that are cheaper to
download from the satellite to the ground stations (in this case flood binary maps). An
oversimplistic metaphor of this vision is to have satellites with ’eyes’ and ’brains’ instead
of having the ’eyes’ in orbit and the ’brains’ on Earth.

1ESA-FDL Europe (https://fdleurope.org). NASA-FDL USA (https://frontierdevelopmentlab.org).

https://fdleurope.org
https://frontierdevelopmentlab.org
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(a) (b)

Figure 5.1: (a) Sentinel 2 RGB bands and (b) associated labelled map (� land � cloud � water)
over Farkadhon (Greece) derived from Copernicus EMS 271 activation. Base image and reference
labels are included in the WorldFloods database.

The main motivation is therefore to develop a flood detection model using optical
sensors; however, a direct consequence of deploying the model onboard is that, in addition
to the flooded areas, it has to simultaneously detect the clouds present on acquired images.

5.2 Summary and main results

The ESA’s ΦSat-1 satellite is a 6U CubeSat part of FSSCat, a technology demonstra-
tor mission launched in September 2020. It contains a 49 band hyper-spectral camera
(HyperScout-2) which integrates a Intel Movidius Myriad2 GPU to accelerate computer
vision applications. The goal of ΦSat-1 is to demonstrate onboard ML applications accel-
erated with dedicated hardware and assessing the robustness of the payload to ionizing
radiation. The goals of the mission have been recently attained by the onboard cloud
detection application of Giuffrida et al. (2020) and the onboard results have been published
in Giuffrida et al. (2021). In this work, we targeted ΦSat-1 in order to take advantage of
the opportunity window opened with this demonstrator platform: at the time of developing
this work the satellite was not launched and the PhiLab was looking for other onboard
applications. Although at the end this work could not be deployed at ΦSat-1, we had a
second chance with D-Orbit WildRide mission, and a similar payload to the proposed in
our publication was launched in June 2021. We further describe this derived outcome of
the Thesis in section 6.3.7.

Hence, in the contribution Mateo-Garcia et al. (2021), we develop a flood&cloud
segmentation model based on FCNN for the HyperScout-2 hyper-spectral camera aboard
ΦSat-1. Since ΦSat-1 was not launched at the moment of developing this work, no data
was available of the HyperScout-2 camera to develop an ML-based flood segmentation
model. Therefore, in this work we propose also a transductive transfer learning. In
particular, in this case we propose to develop a model in Sentinel-2 data and ground truths
and transfer such model to the HyperScout-2 sensor.

The proposed strategy is therefore similar to the described in the second contribution
of this Thesis: train a model in a proxy dataset and transfer such model to the target sensor.
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Training 108 407 182,413 1.45 1.25 43.24 50.25 3.81

Validation 6 6 1132 3.14 5.19 76.72 13.27 1.68

Test 5 11 2029 20.23 1.16 59.05 16.21 3.34
† Permanent water obtained from the yearly water classification product of Pekel et al. (2016)
available at the Google Earth Engine.

Figure 5.2: WorldFloods dataset. On the top training floodmaps colored by source and test
floodmaps shown with red circles. At the bottom, statistics of number of pixels on each subset and
percentage of flood and permanent water pixels, land and cloud.

Nevertheless, there is an extra caveat here which is that, at the moment of carrying out this
work, there were no publicly available global dataset of labeled flooding data for optical
sensors. Therefore, one of the major contributions of this work is to develop and curate
such dataset which we called WorldFloods.

WorldFloods is an ML-ready dataset which contains floodmaps coming from three
different organizations that produce these maps to monitor flooding events for disaster
response. A floodmap is a vector product which indicates presence of water; these products
are derived manually or semi-automatically by an operator from a satellite image. For each
of these floodmaps, we obtained the first Sentinel-2 image after the event and we rasterised
the floodmap with a cloudmask obtained from s2cloudless (Sentinel Hub team, 2017) in a
3-class ground truth as shown in Figure 5.1 (left Sentinel-2 image, right rasterised ground
truth). Figure 5.2 shows the location and statistics of the images included in the dataset.
We show with different colors the original source of the floodmap which corresponds to
the Copernicus Emergency Management Service (Copernicus EMS), the United Nations
Satellite Center (UNOSAT), and the Global Flood Inundation Map Repository of the
University of Alabama (GloFIMR). Additionally, we show in red the location of the
floodmaps used for testing the models: for testing we manually chose locations where
the ground truth data was generated from Sentinel-2, which were geographically diverse
and where the quality of the ground truth was sufficiently good. This is highlighted in the
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Table 5.1: IoU and recall results for models trained on WorldFloods.

Model IoU total water Recall total
water

Recall flood
water

Recall perma-
nent water

10m

NDWI (thres -0.22) 65.12 95.75 95.53 99.70
NDWI (thres 0) 39.99 44.84 42.43 86.65
Linear 64.87 95.55 95.82 90.75
SCNN 71.12 94.09 93.98 95.93
U-Net 72.42 95.42 95.40 95.83

80m

NDWI (thres -0.22) 64.10 94.76 94.57 98.15
NDWI (thres 0) 39.07 44.01 41.69 84.55
Linear 60.90 95.00 94.79 98.58
SCNN 68.87 96.03 96.11 94.76
U-Net 70.22 94.78 94.85 93.50
NDWI (thres -0.22) 64.10 94.76 94.57 98.15
NDWI (thres 0) 39.07 44.01 41.69 84.55

80m HyperScout-2 Linear 50.27 80.47 79.69 94.03
overlapping bands SCNN 65.82 94.62 95.17 84.99

U-Net 65.43 94.59 95.17 84.44

statistics of Figure 5.2 which shows lower amount of clouds an higher amount of flood
pixels in the test set; this is done deliberately to obtain more meaningful metrics.

The WorldFloods dataset allows to train and validate flood segmentation models for
Sentinel-2. In this contribution, we used this dataset to develop FCNN models to be
transferred to the HyperScout-2 camera. Nevertheless this dataset can be used for other
tasks: in section 6.3.8, we describe a follow up work which is being tested for deployment
at UNOSAT.

For the HyperScout-2 sensor, we selected the bands in Sentinel-2 that overlap the region
of the spectrum sampled by HyperScout-2 (from 390nm to 990nm). This corresponds to
bands B1 to B9 of Sentinel-2 (see figure 2 of the publication). We upscale the resolution
of the images from the Sentinel-2 resolution (10 m) to the HyperScout-2 resolution (80 m).
Additionally, we simulate the noise expected in a smaller platform such as a CubeSat with
data augmentation for training; in particular, we include degradation such as Gaussian
noise, motion blur and channel jitter.

In the current contribution Mateo-Garcia et al. (2021), we trained different FCNN
models for the task of land, water and cloud segmentation. Since the model was designed
to run onboard we decided to tackle simultaneously water and cloud segmentation to
optimize the processing pipeline. We tested two architectures which shown a relatively
similar performance in the segmentation task (see Table 5.1). These architectures are the
U-Net architecture originally proposed in Ronneberger et al. (2015) and a lightweight
5-layer FCNN (SCNN in Table 5.1). In Table 5.1, we provide results for different models
trained at different resolutions, i.e. with and without the domain adaptation transformation
mentioned before. We see that there is a significant drop in performance from models
using all the bands of Sentinel-2 compared with models only using the overlapping bands
with HyperScout-2 (bands B1 to B9 of S2). This is because those models do not have the
short-wave infrared bands, which are strong indicators of the presence of water.

For implementation, the SCNN model was chosen due to its lower computational cost.
We tested this model in a Raspberry-Pi with an attached Intel Movidius Myriad2 chip
similar to the one available in ΦSat-1. We used the OpenVINO software to transfer the
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model and run it on the Raspberry-Pi. This model shows a processing rate approximately
of 12MP per minute.

For further details of the current contribution we refer the reader to the original publi-
cation included in Appendix IV.

5.3 Reproducibility

As mentioned earlier, one of the most important contributions of this work is the World-
Floods dataset which contains a curated collection of flood extent maps and Sentinel-2
images over a variety of locations. We published this dataset alongside the publica-
tion Mateo-Garcia et al. (2021). Additionally we also published the codebase to reproduce
all the experiments in this work in https://gitlab.com/frontierdevelopmentlab/disaster-
prevention/cubesatfloods. In section 6.3.8, we describe the ml4floods package which is an
extended version of the published codebase to do end-to-end flood extent segmentation
with Sentinel-2. This package is currently being tested by UNOSAT for deployment in
their rapid response platform for flooding.

https://gitlab.com/frontierdevelopmentlab/disaster-prevention/cubesatfloods
https://gitlab.com/frontierdevelopmentlab/disaster-prevention/cubesatfloods




6. Discussion and Conclusion

6.1 Discussion

Earth observation with optical satellite sensors is a key technology to monitor our Planet.
In the last years, we are witnessing an exponential increase in the number of optical
instruments launched in orbit. These new instruments, accounted together, provide an
unprecedented data stream with high spatial and temporal resolutions all over the globe. A
proper exploitation of this data is improving our understanding of the biosphere (Wolanin
et al., 2019), the oceans (Sauzède et al., 2020), our capacity to respond rapidly to natural
disasters (Rudner et al., 2019), and ultimately it is helping us to adapt to climate change.
Nevertheless, this data abundance also implies challenges since the raw data provided by
these sensors is not sufficient to address these problems. Henceforth, in order to truly
exploit this data, useful remote sensing products need to be developed at a fast pace for
each of these new sensors.

The current scenario of optical remote sensing has two defining properties. Firstly, it is
heterogeneous: there are many different sensors with different spatio-spectral characteris-
tics that provide different views of the Earth. Secondly, remote sensing data is abundant
and in many cases freely available: since the USGS opened in 2008 the Landsat archive
other major players in the Space community have made also their products open. Nowa-
days, platforms such as the GEE provide access to hundreds of different remote sensing
products freely to the Science community.

These defining properties are bringing a paradigm shift on how remote sensing prod-
ucts are developed. Traditional, knowledge-based, remote sensing products are based on
a very deep understanding of spectroscopy and optical physics and rely on understanding
very well the characteristics of the instruments and orbits. Over the course of this Thesis,
we have witnessed how this approach is being boosted by a new data-driven trend which
seeks to exploit the aforementioned abundance of data. This new approach, as we under-
stand it, has the potential to go over the cases where physics models are computationally
expensive or not well resolved to produce more accurate remote sensing products. Addi-
tionally, since there are open data archives of images of many different optical sensors,
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new products can be built using this data for the new upcoming sensors. In this Thesis, we
call this process transferring a model across sensors. Some of the contributions of this
Thesis are devoted to explore methodologies to transfer data-driven products across similar
optical sensors.

One product that is required by virtually all optical sensors observing the Earth (from
the visible at 390nm to the SWIR at 2500nm) are cloud masks. Clouds are suspended
in the Earth’s atmosphere reflecting the sun light captured by our optical satellites and
preventing us from observing the surface of the Earth. We know by these sensors that
clouds are pervasive in the atmosphere and that they cover on average almost 70% of
the surface of our planet. Therefore, distinguishing between cloud pixels and surface
pixels is the first step on most applications, either those observing the surface (e.g. Álvaro
Moreno-Martı́nez et al. (2018)) or the atmosphere (e.g. Zantedeschi et al. (2019)). This
is needed because, before starting any further analysis, these applications need to know
whether they are looking at the surface or not, to discard (or use) those pixels. Obtaining
accurate cloud masks is therefore vital for many downstream applications. Additionally,
since most of these applications exploit large amounts of data, they require that these cloud
masks are produced automatically without human intervention; for instance in the work of
Wolanin et al. (2020) or Mateo-Sanchis et al. (2019) authors propose to exploit year-long
time series of images to estimate crop yields over large regions; manual filtering of cloudy
images in 5-day image time series is therefore not feasible.

Current operational knowledge-based algorithms for cloud masking (aka threshold-
based) do not produce accurate cloud masks in several situations. Over the course of this
Thesis, we have been involved in several projects aiming to improve the cloud detection
accuracy of operational models for Proba-V in the ‘Proba-V Cloud Detection Round
Robin’ (Iannone et al., 2017) and for Landsat-8 and Sentinel-2 in the ‘Cloud Masking
Inter-comparison eXercise (CMIX)’ (European Space Agency, 2019). These projects
highlight the current shortcomings of threshold-based algorithms and the need of novel,
more accurate, cloud detection products. The contributions of this Thesis are devoted to
provide an answer to these problems and to improve cloud detection for optical remote
sensing satellites.

The data-driven models that we propose for cloud detection and for transfer learning
in most of the contributions of this Thesis are based on deep learning. Among data-
driven methodologies, we choose deep learning because: (a) It has the capacity to scale to
arbitrarily large datasets without a plateau in performance, i.e. its accuracy keeps increasing
with larger volumes of data. This makes them particularly well suited for remote sensing
where satellite image archives are in the order of the petabytes. (b) They have shown
outstanding performance in natural images tasks by using convolutional networks. In this
Thesis, the models that we propose are Fully Convolutional Neural Networks (FCNN),
these models are specially designed to obtain per-pixel predictions (one category assigned
to each pixel of the image). In particular, the contributions of this Thesis include some of
the first works using FCNN for cloud detection (Mateo-Garcı́a et al., 2017) and domain
adaptation across images of different sensors (Mateo-Garcı́a et al., 2020a).

In the following sections, we will briefly discuss the contributions of each of the
publications of the Thesis and their impact.
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6.1.1 Multi-temporal cloud masking in the Google Earth Engine
The first contribution of this Thesis, Mateo-Garcı́a et al. (2018) [Appendix I], proposes
multi-temporal cloud detection models for Landsat-8 images. With this contribution,
first I got introduced to remote sensing in general and to the cloud detection problem in
particular. In this work, we focused on Landsat-8 which is arguably the satellite with a
higher number of proposed cloud detection schemes. We extended the work of Gómez-
Chova et al. (2017a) and proposed a multi-temporal cloud detection algorithm that is
based on two stages: surface (or background) estimation and change detection. In the first
stage, we use previous cloud free images to estimate the reflectance of the surface, testing
different methods. In the second stage, we compare the estimated background against
the current image and fit a set of global thresholds that are used to mask the clouds. The
proposed approach is a simplified method very similar to other multi-temporal methods
proposed in the literature (e.g. Zhu & Woodcock (2014) or Hagolle et al. (2010)). The
novelty of the work is that the proposed algorithm can be implemented efficiently in
a platform where multi-temporal models could be run operationally (the Google Earth
Engine (GEE)). All previous works of multi-temporal cloud detection in the literature
require downloading previous cloud free images for the background estimation step. This
strongly limits the applicability of the CD model. In our work, we are able to run the CD
model in any new location directly in the GEE platform without any data downlinking.
Another significant contribution of this work is its validation in a large corpus of manually
labeled images from the L8Biome dataset. The aforementioned issues of running previous
cloud detection models on new locations make those methods poorly validated. It is
common to see that previous works are only validated in a small set of images and in
many cases this validation only includes visual inspection of the masks. The results of our
validation show significantly better performance than single-scene operational threshold-
based methods such as FMask (Zhu & Woodcock, 2012) or ACCA (Scaramuzza et al.,
2012). Finally, we made a significant effort in open-sourcing the models and ensuring the
reproducibility of our results. The code repository https://github.com/IPL-UV/ee ipl uv
contains the implementation and several tutorials with use-cases. Additionally, the web
page https://isp.uv.es/projects/cdc/viewer l8 GEE.html shows the masks compared with
the ground truth in all the acquisitions used for validation.

6.1.2 Transferring deep learning models between Landsat-8 and Proba-V
The second contribution of this Thesis, Mateo-Garcı́a et al. (2020b) [Appendix II], demon-
strates transfer learning of FCNN models across two different optical instruments (Proba-V
and Landsat-8). Transfer learning of ML-based CD models was one of the main goals of
the PhD Thesis. On the one hand, it has not been demonstrated before and its trade-offs
have not been studied. On the other hand, transfer learning could enable the development
of ML-based CD models for upcoming sensors since it could significantly reduce the
amount of training data required to create such models.

In this work, we make a very comprehensive study of transductive and inductive
transfer learning using several labeled datasets of Proba-V and Landsat-8. In particular,
we first introduce a domain adaptation transformation based on the physical properties
of the sensors, which we apply to Landsat-8 images to make them similar to Proba-V
acquisitions (i.e. to have similar spectral bands and the same nominal spatial resolution).
We called the transformed images Landsat-Upscaled images. Using this transformation

https://github.com/IPL-UV/ee_ipl_uv
https://isp.uv.es/projects/cdc/viewer_l8_GEE.html
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we carry out three different types of transfer learning experiments: (a) from Landsat-8 to
Proba-V, where we show that models trained only with Landsat-Upscaled images produce
cloud masks 5 points more accurate than the current threshold-based operational Proba-V
method; (b) from Proba-V to Landsat-8, where models that use only Proba-V data for
training have a similar accuracy to the Landsat-8 operational FMask in the L8Biome dataset
(87.79–89.77% vs 88.48%); and (c) jointly from Proba-V and Landsat-8 to Proba-V, where
we demonstrate inductive transfer learning using Landsat-Upscaled images and few labeled
Proba-V images jointly. In this case, the accuracy increases from 1–5 points compared
with using only the Landsat-8 labeled dataset.

With this work, we reached most of the goals of the PhD Thesis since we were able to
show in the same publication that FCNN models produce very accurate cloud masks and
that these models can be transferred to a compatible sensor with small drops in accuracy.
We would also like to point out that we carried out the comparisons of the proposed models
in a very comprehensive and rigorous manner: we trained different copies of the same
network with different random seeds to account for the stochastic behaviour of neural
networks and we compared with other works of the literature that use FCNN (most notably
Jeppesen et al. (2019) and Li et al. (2019)), and with the official operational CD methods
of the considered satellites.

Finally, I would also like to highlight that, in order to carry out this work and the
development of the Proba-V collection C2 algorithm (Toté et al., 2021), we manually
labeled a large dataset of Proba-V images (the PV72 dataset described in section 1.4.1).
Without this data none of those works could not have been tackled. This dataset can be
browsed at https://isp.uv.es/projects/cdc/probav dataset.html and which is available upon
request.

6.1.3 Cross sensor adversarial domain adaptation of Landsat-8 and Proba-
V Images for Cloud Detection

The third contribution of this Thesis, Mateo-Garcı́a et al. (2020a) [Appendix III], explores
learning-based domain adaptation also between Landsat-8 and Proba-V. The purpose of
domain adaptation transformations is to make images in one source domain similar to
images in a target domain.

This work was motivated by the observed discrepancies between the Landsat-Upscaled
images (introduced in the previous section) and the real Proba-V acquisitions. In particular,
we observed that the distribution of the colors of the bands and its real spatial resolution
measured by its Fourier transform is significantly different even in images acquired with
time differences of minutes. We hypothesize that the drop in cloud detection accuracy in
Proba-V images of models trained in Landsat-Upscaled data might be due to this difference,
which is called data-shift in the ML literature.

Hence, in this work, we adapt one of the latest most successful learning-based domain
adaptation methods in computer vision to bridge the gap between Proba-V and Landsat-
Upscaled images. In particular, we propose a variant of Cycle-Consistent Adversarial
Domain Adaptation (CyCADA) (Hoffman et al., 2018) with a custom loss specific to the
remote sensing use-case which aims to maintain the calibrated reflectance values of the
satellite images (called identity loss in the paper). One of the main advantages of CyCADA
is that it is unpaired; that is, it does not require of simultaneous co-located images for
training. This is because the supervision (learning feedback) comes through a discriminator

https://isp.uv.es/projects/cdc/probav_dataset.html
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model trained simultaneously to the DA models. This is crucial for the intended use of
the DA application, which is cloud masking, since clouds move fast and even in images
acquired with differences of minutes it can be observed a displacement of the clouds.

For this work, we collected a diverse dataset of close-in-time co-located Landsat-
Upscaled and Proba-V images. Those images are split in training and testing sets by
image acquisition to maintain the independence of the test set. Over this set, we observe
that the global statistics of the Proba-V images adapted with the trained generator are
similar to Landsat-Upscaled ones. Additionally, we see that the content of the Proba-
V images is maintained whereas the colors are more similar to the Landsat-Upscaled
images; moreover, the adapted images are slightly sharper than the real Proba-V images
and with significantly less saturated values. The complete test set can be inspected at
https://isp.uv.es/projects/cloudsat/pvl8dagans/. Finally, when we use the proposed DA
transformation and apply the CD model trained in Landsat-Upscaled images we observe
an increase in cloud detection accuracy of two points.

With this work, we demonstrated how to construct DA transformations between two
different sensors to transfer the style of the other sensor while maintaining the content
of the observed image. It is important to stress that the proposed methodology does not
require paired samples which makes it easier to apply it to many remote sensing use-cases.
We use this transformation to apply a model trained in a source domain to test images
of the target domain; however, this methodology is intrinsically general and could be
used for other use-cases. For instance, it could be used to produce harmonized fusion
products where images are transformed to the style of the sensor with better radiometric
quality. Another extension, for sensors where atmospheric correction is challenging (i.e.
for sensors with few bands and without dedicated bands for atmospheric retrievals), could
be to produce atmospherically corrected images. For example, we could do this by using
Level 2 (atmospherically corrected) Landsat-8 scenes instead of Level 1 TOA reflectance in
the setting propose in this article. This would produce Proba-V adapted images statistically
similar to Landsat-8 surface reflectance. Nonetheless, this application would require a very
thorough validation before testing it operationally.

Finally, for this work, we also made a significant effort to enable reproducibility: we
open-sourced the paired dataset, a visualization tool with all the test images with the
proposed methodology (https://isp.uv.es/projects/cloudsat/pvl8dagans/), and the code to
train and to apply the transformation to a new Proba-V scene (https://github.com/IPL-UV/
pvl8dagans). Additionally, in that repository, we also open-sourced parts of the previous
work such as the upscaling transformation and the models trained in the upscaled L8Biome
dataset.

6.1.4 Towards global flood mapping onboard low cost satellites with ma-
chine learning

The fourth contribution of this Thesis, Mateo-Garcia et al. (2021) [Appendix IV], describes
an onboard ML-system to segment flooding water. Onboard processing is one of the
latest trends in remote sensing. Running software to build products onboard has some
advantages: to optimize the communication bandwidth of the satellite data download to
ground stations (e.g. to only downlink images that are useful, for instance discarding overly
cloudy scenes Giuffrida et al. (2021)); to speed up the downlinking of certain critical
observed information (e.g. a methane leak, a wildfire or a flood); or to trigger a retrieval

https://isp.uv.es/projects/cloudsat/pvl8dagans/
https://isp.uv.es/projects/cloudsat/pvl8dagans/
https://github.com/IPL-UV/pvl8dagans
https://github.com/IPL-UV/pvl8dagans
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with a different instrument (e.g. for satellites with different sensors, onboard processing
could be used to trigger the retrieval of another instrument aboard).

Onboard processing is not a new idea, the pioneer EO-1 mission launched on November
2000 demonstrated some onboard capabilities on the Autonomous Sciencecraft Experi-
ment (ASE); these experiments include onboard cloud detection (Griggin et al., 2003), ice
monitoring (Doggett et al., 2006), and even flood mapping (Ip et al., 2006). The differenti-
ating factor of nowadays proposals is that the current payloads contain dedicated hardware
aimed to accelerate neural network applications. This is the case of the ESA ΦSat-1
mission, which contains a hyperspectral camera (HyperScout-2) and an Intel Movidius
Myriad2 chip to accelerate computer vision applications. In this framework, our work
describes a simple MLPayload to do flood extent segmentation that is tested on hardware
similar to the ΦSat-1. The proposed model to segment floods and clouds is again a FCNN,
which we showed to work well for the cloud detection case in previous contributions. In
particular, in this work we propose a simpler architecture that produces masks fast in order
to cope with the requirements of the ΦSat-1 hardware.

For training the proposed flood segmentation model we need a dataset with images
and flood segmentations masks to be used as ground truth. At the time of developing this
work, there was no operational hyperspectral sensor with sufficient data over flooded areas
to build a global model. Hence, we choose the multi-spectral Sentinel-2 as a good proxy
since their bands overlap the area of the spectrum sampled by HyperScout-2. Nevertheless,
a curated dataset of flood extent maps and Sentinel-2 images did not exist either at that
time; therefore, we decided to create that dataset ourselves. The collected dataset, that we
called WorldFloods, is perhaps the most important contribution of this work.

WorldFloods used flood extent maps created by three different organizations and its
closest Sentinel-2 image after the event. We compiled a curated dataset with more than
400 flood extent maps from more than 100 verified flood events that we used to train and
validate flood segmentation models. In order to create a model for the HyperScout-2 sensor,
we followed a transfer learning approach very similar to the one proposed in the second
contribution of this Thesis. In particular, to simulate the HyperScout-2 data, we upscale
Sentinel-2 images from 10 m to the 80 m nominal resolution of HyperScout-2 and select
the nine bands of Sentinel-2 that overlap the spectrum sampled by the sensor. Additionally,
since the CubeSat is expected to have worse radiometric quality, we introduce noise in the
images at training time to mimic the expected degradation of the images.

Finally, in this work, we also made an important contribution towards reproducibility
and open science: we published the WorldFloods dataset in a common format, the trained
models and the code to run inference and reproduce all the experiments in this GitLab
repository: https://gitlab.com/frontierdevelopmentlab/disaster-prevention/cubesatfloods).

6.2 Conclusion

In a nutshell, this Thesis proposes different data-driven methods, most of them based on
deep learning, to address different remote sensing problems for cloud detection. Satellite
images are at the core of all data-driven methods proposed in this Thesis and preparing
this data has been the most critical and time consuming (and underrepresented) part of
all these works. Data preparation is critical in data-driven systems because errors or
miss-understandings in the inputs propagate to the outputs and, given the complexity of

https://gitlab.com/frontierdevelopmentlab/disaster-prevention/cubesatfloods
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the models, they are very difficult to detect and track (see Sambasivan et al. (2021) for a
good survey of data cascades caused by bad data engineering practices). Data preparation
is also very time consuming because of the volumes of data that are needed to train and
validate the models. Although this cost could be cut down by transfer learning or more
data-efficient models, large, global and accurate datasets are still needed to validate and
compare any proposed DL methodology. Dealing with large volumes of data requires
software expertise and domain knowledge, yet a good understanding of the datasets is of
uttermost importance to propose meaningful solutions and build accurate models (see e.g.
Karpathy (2019) for good data practices, where the author suggests to “become one with
the data” and thoroughly inspect all your data samples before modeling). At the end of the
day, data is the basis of the empirical method in Science and, as a community, we should
make an effort to encourage and foster good and open data practices.

The contributions of these works lie in between the ML and the RS fields. In general,
one could say that most of our contributions consist of ‘taking a successful computer vision
model and adapting it to remote sensing data’. In essence this is true, nevertheless all
these works are specifically designed for the remote sensing problem we address and all
the models have been thoroughly validated thinking in the use-cases these models could
have. It should be pointed out that the adaptations of the computer vision methods that we
propose are tailored to the specific remote sensing problem that we are aiming to solve.
For instance, the third contribution of this Thesis, Mateo-Garcı́a et al. (2020a), proposes
a domain adaptation transformation that seeks to maintain the radiometric calibration of
the sensors. This is needed if we wish the proposed transformation to be used by other
downstream applications that might require calibrated reflectance. In a more broad manner,
all models on this Thesis have been validated in good quality with representative data that
we have carefully selected. This data is chosen to be representative of the global Earth
conditions each sensor could observe.

To conclude, in this Thesis we propose different solutions to improve cloud masking
and develop methodologies to transfer deep learning models across different sensors. In
particular, we demonstrate that we could improve cloud detection using either the temporal
or the spatial dimension of optical satellite images. We also show that we could transfer
FCNN models trained on data of one optical satellite to another with compatible spatio-
spectral characteristics and that learning-based domain adaptation transformations could
boost the transferability of these methods. Finally, we show that these models could be
even deployed onboard CubeSats, opening the door to many future developments.

6.3 Related outcomes and projects

During the course of this Thesis, I have been lucky to participate in different projects
where I had the opportunity to learn and collaborate with many different people. Most of
these projects, are somehow related to this Thesis and have influenced this work. In the
following, I will briefly cover some of them and their most significant outcomes. It should
be noticed that none of these projects have been carried out in solitude; hence, I take the
opportunity here to thank all the collaborators that made this possible.
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6.3.1 Google Earth Engine award: Cloud Detection in the Cloud
This Google Earth Engine Award, granted to Prof. Luis Gomez-Chova, was my first
opportunity as a researcher. The goal of the project, as the title suggest, was to develop
cloud detection models in the GEE platform. The first contribution of this Thesis (Mateo-
Garcı́a et al., 2018) and the following journal article (the contribution of this Thesis is a
continuation of that work) are direct contributions of this project:
• L. Gómez-Chova, J. Amorós-López, G. Mateo-Garcı́a, J. Muñoz-Marı́, and G.

Camps-Valls, Cloud masking and removal in remote sensing image time series,
Journal of Applied Remote Sensing JARSC4, vol. 11, no. 1, p. 015005, Jan. 2017,
doi: 10.1117/1.JRS.11.015005.

6.3.2 Operational cloud detection models for Proba-V
In 2016 we participated in the ‘Proba-V Cloud Detection Round Robin exercise’ (Iannone
et al., 2017). Our proposed cloud masking solution based on Neural Networks ended up
in second place with a difference of 0.1% with the first ranked model. The ESA Proba-V
Quality Working Group (PVQWG) decided to implement our solution in the Proba-V
ground segment to be the operational cloud masking model disseminated with all Proba-V
products. Over the course of a year we developed three models for Proba-V one for each of
the resolutions that Proba-V images are published (100 m, 333 m and 1 km). During 2021
the Proba-V team has been carrying out a reprocessing of the full archive; this will produce
a new Proba-V collection (called Collection 2, C2) where, among different improvements,
it will include our cloud mask as the official cloud masking product (Toté et al., 2021).

The Proba-V labeled dataset that we used in the second and third contributions of
this Thesis are an outcome of this project. See section 1.4.1 for more details about the
Proba-V cloud detection manually labeled dataset (PV72). Additionally, I participated in
the following conference publications:
• R. Q. Iannone, F. Niro, P. Goryl, S. Dransfeld, B. Hoersch, K. Stelzer, G. Kirches,

M. Paperin, C. Brockmann, L. Gómez-Chova, G. Mateo-Garcı́a, R. Preusker, J.
Fischer, U. Amato, C. Serio, U. Gangkofner, B. Berthelot, M. D. Iordache, L. Bertels,
E. Wolters, W. Dierckx, I. Benhadj, E. Swinnen, Proba-V Cloud Detection Round
Robin: Validation Results and Recommendations, 9th International Workshop on
the Analysis of Multitemporal Remote Sensing Images (MultiTemp), 1–8, 2017. doi:
10.1109/Multi-Temp.2017.8035219.
• L. Gómez-Chova, G. Mateo-Garcı́a, J. Muñoz-Marı́ and G. Camps-Valls, Cloud

detection machine learning algorithms for PROBA-V. IGARSS 2017 - 2017 IEEE
International Geoscience and Remote Sensing Symposium, 2017
doi: 10.1109/IGARSS.2017.8127437

6.3.3 Cloud Masking Intercomparison eXercise (CMIX)
The Cloud Masking Inter-comparison eXercise (CMIX) organized jointly by ESA and
NASA is a similar exercise to the Proba-V Round Robin but for Sentinel-2 and Landsat-
8. The preceding Atmospheric Correction Intercomparison Exercise (AMIX) revealed
several cloud masking issues for both Landsat-8 and Sentinel-2. Hence, the CMIX seeks
to compare different cloud detection schemes in eight different manually labeled datasets
for Landsat-8 and Sentinel-2. We participated in this exercise with a FCNN trained in
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the L8Biome and L8SPARCS datasets. For Sentinel-2, we propose transfer learning of
this network. The final results of the study can be found in Skakun et al. (Submitted).
The models that we trained for the contest for Landsat-8 and Sentinel-2 are open-sourced
at https://github.com/IPL-UV/DL-L8S2-UV. Additionally, the following list of journal
publications contains a more detailed description of our approach validated in different
Landsat-8 and Sentinel-2 datasets and the joint work with all participants of CMIX which
is currently under review:
• D. López-Puigdollers, G. Mateo-Garcı́a, and L. Gómez-Chova, Benchmarking

Deep Learning Models for Cloud Detection in Landsat-8 and Sentinel-2 Images,
Remote Sensing, vol. 13, no. 5, Art. no. 5, Jan. 2021, doi: 10.3390/rs13050992.
• S. Skakun, J. Wevers, C. Brockmann, G. Doxani, M. Aleksandrov, M. Batic, D.

