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FOREWORD 

Type 2 diabetes (T2D) is a chronic metabolic disease with an inflammatory basis and 

whose incidence has been increasing over recent years. Identifying the molecular and cellular 

basis of T2D would contribute to its early detection and prevention of associated complications. 

This doctoral thesis outlines some of the molecular homeostatic mechanisms associated to the 

physiopathology of T2D in leukocytes isolated from T2D patients. To this end, observational 

studies have been carried out in different T2D cohorts recruited from the Endocrinology and 

Nutrition Service of University Hospital Dr Peset, Valencia, Spain.  

The data obtained from the recruited volunteers have rendered the results presented in this 

thesis and published in scientific journals indexed in the Journal Citations Report (JCR), all in the 

first quartile. The thesis consists of a global summary with an introduction, the main objectives, 

the methods employed and the results, followed by a discussion and conclusions. The four 

original articles included in this thesis can be found in the results and after the summary. In 

short, the first article details how autophagy, a cellular homeostatic process, is altered in the 

leukocytes of T2D patients. Moreover, the data supports that this alteration is related to 

leukocyte activation. In the second article it is detailed how poorly controlled T2D patients 

present a rise in some markers of inflammation and cardiovascular risk, and how maintaining 

glycated haemoglobin in range can reduce these alterations. The third article describes the 

functional and dynamic state of mitochondria in leukocytes from type 2 diabetic patients and 

their inflammatory state, all of which are ameliorated by treatment with metformin. Finally, the 

fourth article explores the effect of a mitochondria-targeted antioxidant compound, SS-31, on 

different homeostatic cellular processes and mitochondrial function in leukocytes from T2D 

patients.  
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NRF2: Nuclear respiratory factor 2. 

Nvj1: Nuclear-vacuolar junctions 1. 

OCR: Oxygen consumption rate. 

OCT: Organic cation transporter. 

OGGT: Oral glucose tolerance test. 

OMM: Outer mitochondrial membrane.  

OPA1: Optic atrophy-1. 

OPTN: Optineurin. 

OSBP: Oxysterol-binding protein. 

oxLDL: Oxidized low-density lipoprotein. 

OXPHOS: Oxidative phosphorylation. 

PAI-1: Plasminogen activator inhibitor 1. 

PARL: Presenylins-associated rhomboid-like. 

PARP: Poly-ADP ribose polymerase. 

PBMCs: Peripheral blood mononuclear cells. 

PDGF: Platelet-derived growth factor. 

PDI: Protein disulfide isomerase. 

PDK: Phosphoinositide–dependent kinase. 

PDX-1: Pancreatic and duodenal homeobox 1. 

PECAM: Platelet endothelial cell adhesion molecule. 

PEPCK: Phosphoenolpyruvate carboxykinase. 

PERK: Protein kinase RNA-like endoplasmic reticulum kinase. 

PEX2: Peroxisome biogenesis factor 2. 

PEX3: Peroxisome biogenesis factor 3. 

PFK2: Phosphofructokinase 2. 

PG: Plasma glucose. 

PGC1: PPAR gamma coactivator 1. 

PHB2: Prohibitin 2. 

PHLPP1: Pleckstrin homology domain leucine-rich repeat protein phosphatase.  



  

 
 

PI3K: Phosphoinositol-3-kinase. 

PI3KK: Phosphoinositol-3-kinase related kinase. 

PINK: PTEN-induced kinase. 

PIP3: Phosphatidil insolitol (3, 4, 5) triphosphate. 

PKA: Protein kinase A. 

PKC: Protein kinase C. 

PLC: Phospholipase C. 

PLIN2: Perilipin 2. 

PMNs: Polymorphonuclear cells. 

PBMCs: Peripheral blood mononuclear cells. 

PP2A: Protein phosphatase 2A. 

PPAR: Peroxisome proliferation activated receptor. 

PPARγ: Peroxisome proliferator associated receptor γ. 

PTEN: Phosphate and tensin homolog. 

PTP1B: Protein tyrosine phosphatase 1B. 

PUFA: Polyunsaturated acids. 

RAGE: Receptor of AGEs. 

Ras: Rat sarcoma. 

RER: Rough endoplasmic reticulum. 

Rheb: Ras homolog enriched in brain. 

RIP: Regulated intermembrane processing. 

ROCK: Rho kinase. 

RORα: RAR-related orphan receptor α. 

ROS: Reactive oxygen species. 

SAMTOR: S-adenosyl-methionine sensor upstream of mTORC1. 

SBP: Systolic blood pressure. 

SER: Smooth endoplasmic reticulum. 

SGLT: Sodium-glucose linked transporters. 

SHIP2: SH2-containing inositol phosphatase 2. 

SIRT1: Sirtuin-1. 

SOCS: Suppressor of cytokine signalling protein. 



  

 
 

SOD: Superoxide dismutase. 

SQSTM1/p62: Sequestosome 1. 

SS: Szeto-Schiller peptides. 

STAT3: Signal transducer and activator of transcription 3. 

STZ: Streptozotocin. 

SUR1: Sulphonylurea receptor 1. 

T2D: Type 2 diabetes. 

TAG: Triacylglycerol. 

TAK1: TGFβ-activated kinase 1. 

TBC1D4: RabGAP TBC1 domain family member 4. 

TBK1: TAK binding kinase 1. 

TCA: Tricarboxilic acid. 

TEPCR1: Tectonin β-propeller repeat containing 1. 

TFEB: Transcription factor EB. 

TG: Triglycerides. 

tHBQ: TerButylhydroquinone. 

TIRAP: TIR domain containing adaptor protein. 

TLRs: Toll-like receptors. 

TNFα: Tumour-necrosis factor α. 

TOLLIP: Toll-interacting protein. 

TRADD: TNFR1-associated death domain protein. 

TRAF2: TNF-associated factor 2. 

TRB3: Tribbles homolog 3. 

TSC2: Tuberous sclerosis complex 2. 

TXNIP: Thioredoxin interacting protein. 

UDP: Uridine diphosphate. 

UDP-GlnNAC: Uridyl diphosphate-N-acetylglucosamine. 

ULK: Unc-51 like autophagy activating kinase. 

uORF: Upstream open reading frame. 

UPR: Unfolded protein response. 

UPRE: Unfolded protein response elements. 



  

 
 

UVRAG: UV radiation resistance associated gene protein. 

Vac8: Vacuolar protein 8. 

VCAM-1: Vascular cell adhesion molecule 1. 

VEGF: Vascular endothelial growth factor. 

VLA-1: Very late antigen 1. 

VLDL: Very low density lipoprotein. 

Vps34: Vacuolar protein sorting 34. 

VSMC: Vascular smooth muscle cells. 

vWF: von Willebrand factor. 

WIPI: WD-repeat protein interacting with phosphoinositides. 

WPB: Weibel-palade bodies. 

XBP1: X-box binding protein 1. 

YmeL1: YME-like protein 1. 

YY1: Yin-yang 1. 

ZFD: Zucker diabetic fatty. 
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Introducción 

Actualmente, hay un preocupante incremento de las enfermedades metabólicas 

atribuible a un estilo de vida menos saludable, en el cual las dietas industrializadas con alimentos 

ultraprocesados y el aumento del sedentarismo conllevan un equilibrio energético positivo. En 

consecuencia, se favorece el desarrollo de sobrepeso y la obesidad, que son el origen de 

enfermedades metabólicas crónicas como el síndrome metabólico y la diabetes tipo 2 (T2D del 

inglés type 2 diabetes).  

La T2D es una enfermedad metabólica crónica de base inflamatoria, que cursa con tres 

síntomas principales, que son la hiperglucemia, la hiperlipidemia y la resistencia a la insulina (IR, 

del inglés insulin resistance). Inicialmente, el exceso de glucosa y lípidos circulantes provocan un 

estrés en el organismo que conlleva al mal funcionamiento de los órganos y tejidos encargados 

del metabolismo energético, tales como el páncreas, el hígado, el músculo esquelético o el tejido 

adiposo. El estrés celular resultante da lugar a una alta producción de moléculas 

proinflamatorias que desencadenan un estado inflamatorio de bajo grado. Gradualmente, la 

inflamación inhibe la acción de la insulina en los tejidos periféricos, llevando a un estado de IR. 

Simultáneamente, el exceso de nutrientes en sangre y la inflamación dan lugar a una 

hiperfunción del páncreas que provoca la hiperinsulinemia. Debido a esta situación – 

inflamación crónica, estrés oxidativo y alta demanda de insulina – llega un momento en el que se 

puede producir un fallo en el funcionamiento del páncreas. Todo este cuadro clínico es 

característico de la T2D.  

La principal hormona en la fisiopatología de la T2D es la insulina, sintetizada en las 

células β en los islotes pancreáticos en respuesta a la internalización de glucosa. El proceso de 

liberación de insulina comienza con la entrada de glucosa por los canales GLUT2 (del inglés 
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glucose transporter 2) y la generación de ATP. El aumento de energía celular provoca la apertura 

de los canales de potasio, despolarizando la membrana y aumentando las concentraciones de 

Ca2+ citosólico. Este incremento provoca la exocitosis de las vesículas preformadas de insulina, 

que se libera al torrente circulatorio y actúa sobre los tejidos periféricos donde estimula la 

captación de glucosa y lípidos favoreciendo la biosíntesis de macromoléculas e inhibe las rutas 

catabólicas. El mecanismo de acción de la insulina comienza cuando los receptores de insulina, al 

unirse a su ligando, se dimerizan y fosforilan, actuando como anclaje para la proteína IRS (del 

inglés insulin receptor substrate). Ésta activa una cascada de señalización que termina en la 

quinasa AKT (del inglés, AKR mouse thymoma kinase), responsable de activar la glucólisis y la 

síntesis de lípidos y proteínas, e inhibir la gluconeogénesis. 

La acción de la insulina se puede alterar por cambios en las concentraciones de lípidos y 

glucosa circulantes, comenzando por la síntesis y acumulación de lípidos en el músculo 

esquelético. En este caso, la infiltración de lípidos entre las fibras musculares perjudica la 

señalización de la insulina en los miocitos a través de intermediarios metabólicos como el 

diacilglicerol (DAG). Esta molécula inhibe la señalización de la insulina a través de la PKC (del 

inglés, proteín kinase C) provocando un cambio metabólico que implica la inhibición del 

almacenamiento muscular de glucógeno y un aumento de la síntesis hepática de glucógeno y 

lípidos que de nuevo genera DAG e inhibe la señalización de insulina. Por ello, la glucosa no se 

internaliza en los tejidos dependientes de insulina y permanece en circulación. Además, la 

síntesis de glucosa y la liberación de lípidos por parte de éstos tejidos acentúan el estado de 

hiperglucemia e hiperlipidemia. Este complejo proceso que involucra a diferentes tejidos y tipos 

celulares se denomina IR, y puede terminar agravándose hasta afectar e impedir la función 

pancreática.  
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Pese a que la T2D es una enfermedad crónica, existen tratamientos eficaces para 

controlar sus desencadenantes y sus síntomas a través de diferentes aproximaciones: las 

sulfonilureas, las biguanidas, las tiazolidinedionas, las glitazonas, los inhibidores de SGLT2 (del 

inglés, sodium-glucose cotransporter 2), los inhibidores de DPP-IV (del inglés, dipeptidyl 

peptidase IV) o los análogos de GLP-1 (del inglés, glucagon-like peptide 1). De entre todos ellos, 

la metformina es el fármaco de primera elección perteneciente al grupo de las biguanidas. A 

nivel celular, la metformina inhibe la gluconeogénesis, el complejo I de la cadena de transporte 

electrónico mitocondrial y activa a la AMPK (del inglés AMP-activated kinase). Se ha visto que la 

metformina es capaz de mejorar la función de la mitocondria, reducir el estrés oxidativo y, por 

tanto, paliar los efectos del estrés metabólico al que están expuestas las células. 

A nivel celular, la diabetes tiene importantes repercusiones ya que se provocan 

alteraciones en la bioenergética y sobre los niveles de estrés celular. Uno de los mecanismos 

fisiopatológicos más importantes es la presencia de estrés oxidativo, una alteración en el 

equilibrio entre especies prooxidantes y antioxidantes. La principal fuente de especies reactivas 

de oxígeno (ROS, del inglés reactive oxygen species) es la mitocondria, aunque existen otras 

fuentes en el citosol entre las que se incluyen la ruta de la hexoquinasa, la de las pentosas 

fosfato, y enzimas como la NADPH (del inglés, nicotinamide-adenine dinucleotide phosphate) 

oxidasa o la NO (del inglés, nitric oxide) sintasa entre otras. La mitocondria es el orgánulo 

encargado de sintetizar energía en forma de ATP a través de la cadena de transporte electrónico. 

Los electrones necesarios se generan en los procesos catabólicos como la glucólisis, la β-

oxidación y el ciclo de Krebs, y son transportados por los intermediarios energéticos NADH y 

FADH2. Ambas moléculas ceden los electrones que fluyen a través de los complejos I, II, III y IV de 

la cadena de transporte electrónico ubicados en la membrana interna de la mitocondria hasta el 

complejo IV donde generan H2O junto a una molécula de O2. Al mismo tiempo, la ATP sintasa 
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que forma el complejo V emplea la energía resultante de disipar el gradiente electroquímico de 

H+ para generar ATP a partir de ADP. El exceso de glucosa, característico de la T2D, genera un 

exceso de intermediarios energéticos que conlleva a una hiperactividad de la cadena de 

transporte electrónico, superando el balance adecuado entre ATP y ADP, lo que inhibe la ATP 

sintasa, despolariza la membrana por desacoplamiento del potencial de membrana y ralentiza el 

transporte de electrones. Además, los electrones libres pueden reaccionar con las moléculas de 

O2 generando anión superóxido en los complejos I y III, provocando un aumento de los ROS.  

La acumulación de ROS provoca una situación de estrés celular causada por diferentes 

motivos. Uno de ellos es el daño al ADN mitocondrial, que altera su función afectando 

especialmente a células con una alta demanda energética. Simultáneamente, los ROS inhiben la 

señalización de la insulina a nivel de la IRS e inducen la activación de rutas apoptóticas como JNK 

o IKK (del inglés c-JUN N-terminal kinase e IκB kinase). La inhibición en la señalización de la 

insulina favorece el uso y acumulación de lípidos que da como subproducto las ceramidas o el 

DAG, que contribuyen a la IR.  

A nivel sistémico, el exceso de ROS favorece las reacciones de glicación y oxidación entre 

moléculas. La glicación da lugar a productos de glicación avanzada (AGE, del inglés advanced 

glycation end products), que a través de su receptor RAGE (del inglés receptor for advanced 

glycation end products) puede activar rutas proinflamatorias en los tejidos que lo expresan. 

También, dentro de las reacciones que implican glicosilación se encuentra el aumento en la 

hemoglobina glicosilada (HbA1C), que se emplea para monitorizar el estado de control de la T2D. 

En cuanto a la oxidación, las más importantes son las de las LDL, dando lugar a partículas de LDL 

oxidadas (oxLDL, del inglés oxidized low-density lipoprotein), que activan al endotelio y a las 

células inmunitarias favoreciendo el desarrollo temprano de lesión aterosclerótica.  



  RESUMEN 

V 
 

Ante el aumento de las concentraciones de ROS celular, existen mecanismos 

antioxidantes, como las enzimas catalasa o superóxido dismutasa, que neutralizan los ROS y 

equilibran la balanza entre los antioxidantes/prooxidantes. También se han diseñado moléculas 

capaces de neutralizar los ROS, entre las cuales se encuentran los antioxidantes con diana en la 

mitocondria y de carácter peptídico como el SS-31, que además cuenta con la capacidad de 

acumularse en la mitocondria sin alterar a su función. Su actividad antioxidante se debe a un 

residuo dimetiltirosina, que no posee su análogo sin capacidad antioxidante, el SS-20.  

Una de las explicaciones al aumento patológico de ROS observado en la T2D es la 

disfunción mitocondrial. Se define por el defecto en la función de las mitocondrias que impide 

producir la cantidad necesaria de ATP, y se detecta mediante diferentes marcadores como la 

alteración del potencial de membrana, la disminución del consumo de O2 o la alta producción de 

ROS mitocondriales. Cabe destacar que el acúmulo de ROS afecta funciones celulares como la 

señalización de la insulina, la señalización por Ca2+ o la acumulación de DAG, que provocan tanto 

disfunción mitocondrial como IR. Por tanto, ambos procesos están estrechamente relacionados y 

son característicos de la fisiopatología de la T2D. 

Frente a la disfunción mitocondrial se establecen una serie de respuestas homeostáticas 

dentro de las cuales se encuentra la regulación de la dinámica mitocondrial. Ésta consiste en  

una serie de procesos por los cuales las mitocondrias se fusionan y fisionan para optimizar su 

estado metabólico en respuesta a las necesidades celulares. Cuando existe un daño celular, las 

mitocondrias se fisionan principalmente a través de las moléculas DRP-1 (del inglés dynamin-

related protein 1) y FIS-1 (del inglés fission protein-1), entre otras, para aislar la mitocondria 

dañada y eliminarla o tratar de reparar el daño. En cambio, en ausencia de daño, las 
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mitocondrias se fusionan mediante las proteínas MFN1 y 2 (del inglés mitofusin) y OPA1 (del 

inglés optic atrophy-1) para optimizar la fosforilación oxidativa.  

Otro de los mecanismos moleculares activados por la hiperglucemia e hiperlipidemia es 

el estrés de retículo endoplásmico (ER, del inglés endoplasmic reticulum) y la respuesta a 

proteínas mal plegadas (UPR, del inglés, unfolded protein response). Durante el estado de estrés 

celular y oxidativo, hay un problema de acumulación de proteínas mal plegadas y no funcionales, 

que se une a un estado de mayor demanda de síntesis proteica. El ER en esta situación, activa la 

UPR, una combinación de 3 vías de señalización que tienen por objetivo maximizar la capacidad 

de procesamiento y plegamiento en el ER y de degradación de proteínas alteradas. En caso de 

que esta respuesta no consiga resolver la situación, se activarán rutas apoptóticas. Las 3 rutas 

implicadas se inician con la activación de la proteína chaperona GRP78/BiP, que se disocia de las 

proteínas iniciadoras al detectar proteínas mal plegadas. La primera comienza con la 

dimerización de PERK (del inglés, protein kinase- r like ER kinase), que se fosforila y a su vez 

fosforila a eIF2α (del inglés, eukaryotic transcription initiation factor 2 alpha), inhibiéndola. Con 

ello se reduce la síntesis proteica generalizada, aunque algunos genes con secuencias específicas 

como el factor de transcripción ATF4 (del inglés, activating transcription factor 4) se siguen 

expresando. La segunda ruta se inicia con la proteína ATF6 (del inglés, activating transcription 

factor 6), que tras la disociación de GRP78 se trasloca al aparato de Golgi donde escinde su 

dominio citoplásmico que puede actuar de factor de transcripción. La tercera vía implica a la 

proteína transmembrana IRE1 (del inglés, inositol-requiring enzyme 1), que dimeriza y se 

autofosforila, activando su actividad endonucleasa que permite procesar el ARN mensajero del 

gen XBP1 (del inglés, X-Box binding protein 1) a su forma sXBP1 que actúa como factor de 

transcripción. Las 3 vías activan un programa transcripcional de respuesta a estrés, conformado 

por chaperonas, proteínas de degradación y autofagia, así como de respuesta antioxidante. En 
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particular, la primera vía tiene como diana el gen CHOP (del inglés, C/EBP homologous protein) 

que, en situación de estrés crónico, activa genes implicados en la apoptosis. 

Otra vía de homeostasis celular implicada en situaciones de estrés es la autofagia. Se 

encarga de degradar componentes defectuosos o de suplir de nutrientes a la célula en 

situaciones de estrés. Existen diferentes tipos de autofagia, aunque en esta tesis nos 

centraremos en la macroautofagia. Se inicia cuando las vías de señalización celulares activan al 

complejo ULK (del inglés, Unc-51 like autophagy activating kinase 1), que crea un dominio de 

nucleación para el anclaje de proteínas implicadas en la autofagia. A su vez, son reclutadas en 

este dominio las proteínas iniciadoras de la formación del autofagosoma, como Beclina-1, ATG4B 

(del inglés, autophagy related 4B cysteine peptidase), ATG9 (del inglés, autophagy related 

protein 9) o AMBRA1 (del inglés, autophagy and Beclin-1 regulator 1). Una vez formado, ULK 

activa al complejo de iniciación que a través del complejo PI3K (del inglés, phosphoinositol 3 

kinase) expande la membrana mediante la síntesis de PI3P (del inglés, phosphoinositol-3-

phosphate). Posteriormente, diferentes proteínas se involucran en el proceso de expandir la 

membrana y curvarla, como LC3/ATG8 (del inglés, autophagy related protein 8). Esta membrana 

englobará las moléculas, orgánulos o componentes celulares que se necesitan degradar, que 

pueden ser transportados por chaperonas o por proteínas específicas, como SQSTM/p62 (del 

inglés, sequestosome p62). Estas últimas interactúan específicamente con proteínas del 

autofagosoma como LC3. Una vez el autofagosoma se ha cerrado, se fusiona con un lisosoma 

que verterá sus enzimas en el lumen del autofagolisosoma, degradando la membrana interna y 

el contenido del mismo. Posteriormente, los componentes digeridos se liberarán de nuevo al 

citoplasma para su reciclaje. Este proceso está altamente regulado por el coste celular que 

conlleva su activación y ejecución. Principalmente, está regulado por rutas celulares que 

controlan el ayuno y la disponibilidad de nutrientes, como mTOR (del inglés, mammal target of 
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rapamycin) o AMPK. Otras vías como FOXO (del inglés, forkhead box transcription factor) 

también lo regulan en respuesta a factores de crecimiento o estimulación por señalización de 

insulina a través de AKT.  

La inflamación crónica de bajo grado es otra de las características que definen a la T2D y 

es responsable en gran medida de su fisiopatología. A nivel sistémico se refleja en los niveles 

elevados de citoquinas y moléculas proinflamatorias circulantes. Las más estudiadas han sido las 

citoquinas TNFα (del inglés, tumour necrosis factor alpha), IL-6, IL-1β o moléculas 

proinflamatorias como CRP (del inglés, C-reactive protein), que ya se pueden detectar en 

estadios tempranos de la T2D. El aumento de estas moléculas en fases iniciales del desarrollo de 

T2D refleja las primeras alteraciones como consecuencia de la hiperglucemia e hiperlipidemia, 

que junto con los ROS, las oxLDL o las AGE activan rutas implicadas en la inflamación, como NFκB 

(del inglés, nuclear factor kappa B) o JNK. A su vez, las citoquinas proinflamatorias que se 

producen activan cascadas de señalización proinflamatorias, amplificando la respuesta. Uno de 

los tejidos más expuestos a estas agresiones es el tejido vascular y, concretamente, las células 

endoteliales que recubren los vasos sanguíneos. La principal función de este tipo celular es 

mantener la homeostasis vascular, regulando procesos como la permeabilidad celular o la 

coagulación sanguínea. El endotelio se activa en respuesta a diferentes alteraciones como un 

aumento de células inmunitarias activadas circulantes, la presencia de oxLDL o un flujo 

sanguíneo turbulento, siguiendo un proceso que comprende dos fases sucesivas. En la primera, 

la célula libera los cuerpos de Weibel-Pallade, que almacenan moléculas proinflamatorias; y en 

la segunda, sintetiza moléculas de adhesión, selectinas e integrinas, que van a mediar las 

interacciones con las células inmunitarias para su extravasación. Este segundo paso requiere de 

la coestimulación por parte de los leucocitos circulantes activados. 



  RESUMEN 

IX 
 

La importancia de este proceso radica en que es el origen de una de las complicaciones 

más frecuentes de la T2D, la formación de placa aterosclerótica. Dicho proceso se inicia con la 

expresión y liberación por parte del endotelio y de los leucocitos de citoquinas y quimiocinas, 

que facilitan la interacción celular y su activación que suele estar mediada por la acumulación de 

oxLDL circulantes, en especial, de los macrófagos. En respuesta a esta activación, ambos tipos 

celulares sintetizan moléculas de adhesión, que provocan el rodamiento, anclaje firme y 

posterior extravasación del leucocito. Al extravasarse, los macrófagos pueden endocitar las 

moléculas de oxLDL, convirtiéndose progresivamente en células espumosas que se acumulan en 

la capa íntima-media de la vasculatura. La acumulación de este tipo celular produce grandes 

cantidades de moléculas inflamatorias que mantiene la activación de las células endoteliales e 

inicia la activación de las células musculares y fibroblastos. La inflamación crónica provocará la 

necrosis de las células espumosas, que crean un núcleo necrótico cuya característica es la 

producción de moléculas proinflamatorias y proapoptóticas. En este entorno inflamatorio, las 

células musculares modifican sus propiedades, adquiriendo la capacidad de migrar y calcificarse 

y, por tanto, estabilizar la lesión aterosclerótica. 

Las combinación de las manifestaciones a nivel celular de la T2D pueden derivar, como 

en el caso de las lesiones ateroscleróticas, en diferentes complicaciones cardiovasculares. Estas 

complicaciones son responsables de un porcentaje muy representativo de las muertes totales 

dentro de esta patología, y se pueden prevenir mediante estrategias combinadas de cambios en 

el estilo de vida y tratamiento farmacológico. Hay diferentes tipos de complicaciones 

cardiovasculares dependiendo de qué proceso se ve alterado: las complicaciones 

microvasculares implican a vasos pequeños, capilares principalmente, cuyas células que 

generalmente no están reguladas por insulina y que, por tanto, están expuestas a las altas 

concentraciones de glucosa circulante; las complicaciones macrovasculares se relacionan con la 
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aparición de placa de ateroma, que puede desencadenar diferentes patologías entre las que se 

incluye el infarto de miocardio. 

Las alteraciones macrovasculares tienen su origen en el estado proinflamatorio que, en 

combinación con la hiperglucemia e hiperlipidemia de la T2D, conllevan una activación crónica 

de las células endoteliales. La cronificación causa un estado protrombótico que favorece la 

aparición de placas de ateroma. Las posibles consecuencias de esta patología dependen de su 

fisiopatología, pudiendo ocasionarse por bloqueo del vaso (eventos isquémicos) o por 

desestabilización y rotura de la placa, dando lugar a un trombo (eventos trombóticos). Ambas 

presentaciones pueden originar enfermedad coronaria arterial (infarto, fallo cardíaco, isquemia 

de miocardio), enfermedad cerebrovascular (ictus) o enfermedad vascular periférica. La 

prevención temprana y el correcto control de la enfermedad parece ser la mejor aproximación 

terapéutica para este tipo de complicaciones. En este sentido, marcadores como la medición del 

grosor de la capa íntima-media de la carótida (CIMT, del inglés, carotid intima media thickness) 

son de utilidad para monitorizar y prevenir de manera precoz la aparición y el desarrollo de estas 

complicaciones. En combinación con otros marcadores moleculares pueden ser una buena 

herramienta para el cribado temprano de pacientes con susceptibilidad a desarrollar 

complicaciones.  

Hipótesis y objetivos: 

La T2D es una enfermedad crónica con base inflamatoria y que cursa con hiperglucemia, 

hiperlipidemia e IR. El exceso de nutrientes y la IR generan un estrés en la mitocondria que 

conlleva la producción y acumulación de ROS, que causan alteraciones en la señalización de la 

insulina y modificaciones en los componentes celulares, así como la afectación de la función 

mitocondrial y los mecanismos de rescate de la misma. Por tanto, es importante investigar el 
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estatus de las mitocondrias en la T2D para poder comprender mejor el mecanismo de la 

enfermedad. 

Asimismo, los procesos celulares de respuesta a estrés como la UPR o la autofagia se 

encuentran alterados en la mayor parte de los tejidos y órganos en la T2D. La IR, la 

hiperglucemia y la hiperlipidemia ejercen un papel fundamental en la regulación de estos 

procesos, pudiendo activarlos o inhibirlos dependiendo del tipo celular. Nuestra hipótesis se 

basa en que hay una activación de estos procesos que permitiría el restablecimiento de la 

homeostasis celular.  

Las complicaciones cardiovasculares son uno de los mayores problemas de salud 

asociados a la T2D. En la base de su desarrollo están las interacciones leucocito-endotelio, que 

corresponde a las etapas iniciales de la formación de la placa de ateroma y, por tanto, medir 

diferentes parámetros de esta interacción puede ser un buen indicador del estado del paciente. 

También hay otras estrategias que miden la aparición de placa aterosclerótica y que además 

sirven como marcador de riesgo cardiovascular como determinar el CIMT. Por ello, determinar 

estos dos parámetros y establecer su relación con otras variables que se encuentran alteradas 

en la T2D puede de ser de interés para establecer el riesgo cardiovascular de estos pacientes.  

También nos preguntamos si las estrategias terapéuticas actuales son capaces de 

atenuar las consecuencias a nivel celular de la T2D. El control glucémico es una herramienta 

preventiva que se ha asociado a una menor incidencia de complicaciones a largo plazo. En este 

sentido, se necesitan marcadores fiables que permitan, junto a los niveles de HbA1C, monitorizar 

y detectar de manera precoz este tipo de alteraciones, como el CIMT. En cuanto al tratamiento 

farmacológico, la metformina ha sido desde su descubrimiento una de los tratamientos 

habituales en la farmacoterapia de la T2D. Sin embargo, se necesitan más estudios para 
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profundizar en sus mecanismos de acción a nivel celular. Por otra parte, el desarrollo de nuevos 

tratamientos antioxidantes experimentales con diana en la mitocondria como el SS-31, se 

plantea como uno de las áreas con mayor proyección a nivel farmacológico, aunque muchos de 

los mecanismos de acción y su efecto exacto aún son desconocidos.  

Todas estas alteraciones afectan profundamente al metabolismo y la función de las 

células del sistema inmunitario que están expuestas durante su ciclo de vida a las situaciones de 

hiperglucemia, hiperlipidemia e IR comentadas previamente. Estas agresiones alteran su función 

favoreciendo la producción excesiva de ROS, la respuesta inflamatoria, la activación de rutas de 

rescate y el aumento de las interacciones con el endotelio. No obstante, todos estos 

mecanismos han sido poco estudiados en este tipo celular, tan relevante en la fisiopatología de 

la T2D.  

En base a lo expuesto, nos planteamos los siguientes objetivos: 

1. Evaluar el estado de la autofagia y su relación con la función mitocondrial y la 

inflamación en leucocitos de pacientes T2D. 

2. Estudiar la presencia de marcadores de riesgo cardiometabólico en pacientes T2D, 

reflejadas por el nivel de citoquinas circulantes, el grosor de la capa íntima-media de la 

carótida y las interacciones leucocito-endotelio; y la influencia del control glucémico 

estricto sobre todos éstos parámetros.  

3. Evaluar la influencia del tratamiento con metformina en la dinámica mitocondrial en 

leucocitos de pacientes T2D. 

4. Analizar el efecto del antioxidante con diana mitocondrial SS-31 en el estrés de ER, la 

autofagia y el estrés oxidativo.  
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Material y métodos: 

Sujetos de estudio: 

Para la realización de esta tesis reclutamos pacientes T2D y voluntarios sanos en el 

Servicio de Endocrinología y Nutrición del Hospital Universitario Dr Peset. Los pacientes firmaron 

el consentimiento informado que detallaba los procedimientos experimentales, aprobados por 

el Comité de Ética para la Investigación Clínica del hospital, con códigos 97/16 y 98/19, de 

acuerdo con los principios de la declaración de Helsinki. El diagnóstico de T2D se realizó de 

acuerdo a los criterios de la ADA (del inglés, American Diabetes Association). Los criterios de 

exclusión fueron: presencia de obesidad mórbida, tratamiento con insulina o presencia de 

enfermedades de origen autoinmune, hematológico, infeccioso, u otras enfermedades 

inflamatorias o neoplásicas.  

Recogida de muestras y análisis antropométrico y bioquímico: 

La recogida de muestras la realizó una enfermera especialista que extrajo 30 mL de 

sangre periférica de la vena braquial en tubos de recogida con el anticoagulante EDTA y un tubo 

de gelosa del que se aisló el suero. Previamente, se determinó la presión arterial, el peso, la 

altura y la circunferencia de cintura y cadera. Los parámetros bioquímicos que se analizaron en 

el Laboratorio Central de Análisis Clínicos fueron la glucosa en ayunas, el % de HbA1C, la insulina, 

el colesterol total, el colesterol HDL, VLDL y los triglicéridos, las apolipoproteínas y la CRP 

ultrasensible. Se calcularon posteriormente el IMC, las concentraciones de LDL según la fórmula 

de Friedewald y el índice HOMA-IR.  
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Determinación del grosor de capa íntima-media de la carótida.  

Un subgrupo de los pacientes se derivó al Servicio de Cardiología para medir el grosor de 

la capa íntima-media de las arterias carótidas. Lo realizaron especialistas en ecosonografía según 

las guías de la Asociación Americana de Ecocardiografía. La medida se realizó por triplicado en 

un segmento de 1 cm de la carótida de los pacientes a lo largo del eje longitudinal con un 

dispositivo Aloka 5500 (Hitachi, Aloka, Tokyo (Japón)).  

Ensayos funcionales: 

 Aislamiento de leucocitos: Los leucocitos polimorfonucleares (PMNs) y los 

mononucleares (PBMCs, del inglés peripheral blood mononuclear cells) se aislaron a 

partir de las muestras de sangre mediante un gradiente de densidades con Ficoll 

hystopaque 1119 y 10771. Tras una centrifugación, se generó un halo y un sedimento 

que correspondieron a las poblaciones de PBMCs y PMNs respectivamente. Las células 

se lavaron sucesivamente hasta obtener una población limpia que se repartió en 

alícuotas para su posterior uso. Parte de las células se trataron con diferentes estímulos 

como SS-31, SS-20, rotenona, thapsigargina o rapamicina. 

 Citometría estática: Se sembraron 3x105 PBMCs/pocillo en placas de 24 pocillos y por 

duplicado para cada muestra. Tras su adhesión al fondo de la placa, los PBMCs se 

marcaron con los fluoróforos TMRM, Fluo4, DCFH-DA y el marcador nuclear HOESCHT 

33342. Después de incubar 20 minutos y lavar los pocillos con HBSS, se visualizó la 

fluorescencia con un microscopio Olympus IX81 y el software ScanR. Se calculó la media 

de 16 imágenes por pocillo y se relativizó frente al control interno. 
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 Citometría de flujo: Una alícuota de sangre entera se marcó con anti-CD45 y DCFH-DA 

para visualizar los ROS totales de los leucocitos. El protocolo comprende un paso de lisis 

de eritrocitos y lavados para poder visualizar posteriormente la población de interés. La 

muestra se analizó en el citómetro Accuri C6 con un láser de 488 nm de emisión y el 

filtro FL-1 (FITC). Se midió la intensidad de DCFH en la población de los leucocitos, que se 

aisló por morfología y por marcaje de CD45, frente a un control interno.  

 Ensayo de consumo de O2: Se midió el consumo de O2 en una alícuota de 5x105 PBMCs 

con un electrodo de O2 de tipo Clark, y la monitorización del consumo se realizó con el 

software Duo.18. Se calculó el consumo máximo de O2 con los substratos endógenos 

mediante GraphPad.  

 Análisis de la interacción leucocito-endotelio: En este ensayo se analizó la interacción de 

1.2x106 PMNs con una monocapa confluente de células endoteliales de cordón umbilical 

humano sembrada en una placa petri de 35 mm de diámetro. En el experimento se pasó 

la disolución de PMNs sobre la monocapa a una velocidad de 0,3 mL/min en una cámara 

de flujo paralelo Glycotech, grabando 5 minutos de vídeo. En este vídeo se determinaron 

los siguientes parámetros: número de PMNs que ruedan sobre el endotelio en 1 minuto, 

velocidad de estos leucocitos y la adhesión de los PMNs en 5 campos aleatorios.  

 Determinación de citoquinas y moléculas de adhesión solubles: Estos experimentos se 

realizaron con muestras de sueros de pacientes y sujetos control con un analizador 

Luminex-200 y kits Milliplex MAP específicos siguiendo las instrucciones del fabricante. 

Las moléculas que se detectaron fueron TNFα, IL-6, VCAM-1, ICAM-1 y P-selectina.  
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Análisis de expresión génica y proteica: 

La expresión génica se analizó mediante RT-PCR con ARN extraído de muestras de 

PBMCs congeladas a -80ºC. La extracción se realizó con el GeneAll Ribospin total RNA extraction 

kit y cuantificado por Nanodrop 2000c. La retrotranscripción se realizó con el RevertAid first 

Strand c-DNA Synthesis kit, y 2µg se destinaron a analizar la expresión génica con cebadores 

específicos y el reactivo fluorescente KAPA SYBR FAST master mix. La expresión de cada gen se 

cuantificó mediante el método comparativo 2-ΔΔCt. 

En análisis de expresión proteica se llevó a cabo con 25 µg de proteína extraída de los 

PBMCs mediante un tampón de lisis y su cuantificación mediante el método BCA. La proteína se 

separó en geles comerciales de porcentaje específico dependiendo de la proteína de interés y se 

transfirió mediante un método de transferencia húmeda a una membrana de nitrocelulosa. 

Posteriormente, las proteínas de interés se detectaron mediante bloqueo de las membranas con 

leche o BSA, incubación durante la noche con anticuerpos primarios específicos y durante 1h con 

los anticuerpos conjugados a HRP secundarios necesarios en cada caso. La detección se realizó 

con reactivos quimioluminiscentes con diferente sensibilidad dependiendo de la proteína de 

interés. En análisis densitométrico de las bandas se realizó con el software Bio1D, relativizándolo 

con un control interno.  

Los genes y proteínas que se analizaron eran específicos de cada ruta analizada, como la 

UPR (GRP78, PERK, ATF6, CHOP), autofagia (Beclina-1, LC3, SQSTM/p62), fusión y fisión 

mitocondrial (MFN1, MFN2, OPA1, DRP1 y FIS1) e inflamación (NFκB). 
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Análisis estadístico:  

Se analizó la distribución de la población para establecer el tipo de análisis estadístico 

más adecuado para comparar los resultados entre sujetos sanos  y pacientes diabéticos con o sin 

tratamiento de metformina. En el caso de poblaciones con distribución normal, las 

comparaciones de dos grupos se realizaron con test T y entre 3 grupos se comparó mediante 

ANOVA con post-test de Bonferroni, Tukey o Newman-Keuls. En poblaciones con distribución no 

normal se compararon dos poblaciones con test de Mann-Whitney y tres con test de Kruskal-

Wallis. En aquellos casos en los que la edad y el IMC diferían significativamente entre las 

poblaciones de estudio, se incluyeron como covariables y se ajustó mediante análisis de la 

covarianza las variables de estudio. 

Las correlaciones se calcularon mediante coeficientes de Pearson o Spearman 

dependiendo del tamaño de la muestra analizada. Toda la estadística se calculó en el programa 

SPSS 17.0 y los gráficos se realizaron con GraphPad Prism 6.0. Las diferencias se consideraron 

significativas cuando p<0.05 en todos los casos, con un intervalo de confianza del 95%. 

Resultados y discusión: 

Las primeras diferencias entre las poblaciones de estudio se obtuvieron en los 

parámetros antropométricos, observándose que en los T2D hay un aumento de IMC y 

circunferencia de cintura. Los parámetros bioquímicos de metabolismo de la glucosa también 

reflejaron diferencias notables en los niveles de glucosa en ayunas, insulina, en el índice HOMA-

IR, y en la HbA1C, que lógicamente aumentaron en los pacientes diabéticos. En el estudio en el 

cual dividimos la población T2D en función de sus niveles de HbA1C, con un umbral de 6,5%, los 

pacientes con peor control glucémico presentaban un peor perfil metabólico general, 

demostrando la importancia de esta aproximación terapéutica en la T2D. En cuanto a los 
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parámetros de metabolismo lipídico, observamos que en pacientes T2D hay una bajada en el 

colesterol HDL y un aumento de los triglicéridos y el colesterol VLDL. Sorprendentemente, el 

colesterol total y el LDL no aumentan y en la mayor parte de los casos disminuyen, posiblemente 

por el tratamiento con estatinas de gran parte de la cohorte. Las alteraciones mencionadas 

confirman que en los pacientes T2D existe una alteración metabólica con un aumento de la 

glucosa y de los lípidos, característica de ésta enfermedad. 

La presencia de IR se confirmó mediante el aumento del índice HOMA-IR en todas las 

cohortes, que se encuentran en el rango considerado clínicamente como IR. Observamos 

además que los pacientes con peor control glucémico presentan un aumento de la IR comparado 

con los pacientes con una HbA1C inferior a 6,5%. La relación entre la IR y el control glucémico se 

explica por el exceso de glucosa, que produce un aumento de AGE, como la HbA1c, y en paralelo 

generan IR. De hecho, existe evidencia experimental que apoya la relación bidireccional entre 

estas alteraciones metabólicas.  

Posteriormente, realizamos los experimentos con leucocitos humanos para poder 

esclarecer cómo afecta la patología a este tipo celular. Elegimos este tipo celular por diferentes 

motivos: la facilidad de su obtención y aislamiento, su representatividad de estado general del 

paciente y su exposición a las alteraciones metabólicas. Además, en una enfermedad con base 

inflamatoria, es relevante estudiar el tipo celular más implicado en las respuestas inflamatorias. 

Estudios previos han determinado que en los pacientes diabéticos hay una mayor activación de 

éstas células, que muestran alteraciones a nivel mitocondrial y activación de rutas 

proinflamatorias y apoptóticas. Además, son células muy sensibles a estrés oxidativo, y en el 

ambiente molecular de la T2D muestran afectación en la respuesta antioxidante y en las 

correspondientes rutas de rescate.  
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Los leucocitos generan y modulan la respuesta inmunitaria del organismo que, como se 

ha explicado anteriormente, en la T2D está activada. Esto se refleja por un aumento circulante 

de mediadores proinflamatorios entre los que se incluyen TNFα, hsCRP e IL-6, como hemos 

observado en la presente tesis. Dicho aumento se ha propuesto en diferentes investigaciones 

como marcador temprano de desarrollo de T2D. Además, el TNFα y la IL-6 son moléculas que 

predisponen a un estado de IR mediante inhibición de la señalización a través del receptor de 

insulina. Dichas citoquinas también afectan a los niveles de HbA1C, ya que en situaciones de 

riesgo metabólico hay un aumento en sus niveles. En este sentido, hemos podido confirmar esta 

relación, observando aumentos significativos en el grupo de T2D con una mayor HbA1C.  

También hemos observado un aumento en las moléculas de adhesión ICAM-1 y VCAM-1 

en los pacientes T2D, relacionadas tanto con inflamación generalizada como con un estado de 

activación endotelial y riesgo cardiometabólico. Además, hemos constatado un aumento en 

ambas citoquinas en el grupo T2D con un peor control glucémico, confirmando que estas 

moléculas de adhesión aumentan en estados de riesgo metabólico. Además, este aumento 

indica que hay cierto nivel de activación endotelial, que puede favorecer la infiltración 

leucocitaria y predispone al desarrollo de lesiones ateroscleróticas. Por todo ello, se han 

propuesto como marcadores de riesgo de desarrollo de aterosclerosis junto con otras moléculas, 

como adipoquinas o moléculas de inflamación. 

Un aumento de la expresión de moléculas proinflamatorias y de adhesión refleja una 

activación endotelial y, posiblemente, un aumento en las interacciones entre los leucocitos y el 

endotelio. Todas estas modificaciones, se originan como consecuencia de las alteraciones 

metabólicas típicas en T2D entre las que se incluye la hiperglucemia y la hiperlipidemia. En este 

sentido, hemos observado que los leucocitos de T2D interaccionan más con el endotelio que los 
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de los sujetos sanos, y que estas interacciones son también mayores en el grupo de T2D con un 

peor control glucémico. Resultados similares se han obtenido en modelos in vitro e in vivo que 

también se asocian a un peor estado metabólico causado por la T2D y al incremento de las 

interacciones y por lo tanto a una peor función vascular, apoyando de esta manera nuestros 

resultados. La explicación a nivel molecular de estos resultados se basa en que la hiperglucemia 

y la hiperlipidemia pueden causar activación del endotelio a través de PKC y de la bajada de 

producción de NO, entre otras vías celulares. 

Otra manera de evaluar el riesgo cardiovascular en T2D, además de analizar las 

moléculas proinflamatorias y las interacciones leucocito-endotelio, es determinar el CIMT. Esta 

determinación es útil como marcador temprano de lesión aterosclerótica, ya que es poco 

invasiva para el paciente, rápida y relativamente sencilla. Además, se ha demostrado que tiene 

valor pronóstico de futuras lesiones ateroscleróticas, lo que constituye el inicio de las 

complicaciones macrovasculares. En el análisis que hemos realizado, observamos que los 

pacientes T2D mostraron un mayor CIMT, especialmente en la carótida izquierda. En el caso de 

los pacientes T2D con una glucemia peor controlada, el aumento solamente se mantuvo en la 

carótida izquierda. Al correlacionar los datos de CIMT con el perfil metabólico y antropométrico 

de los sujetos reclutados, observamos que había una correlación positiva con el IMC, los 

parámetros de metabolismo lipídico (excepto para el HDL, en el cual la correlación fue negativa) 

y glucémico. Curiosamente, en todos los casos, los datos mostraron más significatividad para las 

medidas de la carótida izquierda que para las de la derecha. Los datos obtenidos apoyan las 

observaciones previas acerca de la relación de la medida de CIMT con el estado de alteración 

metabólica. Precisamente, el aumento de CIMT izquierdo en pacientes diabéticos mal 

controlados refuerza la utilización de esta determinación como marcador temprano de futuras 

complicaciones macrovasculares.  
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Parte del origen de la activación endotelial y de las alteraciones celulares de la T2D se 

encuentra en el exceso de ROS. Se producen en muchos casos por el estrés metabólico y 

mitocondrial asociado a la hiperlipidemia, la hiperglucemia y la IR. Por ello, analizamos la 

producción de ROS en los leucocitos de los pacientes T2D y de sujetos sanos. Hemos observado 

que los leucocitos de pacientes T2D mostraron mayores niveles de ROS, tanto totales como 

mitocondriales, que los observados en leucocitos de sujetos sanos. Además, los pacientes T2D 

con un peor control glucémico mostraron mayores niveles de ROS que los bien controlados. El 

aumento de ROS no solamente altera el balance oxidativo de la célula sino que además activa 

vías de señalización proinflamatorias y/o apoptóticas que perjudican a la función celular. Dicha 

afectación se ha confirmado en otras enfermedades cardiovasculares, donde el exceso de ROS 

perjudica al funcionamiento de las células endoteliales, los cardiomiocitos y a otros tipos 

celulares involucrados. En cuanto a la relación con el aumento de la HbA1C, es una consecuencia 

directa del estrés oxidativo y el exceso de glucosa, tal y como se ha explicado anteriormente. 

Diferentes estudios han profundizado sobre este tema, encontrando que el aumento en la HbA1C 

se relaciona no solamente con un aumento de ROS sino también con una bajada de las defensas 

antioxidantes de la célula. 

Tal y como hemos observado, hay un aumento de producción de ROS mitocondriales 

que nos indica que existe disfunción mitocondrial en las cohortes de T2D analizadas. Para medir 

esta disfunción, analizamos algunos marcadores de función mitocondrial como el consumo de O2 

mitocondrial, el potencial de membrana y el contenido en Ca2+. Observamos que en pacientes 

T2D hay un menor potencial de membrana, un menor consumo de O2 y mayores niveles de Ca2+ 

citosólico. Todo ello apunta a una disfunción mitocondrial, que se manifiesta principalmente por 

un desacoplamiento de la cadena de transporte electrónico y el consiguiente descenso en los 

niveles de ATP. Estas observaciones se han confirmado con resultados de estudios previos que 
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demuestran que en modelos celulares y animales de T2D o de IR existe una disfunción 

mitocondrial. En este sentido, algunos estudios han observado una menor función de los 

complejos mitocondriales y menor síntesis de ATP, mientras que otros han descrito la ausencia 

de metabolitos clave en las rutas metabólicas que dependen de la mitocondria como el ciclo de 

Krebs o la β-oxidación. En conjunto, podemos concluir que en leucocitos de T2D existe una 

marcada disfunción mitocondrial. 

La célula tiene diferentes mecanismos para poder modular el daño mitocondrial, siendo 

una de ellas la regulación de la dinámica mitocondrial. Mediante este proceso la célula puede 

adaptar la función mitocondrial a las necesidades celulares y minimizar las consecuencias de la 

disfunción mitocondrial. Por ello, en esta tesis analizamos el estado de las moléculas implicadas 

en los procesos dinámicos de fusión y fisión mitocondrial. La expresión de MFN1, MFN2 y OPA1 

disminuye en los leucocitos de los pacientes diabéticos, tanto a nivel proteico como génico, lo 

que sugiere que hay un defecto en la fusión que podría estar involucrado en los mecanismos de 

reparación de las mitocondrias dañadas. Además, la expresión de las proteínas de fisión DRP1 y 

FIS1 es mayor en los pacientes T2D comparado con los controles sanos. Estudios previos de este 

proceso en modelos experimentales de enfermedad metabólica y T2D han observado un 

aumento de la fisión que se produce en respuesta al daño celular, aunque otros explican que la 

falta de fisión es la que genera el daño en las mitocondrias. A pesar de esta falta de consenso, 

nuestros resultados apoyan la idea de que hay un aumento de disfunción mitocondrial que 

perjudica el funcionamiento de la célula y que se ve agravado por el exceso de fisión. Estas 

alteraciones en la dinámica mitocondrial pueden provocar un deterioro en la capacidad de 

síntesis de ATP y de las rutas metabólicas vitales para la homeostasis celular.  
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Como se ha comentado anteriormente, los ROS se acumulan en las células afectadas por 

la inflamación generalizada que está asociada a la T2D. Los ROS son moléculas muy reactivas, 

pudiendo modificar proteínas, lípidos y otras moléculas complejas, afectando finalmente su 

función. La acumulación de ROS genera un estrés en la principal maquinaria de síntesis y plegado 

de proteínas, el ER, activando las vías de rescate frente a proteínas mal plegadas o UPR. Al 

analizar las proteínas implicadas en dicha respuesta, hemos observado que en los leucocitos de 

pacientes con T2D hay un aumento de la expresión de las proteínas implicadas en la ruta PERK 

con respecto a los de sujetos sanos. Otros estudios han observado una activación de las vías de 

UPR en células β pancreáticas para preservar la función celular en T2D, aunque también se ha 

confirmado que su inhibición perjudica la función de éstas células.  

Otro mecanismo central de rescate celular es la autofagia, cuya activación y respuesta al 

estrés celular se ha visto alterada en la T2D. En nuestra población, observamos que en los 

leucocitos de T2D hay una activación de la autofagia reflejada por el aumento de expresión de 

las moléculas Beclina-1 y LC3, y una disminución de SQSTM/p62. En conjunto, estos resultados 

sugieren una activación de la autofagia en leucocitos de pacientes con T2D. De manera similar a 

lo que ocurre con la activación de la UPR, en los estudios previos no se ha observado un 

comportamiento uniforme de la autofagia en la T2D. Numerosos estudios han observado en 

diferentes tejidos y tipos celulares una inhibición de la autofagia que deteriora los mecanismos 

de protección ante el estrés celular. En cambio, otros estudios también en modelos 

experimentales de T2D han observado una activación de la misma vía de rescate. En este 

sentido, se ha propuesto que los ROS activan la autofagia a través de AMPK en células β 

pancreáticas, aunque se ha observado que la activación crónica de la autofagia en tejido 

cardíaco activa procesos proapoptóticos. Por lo tanto, existen ideas contradictorias en cuanto a 
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la activación o no de la autofagia puesto que parece depender del tipo de tejido, grado de 

activación y patología asociada.  

Además de analizar la autofagia, hemos analizado su relación con la interacción leucocito 

endotelio. De hecho, hemos observado que aumentos en los niveles de Beclina-1 

correlacionaron positivamente con las interacciones de los leucocitos con el endotelio en 

pacientes diabéticos; en cambio, en los sanos, la correlación fue negativa. Estos resultados 

reflejan que el comportamiento de la autofagia puede ser diferencial dependiendo de la 

situación metabólica del individuo; además, apuntan a una relación directa entre la autofagia y 

la inflamación. En este sentido, diferentes estudios han observado una relación directa de la 

Beclina-1 con el factor de transcripción NFκB y, por tanto, con la inducción de la inflamación.  

Por último, quisimos explorar el efecto a nivel celular de diferentes tratamientos, en 

concreto la metformina y el péptido antioxidante con diana mitocondrial SS-31. Hemos 

observado que los leucocitos de pacientes T2D tratados con 1700mg/día de metformina durante 

al menos un año tienen una mejor función mitocondrial, reduciendo los niveles de ROS y 

aumentando la respiración mitocondrial y el potencial de membrana. El tratamiento con 

metformina también mejora el equilibrio entre fusión y fisión mitocondrial, aumentando las 

proteínas involucradas en la fusión y reduciendo las implicadas en la fisión, mostrando por tanto 

un efecto beneficioso de la metformina sobre los mecanismos homeostáticos de la mitocondria. 

Diferentes estudios han propuesto que la metformina puede actuar a través de AMPK y/o de la 

inhibición del complejo I de la cadena de transporte electrónico mitocondrial. También se ha 

observado que es posible que la regulación de los ciclos de fusión-fisión sea a través de las 

proteínas AMPK o AKT. Por tanto, poder determinar el mecanismo por el cual actúa la 
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metformina para ejercer estos beneficios será útil para poder ampliar los efectos terapéuticos de 

dicho fármaco.  

En cuanto al tratamiento experimental con el antioxidante SS-31, pudimos constatar que 

al tratar los leucocitos de pacientes T2D con este antioxidante, se redujo la producción de ROS 

mitocondrial y la liberación de Ca2+. Este efecto fue equiparable al tratamiento de los mismos 

leucocitos con catalasa, indicando que el SS-31 ejerce un potente efecto antioxidante. Cuando 

examinamos las rutas activadas por estrés celular, observamos que el SS-31 reduce la UPR, 

especialmente sobre la vía iniciada por PERK. El tratamiento también redujo efectivamente la 

activación de la autofagia. En conjunto, los datos apoyan que la actividad antioxidante del 

péptido SS-31 ejerce un papel homeostático en los leucocitos de pacientes T2D mientras que el 

péptido sin el residuo dimetiltirosina con actividad antioxidante (SS-20) no tuvo efecto. En este 

sentido, existen estudios que confirman el efecto beneficioso del SS-31, e incluso hay ensayos 

clínicos para su uso terapéutico en complicaciones microvasculares como retinopatía o en 

enfermedad renal, donde ya se han constatado efectos beneficiosos. Por lo tanto, en la presente 

tesis, hemos mostrado diferentes tratamientos que pueden mejorar la función mitocondrial y la 

activación de vías y mecanismos de rescate celular en la T2D, aportándose de esta manera 

nuevas vías de intervención terapéutica. 
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Conclusiones: 

1. Los leucocitos de pacientes T2D presentan un aumento de los ROS totales y mitocondriales, 

de los marcadores celulares de autofagia y de los marcadores séricos y celulares de 

inflamación comparando con leucocitos de sujetos sanos. Esto se refleja en un aumento de 

las interacciones leucocito-endotelio que se correlaciona con los niveles de Beclina-1.  

2. Los pacientes diabéticos con HbA1C>6.5% presentan niveles elevados de citoquinas 

proinflamatorias y moléculas de adhesión solubles. Además, sus leucocitos producen más 

ROS mitocondriales e interactúan más con el endotelio comparando con los de pacientes 

con una HbA1C ≤6.5%. Las medidas de CIMT también son mayores en los pacientes peor 

controlados, y se correlacionan con el aumento de interacciones leucocito-endotelio y un 

peor perfil metabólico, en especial para las medidas de carótida izquierda. Por tanto, un 

correcto control glucémico puede ser una estrategia de prevención de las complicaciones 

cardiovasculares en la T2D. 

3. Los leucocitos de pacientes diabéticos muestran un defecto en la función y la dinámica 

mitocondrial, que se observa mediante un aumento en la producción de ROS, menor 

potencial de membrana, menor consumo de O2 y una tendencia a la fisión mitocondrial. 

Estos leucocitos interactúan más con el endotelio comparando con los leucocitos de sujetos 

sanos. La terapia con metformina es beneficiosa a nivel mitocondrial, mejorando su función 

y su dinámica que se refleja en una menor interacción con el endotelio que en los pacientes 

diabéticos no tratados. 

4. El péptido antioxidante con diana mitocondrial SS-31 reduce la producción de ROS 

mitocondrial y mejora el potencial de membrana y la distribución de calcio en los leucocitos 

de pacientes T2D. Estos beneficios implican un mejor control sobre los mecanismos de 

homeostasis celular a través de la reducción del estrés de ER y los marcadores de autofagia. 

Además, el tratamiento con SS-31 de los leucocitos de pacientes T2D reduce sus 

interacciones con el endotelio. 
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1.1. Type 2 diabetes: 
 

Type 2 diabetes (T2D) is a chronic non-communicable disease originating in defects in 

glucose metabolism. It is defined as “non-insulin dependent diabetes or “adult-onset diabetes”, 

and it accounts for 90-95% of all diabetic patients. It encompasses individuals with relative 

insulin deficiency and those with peripheral insulin resistance (IR) 1. T2D requires continuous 

monitoring and medical care, given that it varies considerably between patients depending on 

age, lifestyle and the presence or absence of risk factors. Moreover, T2D needs to be tightly 

controlled in order to prevent possible macro and microvascular complications 2. Keeping a 

healthy lifestyle, having a wholesome diet and doing daily physical exercise helps to control the 

disease. However, antidiabetic drugs must be prescribed for the correct management of glucose 

blood levels. Different treatments are available for T2D, which might combinate or not with 

insulin treatment depending on the therapeutic needs of the patient 3,4. 

1.1.1. Definition and diagnosis 
 

Diabetes englobes a group of diseases characterised by an alteration of the physiological 

response to glucose. There are different known types of diabetes1:  

 Type 1 diabetes: Due to autoimmune pancreatic β-cell destruction. 

 Type 2 diabetes: Progressive loss of adequate pancreatic β-cell function associated to IR. 

 Gestational diabetes: It develops during pregnancy in the pregnant mother and usually 

disappears after giving birth. It can occur at any stage of pregnancy, but is more 

common in the second or third trimester. 

 Specific types: Neonatal diabetes, Maturity Onset Diabetes of the Young (MODY), drug-

induced diabetes. 
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T2D is characterised by hyperglycaemia and hyperlipidaemia, and usually also 

hyperinsulinemia in the early stages 5. Diagnosis of T2D is based on the measurement of several 

analytical parameters: fasting plasma glucose (FPG) values, 2h plasma glucose (PG) in an oral 

glucose tolerance test (OGTT) and glycated haemoglobin concentrations. The criteria for 

diagnosing T2D is FPG≥126 mg/dL or 2h PG≥200 mg/dL during OGTT, or glycated 

hemoglobin≥6.5% or - in patients with symptoms of hyperglycaemia - a random plasma glucose 

≥ 200 mg/dL 1. 

T2D is usually preceded by a prediabetic stage, characterised by a certain grade of IR, but in 

the absence of severe glucose intolerance, with high levels of glucose that do not meet the 

diagnostic threshold. These patients exhibit either impaired fasting glycaemia (FPG levels 

between 100 and 125 mg/dL), impaired glucose tolerance (2-h PG from 140 to 199 mg/dL) 

and/or glycated haemoglobin between 5.7 and 6.4% 1. These parameters should also be 

monitored in individuals with known risk factors for developing T2D (obesity, first-grade relatives 

with diabetes, history of cardiovascular disease (CVD), hypertension, hypertriglyceridaemia, 

polycystic ovary syndrome, AIDS, women with history of gestational diabetes, or age over 45 

years old) 6. Once prediabetes is detected, tests should be repeated every year.  

1.1.2. Epidemiology and clinical impact 
 

The global increase in a sedentary lifestyle, energy-dense diets and the obesity that 

occurs as a consequence of both is leading to a huge rise in the number of cases of T2D 

diagnosed. In 2019, 463 million people were diagnosed with diabetes, of whom 90% had T2D 5. 

Epidemiological studies predict that, by 2045, the number will reach 700 million 7,8. The 

distribution of diabetes diagnoses is uneven across the globe. In 2019, the Western Pacific 

Region presented the highest incidence, with 163 million cases. The region with lowest incidence 
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was Africa, with 18 million people. However, a better indicator of the severity of the situation is 

the increment predicted by 2045. While in Europe the predicted rise is 15%, with a baseline of 

59 million people, in Africa the rise is expected to be 143%, and 96% in Middle East and North 

Africa 8. The rise in developing countries is related to their economic growth, which implies 

access to processed foods and a reduced need for physical exercise. This increase in T2D is 

expected to rise from 9.5% in 2019 to 11.8% in 2045. If we examine the data for the countries 

with higher age-matched prevalence, the top 5 countries are the Marshall Islands (30.5%), 

Kiribati (22.5%), Sudan (22.1%), Tuvalu (22.1%) and Mauritius (22.0%). This ranking is expected 

to be maintained, with slight variations, until 2045. All the abovementioned countries are 

undergoing a process of fast economic development. In relation to economic growth, the 

incidence of T2D is higher in urban areas (10.8%) than in rural ones (7.2%) 8,9. Again, 

globalisation and the tendency to live in urban areas favour a sedentary and a hypercaloric 

lifestyle, which is a perfect breeding ground for developing T2D. 

If we consider gender, more men suffer from T2D than women (9.6% vs 9% respectively), and 

the increase until 2045 is expected to be slightly higher in women (1.8%) than in men (1.5%) 

8,10,11.  

Another astonishing figure is the number of undiagnosed cases of T2D worldwide: in 

Europe, it is estimated that 40.7% of all diabetic patients are not diagnosed. However, a much 

higher prevalence is estimated for regions such as Africa, South and East Asia or the Western 

Pacific (59.7%, 56.7% and 55.8% respectively), which highlights the need for early detection and 

primary medical assistance in those regions 8,12–15. 

If T2D is not well controlled and monitored, it can lead to other health problems that 

compromise the life of the patient 16–18. Indeed, diabetes-related mortality comprises 11.3% of 

all-cause-deaths worldwide. Specifically, diabetes-related events cause a high proportion of early 
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age deaths, understood as deaths before 60 years old 8. Europe has the lowest early-age death 

proportion (31.4%), while the highest incidence is found in Africa (73.1%), followed by the 

Middle East and North Africa (53.3%) 8,17. 

T2D is an “expensive” disease for both the public health service and patients 9,19,20. The 

direct cost (not distinguishing between public or private) is estimated at about 232 billion USD in 

2007, 727 billion USD in 2017, and 760 billion USD in 2019, and is expected to grow steadily, 

reaching the figure of around 845 billion USD in 2045 8.  

1.1.3. Physiopathology 

1.1.3.1. Systemic glucose metabolism 
 

Glucose is one of the main energy sources of the organism. The source of glucose is food 

intake, during which more complex molecules are digested, resulting in the release of simple 

carbohydrates. Glucose metabolism, in short, comprises 4 main processes. Glucose catabolism 

occurs during glycolysis, which generates energy in the form of Adenosine Triphosphate (ATP), 

Nicotinamide Adenine Dinucleotide (NADH) and pyruvate. If coupled with the Krebs cycle and 

the respiratory chain, it generates more NADH and ATP. Another catabolic process is 

glycogenolysis, meaning the breakdown of the glycogen reservoir. It is carried out by glycogen 

phosphorylase, which releases glucose-1-phosphate, which is in turn isomerized into glucose-6-

phosphate 21. The two main anabolic pathways are gluconeogenesis and glycogenesis. The 

former refers to the synthesis of glucose as it parts from glycerol, free fatty acids (FFA), 

aminoacids, pyruvate, or Acetyl-CoA intermediates. This pathway is similar to the inverse 

glycolysis pathway, and is highly endergonic. Glycogenesis consists of the formation of glycogen 

stores by glucose-6-phosphate, which is isomerised by phosphoglucomutase to glucose-1-

phosphate. It is then metabolised to uridine diphosphate glucose (UDP-glucose) by UDP-glucose-

pyrophosphorilase, and in this form is added to short glucose chains and to the main glycogen 
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molecule by glycogenin and glycogen synthase, respectively. The regulation of these pathways is 

vital for maintaining steady levels of circulating blood glucose 21.  

Normoglycaemia is maintained at a concentration between 4 and 6 mM (70-100 mg/dL) 

through an interplay between insulin and glucagon action and secretion 22, which regulates the 

glucose and lipid metabolism pathways. Insulin is produced by pancreatic β cells responding to 

the physiological demands of the whole organism. It is secreted after meals in response to 

nutrient availability, enabling the organs to metabolise nutrients. The main effects of insulin 

secretion are anabolic, such as stimulating lipogenesis and glycogen synthesis, and incorporating 

aminoacids into the cells. Insulin secretion ceases after meals, giving way to glucagon secretion. 

Glucagon is synthesized in pancreatic α cells, and has catabolic functions, such as activation of 

glycogenolysis and gluconeogenesis 22.  

Insulin acts on cells that present the insulin receptor, which can autophosphorylate on 

tyrosine residues once dimerized (Figure 1). This modification is a docking place for the insulin 

receptor substrate (IRS) that is also phosphorylated on tyrosines. Afterwards, phosphoinositol 3 

kinase (PI3K) is recruited by phosphotyrosines on the IRS and activates its lipid kinase activity, 

rendering phosphatidilinositol-3, 4, 5-triphosphate (PIP3) at the cellular membrane. Local 

increases of PIP3 lead to recruitment of the phosphoinositide–dependent kinase (PDK), which, 

once bound to PIP3, phosphorylates protein kinase B (AKT) in the Thr308. This last kinase 

amplifies the effects of insulin signalling by inhibiting forkhead family box O (FOXO) and 

activating glycogen synthase kinase 3 β (GSK3β) and rabGAP TBC1 domain family member 4 

(TBC1D4), which activates glucose uptake and the tuberous sclerosis complex 2 (TSC2), which in 

turn activates the mammal target of rapamycin complex (mTORC) 23,24. All these modifications 

lead to a complex and coordinated change in the main energy metabolism pathways that 

contributes to an anabolic situation. Globally, insulin signalling causes an increase in glucose 
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uptake, lipid synthesis, protein synthesis, and glycogen synthesis. Insulin signalling can also be 

inhibited in the first steps of the pathway. Specifically, inhibitory phosphorylations of the IR are 

carried out by protein kinase C (PKC), suppressor of cytokine signalling protein (SOCS) and 

protein tyrosine phosphatase 1B (PTP1B), which induce IR internalization. Inhibitor of nuclear 

factor kappa B subunit beta (IKKβ), janus kinase (JNK) or mTOR can inhibit IRS signalling at the 

PI3K level, establishing a negative autofeedback mechanism; and phosphate and tensin homolog 

(PTEN) or SH2-containing Inositol Phosphatase 2 (SHIP2) lipid phosphatases turn PIP3 into other 

lipid species 23,24. Coordination among all these signalling pathways modulates the effect of 

insulin on the target tissue 24.  
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Figure 1: Insulin signalling pathway. Once insulin is bound to insulin receptors, they dimerize and 
autophosphorylate, recruiting IRS. Insulin receptor phosphorylation of IRS creates a docking domain for 
PI3K. The PI3K enzyme creates PIP3 rafts in the membrane that enable the binding of PDK. Next, PDK 
phosphorylates the mediator AKT and amplifies the signalling towards the anabolic use of glucose. 
IRS=Insulin receptor substrate; PI3K= Phosphoinositol 3 kinase; PIP3= Phosphoinositol 3 phosphate; PDK= 
Phosphoinositide-dependent kinase D; AKT= a serine/threonine protein kinase; GSK3= glycogen synthase 
kinase 3; mTOR= mammalian target of rapamycin; FOXO= forkhead box protein 01 

 
Differently to insulin signalling, other manner of modulating glucose concentrations is 

the central regulation of food intake 25. A tight coordination between central nervous system 

signs, peripheral signs from energy stores, or related to hunger and satiety organs gives 

feedback to the hypothalamus, which eventually regulates appetite, physical activity and body 

weight. Two of these hormones are the incretins glucagon-like protein 1 (GLP-1) and glucagon 

inhibitory protein (GIP). They are synthesized by enteroendocrine cells (K-cells and L-cells) when 

they sense glucose, fructose, aminoacids or FFA. Incretins act on the pancreatic β cells binding to 

G protein coupled receptors (GPCR), GLP1 receptors (GLP1R) and GIP receptors (GIPR), 
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stimulating insulin release through adenylate cyclase 26. 

