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PODER PODER

Soñaré que te sueño
y querer despertar;
porque, si no, no puedo.

Pensaré que te pienso
y así soñar parar;
porque, si no, no quiero.

Ahora quiero quererte,
poder en ti soñar,
pensar poder tenerte.

R.G.C.
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Resumen

Esta tesis cubre dos artículos conjuntos con Nuño-Ballesteros ([GCNB21, GCNB20]),
un artículo conjunto con Nuño-Ballesteros y Lê D�ung Tràng ([GCTNB21]) y un trabajo
en desarrollo con Mond. Estos tres trabajos delimitan las tres partes principales del texto.

Como se ha mencionado, el texto está dividido en tres partes. La primera de ellas
trata el estudio de singularidades de gérmenes de aplicaciones holomorfas en el contexto
de la teoría de Thom-Mather, i.e., módulo A -equivalencia. En particular, nos centra-
mos en gérmenes de corrango uno de Cn en Cn+1, pero también desarrollamos la teoría
para gérmenes de Cn en Cp, con n < p, y gérmenes con una intersección completa con
singularidad aislada (comunmente conocidos como icis) en el dominio.

El principal objetivo de la primera parte del texto es encontrar una buena caracte-
rización de la equisingularidad de Whitney para familias a un parámetro de gérmenes
ft : (Cn, S) → (Cn+1, 0) A -�nitos de corrango uno. Una caracterización de la equi-
singularidad de Whitney ya fue dada por Ga�ney en [Gaf93]: una familia de gérmenes
ft : (Cn, S) → (Cn+1, 0) es Whitney equisingular si, y solo si, es excelente y todas las
multiplicidades polares en el dominio y codominio son constantes a lo largo de la familia.
No obstante, esta caracterización tiene el inconveniente de necesitar una gran cantidad
de invariantes para asegurar la equisingularidad.

Se han hecho algunos avances desde el resultado de Ga�ney, por ejemplo, Jorge Pé-
rez y Saia redujeron el número de invariantes en [JPS06], necesitando todavía una gran
cantidad de ellos. Además, Houston tiene un artículo no publicado basado en una pre-
publicación inédita de Ga�ney en el que trata esta cuestión (véase [Hou08]).

Nuestra contribución ha sido, en primer lugar, encontrar una condición para desha-
cerse de la hipótesis de excelencia. Más concretamente, Houston conjeturó en [Hou10]
que una familia de gérmenes de corrango uno era excelente si el número de Milnor en la
imagen era constante a lo largo de la familia. Hemos resuelto esta conjetura en el par
de dimensiones (n, n+ 1), ergo usamos el invariante µI para asegurar la excelencia de la
familia.

Por otro lado, nos inspiramos en el trabajo de Teissier para hipersuper�cies con
singularidad aislada en [Tei82] y en el de Ga�ney para icis en [Gaf96]: caracterizar la
equisingularidad de Whitney en términos de una secuencia µ∗ o, lo que es lo mismo,
estudiar los números de Milnor de secciones genéricas con codimensión creciente. Así,
probamos un resultado similar para gérmenes de aplicaciones usando esta �losofía, usando

vi
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el teorema de Ga�ney y reduciendo el número de invariantes que necesitamos. Pese
a ello, en el caso de gérmenes de aplicaciones, necesitamos condiciones que controlen el
dominio y el codominio por separado, y es por ello que usamos la secuencia µ∗I(ft) para el
codominio, usando el número de Milnor en la imagen usual, y la secuencia µ∗I(D

2(ft), π)
para el dominio, usando una de�nición análoga del número de Milnor en la imagen
para gérmenes de aplicaciones con un icis en el dominio. Esta última secuencia fue la
motivación para desarrollar la teoría de gérmenes de aplicaciones desde un icis.

Por último, cabe destacar que hemos probado algunos resultados interesantes a lo lar-
go de nuestro trabajo en esta dirección. El primero de ellos es el principio de conservación
del número de Milnor en la imagen, así como su semicontinuidad superior. Entre otros,
también es de excepcional interés una versión débil de la conjetura de Mond. Recordamos
que la conjetura de Mond a�rma que el número de Milnor en la imagen de un germen
A -�nito es mayor o igual que su Ae-codimensión (con igualdad en el caso homogéneo
con pesos, llamado también casi homogéneo). Así pues, hemos probado que el número de
Milnor en la imagen es cero si, y solo si, el gérmen es estable (o, equivalentemente, que
su Ae-codimensión es cero).

La segunda parte de este texto trata la monodromía geométrica local de las �braciones
de Milnor-Lê: probamos que una monodromía geométrica local de un germen f : (X,x)→
(C, 0) no �ja ningún punto si f ∈ m2

X,x. Esto es una generalización de un teorema de

Lê D�ung Tràng en [Trá75] enunciado para gérmenes con dominio suave, f : (Cn+1, x)→
(C, 0). Además, Tibar enunció este resultado en su tesis doctoral y en un artículo (véase
[Tib92, Tib93]).