Frantz, F. Gascon Roca, L. Gómez-Chova, O. Hagolle, D. López-Puigdollers, J.
Louis; M. Lubej, G. Mateo-Garcı́a, J. Osman, D. Peressutti, B. Pflug, J. Puc, R.
Richter, J.C. Roger, P. Scaramuzza, E. Vermote, N. Vesel, A. Zupanc, L. Zust, Cloud
Mask Intercomparison eXercise (CMIX): an evaluation of cloud masking algorithms
for Landsat 8 and Sentinel-2, Remote Sensing of Environment, (in revision)

6.3.4 FDL 2019 Research Sprint: onboard flood detection
The Frontier Development Lab (FDL) is a research program organized in partnership with
ESA in Europe and NASA in the United States. During the summer of 2019, I participated
in ESA FDL, which is a fully funded eight week program that took place at ESA ESRIN
(Rome, Italy) and at the University of Oxford (UK). As mentioned in chapter 5, this
research sprint was the starting point of the fourth contribution of this Thesis. Apart of the
journal publication of contribution four, we published an early version of this work in the
Humanitarian Assistance and Disaster Response Workshop in NeurIPS conference:
• G. Mateo-Garcı́a, Silviu Oprea, Lewis Smith, Josh Veitch-Michaelis, Guy Schu-

mann, Yarin Gal, AtılımGüneş Baydin and Dietmar Backes, Flood Detection On
Low Cost Orbital Hardware. Artificial Intelligence for Humanitarian Assistance and
Disaster Response Workshop, 33rd Conference on Neural Information Processing
Systems (NeurIPS 2019), Vancouver, Canada. arXiv: 1910.03019

6.3.5 FDL 2020 Research Sprint: waters of the United States
In 2020, I also participated in the FDL program, this time in the American version funded
by NASA and the USGS. Due to the Covid-19 pandemic this time the sprint took place
on-remote. In this case, the goal of the challenge was to map narrow water streams in order
to produce early warnings for droughts. The motivation of this is that it has been shown in
several studies of precipitation levels that there is an unaccounted-for volume of flowing
surface water that has yet to be considered. This is because current satellite approaches
are limited to scarce observations of Landsat-8 and Sentinel-2 that map only the widest
streams (up to 90 m) (Pekel et al., 2016). Smaller tributaries that make up to almost 50%
of the dendritic surface network (Allen & Pavelsky, 2018) remain unobserved. Mapping
those streams over time could give us early warnings of droughts and could provide a
better understanding of the impermanence of our waters, showing where to expect water,
and where not to.

In order to produce such a map, we got access to different Very High Resolution
(VHR) data sources over 4 AoIs. This data includes: few WorldView-3 images with a

https://github.com/IPL-UV/DL-L8S2-UV
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nominal resolution of 0.5 m, LiDAR derived products from the 3D Elevation Program
(3DEP) with 1 m to 3 m resolution, daily PlanetScope time series over a two year time
period at 3 m and few labeled polygons that indicate presence or absence of water in few
places of the WorldView-3 imagery. With this, we propose a two-stage pipeline, that we
called Pix2Streams, to produce per-reach estimations of presence or absence of water in
PlanetScope imagery. In the first stage, we use a multi-sensor FCNN that fuses a multi-day
window of 3m PlanetScope imagery with 1m LiDAR derivative products to produce higher
resolution water probability maps at the resolution of the labels (0.5 m). The second step
aggregates these maps over an elevation-derived synthetic valley network to produce a
snapshot of water occurrence at the stream level.

We ran Pix2Streams on a 24 km2 area over a 2-year daily PlanetScope time-series
to produce a daily product of water probability per-stream that is used to derive flow
frequency and could be used to produce early warnings of droughts in the future. A video
with the results over some locations can be seen at http://bit.ly/pix2streams.

This work has been continued by a contract of the USGS with Trillium (the company
managing the FDL program). I have participated in this follow-up project which consisted
of consolidating the results and providing a professional implementation of the afore-
mentioned pipeline. The results of this work are being prepared for publication; an early
version of those were published at the AI for the Earth Sciences Workshop of the NeurIPS
conference:
• Dolores Garcia, Gonzalo Mateo-Garcia, Hannes Bernhardt, Ron Hagensieker, Ig-

nacio G. Lopez-Francos, Jonathan Stock, Guy Schumann, Kevin Dobbs and Alfredo
Kalaitzis. Pix2Streams: Dynamic Hydrology Maps from Satellite-LiDAR Fusion.
AI for Earth Scienes Workshop, 34rd Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada. axXiv: 2011.07584

6.3.6 FDL 2021 Research Mini-Sprint: Sentinel-2 super-resolution
Early in 2021, I participated in other short international collaboration funded by ESA to
develop multi-image super-resolution models for Sentinel-2. Multi-image super-resolution
(MISR) consists of producing a super-resolved image from a set of lower resolution images.
Multi-image super-resolution is an ill-posed problem albeit much better conditioned than
single image super-resolution since the multiple inputs provide more sub-pixel information
to go beyond the Nyquist theoretical limit. In this work, we tackle super-resolution as a
regression problem using the state-of-the-art network HighResNet (Deudon et al., 2020).
To that end, we curate a dataset, using PlanetScope imagery from the SpaceNet-7 challenge
as the high resolution reference (4.77 m) and multiple Sentinel-2 revisits over the same
location as its low-resolution counterparts (10 m). This contrasts with other works that use
images from a single satellite that are artificially upscaled; we argue that our approach,
although it requires more data wrangling for training, it should work better in the test case
since there is not data-shift in the inputs (i.e. if we use artificially upscaled PlanetScope
data for training the model might not transfer well to Sentinel-2). We show that MISR is
superior to single-image super-resolution and other baselines on a range of image fidelity
metrics. Additionally, we introduce a radiometric consistency module into MISR model to
preserve the high radiometric resolution of the Sentinel-2 sensor, which is significantly
better than that of PlanetScope. Finally, we conduct the first assessment of the utility
of multi-image super-resolution on building delineation, showing that utilizing multiple

http://bit.ly/pix2streams
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images results in better performance in these downstream tasks. This work is currently in
preparation, an early version can be found in arXiv:
• M. Razzak, G. Mateo-Garcia, L. Gómez-Chova, Y. Gal, F. Kalaitzis, Multi-Spectral

Multi-Image Super-Resolution of Sentinel-2 with Radiometric Consistency Losses
and Its Effect on Building Delineation. arXiv:2111.03231

6.3.7 Onboard flood segmentation on the WildRide mission

The fourth contribution of this Thesis describes a system for onboard flood segmentation.
This system was designed for ΦSat-1 and its hyperspectral camera; however it could not
be deployed on this platform due to timing and contracting constraints. Nevertheless,
D-Orbit’s WildRide mission1 has been a new opportunity to deploy the system onboard.
D-Orbit’s Nebula is a vision for a service for in-orbit cloud computing and data storage.
Each Nebula processor has specific hardware to accelerate computer vision applications.

Targeting Nebula, we adapted the inference pipeline proposed for ΦSat-1 into a dock-
erised payload that we also called ‘WorldFloods’. Additionally, we designed a set of
experiments to be tested in space onboard this platform. The ‘WorldFloods’ payload
consists of an inference pipeline to detect flood water based on the FCNN proposed in
the fourth contribution of this Thesis and an extra vectorization step to produce polygons
from the per-pixel predictions. Vectorizing the outputs produce an even more compressed
product that we tested to be between 1,000 and 10,000 times smaller than Sentinel-2
images.

In June 30th 2021, D-Orbit launched the WildRide mission with a first prototype of
Nebula into space on a SpaceX Falcon 9 rocket from Cape Canaveral. This prototype
includes the aforementioned ‘WorldFloods’ payload. From September to December 2021
we tested ‘WorldFloods’ in orbit and demonstrated the three main goals of the mission2:

1. The payload has been run on a full Sentinel-2 image acquisition of 120M pixels
and on six smaller Sentinel-2 tiles with flooding downlinking the resulting vector
products together with timing statistics.

2. ‘WorldFloods’ has been repurposed to work on images from the onboard D-sense
camera. The D-sense Camera is a general purpose RGB sensor, used for star-tracking,
attitude control and verifying payload deployment. It can also be used to acquire
images of the Earth although it is not its original goal. Since Earth images of Sentinel-
2 and D-sense are completely different, the segmentation models were fine-tuned in
order to produce good results in D-sense imagery. For this, we retrained the model
on four downlinked D-sense images that we manually labeled.

3. This new model was re-uploaded to the satellite and successfully tested onboard on a
D-sense acquisition.

This mission demonstrates some of the proposals of this Thesis. In particular, FCNN
for semantic segmentation and inductive transfer learning to improve a FCNN model after
its deployment. We are currently preparing a publication with the onboard results and the
lessons learned.

1Booklet of the mission: https://75a8451e-2fb7-4c8f-830f-36057291f2fe.filesusr.com/ugd/64a0e4
1b982a9343a547e38ed10502b0e25fff.pdf

2https://www.dorbit.space/wildride-mission-updates

https://75a8451e-2fb7-4c8f-830f-36057291f2fe.filesusr.com/ugd/64a0e4_1b982a9343a547e38ed10502b0e25fff.pdf
https://75a8451e-2fb7-4c8f-830f-36057291f2fe.filesusr.com/ugd/64a0e4_1b982a9343a547e38ed10502b0e25fff.pdf
https://www.dorbit.space/wildride-mission-updates
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6.3.8 ML4Floods and pilot study at UNOSAT

ML4Floods is an open-source project led by Trillium where I participated in the first
semester of 2021. The long-term goal of the project is to democratise the use of machine
learning for flood extent monitoring using Copernicus data. For this project, we develop an
end-to-end package for flood extent mapping targeting data scientists and domain experts.
This python package extends and operationalizes the code of the fourth contribution of this
Thesis Mateo-Garcia et al. (2021). In a nutshell, ML4Floods has pipelines for flood extent
estimation: from data downloading, preprocessing, model training, model deployment to
visualization. We published the code in a public GitHub repository https://github.com/
spaceml-org/ml4floods and we made an special effort to create a very comprehensive set of
tutorials with different use-cases to foster its adoption here: http://trillium.tech/ml4floods.

The United Nations Satellite Center (UNOSAT) was one of the early testers of this
work3. UNOSAT deployed recently FloodAI, a flood mapping platform for Sentinel-1
based on the work of Nemni et al. (2020). They are interested in deploying a sister
system for Sentinel-2 that together could monitor floods with higher frequency an accuracy.
During the pilot study, they collected a dataset of 21 recent flood events (2019-2021)
over Africa and they compared the segmentation of the models proposed in the fourth
contribution of this Thesis, Mateo-Garcia et al. (2021), with several remote sensing indexes
(e.g. MNDWI, NDWI, AWEI). Their results show that our model has similar performance
to the best of these indices and that our segmentation was complementary to those. During
the last three months Trillium partnered with other researchers of the ISP group of the
Universidad de Valencia to improve these models: it must be taken into account that this
model was specifically designed for onboard processing and therefore it has significant
room for improvement. We have been improving the quality of the data, the methods
for testing and benchmarking the models, and we developed a new network architecture
that improves the predictions especially in partially cloud covered areas. The ML4Floods
package, the results of the UNOSAT pilot, and the latest models were presented in the
AGU21 conference. Additionally, we are finalizing the models that will be deployed in the
UNOSAT system and preparing a journal publication:
• G. Mateo-Garcia, Enrique Portales, Fei Liu, Edoardo Nemni, J. Emmanuel Johnson,

Lucas Kruitwagen, Guy Schumann and Luis Gómez-Chova, Clouds aware flood
extent segmentation for emergency response services. American Geophysical Union
2021 Fall Meeting. https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/981285

6.3.9 FDL 2021 Research Sprint: unsupervised onboard change detection

In 2021, I also participated in the Frontier Development Lab (FDL) Europe summer
research sprint. This time my role was as a mentor/leader of one of the research teams.
The challenge that I worked, alongside other six researchers, was about devising general-
purpose onboard strategies to optimize data communication between the satellite and
ground stations. For this we developed RaVÆn, a lightweight, unsupervised approach
for change detection in satellite imagery based on Variational Auto-Encoders designed
for on-board deployment. Applications, such as disaster management require low-latency
satellite observations to speed up response after a catastrophic event. RaVÆnpre-processes
the sampled data directly on the satellite and flags changed areas that could be used

3https://aiforgood.itu.int/about/un-ai-actions/unitar/

https://github.com/spaceml-org/ml4floods
https://github.com/spaceml-org/ml4floods
http://trillium.tech/ml4floods
https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/981285
https://aiforgood.itu.int/about/un-ai-actions/unitar/
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for prioritize downlinking, which would significantly shorten the response time. The
system is tested on a dataset of Sentinel-2 time series over changing areas demonstrating
that RaVÆnoutperforms different pixel-wise baselines. We also tested our approach on
constrained hardware for assessing computational and memory trade-offs. This work has
been presented in the Humanitarian Assistance and Disaster Response workshop in the
NeurIPS conference:
• V. Ruzicka, A. Vaughan, D. De Martini, J. Fulton, V. Salvatelli, C. Bridges, G. Mateo-

Garcia, V. Zantedeschi, Unsupervised Change Detection of Extreme Events Using
ML On-Board. Artificial Intelligence for Humanitarian Assistance and Dissaster
Response Workshop, 35rd Conference on Neural Information Processing Systems
(NeurIPS 2021), Vancouver, Canada. arXiv: 2111.02995

6.3.10 Other related publications
This section contains a list of other related publications where I have been involved. Some
of these are early versions of the published contributions that have been presented at
international conferences. Others are collaborations with visitors and fellows at the Image
and Signal Processing (ISP) group of the Universidad de Valencia.

Related journal papers
1. J. Munoz-Mari, E. Izquierdo-Verdiguier, M. Campos-Taberner, A. Perez-Suay, L.

Gomez-Chova, G. Mateo-Garcia, A.B. Ruescas, V. Laparra, J.A. Padron, J. Amoros-
Lopez and G. Camps-Valls, HyperLabelMe: A Web Platform for Benchmarking
Remote-Sensing Image Classifiers. IEEE Geoscience and Remote Sensing Magazine
2017 doi: 10.1109/MGRS.2017.2762476.

2. A. B. Ruescas, M. Hieronymi, G. Mateo-Garcia, S. Koponen, K. Kallio, and G.
Camps-Valls, Machine Learning Regression Approaches for Colored Dissolved
Organic Matter (CDOM) Retrieval with S2-MSI and S3-OLCI Simulated Data,
Remote Sensing, vol. 10, no. 5, p. 786, May 2018, doi: 10.3390/rs10050786.

3. A. Wolanin, G. Camps-Valls, L. Gómez-Chova, G. Mateo-Garcı́a, C. van der Tol,
Y. Zhang, and L. Guanter, Estimating crop primary productivity with Sentinel-
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10.1016/j.rse.2019.03.002.

4. A. Wolanin, G. Mateo-Garcı́a, G. Camps-Valls, L. Gómez-Chova, M. Meroni, G.
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5. R. Fernandez-Moran, L. Gómez-Chova, L. Alonso, G. Mateo-Garcı́a, and D. López-
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and cloud shadow detection based on stereo cloud-top height estimation, ISPRS
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Conference papers
1. Adrián Pérez-Suay, Valero Laparra, Gonzalo Mateo-Garcı́a, Jordi Muñoz-Marı́,

Luis Gómez-Chova and Gustau Camps-Valls, Fair Kernel Learning, European Con-
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Regression for Remote Sensing Problems. IGARSS 2018 - 2018 IEEE International
Geoscience and Remote Sensing Symposium doi: 10.1109/IGARSS.2018.8518016

6. G. Mateo-Garcı́a, Jose E. Adsuara, Adrián Pérez-Suay and Luis Gómez-Chova,
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de enseñanza y aprendizaje de programación basada en la idea de ’hackathon’.
IN-RED 2021: VII Congreso de Innovación Educativa y Docencia en Red doi:
10.4995/INRED2021.2021.13785

Book chapters
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7. Resumen global de la Tesis

7.1 Motivación y objetivos

La observación de la Tierra con sensores ópticos a bordo de satélites es una tecnologı́a
imprescindible para monitorizar nuestro planeta. En los últimos años estamos asistiendo a
un incremento exponencial en el número de instrumentos ópticos puestos en órbita. Estos
nuevos instrumentos, considerados en conjunto, adquieren un flujo de datos sin precedentes
que nos proporcionan información de alta resolución espacial y temporal en todo el mundo.
Un tratamiento adecuado de estos datos está mejorando nuestra comprensión de la biosfera
(Wolanin et al., 2019), los océanos (Sauzède et al., 2020), nuestra capacidad para responder
rápidamente a desastres naturales (Rudner et al., 2019) y, en última instancia, nos está
ayudando a adaptarnos al cambio climático. Sin embargo, esta abundancia de datos
también tiene sus desafı́os, ya que los datos brutos proporcionados por estos sensores no
son suficientes para abordar estos problemas. Por tanto, para explotar realmente estos
datos, es necesario desarrollar productos precisos de teledetección que se adapten a cada
uno de estos nuevos sensores.

La teledetección con sensores ópticos tiene actualmente dos propiedades singulares.
En primer lugar, es heterogénea: hay muchos sensores diferentes con diferentes carac-
terı́sticas espacio-espectrales que proporcionan diferentes vistas de la Tierra. En segundo
lugar, los datos de teledetección son abundantes y en muchos casos están disponibles
libremente: en 2008 el USGS abrió el archivo de Landsat lo que hizo que el resto de
actores importantes de la comunidad espacial abrieran también sus productos. Hoy en dı́a,
plataformas como GEE brindan acceso a la comunidad cientı́fica a cientos de diferentes
productos de teledetección sin coste alguno.

Estas caracterı́sticas están causando un cambio de paradigma sobre cómo se de-
sarrollan los productos de teledetección. Los productos de teledetección tradicionales
knowledge-based se basan en un conocimiento muy profundo de la espectroscopia y la
fı́sica óptica y se basan en comprender muy bien las caracterı́sticas de los instrumentos y
las órbitas de los sensores. A lo largo de esta Tesis, hemos sido testigos de cómo una nueva
tendencia basada en datos (data-driven en inglés); que busca explotar la abundancia de
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éstos para desarrollar mejores productos. Este nuevo enfoque, tal como lo entendemos,
tiene el potencial de sobrepasar los casos en los que los modelos fı́sicos son computacional-
mente costosos o no están bien resueltos para producir productos de teledetección más
precisos. Además, dado que hay archivos de datos abiertos de imágenes de infinidad de
sensores ópticos diferentes, se pueden crear nuevos productos utilizando éstos para nuevos
sensores que todavı́a no se han lanzado. En esta Tesis, llamamos a este proceso: transferir
un modelo a un nuevo sensor. Algunas de las contribuciones de esta Tesis están dedicadas
a explorar metodologı́as para transferir modelos basados en datos entre sensores ópticos
similares.

Un producto que es necesario para prácticamente todos los sensores ópticos que
observan la Tierra (desde el rango visible del espectro electromagnético a 390 nm hasta el
SWIR a 2500 nm) son las máscaras de nubes. Las nubes son masas de partı́culas de agua
suspendidas en la atmósfera terrestre que reflejan la luz solar captada por nuestros satélites
ópticos y nos impiden observar la superficie de la Tierra. Sabemos, por estos sensores, que
las nubes son omnipresentes en la atmósfera y que cubren en promedio casi el 70% de la
superficie de nuestro planeta. Por lo tanto, diferenciar entre pı́xeles de nubes y pı́xeles
de superficie es el primer paso en la mayorı́a de las aplicaciones, ya sea en aquellas que
observan la superficie (por ejemplo, Álvaro Moreno-Martı́nez et al. (2018)) o la atmósfera
(por ejemplo, Zantedeschi et al. (2019)). Esto es necesario porque antes de comenzar
cualquier análisis, estas aplicaciones necesitan saber si están observando la superficie o
no, para descartar (o usar) esos pı́xeles. Por lo tanto, obtener máscaras de nubes precisas
es vital para muchas aplicaciones de teledetección. Además, dado que muchas de estas
aplicaciones utilizan grandes cantidades de datos, requieren que estas máscaras de nubes se
generen automáticamente sin intervención humana; por ejemplo, en el trabajo de Wolanin
et al. (2020) o Mateo-Sanchis et al. (2019), los autores proponen explotar series temporales
de imágenes de un año para estimar el rendimiento de los cultivos en diferentes regiones
(en estados de la India o en el ”cinturón del maı́z” de Estados Unidos respectivamente);
Por tanto, filtrar manualmente las imágenes con nubes en series temporales de imágenes
tan largas con una resolución temporal 5 dı́as no es factible.

Los algoritmos actuales knowledge-based para el enmascaramiento de nubes (también
conocidos como basados en umbrales) tienen errores en muchas situaciones. Durante esta
Tesis, hemos participado en varios proyectos con el objetivo de mejorar la calidad de la
detección de nubes de los modelos operativos de Proba-V en el ‘Proba-V Cloud Detection
Round Robin’ (Iannone et al., 2017) y para Landsat-8 y Sentinel-2 en ‘Cloud Masking
Inter-comparison eXercise (CMIX)’ (European Space Agency, 2019). Estos proyectos
ponen de manifiesto las deficiencias actuales de los algoritmos basados en umbrales y
la necesidad de productos de detección de nubes novedosos y más precisos. Algunas de
las contribuciones de esta Tesis tienen como objetivo mejorar la detección de nubes para
satélites ópticos de observación de la Tierra.

La mayorı́a de los modelos basados en datos que proponemos para la detección de
nubes y para la transferencia de aprendizaje en esta Tesis se basan en el aprendizaje
profundo (deep learning en inglés). Entre las metodologı́as basadas en datos, elegimos
el aprendizaje profundo porque: (a) Tiene la capacidad de escalar a conjuntos de datos
arbitrariamente grandes sin que se estanque su rendimiento (es decir, su acierto sigue
aumentando con mayores volúmenes de datos). Esto los hace especialmente adecuados
para la teledetección donde los archivos de imágenes de satélite están en el orden de los
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petabytes. (b) Han mostrado un nivel de acierto sin precedentes en muchas tareas con
imágenes naturales gracias al uso de redes convolucionales. En esta Tesis, los modelos
que proponemos son Fully Convolutional Neural Networks (FCNN), estos modelos están
especialmente diseñados para obtener predicciones por pı́xel (una categorı́a asignada a
cada pı́xel de la imagen). En particular, las contribuciones de esta Tesis incluyen algunos
de los primeros trabajos utilizando FCNN para la detección de nubes (Mateo-Garcı́a et al.,
2017) y para la adaptación de dominio con imágenes de distintos sensores (Mateo-Garcı́a
et al., 2020a).

En los siguientes apartados comentaremos brevemente las aportaciones de cada una de
las cuatro publicaciones de la Tesis y su impacto.

7.2 Multi-temporal Cloud Masking in the Google Earth Engine

La primera contribución de esta Tesis, Mateo-Garcı́a et al. (2018), propone modelos de
detección de nubes multitemporales para imágenes Landsat-8. Esta primera contribución
me sirvió para adentrarme en el mundo de la teledetección en general y el problema de
la detección de nubes en particular. En este trabajo nos centramos en Landsat-8, que
posiblemente sea el satélite con un mayor número de modelos de detección de nubes
propuestos. Ampliando el trabajo de Gómez-Chova et al. (2017a), proponemos un
algoritmo de detección de nubes multitemporal que se basa en dos fases: estimación de la
reflectividad de superficie y detección de cambios. En la primera fase usamos imágenes
previas sin nubes para estimar la reflectancia de la superficie probando diferentes métodos
(añadiendo métodos sencillos a los propuestos en Gómez-Chova et al. (2017a)). En la
segunda fase, comparamos la reflectividad estimada con la imagen actual y ajustamos una
serie de umbrales globales que se utilizan para enmascarar las nubes posteriormente. El
enfoque propuesto es un método simplificado muy similar a otros métodos multitemporales
propuestos en la literatura (por ejemplo, los propuestos en Zhu & Woodcock (2014) o
Hagolle et al. (2010)). La novedad del trabajo es que el algoritmo propuesto se puede
implementar de manera eficiente en una plataforma donde los modelos multitemporales
podrı́an ejecutarse operativamente: el Google Earth Engine (GEE). En esto nuestro trabajo
difiere de los anteriormente propuestos los cuales requieren descargar imágenes previas
sin nubes para la fase de estimación de superficie. Esto limita mucho la aplicabilidad
del modelo de detección de nubes. En nuestro trabajo, podemos ejecutar el modelo
de detección de nubes en cualquier ubicación nueva directamente en usando el GEE
sin ninguna descarga de datos. Otra contribución significativa de este trabajo es su
validación en un gran corpus de imágenes etiquetadas manualmente del conjunto de datos
L8Biome (Foga et al., 2017). Los problemas anteriormente mencionados de ejecutar
modelos multitemporales de detección de nubes en nuevas ubicaciones hacen que esos
métodos estén validados en pocas ubicaciones; es común ver que estos trabajos solo se
validan en un pequeño conjunto de imágenes y en muchos casos esta validación solo
incluye la inspección visual de las máscaras. Los resultados de nuestra validación muestran
un rendimiento significativamente mejor que los métodos basados en umbrales mono-
temporales operativos, como FMask (Zhu & Woodcock, 2012) o ACCA (Scaramuzza
et al., 2012). Por último, hemos hecho un esfuerzo importante en proporcionar en código
abierto los modelos asegurando la reproducibilidad de nuestros resultados. El repositorio de
código https://github.com/IPL-UV/ee ipl uv contiene la implementación de la metodologı́a

https://github.com/IPL-UV/ee_ipl_uv
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propuesta y varios tutoriales con ejemplos. Además, la página web https://isp.uv.es/
projects/cdc/viewer l8 GEE.html muestra la comparación de nuestras máscaras con las
máscaras etiquetadas manualmente del L8Biome en todas las adquisiciones utilizadas para
la validación.

7.3 Transferring deep learning models for cloud detection between Landsat-8
and Proba-V

La segunda contribución de esta Tesis, Mateo-Garcı́a et al. (2020b), demuestra la trans-
ferencia de modelos FCNN entre dos instrumentos ópticos (Proba-V y Landsat -8). La
transferencia de aprendizaje de los modelos de detección de nubes basados en ML es uno
de los principales objetivos de la Tesis doctoral. Por un lado, no se habı́a demostrado
antes si era posible y tampoco se habı́an cuantificado el acierto de estos modelos en
comparación con modelos diseñados con los datos del propio satélite. Por otro lado, la
transferencia de modelos de ML podrı́a permitir el desarrollo de modelos de detección de
nubes basados en ML para los sensores que todavı́a no han sido lanzados, lo que podrı́a
reducir significativamente la cantidad de datos de entrenamiento necesarios para crear
dichos modelos.

En este trabajo realizamos un estudio muy completo de transferencia de aprendizaje
transductiva e inductiva utilizando varios conjuntos de datos etiquetados de Proba-V y
Landsat-8. Primero proponemos una transformación de adaptación de dominio basada
en las propiedades fı́sicas de los sensores que aplicamos a las imágenes Landsat-8 para
hacerlas similares a las adquisiciones Proba-V (para que las imágenes tengan bandas
espectrales similares y la misma resolución espacial nominal). Llamamos a las imágenes
transformadas Landsat-Upscaled. Usando esta transformación llevamos a cabo tres tipos
diferentes de experimentos de transferencia de aprendizaje: (a) de Landsat-8 a Proba-
V, donde mostramos que los modelos entrenados solo con imágenes Landsat-Upscaled
producen máscaras de nubes 5 puntos más precisas que las obtenidas con el modelo de
Proba-V operacional basado en umbrales (Toté et al., 2018); (b) de Proba-V a Landsat-8,
donde los modelos que usan solo datos Proba-V para el entrenamiento tienen una precisión
similar a la de FMask en Landsat-8 obtenidas sobre el dataset L8Biome (87.79–89.77% de
nuestros métodos contra 88.48% de FMask); y (c) conjuntamente de Proba-V y Landsat-8
a Proba-V, donde demostramos la transferencia de aprendizaje inductiva usando imágenes
Landsat-Upscaled y muy pocas imágenes etiquetadas de Proba-V. En este caso, la precisión
aumenta de 1 a 5 puntos en comparación con el uso únicamente del conjunto de datos
etiquetado de Landsat-8.

Con este trabajo cumplimos con la mayorı́a de los objetivos de la Tesis Doctoral ya
que demostramos en la misma publicación que los modelos FCNN producen máscaras
de nubes muy precisas y que estos modelos se pueden transferir a un sensor compatible
con pérdidas asumibles en acierto. También nos gustarı́a señalar que llevamos a cabo
las comparaciones de los modelos propuestos de una manera muy completa y rigurosa:
entrenamos diferentes copias de la misma red con diferentes semillas aleatorias para tener
en cuenta de la estocasticidad de las redes neuronales y comparamos con otras trabajos
de la literatura que utilizan FCNN (fundamentalmente Jeppesen et al. (2019) y Li et al.
(2019)) y con los métodos operativos de detección de nubes de los satélites.

https://isp.uv.es/projects/cdc/viewer_l8_GEE.html
https://isp.uv.es/projects/cdc/viewer_l8_GEE.html
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ages for cloud detection

El tercer trabajo de esta Tesis, Mateo-Garcı́a et al. (2020a), explora la adaptación de
dominios basada en aprendizaje también entre Landsat-8 y Proba-V. El propósito de las
transformaciones de adaptación de dominio es hacer que las imágenes en un dominio
origen sean similares a las imágenes en un dominio destino.

Este trabajo fue motivado por las discrepancias observadas entre las imágenes Landsat-
Upscaled (introducidas en la sección anterior) y las adquisiciones reales de Proba-V. En
particular, observamos que la distribución de los colores en las distintas bandas espectrales
y su resolución espacial medida por su transformada de Fourier es significativamente
diferente incluso en imágenes adquiridas con pocos minutos de diferencia. Nuestra
hipótesis en este trabajo es que estas diferencias son la causa de la caı́da en acierto de
detección de nubes en imágenes Proba-V de modelos entrenados con datos Landsat-
Upscaled (en la literatura de ML las diferencias en las entradas de los modelos entre
entrenamiento y validación se llama data-shift).

Por lo tanto, en este trabajo, adaptamos uno de los últimos métodos de adaptación
de dominio basados en ML que ha demostrado funcionar de manera muy eficiente en
imágenes naturales y sintéticas para cerrar la brecha entre las imágenes Proba-V y Landsat-
Upscaled. En particular, proponemos una variante de Cycle-Consistent Adversarial Domain
Adaptation (CyCADA) (Hoffman et al., 2018) con una penalización especı́fica para el
caso de la teledetección que tiene como objetivo mantener los valores calibrados de
las imágenes de satélite (llamado identity loss en el artı́culo). Una de las principales
ventajas de CyCADA es que no requiere datos pareados; es decir, no requiere de imágenes
adquiridas sobre la misma ubicación y al mismo tiempo para el entrenamiento; esto se
debe a que la supervisión viene a través de discriminadores entrenados simultáneamente a
los modelos adaptación de dominio. Esto es crucial para el uso previsto de la aplicación
(enmascaramiento de nubes) ya que las nubes se mueven rápido e incluso en imágenes
tomadas con diferencias de minutos se puede observar un desplazamiento de éstas.

Para este trabajo, recopilamos un conjunto de datos diverso de imágenes Landsat-
Upscaled y Proba-V cercanas en el tiempo; esas imágenes se dividen en conjuntos de
entrenamiento y validación de acuerdo a su adquisición para mantener la independencia
del conjunto de validación del de entrenamiento. Sobre este conjunto, observamos que
las estadı́sticas globales de las imágenes Proba-V adaptadas con el modelo entrenado son
similares a las de Landsat-Upscaled. Además, vemos que el contenido de las imágenes
Proba-V se mantiene mientras que los colores son más similares a las imágenes Landsat-
Upscaled; y que las imágenes adaptadas son ligeramente más nı́tidas que las imágenes
reales de Proba-V y con significativamente menos saturaciones. El conjunto de prueba
completo se puede visualizar en https://isp.uv.es/projects/cloudsat/pvl8dagans/. Finalmente,
cuando usamos la transformación de adaptación de dominio propuesta y aplicamos el
modelo de detección de nubes entrenado en imágenes Landsat-Upscaled, observamos un
aumento en la precisión de en torno a dos puntos.

Con este trabajo demostramos cómo construir transformaciones de adaptación de do-
minio entre dos sensores diferentes para transferir el estilo del otro sensor mientras se
mantiene el contenido de la imagen observada. Es importante destacar que la metodologı́a
propuesta no requiere muestras pareadas, lo que facilita su aplicación a muchos problemas
en teledetección. Usamos esta transformación para aplicar un modelo entrenado en un

https://isp.uv.es/projects/cloudsat/pvl8dagans/
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dominio origen sobre imágenes de un dominio destino; sin embargo, esta metodologı́a
podrı́a usarse para otros problemas. Por ejemplo, podrı́a usarse para producir productos
de fusión armonizados donde las imágenes se transforman al estilo del sensor con mejor
calidad radiométrica. Otra extensión, para sensores donde la corrección atmosférica es un
desafı́o (es decir, para sensores con pocas bandas y sin bandas dedicadas para recupera-
ciones atmosféricas), podrı́a ser producir imágenes adaptadas con corrección atmosférica;
para esto podrı́amos usar escenas Landsat-8 de Nivel 2 (corregidas atmosféricamente) en
lugar de reflectancias de Nivel 1 que son las que usamos en este artı́culo. Esto producirı́a
imágenes adaptadas a Proba-V estadı́sticamente similares a las reflectancias de superficie
de Landsat-8. No obstante, esta aplicación requerirı́a una validación muy completa antes
de poder aplicarla operativamente.

Finalmente, para este trabajo también hicimos un esfuerzo significativo para asegurar
la reproducibilidad de nuestros resultados. Para ello, publicamos el conjunto de datos de
entrenamiento, una visualización con todas las imágenes de prueba con la metodologı́a
propuesta (https://isp.uv.es/projects/cloudsat/pvl8dagans/) y el código para entrenar y
aplicar la transformación a una nueva escena de Proba-V (https://github.com/IPL-UV/
pvl8dagans). Además, en ese repositorio incluimos partes del trabajo anterior, como la
transformación para producir imágenes Landsat-Upscaled y los modelos entrenados en el
conjunto de datos L8Biome mejorado.