The orchestration of these and other hormones, together with the central nervous 

system (CNS), allows the temporal release of insulin from food intake for storing glucose and 

building up cellular components, and glucagon when there is need for cellular glucose release for 

maintaining normoglycaemia. 

1.1.3.2. Cellular glucose homeostasis 
 

The main cell types that control glucose homeostasis are pancreatic cells, hepatocytes, 

myocytes and adipocytes. Pancreatic cells are divided into several cell types depending on their 

structure and function. The most relevant for glucose regulation are pancreatic α cells and 

pancreatic β cells. Pancreatic α cells synthesize and release glucagon, while β cells perform the 

same functions with respect to insulin.  

Pancreatic β cells depend on glucose concentration and other hormonal stimuli for the synthesis 

and release of pre-formed insulin granules. When pancreatic β cells uptake glucose by the low 

affinity glucose transporter 2 (GLUT-2) receptor, it is released into the cytosol and 

phosphorylated by glucokinase. Glucose-6-P is then metabolised through glycolysis to form 

Acetyl-coA and pyruvate, which enter the mitochondria to form ATP. ADP/ATP levels are sensed 

by sulphonylurea receptor 1 (SUR1), which closes the adjacent potassium channels. This alters 

the membrane potential, opening the calcium channels and triggering the release of insulin 

granules (Figure 2). Once glucose ceases to enter, there is a return to the accumulation of insulin 

granules in the cytoplasm 22,27.  
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Figure 2: Mechanism of insulin release in pancreatic β cells. Glucose entrance through GLUT2 channels 
increases intracellular ATP concentrations. ATP-sensitive K

+
 channels close in response to this increase, 

depolarizing the cell membrane. The loss of polarization acts as a trigger for the opening of Ca
2+

 channels 
and the subsequent increase of cytosolic Ca

2+
 that triggers the release of the preformed insulin granules. 

GLUT2= glucose transporter 2; TCA= tricarboxilic acid cycle; OXPHOS= oxidative phosphorylation; ATP= 
adenosine triphosphate. 

 
Hepatocytes are key cell types in the regulation of the release (through glycogenolysis 

and gluconeogenesis) or the storage (glycogenesis) of glucose in the organism. The main glucose 

transporter in this cell type is GLUT2. Glucose enters the cell through this transporter and is 

immediately phosphorylated by glucokinase, resulting in glucose-6-P, which, depending on the 

systemic needs, will enter the anabolic or catabolic pathways depending on the presence of 



  1. INTRODUCTION 

10 
 

insulin or glucagon, respectively 21 21,28,29.  

Myocytes are very specialized and differentiated cells that contain glycogen storages. 

The glucose channels in myocytes are glucose transporters 1 (GLUT-1) and glucose transporter 4 

(GLUT-4), which uptake 80% of the circulating glucose under insulin stimulation 30. For 

translocating GLUT4 to the membrane, circulating insulin binds to IR 1 and 2 releasing the insulin 

receptor substrate (IRS-1) that activates Akt. Akt also activates glycogen synthesis through 

inhibition of glycogen synthase kinase, an inhibitor of glycogen synthase 31,32.  

Adipocytes are the main component of adipose tissue. Their main function is lipid 

storage and the synthesis of triacylglycerol (TAG) from glycerine and FFA. Adipose tissue only 

accounts for 10-15% of all the circulating glucose after a meal, despite it sharing GLUT-1 and 

GLUT-4 channels with myocytes 33. Glucose in adipocytes is destined for the synthesis of TAGs, 

which are stored in lipid droplets. When there is no insulin signalling, the stored TAGs are broken 

down into FFA and released into the bloodstream. Under the action of insulin, Akt activates 

phosphodiesterase, which inhibits Protein Kinase A (PKA), thus promoting esterification of FFA 

for its storage 34.  

In leukocytes, the main receptors are GLUT1 and Sodium-Glucose Linked transporters 

(SGLTs). GLUT1 is an insulin-independent glucose channel, which is overexpressed under T-cell 

activation and induces glucose-dependent ATP synthesis 35,36. Given its low Km, glucose uptake 

will depend on circulating concentrations. Hence, it is predictable that under hyperglycaemia, 

glucose metabolism will be enhanced in this cell type.  

1.1.3.3. Insulin resistance and β cell dysfunction 
 

The basis of T2D is hyperglycaemia and hyperinsulinemia; however, which is the origin 

and which is the primary cause is still under research. Hyperglycaemia is the excess of circulating 
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glucose, and originates an imbalance between glucose incorporation through food intake and its 

cellular internalization and usage. The first tissue to sense this abnormality is muscular tissue. 

Myocytes become insulin-resistant thanks to lipid infiltrates, which increase diacylglycerol (DAG) 

and PKC, inhibiting IRS activation 37–39. As a consequence, glycogen synthesis is inhibited and the 

remnant glucose is redirected to the liver, where glycogen synthesis and de novo lipid synthesis 

takes place. The resulting rise in circulating very low density lipoproteins (VLDL-c) and 

intrahepatic lipid concentrations increases hepatocyte DAG, which activates PKC, thus 

decreasing the activation of IR tyrosin kinases 40. Moreover, hepatic IR leads to activation of 

gluconeogenesis and glycogen breakdown, thereby increasing circulating glucose levels 41. Under 

IR, adipose tissue IRS activity is low, which causes increased lipolysis, implying more circulating 

FFA and glycerol. Overall, the insulin-resistant situation renders a high level of circulating glucose 

and lipids and enhanced gluconeogenesis, hepatic lipogenesis and adipose lipolysis 42,43.  

 

Figure 3: Metabolic alterations of IR. High concentrations of lipids and glucose trigger an increase in the 
pancreatic production of insulin. Under IR, adipose tissue, liver and muscle are incapable of transducing 
the insulin signal. As a consequence, lipids are released from adipose tissue and hepatic tissue, and 
glucose is produced in the liver and muscle. The rise in the circulating concentrations of glucose and lipids 
leads to tissular lipid infiltration, which inhibits insulin signalling, aggravating the IR. As a compensatory 
response, the pancreas will continue to produce increasing amounts of insulin until its exhaustion.   
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Pancreatic cells under hyperglycaemia expand and proliferate in an attempt to achieve 

euglycaemia by increasing insulin release. Chronic hyperglycaemia leads to hyperinsulinemia and 

glucotoxicity, ending in the exhaustion and apoptosis of pancreatic β cells. It has been proposed 

that interleukin-1β (IL-1β) is partly responsible for this failure, activating Fas Ligand (FASL) and its 

proapoptotic pathway 44. Hyperglycaemia is also responsible for β cell damage, in combination 

with hyperlipidaemia, a condition found in T2D and coined glucolipotoxicity, which triggers 

several prejudicial pathways 45,46. Pancreatic β cells are particularly sensitive to these aggressions 

due to the low amount of antioxidant defences and their high metabolic rate 47,48.  

In insulin-dependent tissues, IR can occur in response to a reduction in the availability of 

cell-surface located IR, which is catalyzed by its dephosphorylation by PTP1B or phosphorylation 

of serine threonine residues by Mitogen-Activated Protein Kinase (MAPK) or Phosphoinositol-3-

Kinase related Kinase (PI3KK) 49,50. Also, SOCS proteins can inhibit IRS activity and target it for 

proteasomal degradation 51. The insulin-independent tissues will be affected directly by 

circulating hyperglycaemia and hyperlipidaemia causing glucolipotoxicity, independently of 

insulin or glucose intake regulation.  

1.1.4. T2D treatments 
 

Treatment for T2D has been always complex given the systemic and widespread effects of 

this disease. Nonetheless, since T2D pathogenic mechanisms were first described, novel 

treatments have been developed:  

 Sulfonamides were the first pharmacologic group discovered for treating 

hyperglycaemia. Originally, these antibiotics presented hypoglycaemia as a secondary 

effect. Subsequently, metformin was discovered, the most prescribed drug against T2D 

worldwide.  

 Thiazolidinediones, namely glitazones, act through activating peroxisome proliferation 
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activated receptor (PPAR) gamma, reducing hepatic glucose production and improving IR 

in muscle.  

 α-glucosidase inhibitors reduce the breakdown of polysaccharides and thus the rate of 

absorption of carbohydrates.  

 Meglitinides induce insulin production in functional β cells.  

 GLP-1 agonists induce increases in insulin release depending on glucose presence, 

mimicking GLP-1’s effect but not its short life.  

 Dipeptidyl Peptidase IV (DPP-IV) inhibitors increase the half-life of GLP-1, prolonging the 

insulinotropic effect of glucose.  

 SGLT2 inhibitors antagonize the channel responsible for the reabsorption of glucose in 

the kidney, increasing glucose excretion.  

 

Of all these, metformin is the most prescribed and the gold standard for complying T2D 

patients. The mechanisms of action are still under research, but its overall effect is the lowering 

of circulating glucose through inhibition of liver gluconeogenesis 52. Metformin enters the liver 

cells through the organic cation transporter (OCT) and can diffuse into mitochondria. There, it 

inhibits Complex I of the electron transport chain, possibly by stabilizing a low activity 

conformation 53. This reduces the electron flow through the electron transport chain (ETC), 

subsequently leading to a drop in ATP production. The alteration of adenosine monophosphate 

(AMP)/ATP and adenosine diphosphate (ADP)/ATP activates AMP-activated kinase (AMPK), 

which interferes in different cellular processes. Other processes related to the reduction of 

glucose synthesis are inhibition of fructose biphosphatase, which reduces gluconeogenesis 54 , or 

inhibition of adenylate cyclase 55. Metformin also alters lipid storage by inhibiting Acyl-CoA 

carboxilase (ACC) through AMPK phosphorylation, inhibiting fat synthesis and promoting fat 
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oxidation 56. 

Metformin treatment benefits other cellular processes present in T2D; for example, it 

reduces oxidative stress 57–59 , possibly by normalizing reactive oxygen species (ROS) production 

by complex I 60 and reducing mitochondrial dysfunction 61–63. 

Metformin is sometimes prescribed together with insulin, which results in better glycaemia 

management 64 and reductions in the risk of all-cause mortality 65. However, in young patients 

with glucose intolerance during the onset of T2D, combination therapy does not generally 

prevent β cell deterioration 66. 
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1.2. Molecular mechanisms in T2D 
 

Despite diabetes’ origin is a physiological imbalance, many molecular alterations take place 

before and after it is established. The regulation of these malfunctioning pathways is a wide 

therapeutic field with many targets yet to be explored. 

1.2.1. Oxidative stress 
 

When hyperglycaemia is established, glucose overload increases the metabolic cellular 

rate in an attempt to consume the nutrient input. As a result, mitochondria, whose main 

function is to produce energy, generate ROS as a by-product of mitochondrial respiration. In 

addition, other pathways have been described which also produce ROS, such as the polyol and 

the hexosamine pathways. While ROS have physiological functions, such as a signal of cellular 

stress under hypoxia, starvation, pathogen infection or cytokine signalling, its excess can damage 

cellular components and subsequently activate inflammatory pathways or lead to cell death 67. 

In this sense, under hyperglycaemic stress characteristic of T2D there is an excess of DAG that 

activates PKC and NADPH oxidases (NOX). This enzyme quickly increases ROS concentrations, 

which will influence autophagy and apoptosis 68. This is only one general mechanism that relates 

excessive ROS production to T2D, but there are other mechanisms which imply mitochondrial 

and cytoplasmic signalling pathways that will be described below. Particularly, understanding 

the mitochondrial energetic metabolism as a source of ROS is important in T2D pathogenesis.  

1.2.1.1. ROS metabolism 

1.2.1.1.1. Mitochondrial ROS sources 

1.2.1.1.1.1. Oxidative phosphorylation  
 

Mitochondria are double-membrane organelles in which Krebs cycle, β oxidation and 

ATP synthesis and other vital processes take place 69. The most important process for ROS 

generation is mitochondrial respiration. It is the process by which electrons, transferred from 
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NADH and flavin adenine dinucleotide (FADH2), are transported through protein complexes for 

ATP synthesis. The ATPase, which is the last protein complex in the ETC, synthesizes ATP 

depending on the AMP/ATP and ADP/ATP ratios, and only when there is a proper electron 

transport and proton motive force. The free electrons, once they reach the last protein complex, 

are bound to free O2 molecules to generate hydrogen peroxide (H2O2) 70.  

There are 5 respiratory complexes: 

Complex I, also named NADH-ubiquinone oxidoreductase, is a complex of 45 subunits 

organised in two domains and a flavin mononucleotide (FMN) molecule and an iron-sulphur 

(FeS) cluster 71 that catalyse the transport of one electron from NADH through CoenzymeQ 

(CoQ) to complex III. One domain acts as a proton pump, resulting in the transport of one proton 

to the inner mitochondrial membrane (IMM) space for every two electrons transported.  

Complex II, namely succinate dehydrogenase, is part of the Krebs cycle. The electrons 

flow from succinate to CoQ via FeS clusters transported by FADH2/FAD molecules 72. This 

complex has 4 subunits, two of them membrane-anchoring and binding to CoQ, and two on the 

matrix side 73.  

Like complex I, complex III is a proton pump named CoQ-cytochrome reductase and 

transfers the electrons received by complexes I and II through the coenzyme Q to the 

cytochrome C (CytC). Complex III is formed by 3 monomers of 11 subunits each. The electron 

transfer in this complex is carried by these proteins through the Q cycle (122). 

Complex IV, also known as CytC oxidase, transfers electrons from CytC to oxygen (O2) to 

generate H2O 75. It is structured in 13 subunits and 4 metal centers with heme groups and copper 

ions. The first 4 subunits are coded in the mitochondrial DNA, and are responsible for the main 

functions (electron transfer and proton pump). The other subunits participate in the allosteric 

modulation by ATP or in structure maintenance.  
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Complex V is F1F0ATP synthase, whose complex structure utilizes the proton gradient 

created by the other complexes to synthesize ATP 76. The F0 domain is located in the inner 

mitochondrial membrane, while the F1 domain is formed by soluble subunits which endow the 

complex with its catalytic function. The protons previously pumped by complexes I, III and IV 

pass through F0 to F1, causing a conformational change that exposes the catalytic centre, 

phosphorylating ADP to ATP 77. 

1.2.1.1.1.2.  ROS generation in oxidative phosphorylation 
 

When ETC is impaired, free electrons react with O2 molecules and generate superoxide 

76,78. Superoxide is frequently generated in Complex I and is then processed to H2O2 by 

superoxide dismutases 1 or 2 (SOD1 or 2). In mitochondria, superoxide can react with iron and 

sulphur-containing molecules and produce reactive hydroxyl radicals. These ROS-generating 

impairments are usually due to two reasons: excess of nutrients and energy, or slow electron 

transport (Figure 4). Excess of glucose generates high loads of electron donors, promoting 

electron transfer through the ETC. Thus, the ATP/ADP ratio increases and the mitochondrial 

membrane becomes hyperpolarized, blocking the electron flow. Electrons remain in the 

complexes or the transporters and can react with unintended targets or escape the ETC. The 

best known sources of ROS generation are: Complex I, where NADH transfers its electrons to 

CoQ 60; the Q-cycle 74,78 ; and during reverse electron transport 79,80. Other mitochondrial ROS 

sources include metabolic enzymes, which can produce a vast amount of ROS under 

physiological conditions 81,82.  
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Figure 4: Schematic representation of OXPHOS-related ROS generation. The normal electron flow and ATP 
generation is depicted in the first scheme. In the second, the mechanism of ROS generation is detailed. (1) 
Free electrons are transferred by energetic intermediates NADH and FADH2 to complexes I and II 
respectively. Their excess causes an exaggerated ATP production which blocks ATPase function (2). As a 
consequence, electron transport is blocked, leading to a reduction in O2 consumption (3). In addition, the 
proton pumps continue functioning as the electrons keep on flowing, but eventually, when electron flow 
does not reach the minimum required they stop, which alters the IMM potential (4). Free electrons react 
with the proteins, the iron-sulphur clusters and other components of the ETC producing ROS (5). NAD= 
Nicotinamide adenine dinucleotide; FAD= Flavine adenine dinucleotide; Q= coenzyme Q; C= cytochrome C; 
I= complex I; II= complex II; III= complex III; IV=complex IV; V= Complex V; ADP= Adenosine diphosphate; 
ATP= Adenosine Triphosphate; ROS= Reactive Oxygen Species. 
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1.2.1.1.2. Non mitochondrial ROS sources 

1.2.1.1.2.1. Cytoplasmic ROS sources 
 

Some cytoplasmic pathways can produce ROS under certain circumstances. Those 

pathways are related to management of hyperglycaemia, and can culminate in cellular damage 

(Figure 5). 

The polyol pathway consists in several chemical reactions that use carbonyl compounds, 

reducing them to their corresponding polyols. The ROS produced by this pathway are relevant in 

tissues with insulin-independent GLUT channels, deeply affected by changes in glucose 

concentration 83. The main carbonyl compound affecting diabetes is the conversion of glucose to 

sorbitol by the aldose reductase consuming NADPH, and its dehydrogenization to fructose by 

sorbitol dehydrogenase. Those reactions consume NAD+, therefore increasing the NADH/NAD+ 

ratio, which slows down all catabolic reactions and reduces the oxidative potential of the cell. On 

the other hand, NADPH consumption reduces the regeneration of the vital ROS scavenger and 

antioxidant glutathione, inducing oxidative stress. Moreover, superoxide production inhibits 

glyceraldehyde-6-P dehydrogenase, which is the main source of reducing equivalents in the form 

of NADPH. The result of this inhibition is the accumulation of glycolysis intermediates and a 

reduction in energy production 83,84. 

Accumulated fructose-6-P can also intervene through the hexosamine pathway, 

increasing the amount of uridyl diphosphate-N-acetylglucosamine (UDP-GlnNAc), a glycosylation 

substrate. As a consequence, glycosilation reactions are enhanced, including transcriptional 

activation of proinflammatory genes and other cardiovascular-related molecules such as 

plasminogen activator inhibitor 1 (PAI-1) 83,85.  

Upstream of glyceraldehyde-6-P-dehydrogenase the intermediate glyceraldehyde-3-P 

accumulates and finally breaks into dihydroxiacetone phosphate and methylglyoxal. This latter 
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molecule is highly reactive with amino groups, forming advanced glycation end-products (AGEs). 

AGEs can also be formed through a longer process, which is initiated when glucose and amino 

groups react to form a Schiff base, which turns into Amadori products. These molecules favour 

the auto-oxidation of glucose into glyoxal, thus forming AGEs 86,87.  

Dihydroxyacetone phosphate can be reduced to glycerol phosphate and then to DAG, 

which activates PKC 83,84. Its chronic activation results in the increased production of Platelet-

Derived Growth Factor (PDGF) and Vascular Endothelial Growth factor (VEGF), and decreases in 

the production of Nitric Oxide (NO), PAI-1 synthesis and NFB activation. 

ROS can also be produced by enzymes as a reaction product. Other important ROS 

sources are NOX1, 2, 4 and 5. They produce NAD+ through NADPH electron exchange and leave 

superoxide as a by-product, which increases the glycolytic rate. NOX-dependent ROS production 

induces GLUT-1 expression through hypoxia-induced factor 1α (HIF1α) and activation of 

glycolysis 88. Also, in a proinflammatory scenario, phosphofructokinase 2 (PFK2) colocalizes with 

NOX2, thus inducing its activation 89.  

Another ROS-producing enzyme is NO synthase (NOS), whose 3 isoforms (eNOS, iNOS 

and nNOS) produce superoxide and NO from L-arginine. Under certain conditions, NO reacts 

with superoxide to form peroxynitrite. This molecule enhances the polyol pathway, initiating a 

feedback loop in which NADPH production inhibits glycolysis and stimulates NOX 90. 

1.2.1.1.2.2. Endoplasmic reticulum ROS source 
 

The endoplasmic reticulum (ER) also participates in the formation of ROS. The enzyme 

protein disulfide isomerase (PDI) forms disulphide protein bonds. After the reaction, PDI ends in 

a reduced state, and is reoxidized by ER oxidase 1α (ERO1α), which produces H2O2 as by-product. 

This enzyme can be also activated under ER stress 91. ROS are also produced by CYP450, located 

in the ER membrane, and ER-localized NOX4 92. 
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It is believed that mitochondrial and non-mitochondrial sources of ROS are related 

through the superoxide inhibition of the enzyme glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH). Mitochondrial ROS (mtROS) cause DNA strand breaks that activate poly-ADP ribose 

polymerase (PARP), a known inhibitor of GAPDH 93. GAPDH inhibition leads to accumulation of 

upstream glycolytic intermediates: glyceraldehyde-3-phosphate activates PKC through DAG and 

causes methylglyoxal and AGE formation; fructose-6-P increases the flux through the 

hexosamine pathway; and the glucose accumulation increases the polyol pathway rate 83.  
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Figure 5: Cellular sources of ROS. ROS generation due to high glucose concentrations is originated by 
different pathways. Mitochondrial-dependent ROS generation depends on the amount of NADH and 
FADH2 resulting from glycolysis, β oxidation and TCA. The accumulation of glycolysis intermediates such as 
Glyceraldehyde-3-phosphate leads to the production of ROS through the formation of AGE and the DAG-
dependent activation of PKC. This latter kinase also activates NOX, an important source of ROS. 
Accumulation of other intermediates facilitates the flow of some metabolites to the polyol and 
hexosamines pathway, which contributes to oxidative damage. ER stress, partly induced by the presence 
of AGE, induces ERO1 activation, which also increases ROS. Altogether, excess of ROS concentrations 
overwhelms antioxidant mechanisms and harms cellular homeostasis. NAD= nicotinamide dinucleotide; 
FAD= flavin nucleotide; Acetyl-CoA=Acetyl coenzyme A; TCA= tricarboxilic acid cycle; OXPHOS= oxidative 
phosphorylation; ROS= reactive oxygen species; DHAP= dihydroxyacetone phosphate; DAG= 
diacylglycerol; PKC= protein kinase C; NOX= NADPH oxidase; AGE= advanced glycation endproducts; ER= 
endoplasmic reticulum; ERO1= endoplasmic reticulum oxidase 1. 
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1.2.1.2. ROS and T2D 
 

β cells are especially sensitive to ROS accumulation due to their low levels of antioxidant 

defences. mtROS damage to the mtDNA has an impact on respiratory efficiency, inducing 

dependence on glycolysis for ATP production, a reaction that renders less ATP than oxidative 

phosphorylation (OXPHOS). The reduction in ATP hinders the opening of the ATP channel for 

insulin release 84. Other important mechanisms by which mtROS affect β cell function and 

survival is through the irreversible decrease in levels of the transcription factors pancreatic and 

duodenal homeobox 1 (PDX-1) and mast cell function-associated antigen (MafA), vital for insulin 

gene expression and β cell identity and survival 94,95. Cell survival is also influenced by ROS 

through inhibition of IRS-1 and induction of the Apoptosis-Signal regulated Kinase ASK/JNK 

apoptotic pathway 96, and IKK, which phosphorylates IRS in a serine residue, inhibiting its action 

97.  

In the liver, oxidative stress and AGEs provoke an imbalance in mitochondrial 

metabolism, OXPHOS, and redox equilibrium. Subsequent lipid accumulation can render the liver 

prone to developing non-alcoholic fatty liver disease (NAFLD) or non-alcoholic steatohepatitis 

(NASH) 98. In a high fat diet (HFD) T2D mice model, higher ROS and lower antioxidant defences 

have been seen, related to decreased insulin signalling and lower glucose tolerance 99. Similarly, 

reduced antioxidants and increased carbonylated proteins and lipid peroxidation has been 

reported in Zucker diabetic fatty (ZDF) rats, possibly a result of defective OXPHOS 100. 

Muscle cells participate in T2D development by producing and accumulating ROS, which 

harm cellular processes. IR in muscle cells causes IR serine phosphorylation and blocks GLUT4 

externalization 101. Thus, muscle cells internalize and use FFA instead of glucose to produce 

reducing equivalents for the ETC. Those FFA accumulate in mitochondria and between myocytes, 

thus increasing ROS production 102,103. Lipid accumulation reduces the respiratory capacity of the 
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mitochondria and inhibits β oxidation, thus causing an increase in ROS production 104,105. Another 

consequence of lipid infiltration is the rise of DAG concentrations which, as previously 

mentioned, activate PKC, which in turn directly activates NOX proteins, thereby generating 

superoxide 106. ROS accumulation caused by NOX activation and by the other previously 

mentioned mechanisms contribute to IR through reduction of the hexokinase catalytic capacity 

107. ROS also cause mitochondrial fission and reduced expression of mitochondrial complexes in 

cardiac myocytes 105.  

It has been seen that ROS accumulation in adipocytes triggers similar IR signalling 

pathways to those in muscle cells or pancreatic cells. The main sources of ROS in adipose tissue 

are NOX4, polyol pathway and mitochondria 108. In the early stages of IR there is an activation of 

glucose-6-phosphate dehydrogenase (G6PD) that enhances the polyol pathway 109 and NOX4 

activation 110. Moreover, the proinflammatory surrounding created by glucolipotoxicity recruits 

activated macrophages in adipose tissue, which produce ROS via NOX2 111. This massive ROS 

accumulation slows the ETC, which in turn causes accumulation of FFA and contributes to ROS 

production112. In this state, adipocytes produce chemoattractant cytokines that recruit more 

macrophages, promoting inflammation 113 and leading to adipose tissue hypertrophy 114,115. 

Regarding leukocytes, in has been suggested that, in T2D, leukocytes are primed to 

generate ROS, which renders them prone to apoptosis 116. Similarly, in Streptozotocin (STZ)-

induced T2D rats with retinopathy, ROS causes leukocyte trafficking to the retina, and 

antioxidant treatment can abolish this effect 117. In addition, increased levels of superoxide, 

peroxynitrite and H2O2 have been reported in different populations of leukocytes from T2D 

patients 118. 

1.2.1.3. Systemic oxidative stress consequences in T2D 
 

Oxidative stress is a pathologic trait in diseases as varied as liver disease 119, vascular and 
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atherosclerotic disease 120,121, and metabolic alterations 120,122, and also in the aging process and 

aging-associated diseases 123,124. In T2D, as explained above, hyperglycaemia and 

hyperlipidaemia are the main contributors to ROS production.  

AGEs are one of the consequences of ROS abundance, which, once synthesized, can 

continue to circulate through the bloodstream. AGE distribution causes activation of AGEs 

receptors (RAGE) in many cell types, activating NFB dependent inflammatory pathways. This 

can imply the beginning of the development of microvascular diabetic complications, such as 

nephropathy, retinopathy and neuropathy 125,126. AGE-RAGE interactions are responsible for the 

increased immune vascular adhesion and vascular permeability seen in T2D models 87,127. AGE 

serum concentrations correlate with those of glycated haemoglobin, which indicate the severity 

of the disease and whether it is well managed or not 128. Moreover, accumulation of AGEs 

enables metabolic memory. This term was coined for describing the increased cardiovascular 

risk of T2D patients years after their improvement/disease control 126,129.  

Excess ROS interact with lipids to create oxidized LDL (oxLDL), which together boost 

inflammatory pathways, prime immune cells and activate the endothelium, enhancing the 

formation of subatherosclerotic lesions 97. oxLDL can be uptaken by scavenger receptors in the 

macrophages, contributing to the formation of foam cells inside the intima-media layer of the 

vasculature, which damage the endothelial tissue 130.  

IR is also affected by ROS, as they interfere with normal insulin release and signalling. A 

clear example is that seen in T2D rats under HFD, in which excessive ROS downregulates 

glycolysis but enhances oxidation and the pentose pathway, thus favouring IR 131. Experimental 

evidence suggests that the mechanisms by which ROS produce IRS inhibition are connected to 

inflammatory cytokines , AKT signalling 111,132,133 and JNK signalling 134–136.  
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1.2.1.4. Antioxidant defences 
 

All cell types have enzymatic and non-enzymatic mechanisms to counterbalance ROS 

production and maintain their levels within a physiological range in which ROS can be beneficial. 

Among the enzymatic systems, we can find different antioxidante enzymes, such as SOD, 

catalase or glutathione peroxidases. 

SOD are enzymes that transform two superoxide anions into H2O2 molecules thanks to 

reduction and reoxidation of transition metals present at the active site 137. The enzymatic 

conversion facilitates some functions that superoxide is not able to: membrane diffusion and 

metabolic flexibility 138. SOD1, or also CuZnSOD , is located in the cytosol or secreted (SOD3), 

whereas MnSOD or SOD2 is located in mitochondria 139 .  

SOD1 is present in almost all cytoplasmic compartments and in the mitochondrial 

intermembrane space. A copper chaperone (CCS) helps to bind the copper atom to the active 

site and activates SOD1. Its activity is inhibited by high H2O2 concentrations 137. 

SOD2 or MnSOD is a homotetramer located in the mitochondrial matrix, despite it is 

synthesized in the cytoplasm, being carried to the mitochondrial matrix by a mitochondria-

targeted sequence. It differs from SOD1 in its structure, half life and product inhibition. SOD2 

can bind to Mn2+ or Fe2+  in the active site, but its active form can bind only with Mn2+ 137.  

SOD3 is the soluble secreted form of the SODs, found as a homotetramer in the plasma 

or bound to heparan sulphate in the extracellular matrix. It is expressed by blood vessels, lung, 

kidney, uterus and heart. In the vascular tissue, muscular cells and fibroblasts synthesize and 

exocyte SOD3, which can be endocyted by endothelial cells. The active center has 50% homology 

with SOD1, and its activity is regulated by copper availability 137 . 

Catalase is present in peroxisomes as tetramers. The active centre turns H2O2 into H2O 

and molecular O2, and is formed by a prosthetic group of ferric protoporphyrin IX. It is a 
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ubiquitous enzyme that ensures the correct control of H2O2 concentrations 140.  

Polymorphisms or changes in the levels of these antioxidant enzymes can alter their 

activity. As an example, sequence variations in SOD increase the incidence of T2D 139. Similarly, 

low-activity catalase predisposes the organism to the development of diabetes 141,142 or other 

degenerative diseases 140. This latter case has been evidenced in T2D patients with low levels of 

SOD3, as they are predisposed to polyneuropathy 143. 

There is a debate surrounding the antioxidant state of the blood in T2D, as in some 

studies it is enhanced 144 and in others it is decreased 145–147. In this sense, higher activity of 

antioxidant enzymes has been seen in newly diagnosed T2D patients 148. This seems to be the 

tendency in some cases, as in those shown in a study performed in blood samples from T2D 

patients with elevated ROS levels and enhanced activity of SOD 146,149. In other tissues, different 

behaviours have been observed; for example, hepatic cells from T2D patients have a lower 

antioxidant activity than healthy individuals 147, but in muscle samples the activity of SOD1 

increases in parallel to T2D progression, whereas catalase and SOD2 decreases 150. Genetically, 

individuals who carry susceptible variants of antioxidant enzymes have an increased risk of 

developing T2D 151,152. 

These antioxidant enzymes are genetically regulated by oxidative-stress-sensitive 

pathways. One of the most important pathways is nuclear respiratory factor 2 (NRF2)/kelch like 

ECH associated protein 1 (KEAP1)/adenylate-uridylate rich elements (ARE). NRF2 is a DNA-

binding protein that dimerizes with other proteins in order to regulate the transcription for 

genes with ARE sequences. KEAP is a protein that inhibits NRF2 by binding to a specific domain 

and targeting it for proteasomal degradation. Under oxidative stress aggression, NRF2 activators 

or KEAP1 inhibitors allow NRF2 to enter the nucleus and coactivate ARE-regulated sequences. 

Some of the genes regulated by ARE are SOD, catalase, glutathione (GSH), NADPH quinone 
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dehydrogenase 1 (NQO1), heme oxygenase 1 (HMOX1), glutamate-gated chloride channel (GLC), 

glutathion-S-transferase (GST) and sirtuin 1 (SIRT1) 153,154. Alternative NRF2 activation can be 

carried out by AKT, PKC, JNK, PI3K and extracellular-regulated kinase (ERK), which phosphorylate 

NRF2, difficulting its interaction with KEAP 155.  

Inhibition of KEAP1 or induction of NRF2 can delay diabetes onset in diabetic db/db 

mice, which proves that this antioxidant pathway is vital for T2D prevention 154. Indeed, in 

peripheral blood mononuclear cells (PBMCs) from T2D patients lower NRF2 levels, together with 

a diminished antioxidant capacity, have been reported 156. Most research has shown that 

activation of NRF2 or inhibition of KEAP delays or improves T2D and its complications 157,158 

1.2.1.4.1. Antioxidant treatments: SS-31 
 

There are many approaches to tackle oxidative stress, but the most common are 

activators of endogenous antioxidant mechanisms or molecules with a chemical structure that 

quench ROS. 

The antioxidant NRF2/KEAP1 pathway can be stimulated by some natural or synthetic 

substances, such as sulphoraphane, methyl bardoxolone, terButylhydroquinone (tHBQ), 

quercetin, cinnammic acid or curcumin. All of them have been demonstrated to increase the 

antioxidant production through KEAP1 cysteine residue modification 157,159. Curcumin is, among 

other antioxidant molecules, one of the most studied, exerting its effects through NRF2, but also 

via other molecular pathways that prevent cellular damage by hyperglycaemia 160–162.  

Other types of antioxidant molecules, namely targeted antioxidant molecules, quench 

the reactive radicals thanks to their chemical structure. Among the most important are the 

mitoquinones, which present a chemical structure that diffuses into mitochondria, where they 

buffer the excess of superoxide anion. One of these mitoquinones, named MitoQ, is a promising 

therapy for T2D, endorsed by several studies in which treatment exerted beneficial antioxidant 
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effects 163–166. Other mitochondrial superoxide-quenching chemical structures include 

antioxidant peptides, of which Szeto-Schiller (SS) are the most studied. Those peptides have a 

characteristic structure based on alternating cationic and aromatic side chains with affinity for 

cardiolipin and depolarized mitochondrial membranes 167,168. Once the SS peptide crosses the 

mitochondrial membrane, it quenches ROS and can accumulate in the mitochondrial matrix 

without altering mitochondrial function. SS peptides are a promising therapy for diseases in 

which mitochondrial dysfunction is present, such as T2D. Indeed, studies with SS-31 have been 

carried out in in vitro systems, animal models and human samples, proving the efficacy of SS 

peptides in reducing oxidative stress and its consequences. Specifically, SS-31 treatment of the 

ox-LDL challenged macrophage cell line RAW264.7, was shown to prevent their conversion to 

foam cells, through reduction of ROS concentrations and the inhibition of cholesterol influx. 

Additionally, SS-31 induced the expression of SOD and reduced that of proinflammatory 

cytokines.169. In addition to improving the metabolism of macrophages, SS-31 treatment also 

ameliorates the survival and function of transplanted mouse pancreatic islets 170. Regarding in 

vivo studies, SS-31 or its commercial form, Elamipretide, has been found to improve kidney 

function and prevent diabetic kidney disease in a T2D mice model by attenuating oxidative 

damage 171,172. SS-31 has also been tested in human samples, as shown by previous results from 

our laboratory, in which leukocytes from T2D patients treated with SS-31 showed a reduction in 

oxidative stress markers, less inflammation and an increase in SIRT1 levels 173. All the 

abovementioned studies highlight the effectiveness of SS-31 in T2D and associated diseases, 

highlighting the importance of a correct mitochondrial function. The antioxidant effect of this 

molecule can be attributed to the dimethyltyrosine residue. This has been determined in initial 

studies in which substitution of dimethyltyrosine residues by phenylalanine, which turned SS-31 

into SS-20, eliminated the antioxidant capacity of the peptide 174. Due to this difference, SS-20 is 
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employed as a negative control in some studies 175–177. 

Despite possible advances with antioxidant treatment, it is not clear whether antioxidant 

therapy could be totally beneficial in T2D or not. Natural antioxidants, such as vitamins, have 

shown limited benefits in ameliorating cardiovascular comorbidities in T2D 178, and a possible 

explanation is that antioxidants tackle ROS generation but allow other stress mechanisms, such 

as ER stress, to remain active 179. However, MitoQ and SS-31 have been shown to reduce even ER 

stress, thanks to mitochondrial targeting and correction of the mitochondrial dysfunction 163,180. 

In this context, further research is needed in the field of antioxidant therapies for determining 

the best antioxidant approach to ameliorate the complications of diabetes. 

1.2.2. Mitochondrial dysfunction 
 

Mitochondrial dysfunction is defined as the state in which mitochondria are not able to 

satisfy the cellular needs of ATP 181,182. This lack can occur through several mitochondrial 

function deficiencies: reduced mitochondrial synthesis results in a reduced OXPHOS and 

defective mitochondrial metabolism. Hence, precursor molecules accumulate and ETC can leak 

and produce ROS, which further increases the mitochondrial damage 183. The accumulated 

precursors can harm other cell processes such as DAG and ceramides, which causes IR 184.  

Mitochondrial dysfunction is detected when there are abnormal levels of O2 

consumption and changes in mitochondrial membrane potential. It causes aberrant and 

excessive production of mtROS, low ATP production and proton leak, which leads to a change in 

the cellular source of ATP from OXPHOS to glycolysis. In these circumstances, mitochondria can 

change its shape, reduce or increase its mass, and redistribute in an attempt to fulfil cellular 

needs of energy and metabolites 185. Damaged mitochondria can be eliminated by mitophagy, 

redistributed by fission and fusion events, and replaced by synthesis of new mitochondria 182. 

Fusion and fission events are vital complementary mechanisms in preventing mitochondrial 
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dysfunction, apoptosis and mitochondrial degradation. Fission helps to eliminate damaged 

fragments of mitochondria and promotes apoptotic cell death, whereas fusion interconnects 

mitochondria, supporting damaged ones by sharing metabolites from healthy ones. Both 

mechanisms control mitochondrial biogenesis and localization 186.  

1.2.2.1. Mitochondrial dysfunction in T2D 
 

Some studies support the idea that mitochondrial dysfunction is the origin of IR. This 

process begins when diabetes-related nutrient overload leads to a transient increase in mtROS, 

which induces mitochondrial fragmentation in order to optimise O2 consumption rate (OCR), 

leading to IR 187,188. The nutrient overload, together with the low NADH/NAD+ ratio present in 

diabetes, increases mtROS production and amplifies the damage. Inhibition of reparative 

mechanisms such as fusion leads to H2O2 production and IR 189 , or impaired GLUT4 translocation 

and calcium uptake, which are also important for insulin signalling 190. In insulin-sensitive tissues, 

mtROS, mitochondrial fission, impaired ER-mitochondria contacts and calcium mishandling seem 

to be a general signature of IR states.  

Insulin secretion in pancreatic β cells is closely connected with mitochondrial function. 

Mitochondrial dysfunction affects pathways related with insulin secretion, such as calcium 

signalling, mtROS, tricarboxilic Acid (TCA) cycle metabolic intermediates and NADH transport 

191,192. Thus, insulin signalling will depend on a correct mitochondrial function. Scavenging 

processes like mitophagy or mitochondrial dynamics have also been related to altered insulin 

release 193–195. 

Hepatic cells in T2D also display signs of mitochondrial dysfunction, including mtROS 

production and altered ETC complexes expression caused by non-esterified FFA, which lead to IR 

through JNK signalling 135. Similar results are obtained when hepatocytes are treated with 
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palmitate, which causes mtROS production, JNK activation and IRS2 serine phosphorylation, thus 

inhibiting insulin signalling and promoting IR 196.  

In muscle cells, adequate mitochondrial function is vital for adequate insulin signalling. 

Indeed, ROS produced by dysfunctional mitochondria cause lipid accumulation and IR, which can 

be reversed by mitochondrial catalase treatment 102. Moreover, dysfunctional mitochondria 

causes the accumulation of ceramide and carnitine in skeletal muscle cells due to slow  

oxidation, membrane depolarization, and low TCA cycle, all of which lead to IR. The authors of 

the study in question showed that this phenotype could be reversed by mitochondrial 

transcription factor A (mTFA) overexpression 197. 

Adipose tissue is also sensitive to mitochondrial dysfunction, as mTFA inhibition causes 

mitochondrial dysfunction and leads to IR 198. An in vitro model of IR in 3T3-L1 cells was shown to 

display low expression of mitochondrial biogenesis genes, mtROS accumulation, loss of 

membrane potential and decreased mitochondrial calcium 199. Mitochondrial dysfunction has 

also been observed in db/db mice, and was improved by treatment with rosiglitazone, an insulin-

sensitizing treatment 200. This indicates that the relationship between mitochondrial function 

and IR is reciprocal. 

Mitochondrial impairments in T2D have also been described in leukocytes. mtROS 

production was found to be enhanced and antioxidant defences reduced in leukocytes from T2D 

patients, due to lack of function of Complex I 201. Likewise, T2D patients under cardiac risk have 

been shown to display a lower mtDNA copy number and enhanced mtROS production 202. 

1.2.2.2. Mitochondrial dynamics 
 

Mitochondria change their morphology, distribution and connectivity through dynamic 

processes named mitochondrial dynamics. These processes consist of the division of 
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mitochondria into smaller fragments by fission, or their union by fusion. Mitochondrial dynamics 

facilitate changes in metabolic activity, from more elongated and metabolically active to a lower 

rate when fragmented 203. They also serve as a quality control, by which low quality 

mitochondria can fuse with functional ones or fragment so as to be eliminated 204,205. 

Through fusion, mitochondria dissipate possible imbalances in membrane potential, 

share harmful metabolites and replace defective enzymes. The fusion process consists of two 

separate steps: the fusion of the outer membrane and the fusion of the IMM 206,207. The first is 

carried out by the proteins mitofusin 1 (MFN1) and mitofusin 2 (MFN2). Both are proteins with 

GTP-ase activity, bonding in homotypic or heterotypic complexes, the latter being more efficient 

208. Neighbouring mitochondria expressing MFNs can join their outer membranes through 

GTPase enzymatic activity. The inner mitochondrial membrane proceeds with other proteins and 

independently of the fusion of the outer mitochondrial membrane, thanks to dynamin-related 

GTPase protein optic atrophy-1 (OPA1). Its gene encodes a protein with 8 possible isoforms and 

3 cleavage sites for the metalloproteases YME-like protein 1 (YmeL1) and OMA1. Cleavage forms 

give two main isoforms: L-OPA, which retains the N-terminal transmembrane domain, or S-OPA, 

which is a short soluble form, processed by presenylins-associated rhomboid-like (PARL). L-OPA 

is situated along the cristae membrane and mediates intercristae tethering. S-OPA may play a 

role in joining apposing cristae membranes and helping to change cristae shape when needed, 

although its exact function is still under study 186.  

Regarding fission, two main proteins intervene: dynamin-related protein 1 (DRP1) and 

fission protein 1 (FIS1). The fission process is as follows: first, the fission site is marked; second, 

DRP1 is assembled around the fission site thanks to FIS1 and other adaptors; and third, the 

GTPase activity of dynamin constricts and severs the mitochondrion. DRP1 is the main fission 

GTPase, which can form dimers or tetramers in the cytoplasm, and is recruited by the fission 



  1. INTRODUCTION 

34 
 

site. These sites are usually mitochondria-ER contact sites, which are slimmer than the rest of 

the mitochondria. DRP1 represents one of the proteins that link the cytoplasmic state to 

mitochondrial events: it is sensitive to calcium concentrations through calcineurin, is inhibited by 

PKA, and is retained in the cytoplasm during starvation 186,209.  

 

Figure 6: Representation of mitochondrial dynamics. Mitochondrial fusion is carried out by mitofusins 1 
and 2 for the outer mitochondrial membrane and by OPA1 for the inner mitochondrial membrane. The 
fission process depends on the accumulation of FIS1 and DRP-binding proteins at the site of division, and 
subsequent DRP polimerization. MFN1= mitofusin 1; MFN2= mitofusin 2; IMM= inner mitochondrial 
membrane; OMM= outer mitocondrial membrane; OPA1= optic atrophy 1 protein; FIS1= fission protein 1; 
MFF= mitochondrial fusion factor; MID49/51= mitochondrial dynamics protein 49/51; DRP1= dynamin-
related protein. 

  



  1. INTRODUCTION 

35 
 

Both processes perform regulating functions depending on the cell’s energetic and 

metabolic needs. Consequently, under starvation, when there is need for more energetic 

efficiency, ATP synthase complexes dimerize, IMM generate more cristae and mitochondria 

become more elongated 210. Moreover, in nutrient deprivation there is an increase in 

mitochondrial fusion which optimizes respiration 211,212. Defects in these processes affect cellular 

metabolic pathways that depend on mitochondrial performance. Among these processes are 

insulin signalling and ROS production, which are altered upon MFN1 blunting or MFN1 

stimulation 213–215. In the context of T2D, where metabolic imbalances are present, alterations in 

mitochondrial dynamics have been assessed, particularly reductions in fusion towards a pro- 

fission metabolism 189,216.  

One of the determinants of fusion and fission processes is the balance between ATP 

need and nutrient supply, which determines the need for more or less efficient mitochondria. 

Under nutrient excess, respiration increases, despite mitochondria becoming less effective in 

producing ATP, thus causing mitochondrial fission in order to increase proton conductance 217,218. 

Indeed, DRP1 activation by other proteins or by post-transcriptional modifications, such as O-

GlcNAcylation (whose production is enhanced in T2D), has been reported 219,220. 

1.2.2.3. Mitochondrial dynamics regulation in T2D 
 

In T2D, a decrease in fusion and an increase in fission occur in most cell types, including 

pancreatic β cells, muscle cells, liver cells and adipocytes, and this may be related to mtROS 

production and mitochondrial dysfunction 182. 

In pancreatic β cells, MFN1 and MFN2 seem to be reduced and FIS1 increased in T2D 

due, in part, to brain and muscle arnt-like protein-1 (Bmal-1) inhibition 221. Comparable 

observations have been reported in a similar model, in which only MFN2 was downregulated, 
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thus reducing mitochondrial activity and fission 222. Different studies have been performed 

regarding fission proteins; for example, it has been demonstrated that β cells from DRP1 KO 

mice have normal OCR, but diminished insulin secretion 223. FIS1 findings are scarce but 

significant, as regular expression of FIS1 is needed for optimal insulin expression and release in β 

cells, but excessive expression causes loss of glucose responsiveness 224. Moreover, FIS1 

inhibition in β cells reduces respiration and impairs insulin secretion 225.  

The liver also undergoes alterations in the mitochondrial dynamic process, as seen in 

samples of hepatic tissue. In these samples, the metabolite butyrate has been shown to increase 

mitochondrial function and lipid oxidation and reduced ROS production in HFD mice, which 

protected against hepatic inflammation 226. Indeed, fusion was decreased and fission enhanced 

in a T2D mice model, which was accompanied by increased ROS production, lower ATP 

generation and higher lipid peroxidation. Inhibiting ROS production with the novel 

mitochondrial-targeted antioxidant, peptide SS-31, reversed these mitochondrial alterations 227. 

Moreover, maintaining a correct fusion process throughout MFN2 expression ensures efficient 

liver insulin signalling, glucose tolerance and mitochondrial function in T2D, as shown in a MFN2-

KO mice model 189. 

Regarding muscle cells from T2D subjects, less sarcolemmal mitochondria were found 

when compared with those of healthy controls. This observation is associated with reduced ETC 

and lower ATP production per mitochondrion 228–230. In parallel to a lower mitochondria number, 

OPA1 expression has also been seen to be mitigated in muscle from T2D patients and enhanced 

by exercise or insulin treatment 231,232. These alterations could be explained by post-

transcriptional modifications seen in T2D, such as O-GlnACylation or proteolitic cleavage, which 

decrease the activity of OPA1, unstabilizing mitochondrial membrane 105,233. Additionally, 

mitofusins play a part in muscle mitochondrial dynamics, as MFN1 is known to improve the 
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translocation of GLUT4 in muscle cells through a AMPK-dependent mechanism 213. Moreover, 

MFN2 overexpression in muscle cells upregulates OXPHOS through expression of its complexes 

234, while in T2D its expression is disminished, reducing mitochondrial respiration 235,236. In 

relation to fission proteins little is known about FIS1 alterations in T2D, although changes in 

DRP1 have been well documented. DRP-1 overexpression has not been associated with 

noticeable changes. In muscle cells 237; however, DRP1 KO mice display enhanced insulin 

sensitivity and reduced activity of complexes I and III 209,238. In cultured C2C12 muscle cells, 

palmitate treatment was found to enhance FIS1 and DRP1 expression and mitochondrial fission, 

and was accompanied by mitochondrial depolarization, reduced insulin-induced glucose uptake 

and ceasing of ATP production 239. 

ROS production has been related to DRP1 upregulation and mitochondrial fission in 

adipose tissue, which contributed to ER stress and NLR-family pyrin-domain containing 3 (NLRP3) 

activation, and was reversed by AMPK-dependent Ser637 phosphorylation of DRP1 240. Pathways 

governed by overnutrition, such as peroxisome-proliferator-associated receptor γ (PPARγ) 

transcription factor, govern mitochondrial dynamics through bcl2-interacting protein 3 (BNIP3), 

establishing a signalling axis that is inhibited by overnutrition, as demonstrated in in vitro and in 

vivo models. This results in an increased IR, altered lipid and glucose metabolism and more fused 

mitochondria 241. PPARγ also regulates membrane-associated ring-CH-type finger 5 (MARCH5) 

ubiquitin ligase, which stimulates a pro-fission phenotype and lipid metabolism 242. 

Few studies have explored alterations of mitochondrial dynamics in immune cells. 

However, research has recently revealed that increased fission and reduced fusion exist in 

leukocytes from T2D patients, together with mitochondrial dysfunction 243. Recently, a study 

underlined the importance of MFN2 in adhesion of neutrophils to the endothelium, given that 

MFN2 assists in ER calcium release 244 
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In cellular and murine models of hyperglycaemia or hyperlipidaemia, it is generally 

established that diabetes-related metabolic alterations produce a pro-fission phenotype with 

repercussions for mitochondrial performance and insulin signalling. Human samples and animal 

models show that these processes are highly dependent on cell type, general metabolic state 

and other regulatory pathways. However, such conclusions should be confirmed in tissue and 

cell culture. 

1.2.3. Endoplasmic reticulum stress 
 

The ER is a large membrane-enclosed organelle involved in folding and modifying the 

transmembrane and secreted proteins, synthesis of lipids and sterols and storing calcium. Its 

function is central to cellular anabolism and pathways of cellular exocytosis. It is classified 

depending on the presence of ribosomes on its surface. The rough ER (RER) has ribosomes that 

translate the proteins simultaneously to their translocation to the ER lumen. The smooth ER 

(SER) does not have ribosomes, and is mostly devoted to protein modifications, lipid synthesis 

and other processes. Conversely, the RER is closer to the nuclear envelope, usually surrounding 

it, and moves through the cytoplasm towards the cellular membrane as it matures. During this 

process, RER eventually loses the ribosomes and changes from RER to SER, altering its structure 

to sheets or tubules 245. In this compartment, resident ER proteins complete their maturation, 

but those tagged for exocytosis or those which need further modifications (lipidations, 

glycosilations) will be traslocated to the Golgi apparatus. 245 

When cells suffer from different types of stress, such as oxidative stress, modified 

proteins that do not achieve proper folding accumulate and cause ER dysfunction. In response, 

the ER activates different pathways that sense these unfolded proteins and activate protective 

pathways. These pathways imply three main processes: attenuation of protein synthesis, 

activation of ER associated protein degradation (ERAD) or marked enhancement of secreting and 
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folding capacity by synthesis of folding chaperones, namely the unfolded protein response (UPR) 

246. Simultaneously, proapoptotic and inflammation signalling cascades are activated, which can 

lead to cell death if ER stress is not resolved by the abovementioned mechanisms 246.  

The cell senses the proteostasis imbalance through protein chaperones, especially 

immunoglobulin heavy chain –binding protein (BiP)/glucose-regulated protein 78 (GRP78) 247,248. 

This chaperone binds and inhibits the luminal domain of the transmembrane proteins that 

triggers UPR rescue pathways or apoptosis, keeping them separate. Once unfolded proteins 

accumulate, GRP78/BiP dissociates from these proteins and assists with the protein-folding 

thanks to its ATPase activity. Subsequently, the ER-sensing transmembrane proteins oligomerize 

and activate the UPR 247. There are three main ER stress-sensing pathways, all initiated by these 

ER-sensing proteins located in the ER membrane249 (Figure 7). 
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Figure 7: Representation of the three main UPR pathways. Upon ER stress, the protein chaperone GRP78 
binds unfolded proteins, activating the intermembrane proteins PERK, ATF6 and IRE1. PERK can dimerize 
and phosphorylate, activating their kinase activity. This pathway depends on the phosphorylation of eIF2α, 
which inhibits general protein expression and allows eIF2α-independent genes to be expressed, such as 
ATF4. ATF6 activation exposes a Golgi location signal, which provokes its translocation and processing, 
releasing the transcription factor ATF6. Lastly, the IRE1 protein dimerizes, activating its endoribonuclease 
activity, which processes XBP1 to sXBP1, producing a transcription factor. Globally, the transcription 
factors in which these pathways culminate activate the transcription of chaperones, CHOP, ERAD, 
antioxidant defences and autophagic flux. GRP78= glucose-regulated protein 78; PERK= PKR-like 
endoplasmic reticulum kinase; eIF2α= eukaryotic initiation factor 2 alpha; ATF4= activating transcription 
factor 4; ATF6= activating transcription factor 6; IRE1= inositol-requiring enzyme 1; XBP1= x-box binding 
protein 1; CHOP= C/EBP homologous protein; ERAD= endoplasmic reticulum associated protein 
degradation. 
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The first of these pathways is initiated by inositol-requiring enzyme 1 (IRE1) (with two 

isoforms, IRE1α and β), a transmembrane receptor located in the ER membrane that, in 

presence of unfolded proteins, oligomerices and activates two of its catalytic domains by 

autophosphorylation: the kinase domain and the endoribonuclease domain 249,250. The 

endoribonuclease activity regulates the mRNA splicing of the X-box binding protein 1 (XBP1) 

gene, activating its transcription. The spliced form of XBP1, namely sXBP1, encodes a basic 

leucine zipper (B-ZIP) transcription factor from the cAMP responsive element binding protein 

(CREB)/ATF family that transcribes genes regulated by UPR elements (UPRE) and ER stress 

elements (ERSE) promoters. The genes in question are protein chaperones that facilitate folding 

proteins and ERAD proteins which degrade the misfolded ones 249. The IRE1 kinase domain binds 

to TNF-associated factor 2 (TRAF2), a scaffold protein that can recruit the kinase ASK. It is 

phosphorylated by IRE1 and activated, transducing its activation through the JNK and other 

signalling pathways. TRAF2 can trigger the apoptotic pathway through conversion of procaspase 

4 to caspase 4 251. Generally, the IRE1 pathway activates ERAD activity and enhances protein 

folding through chaperone expression 252.  

The second pathway also culminates in either apoptosis or ER management of unfolded 

proteins, and the initiating protein is the transmembrane protein protein kinase RNA-like ER 

Kinase (PERK). Under ER-stress, PERK oligomerices and activates by autophosphorylation. Its 

kinase domain phosphorylates the eukaryotic initiation factor 2α (eIF2α) and inhibits its activity. 

As eIF2α is the only protein that recruits the 80s subunit of the ribosome for initiating protein 

synthesis, PERK activation slows the de novo protein synthesis. In parallel, the protein 

phosphatase growth arrest and DNA damage-inducible protein (GADD34) is activated by PERK 

signalling, and it dephosphorylates eIF2α thereby counteracting PERK activation 253. Only a small 

subset of genes which have upstream open reading frames (uORFs) in the 5’ leader can be 
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translated without eIF2α. The most relevant one is activating transcription factor 4 (ATF4), a B-

ZIP transcription factor from the CREB family, whose targets are aminoacid response elements 

(AAREs) present in target promoters from ER chaperones (among which is GRP78/BiP), 

antioxidant defences, protein anabolism and apoptotic transcription factors such as CCAAT-

enhancer-binding protein homologous protein (CHOP). CHOP is able to increase the amount of 

GADD34, thus restoring protein translation, and is also believed to increase oxidative stress 

through ERO1α expression and apoptosis through inhibition of B cell CLL/Lymphoma 2 (Bcl2) 

246,254. Conversely, it can form heterodimers with CCAAT enhancer binding protein (C/EBP) 

transcription factors and transcribe genes involved in ER stress response. Other genes with 5’ 

uORFs apart from ATF4, such as C/EBP, activating transcription factor 3 (ATF3), activating 

transcription factor 5 (ATF5), CHOP, CREB, JUN and FOS, are transcribed under eIF2α 

phosphorilation 255–258. Although PERK is the most pro-apoptotic ER stress-related pathway, 

novel protective mechanisms, such as NRF2 phosphorylation by PERK kinase activity, are also 

under investigation 259,260. 

The third pathway is initiated by a family of transmembrane ER proteins of which the B-

ZIP transcription factor activating transcription factor 6 (ATF6) is the most representative 261,262. 

This family, unlike PERK and IRE1α, is not ubiquitous, but has analogs in most cell types 263. ATF6 

is itself a transcription factor with a nuclear locating signal masked by GRP68/BiP. Under ER 

stress, the nuclear-locating sequence (NLS) is exposed, forcing ATF6 translocation to the Golgi 

246. There, specific proteases SP1 and 2 cleave the transmembrane domain by regulated 

intermembrane processing (RIP) 248,264,265. The B-ZIP domain of ATF6 is then translocated to the 

nucleus and binds the transcription factors nuclear transcription factor Y (NFY) and Yin-Yang 1 

(YY1) to transcript genes with ERSEI and ERSE II sequences on its promoters. These genes are the 

same ER-stress protecting genes as ATF4 and the XBP1 transcription factors related to the 
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protective pathways 261. Indeed, ATF6 expresses XBP1, acting synergistically with the IRE1α 

pathway266,267.Despite ATF6 usually functioning as a rescue pathway, it has been related to 

apoptotic activation in some cell types, including endothelial cells 268. 

All these pathways integrate with transcript specific genes. Most of these proteins are 

the same ones involved in the UPR, namely PERK, IRE, XBP1, BiP/GRP78, ATF6, CHOP or ATF4 269. 

However, many other proteins involved in other proteostatic processes, such as protein import, 

trafficking, folding and disulfide bonding, are also stimulated, especially by XBP1 and ATF6 270 as 

are transcription factors like C/EBP, or other chaperones, such as microvascular-endothelial 

differentiation gene 1 protein (MDG1)/ER-localized DnaJ 4 (ERdj4) 271, cysteine-rich with EGF-like 

domains 2 (CRELD2) and asparagine-linked glycosilaton 12 (ALG12) 272. Proteins involved in 

metabolism regulation are also activated by UPR; for example phosphoenolpyruvate 

carboxykinase (PEPCK) 273. Regarding apoptotic genes, pro-apoptotic genes such as tribbles 

homolog 3 (TRB3), keratin 16 (KRT16), hexokinase domain component 1 (HKDC1) and niban-Like 

protein 2 (NLP2) are stimulated via their specific CHOP response elements (CRE) or ERSE 274,275.  

In a situation of ER stress, all UPR pathways become activated in a given sequence to 

prevent direct apoptosis of the affected cell and to activate rescue mechanisms. Their combined 

activation initiates survival mechanisms involving ER stress chaperones, reduced protein 

synthesis and clearance of misfolded proteins. Proapoptotic pathways are also activated to a 

slight extent, but the protective mechanisms outweigh the cell death ones. If after a time the ER 

stress is not eventually resolved, the protective mechanisms are attenuated and proapoptotic 

mechanisms become dominant , leading to cell death 246.  

1.2.3.1. Endoplasmic reticulum stress in T2D 
 

ER stress affects cells involved in T2D pathogenesis possibly, by causing apoptotic death. 

Resolving ER stress through activation of UPR is one of the rescue mechanisms that cells activate 
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to prevent cell death, and which seem to be overactivated or hampered in T2D. In a ob/ob or 

HFD diabetic mice model it has been established that ER stress causes IR, and that PERK pathway 

activation is needed for ER stress alleviation through UPR 276. Moreover, treatment of diabetic 

mice with chemical chaperones has been shown to reduce ER stress and improve glucose 

tolerance and insulin signalling 277. The cells most affected by ER stress are those with more 

synthetic and secretory functions, such as adipocytes and β pancreatic cells.  

It is believed that ER stress in β cells can increase inflammatory status by accumulation 

of modified proteins that act as autoantigens 278,279. A recent review has proposed that ER stress 

is the most important trigger of β cell apoptosis 280. In this sense, it is established that the 

glucose-stimulated IRE2α pathway prevents ER stress through sXBP1-dependent expression of 

proinsulin biosynthesis proteins281,282. This pathway is important for β cell function, as deletion 

or inhibition of IRE1α causes defects in proinsulin processing and synthesis, which cannot be 

compensated by PERK or ATF6 signalling. Despite these positive effects, one study demonstrated 

that sustained production of XBP1 leads to β cell failure and death 283. PERK is also implicated in 

this controversial situation, as it seems to have opposing roles: its inhibition in animal models 

improve insulin sensitivity, secretion and glucose metabolisms in β cells 284,285, while in vitro 

studies have demonstrated that its stimulation promotes insulin release through calcineurin 

signalling 286. The ATF6 pathway is necessary for cell survival, even in unstressed cells; if deleted, 

the JNK pathway is activated, leading to cell death 287. In addition, it has been demonstrated that 

the JNK pathway is vital for XBP1 expression in mice islets 288. Like the other two UPR pathways, 

ATF6 has controversial roles in pancreatic β cells 289. Despite the dual role of ER pathways in β 

cell survival, the consensus  is that UPR pathways aid basal insulin synthesis and hyperactivate 

upon ER stress, but if chronically activated or defective, as occurs in T2D, they can lead to β cell 

apoptosis 290–292. Indeed, UPR is activated in PBMCs of T2D patients who do not meet glycaemic 
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goals, a possible consequence of high oxidative stress, inflammation or hyperglycaemia 293. 

ER stress does not affect exclusively pancreatic β cells; indeed, it can affect a variety of 

cell types, such as adipocytes, muscle or liver, leading to the development or aggravation of IR 

294. It has been proved that UPR pathways are activated in different diabetic or insulin-resistant 

animal models 295,296. However, if this stimulus is sustained over time, UPR pathways faint, giving 

way to apoptotic stimulus initiated by CHOP and JNK, unchaining the apoptotic caspases 297,298. 

This can lead to hepatic dysfunction in the form of hepatic inflammation due to the immune 

infiltration, hepatic steatosis, NAFLD, and other hepatic complications related to diabetes 299,300 

Regarding muscle cells, the PERK pathway is induced by FFA overload or palmitate 

treatment thus leading to the production of myokines 301,302. OxLDL also causes PERK activation, 

which leads to JNK pathway signalling and autophagy in aortic smooth muscle rat cells 303. 

Cardiac muscle cells are more related with T2D complications and are also affected by ER stress. 

Indeed, in cardiac muscle from streptozotozin diabetic mice, palmitic acid was shown to induce 

all 3 UPR pathways 304. In this situation, ROS produced by diabetes stimulates PERK, which 

causes ER stress and apoptosis 305. Another study of diabetic cardiomyopathy determined that 

IRE1α is also responsible for cardiac muscle dysfunction and apoptosis through CHOP and JNK 

signalling 306. 

Adipocytes are also altered by ER stress; indeed, PERK and IRE branches are activated in 

hypoxic 3T3-L1 adipocytes under glucose starvation (a situation typical of IR) 307,308. Moreover, 

stimulation of the receptor RAR-related orphan receptor α (RORα), which is involved in 

inflammation, activates the same UPR pathways as hypoxia, confirming that UPR activates as a 

rescue mechanism in adipose tissue 309. In this sense, preconditioning of 3T3-L1 adipocytes with 

low doses of tunicamycin (ER stimuli) or overexpression of XBP1 has been shown to inhibit 

inflammation when stimulated with FFA 310.  
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Another cell type higly affected by ER stress are immune cells, due to their direct contact 

with generalized hyperglycaemia and hyperlipidaemia. An experimental model of 

hyperlipidaemia consisting of 5h intravenous lipid infusion caused UPR activation in PBMCs from 

healthy subjects 311. The same observation has been made in T2D patients 312–314, who have high 

circulating lipid levels by default. Immune infiltration of hepatic and adipose tissue also occurs in 

T2D, aggravating IR through production of cytokines 315,316. ER stress can lead to more 

proinflammatory profiles in leukocytes, affecting different tissues. 

Considered together, UPR pathways are an effective rescue mechanism when ROS 

accumulation and cellular stress facilitate unfolded or modified proteins. However, if this stress 

is sustained, apoptotic activation occurs as a protection mechanism. 

1.2.4. Autophagy  
 

Autophagy is defined as a self-eating process activated by certain stimuli and carried out 

by double-membrane vesicles (autophagosomes), which fuse with lysosomes to digest their 

content. There are three main types of autophagy: macro-autophagy, micro-autophagy and 

chaperone-mediated autophagy 317,318. All three pathways culminate in lysosomal digestion of 

cellular or extracellular material, but they diverge in the delivery mechanism. 

1.2.4.1. Types of autophagy 
 

1.2.4.1.1. Macroautophagy, chaperone-mediated autophagy and 
microautophagy 

 
Macroautophagy is the best characterized form of autophagy. It involves the formation 

of large vesicles named autophagosomes that enclose big portions of cytoplasmic material and 

organelles that end up fusing with lysosomes. Thus, macroautophagy has an important catabolic 

function 317,319. The process begins with the formation of the preautophagic structure, about 

which diverse theories have been raised. There are two main possibilities: the nucleation of the 
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membrane from other organelles or budding from an already existing membrane.  

The first approach has been explored very little; however, it seems that the mechanism 

is initiated by autophagy-related 17 (ATG17), which acts as a scaffold protein for ATG13p 320 and 

ATG9-containing vesicles 321. From this nucleation point, ATG2-ATG18 322and ATG8-ATG16-ATG5 

complexes generate autophagosomes 323–325. Subsequently, ATG8 and ATG12 will participate in 

expanding the membrane and receiving the cargo.  

Regarding the second mechanism, 4 sequential steps culminate in the formation of a 

preautophagosome. The first step is the assembly of the Unc-51 Like autophagy-activating 

kinase (ULK) complex, composed of ATG13, fak-family interacting protein of 200 KDa (FIP200), 

ATG101 and ULK, which are recruited to ATG9 or vacuolar protein sorting 34 (Vps34)-containing 

vesicles 326. Accumulation of ULK complexes and their activation is the first step in the initiation 

of autophagosome biogenesis 327,328. ULK complex activity depends on mTORC and AMPK 

activity. mTORC inhibits ULK activity through ATG13 phosphorylation 329,330. AMPK is the best 

known mTOR best known inhibitor, which is also able to directly activate ULK 331. ULK 

accumulation is produced in ER domains enriched in phosphatidilinositol synthase, VAPA and 

VAPB via FIP200 interaction. This creates a differentiated membrane domain where some 

autophagic proteins are recruited 332 and phosphorylated 333, such as ATG4B, ATG9, ATG14L, 

coiled-coil myosin-like BCL2-interacting protein 1 (Beclin-1) or activating molecule in beclin-1-

regulated autophagy protein 1 (AMBRA1) 334–338.  

The second step begins with ULK phosphorylation of ATG9, resulting in the retention of 

vesicles with PI3K complexes. These vesicles are needed for expanding the autophagosomal 

membrane 333,339. PI3K complex is formed by ATG14L, Beclin-1, VPS34 and nuclear receptor-

binding factor 2 (NRBF2), and its function is to synthesize PI3P through VPS34 in the nascent 

membrane and to expand it, which is the third step 340.  
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In the fourth step, WD-repeat protein interacting with phosphoinositides (WIPI) proteins 

are attached to these PI3P-enriched regions and recruit two ubiquitin-like conjugation systems, 

which leads to ATG16L activation:  

 ATG3, ATG7 and ATG16L complex, formed by ATG12, ATG5 and ATG16L1, which 

conjugates phosphatidiletanolamine to ATG8 isoforms 341,342.  

 ATG7 and ATG10, which conjugate ATG5 to ATG12 and together form a complex 

with ATG16L 343.  

ATG16L complexes accumulate in the convex side of the nascent autophagosome, where 

they activate ATG8 proteins by lipidation. The ATG8 family promotes autophagosome expansion 

by tethering of membrane-supplying vesicles and recruiting other proteins to the isolation 

membrane, such as the ULK complex 344. ULK phosphorylates ATG4 to inhibit its delipidating 

activity, promoting the expansion of the membrane 345.  