Para probar esta generalización usamos una técnica desarrollada por Lê D�ung Tràng
llamada el carrusel: un campo vectorial con propiedades adecuadas. La idea principal de la
prueba es levantar este campo vectorial a X y tomar su �ujo para tener una monodromía
geométrica, por lo tanto, también usamos las técnicas mostradas en [GWdPL76] para
probar los lemas de isotopía de Thom-Mather.

Este teorema, así como su versión original dada por Lê D�ung Tràng, tiene aplicaciones
interesantes. Mediante un teorema clásico de Lefschetz, el teorema que demostramos
implica que el número de Lefschetz de una monodromía geométrica local es cero. Esto
también es un resultado de A'Campo en [A'C73], que da una versión más general usando
maquinaria matemática pesada y cuya prueba, en la versión más general, atribuye a
Deligne. Como corolario de esta aplicación, podemos probar que el hecho de ser suave
es un invariante topológico de gérmenes de hipersuper�cies (X,x), usando también un
teorema de Lê D�ung Tràng en [Trá73a]. Este corolario puede ser probado, también, con
otro teorema de A'Campo en [A'C73], que es, a su vez, consecuencia de nuestro resultado
principal.

Finalmente, mostramos un teorema de no coalescencia en un contexto general. Esto
quiere decir que, bajo ciertas condiciones, una familia de singularidades, en algún sen-
tido, no puede escindirse a lo largo de una familia si se conservan ciertos invariantes,
como el número de Milnor. Por ejemplo, en [Trá73b], Lê D�ung Tràng demostró que una
familia de hipersuper�cies con singularidades aisladas no tiene coalescencia si la suma de
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los números de Milnor es constante a lo largo de la familia (véase también el trabajo de
Bey en [Bey72] y el de Lazzeri en [Laz73a]). Otro ejemplo de no coalescencia fue dado
en [CNnBOOT21] por Carvalho, Nuño-Ballesteros, Oré�ce-Okamoto y Tomazella para
familias de icis con número de Milnor total constante. Más precisamente, por contex-
to general nos referimos a una familia de hipersuper�cies f−1

t (0) dadas por funciones
ft : Xt → C con puntos críticos aislados en cierto espacio ambiente (X, x0) que además
es un espacio de Milnor con ciertas hipótesis en la �bración y la familia.

Finalmente, la tercera parte es una nueva forma de encarar el estudio de inestabili-
dades de gérmenes de aplicaciones A -fnitos f de Cn en Cp, con p > n. Como el lector
verá, la principal herramienta que usamos para controlar el número de Milnor en la ima-
gen en la primera parte del texto son los espacios de puntos múltiples de los gérmenes.
Pese a ello, no los usamos como un todo, sino que solo nos preocupamos por la parte
alternada de su homología porque usamos una secuencia espectral que calcula la imagen
(icss) para calcular los números de Milnor en la imagen. Esta es la razón para intentar
usar toda la simetría de los espacios de puntos múltiples en lugar de solo su homología
alternada. Esto lo hacemos utilizando la estructura de los espacios de puntos múltiples
(de momento, en corrango uno) y teoría de representaciones.

La �losofía de esta nueva forma de aproximarse a problemas de inestabilidades de
gérmenes es intentar transformarlos en problemas de álgebra lineal. De hecho, tenemos
éxito cuando tratamos de relacionar la constancia de µI y la de µD en familias, donde
µD es el número de Milnor en los puntos dobles dado en la primera parte del texto como
µI(D2(ft), π). En particular, probamos que la constancia de µI implica la de µD en
familias de monogérmenes de corrango uno.

Además, probamos que cualquier espacio de puntos múltiples de un monogermen de
corrango uno que tenga una singularidad dará homología alternada cuando tomemos su
�bra de Milnor. Esto es también una generalización de un teorema dado en la primera
parte del texto para familias de gérmenes que admiten un desdoblamiento estable a un
parámetro.



Methodology

The research procedure for this thesis has been the usual in the �eld of mathematics.
We started looking for adequate bibliographical resources, both general and speci�c of the
subject of our studies, and have extended these materials as needed for our goals. For the
computations we have made use of the software Singular, [DGPS21], and Mathematica,
[Inc], implementing some algorithms specially adapted to our purposes.

ix



Introduction

Short comment to read this thesis

This text is especially made to be read with a computer, as it is enriched with many
hyperlinks along the texts. For example, if a concept appears for the �rst time in a
chapter and it was de�ned in another chapter or in the appendix, there is a hyperlink
taking the reader to the de�nition. These hyperlinks have a dark blue color, while the
hyperlinks of the references are green and the hyperlinks for url, outside the text, are
light blue.