7.5 Towards global flood mapping onboard low cost satellites with machine
learning

La cuarta contribución de esta Tesis, Mateo-Garcia et al. (2021), describe un sistema de ML
para segmentar inundaciones directamente a bordo de un satélite. El procesamiento a bordo
es una de las últimas tendencias en teledetección. Ejecutar software para crear productos a
bordo tiene ventajas como: la optimización del ancho de banda de comunicación del satélite
(por ejemplo, para solo transmitir imágenes útiles, por ejemplo descartando las escenas
con demasiadas nubes (Giuffrida et al., 2021)); para acelerar la descarga de información
crı́tica observada por los sensores (por ejemplo, una fuga de metano, un incendio forestal o
una inundación); o para activar una adquisición con un instrumento diferente (por ejemplo,
para satélites con diferentes sensores, el procesado a bordo podrı́a utilizarse para decidir el
área sobre el que realizar una adquisición con un instrumento de mayor precisión espacial
o espectral).

El procesamiento a bordo no es una idea nueva, la misión pionera EO-1 lanzada en
noviembre de 2000 demostró algunas capacidades a bordo a través del ASE; Esta serie de
experimentos incluyeron detección de nubes a bordo (Griggin et al., 2003) monitorización
de hielo (Doggett et al., 2006) e incluso mapeo de inundaciones (Ip et al., 2006). El factor
diferencial de las propuestas actuales es que los procesadores actuales contienen además
hardware especı́fico destinado a acelerar las aplicaciones de redes neuronales. Este es el
caso de la misión ESA ΦSat-1 que contiene una cámara hiperespectral (HyperScout-2) y un
chip Intel Movidius Myriad2 para acelerar las aplicaciones de visión por computadora. En
este marco, nuestro trabajo describe un sistema para realizar segmentación de extensión de
inundaciones que se testeamos en un hardware similar al que contiene ΦSat-1. El modelo
propuesto para segmentar inundaciones son nuevamente FCNN, las cuales mostramos que
funcionan muy bien para la detección de nubes en los trabajos referidos anteriormente. En

https://isp.uv.es/projects/cloudsat/pvl8dagans/
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particular, en este trabajo proponemos una arquitectura más simple que produce máscaras
con mucha rapidez y que tiene en cuenta los requisitos del hardware de ΦSat-1.

Para entrenar el modelo de segmentación de inundaciones propuesto, necesitamos
un conjunto de datos con imágenes y máscaras de segmentación de inundaciones. En el
momento en el que desarrollamos este trabajo no existı́a un sensor hiperespectral operativo
con datos suficientes sobre áreas inundadas para construir un modelo global. Por lo
tanto, elegimos el satélite multiespectral Sentinel-2 como un buen proxy, ya que contiene
diferentes bandas sobre la zona del espectro muestreado por HyperScout-2. Para entrenar
estos modelos tampoco existı́an en ese momento un conjunto de datos curado de mapas
de extensión de inundaciones e imágenes de Sentinel-2; por lo tanto, decidimos crear
ese conjunto de datos nosotros mismos. El conjunto de datos recopilados, que llamamos
WorldFloods, es quizás la contribución más importante de este trabajo.

WorldFloods contiene mapas de extensión de inundaciones creados por tres organiza-
ciones diferentes y su imagen Sentinel-2 más cercana en tiempo después del evento. En
WorldFloods hemos compilado un conjunto de datos con más de 400 mapas de extensión
de inundaciones de unos 100 eventos de inundaciones verificados. Estos datos los usamos
para entrenar y validar los modelos propuestos. Para crear un modelo para el sensor
HyperScout-2 seguimos un enfoque de transferencia de aprendizaje muy similar al prop-
uesto en la segunda contribución de esta Tesis. En particular, para simular adquisiciones
de HyperScout-2, reducimos la escala de las imágenes de Sentinel-2 (10 m) a la resolución
nominal de HyperScout-2 (80 m) y seleccionamos las nueve bandas de Sentinel-2 que se
superponen a la zona del espectro muestreada por el sensor. Además, dado que se espera
que el CubeSat tenga peor calidad radiométrica, introducimos ruido en las imágenes en el
entrenamiento para imitar las degradaciones esperadas de las imágenes (emborronamiento
por desplazamiento, descolocación de las bandas o ruido por tener un peor aislamiento
térmico).

Finalmente, en este trabajo también hicimos un esfuerzo en asegurar la reproducibilidad
y la accesibilidad (open Science): publicamos el conjunto de datos de WorldFloods, los
modelos entrenados y el código para realizar inferencias y reproducir todos los experimen-
tos: https://gitlab.com/frontierdevelopmentlab/disaster-prevention/cubesatfloods.

7.6 Conclusión

Esta Tesis propone diferentes métodos basados en datos, en la mayorı́a de los artı́culos que
componen la Tesis utilizamos modelos de aprendizaje profundo para abordar diferentes
problemas de teledetección. Los datos están en el centro de todos los métodos propuestos
en esta Tesis y la preparación de estos datos ha sido la parte más crı́tica y tediosa (y
subrepresentada) de todas. La correcta preparación de datos es fundamental para que estos
sistemas funcionen correctamente. Los errores o una incorrecta comprensión de los datos
de entrada se propagan y acentúan en las salidas de los modelos y, dada la complejidad
de éstos, estos problemas son muy difı́ciles de detectar y rastrear (en Sambasivan et al.
(2021) se desgranan muchos problemas de ”cascadas de datos” (data cascades) causadas
por malas prácticas que han tenido grandes impactos en modelos desplegados en entornos
reales). La preparación de datos también consume mucho tiempo debido a los volúmenes
de datos que se necesitan para entrenar y validar los modelos. Aunque este coste podrı́a
reducirse mediante la transferencia de aprendizaje o modelos más eficientes en el uso de
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datos, conjuntos de datos grandes, globales y precisos son imprescindibles para validar
y comparar cualquier metodologı́a propuesta. Tratar con grandes volúmenes de datos
requiere experiencia en desarrollo de software y conocimiento del dominio de aplicación;
no obstante, comprender y ser capaz de inspeccionar los datos con los que trabajamos
es de suma importancia para proponer soluciones útiles y construir modelos precisos
(ver, por ejemplo, Karpathy (2019) para una guı́a de buenas prácticas de tratamiento de
datos; allı́ el autor sugiere: “convertirse en uno con los datos” esto requiere inspeccionar
concienzudamente las muestras del conjunto de datos con el que trabajemos antes de
realizar cualquier modelado). En resumen, es importante destacar que los datos son la base
del método empı́rico cientı́fico y, por tanto, como comunidad, debemos hacer un esfuerzo
para fomentar y recompensar las buenas prácticas de ingenierı́a de datos.

Las contribuciones de estos trabajos se encuentran entre los campos del aprendizaje
máquina y la teledetección. En general, se podrı́a decir que la mayorı́a de nuestras
contribuciones consisten en ‘tomar un modelo exitoso de visión por computador y adaptarlo
a datos de teledetección’. En esencia esto es cierto, sin embargo, todos los trabajos que
componen esta Tesis están diseñados especı́ficamente para el problema de teledetección
que abordan y todos los modelos han sido validados a fondo pensando en los casos reales
que estos modelos podrı́an tener. Cabe señalar que las adaptaciones de los métodos de
visión por ordenador que proponemos se adaptan al problema especı́fico de teledetección
que pretendemos solucionar. Por ejemplo, la tercera contribución de esta Tesis, Mateo-
Garcı́a et al. (2020a), propone una transformación de adaptación de dominio que busca
mantener la calibración radiométrica de los sensores; esto es necesario si deseamos que
la transformación propuesta sea utilizada por otras aplicaciones posteriores que puedan
requerir reflectancias calibradas. De una manera más amplia, todos los modelos de
esta Tesis han sido validados con datos representativos de buena calidad que hemos
seleccionado cuidadosamente. Estos datos se han elegido para que sean representativos de
las condiciones globales de la Tierra que cada sensor podrı́a observar.

Para concluir, en esta Tesis proponemos diferentes soluciones para mejorar el enmas-
caramiento de nubes y desarrollar metodologı́as para transferir modelos de aprendizaje
profundo a través de diferentes sensores. En particular, demostramos que podrı́amos mejo-
rar la detección de nubes utilizando la dimensión temporal o espacial de las imágenes de
satélite ópticas. También mostramos que podrı́amos transferir modelos FCNN entrenados
con datos de un satélite óptico a otro con caracterı́sticas espacio-espectrales compatibles
y que las transformaciones de adaptación de dominio basadas en aprendizaje máquina
mejoran la capacidad de transferencia de estos métodos. Finalmente, mostramos que estos
modelos podrı́an incluso ser implementados a bordo de micro-satélites (CubeSats) lo cual
abre la puerta a desarrollos futuros.
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Gómez-Chova, L., Camps-Valls, G., Bruzzone, L., & Calpe-Maravilla, J. (2010). Mean
map kernel methods for semisupervised cloud classification. IEEE Trans. on Geoscience
and Remote Sensing, 48, 207–220. doi: 10.1109/TGRS.2009.2026425.

Gomez-Chova, L., Camps-Valls, G., Calpe-Maravilla, J., Guanter, L., & Moreno, J.
(2007). Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images. IEEE
Transactions on Geoscience and Remote Sensing, 45, 4105–4118. doi: 10.1109/TGRS.
2007.905312.
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Deep Learning Models for Cloud Detection in Landsat-8 and Sentinel-2 Images. Remote
Sensing, 13, 992. doi: 10.3390/rs13050992.

Mateo-Garcia, G., Veitch-Michaelis, J., Smith, L., Oprea, S. V., Schumann, G., Gal, Y.,
Baydin, A. G., & Backes, D. (2021). Towards global flood mapping onboard low cost
satellites with machine learning. Scientific Reports, 11, 7249. doi: 10.1038/s41598-021-
86650-z.
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Stelzer, K., Van den Heuvel, L., Clarijs, D., & Niro, F. (2021). The Reprocessed Proba-V
Collection 2: Product Validation. In IGARSS 2021 - IEEE International Geoscience
and Remote Sensing Symposium (pp. 8084–8086). doi: 10.1109/IGARSS47720.2021.
9553376.

Tuia, D., Persello, C., & Bruzzone, L. (2016). Domain adaptation for the classification of
remote sensing data: An overview of recent advances. IEEE Geoscience and Remote
Sensing Magazine, 4, 41–57. doi: 10.1109/MGRS.2016.2548504.

UCS Satellite Database (2021). UCS Satellite Database. https://www.ucsusa.org/resources/
satellite-database. Accessed: 2021-12-12.

Wieland, M., Li, Y., & Martinis, S. (2019). Multi-sensor cloud and cloud shadow seg-
mentation with a convolutional neural network. Remote Sensing of Environment, 230,
111203. doi: 10.1016/j.rse.2019.05.022.
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Abstract: The exploitation of Earth observation satellite images acquired by optical instruments
requires an automatic and accurate cloud detection. Multitemporal approaches to cloud detection
are usually more powerful than their single scene counterparts since the presence of clouds varies
greatly from one acquisition to another whereas surface can be assumed stationary in a broad sense.
However, two practical limitations usually hamper their operational use: the access to the complete
satellite image archive and the required computational power. This work presents a cloud detection
and removal methodology implemented in the Google Earth Engine (GEE) cloud computing platform
in order to meet these requirements. The proposed methodology is tested for the Landsat-8 mission
over a large collection of manually labeled cloud masks from the Biome dataset. The quantitative
results show state-of-the-art performance compared with mono-temporal standard approaches,
such as FMask and ACCA algorithms, yielding improvements between 4–5% in classification accuracy
and 3–10% in commission errors. The algorithm implementation within the Google Earth Engine and
the generated cloud masks for all test images are released for interested readers.

Keywords: image time series; multitemporal analysis; change detection; cloud masking; Landsat-8;
Google Earth Engine (GEE)

1. Introduction

Reliable and accurate cloud detection is a mandatory first step towards developing remote sensing
products based on optical satellite images. Undetected clouds in the acquired satellite images hampers
their operational exploitation at a global scale since cloud contamination affects most Earth observation
applications [1]. Cloud masking of time series is thus a priority to obtain a better monitoring of the
land cover dynamics and to generate more elaborated products [2].

Cloud detection approaches are generally based on the assumption that clouds present some
useful features for their identification and discrimination from the underlying surface. On the one hand,
a simple approach to cloud detection consists then in applying thresholds over a set of selected features,
such as reflectance or temperature of the processed image, based on the physical properties of the
clouds [3–6]. Apart from its simplicity, such approaches produce accurate results for satellite instruments
that acquire enough spectral information, but it is challenging to adjust a set of thresholds that work
at a global level. On the other hand, there is empirical evidence that supervised machine learning
approaches outperform threshold-based ones in single scene cloud detection [1,7–9]. For instance,
Ref. [1,7,9] show that neural networks are good candidates for cloud detection. However, they present
practical limitations since they need a statistically significant, large collection of labeled images to learn
from. This is because, in order to design algorithms capable of working globally over different types
of surfaces and over different seasons, a huge number of image pixels labeled as cloudy or cloud free
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must be available to train the models. This labelling process usually requires a large amount of tedious
manual work, which is also not exempt from errors. Furthermore, additional independent data has to
be gathered to validate the performance of the algorithms, which increases the data requirements and
dedication. In any case, both threshold and machine learning based cloud detection algorithms relying
only on the information of the analyzed image are still far from being perfect and produce systematic
errors specially over high reflectance surfaces such as urban areas, bright sand over coastlines, snow and
ice covers [10].

In this complex scenario, including temporal information helps to distinguish clouds from the
surface, since the latter usually remains stable over time. Cloud detection methodologies can thus be
divided into monotemporal single scene and multitemporal approaches. Single scene approaches only
use the information from a given image to build the cloud mask, while multitemporal approaches also
exploit the information of previously acquired images, collocated over the same area, to improve the
cloud detection accuracy. Multitemporal cloud detection is therefore an intrinsically easier problem
because location and features of clouds vary greatly between acquisitions, whereas the surface is to
a certain extent stable. However, multitemporal methods are computationally demanding, and the lack
of accessibility to previous data usually hampers their operational application to most satellite missions.
Therefore, in order to exploit the wealth of the temporal information, long-term missions with a granted
access to the satellite images archive, and suitable computing platforms, are required. A clear example
fulfilling these requirements is the Landsat mission from NASA [11], which provides global image data
over land since 1972. For this reason we will focus here on Landsat images, although the methodology
and the subsequent discussion can also be applied to other similar satellites [12].

There exists a wide variety of multitemporal approaches for cloud detection that have been applied
to Landsat imagery [13–19]. In the Multitemporal Cloud Detection (MTCD) algorithm [14], the authors
use a composite cloud-free image as reference, then they detect clouds by setting a threshold on the
difference between the target and the reference in the blue band. In order to reduce false positives,
they use an extra correlation criteria with at least 10 previous images. In Ref. [15], a previous
spatially collocated cloud-free image from the same region is manually selected as the reference image.
Then a set of thresholds over the reflectance in some Landsat bands (B1, B4 and B6) and over the
difference in reflectance between the target and the reference image are set. The Temporal mask
(TMask) algorithm [16] builds a pixel-wise time series regression to model the cloud-free reflectance of
each pixel. It uses the FMask algorithm [5] to decide which pixels to include in such a regression model.
Then, it applies a set of thresholds over the difference in reflectance between the estimated and the
target image in Landsat bands B2, B4 and B5. The work presented in Ref. [17] is also based on FMask.
In this case, they first remove one of the FMask tests to reduce over-detection, and compute the FMask
cloud probability for each image in the time series. Afterwards, they compute the pixel-wise median
FMask cloud probability and the standard deviation over the time series. Then, analyzed pixels are
masked as cloudy if (a) the modified FMask says it is a cloud; or (b) if the cloud probability exceeds
3.5 standard deviations the median value. Recently, Ref. [19] proposed to also use a composite reference
image and a set of thresholds over the difference in reflectance between the target and the reference in
Landsat bands B3, B4 and B5. Thus the method is similar to the one presented in Ref. [14] but without
the correlation criteria over the time series. Finally, in Ref. [18], we modeled the background surface
from the three previous collocated cloud-free images using a non-linear kernel ridge regression that
minimizes both prediction and estimation errors simultaneously. Then, the difference image between
this background surface reference and the target is clustered and a threshold over the mean difference
reflectance is applied to each cluster to decide if it belongs to a cloudy or cloud-free area. In summary,
one can see how most of the multitemporal cloud detection schemes proposed in the literature cast the
cloud detection problem as a change detection problem [20]: a reference image is built using cloud-free
pixels and clouds are detected as particular changes over this reference. To decide whether the change
is relevant enough, several thresholds are usually proposed based on heuristics.



Remote Sens. 2018, 10, 1079 3 of 18

Three main issues not properly addressed can be identified in all multitemporal approaches
proposed so far:

• Data access and image retrieval. Most of the proposed methods assume that a sufficiently long
time series of collocated images is available. It is worth pointing out that retrieving the images
to build the time series in an easy and operational manner is technically difficult. We need
access to the full catalog and powerful enough GIS software to select and co-register the images.
We overcome this limitation using the Google Earth Engine (GEE) platform.

• Computational cost. Most of the proposed methods require a sufficiently long time series of
images to operate: at least 15 in the case of TMask [16] and at least 10 in the case of MTCD [14].
This is a critical problem if the algorithm cannot be implemented using parallel computing
techniques. We again solve this issue ensuring that our algorithm can be implemented on the
GEE cloud computing platform.

• Validation of results. A consistent drawback in most cloud detection studies is the lack of
quantitative validation over a large collection of independent images. On the one hand, as we
have mentioned in the two previous points, if the multitemporal algorithm is computationally
demanding and required images are hard to retrieve, it will be difficult to test the method over
a large dataset. On the other hand, simultaneous collocated observations informing about the
presence of clouds or independent datasets of manually annotated clouds are often not available.
Therefore, without a comprehensive ground truth, validation of cloud detection results is usually
limited to a visual inspection of the generated cloud masks. In this work we take advantage of the
recently released Landsat-8 Biome Cloud Masks dataset [10], which contains manually generated
cloud masks from 96 images from different Biomes around the world.

Therefore, we propose a multitemporal cloud detection algorithm that is also based on the
hypothesis that surface reflectance smoothly varies over time, whereas abrupt changes are caused
by the presence of clouds. Our proposed methodology extends the work we presented in Ref. [18].
In particular, the proposed methodology presented in this paper consists of four main steps. First, the
surface background is estimated using few previous cloud-free images that are automatically retrieved
from the Landsat archive stored in the GEE catalog. Then, the difference between the analyzed cloudy
image (target) and the cloud-free estimated background (reference) is computed in order to enhance the
changes due to the presence of clouds. This difference image is then processed to find homogeneous
clusters corresponding to clouds and surface. Finally, the obtained clusters are labelled as cloudy or
cloud-free areas by applying a set of thresholds on the difference intensity and on the reflectance of the
representative clusters.

In addition, the surface background estimated from the previous cloud-free images can be also
used to perform a cloud removal (or cloud filling) in the analyzed cloudy image [21,22]. Pixels masked as
clouds can be replaced by the estimated surface background at these locations obtaining a completely
cloud-free image [23,24]. The improved frequency of the satellite images time series can then be used
to better monitor land cover dynamics and to generate more elaborated products.

The proposed algorithm is fully implemented in the GEE platform, which grants access to the
complete Landsat-8 catalog, reducing the technical complexity of the multitemporal cloud detection
and transferring the computational load to the GEE parallel computing infrastructure. The potential
of the proposed approach is tested over 2661 500×500 patches extracted from the Biome dataset [10],
and the obtained results are available online for the interested readers (http://isp.uv.es/projects/cdc/
viewer_l8_GEE.html).

The rest of the paper is organized as follows. In Section 2 the Landsat-8 data, the GEE platform,
and the Biome dataset are presented. In Section 3, we explain the proposed methodology for cloud
detection and removal. Section 4 presents the evaluation of the proposed methodology. It shows
the predictive power of the proposed variables over the dataset, the accuracy, commission and
omission errors, some illustrative scenes with the proposed cloud mask, and the cloud removal
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errors. The algorithm implementation in the Google Earth Engine is briefly described in Section 5.
Finally, Section 6 discusses the results and summarizes the conclusions.

2. Satellite Data and Ground Truth

2.1. Landsat-8 Data

The Landsat Program [11] consists of a series of Earth observation satellite missions jointly
managed by NASA and the United States Geological Survey (USGS). Landsat is a unique resource
with the world’s longest continuously acquired image collection of the Earth’s land areas at moderate
to high resolution to support resource assessment, land-cover mapping, and to track inter-annual
changes. It started with the first Landsat satellite launched in 1972, and is continued with both Landsat
7 and 8, which are still operational. Landsat 9 is expected to be launched in late 2020 ensuring the
Landsat data continuity.

The Landsat-8 payload consists of two science instruments: the Operational Land Imager (OLI)
and the Thermal InfraRed Sensor (TIRS), acquiring multispectral images with 11 spectral bands that
cover from deep blue to the thermal infrared: B1—Coastal and Aerosol (0.433–0.453 µm), B2—Blue
(0.450–0.515 µm), B3—Green (0.525–0.600 µm), B4—Red (0.630–0.680 µm), B5—Near Infrared or NIR
(0.845–0.885 µm), B6—Short Wavelength Infrared or SWIR (1.560–1.660 µm), B7—SWIR (2.100–2.300 µm),
B8—Panchromatic (0.500–0.680 µm), B9—Cirrus (1.360–1.390 µm), B10—Thermal Infrared or TIR
(10.30–11.30 µm) and B11—TIR (11.50–12.50 µm). Note that the visible channels are B1-B4 (and B8),
which are useful to distinguish the white and bright clouds. Additionally, Landsat-8 presents a band
(B9) specifically designed to detect cirrus and high clouds.

2.2. Google Earth Engine Platform

The Google Earth Engine platform [25] is a cloud computing platform for geographical data
analysis. It gives access to a full complete catalog of remote sensing products together with the
capability to process these products quickly online through massive parallelization. The GEE data
catalog includes data from Landsat 4, 5, 7 and 8 processed by the United States Geological Survey
(USGS), several MODIS products, including global composites, recently imagery from Sentinel 1, 2 and
3 satellites, and many more. All data are pre-processed and geo-referenced, facilitating its direct use.
In addition, user data in raster or vector formats can be uploaded (ingested using GEE terminology)
and processed in the GEE. We took advantage of this feature for uploading the manual cloud masks
used as ground truth in our experiments.

In this work, all required Landsat images were retrieved from the LANDSAT/LC8_L1T_TOA_FMASK
Image Collection available in the GEE. These images consist of top of atmosphere (TOA) reflectance
(calibration coefficients are included in metadata [26]). These products also include two additional
bands: the quality assessment band (BQA) and the FMask cloud mask [5]. We use the cloud flag
included in the BQA nominal product [11] to assess if previous images over each test site location
are cloud free or not, which allows us to easily and automatically retrieve cloud-free images from
the entire archive. In addition to the Automated Cloud Cover Assessment (ACCA) cloud masking
algorithm in the BQA band presented in Ref. [27], the FMask [5] is used to benchmark the proposed
cloud detection algorithm. Both algorithms are single-image approaches mainly based on combination
of rules and thresholds over a set of spectral indexes.

The GEE computation engine offers both JavaScript and Python application programming
interfaces (API), which allow to easily develop algorithms that work in parallel on the Google
data computer facilities. The programming model is object oriented and based on the MapReduce
paradigm [28]. On the one hand, the GEE engine is accessible through a web-based integrated
development environment (IDE) using the JavaScript API. The web-based IDE allows the user to
visualize images, results, tables and charts that can be easily exported. On the other hand, the Python
API offers the same set of methods, which allow to make requests to the Engine and access the catalog,
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but without the visualization capabilities of the web-based IDE. However, we chose the Python API to
develop our cloud detection scheme because it is easier to integrate with long running tasks, which are
essential to run the full validation study in an automatic manner.

2.3. Cloud Detection Ground Truth

Validation of cloud detection algorithms is an extremely difficult task due to the lack of accurate
simultaneous collocated information per pixel about the presence of clouds. In this scenario one is
forced to manually generate a labeled dataset of annotated clouds, which is time consuming and always
includes some uncertainties. Recent validation studies carried out for single scene cloud detection,
e.g. for Landsat-8 [10] and for Proba-V [9], are extremely important efforts for the development and
validation of cloud screening algorithms. The public dissemination of this data gives the opportunity
to fairly benchmark the results on independent datasets and allows to quantify and analyze the
cloud screening quality. This is the case of the Landsat 7 Irish dataset [3,29], the Landsat-8 SPARCS
dataset [7,30], the Landsat-8 Biome dataset [10,31] or the Sentinel 2 Hollstein dataset [8]. In this work,
we take advantage of the Landsat-8 Biome dataset [31] created in Ref. [10]. The Biome dataset consists
of 96 Landsat-8 acquisitions (∼7500 × 7500 pixels approximately) from eight different biomes around
the world, in which all pixels have been manually labeled. Figure 1 shows the geographic location of
the 96 images that form the dataset.

Figure 1. Geographic location of the 96 images from the Landsat-8 Biome dataset [31] ingested on the
Google Earth Engine.

We add these cloud masks with the corresponding Landsat-8 products by ingesting this dataset
in the GEE. Then, a few previous cloud-free images for each acquisition were automatically retrieved
using the GEE API. From the original 96 Biome products, only 23 of them have enough (three) previous
cloud-free images. This is mainly because unfortunately most of the labeled acquisitions selected
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for the Biome dataset are close to the launch of the Landsat-8 satellite. Therefore, we divided these
23 images in smaller patches of 500 × 500 pixels for our analysis, resulting in 2661 patches.

It is worth noting that validation studies of cloud detection algorithms over large datasets are
scarce in the literature and, in the particular case of multitemporal cloud detection, the algorithms
have been usually validated on a few images. The use of processing platforms such as the GEE make
our study much more feasible.

3. Methodology

The proposed methodology for multitemporal cloud detection is based on our previous work [18].
It works under the assumption that surface reflectance is stable over time or at least follows smooth
variations compared to the abrupt changes induced by the presence of clouds. Therefore, this work
follows the widespread approach for cloud detection based on multitemporal background modeling
with difference change detection extensively used in the remote sensing literature [13–19]. Figure 2
shows a diagram summarizing the proposed multitemporal cloud detection approach. The following
sections describe the main methodological steps.

Figure 2. Multitemporal cloud detection scheme implemented on the Google Earth Engine platform.

3.1. Background Estimation

One of the main challenges of the background modeling step is to make it computationally
scalable: previous attempts in Ref. [14,16] are computationally demanding, which make them difficult
to apply in operational settings. In order to alleviate these problems, in this study we limit the proposed
algorithm to work with only three previous collocated images for the surface background estimation.
The key for this process to be fully operational is that the selection and retrieval of the three previous
cloud-free collocated images has to be carried out automatically. We use the BQA band included in the
Landsat products to discriminate if an image is cloud free; and, as we have mentioned, one of the main
advantages of using the GEE Python API together with the Landsat image collection is that this step
can be fully automated requiring no human intervention.

We call pre-filtering to the first image retrieval step, which consists of assessing if previous images
are cloud free or not. Pre-filtering can be solved applying some rough cloud detection method,
e.g., setting a threshold over the brightness or over the blue channel as proposed in Ref. [14], or taking
advantage of automatic single scene cloud detection schemes if they exist for the given satellite. For this
study we use the cloud flag from the Level 1 BQA band of Landsat-8 [27]. We consider an image cloud
free if less than 10% of its pixels are masked as cloudy. This raises an important consideration on
the design of the cloud detection scheme: it should be robust to errors on the pre-filtering method.
An extremely inaccurate pre-filtering algorithm can undermine the performance of the method since
cloudy pixels will be used to model the background surface. We will see that these methods are robust
enough to work on situations where previous images have some clouds. It is worth pointing out that,
since we limit the cloud cover to be less than 10% in each selected image and we assume that clouds
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are randomly located from one image to another, the probability that the same pixel is cloudy in all
three images is expected to be really low.

The estimation of the background from the cloud-free image time series is one of the critical steps
of the method. We compare four different background estimation methodologies presented in the
literature, from simpler to more complex:

• Nearest date: It consists of taking the nearest cloud-free image in time as the background. This is
the approach used in Ref. [15], however they rely on human intervention to assess that the image
does not present any cloud.

• Median filter: It takes the pixel-wise median over time using the three previous cloud-free images.
This is the approach suggested in TMask [16] for pixels where the time series is not long enough.

• Linear regression: It fits a standard regularized linear regression using the time series of the
previous cloud-free images [18]. Similarly, TMask [16] used an iterative re-weighted least squares
regression at pixel level, which mitigates the effect of eventual cloudy pixels in the time series.

• Kernel regression: The nonlinear version of the former method. It is based on a specific kernel
ridge regression (KRR) formulation for change detection presented in Ref. [18].

3.2. Change Detection and Clouds Identification

Once the background is estimated, we use it as a cloud-free reference image to tackle the cloud
detection as a change detection problem. Therefore, we compute the difference image between the
cloudy target image and the estimated cloud-free reference, which is the base for most change detection
methods [20].

However, we do not find changes by applying thresholds directly to the difference image,
i.e., target minus estimated. Instead, we previously apply a k-means clustering algorithm over the
difference image using all Landsat-8 bands. Afterwards, specific thresholds are applied at a cluster level,
i.e., to some features computed over the pixels belonging to each cluster. In particular, we compute
three different features for each cluster i: (a) the norm (intensity) of the difference reflectance image
over the visible bands (B2, B3 and B4 for Landsat 8), we denote this quantity with αi; (b) the mean of
the difference reflectance image over visible bands, βi; and (c) the norm of reflectance image over the
visible bands, γi. A cluster is classified as cloudy if the three following tests over these features are
satisfied: αi ≥ 0.04, βi ≥ 0 and γi ≥ 0.175.

The threshold 0.04 on the difference of reflectance image is ubiquitous in the existing literature.
For instance, TMask [16] also suggested 0.04 for the B4 channel, MTCD [14] suggests 0.03 on the
blue band weighted by the difference between the acquisition time of the image and the reference.
The method proposed in Ref. [19] also used 0.04 in the B3 and B4 bands. In contrast, in our previous
work [18] the threshold was higher (0.09) since we used the norm over all the reflectance bands.
Here we select the norm as a more robust indicator but restricted to the visible bands (B2, B3 and B4).
This threshold is intended to detect significant differences, i.e., with a sufficient intensity to be considered
changes, while the other two conditions to be satisfied are specifically included to distinguish clouds
from the rest of possible changes in the surface. On the one hand, clouds are usually brighter than
the surface so clouds imply an increase in reflectance with respect to the reference background image.
By imposing the temporal difference over the visible bands to be positive we exclude intense changes
decreasing the reflectance, such as shadows, flooded areas, agricultural changes, etc. On the other
hand, we also want to discard changes that increase the brightness but do not look like a cloud in the
target image, e.g., agricultural crops. Therefore, we also impose that the norm of the top of atmosphere
(TOA) reflectance over the visible bands is higher than 0.175 in order to consider that the cluster
corresponds to a cloud. The norm of the visible reflectance bands is also used in Ref. [17] to distinguish
potentially cloudy pixels, although in this work they set a lower threshold of 0.15 because they wanted
to over-detect cloudy areas.

Modifying these thresholds will make the algorithm more or less cloud conservative. We believe
that the subsequent user of the cloud mask should have some flexibility to choose to be more or less



Remote Sens. 2018, 10, 1079 8 of 18

cloud conservative. For instance, applications like land use or land cover classification are less affected
by the presence of semitransparent cirrus whereas for instance estimating the water content of canopy
should be much more cloud conservative. Providing the receiver operator curve (ROC) [32] for the
entire dataset allows the users to better select these thresholds in order to obtain a trade-off between
commission (false positives) and omission (false negatives) errors for their particular application.

3.3. Remarks

One of the main differences of our proposal for cloud detection is the clustering step. We apply
a k-means clustering over the difference image over all bands of the satellite. We fixed the number of
clusters to 10; this number is related to the size of the image (500 × 500 pixels in the experiments) so if
larger images are used this number should be increased. We tried however different numbers of clusters
(5, 15 and 20) but we did not observe major differences in performance. The clustering step seeks to
capture patterns over all the bands that cannot be captured with a single static threshold. For example,
it is well known that the Thermal Infrared Bands (TIR, B10 and B11) have good predictive power for
the cloud detection problem. However, setting a global threshold independently of location and season
is very difficult since surface temperature greatly varies over places and surfaces. In addition, working
with time series exacerbates this problem since the surface temperature might vary quite a lot with
the date of the acquired image. Therefore, k-means clustering is intended to group similar patterns,
e.g., in temperature, and pixels assigned to the same cluster will be classified afterwards to the same
class (cloudy or clear). The clustering step simplifies the problem since instead of classifying pixels
we have to classify clusters. However, it might introduce errors in mixed clusters where not all the
pixels are purely from one of the two classes (cloudy or clear). In our case, if we classify each cluster
according to its majority class using the ground truth, we obtain a classification error lower than 3%
for all the proposed background estimation methods in the used dataset. This error can be considered
a lower bound of the classification error for the presented results. Finally, it is worth mentioning that if
we apply the thresholds directly over the difference image, i.e., without the clustering step, numerical
accuracy is not significantly affected, but visual inspection showed less consistency on the masks and
higher salt-and-pepper effects.