ATG8 concentration causes the curving of the nascent membrane, together with actin 

proteins 346,347 forming the omegasome. This curved region is energetically unstable, finally 

bending and becoming spontaneously spherical 348. The small pore that remains after the shape 

change is closed thanks to the endosomal sorting complex required for transport (ESCRT) 

machinery 349. The autophagosome then separates from the original membrane and completes 

its maturation. Once autophagosomes are formed, they can fuse with late endosomes or 

lysosomes to form amphisomes or autolysosomes, respectively. The fusion process is carried out 

by proteins that help to overcome the energetic imbalance, and consists of supposes the 

breakage of two membranes 350,351. In the case of autolysosomes, ATG14, lysosome-associated 

membrane protein 2B (LAMP2B) and a protein of the ATG8 family, Microtubule-associated 

protein 1A/1B-light chain 3 (LC3), also take part in the process 352–354. When the 

autophagolysosome is formed, the acidified lumen of the lysosome degrades the cargo and the 
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inner autolysosomal membrane 355.  

 

 

Figure 8: Schematic representation of autophagosome formation, maturation and digestion. The first 
steps consist of autophagosome nucleation by activation of ULK and PI3K complexes and induces (1) PI3P 
synthesis (2). Second, accumulation of PI3P creates a domain to recruit ATG16L, which lipidates ATG8, 
causing the bending of the growing membrane forming the omegasome (3). Meanwhile, defective cellular 
components are transported by carrier proteins to the nascent autophagosome, or are traslocated to the 
formed autophagosome (4). Once the autophagosome is closed - including all the elements destinated for 
degradation - it fuses with a lysosome (5). The autophagolysosome becomes acidified with lytic enzymes 
that digest the autophagolysosomal content, and it eventually releases the digestion products to the 
cytoplasm (6). VPS34= vacuolar protein sorting 34; AMPK= AMP-activated protein kinase; ULK= Unc51´like 
autophagy activating kinase 1; PI3K= phosphoinositol-3 kinase; UVRAG= UV radiation resistance-
associated gene protein; ATG14L= autophagy related protein 14L; AMBRA= activating molecule in Beclin-1 
regulated autophagy; PI3P= phosphoinositol-3-Phosphate; ATG8/LC3I= autophagy related protein 
8/microtubule associated protein 1A /1B light chain; ATG16L= atophagy regulated protein 16 like; p62= 
ubiquitin binding protein 62; NBR1= neighbor-of-BRCA1-like binding protein 1; OPTN= optineurin;   
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Over time, it has has been established that the core proteins for correct 

macroautophagic processes are ATG3, ATG5, ATG7, ATG9, ATG13, ATG16L, ULK, VPS34 and 

Beclin-1 356. However, autophagic pathways independent of these proteins have also been 

discovered, supporting a high degree of redundancy in protein function and the existence of 

non-canonical autophagic pathways which rely on other proteins 317,356. 

The other best known mechanism of autophagy is chaperone-mediated autophagy 

(CMA). This involves the direct delivery of proteins targeted for lysosomal degradation 357,358. 

CMA only degrades proteins with a KFERQ sequence bound to heat-shock protein A8 (HSPA8)/ 

heat-shock protein 70 (HSP70) chaperone 359. The tagged proteins are carried to the LAMP2A 

complex in the lysosomal membrane. Once in the lysosomal lumen, a pool of heat-shock protein 

90 (HSP90) and glial fibrillary acidic protein (GFAP) proteins stabilize the defective proteins, 

which are later degraded 359,360. The CMA is regulated by the simultaneous presence of mTORC, 

AKT and pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP1) in the 

lysosomal membrane 361. This form of autophagy is vital in physiological and pathological 

processes such as aging, neurodegeneration, or T-cell activation 357. 

Microautophagy is another type of autophagy carried out in yeast and plants through 

direct invagination of the cytoplasm by the vacuolar membrane. In mammals, a similar process 

has been seen in late endosomes and has been coined endosomal microautophagy 362,363. It is 

able to degrade peroxisomes (micropexophagy), portions of nucleus, damaged mitochondria, 

lipid droplets and cytosolic proteins with the KFERQ sequence. This last mechanism depends on 

its recognition by the chaperone HSPA8, also named Hsc70 364. Microautophagy does not share 

the same mechanism for the formation of endosomes. Some require ATG proteins and other 

require the ESCRT system 362,364,365. This selective endosomal microautophagy differs from CMA 

in its independence of LAMP2 364. 
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1.2.4.1.2. Selective and non-selective autophagy 
 

Autophagy processes can also be classified depending on the selectivity of the degraded 

material. Macro and microautophagy can uptake cytoplasmic portions in a non selective way; 

namely, non-selective autophagy. In contrast, CMA and also macro and microautophagy can 

operate through selective autophagy, in which determined receptors recognise specific motifs or 

sequences that deliver the molecules or organelles to the autophagic degradation pathway 

366,367.  

Selective autophagy depends on a wide range of specific receptors that recognize 

determined motifs that determine the organelle or molecule to be engulfed.  

 Mitophagy can be triggered physiologically in erythrocyte maturation, where it 

relies on BCL2/adenovirus E1B interacting protein 3-like (BNIP3L/NIX) recognition, or in 

embryonic development. This latter process depends on the fission and loss of 

membrane potential, upon which prohibitin 2 (PHB2) and the PTEN-induced kinase 

(PINK)-PARKIN system tags mitochondria to be recognizable by specific receptors 368,369, 

including LC3, sequestosome 1 (p62/SQSTM1), Optineurin (OPTN), and Nuclear Dot 

protein 52 (NDP52) 369–371. Other specific cases have also been documented: Cardiolipin 

can also bind to LC3 upon mitochondrial damage, and FUN14 domain containing 1 

(FUNDC1) acts as an autophagy receptor under hypoxia 372–375.  

 Pexophagy (autophagy of peroxisomes) is carried out by peroxisome biogenesis 

factor 2 (PEX2) and PEX3-dependent ubiquitination of PEX5 and ATP-binding cassette 

subfamily D member 3 (ABCD3), which is recognized by p62 and next-to BRC1A 

autophagy cargo receptor 1 (NBR1) 376,377.  

 Nucleophagy has two mechanisms: the first requires nuclear-vacuolar junctions 

1 (Nvj1) as an autophagy receptor and Vacuolar protein 8 (Vac8) and oxysterol-binding 
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protein (OSBP) for forming the invagination; and the second does not require some of 

the classic ATG nor the autophagy receptor ATG39. In mammals, lamin B1 is 

responsible for regulating nucleophagy 378,379.  

 Reticulophagy consists of the autophagy of ER portions, and there is a debate 

about its mechanisms. One theory is that it is regulated by Ypt1, a Rab GTPase, while 

others point to the function of family with sequence similarity 134 member B 

(FAM134B) or ATG11 380,381.  

 Aggrephagy is the process by which protein aggregates are recognized and 

degraded, representing an important step in cellular homeostasis. In mammals, it 

depends on autophagy receptors p62, NBR1, OPTN, toll-interacting protein (TOLLIP) 

and tectonin β-propeller repeat containing 1 (TECPR1)382–385.  

 Lipophagy is the selective degradation of neutral lipid droplets, and is carried out 

by the general machinery of macroautophgy when activated through farnesoid X 

receptor (FXR), PPARα and CREB transcriptional programs 386,387. Also, CMA-dependent 

degradation of certain lipid droplet proteins such as perilipin 2 (PLIN2) and 3 precedes 

and facilitates lipolysis 386,388.  

1.2.4.2. Autophagy regulation 
 

Various cellular stresses of different natures can activate autophagy, from hypoxia to 

proteostatic distress, and from nutrient scarcity or oxidative stress. The primary trigger for 

activating autophagy is nutrient stress, sensed by rat sarcoma (Ras)-cAMP-PKA and mTOR 

pathways.  

The Ras-cAMP-PKA signalling pathway consists of the activation of adenylyl cyclase by 

the GTP-binding protein Ras, which leads to the synthesis of cyclic AMP (cAMP). Increases in 

cAMP activate PKA, which can modulate autophagic proteins. This pathway is activated through 
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glucose or glycolysis metabolites upon nutrient presence 389,390. In Saccharomyces cerevisiae it 

has been determined that ablation of this pathway leads to activation of autophagy, while its 

hyperactivation blocks autophagic flux 391. Inhibition of autophagy has been also described upon 

PKA activation in endothelial cells, which marks ATG16L for degradation by phosphorylation 392. 

The PKA protein is inhibited by most autophagy activators in S.cerevisiae, and is activated by 

mTOR 393,394. The interaction between PKA and autophagy was further confirmed in a mammal 

cell model through the phosphorylation and inhibition of ULK by its transport to the nucleus 395. 

The relationship between nutrient intake and PKA was also further confirmed in rat muscle cells, 

in which neuropeptide signalling inhibited autophagy through PKA-dependent inhibition of LC3 

396. In conclusion, RAS-cAMP-PKA inhibits autophagy when stimulated by nutrient presence. 

mTOR signalling has been widely studied in the nutrient sensing field. This protein 

belongs to the PI3K family and is only active as a complex (mTORC1 and mTORC2). mTOR 

complexes are regulated by nutrient and energetic state sensors. Insulin and insulin growth 

factors activate PI3K, AKT and tuberous sclerosis complex 2 (TSC2), which inhibit Ras homolog 

enriched in brain (Rheb) and mTOR. Energetic stress signals through high AMP levels and 

activates AMPK, which phosphorylates TSC, thus inhibiting mTORC1. This is also achieved under 

GLUT1 inhibition or low O2 concentrations. Finally, aminoacid starvation also signals for mTORc 

inhibition mainly through Sestrin2, cytosolic arginine sensor for mTORC1 (CASTOR) and S-

adenosyl-methionine sensor upstream of mTORC1 (SAMTOR) 397. mTOR, when activated, inhibits 

autophagy by phosphorylating ATG13 and ULK1 398,399. 

An important node for energetic metabolism that influences autophagy through many 

pathways is insulin signalling. The common trigger is the dimerization and autophosphorylation 

of IRS1 and 2, which generates a scaffold where many class I PtdIns3K proteins can dock and 

generate PIP3. These domains recruit PKB and AKT proteins to the membrane, where their 
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activator phosphoinositide kinase 1 (PDK1) is located. These signals influence autophagy by 

several approaches: AKT enhances mTORC activity, which inhibits autophagy 400–402; retrograde 

signalling has also been observed, by which ATG7 inhibits AKT signalling thanks to c-JUN and 

PTEN signalling 403, and ATG16L deficiency causes the proteasomal degradation of IRS 404 

One of the main energy-sensing mediators is the AMP-activated protein kinase (AMPK) 

405,406. It activates autophagy only when serine 317 and 377 are phosphorylated. p-AMPK 

activates the ULK-FIP200-ATG13 complex without affecting the activity of its kinase domain 331. 

Moreover, AMPK phosphorylation is necessary for ULK activity and autophagy activation under 

glucose starvation. AMPK is also necessary for autophagosome maturation and further fusion 

with the lysosome, as demonstrated in HEK293T AMPK KO cells 407. Morevoer, it is involved in 

activating processes that include other autophagy-related proteins, such as WIPIs 408, Beclin-1, or 

ATG9 406. 

On another level, we can find the transcriptional and post-translational (phosphorylation 

and acetylation) regulation of autophagy 409,410. One of these mechanisms is directed by the 

transcription factor EB (TFEB), a transcription factor retained in the cytosol by mTOR 

phosphorylation. When mTOR is inhibited, TFEB can translocate to the nucleus and express 

ATG4, ATG9B, LC3, UV radiation resistance associated gene protein (UVRAG) and WIPI 411,412. 

Other modulators are ERK and calcineurin, which can phosphorylate TFEB in response to 

nutrient availability 413,414. Conversely, protein phosphatase 2A (PP2A) dephosphorylates TFEB 

under oxidative stress 415. Other important regulator of autophagy gene expression is Forkhead 

box O1 (FOXO). When activated by phosphorylation, FOXO activates the expression of ATG4, 

ATG5, ATG14, ATG12, BECN1, BNIP3, LC3B, ULK, VPA34 and gamma-aminobutyric acid receptor-

associated protein like 1 (GABARAPL1) 416–419. FOXO1, 2 and 3 are regulated by AKT 

phosphorylation in response to growth factors and insulin stimulation, producing its cytoplasmic 
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retention. FOXO1 can be activated and induces autophagy in situations of oxidative stress or 

serum starvation through binding to ATG7.  

At another level of modulation, E2 transcription factor 1 (E2F1) and NFB regulate 

autophagy through expression of the carrier protein BNIP3, which activates autophagy by 

dissociating Beclin-1-BCL2 complex. NFB constitutively inhibits the binding of E2F to its 

promoter and impedes BNIP3 expression 420. E2F itself has a wide range of autophagy-related 

target genes, such as ULK, ATG5 or LC3 triggered by hypoxia 421. 

Lastly, the CREB-FXR and PPAR-FXR transcriptional circuits have recently been described 

as key players in autophagy regulation 387. CREB upregulates some autophagy genes in fasting 

conditions, which are otherwise inhibited by FXR. This transcription factor can also be paired 

with PPARα, a nutrient sensing regulator, having the same negative feedback loop as CREB and 

FXR 409,410. Under nutrient starvation, PPAR and CREB can occupy their promoter regions in LC3 

and ATG7 genes to induce their expression 422.  

Epigenetic regulation by some proteins is also relevant in the transcriptional regulation 

of autophagy genes. SIRT1, a histone deacetylase, can induce autophagy directly by 

deacetylating ATG7, LC3, FOXO1 and FOXO3 409,423. It also deacetylates liver kinase B1 (LKB1), 

thereby activating AMPK and inhibiting mTOR signalling 424.  

In conclusion, autophagy is a tightly regulated process at different levels. Almost all 

cellular stresses can trigger autophagy, leading, or not, to apoptotic activation. However, the 

objective of autophagy is to prevent cellular death by activating catabolic processes and 

degrading damaged cellular components. 

1.2.4.3. Autophagy and T2D 
 

The autophagic process has been widely studied in T2D subjects, although a firm 

consensus about its activation or inhibition has not been reached. This is, in part, due to 
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differences in the recruited cohort and the level of glycaemic control. In pancreatic β cells 

autophagy seems to be a protective mechanism under a diabetogenic diet 46,425. Indeed, blocking 

autophagy leads to the development of β cell failure and subsequent diabetes 426,427. In human 

pancreatic islets from T2D donors with ER stress, induction of autophagy resulted in an 

improvement of the β cell mass survival and insulin secretion, reinforcing the protective role of 

autophagy in pancreatic β cells 428. Specifically, the organism has physiological mechanisms to 

protect β cell mass, such as production of IL-6, which stimulates autophagy in pancreatic islets 

by signal transducer and activator of transcription 3 (STAT3) signalling 429. Conversely, liver tissue 

displays reduced autophagy in T2D, and most treatments prevent liver damage by upregulating 

this process 430–432. The inhibiting mechanism could imply inactivation of SIRT 1 433 or alterations 

of AMPK and mTOR signalling, as evidenced by some studies 434,435. Other approaches, such as 

endocrine signalling through endogenous molecules such as fibroblast growth factor 21 (FGF21) 

or FGF1, activate autophagy and prevent liver damage and lipid accumulation 433,436. 

Furthermore, it has been described that miRNA199a-5p regulates insulin sensitivity through 

autophagy activation in HFD fed mice 437. 

Muscle tissue experiments have not led to a consensus regarding autophagy regulation 

in T2D. For example, autophagy genes and proteins were reported to downregulated in muscle 

cells from insulin-resistant T2D patients 438. However, another study performed in cardiac muscle 

from T2D and healthy subjects concluded that autophagy is overactivated in T2D samples, 

specifically by Beclin-1 upregulation, leading to apoptosis 439. The same effect is produced in 

vascular smooth muscle cells (VSMC) under high glucose or diabetic conditions, with an increase 

of some autophagic markers which contributes to VSMC phenotype switching 440. Furthermore, 

it was also observed in VSMC that AGEs stimulate autophagy through the RAGE receptor and 

AKT, JNK and MAPK signalling 441. Despite these results, one study found no differences in 
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autophagy between skeletal muscle samples from hyperglycaemic T2D patients and healthy 

subjects, which could mean that autophagy can adapt to hyperglycaemia 442,443. Similar results in 

T2D models of myotubes and mice determined that autophagy was downregulated, even in 

insulin-resistant hyperinsulinemic states, through mTOR inhibition 444.   

Autophagy is also enhanced in adipose tissue from T2D 445,446, metabolic syndrome 447 or 

obese subjects 448. A protective mechanism against ER stress and inflammation can be 

hypothesized, possibly mTOR inhibition 449 or direct interaction of the ER pathway and 

autophagic machinery 450. Moreover, inhibition of autophagy in adipocytes can induce IR, 

mitochondrial mass content, lipid peroxide production and activation of antioxidant response 451. 

Few studies have been performed in leukocytes from T2D patients. Some of them have 

concluded that autophagy is inhibited in T2D leukocytes and is linked to increased inflammation 

markers 452. The defect could be at the level of lysosome fusion with the autophagosome 453. 

Other research has shown that ROS and RNS induce autophagic activity in dyslipidaemic T2D 

patients, acting as a rescue mechanism 454. Indeed, autophagy is hyperactivated in palmitate-

treated leukocytes from T2D patients, and if blocked, palmitate causes apoptotic cell death 455. 

Hence, autophagy may be activated in a hyperlipidaemic situation to prevent apoptotic death. In 

general, the results concerning autophagy in leukocytes from T2D patients are controversial. 

1.2.5. Interplay between oxidative stress, ER stress and autophagy 
 

Cellular stress can be generated, amplified and signalled by the aforementioned 

pathways: ROS production, ER stress and autophagy. ROS production can lead to activation of 

autophagy or ER stress, but, at the same time, ER stress and autophagy can generate ROS. In the 

following section, the correlation between these 3 processes will be briefly explained. 

ROS can be produced in the ER and in mitochondria under cellular stress. In the ER, 

ERO1α produces H2O2 in order to reduce PDI, the main folding protein in the ER 91. In addition, 
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NOX4 is located in the ER surface and is activated under extended ER stress 456,457. The 

interconnection between ER and mitochondria ROS production is explained by calcium release 

by the inositol-1,4,5-phosphate receptor (IP3R) channels in the ER 458. Mitochondrial uptake of 

the ER-released calcium stimulates OXPHOS and induces the accumulation of H2O2, which 

enhances ROS production. Ca2+ release can also be triggered by phospholipase C (PLC) under 

high lipid content and is accompanied by high ROS production through NOX expression 459,460. 

This relationship between ROS and ER stress can be continued when the UPR response triggers 

CHOP expression, which induces the ERO1α-dependent production of more ROS 461,462. 

Conversely, ERO1α also induces IP3R-mediated calcium leakage, activating Ca2+/Calmodulin-

dependent protein kinase III (CAMKIII) which can activate apoptosis and NOX2 expression and 

ROS production 461,463. The accumulation of ROS can modify proteins that remain unfolded and 

impairs the folding capacity of the ER and exacerbates the feedback loop 464,465 

Autophagy regulation is also responsive to cellular stresses such as high ROS production 

or proteostatic dysbalance. However, due to the double-edged nature of autophagy, it is 

activated to overcome the initial cellular stress, but, if the stress remains, acts as an initiator of 

apoptotic cell death 466,467. It is important to highlight certain studies which suggest that 

autophagy is stimulated by H2O2-triggered ER stress per se 467 due to signalling through 

IRE1α/JNK and direct XBP1 induction: JNK phosphorylates BCL2, thus impeding its interaction 

with Beclin-1 and activating autophagosome formation 468,469; likewise, sXBP1 induces autophagy 

by Beclin-1 transcriptional activation 470, while its absence induces FOXO activation and 

autophagy induction in neurons 471. The UPR pathway initiated by ATF4/eIF2α and CHOP also 

stimulates autophagic genes and enhances autophagic flux in order to maintain cellular integrity 

472–475. Although CHOP is induced by autophagy, it performs a dual role by activating autophagy 

or apoptosis through different genes depending on the duration of the stress 476,477. Another way 
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by which ER stress triggers autophagy is through inhibition of AKT phosphorylation by its 

regulators mTORC and TSC 478–480. Similarly, AMPK signalling, a well known mTOR inhibitor and 

autophagy activator, is also induced by ER stress 481–483.  

Furthermore, as happens with ROS and ER stress, autophagy is also related with ER 

stress and UPR through calcium signalling. It has been demonstrated in neurons, in which it has 

been determined that GRP78 binds to calcium and senses unfolded protein accumulation, but 

also buffers calcium alterations and mitochondrial function after stress 484. Other calcium sensing 

proteins - usually calmodulins or calnexins - can transduce calcium alterations to other molecular 

pathways. As an example, under loss of calcium homeostasis in the ER due to depletion of 

luminal ER calcium during ER stress, CaMKKb can trigger AMPK phosphorylation and activation 

of autophagy 485.  

The relation between autophagy and ROS production has also been widely studied, as 

ROS production and accumulation usually activate autophagy. Under starvation conditions, cells 

produce ROS, which oxidize Cys81 on the Atg4 protein, which in turn increases the amount of 

lipidated LC3, thus inducing autophagosome formation 486. Moreover, starvation stress 

decreases GSH, which causes an imbalance in oxidized/reduced thiol compounds that activate 

autophagy 487–489. AMPK is also stimulated under the same conditions by mtROS production in 

HeLa cells 490, and this activation might be due to the oxidation of AMPK α subunit seen in 

HEK293 cells 491. A possible link between ROS sensing and AMPK is the oxidative stress sensing 

sestrin family of proteins 492, which are also stimulated by ER stress 483. They can be activated by 

nutrient excess, which activates AMPK and NRF2, thus inducing autophagy 493. LKB1 also 

transduces the signal between ROS and AMPK to activate autophagy 494, but it is believed that 

the LKB1 pathway is independent of ER stress 495.  

In conclusion, as previously mentioned, oxidative stress modifies DNA and proteins, 
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causing a proteostatic imbalance and triggering ER stress and, eventually, UPR activation. UPR, 

cellular stress signalling and calcium signalling converge in autophagy activation with the 

objective of rescuing cells or leading to apoptotic cell death if the stress is sustained long 

enough.  
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1.3. T2D and cardiovascular risk 
 

It is widely established that patients who suffer from T2D also present an increased risk 

of cardiovascular complications; namely, an approximately 32% greater likelihood of suffering a 

cardiovascular disease. Moreover, cardiac pathologies are more probable; specifically, 160% in 

the case of coronary heart disease, 127% in that of ischemic heart disease and 56% in that of 

haemorrhagic stroke 8. Most of these diseases have an inflammatory basis involving malfunction 

of the endothelium and even atherosclerotic events. Indeed, atherosclerosis prevalence in T2D 

patients is 29.1% 496. It is important to highlight that the risk of atherosclerotic cardiovascular 

disease is the same for patients with T2D without a history of myocardial infarction and people 

who have suffered a previous myocardial infarction 497. 

Among all the cell types making up the cardiovascular system, endothelial and immune 

cells are two of the most important players in vascular risk, together with platelets and VSMC. 

Endothelial cells cover the inner surface of the vasculature, reacting to circulating blood cells and 

soluble molecules. Those molecules also influence the activation of circulating immune system 

cells. Circulating molecules can be produced by any endocrine organ, as well as by the vascular 

endothelium and immune cells themselves. Hence, the behaviour of endothelial cells and 

immune cells will depend to a high degree on the overall metabolic state. As in T2D, there is an 

altered metabolic state characterised by hyperglycaemia and hyperlipidaemia, which trigger the 

activation of endothelial and immune cells. A consequence is this one of the hallmarks of T2D: 

chronic generalized low grade inflammation, which is produced by endothelial and immune cell 

activation and function.  

1.3.1. Inflammation and T2D 
 

One of the traits of T2D as a chronic disease is generalised low grade inflammation 498. 

This is reflected by elevated levels of inflammation markers and soluble circulating molecules 
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compared to those of healthy subjects. Research has reported elevated levels of C-reactive 

protein (CRP), interleukin 1β (IL-1β) or interleukin 6 (IL-6), which are predictive of T2D 499, and 

levels of interleukin 1 receptor antagonist (IL-1RA) have been shown to peak prior to the onset 

of T2D 500. The main contributors of the circulating inflammatory cytokines are liver and adipose 

tissue their size and metabolic capacity. One of the main proinflammatory cytokines is tumor-

necrosis factor α (TNFα), which is believed to be produced mainly by the M1 macrophages 

recruited by adipose tissue in response to nutrient excess 501,502. These M1 macrophages 

produce most of the proinflammatory factors present in high levels in T2D upon TNFα and IL-1β 

stimulation. Nutrient excess also causes the activation of innate immune cells, which boost the 

production of the proinflammatory cytokines IL-1β and IL-6 503–505. Adaptive immune system cells 

also participate: CD8+ cells and Th1 cells contribute to IR 506, but Treg and Th2 cells 

counterbalance it 507,508. Both types of immune cells contribute to the inflammation observed in 

T2D. In this sense, macrophage and lymphocyte infiltrates are observed in pancreatic tissue, 

which also displays fibrosis and amyloid deposits that stimulate the production of IL-1β 509. This 

is particularly harming to pancreatic tissue, as it initiates an auto feedback loop that ends in 

auto-inflammation and β cell apoptosis 510. 

Many inflammatory mechanisms have been proposed in T2D. Hypoxia is one of the 

driving mechanisms, found mainly in hypertrophic adipose tissue. Macrophages accumulate in 

the hypoxic regions, where they secrete proinflammatory and proangiogenic molecules 511. If the 

hypoxia continues it causes cell death, manifested by characteristic crown-like structures 

consisting of macrophages surrounding an apoptotic adipocyte 512. Cell death is also common in 

T2D in pancreatic cells, constituting an early event in T2D that recruits macrophages to the 

islets509.  
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Inflammation at the cellular level is reflected by the activation of proinflammatory 

signalling cascades such as the NFκB and JNK pathways. FFA and AGEs can activate these 

pathways through toll-like receptors (TLRs) and RAGE receptors, respectively 126,513. NFκB is 

activated by IKKβ, and induces the expression of proinflammatory cytokines such as TNFα, IL-6 

or IL-1β 514. JNK also activates transcription factors such as ETS-like 1 (ELK1), ATF2 and c-JUN, 

which transcribe proinflammatory genes and phosphorylate IRS, thereby contributing to IR 27. In 

T2D, NFκB and JNK pathways are active in adipose tissue, liver 514,515, muscle cells 516, leukocytes 

517–519 and pancreatic β cells 27,520.  

Another relevant mechanism is IL-1β-mediated inflammation, which is produced by 

hyperglycaemia 44,521,522 and FFA 523. The main pathway responsible for IL-1β synthesis is the 

NLRP3 pathway activated in response to TLR signals 524. β cells are very sensitive to IL-1β auto 

stimulation, presumably because of the high expression of IL-1 receptor 510. Thus, blocking the IL-

1 receptor would be a protective mechanism for β cells in T2D 525,526. Among other 

proinflammatory cytokines secreted by adipose tissue, immune cells and other tissues, are the 

chemokine and adipokine families, including C-C chemokines motif ligand 2 (CCL2), CCL3, CCL6, 

CCL7, CCL8 and CCL9, which participate in monocyte recruitment and are secreted by adipocytes 

527. Proinflammatory cytokines are also produced in the pancreatic islets; e.g., chemokine (C-X-C 

motif) ligand 8 (CXCL8) and CCL3 509,523, which have specific receptors that trigger 

proinflammatory responses.  

Globally, T2D implies a generalised immune activation and production of a wide array of 

proinflammatory molecules that remain in circulation, progressively affecting all tissues. Thus, 

circulating immune cells and endothelial cells are exposed to these stimuli, rendering immune 

and endothelial cells sensitized and predisposed to initiating atherosclerotic events. 



  1. INTRODUCTION 

64 
 

1.3.2. Endothelial cell activation  
 

In a homeostatic state, endothelial cells maintain the blood flow and fluidity, control 

vascular permeability and maintain the quiescence of circulating leukocytes 528. A resting 

endothelium does not react with immune cells, as adhesion intercellular adhesion molecule 1 

(ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) are not expressed and Weibel-Palade 

bodies (WPB) are stored. The NO-mediated transcriptional repression of NFB may be 

responsible for maintaining this state 529,530. The release of WPB and the secretion of 

proinflammatory molecules depend on the activation of endothelial cells. This can be triggered 

by blood flow disturbances, inflammatory molecules produced mainly by immune cells, or 

circulating oxLDL presence. This process follows two successive steps: stimulation and activation 

528. The stimulation is triggered by the binding of molecules to GPCR receptors which trigger 

calcium release through PLC. The rise in cytoplasmic calcium activates rho kinase (ROCK) and 

PLC, leading to subsequent prostaglandin production 531–533. Simultaneously, Rho and PLC 

phosphorylate the myosine light chain (MLC), leading to the contraction of actin filaments, 

causing the release of WPB 534,535. These steps are limited in time, as GPCR receptors are quickly 

desensitized, avoiding reestimulation 536,537. Afterwards, the activation requires TNFα and IL-1 

production by activated leukocytes 538,539. Both cytokines end up activating NFκB and AP1 

transcription factors: in the case of TNFα, by binding to its specific receptor TNFR and the TNFR1-

associated death domain protein (TRADD)/TRAF pathway; in the case of IL-1, through the TIR 

domain containing adaptor protein (TIRAP) receptor and the interleukin associated receptor 

kinase (IRAK)/TRAF6 pathway 528. This response also induces increased blood flow, a rise in the 

leaking of plasma proteins and an increase of leukocyte recruitment. The increase in blood flow 

is mediated by cyclooxygenase 2 (COX2) induction, which transforms arachidonic acid produced 

in the stimulation phase into prostaglandins that diffuse into the bloodstream 540,541. The 
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filtration of plasma proteins such as fibrinogen is produced by TNFα and IL-1, although the 

precise mechanisms responsible for this remain elusive 542,543. Regarding leukocyte recruitment, 

NFB mediates the expression of IL-8 that binds to leukocyte E-selectin, which ends in the firm 

attachment of neutrophils 544. When the TNFα and IL-1 stimuli are maintained, E-selectin 

expression decreases, leading to the expression of VCAM-1 and ICAM-1 and other chemokines 

544. Due to this change in the endothelium adhesion molecules, the leukocytes firmly attach to 

the monolayer. These cells cross the endothelial barrier by diapedesis and remain in the intima-

media layer, producing more proinflammatory intermediates. The cell subset that is attracted to 

the endothelium changes in the activation phase from neutrophils to mononuclear cells 544. The 

accumulation of activated leukocytes which produce proinflammatory cytokines such as 

Interferon γ favours endothelial apoptosis through caspase 8-dependent and -independent 

pathways 545,546. Apoptotic endothelial cells can release microparticles with proinflammatory 

molecules and exposed phosphatidilserines that enhance coagulation and inflammation. In 

chronic diseases, both stages of activation can be present at the same time, which maintains 

endothelial inflammation and leads to subsequent endothelial dysfunction 528.  

1.3.3. Initial mechanisms of cardiovascular events 
 

The leading mechanisms in these atherosclerotic and cardiovascular events in T2D are 

varied and include hyperglycaemia, IR, hyperinsulinemia, dyslipidaemia, inflammation, ROS 

production, endothelial dysfunction, hypercoagulability and vascular calcification.  

IR is present in endothelial cells 547, VSMC 548–550 and macrophages 551,552 and promotes 

the progression of atherosclerotic events and inflammation 553. Defects in insulin action 

accelerate atherosclerosis development, as shown in apolipoprotein E (ApoE) -/- mice 547. IR 

affects macrophages, one of the main players in atherosclerotic disease, showing a deviance 
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towards a more inflammatory-prone phenotype 552,554–556. The precise phenotype of insulin-

resistant macrophages is under debate, given that studies have found induction of both M2 and 

M1 under IR 554–557. Defects in insulin signalling impact on the barrier function of endothelial cells 

by a process coined endothelial dysfunction 558,559. 

Endothelial dysfunction is defined as the incapability of the endothelium to maintain 

vascular homeostasis, and is expressed as a reduction in NO bioavailability, enhanced 

inflammation, prothrombotic phenotype and impaired cell growth in the vascular wall 560. To 

regulate the vascular tone, the endothelium produces diverse molecules that help to relax (NO, 

prostacyclin and endothelium-derived hyperpolarizing factor (EDHF)) or contract (Endothelin-1 

(ET-1), angiotensin II (ATII)) the vasculature through smooth muscle cells. Under endothelial 

dysfunction, vasoconstrictor factors are unopposed, resulting in abnormally high arterial tone 

and arterial stiffness 561. In this sense, it has been determined that animal models of T2D have 

less ET-1 and NO bioavailability than healthy counterparts 562–564. Moreover, models of diabetes 

and T2D patients display impaired vasodilation and remodelled vasculature, showing evidence of 

endothelial dysfunction 565,566. One of the molecular links between hyperglycaemia, 

hyperlipidaemia and endothelium dysfunction is PKC. It is activated by ROS and DAG, acting 

through inhibition of insulin signalling, AKT-dependent eNOS activation, induction of COX2 

activity, ET-1 expression and NOX activation 567. Another factor that influences endothelial 

function is the interaction with activated immune cells, by regulating their passage through the 

endothelial monolayer and subsequent infiltration in the tissues 568. Physiologic endothelium 

produces NO, which prevents leukocyte adhesion and maintains an anti-inflammatory state, 

inhibiting ICAM-1 SRC-1-dependent phosphorylation and the expression of other adhesion 

molecules 569,570. Moreover, endothelial NO production induces macrophage polarization 

towards the M2-anti-inflammatory phenotype 571. In the endothelium, the activation and 



  1. INTRODUCTION 

67 
 

adhesion of proinflammatory molecules are produced, altering the circulating blood 

homeostasis and the VSMC underneath the endothelial layer. These factors are related to an 

increase of T2D risk, as demonstrated in the MESA study about the relation of soluble adhesion 

molecules with T2D. 572. In endothelial cells, the expression of adhesion molecules is induced 

under circulating TNFα stimulation or by other stimuli such as shear stress, mediated by the 

NFκB-dependent pathway and epidermal growth factor-like 7 (Egfl7) proteins 573–575.  

The activated endothelium also produces prothrombotic molecules, such as PAI-1, 

thromboxane and von Willebrand factor (vWF), all of which are involved in hypercoagulability. 

This hypercoagulative state, caused by ROS, NFκB activation, PKC signalling and reduction in NO 

synthesis is typical of metabolic diseases such as T2D  576–578. PAI-1 is mainly produced by 

endothelial cells as a cause of endothelial dysfunction under TNFα or IL-1β stimulation. It 

represents an independent risk factor for T2D, as demonstrated by several studies in T2D 

patients 579–582. The activated endothelium releases both PAI-1 and vWF, and triggers the 

coagulation cascade, which activates platelets and fibrin formation, as seen in T2D patients 

compared to healthy subjects 583,584. Lastly, vascular calcification is the consequence of all the 

previously mentioned mechanisms working together, and causes blood vessel hardening and 

dysfunction. Chronic high levels of TNFα or IL-1β, produced by endothelial cells, signal to VSMC, 

which activate NFκB and classic pathways of bone remodelling 585–587. This leads to the 

expression of different types of collagen and an increase of calcium deposits, which reduces its 

contractility 585,588. AGEs can be a direct cause of vascular stiffness, as shown in the study by 

Sanchis et al 589. In T2D patients, circulating osteblasts and myeloid calcifying cells have been 

found to contribute to vascular calcification 590,591. These cells abound in T2D patients, and their 

number rises with poor glycaemic control, but decreases when patients are in range. All these 

traits are imdysbalanced in T2D, and impede proper endothelial function, thus leading to loss of 
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vascular homeostasis and contributing to the development of atherosclerotic events 560. 

1.3.4. Atherosclerosis 
 

One of the most common cardiovascular complications is the development of 

atherosclerotic lesions, which develop in a proinflammatory environment accompanied by 

hyperlipidaemia and a dysfunctional endothelium. Atherosclerosis consists of the formation of 

atherosclerotic plaques in the vasculature, which are encapsulated deposits of lipids, 

cholesterol, calcium and apoptotic cells in the intima-media layer of the vasculature. The initial 

steps of atherosclerosis are endothelial dysfunction and expression of proinflammatory 

cytokines by the endothelium and smooth muscle cells, which causes the infiltration of immune 

cells (Figure 9) 592–594. First, low-density lipoproteins (LDL-c) particles are oxidized by ROS, and 

AGEs then activate endothelial cells and smooth muscle cells, increasing the vascular 

permeability 595–597. Subsequently, the activated endothelium expresses adhesion molecules and 

chemokines, which recruit immune cells. Monocytes can migrate into the subendothelial 

compartment, where they recognize oxLDL through its scavenger receptor. The recognition leads 

to its endocytosis and accumulation in the cytoplasm, thus activating monocytes and 

transforming them into foam cells 598–600. Foam cells can secrete proinflammatory cytokines and 

present oxLDL-derived moieties to recruited T cells, which also involve an adaptive immune 

response 601,602. When in excess, other lipids, such as FFA, can be stored as TAG or as 

intermediate metabolites such as DAG and ceramide. These molecules activate JNK and IKK 

proinflammatory cascades, as explained previously. Free FFA and LDL-c or oxLDL can also 

activate macrophages through TLR4 513,603. All these steps lead to the forming of the nascent 

atherosclerotic lesion, which evolves in most cases into a mature atherosclerotic lesion. 
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 Figure 9: Schematic representation of the formation of the atherosclerotic plaque. Initial leukocyte and endotelial activation produces 
chemoattractant molecules that attract immune cells to the endothelium (1). Then, leukocytes express selectins that bind to those expressed by the 
endothelium or platelets, coactivating endotelial cells (2). At this moment, as leukocytes slow down, they firmly interact with the endothelium through 
intergrins (3). Attached leukocytes eventually migrate to the subendothelial space (4), where they begin to endocyte oxLDL and secrete proinflammatory 
molecules (5). The excessive endocytosis of oxLDL leads to the formation of foam cells, a term for defining macrophages with massive LDL-c infiltration. 
Neutrophils in this scenario also secrete proinflammatory cytokines (6). The foam cells eventually become apoptotic, releasing proinflammatory molecules (7). 
Apoptotic foam cells together with other leukocytes, lipids and cholesterol aggregates form the necrotic core (8). Lastly, the VSMC change their phenotype and 
migrate from the subendothelial layer to the borders of the necrotic core, stabilizing and calcifying the lesion (9). LDL-c= low density lipoprotein; ROS= reactive 
oxygen species; oxLDL= oxidatively modified LDL; TNFα= tumor necrosis factor alpha; MCP1= monocyte chemotactic protein 1; IL-1β= interleukin 1 beta; ICAM= 
intercellular adhesion molecule; VCAM= vascular adhesion molecule; PECAM= platelet-endothelial cell adhesion molecule; VSMC= vascular smooth muscle 
cells.  
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Atherosclerotic lesion maturation consists of the formation of a fibrous cap. It begins 

with the migration and proliferation of VSMCs from the media layer to the intima layer. This is 

caused by the production of growth factors by macrophages, endothelial cells and T 

lymphocytes. Once in the intima layer, smooth muscle cells adopt a secretory phenotype, thus 

releasing collagen, and are able to internalize oxLDL. Eventually, the smooth muscle cells 

become foam cells and contribute to the necrotic core of the plaque 604–606. The stable plaque 

can grow and end up causing ischemic events 594,607. Otherwise, it evolves into an unstable 

plaque when macrophages induce the expression of matrix metalloproteinases, which can break 

the fibrous capsule and form a thrombus 607–609.  

In T2D, the presence of activated immune cells, abundance of ROS, the activated 

endothelium, AGE presence accompanied by IR, hyperlipidaemia and hyperglycaemia creates 

the perfect background for plaque formation and growth 610–613. 

1.3.4.1. Leukocyte-endothelium interactions 
 

This process is one of the initial steps in the formation of the atherosclerotic plaque, 

subsequent to endothelial activation and dysfunction. Initially, the endothelium produces 

CCL2/MCP-1 and adhesion molecules such as ICAM-1, VCAM-1 and selectins, which attract and 

attach to circulating leukocytes. The first expressed adhesion molecules are E-selectin, which 

binds to ligands in mononuclear cells and polymorphonuclear cells PMNs; and P-Selectin, which 

binds to platelets 614–616. Mononuclear cells and PMNs roll along the surface of the endothelium, 

coactivating endothelial cells, which express and externalize integrins as ICAM-1 and VCAM-1 617–

619. These molecules mediate the temporal tethering of the immune cells to the endothelium 

through interactions with lymphocyte function associated antigen 1 (LFA-1) or very late antigen 

1 (VLA-1) integrins, respectively. If the interaction persists, it leads to the firm adhesion of the 
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leukocytes. Later, attached leukocytes and endothelial cells express platelet endothelial cell 

adhesion molecules (PECAM) that mediate the diapedesis through homotypical interactions 

620,621.  
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1.4. T2D complications 
 

As previously mentioned, the T2D physiopathology predisposes T2D patients to suffer 

different complications that can be classified according to the root cause. Microvascular 

complications occur in tissues highly irrigated with insulin-independent glucose channels; on the 

other hand, macrovascular complications happen in tissues irrigated by arteries that present an 

atherosclerotic plaque (Figure 10). These different complications reduce the life expectancy and 

quality of life of T2D patients and increase the private and public costs of T2D. Therefore, it is 

important to determine the risk factors and the molecular markers of cardiovascular 

complications in T2D.  

 
Figure 10: Types of T2D-related complications: Microvascular complications are related to defective 
insulin signalling in tissues densely irrigated with microvasculature. These include retinopathy, affecting 
the retina; nephropathy, which undermines kidney function; and neuropathy, which affects neuronal 
transmission. Macrovascular complications are related to the development of atherosclerotic lesions in 
the main arteries. They can be classified as stroke events, heart disease and peripheral vascular disease. 
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1.4.1. Microvascular complications 
 

Chronic hyperglycaemia affects small capillaries from insulin-independent cell types, 

producing disturbances in the tissues that they irrigate and causing microvascular complications. 

Overall, they have a high prevalence (17.7%) 622. All microvascular complications have common 

pathological mechanisms: loss of pericytes, thickening of the basal membrane and local 

hypertension. This is caused by high concentration of AGEs, which activate the polyol and PKC 

pathways, producing oxidative stress and inflammation 623–625.  

There are three main forms of microvascular complications: diabetic retinopathy is the 

most common diabetic microvascular complication, and is related to the severity of the 

hyperglycaemia and the presence of hypertension. Of particular importance in this case is the 

production of sorbitol by aldose reductase due to high circulating glucose concentrations 626,627. 

This causes local hypertension, microaneurysms and loss of pericytes. It can be classified as 

background or proliferative retinopathy. The annual incidence of this type of microvascular 

complication in T2D patients ranges between population studies, from 2.4% in an Indian cohort 

to 12.7% in a Chinese population 626–628. The evolution to proliferative retinopathy was found to 

range between an annual incidence of 0% in Kenya to 1.5% in China 628.  

The second type of microvascular complication is diabetic nephropathy, which consists 

of a thickening of the glomerular basement membrane, podocyte loss and formation of 

microaneurysms. Those defects lead to glomerular hyperfiltration, causing intraglomerular 

hypertension and sclerosis. Defective filtration is detected by the excretion of proteins in the 

form of microalbuminuria (5-299 mg/day) or proteinuria (>500mg/day). The clearest risk factors 

are elevated glycated haemoglobin and hypertension. Its incidence ranges between 35.3% in 

sub-Saharian regions to 21.8 in the Chinese population, representing a major complication 

among T2D patients worldwide 629,630.  
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Finally, we have diabetic neuropathy, in which pericyte loss and decreased blood flow to 

the c fibers result in nerve hypoxia 623. It manifests as ulcerations, pain, numbness and loss of 

sensitivity to light pressure changes such as vibrations or temperature 631,632. Its incidence varies 

widely depending on the years of follow up, glycaemic control and other factors, but is highly 

representated, reaching 51% incidence among T2D patients 631,632. 

1.4.2. Macrovascular complications 
 

Atherosclerosis and endothelial dysfunction are common events to all macrovascular 

complications. IR enhances platelet aggregation, which, together with the elevated levels of PAI-

1 produced by endothelial cells, renders a prothrombotic scenario. Moreover, also in endothelial 

cells, AGEs and ROS activate PKC, which contributes to a prothrombotic and proinflammatory 

background through inactivation of eNOS 633. Globally, there is a hypercoagulative, hypertensive 

and proinflammatory vasculature that can also present atheroma plaques. This impedes the 

circulation of blood, resulting in any one of the macrovascular complications: coronary artery 

disease (infarct, heart failure, myocardial ischaemia), cerebrovascular disease (stroke), or 

peripheral artery disease. Specifically, diabetic patients have a 2-4-fold higher cardiovascular risk 

compared to non-diabetic subjects 634. There is an increased risk of suffering coronary artery 

disease, not only in established T2D, but also in prediabetes 635. Macrovascular complications 

have a prevalence of 12.7% worldwide, although a high variation is found depending on the 

country 622. The major concern of macrovascular complications is their association with 

premature death in T2D patients, which can account for up to 50.3% of all T2D-related deaths 

634,636. This risk is preventable, as it is related to diet and intake of excess of lipids and 

carbohydrates. In this sense, in T2D patients who consumed high levels of fat in their diet 

presented a 12% higher mortality risk than those consuming a diet of enriched polyunsaturated 

acids (PUFA) 637. Worryingly, high BMI and dietary risk habits account for 24.7% and 34.5% of the 
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disability-adjusted life years (DALY) in Latin-American T2D, representing a high proportion of 

preventable deaths due to cardiovascular complications 638. Not only individual nutrients, but 

dietary patterns that are rich in vitamins, minerals and phytochemicals reduce the incidence of 

cardiovascular events and associated death in T2D patients 639. Other controllable parameters, 

such as glycated haemoglobin, blood pressure, physical activity, and smoking, consistently 

increase cardiovascular risk and all-cause mortality in T2D 640. Among all these markers, intensive 

glycaemic control has been shown to effectively reduce cardiovascular events641. Thus, 

intervention through modifiable lifestyle habits and markers is vital in preventing premature 

death due to T2D.  

Macrovascular complications are rooted in the development of endothelial dysfunction 

and the atherosclerotic plaque, both of which concepts have been explained above. The 

atherosclerotic plaque can reduce the blood flow through the arteries as it develops, eventually 

causing ischaemic events. Indeed, one study showed that the presence of an atherosclerotic 

plaque with a lipid-rich necrotic core is an independent risk factor of acute cerebral infarct in 

T2D 642. According to a recent study in a Spanish cohort, T2D patients had 6% more mortality due 

to stroke, 15% more due to myocardial infarction, and 6% more for the combination of all 

cardiovascular events when compared with non-diabetic controls. Moreover, in the same study, 

women had 6% more mortality for ischaemic stroke than non-diabetic women 643. A similar 

study determined that T2D increased the risk of suffering the consequences of atherosclerotic 

disease, including myocardial infarction, ischaemic stroke, heart failure and aortic valve stenosis 

644. The reported rise of the prevalence of cardiovascular disease and mortality in T2D highlights 

the importance of the early prevention of these complications. There are useful markers that 

enable the early detection of plaque development, among which the measurement of carotid 

intima-media thickness (CIMT) has proven to be of particular interest 645,646 as a reliable 
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predictor of vascular accidents, and its rise is related to an increase in soluble fibrinogen, E-

Selectin and GIP-1 647,648. Indeed, it is a more reliable marker of cardiovascular complications 

than the measurement of coronary artery calcium content, which has been widely used in the 

past 649. In recent years, it has been increasingly used and compared or combined with other 

markers of cardiovascular risk. In this context, CIMT measurement has been demonstrated to 

increase the accuracy of other previously employed predictors of mortality (presence of plaque, 

carotid stenosis) and is related to markers of oxidative stress and inflammation (oxLDL and IL-6) 

650,651.  
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1. To evaluate the state of autophagy and its relation to mitochondrial function and 

inflammation in leukocytes from T2D patients. 

2. To assess the presence of cardiometabolic risk markers in T2D patients, reflected by 

soluble cytokine levels, carotid-intima media thickness and leukocyte endothelium 

interactions, and the influence of strict glycaemic control on these parameters. 

3. To evaluate the influence of metformin treatment on mitochondrial dynamics in 

leukocytes from T2D patients 

4. To analyze the effect of the mitochondria-targeted antioxidant SS-31 in endoplasmic 

reticulum stress, autophagy and oxidative stress. 

 



   

80 
 

  



   

81 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. MATERIAL AND METHODS 
 



   

82 
 

 



  3. MATERIAL AND METHODS 

83 
 

3.1. Recruitment of study population 
 

For this thesis, we recruited T2D patients and healthy volunteers which attended the 

Endocrinology and Nutrition Service of the Outpatient unit of the University Hospital Dr Peset 

from 2017 to 2021. All patients signed a written informed consent with detailed information of 

the procedure. All collected data was anonimyzed assigning one number and managed according 

to the data protection law (LOPD). The experimental procedures were approved by the 

hospital’s Ethics Committee of Clinical Investigation, ID: 97/16 or 98/19 (Annex I), in line with the 

ethical principles of the Helsinki declaration. The diagnosis of T2D was made according to the 

ADA criteria, and the exclusion requirements were the following: morbid obesity, insulin 

treatment, and presence of autoimmune, haematological, malignant, infectious, organic or 

inflammatory diseases.  

3.2.  Sample collection and laboratory tests 
 

Subjects attended the nursery of the Endocrinology and Nutrition Service where 30 mL of 

peripheral blood was extracted from the brachial vein, collected in EDTA tubes and a tube for 

serum isolation. Before the extraction, blood pressure (BP), weight, height, waist circumference 

and hip circumference were measured. After, BMI (kg/m2) and hip/waist circumference ratio 

were calculated. The nurse also collected other relevant information as smoker status or 

pharmacological treatments. Routine biochemical tubes were also obtained and were analyzed 

in the biochemistry laboratory of the hospital. 

The methods employed in the central biochemistry laboratory of the hospital for the 

needed determinations were the following: Fasting glucose, total cholesterol, and triglycerides 

(TG) were determined by an enzymatic method. High density lipoprotein (HDL-c) levels were 

measured with a Beckman LX-20 autoanalyzer (Beckman Coulter, La Brea, CA, USA) using a direct 
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method. LDL-c was determined with Friedewald’s formula. An immunochemiluminescence assay 

was employed to determine insulin levels. Glycated haemoglobin % (HbA1c%) was determined 

with an automatic glycohaemoglobin analyzer (Arkray, Inc., Kyoto, Japan). Apolipoproteins were 

measured with an electroimmunoassay. hsCRP was analyzed employing an 

immunonephelometer (Behring Nephelometer II, Dade Behring, Inc., Newark, DE, USA). 

Afterwards, HOMA-IR index [fasting insulin (μU/mL) × fasting glucose (mg/dl)/405] was 

calculated to estimate IR.  

Serum was isolated from the blood collected in the serum isolation tube by centrifugation 

for 10 min at 1500g and 4ºC. 

3.3. CIMT determination 
 

A subset of all recruited patients was derived to the Cardiology Service in order to 

determine CIMT. This assay consists in an ecosonocardiographical exploration of the carotid 

artery performed by trained ecocardiographists following the American Echocardiography 

Association’s guidelines. The evaluation was made by placing the head of the subject at a 45º 

inclination with respect to the body longitudinal axis. An ultrasound device Aloka 5500 (Hitachi 

Aloka, Tokyo, Japan) equipped with a 7.5 MHz sector scanner probe was employed for the 

measurements. Measurements were made in the 1 cm plaque-free segment proximal to the 

dilation of the carotid bulb. The measurement for each patient corresponded to the mean 

between three different projections of the far wall (anterior, lateral and posterior). An 

independent and experimentally blinded observer measured the images. Paired CIMT 

measurements in the same arteries showed a high degree of reproducibility, with a mean 

difference in CIMT of 0.020 mm, and an intraclass correlation coefficient of 0.97 (p < 0.001). 
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3.4. Functional assays 
 

3.4.1. Leukocyte isolation 
 

A Ficoll gradient method was employed for isolating PBMCs and PMNs from the samples 

of whole blood. Initially, the blood is laid over 7mL of a mixture of Ficoll Hystopaque 1119 (Ref 

11191) and Hystopaque 1077 (Ref 10771) both from Sigma-Aldrich, St Louis, MO, USA. The blood 

formed a layer above the ficoll mixture, and the gradient separation will be carried on with a 25-

min centrifugation at 650g at room temperature. PBMCs were obtained in the buffy coat and 

PMNs in the sediment. Both samples were treated with erythrocyte lysis buffer (Red Blood Cell 

Lysis Solution, Ref. 130-096-941; Miltenyi Biotec, Germany) for 5 min. After, samples were 

washed with HBSS and stored for subsequent determinations. Cell suspensions with 5x106 cells 

were centrifuged and the pellet was stored for protein and gene determinations at -80ºC. When 

needed, a subset of these cells was treated with SS-31 (100 nM, 30 min) or SS-20 (100 nm, 30 

min), rotenone (50 µM, 20 min), thapsigargin (1 µM, 20 min), or rapamycin (0.5 µM, 30 min), all 

purchased in Thermo Fisher Scientific (Waltham, MA, USA) in concentrations that did not alter 

the cells’ viability.  

 

3.4.2. Static cytometry assay 
 

Three hundred thousand PBMCs/well were seeded in 24-well plates in duplicate for each 

sample. The same amount of seeded Hep3B cells was employed as internal control in each 

experiment. PBMCs were left for 20 min at room temperature until they attach to the bottom of 

the plate. Once attached, fluorophores solutions (tetramethylrhodamine (TMRM, 1µM), 

mitoSOX (5µM ), Fluo4 (1µM) and 2’7’dichlorofluorescein diacetate (DCFH-DA, 5µM) and the 

nuclear staining HOECHST 33342 (1µM ), all purchased in Thermo Fisher Scientific (Waltham, 
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MA, USA), were added to the wells and incubated for 20 min at 37ºC under gentle shaking. Then, 

wells were washed with warm Ca2+ and Mg2+ free HBSS. Visualization and measurement of the 

fluorescence were perfomed with ScanR software coupled to an IX81 Olympus inverted 

microscope (both from Olympus Corporation, Shinjuku, Tokyo, Japan). Sixteen images were 

obtained per well in each experiment and the mean fluorescence intensity was calculated and 

normalized with the internal control. 

3.4.3. Flow cytometry assay 
 

Whole blood was processed to detect ROS production thanks to DCFH-DA fluorescent 

probe. The protocol consisted on three differentiated steps: First, 200µL of whole blood was 

lysed with erythrocyte lysis buffer (Red Blood Cell Lysis Solution, Ref. 130-096-941; Miltenyi 

Biotec, Germany) for 15 min and centrifuged for eliminating the supernatant. Second, the pellet 

was resuspended in a 1µM solution of CD45 antibody (APC Mouse Anti-Human CD45 (BD 

Biosciences, San Jose, CA, USA) for 20 min to mark the CD45+ cells, which belong to the 

leukocyte population. Third, once these cells are marked with anti-CD45 APC-coupled antibody, 

DCFH-DA fluorophore is added at a final concentration of 5µM and incubated in darkness for 10 

min. Then cells are analyzed in an Accuri C6 cytometer (BD biosciences, San José, CA, USA), 

employing the 488 nm laser and the FL1 filter (FITC). Gating of the CD45-positive PMNs and 

PBMC subpopulations were gated thanks to FSC and SSC parameters. In these subpopulations, 

the mean intensity of DCFH-DA probe was measured. An internal control (U937 cells) which 

followed the same experimental procedure was included in all experiments. 

3.4.4. Oxygen consumption assay  
 

An aliquot of 500.000 PBMCs/mL was placed in a gas tight chamber from a Clark-Type O2 

electrode (Rank Brothers, Bottisham, United Kingdom) in order to measure O2 consumption.  
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An inhibitor of the ETC (Sodium cyanide 1mM) was employed to prove that O2 consumption was 

mainly mitochondrial. Data visualization and collection was made with Duo.18 software (WPI, 

Stevenage, United Kingdom). GraphPad software (GraphPad software, Inc., San Diego, CA) was 

used to calculate the maximal O2 consumption rate with endogenous substrates. In order to 

check the cell viability, a trypan exclusion test was perfomed, showing no significant cell death.  

3.4.5. Leukocyte-endothelium interactions analysis 
 

This assay employs two different cell types: 1.2mL of a 106 PMNs/mL aliquot and a 

confluent HUVEC monolayer seeded in a 35mm petri dish (corning, Ref 430165, Chelmsford St 

Lowell, MA). HUVECs were isolated from fresh umbilical cords whose veins were perfused with a 

1mg/mL collagenase solution (Collagenase type IV, GIBCO, Thermo Fisher Scientific Ref 

10780004, Waltham, MA, USA). The resultant cell suspension was neutralized with fresh 

supplemented EGM-2 medium (Lonza, Ref CC-3162, Basel, Switzerland) and seeded until 

confluence. Cell maintenance was made every two days with fresh medium replacement. The 

day of the experiment, PMNs are perfused over the HUVEC monolayer thanks to a glycotech 

parallel-plate flow chamber (Glycotech, ref. 31-001) with the 0.5 width x0.254 mm height flow 

rubber gasket at a velocity of 0.3 mL/min. A 5 min video was recorded, where afterwards the 

number of rolling PMNs, its velocity and the adhered ones will be measured. The velocity was 

measured as the time in which 20 PMNs cover a distance of 200 µm. The adhesion was 

calculated as the media of adhered PMNs, for at least 30s, in 5 random observation fields. 
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3.5.  Soluble cytokines and adhesion molecules 
determination 

 
Serum samples stored at -80ºC were selected and employed for measuring the levels of 

soluble cytokines and adhesion molecules with a Luminex 200 flow analyzer system (Millipore, 

Austin, TX, USA) and specific Milliplex® MAP Kits (Millipore Corporation, Billerica, MA, USA). This 

method allows detecting different molecules simultaneously in the same sample and the same 

assay. The protocol is based in the staining of cells with specific antibodies conjugated to color-

coded microbeads, and its detection with biotinylated secondary antibodies with strepatividin-

PE conjugates. The fluorescence of each bead color is acquired and analyzed by the Luminex 200 

flow analyzer system. The molecules detected and their detection range were the following: 

TNFα (1750 to 0.43 pg/mL), IL-6 (750 to 0.18 pg/mL), VCAM-1 (500 to 0.122 ng/mL), ICAM-1 (350 

to 0.085 ng/mL) and P-selectin (1000 to 0.122 ng/mL). The intra-assay CV is <5% for TNFα and IL-

6 and <15% for ICAM-1, VCAM-1, and P-selectin. The interassay CV is <20% for IL-6, ICAM-1, 

VCAM-1, and P-selectin and <15% for TNFα. 
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3.6. Protein and gene expression assays 
 

3.6.1. Gene expression 
 

Gene expression was analyzed by RT-PCR method employing frozen samples of PBMCs 

from healthy and T2D patients. RNA was extracted with a GeneAll Ribospin total RNA extraction 

kit (GeneAll Biotechnology, Hilden, Germany) and quantified with Nanodrop 2000c (Thermo 

Fisher Scientific, Waltham, MA). RNA purity was assessed by measuring the optical density ratio 

between 260nm and 280 nm, which should be comprised between 1.8 and 2. Reverse 

transcription was made with 1µg RNA from each sample and RevertAid First Strand c-DNA 

Synthesis kit (Thermo Fisher Scientific, Waltham, MA). 2µg of cDNA were used for analysing gene 

expression with specific primers (designed specifically for each target in OligoArchitect TM Online 

from Sigma Aldrich, Sant Louis, MO, USA), and the KAPA SYBR FAST universal master mix 

(Biosystems, MA) in a 7500 Fast real-time PCR system (Life Technologies, CA, USA). The 

methodological details and primers employed are detailed in Table 1. The relative quantification 

was made with the comparative 2−ΔΔCt method. 
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Table 1. Protocol details and primers sequences. 

qRT-PCR protocol 

Temperature 95ºC 95ºC 60ºC 
Melting 

curve 

Time        10 min 10 s 30 s 

Nº of cycles      1                 40 

PCR primers 

Target    Direction 5’-3’ 

ddit/chop 
Forward AGAACCAGGAAACGGAAACAGA 

Reverse TCTCCTTCATGCGCTGCTTT 

grp78 
Forward AAGAACCAGCTCACCTCCAACCC 

Reverse TTCAACCACCTTGAACGGCAA 

sXBP1 
Forward CTGAGTCCGCAGCAGGTG 

Reverse AACAGGATATCAGACTCTGAATCTGAA 

gapdh 
Forward CGCATCTTCTTTTGCGTCG 

Reverse TTGAGGTCAATGAAGGGGTCA 

mfn1 
Forward CCTCCTCTCCGCCTTTAACT 

Reverse TATGCTAAGTCTCCGCTCCAAC 

mfn2 
Forward CAGCTACACTGGCTCCAACT 

Reverse TTTCTTGTTCATGGCGGCAA 

opa1 
Forward ACCGTTAGCCCTGAGACCATA 

Reverse GGTAAGTCAACAAGCACCATCC 

fis1 
Forward AGAAATTTCAGTCTGAGAAGGCA 

Reverse CCTCCTTGCTCCCTTTGGG 

drp1 
Forward GCTGATGCTTGTGGGCTAATG 

Reverse TGCCAAAGCACTTGGAACTTT 

becn1 
Forward CCCCAGAACAGTATAACGGCA 

Reverse AGACTGTGTTGCTGCTCCAT 

sqstm/p62 
Forward GATTCGCCGCTTCAGCTTCTG 

Reverse CTGGAAAAGGCAACCAAGTCC 
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3.6.2. Protein expression  
 

Protein was extracted from PBMCs previously stored at -80ºC by resuspending the pellet 

in a lysis buffer (20 mM HEPES pH 7.5, 400 mM NaCl, 20% glycerol, 0.1 mM EDTA, 10 μM 

Na2MoO4, 0.5% NP-40) supplemmented with protease inhibitors (10 mM NaF, 1 mM NaVO3, 10 

mM PNP, 10 mM β-glycerolphosphate) and dithiothreitol 1 mM. The resuspended pellets were 

left for 15 min on ice, vigorously mixed for 30 s and centrifuged at 21400 g 15 min at 4ºC. Then, 

the supernatant was collected and the protein was quantified with the BCA protein assay kit 

(Thermo Fisher Scientific, Waltham, MA, USA). The isolated and quantified protein was stored at 

-80ºC for Western blotting assay.  

Western blot was perfomed with 25 µg of protein which were separated with 4%-20% 

gradient or 13% SDS-PAGE gels (Novex Wedge Well 4-20 Tris Glycine Gel, Ref. XP04205B0X; 

Invitrogen-Life Technology, Carlsbad, CA, USA) and separated at 150V for 60-90 min at RT. After, 

the resulting protein separation was transferred to a nitrocellulose membrane (BioRad, CA) by a 

wet transference method, set at 400 mA and constant voltage for 60 min. The membranes then 

were blocked with 1-5% skimmed milk solution in TBS-T or 5% BSA, depending on the target 

protein, for 1 h at room temperature. Then, specific blocking buffer-diluted primary antibodies 

were incubated at 4ºC overnight. The antibodies employed and the dilutions are specified in 

Table 2. The next day, specific secondary antibodies were added after 3 TBS-T washes, and were 

incubated for 1 h at room temperature and gentle shaking. Then, after 3 TBST washes, signal was 

visualized thanks to chemilumiscent reagents ECL plus (GE Healthcare, Amersham Place, Litte 

Chalfont, UK) or Supersignal West Femto or Pico (Thermo Fisher Scientific, Waltham, MA, USA) 

in a Fusion FX5 acquisition system (Vilbert Lourmat, Marne La Vallée, France). Densitometric 

analysis of the images normalized with an internal control and the actin signal was perfomed 

with Bio1D software (Vilbert Lourmat, Marne La Vallée, France).   
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Table 2. Primary antibodies, dilutions and specifications employed 

Primary antibodies 

Target Dilution Source Reference 

NFκB-p65 (phospho S536) 1/1000 Rabbit ab28856 (Abcam, Cambridge, MA) 

TNFα 1/1000 Rabbit 654250-1MG (Sigma-Aldrich, Sant Louis, MO,USA) 

SIRT1 1/1000 Rabbit 07-131 (Merck Millipore, Austin, TX, USA) 

Beclin-1 1/1000 Rabbit AB15417 (Merck Millipore, Austin, TX, USA) 

LC3 1/1000 Rabbit L8918 (Merck Millipore, Austin, TX, USA) 

SQSTM/p62 1/500 Mouse H00008878-M01 (Abnova Corp., Taiwan) 

Mfn1 1/1000 Rabbit ABC41, (Merck Millipore, Austin, TX, USA) 

Mfn2 1/1000 Rabbit ABC42, (Merck Millipore, Austin, TX, USA) 

Opa1 1/1000 Mouse MABN737 (Merck Millipore, Austin, TX, USA) 

Drp1 1/1000 Mouse GR3248679-1 (Abcam, Cambridge, UK) 

Fis1 1/500 Rabbit ABC67 (Merck Millipore, Austin, TX, USA) 

Actin 1/2000 Rabbit A2066 (Sigma Aldrich, St. Louis, USA) 

Secondary Antibodies 

Rabbit 1/2000 Goat PI-1000 (Vector Laboratories, Burlingame, CA, USA) 

Mouse 1/2000 Goat 31420 (Thermo Fisher Scientific, Waltham, MA, USA) 

  

https://www.sigmaaldrich.com/ES/es/product/sigma/l8918?context=product
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3.7. Statistical analysis: 
 

Normality analysis was performed in all measured variables with Kolmogorov-Smirnov or 

Shapiro-Wilk test depending on the simple size. Normally distributed variables present their 

media and the Standard Deviation (SD), whereas in non-normally distributed data median and 

25th-75th quartiles are displayed.  

Comparisons were made with two-sided t-test for comparing two populations or one-way 

ANOVA followed by Bonferroni, Tukey or Newman–Keuls pos-test. In non-normally distributed 

variables, Mann-Whitney and Kruskal-Wallis tests were applied for two and three group’s 

comparisons, respectively. In the cases when or BMI or age are significantly different between 

the populations, adjustment of the confounder variables was performed with covariance 

analysis (univariate or multivariate general linear model). Correlations were calculated with 

Pearson's or Spearman’s correlation coefficient depending on the sample size.  

All statistics were calculated with SPSS 17.0 software (SPSS Statistics Inc., Chicago, IL, 

USA) and graphs were plotted in GraphPad Prism 6.0 (GraphPad, La Jolla, CA, USA). Bar graphs 

represent the mean and the error bars measure the Standard Error of the Mean (SEM). 

Differences were considered significant when p<0.05 in all cases, applying a confidence interval 

of 95% in every comparison. 
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ABSTRACT 

Type 2 diabetes is closely related to oxidative stress and cardiovascular diseases. In this 

study, we hypothesized that PMN-endothelium interactions and autophagy are associated. We 

evaluated PMN-endothelial interactions, ROS production and autophagy parameters in 47 type 2 

diabetic patients and 57 control subjects. PMNs from type 2 diabetic patients exhibited slower 

rolling velocity (p < 0.001), higher rolling flux (p < 0.001) and adhesion (p < 0.001) in parallel to 

higher levels of total (p < 0.05) and mitochondrial ROS (p < 0.05). When the protein expression 

of autophagy markers was analysed, an increase of Beclin-1 (p < 0.05), LC3I (p < 0.05), LC3II (p < 

0.01) and LC3II/LC3I ratio (p< 0.05) was observed. Several correlations between ROS and 

leukocyte-endothelium parameters were found. Interestingly, in control subjects, an increase of 

Beclin-1 levels was accompanied by a decrease in the number of rolling (r = 0.561) and adhering 

PMNs (r = 0.560) and a rise in the velocity of the rolling PMNs (r = 0.593). In contrast, in the type 

2 diabetic population, a rise in Beclin-1 levels was related to an increase in the number of rolling 

(r = 0.437), and adhering PMNs (r = 0.467). 

These results support the hypothesis that PMN-endothelium interactions, ROS levels and 

formation of autophagosomes, especially Beclin-1 levels, are enhanced in type 2 diabetes. 
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1. INTRODUCTION 

In recent years, a sustained global increase in the prevalence of obesity and metabolic 

syndrome has provoked a rise in diseases such as type 2 diabetes [1]. Currently, type 2 diabetes 

and its comorbidities are among the main health concerns worldwide because of their high 

prevalence and the associated cost related to public health services. Type 2 diabetes is 

characterized by hyperglycaemia and IR, which cause chronic subclinical inflammation [2,3]. 

Hyperglycaemia and inflammation produce cellular alterations, which are the molecular basis of 

diabetes and cardiometabolic diseases [3–5]. Previous studies have highlighted the relationship 

between diabetes and inflammation, pointing to circulating hyperlipidaemia and hyperglycaemia 

as triggers of inflammatory responses [5–7]. 