Also, the reader should be aware of the usual tools of a pdf viewer: if a hyperlink
takes the reader to other part of the text, the pdf viewer can take the reader back to
the page where the hyperlink was. Usually, in viewers such as Adobe Acrobat Reader or
SumatraPDF, one can do this with the combination alt + ← in Windows and Linux
and cmd + ← in macOS.

Outline of the thesis

This thesis covers two joint papers with Nuño-Ballesteros ([GCNB21, GCNB20]), a
joint paper with Nuño-Ballesteros and Lê D�ung Tràng ([GCTNB21]) and a joint work in
development with Mond. These three works delimit the three main parts of the text.

As we were saying, the text is divided intro three parts. The �rst of them is devoted to
the study of singularities of holomorphic map germs in the context of the Thom-Mather
theory, i.e., modulo A -equivalence. In particular, we focus on corank one germs from Cn
to Cn+1, but we also develop the theory for germs from Cn to Cp, with n < p, and germs
with an isolated complete intersection singularity (icis) in the source.

The main goal of the �rst part of the text is �nding a nice characterization of the
Whitney equisingularity for one-parameter families of A -�nite germs ft : (Cn, S) →
(Cn+1, 0) of corank one. A characterization of the Whitney equisingularity was already
given by Ga�ney in [Gaf93]: a family of germs ft : (Cn, S) → (Cn+1, 0) is Whitney
equisingular if, and only if, it is excellent and all the polar multiplicities in the source and
target are constant along the family. However, this characterization has the inconvenient
of needing a huge number of invariants to assure the equisingularity.

Some developments have been made since Ga�ney's result, for example Jorge Pérez
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and Saia in [JPS06] reduced the number of invariants, still being a huge amount of inva-
riants. Also, Houston has an unpublished paper based on a preprint of Ga�ney addressing
this issue (see [Hou08]).

Our contribution was, �rst of all, �nding a condition to avoid the excellency hypot-
hesis. To be more speci�c, Houston conjectured in [Hou10] that a family of corank one
germs is excellent if the image Milnor number µI is constant along the family. We sol-
ve this conjecture for the dimensions (n, n + 1), so use the invariant µI to assure the
excellency of the family.

On the other hand, we were inspired by the work of Teissier in [Tei82] for isolated
singularities of hypersurfaces and by the work of Ga�ney in [Gaf96] for icis: they cha-
racterized Whitney equisingularity in terms of µ∗ sequences. This means studying the
Milnor numbers of generic sections with increasingly codimension. Hence, we proved a
similar result for map germs using this approach, using Ga�ney's theorem and reducing
the number of invariants we need. However, in the case of map germs, one needs control
conditions on the source and target separately, so we used the sequence µ∗I(ft) for the
target, with the usual image Milnor number, and a sequence µ∗I(D

2(ft), π) for the source,
using an analogous de�nition of the image Milnor number de�ned for map germs with
an icis in the source. This last sequence also motivated us to develop the theory of map
germs on icis.

Finally, we want to remark that we have proven some interesting results while going
on this direction. The �rst one is the conservation principle of the image Milnor number,
as well as its upper semi-continuity. Among other developments, it is of exceptional in-
terest a weak version of Mond's conjecture. Recall that Mond's conjecture states that the
image Milnor number of an A -�nite germ is greater than, or equal to, its Ae-codimension
(with equality in the weighted homogeneous case). Hence, we proved that the image Mil-
nor number is zero if, and only if, the germ is stable (or, equivalently, the Ae-codimension
is zero).

The second part of this text is about the local geometric monodromy of Milnor-Lê
�brations: we prove that a geometric local monodromy of a germ f : (X,x)→ (C, 0) does
not have any �xed point if f ∈ m2

X,x. This is a generalization of a theorem of Lê D�ung

Tràng in [Trá75] stated for germs on smooth source, f : (Cn+1, x)→ (C, 0). Furthermore,
Tibar stated this result in his PhD thesis and in one paper (see [Tib92, Tib93]).

In order to prove this generalization, we use a technique developed by Lê D�ung Tràng
called the carousel, which is a vector �eld with convenient properties. The main idea of
the proof is lifting this vector �eld to X and take its �ow to have a geometric monodromy,
hence, we also used the techniques shown in [GWdPL76] to prove Thom-Mather isotopy
lemmas.

This theorem, as its original version given by Lê D�ung Tràng, has interesting ap-
plications. By a classical result of Lefschetz, the theorem we prove implies that the
Lefschetz number of the local geometric monodromy is equal to zero. This is also a result
of A'Campo in [A'C73], which has a more general version using heavy mathematical
machinery and whose proof, in the most general version, is attributed to Deligne. As
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corollary of this application, we can prove that being smooth is a topological invariant of
germs of hypersurfaces (X,x), using also a theorem of Lê D�ung Tràng in [Trá73a]. This
corollary can also be proven using another theorem of A'Campo in [A'C73], which is, in
turn, consequence of our main theorem.