4. Experimental Results

This section contains the experimental results. First we describe an illustrative example
where we show some intermediate results of the method, then the analysis over the full dataset
is presented. For these results, we will first explore the parameters and the discriminative power of the
multitemporal difference, then we will show the results over the complete dataset for cloud detection
and cloud removal.

4.1. Cloud Detection Example

Figure 3 shows the cloud detection results for a cloudy image over Texas (USA). The top right
corner shows the RGB composite of the acquired image included in the Biome dataset. We see that it
contains several thin clouds scattered across the image. In the bottom left image, the manually labeled
ground truth cloud mask (in yellow) from the Biome dataset overlay the RGB composite. We can see
here that some very thin clouds are not included in the provided ground truth. The three top left
images are the previous cloud-free images retrieved automatically with the GEE API from the GEE
Landsat image collection. We see that the top left one is not completely free of clouds: this is because
it has less than 10% of clouds according to the ACCA algorithm of the BQA band. The image of the
bottom right corner corresponds to the cloud-free estimated background using the median method.
We see that this estimation method is robust enough in this case since it has not been affected by the
unscreened clouds present in the previous “cloud-free” images, and it correctly preserves other bright
surfaces such as urban areas. Finally, we compare both the proposed and the Fmask cloud masks with
the available Biome ground truth. The second image of the bottom starting from the left shows the
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differences between our proposed method and the ground truth. In white it shows the true positives
(clouds) of the method with respect the ground truth, in orange the false negatives (omissions) and in
blue the false positives (commissions). We see that the overall agreement is very high and most of the
discrepancies are on the borders of the clouds. The image to the right corresponds to the differences
between FMask and the ground truth, in this case we see that FMask missed some thin clouds in the
bottom and in the left part of the image.

Previous cloud-free images Cloudy image
2013-07-12 2013-07-28 2013-08-29 2013-09-14

Ground Truth Differences between Ground Truth and Cloud Masks: Cloud Removal
Proposed Mask FMask (Estimated Image)

Cloud Mask/Ground Truth: Cloud/Cloud Land/Cloud Cloud/Land
Color Legend:

Figure 3. Illustration of the Cloud detection scheme. Comparison between the ground truth and the
proposed cloud mask algorithm and the FMask. Discrepancies are shown in blue when the proposed
method detects ‘cloudy’, and in orange when pixels are classified as ‘cloud-free’.

4.2. Parameters and Errors Analysis

We evaluate the results in terms of commission errors, omission errors and overall accuracy. Table 1
contains the definition of these metrics. Generally, we can obtain a trade-off between commission and
omission errors depending on the requirements. For instance, to reduce the omission error we can
reduce the threshold over the reflectance which will make the algorithm more cloud conservative and,
as a result, the commission error will increase. On the other hand, if we increase the threshold the
commission error will decrease and the algorithm will be more clearly conservative and will probably
raise the omission error.

First we want to demonstrate the discriminating capability of the norm of the difference image (αi)
for cloud detection. The receiver operator curve (ROC) shows the true positive rate vs. false positive
rate trade-off as we vary the threshold over the predictive variable αi. Figure 4 shows four curves
corresponding to the four different background estimation methods (nearest date, median filter,
Linear regression, and Kernel ridge regression). A cross is displayed for the case of the proposed
threshold (0.04). We also show a cross indicating the TPR and FPR values for FMask [5] and for ACCA
(BQA) [27] over this dataset. As we see, using the nearest date or the median filter to estimate the
background and a single threshold over α we outperform FMask and ACCA (BQA) since those points
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are below the obtained ROC curves. This means that we can reduce commission error while having
the same omission error as FMask, or reduce omission error while maintaining the same commission
error as FMask.

Table 1. Validation metrics: True Positive Rate (TPR), False Positive Rate (FPR), Commission Error,
Omission Error, Overall Accuracy.

True Positive Rate TPR cloudy pixels predicted as clouds
cloudy pixels

False Positive Rate (Commission Error) FPR clear pixels predicted as clouds
clear pixels

Omission Error 1- TPR cloudy pixels predicted as clear
cloudy pixels

Overall Accuracy cloudy pixels pred. as clouds+clear pixels pred. as clear
total pixels
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Figure 4. This figure shows ROC curves for the four proposed background estimation methods.
Crosses show the TPR and FPR values for the proposed threshold (0.04) and for FMask [5] and ACCA
(BQA) [27] on the same dataset.

It is worth mentioning that the simpler background estimation methods (Median and Nearest)
have better performance in terms of cloud detection accuracy. In the case of the median, it is more
robust to outliers (e.g., clouds contaminating the images used for the background estimation) than
the linear or kernel regression approaches. For the nearest date, it might be because the closer in
time the image is, the more similar it is to the target image in terms of surface changes. Nevertheless,
we will see in the next sections that the kernel and linear regression methods obtain better results in
terms of mean squared error in reflectance and, therefore, will be the more appropriate for the cloud
removal task.

Figure 4 shows that using only a threshold over the norm difference has a very good performance
on cloud detection. However, as we have mentioned in Section 3.2, by doing this we detect all high
differences (changes) in reflectance. Whereas most of these differences are because of the presence of
clouds, some of them are due to changes in the surface. Figure 5 shows an example of agricultural
crops in Bulgaria. The image on the center shows that some of those fields are detected as clouds if we
use only a threshold over the differences.
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Cloudy Image Without reflectance threshold With reflectance threshold

Cloud Mask/Ground Truth: Cloud/Cloud Land/Cloud Cloud/Land
Color Legend:

Figure 5. Landsat 8 image (LC81820302014180LGN00 006_013) acquired on 10 June 2013. Rural area in
Bulgaria presenting crops misclassified as clouds when the threshold in reflectance is not applied.

In order to reduce these false positive cases we added an additional threshold applied directly
over the reflectance of the cloudy image instead of over the difference image. In particular, we applied
the threshold over the norm of the visible bands, γ. This is physically grounded since clouds have
high reflectance on the visible spectral range. In addition, it has been exploited before in Ref. [17] as
a measure of potentially cloudy pixels. Figure 6 confirms this approach. The left plot shows cluster
centers colored in orange if the majority of their pixels are cloudy and in blue if most of them are
clear. The X-axis shows the norm of the difference in reflectance, α, and the Y-axis shows the norm
of the reflectance, γ. We can see that the threshold of 0.04 in α was correctly fixed and that 0.175 is
a natural threshold in γ for this dataset. The right plot in Figure 6 shows the ROC curves with and
without the extra threshold on reflectance γ. We show the ROC curves corresponding to the thresholds
0.15 and 0.175. We can see that the inclusion of this additional threshold (0.175) increases the overall
accuracy from 91 to 94%. The threshold at 0.15 could be used instead of 0.175 for cloud conservative
applications. Overall we see that by including this additional restriction (either in 0.175 or 0.15) the
resulting algorithm is more accurate and less cloud conservative.
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Figure 6. (Left) Scatter plot of the clusters. Norm of TOA reflectance of the visible bands on the
Y-axis (γ) and norm of difference in reflectance on the X-axis (α). Each point corresponds to one of
the 10 clusters from each of the 2661 image patches. Vertical and horizontal lines show the proposed
thresholds. (Right) ROC curves with and without the extra threshold on reflectance γ. The median is
used for background estimation in both cases.
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4.3. Cloud Detection Results

Once the parameters and methodology have been fixed we analyze the cloud detection results
over the whole dataset. Table 2 shows the cloud detection statistics using both the proposed thresholds
for the four background estimation models and for the independent FMask and ACCA (BQA) cloud
detection algorithms. We see that multitemporal methods yield higher overall accuracy than single
scene methods. In addition, we see that the simpler background estimations, such as the median
filter and the nearest date, yield a good trade-off in commission and omission errors. Figure 7
shows the mean accuracy and standard deviation over the patches for each of the 23 Landsat-8
acquisitions. We see here again that the multitemporal approach using the median as background
estimator consistently outperforms FMask.

Table 2. Cloud detection statistics over all pixels of the used Landsat-8 Biome Dataset.

Method Overall Accuracy Kappa Statistic Commission Error Omission Error

FMask [5] 88.18% 0.7550 16.64% 2.62%
ACCA (BQA) [27] 90.45% 0.7933 9.90% 8.86%
Nearest date 94.18% 0.8733 6.31% 4.87%
Median filter 94.13% 0.8720 6.36% 4.94%
Linear regression 93.66% 0.8593 4.78% 9.32%
Kernel regression 93.56% 0.8572 4.82% 9.53%
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Figure 7. Average accuracy over the image patches for each of the 23 different Landsat-8 acquisitions
selected from the Biome dataset.

Finally, Figure 8 shows some cherry-picked results of the proposed method using the median to
estimate the background. Rows 1, 3 and 5 show some systematic errors of FMask over cities, coastal areas
and riversides. Row 2 presents small errors in semitransparent clouds in the middle of the image that
are not correctly labeled in the manual ground truth cloud mask but that our method correctly identifies.
On the other hand, thin clouds on Rows 1 and 7 are misclassified by the proposed method whereas FMask
identifies them correctly. Row 6 again shows errors in the ground truth labels. In this case, a path is
falsely identified as a cloud. We found these errors specially over bright surfaces, which remind us that
single scene cloud detection is challenging even for human experts. Actually, in some cases, we detected
them only because we have previous images from the same location with which to compare. Interested
readers can visually inspect cloud detection results and the comparison of both the proposed method
and FMask [5] with the Biome ground truth, which are available online at http://isp.uv.es/projects/cdc/
viewer_l8_GEE.html for all 2661 patches from the Biome dataset.
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Cloudy Image Ground Truth Differences between Ground Truth and: Cloud Removal
Proposed Mask FMask (Estimated Image)
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Figure 8. Patches of 500 × 500 pixels from Biome dataset. From left to right: RGB scene, RGB scene
with ground truth cloud mask in yellow, differences between ground truth and the proposed cloud
mask (using the median as background estimation), difference between ground truth and FMask,
and estimated cloud-free image.
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4.4. Cloud Removal

In addition to the cloud detection problem, we consider also the task of cloud removal
(or cloud filling). Most land applications generally discard cloud contaminated pixels for the estimation
of biophysical parameters. In cloudy areas, this causes a big amount of missing values in the processed
time series that undermine the statistical significance of the subsequent analysis. In this subsection,
we benchmark the different background estimation methodologies proposed in this paper and evaluate
their suitability for cloud removal in a large dataset. In Ref. [18], we proposed to use previous images
together with the current one to estimate the TOA reflectance of the cloud contaminated areas. This idea
is also presented in Ref. [33] using more sophisticated methods, however, our proposal in Ref. [18] can
be directly implemented in the GEE platform. We compare these linear and kernel based regression
approaches with the two simplest baselines, i.e., using the latest available cloud-free pixel or the
pixel-wise median filter. The performance of the cloud removal is quantified and evaluated in terms
of the error between the estimated and actual background pixels in the cloud-free areas (since cloud
contaminated pixels cannot be compared with the background). The accurate cloud mask and the
posterior cloud removal provide cloud-free time series that allow a better monitoring of land cover
dynamics and the generation of further remote sensing products. The last column in Figure 8 shows the
estimated cloud-free image for some scenes. The plots show the estimated image where clouds have
been removed. In fact, we show estimated values for the whole scene and not clouded areas only. We can
see how the spatial and radiometric features are well preserved and no cloud residuals can be observed.

Quantitative results for the cloud removal are shown in Figure 9. It shows the distribution of the
root mean square error on the 2661 patches separately for each spectral band. In the plots, the mid
lines represent the mean RMSE for all the (cloud-free) image pixels, the boxes define the 25 and
75 percentiles of the RMSE distribution, and the vertical lines define the maximum and minimum
RMSE values. We see here that the more sophisticated methods for background estimation (Linear
and Kernel regression) perform better than the simpler ones (median and nearest). This confirms the
results presented in Ref. [18] and shows that estimated reflectance is an accurate option to fill the gaps
caused by cloud contamination.
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Figure 9. Root mean square error between the estimated and actual background pixels in the cloud-free
areas. Distribution of the errors is shown separately for all Landsat bands for the four background
estimation approaches.

5. Algorithm Implementation in the Google Earth Engine

The data in the GEE platform is organized in collections, usually composed of images or features.
Images contain bands (spectra, masks, products, etc.), properties, and metadata. Features can contain
any kind of information needed to process data, such as labels for supervised algorithms, polygons to
define geographical areas, etc. Users can apply their own defined functions, or use the ones provided
by the API, using an operation called mapping, which essentially applies a function over any given



Remote Sens. 2018, 10, 1079 15 of 18

collection independently. This allows a straightforward processing of large amounts of images and
data in parallel. Using this computational paradigm we implemented the full proposed cloud detection
scheme using the Python API. In particular, given an input target image, we map and filter the Landsat-8
LANDSAT/LC8_L1T_TOA_FMASK Image Collection. Then the filtered collection is reduced to produce an
Image which is the background estimation. With this reference image we compute the difference image
and apply the k-means clustering. Finally, we apply the thresholds as defined in Section 3.

The manual cloud masks from the Biome dataset were ingested in the GEE. Therefore, the proposed
methodology together with the comparison with the ground truth is implemented using only the Python
API of the GEE platform. The developed code has been published in GitHub at https://github.com/
IPL-UV/ee_ipl_uv. In that package we provide a function that computes the cloud mask following the
proposed methodology for a given GEE image. In addition, some Python notebooks with examples that
go step by step on the proposed methodology have been included in the software package.

Finally, as we have mentioned, in order to show the potential of the GEE platform the proposed
algorithms have been tested over 2661 patches extracted from the Biome dataset. The obtained cloud masks
can be inspected online for the whole dataset at http://isp.uv.es/projects/cdc/viewer_l8_GEE.html.

6. Discussion

In previous sections we presented a simple yet efficient multitemporal algorithm for cloud
detection. The results show an overall increase in detection accuracy and commission error compared
to state-of-the-art mono-temporal approaches such as FMask and ACCA. In addition, omission error
could be reduced slightly more for the same commission error than FMask using a lower threshold
in reflectance (γ = 0.15), as can be seen in Figure 6 (left). For cloud detection, it is normally taken
for granted that commission errors are better than omissions, thus operational algorithms tend to
overmask in order to avoid false negatives. However, we think that the proliferation of open access
satellite image archives implies that in the future more advanced users will be interested in controlling
by themselves the trade-off between commission and omission errors depending on their underlying
application. To this end, we provide Table 3 as a guide to help in tuning the thresholds of the current
algorithm, where we can see the selected combination providing the best trade-off highlighted in bold.
From results shown in Tables 2 and 3, we can see that the proposed method presents improvements
between 4–5% in classification accuracy and 3–10% in commission errors, compared with FMask and
ACCA algorithms.

Table 3. Cloud detection statistics for different thresholds combinations over all selected pixels of the
Landsat-8 Biome Dataset, using the median as background estimation method.

Thresholds
Overall Accuracy Kappa Statistic Commission Error Omission Error

Difference (α) Reflectance (γ)

0.02 0.000 85.54% 0.7076 21.53% 0.95%
0.02 0.150 89.52% 0.7820 15.16% 1.54%
0.02 0.175 92.59% 0.8415 9.61% 3.21%
0.03 0.000 89.56% 0.7823 14.90% 1.93%
0.03 0.150 91.43% 0.8187 11.83% 2.35%
0.03 0.175 93.63% 0.8624 7.76% 3.74%
0.04 0.000 91.63% 0.8217 10.86% 3.63%
0.04 0.150 92.45% 0.8382 9.43% 3.95%
0.04 0.175 94.13% 0.8720 6.36% 4.94%
0.05 0.000 92.50% 0.8378 8.54% 5.53%
0.05 0.150 92.97% 0.8474 7.70% 5.76%
0.05 0.175 94.26% 0.8738 5.32% 6.54%

FMask 88.18% 0.7550 16.64% 2.62%
ACCA (BQA) 90.45% 0.7933 9.90% 8.86%

The proposed multitemporal methodology resembles popular multitemporal algorithms such
as TMask [16] and MTCD [14] since all of them are based on background estimation and thresholds
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over the difference image. However, our methodology is simpler and requires less images in the time
series to operate. For this reason we consider the current work as a baseline to evaluate trade-offs in
processing performance for these more complex multitemporal schemes. It would be of great interest
for the community to compare all these approaches in a common benchmark; unfortunately, to this
end, we would need labeled images and common open-sourced versions of the algorithms to evaluate
the models.

Obviously there are limitations to the proposed multitemporal methodology: for instance, it might
fail in situations with sudden changes in the underlying surface, such as permanent snow in upper
latitudes. The current dataset lacks these situations, hence we do not recommend its use in such cases.

In addition, another limitation of current and future works on cloud detection is the quality of the
ground truth masks: for the Irish dataset [3], the work [34] estimated a mean overall disagreement
of 7% over the manual cloud masks labelled by three different experts. The labelling procedure
to create the Irish dataset [10] is similar to the Biome dataset that we use in the present work.
Therefore, current overall errors are in line with the intrinsic error of human experts following the
current labelling procedure. This indicates that in the future, in order to increase the performance,
we should develop better labelling methods and provide results by cloud type and underlying surface.

7. Conclusions

In this work, we proposed a multitemporal cloud detection methodology that can be applied
at a global scale using the GEE cloud computing platform. We applied the proposed approach to
Landsat-8 imagery and we validated it using a large independent dataset of manually labelled images.

The approach is based on a simple multitemporal background modelling algorithm together with
a set of tests applied over the segmented difference image, which has shown a high cloud detection
power. Our principal findings and contributions can be summarized as follows. This approach
outperforms single-scene threshold-based cloud detection approaches for Landsat such as FMask [5]
and ACCA (BQA) [27]. We provided an evaluation of different background estimation methods
and different variables and thresholds in terms of commission and omission errors. In particular,
we showed that simple background detection models such as the median or the nearest cloud-free
image are both accurate and robust for the cloud detection task. In addition, for the first time to the
authors knowledge, a multitemporal cloud detection scheme is validated over a large collection of
independent manually labelled images. The whole process has been implemented within the GEE
cloud computing platform and a ready to use implementation has been provided. Compared to
previous multitemporal open source implementations, our approach also includes the image retrieval
and coregistration steps, which are essential for the operational use of the algorithm. The generated
cloud masks can be inspected at http://isp.uv.es/projects/cdc/viewer_l8_GEE.html.

Future lines of research include the application to other optical multispectral satellites requiring
accurate and automatic cloud detection. For example, the satellite constellations of Sentinel missions
from the European Copernicus programme aim to optimize global coverage and data delivery.
In particular, Sentinel-2 mission [12] acquires image time series with a high temporal frequency
and unprecedented spatial resolution for satellite missions providing open access data at a global scale.
Additionally, another line of research consists of using the multitemporal cloud masks as a proxy of
a ground truth that can be used to train single scene supervised machine learning cloud detection
algorithms. This approach has been recently successfully applied to image classification tasks [35] and
would alleviate data requirements of machine learning methods.

Supplementary Materials: An interactive tool for the visualization of the validation results is available online at
http://isp.uv.es/projects/cdc/viewer_l8_GEE.html. The code is published at https://github.com/IPL-UV/ee_
ipl_uv.
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A B S T R A C T

Accurate cloud detection algorithms are mandatory to analyze the large streams of data coming from the dif-
ferent optical Earth observation satellites. Deep learning (DL) based cloud detection schemes provide very ac-
curate cloud detection models. However, training these models for a given sensor requires large datasets of
manually labeled samples, which are very costly or even impossible to create when the satellite has not been
launched yet. In this work, we present an approach that exploits manually labeled datasets from one satellite to
train deep learning models for cloud detection that can be applied (or transferred) to other satellites. We take
into account the physical properties of the acquired signals and propose a simple transfer learning approach
using Landsat-8 and Proba-V sensors, whose images have different but similar spatial and spectral character-
istics.

Three types of experiments are conducted to demonstrate that transfer learning can work in both directions:
(a) from Landsat-8 to Proba-V, where we show that models trained only with Landsat-8 data produce cloud masks
5 points more accurate than the current operational Proba-V cloud masking method, (b) from Proba-V to Landsat-
8, where models that use only Proba-V data for training have an accuracy similar to the operational FMask in the
publicly available Biome dataset (87.79–89.77% vs 88.48%), and (c) jointly from Proba-V and Landsat-8 to Proba-
V, where we demonstrate that using jointly both data sources the accuracy increases 1–10 points when few
Proba-V labeled images are available. These results highlight that, taking advantage of existing publicly avail-
able cloud masking labeled datasets, we can create accurate deep learning based cloud detection models for new
satellites, but without the burden of collecting and labeling a large dataset of images.

1. Introduction

The number of new satellites and sensors with the objective of
monitoring the Earth system and understanding its dynamics is growing
exponentially. Among these sensors, optical instruments measure ra-
diance coming from the Earth in the visible and infra-red part of the
electromagnetic spectrum. Data from optical sensors is used in a wide
range of applications such as estimating biophysical parameters, mon-
itoring land use over time, assessing damages after natural disasters, or
monitoring urban areas among others. In most of those applications, the
presence of clouds and their shadows affects the signal and can be
considered as a source of uncertainty (Gómez-Chova et al., 2007).
Whereas, on a single scene, cloud masking might be handled manually,
on operational applications exploiting image time series or multiple
locations, this is not feasible. Thus, in order to automatically process
imagery from optical sensors, accurate and automatic cloud masking

algorithms are mandatory.
Cloud masking algorithms assign a clear or cloudy binary label to

each of the pixels within a satellite image. Most basic approaches to
cloud masking are the so called threshold based approaches, which
consist of a set of thresholds applied on one or more of the spectral
bands of the images, or on extracted features trying to enhance physical
properties of the clouds. In general, thresholding is simple and easy to
implement and it works well when the spectral information provided by
the satellite is sufficiently rich in terms of cloud discrimination.
Examples of current operational threshold based approaches to cloud
masking include FMask (Zhu and Woodcock, 2012; Zhu et al., 2015) for
Landsat-7 and Landsat-8, Sen2Cor (Richter et al., 2012) for Sentinel-2,
and several recent works that propose improvements to them (e.g. Zhai
et al., 2018; Qiu et al., 2019; Frantz et al., 2018). On the other hand,
machine learning (ML) based approaches handle cloud detection as a
statistical classification problem. These methods learn a cloud detection
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model based on a set of examples: data pairs of observations and labels.
When the quality of the training data is sufficiently good, machine
learning based approaches outperform threshold based ones (Gómez-
Chova et al., 2007; Li et al., 2019; Jeppesen et al., 2019). Machine
learning approaches to cloud detection can be further divided into
classical and deep learning approaches. In classical ones, a set of
manually selected spatial and spectral features are extracted for each
pixel in the training set, afterwards a classifier is optimized to distin-
guish the label of those pixels based on these features. In the simplest
case, only two classes are considered: cloud and clear pixel; however,
several works consider a wider range including cirrus, cloud shadows,
ice/snow, water, etc. (Hollstein et al., 2016; Hughes and Hayes, 2014;
Wieland et al., 2019). Classical machine learning approaches are nor-
mally pixelwise, in the sense that the trained classifier can be applied
independently to each pixel in the test image after the feature extrac-
tion. The classifiers used by these approaches widely vary including:
kernel methods and support vector machines (Azimi and Zekavat, 2000;
Bai et al., 2016; Ishida et al., 2018; Gómez-Chova et al., 2010), neural
networks (Torres Arriaza et al., 2003; Hughes and Hayes, 2014) or trees
and ensemble methods (Ghosh et al., 2006; Hollstein et al., 2016;
Ghasemian and Akhoondzadeh, 2018; Wieland et al., 2019). On the
other hand, deep learning approaches for cloud masking are end-to-end
models where the input is the raw image and the output the cloud mask.
If the model is defined as a set of stacked convolutional operations, then
it constitutes a fully convolutional neural network (FCNN) (Long et al.,
2015). In these models, the convolutional filters weights are parameters
to optimize, thus the model can learn to exploit the spatial information
of surrounding pixels directly from the data. FCNNs applied to cloud
detection have shown state-of-the-art performance for several satellites,
such as Landsat-7 (Li et al., 2019), Landsat-8 (Jeppesen et al., 2019; Li
et al., 2019), GaoFen-1 (Li et al., 2019), or MSG SEVIRI (Drönner et al.,
2018).

Independently of the selected cloud masking approach, the method
has to be validated. This is a bottleneck in the development of cloud
masking algorithms for most satellite sensors, since usually there is no
independent and simultaneous information about the presence of
clouds in the images. Therefore, in order to perform a quantitative
validation, the standard approach is to manually label a set of pixels or
images by human experts, which will constitute the ground truth. This
approach has been extensively applied in the literature, e.g. to Landsat-
7 (Irish et al., 2006), Envisat/MERIS (Gómez-Chova et al., 2007),
Landsat-8 (Foga et al., 2017), Proba-V (Iannone et al., 2017), or Sen-
tinel-2 (Coluzzi et al., 2018; Baetens et al., 2019). In some cases, only
some pixels within an image are labeled as cloudy or cloud free,
whereas in other cases, all the pixels of the image are labeled, capturing
also the spatial distribution of clouds. In either case, this process is not
exempt of errors: e.g., in Scaramuzza et al. (2012), authors reported a
mean overall error of 7% for 11 Landsat-7 scenes fully labeled by three
different experts. Labeling pixels individually is more accurate, how-
ever it requires a higher dedication and hence the total amount of la-
beled pixels is usually considerably lower. This makes results statisti-
cally less significant which could be a problem when the goal is to
validate cloud detection algorithms that work globally under different
seasons and climatic conditions.

Moreover, if the proposed method for cloud detection is based on
machine learning, in addition to the validation data, an independent
comprehensive set of labeled samples is also required to train the
models. If the goal is to provide an accurate global cloud detection
method, this training set should be representative enough of natural
statistics, with data from different land covers, climate zones, and
seasons. Therefore, for machine learning approaches, the effort to
generate a ground truth and develop a cloud detection algorithm is
huge. Another disadvantage of machine learning approaches is that
they cannot be applied until the satellite is launched and data is
available, since a comprehensive archive of images with the corre-
sponding ground truth is required to develop the models. For these

reasons, it is still very common that most satellite missions use em-
pirically designed threshold based methods for cloud detection at their
launching time. Afterwards, if the operational cloud detection perfor-
mance is an issue, the original algorithm is replaced by an improved
one based on the acquired data during the mission lifetime. This is the
case of Proba-V mission (Sterckx et al., 2014), in which case the Eur-
opean Space Agency (ESA) recently organized a Cloud Detection Round
Robin experiment (Iannone et al., 2017) aimed at the inter-comparison
of different cloud detection algorithms in order to improve the current
operational algorithm (Wolters et al., 2015).

Taking into account the aforementioned issues, we can conclude
that the lack of an accurate and representative ground truth for the
particular satellite sensor will hamper the development of accurate
machine learning models. However, the amount of available Earth
observation data is huge nowadays and it is increasingly common to
publish not only the algorithms but also the manually labeled cloud
masks datasets as a good practice to foster research in the field of re-
mote sensing. In particular, for cloud detection, in Foga et al. (2017) the
authors published more than 250 scenes of Landsat-7 and Landsat-8; in
Mohajerani and Saeedi (2019) they published an additional 38 scenes
for Landsat-8; the works (Li et al., 2017, 2019) published1 108 GaoFen-
1 images and 150 high resolution scenes from Google Earth, respec-
tively; and the works (Hollstein et al., 2016; Liu et al., 2019; Baetens
et al., 2019) also published their manually labeled cloud masks for
Sentinel-2. In this context, we propose to exploit the wealth of in-
formation contained in available labeled datasets to transfer previous
knowledge about the problem between similar satellites. This approach
allows us to address some of the drawbacks of machine learning ap-
proaches. Firstly, from a methodological point of view, the size of the
manually labeled training set required to build an accurate cloud de-
tection model for the new satellite is drastically reduced. Secondly,
from an operational point of view, since the training data from an ex-
isting satellite is already available, the machine learning based cloud
detection algorithm could be developed before the launch of the sa-
tellite, and thus it can be applied from the first day.

In this paper, we focus on the Proba-V and the Landsat-8 satellites,
which have different spatial resolution, different spectral bands and
from which there are manually labeled cloud detection datasets avail-
able to train and evaluate the models. Proba-V is a small satellite with
medium spatial resolution and with only four spectral bands (Sterckx
et al., 2014); we will take advantage of manually labeled datasets for
cloud detection from the recent ESA Round Robin experiment (Iannone
et al., 2017). Landsat-8 (Irons et al., 2012) has higher spatial and
spectral resolutions compared to Proba-V, and, as mentioned pre-
viously, there exists a large collection of manually labeled images for
cloud detection (U.S. Geological Survey, 2016a,b).

Our proposed approach to transfer knowledge between Landsat-8
and Proba-V is based on two components. The first one is a domain
adaptation transformation of Lansdsat-8 data to resemble Proba-V
images in terms of both spectral and spatial characteristics. The ob-
jective is to carry out a simple physically-based conversion between the
two sources in order to facilitate the transfer learning from the available
manually labeled dataset (i.e., the source domain) to the satellite images
where we want to detect clouds (i.e., the target domain). The second
component is a fully convolutional neural network model capable of
learning as much as possible spectral and spatial information from the
training data. FCNNs excel in image segmentation tasks (Xie et al.,
2017; Chen et al., 2018a,b; Lin et al., 2018; Drozdzal et al., 2016;
Breininger et al., 2018; Schuegraf and Bittner, 2019), they integrate
spectral but also spatial information in a hierarchical manner: in our
view, spatial information is crucial specially in the context of Proba-V,
which has a limited number of spectral bands.

Using the domain adaptation transformation and the FCNN models,

1 Upon request and for academic purpose.
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we performed three types of transfer learning experiments: (a) trans-
ductive transfer learning from Landsat-8 to Proba-V, where we used only
Landsat-8 annotated data to develop a model that works in the Proba-V
domain; (b) transductive transfer learning from Proba-V to Landsat-8,
where labeled Proba-V data is used to train a cloud detection model for
Landsat-8; and (c) inductive transfer learning from Landsat-8 to Proba-V,
where we use few Proba-V labeled images together with the annotated
Landsat-8 dataset to generate a cloud detection model for Proba-V.

In these experiments, we show that the proposed models trained
only on Landsat-8 data (previous item a) outperforms by at least 5
points in accuracy the current Proba-V operational cloud detection al-
gorithm (Wolters et al., 2015). This model does not use any Proba-V
image for training. In the more challenging Proba-V to Landsat-8
transfer direction, the model trained only with Proba-V data (previous
item b), which works on a 10 times lower spatial resolution scale, is
only 2 point less accurate than the state-of-the-art deep learning models
for Landsat-8 (Jeppesen et al., 2019; Li et al., 2019) and it is as accurate
as the operational FMask (Zhu and Woodcock, 2012) on the analyzed
dataset. Finally, the performance of models that exploit labeled data
from both sensors (previous item c) shows that models trained only
with few Proba-V images are significantly less accurate than models
trained jointly with these few Proba-V images together with the avail-
able Landsat-8 data. In particular, results show a boost between 1 to 10
points in detection accuracy depending on the amount of Proba-V data
used when networks are trained jointly using both data sources.

The paper is organized as follows. In Section 2, we frame our pro-
posal in the current literature context and we detailed our contribu-
tions. In Section 3, we present the physically-based image conversion
scheme, which facilitates transfer learning between sensors, the transfer
learning schemes, and the proposed network architecture. In Section 4,
we present the Landsat-8 and Proba-V datasets. Section 5 contains the
experimental design with the detailed description of the transfer
learning experiments. In Section 6, the results are shown and discussed.
Finally, Section 7 presents the conclusions.

2. Background and related work

There has been a large amount of remote sensing papers that use
transfer learning in a plethora of different manners. The objective is to
improve machine learning models performance by reusing data or by
training the models in different but related tasks (Jean et al., 2016; Li
et al., 2017; Helber et al., 2018; Lu and Li, 2018; Kemker et al., 2018;
Wurm et al., 2019). Transfer learning has thus become a buzzword with
different meanings depending on the particular context. In this work,
we follow the definition of transfer learning given in the literature
survey in Pan and Yang (2010). In this view, the goal of transfer
learning is to find a trade-off between the two most fundamental as-
sumptions of machine learning: (1) the training set is representative
enough of the underlying data distribution, and (2) future test data is
drawn from the same exact distribution. In particular, transfer learning
seeks to relax this second constraint at the expense of the first one by
using data from a different domain and/or from a different task when
training the models. Following this definition, transfer learning is fur-
ther categorized depending on the data we have from the related do-
main (called source domain) and from the domain of interest (called
target domain). In this work, we restrict ourselves to two of these ca-
tegories: transductive transfer learning and inductive transfer learning.

Transductive transfer learning (Pan and Yang, 2010), assumes that, at
training time, we only have data from the source domain. This corre-
sponds, in our setting, to use data only from Landsat-8 in order to learn
a cloud detection model for Proba-V (or vice versa). This transfer
learning approach is common in remote sensing when machine learning
is used to invert radiative transfer models (RTM) (Wolanin et al., 2019).
In that case, the machine learning model is trained using simulated
radiance data as input, and the variables used as inputs to RTMs as
outputs. At the test phase, the machine learning model is applied to

data from the target domain, which in this case corresponds to real
observed satellite radiances. In the context of cloud detection, models
trained on RTM simulated data has been proposed for MERIS (Preusker
et al., 2006) to estimate cloud optical thickness, for MERIS and AATSR
(Gómez-Chova et al., 2013), for Proba-V (Iannone et al., 2017), and also
recently for MODIS (Chen et al., 2018c). The main difference with our
approach is that here we transfer from a real sensor to another one.
Transferring the model from a real dataset, instead that from RTM si-
mulated radiance, has the advantage that we can exploit the natural
statistics and spatial information of clouds over different surfaces,
which is conveniently used by convolutional neural networks.