One of the consequences of chronic hyperglycaemia is the increased generation of ROS, 

produced mainly by the mitochondrial respiratory chain [8,9]. This heavy load of ROS 

overwhelms antioxidant defences and can modify cellular molecules and organelles, disturbing 

cell homeostasis and inducing inflammation. Furthermore, mitochondrial dysfunction and 

oxidative stress have been closely related to cardiovascular diseases [10,11]. Hyperglycaemia, 

together with ROS production, leads to an increased presence of proinflammatory molecules 

that activate immune cells [8–10]. Moreover, endothelial cells are activated by ROS and 

proinflammatory cytokines thereby developing endothelial dysfunction [12–15]. This situation 

enhances a cascade of PMN-endothelium interactions, a process by which immune cells migrate 

to the site of inflammation [16]. The proinflammatory state and increased ROS content 

characteristic of type 2 diabetes favour PMN-endothelial interactions throughout the 

vasculature, not only at the site of inflammation [17]. This process is enhanced in the 

comorbidities related to type 2 diabetes [17], but the cause and the pathways affected are still 

being investigated. One of the actions involves the interference of ROS with the proper 
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functioning of β cells [18], including mechanisms of protein homeostasis, such as protein folding 

and degradation [19]. It is known that ROS can damage various cellular components, which are 

degraded and recycled by a process named autophagy. It involves nonselective degradation of 

proteins, lipids and organelles [20], and occurs in response to internal or external stimuli such as 

oxidative stress, UPR and malfunctioning of organelles (internal inductors), and growth factors, 

serum starvation or amino acid deprivation (external stimuli). In this sense, autophagy is a 

survival mechanism [20] and a strictly regulated process. Two key proteins in this process are 

LC3 and Beclin-1. The latter, together with other autophagy-related proteins, initiates the 

formation of the omegasome and the phagophore, thus priming the progression to 

autophagosome [20]. In parallel, the cytoplasmic form of LC3I is lipidated to LC3II, and, in this 

form, is recruited to the inner and outer autophagosomal membrane in order to construct the 

autophagosome. In the case of selective autophagy, altered proteins and organelles are carried 

to the autophagosome via the ubiquitin- and LC3- binding protein SQSTM1 (p62). Ubiquitinated 

proteins or organelles are sequestered into the autophagosome for their degradation. When the 

autophagosome fuses with the lysosome, the autolysosome is created and the material stored in 

the autophagosome is then digested. If autophagy is impaired, p62 protein accumulates in the 

autophagosomes [20]; however, p62 is important not only in this process, but it also acts as a 

scaffold protein that intervenes in cell proliferation and survival/death signalling [21]. Autophagy 

has been shown to be enhanced and decreased in diabetic patients [22,23]. In fact, insulin 

influences autophagy regulation, in part through mTOR signalling. Yan et al. [24] described that 

the adipocytes of obese type 2 diabetic patients display increased autophagy and reduced mTOR 

signalling. Interestingly, they showed that this state is associated with an undermining of 

mitochondrial biogenesis and function. Furthermore, several studies have demonstrated that 

hyperglycaemia induces autophagy as a protective mechanism. For example, autophagy is active 
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in diabetic mice podocytes with glomerular damage [25–27], a mechanism that may be 

modulated by HO-1 and AMPK activation [28]. In mice, it has also been observed that defective 

autophagy in β-cells accelerates the progression from obesity to diabetes through enhancement 

of UPR, a mechanism also activated by hyperglycaemia [29]. In parallel to these observations, it 

has been established that the BCL2-Beclin-1 complex is dissociated in response to AMPK 

activation in cardiac muscle, thus enhancing autophagy and preventing cardiomyocyte death 

[30]. These observations have been confirmed in other tissues, such as endothelial progenitor 

cells [31]. Conversely, Qianrong et al. [32] reported that high glucose levels inhibit autophagy in 

cardiomyocytes, leaving cells unprotected and more prone to apoptosis. In summary, it is 

thought that autophagy is activated in situations of cellular stress such as hyperglycaemia, but 

the underlying mechanisms are unknown in most cell types. 

In this context, we hypothesized that PMN-endothelium interactions, ROS and autophagy 

are altered in the PMNs of diabetic patients and that there is an association between all three. In 

this study, we analyse the link between Beclin-1, ROS production and PMN-endothelium 

interactions, as well as the varying behaviour of autophagy in diabetic and control conditions. 
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2. MATERIALS AND METHODS 

2.1. Study population 
 

This cross-sectional observational study had a case-control design, and was conducted with 

47 diabetic patients and 57 control subjects matched by age and sex. The patients were 

recruited at the Endocrinology and Nutrition Service of the University Hospital Dr. Peset, 

Valencia, Spain, and their characteristics are described in Table 1. A diagnosis of type 2 diabetes 

was determined according to the American Diabetes Association's criteria. Subjects aged 18 or 

older were eligible for inclusion in the study. The exclusion criteria were having an abnormal 

haematological profile, suffering any malignant neoplasm or autoimmune disease, consumption 

of any anti-inflammatory drugs in the two weeks previous to the analysis, and regular 

consumption of antioxidant nutritional supplements. 

The procedures carried out in the study were approved by the Ethics Committee of the 

Hospital (ID: 97/16) and conducted according to the ethical principles stated in the Declaration 

of Helsinki. All subjects signed an informed consent document before the interventions. A 

physical examination was performed in all patients prior to blood extraction, which was 

conducted in a state of fasting. Body weight and height were recorded and BMI was calculated 

using the BMI formula (BMI = weight in kg/height in m2). 

 

2.2. Blood sampling 
 

In order to determine biochemical parameters and obtain PMNs, venous blood was 

collected from subjects in heparin, EDTA or citrate tubes after 12h overnight fasting.  It  was  

then  centrifuged  (1500g, 10 min, 4 °C) in order to isolate serum and plasma, which were then 

stored at −80 °C for subsequent analysis, or employed to determine biochemical parameters. 
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The heparin tubes were used to obtain PMNs. 

 

2.3. Biochemical determinations 
 

All the biochemical parameters were determined by the Hospital’s Clinical Analysis Service. 

An enzymatic method was employed to determine serum concentrations of glucose, total 

cholesterol, HDL-c and TG levels with a Beckman LX-20 autoanalyzer (Beckman Coulter, La Brea, 

CA, USA). Low density lipoprotein (LDLc) cholesterol levels were calculated with Friedewald's 

formula. An immunochemiluminiscent assay was used to determine insulin levels. IR was 

determined employing the Homeostasis Model, calculated as [fasting glucose in mg/dL x fasting 

insulin in μUI/mL]/405). HbA1c was assessed with an automatic glycohemoglobin analyser 

(Arkray, Inc., 73 KYOTO, Japan). Serum concentrations of high-sensitive C-reactive protein (hs-

CRP) were determined by immunonephelometry. Atherogenic Index of Plasma (AIP) was 

calculated using the formula (Total Choresterol (mg/dL))/(HDL-c (mg/dL)). 

 

2.4. PMN-endothelium interaction assay 
 

PMNs were isolated as previously described [33]. We employed a 1.2 mL aliquot of PMNs 

obtained from the peripheral blood of control and type 2 diabetic subjects with a density of 106 

cells/mL in complete RPMI (RPMI 1640 medium supplemented with 10% Fetal bovine serum,1% 

penicillin/streptomycin, 1% glutamine and 1% sodium pyruvate). Prior to this, primary cultures 

of HUVEC were established. HUVEC were isolated as previously reported [32]. On the day of the 

experiment, PMNs were monitored through the endothelial monolayer at a speed of 0.3 mL/min 

during a 5-min period, which was recorded, and the number of rolling PMNs as well as their 

velocity and adhesion to the endothelial monolayer were determined. The number of rolling 
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2 4 PMNs was measured as those rolling for 1 min, their velocity was assessed by determining the 

time in which 15 rolling PMNs covered a distance of 100 μm. Adhesion was analysed by counting 

the number of PMNs adhering to the endothelium for at least 30 s in 5 fields. Protein extraction 

and quantification PMN pellets were incubated for 15 min on ice with lysis buffer (20 mM HEPES 

pH 7.5, 400 mM NaCl, 20% glycerol, 0.1 mM EDTA, 10 μM Na MoO, 0.5% NP-40) containing 

protease inhibitors (10 mM NaF, 1 mM NaVO3, 10 mM PNP, 10 mM β-glycerolphosphate) and 

dithiothreitol 1 mM. Subsequently, samples were vortexed for 30 s and centrifuged at 21400 g 

for 15 min at 4 °C. The supernatant was then collected in a new tube and quantified with the 

BCA protein assay kit (Thermo Scientific, Rockford, USA). The protein extract obtained was 

stored for subsequent determinations at −80 °C. 

 

2.5. Western blotting 
 

Twenty-five μg protein samples were separated with SDS-PAGE (13% polyacrylamide gels) 

and transferred to a nitrocellulose membrane. The membranes were then blocked for 1 h at RT 

with 5% skimmed milk in TBS-T or 5% BSA in TBS-T and incubated with primary antibodies 

overnight at 4°C: anti-Beclin-1 (Millipore Iberica, Spain, Madrid), anti- LC3 (Millipore Iberica, 

Spain, Madrid), anti SQSTM/p62 (Abnova Corporation, Taiwan), anti-Actin (Sigma Aldrich, St. 

Louis, USA). The secondary antibody was HRP-goat anti-rabbit (Millipore Iberica, Spain, Madrid). 

The protein signal was revealed with SuperSignal West Femto (Thermo Scientific, Rockford, USA) 

and detected with a Fusion FX5 acquisition system (VilbertLourmat, Marne La Vallée, France). 

Densitometric quantification of proteins was performed with Bio1D software (VilbertLourmat, 

Marne La Vallée, France). Data were relativized with the Actin signal for each sample and also to 

an internal control. Each Western blot was performed and reproved several times, thus, cropped 

images are represented in Figs. 3 and 4. 
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2.6. Quantification of total and mitochondrial ROS 
 

Total and mitochondrial ROS were assessed with the fluorescent probes 2′-7′ 

dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSOX, respectively. Isolated PMNs were 

seeded in 48-well plates at a density of 150000 cells/well and left to adhere in a 5% CO2 

incubator for 20 min. Cells were subsequently incubated with the specific nuclear stain Hoescht 

33342 (4 μM) (Sigma-Aldrich, St. Louis, USA) and the fluorescent probes DCFH-DA (1 μM) or 

MitoSOX (5 μM) (Thermo Scientific, Rockford, USA) 30 min at 37 °C under gentle shaking. Cells 

were then washed twice with HBSS and were analysed with the static cytometry software 

“ScanR” (Olympus) which is coupled to an inverted microscope (lX81; Olympus). 12 fields per 

well were recorded and quantified. Measurements of fluorescence were referred as % of an 

external control for each sample. 

 

2.7. Statistical analysis 
 

SPSS was employed to perform statistical analyses. The data in Table 1 are expressed as 

mean ± standard deviation for parametric data, and median and 25th-75th percentiles for non-

parametric data. The bar graphs in figures represent mean ± standard error. An unpaired 

Student’s t-test was performed to compare the control group and type 2 diabetic subjects, and 

adjustment by BMI was determined by means of a univariate general lineal model. Correlations 

were calculated with Pearson's correlation coefficient. Differences were considered significant 

when p < 0.05. 
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3. RESULTS 

3.1. Clinical and biochemical characteristics of the study subjects 
 

We analysed 57 type 2 diabetic patients and compared them to 47 healthy control subjects 

with similar ages and sex distribution. Anthropometric and biochemical parameters were 

evaluated (Table 1). Type 2 diabetic patients showed higher BMI, fasting glucose, basal insulin, 

HOMA-IR index and HbA1c compared to control subjects. Lipid metabolism parameters were also 

significantly enhanced compared to control volunteers, with higher VLDL and TG, and lower HDL-

c. Total cholesterol and LDL-c levels showed a slight decrease due to the treatment with statin 

(90% of patients). Furthermore, type 2 diabetic patients had a higher atherogenic index of 

plasma (AIP) and higher PCR levels. 

Glucose, insulin, HOMA-IR, HbA1c, VLDL, HDL-c, TG and AIP maintained their statistical 

significance when data were adjusted by BMI, while differences in hsCRP and some lipid profile 

parameters –including total cholesterol and LDL-c - lost their statistical significance. 
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Table 1: Biochemical and anthropometrical parameters in control and type 2 diabetic populations. 

Data are expressed as mean ± SD for parametrical data and as median (25th percentile-75th 

percentile) for non-parametrical variables. Statistical significance (P < 0.05) was compared with T-test 

following a post-hoc test with BMI as covariate. 

 

 Control T2D p-value 
BMI Adjusted 

p-value 

N 57 47   

Age 49 ± 10 52 ± 8   

Women 55% 45%   

Men 45% 55%   

BMI (kg/m2) 24.97 ± 3.32 32.25 ± 4.42 < 0.001 ns 

Glucose (mg/dL)   91.15 ± 11.64   137.10 ± 48.93 < 0.001 < 0.001 

Insulin (μUI/mL)   5.99 ± 1.87     20.00 ± 12.30 < 0.001 0.04 

HOMA-IR      1.60 ± 1.05     6.90 ± 5.10 <0.001 0.004 

HbA1c (mmol/mol) (%) 33.84(5.3) ± 0.62     58 (7.3) ± 1.65 < 0.001 < 0.001 

Total Cholesterol (mg/dL) 195.06 ± 29.48  172.27 ± 42.28 0.01 ns 

Non-HDL-c (mg/dL) 137.00 ± 30.79  127.00 ± 40.89 ns ns 

LDL-c (mg/dL) 121.95 ± 26.02  100.38 ± 36.09 0.006 ns 

VLDL-c (mg/dL) 15.33 ± 7.07    28.58 ± 27.41 0.003 0.006 

HDL-c (mg/dL)    57.17 ± 12.44     44.64 ± 10.09 < 0.001 0.01 

TG (mg/dL) 63 (51–103)      114(89–169.67) 0.002 0.007 

AIP    0.11 ± 0.24     0.47 ± 0.29 < 0.001 < 0.001 

hs-CRP (mg/L)  1 (0.31–1.87)    3.4 (2.01–7.87) 0.004 ns 
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3.2. Total and mitochondrial ROS levels 
 

Mitochondria can be severely damaged due to hyperglycaemia by releasing ROS. We 

measured total and mitochondrial ROS levels in PMNs from type 2 diabetic patients and controls 

and found an evident enhancement of both total and mitochondrial ROS levels in type 2 diabetic 

subjects (p < 0.05) (Fig. 1) suggesting an oxidative stress condition. 

 

3.3. PMN-endothelium interactions 
 

Metabolic disorders are associated with increased levels of inflammatory markers. In the 

present study, we have observed that type 2 diabetic subjects had higher levels of TNFα and IL-6 

levels, as well as increased NFκB (p65) protein levels (Supplemmentary figure). This enhanced 

inflammatory background could be further confirmed analyzing the activation of the PMNs and 

its interactions with the endothelial cells, using parallel-plate flow chamber experiments. This in 

vitro system reproduces physiological interactions between circulating cells and endothelium, 

and can quantify the frequency and stability of these interactions. Interestingly, PMNs from type 

2 diabetic patients displayed lower rolling velocity through the endothelial monolayer (p < 0.001) 

Fig 1. ROS levels in PMNs from control and type2 diabetic populations. (A) Levels of total ROS measured in 

controls and type 2 diabetic patients with DCFH-DA fluorescence in arbitrary units; (B) Levels of 

mitochondrial ROS measured in control and type 2 diabetic populations with MitoSOX fluorescence in 

arbitrary units. Values were expressed as a percentage of an internal experimental control in both 

populations. *p < 0.05 vs Control group. 
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(Fig. 2B), greater rolling number (p < 0.001) (Fig. 2A) and increased adhesion to the endothelial 

cells (p < 0.001) (Fig. 2C) with respect to those from the control population. This increase in 

PMN-endothelium interactions is reflected in the representative images obtained before and 

after the 5-min experimental period (Fig. 2D). 

 

 

 

 

 

Fig 2 Analysis of PMN-endothelium interactions in control and type 2 diabetic populations: (A) Number 

of PMNs rolling along the endothelial monolayer during a 1-min period, measured as number of 

cells/min; (B) Velocity of PMNs measured as μm/sec; (C) Number of adhering PMNs in 1 mm
2
, measured 

as PMN/ mm
2
; (D) Representative images of control and type 2 diabetic populations at the start and the 

end (5 min) of the experiment. ***p < 0.001 in type 2 diabetes vs Control. 
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3.4. LC3I, LC3II, Beclin-1 and p62 protein levels 
 

We examined autophagy, a stress-activated cellular process that might be altered in type 2 

diabetic population. PMNs were employed to analyse the protein expression of classical markers 

such as LC3, Beclin-1 and p62. Type 2 diabetic patients displayed an increased amount of LC3I 

(p<0.05) (Fig.3A and representative WB) and LC3II (p < 0.05) (Fig. 3B and representative WB), 

with a higher LC3II/LC3I ratio (p < 0.05) (Fig. 3C and representative WB). In addition, they 

showed enhanced Beclin-1 and decreased p62 protein levels (p < 0.05) compared to control 

subjects, suggesting an increase in autophagy activation in the type 2 diabetic patient 

population.  
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Fig 3 LC3 (I and II) protein expression in controls and type 2 diabetic patients. Protein expression of 

LC3I (A), LC3II (B) and ratio of LC3II to LC3I (C) in controls and type 2 diabetic patients were assessed by 

immunoblotting. Quantification was performed in n = 15 samples for each group. Representative image 

of western blotting of 4 samples (2 controls and 2 type 2 diabetic patients) is displayed. Values 

represent media ± SD * p < 0.05; **p < 0.01 vs Control. 

 

 

Fig 4 p62 and Beclin-1 protein expression in control and type 2 diabetic populations. Protein 

expression of p62 (A) and Beclin-1 (B) in control and type 2 diabetic populations was assessed by 

inmunoblotting. Quantification was performed with n = 15 samples in each group. Representative 

images of the western blotting are displayed at the side of both graphs. Values represent media ± SD    

* p < 0.05 vs Control.  
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3.5. Correlations between ROS levels and autophagy markers 
 

As we have mentioned before, excessive production of ROS can generate cellular stress that 

activates rescue pathways. In the present study, we have tried to highlight the relationship 

between autophagy and ROS production. We have evaluated correlations between the data 

obtained for ROS production and autophagic protein expression. We observed that total ROS 

levels correlated negatively with LC3II/I ratio in the control population (r = −0.714, p = 0.047) and 

positively with Beclin-1 levels in type 2 diabetic subjects (r = 0.911, p = 0.001). On the other 

hand, mitochondrial ROS was positively correlated with LC3II/LC3I ratio in the type 2 diabetic 

population (r=0.416, p=0.022). These data reinforce the hypothesis of a strong relation between 

autophagy and ROS production in type 2 diabetic patients. 

 

3.6. Correlation between autophagy proteins and PMN-endothelium 
interaction parameters 

 

Once we had analysed the correlation between ROS and autophagy, we evaluated the 

correlation between PMN-endothelium interactions and autophagy markers. Interestingly, we 

observed that Beclin-1 protein levels were differentially correlated with PMN-endothelium inter- 

action parameters (Fig. 5). In the control population, an increase of Beclin-1 was accompanied by 

a decrease in rolling number, a decrease in the number of adhered PMNs and a rise in the 

velocity of the rolling PMNs. In contrast, in the type 2 diabetic population, an increase in Beclin-1 

was related to an increase in both rolling number and number of adhered PMNs and a trend 

towards a decrease in rolling velocity (Fig. 5). Additionally, a correlation between PMNs 

adhesion, and LC3II expression was observed in the type 2 diabetic population (r=0.386, 

p=0.032) while the rest of the parameters of PMN-endothelium interactions showed no 

correlation. 
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Fig 5 Pearson’s correlation between the protein levels of Beclin-1 and PMN-endothelium interaction 

parameters in control and type 2 diabetic populations. The correlations between Beclin-1 and number of 

rolling PMNs (5A, D), rolling velocity (5B, E) and adhesion of PMNs (5C, F) are represented. 
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4. DISCUSSION 

 

In this cross-sectional study, we have shown that diabetic patients display enhanced PMN-

endothelium interactions, ROS production, autophagy-related protein expression as well as 

proinflammatory cytokines TNFα and IL-6, and NFκB activation. Moreover, we demonstrate a 

differential correlation between PMN-endothelium interactions and Beclin-1 expression in 

control subjects and type 2 diabetic patients. 

With regard to the inflammatory basis of type 2 diabetic, high levels of circulating glucose 

and lipids increase the expression of adhesion molecules in both the endothelium and PMNs 

[13,14,16,34,35]. This has been corroborated by several observational studies of type 2 diabetic 

patients [14,35], but also in interventional studies in patients fitted with hyperglycaemic clamps 

and undergoing glucose challenge, in whom inflammatory cytokines increase after glucose input 

[36]. Hyperlipidaemia, another hallmark of type 2 diabetic, is also related to PMNs function [17]; 

an increase in PMNs ROS production has been described in hyperlipidaemic and hypertensive 

patients with respect to healthy controls, which can lead to the atherosclerotic complications 

[37]. Furthermore, it has been observed that PMNs function is altered in patients with diabetic 

retinopathy; for example, in the case of enhanced extravasation [38]. In this sense, the close 

relationship between inflammation, ROS production and increase of PMN-endothelium 

interactions is widely recognised [18,35–37,39–42]. All these studies have concluded that the 

chronic inflammation characteristic of diabetes and hyperglycaemia promotes the production of 

inflammatory chemokines and ROS, which in turn alters the functions of the endothelium and 

PMNs, thus increasing their interaction. Although ROS have an important function as signalling 

molecules in physiologic processes, their overproduction causes damage of cellular components, 

which activates the inflammatory response of cells. In the present study, we have observed 
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higher levels of total and mitochondrial ROS in the type 2 diabetic population compared to 

healthy controls. The relation between type 2 diabetes and ROS is well documented in the 

literature [8–10,18,28], and has even been directly related to the regulation of autophagy 

[19,28]. Interestingly, we have observed a differential pattern in the correlations found between 

total ROS production and LC3II/ I ratio, suggesting a synergistic effect of ROS and autophagy in 

type 2 diabetic patients. These results suggest that autophagy is one of the mechanisms that 

mediate the link between ROS production and the increase of PMN-endothelium interactions in 

type 2 diabetes versus control conditions. 

Several studies point to alterations in autophagy signalling in type 2 diabetic patients 

[21–23,25,26]. In the present study, type 2 diabetic subjects displayed enhanced protein 

markers of autophagy, such as LC3I, LC3II, LC3II/LC3I ratio and Beclin-1, which were related to a 

reduction in p62 protein levels. These results suggest an activation of autophagy in type 2 

diabetic patients compared to healthy controls. Activation or alteration of autophagy has been 

reported in different situations of hyperlipidaemia and hyperglycaemia. For example, previous 

research has shown mitochondrial dysfunction and altered autophagy in adipocytes from obese 

type 2 diabetic patients [23], as well as in Goto-Kazikazi (type 2 diabetic) rats [24]. Furthermore, 

alterations in autophagic parameters in podocytes and leukocytes have been related to diabetic 

comorbidities such as diabetic nephropathy [26,27,43], cardiac complications [30,31] and 

neuropathy [31]. Interestingly, in diabetic Wistar rats, insulin exerted different effects on 

autophagy depending on the origin of the leukocytes [44]. In fact, diabetic M1 bone marrow-

derived macrophages (BMM) had their LC3 vesicle-bound content diminished while M2 BMM 

had enhanced LC3 levels, and insulin treatment failed to rescue autophagy to control levels. In 

endothelial cells, proinflammatory cytokines have been shown to induce autophagy, which 

enhances the production of adhesion molecules [45]. In other studies, autophagy has proved to 



  4. RESULTS 

117 
 

be a crucial protective mechanism in β cells [28,46]. 

Our study relates an increase in autophagy-related proteins with an increase of PMN-

endothelium interactions in type 2 diabetic patients as well as an increase in NFκB expression. 

We also show that Beclin-1 protein levels correlate differentially with PMN-endothelium 

interaction parameters depending on the health status of the subject. While an increase in 

Beclin-1 was related to a reduction in PMN-endothelium interactions in control subjects, it was 

associated with an increase in PMN-endothelium interactions in type 2 diabetic patients. This 

could mean that the increase in PMN-endothelium interactions is strongly influenced by Beclin-

1, and that changes in its expression imply different signalling cascades depending on the status 

of the subject. Furthermore, we have observed a positive correlation between PMNs adhesion 

and LC3II in type 2 diabetic patients. Beclin-1 is implicated in different biological processes, 

including cytokinesis, immunity, adaptation to stress, development, ageing, tumorigenesis and 

cell death [47]. The effects described in the present study may be associated with the ability of 

Beclin-1 to exert several functions within of the metabolism of the cell; for example, it interacts 

with BCL2 to form the BCL2-Beclin-1 complex, which is regulated by AMPK, provoking the 

dissociation of the complex and thus preventing apoptosis [29]. Another possible reason why 

only this protein is differentially regulated is that Beclin-1 interacts with VMP-1 upstream from 

all the other regulators of autophagy [48]; thus, variations in regulation could be due to 

differences at this level of the autophagy signalling. 
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5. Conclusions 

In summary, this study demonstrates enhanced PMN-endothelium interactions, ROS 

production and autophagy activation in type 2 diabetic patients. Moreover, we show a 

differential behaviour of autophagy in control and type 2 diabetic subjects regarding ROS levels 

and PMN endothelium-interactions. These data endorse a connection between these three key 

mechanisms in type 2 diabetes, and highlights the changes in Beclin-1 as a possible linking 

mechanism between ROS production and PMN-endothelium interactions. Furthermore, we 

show that the pattern of autophagy markers differs depending on the presence or not of type 2 

diabetes, perhaps pointing to metabolic pathways that need to be elucidated by future research. 
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Appendix A. Supplementary data: 

 

Supplementary Figure 1: Serum and cellular inflammation markers in control and type 2 diabetic 

patients; Serum levels of IL6 (A) and TNFα (C) in samples obtained from control and type 2 diabetic 

patients. PMNs protein levels of p-65 NFκB were measured by western blot as shown in the graph (B) and 

in the representative images.  
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ABSTRACT 

Glycated hemoglobin monitorization could be a tool for maintaining type 2 diabetes 

(T2D) under control and delaying the appearance of cardiovascular events. This cross-

sectional study was designed to assess the role of glycemic control in modulating early-stage 

markers of cardiovascular complications. One hundred and eight healthy controls and 161 

T2D patients were recruited and distributed according to their glycemic control, setting the 

threshold at 6.5% (good control). Biochemical and anthropometrical parameters were 

registered during the initial visit, and peripheral blood was extracted to obtain PMNs and 

analyze inflammatory markers, adhesion molecules, leukocyte–endothelium interactions, 

and carotid intima–media thickness. Correlations between these parameters were explored. We 

found that inflammatory markers and adhesion molecules were augmented in T2D subjects 

with poor glycemic control. PMNs interacted more with the endothelium in the diabetic 

population, and even more significantly in the poorly controlled subjects. In parallel, carotid 

intima–media thickness was also increased in the diabetic population, and the difference was 

greater among poorly controlled subjects. Finally, correlation measurement revealed that 

carotid intima–media thickness was related to glycemic control and lipid metabolism in 

diabetic patients. Our results suggest that glycemic control delays the onset of 

cardiovascular comorbidities in diabetic subjects. 

 

Keywords: type 2 diabetes; glycated hemoglobin; carotid intima–media thickness; 

inflammation; endothelial function. 
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1. INTRODUCTION 

T2D is currently one of the most prevalent metabolic diseases, affecting around 500 

million people. Its incidence has doubled since 1980 [1,2], increasing health expenditure 

because of T2D itself and due to its derived complications [1–4]. In fact, CVD are the leading 

cause of death among T2D subjects [2,5], being caused mainly by advanced atherosclerosis, 

which can be delayed or prevented by early and maintained glycemic control. One of the key 

markers of glycemic control is HbA1c, and reducing its levels is a primary goal of diabetic 

treatment [6–8]. In fact, several studies have demonstrated that sustaining HbA1c below 

6.5% reduces the incidence of macro- and microvascular comorbidities [7,9–13]. 

T2D is associated with a proinflammatory background, caused by high circulating 

glucose, accumulation of advanced glycation end products (AGEs), glycation of haemoglobin, 

alteration of lipid metabolism in adipose tissue, and other metabolic alterations that favor a 

proinflammatory state in peripheral blood [14–16]. If sustained for long periods, all of these 

modifications promote the production by tissue of a wide array of proinflammatory 

cytokines such as IL-6 and TNFα, as well as ROS [15–20], especially by mitochondria. In short, 

hyperglycemia and hyperlipidemia trigger NLRP inflammasome activation, TNFα synthesis, 

and the production of mitochondrial and non mitochondrial ROS [21–23]. This induces NFκB 

activation and inflammatory cytokine expression, mostly through thioredoxin-related protein 

action [24–27]. Moreover, lipids can react with ROS and amplify the proinflammatory 

cascade [28]. This results in a vicious cycle of cell death and greater inflammation [29]. This 

ROS–inflammation axis has been studied in a wide array of inflammatory-based diseases, 

such as cardiac alterations [30–32], bone and joint diseases [33–35], neuronal and cerebral 

dysfunctions [28,29,36], bacterial infection [37], liver diseases [38], respiratory alterations 

[39,40] and cancer [41]. Furthermore, in T2D, the continuous presence of proinflammatory 
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molecules causes diverse endocrine effects on the vasculature, and contributes to the 

development of micro- and macrovascular pathologies such as carotid atherosclerosis [21]. 

Together, the sustained increase of ROS production and the rise in inflammation have an 

important effect on the development of diabetic atherosclerosis [22]. Immune cells are also 

activated in T2D, producing more proinflammatory and adhesion molecules [15,16,42,43]. As 

explained previously, circulating proinflammatory molecules produced by chronic 

hyperglycemia and hyperlipidemia can activate leukocytes and the endothelium [44,45]. In 

this state, immune cells interact with the endothelium, infiltrating the inner layers of tissues 

and intensifying the inflammation [15,44,45]. There are different epidemiologic studies 

describing how an increased leukocyte count is a risk factor for the progression of carotid 

atherosclerosis and cardiovascular events [46–48]. Proinflammatory factors also favor the 

development of the atherosclerotic plaque, as demonstrated by several studies [49–52]. In 

fact, atherosclerosis represents the culmination of continued subclinical inflammation, and is 

one of the main causes of cardiovascular comorbidities [6,23,53–55]. Worryingly, 

atherosclerosis is often asymptomatic for decades before clinical manifestations appear, and 

is termed subclinical atherosclerosis during this period [6,56,57]. Carotid intima–media 

thickness (CIMT) is a biomarker of subclinical atherosclerosis [58,59]. 

Measurement of the CIMT by B-mode ultrasound has been shown to be suitable for 

evaluating the early stages of atherosclerosis [57,60,61] and to be an indicator of CVD [62–

64]. Different studies have described a rise of CIMT in T2D [63,65,66] and metabolic 

syndrome [67,68]. 

The aim of this study was to explore the potential involvement of glycemic control in 

inflammation, adhesion molecules, leukocyte–endothelium interactions, and the CIMT in 

T2D patients compared with a healthy control population.  
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2. EXPERIMENTAL SECTION 

2.1. Human Subjects 

 

This study was carried out in 269 subjects, specifically, 161 T2D patients and 108 healthy 

controls recruited from the Service of Endocrinology and Nutrition of University Hospital 

Doctor Peset (Valencia, Spain) until June 2019 and adjusted for age and sex. The time that 

these patients had suffered from T2D, the presence of comorbidities, and their drug 

prescriptions are specified in Supplementary data (Tables S1–S3). The subjects signed a 

written informed consent form and protocols were approved by our hospital’s Ethics 

Committee for Clinical Investigation (ID: 98/19), in line with the ethical principles of the 

Helsinki declaration. T2D patients were diagnosed following the American Diabetes 

Association (ADA) indications, and presence of morbid obesity, insulin treatment, or any 

autoimmune, haematological, malignant, infectious, organic, or inflammatory disease 

represented the exclusion criteria. 

 

2.2. Sample Collection 

 

Venous blood samples were obtained from the antecubital vein in fasting conditions. 

Weight (kg), height (m), BMI (kg/m2), SBP/DBP (mmHg), and waist circumference (cm) were 

assessed previous to the blood extraction. 

2.3. Laboratory Tests 

 

Serum was isolated from the blood by centrifugation for 10 min at 1500 g and 4 ºC. 

Fasting glucose, cholesterol, and TG were determined by an enzymatic method. HDL-c levels 
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were measured with a Beckman LX-20 autoanalyzer (Beckman Coulter, La Brea, CA, USA) 

using a direct method. LDL-c was determined with Friedewald’s formula. An 

immunochemiluminescence assay was employed to determine insulin levels. HOMA-IR index 

[fasting insulin (µU/mL) × fasting glucose (mg/dl)/405] was calculated to estimate IR 

Percentage of HbA1c was determined with an automatic glycohaemoglobin analyzer (Arkray, 

Inc., Kyoto, Japan). Apolipoproteins were measured with an electroimmunoassay. hsCRP was 

analyzed employing an immunonephelometer (Behring Nephelometer II, Dade Behring, Inc., 

Newark, DE, USA). 

 

2.4. Leukocyte Isolation 

 

In this assay, PMNs were isolated from heparinized whole blood by the following 

protocol: the blood was mixed with 1:2 volumes of dextran solution (3% in NaCl 0.9%; Sigma 

Aldrich, MO, USA) and incubated for 45 min. The supernatant was then poured over Ficoll-

Hypaque (GE Healthcare, Uppsala, Sweden) and centrifuged at 650× g for 25 min. The 

resulting pellet was lysed to remove the remaining erythrocytes with lysis buffer (5 min at 

room temperature) and centrifuged at 240× g. Pellets containing leukocytes were then 

washed twice and resuspended in Hank’s balanced salt solution (HBSS; Sigma Aldrich, MO, 

USA). This cellular suspension was employed to perform the leukocyte–endothelium 

interaction assay. 

 

2.5. Soluble Cytokines and Adhesion Molecule Assay 

 

ICAM-1, VCAM-1, P-selectin, IL-6, and TNFα were analyzed in serum samples with a 
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Luminex 200 flow analyzer system (Millipore, Austin, TX, USA). In brief, specific antibodies 

covered the color-coded microbead, and detection was performed with biotinylated 

secondary antibody and streptavidin-PE conjugate. The fluorescence of each individual 

microbead was analyzed with the Luminex XMap instrument. This method allows multiple 

cytokines in the same sample to be analyzed with a high specificity ad sensitivity. The TNFα 

detection range was between 1750 and 0.43 pg/mL; that of IL-6 is 750 to 0.18 pg/mL; that of 

VCAM-1 is 500 to 0.122 ng/mL; that of ICAM-1 is 350 to 0.085 ng/mL; and that of P-selectin 

is 1000 to 0.122 ng/mL. The intra-assay %CV is <5% for TNFα and IL-6 and <15% for ICAM-1, 

VCAM-1, and P-selectin. The interassay %CV is <20% for IL-6, ICAM-1, VCAM-1, and P-

selectin and <15% for TNFα. 

 

2.6. Static Cytometry Measurements 

 

Mitochondrial ROS production was evaluated employing a MitoSOX (Thermo Fisher 

Scientific, Waltham, MA, USA) fluorescent probe. A fluorescence microscope (IX81; Olympus 

Corporation, Shinjuku-ku, Tokyo, Japan) with automated static cytometry software (ScanR, 

Olympus, Munich, Germany), which measures the fluorescence emission per individual cell, 

was also used. In brief, the protocol consisted of seeding PMNs, extracted as previously 

specified, in 48-well plates and allowing them to adhere to the well surface. MitoSOX and 

DAPI (Sigma Aldrich, MO, USA) were then added to the well at a final concentration of 0.1 

µM, for 20 min. After washing the cells twice with HBSS, fluorescence was measured and 

MitoSOX emission data relativized to DAPI emission data for each cell. PMNs data were 

relativized with an internal control for all the experiments. All experiments were performed 

in duplicate, and 16 images per well were measured. 
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2.7. PMN–Endothelium Interaction Assay 

 

An aliquot of 1.2 mL PMNs, isolated as previously described [69], with a density of 106 

cells/mL in complete Roswell Park Memorial Institute medium RPMI, was employed for this 

assay. Primary cultures of HUVEC were prepared as reported in [69]. In this assay, the PMNs 

aliquot was perfused across the endothelial monolayer at a speed of 0.3 mL/min over a 5 

min period, and the process was recorded. Rolling PMNs were considered to be those rolling 

for at least 1 min. Velocity was assessed by determining the time in which 15 rolling PMNs 

covered a distance of 100 µm. Adhesion was analyzed by counting the number of PMNs 

adhering to the endothelium for at least 30 s in 5 different fields. 

 

2.8. Assessment of Carotid Intima–Media Thickness (CIMT) 

 

Carotid thickness was evaluated following the American Echocardiography 

Association’s guidelines. Healthy subjects and T2D patients were told to attend the 

Cardiology Service of the Dr. Peset Hospital 7–10 days after the blood extraction in order to 

evaluate carotid intima–media thickness. This measure has a diagnostic value because of its 

positive correlation with risk factors and with the prevalence of cardiovascular and 

cerebrovascular disease. The evaluation was performed by placing the head of the patients 

at 45º with respect to the body longitudinal axis. Some subjects were dropped from the 

study due to clinical or schedule reasons. 

Carotid sonography was performed with a single ultrasound machine Aloka 5500 

(Hitachi Aloka, Tokyo, Japan) equipped with a 7.5 MHz sector scanner probe. Baseline and 

follow-up studies were performed in a standard fashion by a single specialist physician who 



  4. RESULTS 

134 
 

was specifically trained to perform the examination and was blinded to the treatment group. 

All images were electronically stored. Measurements corresponded with the 1 cm segment 

proximal to the dilation of the carotid bulb, and were always performed in plaque-free 

segments. For each patient, three measurements were performed for both sides of the 

anterior, lateral, and posterior projections of the far wall, and readings were then averaged. 

An independent observer, who was blinded to the treatment group and trained to interpret 

the CIMT images, performed an off-line analysis of B-mode ultrasound images. Paired CIMT 

measurements in the same arteries showed a high degree of reproducibility, with a mean 

difference in CIMT of 0.020 mm, and an intraclass correlation coefficient of 0.97 (p < 0.001). 

CIMT regression was defined as a decrease of >0.020 mm in mean CIMT at 12 months. 

 

2.9. Statistical Analysis 

 

All data were analyzed with SPSS 17.0 software (SPSS Statistics Inc., Chicago, IL, USA). 

Values are expressed as mean and standard deviation (SD) for parametric data, while the 

median (25th–75th percentiles) is presented for nonparametric data. Bar graphs show mean 

and standard error of the mean (SEM) in the figures. Multivariate lineal analysis was 

performed to check the influence of BMI and age on the other dependent variables. 

Correlation analysis was performed with the Spearman formula, and the linear 

regression coefficient was also calculated. Graphs were plotted with GraphPad Prism 4.0 

(GraphPad, La Jolla, CA, USA). 

Multivariate linear analysis was performed in order to eliminate the influence of BMI 

and age on the variables of interest. Normality of the data sets was assessed by 

Kolmogorov–Smirnov test. In the case of the variables with normally distributed data, the 
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groups were compared with a Student’s t-test, while a Mann–Whitney U test was employed 

for non-normally distributed ones, and the Chi-Square test for proportion of frequencies. 

Study groups were compared using one-way analysis of variance (ANOVA) followed by a 

Bonferroni post hoc test. Differences were considered to be significant when p < 0.05, 

applying a confidence interval of 95% in every comparison. Graphs were plotted with 

GraphPad Prism 4.0 (GraphPad, La Jolla, CA, USA). 
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3. Results 

3.1. Anthropometric and Biochemical Parameters 

 

The study population was initially divided into healthy controls (108) and T2D patients 

(161) following the diagnostic criteria of the ADA. Diabetic patients were divided into two 

populations depending on their glycemic control, which was represented by their levels of 

HbA1c. The set threshold was 6.5, in line with ADA criteria [7]. Table 1 confirms that both 

diabetic populations had typical hallmarks, with significant differences in glucose (p < 0.01), 

HbA1c (p < 0.01), and HOMA index (p < 0.01). Moreover, significant differences in glucose 

levels (p < 0.001) and HOMA index (p < 0.001) were found between the T2D HbA1c > 6.5 

group and the T2D HbA1c ≤ 6.5 group. Our T2D populations also displayed features such as 

greater waist diameter (p < 0.01), increased waist-to-hip ratio (p < 0.01), higher HOMA index 

(p < 0.01), and altered lipid metabolism parameters, with increased VLDL-c and triglyceride 

levels (p < 0.01), Ct/HDL-c (p < 0.01), and AIP (p < 0.01) and lower levels of HDL-c (p < 0.01). 

Total cholesterol, LDL-c, and non-HDL-c levels remained unchanged in the T2D HbA1c ≤ 6.5% 

group. However, total and LDL-c were significantly reduced (p < 0.01) in the T2D HbA1c > 6.5 

group, possibly due to the hypolipemiant treatment. Regarding apolipoproteins, ApoA1 was 

significantly lower in T2D patients with respect to healthy controls (p < 0.01) and the 

difference was even more significant in the HbA1c > 6.5% group (p < 0.001). ApoB levels did 

not change. Interestingly, the ApoB/ApoA ratio significantly increased in the T2D HbA1c > 6.5 

population (p < 0.01). 

 

 

 



  4. RESULTS 

137 
 

Table 1: Anthropometrical and biochemical parameters. 

 

Anthropometrical and biochemical parameters obtained from whole peripheral blood from healthy 

subjects, HbA1c ≤ 6.5% T2D patients and HbA1c > 6.5% T2D patients after 12 h fasting. Kolmogorov–

Smirnov normality test was performed in all data sets. Data are shown as mean SD for data with 

normal distribution, and median and 25th; 75th percentile for non-normal data. The differences were 

analyzed by a t-test in the case of normal data and a Mann–Whitney test in that of non-normal data. 

*, p < 0.01 vs. control; †, p < 0.001 vs. control; ‡, p < 0.001 vs. T2D HbA1c ≤ 6.5%. 

 

 

 

 

                    Control     T2D 
 
 

               HbA1c ≤6.5%           HbA1c > 6.5% 

N 108 57 104 
Age (Years) 57 ± 11 58 ± 8 60 ± 9 
%Women 62.2% 43.93%   56.11% 

Weight (Kg)   68.51 ± 15.18 85.02 ± 16.07       83.59 ± 15.84 * 

BMI (kg/cm2)         24.18 ± 4.11  31.18 ± 4.23 *     30.43 ± 5.13 * 
SBP (mmHg)       119.43 ± 18.18  139.82 ± 14.23 *     138.38 ± 17.05 * 
DBP (mmHg)  72.35 ± 10.94     82.03 ± 10.97 *     78.25 ± 9.35 * 
Waist (cm) 79.81 ± 12.62  106.39 ± 11.46 *     103.99 ± 13.35 * 
Hip (cm)         99.09 ± 7.21        108.71 ± 9.53 *     108.48 ± 12.62 * 
Waist–Hip ratio  0.80 ± 0.09    0.97 ± 0.08 *       0.95 ± 0.08 * 
Glucose (mg/dL)  88.08 ± 10.75 112.37 ± 22.59 *       160.51 ± 55.06 *‡ 
HOMA  1.69 ± 1.19    3.72 ± 2.00 *         6.57 ± 4.45 *‡ 
HbA1c (%)  5.18 ± 0,26    5.94 ± 0.30 *       7.85 ± 1.30 * 
Total cholesterol (mg/dL)      185.43 ± 35.32        173.67 ± 34.31     167.42 ± 37.67 * 
HDL-c (mg/dL)  56.04 ± 13.61    45.10 ± 11.83 *       42.94 ± 10.46 * 
LDL-c (mg/dL)      111.38 ± 28.72        102.62 ± 31.33       95.17 ± 31.09 * 
VLDL-c (mg/dL)  26.01 ± 10.81    28.63 ± 19.54 *       28.91 ± 22.04 * 
Cholesterol/HDL-c  3.46 ± 0.94    4.07 ± 1.18 *       4.06 ± 1.14 * 
TG (mg/dL) 87.62 (55.50; 103.00) 130.29 (90.5; 169.00) * 150.75 (92.00; 162.63) * 
Non-HDL Cholesterol (mg/dL)      129.39 ± 33.28         129.37 ± 32.51  124.48 ± 36.57 
AIP (TG/HDL-c) 0.10 (−0.06; 0.33) 0.47 (0.23; 0.63) *       0.47 (0.29; 0.68) * 
APO A1 (mg/dL)      164.02 ± 32.28   151.45 ± 27.21 *       142.72 ± 22.87 *† 
APO B (mg/dL)  90.78 ± 26.60  90.33 ± 25.82    94.18 ± 25.27 
APO B/APOA1  0.57 ± 0.20  0.64 ± 0.24       0.67 ± 0.19 * 
hsCRP (mg/L) 0.75 (0.36; 1.83) 2.64 (1.61; 7.07) †       2.87 (1.31; 6.59) † 
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3.2. Inflammation Markers 

 

A hyperglycemic scenario is usually accompanied by an increase in subclinical 

inflammation levels. We analyzed some relevant proinflammatory markers in our cohort of 

patients and their respective controls. The T2D group showed a significant increase in TNFα 

levels compared to the control group (p = 0.047) (Figure 1A). When we distributed the T2D 

population based on HbA1c, an increase was preserved in the T2D HbA1c > 6.5 group (p = 

0.014) (Figure 1B). Another relevant cytokine, IL-6, was doubled in T2D subjects (p = 0.019) 

(Figure 1C) and, as occurred with TNFα, the increase was associated with T2D HbA1c >6.5% (p 

= 0.015) (Figure 1D). 

Moreover, we evaluated mtROS production, and the results showed a significant rise in 

mtROS in the T2D population (p = 0.045) (Figure 1E), which was more pronounced among 

the poorly controlled population (p = 0.038) (Figure 1F). Poorly controlled T2D patients also 

had significantly higher levels of mtROS than their well-controlled counterparts (p = 0.041) 

(Figure 1F). 
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Figure 1: TNFα, IL-6, and mtROS measurements. Serum levels of proinflammatory cytokines TNFα 
(A,B) and IL-6 (C,D), and fluorescence levels of mtROS (E,F). Differences between control and T2D 
groups (A,C,E) or between control, well-controlled (HbA1c ≤ 6.5%) and poorly controlled diabetic 

groups (HbA1c > 6.5%) (B,D,F) are shown. Statistical analysis was performed using a t-test to compare two 

groups, and using ANOVA with Bonferroni post-test for three groups. * p < 0.05 vs. control; # p < 
0.05 vs. T2D HbA1c < 6.5%. 
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3.3. PMN–Endothelium Interactions 

 

The generalized state of inflammation during T2D entails the activation of immune 

cells, which, in an active state, are more prone to attach to the endothelium and infiltrate 

through to the inner layers of the organs. Thus, we analyzed serum levels of adhesion 

molecules such as ICAM-1, VCAM-1, and P-selectin, some of the main players of leukocyte–

endothelium interactions. As can be seen in Figure 2, T2D patients displayed higher levels of 

ICAM-1 (p = 0.016) (Figure 2A) and VCAM-1 (p = 0.027) (Figure 2C), but not of P-selectin. The 

increase in ICAM-1 was already significant in the well-controlled diabetic population (p = 

0.006) (Figure 2B), and was enhanced in the poorly controlled diabetic population (p < 

0.001). In addition, VCAM-1 was significantly higher in T2D subjects with HbA1c > 6.5% (p = 

0.005) (Figure 2D). 

For assessing PMN–endothelium cell interactions directly, we performed an in vitro 

adhesion assay with leukocytes from T2D patients and their respective controls. Leukocyte 

count was slightly higher but within the normal range in T2D patients. This could reflect the 

subclinical inflammation level characteristic of T2D (Supplementary Table S4). Rolling 

number, rolling velocity, and adhesion to the endothelial monolayer were assessed. We 

obtained a higher number of rolling cells in T2D patients (p < 0.001) (Figure 2G), 

accompanied by a lower velocity of these cells (p < 0.001) (Figure 2I) and a higher level of 

adhesion to the endothelial monolayer (p < 0.001) (Figure 2K). These differences remained 

when we separated the T2D population depending on its glycemic control status (p < 0.001) 

(Figure 2H, J, L). PMN rolling (p < 0.001) and adhesion (p < 0.05) were increased, while rolling 

velocity was decreased (p < 0.001) in well-controlled diabetic subjects. These significant 

differences were sustained in poorly controlled diabetic subjects, and were more significant 
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in the case of cell adhesion (p< 0.001). These differences can be assessed in the 

Supplementary Videos (Supplementary Videos S1–S3), in which representative videos of 

each experimental group have been attached (Supplementary data). 

 

3.4. Carotid Intima–Media Thickness Measurements 

 

The proinflammatory environment seen in our diabetic patients and the increase in 

leukocyte–endothelium interactions could represent a rise in the incidence of macro- and 

microvascular complications. Therefore, we next explored CIMT. All the patients underwent 

carotid echocardiography at our hospital’s Cardiology Service. Diabetic patients showed 

higher CIMT compared to healthy controls, with this difference being identified in the left 

carotid (p < 0.001) (Figure 3A) and right carotid (p = 0.003) (Figure 3C). 

We observed that the poorly controlled diabetic population had significantly higher left 

CIMT than the well-controlled diabetic group (p = 0.024) (Figure 3B). On the other hand, 

right CIMT proved to be significantly higher in the poorly controlled diabetic group than in 

the control group (p = 0.001) (Figure 3D).  
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Figure 2: Serum levels of soluble adhesion molecules and measurement of PMN–endothelium interactions. Differences in adhesion 

molecules between control and T2D groups (A,C,E) or between control, well-controlled diabetics (HbA1c ≤ 6.5%), and poorly controlled 

diabetics (HbA1c > 6.5%) (B,D,F) are shown. The number of rolling cells (G,H), their velocity (I,J), and the adhesion of these cells to the 

endothelial monolayer (K,L) were analyzed. Differences between control and T2D groups (G,I,K) or between control, well-controlled diabetics 

(HbA1c ≤ 6.5%), and poorly controlled diabetic groups (HbA1c > 6.5%) (H,J,L) are shown. Statistical analysis was performed by means of a t-

test to compare two groups, and using ANOVA with Bonferroni post-test for three groups. * p < 0.05;** p < 0.01; *** p < 0.001 vs. control. 
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Figure 3. Measurement of carotid intima–media thickness (CIMT). Left carotid (A,B) and right carotid 

(C,D) were analyzed. Differences between control and T2D groups (A,C) or between control, well-

controlled (HbA1c ≤ 6.5%), and poorly controlled diabetic groups (HbA1c > 6.5%) (B,D) are shown in the 

graphs. Statistical analysis was performed by means of a t-test to compare two groups, and using ANOVA 

with a Bonferroni post-test for three groups. ** p < 0.01; *** p < 0.001 vs. control group; # p < 0.05 vs 

HbA1c ≤ 6.5% group. 
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3.5. Correlation Analysis 

 

We took all these data and performed correlations and linear regression to explore 

relations between all the analyzed variables. First, we analyzed the relationship between in 

vitro adhesion assay parameters and the left CIMT; we observed positive correlations (rolling 

number Figure 4A, p = 0.037, r = 0.218; rolling velocity Figure 4C, p = 0.021, r = 0.252; 

adhesion Figure 4E, p = 0.037, r = 0.239) among the left carotid measures but not among 

those of the right (Figure 4B,D,F). 

Regarding biochemical parameters, we saw that left CIMT measures correlated 

significantly with glucose (p = 0.003, r = 0.203) (Figure 5A), HOMA-IR (p < 0.001, r = 0.338) 

(Figure 5C), BMI (p = 0.036, r = 0.235) (Figure 5E), and HbA1c (p < 0.001, r = 0.399) (Figure 

5G). These correlations were similar for the right CIMT, except for BMI correlation, which 

was not significant (Figure 5B (Glucose), p < 0.001, r = 0.377; Figure 5D (HOMA-IR), p < 0.001, 

r = 0.360; Figure 5F (HbA1c), p < 0.001, r = 0.389). 

 

When we analyzed the correlation with lipid parameters, we observed that left CIMT 

was significantly correlated with HDL-c (p < 0.001, r = −0.436) (Figure 6A), VLDL-c (p = 0.001. 

r = 0.313) (Figure 6C), cholesterol/HDL-c index (p = 0.001, r = 0.313) (Figure 6E), and AIP (p = 

0.001, r = 0.402) (Figure 6G). The data for right CIMT revealed similar correlations (Figure 6B 

(HDL-c), p = 0.025, r = −0.222; Figure 6D (VLDL-c), p = 0.007, r = 0.270; Figure 6H (AIP), p = 

0.002, r = 0.307), with the exception of cholesterol/HDL-c index correlation. 
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Figure 4. Correlation graphs of adhesion assay vs. CIMT measures. Graphs show correlations 
between number of rolling PMN and left (A) and right CIMT (B); rolling velocity and left (C) and right 
CIMT (D); and cell adhesion and left (E) and right CIMT (F). Spearman correlation analysis was 
performed. 
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Figure 5. Correlation graphs of biochemical and anthropometrical parameters vs. CIMT 

measures. Graphs show correlation between glucose levels and left (A) and right CIMT (B); 

HOMA index and left (C) and right CIMT (D); BMI and left (E) and right CIMT (F); and HbA1c 

and left (G) and right (H) CIMT. Spearman correlation analysis was performed. 
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Figure 6. Correlation graphs of lipid metabolism parameters vs. CIMT measurements. 

Graphs show a correlation of HDL-c with left (A) and right CIMT (B); of VLDL-c index with left 

(C) and right CIMT (D); of cholesterol/HDL-c index with left (E) and right CIMT (F); and of 

atherogenic index (AIP) with left (G) and right (H) CIMT. A Spearman correlation analysis was 

performed. r coefficient and statistical significance, if any existed, are shown in the graph. 
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4. Discussion 

Cardiovascular complications are a principal concern during diabetes management. The 

present study gives relevance to the relationship between CIMT, HbA1c, and different 

hallmarks of T2D (inflammation, ROS production, and leukocyte–endothelium interactions). 

We have evaluated the involvement of glycemic control in endocrine and anthropometric 

parameters, inflammatory markers (TNFα, IL-6, and mtROS production), adhesion molecules 

(ICAM-1, VCAM-1, and P-selectin), leukocyte–endothelium interactions (rolling, rolling 

velocity, and adhesion) and CIMT in T2D. In addition, we have analyzed their 

interrelationship by performing correlation studies. T2D patients, and especially those with 

poor glycemic control (HbA1c > 6.5%), expressed an increase in inflammatory markers, 

mtROS production, adhesion molecules, leukocyte–endothelium interactions, and CIMT. 

Regarding inflammatory intermediates, our study shows a slight but significant increase 

in TNFα and IL-6 production in T2D patients; it is possible that the difference is not bigger 

because of the hypolipemiant treatments received by most of the T2D patients. These 

proinflammatory cytokines are involved in the development of inflammation in T2D. 

Enhanced levels of TNFα from leukocytes after activation by ROS-induced oxidative stress 

are thought to impair glucose uptake and inhibit insulin signaling [70,71]. Furthermore, IL-6 

is thought to play an important role in atherosclerosis in T2D [56]. We show an increase in 

mtROS production in leukocytes from T2D patients that was more pronounced in subjects 

with HbA1c > 6.5%, suggesting that leukocyte mitochondrial function can be altered during 

chronic hyperglycemia [70,72–74]. Other studies in the field have suggested that good 

glycemic control reduces ROS production [57,75,76]. These results are in accordance with 

those of other studies that have demonstrated high mtROS production in T2D related to the 

development of silent myocardial ischemia [72]. In this sense, it is important to underline 
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that leukocytes are especially linked to ROS generation and cells that are highly sensitive to 

the oxidative damage mediated by ROS [77,78]. 

Different pathophysiological processes, including hypertension and atherosclerosis, are 

characterized by leukocyte recruitment to the arterial wall. In the present study, we have 

used an in vitro model in which human leukocytes flow over a monolayer of human 

endothelial cells with a shear stress similar to that observed in vivo [72]. This mimics the 

process that precedes inflammation in vivo (rolling and adhesion), and which is critical to 

homeostasis and vascular cell integrity. Our experimental system has been widely applied to 

visualize and analyze the multistep recruitment of leukocytes in these diseases, and allows 

the mechanisms of action implicated in this recruitment to be assessed [79]. Regarding this 

idea, it has been demonstrated that an inflammatory background favors the increase of 

leukocyte–endothelium interaction and promotes the early development of atherosclerotic 

events [80,81]. In the current study, we have observed that T2D enhanced rolling flux and 

PMNs adhesion and reduced the rolling velocity of PMNs. These effects were more evident 

in the group with HbA1c > 6.5%. Furthermore, several studies have demonstrated the 

importance of leukocytes in the atherosclerotic scenario [82–84]. In accordance with these 

results, an increase in leukocyte–endothelium interactions has been related to oxidative 

stress in a human model of IR [85]. In addition, Petterson et al. demonstrated that there is 

increased recruitment but impaired function of leukocytes during inflammation in mouse 

models of T1D and T2D [86]. 

Endothelial and immune cell activation can be evaluated by measuring the soluble 

adhesion molecules VCAM-1, ICAM-1, and P-selectin. In this sense, it has been described that 

adhesion molecules are enhanced in patients with T2D [87]. In the present study, we show 

an increase in adhesion molecules, ICAM-1 and VCAM-1, in T2D that was most pronounced 
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in the case of VCAM-1 in the HbA1c > 6.5% group. These results are compatible with a rise in 

the number of leukocyte–endothelium interactions, and it has been demonstrated that 

hyperglycemia in both normal subjects and T2D patients can induce vasoconstriction, 

adhesion molecules, and inflammation [88,89]. Importantly, there was a slight but significant 

increase of T2D adhesion molecule levels with respect to the control group, a difference that 

may have been reduced by the hypolipemiant treatment. 

The measurement of CIMT is useful for monitoring the early stages of atherosclerosis 

[61,90], and CIMT enhancement has been described in T2D [91]. In the present study, we 

have observed an increase in left and right CIMT, especially in the former case. Furthermore, 

the increment was more evident in the HbA1c > 6.5% group, suggesting that glycemic control 

is crucial for leukocyte–endothelium interactions and, therefore, for CIMT. The relevance of 

these changes in the left CIMT remain to be clarified, though different studies have 

suggested variations between left and right carotids; for example, Lorentz M. W. et al. 

revealed that left carotid plaques were vulnerable, whereas right carotid ones were calcified 

and stable [65]. Luo X et al. studied the factors associated with left and right CIMT and found 

that changes in biochemical parameters were associated with left carotid measures, while 

hemodynamic parameters were more related to right carotid measures [92]. The main 

consequences of CIMT thickening are cerebrovascular events such as stroke, and left carotid 

stroke is more frequent because of a higher probability of thickening of the left carotid 

arterial wall [93,94]. The above mentioned authors highlighted that the location of the left 

carotid renders it more susceptible to hemodynamic stress, thus increasing the probability of 

arterial wall thickening and rupture. Selwaness M. et al. support this hypothesis; they found 

that while bilateral plaques were more frequent, 67% of cases of unilateral plaque occurred 

in the left carotid. This left plaque presented more intraplaque hemorrhage and more 
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fibrous tissue and was thicker than the left, all of which explain why the left plaque is more 

vulnerable and prone to stroke. In the same study, right CIMT was found to be more calcified 

than the left, which would make it more resistant to shear stress [95]. 

In the present study, we have observed positive correlations between in vitro adhesion 

assay parameters and left CIMT, but not right CIMT. These results confirm the relevance of 

the enhancement of leukocyte–endothelium interactions in CIMT, especially on the left side. 

In terms of biochemical parameters, left CIMT measures correlated significantly with 

glucose, HOMA-IR, BMI, and HbA1c. These correlations were maintained in the right CIMT, 

except for BMI (which was not significant). In line with these results, a systematic review by 

Einarson et al. found that individuals with impaired glucose tolerance had slightly (though 

significantly) higher CIMT values than individuals with normal glucose tolerance [96]. This 

data, together with leukocyte–endothelium interactions, suggest that poor glycemic control 

leaves T2D diabetic patients more prone to developing early or subclinical atherosclerotic 

events due to the rise in the number of leukocytes infiltrating the intima–media layer. 

Finally, we analyzed correlations between CIMT and lipid parameters, and observed that the 

left CIMT was significantly correlated with VLDL-c, cholesterol/HDL-c index, and AIP. All these 

correlations were maintained when we analyzed the right CIMT data, with the exception of 

the cholesterol/HDL-c index correlation. In this sense, Pillai et al., [97] demonstrated that 

lipid parameters, including total cholesterol, TG, LDL-c, and VLDL-c, were significantly higher 

in diabetic stroke patients and positively correlated with the risk of stroke. CIMT was 

significantly higher in diabetic stroke patients, and correlations of lipid parameters (TC, TG, 

and VLDL-c) with CIMT in said patients were significantly and positively correlated, while 

lipid parameters (TC, TG, HDL-c, and LDL-c) were negatively correlated in nondiabetic 

ischemic stroke patients. Although lipidic parameters were differently affected by glycemic 
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control, it is clear that these parameters increase the risk of developing later cardiovascular 

complications by increasing CIMT. We did not find any significant correlation with 

mitochondrial ROS production, adhesion molecules, or cytokine concentrations, though 

there was a tendency toward a slight correlation. 

This study is observational, and so it would be interesting to perform a longitudinal 

intervention study in which we assess the evolution of CIMT in patients with poor glycemic 

control that achieve a good glycemic control. Defining the reason why left and right carotids 

behave and are affected differently is still unclear, and further research focusing on this issue 

would be useful. Moreover, we have correlated many T2D markers with one indicator of 

cardiovascular risk; future studies could attempt to find a correlation with other cardiac and 

endothelium function markers to reinforce our findings. 
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5. CONCLUSIONS 

The current study provides evidence of proinflammatory markers, mtROS production, 

leukocyte–endothelium interactions, adhesion molecules, and CIMT in T2D. Some of these 

alterations were more pronounced in patients with HbA1c > 6.5, suggesting that glycemic 

control is a useful tool for preventing or delaying the onset of subclinical atherosclerotic 

process. Future research into these aspects will help to clarify the molecular mechanisms 

involved in glycemic control in T2D, and to modulate and control the atherosclerotic process 

in T2D. 
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Supplementary Materials: The following are available online at http://www.mdpi.com/2077-

0383/9/8/2522/s1, Table S1: Time of T2D evolution on the recruited patients, Table S2: 

Incidence of most common comorbidities in the recruited T2D patients and in the control 

population, Table S3: Prescription of the different treatments associated with T2D in all the 

study subjects, Table S4: Leukocyte composition in healthy subjects and diabetic patients., 

Video S1: Control, Video S2: HbA1c > 6.5, Video S3: HbA1c ≤ 6.5. 

Supplementary Table S1. Time of T2D evolution on the recruited patients. The time was divided 

in three ranges and the percentages for each of the time ranges were calculated. 

 

Years since T2D diagnosis 
T2D 

HbA1c≤6.5% HbA1c>6.5% 

1-5 57.9% 19% 
5-10 17.5% 23% 
+10 24.6% 58% 

 

 

Supplementary Table S2. Incidence of most common comorbidities in the recruited T2D 

patients and in the control population. Some of the subjects suffered from more than one of 

the comorbidity. 

 

Comorbidities Control 
T2D 

HbA1c≤6.5% HbA1c>6.5% 

Hypertension 0 57.9% 47,1% 
Hyperlipidaemia 19.5% 19.3% 23.1% 

Silent Ischemic Cardiopathy 0 3.5% 5.8% 
Retinopathy 0 24.6% 38.4% 
Nephropathy 0 15.8% 25% 
Neuropathy 0 18% 5.8% 

 

 

 

 

http://www.mdpi.com/2077-0383/9/8/2522/s1
http://www.mdpi.com/2077-0383/9/8/2522/s1
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Supplementary Table S3. Prescription of the different treatments associated with T2D in all the 

study subjects. Some of the subjects were prescribed with more than one treatment or received 

combined treatment. 

Treatments Control T2D 

   HbA1c≤6.5% HbA1c>6.5% 

Antihyeperthensive 1.2% 50.9% 50.5% 
Antidiabetic 0% 96.5% 93.3% 

        Metformin 0% 84.2% 76% 
        DPP-IV Inhibitors 0% 42.1% 39.4% 

        Insulin 0% 5.3% 42.3% 
        Sulphonylurea 0% 1.8% 1.9% 

        Thiazolidinediones 0% 1.8% 3.9% 
        Meglitinides 0.61% 1.8% 7.7% 

        GLP-1 agonists 0% 8.8% 16.4% 
Hipolipemiant 0.6% 63.2% 68.3% 

        Statins 0.6% 56.1% 62.5% 
        Fibrates 0% 14.1% 12.5% 

        Ezetimibe 0% 3.5% 5.8% 

 

Supplementary Table S4: Leukocyte composition in healthy subjects and diabetic patients. 

Leukocyte, neutrophil, lymphocyte, monocyte, eosinophil and basophil count was analyzed with 

the data obtained from the hospital’s haematological analysis laboratory. Mean ± SD is shown 

for all the data, and t-test comparisons determined which differences are statistically 

significant. * p<0.05 vs Control. 

 Control 
T2D 

HbA1c≤6.5% HbA1c>6.5% 

Leukocytes (x109)/L 6.36±1.68 8.38±1.67* 7.98±2.29* 

Neutrophils(x109)/L 3.85±1.95 5.36±1.5* 4.66±1.84* 

Lymphocytes(x109)/L 1.95±0.56 2.2±0.56 2.2±0.65* 

Monocytes(x109)/L 0.47±0.18 0.87±1.4* 0.58±0.22* 

Eosinophils(x109)/L 0.18±0.12 0.31±0.43* 0.25±0.2* 

Basophils(x109)/L 0.01±0.03 0.04±0.11* 0.02±0.04* 
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ABSTRACT 

Metformin is an effective drug against type 2 diabetes (T2D), a pathogenesis in which 

mitochondrial dysfunction is one of the main players. Thus, our first aim was to describe the 

effect of metformin on mitochondrial function in an outpatient population with T2D. For 

analyzing this hypothesis, we performed a preliminary cross-sectional study complying with the 

STROBE requirements. We studied leukocytes from 139 healthy controls, 39 T2D patients 

without metformin treatment, and 81 T2D patients who had been on said treatment for at least 

1 year. Leukocytes from T2D patients displayed higher total and mitochondrial reactive oxygen 

species levels, lower mitochondrial membrane potential, and lower oxygen consumption. 

Moreover, their mitochondria expressed lower mRNA and protein levels of fusion proteins 

MFN1, MFN2, OPA1, and higher protein and gene expression levels of mitochondrial FIS1 and 

DRP1. In addition, we observed enhanced leukocyte-endothelial interactions in T2D patients. 

Metformin reversed most of these effects, ameliorating mitochondrial function and dynamics, 

and reducing the leukocyte/endothelial interactions observed in T2D patients. These results 

raise the question of whether metformin tackles T2D by improving mitochondrial dysfunction 

and regulating mitochondrial dynamics. Furthermore, it would seem that metformin modulates 

the alteration of interactions between leukocytes and the endothelium, a subclinical marker of 

early atherosclerosis.  

 

Keywords: inflammation, metformin, mitochondrial dysfunction, mitochondrial dynamics, type 2 

diabetes 
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1. INTRODUCTION 

 

T2D is a chronic inflammatory disease characterized by hyperglycemia and 

hyperinsulinemia. Accumulating evidence suggests that mitochondrial dysfunction is one of the 

main contributors to diabetic disease (7). However, there are controversies about whether 

mitochondrial dysfunction is the trigger or a consequence of metabolic deregulation. 

Mitochondria are essential double-membrane organelles involved in different cell 

processes such as ATP synthesis, apoptosis, stress regulation, and lipid and carbohydrate 

metabolism, among others (7). They are responsible for meeting the enormous energy demands 

of vital tissues by facilitating cellular respiration, which is carried out in the mitochondrial cristae 

through ETC and the electrons obtained mainly as a result of glycolysis and fatty acid oxidation. 

Thus, ETC- mediated electron transport pumps protons to the intermembrane space to maintain 

the protonmotive force. Once the electrons reach the ATP synthase, ATP is synthesized, but only 

if there is an adequate protonmotive force. 