The second transfer learning category that we have explored is in-
ductive transfer learning. In this setting, it is assumed to have, in addition
to the source domain data, some labeled data from the target domain.
Inductive transfer learning has also been explored in hybrid RTM in-
versions by using jointly real and RTM simulated data (Gómez-Chova
et al., 2013; Svendsen et al., 2018). In our setting, we will explore in-
ductive transfer learning using all available Landsat-8 datasets and a
limited number of Proba-V real labeled images for training.

In the context of neural networks, inductive transfer learning is per-
formed in at least two different ways: the first one, called joint training,
consists of simply joining the training sets of the two domains. The
second one, fine-tuning, consists of pre-training the network using the
source domain and then use the adjusted weights as initialization for a
second training using the target domain data. In the case of CNN, using
the weights from ImageNet (Deng et al., (CVPR09), 2009,) as the source
domain is by far the most common approach also in remote sensing
applications (Li et al., 2017; Helber et al., 2018; Lu and Li, 2018). This
approach has been explored for cloud detection of Landsat-8 images in
Li et al. (2019) and Chai et al. (2019), but both works showed better
performance by training a tailored fully convolutional neural network
from scratch. In Section 6, joint training and fine-tuning are compared
experimentally.

There is a vast recent literature of deep learning applied to cloud
detection on satellite imagery (Zhan et al., 2017; Mateo-García et al.,
2017; Jeppesen et al., 2019; Li et al., 2019; Shao et al., 2019; Chai et al.,
2019; Liu et al., 2019; Drönner et al., 2018; Mohajerani and Saeedi,
2019, 2018). Fully convolutional neural network is the model of choice
in all those cases. In the work (Li et al., 2019), the authors proposed a
FCNN, named multi-scale convolutional feature fusion (MSCFF), for
remote sensing images of different sensors, this network shows better
detection accuracy than other FCNN architectures such as (Zhan et al.,
2017; Chen et al., 2018d). In the work (Jeppesen et al., 2019), authors
target Landsat-8 cloud detection. They use the U-Net architecture
modifying the input and output layers to accommodate for multi-
spectral images. They designed a experimental setup where they train
on the L8Biome (U.S. Geological Survey, 2016b) dataset and test on the
L8SPARCS (U.S. Geological Survey, 2016a) dataset and the other way
around; thus showing generalization across datasets labeled using dif-
ferent experts and different labeling methodologies. In this work we use
the same methodology when our networks are trained and evaluated in
the Landsat-8 domain.

Nevertheless, the goal of this work is not only to find an accurate
FCNN architecture but to show that these FCNN models can be trans-
ferred between different sensors with very good cloud detection accu-
racy. Our networks are, however compared with some of these state-of-
the-art methods in the Landsat-8 domain.

Finally, it is worth to mention that detection of cloud shadows is an
important issue intimately related to cloud detection. Usually, it in-
volves two steps: first, cloud detection to locate the clouds in the image
and, then, a geometry-based cloud shadow detection method (Sun
et al., 2018). This geometry-based approach is used in both Landsat-8
(Fmask) and Proba-V operational detection methods, but it could be
solved also in one step in a CNN framework as shown in Chai et al.
(2019). However, datasets including a shadow ground truth are scar-
cely available for Landsat (Foga et al., 2017) and are not available for
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Proba-V. Hence, the domain adaptation proposed in this work focuses
only on cloud detection, and cloud shadows are not distinguished from
other cloud-free pixels.

3. Methodology

In this section, we first introduce the Proba-V and Landsat-8 char-
acteristics. Then, we propose two transfer learning (TL) schemes: the
first of them will be used to transfer learning from Landsat-8 to Proba-V
and the second one from Proba-V to Landsat-8. These TL schemes
specify how training and testing can be done in the source and the
target domain, respectively. Each scheme can be applied to different
situations depending if the domain adaptation is done from the source
to the target domain or on the opposite direction. Afterwards, we de-
tailed the domain adaptation transformation that will be used in our
experiments for both TL schemes. The transformation is based on the
instrumental characteristics of the sensors in order to adapt Landsat-8
images to the Proba-V domain. Finally, subsection 3.4 explains the fully
convolutional neural network architecture used in the experiments. In
this paper, we focus on the Landsat-8 and Proba-V case, however, this
procedure for transfer learning could be reproduced in other sensors
with similar characteristics, since we only require that the two sensors
have some spectral bands with overlapping response.

3.1. The Landsat-8 and the Proba-V sensors

Proba-V is a small satellite designed for global vegetation mon-
itoring (Sterckx et al., 2014). It was launched in 2013 to bridge the gap
between Envisat/MERIS and SPOT Vegetation and the recently laun-
ched Sentinel-3. Proba-V is an experimental satellite with a constrained
budget designed to be much smaller than the former MERIS and SPOT.
It acquires top of atmosphere (TOA) radiance in four bands of the
visible (BLUE and RED), the near infrared (NIR) and short-wave in-
frared (SWIR). Proba-V has three cameras: one central camera, with
nadir pointing, and two more on its sides. These three cameras provide
a wide swath to Proba-V which enables a short revisiting period of
1–2 days. The central (nadir) camera acquires data at 100 m (from 90 to
110 m) whereas the spatial resolution of the two side cameras ranges
from 110 m to 350 m. The operational Level 2A processing projects this
varying resolution data into a uniform 333 m Plate Carrée projection
using Lanczos interpolation (Dierckx et al., 2014). Cloud detection in
Proba-V is specially challenging due to the limited amount of spectral
information. The current operational Proba-V cloud detection algo-
rithm based on thresholds (Wolters et al., 2015) has been modified
several times and it still presents several drawbacks such as a de-
pendency on illumination and viewing geometry, the detection at
edges, and the high amount of commission errors (Stelzer et al., 2016).

Landsat-8 (Irons et al., 2012) measures TOA radiance in 11 bands of
the electromagnetic spectrum with a revisiting period of 15 days.
Landsat-8 has two sensors: the Operational Land Imager (OLI), which
collects data from nine spectral bands at 30 m resolution; and the
Thermal Infrared Sensor aimed for thermal imaging, which measures
data from two more wavelengths in a 100 m spatial resolution scale.
There are two factors that make cloud detection an easier problem for
Landsat-8 compared with Proba-V. First, the band 9 from the OLI sensor
is specially designed for detection of cirrus clouds. Secondly, the
thermal bands are particularly discriminative for clouds since some
clouds are significantly cooler than the underlying surface. Algorithms
such as FMask (Zhu et al., 2015) take advantage of these facts to design
simple, yet robust, cloud detection algorithms based on thresholds that
can be applied globally.

3.2. Transfer learning schemes

As we discussed previously in Section 2, transfer learning consists in
exploiting data from one (source) domain to solve a problem in a

similar but different (target) domain. However, there are different
possibilities to perform TL depending on the relationships between the
source and the target domains. In this work, we consider two different
TL schemes. These schemes assume that we have labeled data in the
source domain (S), that we want to perform predictions in the target
domain (T), and that a domain adaptation transformation (DA) can be
applied between both domains. The applicability of each TL scheme
depends on the direction of the domain adaptation transformation:

• Scheme 1 – training models in the target domain. In this case we
have a domain adaptation transformation from the source to the
target domain. We first adapt the labeled dataset from the source
domain to the target domain using the domain adaptation trans-
formation and then we train a model using the adapted data. Since
both images and labels are transformed to the target domain to train
the model, applying the learned model to data from the target do-
main is straightforward (because the model has been constructed
already in this domain). On the other hand, if we want to test the
model in the source domain, we would need to transform the source
domain inputs to the target domain, apply the predictive model and
transform back the predictions to the source domain.
• Scheme 2 – training models in the source domain. This scheme is
based on training the model directly in the source domain. In this
scheme we have a domain adaptation transformation form the target
to the source domain. In order to apply the model to new data from
the target domain one has to first adapt the input sample to the
source domain, then apply the predictive model, and finally trans-
form the predictions back to the target domain. Note that, in this
case, testing the model on data from the source domain is direct.

In this work, we will use Scheme 1 for transfer learning from
Landsat-8 to Proba-V and Scheme 2 for transfer learning in the opposite
direction. Schemes are summarized in Fig. 1. In particular, in this work,
X are satellite images (either Landsat or Proba-V, Section 3.1); Y are
cloud mask labels; DAX represents adaptation from Landsat-8 images to
Proba-V (Section 3.3); DAY is an adaptation of the labels by upscaling or
downscaling the masks (Section 3.3); and f is the prediction model,

=Y f X( ), implemented with Fully Convolutional Neural Networks
(Section 3.4). In addition, Fig. 1 illustrates the transformations of the
data to train the models and the procedure to test them in datasets from
either the target or the source domains.

It is worth noting that the intended use of the proposed transfer
learning models is to apply them in data from the target domain.
However, it is also interesting to analyze their performance on data
from the source domain since we have labeled data for validating the
models and, moreover, because there are independent results from the
literature to compare with. Therefore, we will evaluate the proposed
models on both the source and the target domains.

3.3. Landsat-8 to Proba-V domain adaptation

In order to apply the TL schemes (Section 3.2) we need a procedure
to adapt images from one domain to the other (DAX in Fig. 1). While
there is vast amount of methods to learn the domain adaptation
transformation from data (see e.g. Tuia et al., 2014; Hoffman et al.,
2018; Csurka, 2017), in this paper we employ a methodology based
only on the physical properties of the acquired signals. Learning the
transformation would imply having data from both sensors to train a
model which in some cases might not be feasible (for instance if our
target satellite has not been launched yet). Hence, several parts of this
study assumes there is no data (or very few) from the target domain. In
cases where learning the domain adaptation transformation can be
done, this simpler approach can serve as a baseline for such methods to
compare with. Our proposed transformation can be applied in general
when there is spectral overlap between the acquired signals in both
domains. In our particular case, these domains are the Proba-V and
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Landsat-8 satellite images. Among the two possible domain adaptation
transformations (from Landsat-8 to Proba-V or from Proba-V to
Landsat-8), and given the characteristics of Landsat-8 and Proba-V
images, the transformation from Landsat-8 to Proba-V seems the more
natural one since it goes from the higher to the lower spatial and
spectral resolutions. The opposite transformation could also be possible;
however, the interpolation to a 30 m spatial resolution from Proba-V
images is an ill-posed problem and it is unlikely that the interpolated
image has the spatio-spectral quality of a Landsat-8 image. For this
reason, in all the paper, we will only consider domain adaptation from
Landsat-8 to Proba-V for the transformation of TOA reflectance images.

Our proposed image conversion from Landsat-8 to Proba-V (Fig. 3)
is based on the instrumental characteristics of both sensors. This con-
version consists of two adaptation steps: firstly, the more suited spectral
bands are selected and, secondly, we scale the Landsat-8 image to
match the spatial properties of Proba-V. The spectral transformation
takes into account the spectral response function (SRF) of both sa-
tellites. It consists basically in selecting the overlapping spectral bands
between both satellites and eventually weight their contribution as a
function of their spectral overlap. Fig. 2(left) shows the spectral re-
sponse function of common bands in Proba-V (solid) and Landsat-8
(dashed). One can see a good agreement in the case of the SWIR band
and also in the RED one. In the case of NIR band, the spectral response
of Proba-V is wider and its peak is not aligned with Landsat-8 B5 band,
which might led to differences in the the retrieved radiance. Finally, for
the Proba-V BLUE band, there are two bands on Landsat-8 in the same
spectral range. In this case, the contribution of B1 and B2 bands of
Landsat-8 is weighted according to the overlapping area of the spectral
responses as is shown in Fig. 2(right), which corresponds to 25% for B1
and 75% for B2.

The second adaptation step changes the spatial resolution of
Landsat-8 images. In order to resemble as much as possible the spatial
properties of Proba-V, we upscale the Landsat-8 image to the coarser
Proba-V resolution. First, we used the point spread function (PSF) of
each Proba-V spectral band to convert the Landsat-8 observations to the
nominal Proba-V spatial resolution at nadir. The ground sampling dis-
tance (GSD) for the Proba-V center camera is about 96.9 m for the
BLUE, RED and NIR channels, while the SWIR center camera resolution
is 184.7 m (Wouter Dierckx personal communication (Dierckx et al.,
2014), June 26, 2018). The SWIR PSF is about twice as wide as the PSF
of the other bands, which stresses the fact that a distinct spatial adap-
tation might be applied to each band. The PSFs of the bands are mod-
eled as 2 dimensional Gaussian filters, which are applied to the 30 m
resolution Landsat-8 bands. The filtered image is upscaled to the
nominal 90 m resolution at nadir by taking 1 out of every 3 pixels.
Finally, Lanczos interpolation is applied to upscale the image to the
final 333 m Proba-V resolution. Notice that Lanczos is the interpolation
method used at the Proba-V ground segment processing to upscale the
acquired raw Proba-V data to the 333 m Plate Carée grid (Dierckx et al.,
2014).

We transformed the associated ground truth (DAY in Fig. 1) of the
Landsat-8 datasets using basically the same procedure. For the binary
cloud mask, we apply the Gaussian filter, the ×3 3 upscaling, and the
lanczos interpolation to produce a 333 m resolution image; afterwards,
the image is binarized applying a threshold, which is set to 0.5 for
cloudy pixels. For the transformation of the cloud masks from the
Proba-V 333 m resolution to the 30 m resolution, we use a simple bi-
cubic interpolation. Spectral and spatial transformations of both
Landsat-8 images and associated cloud masks are depicted in Fig. 3.

3.4. Fully convolutional neural networks

Fully convolutional neural networks (FCNN) are the model of choice
to learn the mapping function ( fS and fT in Fig. 1). FCNN are state-of-
the-art models for image segmentation because of their capacity to
exploit the spatio-spectral information of the input data. FCNNs, when
provided with a large amount of training data, have shown very high
accuracy levels on several image segmentation tasks (Chen et al.,
2018a; Lin et al., 2018; Chen et al., 2018b). Although the reasons of
their success are still poorly understood (Zhang et al., 2017; Szegedy
et al., 2014), it is acknowledged that the hierarchy of stacks of spatio-
spectral convolutions are good priors for vision systems (Yosinski et al.,
2014). In addition, it has been shown in many works that they usually
attain higher performance than classification methods with manually
designed spatio-spectral features (Wieland et al., 2019; Mateo-García
et al., 2017).

In this work, fully convolutional neural networks solve a standard
multi-output binary classification problem where the input is a 4-band
image and the output is a two-dimensional map. This output has values

Fig. 1. Transfer learning schemes. In both schemes, we assume that there is
labeled data in the source (S) domain but we want to perform predictions in the
target (T) domain. The adaptation of images X and labels Y is performed using
the transformations DAX and DAY , respectively. The trained ML model is de-
noted by fT or fS , depending if it is trained in the source or the target domain,
respectively.

Fig. 2. Left: spectral responses of Landsat-8 and Proba-V. Right: zoom of the
blue region of the spectrum; we weight the contributions of bands B1 and B2 of
Landsat-8 according to its overlap with the spectral response function of Proba-
V.

Fig. 3. Transformation of Landsat-8 products and masks to resemble Proba-V
characteristics.
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between 0 to 1 that can be interpreted as the probability of cloud of the
underlying pixel. The stacked set of convolutional filters seek to exploit
the spatial information of nearby pixels to provide the cloud mask of
each pixel, which is crucial in the context of reduced spectral in-
formation, with only 4 spectral bands, as in Proba-V.

Fully convolutional neural networks design has been constantly
evolving since the burst of deep learning applications for image seg-
mentation (Farabet et al., 2013; Long et al., 2015; Chen et al., 2015). In
most of these applications, the FCNN architectures consist of an encoder
module formed of convolutional filters that pool the image several
times plus a decoder module that unpool the reduced feature vectors to
the original image size to conform the prediction. Since all operations
are convolutions and point-wise non-linearities, the networks can be
applied to images of arbitrary size with fast inference times. The U-Net
architecture proposed in Ronneberger et al. (2015) is a well-known
fully convolutional architecture that has been applied in several fields
from computer vision to medical imagery (Ronneberger et al., 2015;
Drozdzal et al., 2016; Breininger et al., 2018). It has been extensively
employed also in remote sensing (Schuegraf and Bittner, 2019; Wieland
et al., 2019; Jeppesen et al., 2019; Drönner et al., 2018) and, in par-
ticular, for cloud detection with the RS-Net network (Jeppesen et al.,
2019) and in Wieland et al. (2019) for Landsat-8. It has 5 pooling/
unpooling stages and it adds skip connections between feature maps of
the same resolution. Overall, the U-Net is conceptually simple yet ac-
curate and provides fast predictions, which is mandatory in remote
sensing and for cloud detection in particular. In this work, we adapted
the U-Net architecture by reducing the number of pooling steps from
five to two, by using separable convolutions layers (Chollet, 2017), and
by replacing the output of the network to work with binary classifica-
tion instead of the multiclass classification. These modifications follow
the hypothesis that cloud detection at 333 m resolution can be solved
with less parameters and with less downscaling steps. The RS-Net
(Jeppesen et al., 2019) for Landsat-8 used 5 downscaling steps whereas
we use 2, which makes sense since they were working with 30 m re-
solution data.

Fig. 4 shows an scheme of the proposed architecture. The encoder
part consists of 2 blocks of two times 3×3 separable convolution, batch
normalization (Ioffe and Szegedy, 2015) and ReLU activation followed
by a 2×2 max pooling. The bottleneck is also a block of two 3×3 se-
parable convolution, batch normalization and ReLU activation. The
decoder consists of two blocks of transpose convolution that is con-
catenated with the previous activations of the encoder, and two times
3×3 separable convolution, batch normalization and ReLU activation.
Finally, a 1×1 convolution is applied to obtain the outputs (log-odds)
that are passed through a sigmoid activation to obtain the final cloud
probabilities.2 In total, our FCNN architecture has 95,769 trainable
parameters and it does 2.18 M floating point operations to compute the
cloud mask of a 256×256 image. Compared to the U-Net architecture
proposed in Jeppesen et al. (2019),Wieland et al. (2019), our proposed

architecture has 99% less parameters and 92% less floating point op-
erations: the U-Net has around 7.8 million parameters and needs
27.97 M floating point operations to compute a cloud mask of a
256×256 image.

In this work, two different training strategies are used: networks are
either trained from scratch and using fine-tuning. Training from scratch
refers to initialize the weights of the network randomly, while fine-
tuning corresponds to use the weights from a previously trained network
for initialization. Since the optimization of the neural network is in
general a non convex problem, a different initialization of the weights
may lead to different local minimum of the loss function, which could
have a different test performance.

Once weights are initialized, we used mini-batch stochastic gradient
descent to minimize the standard binary cross entropy loss with respect
to those weights. This loss is defined as:

= +y y y yy y( , ^) log(^ ) (1 )log(1 ^ ),
i j k

B S S

i j k i j k i j k i j k
, ,

, ,

, , . , , , . ,

1 2

where yi j k, , is the predicted network output in the j k( , ) pixel of the ith
image in the batch; yi j k, , is its corresponding label in the ground truth; B
is the batch size; and ×S S1 2 is the size of the image.

4. Labeled datasets

This section describes the labeled datasets used for Landsat-8 and
for Proba-V. Manually annotated cloud masks are essential to train and
validate cloud detection algorithms designed to work globally, over
different land covers, and with different atmospheric conditions. In this
work, we use the publicly available L8Biome (U.S. Geological Survey,
2016b) and L8SPARCS (U.S. Geological Survey, 2016a) datasets for
Landsat-8, and an improved version of the dataset developed in the
context of the ESA Round Robin exercise (Iannone et al., 2017) for
Proba-V (Fig. 5).

4.1. Landsat-8 datasets and ground truth

As mentioned before, one of the motivations to explore TL across
Landsat-8 and Proba-V is the availability of public Landsat-8 image
datasets with the corresponding cloud mask, which are used as ground
truth by supervised machine learning algorithms. We use the open ac-
cess L8Biome (U.S. Geological Survey, 2016b) and L8SPARCS (U.S.
Geological Survey, 2016a) datasets as provided by Foga et al. (2017).

The L8Biome dataset was developed by the authors of Foga et al.
(2017). It contains 96 Landsat-8 Level 1T products fully labeled using
three classes: clear, thin cloud, and cloud. We fused the last two (thin
cloud and cloud) to obtain a binary cloud mask. The products are
scattered around the world covering the 8 major biomes. The average
size of each product is 8000×8000 pixels. For some of the experiments,
we used the same train-test split as in Li et al. (2019), containing 73
training and 19 testing images, respectively.

The L8SPARCS dataset was collected for the validation of the
method proposed in Hughes and Hayes (2014). It contains 80 Landsat-8
Level 1T subscenes. They were manually labeled using five different
classes: cloud, cloud-shadow, snow/ice, water, flooded, and clear-sky.
We merged all the non-cloud classes (cloud-shadow, snow/ice, water,
flooded, and clear-sky) in the clear class for this work. Each subscene is
1000×1000 pixels, hence the amount of data compared with the
L8Biome dataset is much lower.

4.2. Proba-V dataset and ground truth

The Proba-V dataset is formed by 72 Proba-V level 2A products
(processing version v101) that were manually labeled by the authors.
This dataset is a corrected and extended version of the dataset created
in the framework of the ESA Round Robin exercise (Iannone et al.,

Fig. 4. Proposed FCNN architecture, based on Ronneberger et al. (2015), for
cloud detection: inputs are 4-band TOA ref.lectance images.

2 The detailed implementation of the model is available at https://gist.github.
com/gonzmg88/8a27dab653982817034938b0af1a2bf7.
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2017), which was also employed in Mateo-García et al. (2017), Mateo-
García and Gómez-Chova (2018). For this work, the manual labels have
been extensively improved following a manual procedure by two dif-
ferent experts. All pixels within the 72 scenes are annotated as cloudy,
clear, or uncertain. For uncertain pixels the human expert could not
clearly decide whether they were cloud contaminated or cloud free.
Uncertain pixels are thus not considered for neither training nor testing
purposes.

In order to assess the quality of the ground truth, 950 pixels coming
from 12 different images were also labeled pixel-by-pixel by in-
dependent experts (Stelzer et al., 2017). The disagreement between
these pixel-wise labels and the fully labeled scenes is 6.62%. This error
is similar to the 7% error reported in Scaramuzza et al. (2012). In ad-
dition, a further analysis of the discrepancies shows that they arise
mainly in semi-transparent thin clouds over the ocean, where it was
difficult even for an experienced user to distinguish clouds. Never-
theless, this error constitutes a lower bound on the error a model can
achieve using these labels; i.e. we cannot really distinguish between
models with errors below 6% with this dataset.

We split the Proba-V dataset into train and test. The train dataset is
formed by 48 of those images: we will refer to this dataset as PV48. The
test dataset is formed by the remaining 24 products, which we will call
PV24. Fig. 5 shows the location of the training and testing products.
These labeled products are also available for inspection.3

5. Experimental setup

The experimental design seeks to answer several questions which
can be summarized in three: (1) Can models trained with Landsat-8
data be adapted to work in the Proba-V domain? (2) Can models trained
with Proba-V images (333 meter resolution) be applied to Landsat-8
images (30 meter resolution)? and (3) Does combining data from the
source and target domains increase accuracy of trained models?
Questions 1 and 2 are thus related to transductive TL problems, while
Question 3 involves inductive TL. To answer these questions, we per-
formed two blocks of experiments summarized in Table 1: one for
transductive TL and one for inductive TL.

In the transductive TL, we explored two different scenarios: (1) only
having Landsat-8 labeled data and (2) only having Proba-V labeled
data. For each scenario, once the models are trained, we performed two
tasks: first we validate the models in the source domain, and then we
evaluate them on the target domain where they were designed to work.
As explained before, in the first scenario we will use the TL Scheme 1
and in the second scenario the TL Scheme 2 (Section 3.2).

The inductive TL experiment answers the third question formulated
above. It consists of training a model in the Proba-V domain using si-
multaneously Proba-V data and adapted Landsat-8 data. Landsat-8 data
is transformed to the Proba-V domain for training using the spatio-
spectral transformation explained in Section 3.3.

The employed TL models of each experiment are summarized in
Table 2. The models are denoted by TLSat,SR, where Sat makes reference
to the satellite from which the training data came from (L8, Landsat-8,
and PV, Proba-V); SR refers to the spatial resolution used when training
the model, which can be 30 meters (the Landsat-8 resolution) or 333
meters (the Proba-V resolution). Note that when the satellite is L8 and
the resolution is 333 m it means that, for training the model, the L8
images and the ground truth have been transformed to the Proba-V
domain using the spatio-spectral domain adaptation in Section 3.3.

5.1. Transductive transfer learning: from Landsat-8 to Proba-V

In this experiment, we assume that we only have labeled data from
Landsat-8 for training. In this setting, we trained two models that follow

the TL Scheme 1. The first model, TLL8,30, uses as domain adaptation
step only the spectral transformation and does not apply the spatial
transformation (Section 3.3). The second model, TLL8,333, uses both
steps, the spectral and the spatial one, to adapt Landsat-8 labeled
images to the Proba-V domain. Both models can be directly applied to
Proba-V data. In the case of the first model, this is technically possible
even though it is trained on images of different spatial resolution since
the model is based on a Fully Convolutional architecture (Section 3.4)
thus it can be applied to images of any size.

In order to ensure that the models are working properly, we perform
a preliminary test on Landsat-8 data. Notice that this is a realistic si-
tuation since we assume we only have labeled data from this domain.
While testing the first model in the Landsat-8 domain is straightforward
(i.e. the spatial resolution of the predicted cloud mask is the same as the
original one), to test the second model in the Landsat-8 domain we have
to undo the spatial adaptation. In order to do so, we downscale the
resulting cloud mask back to the 30 m resolution by simple bicubic
interpolation (Section 3.3). Specifically, we preform two tests on the
Landsat-8 source domain in order to compare with the works (Li et al.,
2019 and Jeppesen et al., 2019): in the first one, we follow the ex-
perimental setup of Li et al. (2019), which consists in using 73 images
from the L8Biome dataset for training and the remaining 19 for testing4.
The second one, following the setup of Jeppesen et al. (2019), uses all
the L8Biome images for training and the L8SPARCS for testing.

Once we checked that the trained models work in the source do-
main, we evaluate their performance in the target domain (i.e. in Proba-
V images from the PV24 test dataset). With this experiment we want to
demonstrate that (1) transductive transfer learning works from Landsat-
8 to Proba-V, and (2) that both of the domain adaptation steps (spectral
and spatial) are required to enable transfer learning.

5.2. Transductive transfer learning: from Proba-V to Landsat-8

When assuming that we only have Proba-V labeled data for training
(Proba-V is the source domain and Landsat-8 the target domain) we will
apply the TL Scheme 2 (Section 3.2). This model (TLPV,333 in Table 2) is
first trained and evaluated in the Proba-V domain using the PV48 and
the PV24 datasets, respectively. Afterwards we evaluate its perfor-
mance in Landsat-8 images. To apply this model to Landsat-8 images,
the TL Scheme 2 consists of (1) applying the spatio-spectral domain
adaptation transformation to the Landsat-8 image (Section 3.3), (2)
applying the Proba-V trained model, and (3) downscaling the resulting
cloud mask prediction back to the 30 m resolution by simple bicubic
interpolation.

5.3. Inductive transfer learning: from Landsat-8 to Proba-V

Finally, in the inductive block, we evaluate several models trained
with an increasing amount of data coming from Proba-V and with all
Landsat-8 data. Notice that, as in the first scenario of the transductive
TL experiments, we use the TL Scheme 1 which trains the model in the
target domain; therefore, it is straightforward to include extra labeled
images from Proba-V for the joint training experiments. We analyze two
different training strategies: (1) train models from scratch including
simultaneously both the Landsat-8 and the Proba-V images, and (2)
models are initialized using the parameters of the model TLL8,333 and
fine-tuned with the Proba-V images. Moreover, we compare with models
trained only with the same Proba-V images from scratch. The training
details of all models can be found in Appendix A.

3 http://isp.uv.es/projects/cdc/probav_dataset.html

4 They discarded 4 images from the 96 of the L8Biome because of errors in the
labels.
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6. Experimental results and discussion

In this section, we discuss the results for the different transfer
learning experiments described in Section 5, and summarized in
Table 1. We first present the transductive transfer learning results: we
start with TL from Landsat-8 to Proba-V (Section 6.1), then TL from
Proba-V to Landsat-8 (Section 6.2), afterwards results related to the
robustness of the transductive models (Section 6.3), and finally a
summary of all transductive transfer learning models in both domains
and a comparison with independent state-of-the-art models (Section
6.4). Finally, we present the inductive transfer learning results (Section
6.5).

In order to test the models, we use the PV24 dataset in the Proba-V
domain. In the Landsat-8 domain, we use the L8SPARCS and L8Biome
datasets when they were not used for training. Testing is always per-
formed in the native resolution of the given domain; hence, in the case
of Proba-V, predicted masks are obtained at the 333 m resolution

domain and, in the case of Landsat-8, the predicted cloud masks are
obtained at the 30 m resolution of Landsat-8 images.

6.1. Transductive transfer learning results: Landsat-8 to Proba-V

In this subsection, we show results of the experimental setup ex-
plained in Section 5.1. First, we show results of our models, evaluated
using the same train-test split used in Li et al. (2019) for the L8Biome
dataset, and compare our results with theirs. Then, we show results of
our models trained using all images from the L8Biome dataset, which
are evaluated first in the Landsat-8 domain using the L8SPARCS dataset
and later in the target Proba-V domain using the PV24 test dataset. The
goal of this section is to demonstrate that the transfer learning between
Landsat-8 and Proba-V using the proposed spatio-spectral domain
adaptation is useful. Moreover, a complementary result is that using
only the spectral domain adaptation is not sufficient to obtain an ac-
curate model.

We evaluate the models on the L8Biome dataset using the train-test
split proposed in Li et al. (2019). In particular, we use the same 73
images for training and 19 for testing, so results can be directly com-
pared with (Li et al., 2019). We trained two models following the TL
Scheme 1: the first model, TLL8,30, using as domain adaptation trans-
formation only the spectral step and the second one, TLL8,333, using the
whole spectral and spatial adaptation (cf. Section 3.3). It is worth to
emphasize that, in order to apply the models to the Landsat-8 images,
the images have to be previously transformed using the corresponding
domain adaptation transform. After the model is applied, the corre-
sponding cloud mask has to be transformed back to the source domain.
In the case of the TLL8,333, the mask is downscaled to 30 m using bicubic

Fig. 5. Location of the used Landsat-8 and Proba-V datasets. Each image has a manually generated cloud mask.

Table 1
Experimental setup summary.

Experiment Source domain Training and Testing Tasks

Transductive TL Landsat-8 (1) Training and validation on Landsat-8
(2) Evaluation on Proba-V

Proba-V (1) Training and validation on Proba-V
(2) Evaluation on Landsat-8

Inductive TL Landsat-8 (1) Training on Landsat-8 and Proba-V
(2) Evaluation on Proba-V

Table 2
Experimental setup of the different trained models depending on the transfer learning direction across sensors (i.e. data used for training and testing).

Model name Source Domain
(train data)

Target Domain
(test data)

TL Scheme
(Section 3.2)

Domain
Adaptation

TL direction

TLL8,30 Landsat-8 Proba-V Sch.1: train in Spectral L8 to PV
(30m) (333m) target domain

TLL8,333 Landsat-8 Proba-V Sch.1: train in Spectral & Spatial
(333m) (333m) target domain

TLPV,333 Proba-V Landsat-8 Sch.2: train in Spectral & Spatial PV to L8
(333m) (30m) source domain

TLL8+PV,333 Landsat-8 & Proba-V Sch.1: train in Spectral & Spatial L8 to PV
Proba-V (333m) (333m) target domain
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interpolation. Table 3 shows the results for the Landsat-8 test images.
As one can see, both proposed models have a similar performance.
Although the model TLL8,333 works in a different spatial resolution, it is
only one point less accurate than the model that uses directly the 30 m
resolution data (TLL8,30).

Results from the MSCFF network (Li et al., 2019) and from FMask
(Zhu et al., 2015) are included in Table 3 for comparison purposes. For
the MSCFF network, we consider results using all the bands and using
only the NIR, Red, Green, and Blue bands (NRGB). We can see that our
network trained at 30 m resolution has a similar performance than
MSCFF using NRGB bands, which indicates that our FCNN architecture
squeeze a similar amount of information than MSCFF even though it has
much less trainable parameters and pooling steps. In addition, the
network trained with the 333 m resolution data (TLL8,333) is 2 points less
accurate than MSCFF using all bands (Li et al., 2019). However, it
provides a more accurate cloud mask than the operational Landsat-8
cloud detection algorithm, FMask (Zhu et al., 2015), for these 19
images. This highlights that the 333 m resolution image retains suffi-
cient information to provide an accurate cloud mask even for the 30 m
product; i.e. the implicit smoothing effect of the employed upscaling-
downscaling approach does not affect the overall cloud detection ac-
curacy —although some effects at cloud borders might be expected.

Since these preliminary results were satisfactory, we retrained both
networks from scratch using all the images of the L8Biome dataset as
described in Section 5.1. In order to analyze the robustness of the
networks to different weight initialization, we trained 10 copies of the
network that uses the spectro-spatial domain adaptation (TLL8,333) using
different random seeds. Robustness results will be further analyzed in
Section 6.3.

In Table 4, the results of these models tested on the Landsat-8
L8SPARCS dataset are shown. First of all, we see that, as expected,
results of the 10 copies of TLL8,333 exhibit a low variability for the ten
different runs. This agrees with our hypothesis that a different in-
itialization of the weights leads to consistent train and test accuracy
values. Regarding the networks performance, networks trained using
the spatio-spectral domain adaptation (TLL8,333) are around 2 points less
accurate compared with the network that work in 30 m resolution
(TLL8,30) and the RS-Net network of the work (Jeppesen et al., 2019).
For the RS-Net, we consider again results using the RGB bands plus NIR
(NRGB) and results using all bands except the thermal (all-NT), which

were the best performing model for the L8SPARCS dataset in Jeppesen
et al. (2019). In this case, it is also worth to mention that the network
that only uses the spectral domain adaptation transformation (TLL8,30)
has almost the same accuracy than RS-Net (Jeppesen et al., 2019) even
tough (a) the network has 99% less trainable parameters and (b) it uses
less Landsat-8 spectral bands.

Once we showed that the proposed models trained in a transfer
learning framework have a competitive performance, even with models
trained specifically for the source domain, we evaluate the performance
of the models in the target domain. Table 5 shows the trasfer learning
results of Landsat-8 models into Proba-V data. In particular, this table
shows the test results of the models trained using the Landsat-8
L8SPARCS dataset and tested in the Proba-V domain using the PV24
test set. Firstly, we see that the model trained using the spatio-spectral
domain adaptation (TLL8,333) is much more accurate than the Opera-
tional Proba-V cloud mask. This suggests that the proposed strategy
could be used to design accurate ML models even before the satellite is
launched. On the other hand, TLL8,333 provides results between 8 to 10
points more accurate than the model trained using only the spectral
transformation (TLL8,30). This demonstrates that FCNN learn spatial
patterns that are dependent on the spatial resolution and, therefore, in
order to transfer learning between sensors of different spatial resolu-
tions, a domain adaptation transformation that takes into account the
spatial scale is required. Results of the 10 runs of the TLL8,333 network
show an unusual behaviour: the cloud detection accuracy and F1 score
vary within 3 points for the different random initializations. This de-
pendency on the initialization contrasts with the results of these 10 runs
in the Landsat-8 domain showed in Table 4. Our hypothesis is that a
data-shift (Torralba and Efros, 2011) between the distribution of the
Landsat-8 adapted data and the real Proba-V distribution still exists
after the proposed adaptation. In our view, for some images in the real
Proba-V domain, the networks extrapolate. Hence, predictions on these
regions are correct for some networks and incorrect for others de-
pending on its initialization. However, this implicit extrapolation does
not significantly affect the quality of the predictions; we can see that,
even in the worse case scenario, the proposed network trained with the
spatio-spectraly adapted Landsat-8 data outperforms the Proba-V op-
erational cloud detection algorithm (Wolters et al., 2015) by a large
margin.

Finally, Fig. 6 shows some illustrative results of the cloud masks of
three different models, all applied to Proba-V images not used for
training. Those images have been selected to highlight critical cloud
detection cases such as cloud ice discrimination, bright impervious
surfaces, and sand and coastal areas. We show in white the agreement
in cloudy pixels between the model prediction and the ground truth, in
orange omission errors (the model predicts clear and the ground truth
cloudy), and in blue commission errors (predictions indicate cloud and
the ground truth clear). First example presents commission errors in the
operational PV cloud mask over sandy beaches and water. The con-
volutional models do not exhibit those problems, although the model
trained on the L8Biome dataset still has several omission errors mainly
in cloud borders. Second example shows a winter acquisition over the
Andes, in South America. In this case, the operational algorithm pro-
duce commission errors in the snowy mountains that convolutional
models correctly detect; specially the model trained with Proba-V
images, TLPV,333. The last example also highlights several commission

Table 3
Results over the 19 test images of the L8Biome dataset used in Li et al. (2019).
Proposed models (TLL8,333 and TLL8,30) and the model from Li et al. (2019)
(MSCFF) were all trained using the same 73 images of the L8Biome dataset.

Model Commission Omission Overall F1
Error% Error% Accuracy% score%

TLL8,333 6.48 7.67 92.90 93.11
TLL8,30 6.63 5.58 93.92 94.17
FMask (Zhu et al., 2015) – 6.99 89.59 89.3
MSCFF (Li et al., 2019) (all

bands)
– 6.07 94.96 94.5

MSCFF (Li et al., 2019) (NRGB) – 5.48 93.94 92.6

Table 4
Results of models trained with the L8Biome dataset and tested in the source
Landsat-8 domain using L8SPARCS dataset. Both RS-Net models and our models
using the L8Biome dataset for training.

Model Acc% F1%

TLL8,333 91.25–91.81 73.48–74.73
TLL8,30 93.20 79.98
FMask (Foga et al., 2017) 92.47 81.61
RS-Net (Jeppesen et al., 2019) (all-NT) 93.26 80.62
RS-Net (Jeppesen et al., 2019) (NRGB) 92.53 76.99

Table 5
Results of the models trained with the L8Biome dataset and tested on the Proba-
V target domain using the PV24 dataset.

Model Acc% F1%

TLL8,333 88.84–91.87 87.95–89.71
TLL8,30 80.37 73.48
Operational Proba-V v101 (Wolters et al., 2015) 83.01 83.00
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errors of the operational algorithm over the city of Istanbul, in Turkey.
Again the convolutional models exhibit a much lower amount of
commissions. In Appendix B, we present more examples on Proba-V
images for the interested reader.

6.2. Transductive transfer learning results: Proba-V to Landsat-8

In this section, we present and analyze the results of the networks
trained only with Proba-V data. These networks are first tested in the
Proba-V source domain using the PV24 test set and afterwards in the
target Landsat-8 domain using the L8Biome dataset. The objective is to
prove that models trained in the 10 times lower resolution Proba-V data
can be also transferred to the 30 m Landsat-8 resolution with a negli-
gible loss in accuracy.

We trained the model TLPV,333 using the transfer learning Scheme 2
(Fig. 1) following the setup explained in Section 5.2. In particular, we
use the PV48 dataset for training and we also train 10 copies of the
network to evaluate the robustness to initialization. Table 6 shows re-
sults of this model in the source Proba-V domain using the PV24 test
dataset. We can see that the model achieves a very high accuracy and
that is not very sensitive to the initialization of the network.

In order to test the models in the Landsat-8 domain, we follow the
procedure described in Section 5.2. Notice that, as we discussed before,
using 333 m resolution data to resolve 30 m resolution images is an
under-determined problem since there is information loss in the re-
sampling process. Table 7 shows the performance metrics of the

proposed model on the Landsat-8 domain using the L8Biome dataset as
test set. We can see that the accuracy of the models trained with the
Proba-V data, TLPV,333, is similar to the accuracy of FMask (Zhu and
Woodcock, 2012) and it is not far from deep learning approaches of
recent works (Jeppesen et al., 2019). This highlight that cloud detection
for a given resolution can be solved reasonably well using data with
lower resolution, which indicates that much of the information loss due
to the upscaling does not affect the final cloud mask predictions.
Appendix B presents the cloud mask of this model for some additional
cherry-picked Landsat-8 images.

6.3. FCNN robustness

As previously mentioned, we trained ten copies of the same network
changing the random seed for both TL directions experiments in order
to test the robustness of the transductive transfer learning models to the
initialization. Fig. 7 shows the test accuracy of these models (TLPV,333
and TLL8,333) in both Proba-V and Landsat-8 domains using the PV24
and the SPARCS datasets, respectively. The most clear pattern we can
see is that when the networks are tested in the source domain (i.e. in the
same domain that they were trained), the accuracy is higher and with
lower variability than when they are tested in the target domain. As we
explained before, we ascribe this behaviour to the implicit extrapola-
tion of the networks in the target domain: the different trained net-
works give different predictions in some parts of the target domain that
is unknown to them. These results should be taken into account when

Fig. 6. Discrepancies between the ground truth and three models applied to three test sites of the PV24 test dataset.
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the hyper-parameters of the networks are tuned, since differences be-
tween hyper-parameters configuration might be due to noise caused by
this extrapolation effect. It is also worth to mention that networks
trained in the Proba-V domain (TLPV,333) have similar accuracy, al-
though with higher variability, than the networks trained on the
Landsat-8 data adapted with the spatio-spectral domain adaptation:
TLL8,333.

6.4. Summary of transductive results

In this subsection we explore the connections between all previous
experiments and compare their results. Since the proposed models can
be evaluated in both domains (Landsat-8 and Proba-V), they can be
inter-compared. Table 8 shows a summary of the results from the pre-
vious sections. The first column, model, refers to a particular archi-
tecture and TL scheme employed. The TL scheme of a particular model
specifies how this model is tested in the source and target domain (see

Section 5 for the details). The second column shows the dataset used to
train the model; and the third column shows the dataset where the
model is tested. The remainder columns are different measures of the
performance of tested models. Notice that, if a given model is trained
using a different dataset, it will end up with different parameters (i.e.
the weight values of the network will be different).

Firstly, in the case of testing in the Proba-V domain, we can see that
the model trained only with Landsat-8 is still much better than the
threshold-based Proba-V Operational Cloud Detection model (Wolters
et al., 2015); however, it is still far from the network trained with real
Proba-V images. Therefore, it proofs to be a valid strategy with per-
spectives of improvement. Secondly, there is a dependency on the
manual labeling procedure employed by the experts developing the
ground truth: we see that models trained on data which was labeled
using the same methodology for training and for testing have sig-
nificantly higher accuracy. For example, networks trained on L8Biome
data using the train-test split of Li et al. (2019) have a significantly
higher accuracy (92.90%) than networks trained with all L8Biome da-
taset and tested in the L8SPARCS dataset (91.25–91.81%). In the case of
the Proba-V domain, we see that networks trained with the PV48 da-
taset have also a very high accuracy in the PV24 dataset
(94.81–95.10%), which may be also due to the fact that the PV48 and
PV24 datasets were developed by the same experts using the same
manual labeling approach. This dependence is also documented in
other contexts involving classification like in Recht et al.
(2018),Torralba and Efros (2011). In the case of cloud detection, this
could be exacerbated by different criteria in the inclusion of thin clouds
in the datasets, since in one dataset very thin semitransparent clouds
might have been considered as clear pixels whereas for other this pixels
might have been annotated as cloudy. Finally, in these results, it is
important to consider the errors in the labeling procedure. These errors
were estimated to be around 7% for Landsat (Scaramuzza et al., 2012)
and 6.62% for Proba-V (see Section 4.2). Hence, models over 93% ac-
curacy cannot be really compared or ranked, from a statistical point of
view, using these datasets.

6.5. Inductive transfer learning results

In this section, we present and discuss results of models that use
both datasets for training, simultaneously. This setting seeks to explore
a scenario where there are few labeled images from a given (target)
satellite sensor, which is often the case due to the high cost of manual
labeling of clouds, and a larger corpus of labeled images from a dif-
ferent but similar sensor. Proba-V will be in these experiments the
target domain, where few labeled images with cloud mask are avail-
able, whereas the Landsat-8 satellite will be the source domain with the
L8Biome dataset as the large corpus of labeled images. The goal of the
experiments is thus to test if networks trained using fine-tuning or joint
training with the L8Biome dataset have a significantly better perfor-
mance than networks trained from scratch using the few Proba-V
images.

In order to train the models with Landsat-8 data we apply the TL
Scheme 1 (Section 3.2) with the proposed spectro-spatial domain
adaptation as explained in Section 5.3. In this setting, models are
trained in the Proba-V domain hence, joint training consists of merging
the dataset of the few Proba-V images with the dataset of Landsat-8
adapted images.

We trained several networks with an increasing number of real
Proba-V images d from the PV48 dataset. For each number of Proba-V
images, d, we selected 8 disjoint subsets of the PV48 dataset containing
d images. For each of such subsets, three models were trained: (a) from
scratch using the d Proba-V images in the subset; (b) fine-tuning, which
uses those d Proba-V images to fine-tune a network trained previously

Table 6
Results of models trained in the Proba-V PV48 dataset over the Proba-V source
domain using the PV24 dataset.

Model Commission Omission Overall F1
Error% Error% Accuracy% score%

TLPV,333 4.32–5.61 4.66–6.01 94.81–95.10 94.14–94.43
Operational Proba-V

v101 (Wolters et al.,
2015)

25.86 5.70 83.01 83.00

Table 7
Results of the model TLPV,333 over the L8Biome dataset compared with other
published results. The RS-Net (Jeppesen et al., 2019) model uses the L8SPARCS
dataset for training.

Model Commission Omission Overall F1
Error% Error% Accuracy% score%

TLPV,333 10.99–17.13 6.01–10.55 87.79–89.77 87.95–89.71
RS-Net (Jeppesen

et al., 2019)
– 5.51 91.59 91.52

FMask (Foga et al.,
2017)

– 9.69 88.48 85.03

Fig. 7. Test accuracy of the models trained with Landsat-8 data from L8Biome
dataset TLL8,333 (blue) and with Proba-V data from PV48 dataset TLPV,333 (or-
ange). X-axis: accuracy in the L8SPARCS dataset; Y-axis: accuracy in the PV24
dataset. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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in the L8Biome dataset5; and (c) joint training, which trains from scratch
using the d Proba-V images together with all the images in the L8Biome
dataset.

Fig. 8 shows the results of this experiment tested over the PV24 test
set. Overall, we see that joint training has a better performance than
training from scratch or using fine-tuning, which shows similar accu-
racy. In particular, we can see that using joint training increases the
mean accuracy between 2 and 4 points in the scarce data scenarios with
1 to 3 images. In scenarios with 4 to 6 images for training, joint training
still gives an small boost in accuracy and also reduces the variance of
the resulting accuracy values. This indicates more robustness of the
joint training solution. In scenarios with a larger amount of data, we see
that the three methods have a similar performance. It is also worth to
mention that joint training provides systematically an increase in the
mean accuracy over the models trained only with Landsat-8 data
without any Proba-V image (Section 6.1).

Fig. 9 compares joint training with training from scratch. In this
figure, each point represent a subset of d images with d varying in the x-
axis. Points on the left show the accuracy on the PV24 test set of the
model trained from scratch using only those d images, whereas points
on the right use these d images together with the images in the L8Biome
dataset for training (joint learning). We see that, for the vast majority of
those subsets, using joint training has a positive impact on the final
performance of the model (points on the right). We see again that the
variance of the joint models is reduced and that joint training con-
sistently take advantage of the new Proba-V data to also perform better
than the model that does not use it, which is trained only with the
L8Biome dataset and depicted by the blue shaded area. Note that the
orange area depicts the accuracy of models trained on all Proba-V
images (PV48) that provides an upper bound for the cloud detection
accuracy.

Table 8
Table with results over the different test sets of the proposed models and selected models of the literature. Ranges show minimum and maximum values obtained in
10 runs changing the random seed value for the initialization of the network weights.

Model Train Test Commission Omission Overall F1
Set Set Error% Error% Accuracy% score%

TLL8,333 L8Biome L8SPARCS 1.16–1.86 36.34–37.82 91.25–91.81 73.48–74.73
TLL8,30 L8Biome L8SPARCS 1.24 29.91 93.20 79.98
TLPV,333 PV48 L8SPARCS 1.05–3.26 33.08–40.84 90.93–92.14 71.68–76.27
FMask (Foga et al., 2017) – L8SPARCS – 13.79 92.47 81.61
RS-Net (Jeppesen et al., 2019) L8Biome L8SPARCS – 27.66 93.26 80.62

TLL8,333 L8Biome (73) L8Biome (19) 6.78 7.67 92.90 93.11
TLL8,30 L8Biome (73) L8Biome (19) 6.63 5.58 93.92 94.17
TLPV,333 PV48 L8Biome (19) 7.32–10.5 6.83–9.79 90.85–91.89 91.11–92.22
FMask (Foga et al., 2017) – L8Biome (19) – 6.99 89.59 89.3
MSCFF (Li et al., 2019) (all bands) L8Biome (73) L8Biome (19) – 6.07 94.96 94.5
MSCFF (Li et al., 2019) (NRGB) L8Biome (73) L8Biome (19) – 5.48 93.94 92.6

TLPV,333 PV48 L8Biome 10.99–17.13 6.01–10.55 87.79–89.77 87.95–89.71
FMask (Foga et al., 2017) – L8Biome – 9.69 88.48 85.03
RS-Net (Jeppesen et al., 2019) L8SPARCS L8Biome – 5.51 91.59 91.52

TLL8,333 L8Biome PV24 5.10–12.18 8.42–14.63 88.84–91.87 87.20–90.69
TLL8,30 L8Biome PV24 5.00 38.23 80.37 73.48
TLPV,333 PV48 PV24 4.32–5.61 4.66–6.01 94.81–95.10 94.14–94.43
Oper. PV v101 (Wolters et al., 2015) – PV24 25.86 5.70 83.01 83.00

Fig. 8. Test accuracy over the PV24 test set of FCNN Joint models trained with
different numbers of Proba-V images in red from scracth, in yellow using fine-
tuning and in green using joint training. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 9. Test accuracy of models trained using different number of Proba-V
images. For each value, on left, only Proba-V data is used; on right, models
trained jointly on Landsat-8 and Proba-V data. Blue shaded area depicts the
accuracy of the models trained only in the L8Biome dataset. Orange area de-
picts the accuracy of models trained on all Proba-V images (PV48). (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)

5 For fine-tuning we used the network TLL8,333 from subsection 6.1.

G. Mateo-García, et al. ISPRS Journal of Photogrammetry and Remote Sensing 160 (2020) 1–17

12



7. Conclusions

In this paper, we explored different transfer learning (TL) ap-
proaches to train machine learning (ML) methods for cloud detection in
remote sensing images. In particular, we analyzed transductive and
inductive TL frameworks using Landsat-8 and Proba-V as case studies.
Both frameworks depend on a domain adaptation transformation that
converts images from one satellite to resemble images acquired with the
other satellite.

We proposed an image conversion method to adapt Landsat-8
images to the Proba-V spectral and spatial characteristics that enables
TL across satellites. Our results suggest that it is important to use both
the spatial and the spectral adaptation in order to fully exploit TL ad-
vantages.

The transductive transfer learning framework assumes that we only
have data from one satellite. In this context, two different TL schemes
were proposed and successfully tested. Each scheme allows for a dif-
ferent TL depending on the particular direction of the domain adapta-
tion transformation: from the source domain to the target domain or
from the target domain to the source domain. We show that ML models
trained only with data from Landsat-8 can have a very good perfor-
mance on Proba-V surpassing current operational algorithm (Wolters
et al., 2015). This means that ML methods can be trained even before
the satellite is launched, and obtain better performance than threshold-
based approaches. We evaluated the proposed methods results in the
context of state-of-the-art cloud detection methodologies based on deep
learning (Jeppesen et al., 2019; Li et al., 2019).

In order to use the Proba-V data for predicting on Landsat-8 images,
we proposed a TL scheme that takes advantage of the proposed Landsat-
8 to Proba-V domain adaptation transformation. We showed that ML
models trained only with Proba-V data have similar accuracy than
operational Landsat-8 approaches such as FMask (Zhu and Woodcock,
2012) and are only two points less accurate than (Li et al., 2019), even
though our method is trained with data on a 11 times lower spatial
resolution.

The inductive transfer learning framework relies on merging data
from two different domains. We showed that joining data from both
satellites increases accuracy specially in the regimes where there is few
data from the target Proba-V domain, although we do not see a sig-
nificant improvement using fine-tuning.

We show that training only with the adapted Landsat-8 data suffers
the data-shift (Torralba and Efros, 2011) problem. In particular, we
trained 10 copies of the same network with different initialization
weights and show that the error in the adapted Landsat-8 domain is
lower and with less variance than in the Proba-V domain. We see that,
in the former, the error ranges from 91.4% to 91.9% whereas for Proba-
V the error is 88.8–90.7%. This contrasts with the belief that CNN in-
itialization does not affect much the obtained solution. In this respect,
there is still margin to improve the transfer learning results by im-
proving the domain adaptation transformation and thus reducing the
data-shift problem. Our next steps are fostered to improve the cloud
detection accuracy by using the generative adversarial networks
(GANs) framework (Mateo-García et al., 2019) to learn a transforma-
tion between Landsat-8 and Proba-V data.
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Appendix A. Models training technical details

For convenience, all networks were trained using as input patches of size 32×32, although the model is independent of this size. The test size
corresponds to the size of the images: for example, in the case of the L8SPARCS dataset, the size of each test image is 1000×1000 pixels. The input of
the networks is always top of atmosphere reflectance for both Proba-V (Wolters et al., 2018) and Landsat-8 (U.S. Geological Survey, 2019). The
training patches were taken from the training images with a 16 pixel overlap as a form of data augmentation; we also employed horizontal and
vertical flips and 90 degree rotations as data augmentation techniques. In all experiments, we used 64 as the batch size and the Adam optimizer
(Kingma and Ba, 2015). All networks were trained using TensorFlow library (v1.12) (Abadi et al., 2015) and the weights of the network were
initialized with the default initialization of each of the corresponding layers.

The networks TLL8,333 are trained in Landsat-8 data from the L8Biome dataset transformed using the spatio-spectral domain adaptation trans-
formation. After the spatial domain adaptation, the L8Biome dataset has 243,430 patches. We first train the network using the train-test split of Li
et al. (2019) to compare with their approach. Then, the network is trained using all the L8Biome dataset. Networks were trained until no im-
provement was observed for 15 epochs. We used a learning rate of 10 4 and weight decay of 5·10 3 for regularization purposes. We trained 10 copies
of the same network architecture with different random seed initialization to ensure that results do not depend on the weight initialization or
optimization process.

Networks TLPV,333 are trained on the Proba-V data using the PV48 Proba-V dataset which corresponds to 1,891,095 patches. For these experi-
ments we reduced the learning rate and the weight decay. In particular, we used a learning rate of 10 5 and weight decay of 5·10 4. We also trained
10 copies of the same network to ensure consistency across initializations.

Networks TLL8,30 are trained in the L8Biome dataset transformed using only the spectral domain adaptation. Since there is no spatial upscaling,
the total amount of patches is much bigger than in the TLL8,333 case (14,531,228 patches). We also trained the network first using the train-test split of
Li et al. (2019) to compare with their approach. Networks were trained for 50 epochs using a learning rate of 10 5 and weight decay of 5·10 4.

When the networks are trained jointly, we used the L8Biome dataset transformed using the spatio-spectral domain adaptation (i.e. same as above
in TLL8,3333), and an increasing number of images from the PV48 dataset. For the fine-tuning we used as initial weights the aforementioned network
(TLL8,333) trained with the L8Biome dataset.

Appendix B. Visual inspection of cloud detection results

In this appendix, we show additional results of the produced cloud masks for Proba-V and for Landsat-8, and compare them against the ground
truth. All shown images have not been used for training by none of the models. As in Section 6, we show in white agreement in cloudy pixels between
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the model prediction and the ground truth, in orange omission errors (the model predicts clear and the ground truth cloudy), and in blue commission
errors (predictions indicate cloud and the ground truth clear).

Fig. B.10 shows four additional results for Proba-V. Models shown are the operational Proba-V cloud detection (Wolters et al., 2015), the model
trained on Landsat-8 data with the proposed domain adaptation TLL8,333 and the model trained on Proba-V TLPV ,333. The first example presents
omission errors of the operational Proba-V algorithm over cloudy areas with saturated pixels in the blue band. We see that both convolutional models
solve this issue, nevertheless, the model trained on the L8Biome dataset still has several omission errors in cloud borders. Second example shows an
acquisition over Corsica island, where all models capture most of the cloudy pixels. However, in this case, the operational model has commission
errors in the snowy mountains in Corsica that convolutional models correct; specially the FCNN trained with Proba-V images TLPV,333. The third
example also highlights several commission errors of the operational algorithm, in this case over coastal waters. Again the convolutional models do
not exhibit this problem although there are very thin clouds over land that are undetected. Finally, last acquisition shows a salty lake in Central
Anatolia (Tuz Lake), where we can see that the operational algorithm incurs in several commission errors. The models based on FCNNs exhibit less
commissions in the case of TLL8,333 and none in the model trained with Proba-V data TLPV ,333.

Fig. B.11 shows results for Landsat-8 of four images in the L8SPARCS dataset. In the case of Landsat-8, the models selected are the operational
FMask (Zhu et al., 2015), the model trained with Proba-V data TLPV ,333 and the model trained with Landsat-8 data at its original resolution TLL8,30.

Fig. B.10. Discrepancies between the ground truth and three models applied to four test sites of Proba-V.
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First row shows the Vichada river in the border of Colombia and Venezuela. We can see that overall all three models provide sensible cloud masks.
FMask exhibit a slightly higher amount of omission errors for very thin clouds in the bottom part of the images which the models based on FCNN do
not exhibit. Second row shows the tundra in the North of Quebec in late spring. We can see several commission errors of FMask in regions where the
ice is melting; these false positives are not present in the FCNN models predictions nevertheless the model trained in Proba-V data omits some clouds
in the icy surface. Third row, from the chilean coast in South America, shows very thin clouds in the upper right part of the images that the three
models mainly omit. In addition, FMask shows systematic commission errors in the coast pixels that the FCNN models do not have. Last row is an
acquisition from a salt marsh in the Little Rann of Kutch in India. It contains muddy water with a big amount of suspended sediments and salt
evaporation ponds. We can see that FMask has large commission errors in these muddy waters and it also failed to identify thin clouds in the bottom
right of the image. In contrast, the model trained on Proba-V data shows few commission errors mostly in the salt pans and it is able to capture most
of thin clouds in the image. The model trained with 30 m Landsat-8 data does not show commission errors, however, it also failed to identify several
thin clouds.

Fig. B.11. Discrepancies between the ground truth and three models applied to four test sites of the L8SPARCS dataset.
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Abstract—The number of Earth observation satellites carrying
optical sensors with similar characteristics is constantly growing.
Despite their similarities and the potential synergies among them,
derived satellite products are often developed for each sensor in-
dependently. Differences in retrieved radiances lead to significant
drops in accuracy, which hampers knowledge and information
sharing across sensors. This is particularly harmful for machine
learning algorithms, since gathering new ground-truth data to
train models for each sensor is costly and requires experienced
manpower. In this work, we propose a domain adaptation trans-
formation to reduce the statistical differences between images of
two satellite sensors in order to boost the performance of transfer
learning models. The proposed methodology is based on the cycle
consistent generative adversarial domain adaptation framework
that trains the transformation model in an unpaired manner. In
particular, Landsat-8 and Proba-V satellites, which present dif-
ferent but compatible spatio-spectral characteristics, are used to
illustrate the method. The obtained transformation significantly
reduces differences between the image datasets while preserving
the spatial and spectral information of adapted images, which is,
hence, useful for any general purpose cross-sensor application. In
addition, the training of the proposed adversarial domain adapta-
tion model can be modified to improve the performance in a specific
remote sensing application, such as cloud detection, by including
a dedicated term in the cost function. Results show that, when the
proposed transformation is applied, cloud detection models trained
in Landsat-8 data increase cloud detection accuracy in Proba-V.

Index Terms—Generative adversarial networks, convolutional
neural networks, domain adaptation, Landsat-8, Proba-V, cloud
detection.

I. INTRODUCTION

OVER the last decade, the number of both private and pub-
lic satellite missions for Earth observation has explode.

According to the UCS satellite database [1], there are currently
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around 500 orbiting satellites carrying passive optical sensors
(multispectral or hyperspectral). Whereas each sensor is to some
extent unique, in many cases, there are only small differences
between them such as slightly different spectral responses,
different ground sampling distances, or the different inherent
noise of the instruments. Nevertheless, derived products from
those images are currently tailored to each particular sensor,
since models designed to one sensor often transfer poorly to a
different one due to those differences [2]. In order to transfer
products across sensors, we need to ensure that the underlying
data distribution does not change from one sensor to the other.
In machine learning, this is a long-standing problem that is
called data shift [3]: differences between the training and testing
dataset distributions yield significant drops in performance. In
order to address this problem, the field of domain adaptation
(DA) proposes to build a transformation between the different
distribution domains such that, when images are transformed
from one source domain to other target domain, the distribution
shift is reduced.

In this work, we focus on the problem where the training
(source) distribution corresponds to images and ground truth
from one satellite, whereas the testing (target) distribution cor-
responds to images from another sensor. Notice that this is a
very broad scenario that is found frequently in remote sensing
(RS). Examples of products built in this manner include cloud
masks [4], [5], but also land use and land cover classification [6],
vegetation indexes retrieval [7], or crop yield estimation [8]. The
goal of domain adaptation is thus to find a transformation that
allows models working on a given satellite (source domain) to
work accurately on another one (target domain).

As a representative case study, in this work, we focus on
the Landsat-8 [9] and Proba-V [10] satellites. Transfer learning
across these two sensors is particularly interesting since Landsat
is a pioneering RS satellite program with a strong and well-
established community, and hence, a good number of manually
annotated datasets with cloud masks are publicly available,
which could be very valuable to develop cloud detection models
for Proba-V. Nevertheless, in order to build a model for Proba-
V using Landsat-8 training data, differences in the imaging
instruments on-board Landsat-8 and Proba-V must be taken
in to account. On the one hand, the operational Land Imager
instrument (OLI), on board of Landsat-8, measures radiance in
nine bands in the visible and infrared part of the electromagnetic

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Close-in-time acquisitions of Landsat-8 and Proba-V satellites.
Landsat-8 image is transformed and upscaled to resemble the optical charac-
teristics of the Proba-V sensor; however, differences in radiometry and texture
between images still remain. First row: Missouri river in North America (April
20, 2016). Second and third rows: North West Pacific coast, North America
(May 20, 2016 and April 20, 2016).

spectrum at 30-m resolution. On the other hand, the Proba-V in-
strument retrieves four bands in the blue, red, near-infrared, and
short-wave infrared at 333-m resolution (full swath). Compared
to Landsat-8, Proba-V has a much wider swath, which yields
a more frequent revisiting time of around two days, whereas
Landsat-8 revisit time ranges between 7 and 14 days. Fig. 1
shows three calibrated top of atmosphere (TOA) reflectance
Landsat-8 and Proba-V images from the same location acquired
with a difference of 30–90 min. We can see that, despite showing
the same bands for Landsat-8 and Proba-V, and upscaling the
Landsat-8 image to the Proba-V resolution (cf., Section III-A),
differences between the images still remain [11]. In particular,
Proba-V images are more blueish, due to saturation effects in
the blue channel, and are more noisy [12]. This higher noise
and lower spatial resolution can be appreciated, for example,
in the bottom row of Fig. 1, which shows a mountainous area
in British Columbia where details in the Landsat-8 image are
sharper than in the Proba-V one. Hence, products built using
data in the Landsat-8 domain, such as the cloud detection model
proposed in [5], show a drop in detection accuracy when directly
applied to Proba-V images.

In this work, we propose a DA methodology based on the
state-of-the-art work in DA for computer vision of Hoffman
et al., CyCADA [13], to the remote sensing field. In partic-
ular, we propose to use cycle consistent generative adversar-
ial networks (cycleGAN [14]) to find a DA transformation
from the Proba-V domain to the Landsat-8 upscaled domain
that removes noise and saturation of Proba-V images while
preventing artifacts on the resulting images. One of the main

advantages of the proposed methodology is that it is unpaired,
i.e., it does not require a paired dataset of simultaneous and
collocated Landsat-8 and Proba-V images to be trained. This
is crucial for applications such as cloud detection since cloud’s
presence and location highly varies between acquisitions. This
can also be viewed in Fig. 1, even though acquisitions are the
closest possible in time for Landsat-8 and Proba-V, cloud loca-
tion changes significantly between the acquisitions. This would
make a paired approach unfeasible. Following the proposed
methodology, Proba-V images are enhanced and are shown to
be statistically more similar to the Landsat-8 upscaled ones. In
addition, from a transfer learning perspective, it is important to
remark that the cloud detection models applied to Proba-V are
trained using only Landsat-8 images and their ground truth. In
this context, a boost in the cloud detection accuracy is shown
for Proba-V when the proposed adversarial domain adaptation
transformation is applied.

The rest of this article is organized as follows: in Section II, we
discuss related work in cloud detection and domain adaptation
in RS; in Section III, we detailed the proposed methodology
to upscale Landsat-8 images and to train the domain adapta-
tion network; Section IV describes the Proba-V and Landsat-8
datasets where experiments are carried out; Section V contains
the experimental results, and finally, Section VI concludes this
article.

II. RELATED WORK

There is a huge amount of work in both cloud detection and
domain adaptation in the remote sensing literature. We discuss
related work in both fields with a particular focus on approaches
that deal with data coming from different sensors.