It is now widely accepted that cellular energy demand affects mitochondria by causing 

changes to their shape, location, and/or mitochondrial mass (5). These processes are known as 

mitochondrial dynamics and are facilitated by mitochondrial transport through microtubules, 

and mitochondrial fusion and fission.  

Fusion is carried away by three GTPases: MFN1, MFN2, OPA1. Although MFN1 and MFN2 

share similar sequences and functions, slight but critical differences have been identified: while 

MFN1 exerts its function in the outer membrane, MFN2 regulates mainly endoplasmic 

reticulum/mitochondria contact. Similarly, OPA1, a dynamin- related protein associated with 

inner mitochondrial membrane fusion and maintenance of the structure of respiratory 

supercomplexes, helps to regulate the shape of mitochondria through the fusion process (5). 

On the contrary, fission machinery is mediated by DRP1, a GTPase protein located in the 

cytosol as a dimer or tetramer (5) that is recruited to the outer mitochondrial membrane by FIS1 
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and other receptor proteins in response to specific cellular cues (5). 

Defects in these mitochondrial dynamics can lead to a substantial production of ROS, 

which, in turn, leak into the cytosol and affect the cellular environment and molecular signaling. 

Subsequently, these stress stimuli expedite recruitment of the immune cells to the activated 

vascular endothelium, thus promoting further atherosclerotic changes and the development of 

macrovascular complications (2, 6). In particular, the activation of leukocytes, mediated by 

chemokine-dependent and chemokine-independent mechanisms, leads to leukocyte/endothelial 

cell adhesion. During this process, adhesion molecules on rolling leukocytes bind to their 

counter-receptors on endothelial cells, thus promoting their firm adhesion to the wall. This 

persistent condition contributes to the initiation and progression of atherosclerotic lesion 

development (2, 9). 

To date, many different treatments have been used to ameliorate T2D. However, since 

its discovery in 1950, metformin has remained the first-line treatment. Although the exact 

mechanisms by which metformin exerts its actions are unknown, a wide range of theories have 

been put forward (3). Of note, metformin seems to alleviate cell activation, thus palliating the 

inflammatory response (2). However, this aspect has not been assessed in primary leukocytes, 

and so, the precise effect of metformin is still unclear. 

In light of the research described above, we hypothesized that mitochondrial function 

and dynamics are altered in T2D, thus affecting leukocyte/endothelial interactions, and that 

metformin can mitigate these alterations. 
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Innovation 

Alterations in mitochondrial function and dynamics and the inflammatory events, which 

take place as a consequence, are key to the diabetic pathology, but the nature of the effects 

exerted by metformin on these parameters is unclear. Thus, it is relevant to study them in 

primary T2D leukocytes, which are central to the immune response. Our results suggest that 

metformin effectively palliates alterations of leukocyte mitochondrial function and dynamics 

due to T2D and reduces their activation. Our results contribute to the knowledge of the 

mechanisms that explain the deregulated immune function in T2D. Future research will need to 

detangle the precise molecular pathways at work and the exact target of metformin in this 

scenario. 

 

2. BIOCHEMICAL AND ANTHROPOMETRICAL PARAMETERS 

Table 1 shows the results obtained when we analyzed the anthropometrical and 

biochemical data in our study population. One hundred thirty-five healthy subjects and 120 T2D 

patients were recruited from the Endocrinology Outpatients Service of the University Hospital 

Doctor Peset (Valencia, Spain). The T2D group was divided into patients with meformin 

treatment (81) or without treatment (39). In relation to anthropometrical parameters, T2D 

patients presented higher weight (p < 0.05), body mass index (BMI; p < 0.05), waist 

circumference (p < 0.05), and DBP and SBP (p < 0.05). 

Metformin had a significant effect on SBP (p <0.05), while DBP showed non-significant 

differences with respect to the control group. Insulin concentrations and homeostatic model 

HOMA-IR were higher in T2D patients (both p < 0.05), with no influence of metformin treatment 

being observed. HbA1c% and glucose were significantly increased in the T2D group (p< 0.05) and 

lower among patients receiving metformin treatment (p< 0.05). Regarding lipid metabolism 

parameters, we found that cholesterol, HDL-c, and LDL-c were reduced in T2D patients (p< 0.05) 

due to the effect of the hypolipemiant treatment (50% of patients in the T2D group and 63.8% of 
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metformin-treated patients). VLDL-c, cholesterol/HDL-c ratio, and TG were increased in T2D 

patients, and were not modified by metformin treatment. 

 

Table 1. Biochemical and anthropometrical profile of control subjects and type 2 diabetes 

patients with or without metformin treatment 

 
Kolmogorov/Smirnov or Shapiro/Wilk normality tests were carried out depending on the sample size. For 

normally distributed data, mean – SD shown, and for non-normally distributed data, the median is shown 

(first and third quartile). Analysis of variance and Tukey post-test were performed to outline statistically 

significant differences between groups. 
a
p < 0.05 versus control group. 

b
p < 0.05 versus T2D group.BMI, 

body mass index; CT, cholesterol; DBP, diastolic blood pressure; HbA1c, glycated hemoglobin; HDL-c, high-

density lipoproteins; HOMA-IR, homeostatic model assessment of insulin resistance; LDL-c, low-density 

lipoproteins; SBP, systolic blood pressure; T2D, type 2 diabetes; VLDL-c, very low-density lipoproteins. 

 

 

 

 

 

 Control T2D   T2D+Metformin 

n    135 39 81 

Male%  43.70 50.97 59.90 

Age (years)  45.22±12.06 58.97±10.05  58.76±12.12 

Weight (kg)  67.55±12.30    73.69±10.97
a
    74.53±12.24

a
 

BMI (kg/m2)     23.49±2.96 26.92±2.47
a
 26.66±3.14

a
 

Waist circumference (cm)    79.67±12.83    95.57±10.32
a
    95.42±11.40

a
 

SBP (mm Hg)  118.00±17.95  148.26±25.15
a
       139.80±16.68

a,b
 

DBP (mm Hg)    72.07±10.91    82.09±12.56
a
     77.49±10.76

a
 

Insulin (lUI/mL)    7.16±3.40  14.51±8.22
a
     15.44±10.63

a
 

HOMA-IR    1.65±1.08     4.69±3.39
a
      4.68±5.25

a
 

HbA1c (%)    5.29±0.53     7.31±1.17
a
         6.72±1.04

a,b
 

Glucose (mg/dL)    90.59±21.57   152.29±44.99
a
       111.94±27.54

a,b
 

Cholesterol (mg/dL)  185.74±35.23   173.61±42.30
a
    165.94±35.03

a
 

HDL-c (mg/dL)    56.60±13.56     45.91±13.28
a
      43.50±10.07

a
 

LDL-c (mg/dL)  111.60±28.49 101.76±33.93      93.22±10.07
a
 

VLDL-c (mg/dL)   13 (11–19)    20.5 (14.25–29.75)       25.75 (18–36.5)
a
 

CT/HDL-c   3.42 ±0.92      4.04±1.26
a
      4.00±1.14

a
 

TG (mg/dL)    67 (55–99)   104 (70.75–149.25)   129.88 (92–185.5)
a
 

Non-HDL-c  129.14±33.02 128.97±40.35  122.44±34.61 
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3. ROS CONTENT AND MITOCHONDRIAL FUNCTION 

 

First, we aimed to determine if T2D induced a change in mitochondrial integrity and 

functionality, and whether metformin was capable of reducing its effects. Figure 1A depicts how 

T2D leukocytes exhibited higher total ROS content (p< 0.05), and how this content was 

diminished by metformin treatment (p< 0.05). Moreover, the results shown in Figure 1B reflect a 

similar behavior of mitochondrial ROS (p< 0.01 in T2D vs. control samples, and p<0.05 for T2D + 

metformin vs.T2D). 

In this respect, metformin tempered the rise in ROS production induced by T2D in 

leukocytes. Figure 1C shows the reduced mitochondrial membrane potential of T2D leukocytes 

(p< 0.05), and illustrates that treatment with metformin returned membrane potential to 

normal levels (p<0.05). Moreover, as shown in Figure 1D, T2D leukocytes exhibited decreased O2 

consumption (p<0.05), while mitochondria of patients receiving metformin showed normal O2 

consumption (p< 0.05). 
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FIG. 1. Mitochondrial ROS production and function parameters and leukocyte/endothelial interaction 

analysis. (A) Total ROS concentration, measured as relative DCFH fluorescence by static cytometry. (B) 

Mitochondrial ROS concentrations, measured as relative MitoSOX fluorescence by static cytometry. (C) 

Mitochondrial membrane potential, measured as relative TMRM fluorescence by static cytometry. (D) O2 

consumption rate of leukocytes, measured by means of a Clark- type oxygen electrode. (E–G) Show the three 

parameters measured in the parallel plate flow chamber experiments. *p < 0.05, **p < 0.01, and ***p < 0.001 

versus control; 
#
p < 0.05 versus T2D. DCFH, 2’7’-dichlorofluorescein; ROS, reactive oxygen species; T2D, type 2 

diabetes; TMRM, tetramethylrhodamine. 
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4. LEUKOCYTE/ENDOTHELIAL INTERACTIONS 
 

Figure 1E–G describes how diabetes altered the leukocyte/ endothelial interactions and 

whether metformin restores this phenotype to control levels. T2D leukocyte/endothelial 

interactions were increased by enhancing rolling (p< 0.001) and adhesion (p< 0.001) and by 

decreasing rolling velocity (p<0.001). Metformin treatment reduced leukocyte rolling (p<0.05) 

and adhesion (p<0.05), highlighting the antiinflammatory effect exerted by metformin. 

 

5. MITOCHONDRIAL DYNAMICS 

Figure 2 displays how T2D alters mitochondrial dynamics and how metformin treatment 

modulates it. The analysis of mRNA expression of fusion genes was diminished in T2D leukocytes 

(Fig. 2A–E) (p <0.05 for mfn1, p <0.001 for mfn2, and p <0.05 for opa1), and metformin 

treatment enhanced their expression (p <0.05 for mfn1 and p <0.01 for mfn2), with the 

exception of OPA1 (p< 0.05 vs. control subjects). Furthermore, T2D leukocytes displayed lower 

levels of fission gene expression than controls (p <0.01 for fis1 and p<0.001 for drp1). fis1 

expression levels were not modified by metformin treatment (p<0.05 vs. control subjects), while 

drp1 levels returned to normal values (p <0.001 vs. T2D samples). 

Regarding protein expression, mitochondrial fusion (Fig. 2F–J), orchestrated by MFN1, 

MFN2, and OPA1, was diminished in leukocytes from T2D patients (p <0.01, p<0.05, and p<0.01, 

respectively). Metformin treatment increased the levels of these proteins significantly (p< 0.05 

in all cases). Furthermore, fission protein FIS1 and DRP1 levels were elevated in T2D leukocytes 

(p<0.01 in both cases), and metformin treatment reversed this increase (p<0.05 in both cases), 

highlighting the beneficial effect of this drug. 

Metformin is the gold standard in the management of T2D, thanks mainly to its 

hypoglycemiant effect (3, 8, 9). Indeed, previous research has shown the remarkable benefits of 

metformin uptake on some analytical parameters (8). Our T2D patient cohort displayed 
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alterations in classic clinical parameters used to identify the diabetic state; namely, higher 

weight, BMI, waist circumference, glucose, HbA1c%, SBP, DBP, HOMA-IR, and insulin with respect 

to controls. Metformin treatment reduced glucose and HbA1c%, which is in accordance with the 

study by van Stee et al. (8). 

In the case of lipid parameters, T2D patients displayed increased VLDL-c and triglyceride 

levels, but reduced cholesterol, HDL-c, and LDL-c levels. Research has shown that this is a result 

of the hypolipemiant treatment of diabetic dyslipidemia, regardless of whether or not there is 

metformin treatment (8). 

In addition to the biochemical alterations described, we have observed altered 

mitochondrial function. First, leukocytes from T2D patients expressed increased levels of total 

and mitochondrial ROS. Although ROS can act as cellular signals, an excess is a signal of cellular 

stress and can lead to the activation of inflammatory pathways (2). Second, oxygen consumption 

and mitochondrial potential were altered, suggesting that mitochondrial function was 

compromised. The loss of membrane potential can be attributed to a leaking mitochondrial 

membrane, which reduces the electron transport complex’s efficiency, thus altering oxygen 

consumption by leukocytes (4, 7). Such alterations are a sign of mitochondrial dysfunction in T2D 

leukocytes (1, 7). However, whether it is a cause or a consequence of the pathology of diabetes 

is still unknown, and future research should address this topic. 

In a T2D scenario, the triggers of these mitochondrial alterations are chronic 

hyperglycemia and hyperlipidemia (2, 7). Therefore, we hypothesized that if metformin can 

alleviate hyperglycemia, it can also be beneficial for mitochondrial dysfunction. Several previous 

studies have demonstrated that metformin is beneficial for mitochondrial function and can 

alleviate the alterations that characterize a diabetic organism. The present study supports this, 

showing that metformin restores total and mitochondrial reactive oxygen species, mitochondrial 

membrane potential, and O2 consumption to control levels. 
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FIG. 2. Fusion and fission gene and protein expression in leukocytes from T2D patients treated 

(or not) with metformin and from controls. Gene expression in leukocytes from healthy subjects 

and T2D patients with or without treatment was measured with qRT-PCR. The fusion genes mfn1 

(A), mfn2 (B), opa1 (C), fis1 (D), and drp1 (E) were determined. Protein expression of the 

corresponding proteins was also measured (fusion proteins MFN1 (F), MFN2 (G), and OPA1 (J) 

and the fission proteins FIS1 (H) and DRP1 (I)). Representative images of each protein are 

displayed. In all graphs, n (control) = 12, n (T2D) = 9, and n (T2D + metformin) = 10. *p < 0.05 and 

**p < 0.01 versus control; #p < 0.05 versus T2D. DRP1, dynamin-related protein 1; FIS1, fission 

protein 1; MFN1, mitofusin 1; MFN2, mitofusin 2; OPA1, optic atrophy 1; qRT-PCR, quantitative 

real time polymerase chain reaction. 
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Mitochondrial dysfunction is closely related to inflammation, as a cause or a 

consequence (2, 4). Excessive ROS production activates key pathways in inflammation, and 

reduces the antioxidant capacity of the cell. In immune and endothelial cells, this leads to their 

overactivation and a non-physiological activity, both of which contribute to the activation of the 

endothelial/leukocyte interaction pathway and a subatherosclerotic scenario. 

It has previously been reported that altered mitochondrial dynamics increases the 

endothelial dysfunction in venous endothelial cells from T2D patients and a T2D model of human 

aortic ring culture (6). Moreover, inhibition of fission has been shown to reduce endothelial 

impairment, suggesting that mitochondrial dysfunction plays a causative role in T2D. Bearing this 

in mind, we analyzed the functional repercussions of mitochondrial dysfunction on leukocyte 

biology in our samples. Our procedure involved us examining leukocyte/endothelial interactions, 

which were enhanced in T2D patients. 

The metformin-treated group displayed less rolling and adhering cells, but velocity 

remained similar to that in the untreated group. These results suggest that metformin has the 

capacity to reduce generalized low-grade inflammation. The literature backs our results, 

confirming that metformin has an anti-inflammatory effect at many different levels (7). The 

precise mechanism through which the drug acts is yet to be deciphered, although several 

candidates have been proposed. 

Mitochondrial dysfunction involves the deregulation of mitochondrial dynamics. Several 

in vitro and in vivo studies have highlighted hampered mitochondrial dynamics in T2D (2, 4, 9). 

Altogether, T2D seems to promote a profission phenotype and the inhibition of fusion, resulting 

in the deregulation of mitochondrial dynamics. Conversely, our data show that metformin 

treatment induces an increase in MFN1, MFN2, and OPA1, and a decrease in FIS1 and DRP1 at 

the protein level. An increase in mRNA was detected in mfn1 and mfn2, but we did not observe a 

recovery of opa-1 mRNA levels in metformin-treated patients, which warrants further research. 

The inner mitochondrial membrane location of OPA-1 could explain this varying mRNA 
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expression (7). 

In the context of these remaining questions, a previous study determined that 

metformin reduces fission phenotype in diabetic APOE-/- mice and prevents atherosclerotic 

lesions (9). Based on the present results, we can affirm that metformin restores mitochondrial 

dynamics in T2D, although we have not identified the exact underlying mechanism. Research to 

date implicates AMPK, which can be effectively activated by metformin (3, 6); whether or not 

this is the elusive mechanism in question is an object for future research. 

 

6. CONCLUSION 

In the present study, an improvement in mitochondrial function and dynamics was 

observed in T2D patients on metformin. Moreover, leukocyte/endothelial cell interactions in the 

treated subjects were significantly reduced, thus indicating a decrease in inflammation and T2D-

related cardiovascular events. Our findings reinforce the idea that metformin plays an important 

role in modulating the inflammation that occurs in T2D patients. At the same time, it highlights 

the beneficial effects of this drug, by which it prevents mitochondrial dysfunction and 

deregulation of mitochondrial dynamics and, in turn, their clinical implications. 

 

7. NOTES 

 

7.1. Materials and methods 

7.1.1. Subjects.  

One hundred thirty-five healthy subjects and 120 T2D patients were recruited from the 

Endocrinology and Nutrition Outpatient’s Service of University Hospital Doctor Peset, in Valencia 

(Spain). Of the 120 T2D patients, 81 had been under 1700 mg/day metformin treatment for at 

least 1 year. All subjects provided written informed consent to participate in the study. The 

hospital’s Ethics Committee for Clinical Investigation approved the study (ID: 98/19), which was 
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in line with the Helsinki Declaration. T2D was diagnosed following the ADA criteria. Exclusion 

criteria were BMI>35, history of cardiovascular disease, and the presence of autoimmune, 

infectious, hematological, or malignant disease. 

7.1.2. Sample collection and laboratory tests.  

Subjects attended the Endocrinology Service (Hospital Dr Peset) after 12-h fasting and 

not having taken any anti-inflammatory drug in the previous 24 h. Peripheral blood was 

extracted from the brachial vein after measuring blood pressure, weight, height, and waist 

circumference. Anthropometric parameters were measured as follows: weight and height were 

measured on a graded scale; SBP and DBP were evaluated with an automatic 

sphygmomanometer; and waist circumference was evaluated with a measuring tape. BMI was 

calculated as weight (kg)/height (m2). Insulin was measured with an immunoassay using an 

Architect Insulin Reagent Kit. Glucose was measured in serum by an automated enzymatic 

method with a Beckman Synchron LX20 Pro analyzer (Beckman Coulter, Brea, CA). HbA1c was 

analyzed with an automated glycohemoglobin analyzer (Arkray, Inc., Kyoto, Japan). HOMA-IR 

index was calculated as follows: (Fasting Insulin [lUI/mL] Fasting Glucose [mg/dL])/405. 

Cholesterol, HDL-c, and triglyceride levels were analyzed by means of an enzymatic assay 

(Beckman Coulter). Friedewald’s formula was used to calculate LDL-c. 

7.1.3. Leukocyte isolation.  

Leukocytes were isolated by means of the Ficoll gradient method. The blood was laid 

over 7 mL of Ficoll (Hystopaque-1119 Ref. 11191 and Hystopaque-1077 Ref. 10771; both from 

Sigma-Aldrich, St. Louis, MO) and centrifuged for 25 min at room temperature. Leukocytes were 

subsequently collected and lysed with erythrocyte lysis buffer (Red Blood Cell Lysis Solution, Ref. 

130-096-941; Miltenyi Biotec, Germany) for 5 min. Cells were then washed with Hank’s balanced 

saline solution (HBSS) and stored for future experiments. 

7.1.4. Static cytometry assay.  

Three hundred thousand leukocytes/well were seeded in duplicate in 24-well plates for 
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each sample. An internal control (Hep3b cells) was also seeded at the same density in each 

plate. After 20 min, when cells were attached to the bottom of the plate, 250 µL 

tetramethylrhodamine (1 µM) MitoSOX (1 µM), 2’7’dichlorofluorescein (DCFH; 1 µM), and 

nuclear staining HOECHST 33342 (1 µM), all purchased in Thermo Fisher Scientific, were added 

to each well and incubated for 20 min at 37°C under gentle shaking. The wells were then washed 

twice with warm HBSS. Static cytometry visualization was performed using ScanR software 

coupled to a IX81 Olympus microscope (both from Olympus Corporation, Shinjuku, Tokyo, 

Japan). Each experiment was performed in duplicate, with 16 images obtained per well in each 

experiment and calculating the mean fluorescence intensity. The resulting mean was normalized 

according to the cell number and internal control. 

7.1.5. Oxygen consumption assay.  

Once leukocytes had been isolated, an aliquot of 5x106 cells/mL was placed in a gas-tight 

chamber. A Clark-Type O2 electrode (Rank Brothers, Bottisham, United Kingdom) was used to 

measure O2 consumption. Sodium cyanide (1 mM), an inhibitor of the electron transport chain, 

was used to confirm that O2 consumption was mainly mitochondrial (95%–99%). Duo.18 

software (WPI, Stevenage, United Kingdom) was used to visualize and collect the data. The 

maximal O2 consumption rate with endogenous substrates was calculated using GraphPad 

software (GraphPad software, Inc., San Diego, CA). A trypan blue exclusion test was performed 

after each experiment to determine cell viability, and revealed no significant cell death. 

7.1.6. Leukocyte/endothelial interaction assay. 

An aliquot of 1.2x106 leukocytes resuspended in RPMI medium was used for this 

experiment. Previously, HUVECs isolated from fresh umbilical cords were seeded and grown 

until a 95% confluent monolayer formed. On the day of the experiment, the leukocyte 

suspension was perfused over the surface of HUVECs at 0.3 mL/min using a parallel plate flow 

system, all of which was observed through an inverted microscope. While interacting, cells were 

recorded with a microscope-coupled camera for 5 min, and, during the last minute, different 
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fields were observed to count the number of adhered leukocytes. The following data were 

obtained from the videos: number of leukocytes that crossed a 200 µM surface in 1 min (rolling); 

the time these leukocytes took to cover this distance (rolling velocity); and the number of 

leukocytes stably adhering to the HUVEC monolayer (adhesion). 

7.1.7. Gene and protein expression analysis.  

To measure gene expression, a GeneAll Ribospin Total RNA extraction kit (GeneAll 

Biotechnology, Hilden, Germany) was used to isolate RNA from leukocyte samples, following the 

manufacturers’ protocol. We measured gene expression by means of a qRT-PCR using a FastStart 

universal SYBR Green Master (Sigma Aldrich, St. Louis, MO) and a 7500 Fast RT-PCR system (Life 

Technologies, Carlsbad, CA). RNA was quantified in a NanoDrop 200c spectrophotometer (Life 

Technologies, Thermo Fisher Scientific), and purity was confirmed with the 260 nm/280 nm 

absorbance ratio (A260/280). Next, cDNA was determined with a RevertAid first-strand cDNA 

synthesis kit (Life Technologies, Thermo Fisher Scientific). 

Quantification was performed by means of the comparative 2-ΔΔCt method, and a sample 

was used as an internal control and gapdh expression as an endogenous control in all 

experiments. Data were analyzed with Expression Suite software (Life Technologies, Thermo 

Fisher Scientific). Table 2 shows the primers used in the study. 

 

Table 2. Forward and Reverse Sequences of the Specific Primers Used in This Study 

Target Forward Reverse 

Mfn1 CCTCCTCTCCGCCTTTAACT TATGCTAAGTCTCCGCTCCAAC 

Mfn2 CAGCTACACTGGCTCCAACT TTTCTTGTTCATGGCGGCAA 

Opa1 ACCGTTAGCCCTGAGACCATA GGTAAGTCAACAAGCACCATCC 

Fis1 AGAAATTTCAGTCTGAGAAGGCA CCTCCTTGCTCCCTTTGGG 

Drp1 GCTGATGCTTGTGGGCTAATG TGCCAAAGCACTTGGAACTTT 
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Regarding protein analysis, previously isolated leukocytes were lysed with RIPA buffer, 

homogenized, and sonicated in an ultrasound bath for 30 s, three times. Samples were then left 

for 15 min on ice and centrifuged for 15 min at 21400 g at 4°C. The supernatant was collected 

and quantified following the bicinchoninic acid protein quantification assay (Thermo Fisher 

Scientific, Waltham, MA, USA). Twenty-five micrograms of protein were loaded onto 4%–20% 

gradient sodium dodecyl sulfate/ polyacrylamide gels (Novex Wedge Well 4-20 Tris Glycine Gel, 

Ref. XP04205B0X; Invitrogen-Life Technology, Carlsbad, CA) and separated at 150 V for 90 min at 

room temperature. Transference to nitrocellulose membranes (BioRad, CA) was carried out by 

the wet transference method, running for 60 min at constant amperage (400 mA). Membranes 

were then blocked with 5% bovine serum albumin or 5% skimmed milk (depending on the 

protein of interest) for 1 h at room temperature. Specific antibodies against MFN1, MFN2, OPA1, 

DRP1, and FIS1 were diluted in blocking buffer. Specific antibody dilutions were incubated with 

the membranes overnight at 4°C under gentle shaking: rabbit polyclonal anti- MFN1 (Ref. 

ABC41), rabbit polyclonal anti-MFN2 (Ref. ABC42), mouse monoclonal anti-OPA-1 (Ref. 

MABN737), rabbit polyclonal anti-FIS-1 (Ref. ABC67), all purchased from Merck-Millipore 

(Burlington, MA), and mouse monoclonal anti DRP-1 (Ref. GR3248679-1; Abcam, Cambridge, 

United Kingdom). The following day, specific secondary antibodies (goat anti-rabbit antibody 

[Ref. PI-1000] from Vector Laboratories, Burlingame, CA, and goat anti-mouse antibody [Ref. 

31420] from Thermo Fisher Scientific, Waltham, MA) were incubated for 60 min at room 

temperature. Images of the resulting proteins were obtained using SuperSignal West Pico Plus 

(Ref. 34580) or Femto (Ref. 34095) chemiluminescent substrate (Thermo-Fisher Scientific) and 

the Fusion FX5 (Vilber Lourmat, Marne-La Valleé, France) imaging system. Densitometric 

quantification of the images was performed with Bio1D software (Vilber Lourmat). Each 

membrane was checked several times by cutting different fragments following the guide of the 

molecular size marker and also with homemade glycine stripping buffer to maximize the results 

for each sample. Whole-membrane fragments used for the images in Figure 2 are included in 
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Supplementary Figure S1. 

7.1.8. Statistical analysis.  

Normality was confirmed with the Kolmogorov/Smirnov test or the Shapiro/Wilk test 

depending on the size of the sample. Values are expressed as mean - SD for normally distributed 

data, and the median – (25th–75th percentiles) is presented for non-normally distributed data. 

One-way analysis of variance with a Tukey post-hoc test was used to compare the three groups. 

When two groups were compared, a t-test was used for normally distributed data, while a 

Mann/Whitney U test was used for non-normal distribution. The influence of sex and BMI was 

corrected with a covariance analysis (univariate general linear model). Significance was 

confirmed in all comparisons when p<0.05, with a confidence interval of 95%. SPSS 17.0 (SPSS 

Statistics, Inc., Chicago, IL) was used in all the tests, and GraphPad (GraphPad, La Jolla, CA) was 

used to plot the data with bar graphs, representing the media and the standard error of the 

mean. 
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ABSTRACT 

Mitochondrial dysfunction has been shown to play a central role in the pathophysiology 

of T2D, and mitochondria-targeted agents such as SS-31 are emerging as a promising strategy for 

its treatment. We aimed to study the effects of SS-31 on leukocytes from T2D patients by 

evaluating oxidative stress, ER stress and autophagy. Sixty-one T2D patients and 53 controls 

were included. Anthropometric and analytical measurements were performed. We also assessed 

ROS production, calcium content, the expression of ER stress markers GRP78, CHOP, P-eIF2α, 

and autophagy-related proteins Beclin-1, LC3 II/I, and p62 in leukocytes from T2D and control 

subjects treated or not with SS-31. Furthermore, we have evaluated the action of SS-31 on 

leukocyte-endothelium interactions. T2D patients exhibited elevated ROS concentration, calcium 

levels and presence of ER markers (GRP78 and CHOP gene expression, and GRP78 and P-eIF2α 

protein expression), all of which were reduced by SS-31 treatment. SS-31 also led to a drop in 

BECN1 gene expression, and Beclin-1 and LC3 II/I protein expression in T2D patients. In contrast, 

the T2D group displayed reduced p62 protein levels that were restored by SS-31. SS-20 (with 

non-antioxidant activity) did not change any analyzed parameter. In addition, SS-31 decreased 

rolling flux and leukocyte adhesion, and increased rolling velocity in T2D patients. Our findings 

suggest that SS-31 exerts potentially beneficial effects on leukocytes of T2D patients modulating 

oxidative stress and autophagy, and ameliorating ER stress. 

 

Keywords: Mitochondria; oxidative stress; type 2 diabetes; endoplasmic reticulum stress; 

autophagy; SS-31. 
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1. INTRODUCTION 

 

T2D represents a serious global problem with a worryingly high rate worldwide, 

constituting one of the main public health challenges of the 21st century. T2D is a metabolic 

disruption characterized by IR and β cell failure. In those affected, the persistent exposure to a 

hyperglycemic environment promotes excessive generation of ROS and it leads to the imbalance 

of antioxidant defenses [1], inducing oxidative stress, which contributes to IR and the activation 

of pro-inflammatory signaling pathways [2], both thought to play key roles in the complications 

associated with T2D. 

Oxidative stress and ER stress are closely linked. Indeed, an altered redox balance has a 

major impact on ER folding capacity. Under pathological conditions such as T2D, ER homeostasis 

is disturbed due to an accumulation of misfolded proteins [3,4], in response to which the UPR is 

activated in order to (i) upregulate the expression of chaperones and aid the folding of ER 

proteins (ii) and degradation of proteins, and (iii) to prevent protein synthesis [5,6]. It is known 

that antioxidant production is one of the restorative functions of the UPR, which coordinates the 

activation of the trans-membrane ER resident protein (PERK) signalling pathway, thus allowing 

the cell to adapt to oxidative and ER stress [7,8]. The ER stress response also includes 

mechanisms of autophagy induction, and it has been demonstrated that low-grade autophagy 

reduces ER stress by destruction of the ubiquitinated unfolded/misfolded dysfunctional proteins 

and damaged organelles that result from said stress [9]. The onset of autophagy involves the 

formation of an autophagosome, a process in which several autophagy-related genes coordinate 

to engulf the defective material in a double membrane. This process is initiated when the 

complex formed by Beclin-1/Vps34/VPs15/UVRAG—known as PI3K complex III—nucleates the 

formation of the autophagosome. In parallel, the cytosolic protein microtubule-associated to 

LC3 I is conjugated to a phosphatidylethanolamine to form LC3 II. In this form, LC3 II migrates to 

the growing autophagosome and helps to build the double membrane. The ubiquitinated 
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protein and defective organelles are detected by SQSTM1—also known as the p62 protein—

which associates itself to membrane-bound LC3 II. The autophagosome then fuses with a 

lysosome, which pours its hydrolytic enzymes into the inner space of the autophagosome, 

thereby degrading its content [10,11]. This is usually a rescue mechanism in situations of stress. 

However, when ER stress is prolonged, the autophagy activated as a result can lead to severe 

cell damage and, eventually, to apoptosis [12,13]. Incipient insult has serious consequences for 

the balance of pro- and anti-survival signals. Therefore, the mechanisms of oxidative stress, ER 

stress and autophagy are closely related to each other and are considered key targets for 

understanding the development of T2D. In the present work, we have studied these processes 

by analyzing general markers for their activation. 

Mitochondria are essential to the control of cellular homeostasis, cell death and 

apoptosis. Furthermore, overproduction of ROS occurs mainly in mitochondria, through the 

electron transport chain [14,15], thus attributing these organelles a key role in the development 

and control of metabolic diseases such as T2D. For the aforementioned reasons, the 

identification of novel mitoprotective therapies may lead to the prevention and successful 

treatment of the complications associated with this disease. 

One of the molecules that might be beneficial in mitochondria-based diseases is the 

mitochondria-targeted antioxidant SS-31 (D-Arg-2’6’-dimethylTyr-Lys-Phe-NH2), a member of the 

SS peptide family, aromatic-cationic tetrapeptides targeted to cardiolipin on the inner 

mitochondrial membrane via hydrophobic and electrostatic interactions. There, they increase 

ATP production, thus restoring cellular function and preserving vital ATP-dependent processes 

[16, 18]. Their antioxidant action is due to two actions, the dimethyltyrosine residue, scavenging 

H2O2 and ONOO- and inhibiting lipid peroxidation. In addition, preclinical studies support their 

potential use in neurodegenerative disorders and ischaemia-reperfusion injury [19]. Our group 

has already demonstrated that SS-31 increases SIRT1 levels in leukocytes and ameliorates 

inflammation, oxidative stress and leukocyte-endothelium interactions in T2D [20]. 
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In the present study, we set out to explore the effects of SS-31 on leukocytes of T2D patients 

by evaluating different key pathways including oxidative stress, ER stress and autophagy. We 

have used peripheral blood leukocytes as surrogate model for the general/systemic oxidative 

stress and its consequences present in T2D. Actually, T2D has been widely related with leukocyte 

dysfunction [21–25]. Peripheral blood leukocytes are the primary sensors of the alterations in 

the presence of different soluble molecules in the bloodstream [26–30]. More precisely, we have 

employed PMNs, which present higher vulnerability to oxidative damage in T2D compared to 

mononuclear cells [21]. Numerous studies suggest that the continuous exposure of leukocytes to 

high circulating levels of glucose, lipids, insulin, and proinflammatory cytokines (known as the 

T2D environment) alters the cell metabolism and affect the cell ability to manage stress 

situations. These alterations have a direct impact on the leukocytes’ function and main pathways 

such as oxidative stress regulation, ER stress, autophagy, and mitochondrial homeostasis [31–

35]. Previous research stated that different molecules, drugs or antioxidants can relieve the 

stress response [36–39]. Taken into account these facts, we consider that PMNs are a readily 

available, representative and valid model to evaluate the influence of ROS on the different 

pathways related to T2D [21]. 

 

2. EXPERIMENTAL SECTION 

 

2.1. Human Subjects 

A total of 114 subjects were included in the study population, specifically 61 T2D 

patients and 53 healthy controls recruited from the Service of Endocrinology and Nutrition of 

University Hospital Doctor Peset (Valencia, Spain) and adjusted for age and sex. All subjects gave 

their written informed consent to participate in the study and the protocols followed were 

approved by our hospital’s Ethics Committee for Clinical Investigation (ID: 97/16), in line with the 

ethical principles of the Helsinki declaration. All T2D patients in this study have suffered from 
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T2D for at least 5 years, which ensures that they display a chronic phenotype. 

The ADA criteria were used for T2D diagnosis, and exclusion criteria were history of CVD, 

presence of morbid obesity or autoimmune, hematological, malignant, infectious, organic, or 

inflammatory disease, and insulin treatment. 

 

2.2. Sample Collection 

Venous blood samples were taken from the antecubital vein and collected in 

Vacutainer® tubes in fasting conditions, between 8 AM and 10 AM. Anthropometric 

parameters—weight (kg), height (m), BMI (kg/m2), SBP and DBP (mmHg), and waist 

circumference (cm)—were assessed. 

 

2.3. Laboratory Tests 

Fresh blood samples were centrifuged for 10 min at 1500 g at a temperature of 4 ◦C in 

order to separate serum from the blood. Serum levels of fasting glucose, total cholesterol and 

TG were determined by enzymatic method, HDL-c was recorded employing a Beckman LX-20 

autoanalyzer (Beckman Coulter, La Brea, CA, USA) using a direct method and LDL-c content was 

quantified with Friedewald’s formula. Insulin levels were obtained by an 

immunochemiluminescence assay, and HOMA-IR index (fasting insulin (µU/mL) × fasting glucose 

(mg/dL)/405) was calculated to estimate IR. The percentage of HbA1c was determined with an 

automatic glycohemoglobin analyzer (Arkray, Inc., Kyoto, Japan) and an immunonephelometric 

assay was used to measure hsCRP levels. 

2.4. Leukocyte Isolation 

Human PMNs were isolated from heparinized blood samples incubated for 45 min with 

1:2 volumes of dextran solution (3% in NaCl 0.9%; Sigma Aldrich, MO, USA). The supernatant was 

centrifuged over Fycoll-Hypaque (GE Healthcare, Uppsala, Sweden) at 650 g for 25 min and the 

pellet lysed to remove the remaining erythrocytes. It was then incubated with lysis buffer (5 min 



  4. RESULTS 

192 
 

at room temperature) and centrifuged at 240 g. Pellets containing leukocytes were then washed 

twice and resuspended in Hank’s balanced salt solution (HBSS; Sigma Aldrich, MO, USA). A 

Scepter 2.0 device (Millipore Iberica, Madrid, Spain) was employed for the cell count. The 

cellular suspension was split into two samples, which were treated under the same conditions 

with concentrations that did not affect the cells’ viability; one was incubated with SS-31 (100 

nM, 30 min), and the other with SS-20 (100 nm, 30 min, without antioxidant activity). 

 

2.5. PMN-Endothelium Interaction Assay 

PMNs were isolated as previously described by our group [20]. In this assay, we 

employed a 1.2 mL aliquot of PMNs obtained from the peripheral blood of control and T2D 

subjects with a density of 106 cells/mL in complete RPMI. Prior to this, primary cultures of 

HUVEC were established. HUVEC were isolated as previously reported [20]. On the day of the 

experiment, the PMNs aliquot was passed through the endothelial monolayer at a speed of 0.3 

mL/min during a 5-min period, which was recorded. Next, the number of rolling PMNs, as well as 

their velocity and adhesion to the endothelial monolayer were recorded. The number of rolling 

PMNs was measured as those rolling for 1 min (recorded on video). Velocity was assessed by 

determining the time in which 15 rolling PMNs covered a distance of 100 µm. Adhesion was 

analyzed by counting the number of PMNs adhering to the endothelium for at least 30 s in 5 

fields. 

 

2.6. Quantitative Fluorescence Microscopy 

Fluorescence probes 2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA; 5 × 10−6 

mol/L), MitoSOX (5 × 10−6 mol/L) and (acetyloxy)methyl ester (Fluo-4 AM; 1 × 10−6 mol/L) were 

used to assess total ROS, mitochondrial ROS and calcium levels, respectively. DCFH-DA is 

routinely used in intact cells, being taken up and deacetylated by endogenous hydrolases to a 

form (DCFH) that is then oxidized by peroxides to fluorescent 2,7-Dichlorofluorescein (DCF). 
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MitoSOX, a mitochondria-targeted dihydroethidium (by addition of a triphenylphosphonium 

group) is a probe widely used to detect mitochondrial superoxide. To perform these assays, 

isolated leukocytes were placed in 48-well plates and incubated for 30 min at 37 ◦C with the 

appropriate fluorochrome, diluted in phosphate-buffered saline (PBS; Sigma Aldrich, MO, USA). 

Fluorescence intensity was then recorded with a fluorescence microscope (IX81; Olympus 

Corporation, Shinjuku-ku, Tokyo, Japan) coupled to the static cytometry software “ScanR” 

(Olympus). Fluorescence units of these measurements were normalized with respect to the 

control group, in which the mean fluorescence units were considered 100%, and the data were 

relativized to that fluorescence value. Experiments were performed in duplicate and 16 images 

per well were obtained and analyzed obtaining a mean fluorescence value. The mean value of 

these two replicates of each sample was used for data representation and statistical analysis. 

Nuclei were detected with Hoechst 33342. All fluorochromes were supplied by Thermo Fisher 

Scientific, Waltham, MA, USA. 

 

2.7. Flow Cytometry 

ROS generation in human leukocytes was analyzed using whole blood by flow cytometry 

using DCFH-DA (5 × 10−6 mol/L) as marker dye. The distribution of different leukocyte subsets 

was analyzed in peripheral blood using a single staining (CD45), no-lyse no-wash method. CD45 

positive cells (marked with the fluorescent probe APC Mouse Anti-Human CD45, BD Biosciences, 

San Jose, CA, USA) and the morphological characteristics of the cells (FSC and SSC parameters) 

were used for determining the PMNs cellular subset as shown in previous work [40,41]. Briefly, 

200 µL of heparinized blood were incubated with 4 µL of CD45 monoclonal antibody for 20 min 

at room temperature in darkness, in the presence and absence of several treatments. For this 

assay, 500 µL of stained blood diluted 20-fold in PBS was incubated for 30 min at 37 ◦C with the 

fluorochrome DCFH-DA. Samples were acquired for 10,000 individual cells by BD AccuriTM C6 

Plus Flow Cytometer (BD Biosciences, San Jose, CA, USA) and ROS production was quantified by 
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median fluorescence intensities. 

 

2.8. Western Blotting (WB) 

Leukocyte pellets were homogenized and incubated on ice in cell lysis buffer for 15 min 

(10 mM HEPES pH 7.5, 10 mM NaCl, 2 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 0.5% Nonidet P-40, 

1 mM DTT, ‘Complete Mini’ and ‘Pefabloc’ protease inhibitor cocktail from Roche Diagnostics 

and phosphatase inhibitor mixture: 10 mM NaF and 0.1 mM Na3VO4); tubes were vortexed to 

disrupt the cell membranes and centrifuged at 4 ◦C for 10 min. The supernatants were stored at 

−70 ◦C till further use as cytoplasmic extracts. The pelleted nuclei were resuspended in the 

nuclear extraction buffer (25 mM HEPES pH 7.5, 500 mM NaCl, 9 % glycerol (v/v), 5 mM MgCl2, 

0.5 % Nonidet P-40, 1 mM DTT) supplemented with protease inhibitors (‘Complete Mini’ 

protease inhibitor cocktail, and ‘Pefabloc’, both from Roche Diagnostics) and 10 mM NaF as a 

phosphatase inhibitor, and were incubated on ice for 10 min under sonication. Nuclear extracts 

were collected by centrifugation for 10 min at 4 ◦C, and were either immediately used or stored 

at −70 ◦C. Protein concentration was determined with a BCA protein assay kit (Thermo Fisher 

Scientific, Waltham, MA, USA). Next, 25 µg proteins per sample were loaded onto SDS-

polyacrilamide gels. Gel electrophoresis was performed at 120 V, 90 min, followed by transfer to 

nitrocellulose membranes (Bio-Rad, Hercules, CA, USA) at 400 mA, for 1 h. After blocking at 

room temperature for 1 h in 5% non-fat milk in TBST buffer containing 25 mM Tris, 150 mM 

sodium chloride and 0.1% Tween20, at pH 7.5, membranes were incubated overnight at 4 ◦C 

with anti-GRP78 rabbit polyclonal antibody (Abcam, Cambridge, UK), anti- P-eIF2α (pS52) rabbit 

polyclonal antibody (Life Technologies, Carlsbad, CA USA), anti-Beclin-1 rabbit polyclonal 

antibody (Abcam, Cambridge, UK), anti-LC3 rabbit polyclonal antibody (Millipore Iberica, Madrid, 

Spain), anti-SQSTM1/p62 mouse monoclonal antibody (Abnova, Taipei, Taiwan) or anti-Actin 

rabbit polyclonal antibody (Sigma Aldrich, St Louis, MO, USA), followed by horseradish 

peroxidase (HRP) goat anti-rabbit (Millipore Iberica, Madrid, Spain) or HRP goat anti-mouse 
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(Thermo Fisher Scientific, Waltham, MA, USA) secondary antibodies as appropriate, for 1 h at RT. 

Protein expression was assessed with ECL plus reagent (GE Healthcare, Amersham Place, Litte 

Chalfont, UK) or Supersignal West Femto (Thermo Fisher Scientific, Waltham, MA, USA). A Fusion 

FX5 acquisition system (Vilbert Lourmat, Marne La Vallée, France) was employed for 

chemiluminescence signal detection, which was analyzed by densitometry using Bio1D software 

(Vilbert Lourmat, Marne La Vallée, France). For quantification of the expression level of the 

studied protein, an internal control was included in each blot and the expression was normalized 

to that of actin in the same sample. 

 

2.9. Quantitative RT-PCR (qRT-PCR) 

Total RNA was isolated from leukocytes with the GeneAll® RibospinTM kit following the 

manufacturer’s instructions (GeneAll Biotechnology, Hilden, Germany). RNA concentrations 

were measured using Nanodrop 2000c (Thermo Fisher Scientific, Waltham, MA, USA), and 1 µg 

of the extracted RNA was employed in the following steps. To detect the expression of genes 

involved in autophagy and ER stress, the RevertAid First Strand c-DNA Synthesis kit (Thermo 

Fisher Scientific) and KAPA SYBR FAST universal master mix (Applied Biosystems-Thermo Fisher 

Scientific, Walthman, MA, USA) were used. RT-qPCR analysis was performed with a 7500 Fast 

real-time PCR system (Life Technologies, Carlsbad, CA, USA) (Table 1). Fold changes were 

calculated by the 2−∆∆Ct method through Expression Suite software (Life Technologies) and 

relative gene expression of GRP78, DDIT3/CHOP, BECN1 and SQSTM/p62 was calculated using 

GAPDH as a housekeeping control. 
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Table1: Protocol details and primer sequences. 

qRT-PCR protocol 

Temperature 95ºC 95ºC 60ºC Melting 

Time 10 min 10 s 30 s curve 

Nº cycles 1 40  

PCR primers 

Target Direction 5’-3’ 

BECN1 
Forward CCCCAGAACAGTATAACGGCA 

Reverse AGACTGTGTTGCTGCTCCAT 

GRP78 
Forward AAGAACCAGCTCACCTCCAACCC 

Reverse TTCAACCACCTTGAACGGCAA 

DDIT/CHOP 
Forward AGAACCAGGAAACGGAAACAGA 

Reverse TCTCCTTCATGCGCTGCTTT 

GAPDH 
Forward CGCATCTTCTTTTGCGTCG 

Reverse TTGAGGTCAATGAAGGGGTCA 

SQSTM/p62 
Forward GATTCGCCGCTTCAGCTTCTG  

Reverse CTGGAAAAGGCAACCAAGTCC  

 
 

2.10. Statistical Analysis 

All data were analyzed with SPSS 17.0 software (SPSS Statistics Inc., Chicago, IL, USA). 

Values are expressed as mean and standard deviation (SD) for parametric data; while the 

median (25th–75th percentiles) is presented for non-parametric data. Bar graphs show mean 

and standard error of the mean (SEM) in the figures. 

In the case of the variables with normally distributed data, groups were compared with a 

Student’s t-test, while a Mann–Whitney U test was employed for non-normally distributed ones, 

and the chi-square test for proportion of frequencies. To examine the main effects of the 

treatment, the study groups were compared with one-way analysis of variance (ANOVA) 

followed by a Newman–Keuls post hoc test. In addition, the prominent influence of BMI was 

reduced by means of an analysis of covariance with a univariate general linear model. 

Differences were considered to be significant when p < 0.05, applying a confidence interval of 

95% in every comparison. Graphs were plotted with GraphPad Prism 4.0 (GraphPad, La Jolla, CA, 

USA).  
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3. RESULTS 

3.1. Clinical and Endocrine Parameters 

Our study was carried out in a population of 53 healthy volunteers (mean age 51.7 ± 9.3) 

and 61 T2D patients (mean age 55.1 ± 10.2), both of which groups had a similar gender 

distribution. The results of the anthropometric and analytical evaluations are shown in Table 2. 

As expected, an altered carbohydrate metabolism was observed in T2D patients in comparison 

with the control group, with glucose, HOMA-IR and HbA1c being significantly higher (p < 0.001). 

Moreover, the T2D group showed higher values for upper waist circumference (p < 0.01), SBP, 

weight, BMI, insulin and hsCRP levels (p < 0.001) than control subjects. Regarding lipid profile, a 

higher triglyceride concentration (p < 0.01) and lower HDL-c (p < 0.001) were characteristics of 

the T2D patients. However, due to lipid-lowering medication received, total cholesterol and LDL-

c levels were lower in the diabetic group than in healthy controls (p < 0.001) (56.9% were taking 

statins, 10.3% fibrates, and 3.4% ezetimibe). Given that BMI was significantly different in T2D 

patients, data were adjusted for this variable, but statistical differences remained similar. 

 

3.2. Leukocyte Function 

For assessing the influence of T2D and SS-31 treatment on one of the main functions of 

PMNs, which is interaction with the endothelial monolayer, we performed a parallel plate flux 

chamber assay. As stated in methods, PMNs were perfused through a monolayer of confluent 

endothelial cells for assessing those interactions. As shown in Figure S1, T2D enhanced the flux 

of leukocytes (Figure S1A), reduced its velocity (Figure S1B) which allowed them to adhere more 

to the endothelial monolayer (Figure S1C). When treated with SS-31, those interactions were 

significantly reduced. This result shows that leukocyte function is positively affected by SS-31 in 

T2D PMNs. SS-20 did not alter those parameters in any of the analyzed samples. 
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± 

Table 2: Anthropometric and analytical parameters. 

 
Data are shown as mean SD and were compared by a Student’s t test for parametric variables, while 

they are shown as median and were compared by a Mann–Whitney U test (25th and 75th 

percentiles) for non-parametric variables. A univariate general linear model was used to adjust 

changes for BMI. A Chi-Square test was used to compare proportions among groups. ns: not 

significant. 

  

 Control Type 2 Diabetes p-Value 
BMI-

Adjusted 
p-Value 

N 53 61 - - 

Male (%) 47.2 52.5 ns ns 

Age (years) 51.7 ± 9.3    55.1 ± 10.2 ns ns 

Weight (Kg)  72.9 ± 18.8    85.6 ± 15.5 p < 0.001 p < 0.001 

BMI (kg/m2)         25.8 ± 5.4          31.4 ± 5.6 p < 0.001 - 

Waist circumference (cm)  85.8 ± 13.2        104.0 ± 11.9 p < 0.001 p < 0.01 

SBP (mmHg)  23.3 ± 19.7        145.8 ± 14.8 p < 0.001 p < 0.001 

DBP (mmHg)  73.6 ± 10.9    74.2 ± 25.6 ns ns 

Glucose (mg/dL)  95.6 ± 13.6  154.0 ± 49.8 p < 0.001 p < 0.001 

Insulin (µUI/mL)  7.5 ± 3.6  16.3 ± 9.09 p < 0.001 p < 0.01 

HOMA-IR  1.7 ± 0.9    6.2 ± 4.6 p < 0.001 p < 0.001 

HbA1c (%)  5.3 ± 0.4    7.4 ± 1.6 p < 0.001 p < 0.001 

Total cholesterol (mg/dL)       198.8 ± 35.5  168.0 ± 37.7 p < 0.001 p < 0.001 

HDL-c (mg/dL)  57.3 ± 19.9  43.1 ± 9.2 p < 0.001 p < 0.001 

LDL-c (mg/dL)       122.1 ± 28.9    93.7 ± 30.6 p < 0.001 p < 0.001 

TG (mg/dL) 93.0 (26.5–150.5) 133.0 (94.0–170.0) p < 0.01 p < 0.01 

hsCRP (mg/L) 1.17 (0.46–2.40) 2.92 (1.88–6.39) p < 0.001 p < 0.001 
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3.3. Oxidative Stress: ROS Production 

Total (DCFH-DA fluorescence) and mitochondrial (MitoSOX fluorescence) ROS were 

considerably increased in leukocytes of T2D patients in comparison with control subjects (Figure 

1A,B; p < 0.001), and these effects were reversed by SS-31 (Figure 1A,B; p < 0.001, p < 0.01 

respectively) in leukocytes of T2D patients, while no differences were observed in controls. The 

SS-20 compound did not alter these oxidative stress parameters. The specificity of the observed 

response was corroborated by cytometry analysis of the effect of a positive control, rotenone, a 

well-known inhibitor of Complex I of the electron transport chain whose action induces 

mitochondrial superoxide production [42]. Incubation with whole blood from control subjects 

with rotenone (50 µM, 20 min) led to a major increase in total cellular ROS (detected by DCFH-

DA) and this effect was reversed with the treatment of both SS-31 and catalase (Figure 1D; p < 

0.05). Thus, our data show that SS-31 exerts an antioxidant action by reducing total and 

mitochondrial ROS production.  
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Figure 1. Effects of Szeto–Schiller (SS)-31 (30 min, 100 nM) on total and mitochondrial ROS 

production, and calcium levels in leukocytes from type 2 diabetes (T2D) patients and healthy 

subjects. (A) Reactive oxygen species (ROS) production, measured as deacetylated by endogenous 

hydrolases to a form (DCFH)-DA fluorescence. (B) Mitochondrial ROS production, assessed as 

MitoSOX fluorescence. (C) Calcium levels, determined as Fluo-4 fluorescence. Representative 

fluorescence microscopy images are also shown. (D) Analysis of total ROS levels, measured as DCFH-

DA fluorescence in leukocytes from healthy subjects upon a positive control treatment (rotenone, 

ROT) in the presence or absence of SS-31 or catalase (CAT) and representative cytograms of the 4 

groups stained with APC-CD45 and DCFH-DA. 10,000 cells were analyzed in each experiment. n = 6. * 

p < 0.05, ** p < 0.01 and *** p < 0.001 with regard to control group; ## p < 0.01 ### p < 0.001 vs. 

non-treated T2D group; a p < 0.05 vs. rotenone treatment  
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3.4. Calcium Levels 

In the T2D study population, intracellular calcium content—measured as Fluo4-AM 

fluorescence—was higher than in the control group (Figure 1C; p < 0.05), while under treatment 

with SS-31, calcium levels in T2D patients reached similar values to those in healthy subjects 

(Figure 1C; p < 0.01). The marked decrease of calcium content in the SS-31-treated T2D group in 

comparison with healthy volunteers may indicate an attenuation of ER stress in these patients 

given the fact that ER stress is often related to an increase in cytosolic calcium content SS-20 

treatment did not modify calcium content in any condition. 

3.5. Regulation of UPR Signalling 

ER stress markers were determined in order to analyze UPR activation in leukocytes 

from T2D patients and control subjects. A higher peak in GRP78 expression was observed in the 

T2D vs. control group (Figure 2A; p < 0.05); similarly, DDIT3/CHOP expression was augmented in 

T2D patients (Figure 2B; p < 0.05). Interestingly, SS-31 treatment reduced mRNA levels of both 

genes in leukocytes from T2D patients (Figure 2A, B; p < 0.05). Furthermore, the treatment with 

the mitochondria-targeted antioxidant SS-31 had no effect about protein levels of GRP78 and P-

eIF2α on leukocytes of control subjects (Figure 2C, D) while a reduction in these ER stress 

parameters was observed in leukocytes from T2D patients with T2D (Figure 2C, D; p < 0.05). 

None of these markers were altered by treatment with SS-20. 

These findings suggest that SS-31 can attenuate ER stress in the leukocytes of T2D 

patients. 
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Figure 2. Evaluation of endoplasmic reticulum (ER) stress parameters in leukocytes from T2D patients 

and controls in the absence and presence of SS-31 (30 min, 100 nM) (A) GRP78 expression. (B) 

DDIT3/CHOP expression. (C) GRP78 protein levels and representative western blotting (WB) images. (D) P-

eIF2α protein levels and representative WB images. * p < 0.05 with regard to control group # p < 0.05 vs. 

non-treated T2D group 
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3.6. Autophagy Assessment 

BECN1 gene expression were enhanced in leukocytes from T2D patients with respect to 

those of healthy controls (Figure 3A; p < 0.05), a trend that was reversed by treatment with SS-

31 (Figure 3A; p < 0.05). In leukocytes from T2D patients treated with SS-31, this trend was also 

accompanied by a significant reduction of protein expression of distinct markers of autophagy 

such as Beclin-1 and the ratio of LC3 II/I (Figure 3B, C; p < 0.05). p62 protein level was 

significantly lower in leukocytes from diabetic patients compared to controls, however its mRNA 

levels were more abundant in T2D patients which is indicative of enhanced autophagy. 

Treatment of leukocytes from T2D patients with SS-31 reversed the protein level of p62 (Figure 

3D; p < 0.05), while no changes were seen in the gene expression of SQSTM1/p62 suggesting 

that SS-31 can modify autophagy at protein level. On the other hand, no significant differences 

were observed in control group or with SS-20 treatment. These results provide some evidence 

that the mitochondria-targeted antioxidant SS-31 reduces parameters of autophagy in 

leukocytes from T2D patients. 
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Figure 3. Study of autophagy-related parameters in leukocytes from control subjects and T2D 

patients in the presence and absence of SS-31 (30 min, 100 nM). (A) BECN1 expression. (B) 

Beclin-1 protein expression and representative WB images. (C) SQSTM1/p62 expression (D) p62 

protein expression and representative WB images (E) LC3 II/I ratio of protein expression and 

representative WB images. * p < 0.05 with regard to control group, # p < 0.05 vs. non-treated T2D 

group. 
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3.7. Analysis of Pharmacologically Induced ER Stress and Autophagy 

Given that leukocytes from T2D display markers of ER stress and activated autophagy, 

and the observation that both effects can be alleviated with SS-31 treatment, we set to explore 

the connection between these processes. For this, we evaluated the capacity of SS-31 to 

interfere with pharmacologically induced ER stress (thapsigargin) and autophagy (rapamycin). 

Treatment with thapsigargin (1 µM, 20 min) produced a significant increase in the protein 

content of P-eIF2α and a slight increase in GRP78, however these effects were not impaired if 

cells were co-treated with SS-31 (Figure 4A, B). The sesquiterpene alkaloid thapsigargin, a highly 

selective inhibitor of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) prevents Ca2+ 

transport into the ER lumen, which leads to its subsequent increase in the cytosol, and promotes 

accumulation of unfolded proteins and perturbation of intracellular Ca2+ homeostasis [42]. On 

the contrary, SS-31 was able to prevent the increase in GRP78 protein content when it was 

induced by the mitochondrial inhibitor rotenone (Figure 4A), a finding that reinforces the ability 

of SS-31 to act as an antioxidant. Regarding autophagy, as expected, leukocytes from healthy 

subjects exposed to the pharmacological inducer rapamycin (0.5 µM, 30 min) displayed 

enhanced autophagy as evidenced by the incremented Beclin-1 and LC3 II levels (Figure 4C, D), 

and the diminished p62 protein content (Figure 4E). Rapamycin inhibits the mTOR complex, a 

central negative regulator of autophagy in the mammalian cell, thus triggering a strong 

autophagic response [42,43]. Importantly, SS-31 treatment had no effect on these alterations 

(Figure 4C–E), a finding that once more underscores the specificity of SS-31 action in the 

complex metabolic disturbances in leukocytes of T2D patients. We also evaluated autophagy 

induction in the cells exposed to rotenone and observed no increase in Beclin-1 and LC3 II levels. 

The protein levels of p62 were diminished; however, given the lack of changes in the LC3 II/I 

ratio the effect may be evidence of an autophagy-independent regulation. 

  



  4. RESULTS 

206 
 

 

 

Figure 4. Study of the expression of protein markers of ER stress and autophagy, induced 

pharmacologically in leukocytes from healthy controls, in the presence and absence of SS-31 

(30 min, 100 nM). (A) GRP78, (B) P-eIF2α, (C) Beclin1, (D) LC3 II/I ratio, and (E) p62. 

Representative WB images are also shown. * p < 0.05 with regard to control group; a p < 0.05 

vs. rotenone-treated group. n = 6. ROT, rotenone (50 µM, 20 min); TG, thapsigargin (1 µM, 20 

min); RAPA, rapamycin (0.5 µM, 30 min). 
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4. DISCUSSION 

 
Based on renewed concepts of T2D pathogenesis, the targets of a potential therapy for 

this chronic progressive disease include, not only glucose homeostasis correction, but also 

modulation of cellular stress and mitochondrial function in highly metabolic tissues, with the aim 

of attenuating IR and low-grade inflammation and ameliorating β cell function and mass, thus 

preventing the development of macro- and microvascular complications. 

In this sense, the mitochondrial antioxidant SS-31 has been described to exert protective 

effects in several disease models. Indeed, SS-31 has previously been reported to attenuate renal 

injury in diabetic nephropathy through an antioxidant effect [44]. Furthermore, Zhu et al. have 

demonstrated that SS-31 attenuates the severity of lung damage by modulating mitochondrial 

dysfunction in a mouse model of spinal cord injury [45]. However, the exact pathophysiological 

mechanism involved in the protective effects of SS-31 on leukocytes in T2D is not fully 

understood. For this reason, the present study was designed to evaluate whether SS-31 can 

modulate oxidative stress, ER stress and autophagy in leukocytes of T2D patients, three 

important pathways involved in the development of T2D. 

The pathophysiology of T2D is associated with an impairment of β cell function and, 

consequently, IR, a hallmark of this disease [46]. Nevertheless, whether cell failure is a primary 

cause of T2D or secondary to associated long-term metabolic abnormalities is yet to be 

confirmed, though increased oxidative stress, ER stress and autophagy are thought to be 

involved [47]. In fact, previous studies have suggested that alterations in ∆Ψm disturb 

mitochondrial dynamics, eventually promoting a failure in glucose-stimulated insulin secretion 

[48]. Moreover, our group has previously demonstrated oxidative stress and mitochondrial 

dysfunction in leukocytes from T2D patients [49]. In this sense, SS-peptides can scavenge ROS, 

and these molecules have been shown to exert beneficial effects against mitochondrial 

dysfunction [19,50]. SS-31 protects mitochondria against oxidative damage by accumulating in 
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the inner mitochondrial membrane, a location close to the site of ROS production. In fact, after 

crossing the mitochondrial outer membrane, SS-31 associates with cardiolipin, an anionic 

phospholipid expressed exclusively in the inner mitochondrial membrane. Furthermore, SS-31 

seems to protect cristae architecture by alleviating mitochondrial oxidative stress and 

preventing cytochrome c peroxidase activity [17,19]. 

In the present study, we have found that the leukocytes of T2D patients have functional 

alterations compared to those of control individuals, as shown in Figure S1. SS-31 is able to 

rescue the parameters of leucocyte–endothelial interactions, which confirms that SS-31 can 

modulate leukocyte function. The fact that the effects can be ameliorated with SS-31 but not 

with SS-20 shows that the alterations of the leukocyte function in T2D leukocytes can be due to 

the high levels of total and mitochondrial ROS levels compared to controls. Fluorescent probes 

are widely used for ROS detection in biological systems; DCFH–DA has been suggested as a 

relatively specific probe for H2O2, while dihydroethidium seems to be more suitable for 

superoxide. However, abundant evidence over the past years has shown that all fluorescent 

probes for ROS detection suffer a lack of selectivity given that they react with various types of 

ROS, and therefore in living cells or tissues they are generally used for detecting total oxidative 

activity. In order to reaffirm our findings, we have employed two fluorescent probes and verified 

the specificity of the detection by studying a positive control of mitochondrial ROS generation, 

rotenone. One of the leading hypotheses regarding the onset of IR is that enhanced ROS 

production triggers ER stress, which leads to activation of the UPR. In relation to this, ER stress is 

considered a target mechanism under IR conditions. An association between IR and 

mitochondrial abnormalities, such as lower numbers of mitochondria, reduction in 

mitochondrial oxidative enzyme activity or mitochondrial dysfunction, have been reported in 

human studies [51,52]. Furthermore, it has been described that ER stress is related to apoptosis 

in leukocytes from T2D patients [53]. In addition, a study by Sage et al. demonstrated that levels 

of ER stress markers such as GRP78, sXBP1 and CHOP correlated positively with glucose levels in 
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leukocytes from patients with metabolic syndrome [54]. In line with such data, we have shown 

in previous studies that leukocytes from T2D patients exhibit increased ER stress markers which 

display enhanced GRP78, P-eIF2α and ATF6 protein levels [35]. Interestingly, the present study 

shows that SS-31 treatment in leukocytes from T2D patients reduces GRP78 and P-eIF2α protein 

levels, and GRP78 and CHOP mRNA levels, suggesting that this molecule could promote the 

restoration of cell homeostasis to battle ER stress. The reduction of intracellular calcium levels 

under treatment with SS-31 described in the present study could also be indicative of lower ER 

stress compared to untreated T2D leukocytes, but these data need to be considered with 

caution given that with our methodology we cannot determine the subcellular source of 

increased calcium. This idea is further enforced by the fact that SS-31 did not alleviate ER stress 

triggered by other types of stimuli such as thapsigargin, an ER stressor with a direct effect on ER 

calcium homeostasis. 

ER stress can also induce autophagy, and in this sense Gonzalez et al. have described 

that cleavage and lipidation of microtubule-associated protein LC3 I into LC3 II is mediated by 

the phosphorylation of PERK/eIF2α [55]. Importantly, we have previously demonstrated in 

leukocytes from T2D patients that UPR activation occurs in parallel with autophagy [35]. The 

present study describes an increase in Beclin-1 and LC3-II levels in T2D patients compared to 

controls which is indicative of increased generation of autophagosomes. As this occurs 

concomitantly with a decrease in p62 protein levels, we believe that it may suggest an increase 

in the autophagic clearance. Nevertheless, the results presented are not sufficient as to state 

that autophagy is not only induced but also active/functional in T2D patients. 

The expression levels of autophagy-related parameters are significantly decreased in 

leukocytes of T2D patients under SS-31 therapy. In contrast, p62 protein expression, which is 

involved in aggresome formation and is itself degraded through autophagy, was increased in 

leukocytes from T2D patients by addition of SS-31. Of note, this was not due to changes in the 

gene expression of SQSTM1/p62 suggesting rather a SS-31 effect on autophagy. Our results 
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support the existence of cross-talk between oxidative stress and autophagy in T2D [56], as SS-31 

treatment of leukocytes of T2D patients reduces mitochondrial ROS production, which seems to 

prevent the increase induced by autophagic biomarkers. The specificity of this effect was shown 

by the fact SS-31 lacked the capacity to prevent the autophagic process induced by the 

pharmacological inducer of autophagy, rapamycin. As shown in many reports, rapamycin does 

not increase intracellular ROS levels (or can even diminish them) which is in keeping with our 

conclusion of SS-31 interfering with the autophagy observed in leukocytes from T2D patients 

through its capacity to scavenge mitochondrial ROS. 

A link between ER stress, ROS production and autophagy could also be established 

considering the implication of cardiolipin in mitochondrial function including calcium buffering 

and mitophagy [57–60]. Given that in this work intracellular calcium levels in leukocytes from 

diabetics are enhanced concomitantly with increased presence of total and mitochondrial ROS, 

we could speculate that cardiolipin might be altered. With this and considering that SS-31 is a 

ROS scavenger that binds cardiolipin, we can speculate that cardiolipin may be involved in the 

effects exerted by SS-31. It could act as a regulator of mitophagy, explaining the reducing effect 

on autophagy seen in our work and could also affect calcium handling by mitochondria. It is 

widely known that calcium levels influence leukocyte function [61,62] and this occurs through 

NLRP3 signaling and the regulation of calmodulins and GTPases which participate in crucial 

processes in leukocytes such as innate defense and transmigration. Both aspects could reinforce 

SS-31 as a mitoprotective molecule that prevents leukocyte dysfunction. The effect of SS-31 on 

cardiolipin in this model and its relation to mitophagy seems a promising idea that needs to be 

explored in future studies. 

It is important to mention that a possible limitation of this study are the potential 

interactions, synergisms, or detriments that may arise when studying or implementing novel 

drugs like SS-31 in a background affected by other medications such as statins. In this sense, 

previous research has stated that statins can have both detrimental [63–66] and beneficial 
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effects [67–77], often unrelated to their lipid-lowering effect and rather associated with their 

pleiotropic actions. The variation of the effect is explained by the type of statin, the dose, the 

combination with other treatments and the experimental model. However, to our knowledge, 

there are no reports about the interference of statins with SS-31 when applied in combination, 

in patients or in animal studies. 
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5. CONCLUSIONS 
 
In summary, our findings reveal a potential protective effect of novel SS-31 therapy in 

diseases with increased oxidative and an ER stress state such as T2D. It is important to highlight 

that mitochondrial accumulation of SS-peptides does not depend on alterations of ∆Ψm, which 

represents a major advantage to respect to other antioxidants [78–80]. The discovery of novel 

potential therapeutic strategies based on mitochondrial biology is key to future treatments, but 

further research is essential. The SS-31 peptide in particular represents a possible approach, 

through targeted delivery of antioxidants to mitochondria. In fact, in the present study we have 

demonstrated that SS-31 reduces ROS and could modulate ER stress and autophagy, key 

molecular pathways in cellular homeostasis, suggesting that this compound may exert beneficial 

effects that can be channeled for the treatment of T2D. Further investigations including clinical 

trials are required to elucidate these and other important mechanisms underlying the actions of 

SS-31 in treatment of T2D. 
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Supplementary Materials:  

The following are available online at http://www.mdpi.com/2077-0383/8/9/1322/s1, 

Figure S1: Leukocyte-enfothelium interaction evaluation under SS-31 and SS-20 treatment. 

 

 

Figure S1. Leukocyte-enfothelium interaction evaluation under SS-31 and SS-20 treatment. 

(A) Number of rolling PMNs in 1 min, (B) velocity of this rolling PMNs and (C) PMNs adhesion to the 

endothelial monolayer. * p < 0.05 with regard to control group; ## p < 0.01 ### p < 0.001 vs. non- treated 

T2D group. 
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Recent lifestyle changes have led our society towards more sedentary habits and 

unhealthy nutrition patterns. Hence, overweight and obesity have become a worldwide 

pandemic, raising the prevalence of metabolic alterations as T2D. These alterations have a 

striking impact on overall health and increase the risk of cardiovascular disease and premature 

death. Therefore, understanding the mechanisms that underlie the development of T2D and its 

subsequent complications is vital for preventing their evolution. In addition, determining the 

therapeutic effects of antidiabetic treatments at the cellular level might help to develop new 

therapeutic strategies or improve those that already exist.  

 

1. Anthropometrical data analysis of T2D and healthy subjects 

 

In general, the recruited T2D patients were around 60 years-old with an average T2D 

duration of 10 years since diagnosis. All patients were under nutrition and lifestyle supervision to 

prevent sedentarism and malnutrition. Most were being treated with antidiabetic treatments, 

metformin being the most common; however, statins and antihypertensives were also 

prescribed frequently, and can be consulted in the supplementary table in chapter 2.  

 It is relevant to outline that T2D patients presented high BP. Hypertension is part of the 

aggravating factors that cause the increased cardiovascular risk associated with T2D 652. The 

influence of high BP on cardiovascular risk is not limited to T2D, as rises in BP have been related 

to a increase in the CIMT, not only in T2D, but also in healthy subjects 653. However, the impact 

of hypertension is greater in T2D, as analyzed in a retrospective work studying the Framingham 

cohort and its offspring. The research in question showed that T2D hypertensive subjects had a 

57% greater chance of having any cardiovascular event than normotensive T2D subjects 654. 

Although high BP and T2D are related, it is difficult to determine what the trigger of each is. 

Nevertheless, it is known that a positive feedback loop exists between T2D and hypertension, 
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and that the triggering mechanisms for both of them are similar. Vascular calcification, 

activation of the renin-angiotesin system, and vascular remodelling are common consequences 

of T2D and hypertension, which culminate in microvascular and macrovascular damage 655. 

However, lifestyle intervention can have a striking impact on lowering BP, which significantly 

reduces the risk of future complications 656. Thus, reducing hypertension is a relatively easy 

approach for lowering cardiovascular risk in T2D.  

 T2D is also characterised by overweight and obesity, as indicated by the significantly 

increased BMI and waist circumference we observed in our patients with respect to the healthy 

subjects. The increases in BMI and waist circumference were associated with alterations in lipid 

metabolism. In order to explain whether the differences in inflammation and lipid metabolism 

were due to the increased BMI, we adjusted the significance for BMI. As a result, most of these 

alterations lost their statistical significance, meaning that weight increase explained most of the 

differences. This suggests that the changes in inflammation and lipid are not detectable or that 

lipid-lowering treatments were masking increased inflammation, an aspect that needs further 

research.  

 

2. Characteristic T2D alterations in glucose metabolism markers 

 

 The biochemical data obtained from the samples isolated from T2D patients and healthy 

volunteers reflected alterations in glucose homeostasis in the T2D patients. The main alterations 

were increased fasting glucose levels and a rise in HbA1c%, which were significantly higher than 

levels in the healthy population. Moreover, hyperinsulinemia and IR was also reflected by the 

high HOMA index. These alterations reflect the classic metabolic imbalances in T2D populations, 

namely hyperglycaemia and hyperinsulinemia, which confirms that the analyzed cohorts had the 

diagnostic traits of T2D.  

 Hyperglycaemia has been studied as a cause of the cardiovascular alterations that can 
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lead to later complications, with AGEs being one of the most important factors 86,125,128. Hence, 

maintaining a good glycaemic control by monitoring HbA1c% levels is of vital importance to 

prevent future cardiovascular complications 657–659. In chapter 2 of the present thesis, we 

established a HbA1c% threshold of 6.5%, as recommended by clinical guidelines and the criteria 

for diagnosis for T2D, as it is a turning point in the development of T2D cardiovascular 

complications 6,660–662. In line with the results obtained in chapter 2, which showed that 

HbA1c%>6.5% is related to a higher CIMT and inflammation, several studies confirm that high 

HbA1c% or/and a poor glycaemic control lead to more vascular complications and debilitated 

endogenous antioxidant defences 663,664. Monitoring glycaemic levels has other benefits, such as 

regulating cellular stress processes including mitochondrial dysfunction, ER stress and 

inflammation, as shown by previous research by our group 243,313,665. All these data confirm that 

controlling HbA1c% is a useful tool and an easy approach to prevent T2D-related cellular 

alterations, which can lead to a reduction of T2D complications 666 and therefore improve the 

patient´s quality of life .  

 

3. Assessment of T2D lipid metabolism parameters 

 

 Overweight-related biochemical and anthropometrical dysbalances are rooted in the 

cellular alterations found in T2D or obese patients. The origin is found in adipocytes, which, in a 

hypercaloric situation, internalize circulating lipids and store them in the lipid droplets until they 

become hypertrophic. Under IR, adipocytes enter into a catabolic metabolism that involves 

lipolysis, increasing plasmatic lipid concentrations and leading to hyperlipidaemia 43. This 

positive feedback loop between lipids and IR will continue to cause adipose hypertrophy until 

one of these factors is limited by pharmacological or lifestyle interventions.  

 It has been demonstrated that increased circulating lipids can activate endothelial cells, 

thus leaving the endothelium prone to develop atherosclerotic lesions 667,668. Furthermore, in a 
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hyperlipidemic environment, another factor that results in atherosclerotic lesions is the 

presence of atherogenic dyslipidaemia, a term which comprises a rise in small and dense LDL-c 

particles, high TG and decreased HDL-c levels. Indeed, we observed some of these alterations 

(elevated TG and low HDL-c) when there was a rise in LDL-c. These alterations were correlated to 

an enhanced CIMT, which suggests increased cardiovascular risk in such patients. In agreement 

with this idea, the EURIKA cross-sectional analysis found that most T2D patients presented 

atherogenic dyslipidaemia, despite most of them being undiagnosed and untreated 669. 

Atherogenic dyslipidaemia, especially the undiagnosed subset, can lead to more cardiovascular 

complications and premature death, so proper monitoring and treatment of T2D patients is 

important. The most common therapeutic approach for tackling atherogenic dislipidaemia is a 

combination of lifestyle changes and pharmacological treatment with statins (for lowering 

cholesterol synthesis), ezetimibe or fenofibrates 670. The high statin prescription in our study 

cohorts may explain, in part, our results showing that lipid profile was unaltered or even 

improved with respect to the control group. Specifically, the analyzed patients presented lower 

total cholesterol and less LDL-c, despite displaying traits of atherogenic dislipidaemia such as 

higher TG and lower HDL-c. The results remained unaltered regardless of the metformin 

treatment referred to in chapter 4 or the glycaemic control administered in chapter 3, 

suggesting that there is a metabolic change which needs sustained lifestyle changes and 

pharmacological treatment in order to be reversed. Despite our results, obtained in a relatively 

small number of patients without follow up, most studies confirm that a correct and strict 

glycaemic control, weight control, lifestyle supervision and specific lipid-lowering treatment are 

vital approaches for preventing T2D complications 671.  
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4. Presence of IR in T2D subjects 

 

 The metabolic consequence of chronic hyperglycaemia and hyperlipidaemia is the 

development of IR 43. Insulin-dependent and -independent tissues present imbalances in insulin 

signalling and nutrient intake, which induce more profound cellular alterations, such as energetic 

imbalances and ROS production 43,672,673. A useful index for measuring IR is the Homeostatic 

assessment model of IR (HOMA-IR) which takes into account insulin and glucose levels to 

calculate the presence of IR and its degree 674. The cut-off values vary depending on the 

population, and also on whether the patient presents T2D or not, ranging between 1.6 to 3.8 in 

the healthy population and from 2 to 3.8 in T2D patients 675–679. In our studied cohorts, the 

healthy volunteers presented a HOMA-IR ranging from 1.6 to 1.71; and in T2D, from 3.72 to 6.9. 

These levels corroborate that all our study cohorts presented established IR. Glycaemic control 

also seemed to influence IR, as poorly controlled patients had higher a HOMA-IR index than the 

closely controlled ones, indicating a possible relationship between glycaemic control and HOMA-

IR, as already proposed  680. The relationship between IR and glycaemic control is deeply rooted 

in the cellular alterations underlying the physiopathology of T2D 43. Initially, nutrient excess can 

lead to mtROS production and blunting of insulin signalling 132. The proposed mechanism for this 

alteration is the mtROS-dependent inhibition of Akt/IRS insulin signalling through PKC 102. 

Therapeutic approaches to reduce ROS have shown improvements in IR in different 

experimental models. One approach is to reduce mtROS with mitochondria-targeted catalase 

(mCAT) , which was shown to improve insulin sensitivity and glucose tolerance 102. Similarly, 

inhibition of NOX4 in adipose tissue from mice on a high fat and high sucrose diet reduced IR and 

inflammation 110. Regarding inflammation, it is important to highlight, as previously mentioned, 

that numerous studies link it to IR and demonstrate its capacity to blunt IR signalling 681,682. Such 

evidence shows that IR is triggered and maintained by an altered cellular environment like that 

present in T2D, and is characterized by hyperglycaemia, hyperlipidaemia, hyperinsulinemia and 
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inflammation. 

5. Leukocytes as a cell model in T2D research 

 

 Among all the hallmarks of T2D, one of the most studied is inflammation in the form of 

chronic low grade inflammation. Given this background, we decided to study leukocytes, the 

main cell type mediating the inflammatory response. In this context, immune cells sense T2D 

metabolic alterations, as they are exposed to the chronic hyperglycaemia and hyperlipidaemia, 

and in response they produce proinflammatory cytokines. Simultaneously, they are also exposed 

to the proinflammatory background produced by alterations in metabolically active tissues 

(adipose tissue, muscle or liver). Hence, leukocytes are highly exposed, sensitized and responsive 

to the plethora of metabolic changes in T2D. This has been demonstrated in different studies 

that have demonstrated leukocyte activation by hyperglycaemia, such as the clinical trial carried 

out by de Vries et al 683. Specifically, in PBMCs from T2D patients, the production of 

proinflammatory cytokines and the expression of the key inflammatory transcription factor NFκB 

are enhanced 517. When these cells are under conditions of hyperglycaemia, the JNK pathway 

and OXPHOS complex expression are altered, which could explain the increase in the 

inflammation related to ROS production 519. Other proinflammatory signalling pathways 

activated under hyperglycaemic damage, such as PKC-p66shc, are associated with macrovascular 

complications in T2D 684.  

 Far from affecting only PBMCs or specific leukocyte subpopulations, activation caused by 

T2D-related insults is seen in all hematopoietic lineages, and affects neutrophils, macrophages 

and lymphocytes 685. In paticular, hyperglycaemia-dependent activation of neutrophils promotes 

the appearance of thrombotic events through hepatic production of coagulation factors and 

proinflammatory cytokines 686. As we have mentioned previously, the most studied 

proinflammatory cytokines in the context of T2D are TNFα, IL-6 and IL-1β, which accumulate in 

the bloodstream and trigger inflammatory responses in the neighbouring tissues. Endothelial 
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cells are deeply affected by them and, in a hyperglycaemic state, they are activated producing 

adhesion molecules as selectins, ICAM-1 and VCAM-1. This generalised activation causes the 

interaction of leukocytes with the endothelium, which is enhanced under hyperglycaemic states 

687.  

 Leukocytes from T2D patients are very sensitive cells and, apart from inflammation, 

display enhanced oxidative stress, ER stress and an altered antioxidant response 293. All this 

evidence, together with the easy isolation method and almost non-invasive method for 

obtaining the sample, make leukocytes a suitable model for studying T2D and related molecular 

alterations.  

 

6. Chronic low grade inflammation and early markers of atherosclerosis 

 

 In the T2D background, adipocytes secrete proinflammatory cytokines and chemokines 

that recruit macrophages, which favour the proinflammatory environment 512,688,689. Previous 

studies have outlined the value of proinflammatory molecules (TNFα, CRP, IL-6) as predictors of 

either development of T2D, a worse prognosis, 690 or atherosclerosis 691. The progressive 

increase in the levels of tissular and circulating proinflammatory molecules causes a generalised 

state of low-grade inflammation that predisposes metabolically active organs to develop IR. 

 Some studies suggest that low-grade inflammation, assessed by the markers CRP and IL-

6, begins before T2D onset and can be employed as T2D risk markers. These markers were 

assessed, together with TNFα, during a 2-year retrospective analysis, demonstrating themselves 

to be good predictors of T2D onset 690 692,693. At the cellular level, those cytokines activate 

proinflammatory pathways such as JNK and NFκB, which inhibit insulin signalling and contribute 

to IR 694. For instance, IL-6 impairs the vasodilator properties of endothelial cells by JNK and ERK 

inhibition of insulin signalling to eNOS 695. Similarly, the proinflammatory cytokines TNFα and IL-

1β promote apoptosis in pancreatic β cells by triggering NFκB signalling 520. The existing 
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knowledge of the proinflammatory background in T2D led us to analyse whether these 

proinflammatory molecules were present in the analyzed cohorts of T2D patients.  

 In our results, levels of hsCRP were higher in the serum samples from T2D patients. 

Although in our study the changes in hsCRP seem to be caused by T2D, other research has 

suggested that overweight is the common cause of the hsCRP rise in both metabolic syndrome 

and T2D 696,697. 

 Given that hsCRP confirmed that the analyzed patients presented increased 

inflammation, we continued our analysis by testing the molecules related with chronic 

inflammation. Therefore, we measured serum concentrations of TNFα and IL-6 in healthy and 

T2D patients. As expected, we observed that T2D patients had higher levels of both cytokines. In 

this sense, recent research found that those higher levels could be explained by the induction of 

TNFα and IL-6 expression exerted by IL-32, a proinflammatory cytokine secreted by leukocytes in 

situations of chronic inflammation and whose secretion peaks when there is cardiometabolic risk 

698,699. This observation would explain the increase in the levels of TNFα and IL-6 observed in 

poorly controlled T2D patients with respect to those with a correct glycaemic control.  

 Focusing our attention on TNFα, it is one of the most studied cytokines because of its 

presence in inflammation-based diseases. TNFα signals through TNRF, which inhibits JNK and 

activates NFκB, resulting in the inhibition of insulin signalling and increased inflammation in a 

T2D setting. Additionally to affecting insulin signalling, TNFα reduces the externalization of 

GLUT4 channels in insulin-sensitive tissues, hindering the regulation of glucose intake 681. TNFα 

does not only play an important role in IR, but also predisposes to and aggravates T2D 

cardiovascular complications. Indeed, the T2D patients with poorer glycaemic control analyzed 

in chapter 2 had higher levels of TNFα, as observed in a previous correlation study 682. 

Furthermore, it was observed in a small cohort study that TNFα correlated with several markers 

of cardiometabolic risk, leading to this cytokine being proposed as a marker for preventing 

diabetic complications 700. An alternative approach - measuring sTNFR – was found to be useful 
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as a marker of diabetic kidney disease in the CARDIPP study, which analyzed a cohort of T2D 

subjects 701. All these pieces of evidence allow us to conclude that assessing TNFα serum 

concentrations might be a good marker of inflammation-related diseases with cardiovascular 

risk, as suggested by our data.  

 Regarding IL-6, its function as a T2D marker is almost established; however, there is still 

debate surrounding the different reported effects of IL-6 in cellular and animal models 504. 

Indeed, a study has shown two different behaviours of this cytokine depending on the cell type: 

IL-6 secreted by myeloid cells from adipose tissue induces accumulation of macrophages 

through classic IL-6 receptor signalling; but if secreted by muscle or adipocytes, IL-6 induces 

macrophage accumulation through a non-canonical pathway in which soluble IL-6 receptor is 

involved 702. This cytokine also has been seen to have influence in the insulin signalling pathway, 

as observed in endothelial cells and hepatocytes, where IL-6 stimulates JNK signalling, thus 

inducing IR 695,703. In contrast, IL-6 has a protective function in pancreatic β cells, preserving its 

capacity of secreting insulin through activation of autophagy and induction of proliferation 429,704. 

The protective mechanism of IL-6 in pancreatic β cells might imply the transcription factor 

STAT3, through a signalling pathway which is hampered in T2D 429. We observed that IL-6 serum 

concentrations rise in T2D patients, and that the difference is even more marked in those that 

are poorly controlled. The relationship between IL-6 and poor glycaemic control is still under 

debate, despite a recent metaanalysis showing that IL-6 levels and glycaemic control were 

positively associated 705. Regarding the contribution or association of IL-6 to cardiovascular 

events, increases in IL-6 levels are related to increased coronary artery disease risk, but a direct 

causal relationship has not been established 706. Based on all these data, the contribution of IL-6 

would seem to be limited; however, it can act as a marker of cardiovascular risk, as assessed in 

the previously mentioned studies, and reflected by the increased HbA1c% in our samples.  

 The proinflammatory state and previously discussed alterations have an impact on the 

function of whole organs and tissues 707,708. The most damaged tissues are those independent of 
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insulin-dependent glucose uptake, such as the peripheral nervous system, kidney and retina; and 

those originating in the malfunction of the vascular wall, due to the presence of the 

atherosclerotic plaque. Based on this classification, T2D causes microvascular and macrovascular 

complications 707.  

 In this thesis, macrovascular complications were assessed using three different 

approaches: analysis of vascular inflammation, assessment of leukocyte-endothelium 

interactions, and measurement of the CIMT. The first analysis that we performed was to 

examine the inflammatory state of the patients’ vasculature by measuring serum levels of 

proinflammatory cytokines (already discussed) and the adhesion molecules ICAM-1, VCAM-1 and 

P-Selectin. In this sense, we observed an increase of both integrins (VCAM-1 and ICAM-1) in T2D 

vs control subjects, but no differences were found with respect to P-selectin. When we divided 

the T2D group depending on its glycaemic control, poorly controlled patients had higher levels 

than their properly controlled counterparts, whereas only VCAM-1 levels from poorly controlled 

patients were significantly higher than those from healthy or properly controlled subjects. This 

result indicates that, when established for at least 5 years, TD2 causes a relatively high level of 

inflammation, reflected by an increase in VCAM-1 and ICAM-1 serum concentrations. Moreover, 

patients who do not achieve glycaemic goals had higher concentrations of serum VCAM-1 and 

ICAM-1 than those with an adequate HbA1c%.  

 ICAM1 has been endorsed as a reliable marker of subclinical atherosclerotic risk 

assessment in T2D 709. Its reduction diminishes the incidence of atherosclerotic lesions in ApoE-/- 

mice fed a HFD, underlining the relevance of this adhesion molecule in the atherosclerotic 

process 710,711. Indeed, ICAM-1 inhibition is an effective approach for reducing atherosclerotic 

lesion development, as observed in different studies for determining the mechanisms behind 

resveratrol protective effect. 712,713. However, ICAM-1 might also be important in the early stages 

of T2D development, as Odegaard et al. showed that rises of ICAM-1 and other proinflammatory 

cytokines precedes the onset of T2D 714. Our results might reflect this early increase in the levels 
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of ICAM-1 in well-controlled patients, while those of VCAM-1 showed no differences. T2D 

pathogenic mechanisms other than atherosclerotic lesion formation can also upregulate ICAM-1 

expression in endothelial cells, namely: AGEs, 715 ROS, 714 ER stress 716 and autophagy 717. 

Collectively, these data lead us to suspect that ICAM-1 expression begins with the first metabolic 

alterations before the development of T2D, and progressively contributes to the incremented 

cardiovascular risk in T2D. 

 VCAM-1 has been suggested as a good marker of cardiovascular complications in T2D 718. 

In T2D patients, higher levels of VCAM-1 were found to be present in patients with worse 

glycaemic control, who might have been at risk of cardiovascular complications. Similar findings 

were determined in a small case-control study in which poorly controlled patients displayed 

higher VCAM-1 serum levels 719. In this sense , VCAM-1 has been proposed as a novel biomarker 

of cardiovascular risk, specifically as a predictor of atherosclerotic lesion formation in T2D 

patients 720. The same finding was observed in a study performed by Hegazy et al. in which 

cardiovascular risk in T2D patients was associated with VCAM-1, but not with ICAM-1 or E-

selectin 721. The increase of VCAM-1 associated with an increment in cardiovascular risk can be 

explained by endothelial cell activation. As explained in the introduction, the second phase of 

endothelial activation induces the expression of integrins that facilitate the attachment of 

immune cells. As ICAM-1 and VCAM-1 are both integrins, it is feasible that these molecules are 

expressed simultaneously, so that a similar risk is predicted with both molecules. The differences 

observed in this thesis could be attributed to particularities in the expression of each of the two 

adhesion molecules in the different vascular tissues, as previously suggested by Kanda et al., 

who reported that VCAM-1 was more expressed in arteries 722. This could be the reason why 

another study found an overexpression of VCAM-1 but not ICAM-1 in arterial tissue from 

atherosclerotic T2D patients 723. Similar results were observed in LDLR -/- mice under HFD, a 

model of atherosclerosis lesion development; under impairment of the immunoglobulin domain 

of VCAM-1, the animals did not develop an atherosclerotic lesion, in contrast to their control 



  5. DISCUSSION 

232 
 

littermates 724. This effect was not accomplished with ICAM-1 impairment, proving that VCAM-1 

has a much greater influence on atherosclerotic event development than ICAM-1 724. VCAM-1 

has not only been associated with macrovascular complications, but also with microvascular 

complications such as nephropathy 725 or retinopathy 726. Indeed, VCAM-1 has been established 

as an independent risk factor for cardiovascular mortality, and is slightly associated with the 

presence of T2D 727. Altogether, these data support our results showing increased levels of 

soluble inflammation markers characteristic of T2D patients, which were higher even in poorly 

controlled patients.  

 In the second approach, we evaluated the interactions of leukocytes from T2D and 

healthy subjects with a cultured monolayer of HUVECs seeded until confluence. This system is 

known as as parallel-plate flow chamber, and has been employed as an in vitro approach of 

analyzing the different steps of the immune infiltration or the formation of the atherosclerotic 

plaque 728–730. With this system, we evaluated how leukocytes interacted through their adhesion 

molecules with those on the endothelium, thus allowing interaction, rolling or adhesion. The 

analysis of these intercellular interactions is relevant due to their implication in the formation of 

the atherosclerotic plaque. In a pro-inflammatory hyperlipidaemic and hyperglycaemic 

background, endothelial cells are activated and promote the malfunctioning of the vascular wall. 

Those dysfunctional endothelial cells will secrete prothrombotic, vasoconstricting and 

hypertensive cytokines and molecules, thus leading to a dysfunctional leukocyte circulation 731. 

Moreover, as these cells have active proinflammatory pathways, such as NFκB, they express 

adhesion molecules as selectins and integrins 732. On the other hand, immune cells are primed by 

the hyperglycaemia and hyperlipidaemia and by the proinflammatory cytokines secreted by 

metabolically active tissues, such as adhesion molecules 683,685.  

 These enhanced levels of adhesion molecules seem to lead to an increment in the 

adhesiveness of immune cells to the activated endothelium, which we assessed with the 

parallel-plate flow chamber model. We observed an increase in the interactions of the samples 
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isolated from T2D patients, in which there were more rolling and adhering leukocytes that 

flowed more slowly than in healthy samples. In this sense, our group had previously observed 

the same rise in interactions with T2D leukocytes 164,243, but we associated a worse glycaemic 

control to an increase in the number of rolling leukocytes 243. This could be attributed to 

differences in the characteristics of the cohort recruited for the different studies, whose 

biochemical profile or baseline characteristics might have differed slightly. However, our results 

are in line with those of an in vitro study which employed oxLDL-stimulated THP1 and analysed 

their interaction with HUVECs 733. The results were contrasted in in vivo mice models of T2D – 

namely, adiponectin deficient mice - in which it was revealed that adiponectin deficiency 

induced an increase in leukocyte-endothelium interactions 734. This deficiency is also present in 

T2D subjects; therefore, it is possible that a lack of adiponectin contributes to the increment in 

the interactions that we assessed. The mechanism behind increased leukocyte adhesiveness is 

based on the endothelial dysfunction that creates a prothrombotic, pro-inflammatory and 

proatherogenic scenario. Precise mechanisms of endothelial dysfunction in a T2D endothelium 

might involve PKC activation 491,735,736, the NFκB pathway and NO production 569,570,575. In this 

thesis, and in previous work, we have witnessed an increase of NFκB in leukocytes from T2D 173. 

However, the state of PKC and NO production have not been described in detail, and might be 

an interesting research topic for future investigations.  Among the triggering mechanisms of 

leukocyte-endothelium interactions, the simultaneous activation of leukocytes and endothelium 

due to loss of vascular homeostasis is central. This activation is usually triggered by pathological 

situations which cause metabolic deregulations, such as overweight 737, inflammation 687,738 and 

glucolipotoxicity 739,740. Overweight and inflammation are present in T2D patients, and 

glucolipotoxicity is also likely to be present due to the high lipid and glucose concentrations. 

Hence, some degree of endothelial dysfunction might be present, reflected by enhanced 

leukocyte-endothelial interactions.  
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 The third approach to cardiovascular risk in T2D that we evaluated is measurement of 

the thickness of the intima-media layer of the carotid artery. Measurement was conducted in an 

accessible and vital artery with a high blood flow, where the atherosclerotic plaque can be 

usually easily visualized. As demonstrated, measuring wall thickness has prognostic value for 

atherosclerotic events 645,646. Taking into account its relevance in atherosclerosis, we assessed 

CIMT in healthy and T2D patients in which leukocyte-endothelium interactions and biochemical 

profile were measured. We observed an increase in right and left CIMT in T2D patients 

compared to healthy subjects; when glycaemic control was considered, only left CIMT increased 

significantly in poorly controlled patients. Right CIMT was slightly higher in these poorly 

controlled subjects, though the difference was not statistically significant, possibly due to 

differences between right and left carotids or the size of the analysed population. When we 

correlated the CIMT measurements with our leukocyte-interaction results, we found significant 

correlations for left CIMT only, which was positively correlated with rolling number and 

adhesion, and negatively correlated with rolling velocity. These results confirmed that CIMT is 

related to leukocyte-endothelium interactions, and supported previous evidence of left CIMT 

being more implicated in atherosclerotic lesion development. We studied the correlation of our 

CIMT data with glucose metabolism parameters and BMI in order to assess the possible 

correlation of CIMT measurements with biochemical and anthropometrical changes in T2D, and 

found significant positive correlations in all cases except for BMI vs right CIMT. A similar pattern 

was revealed by the correlation analysis of CIMT measurements and lipid metabolism data, 

which showed significant correlations that pointed to a dyslipidaemic profile that were more 

significant for left CIMT than for right CIMT.  

 All these data underline the importance of assessing CIMT measurements in T2D without 

clinical signs of plaque development as a tool for preventing future cardiovascular events. This 

technique is useful and affords great benefit to T2D patients regarding the early detection and 

prevention of macrovascular complications. In this sense, previous research has highlighted  
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greater CIMT in T2D patients, thus proving its value as a cardiovascular risk biomarker 

646,647,649,709. Indeed, other markers of disease progression of T2D, such as glycaemic control, have 

also been related to higher CIMT, and their combination can be useful for assessing 

cardiovascular risk 659. Some therapies that pursue the improvement of T2D could also help to 

reduce CIMT and, in turn, cardiovascular risk. As an example, interventional lifestyle approaches 

to reduce T2D, such as diet, do not reduce CIMT, despite them positively affecting glycated 

haemoglobin 741. However, CIMT has been shown to be effectively reduced by pharmacological 

intervention, which indicates that CIMT reduction requires intensive treatment together with 

lifestyle intervention if clinical relevance is to be achieved 742–744.  

 Apparently, left CIMT is more influenced by T2D alterations that right CIMT, which could 

be explained by the different haemodynamic properties of both carotid arteries. This fact was 

examined in the study performed by Luo et al., who determined that, while plaques in the left 

carotid were more influenced by hydrostatic pressure and changes in biochemical parameters, 

the right carotid was exposed to hemodynamic changes 745. This might be explained by the 

different anatomical origin of both carotid arteries, which render a more vulnerable plaque on 

the left side which will break more easily than that on the right side 745,746. Indeed, one study 

determined that cerebrovascular disease was more prevalent on the left side, possibly due to 

the high shear stress observed 747. Selwaness et al. corroborated these findings; they reported 

that, despite bilateral plaques being more frequent, 67% of unilateral ones were located in the 

left carotid. Moreover, the left plaque suffered more intraplaque haemorrhage and was thicker 

than the right, which was more calcified and resistant to shear stress 748. All these studies 

support our observations and help to explain why the left carotid is more affected than the right. 

Furthermore, it is important to highlight that prevention through glycaemic control might be the 

key to reducing macrovascular complications.  
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7. Oxidative stress and ROS production in leukocytes from T2D subjects 

 

 Hyperglycaemia and hyperlipidaemia are characteristic of T2D, and cause several cellular 

alterations, among which one of the most important is ROS production. The main explanation 

for the hyperglycaemia-dependent generation of oxidative stress is that hyperglycaemia 

activates the cellular pathways that generate energy. This energetic excess causes an imbalance 

in the AMP/ATP and ADP/ATP ratios, leading to slowing down of the ETC in the mitochondria. 

Despite this slow electronic transport, the hyperactivation of the catabolism continues to render 

energetic intermediates in the form of NADH and FADH2. This reduces the availability of NAD+ 

equivalents in the cell, which alters other redox cellular processes. Moreover, these energetic 

intermediates continue providing free electrons to the ETC, which in turn produce ROS. ROS 

accumulation modifies mtDNA, lipids and, eventually, circulating lipids and glucose, thus creating 

oxLDL and AGEs. In parallel, energy excess causes the accumulation of glucose, which leads to 

the activation of the polyol pathway and hexosamine pathway. Consequently, the energy 

imbalance favours ROS, and so AGE production further increases 86,130. AGEs can activate 

leukocytes through the RAGE receptor, leading to an auto-feedback which generates an 

unsustainable situation involving inflammation and ROS production 686,749. Evidence suggests 

that ROS production in leukocytes is relevant in cardiovascular diseases, although little research 

has been done in T2D 750. This is why we considered it relevant to evaluate whether leukocytes 

from T2D patients present enhanced ROS production. Knowledge of ROS production by 

leukocytes in a T2D setting is limited, but pathways which promote the generation of ROS or 

proteins that mediate its production seem to be active agents. As an example, thioredoxin 

interacting protein (TXNIP) (a cytoplasmic ROS-producing enzyme), is strongly upregulated in 

PBMCs from T2D patients and its activation is related to ER stress 314. In parallel, one study 

determined low expression of OXPHOS complexes in leukocytes from T2D, which led to 

production of high amounts of ROS. Their accumulation activates the JNK pathway, which 
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promotes further ROS production and apoptosis 519. In this sense, mitochondrial alterations 

might be deeply implicated in ROS production, as complex I is defective in leukocytes from T2D 

patients, and is accompanied by impaired oxygen consumption 201.  

 In this context, we determined that PBMCs from T2D patients presented higher levels of 

mitochondrial and total ROS, observing an increase in mtROS and total ROS. Interestingly, T2D 

patients with poor glycaemic control presented more ROS than the strictly controlled ones. 

Several studies reinforce the relevance of our results; for example, experiments carried out in 

leukocytes exposed to an IR background revealed that leukocytes produce ROS and cause 

cellular stress 751 and inflammation 752. ROS production has been further confirmed in leukocytes 

from T2D patients 312 and in a leukocyte subpopulation (granulocytes) 118. The source of ROS 

production is thought to be rooted in impaired mitochondria with slow OXPHOS due to the 

excess of nutrients. Hence, examining OXPHOS could be an interesting objective of future 

research.  

 Regarding the relationship between HbA1c and ROS production, some evidence points to 

the glycated protein causing ROS production in cardiac muscle cells through NOX2 753. In 

leukocytes from T2D patients, it was also demonstrated that those from poorly controlled 

patients had more total and mitochondrial ROS production 665. Regardless of whether there is a 

direct causal relationship or not, several investigations have found that poorly controlled T2D 

(which usually have macrovascular or microvascular comorbidities) have less antioxidant 

defences and more oxidative stress markers. This was the case in cardiac autonomic neuropathy 

T2D patients, among whom those with a worse glycaemic control had less catalase and SOD 664. 

Similarly, cardiovascular risk measurements and total antioxidant capacity were measured in 

T2D patients with different grades of glycaemic control. Those with poor glycaemic control had 

more cardiovascular risk markers and less total antioxidant capacity, though a direct correlation 

was not found 659. An alternative approach evaluated circulating concentrations of sRAGE (which 

antagonizes the effect of AGEs) that were found to be lower in poorly controlled patients 
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compared to properly controlled and healthy subjects 719. Therefore, ROS excess and antioxidant 

scarcity could be a hallmark of T2D patients with poor glycaemic control. All this evidence 

supports our results, which shown that leukocytes from T2D patients with poor glycaemic 

control produce more total and mtROS.  

 

8. Assessment of mitochondrial function and dynamics in leukocytes from T2D 

subjects 

 

 To further explain the origin of this T2D-related ROS alteration, we set out to determine 

the source of ROS in the leukocytes under evaluation. Given that one of the main known sources 

of ROS is dysfunctional mitochondria, we measured markers of mitochondrial dysfunction. 

Mitochondrial dysfunction consists of the inability of mitochondria to adapt to energetic and 

metabolic cellular demands. It comprises different alterations which impede the correct 

mitochondrial metabolism and renders high amounts of ROS and lack of mitochondrial-

synthesized metabolites 754. The phenotype of dysfunctional mitochondria usually include 

altered membrane potential, defective O2 consumption and ATP production, and decreased Ca2+ 

content 182,185. Many non-communicable diseases present this type of mitochondrial damage due 

to genetic and environmental or behavioural factors. Among these, high caloric intake and 

sedentary lifestyle are more related to mitochondrial dysfunction, as these habits alter the 

energy balance upon which their function depends 754. The resulting mitochondrial alterations 

affect all the cell types in different manners depending on their function and dependence on 

mitochondrial performance. One of the most affected cell types is pancreatic β cell mass, due to 

its low antioxidant capacity, in which high ROS concentrations impedes adequate insulin release. 

In fact, a study carried out in pancreatic islets isolated from T2D patients challenged with 

glucose and arginine showed that altered insulin secretion was related to high expression of 

OXPHOS complexes I and V, overexpression of uncoupling protein 2 expression (possibly due to 
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fuel overload) and lower ATP production 755. Moreover, ROS produced by dysfunctional 

mitochondria can directly cause IR through activation of ROS-sensing kinases such as JNK, 

p38MAPK, IKKβ or PKC 95. In particular, JNK is able to dephosphorylate the IRS protein, thus 

reducing insulin signalling 756. Similarly, under stimulation by DAG or ceramides, other kinases 

that regulate insulin signalling, such as PKC, phosphorylate and inhibit the insulin receptor, thus 

contributing to a positive auto-feedback loop that aggravates IR 40,102,106. Hence, a correct 

mitochondrial function is decisive for preventing IR and contributes to the correct management 

of fuel disposal and energy production for the whole cell.  

 As our patients displayed classic T2D alterations including IR, high circulating lipids and 

high fasting glucose, we considered that their leukocytes might display markers of mitochondrial 

dysfunction. We measured different parameters, such as membrane potential, O2 consumption, 

or Ca2+ concentrations, as surrogate markers of mitochondrial function. Our results 

demonstrated that leukocytes had more cytosolic Ca2+, which implied dysregulated 

mitochondrial Ca2+ storage. Additionally, we confirmed that leukocytes from T2D patients have 

altered mitochondrial function, reflected by loss of membrane potential and lower O2 

production. Together, these results depict a situation of mitochondrial alterations reflected in 

the previously discussed rise in mtROS production. In this sense, our results are supported by 

abundant evidence of malfunctioning mitochondria in different tissues in a T2D setting. As an 

example, in muscle fibres isolated from obese diabetic patients, mitochondria presented a lower 

respiratory capacity than healthy ones 757 and ATP synthesis was attenuated 758. The same 

finding was observed in liver tissue from mice fed a HFD 759. Following on from the idea of 

mitochondrial alterations in T2D, other studies measured metabolite flow through metabolic 

pathways such as the Krebs cycle in T2D models – for example, Goto-kazikazi rats - 

demonstrating that the key enzyme aconitase was reduced in key metabolic tissues 59. This 

finding demonstrated that mitochondrial dysfunction also affects the fundamental pathways of 

mitochondrial metabolism.  
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 Another trait of T2D that affects mitochondrial function is IR, as illustrated by a study in 

which muscle with IR displayed impaired respiration and enhanced production of H2O2 
188. 

Glucolipotoxicity has also been demonstrated to induce mitochondrial dysfunction in 3T3-L1 

adipocytes, reflected by ROS production, loss of membrane potential and less intramitochondrial 

Ca2+ 199. This contributes to the idea that glucose and lipid excess affects all metabolically active 

tissues (liver, adipose tissue, and muscle). Collectively, our results and those of previous studies 

are in accordance in that they show a marked mitochondrial dysfunction in T2D that is triggered 

by glucolipotoxicity and IR. Thus, tackling mitochondrial function would appear to be a promising 

target for future antidiabetic therapies.  

 An adequate mitochondrial function requires the establishment of a mitochondrial 

network which enables metabolite and energy diffusion throughout the whole cell. The 

deregulation of this mitochondrial structure may be involved in the pathogenic mechanisms of 

metabolic diseases. The mitochondrial network is maintained by a tight dynamic process named 

mitochondrial dynamics, which is responsible for changing mitochondrial morphology in 

response to cellular metabolic needs and maintaining a healthy mitochondrial population. Given 

that there is mitochondrial dysfunction in T2D, it can be hypothesized that mitochondrial 

dynamics are altered. Although an imbalance occurs in those processes in T2D, there is debate 

about which process is undermined. In this sense, one study of muscle cells described that T2D 

causes a defect in fusion and alterations in fission 760, which could be due to a hampered 

mitochondrial dynamics regulation. Despite this conclusion, other studies have not found such 

differences in muscle from T2D patients, or the differences that existed were limited to DRP1 

and MFN2 proteins with a tendency towards fission 227,231. However, most studies agree about 

the beneficial function of mitochondrial fusion, as confirmed by recent research showing that 

insulin is able to activate OPA1 through AKT-mTOR-NFκB signalling 232. Surprisingly, insulin 

signalling can also induce mitochondrial fission in C2C12 myotubes, reflecting the influence of 

the different effects of insulin on mitochondrial dynamics processes depending on the signalling 
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pathway and the studied tissue or cell type 239. These examples illustrate the lack of consensus 

regarding the alteration in mitochondrial dysfunction and its relevance in T2D. A reason might 

be that most studies have analyzed muscle cells because of the importance of mitochondrial 

function surveillance in this energy-consuming tissue. Examining mitochondrial dynamics in 

other cell types and tissues affected by or influencing T2D pathogenesis might shed light on the 

overall relevance of this process.  

 Our group has previously described that poor glycaemic control in leukocytes from T2D 

subjects is related to an increase in fission and a reduction in fusion proteins 243. In the present 

thesis, similar results have been obtained, showing that fusion proteins and genes (MFN1, MFN2 

and OPA1) are reduced and fission ones (FIS1 and DRP1) are increased. Although we have 

measured the key molecules regulating these processes, the contribution of each protein to said 

phenomenon has not yet been determined. Specifically, we have reported the same behaviour 

for the three analyzed fusion molecules (decreased levels of OPA1, MFN1 and 2) and for both 

fission molecules (an increase of FIS1 and DRP1). However, given the slightly different functions 

of these molecules, a significant variability between the results can be expected. In this regard, 

different levels of the fusion proteins MFN1 and MFN2 could suggest that the altered process is 

not mitochondrial fussion. Other functions in which MFN2 can participate are the interaction 

between ER and mitochondria or the regulation of Ca2+ release. Indeed, it has been described 

that MFN2 in macrophages perform roles as different as inflammatory response, autophagy, 

apoptosis and antigen processing 761. Besides these particular functions in macrophages, MFN2 

also interacts with AMPK under energy stress to form mitochondria-associated ER membranes 

762. This particular function of MFN2 also participates in ER stress-triggered apoptosis by 

translocating ER Ca2+ to the mitochondria, a situation in which inhibition of MFN2 could be 

beneficial 214. Given that we did not find differing behaviour between MFN1 and MFN2 in control 

vs T2D patients, our results are consistent with mitochondrial fussion being one of the main 

alterations in T2D, and not other related processes. 
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 This might suggest a reduction of IMM fusion and reorganization, which is decisive for 

proper mitochondrial function. It is important to highlight that we did not detect L-OPA1 and S-

OPA1 isoforms, an experimental approach that could have shed light about the processes of 

IMM and outer mitochondrial membrane (OMM) fusion. Other studies have obtained similar 

results by employing other experimental approaches and T2D models. For example, in a study 

performed in muscle from a HFD OPA1KO mice model, OPA1 expression induced FGF21 

expression, which was abolished in OPA1 KO and HFD mice 763. This finding leads us to think that 

OPA1 downregulation in T2D is accompanied by decreases in the myokine FGF21, beneficial in IR 

states. However, the same authors showed that OPA1 KO in adipose tissue ameliorated IR 764. 

Therefore, in adipose tissue OPA1 expression would contribute to IR, possibly by reducing FGF21 

concentrations. These observations suggest that the effect of OPA1 depends on the tissue or the 

cell type. In addition, it has been demonstrated that OPA1-driven fusion inhibits chemotaxis in 

leukocytes 765. The function of OPA1 in leukocyte populations might exist beyond chemotaxis, as 

neutrophils depend on OPA1 for the formation of neutrophils extracellular traps (NETs), and T 

memory lymphocytes need OPA1 for reprogramming 766,767. Thus, OPA1 expression can have a 

positive or negative impact on cellular metabolism depending on the process and cell type. 

However, there is much evidence of the beneficial effect of OPA1 in T2D in different 

experimental settings 227,768,769. Our analysis of OPA1 in T2D and healthy leukocytes presented in 

chapter 3 are in line with the beneficial effects of OPA1 in T2D at gene and protein level.  

 

 Furthermore, there is a broad consensus among studies examining the fission process, 

which has been shown to be enhanced in T2D. However, it is not known whether this is a cause 

or a consequence of T2D. The results presented in this thesis show an increase in the protein 

levels of FIS1 and DRP1, but a decrease in their gene expression. Previous results back our data, 

as a pro-fission phenotype has been previously assessed in T2D heart, driven by DRP-1 and 

reverted through the SIRT1- PPAR γ coactivator 1 (PGC1) pathway 770,771. Similar results were 
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observed in a model of hyperglycaemic damage in retinal endothelial cells, and was mediated by 

DRP1 772. Despite fission being generally prejudicial and related to metabolic dysbalances, in 

cardiomyocytes DRP-1 has a protective effect against oxidative stress 773. FIS1 also performs 

divergent functions as a protective or harmful protein depending on the tissue or cell type. As an 

example, hyperglycaemia causes an increase in FIS1 and DRP1 in retinal endothelial cells, while 

their inhibition prevents hyperglycaemia-triggered apoptosis 772. In pancreatic β cells, which are 

characterized by a high sensitivity to glucose fluctuations and ROS, FIS1 expression is needed for 

an adequate insulin release as it helps the mitochondrial network to adapt 224. Hence, as in the 

previous mitochondrial dynamics-related proteins, the regulation depends highly on the cell 

type, the stimuli and the cellular environment. Our results reflect an increase of DRP1 and FIS1 

protein expression, which could be a compensatory response to glucolipotoxicity or a 

consequence of mitochondrial dysfunction.  

 Globally, the results of our analysis of mitochondrial dynamics suggest that there is a 

deregulation of fusion and fission in T2D. Further research in this direction needs to be carried 

out to determine the precise mechanisms at work in T2D leukocytes.  
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9. Evaluation of the UPR pathways in T2D leukocytes 

 

 Usually, ROS accumulation caused by hyperglycaemia, hyperlipidaemia and/or IR implies 

molecular modifications, as occurs with the previously discussed AGEs. But other modifications 

also take place, such as lipid peroxidation, protein glycation and protein lipidations, which end 

up causing accumulation of defective and misfolded proteins 463,464. During the folding process, 

large loads of ROS are synthesized by ERO1α, the enzyme that assists PDI in creating disulphide 

bonds 91,774. Apart from ROS produced by ERO1 isoforms, other ROS sources trigger ER stress by 

different direct and indirect mechanisms 465. As an example, oxLDL activates UPR pathways, 

mainly the PERK pathway, which in turn activates autophagy 303. Similarly, ROS induces PERK 

pathway in an animal model of diabetic cardiomyopathy, leading to apoptotic death 305.  

 With this information in mind, we aimed to explore whether there is ER stress reflected 

by activation of the UPR pathways in leukocytes from T2D patients. These pathways comprise a 

complex and coordinated cellular reaction to ER stress, and are activated in order to compensate 

for the loss of homeostasis 463,775. By focusing on immune cells, a vast amount of research has 

shed light on the relevance of UPR in leukocyte homeostasis and activation 776–779. Leukocytes in 

T2D display traits of ER stress, as observed in a previous study by our group, in which we 

reported that leukocytes from T2D patients with poor glycaemic control presented enhanced 

UPR markers. In the same study we determined that those patients with a good glycaemic 

control displayed increased rescue pathways, such as sXBP1 processing; but those with poor 

glycaemic control showed a peak in the pathways triggered by chronic ER stress and which 

culminate in apoptosis, marked by ATF6 and CHOP 313. 

 In this context, we show in this thesis that CHOP and GRP78 gene expression were 

upregulated in leukocytes from T2D patients with poor glycaemic control, while protein 

expression revealed a peak in GRP78 and in P-eIF2. We did not observe differences in other UPR 

activation markers, such as ATF6 or IRE1α. The data we present is in accordance with the 
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aforementioned studies, confirming that the PERK branch of the UPR is active in poorly 

controlled patients, and is reflected by enhanced gene expression of GRP78 and CHOP. Those 

genes are expressed regadless of eIF2α repression of protein translation and assist to overcome 

the proteostatic stress 256,269. Regarding GRP78, its expression is upregulated during UPR through 

ATF4 independently of ERSE sequences, initiating a positive feedback loop that can help to 

resolve ER stress 254,780. On the other hand, CHOP expression is upregulated by ATF4, but can 

exert protective or proapoptotic effects, as widely documented 254,476. Not only those proteins, 

but the activation of the whole PERK-eIF2α-CHOP axis that occurs in T2D has been demonstrated 

in liver tissue, where an increase in ROS and a decrease in antioxidant enzymes were also 

assessed 298,781.  Among all T2D-affected tissues, pancreatic β cells are among the most affected 

by ER stress because of their secretory nature. This was confirmed by a study carried out in STZ 

T2D rats, which showed that activation of the PERK-CHOP axis leads to apoptosis in pancreatic β 

cells 782. Nevertheless, the rescue function of the UPR, particularly the PERK pathway, has proven 

to be necessary in these cells, which have impaired insulin release and alter tissue structure 

under ER stress 428,783. This rescue function can also be activated by the transcription factor 

CHOP through the transcription of autophagy genes, leading to the degradation of the altered or 

misfolded proteins that cause ER stress 472,476. This constitutes the most accepted model by 

which CHOP expression by mild ER stress activates rescue mechanisms, but under chronic ER 

stress CHOP adopts a proapoptotic function. The results presented herein are in accordance with 

those previously observed in T2D, and contribute to the evidence that the UPR pathway, 

specifically PERK, is activated in leukocytes from T2D patients.  
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10. Activation of autophagy in T2D leukocytes 

 

 T2D damages cells through the mechanisms already discussed, namely ROS production, 

hypoglycaemia or hyperlipidaemia. In this context, rescue mechanisms such as UPR are vital for 

maintaining cellular homeostasis. One of these vital mechanisms is autophagy, which can be 

triggered by several cellular insults, such as nutrient deprivation or excess, oxidative stress or 

proteostatic stress. These stressors activate different cellular pathways that tightly modulate 

autophagy in its three stages: formation of the autophagosome, delivery of cargo, and fusion 

with the lysosome 351,410,784. Many studies have explored the possible alterations of autophagy 

and their regulation in metabolic diseases, as they alter the energetic balance of the cell. 

Specifically, the tissues implied in T2D pathogenesis have been shown to display deep alterations 

in their autophagic machinery. Pancreatic tissue, and more precisely pancreatic β cells, depend 

on a functioning autophagy in order to resolve the high ER stress induced by glucolipotoxic 

aggressions 426.  cells can induce autophagy in order to avoid apoptotic cell death, which can be 

caused after chronic exposure to hyperglycaemia and hyperlipidaemia and under IR. This was 

observed in a study in which mice models of high-fat or high glucose diet or a combination of 

both demonstrated that the combination of both diets or only HFD caused an increase in 

autophagic flux, greater β cell mass and increased proliferation for compensating the reduction 

of insulin production 46. In the same research work, it was demonstrated that hampering 

autophagy caused damage in the pancreatic islets due to apoptotic β cell death, thus underlining 

the relevance of autophagy in rescuing cells under stress 46. Moreover, this study demonstrated 

that autophagy also promotes β cell proliferation to assure the secretion of insulin and a proper 

pancreatic function. A similar model employed islets from healthy or T2D donors treated with 

palmitate and combinations of brefeldin, rapamycin or concanamycin A, and came to the 

conclusion that autophagy activation is beneficial for preventing apoptosis after activation of ER 

stress 428.   
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Despite the vast literature comcerning autophagy in pancreatic tissue from T2D patients 

or T2D models, knowledge about the regulation of autophagy in leukocytes in a T2D background 

is scarce. One study examined the inflammatory status of leukocytes from T2D patients and 

autophagy proteins and genes, observing that Beclin-1, LAMP2 and LC3II expression levels were 

reduced, p62 was increased, and no changes in ATG5 or ATG8 were detected. Moreover, the 

expression of proinflammatory molecules was markedly enhanced, and was related to the 

suppression of autophagy signalling. 452 A similar study determined that leukocytes from T2D 

patients displayed defective autophagy, reflected by reduced AMPK and LAMP2 and increased 

mTOR and p62, and a flawed fusion between the autophagosome and the lysosome 453. In the 

same sense, a study carried out in leukocytes suggested that impairments in autophagy, 

reflected by accumulation of LC3II and p62 despite autophagy activation, are the reason for the 

increased inflammation and autophagy observed after palmitate treatment 455. The alterations in 

these autophagy markers indicate that the defective autophagy is owing to a defective 

autophagosome degradation, which could be reverted with adequate autophagy regulation. All 

these studies carried out in leukocytes from T2D patients or leukocyte T2D models point to the 

hypothesis that chronic inflammation impairs autophagy in leukocytes from T2D patients, 

causing apoptosis and altered proinflammatory response.  

 Taking into account this information, we evaluated the expression of key autophagic 

molecules in leukocytes from T2D patients and healthy subjects. We observed a rise in Beclin-1 

gene and protein expression, as well as in the LC3II/I ratio and a decrease of p62, which pointed 

to the activation of autophagy in T2D leukocytes. Furthermore, we observed that the 

impairment of the ETC by rotenone in healthy leukocytes reduce the expression of p62, similarly 

to the effect exerted with rapamycin treatment. This treatment did not alter other autophagic 

markers, meaning that ROS could induce autophagosome degradation or inhibit autophagy. 

Globally, we observed that leukocytes from T2D patients activated autophagy as a response to 

the hyperglycaemic and hyperlipidemic surroundings. To further confirm this phenotype, other 
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autophagic proteins should be examined, such as ATG5, 7 or AMPK and mTOR.  

 As explained before, most studies are in accordance that autophagy is downregulated in 

T2D, leaving cells unprotected against T2D-related stresses. Although this could be the case for 

some tissues, we observed that autophagy was correctly activated in response to the cellular 

stress. Compelling evidence backs our data and the activation of autophagy in different cell 

types and experimental models of T2D. One of the studies in question observed AMPK-

dependent activation of autophagy in INS-1 pancreatic β cells treated with human islet amyloid 

peptide (hIAPP, a by-product of insulin synthesis that can accumulate and form deposits) 785. 

hIAPP induced ROS production, which activated AMPK and autophagy, possibly to degrade the 

amyloid deposits that damage the cell. A similar phenomenon has been reported in human 

explants from pancreatic islets which displayed enhanced autophagy markers, and its blockage 

led to apoptotic cell death and defects in insulin production 46. A steep rise in the autophagy 

markers Beclin-1, LC3II and p62 expression was found in heart tissue donated by non-T2D and 

T2D patients, and inhibition of Beclin-1 caused an increase of apoptotic cell death due to loss of 

autophagic rescue 439. On the other hand, autophagy was activated in parallel to apoptosis in 

visceral adipose tissue but not in subcutaneous adipose tissue, highlighting that autophagy 

might be regulated differently in diverse tissues 445. Likewise, activation of autophagy caused by 

mTOR inhibition was observed in biopsies of adipose tissue donated by obese T2D patients 446. 

All this evidence suggests that autophagy regulation differs strikingly depending on the tissue 

and the environment, and that both inhibition and activation of autophagy could be mechanisms 

at work in T2D. Previous results from our laboratory have revealed an upregulation of autophagy 

in leukocytes from T2D patients, in line with our present results 312,786. Hence, our findings 

support a protective effect of autophagy in leukocytes from T2D patients. However, the 

influence of the different treatments prescribed to T2D patients should be assessed and taken 

into account, as they may modify the regulation of autophagy and its upstream modulators.  

 In addition to the previously mentioned markers, we set out to explore the relation 
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between autophagy activation and the interaction between the leukocyte and the endothelium, 

for which we performed a statistical analysis of correlation. We observed that only Beclin-1 

protein expression levels correlated with the different parameters of leukocyte-endothelium 

interactions, but that, curiously, the behaviour differed depending on the presence or not of 

T2D. Beclin-1 expression correlated with a lower number of rolling leukocytes, less leukocyte 

adhesion and higher leukocyte velocity in healthy subjects. This could lead us to think that, in 

the absence of pathology, defects in autophagy are related with inflammatory molecules 

involved in the leukocytary adhesion process, a hypothesis which would require further study. 

On the other hand, Beclin-1 was related to higher leukocyte rolling and adhesion in T2D 

leukocytes. These results could point to autophagy stimulation after or in parallel to leukocyte 

activation. A possible hypothesis is that the additional stress of leukocyte activation is buffered 

by autophagy activation, thus ensuring a correct cellular function in a T2D setting. In fact, it has 

been argued that excess ROS triggers autophagy to maintain cellular homeostasis, but also to 

limit exaggerated inflammation 454. Furthermore, the relationship between autophagy and 

inflammation has been reinforced in a study in which an increase of autophagy markers was 

achieved by treating HUVEC with TNFα and IL-1β. The inverse relationship was also observed, as 

autophagy induced the adhesion of Jurkat cells to the HUVEC monolayer through autophagic 

degradation of IKβα, which allows NFκB translocation to the nucleus and transcription of VCAM-

1 787. Beclin-1 has also been linked to autophagic degradation of the NLRP3 inflammasome for 

limiting IL-1β and IL-18 release in glia cells, establishing another link between this protein and 

inflammation 788. Interestingly, Beclin-1 responds to thrombin by aiding inflammatory cytokine 

expression, NFκB activation and membrane permeabilization in endothelial cells 789. However, 

the most promising pathway relating inflammation and Beclin-1 depends on the interaction with 

NFκB signalling through TGFβ-activated kinase 1 (TAK1) and their binding molecules TBK1 and 2. 

TBK1 and 2 can bind either Beclin-1 or TAK: under autophagy stimulation, they sequester TAK1, 

impeding NFκB translocation to the nucleus; however, under autophagy inhibition, these 
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molecules bind Beclin-1 and allow TAK1 to transport NFκB 790,791. In this context, many possible 

theories could be raised about the function of Beclin-1 or autophagy in inflammation, but much 

further research is needed. Globally, our results support autophagy as a protective mechanism 

that is active in leukocytes in T2D, and which might have some influence on their response to 

inflammation. 

 

11. T2D treatments: Metformin and SS-31 

 

 T2D has many therapeutic approaches, as stated in the introduction. However, 

metformin is the most prescribed drug due to its effectiveness in lowering hyperglycaemia, its 

mild side effects and easy administration for patients 792. This drug can be combined with other 

antidiabetic treatments that bring specific clinical benefits and/or reduce side effects 793. Its 

benefit is reflected not only in diabetic symptoms, but also in the improvement of inflammation 

794,795, ER stress 61, mitochondrial function 796 and pancreatic β cell performance 428,797. Hence, in 

this thesis we sought to determine if metformin treatment influences aspects of the metabolism 

of leukocytes.  

 To this end, we assessed leukocytes from patients who had been under metformin 

treatment at a dose of 1700 mg/day for at least 1 year. We compared their leukocyte-

endothelium interactions, parameters of mitochondrial function and dynamics to those of 

healthy and non-treated T2D subjects. The results regarding mitochondrial function showed 

that, despite mitochondrial impairment and enhanced ROS production in T2D leukocytes, 

metformin was able to return the measured parameters to those of healthy subjects. More 

precisely, O2 consumption and the membrane potential increased and ROS production dropped 

significantly in leukocytes from metformin-treated T2D patients. This could be attributable to 

metformin’s nature as a homeostatic and antioxidant molecule, although the precise mechanism 

is still under debate. In this regard, some authors have suggested that the inhibitory effect of 
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metformin on complex I is dose-dependent and that it can exert an inhibitory function only at 

suprapharmacologic concentrations. However, an alternative mechanism has been proposed, 

which involves the inhibition of ROS production by induction of reverse electron transport in 

complex I. Experimental evidence has demonstrated that this precise mechanism is effective in 

vitro 79,798 and in vivo 799; however, more research is needed to determine the precise 

mechanism by which metformin directly reduces ROS production.  

 Regarding the improvement in mitochondrial function, AMPK activation and G3PD 

inhibition are the most studied of the proposed mechanisms to date 52,800. The mechanism 

behind AMPK activation involves the protection of mitochondrial function by boosting fission 

and protecting healthy mitochondria, as observed in HFD-fed mice 801. This protein complex also 

increases mitochondrial biogenesis in response to metformin treatment, as assessed in 

endothelial cells 802 and cardiomyocytes 803,804. A different AMPK-dependent mechanism for 

preventing ROS formation and mitochondrial damage has been observed in mice models; 

namely, DRP1 inhibition by AMPK 240,805. AMPK can also regulate central metabolism pathways 

located in the mitochondria, inducing metabolic changes to increase energy expenditure, 

including the activation of β oxidation, the reduction of IR and lipid accumulation 806. Hence, 

AMPK-dependent metformin mechanisms are pleiotropic, but most of them end in the 

improvement of mitochondrial function and, therefore, a reduction in ROS concentrations. Our 

work has yet to assess AMPK function in leukocytes from T2D patients, but we believe it could 

be an interesting approach for future works.  

 An aspect that seems to be modified by metformin and AMPK is mitochondrial 

dynamics, as set out by the aforementioned studies. Regardless of an AMPK-dependent or –

independent mechanism, metformin treatment alters mitochondrial dynamics; however, little 

research has been done in this regard. Among the proposed mechanisms, re-establishing fusion 

and fission cycles through an AMPK-dependent mechanism has been shown to restore the 

respiratory capacity of damaged mitochondria in HFD-fed mice 801. Similarly, it has been 
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determined that metformin treatment increases MFN2 expression and reduces mitochondrial 

dysfunction in oxLDL challenges RAW264.7 macrophages, possibly by AKT signalling 807. 

Mitochondrial dynamics deregulation is a hallmark of some syndromes such as Rett syndrome or 

Down syndrome, in which metformin treatment has been seen to be beneficial by increasing 

mitochondrial fusion 63,808. Due to the limited knowledge about the effect of metformin on 

mitochondrial dynamics, our results in leukocytes from T2D patients imply a significant 

contribution to the field. We have described that leukocytes from metformin-treated T2D 

patients display improved mitochondrial dynamics compared to non-treated T2D subjects. More 

precisely, metformin-treated patients displayed significantly higher protein expression of fusion 

molecules MFN1, MFN2 and OPA1, and reduced fission proteins DRP1 and FIS1. At the gene 

expression level, we observed that OPA1 did not recover its expression in metformin-treated 

patients, and this might have been due to the particular function of this protein in IMM fusion 

and reorganization. Similar discordances were seen in the gene expression of the fission genes 

FIS-1 and DRP-1 in metformin-treated patients: FIS-1 continued to be reduced, as in T2D 

patients, but DRP1 expression peaked and almost reached levels in the healthy population. 

These differences could be attributed to specific regulation of the translation of DRP1 and FIS1 

genes or to the unusually long life of their translated mRNAs. Although this phenomenon is not 

well understood, we can affirm that metformin increases mitochondrial fusion and decreases 

fission at the protein level, therefore improving mitochondrial function. The mechanism behind 

this improvement is still unclear, at least in leukocytes, but it might be explained by AMPK 

signalling or a reduction in ROS production. Either way, future research is needed to bring clarity 

to the subject.  

 Although numerous T2D treatments have already been discovered, research continues 

to determine other therapeutic avenues and targets against T2D. A novel therapeutic 

mechanism tackles the imbalance between antioxidant capacity and pro-oxidant molecule 

accumulation in T2D. Boosting the antioxidant capacity of the cell is under debate, given the 
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limited efficacy of some experimental therapies. Among the different vitamin supplementation 

therapies available, a recent metaanalysis determined that only Vitamin E can help to prevent 

diabetic complications 809. The antioxidant properties of already prescribed drugs have been 

studied, and most of them have been found to strongly induce the cellular antioxidant response 

810. For example, metformin, glibenclamide and repaglinide were shown to boost antioxidant 

enzymes SOD, CAT and glutathione (GSH) in alloxan-induced diabetic rats 811 and in STZ-induced 

diabetic mice 812. Indeed, previous research by our group showed how 24-week treatment with 

empaglifozin increased the antioxidant response in leukocytes from T2D patients 813. Until now, 

the antioxidant-inducing properties of the classic T2D treatments have been researched 

thoroughly and have been confirmed to effectively prevent cardiovascular complications 810,814. 

As a consequence of the effectiveness of antioxidant-boosting therapies, finding new antioxidant 

strategies is now a growing field in antidiabetic treatment.  

Among all the possible pathways for reducing oxidative stress or increasing antioxidant 

response, the most intuitive approach given the physiopathology of T2D is to reduce 

mitochondria-generated ROS by specifically targeting this organelle. Mitochondria-targeted 

antioxidants are a wide area of current research that has so far rendered many chemical 

structures with the following special ability: to quench ROS production without hindering 

mitochondrial function 815–817. Among all the researched chemical structures, those with a better 

profile - and therefore the most studied - are lipophilic-cation linked structures, such as MitoQ, 

SkQ1, Mito-E and Mito-TEMPO, and peptide-based mitochondria antioxidants, such as SS 

peptides or mitochondria-penetrating peptides (MPPs). Among these, our group has described 

the beneficial properties of MitoQ in a T2D model of INS-1E cells, and also in leukocytes from 

T2D patients 163,164. As we observed in previous studies that MitoQ improved mitochondrial 

function, reduced inflammation and diminished the cellular stress caused by hyperglycaemia and 

hyperlipidaemia, we decided to explore whether other therapeutic approaches would give 

similar benefits in T2D. Thus, we devoted part of this thesis to studying another antioxidant 
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strategy; namely, the effect of the peptide-based mitochondria antioxidant SS-31 on leukocytes 

from T2D patients. It is important to highlight that previous results from our laboratory 

determined that the treatment of leukocytes from T2D patients with the SS-31 peptide 

decreased oxidative stress, inflammation and increased SIRT1 levels 173. Thus, we continued this 

line of research by assessing whether or not SS-31 was able to reduce the cellular stress 

provoked by T2D.  

 In chapter 4 we have demonstrated that SS-31 treatment reduces mtROS production 

and Ca2+ efflux in leukocytes from T2D patients. Moreover, these reductions are comparable to 

the effect of treating the leukocytes with catalase, an important antioxidant enzyme. We 

continued analysing the activation of cellular stress pathways caused by ROS accumulation, such 

as UPR activation and autophagy. We observed that SS-31 effectively reduced the UPR response 

by reducing GRP78 and CHOP gene expression, besides GRP78 and P-eIF2α protein levels, which 

points to a particular effect exerted on the PERK pathway. SS-31 treatment of T2D leukocytes 

also diminished the activation of autophagy, as shown by a reduction of protein levels of Beclin-

1 and LC3, and a rise in p62 protein levels; and a parallel alteration of gene expression, reflected 

by a reduction in the expression of Beclin-1. Therefore, it could be deduced that SS-31 exerts a 

homeostatic effect in the leukocytes of T2D patients. We explored whether SS-31 could reduce 

the pharmacological induction of ROS production, ER-stress and autophagy by treating the 

leukocytes with rotenone, thapsigargin and rapamycin, respectively. We observed that SS-31 

reduced thapsigargin-induced UPR activation and rotenone-induced GRP78 increase. Regarding 

autophagy, rapamycin-treated leukocytes displayed enhanced autophagy flux, which was not 

reduced by SS-31. These results reflect that SS-31 does not target one specific cellular process, 

but instead acts through the reduction of ROS cellular concentrations, thus contributing to 

cellular homeostasis. In all cases, we also used the negative control SS-20, which does not have 

the dimethyltyrosine residue responsible for ROS quenching. The null influence of this peptide 

reinforced the idea that its chemical structure per se does not alter cellular processes and that 
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its antioxidant property was responsible for the observed benefits. Globally, these results 

highlight the influence that a mitochondrial ROS scavenger strategy can exert on the cellular 

stress pathways activated by T2D conditions, and endorse such a strategy as a therapeutic tool 

for T2D treatment.  

 Other studies have obtained similar results in in vivo and in vitro models, underlining the 

therapeutic properties of this peptide with respect to T2D cellular consequences and 

cardiovascular complications 169,171,172,818. In this sense, oral administration of a commercial form 

of the SS-31 peptide was demonstrated to prevent kidney complications in db/db mice by 

protecting mitochondrial function thanks to cardiolipin synthesis 172. The benefit of SS-31 in T2D-

associated renal disease was proved in STZ diabetic mice, where the peptide reduced renal cell 

fibrosis and apoptosis through inhibition of ROS production. SS-31 treatment also reduced the 

activity of key ROS-producing enzymes and normalized membrane potential and ATP production 

as observed in renal anfd mesangial cells analyzed in the same study 171. SS-31 also has benefits 

for cardiac tissue, as illustrated by a study in which old mice displaying cardiac dysfunction were 

treated with SS-31 supplied by means of a minipump. The mitochondrial-targeted treatment 

improved the contractility of the cardiomyocytes due to restoration of the electron flux in the 

ETC and a reduction of the proton leak 818. SS-31 also protected against the development of 

foam cell formation in a macrophage cell line treated with oxLDL. In the work in question it was 

found that SS-31 not only reduced ROS and upregulated SOD, but also downregulated the 

scavenger receptors CD36 and LOX-1 and diminished the expression of some inflammation 

markers 169. This promising antioxidant therapy has also been shown to protect the liver tissue 

from Tallyho/JngJ mice, restoring mitochondrial function and promoting mitochondrial 

biogenesis and dynamics 227. Taking all this knowledge into account, our work endorses existing 

discoveries, as it demonstrates that the SS-31 peptide has a remarkable biological relevance in 

the leukocytes of T2D patients by protecting mitochondria from glucolipotoxicity. Clinical trials 

have begun with the commercial forms of SS-31 (Elamipretide and Bendavia) with the objective 
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of evaluating the its security, tolerability and efficacy in different diseases, such as Barth 

syndrome 819–822, retinal diseases 823,824 and cardiovascular disease 825,826. More assays in T2D 

patients or in human tissues are needed to fully disclose the function of SS-31 in different 

backgrounds and to possibly develop a new and effective drug against cardiovascular 

complications of T2D.  