A. Transfer Learning for Cloud Detection

Cloud detection has been lately dominated by deep learning
approaches where, given a sufficiently large corpus of manually
annotated images with the corresponding ground-truth cloud
masks, a network based on spatial convolutions is trained by
back-propagation. Fully convolutional neural networks (FC-
NNs) [15], most of them based on the U-Net architecture [16],
produce very accurate results and have the advantage that they
can be applied to images of the arbitrary size with a fast inference
time. Jeppesen et al. [17], Mohajerani and Sahedi [18], [19],
Li et al. [20], and Yang et al. [21] tackle cloud detection in
Landsat-8 using FCNNs trained in publicly available manually
annotated datasets. They all show very high cloud detection ac-
curacy outperforming the operational Landsat-8 cloud detection
algorithm, FMask [22]. Hence, our work seeks to transfer those
accurate cloud detection models to other satellite data with a
minimal drop in performance. There are some very recent works
that propose to transfer an FCNN cloud detection model between
different sensors. For instance, in [23], an FCNN is trained
with contrast and brightness data augmentation in the Landsat-8
SPARCS dataset [24] and it is tested on Sentinel-2, Landsat-7,
and Landsat-8 images. Results show similar performance of the
model on the three sensors; which suggest that the Sentinel-2
and the Landsat sensors are very similar, and thus, the data
shift problem is not so relevant. On the other hand, in [25],
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an FCNN is trained on a manually annotated collection of
World-View-2 images over the Fiji islands and tested in both
World-View-2 and Sentinel-2 imagery. In this case, a significant
drop in performance is observed in the Sentinel-2 domain; in
order to correct this gap, the authors propose a simple domain
adversarial method that obtains good results but it is still far from
the accuracy obtained in Word-View-2 data. Shendryk et al. [26]
also propose transfer learning, in this case, using PlanetScope
and Sentinel-2 imagery. The proposed network classifies patches
as cloudy or clear instead of providing a full segmentation mask
at the pixel level. Nevertheless, a small gap in performance is ob-
served between results in the source domain (PlanetScope) and
the target domain (Sentinel-2). Finally, in our previous work [5],
we showed that transfer learning from Proba-V to Landsat-8
and from Landsat-8 to Proba-V produce accurate results on a
par with the FMask [22] model on Landsat-8 and surpassing the
operational cloud detection model [27] for Proba-V, respectively.
However, a significant gap between transfer learning approaches
and state-of-the-art models trained with data from the same
domain still exists, which is the focus of this work.

B. Domain Adaptation

The remote sensing community has traditionally addressed
DA taking advantage of a deep understanding of the imaging
sensors and exploiting their physical and optical characteristics
to provide well-calibrated products [28]. Despite the efforts
to provide a good calibration, small differences are found in
retrieved radiance values due to different spectral response func-
tions (SRFs), saturation effects, mixed pixels, etc. [11], [29],
[30]. To this end, several works propose sensor intercalibra-
tions or harmonizations to correct biases between the bands of
different sensors [31]–[35]. These approaches train models in
paired data using either real spectra of both satellites (retrieved
in same location and close in time) or simulated radiances.
As mentioned earlier, paired approaches cannot be applied to
cloud detection due to the extreme variability of cloud location
between acquisitions. Among unpaired approaches, histogram
matching [36] aligns the observed radiance distribution of both
satellites using the cumulative density function of the data.
Histogram matching is fast and reliable, and thus, we use it as a
baseline to compare our method. More complex unpaired meth-
ods include multivariate matching [37], graph matching [38], or
manifold alignment [39].

All the methods discussed so far only focus on the spectral
information of images disregarding the spatial dimension. In
order to account for spatial changes, recent works propose DA
using convolutional neural networks (CNNs). Most of these
works use generative adversarial networks (GANs) [40] to align
source and target distributions. Those works could be divided in
feature-level DA and pixel-level DA. In feature-level or discrimi-
native DA [41], [42], the model to be transferred is jointly trained
with its normal loss and to make its internal representations (i.e.,
activations at some layers) invariant to the input distribution.
Hence, feature level DA requires retraining the model with
that extra penalty. An example of feature level DA is the work
of Segal et al. [25] previously discussed in Section II-A. In

pixel-level DA [43], [44] (also called image-to-image DA), extra
networks are trained to transform images between domains.
Hence, pixel-level DA is independent of the transferred model,
and thus, it could be applied to other problems with same inputs.
Our work falls into the pixel-level DA framework: we assume
that the cloud detection model trained in the source domain is
fixed, and thus, we focus on finding a DA transformation from
the target to the source domain (see Section III).

Regarding the definition and the types of domains in remote
sensing, works such as [45]–[48] consider data from a single
sensor, where the source and target domains are represented by
images from different locations or different time acquisitions.
The DA works where domains are represented by different
sensors are scarce; for instance, the work of Benjdira et al. [49]
tackles urban segmentation in aerial imagery of two cities ac-
quired with two different cameras. They obtain good results
despite differences in spectral bands and spatial resolution of the
instruments are not taken into account. Even though there are
some works using GANs to transfer learning between different
sensors, most of them involve training the classifiers using some
labeled samples from the target domain. This is the case of works
that tackle the DA between SAR and optical images [50]–[52].
It is important to remark that we are dealing with unsupervised
domain adaptation [2], [41] (also known as transductive transfer
learning [53]), which assumes there is no labeled data available
in the target domain.

III. METHODOLOGY

We assume two independent datasets from two different sen-
sors are given, but we only have labels for one dataset. The main
idea is to be able to use the data from the labeled dataset in order
to design algorithms to solve problems in the unlabeled dataset.

In our particular case, we have images for Landsat-8 (L8) with
the corresponding ground-truth cloud masks (binary labels iden-
tifying cloudy or clear pixels), {XL8, yL8}; and we only have
Proba-V (PV) images without ground truth,XPV. Therefore, we
want to perform cloud detection inXPV using algorithms trained
with {XL8, yL8}. Since we know the technical specifications of
Landsat-8 and Proba-V, we can design an upscaling algorithm
to convert images captured from Landsat-8 to resemble Proba-V
spectral and spatial characteristics. This upscaling could work
quite well, and actually classical remote sensing approaches
follow this methodology to combine or perform transfer learn-
ing across different existing satellites. However, this upscaling
transformation is not perfect since it is based on the prelaunch
characterization of the instruments and is always susceptible to
be affected by diverse uncertainty sources. Therefore, an extra
adaptation step could be used in order to transform the Proba-V
images before applying the transfer learning algorithms. In this
work, we are going to explore how to design this extra step by
using GANs.

In Fig. 2, we show the proposed adaptation scheme. The
upscaling transformation, U , converts the Landsat-8 labeled
data to a domain where it has similar spatio-spectral properties
than Proba-V (i.e., the same number of bands and same spatial
resolution). We can use the Landsat-8 upscaled (LU) data in
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Fig. 2. Transfer learning and adaptation scheme: Landsat-8 and Proba-V
datasets and how they are transformed between the three different domains.
The transformations look for adaptation between the domains: U is the upscal-
ing transformation applied to Landsat-8 to resemble the Proba-V instrument
characteristics (see Section III-A); and A adapts from the Proba-V domain to
the Landsat-8 upscaled domain (see Section III-C).

order to train an algorithm, in our case, we are going to design a
cloud detection algorithm using FCNNs. While this model could
be applied directly on Proba-V images, we will show that an extra
adaptation step, A, applied to the Proba-V images to resemble
even more the upscaled domain, could improve the similarity
between the training and the testing data, and therefore, improve
the performance of the cloud detection algorithm. Note that,
if no adaptation is used, A would be the identity function. In
the following subsections, we detail both the transformation U ,
based on the instruments characteristics, and the transformation
A, which is based on CycleGANs.

A. Upscaling Transformation From Landsat-8 to Proba-V

In this section, we describe the upscaling transformation
(U transformation in Fig. 2). In a standard transfer learning
approach from one sensor to another, the first step is to trans-
form Landsat-8 images to resemble Proba-V images in terms
of spectral and spatial properties. Fig. 3 shows the proposed
upscaling from Landsat-8 to Proba-V using the instrumental
characteristics of both sensors, which are based on the prelaunch
characterization and on-ground calibration of the instruments.
First, we select the spectral bands from Landsat-8 that overlap
with Proba-V in terms of the SRFs of both instruments. Fig. 4
shows the SRF of overlapping bands in Landsat-8 (dashed)
and Proba-V (solid). SWIR and RED bands present the best
agreement. However, the NIR SRF of Proba-V is wider and
its peak is not aligned with Landsat-8 B5 band, which might
led to differences in the retrieved radiance. Finally, the BLUE
band of Proba-V overlaps with two different Landsat-8 bands.
Therefore, the contribution of Landsat-8 B1 and B2 bands is
weighted according to the overlapping area of the SRFs: 25%
and 75% for B1 and B2, respectively.

Then, the selected bands of the Landsat-8 image are scaled
to match the spatial properties of Proba-V. The 30-m resolution
Landsat-8 bands are upscaled to the 333-m resolution of Proba-
V. This upscaling takes into account the optical characteristics
of the Proba-V sensor and the resampling of the 333-m product
described in [10]. First, the point spread function (PSF) of
each Proba-V spectral band is used to convert the Landsat-8
observations to the nominal Proba-V spatial resolution at nadir.

The ground sampling distance (GSD) for the Proba-V center
camera is about 96.9 m for the BLUE, RED, and NIR channels,
while the SWIR center camera resolution is 184.7 m [10]. The
SWIR PSF is about twice as wide as the PSF of the other bands,
which stresses the fact that a distinct spatial adaptation might
be applied to each band. The PSFs of the bands are modeled as
2-D Gaussian filters, which are applied to the 30-m resolution
Landsat-8 bands. The filtered image is upscaled to the nominal
90-m resolution at nadir by taking 1 out of every 3 pixels.
Finally, Lanczos interpolation is applied to upscale the image
to the final 333-m Proba-V resolution. Notice that Lanczos is
the interpolation method used at the Proba-V ground segment
processing to upscale the acquired raw Proba-V data to the
333-m Plate Care grid [10]. Ground-truth labels, yL at 30 m,
must were also scaled to get a Landsat-8 upscaled dataset at
333 m: {XLU, yLU}.

B. Transfer Cloud Detection Model

The cloud detection model trained on the Landsat-8 upscaled
dataset is an FCNN classifier based on the simplified U-Net ar-
chitecture described in [5]. This model is trained in the Landsat-8
Upscaled dataset ({XLU, yLU}) to minimize the binary cross
entropy between the model output and the labels yLU. Hence, the
model input is a four-band 333-m resolution image and its output
a cloud probability mask (additional details about this network
can be found in Appendix). Therefore, it could be applied
directly to Proba-V images. Nevertheless, as explained before,
statistical differences between Landsat-8 upscaled and Proba-V
images make that the performance of this model is not as good
as expected. This effect is related to the different sensor spectral
response functions, saturation effects, radiometric calibration,
modulation transfer functions, or mixed pixels. For instance,
as shown in Fig. 1, Proba-V contains many saturated pixels,
especially in the blue channel, which is a known issue. This
suggests that an extra domain adaptation step could be added to
improve the transfer learning results reported in [5].

C. Generative Adversarial Domain Adaptation

In this section, we describe the training process for the extra
adaptation transformation (A in Fig. 2) that we propose to
improve the performance of the transferred models. This training
process is based on the GAN [40] framework.

The main idea of GANs is to train two networks, a gener-
ative one and a discriminative one, with opposite objectives,
simultaneously. This adversarial training fits a data generator
that minimizes the Jensen–Shannon divergence between the real
and the generated data distribution. An extension of the original
GANs formulation, the conditional GANs [54], was proposed to
train a model that generates samples from a conditional distri-
bution. One application of conditional GANs is the generative
adversarial domain adaptation proposed in [13], [42], and[44].
In those works, the conditional GANs formulation was modified
to solve domain adaptation problems.

Probably, the most complete approximation for domain adap-
tation based on GANs is the one proposed in CyCADA [13].
Unlike the classical GANs, where adaptation is performed in one
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Fig. 3. Upscaling transformation (U in Fig. 2) applied to Landsat-8 in order to resemble the Proba-V instrument characteristics.

Fig. 4. Spectral response of Landsat-8 and Proba-V channels.

direction only, this approach proposes a double simultaneous
adaptation between the two domains. This allows to include
several consistency terms in order to impose restrictions on the
two adaptation directions. Our approach has a similar structure
with CyCADA (see Fig. 5). It has two generators and two dis-
criminators: GLU→PV, GPV→LU, DPV, DLU. We are interested
in using GPV→LU to adapt the Proba-V images to better match
the upscaled ones that have been used to train the cloud detection
algorithm, i.e., A ≡ GPV→LU.

On the one hand, the discriminators are trained to minimize
the binary cross entropy loss between the real and the generated
images

LD(DLU) =
∑

i

− log(D(Xi
LU))+

− log(1−D(GPV→LU(X
i
PV)))

LD(DPV) =
∑

i

− log(D(Xi
PV))+

− log(1−D(GLU→PV(X
i
LU))).

On the other hand, the generators are trained to fool the
discriminators by minimizing the adversarial loss

LGAN(GPV→LU) =
∑

i

− log(D(GPV→LU(X
i
PV)))

LGAN(GLU→PV) =
∑

i

− log(D(GLU→PV(X
i
LU))).

In this work, in order to ensure consistency between the real
and the generated images, three extra penalties are added to
the standard GAN generator loss: the identity consistency loss,
the cycle loss, and the segmentation consistency loss. First, we
take into account that data from both sensors are radiometrically
calibrated and we do not want to significantly modify the orig-
inal TOA values of the adapted images. Therefore, the identity
consistency loss, introduced in our previous work [4], is added
to make the input TOA reflectance values similar to those in the
output

Lid(GPV→LU) =
∑

i

‖Xi
PV −GPV→LU(X

i
PV)‖1

Lid(GLU→PV) =
∑

i

‖Xi
LU −GLU→PV(X

i
LU)‖1.

Second, the cycle consistency loss, proposed in [54], is added
to both generators to force them to act approximately as inverse
functions one of each other

Lcyc(GPV→LU, GLU→PV) =
∑

i

‖Xi
PV −GLU→PV(GPV→LU(X

i
PV))‖1

+
∑

i

‖Xi
LU −GPV→LU(GLU→PV(X

i
LU))‖1.

Finally, we additionally include a segmentation consistency loss
that takes advantage of the cloud detection model trained in the
LU domain. We apply this model to both LU and PV images even
though the cloud detection classifier (fLU) is trained using only
LU images, the idea is that the LU classifier can act as a rough
supervisor in the Proba-V domain.1 This approach is also taken
in CyCADA [13]. The selected semantic segmentation loss is the
Kullback–Leibler divergence between the cloud probabilities of

1If ground-truth labels are available for some images of the source domain,
the term Lseg(GLU→PV) could be changed to be the cross-entropy loss with
the ground truth. In our experiments, we have not considered this option.
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Fig. 5. Scheme of the forward passes for the training procedure of the proposed cycle consistent adversarial domain adaptation method. The four networks
(GPV→LU, GLU→PV, DPV, DLU) have a different color. Losses are depicted with circles and their fill color corresponds to the color of the network that they
penalize.

the model fLU applied to real and generated images

Lseg(GPV→LU) =
∑

i

KL(fLU(X
i
PV)|fLU(GPV→LU(X

i
PV)))

Lseg(GLU→PV) =
∑

i

KL(fLU(X
i
LU)|fLU(GLU→PV(X

i
LU))).

Therefore, the final loss of the generators is the weighted sum
of the five described losses

L(GPV→LU) = λGANLGAN (GPV→LU) + λidLid(GPV→LU)

+ λcycLcyc(GPV→LU, GLU→PV)

+ λsegLseg(GPV→LU)

L(GLU→PV) = λGANLGAN(GLU→PV) + λidLid(GLU→PV)

+ λcycLcyc(GPV→LU, GLU→PV)

+ λsegLseg(GLU→PV)

The weight parameters are set to λcyc = λid = 5 and λseg =
λGAN = 1, so that losses are of the same magnitude. In addi-
tion, the two discriminators are regularized using a 0-centered
gradient penalty with a weight of 10 [55]. In Section V, we

conduct several experiments by setting some of these weights
to zero in order to quantify the importance of each of these
terms. In addition, notice that by setting some of these hy-
perparameters to zero, we obtain different adversarial domain
adaptations proposals in the literature. In particular, if we set
λid = 0, we get the original CyCADA of Hoffman et al. [13].
When we set λcyc = 0, we obtain one-direction GANs. By
setting λcyc = λseg = 0, we get the approach of our previous
work [4].

Details about the training procedure and particular network
architectures of the generators G (FCNNs) and discriminators
D (convolutional neural networks) of the proposed adaptation
model can be found in Appendix.

Additionally, the implemented code is available.2 From both
a methodological and an operational perspective, the proposed
approach has an important benefit: it does not require simul-
taneous and collocated pairs of Landsat-8, Xi

LU, and Proba-V,
Xi

PV, images. Having coincident pairs from sensors on different
platforms would be impossible in our case. Note that clouds’
presence and location within an image highly vary even for small

2[Online]. Available: https://github.com/IPL-UV/pvl8dagans
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Fig. 6. Location of Landsat-8 and Proba-V products with manually annotated
ground-truth cloud mask. For the Biome [57] and 38-Clouds dataset [18], we
additionally downloaded Proba-V images from the same location and acquisition
time if available.

time differences. This problem prevents the use of other ap-
proaches such as canonical correlation analysis [56] or directly
learning a generic transformation from Xi

PV to Xi
LU [31].

IV. MANUALLY ANNOTATED DATASETS

Transfer learning from Landsat-8 to Proba-V is supported
by the fact that there are several open access datasets with
manually labeled clouds for the Landsat-8 mission. In this work,
we use three of them that have a large coverage of acquisitions
across different dates, latitudes, and landscapes. The Biome
dataset [57], released for the Landsat-8 validation study of Foga
et al. [58], is the largest among them. It consists of 96 full ac-
quisitions covering the different biomes on Earth. The SPARCS
dataset, collected in the study of Hughes and Hayes [59],
contains 80 1000 × 1000 patches from different Landsat-8
acquisitions. Finally, the 38-Clouds dataset of Mohajerani and
Saeedi [18] has 38 full scenes mostly located in North America.
Images and ground-truth cloud masks from these datasets have
been upscaled, to match Proba-V spectral and spatial properties,
following the procedure described in Section III-A. Hence, when
we refer to those datasets, we assume four-band images and
ground truth at 333 m. For testing the proposed cloud detection
approach in Proba-V, since there are not publicly available
datasets, we use the PV24 dataset created by the authors in [60]
and extensively curated in [5]. The PV24 dataset contains 24 full
Proba-V images at 333-m resolution and their corresponding
manually annotated cloud masks. Fig. 6 shows the locations
of the products of the aforementioned datasets. It is important
to remark that we only use data from the Biome dataset for
training the cloud detection models based on the FCNN (see
Section III-B); the other three datasets (SPARCS, 38-Cloud, and
PV24) are only used for testing the models.

On the other hand, to train the proposed domain adaptation
model based on CycleGANs (see Section III-C), a set of 181
Proba-V products from the same locations and season as the
Biome dataset has been selected. Using those Proba-V images
and the Landsat-8 upscaled images from the Biome dataset, we

Fig. 7. TOA reflectance distribution on each of the spectral bands for Proba-V
(green) images, Proba-V images transformed using the proposed DA method
(orange), and pseudosimultaneous Landsat-8 Upscaled images (blue). Values
measured across all image pairs in the 38-Clouds pseudosimultaneous dataset.

created the Biome Proba-V pseudosimultaneous dataset, which
contains 37 310 pairs of patches of 64 × 64 pixels, used to
train the proposed DA method. Notice that, in this dataset,
the pairs of images, one coming from Proba-V and the other
from Landsat-8, are images from the same location and close-
in-time acquisitions when available.3 The same approach is
followed to create the 38-Clouds Proba-V pseudosimultaneous
dataset, which is only used for testing the domain adaptation
results. Images of this dataset, together with the results of the
proposed domain adaptation and cloud detection models, are
available.4

Finally, it is important to point out that images in this work
are operational level-1TP products for Landsat-8 and level-2 A

3Some images from the Biome dataset are previous to the beginning of the
Proba-V mission catalog; in this cases, we use images from same day of year in
the next year.

4[Online]. Available: https://isp.uv.es/projects/cloudsat/pvl8dagans
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Fig. 8. Left: Proba-V images. Center: Proba-V adapted with the GPV→LU transformation (A in Fig. 2). Right: Landsat-8 upscaled image (LU in Fig. 2). Top: 1
day difference acquisitions from Nueva Esparta island in the Caribbean sea. Bottom: Four minutes of difference acquisitions from lake made in North America.

products for Proba-V. These products have been preprocessed
to TOA reflectance for both Landsat-8 [9] and Proba-V [61].

V. EXPERIMENTAL RESULTS

This section is divided in two parts. In the first one, we analyze
the radiometric and spatial properties of resulting images. The
purpose is to assess the quality of the proposed transformation.
We show that the proposed DA transformation produces reli-
able images (i.e., images without artifacts) that are statistically
similar to Landsat-8 upscaled images. Additionally, we show
that pixels flagged as good radiometric quality in Proba-V are
much less changed by the proposed DA transformation. In the
second part, we analyze the impact of DA on the cloud detec-
tion performance. Cloud detection results in the source domain
(Landsat-8 upscaled) are compared with results in the target
domain (Proba-V), with and without the DA transformation.
In addition, we conduct an ablation study to show the relative
importance of each of the proposed loss terms included to fit the
generator network.

A. Domain Adaptation of Input Images

As explained in Section IV, we trained the DA method de-
scribed in Section III-C using Proba-V and Landsat-8 upscaled
patches from the Biome Proba-V pseudosimultaneous dataset.
The generator and discriminator networks are trained simulta-
neously with minibatch stochastic gradient descent (see details
in Section A). Afterwards, the trained Proba-V to Landsat-8

upscaled generator GPV→LU (A in Fig. 2) is evaluated in the 38-
Clouds Proba-V pseudosimultaneous dataset, (i.e., theGPV→LU

network is applied to all Proba-V images in the dataset). Fig. 7
shows the distribution of TOA reflectance values for each of
the bands without the domain adaptation step (green) and after
applying GPV→LU (orange) for all the Proba-V images in the
dataset. One of the interesting results from these distributions
is that the characteristic saturation in the Blue and Red bands
of Proba-V disappears in the adapted images. In addition, the
shape of the distribution of the adapted data is more similar to
the shape of the pseudosimultaneous Landsat-8 upscaled images
(blue).

Visual examples of the trained DA network are shown in
Fig. 8. We show in the first column the Proba-V image, in the
second one, the adapted Proba-V image using our DA method,
and in the third column, the pseudosimultaneous Landsat-8
upscaled image (LU). In the first row, we can see that the
location of clouds in the Proba-V image are preserved after
the transformation while saturated blue values are removed.
This provides a cloud appearance (and radiance) more similar
to the pseudosimultaneous LU images (third column). In the
second row, we can see slightly sharper edges in the DA trans-
formed image compared to the original Proba-V image. This
is because the Landsat-8 upscaled images have components of
higher spatial frequency than Proba-V. This was also point out
in the pair of images at the bottom in Fig. 1. In order to test
this hypothesis, 64 × 64 pixels patches were extracted from
the 38-Clouds Proba-V pseudosimultaneous dataset. For each
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Fig. 9. 2-D Fourier transform in decibel for each of the four spectral channels
averaged across all 64 × 64 images patches in the 38-Clouds Proba-V pseudosi-
multaneous dataset. Left: Proba-V images. Center: Proba-V images adapted
using the proposed domain adaptation method. Right: pseudosimultaneous
Landsat-8 upscaled images.

patch, we computed the 2-D fast Fourier transform for each of
the four spectral bands. Finally, the amplitude of the signal at
each frequency is converted to decibels (dB) and averaged across
all patches (see Fig. 9). As pointed out before, Proba-V images
have less high frequency components, whereas the average
frequency amplitudes for the adapted images are more similar to
the Landsat-8 upscaled ones. This highlights the spatio-spectral
nature of the proposed method: it does not only learn spectral
changes between bands (colors) but also spatial relations.

Finally, Fig. 10 shows the difference in TOA reflectance
between the original Proba-V images and the adapted ones
(XPV −GPV→LU(XPV)) for all the pixels in the 38-Clouds
Proba-V pseudosimultaneous dataset and for each of the four
Proba-V bands. In this case, we have stratified the pixels using
the per pixel radiometric quality flag available in the status
map (SM) of Proba-V products (see Proba-V User Manual [61,
p. 6]). This quality indicator is a binary mask for each of
the four Proba-V channels; pixels are flagged as bad quality
for different reasons, including detector saturation [12]. In the
Proba-V images of the 38-Clouds Proba-V pseudosimultaneous
dataset, approximately 30% of pixels in the blue band have a
reported bad quality, in contrast to the 5% for the red band and

Fig. 10. Differences in TOA for Proba-V images before and after applying the
proposed DA transformation (XPV −GPV→LU(XPV)).

TABLE I
ACCURACY FOR TEST IMAGES IN THE SOURCE LANDSAT-8 UPSCALED DOMAIN

Results averaged over ten U-Net networks trained with different random initializations.

0.5% for the NIR and SWIR. One can see that differences in
TOA reflectance for bad quality pixels is higher, whereas good
quality pixels change much less.

B. Domain Adaptation for Cloud Detection

In order to evaluate the DA methodology for the cloud detec-
tion application, we trained an FCNN in the Biome dataset. In
order to account for the uncertainty at the weights initialization
and ordering of the batches, we trained ten copies of the network
using different random seed initializations. This procedure is
also followed in [5]. Table I shows the cloud detection accuracy
on the source domain by using the SPARCS and 38-Clouds
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TABLE II
ACCURACY OF DIFFERENT DA APPROACHES FOR CLOUD DETECTION OVER

THE PV24 DATASET

Results averaged over ten FCNN networks trained with different random initialization.

Fig. 11. Example of color inversion when neither the segmentation loss nor
the identity loss are included. Left: Proba-V image. Right: Adapted image with
the generator GPV→LU trained with λseg = 0, λid = 0.

datasets. We see that overall the accuracy is relatively high and
networks are not much affected by the weight’s initialization.

Table II shows the results in the target domain (Proba-V)
using the PV24 dataset with the trained DA transformation
GPV→LU (called full DA in the table) and without it (called no
DA). We also included the results of the ablation study, where
we have set some of the weights of the generator losses to
zero and the results using histogram matching [36] for domain
adaptation as in [47]. In addition, results are compared with
the FCNN trained in original Proba-V images and ground truths
(PV-trained), which serves as an upper bound reference, and with
the operational Proba-V cloud detection algorithm (v101) [27].
First of all, we see that the proposed DA method increases
the mean overall accuracy and reduce the standard deviation
of the metrics compared with direct transfer learning (no DA)
or with adjusting the reflectance of each band with histogram
matching. Second, there is a significant reduction in accuracy
when the cycle loss is not included (λcyc = λseg = 0); notice
that this setting is equivalent to a one-direction GAN. Third, we
see that the segmentation loss and/or the identity loss must be
included to obtain meaningful results: when none of those penal-
ties are included (λseg = 0, λid = 0), cloud detection decreases
abruptly. This is because, without those losses, generators are
not constrained to maintain original radiance values and spectral
signatures. Generated images displayed in Fig. 11 show that the

Fig. 12. Cloud detection accuracy in the PV-24 dataset of the 10 cloud
detection U-Net models with different weight initialization with and without the
proposed DA transformation. Pixels stratified according to the quality indicator
available in the SM flag of Proba-V images.

generators trained without these two penalty terms replace clear
surfaces with cloud spectra, and vice versa. Hence, this result
shows that the cycle consistency loss is not sufficient to prevent
big changes in the original input spectra.

Fig. 12 shows the cloud detection accuracy with the proposed
DA transformation (full DA) and without DA (no DA). In this
case, results are stratified using the quality flag available in the
SM band of Proba-V. In the PV-24 dataset, 16.13% of pixels
have at least one value in a band flagged as having bad quality.
Within bad quality pixels, 96.8% are cloudy pixels. We see
that, on the one hand, if the DA transformation is not used,
the accuracy of the networks wildly varies especially for bad
quality pixels. These differences in accuracy of models trained
on the same data indicate that the networks are extrapolating in
those regions. On the other hand, when the DA transformation is
used, all the networks identify correctly most of the bad quality
pixels.

Finally, Fig. 13 shows some cherry-picked examples of cloud
detection with the proposed methodology. On each row, we
show: the pseudosimultaneous Landsat-8 Upscaled image, the
original Proba-V image, the Proba-V image after the domain
adaptation GPV→LU, the cloud mask using as input the DA
image, and the cloud mask obtained without the domain adap-
tation. First row shows a completely cloudy image with several
blue saturated pixels in the original Proba-V image. We see
that the DA image removes those saturated values and helps
the cloud detection model to correctly predict all pixels. We see
that, if no DA transformation is employed, the saturated values
in Proba-V hinder the performance of the model with some
cloud missclassifications. The second row shows an acquisition
over the Canyon de Chelly, in North America. We see again
that saturated values in the blue band disappear after the DA
transformation; in this case, this help to reduce the false positives
in the bottom and upper left part of the image. In the third row,
we see an easier case where cloud masks, with and without DA,
are both accurate. Finally, in the fourth row, a very challenging
example of thin clouds over snowy mountains is shown. In
this case, the DA method captures better the thin cloud in the
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Fig. 13. From left to right: Landsat-8 Upscaled image, Proba-V image, Proba-V as Landsat-8 upscaled, Clouds from Proba-V as Landsat-8 upscaled, and Clouds
without domain adaptation.

top of the image; however, it produces some false positives in
mixed pixels where snow is melting. For results of all methods
shown in Table II over all the images in the 38-Cloud Proba-V
pseudosimultaneous dataset, we refer the reader to the web
application.5

VI. DISCUSSION AND CONCLUSION

The main motivation for this study has been to propose a
domain adaptation algorithm to improve transfer learning from
Landsat-8 to Proba-V for cloud detection. However, the ob-
tained transformation is application-independent since its aim
is to reduce spatial and spectral differences between the two
sensors image datasets. It is worth noting that the main objec-
tive of the Proba-V mission was to ensure continuity and fill
the gap between SPOT Vegetation (VGT) and the Sentinel-3
missions [62]. These multimission approaches provide long time
series of surface vegetation products with complete Earth cov-
erage, and require a high radiometric consistency across sensor
datasets. For instance, differences between Proba-V and VGT2
spectral responses were of the same order as between VGT1
and VGT2 [63]. Also, the ESA Sentinel-3 synergy vegetation
products replicate the characteristics of the 1-km SPOT VGT

5[Online]. Available: https://isp.uv.es/projects/cloudsat/pvl8dagans

products using spectral remapping and colocation techniques.
In this context, the proposed domain adaptation methodology is
a new tool based on sound statistical methods that could be used
to improve consistency across sensors.

Obtained results have shown that the proposed domain adapta-
tion transformation, in addition to reduce the difference between
the TOA reflectance distributions, also unintentionally fixes
some radiometry artifacts. Looking at the resulting distributions,
one can see that the characteristic saturation in the Blue and
Red channels of Proba-V disappears in the adapted images (see
Fig. 7). Moreover, although the developed model does not dis-
tinguish explicitly between good and bad pixels of the Proba-V
products quality flag, results show that good quality pixels are
much less changed than bad quality pixels (see Fig. 10). On
the one hand, this result agrees with [11], where good quality
pixels are similar between Landsat-8 and Proba-V, which implies
that their TOA radiance calibration is quite good. On the other
hand, the proposed adaptation method only changes those good
pixels within the range of the radiometric error reported in [11]
or in [12] (see Fig. 10). However, Proba-V products present
a significant number of bad quality pixels: between 20% and
30% in the blue channel and around 5% in the red one. This
can eventually have an important impact on derived products,
since usually we are expected to provide results in the whole
image. For instance, removing or ignoring those bad pixels
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is not feasible for methods using the spatial context, such as
CNNs, since the output for a pixel depends on the surrounding
pixels. Therefore, the DA method improves the TOA reflectance
image resemblance across sensors, and in this particular case,
significantly increases the number of pixels that can be further
processed: i.e., corrected bad quality pixels (see Fig. 12).

In addition, the proposed adversarial domain adaptation
model has been modified to specifically improve the perfor-
mance of a transfer learning cloud detection problem. In par-
ticular, the cost function used to train the DA network has
been modified by including a dedicated term forcing similar
cloud detection results across domains. Results show that, when
the proposed transformation is applied, cloud detection mod-
els trained using only Landsat-8 data increase cloud detection
accuracy in Proba-V. It is worth noting that results without
the application dependent term (λseg = 0) are good enough.
However, it is important to include either λseg > 0 or λid > 0
in order to constrain the method and to avoid artifacts in the
adapted images.

The proposed adaptation framework can be extended in two
ambitious directions. On the one hand, it would be possible to
learn a domain adaptation transformation directly from Landsat-
8 to Proba-V, without previously applying the upscaling trans-
formation, which converted the Landsat-8 images in order to
have similar spatio-spectral properties than Proba-V (number
of bands and spatial resolution). However, this approach would
imply to solve the more challenging super-resolution problem
when transforming Proba-V to Landsat-8 in our cyclic GAN
adaptation framework. On the other hand, an interesting option
to explore would be to apply the transformation from top of
atmosphere to surface reflectance data. In this case, the obtained
transformation would be equivalent to learn an atmospheric
correction transformation relying on the image data only. In
addition, as mentioned before, the proposed framework can be
applied to any other pair of similar sensors such as Proba-V and
Sentinel 2 and 3.

Summarizing, in this article, a Cycle-GAN architecture has
been proposed to train a domain adaptation method between
Proba-V and upscaled Landsat images. The proposal includes
two generators, two discriminators, and four different penalties.
The GAN generator is used to modify the Proba-V images to
better resemble the upscaled Landsat images that have also been
used to train a cloud detection algorithm. Results on original
Proba-V images demonstrate that when using the proposed
model for the adaptation a higher cloud detection accuracy is
achieved.

APPENDIX

This appendix presents the details about the network architec-
tures and the training procedure of the generators and discrimi-
nators of the proposed generative adversarial adaptation model.
It also has the details of the networks and training configuration
of the cloud detection models. The implementation is available.6

6[Online]. Available: https://github.com/IPL-UV/pvl8dagans

Fig. 14. (Top) Generator and (bottom) discriminator architectures. Implemen-
tation details available at https://github.com/IPL-UV/pvl8dagans.

We use the same network architecture for all generatorsG [see
Fig. 14(top)]. In particular, G is a five-layer FCNN. It consists
of the following.

1) Two layers: Convolution with 64 separable filters of size
3 × 3, reLU activation, and batch normalization.

2) Two layers: Convolution with 64 separable filters of size
3 × 3 with a dilation rate equal to 2, reLU activation, and
batch normalization.

3) One layer: 1 × 1 convolution with four channels output.
We used residual connections between blocks and before the

final layer.
As in the case of the generators, both discriminators, D, have

the same architecture: A five-layer convolutional neural network
adapted from [54] [see Fig. 14 (bottom)]. It consists of the
following.

1) Four layers: 4× 4 convolution, leakyReLU activation, and
batch normalization. The number of filters starts in eight
for the first convolution and grows by a factor two in every
layer. The convolutions are applied with a stride of 2, thus
reducing by this factor the spatial size of the input.

2) One layer: 1 × 1 convolution with one output channel and
a sigmoid activation.

The output of the discriminators can be interpreted as the
probability of an image to be real. Hence, the discriminator is
trained to provide close-to-zero values for images generated by
G and close-to-one values for real satellite images.

The proposed networks (GPV→LU, GLU→PV, DPV, and
DLU) were trained simultaneously using 64 × 64 patches with
stochastic gradient descent on their respective losses with a batch
size of 48. Networks were trained for 25 epochs in the Proba-V
pseudosimultaneous dataset, which corresponds to 14 574 steps
where the weights are updated. In order to ensure convergence
in the GAN training procedure, we regularized the discriminator
using 0 centered gradient penalty on the real images [55] with a
weight of 10. We used the Adam [64] optimizer with a learning
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Fig. 15. Simplified U-Net architecture used for the cloud detection model.
Implementation details are available at https://github.com/IPL-UV/pvl8dagans.

rate of 10−4 to update the weights of the networks at each
step. Additionally, we apply data augmentations in form of 90
rotations and horizontal and vertical flips.

For the cloud detection model fLU, we used the same simpli-
fied U-Net architecture as in [5]. Fig. 15 shows the configuration
of layers; we used only two subsampling steps and separable
convolutions [65] to reduce the number of trainable parameters
and floating points operations (96 k parameters and 2.18 M
FLOPS). The cloud detection networks are trained for 250 k
steps using batches of 64 overlapping patches of 32 × 32 pixels
from the Biome dataset (upscaled to 333 m as described in
Section IV). The network is trained to minimize the binary
cross-entropy loss between the model output and the ground-
truth labels. We used a learning rate of 10−4 and the Adam [64]
optimizer.
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Towards global flood mapping 
onboard low cost satellites 
with machine learning
Gonzalo Mateo‑Garcia1,9*, Joshua Veitch‑Michaelis2,9, Lewis Smith3,9, Silviu Vlad Oprea4, 
Guy Schumann5,6, Yarin Gal3, Atılım Güneş Baydin3 & Dietmar Backes7,8 

Spaceborne Earth observation is a key technology for flood response, offering valuable information 
to decision makers on the ground. Very large constellations of small, nano satellites— ’CubeSats’ 
are a promising solution to reduce revisit time in disaster areas from days to hours. However, data 
transmission to ground receivers is limited by constraints on power and bandwidth of CubeSats. 
Onboard processing offers a solution to decrease the amount of data to transmit by reducing large 
sensor images to smaller data products. The ESA’s recent PhiSat-1 mission aims to facilitate the 
demonstration of this concept, providing the hardware capability to perform onboard processing 
by including a power-constrained machine learning accelerator and the software to run custom 
applications. This work demonstrates a flood segmentation algorithm that produces flood masks 
to be transmitted instead of the raw images, while running efficiently on the accelerator aboard the 
PhiSat-1. Our models are trained on WorldFloods: a newly compiled dataset of 119 globally verified 
flooding events from disaster response organizations, which we make available in a common format. 
We test the system on independent locations, demonstrating that it produces fast and accurate 
segmentation masks on the hardware accelerator, acting as a proof of concept for this approach.

Floods are among the most destructive extreme weather events—between 1995 and 2015, over 2.2 billion people 
were affected by floods comprising 53% of the total of people affected by all weather-related disasters1,2. Situ-
ational awareness on the ground is crucial for effective disaster response, and, today, satellite imagery is one of 
the most important sources of this information3. Both passive optical (multi-spectral) and synthetic-aperture 
radar (SAR) imagery are routinely used to determine flood extent and further derived products4 (Fig. 1).

Some regions, like the USA, Europe and Japan have access to high-quality imaging resources from defence 
organisations and commercial satellite operators through domestic space agencies (i.e., NASA, ESA, JAXA). How-
ever, several of the worst flood-affected regions are in developing countries: of the top 20 countries by disaster 
mortality in proportion to their population for the years 1990–2017, the top five are low or lower-middle-income 
countries, and only five are upper-middle income5.

Many of these countries have almost no means of getting access to higher quality imaging resources via 
domestic channels. To address this, organisations such as the International Charter “Space and Major Disasters”7, 
initiated by the European Space Agency (ESA), liaise with space agencies and associated commercial organisa-
tions to produce free high resolution maps for end-users in the field. Despite best efforts it can take many days to 
provide actionable information, mainly due to image down-linking and subsequent image analysis8. Commercial 
organisations are able to provide the highest-frequency (daily) and highest-resolution (sub-metre) images, but 
their satellites must also be tasked and their images may only be freely available for a limited period of time 
during disasters via the International Charter Space and Major Disasters. ESA’s Copernicus program9 provides 
open data globally at 10 m resolution, but the optical component, Sentinel-2 (S2)10, has a revisit time of five days 
at the equator and two to three days at mid-latitudes. This leads to wait periods much longer than two days in 
areas such as central Africa where alternatives for rapid data capture can be limited.

In this work we investigate how a constellation of small, inexpensive, nano satellites assembled from commer-
cial off-the-shelf (COTS) hardware, also known as CubeSats11, could be used for disaster response, using flooding 
as a case study. The main advantage of using CubeSats is an improved revisit time through larger constellations 
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of satellites. Commercial organisations like Planet Labs, Inc. (California, USA) have demonstrated the potential 
for large fleets of low-cost satellites for Earth observation (EO), though their data are only freely available in 
small quantities. Tens of CubeSats similar to ESA’s FSSCat mission12 could be launched for the cost of a single 
conventional Earth observation satellite, with 30 CubeSats reducing the nominal revisit time from five days to 
around eight hours for a similar cost. However, CubeSats can have very limited downlink bandwidth, on the 
order of 1–10 Mbps13, compared to around 0.5 Gbps for S210 (Downlink is communication from the satellite 
back to a ground station on Earth. It is very constrained for CubeSats because the satellite itself must act as a 
transmitter). In addition to this, there is a cost associated with downlinking data which is proportional to the 
transfer size, desired frequency and availability of ground stations.

Constrained downlink budgets are a common problem in space science and can be addressed using on-board 
processing for both targeted data acquisition and filtering. Examples include autonomously identifying science 
targets on Mars14,15 and discarding cloud-obscured imagery on NASA’s EO-1 satellite with the Autonomous Sci-
encecraft Experiment (ASE)16,17. On-board flood detection and mapping (an image segmentation task) has also 
been proven with ASE18 using Hyperion, a 220-band hyperpsectral camera with a 30 m ground sample distance. 
The output was limited by the computational capability of the satellite and only a small 7.7 × 30 km region in the 
centre of the field of view could be processed using 12 of 220 bands. Flood detection was based on simple band 
thresholds, and an event was triggered based on the number of water pixels in a region compared to a baseline; 
the combination of three on-board classifiers achieved accuracies of 70–85.6%.

We propose to take this approach further leveraging modern deep learning19 algorithms, to perform multiclass 
segmentation with high accuracy, on-board of very cheap satellite hardware. In order to demonstrate feasibility, 
we optimise our application for ESA’s �Sat-1, part of FSSCat20—a technology demonstrator mission— launched 
at 2nd of September 2020. Among other sensors, FSSCat carries a Cosine HyperScout 2 49-band hyperspectral 
camera (70  m ground sample distance at 500 km) which integrates an Intel Movidius Myriad2 vision process-
ing unit (VPU) as a co-processor for performing on-board computer vision and neural network inference12,21. 
FSSCat is a 3 × 2U CubeSat, with HyperScout taking up 1U (10  ×  10  ×  11 cm) of space. The first machine 
learning application deployed on the satellite is a cloud detection model22 similar to the system used on EO-1.

Using the on-board VPU to perform segmentation, an output two-bit flood map (up to four classes) would 
reduce the amount of data being down-linked by a factor of 100 (assuming 49 12-bit channels). Since segmented 
regions tend to be quite large and continuous, there could likely be further savings via simple compression 
methods like run-length encoding23. Our models are trained on a new extensive dataset of human-annotated 
flood maps covering more than 100 flood events and tested on five independent events from different locations 
around the globe. We made this dataset available at https://​tinyu​rl.​com/​world​floods. While we address flooding 
in this paper, satellites with on-board capability are attractive as they can potentially be re-targeted for multiple 
diverse missions, and on-board models can be improved over time if their weights are small enough.

The contributions of this paper are as follows: 

1.	 We introduce a new dataset—WorldFloods—that combines, in “machine-learning ready form”, several exist-
ing databases of satellite imagery of historical flood events. The dataset contains pairs of Sentinel-2 images 
and flood extent maps covering 119 global flood events.

2.	 Using this dataset, we train several convolutional neural network (CNN) architectures for flood segmentation 
and compare their performance against standard baselines: linear models and a per-image optimal threshold 
on the normalised difference water index (NDWI)24.

Figure 1.   An example of a data product from the Copernicus EMS catalogue (activation EMSR312), in this 
case a map showing flood extent over the city of Vigan in the North West of Luzon island in the Philippines in 
September 2018. A blue water mask (here generated using an automatic method from a RADARSAT-2 image) is 
overlaid on top of a Sentinel-2 image, showing the extent of flooding. Sentinel 2 imagery and Copernicus EMS 
mapping products are provided as public domain. Base image and reference labels mask are included in the 
WorldFloods database and code for plotting this images may be found in our repository6.
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3.	 We show that our models can process large volumes of hyperspectral data, yet fit the constraints of hardware 
deployed on the satellite. Specifically we report results on the on-board co-processor Intel Movidius Myriad2, 
which we found was able to process a 12 MP image in less than a minute.

Background
Flood mapping.  Water mapping, of which flood mapping is a special case, is a semantic segmentation task 
(also called land cover classification in remote sensing) that has been studied for decades. A simple approach 
to water mapping is to compute indices like the normalised difference water index (NDWI)24 which exploits 
the difference in absorption of light by water bodies between the green and the near infrared part of the elec-
tromagnetic spectrum. However, this method can perform poorly because the spectral profile of flood water 
varies widely due to the presence of debris, pollutants and suspended sediments25. As a result, the main chal-
lenge with using indices at a global scale is that the threshold for water retrieval must be tuned per environment. 
SAR images (e.g., Sentinel-1) are commonly used for water retrieval as they are not affected by cloud cover26,27, 
severe weather and lighting conditions. Since calm water strongly reflects radar wavelengths away from the 
receiving antenna (specular reflection), image thresholding is a straightforward way to identify water regions 
by their very low backscatter intensity. However, the presence of waves or wind causes significant backscatter, 
which can make inland water harder to identify. In addition, flooding in urban areas28 is difficult to map due to 
multiple reflections by buildings and taller vegetation which produces an increase in backscatter. Additionally, 
as SAR is an active sensing technique with a high power requirement (e.g. Capella constellation, 600 Watts for 
transmission29), deployment on a small satellite is challenging; we therefore limit the scope of this paper to pas-
sive optical sensors, but we do use some training data derived from Sentinel 1 imagery.

More sophisticated segmentation techniques include rule-based classifiers18,25 which use a fixed or tuned 
threshold on indices or individual bands; classical supervised machine learning3; and recently deep learning30–33. 
Among deep learning methods, fully convolutional neural networks (FCNNs)34 produce state-of-the-art results 
in image segmentation tasks with fast inference time; they are thus the model proposed for this application.

Hyperspectral image processing.  One of the inherent difficulties of targeting a satellite that has yet to 
be launched is that no real-world orbital data are available. This problem is usually addressed by using data from 
a similar satellite and accounting for known differences in spectral sensitivity35. However, in the case of �Sat-1, 
the problem is exacerbated as there are very few satellites with hyperspectral sensors and archival data are simi-
larly limited36,37. Notably HyperScout-1 has been flown in space, on the GOMX-4B mission, but data from this 
mission are not publicly available38. Other aerial missions like AVIRIS (a NASA-modified U2 aircraft)36,39 have a 
larger public archive, but these images are mostly limited geographically to the USA. Since we need labelled data, 
we have the additional constraint that we rely on serendipitous image acquisition coinciding with flood events.

The images that HyperScout-2 produces are relatively large—45 visible channels and four thermal infrared 
channels with a dynamic range of 12-bits per pixel. The output image has a spectral resolution of 15 nm over a 
range of 400–1000 nm. HyperScout-2 is a push-broom sensor; a nominal 2D frame represents approximately 
a 200 km by 300 km swath at a nominal orbital height of 500 km38. The ground sample distance (GSD) at this 
altitude is 70  m.

We propose to use Sentinel-2 data for model training, which is sensitive to a similar wavelength range, but 
with fewer bands. S2 spatial resolution varies for each spectral band from 10 to 60  m. In order to produce a 
model for HyperScout-2 images we follow an approach similar to two recent studies40,41 which demonstrate 
models that show some generalisation to multiple sensors. In particular, we select the bands of Sentinel-2 that 
are common to HyperScout-2 (shown in Fig. 2) and reduce the spatial resolution of Sentinel-2 images to 80  m 
using bilinear interpolation. In addition, HyperScout-2 and �Sat-1 are expected to have a worse signal-to-noise 
ratio compared to Sentinel-2 due to its reduced size and poorer direct georeference. In order to account for this, 
our models are trained with degradatations in form of Gaussian noise, channel jitter (translational offsets) and 
motion blur. These degradations are implemented as data augmentation functions42,43.

Figure 2.   Spatial resolution and spectral response of Sentinel-2 and HyperScout-2 sensors.
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Methods
Flood segmentation.  Given a satellite image (with or without a flood), we wish to label each pixel as 
water/flood or land. As always with data coming from an optical sensor, we also have to deal with the problem 
of obstruction by clouds. Since we are targeting on-board processing, we choose to tackle this by adding a cloud 
class to the output of the model, so that we can maintain the workflow of a single pass over the image. Our mod-
els therefore have three output classes (land, water/flood and cloud), requiring two bits of data per pixel to store. 
Note our model does not distinguish water and flooded pixels; however we report segmentation results on flood 
and permanent water pixels using the JRC yearly permanent water layer44.

WorldFloods dataset.  The development and evaluation of flooding response systems has been constrained 
so far by use of trusted, authoritative or validated datasets that are also often of limited geographical scope, with 
most studies only considering a single or very few flood events33,45. It is unclear whether such models would 
accurately generalise to the rest of the world due to variations in topography and land cover. To address this we 
collated a new global dataset called WorldFloods, which we believe is the largest collection of its kind.

WorldFloods contains 422 flood extent maps created by photo-interpretation either manually or semi-auto-
matically, where a human validated machine-generated maps. A flood extent map is a vector layer (shapefile) 
derived from a satellite image with polygons indicating which part of that image has water (in some cases it 
distinguishes between flood water and permanent water and in other cases it does not); we assigned a date to 
each flood extent map which corresponds with the date of acquisition of the original satellite image that was 
used to derive it. Each flood extent map belongs to a flood event hence a flood event could have several flood 
maps which may cover different areas of interest or different days of the same area in the same flood event; in 
total the dataset covers 119 floods events that occurred between November 2015 and March 2019. We sourced 
all maps from three organisations: the Copernicus Emergency Management Service (Copernicus EMS)46, the 
flood portal of UNOSAT47, and the Global Flood Inundation Map Repository (GLOFIMR)48. The geographical 
distribution of flood maps is shown in Fig. 3.

For each flood event we provide the raw 13-band S2 image closest in time after the event, and rasterised 
reference labels (cloud, water and land) at 10  m resolution. (We explicitly avoid the term ground truth as labels 
are derived manually or semi-automatically by photo-interpretation and have not been validated by ground 
measurements). S2 images were downloaded from the Google Earth Engine50; S2 bands with spatial resolution 
larger than 10  m were resampled to 10  m using nearest neighbours interpolation. We generated cloud masks 
using s2cloudless49. The dataset contains in total more than 12 Gigapixels of labeled data which occupies 
around 266 GB of disk space. Figure 4 shows an example of S2 image and derived reference labels for a flood 
that occurred in Central-West Sicily in November 2018.

We manually validated the data to account for gross errors such as missing water bodies or invalid intensities. 
In some cases, missing water bodies were filled using the permanent water bodies dataset44 available from the 
Google Earth Engine50 (we also use this data to differentiate flood and permanent water in the results). Never-
theless, there are still mislabeled pixels specially in narrow streams, partially inundated crop fields and in the 
borders of clouds and water bodies. Some of these errors are caused by temporal misalignment, e.g., the closest 
S2 image may have been acquired some days after the map was produced. This happens, as is frequently the case, 
if the flood extent map was generated based on a satellite image other than S2. Figure 5 shows, on the left, the 
satellites used to derive each flood map and on the right, the difference in days between the flood extent map 

Figure 3.   Locations of flood events contained in WorldFloods. Blue, orange and green areas denote Copernicus 
EMS, UNOSAT and GloFIMR data, respectively. Red circles denote test regions. Basemap credit: http://​www.​
simpl​emaps.​com.
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and the next S2 overpass. As we can see, most of the flood extent maps where generated from radar imagery and 
most images are acquired within five days which suggests that the earliest available re-visit is used if available.

While including flood extent maps and S2 images from different days introduces label noise, this allows us 
to use a much larger training set than if we were restricted to images where the flood map was generated from 
S2. We were motivated by results from the authors of SEN12MS51 who trained global high resolution (10 m) 
segmentation models using cloud-free S2 imagery and low resolution labels derived from MODIS (500 m), 
achieving 63–65% overall accuracy despite the coarseness of the available ground truth labels. In our results 
section we experimentally validate that this trade-off is justified for our dataset; that is, we achieve better seg-
mentation results on a clean test set when we include these noisy labels in our training than if we restrict the 
training set to clean images.

Models trained on noisy labels in the training may appear to perform well, but it is important to ensure that 
the test set provides a clean measurement of the true performance of our system. In this direction, we manually 
selected test images from flood extent maps that were derived from S2 images which had no temporal misalign-
ment. In addition, we visually inspected those images and fixed minor errors to improve the quality of their 
segmentation masks. To avoid data leakage, there was no spatial overlap between flood maps in the test set and 
the training and validation sets. Additionally, other flood extent maps from same flood events in the test set 
have also been removed from the training and validation sets. Table 1 shows the training, validation and test set 

Figure 4.   (a) Sentinel 2 RGB bands and (b) associated labelled map (land/brown, water/blue, cloud/white) 
over Porto Palo (Sicily) derived from Copernicus EMS 333 activation. Cloud mask obtained automatically 
with s2cloudless49. Base image and reference labels are included in the WorldFloods database and code for 
plotting this images may be found in our repository6.

(a)
(b)

Figure 5.   (a) Satellite used to derive each flood map in the WorldFloods data set. ‘Other’ satellites (all optical): 
GeoEye-1, PlanetScope, Earth Observing (EO)-1. (b) Difference in days between the flood map and the 
Sentinel-2 image (Sentinel-2 image is always posterior in time to the flood map).
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statistics; there is a strong class imbalance in the training dataset with less than 3% of pixels belonging to the 
water class. From those, less than 50% are classified as permanent water in the JRC permanent water product44. 
The low occurrence of water pixels in the train dataset is because there is a high presence of clouds in the train-
ing data. Cloud occurrence in the validation and test sets is lower to provide more meaningful results of flood 
segmentation.

Results
In order to demonstrate that a FCNN-based flood detection model can segment floods accurately and could be 
deployed on �Sat-1, we first train FCNN models on WorldFloods at its original resolution (10  m). We then train 
models on degraded imagery, mimicking the resolution of HyperScout-2 (80  m) by resampling the S2 images 
using bilinear interpolation and also by using only the overlapping bands between the sensors. Afterwards, mod-
els trained over the entire WorldFloods dataset are compared with models trained using only flood maps derived 
from Sentinel-2. Finally, we verify our trained (degraded) models can be run on a Intel Movidius Myriad2 chip 
and measure the processing speed; we use an Intel Neural Compute Stick v1 connected to a Raspberry Pi 3B+. 
Models tested on the Intel Movidius Myriad2 chip use all available S2 bands, in comparison to the cloud detec-
tion model22 which uses three bands selected using Principle Component Analysis (PCA).

We focus on the segmentation accuracy of the water/flood class by measuring precision, recall and the inter-
section over union (IoU). Since missing flooded areas (false negatives) is more problematic than over-predicting 
floods (false positives), high recall is preferred to high precision. In practice the IoU is a good compromise if 
recall is sufficiently high (over 94%); with a lower recall we found that, even with a high IoU, the model misses 
entire water bodies in several scenes.

As baselines, we use NDWI (S2 band 3 and 824) and a per-pixel linear model (all S2 bands) trained on World-
Floods. A range of NDWI thresholds have been suggested in the literature for flood water extraction24,25,53we 
chose 0 for our experiments since it is the most common one. In order to set a stronger baseline, we also report 
results for the threshold that maximizes the IoU in the test data providing a recall above 94% (threshold − 0.22). 
This represents the best case performance for the NDWI model. In addition, in order to strengthen the baseline 
results, the NDWI model assumes perfect cloud masking by using directly the s2cloudless cloud masking model. 
We compare our baselines to two FCNNs: a simple CNN (SCNN) comprising four convolutional layers (0.26M 
parameters) and a U-Net (7.8 M parameters)54. Although single-pixel classification methods like NDWI are com-
mon, we expect that models which can use larger contextual information, such as the extended shape of water 
bodies, will perform better. Therefore we calculated the receptive field of our models to ensure that larger features 
are considered during classification. Our smallest model has a receptive field of 9 ×  9 pixels (700  ×  700 m) 
which we judged to be sufficient. Details of our SCNN and UNet architectures can be found in the supplementary 
material for this paper; additionally our implementation and training code is provided in our GitLab repository6.

Models were trained from scratch for 40 epochs using all 13 S2 bands with input patches of size 256 × 256 for 
10  m data or 64 × 64 for 80  m data (2.5 km  ×  2.5 km). For data at 80 m resolution we also trained our models 
using only the 10 overlapping bands between HyperScout-2 and S2 (see Fig. 2). In order to achieve models with 
high recall we used a cross-entropy loss function that weights each class by the inverse of the observed frequency 
in Table 1, combined with a Dice loss55. Augmentation was applied during training including flips and rotations, 
per-channel jitter, Poisson (shot) noise and brightness/contrast adjustments. A flowchart showing the training 
and dataloading process is shown in Fig. 6. Models were tested on full S2 images as described in56.

Table 2 shows the metrics for the different models and baselines. Specifically, we show IoU and recall for 
the water class (total water) as well as the recall stratified for flood and permanent water. Permanent water clas-
sification comes from the JRC permanent water layer52. Our three models (Linear, SCNN and UNet) all have a 
recall above 94%; NDWI with the threshold at zero generalises poorly, we suspect due to water with suspended 
matter. FCNN models performed best although there was only a small increase in performance between SCNN 
and U-Net, despite U-Net having 30 ×  more parameters. The drop in performance from 10 to 80  m is around 
two points for FCNN models which is acceptable taking into account that the spatial resolution is eight times 
worse. There is also a significant drop in performance when only the 10 overlapping bands of HyperScout-2 and 
S2 are used (bands B1 to B9) suggesting that the short-wave infrared (SWIR) bands of S2 (B10–B12) have high 
predictive power for water. This is expected since water reflectance is very low in the SWIR whereas soil and 

Table 1.   General statistics of the training, validation and test splits of the WorldFloods  dataset. Since raw 
images from S2 can be many megapixels in size, we tile each image into 256-pixel square patches. The training 
set distribution has a higher percentage of cloudy pixels compared with the validation and test datasets; this is 
because we were interested in distinguishing water/flood pixels whereas detecting clouds is a byproduct of the 
model. † Permanent water obtained from the yearly water classification product of Pekel et al.44 available at the 
Google Earth Engine52.

Dataset Flood events Flood maps 256x256 patches Water pixels (%) Land pixels Cloud pixels Invalid pixels

Flood Permanent† (%) (%) (%)

Training 108 407 182,413 1.45 1.25 43.24 50.25 3.81

Validation 6 6 1132 3.14 5.19 76.72 13.27 1.68

Test 5 11 2029 20.23 1.16 59.05 16.21 3.34
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vegetation reflectance is significantly higher57. Figure 7 shows the precision and recall for different thresholds on 
the total water class; again, our trained models beat NDWI and larger models tend to perform better.

Figure 8 shows the results of the models trained on the WorldFloods training dataset against models trained 
on clean S2–labelled data alone (Fig. 8). Results for the clean S2 labeled data have been computed by cross vali-
dation leaving one flood event out from the WorldFloods test dataset (details on this procedure and results for 
each flood event can be found in the supplementary material). We found that training using all data was better 
than training on S2-labelled data alone. Our hypothesis is that although reference labels from non-S2 satellites 
may be noisier, when considering the dataset in aggregate, this noise becomes less significant as most pixels are 
labelled correctly. This result also lends support to our argument that temporal misalignment between labels and 
imagery in our dataset was not significant. Similarly, this robustness should also extend to noisy ground truth 
which is semi-automatically labelled by humans.

The SCNN model was selected for testing on the Myriad 2 chip due to its similar accuracy, but lower compu-
tational footprint, compared to UNet (1 FLOPS vs 2.68 FLOPS for a 64 ×  64 ×  13 input). Figure 9 shows some 
example images segmented using the Myriad2. This model segments a 12 MP image—approximately the size 
acquired by HyperScout-2—in less than one minute, accounting for data transfer between the computer and 
the accelerator development board via a USB connection. We assume that the power required to downlink data 
is comparable to that of data processing (2.5 W for the Myriad2). Using a radio with a bandwidth of 10 Mbps, a 
1GB image would take 13 minutes to transfer. Therefore we can reduce image transmission power consumption 
by an order of magnitude at least. On a fully integrated platform like a satellite, we would expect lower latency 
for data transfer and hence a slightly faster overall processing time.

In general, our models tend to over-predict water content; a common failure mode is to identify dark regions 
as water. False positives are mostly clustered in the surroundings of water bodies and in cloud shadows (see 
Fig. 9). For further work we are exploring other methods to improve this, for example by adding another input 
channel with elevation.

Flood
shapefile

Model prediction13-band Sentinel 2
image Segmentation Model

Segmentation
ground truthS2Cloudless Permanent

water bodies

CEMS, GloFIMR,
UNOSAT

Metadata S2 Image

WORLDFLOODS

Flood event
databases

Cloud

Water

Land
Predicted

segmentation

Google Earth
Engine

Figure 6.   Overview of the model training pipeline used in this work. Note that WorldFloods provides images 
from S2, but reference flood extent maps may have been labelled from other sources, such as radar satellites.

Table 2.   IoU and recall results for models trained on WorldFloods. Bold values indicate highest metric value 
for each resolution and band combination.

Model IoU total water Recall total water Recall flood water Recall permanent water

10 m

NDWI (thres -0.22) 65.12 95.75 95.53 99.70

NDWI (thres 0) 39.99 44.84 42.43 86.65

Linear 64.87 95.55 95.82 90.75

SCNN 71.12 94.09 93.98 95.93

U-Net 72.42 95.42 95.40 95.83

80 m

NDWI (thres -0.22) 64.10 94.76 94.57 98.15

NDWI (thres 0) 39.07 44.01 41.69 84.55

Linear 60.90 95.00 94.79 98.58

SCNN 68.87 96.03 96.11 94.76

U-Net 70.22 94.78 94.85 93.50

80 m HyperScout-2 
overlapping bands

NDWI (thres -0.22) 64.10 94.76 94.57 98.15

NDWI (thres 0) 39.07 44.01 41.69 84.55

Linear 50.27 80.47 79.69 94.03

SCNN 65.82 94.62 95.17 84.99

U-Net 65.43 94.59 95.17 84.44
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Discussion and conclusions
The current proliferation of open-access satellite data complemented by imagery from commercial satellite opera-
tors has still only limited impact on assisting disaster response, primarily because of relatively low revisit times 
and long delays between image acquisition and product delivery. Here we propose a technical concept study for 
in-orbit flood mapping using low-cost hardware with machine learning capability to reduce the amount of data 
required to be downlinked. This concept will enable the use of large cubesat constellation to reliable monitor 
environmental phenomena such as flooding with high temporal resolution.

We have demonstrated that accurate flood segmentation in orbit is feasible to perform using low resolution 
images and available hardware. Our models outperform standard baselines and are favourably comparable to 
human annotation, while being efficiently computable with machine learning hardware on-board the current �
Sat-1 technology demonstrator as well as future missions.

Recent works58,59 have shown good performance of spectral indices such as NDWI for water detection on 
specific survey areas. In our experiments we see that our “best case” tuned NDWI results are also a strong base-
line. However there are still examples where a fixed threshold in an image will incorrectly retrieve buildings 
and cloud shadows as water. Therefore we expect NDWI to perform well in some cases (in our dataset, Finland, 
for example) and poorly in others, which is perhaps reflected in our aggregated results (see table 3 in supple-
mentary materials for the results for each flood event). Compared to previous works on flood detection33,45, we 
have reported results on a wide range of geographical areas paying special attention to data leakage60. For our 

(a) (b)

Figure 7.   Precision–recall curves of different models trained on (a), the Sentinel-2 original resolution (10 m) 
and (b), in the degraded resolution of HyperScout-2 (80 m). In gray 95% recall threshold.

Figure 8.   Performance of models trained with all WorldFloods flood maps compared with models trained only 
with flood maps derived from Sentinel-2.



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7249  | https://doi.org/10.1038/s41598-021-86650-z

www.nature.com/scientificreports/

application global generalisation is critical since its intended use is to automatically provide segmentation masks 
instead of heavier hyper-spectral images.

Figure 9.   Segmentation results of degraded models (SCNN 80  m) run on Myriad 2 device. Sentinel 2 imagery 
and Copernicus EMS mapping products are provided as public domain. Base images and reference labels are 
included in the WorldFloods database and code for plotting these images may be found in our repository6. 
Colours are as follows: brown/land, blue/water, white/cloud.
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Downlinking only segmentation masks instead of complete images is not exempt from drawbacks. Firstly, 
the quality of the downloaded data only depends on the accuracy of the model. In other words, an erroneous 
segmentation can not be fixed on the ground since the original hyperspectral information is lost. This could be 
alleviated by periodically downlinking full images to assess and improve the segmentation algorithm’s quality. 
The newly gained data could be added to the training dataset or even apply domain adaptation61 to boost the 
segmentation networks. Secondly, by discarding the image, we lose information that could be used for advanced 
analysis. Hyperspectral information could be used to assess the presence of pollutants in the flood water. In this 
case, the segmentation masks could be used to guide the retrieval of relevant pixels. Guiding the retrieval of 
cloud free images is the current operational application onboard the �Sat-1 satellite22.

One of the contributions of this work is the release of the WorldFloods database alongside this paper, which 
we hope will serve as a useful tool to foster further research in disaster response. We are pleased to write that 
this approach is being increasingly explored - while this work was being prepared for publication, several other 
‘machine learning’ ready datasets for segmentation from satellite imagery have been published; Rambour et. al.62 
demonstrated flood detection on time series of SAR and optical data, making their dataset publicly available, 
Bonafilia et. al.63, who focus on Sentinel 1 data, but provide more detailed labels that we had available to us here 
and Nemni et al.64 who has also made their dataset publicly accesible. The approach we explore here, of produc-
ing a ’machine learning ready’ dataset as well as a concrete algorithm, has also been recently explored for other 
areas of disaster response65, and we hope to see this continue.

Data availability
We are releasing the WorldFloods database alongside this paper at https://​tinyu​rl.​com/​world​floods. Users of this 
dataset should be aware of the varying quality of the reference labels that is pointed out in the paper; specifi-
cally some labels in the training and validation datasets have significant errors. In general the quality of the test 
dataset labels are higher and test images were curated to facilitate more accurate model evaluation. We hope 
to address any remaining label quality issues in future work. We provide a GitLab repository with our model 
architectures, model checkpoints and training/benchmarking code at: https://​gitlab.​com/​front​ierde​velop​mentl​
ab/​disas​ter-​preve​ntion/​cubes​atflo​ods.
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