 

 Globally, the results presented in this doctoral thesis underline the importance of 

mitochondrial function, dynamics and homeostatic pathways such as the UPR and autophagy in 

the leukocytes of T2D patients. Moreover, we believe that all these mechanisms are linked to 

the inflammation and development of atherosclerosis and the subsequent cardiovascular 

complications. We underline the relevance of studying these processes as a path for discovering 

new targets for T2D treatment. Nevertheless, we also endorse the benefits of metformin and SS-

31 treatments for mitochondrial homeostasis and the cell by helping to overcome stress by 

downregulating stress-activated cellular pathways. Eventually, this cellular protection reduces 

leukocyte activation and promotes a less proinflammatory surrounding with fewer 

cardiovascular repercussions. The present thesis explores some of the pathways that explain the 

pathological mechanisms of T2D, but further research is needed to fully understand them. 
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1. Leukocytes from T2D patients display increased total and mitochondrial ROS production 

and a rise in cellular markers of autophagy and serum and cellular markers of 

inflammation compared to leukocytes from healthy subjects. This is reflected by an 

enhanced interaction with the endothelium that correlates with the autophagy marker 

Beclin-1. These findings suggest that autophagy and inflammation are related through a 

mechanism involving Beclin-1. 

2. T2D patients with HbA1C>6.5% display elevated levels of proinflammatory cytokines and 

soluble adhesion molecules. Accordingly, their leukocytes produce mitochondrial ROS and 

interact more with the endothelium compared with those with HbA1C≤6.5%. Carotid 

intima-media thickness measurements are also higher in poorly controlled patients, which 

correlate with increased leukocyte interactions and a worse metabolic profile, especially 

in the case of left carotid measurements. Hence, sufficient glycemic control might be an 

effective approach to prevent the cardiovascular complications of T2D.  

3. Mitochondrial function and dynamics are hampered in leukocytes from T2D patients, 

which show increased ROS production, lower membrane potential and less O2 

consumption and an imbalance towards mitochondrial fission. These leukocytes also 

interact more with the endothelium compared to those from healthy subjects. Sustained 

therapy with metformin exerts a beneficial effect at the mitochondrial level, ameliorating 

the mitochondrion’s function and dynamics, evident in fewer leukocyte interactions with 

the endothelium than those of untreated T2D patients.  

4. The mitochondria-targeted peptide with antioxidant action SS-31 reduces ROS production 

and ameliorates mitochondrial membrane potential and Ca2+ distribution in leukocytes 

from T2D patients. These benefits are reflected by cellular homeostatic processes in the 

reduction of ER stress and autophagy markers. Additionally, SS-31 treatment of leukocytes 

from T2D patients reduces their interaction with the endothelium. 
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A B S T R A C T

Type 2 diabetes is closely related to oxidative stress and cardiovascular diseases. In this study, we hypothesized
that polymorphonuclear leukocytes (PMN)-endothelium interactions and autophagy are associated. We eval-
uated PMN-endothelial interactions, ROS production and autophagy parameters in 47 type 2 diabetic patients
and 57 control subjects. PMNs from type 2 diabetic patients exhibited slower rolling velocity (p < 0.001),
higher rolling flux (p < 0.001) and adhesion (p < 0.001) in parallel to higher levels of total (p < 0.05) and
mitochondrial ROS (p < 0.05). When the protein expression of autophagy markers was analysed, an increase of
Beclin-1 (p < 0.05), LC3I (p < 0.05), LC3II (p < 0.01) and LC3II/LC3I ratio (p < 0.05) was observed.
Several correlations between ROS and leukocyte-endothelium parameters were found. Interestingly, in control
subjects, an increase of Beclin-1 levels was accompanied by a decrease in the number of rolling (r = 0.561) and
adhering PMNs (r = 0.560) and a rise in the velocity of the rolling PMNs (r = 0.593). In contrast, in the type 2
diabetic population, a rise in Beclin-1 levels was related to an increase in the number of rolling (r = 0.437), and
adhering PMNs (r = 0.467).

These results support the hypothesis that PMN-endothelium interactions, ROS levels and formation of au-
tophagosomes, especially Beclin-1 levels, are enhanced in type 2 diabetes.

1. Introduction

In recent years, a sustained global increase in the prevalence of
obesity and metabolic syndrome [1] has provoked a rise in diseases
such as type 2 diabetes. Currently, type 2 diabetes and its comorbidities
are among the main health concerns worldwide because of their high
prevalence and the associated cost related to public health services.
Type 2 diabetes is characterized by hyperglycaemia and insulin re-
sistance, which cause chronic subclinical inflammation [2,3]. Hy-
perglycaemia and inflammation produce cellular alterations, which are
the molecular basis of diabetes and cardiometabolic diseases [3–5].
Previous studies have highlighted the relationship between diabetes
and inflammation, pointing to circulating hyperlipidaemia and hy-
perglycaemia as triggers of inflammatory responses [5–7].

One of the consequences of chronic hyperglycaemia is the increased
generation of reactive oxygen species (ROS), produced mainly by the
mitochondrial respiratory chain [8,9]. This heavy load of ROS over-
whelms antioxidant defences and can modify cellular molecules and
organelles, disturbing cell homeostasis and inducing inflammation.
Furthermore, mitochondrial dysfunction and oxidative stress have been
closely related to cardiovascular diseases [10,11].

Hyperglycaemia, together with ROS production, leads to an in-
creased presence of proinflammatory molecules that activate immune
cells [8–10]. Moreover, endothelial cells are activated by ROS and
proinflammatory cytokines thereby developing endothelial dysfunction
[12–15]. This situation enhances a cascade of PMN-endothelium in-
teractions, a process by which immune cells migrate to the site of in-
flammation [16]. The proinflammatory state and increased ROS content
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characteristic of type 2 diabetes favour PMN-endothelial interactions
throughout the vasculature, not only at the site of inflammation [17].
This process is enhanced in the comorbidities related to type 2 diabetes
[17], but the cause and the pathways affected are still being in-
vestigated. One of the actions involves the interference of ROS with the
proper functioning of β-cells [18], including mechanisms of protein
homeostasis, such as protein folding and degradation [19]. It is known
that ROS can damage various cellular components, which are degraded
and recycled by a process named autophagy. It involves nonselective
degradation of proteins, lipids and organelles [20], and occurs in re-
sponse to internal or external stimuli such as oxidative stress, unfolded
protein response (UPR) and malfunctioning of organelles (internal in-
ductors), and growth factors, serum starvation or amino acid depriva-
tion (external stimuli). In this sense, autophagy is a survival mechanism
[20] and a strictly regulated process. Two key proteins in this process
are microtubule-associated protein light chain 3 (LC3) and Beclin-1.
The latter, together with other autophagy-related proteins, initiates the
formation of the omegasome and the phagophore, thus priming the
progression to autophagosome ([20]). In parallel, the cytoplasmic form
of LC3I is lipidated to LC3II, and, in this form, is recruited to the inner
and outer autophagosomal membrane in order to construct the autop-
hagosome. In the case of selective autophagy, altered proteins and or-
ganelles are carried to the autophagosome via the ubiquitin- and LC3-
binding protein SQSTM1 (p62). Ubiquitinated proteins or organelles
are sequestered into the autophagosome for their degradation. When
the autophagosome fuses with the lysosome, the autolysosome is cre-
ated and the material stored in the autophagosome is then digested. If
autophagy is impaired, p62 protein accumulates in the autophagosomes
[20]; however, p62 is important not only in this process, but it also acts

as a scaffold protein that intervenes in cell proliferation and survival/
death signalling [21]. Autophagy has been shown to be enhanced and
decreased in diabetic patients [22,23]. In fact, insulin influences au-
tophagy regulation, in part through mTOR signalling. Yan et al. [24]
described that the adipocytes of obese type 2 diabetic patients display
increased autophagy and reduced mTOR signalling. Interestingly, they
showed that this state leads is associated with an undermining of mi-
tochondrial biogenesis and function. Furthermore, several studies have
demonstrated that hyperglycaemia induces autophagy as a protective
mechanism. For example, autophagy is active in diabetic mice podo-
cytes with glomerular damage [25–27], a mechanism that may be
modulated by heme oxygenase 1 (HO-1) and AMPK activation [28]. In
mice, it has also been observed that defective autophagy in β-cells ac-
celerates the progression from obesity to diabetes through enhancement
of UPR, a mechanism also activated by hyperglycaemia [29]. In parallel
to these observations, it has been established that the BCL2-Beclin-1
complex is dissociated in response to AMPK activation in cardiac
muscle, thus enhancing autophagy and preventing cardiomyocyte death
[30]. These observations have been confirmed in other tissues, such as
endothelial progenitor cells [31]. Conversely, Qianrong et al. [32] re-
ported that high glucose levels inhibit autophagy in cardiomyocytes,
leaving cells unprotected and more prone to apoptosis. In summary, it is
thought that autophagy is activated in situations of cellular stress such
as hyperglycaemia, but the underlying mechanisms are unknown in
most cell types.

In this context, we hypothesized that PMN-endothelium interac-
tions, ROS and autophagy are altered in the PMNs of diabetic patients
and that there is an association between all three. In this study, we
analyse the link between Beclin-1, ROS production and PMN-

Abbreviations

AIP Atherogenic Index of Plasma
AMPK AMP-activated protein kinase
BCA Bicinchonic acid
BMI Body mass index
DCFH-DA 2ʹ,7ʹ-Dichlorofluorescin diacetate
EDTA Ethylenediamine tetraacetic acid
HbA1c Glycated haemoglobin
HDL High density lipoprotein
HO-1 Heme oxygenase 1 protein
HOMA Homeostatic Model Assessment
hs-CRP High sensitivity C-Reactive Protein

IL-6 Interleukin 6
LC3 Microtubule associated protein 1A/1B light chain 3 pro-

tein
LDL Low density lipoprotein
PMN Polymorphonuclear cells
ROS Reactive Oxygen Species
RPMI Roswell Park Memorial Institute medium
SDS-PAGE Sodium dodecylsulphate-polyacrylamide gel electro-

phoresis
SQSTM1/p62 Sequestosome protein 1/p62
TNFα Tumor necrosis factor alpha
UPR Unfolded protein response
VLDL Very low density lipoprotein

Table 1
Biochemical and anthropometrical parameters in control and type 2 diabetic populations. Data are expressed as mean ± SD for parametrical data and as
median (25th percentile-75th percentile) for non-parametrical variables. Statistical significance (P < 0.05) was compared with T-test following a post-hoc test with
BMI as covariate.

Control T2D p-value BMI Adjusted p-value

N 57 47
Age 49 ± 10 52 ± 8
Women 55% 45%
Men 45% 55%
BMI (kg/m2) 24.97 ± 3.32 32.25 ± 4.42 <0.001 ns
Glucose (mg/dL) 91.15 ± 11.64 137.1 ± 48.93 <0.001 <0.001
Insulin (μUI/mL) 5.99 ± 1.87 20 ± 12.3 <0.001 0.04
HOMA-IR 1.6 ± 1,05 6.9 ± 5.10 <0.001 0.004
HbA1c (mmol/mol) (%) 33.84(5.3)± 0.62 58 (7.3)± 1.65 <0.001 <0.001
Total Cholesterol (mg/dL) 195.06 ± 29.48 172.27 ± 42.28 0.01 ns
Non-HDL-C (mg/dL) 137 ± 30.79 127 ± 40.89 ns ns
LDL-C (mg/dL) 121.95 ± 26.02 100.38 ± 36.09 0.006 ns
VLDL-C (mg/dL) 15.33 ± 7.07 28.58 ± 27.41 0.003 0.006
HDL-C (mg/dL) 57.17 ± 12.44 44.64 ± 10.09 <0.001 0.01
Triglycerides (mg/dL) 63 (51–103) 114(89–169.67) 0.002 0.007
AIP 0.11 ± 0.24 0.47 ± 0.29 <0.001 <0.001
hs-CRP (mg/L) 1 (0.31–1.87) 3.4 (2.01–7.87) 0.004 ns
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endothelium interactions, as well as the varying behaviour of autop-
hagy in diabetic and control conditions.

2. Materials and methods

2.1. Study population

This cross-sectional observational study had a case-control design,
and was conducted with 47 diabetic patients and 57 control subjects
matched by age and sex. The patients were recruited at the
Endocrinology and Nutrition Service of the University Hospital Dr.
Peset, Valencia, Spain, and their characteristics are described in
Table 1. A diagnosis of type 2 diabetes was determined according to the
American Diabetes Association's criteria. Subjects aged 18 or older were
eligible for inclusion in the study. The exclusion criteria were having an
abnormal haematological profile, suffering any malignant neoplasm or
autoimmune disease, consumption of any anti-inflammatory drugs in
the two weeks previous to the analysis, and regular consumption of
antioxidant nutritional supplements.

The procedures carried out in the study were approved by the Ethics
Committee of the Hospital (ID: 97/16) and conducted according to the
ethical principles stated in the Declaration of Helsinki. All subjects
signed an informed consent document before the interventions. A
physical examination was performed in all patients prior to blood ex-
traction, which was conducted in a state of fasting. Body weight and
height were recorded and body mass index (BMI) was calculated using
the BMI formula (BMI = weight in kg/(height in m) 22).

2.2. Blood sampling

In order to determine biochemical parameters and obtain PMN,
venous blood was collected from subjects in heparin, EDTA or citrate
tubes after 12h overnight fasting. It was then centrifuged (1500g,
10 min, 4 °C) in order to isolate serum and plasma, which were then
stored at −80 °C for subsequent analysis, or employed to determine
biochemical parameters. The heparin tubes were used to obtain PMNs.

2.3. Biochemical determinations

All the biochemical parameters were determined by the Hospital’s
Clinical Analysis Service. An enzymatic method was employed to de-
termine serum concentrations of glucose, total cholesterol, HDL-cho-
lesterol and triglyceride levels with a Beckman LX-20 autoanalyzer
(Beckman Coulter, La Brea, CA, USA). Low density lipoprotein (LDL)
cholesterol levels were calculated with Friedewald's formula. An im-
munochemiluminiscent assay was used to determine insulin levels.
Insulin resistance was determined employing the Homeostasis Model,
calculated as [fasting glucose in mg/dL x fasting insulin in μUI/mL]/
405). Glycated haemoglobin (HbA1c) was assessed with an automatic
glycohemoglobin analyser (Arkray, Inc., 73 KYOTO, Japan). Serum
concentrations of high-sensitive C-reactive protein (hs-CRP) were de-
termined by immunonephelometry. Atherogenic Index of Plasma (AIP)
was calculated using the formula (Total Choresterol(mg/dL))/(HDL-

Cholesterol (mg/dL)).

2.4. PMN-endothelium interaction assay

PMNs were isolated as previously described [33]. We employed a
1.2 mL aliquot of PMNs obtained from the peripheral blood of control
and type 2 diabetic subjects with a density of 106 cells/mL in complete
RPMI (RPMI 1640 medium supplemented with 10% Fetal bovine
serum,1% penicillin/streptomycin, 1% glutamine and 1% sodium pyr-
uvate). Prior to this, primary cultures of human umbilical cord en-
dothelial cells (HUVEC) were established. HUVEC were isolated as
previously reported [32]. On the day of the experiment, PMNs were
monitored through the endothelial monolayer at a speed of 0.3 mL/min
during a 5-min period, which was recorded, and the number of rolling
PMNs as well as their velocity and adhesion to the endothelial mono-
layer were determined. The number of rolling PMNs was measured as
those rolling for 1 min, their velocity was assessed by determining the
time in which 15 rolling PMNs covered a distance of 100 μm. Adhesion
was analysed by counting the number of PMNs adhering to the en-
dothelium for at least 30 s in 5 fields.

2.5. Protein extraction and quantification

PMN pellets were incubated for 15 min on ice with lysis buffer
(20 mM HEPES pH 7.5, 400 mM NaCl, 20% glycerol, 0.1 mM EDTA,
10 μM Na2MoO4, 0.5% NP-40) containing protease inhibitors (10 mM
NaF, 1 mM NaVO3, 10 mM PNP, 10 mM β-glycerolphosphate) and di-
thiothreitol 1 mM. Subsequently, samples were vortexed for 30 s and
centrifuged at 13200 rpm for 15 min at 4 °C. The supernatant was then
collected in a new tube and quantified with the BCA protein assay kit
(Thermo Scientific, Rockford, USA). The protein extract obtained was
stored for subsequent determinations at −80 °C.

2.6. Western blotting

25 μg protein samples were separated with SDS-PAGE (13% poly-
acrylamide gels) and transferred to a nitrocellulose membrane. The
membranes were then blocked for 1h at RT with 5% skimmed milk in
TBS-T or 5% BSA in TBS-T and incubated with primary antibodies
overnight at 4°C- anti-Beclin-1 (Millipore Iberica, Spain, Madrid), anti-
LC3 (Millipore Iberica, Spain, Madrid), anti SQSTM/p62 (Abnova
Corporation, Taiwan), anti-Actin (Sigma Aldrich, St. Louis, USA). The
secondary antibody was HRP-goat anti-rabbit (Millipore Iberica, Spain,
Madrid). The protein signal was revealed with SuperSignal West Femto
(Thermo Scientific, Rockford, USA) and detected with a Fusion FX5
acquisition system (VilbertLourmat, Marne La Vallée, France).
Densitometric quantification of proteins was performed with Bio1D
software (VilbertLourmat, Marne La Vallée, France). Data were re-
lativized with the Actin signal for each sample and also to an internal
control. Each Western blot was performed and reproved several times,
thus, cropped images are represented in Figs. 3 and 4.

Fig. 1. ROS levels in PMNs from control and type
2 diabetic populations. (A) Levels of total ROS
measured in controls and type 2 diabetic patients
with DCFH-DA fluorescence in arbitrary units; (B)
Levels of mitochondrial ROS measured in control and
type 2 diabetic populations with MitoSOX fluores-
cence in arbitrary units. Values were expressed as a
percentage of an internal experimental control in
both populations. *p < 0.05 vs Control group.
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2.7. Quantification of total and mitochondrial ROS

Total and mitochondrial ROS were assessed with the fluorescent
probes 2′-7′ dichlorodihydrofluorescein diacetate (DCFH-DA) and
MitoSOX, respectively. Isolated PMNs were seeded in 48-well plates at a
density of 150000 cells/well and left to adhere in a 5% CO2 incubator
for 20 min. Cells were subsequently incubated with the specific nuclear
stain Hoescht 33342 (4 μM) (Sigma-Aldrich, St. Louis, USA) and the
fluorescent probes DCFH-DA (1 μM) or MitoSOX (5 μM) (Thermo
Scientific, Rockford, USA) 30 min at 37 °C under gentle shaking. Cells
were then washed twice with HBSS and were analysed with the static
cytometry software “ScanR” (Olympus) which is coupled to an inverted
microscope (lX81; Olympus). 12 fields per well were recorded and
quantified. Measurements of fluorescence were referred as % of an
external control for each sample.

2.8. Statistical analysis

SPSS was employed to perform statistical analyses. The data in
Table 1 are expressed as mean ± standard deviation for parametric
data, and median and 25th-75th percentiles for non-parametric data.
The bar graphs in figures represent mean ± standard error. An un-
paired Student’s t-test was performed to compare the control group and
type 2 diabetic subjects, and adjustment by BMI was determined by
means of a univariate general lineal model. Correlations were calcu-
lated with Pearson's correlation coefficient. Differences were considered

significant when p < 0.05.

3. Results

3.1. Clinical and biochemical characteristics of the study subjects

We analysed 57 type 2 diabetic patients and compared them to 47
healthy control subjects with similar ages and sex distribution.
Anthropometric and biochemical parameters were evaluated (Table 1).
Type 2 diabetic patients showed higher BMI, fasting glucose, basal in-
sulin, HOMA-IR index and glycated haemoglobin (HbA1c) compared to
control subjects. Lipid metabolism parameters were also significantly
enhanced compared to control volunteers, with higher VLDL and tri-
glycerides, and lower HDL. Total cholesterol and LDL levels showed a
slight decrease due to the treatment with statin (90% of patients).
Furthermore, type 2 diabetic patients had a higher atherogenic index of
plasma (AIP) and higher PCR levels.

Glucose, insulin, HOMA-IR, HbA1c, VLDL, HDL triglycerides and
AIP maintained their statistical significance when data were adjusted
by BMI, while differences in hsPCR and some lipid profile parameters –
including total cholesterol and LDL - lost their statistical significance.

3.2. Total and mitochondrial ROS levels

Mitochondria can be severely damaged due to hyperglycaemia by
releasing ROS. We measured total and mitochondrial ROS levels in

Fig. 2. Analysis of PMN-endothelium interactions in control and type 2 diabetic populations: (A) Number of PMNs rolling along the endothelial monolayer
during a 1-min period, measured as number of cells/min; (B) Velocity of PMNs measured as μm/sec; (C) Number of adhering PMNs in 1 mm2, measured as PMN/
mm2; (D) Representative images of control and type 2 diabetic populations at the start and the end (5 min) of the experiment. ***p < 0.001 in type 2 diabetes vs
Control.
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PMNs from type 2 diabetic patients and controls and found an evident
enhancement of both total and mitochondrial ROS levels in type 2
diabetic subjects (p < 0.05) (Fig. 1) suggesting an oxidative stress
condition.

3.3. PMN-endothelium interactions

Metabolic disorders are associated with increased levels of in-
flammatory markers. In the present study, we have observed that type 2
diabetic subjects had higher levels of TNFα and IL-6 levels, as well as
increased NF-κB (p65) protein levels (Supplemmentary figure). This
enhanced inflammatory background could be further confirmed ana-
lyzing the activation of the PMN cells and its interactions with the
endothelial cells, using parallel-plate flow chamber experiments. This in
vitro system reproduces physiological interactions between circulating
cells and endothelium, and can quantify the frequency and stability of
these interactions. Interestingly, PMNs from type 2 diabetic patients
displayed lower rolling velocity through the endothelial monolayer
(p < 0.001) (Fig. 2B), greater rolling number (p < 0.001) (Fig. 2A)
and increased adhesion to the endothelial cells (p < 0.001) (Fig. 2C)
with respect to those from the control population. This increase in
PMN-endothelium interactions is reflected in the representative images
obtained before and after the 5-min experimental period (Fig. 2D).

3.4. LC3I, LC3II, Beclin-1 and p62 protein levels

We examined autophagy, a stress-activated cellular process that
might be altered in type 2 diabetic population. PMNs were employed to
analyse the protein expression of classical markers such as LC3, Beclin-1
and p62. Type 2 diabetic patients displayed an increased amount of
LC3I (p < 0.05) (Fig. 3A and representative WB) and LC3II
(p < 0.05) (Fig. 3B and representative WB), with a higher LC3II/LC3I
ratio (p < 0.05) (Fig. 3C and representative WB). In addition, they

showed enhanced Beclin-1 and decreased p62 protein levels
(p < 0.05) compared to control subjects (Fig. 4), suggesting an in-
crease in autophagy activation in the type 2 diabetic patient population.

3.5. Correlations between ROS levels and autophagy markers

As we have mentioned before, excessive production of ROS can
generate cellular stress that activates rescue pathways. In the present
study, we have tried to highlight the relationship between autophagy
and ROS production. We have evaluated correlations between the data
obtained for ROS production and autophagic protein expression. We
observed that total ROS levels correlated negatively with LC3II/I ratio
in the control population (r = −0.714, p = 0.047) and positively with
Beclin-1 levels in type 2 diabetic subjects (r = 0.911, p = 0.001). On
the other hand, mitochondrial ROS was positively correlated with
LC3II/LC3I ratio in the type 2 diabetic population (r = 0.416,
p = 0.022). These data reinforce the hypothesis of a strong relation
between autophagy and ROS production in type 2 diabetic patients.

3.6. Correlation between autophagy proteins and PMN-endothelium
interaction parameters

Once we had analysed the correlation between ROS and autophagy,
we evaluated the correlation between PMN-endothelium interactions
and autophagy markers. Interestingly, we observed that Beclin-1 pro-
tein levels were differentially correlated with PMN-endothelium inter-
action parameters (Fig. 5). In the control population, an increase of
Beclin-1 was accompanied by a decrease in rolling number, a decrease
in the number of adhered PMNs and a rise in the velocity of the rolling
PMNs. In contrast, in the type 2 diabetic population, an increase in
Beclin-1 was related to an increase in both rolling number and number
of adhered PMNs and a trend towards a decrease in rolling velocity
(Fig. 5). Additionally, a correlation between PMN adhesion, and LC3II

Fig. 3. LC3 (I and II) protein expression in controls and type 2 diabetic patients. Protein expression of LC3I (A), LC3II (B) and ratio of LC3II to LC3I (C) in
controls and type 2 diabetic patients were assessed by immunoblotting. Quantification was performed in n = 15 samples for each group. Representative image of
western blotting of 4 samples (2 controls and 2 type 2 diabetic patients) is displayed. Values represent media± SD * p < 0.05; **p < 0.01 vs Control.
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expression was observed in the type 2 diabetic population (r = 0.386,
p = 0.032) while the rest of the parameters of PMN-endothelium in-
teractions showed no correlation.

4. Discussion

In this cross-sectional study, we have shown that diabetic patients
display enhanced PMN-endothelium interactions, ROS production, au-
tophagy-related protein expression as well as proinflammatory cyto-
kines TNFα and IL-6, and NF-κB activation. Moreover, we demonstrate
a differential correlation between PMN-endothelium interactions and
Beclin-1 expression in control subjects and type 2 diabetic patients.

With regard to the inflammatory basis of type 2 diabetic, high levels
of circulating glucose and lipids increase the expression of adhesion
molecules in both the endothelium and PMNs [13,14,16,34,35]. This
has been corroborated by several observational studies of type 2 dia-
betic patients [14,35], but also in interventional studies in patients
fitted with hyperglycaemic clamps and undergoing glucose challenge,
in whom inflammatory cytokines increase after glucose input [36].
Hyperlipidaemia, another hallmark of type 2 diabetic, is also related to
PMN function [17]; an increase in PMN ROS production has been de-
scribed in hyperlipidaemic and hypertensive patients with respect to
healthy controls, which can lead to the atherosclerotic complications
[37]. Furthermore, it has been observed that PMN function is altered in
patients with diabetic retinopathy; for example, in the case of enhanced
extravasation [38]. In this sense, the close relationship between in-
flammation, ROS production and increase of PMN-endothelium inter-
actions is widely recognised [18,35–37,39–42]. All these studies have
concluded that the chronic inflammation characteristic of diabetes and
hyperglycaemia promotes the production of inflammatory chemokines
and ROS, which in turn alters the functions of the endothelium and

PMNs, thus increasing their interaction. Although ROS have an im-
portant function as signalling molecules in physiologic processes, their
overproduction causes damage of cellular components, which activates
the inflammatory response of cells. In the present study, we have ob-
served higher levels of total and mitochondrial ROS in the type 2 dia-
betic population compared to healthy controls. The relation between
type 2 diabetes and ROS is well documented in the literature
[8–10,18,28], and has even been directly related to the regulation of
autophagy [19,28]. Interestingly, we have observed a differential pat-
tern in the correlations found between total ROS production and LC3II/
I ratio, suggesting a synergistic effect of ROS and autophagy in type 2
diabetic patients. These results suggest that autophagy is one of the
mechanisms that mediate the link between ROS production and the
increase of PMN-endothelium interactions in type 2 diabetes versus
control conditions.

Several studies point to alterations in autophagy signalling in type 2
diabetic patients [21–23,25,26]. In the present study, type 2 diabetic
subjects displayed enhanced protein markers of autophagy, such as
LC3I, LC3II, LC3II/LC3I ratio and Beclin-1, which were related to a
reduction in p62 protein levels. These results suggest an activation of
autophagy in type 2 diabetic patients compared to healthy controls.
Activation or alteration of autophagy has been reported in different
situations of hyperlipidaemia and hyperglycaemia. For example, pre-
vious research has shown mitochondrial dysfunction and altered au-
tophagy in adipocytes from obese type 2 diabetic patients [23], as well
as in Goto-Kazikazi (type 2 diabetic) rats [24]. Furthermore, alterations
in autophagic parameters in podocytes and leukocytes have been re-
lated to diabetic comorbidities such as diabetic nephropathy
[26,27,43], cardiac complications [30,31] and neuropathy [31]. In-
terestingly, in diabetic Wistar rats, insulin exerted different effects on
autophagy depending on the origin of the leukocytes [44]. In fact,

Fig. 4. p62 and Beclin-1 protein expression in control and type 2 diabetic populations. Protein expression of p62 (A) and Beclin-1 (B) in control and type 2
diabetic populations was assessed by inmunoblotting. Quantification was performed with n = 15 samples in each group. Representative images of the western
blotting are displayed at the side of both graphs. Values represent media± SD * p < 0.05 vs Control.
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diabetic M1 bone marrow-derived macrophages (BMM) had their LC3
vesicle-bound content diminished while M2 BMM had enhanced LC3
levels, and insulin treatment failed to rescue autophagy to control le-
vels. In endothelial cells, proinflammatory cytokines have been shown
to induce autophagy, which enhances the production of adhesion mo-
lecules [45]. In other studies, autophagy has proved to be a crucial
protective mechanism in beta cells [28,46].

Our study relates an increase in autophagy-related proteins with an
increase of PMN-endothelium interactions in type 2 diabetic patients as
well as an increase in NF-κB expression. We also show that Beclin-1
protein levels correlate differentially with PMN-endothelium interac-
tion parameters depending on the health status of the subject. While an
increase in Beclin-1 was related to a reduction in PMN-endothelium
interactions in control subjects, it was associated with an increase in
PMN-endothelium interactions in type 2 diabetic patients. This could
mean that the increase in PMN-endothelium interactions is strongly
influenced by Beclin-1, and that changes in its expression imply dif-
ferent signalling cascades depending on the status of the subject.
Furthermore, we have observed a positive correlation between PMNs
adhesion and LC3II in type 2 diabetic patients. Beclin-1 is implicated in
different biological processes, including cytokinesis, immunity, adap-
tation to stress, development, ageing, tumorigenesis and cell death
[47]. The effects described in the present study may be associated with
the ability of Beclin-1 to exert several functions within of the metabo-
lism of the cell; for example, it interacts with BCL2 to form the BCL2-
Beclin-1 complex, which is regulated by AMPK, provoking the dis-
sociation of the complex and thus preventing apoptosis [29]. Another
possible reason why only this protein is differentially regulated is that
Beclin-1 interacts with VMP-1 upstream from all the other regulators of
autophagy [48]; thus, variations in regulation could be due to differ-
ences at this level of the autophagy signalling.

5. Conclusions

In summary, this study demonstrates enhanced PMN-endothelium
interactions, ROS production and autophagy activation in type 2 dia-
betic patients. Moreover, we show a differential behaviour of autop-
hagy in control and type 2 diabetic subjects regarding ROS levels and
PMN endothelium-interactions. These data endorse a connection be-
tween these three key mechanisms in type 2 diabetes, and highlights
the changes in Beclin-1 as a possible linking mechanism between ROS
production and PMN-endothelium interactions. Furthermore, we show
that the pattern of autophagy markers differs depending on the pre-
sence or not of type 2 diabetes, perhaps pointing to metabolic pathways
that need to be elucidated by future research.
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Abstract: Glycated hemoglobin monitorization could be a tool for maintaining type 2 diabetes
(T2D) under control and delaying the appearance of cardiovascular events. This cross-sectional
study was designed to assess the role of glycemic control in modulating early-stage markers of
cardiovascular complications. One hundred and eight healthy controls and 161 type 2 diabetic patients
were recruited and distributed according to their glycemic control, setting the threshold at 6.5%
(good control). Biochemical and anthropometrical parameters were registered during the initial visit,
and peripheral blood was extracted to obtain polymorphonuclear cells and analyze inflammatory
markers, adhesion molecules, leukocyte–endothelium interactions, and carotid intima–media
thickness. Correlations between these parameters were explored. We found that inflammatory markers
and adhesion molecules were augmented in type 2 diabetic subjects with poor glycemic control.
Polymorphonuclear leukocytes interacted more with the endothelium in the diabetic population,
and even more significantly in the poorly controlled subjects. In parallel, carotid intima–media
thickness was also increased in the diabetic population, and the difference was greater among poorly
controlled subjects. Finally, correlation measurement revealed that carotid intima–media thickness
was related to glycemic control and lipid metabolism in diabetic patients. Our results suggest that
glycemic control delays the onset of cardiovascular comorbidities in diabetic subjects.

Keywords: type 2 diabetes; glycated hemoglobin; carotid intima–media thickness; inflammation;
endothelial function

1. Introduction

Type 2 diabetes (T2D) is currently one of the most prevalent metabolic diseases, affecting around
500 million people. Its incidence has doubled since 1980 [1,2], increasing health expenditure because
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of T2D itself and due to its derived complications [1–4]. In fact, cardiovascular diseases (CVD) are
the leading cause of death among type 2 diabetic subjects [2,5], being caused mainly by advanced
atherosclerosis, which can be delayed or prevented by early and maintained glycemic control. One of
the key markers of glycemic control is glycated hemoglobin (HbA1c), and reducing its levels is a
primary goal of diabetic treatment [6–8]. In fact, several studies have demonstrated that sustaining
HbA1c below 6.5% reduces the incidence of macro- and microvascular comorbidities [7,9–13].

T2D is associated with a proinflammatory background, caused by high circulating glucose,
accumulation of advanced glycation end products (AGEs), glycation of hemoglobin, alteration of lipid
metabolism in adipose tissue, and other metabolic alterations that favor a proinflammatory state in
peripheral blood [14–16]. If sustained for long periods, all of these modifications promote the production
by tissue of a wide array of proinflammatory cytokines such as Interleukin-6 (IL6) and Tumor Necrosis
Factor alpha (TNFα), as well as reactive oxygen species (ROS) [15–20], specially by mitochondria.
In short, hyperglycemia and hyperlipidemia trigger Nod-Like Receptor Protein NLRP inflammasome
activation, TNFα synthesis, and the production of mitochondrial and nonmitochondrial ROS [21–23].
This induces Nuclear Factor Kappa B (NFκB) activation and inflammatory cytokine expression,
mostly through thioredoxin-related protein action [24–27]. Moreover, lipids can react with ROS and
amplify the proinflammatory cascade [28]. This results in a vicious cycle of cell death and greater
inflammation [29]. This ROS–inflammation axis has been studied in a wide array of inflammatory-based
diseases, such as cardiac alterations [30–32], bone and joint diseases [33–35], neuronal and cerebral
dysfunctions [28,29,36], bacterial infection [37], liver diseases [38], respiratory alterations [39,40] and
cancer [41]. Furthermore, in T2D, the continuous presence of proinflammatory molecules causes diverse
endocrine effects on the vasculature, and contributes to the development of micro- and macrovascular
pathologies such as carotid atherosclerosis [21]. Together, the sustained increase of ROS production and
the rise in inflammation have an important effect on the development of diabetic atherosclerosis [22].

Immune cells are also activated in T2D, producing more proinflammatory and adhesion
molecules [15,16,42,43]. As explained previously, circulating proinflammatory molecules produced
by chronic hyperglycemia and hyperlipidemia can activate leukocytes and the endothelium [44,45].
In this state, immune cells interact with the endothelium, infiltrating the inner layers of tissues
and intensifying the inflammation [15,44,45]. There are different epidemiologic studies describing
how an increased leukocyte count is a risk factor for the progression of carotid atherosclerosis
and cardiovascular events [46–48]. Proinflammatory factors also favor the development of the
atherosclerotic plaque, as demonstrated by several studies [49–52]. In fact, atherosclerosis represents
the culmination of continued subclinical inflammation, and is one of the main causes of cardiovascular
comorbidities [6,23,53–55]. Worryingly, atherosclerosis is often asymptomatic for decades before
clinical manifestations appear, and is termed subclinical atherosclerosis during this period [6,56,57].

Carotid intima–media thickness (CIMT) is a biomarker of subclinical atherosclerosis [58,59].
Measurement of the CIMT by B-mode ultrasound has been shown to be suitable for evaluating the
early stages of atherosclerosis [57,60,61] and to be an indicator of CVD [62–64]. Different studies have
described a rise of CIMT in T2D [63,65,66] and metabolic syndrome [67,68].

The aim of this study was to explore the potential involvement of glycemic control in inflammation,
adhesion molecules, leukocyte–endothelium interactions, and the CIMT in T2D patients compared
with a healthy control population.

2. Experimental Section

2.1. Human Subjects

This study was carried out in 269 subjects, specifically, 161 T2D patients and 108 healthy controls
recruited from the Service of Endocrinology and Nutrition of University Hospital Doctor Peset
(Valencia, Spain) until June 2019 and adjusted for age and sex. The time that these patients had
suffered from T2D, the presence of comorbidities, and their drug prescriptions are specified in
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Supplementary data (Tables S1–S3). The subjects signed a written informed consent form and protocols
were approved by our hospital’s Ethics Committee for Clinical Investigation (ID: 98/19), in line with
the ethical principles of the Helsinki declaration. T2D patients were diagnosed following the American
Diabetes Association (ADA) indications, and presence of morbid obesity, insulin treatment, or any
autoimmune, hematological, malignant, infectious, organic, or inflammatory disease represented the
exclusion criteria.

2.2. Sample Collection

Venous blood samples were obtained from the antecubital vein in fasting conditions. Weight (kg),
height (m), body mass index (BMI; kg/m2), systolic and diastolic blood pressure (SBP/DBP; mmHg),
and waist circumference (cm) were assessed previous to the blood extraction.

2.3. Laboratory Tests

Serum was isolated from the blood by centrifugation for 10 min at 1500 g and 4 ºC. Fasting glucose,
cholesterol, and triglycerides were determined by an enzymatic method. High-density lipoprotein
cholesterol (HDL-c) levels were measured with a Beckman LX-20 autoanalyzer (Beckman Coulter,
La Brea, CA, USA) using a direct method. Low-density lipoprotein cholesterol (LDL-c) was
determined with Friedewald’s formula. An immunochemiluminescence assay was employed to
determine insulin levels. Homeostatic Model Assessment of insulin resistance HOMA-IR index
[fasting insulin (µU/mL)× fasting glucose (mg/dl)/405] was calculated to estimate insulin resistance (IR).
Percentage of HbA1c was determined with an automatic glycohemoglobin analyzer (Arkray, Inc., Kyoto,
Japan). Apolipoproteins were measured with an electroimmunoassay. High-sensitivity C-reactive
protein (hsCRP) was analyzed employing an immunonephelometer (Behring Nephelometer II,
Dade Behring, Inc., Newark, DE, USA).

2.4. Leukocyte Isolation

In this assay, polymorphonuclear leukocytes (PMNs) were isolated from heparinized whole
blood by the following protocol: the blood was mixed with 1:2 volumes of dextran solution (3% in
NaCl 0.9%; Sigma Aldrich, MO, USA) and incubated for 45 min. The supernatant was then poured over
Ficoll-Hypaque (GE Healthcare, Uppsala, Sweden) and centrifuged at 650× g for 25 min. The resulting
pellet was lysed to remove the remaining erythrocytes with lysis buffer (5 min at room temperature)
and centrifuged at 240× g. Pellets containing leukocytes were then washed twice and resuspended
in Hank’s balanced salt solution (HBSS; Sigma Aldrich, MO, USA). This cellular suspension was
employed to perform the leukocyte–endothelium interaction assay.

2.5. Soluble Cytokines and Adhesion Molecule Assay

Intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1),
P-selectin, IL-6, and TNFα were analyzed in serum samples with a Luminex 200 flow analyzer
system (Millipore, Austin, TX, USA). In brief, specific antibodies covered the color-coded microbead,
and detection was performed with biotinylated secondary antibody and streptavidin-PE conjugate.
The fluorescence of each individual microbead was analyzed with the Luminex XMap instrument.
This method allows multiple cytokines in the same sample to be analyzed with a high specificity
ad sensitivity. The TNFα detection range was between 1750 and 0.43 pg/mL; that of IL-6 is 750 to
0.18 pg/mL; that of VCAM-1 is 500 to 0.122 ng/mL; that of ICAM-1 is 350 to 0.085 ng/mL; and that of
P-selectin is 1000 to 0.122 ng/mL. The intra-assay %CV is <5% for TNFα and IL-6 and <15% for ICAM-1,
VCAM-1, and P-selectin. The interassay %CV is <20% for IL-6, ICAM-1, VCAM-1, and P-selectin and
<15% for TNFα.
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2.6. Static Cytometry Measurements

Mitochondrial ROS production was evaluated employing a MitoSOX (Thermo Fisher Scientific,
Waltham, MA, USA) fluorescent probe. A fluorescence microscope (IX81; Olympus Corporation,
Shinjuku-ku, Tokyo, Japan) with automated static cytometry software (ScanR, Olympus, Munich,
Germany), which measures the fluorescence emission per individual cell, was also used. In brief,
the protocol consisted of seeding PMN, extracted as previously specified, in 48-well plates and allowing
them to adhere to the well surface. MitoSOX and DAPI (Sigma Aldrich, MO, USA) were then added
to the well at a final concentration of 0.1 µM, for 20 min. After washing the cells twice with HBSS,
fluorescence was measured and MitoSOX emission data relativized to DAPI emission data for each
cell. PMN data were relativized with an internal control for all the experiments. All experiments were
performed in duplicate, and 16 images per well were measured.

2.7. PMN–Endothelium Interaction Assay

An aliquot of 1.2 mL PMNs, isolated as previously described [69], with a density of 106 cells/mL in
complete Roswell Park Memorial Institute medium RPMI, was employed for this assay. Primary cultures
of human umbilical cord endothelial cells (HUVEC) were prepared as reported in [69]. In this assay,
the PMN aliquot was perfused across the endothelial monolayer at a speed of 0.3 mL/min over a 5 min
period, and the process was recorded. Rolling PMNs were considered to be those rolling for at least
1 min. Velocity was assessed by determining the time in which 15 rolling PMNs covered a distance of
100 µm. Adhesion was analyzed by counting the number of PMNs adhering to the endothelium for at
least 30 s in 5 different fields.

2.8. Assessment of Carotid Intima–Media Thickness (CIMT)

Carotid thickness was evaluated following the American Echocardiography Association’s
guidelines. Healthy subjects and T2D patients were told to attend the Cardiology Service of the
Dr. Peset Hospital 7–10 days after the blood extraction in order to evaluate carotid intima–media
thickness. This measure has a diagnostic value because of its positive correlation with risk factors and
with the prevalence of cardiovascular and cerebrovascular disease. The evaluation was performed by
placing the head of the patients at 45º with respect to the body longitudinal axis. Some subjects were
dropped from the study due to clinical or schedule reasons.

Carotid sonography was performed with a single ultrasound machine Aloka 5500 (Hitachi Aloka,
Tokyo, Japan) equipped with a 7.5 MHz sector scanner probe. Baseline and follow-up studies were
performed in a standard fashion by a single specialist physician who was specifically trained to
perform the examination and was blinded to the treatment group. All images were electronically
stored. Measurements corresponded with the 1 cm segment proximal to the dilation of the carotid
bulb, and were always performed in plaque-free segments. For each patient, three measurements were
performed for both sides of the anterior, lateral, and posterior projections of the far wall, and readings
were then averaged. An independent observer, who was blinded to the treatment group and trained to
interpret the CIMT images, performed an off-line analysis of B-mode ultrasound images. Paired CIMT
measurements in the same arteries showed a high degree of reproducibility, with a mean difference in
CIMT of 0.020 mm, and an intraclass correlation coefficient of 0.97 (p < 0.001). CIMT regression was
defined as a decrease of >0.020 mm in mean CIMT at 12 months.

2.9. Statistical Analysis

All data were analyzed with SPSS 17.0 software (SPSS Statistics Inc., Chicago, IL, USA).
Values are expressed as mean and standard deviation (SD) for parametric data, while the median
(25th–75th percentiles) is presented for nonparametric data. Bar graphs show mean and standard error
of the mean (SEM) in the figures. Multivariate lineal analysis was performed to check the influence of
BMI and age on the other dependent variables.
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Correlation analysis was performed with the Spearman formula, and the linear regression
coefficient was also calculated. Graphs were plotted with GraphPad Prism 4.0 (GraphPad, La Jolla,
CA, USA).

Multivariate linear analysis was performed in order to eliminate the influence of BMI and age on
the variables of interest. Normality of the data sets was assessed by Kolmogorov–Smirnov test. In the
case of the variables with normally distributed data, the groups were compared with a Student’s t-test,
while a Mann–Whitney U test was employed for non-normally distributed ones, and the Chi-Square
test for proportion of frequencies. Study groups were compared using one-way analysis of variance
(ANOVA) followed by a Bonferroni post hoc test. Differences were considered to be significant when
p < 0.05, applying a confidence interval of 95% in every comparison. Graphs were plotted with
GraphPad Prism 4.0 (GraphPad, La Jolla, CA, USA).

3. Results

3.1. Anthropometric and Biochemical Parameters

The study population was initially divided into healthy controls (108) and T2D patients (161)
following the diagnostic criteria of the ADA. Diabetic patients were divided into two populations
depending on their glycemic control, which was represented by their levels of HbA1c. The set threshold
was 6.5, in line with ADA criteria [7]. Table 1 confirms that both diabetic populations had typical
hallmarks, with significant differences in glucose (p < 0.01), HbA1c (p < 0.01), and HOMA index
(p < 0.01). Moreover, significant differences in glucose levels (p < 0.001) and HOMA index (p < 0.001)
were found between the T2D HbA1c > 6.5 group and the T2D HbA1c ≤ 6.5 group. Our T2D populations
also displayed features such as greater waist diameter (p < 0.01), increased waist-to-hip ratio (p < 0.01),
higher HOMA index (p < 0.01), and altered lipid metabolism parameters, with increased VLDL and
triglyceride levels (p < 0.01), Ct/HDL (p < 0.01), and AIP (p < 0.01) and lower levels of HDL-c (p < 0.01).
Total cholesterol, LDL cholesterol, and non-HDL cholesterol levels remained unchanged in the T2D
HbA1c ≤ 6.5% group. However, total and LDL cholesterol were significantly reduced (p < 0.01) in the
T2D HbA1c > 6.5 group, possibly due to the hypolipemiant treatment. Regarding apolipoproteins,
ApoA1 was significantly lower in T2D patients with respect to healthy controls (p < 0.01) and the
difference was even more significant in the HbA1c > 6.5% group (p < 0.001). ApoB levels did not
change. Interestingly, the ApoB/ApoA ratio significantly increased in the T2D HbA1c > 6.5 population
(p < 0.01).

3.2. Inflammation Markers

A hyperglycemic scenario is usually accompanied by an increase in subclinical inflammation
levels. We analyzed some relevant proinflammatory markers in our cohort of patients and their
respective controls. The T2D group showed a significant increase in TNFα levels compared to the
control group (p = 0.047) (Figure 1A). When we distributed the T2D population based on HbA1c,
an increase was preserved in the T2D HbA1c > 6.5 group (p = 0.014) (Figure 1B). Another relevant
cytokine, IL-6, was doubled in T2D subjects (p = 0.019) (Figure 1C) and, as occurred with TNFα,
the increase was associated with T2D HbA1c >6.5% (p = 0.015) (Figure 1D).

Moreover, we evaluated mtROS production, and the results showed a significant rise in mtROS in
the T2D population (p = 0.045) (Figure 1E), which was more pronounced among the poorly controlled
population (p = 0.038) (Figure 1F). Poorly controlled T2D patients also had significantly higher levels
of mtROS than their well-controlled counterparts (p = 0.041) (Figure 1F).

3.3. PMN–Endothelium Interactions

The generalized state of inflammation during T2D entails the activation of immune cells, which,
in an active state, are more prone to attach to the endothelium and infiltrate through to the inner layers
of the organs. Thus, we analyzed serum levels of adhesion molecules such as ICAM-1, VCAM-1,



J. Clin. Med. 2020, 9, 2522 6 of 19

and P-selectin, some of the main players of leukocyte–endothelium interactions. As can be seen
in Figure 2, T2D patients displayed higher levels of ICAM-1 (p = 0.016) (Figure 2A) and VCAM-1
(p = 0.027) (Figure 2C), but not of P-selectin. The increase in ICAM-1 was already significant in the
well-controlled diabetic population (p = 0.006) (Figure 2B), and was enhanced in the poorly controlled
diabetic population (p < 0.001). In addition, VCAM-1 was significantly higher in T2D subjects with
HbA1c > 6.5% (p = 0.005) (Figure 2D).

Table 1. Anthropometrical and biochemical parameters.

Control T2D

HbA1c ≤ 6.5% HbA1c > 6.5%

N 108 57 104
Age (Years) 57 ± 11 58 ± 8 60 ± 9
%Women 62.2% 43.93% 56.11%

Weight (kg) 68.51 ± 15.18 85.02 ± 16,07 * 83.59 ± 15.84 *
BMI (kg/cm2) 24.18 ± 4.11 31.18 ± 4.23 * 30.43 ± 5.13 *
SBP (mmHg) 119.43 ± 18.18 139.82 ± 14.23 * 138.38 ± 17.05 *
DBP (mmHg) 72.35 ± 10.94 82.03 ± 10.97 * 78.25 ± 9.35 *

Waist (cm) 79.81 ± 12.62 106.39 ± 11.46 * 103.99 ± 13.35 *
Hip (cm) 99.09 ± 7.21 108.71 ± 9.53 * 108.48 ± 12.62 *

Waist–Hip ratio 0.80 ± 0.09 0.97 ± 0.08 * 0.95 ± 0.08 *
Glucose (mg/dL) 88.08 ± 10.75 112.37 ± 22.59 * 160.51 ± 55.06 *‡

HOMA 1.69 ± 1.19 3.72 ± 2.00 * 6.57 ± 4.45 *‡

HbA1c (%) 5.18 ± 0,26 5.94 ± 0.30 * 7.85 ± 1.30 *
Total cholesterol

(mg/dL) 185.43 ± 35.32 173.67 ± 34.31 167.42 ± 37.67 *

HDL-c (mg/dL) 56.04 ± 13.61 45.10 ± 11.83 * 42.94 ± 10.46 *
LDL-c (mg/dL) 111.38 ± 28.72 102.62 ± 31.33 95.17 ± 31.09 *
VLDL (mg/dL) 26.01 ± 10.81 28.63 ± 19.54 * 28.91 ± 22.04 *

Cholesterol/HDL 3.46 ± 0.94 4.07 ± 1.18 * 4.06 ± 1.14 *
Triglycerides (mg/dL) 87.62 (55.50; 103.00) 130.29 (90.5; 169.00) * 150.75 (92.00; 162.63) *
Non-HDL Cholesterol

(mg/dL) 129.39 ± 33.28 129.37 ± 32.51 124.48 ± 36.57

AIP (TG/HDL-c) 0.10 (−0.06; 0.33) 0.47 (0.23; 0.63) * 0.47 (0.29; 0.68) *
APO A1 (mg/dL) 164.02 ± 32.28 151.45 ± 27.21 * 142.72 ± 22.87 *†

APO B (mg/dL) 90.78 ± 26.60 90.33 ± 25.82 94.18 ± 25.27
APOB/APOA1 0.57 ± 0.20 0.64 ± 0.24 0.67 ± 0.19 *
hsCRP (mg/L) 0.75 (0.36; 1.83) 2.64 (1.61; 7.07) † 2.87 (1.31; 6.59) †

Anthropometrical and biochemical parameters obtained from whole peripheral blood from healthy subjects,
HbA1c ≤ 6.5% T2D patients and HbA1c > 6.5% T2D patients after 12 h fasting. Kolmogorov–Smirnov normality
test was performed in all data sets. Data are shown as mean ± SD for data with normal distribution, and median
and 25th; 75th percentile for non-normal data. The differences were analyzed by a t-test in the case of normal data
and a Mann–Whitney test in that of non-normal data. *, p < 0.01 vs. control; †, p < 0.001 vs. control; ‡, p < 0.001
vs. T2D HbA1c ≤ 6.5%.

For assessing PMN–endothelium cell interactions directly, we performed an in vitro adhesion
assay with leukocytes from T2D patients and their respective controls. Leukocyte count was slightly
higher but within the normal range in T2D patients. This could reflect the subclinical inflammation
level characteristic of T2D (Supplementary Table S4). Rolling number, rolling velocity, and adhesion
to the endothelial monolayer were assessed. We obtained a higher number of rolling cells in T2D
patients (p < 0.001) (Figure 2G), accompanied by a lower velocity of these cells (p < 0.001) (Figure 2I)
and a higher level of adhesion to the endothelial monolayer (p < 0.001) (Figure 2K). These differences
remained when we separated the T2D population depending on its glycemic control status (p < 0.001)
(Figure 2H,J,L). PMN rolling (p < 0.001) and adhesion (p < 0.05) were increased, while rolling velocity
was decreased (p < 0.001) in well-controlled diabetic subjects. These significant differences were
sustained in poorly controlled diabetic subjects, and were more significant in the case of cell adhesion (p
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< 0.001). These differences can be assessed in the Supplementary Videos (Supplementary Videos S1–S3),
in which representative videos of each experimental group have been attached (Supplementary data).J. Clin. Med. 2020, 9, x FOR PEER REVIEW  7 of 21 
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and T2D groups (A,C,E) or between control, well-controlled (HbA1c ≤ 6.5%) and poorly 
controlled diabetic groups (HbA1c > 6.5%) (B,D,F) are shown. Statistical analysis was performed 
using a t-test to compare two groups, and using ANOVA with Bonferroni post-test for three 
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Figure 1. TNFα, IL-6, and mtROS measurements. Serum levels of proinflammatory cytokines TNFα
(A,B) and IL-6 (C,D), and fluorescence levels of mtROS (E,F). Differences between control and T2D
groups (A,C,E) or between control, well-controlled (HbA1c ≤ 6.5%) and poorly controlled diabetic
groups (HbA1c > 6.5%) (B,D,F) are shown. Statistical analysis was performed using a t-test to compare
two groups, and using ANOVA with Bonferroni post-test for three groups. * p < 0.05 vs. control;
# p < 0.05 vs. T2D HbA1c < 6.5%.

3.4. Carotid Intima–Media Thickness Measurements

The proinflammatory environment seen in our diabetic patients and the increase in
leukocyte–endothelium interactions could represent a rise in the incidence of macro- and microvascular
complications. Therefore, we next explored CIMT. All the patients underwent carotid echocardiography
at our hospital’s Cardiology Service. Diabetic patients showed higher CIMT compared to healthy
controls, with this difference being identified in the left carotid (p < 0.001) (Figure 3A) and right carotid
(p = 0.003) (Figure 3C).

We observed that the poorly controlled diabetic population had significantly higher left CIMT
than the well-controlled diabetic group (p = 0.024) (Figure 3B). On the other hand, right CIMT proved
to be significantly higher in the poorly controlled diabetic group than in the control group (p = 0.001)
(Figure 3D).
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Figure 2. Serum levels of soluble adhesion molecules and measurement of PMN–endothelium
interactions. Differences in adhesion molecules between control and T2D groups (A,C,E) or between
control, well-controlled diabetics (HbA1c ≤ 6.5%), and poorly controlled diabetics (HbA1c > 6.5%)
(B,D,F) are shown. The number of rolling cells (G,H), their velocity (I,J), and the adhesion of these
cells to the endothelial monolayer (K,L) were analyzed. Differences between control and T2D groups
(G,I,K) or between control, well-controlled diabetics (HbA1c ≤ 6.5%), and poorly controlled diabetic
groups (HbA1c > 6.5%) (H,J,L) are shown. Statistical analysis was performed by means of a t-test
to compare two groups, and using ANOVA with Bonferroni post-test for three groups. * p < 0.05;
** p < 0.01; *** p < 0.001 vs. control.
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Figure 3. Measurement of carotid intima–media thickness (CIMT). Left carotid (A,B) and right
carotid (C,D) were analyzed. Differences between control and T2D groups (A,C) or between control,
well-controlled (HbA1c ≤ 6.5%), and poorly controlled diabetic groups (HbA1c > 6.5%) (B,D) are shown
in the graphs. Statistical analysis was performed by means of a t-test to compare two groups, and using
ANOVA with a Bonferroni post-test for three groups. ** p < 0.01; *** p < 0.001 vs. control group;
# p < 0.05 vs HbA1c ≤ 6.5% group.
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3.5. Correlation Analysis

We took all these data and performed correlations and linear regression to explore relations
between all the analyzed variables. First, we analyzed the relationship between in vitro adhesion assay
parameters and the left CIMT; we observed positive correlations (rolling number Figure 4A, p = 0.037,
r = 0.218; rolling velocity Figure 4C, p = 0.021, r = 0.252; adhesion Figure 4E, p = 0.037, r = 0.239) among
the left carotid measures but not among those of the right (Figure 4B,D,F).

Regarding biochemical parameters, we saw that left CIMT measures correlated significantly with
glucose (p = 0.003, r = 0.203) (Figure 5A), HOMA-IR (p < 0.001, r = 0.338) (Figure 5C), BMI (p = 0.036,
r = 0.235) (Figure 5E), and HbA1c (p < 0.001, r = 0.399) (Figure 5G). These correlations were similar for
the right CIMT, except for BMI correlation, which was not significant (Figure 5B (Glucose), p < 0.001,
r = 0.377; Figure 5D (HOMA-IR), p < 0.001, r = 0.360; Figure 5F (HbA1c), p < 0.001, r = 0.389).

When we analyzed the correlation with lipid parameters, we observed that left CIMT was
significantly correlated with HDL-c (p < 0.001, r = −0.436) (Figure 6A), VLDL (p = 0.001. r = 0.313)
(Figure 6C), cholesterol/HDL index (p = 0.001, r = 0.313) (Figure 6E), and AIP (p = 0.001, r = 0.402)
(Figure 6G). The data for right CIMT revealed similar correlations (Figure 6B (HDL-c), p = 0.025,
r = −0.222; Figure 6D (VLDL), p = 0.007, r = 0.270; Figure 6H (AIP), p = 0.002, r = 0.307), with the
exception of cholesterol/HDL index correlation.
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4. Discussion

Cardiovascular complications are a principal concern during diabetes management. The present
study gives relevance to the relationship between CIMT, HbA1c, and different hallmarks of T2D
(inflammation, ROS production, and leukocyte–endothelium interactions). We have evaluated the
involvement of glycemic control in endocrine and anthropometric parameters, inflammatory markers
(TNF-α, IL-6, and mtROS production), adhesion molecules (ICAM-1, VCAM-1, and P-selectin),
leukocyte–endothelium interactions (rolling, rolling velocity, and adhesion) and CIMT in T2D.
In addition, we have analyzed their interrelationship by performing correlation studies. T2D patients,
and especially those with poor glycemic control (HbA1c > 6.5%), expressed an increase in inflammatory
markers, mtROS production, adhesion molecules, leukocyte–endothelium interactions, and CIMT.

Regarding inflammatory intermediates, our study shows a slight but significant increase in TNF-α
and IL-6 production in T2D patients; it is possible that the difference is not bigger because of the
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hypolipemiant treatments received by most of the T2D patients. These proinflammatory cytokines are
involved in the development of inflammation in T2D. Enhanced levels of TNF-α from leukocytes after
activation by ROS-induced oxidative stress are thought to impair glucose uptake and inhibit insulin
signaling [70,71]. Furthermore, IL-6 is thought to play an important role in atherosclerosis in T2D [56].
We show an increase in mtROS production in leukocytes from T2D patients that was more pronounced
in subjects with HbA1c > 6.5%, suggesting that leukocyte mitochondrial function can be altered during
chronic hyperglycemia [70,72–74]. Other studies in the field have suggested that good glycemic control
reduces ROS production [57,75,76]. These results are in accordance with those of other studies that
have demonstrated high mtROS production in T2D related to the development of silent myocardial
ischemia [72]. In this sense, it is important to underline that leukocytes are especially linked to ROS
generation and cells that are highly sensitive to the oxidative damage mediated by ROS [77,78].

Different pathophysiological processes, including hypertension and atherosclerosis,
are characterized by leukocyte recruitment to the arterial wall. In the present study, we have
used an in vitro model in which human leukocytes flow over a monolayer of human endothelial
cells with a shear stress similar to that observed in vivo [72]. This mimics the process that precedes
inflammation in vivo (rolling and adhesion), and which is critical to homeostasis and vascular
cell integrity. Our experimental system has been widely applied to visualize and analyze the
multistep recruitment of leukocytes in these diseases, and allows the mechanisms of action implicated
in this recruitment to be assessed [79]. Regarding this idea, it has been demonstrated that an
inflammatory background favors the increase of leukocyte–endothelium interaction and promotes
the early development of atherosclerotic events [80,81]. In the current study, we have observed that
T2D enhanced rolling flux and PMN adhesion and reduced the rolling velocity of PMN. These effects
were more evident in the group with HbA1c > 6.5%. Furthermore, several studies have demonstrated
the importance of leukocytes in the atherosclerotic scenario [82–84]. In accordance with these results,
an increase in leukocyte–endothelium interactions has been related to oxidative stress in a human model
of insulin resistance [85]. In addition, Petterson et al. demonstrated that there is increased recruitment
but impaired function of leukocytes during inflammation in mouse models of T1D and T2D [86].

Endothelial and immune cell activation can be evaluated by measuring the soluble adhesion
molecules VCAM-1, ICAM-1, and P-selectin. In this sense, it has been described that adhesion
molecules are enhanced in patients with T2D [87]. In the present study, we show an increase
in adhesion molecules, ICAM-1 and VCAM-1, in T2D that was most pronounced in the case of
VCAM-1 in the HbA1c > 6.5% group. These results are compatible with a rise in the number of
leukocyte–endothelium interactions, and it has been demonstrated that hyperglycemia in both normal
subjects and T2D patients can induce vasoconstriction, adhesion molecules, and inflammation [88,89].
Importantly, there was a slight but significant increase of T2D adhesion molecule levels with respect to
the control group, a difference that may have been reduced by the hypolipemiant treatment.

The measurement of CIMT is useful for monitoring the early stages of atherosclerosis [61,90],
and CIMT enhancement has been described in T2D [91]. In the present study, we have observed
an increase in left and right CIMT, especially in the former case. Furthermore, the increment
was more evident in the HbA1c > 6.5% group, suggesting that glycemic control is crucial for
leukocyte–endothelium interactions and, therefore, for CIMT. The relevance of these changes in the
left CIMT remain to be clarified, though different studies have suggested variations between left and
right carotids; for example, Lorentz M. W. et al. revealed that left carotid plaques were vulnerable,
whereas right carotid ones were calcified and stable [65]. Luo X et al. studied the factors associated
with left and right CIMT and found that changes in biochemical parameters were associated with left
carotid measures, while hemodynamic parameters were more related to right carotid measures [92].
The main consequences of CIMT thickening are cerebrovascular events such as stroke, and left
carotid stroke is more frequent because of a higher probability of thickening of the left carotid arterial
wall [93,94]. The above mentioned authors highlighted that the location of the left carotid renders it
more susceptible to hemodynamic stress, thus increasing the probability of arterial wall thickening and
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rupture. Selwaness M. et al. support this hypothesis; they found that while bilateral plaques were more
frequent, 67% of cases of unilateral plaque occurred in the left carotid. This left plaque presented more
intraplaque hemorrhage and more fibrous tissue and was thicker than the left, all of which explain
why the left plaque is more vulnerable and prone to stroke. In the same study, right CIMT was found
to be more calcified than the left, which would make it more resistant to shear stress [95].

In the present study, we have observed positive correlations between in vitro adhesion assay
parameters and left CIMT, but not right CIMT. These results confirm the relevance of the enhancement
of leukocyte–endothelium interactions in CIMT, especially on the left side. In terms of biochemical
parameters, left CIMT measures correlated significantly with glucose, HOMA-IR, BMI, and HbA1c.
These correlations were maintained in the right CIMT, except for BMI (which was not significant).
In line with these results, a systematic review by Einarson et al. found that individuals with impaired
glucose tolerance had slightly (though significantly) higher CIMT values than individuals with normal
glucose tolerance [96]. This data, together with leukocyte–endothelium interactions, suggest that
poor glycemic control leaves T2D diabetic patients more prone to developing early or subclinical
atherosclerotic events due to the rise in the number of leukocytes infiltrating the intima–media layer.

Finally, we analyzed correlations between CIMT and lipid parameters, and observed that the left
CIMT was significantly correlated with VLDL, cholesterol/HDL index, and AIP. All these correlations
were maintained when we analyzed the right CIMT data, with the exception of the cholesterol/HDL
index correlation. In this sense, [97] demonstrated that lipid parameters, including total cholesterol
(TC), triglycerides (TG), LDL, and VLDL, were significantly higher in diabetic stroke patients and
positively correlated with the risk of stroke. CIMT was significantly higher in diabetic stroke patients,
and correlations of lipid parameters (TC, TG, and VLDL) with CIMT in said patients were significantly
and positively correlated, while lipid parameters (TC, TG, HDL, and LDL) were negatively correlated
in nondiabetic ischemic stroke patients. Although lipidic parameters were differently affected by
glycemic control, it is clear that these parameters increase the risk of developing later cardiovascular
complications by increasing CIMT. We did not find any significant correlation with mitochondrial ROS
production, adhesion molecules, or cytokine concentrations, though there was a tendency toward a
slight correlation.

This study is observational, and so it would be interesting to perform a longitudinal intervention
study in which we assess the evolution of CIMT in patients with poor glycemic control that achieve
a good glycemic control. Defining the reason why left and right carotids behave and are affected
differently is still unclear, and further research focusing on this issue would be useful. Moreover,
we have correlated many T2D markers with one indicator of cardiovascular risk; future studies
could attempt to find a correlation with other cardiac and endothelium function markers to reinforce
our findings.

5. Conclusions

The current study provides evidence of proinflammatory markers, mtROS production,
leukocyte–endothelium interactions, adhesion molecules, and CIMT in T2D. Some of these alterations
were more pronounced in patients with HbA1c > 6.5, suggesting that glycemic control is a useful tool
for preventing or delaying the onset of subclinical atherosclerotic process. Future research into these
aspects will help to clarify the molecular mechanisms involved in glycemic control in T2D, and to
modulate and control the atherosclerotic process in T2D.
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Does Metformin Modulate Mitochondrial Dynamics
and Function in Type 2 Diabetic Patients?

Aranzazu M. de Marañón,1 Francisco Canet,1 Zaida Abad-Jiménez,1 Ana Jover,1

Carlos Morillas,1 Milagros Rocha,1,2 and Victor M. Victor1–3

Abstract

Metformin is an effective drug against type 2 diabetes (T2D), a pathogenesis in which mitochondrial
dysfunction is one of the main players. Thus, our first aim was to describe the effect of metformin on
mitochondrial function in an outpatient population with T2D. For analyzing this hypothesis, we performed a
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preliminary cross-sectional study complying with the STROBE requirements. We studied leukocytes from
139 healthy controls, 39 T2D patients without metformin treatment, and 81 T2D patients who had been on
said treatment for at least 1 year. Leukocytes from T2D patients displayed higher total and mitochondrial
reactive oxygen species levels, lower mitochondrial membrane potential, and lower oxygen consumption.
Moreover, their mitochondria expressed lower mRNA and protein levels of fusion proteins mitofusin-1 (MFN1),
mitofusin-2 (MFN2), and optic atrophy 1 (OPA1), and higher protein and gene expression levels of mi-
tochondrial fission protein 1 (FIS1) and dynamin-related protein 1 (DRP-1). In addition, we observed
enhanced leukocyte/endothelial interactions in T2D patients. Metformin reversed most of these effects,
ameliorating mitochondrial function and dynamics, and reducing the leukocyte/endothelial interactions
observed in T2D patients. These results raise the question of whether metformin tackles T2D by improving
mitochondrial dysfunction and regulating mitochondrial dynamics. Furthermore, it would seem that metformin
modulates the alteration of interactions between leukocytes and the endothelium, a subclinical marker of early
atherosclerosis. Antioxid. Redox Signal. 35, 377–385.

Keywords: inflammation, metformin, mitochondrial dysfunction, mitochondrial dynamics, type 2 diabetes

Introduction

Type 2 diabetes (T2D) is a chronic inflammatory disease
characterized by hyperglycemia and hyperinsulinemia.

Accumulating evidence suggests that mitochondrial dys-
function is one of the main contributors to diabetic disease
(7). However, there are controversies about whether mito-
chondrial dysfunction is the trigger or a consequence of
metabolic deregulation.

Mitochondria are essential double-membrane organelles
involved in different cell processes such as adenine triphos-
phate (ATP) synthesis, apoptosis, stress regulation, and lipid
and carbohydrate metabolism, among others (7). They are
responsible for meeting the enormous energy demands of
vital tissues by facilitating cellular respiration, which is
carried out in the mitochondrial cristae through electronic
transport complexes (ETC) and the electrons obtained mainly
as a result of glycolysis and fatty acid oxidation. Thus, ETC-
mediated electron transport pumps protons to the inter-
membrane space to maintain the protonmotive force. Once
the electrons reach the ATP synthase, ATP is synthesized, but
only if there is an adequate protonmotive force.

It is now widely accepted that cellular energy demand
affects mitochondria by causing changes to their shape, lo-
cation, and/or mitochondrial mass (5). These processes are

known as mitochondrial dynamics and are facilitated by
mitochondrial transport through microtubules, and mito-
chondrial fusion and fission.

Fusion is carried away by three guanylyl triphosphatases
(GTPases): mitofusin 1 (MFN1), mitofusin 2 (MFN2), and
optic atrophy 1 (OPA1). Although MFN1 and MFN2 share
similar sequences and functions, slight but critical differ-
ences have been identified: while MFN1 exerts its function in
the outer membrane, MFN2 regulates mainly endoplasmic
reticulum/mitochondria contact. Similarly, OPA1, a dynamin-
related protein associated with inner mitochondrial mem-
brane fusion and maintenance of the structure of respiratory
supercomplexes, helps to regulate the shape of mitochondria
through the fusion process (5).

On the contrary, fission machinery is mediated by
dynamin-related protein 1 (DRP1), a GTPase protein located
in the cytosol as a dimer or tetramer (5) that is recruited to the
outer mitochondrial membrane by protein fission protein 1
(FIS1) and other receptor proteins in response to specific
cellular cues (5).

Defects in these mitochondrial dynamics can lead to a
substantial production of reactive oxygen species (ROS),
which, in turn, leak into the cytosol and affect the cellular
environment and molecular signaling. Subsequently, these
stress stimuli expedite recruitment of the immune cells to
the activated vascular endothelium, thus promoting further
atherosclerotic changes and the development of macrovas-
cular complications (2, 6). In particular, the activation of
leukocytes, mediated by chemokine-dependent and chemokine-
independent mechanisms, leads to leukocyte/endothelial cell
adhesion. During this process, adhesion molecules on rolling
leukocytes bind to their counter-receptors on endothelial
cells, thus promoting their firm adhesion to the wall. This
persistent condition contributes to the initiation and pro-
gression of atherosclerotic lesion development (2, 9).

To date, many different treatments have been used to
ameliorate T2D. However, since its discovery in 1950, met-
formin has remained the first-line treatment. Although the
exact mechanisms by which metformin exerts its actions
are unknown, a wide range of theories have been put forward
(3). Of note, metformin seems to alleviate cell activation,
thus palliating the inflammatory response (2). However, this
aspect has not been assessed in primary leukocytes, and so,
the precise effect of metformin is still unclear.

Innovation

Alterations in mitochondrial function and dynamics
and the inflammatory events, which take place as a con-
sequence, are key to the diabetic pathology, but the nature
of the effects exerted by metformin on these parameters is
unclear. Thus, it is relevant to study them in primary
type 2 diabetes (T2D) leukocytes, which are central to the
immune response. Our results suggest that metformin
effectively palliates alterations of leukocyte mitochon-
drial function and dynamics due to T2D and reduces their
activation. Our results contribute to the knowledge of the
mechanisms that explain the deregulated immune func-
tion in T2D. Future research will need to detangle the
precise molecular pathways at work and the exact target
of metformin in this scenario.
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In light of the research described above, we hypothesized
that mitochondrial function and dynamics are altered in T2D,
thus affecting leukocyte/endothelial interactions, and that
metformin can mitigate these alterations.

Biochemical and anthropometrical parameters

Table 1 shows the results obtained when we analyzed the
anthropometrical and biochemical data in our study popula-
tion. One hundred thirty-five healthy subjects and 120 T2D
patients were recruited from the Endocrinology Outpatients
Service of the University Hospital Doctor Peset (Valencia,
Spain). The T2D group was divided into patients with met-
formin treatment (81) or without treatment (39). In relation
to anthropometrical parameters, T2D patients presented
higher weight ( p < 0.05), body mass index (BMI; p < 0.05),
waist circumference ( p < 0.05), and diastolic blood pressure
(DBP) and systolic blood pressure (SBP; p < 0.05).

Metformin had a significant effect on SBP ( p < 0.05),
while DBP showed nonsignificant differences with respect to
the control group. Insulin concentrations and homeostatic
model assessment (HOMA) index were higher in T2D pa-
tients (both p < 0.05), with no influence of metformin treat-
ment being observed. HbA1c% and glucose were significantly
increased in the T2D group ( p < 0.05) and lower among pa-
tients receiving metformin treatment ( p < 0.05). Regarding
lipid metabolism parameters, we found that cholesterol, high-
density lipoproteins (HDL), and low-density lipoproteins
(LDL) were reduced in T2D patients ( p < 0.05) due to the
effect of the hypolipemiant treatment (50% of patients in the
T2D group and 63.8% of metformin-treated patients). Very

low-density lipoproteins (VLDL), cholesterol/HDL ratio, and
triglycerides were increased in T2D patients, and were not
modified by metformin treatment.

ROS content and mitochondrial function

First, we aimed to determine if T2D induced a change in
mitochondrial integrity and functionality, and whether met-
formin was capable of reducing its effects. Figure 1A depicts
how T2D leukocytes exhibited higher total ROS content
( p < 0.05), and how this content was diminished by metfor-
min treatment ( p < 0.05). Moreover, the results shown in
Figure 1B reflect a similar behavior of mitochondrial ROS
( p < 0.01 in T2D vs. control samples, and p < 0.05 for T2D +
metformin vs.T2D).

In this respect, metformin tempered the rise in ROS pro-
duction induced by T2D in leukocytes. Figure 1C shows the
reduced mitochondrial membrane potential of T2D leukocytes
( p < 0.05), and illustrates that treatment with metformin returned
membrane potential to normal levels ( p < 0.05). Moreover, as
shown in Figure 1D, T2D leukocytes exhibited decreased O2

consumption ( p < 0.05), while mitochondria of patients receiv-
ing metformin showed normal O2 consumption ( p < 0.05).

Leukocyte/endothelial interactions

Figure 1E–G describes how diabetes altered the leukocyte/
endothelial interactions and whether metformin restores this
phenotype to control levels. T2D leukocyte/endothelial in-
teractions were increased by enhancing rolling ( p < 0.001)
and adhesion ( p < 0.001) and by decreasing rolling velocity

Table 1. Biochemical and Anthropometrical Profile of Control Subjects

and Type 2 Diabetes Patients With or Without Metformin Treatment

Control T2D T2D + metformin

n 135 39 81
Male% 43.70 50.97 59.90
Age (years) 45.22 – 12.06 58.97 – 10.05 58.76 – 12.12
Weight (kg) 67.55 – 12.30 73.69 – 10.97a 74.53 – 12.24a

BMI (kg/m2) 23.49 – 2.96 26.92 – 2.47a 26.66 – 3.14a

Waist circumference (cm) 79.67 – 12.83 95.57 – 10.32a 95.42 – 11.40a

SBP (mm Hg) 118 – 17.95 148.26 – 25.15a 139.80 – 16.68a,b

DBP (mm Hg) 72.07 – 10.91 82.09 – 12.56a 77.49 – 10.76a

Insulin (lUI/mL) 7.16 – 3.40 14.51 – 8.22a 15.44 – 10.63a

HOMA-IR 1.65 – 1.08 4.69 – 3.39a 4.68 – 5.25a

HbA1c (%) 5.29 – 0.53 7.31 – 1.17a 6.72 – 1.04a,b

Glucose (mg/dL) 90.59 – 21.57 152.29 – 44.99a 111.94 – 27.54a,b

Cholesterol (mg/dL) 185.74 – 35.23 173.61 – 42.30a 165.94 – 35.03a

HDL (mg/dL) 56.60 – 13.56 45.91 – 13.28a 43.50 – 10.07a

LDL (mg/dL) 111.60 – 28.49 101.76 – 33.93 93.22 – 10.07a

VLDL (mg/dL) 13 (11–19) 20.5 (14.25–29.75) 25.75 (18–36.5)a

CT/HDL 3.42 – 0.92 4.04 – 1.26a 4.00 – 1.14a

Triglycerides (mg/dL) 67 (55–99) 104 (70.75–149.25) 129.88 (92–185.5)a

Non-HDL cholesterol 129.14 – 33.02 128.97 – 40.35 122.44 – 34.61

Kolmogorov/Smirnov or Shapiro/Wilk normality tests were carried out depending on the sample size. For normally distributed data,
mean – SD shown, and for non-normally distributed data, the median is shown (first and third quartile). Analysis of variance and Tukey
post-test were performed to outline statistically significant differences between groups.

ap < 0.05 versus control group.
bp < 0.05 versus T2D group.
BMI, body mass index; CT, cholesterol; DBP, diastolic blood pressure; HbA1c, glycated hemoglobin; HDL, high-density lipoproteins;

HOMA-IR, homeostatic model assessment of insulin resistance; LDL, low-density lipoproteins; SBP, systolic blood pressure; T2D, type 2
diabetes; VLDL, very low-density lipoproteins.
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( p < 0.001). Metformin treatment reduced leukocyte rolling
( p < 0.05) and adhesion ( p < 0.05), highlighting the anti-
inflammatory effect exerted by metformin.

Mitochondrial dynamics

Figure 2 displays how T2D alters mitochondrial dynamics
and how metformin treatment modulates it.

The analysis of mRNA expression of fusion genes was
diminished in T2D leukocytes (Fig. 2A–E) ( p < 0.05 for
mfn1, p < 0.001 for mfn2, and p < 0.05 for opa1), and met-
formin treatment enhanced their expression ( p < 0.05 for
mfn1 and p < 0.01 for mfn2), with the exception of OPA1
( p < 0.05 vs. control subjects). Furthermore, T2D leukocytes
displayed lower levels of fission gene expression than con-
trols ( p < 0.01 for fis1 and p < 0.001 for drp1). fis1 expression
levels were not modified by metformin treatment ( p < 0.05
vs. control subjects), while drp1 levels returned to normal
values ( p < 0.001 vs. T2D samples).

Regarding protein expression, mitochondrial fusion
(Fig. 2F–J), orchestrated by MFN1, MFN2, and OPA1, was

diminished in leukocytes from T2D patients ( p < 0.01, p < 0.05,
and p < 0.01, respectively). Metformin treatment increased the
levels of these proteins significantly ( p < 0.05 in all cases).
Furthermore, fission protein FIS1 and DRP1 levels were ele-
vated in T2D leukocytes ( p < 0.01 in both cases), and metfor-
min treatment reversed this increase ( p < 0.05 in both cases),
highlighting the beneficial effect of this drug.

Metformin is the gold standard in the management of T2D,
thanks mainly to its hypoglycemiant effect (3, 8, 9). Indeed,
previous research has shown the remarkable benefits of
metformin uptake on some analytical parameters (8). Our
T2D patient cohort displayed alterations in classic clinical
parameters used to identify the diabetic state; namely, higher
weight, BMI, waist circumference, glucose, HbA1c%, SBP,
DBP, homeostatic model assessment of insulin resistance
(HOMA-IR), and insulin with respect to controls. Metformin
treatment reduced glucose and HbA1c%, which is in accor-
dance with the study by van Stee et al.

In the case of lipid parameters, T2D patients displayed
increased VLDL and triglyceride levels, but reduced cho-
lesterol, HDL, and LDL levels. Research has shown that this

FIG. 1. Mitochondrial ROS production and function parameters and leukocyte/endothelial interaction analysis. (A)
Total ROS concentration, measured as relative DCFH fluorescence by static cytometry. (B) Mitochondrial ROS concen-
trations, measured as relative MitoSOX fluorescence by static cytometry. (C) Mitochondrial membrane potential, measured
as relative TMRM fluorescence by static cytometry. (D) O2 consumption rate of leukocytes, measured by means of a Clark-
type oxygen electrode. (E–G) Show the three parameters measured in the parallel plate flow chamber experiments.
*p < 0.05, **p < 0.01, and ***p < 0.001 versus control; #p < 0.05 versus T2D. DCFH, 2¢7¢-dichlorofluorescein; ROS, reactive
oxygen species; T2D, type 2 diabetes; TMRM, tetramethylrhodamine.
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is a result of the hypolipemiant treatment of diabetic dysli-
pidemia, regardless of whether or not there is metformin
treatment (8).

In addition to the biochemical alterations described, we have
observed altered mitochondrial function. First, leukocytes from
T2D patients expressed increased levels of total and mito-
chondrial ROS. Although ROS can act as cellular signals, an
excess is a signal of cellular stress and can lead to the activation
of inflammatory pathways (2). Second, oxygen consumption
and mitochondrial potential were altered, suggesting that mi-
tochondrial function was compromised. The loss of membrane
potential can be attributed to a leaking mitochondrial mem-
brane, which reduces the electron transport complex’s effi-
ciency, thus altering oxygen consumption by leukocytes (4, 7).
Such alterations are a sign of mitochondrial dysfunction in T2D
leukocytes (1, 7). However, whether it is a cause or a conse-
quence of the pathology of diabetes is still unknown, and future
research should address this topic.

In a T2D scenario, the triggers of these mitochondrial alter-
ations are chronic hyperglycemia and hyperlipidemia (2, 7).
Therefore, we hypothesized that if metformin can alleviate
hyperglycemia, it can also be beneficial for mitochondrial
dysfunction. Several previous studies have demonstrated that
metformin is beneficial for mitochondrial function and can al-
leviate the alterations that characterize a diabetic organism. The
present study supports this, showing that metformin restores
total and mitochondrial reactive oxygen species, mitochondrial
membrane potential, and O2 consumption to control levels.

Mitochondrial dysfunction is closely related to inflam-
mation, as a cause or a consequence (2, 4). Excessive ROS
production activates key pathways in inflammation, and re-
duces the antioxidant capacity of the cell. In immune and
endothelial cells, this leads to their overactivation and a
nonphysiological activity, both of which contribute to the
activation of the endothelial/leukocyte interaction pathway
and a subatherosclerotic scenario.

It has previously been reported that altered mitochondrial
dynamics increases the endothelial dysfunction in venous en-
dothelial cells from T2D patients and a T2D model of human
aortic ring culture (6). Moreover, inhibition of fission has been
shown to reduce endothelial impairment, suggesting that mi-
tochondrial dysfunction plays a causative role in T2D. Bearing
this in mind, we analyzed the functional repercussions of mi-
tochondrial dysfunction on leukocyte biology in our samples.
Our procedure involved us examining leukocyte/endothelial
interactions, which were enhanced in T2D patients.

The metformin-treated group displayed less rolling and ad-
hering cells, but velocity remained similar to that in the un-
treated group. These results suggest that metformin has the
capacity to reduce generalized low-grade inflammation. The
literature backs our results, confirming that metformin has an
anti-inflammatory effect at many different levels (7). The
precise mechanism through which the drug acts is yet to be
deciphered, although several candidates have been proposed.

Mitochondrial dysfunction involves the deregulation of
mitochondrial dynamics. Several in vitro and in vivo studies
have highlighted hampered mitochondrial dynamics in T2D
(2, 4, 9). Altogether, T2D seems to promote a profission
phenotype and the inhibition of fusion, resulting in the de-
regulation of mitochondrial dynamics. Conversely, our data
show that metformin treatment induces an increase in MFN1,
MFN2, and OPA1, and a decrease in FIS1 and DRP1 at the

protein level. An increase in mRNA was detected in mfn1 and
mfn2, but we did not observe a recovery of opa-1 mRNA levels
in metformin-treated patients, which warrants further research.
The inner mitochondrial membrane location of OPA-1 could
explain this varying mRNA expression (7).

In the context of these remaining questions, a previous
study determined that metformin reduces fission phenotype in
diabetic APOE-/- mice and prevents atherosclerotic lesions (9).
Based on the present results, we can affirm that metformin
restores mitochondrial dynamics in T2D, although we have not
identified the exact underlying mechanism. Research to date
implicates adenine monophosphate-activated protein kinase
(AMPK), which can be effectively activated by metformin (3,
6); whether or not this is the elusive mechanism in question is
an object for future research.

Conclusion

In the present study, an improvement in mitochondrial
function and dynamics was observed in T2D patients on
metformin. Moreover, leukocyte/endothelial cell interac-
tions in the treated subjects were significantly reduced, thus
indicating a decrease in inflammation and T2D-related car-
diovascular events. Our findings reinforce the idea that
metformin plays an important role in modulating the in-
flammation that occurs in T2D patients. At the same time, it
highlights the beneficial effects of this drug, by which it pre-
vents mitochondrial dysfunction and deregulation of mito-
chondrial dynamics and, in turn, their clinical implications.

Notes

Materials and methods

Subjects. One hundred thirty-five healthy subjects and 120
T2D patients were recruited from the Endocrinology and Nu-
trition Outpatient’s Service of University Hospital Doctor Peset,
in Valencia (Spain). Of the 120 T2D patients, 81 had been under
1700 mg/day metformin treatment for at least 1 year. All subjects
provided written informed consent to participate in the study.
The hospital’s Ethics Committee for Clinical Investigation ap-
proved the study (ID: 98/19), which was in line with the Helsinki
Declaration. T2D was diagnosed following the American Dia-
betes Association’s (ADA) criteria. Exclusion criteria were BMI
>35, history of cardiovascular disease, and the presence of au-
toimmune, infectious, hematological, or malignant disease.

Sample collection and laboratory tests. Subjects attended
the Endocrinology Service (Hospital Dr Peset) after 12-h fasting
and not having taken any anti-inflammatory drug in the previous
24 h. Peripheral blood was extracted from the brachial vein after
measuring blood pressure, weight, height, and waist circum-
ference. Anthropometric parameters were measured as follows:
weight and height were measured on a graded scale; SBP and
DBP were evaluated with an automatic sphygmomanometer;
and waist circumference was evaluated with a measuring tape.
BMI was calculated as weight (kg)/(height (m)2.

Insulin was measured with an immunoassay using an Ar-
chitect Insulin Reagent Kit. Glucose was measured in serum
by an automated enzymatic method with a Beckman Syn-
chron LX20 Pro analyzer (Beckman Coulter, Brea, CA).
Glycated hemoglobin (HbA1c) was analyzed with an auto-
mated Glycohemoglobin analyzer (Arkray, Inc., Kyoto,
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Japan). HOMA-IR index was calculated as follows: (Fasting
Insulin [lUI/mL] · Fasting Glucose [mg/dL])/405. Choles-
terol, HDL, and triglyceride levels were analyzed by means
of an enzymatic assay (Beckman Coulter). Friedewald’s
formula was used to calculate LDL.

Leukocyte isolation. Leukocytes were isolated by means
of the Ficoll gradient method. The blood was laid over 7 mL of
Ficoll (Hystopaque-1119 Ref. 11191 and Hystopaque-1077 Ref.
10771; both from Sigma-Aldrich, St. Louis, MO) and centri-
fuged for 25 min at room temperature. Leukocytes were sub-
sequently collected and lysed with erythrocyte lysis buffer (Red
Blood Cell Lysis Solution, Ref. 130-096-941; Miltenyi Biotec,
Germany) for 5 min. Cells were then washed with Hank’s bal-
anced saline solution (HBSS) and stored for future experiments.

Static cytometry assay. Three hundred thousand leuko-
cytes/well were seeded in duplicate in 24-well plates for each
sample. An internal control (Hep3b cells) was also seeded at the
same density in each plate. After 20 min, when cells were at-
tached to the bottom of the plate, 250 lL tetramethylrhodamine
(1lM) MitoSOX (1lM), 2¢7¢dichlorofluorescein (DCFH;
1 lM), and nuclear staining HOECHST 33342 (1 lM), all
purchased in Thermo Fisher Scientific, were added to each well
and incubated for 20 min at 37�C under gentle shaking. The
wells were then washed twice with warm HBSS.

Static cytometry visualization was performed using ScanR
software coupled to a IX81 Olympus microscope (both from
Olympus Corporation, Shinjuku, Tokyo, Japan). Each ex-
periment was performed in duplicate, with 16 images ob-
tained per well in each experiment and calculating the mean
fluorescence intensity. The resulting mean was normalized
according to the cell number and internal control.

Oxygen consumption assay. Once leukocytes had been
isolated, an aliquot of 5 · 106 cells/mL was placed in a gas-
tight chamber. A Clark-Type O2 electrode (Rank Brothers,
Bottisham, United Kingdom) was used to measure O2 con-
sumption. Sodium cyanide (1 mM), an inhibitor of the elec-
tron transport chain, was used to confirm that O2 consumption
was mainly mitochondrial (95%–99%). Duo.18 software
(WPI, Stevenage, United Kingdom) was used to visualize
and collect the data. The maximal O2 consumption rate with
endogenous substrates was calculated using GraphPad soft-
ware (GraphPad software, Inc., San Diego, CA). A trypan
blue exclusion test was performed after each experiment to
determine cell viability, and revealed no significant cell death.

Leukocyte/endothelial interaction assay. An aliquot of
1.2 · 106 leukocytes resuspended in RPMI medium was used
for this experiment. Previously, human umbilical cord endo-
thelial cells (HUVECs) isolated from fresh umbilical cords

were seeded and grown until a 95% confluent monolayer
formed. On the day of the experiment, the leukocyte suspension
was perfused over the surface of HUVECs at 0.3 mL/min using
a parallel plate flow system, all of which was observed through
an inverted microscope. While interacting, cells were recorded
with a microscope-coupled camera for 5 min, and, during the
last minute, different fields were observed to count the number
of adhered leukocytes. The following data were obtained from
the videos: number of leukocytes that crossed a 200 lM surface
in 1 min (rolling); the time these leukocytes took to cover this
distance (rolling velocity); and the number of leukocytes stably
adhering to the HUVEC monolayer (adhesion).

Gene and protein expression analysis. To measure gene
expression, a GeneAll Ribospin Total RNA extraction kit
(GeneAll Biotechnology, Hilden, Germany) was used to isolate
RNA from leukocyte samples, following the manufacturers’
protocol. We measured gene expression by means of a quan-
titative real time polymerase chain reaction method (qRT-
PCR) using a FastStart universal SYBR Green Master (Sigma
Aldrich, St. Louis, MO) and a 7500 Fast RT-PCR system (Life
Technologies, Carlsbad, CA). RNA was quantified in a
NanoDrop 200c spectrophotometer (Life Technologies, Ther-
mo Fisher Scientific), and purity was confirmed with the
260 nm/280 nm absorbance ratio (A260/280). Next, cDNA was
determined with a RevertAid first-strand cDNA synthesis kit
(Life Technologies, Thermo Fisher Scientific).

Quantification was performed by means of the compara-
tive 2-DDCt method, and a sample was used as an internal
control and gapdh expression as an endogenous control in all
experiments. Data were analyzed with Expression Suite
software (Life Technologies, Thermo Fisher Scientific).
Table 2 shows the primers used in the study.

Regarding protein analysis, previously isolated leukocytes
were lysed with RIPA buffer, homogenized, and sonicated
in an ultrasound bath for 30 s, three times. Samples were
then left for 15 min on ice and centrifuged for 15 min at
13,000 rpm at 4�C. The supernatant was collected and
quantified following the bicinchoninic acid protein quantifi-
cation assay (Pierce). Twenty-five micrograms of protein
was loaded onto 4%–20% gradient sodium dodecyl sulfate/
polyacrylamide gels (Novex Wedge Well 4-20 Tris Glycine
Gel, Ref. XP04205B0X; Invitrogen-Life Technology,
Carlsbad, CA) and separated at 150 V for 90 min at room
temperature. Transference to nitrocellulose membranes
(BioRad, CA) was carried out by the wet transference
method, running for 60 min at constant amperage (400 mA).

Membranes were then blocked with 5% bovine serum albu-
min or 5% skimmed milk (depending on the protein of interest)
for 1 h at room temperature. Specific antibodies against MFN1,
MFN2, OPA1, DRP1, and FIS1 were diluted in blocking buffer.
Specific antibody dilutions were incubated with the membranes

Table 2. Forward and Reverse Sequences of the Specific Primers Used in This Study

Target Forward Reverse

Mfn1 CCTCCTCTCCGCCTTTAACT TATGCTAAGTCTCCGCTCCAAC
Mfn2 CAGCTACACTGGCTCCAACT TTTCTTGTTCATGGCGGCAA
Opa1 ACCGTTAGCCCTGAGACCATA GGTAAGTCAACAAGCACCATCC
Fis1 AGAAATTTCAGTCTGAGAAGGCA CCTCCTTGCTCCCTTTGGG
Drp1 GCTGATGCTTGTGGGCTAATG TGCCAAAGCACTTGGAACTTT
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overnight at 4�C under gentle shaking: rabbit polyclonal anti-
MFN1 (Ref. ABC41), rabbit polyclonal anti-MFN2 (Ref.
ABC42), mouse monoclonal anti-OPA-1 (Ref. MABN737),
rabbit polyclonal anti-FIS-1 (Ref. ABC67), all purchased from
Merck-Millipore (Burlington, MA), and mouse monoclonal
anti DRP-1 (Ref. GR3248679-1; Abcam, Cambridge, United
Kingdom). The following day, specific secondary antibodies
(goat anti-rabbit antibody [Ref. PI-1000] from Vector Labora-
tories, Burlingame, CA, and goat anti-mouse antibody [Ref.
31420] from Thermo Fisher Scientific, Waltham, MA) were
incubated for 60 min at room temperature.

Images of the resulting proteins were obtained using Super-
Signal West Pico Plus (Ref. 34580) or Femto (Ref. 34095)
chemiluminescent substrate (Thermo-Fisher Scientific) and the
Fusion FX5 (Vilber Lourmat, Marne-La Vallée, France) im-
aging system. Densitometric quantification of the images was
performed with Bio1D software (Vilber Lourmat). Each
membrane was checked several times by cutting different
fragments following the guide of the molecular size marker and
also with homemade glycine stripping buffer to maximize the
results for each sample. Whole-membrane fragments used for
the images in Figure 2 are included in Supplementary Figure S1.

Statistical analysis. Normality was confirmed with the
Kolmogorov/Smirnov test or the Shapiro/Wilk test depending
on the size of the sample. Values are expressed as mean – SD
for normally distributed data, and the median – (25th–75th
percentiles) is presented for non-normally distributed data.
One-way analysis of variance with a Tukey post-hoc test was
used to compare the three groups.

When two groups were compared, a t-test was used for
normally distributed data, while a Mann/Whitney U test was
used for non-normal distribution. The influence of sex and
BMI was corrected with a covariance analysis (univariate
general linear model). Significance was confirmed in all
comparisons when p < 0.05, with a confidence interval of
95%. SPSS 17.0 (SPSS Statistics, Inc., Chicago, IL) was used
in all the tests, and GraphPad (GraphPad, La Jolla, CA) was
used to plot the data with bar graphs, representing the media
and the standard error of the mean.
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Abbreviations Used

ADA¼American Diabetes Association
AMPK¼ adenine monophosphate-activated protein

kinase
ATP¼ adenine triphosphate
BMI¼ body mass index

CT¼ cholesterol
DBP¼ diastolic blood pressure

DCFH¼ 2¢7¢-dichlorofluorescein

DRP1¼ dynamin-related protein 1
ETC¼ electronic transport complexes
FIS1¼ fission protein 1

GTPase¼ guanylyl triphosphatase
HbA1c¼ glycated haemoglobin
HBSS¼Hank’s balanced saline solution
HDL¼ high-density lipoproteins

HOECHST¼ 2¢-(4-ethoxyphenyl)-5-(4-methyl-1-
piperazinyl)-2,5¢-bi-1H-benzimidazole

HOMA¼ homeostatic model assessment
HOMA-IR¼ homeostatic model assessment of insulin

resistance
HUVECs¼ human umbilical cord endothelial cells

LDL¼ low-density lipoproteins
MFN1¼mitofusin 1
MFN2¼mitofusin 2
OPA1¼ optic atrophy 1

qRT-PCR¼ quantitative real time polymerase chain
reaction method

ROS¼ reactive oxygen species
SBP¼ systolic blood pressure
T2D¼ type 2 diabetes

TMRM¼ tetramethylrhodamine
VLDL¼ very low-density lipoproteins
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Abstract: Mitochondrial dysfunction has been shown to play a central role in the pathophysiology of
type 2 diabetes (T2D), and mitochondria-targeted agents such as SS-31 are emerging as a promising
strategy for its treatment. We aimed to study the effects of SS-31 on leukocytes from T2D patients by
evaluating oxidative stress, endoplasmic reticulum (ER) stress and autophagy. Sixty-one T2D patients
and 53 controls were included. Anthropometric and analytical measurements were performed.
We also assessed reactive oxygen species (ROS) production, calcium content, the expression of ER
stress markers GRP78, CHOP, P-eIF2α, and autophagy-related proteins Beclin1, LC3 II/I, and p62 in
leukocytes from T2D and control subjects treated or not with SS-31. Furthermore, we have evaluated
the action of SS-31 on leukocyte-endothelium interactions. T2D patients exhibited elevated ROS
concentration, calcium levels and presence of ER markers (GRP78 and CHOP gene expression, and
GRP78 and P-eIF2α protein expression), all of which were reduced by SS-31 treatment. SS-31 also led
to a drop in BECN1 gene expression, and Beclin1 and LC3 II/I protein expression in T2D patients.
In contrast, the T2D group displayed reduced p62 protein levels that were restored by SS-31. SS-20
(with non-antioxidant activity) did not change any analyzed parameter. In addition, SS-31 decreased
rolling flux and leukocyte adhesion, and increased rolling velocity in T2D patients. Our findings
suggest that SS-31 exerts potentially beneficial effects on leukocytes of T2D patients modulating
oxidative stress and autophagy, and ameliorating ER stress.

Keywords: Mitochondria; oxidative stress; type 2 diabetes; endoplasmic reticulum stress;
autophagy; SS-31

1. Introduction

Type 2 diabetes (T2D) represents a serious global problem with a worryingly high rate worldwide,
constituting one of the main public health challenges of the 21st century. T2D is a metabolic disruption
characterized by insulin resistance (IR) and β cell failure. In those affected, the persistent exposure to a
hyperglycemic environment promotes excessive generation of reactive oxygen species (ROS) and it
leads to the imbalance of antioxidant defenses [1], inducing oxidative stress, which contributes to IR
and the activation of pro-inflammatory signaling pathways [2], both thought to play key roles in the
complications associated with T2D.
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Oxidative stress and endoplasmic reticulum (ER) stress are closely linked. Indeed, an altered
redox balance has a major impact on ER folding capacity. Under pathological conditions such as
T2D, ER homeostasis is disturbed due to an accumulation of misfolded proteins [3,4], in response to
which the unfolded protein response (UPR) is activated in order to (i) upregulate the expression of
chaperones and aid the folding of ER proteins (ii) and degradation of proteins, and (iii) to prevent
protein synthesis [5,6]. It is known that antioxidant production is one of the restorative functions of the
UPR, which coordinates the activation of the trans-membrane ER resident protein (PERK) signaling
pathway, thus allowing the cell to adapt to oxidative and ER stress [7,8]. The ER stress response
also includes mechanisms of autophagy induction, and it has been demonstrated that low-grade
autophagy reduces ER stress by destruction of the ubiquitinated unfolded/misfolded dysfunctional
proteins and damaged organelles that result from said stress [9]. The onset of autophagy involves
the formation of an autophagosome, a process in which several autophagy-related genes coordinate
to engulf the defective material in a double membrane. This process is initiated when the complex
formed by Beclin1/Vps34/VPs15/UVRAG—known as PI3K complex III—nucleates the formation of the
autophagosome. In parallel, the cytosolic protein microtubule-associated to 1B-light chain 3 (LC3 I) is
conjugated to a phosphatidylethanolamine to form LC3 II. In this form, LC3 II migrates to the growing
autophagosome and helps to build the double membrane. The ubiquitinated protein and defective
organelles are detected by sequestosome 1 (SQSTM1)—also known as the p62 protein—which associates
itself to membrane-bound LC3 II. The autophagosome then fuses with a lysosome, which pours its
hydrolytic enzymes into the inner space of the autophagosome, thereby degrading its content [10,11].
This is usually a rescue mechanism in situations of stress. However, when ER stress is prolonged, the
autophagy activated as a result can lead to severe cell damage and, eventually, to apoptosis [12,13].
Incipient insult has serious consequences for the balance of pro- and anti-survival signals. Therefore,
the mechanisms of oxidative stress, ER stress and autophagy are closely related to each other and
are considered key targets for understanding the development of T2D. In the present work, we have
studied these processes by analyzing general markers for their activation.

Mitochondria are essential to the control of cellular homeostasis, cell death and apoptosis.
Furthermore, overproduction of ROS occurs mainly in mitochondria, through the electron transport
chain [14,15], thus attributing these organelles a key role in the development and control of metabolic
diseases such as T2D. For the aforementioned reasons, the identification of novel mitoprotective
therapies may lead to the prevention and successful treatment of the complications associated with
this disease.

One of the molecules that might be beneficial in mitochondria-based diseases is the
mitochondria-targeted antioxidant SS-31 (D-Arg-2’6’-dimethylTyr-Lys-Phe-NH2), a member of the
Szeto–Schiller (SS) peptide family, aromatic-cationic tetrapeptides targeted to cardiolipin on the inner
mitochondrial membrane via hydrophobic and electrostatic interactions. There, they increase ATP
production, thus restoring cellular function and preserving vital ATP-dependent processes [16–18].
Their antioxidant action is due to two actions, the dimethyltyrosine residue, scavenging H2O2 and
ONOO- and inhibiting lipid peroxidation. In addition, preclinical studies support their potential
use in neurodegenerative disorders and ischaemia-reperfusion injury [19]. Our group has already
demonstrated that SS-31 increases SIRT1 levels in leukocytes and ameliorates inflammation, oxidative
stress and leukocyte-endothelium interactions in T2D [20].

In the present study, we set out to explore the effects of SS-31 on leukocytes of T2D patients
by evaluating different key pathways including oxidative stress, ER stress and autophagy. We have
used peripheral blood leukocytes as surrogate model for the general/systemic oxidative stress and its
consequences present in T2D. Actually, T2D has been widely related with leukocyte dysfunction [21–25].
Peripheral blood leukocytes are the primary sensors of the alterations in the presence of different
soluble molecules in the bloodstream [26–30]. More precisely, we have employed polymorphonuclear
cells (PMNs) which present higher vulnerability to oxidative damage in T2D compared to mononuclear
cells [21]. Numerous studies suggest that the continuous exposure of leukocytes to high circulating
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levels of glucose, lipids, insulin, and proinflammatory cytokines (known as the T2D environment)
alters the cell metabolism and affect the cell ability to manage stress situations. These alterations have
a direct impact on the leukocytes’ function and main pathways such as oxidative stress regulation,
ER stress, autophagy, and mitochondrial homeostasis [31–35]. Previous research stated that different
molecules, drugs or antioxidants can relieve the stress response [36–39]. Taken into account these facts,
we consider that PMNs are a readily available, representative and valid model to evaluate the influence
of ROS on the different pathways related to T2D [21].

2. Experimental Section

2.1. Human Subjects

A total of 114 subjects were included in the study population, specifically 61 T2D patients and 53
healthy controls recruited from the Service of Endocrinology and Nutrition of University Hospital
Doctor Peset (Valencia, Spain) and adjusted for age and sex. All subjects gave their written informed
consent to participate in the study and the protocols followed were approved by our hospital’s Ethics
Committee for Clinical Investigation (ID: 97/16), in line with the ethical principles of the Helsinki
declaration. All T2D patients in this study have suffered from T2D for at least 5 years, which ensures
that they display a chronic phenotype.

The American Diabetes Association’s criteria were used for T2D diagnosis, and exclusion
criteria were history of cardiovascular disease (CVD), presence of morbid obesity or autoimmune,
hematological, malignant, infectious, organic, or inflammatory disease, and insulin treatment.

2.2. Sample Collection

Venous blood samples were taken from the antecubital vein and collected in Vacutainer® tubes in
fasting conditions, between 8 AM and 10 AM. Anthropometric parameters—weight (kg), height (m),
body mass index (BMI; kg/m2), systolic and diastolic blood pressure (SBP/DBP; mmHg), and waist
circumference (cm)—were assessed.

2.3. Laboratory Tests

Fresh blood samples were centrifuged for 10 min at 1500 g at a temperature of 4 ◦C in order to
separate serum from the blood. Serum levels of fasting glucose, total cholesterol and triglycerides
were determined by enzymatic method, high-density lipoprotein cholesterol (HDL-c) was recorded
employing a Beckman LX-20 autoanalyzer (Beckman Coulter, La Brea, CA, USA) using a direct method,
and low-density lipoprotein cholesterol (LDL-c) content was quantified with Friedewald’s formula.
Insulin levels were obtained by an immunochemiluminescence assay, and HOMA-IR index (fasting
insulin (µU/mL) × fasting glucose (mg/dL)/405) was calculated to estimate IR. The percentage of
glycated hemoglobin (HbA1c) was determined with an automatic glycohemoglobin analyzer (Arkray,
Inc., Kyoto, Japan) and an immunonephelometric assay was used to measure high-sensitive C-reactive
protein (hs-CRP) levels.

2.4. Leukocyte Isolation

Human polymorphonuclear leukocytes (PMNs) were isolated from heparinized blood samples
incubated for 45 min with 1:2 volumes of dextran solution (3% in NaCl 0.9%; Sigma Aldrich, MO,
USA). The supernatant was centrifuged over Fycoll-Hypaque (GE Healthcare, Uppsala, Sweden) at
650 g for 25 min and the pellet lysed to remove the remaining erythrocytes. It was then incubated
with lysis buffer (5 min at room temperature) and centrifuged at 240 g. Pellets containing leukocytes
were then washed twice and resuspended in Hank’s balanced salt solution (HBSS; Sigma Aldrich,
MO, USA). A Scepter 2.0 device (Millipore Iberica, Madrid, Spain) was employed for the cell count.
The cellular suspension was split into two samples, which were treated under the same conditions with
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concentrations that did not affect the cells’ viability; one was incubated with SS-31 (100 nM, 30 min),
and the other with SS-20 (100 nm, 30 min, without antioxidant activity).

2.5. PMN-Endothelium Interaction Assay

PMNs were isolated as previously described by our group [20]. In this assay, we employed a
1.2 mL aliquot of PMNs obtained from the peripheral blood of control and T2D subjects with a density
of 106 cells/mL in complete RPMI. Prior to this, primary cultures of human umbilical cord endothelial
cells (HUVEC) were established. HUVEC were isolated as previously reported [20]. On the day of the
experiment, the PMN aliquot was passed through the endothelial monolayer at a speed of 0.3 mL/min
during a 5-min period, which was recorded. Next, the number of rolling PMNs, as well as their velocity
and adhesion to the endothelial monolayer were recorded. The number of rolling PMNs was measured
as those rolling for 1 min (recorded on video). Velocity was assessed by determining the time in which
15 rolling PMNs covered a distance of 100 micrometers. Adhesion was analyzed by counting the
number of PMNs adhering to the endothelium for at least 30 s in 5 fields.

2.6. Quantitative Fluorescence Microscopy

Fluorescence probes 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA; 5 × 10−6 mol/L),
MitoSOX (5 × 10−6 mol/L) and (acetyloxy)methyl ester (Fluo-4 AM; 1 × 10−6 mol/L) were used to
assess total ROS, mitochondrial ROS and calcium levels, respectively. DCFH-DA is routinely used in
intact cells, being taken up and deacetylated by endogenous hydrolases to a form (DCFH) that is then
oxidized by peroxides to fluorescent 2′,7′-Dichlorofluorescein (DCF). MitoSOX, a mitochondria-targeted
dihydroethidium (by addition of a triphenylphosphonium group) is a probe widely used to detect
superoxide. To perform these assays, isolated leukocytes were placed in 48-well plates and incubated
for 30 min at 37 ◦C with the appropriate fluorochrome, diluted in phosphate-buffered saline (PBS; Sigma
Aldrich, MO, USA). Fluorescence intensity was then recorded with a fluorescence microscope (IX81;
Olympus Corporation, Shinjuku-ku, Tokyo, Japan) coupled to the static cytometry software “ScanR”
(Olympus). Fluorescence units of these measurements were normalized with respect to the control
group, in which the mean fluorescence units were considered 100%, and the data were relativized
to that fluorescence value. Experiments were performed in duplicate and 16 images per well were
obtained and analyzed obtaining a mean fluorescence value. The mean value of these two replicates
of each sample was used for data representation and statistical analysis. Nuclei were detected with
Hoechst 33342. All fluorochromes were supplied by Thermo Fisher Scientific, Waltham, MA, USA.

2.7. Flow Cytometry

ROS generation in human leukocytes was analyzed using whole blood by flow cytometry using
DCFH-DA (5 × 10−6 mol/L) as marker dye. The distribution of different leukocyte subsets was analyzed
in peripheral blood using a single staining (CD45), no-lyse no-wash method. CD45 positive cells
(marked with the fluorescent probe APC Mouse Anti-Human CD45, BD Biosciences, San Jose, CA,
USA) and the morphological characteristics of the cells (FSC and SSC parameters) were used for
determining the PMNs cellular subset as shown in previous work [40,41]. Briefly, 200µL of heparinized
blood were incubated with 4 µL of CD45 monoclonal antibody for 20 min at room temperature in
darkness, in the presence and absence of several treatments. For this assay, 500µL of stained blood
diluted 20-fold in PBS was incubated for 30 min at 37 ◦C with the fluorochrome DCFH-DA. Samples
were acquired for 10,000 individual cells by BD AccuriTM C6 Plus Flow Cytometer (BD Biosciences,
San Jose, CA, USA) and ROS production was quantified by median fluorescence intensities.
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2.8. Western Blotting (WB)

Leukocyte pellets were homogenized and incubated on ice in cell lysis buffer for 15 min (10 mM
HEPES pH 7.5, 10 mM NaCl, 2 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 0.5% Nonidet P-40, 1 mM DTT,
‘Complete Mini’ and ‘Pefabloc’ protease inhibitor cocktail from Roche Diagnostics and phosphatase
inhibitor mixture: 10 mM NaF and 0.1 mM Na3VO4); tubes were vortexed to disrupt the cell membranes
and centrifuged at 4 ◦C for 10 min. The supernatants were stored at−70 ◦C till further use as cytoplasmic
extracts. The pelleted nuclei were resuspended in the nuclear extraction buffer (25 mM HEPES pH
7.5, 500 mM NaCl, 9 % glycerol (v/v), 5 mM MgCl2, 0.5 % Nonidet P-40, 1 mM DTT) supplemented
with protease inhibitors (‘Complete Mini’ protease inhibitor cocktail, and ‘Pefabloc’, both from Roche
Diagnostics) and 10 mM NaF as a phosphatase inhibitor, and were incubated on ice for 10 min under
sonication. Nuclear extracts were collected by centrifugation for 10 min at 4 ◦C, and were either
immediately used or stored at −70 ◦C. Protein concentration was determined with a BCA protein assay
kit (Thermo Fisher Scientific, Waltham, MA, USA). Next, 25 µg proteins per sample were loaded onto
SDS-polyacrilamide gels. Gel electrophoresis was performed at 120 V, 90 min, followed by transfer
to nitrocellulose membranes (Bio-Rad, Hercules, CA, USA) at 400 mA, for 1 h. After blocking at
RT for 1 h in 5% non-fat milk in TBST buffer containing 25 mM Tris, 150 mM sodium chloride and
0.1% Tween20, at pH 7.5, membranes were incubated overnight at 4 ◦C with anti-glucose-regulated
protein 78 kDa (GRP78) rabbit polyclonal antibody (Abcam, Cambridge, UK), anti-phosphorylated
eukaryotic translation initiation factor 2, subunit 1 alpha (eIF2α-pS52) rabbit polyclonal antibody
(Life Technologies, Carlsbad, CA USA), anti-Beclin1 (BECN1) rabbit polyclonal antibody (Abcam,
Cambridge, UK), anti-light chain 3 (LC3) rabbit polyclonal antibody (Millipore Iberica, Madrid,
Spain), anti-sequestosome 1 (SQSTM1/p62) mouse monoclonal antibody (Abnova, Taipei, Taiwan) or
anti-Actin rabbit polyclonal antibody (Sigma Aldrich, St Louis, MO, USA), followed by horseradish
peroxidase (HRP) goat anti-rabbit (Millipore Iberica, Madrid, Spain) or HRP goat anti-mouse (Thermo
Fisher Scientific, Waltham, MA, USA) secondary antibodies as appropriate, for 1 h at RT. Protein
expression was assessed with ECL plus reagent (GE Healthcare, Amersham Place, Litte Chalfont, UK)
or Supersignal West Femto (Thermo Fisher Scientific, Waltham, MA, USA). A Fusion FX5 acquisition
system (Vilbert Lourmat, Marne La Vallée, France) was employed for chemiluminescence signal
detection, which was analyzed by densitometry using Bio1D software (Vilbert Lourmat, Marne La
Vallée, France). For quantification of the expression level of the studied protein, an internal control
was included in each blot and the expression was normalized to that of actin in the same sample.

2.9. Quantitative RT-PCR (qRT-PCR)

Total RNA was isolated from leukocytes with the GeneAll® RibospinTM kit following the
manufacturer’s instructions (GeneAll Biotechnology, Hilden, Germany). RNA concentrations were
measured using Nanodrop 2000c (Thermo Fisher Scientific, Waltham, MA, USA), and 1 µg of the
extracted RNA was employed in the following steps. To detect the expression of genes involved in
autophagy and ER stress, the RevertAid First Strand c-DNA Synthesis kit (Thermo Fisher Scientific)
and KAPA SYBR FAST universal master mix (Applied Biosystems-Thermo Fisher Scientific, Walthman,
MA, USA ) were used. RT-qPCR analysis was performed with a 7500 Fast real-time PCR system
(Life Technologies, Carlsbad, CA, USA) (Table 1). Fold changes were calculated by the 2−∆∆Ct

method through Expression Suite software (Life Technologies) and relative gene expression of GRP78,
DDIT3/CHOP (CCAAT/enhancer-binding protein (C/EBP) homologous protein), BECN1 and SQSTM/p62
was calculated using GAPDH as a housekeeping control.
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Table 1. Protocol details and primer sequences.

qRT-PCR Protocol

Temperature 95 ◦C 95 ◦C 60 ◦C Melting

Time 10 min 10 s 30 s Curve

No. of Cycles 1 40

Primers

Target Direction Sequence (5′–3′)

BECN1
Forward CCCCAGAACAGTATAACGGCA

Reverse AGACTGTGTTGCTGCTCCAT

GRP78
Forward AAGAACCAGCTCACCTCCAACCC

Reverse TTCAACCACCTTGAACGGCAA

DDIT3/CHOP
Forward AGAACCAGGAAACGGAAACAGA

Reverse TCTCCTTCATGCGCTGCTTT

GAPDH
Forward CGCATCTTCTTTTGCGTCG

Reverse TTGAGGTCAATGAAGGGGTCA

SQSTM/P62
Forward GATTCGCCGCTTCAGCTTCTG

Reverse CTGGAAAAGGCAACCAAGTCC

2.10. Statistical Analysis

All data were analyzed with SPSS 17.0 software (SPSS Statistics Inc., Chicago, IL, USA). Values
are expressed as mean and standard deviation (SD) for parametric data; while the median (25th–75th
percentiles) is presented for non-parametric data. Bar graphs show mean and standard error of the
mean (SEM) in the figures.

In the case of the variables with normally distributed data, groups were compared with a Student’s
t-test, while a Mann–Whitney U test was employed for non-normally distributed ones, and the
chi-square test for proportion of frequencies. To examine the main effects of the treatment, the study
groups were compared with one-way analysis of variance (ANOVA) followed by a Newman–Keuls
post hoc test. In addition, the prominent influence of BMI was reduced by means of an analysis
of covariance with a univariate general linear model. Differences were considered to be significant
when p < 0.05, applying a confidence interval of 95% in every comparison. Graphs were plotted with
GraphPad Prism 4.0 (GraphPad, La Jolla, CA, USA).

3. Results

3.1. Clinical and Endocrine Parameters

Our study was carried out in a population of 53 healthy volunteers (mean age 51.7 ± 9.3) and
61 T2D patients (mean age 55.1 ± 10.2), both of which groups had a similar gender distribution.
The results of the anthropometric and analytical evaluations are shown in Table 2. As expected, an
altered carbohydrate metabolism was observed in T2D patients in comparison with the control group,
with glucose, HOMA-IR and HbA1c being significantly higher (p < 0.001). Moreover, the T2D group
showed higher values for upper waist circumference (p < 0.01), SBP, weight, BMI, insulin and hs-CRP
levels (p < 0.001) than control subjects. Regarding lipid profile, a higher triglyceride concentration
(p < 0.01) and lower HDL-c (p < 0.001) were characteristics of the T2D patients. However, due to
lipid-lowering medication received, total cholesterol and LDL-c levels were lower in the diabetic group
than in healthy controls (p < 0.001) (56.9% were taking statins, 10.3% fibrates, and 3.4% ezetimibe).
Given that BMI was significantly different in T2D patients, data were adjusted for this variable, but
statistical differences remained similar.
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Table 2. Anthropometric and analytical parameters.

Control Type 2 Diabetes p-Value BMI-Adjusted
p-Value

N 53 61 - -

Male (%) 47.2 52.5 ns ns

Age (years) 51.7 ± 9.3 55.1 ± 10.2 ns ns

Weight (Kg) 72.9 ± 18.8 85.6 ± 15.5 p < 0.001 p < 0.001

BMI (kg/m2) 25.8 ± 5.4 31.4 ± 5.6 p < 0.001 -

Waist circumference (cm) 85.8 ± 13.2 104.0 ± 11.9 p < 0.001 p < 0.01

SBP (mmHg) 23.3 ± 19.7 145.8 ± 14.8 p < 0.001 p < 0.001

DBP (mmHg) 73.6 ± 10.9 74.2 ± 25.6 ns ns

Glucose (mg/dL) 95.6 ± 13.6 154.0 ± 49.8 p < 0.001 p < 0.001

Insulin (µUI/mL) 7.56 ± 3.55 16.27 ± 9.09 p < 0.001 p < 0.01

HOMA-IR 1.71 ± 0.95 6.23 ± 4.64 p < 0.001 p < 0.001

HbA1c (%) 5.32 ± 0.36 7.42 ± 1.57 p < 0.001 p < 0.001

Total cholesterol (mg/dL) 198.8 ± 35.5 168.0 ± 37.7 p < 0.001 p < 0.001

HDL-c (mg/dL) 57.3 ± 19.9 43.1 ± 9.2 p < 0.001 p < 0.001

LDL-c (mg/dL) 122.1 ± 28.9 93.7 ± 30.6 p < 0.001 p < 0.001

Triglycerides (mg/dL) 93.0 (26.5–150.5) 133.0 (94.0–170.0) p < 0.01 p < 0.01

hs-CRP (mg/L) 1.17 (0.46–2.40) 2.92 (1.88–6.39) p < 0.001 p < 0.001

Data are shown as mean ± SD and were compared by a Student’s t test for parametric variables, while they are
shown as median and were compared by a Mann–Whitney U test (25th and 75th percentiles) for non-parametric
variables. A univariate general linear model was used to adjust changes for BMI. A Chi-Square test was used to
compare proportions among groups. ns: not significant.

3.2. Leukocyte Function

For assessing the influence of T2D and SS-31 treatment on one of the main functions of PMN,
which is interaction with the endothelial monolayer, we performed a parallel plate flux chamber assay.
As stated in methods, PMN were perfused through a monolayer of confluent endothelial cells for
assessing those interactions. As shown in Figure S1, T2D enhanced the flux of leukocytes (Figure S1A),
reduced its velocity (Figure S1B) which allowed them to adhere more to the endothelial monolayer
(Figure S1C). When treated with SS-31, those interactions were significantly reduced. This result shows
that leukocyte function is positively affected by SS-31 in T2D PMN. SS-20 did not alter those parameters
in any of the analyzed samples.

3.3. Oxidative Stress: ROS Production

Total (DCFH-DA fluorescence) and mitochondrial (MitoSOX fluorescence) ROS were considerably
increased in leukocytes of T2D patients in comparison with control subjects (Figure 1A,B; p < 0.001),
and these effects were reversed by SS-31 (Figure 1A,B; p < 0.001, p < 0.01 respectively) in leukocytes of
T2D patients, while no differences were observed in controls. The SS-20 compound did not alter these
oxidative stress parameters. The specificity of the observed response was corroborated by cytometry
analysis of the effect of a positive control, rotenone, a well-known inhibitor of Complex I of the electron
transport chain whose action induces mitochondrial superoxide production [42]. Incubation with
whole blood from control subjects with rotenone (50 µM, 20 min) led to a major increase in total cellular
ROS (detected by DCFH-DA) and this effect was reversed with the treatment of both SS-31 and catalase
(Figure 1D; p < 0.05). Thus, our data show that SS-31 exerts an antioxidant action by reducing total and
mitochondrial ROS production.



J. Clin. Med. 2019, 8, 1322 8 of 19

Figure 1. Effects of Szeto–Schiller (SS)-31 (30 min, 100 nM) on total and mitochondrial ROS production,
and calcium levels in leukocytes from type 2 diabetes (T2D) patients and healthy subjects. (A) reactive
oxygen species (ROS) production, measured as deacetylated by endogenous hydrolases to a form
(DCFH)-DA fluorescence. (B) Mitochondrial ROS production, assessed as MitoSOX fluorescence.
(C) Calcium levels, determined as Fluo-4 fluorescence. Representative fluorescence microscopy images
are also shown. (D) Analysis of total ROS levels, measured as DCFH-DA fluorescence in leukocytes
from healthy subjects upon a positive control treatment (rotenone, ROT) in the presence or absence
of SS-31 or catalase (CAT) and representative cytograms of the 4 groups stained with APC-CD45
and DCFH-DA. 10,000 cells were analyzed in each experiment. n = 6. * p < 0.05, ** p < 0.01 and
*** p < 0.001 with regard to control group; ## p < 0.01 ### p < 0.001 vs. non-treated T2D group; a p < 0.05
vs. rotenone treatment.
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3.4. Calcium Levels

In the T2D study population, intracellular calcium content—measured as Fluo4-AM
fluorescence—was higher than in the control group (Figure 1C; p < 0.05), while under treatment with
SS-31, calcium levels in T2D patients reached similar values to those in healthy subjects (Figure 1C;
p < 0.01). The marked decrease of calcium content in the SS-31-treated T2D group in comparison
with healthy volunteers may indicate an attenuation of ER stress in these patients given the fact that
ER stress is often related to an increase in cytosolic calcium content SS-20 treatment did not modify
calcium content in any condition.

3.5. Regulation of UPR Signalling

ER stress markers were determined in order to analyze UPR activation in leukocytes from T2D
patients and control subjects. A higher peak in GRP78 expression was observed in the T2D vs. control
group (Figure 2A; p < 0.05); similarly, DDIT3/CHOP expression was augmented in T2D patients
(Figure 2B; p < 0.05). Interestingly, SS-31 treatment reduced mRNA levels of both genes in leukocytes
from T2D patients (Figure 2A,B; p < 0.05). Furthermore, the treatment with the mitochondria-targeted
antioxidant SS-31 had no effect about protein levels of GRP78 and P-eIF2α on leukocytes of control
subjects (Figure 2C,D) while a reduction in these ER stress parameters was observed in leukocytes
from T2D patients with T2D (Figure 2C,D; p < 0.05). None of these markers were altered by treatment
with SS-20.

These findings suggest that SS-31 can attenuate ER stress in the leukocytes of T2D patients.

Figure 2. Evaluation of endoplasmic reticulum (ER) stress parameters in leukocytes from T2D
patients and controls in the absence and presence of SS-31 (30 min, 100 nM) (A) GRP78 expression.
(B) DDIT3/CHOP expression. (C) GRP78 protein levels and representative western blotting (WB)
images. (D) P-eIF2α protein levels and representative WB images. * p < 0.05 with regard to control
group # p < 0.05 vs. non-treated T2D group.
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3.6. Autophagy Assessment

BECN1 gene expression were enhanced in leukocytes from T2D patients with respect to those of
healthy controls (Figure 3A; p < 0.05), a trend that was reversed by treatment with SS-31 (Figure 3A;
p < 0.05). In leukocytes from T2D patients treated with SS-31, this trend was also accompanied by
a significant reduction of protein expression of distinct markers of autophagy such as Beclin1 and
the ratio of LC3 II/I (Figure 3B,C; p < 0.05). p62 protein level was significantly lower in leukocytes
from diabetic patients compared to controls, however its mRNA levels were more abundant in T2M
patients which is indicative of enhanced autophagy. Treatment of leukocytes from T2D patients with
SS-31 reversed the protein level of p62 (Figure 3D; p < 0.05), while no changes were seen in the gene
expression of SQSTM1/p62 suggesting that SS-31 can modify autophagy at protein level. On the other
hand, no significant differences were observed in control group or with SS-20 treatment.

Figure 3. Study of autophagy-related parameters in leukocytes from control subjects and T2D patients
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in the presence and absence of SS-31 (30 min, 100 nM). (A) BECN1 expression. (B) Beclin 1 protein
expression and representative WB images. (C) SQSTM1/p62 expression (D) p62 protein expression
and representative WB images (E) LC3 II/I ratio of protein expression and representative WB images.
* p < 0.05 with regard to control group, # p < 0.05 vs. non-treated T2D group.

These results provide some evidence that the mitochondria-targeted antioxidant SS-31 reduces
parameters of autophagy in leukocytes from T2D patients.

3.7. Analysis of Pharmacologically Induced ER Stress and Autophagy

Given that leukocytes from T2D display markers of ER stress and activated autophagy, and the
observation that both effects can be alleviated with SS-31 treatment, we set to explore the connection
between these processes. For this, we evaluated the capacity of SS-31 to interfere with pharmacologically
induced ER stress (thapsigargin) and autophagy (rapamycin). Treatment with thapsigargin (1 µM,
20 min) produced a significant increase in the protein content of P-eIF2α and a slight increase in
GRP78, however these effects were not impaired if cells were co-treated with SS-31 (Figure 4A,B).
The sesquiterpene alkaloid thapsigargin, a highly selective inhibitor of sarcoplasmic/endoplasmic
reticulum Ca2+ ATPase (SERCA) prevents Ca2+ transport into the ER lumen, which leads to its
subsequent increase in the cytosol, and promotes accumulation of unfolded proteins and perturbation
of intracellular Ca2+ homeostasis [42]. On the contrary, SS-31 was able to prevent the increase in GRP78
protein content when it was induced by the mitochondrial inhibitor rotenone (Figure 4A), a finding that
reinforces the ability of SS-31 to act as an antioxidant. Regarding autophagy, as expected, leukocytes
from healthy subjects exposed to the pharmacological inducer rapamycin (0.5 µM, 30 min) displayed
enhanced autophagy as evidenced by the incremented Beclin1 and LC3 II levels (Figure 4C,D), and the
diminished p62 protein content (Figure 4E). Rapamycin inhibits the mTOR complex, a central negative
regulator of autophagy in the mammalian cell, thus triggering a strong autophagic response [42,43].
Importantly, SS-31 treatment had no effect on these alterations (Figure 4C–E), a finding that once more
underscores the specificity of SS-31 action in the complex metabolic disturbances in leukocytes of T2D
patients. We also evaluated autophagy induction in the cells exposed to rotenone and observed no
increase in Beclin1 and LC3 II levels. The protein levels of p62 were diminished; however, given the
lack of changes in the LC3 II/I ratio the effect may be evidence of an autophagy-independent regulation.
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Figure 4. Study of the expression of protein markers of ER stress and autophagy, induced
pharmacologically in leukocytes from healthy controls, in the presence and absence of SS-31 (30 min,
100 nM). (A) GRP78, (B) P-eIF2α, (C) Beclin1, (D) LC3 II/I ratio, and (E) p62. Representative WB images
are also shown. * p < 0.05 with regard to control group; a p < 0.05 vs. rotenone-treated group. n = 6.
ROT, rotenone (50 µM, 20 min); TG, thapsigargin (1 µM, 20 min); RAPA, rapamycin (0.5 µM, 30 min).

4. Discussion

Based on renewed concepts of T2D pathogenesis, the targets of a potential therapy for this chronic
progressive disease include, not only glucose homeostasis correction, but also modulation of cellular
stress and mitochondrial function in highly metabolic tissues, with the aim of attenuating insulin
resistance and low-grade inflammation and ameliorating β cell function and mass, thus preventing the
development of macro- and microvascular complications.

In this sense, the mitochondrial antioxidant SS-31 has been described to exert protective effects
in several disease models. Indeed, SS-31 has previously been reported to attenuate renal injury in
diabetic nephropathy through an antioxidant effect [44]. Furthermore, Zhu et al. have demonstrated
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that SS-31 attenuates the severity of lung damage by modulating mitochondrial dysfunction in a mouse
model of spinal cord injury [45]. However, the exact pathophysiological mechanism involved in the
protective effects of SS-31 on leukocytes in T2D is not fully understood. For this reason, the present
study was designed to evaluate whether SS-31 can modulate oxidative stress, ER stress and autophagy
in leukocytes of T2D patients, three important pathways involved in the development of T2D.

The pathophysiology of T2D is associated with an impairment of β cell function and, consequently,
IR, a hallmark of this disease [46]. Nevertheless, whether cell failure is a primary cause of T2D or
secondary to associated long-term metabolic abnormalities is yet to be confirmed, though increased
oxidative stress, ER stress and autophagy are thought to be involved [47]. In fact, previous studies
have suggested that alterations in ∆Ψm disturb mitochondrial dynamics, eventually promoting a
failure in glucose-stimulated insulin secretion [48]. Moreover, our group has previously demonstrated
oxidative stress and mitochondrial dysfunction in leukocytes from T2D patients [49]. In this sense,
SS-peptides can scavenge ROS, and these molecules have been shown to exert beneficial effects
against mitochondrial dysfunction [19,50]. SS-31 protects mitochondria against oxidative damage by
accumulating in the inner mitochondrial membrane, a location close to the site of ROS production.
In fact, after crossing the mitochondrial outer membrane, SS-31 associates with cardiolipin, an anionic
phospholipid expressed exclusively in the inner mitochondrial membrane. Furthermore, SS-31 seems
to protect cristae architecture by alleviating mitochondrial oxidative stress and preventing cytochrome
c peroxidase activity [17,19].

In the present study, we have found that the leukocytes of T2D patients have functional alterations
compared to those of control individuals, as shown in Figure S1. SS-31 is able to rescue the parameters
of leucocyte–endothelial interactions which confirms that SS-31 can modulate leukocyte function.
The fact that the effects can be ameliorated with SS-31 but not with SS-20 shows that the alterations
of the leukocyte function in T2D leukocytes can be due to the high levels of total and mitochondrial
ROS levels compared to controls. Fluorescent probes are widely used for ROS detection in biological
systems; DCFH–DA has been suggested as a relatively specific probe for H2O2, while dihydroethidium
seems to be more suitable for superoxide. However, abundant evidence over the past years has shown
that all fluorescent probes for ROS detection suffer a lack of selectivity given that they react with various
types of ROS, and therefore in living cells or tissues they are generally used for detecting total oxidative
activity. In order to reaffirm our findings, we have employed two fluorescent probes and verified the
specificity of the detection by studying a positive control of mitochondrial ROS generation, rotenone.

One of the leading hypotheses regarding the onset of IR is that enhanced ROS production triggers
ER stress, which leads to activation of the UPR. In relation to this, ER stress is considered a target
mechanism under IR conditions. An association between IR and mitochondrial abnormalities, such as
lower numbers of mitochondria, reduction in mitochondrial oxidative enzyme activity or mitochondrial
dysfunction, have been reported in human studies [51,52]. Furthermore, it has been described that
ER stress is related to apoptosis in leukocytes from T2D patients [53]. In addition, a study by Sage
et al. demonstrated that levels of ER stress markers such as GRP78, sXBP1 and CHOP correlated
positively with glucose levels in leukocytes from patients with metabolic syndrome [54]. In line with
such data, we have shown in previous studies that leukocytes from T2D patients exhibit increased ER
stress markers which display enhanced GRP78, P-eIF2α and ATF6 protein levels [35]. Interestingly, the
present study shows that SS-31 treatment in leukocytes from T2D patients reduces GRP78 and P-eIF2α
protein levels, and GRP78 and CHOP mRNA levels, suggesting that this molecule could promote
the restoration of cell homeostasis to battle ER stress. The reduction of intracellular calcium levels
under treatment with SS-31 described in the present study could also be indicative of lower ER stress
compared to untreated T2D leukocytes, but these data need to be considered with caution given that
with our methodology we cannot determine the subcellular source of increased calcium. This idea is
further enforced by the fact that SS-31 did not alleviate ER stress triggered by other types of stimuli
such as thapsigargin, an ER stressor with a direct effect on ER calcium homeostasis.
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ER stress can also induce autophagy, and in this sense Gonzalez et al. have described that cleavage
and lipidation of microtubule-associated protein LC3 I into LC3 II is mediated by the phosphorylation
of PERK/eIF2α [55]. Importantly, we have previously demonstrated in leukocytes from T2D patients
that UPR activation occurs in parallel with autophagy [35]. The present study describes an increase
in Beclin1 and LC3-II levels in T2D patients compared to controls which is indicative of increased
generation of autophagosomes. As this occurs concomitantly with a decrease in p62 protein levels,
we believe that it may suggest an increase in the autophagic clearance. Nevertheless, the results
presented are not sufficient as to state that autophagy is not only induced but also active/functional in
T2D patients.

The expression levels of autophagy-related parameters are significantly decreased in leukocytes of
T2D patients under SS-31 therapy. In contrast, p62 protein expression, which is involved in aggresome
formation and is itself degraded through autophagy, was increased in leukocytes from T2D patients
by addition of SS-31. Of note, this was not due to changes in the gene expression of SQSTM1/p62
suggesting rather a SS-31 effect on autophagy. Our results support the existence of cross-talk between
oxidative stress and autophagy in T2D [56], as SS-31 treatment of leukocytes of T2D patients reduces
mitochondrial ROS production, which seems to prevent the increase induced by autophagic biomarkers.
The specificity of this effect was shown by the fact SS-31 lacked the capacity to prevent the autophagic
process induced by the pharmacological inducer of autophagy, rapamycin. As shown in many reports,
rapamycin does not increase intracellular ROS levels (or can even diminish them) which is in keeping
with our conclusion of SS-31 interfering with the autophagy observed in leukocytes from T2D patients
through its capacity to scavenge mitochondrial ROS.

A link between ER stress, ROS production and autophagy could also be established considering the
implication of cardiolipin in mitochondrial function including calcium buffering and mitophagy [57–60].
Given that in this work intracellular calcium levels in leukocytes from diabetics are enhanced
concomitantly with increased presence of total and mitochondrial ROS, we could speculate that
cardiolipin might be altered. With this and considering that SS-31 is a ROS scavenger that binds
cardiolipin, we can speculate that cardiolipin may be involved in the effects exerted by SS-31. It could
act as a regulator of mitophagy, explaining the reducing effect on autophagy seen in our work and could
also affect calcium handling by mitochondria. It is widely known that calcium levels influence leukocyte
function [61,62] and this occurs through NLRP3 signaling and the regulation of calmodulins and
GTPases which participate in crucial processes in leukocytes such as innate defense and transmigration.
Both aspects could reinforce SS-31 as a mitoprotective molecule that prevents leukocyte dysfunction.
The effect of SS-31 on cardiolipin in this model and its relation to mitophagy seems a promising idea
that needs to be explored in future studies.

It is important to mention that a possible limitation of this study are the potential interactions,
synergisms, or detriments that may arise when studying or implementing novel drugs like SS-31 in a
background affected by other medications such as statins. In this sense, previous research has stated
that statins can have both detrimental [63–66] and beneficial effects [67–77], often unrelated to their
lipid-lowering effect and rather associated with their pleiotropic actions. The variation of the effect is
explained by the type of statin, the dose, the combination with other treatments and the experimental
model. However, to our knowledge, there are no reports about the interference of statins with SS-31
when applied in combination, in patients or in animal studies.

5. Conclusions

In summary, our findings reveal a potential protective effect of novel SS-31 therapy in diseases with
increased oxidative and an ER stress state such as T2D. It is important to highlight that mitochondrial
accumulation of SS-peptides does not depend on alterations of ∆Ψm, which represents a major
advantage to respect to other antioxidants [78–80]. The discovery of novel potential therapeutic
strategies based on mitochondrial biology is key to future treatments, but further research is essential.
The SS-31 peptide in particular represents a possible approach, through targeted delivery of antioxidants
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to mitochondria. In fact, in the present study we have demonstrated that SS-31 reduces ROS and could
modulate ER stress and autophagy, key molecular pathways in cellular homeostasis, suggesting that
this compound may exert beneficial effects that can be channeled for the treatment of T2D. Further
investigations including clinical trials are required to elucidate these and other important mechanisms
underlying the actions of SS-31 in treatment of T2D.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/9/1322/s1,
Figure S1: Leukocyte-enfothelium interaction evaluation under SS-31 and SS-20 treatment.
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