Finally, we show a theorem of no coalescence in a general context. This means that,
in some conditions, a family of singularities, in some sense, cannot split along the family
provided the conservation of some invariants, such as the Milnor number. For example,
in [Trá73b], Lê D�ung Tràng showed that a family of hypersurfaces with isolated singu-
larities does not have coalescence provided the sum of the Milnor numbers is constant
along the family (see also Bey's work in [Bey72] and Lazzeri's work in [Laz73a]). Anot-
her example of no coalescence is given in [CNnBOOT21] by Carvalho, Nuño-Ballesteros,
Oré�ce-Okamoto, and Tomazella for families of icis with constant total Milnor number.
To be more precise, by general context we mean a family of hypersurfaces f−1

t (0) given
by functions ft : Xt → C with isolated critical points inside an ambient space (X, x0)
that is a Milnor space with some hypothesis on the �bration and the family.

Finally, the third part is a new approach to study instabilities of A -�nite map germs
f from Cn to Cp, with p > n. As the reader will see, the main tool we use to control
the image Milnor number in the �rst part of the text is the multiple point spaces of the
germs. However, we do not use them as a whole, but we only care about the alternating
part of their homologies because we use an image-computing spectral sequence (icss)
to compute the image Milnor numbers. This is a reason to try to use all the symmetric
structure of the multiple point spaces instead of only their alternating homology. We do
this using the structure of the multiple point spaces (at the moment, in corank one) and
representation theory.

The spirit of this new approach is trying to translate problems of instabilities of germs
into problems of linear algebra. In fact, this attempt is successful when we try to relate
the constancy of µI and the constancy of µD in families, where µD is the double point
Milnor number as given in the �rst part of the text by µI(D2(ft), π). In particular, we
prove that the constancy of µI implies the constancy of µD in families of corank one
mono-germs.

Furthermore, we prove that any multiple point space of a mono-germ of corank one
that has a singularity will provide alternating homology when we take its Milnor �ber.
This is also a generalization of a theorem given in the �rst part of the text for families
of germs that admit a one-parameter stable unfolding.

Structure of the thesis

In Chapter 1 we introduce our main topic of research. For example, the main concepts
of singularities of holomorphic map germs are presented in Section 1.2, with a particular
interest in the image Milnor number and the A -codiemension of A -�nite germs. After
that, as our objects are usually strati�ed manifolds, we introduce the concepts related
with strati�cations we use along the text, such as Whitney strati�cations, Whitney equi-
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singularity or topological triviality.

Chapter 2 is a short introduction to the multiple point spaces and the icss, with
some examples and the main results we are going to use along the text.

?

?

C4

C3

C5

C6

S 3.1.1

  S 4.3

  S 4.1   S 4.4

  S 5.4

  S 5.3

C 2

A 

S 3.1.2

Chapters 3 and 4 are conceived with a �nal objective: to characterize Whitney equi-
singularity of corank one germs from Cn to Cn+1 in a simple way. The �rst step in this
direction is made in Chapter 3, solving Houston's conjecture on excellent unfoldings. To
do so, we need to show some fundamental properties of the image Milnor number (see
Section 3.1). Among other results, we show in Section 3.1.1 that the image Milnor num-
ber is conservative and in Section 3.1.2 that a corank one germ has image Milnor number
equal to zero if, and only if, it is stable (this is called weak Mond's conjecture in the
text). We end the chapter using these results to solve Houston's conjecture in Section 3.2.

Recall from the outline of the text that we use a theorem of Ga�ney given in [Gaf93]
to give a characterization of being Whitney equisingular with a few invariants. Hence, as
the reader already know, in Chapter 4 we use Houston's conjecture to drop the hypothesis
on excellency.

Our next step is to give invariants that contain enough information to control the
equisingularity. However, we need to make a distinction between the source and the tar-
get. To control the source, we use the image Milnor numbers of the sections of projections
of the double point space of f (denoted as D2(f)) and, as they are icis, we start the
chapter introducing the topic of germs on icis in Section 4.1. This is, to some extent, an
introduction to the work of Mond and Montaldi in [MM94].

We also need to recover the basic building we already have in the smooth setting,
such as the multiple point spaces of germs on icis. Recall that we need to work with
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an analogous de�nition of the image Milnor number, but for germs that have an icis in
the source. For this reason, we need to be able to use the icss easily. All this is covered
in Section 4.2. Also, we take the chance to extend the work of Mond and Montaldi in
[MM94] for germs f : (X,S) → (Cp, 0) with X an icis of dimension n and p > n, in
general.

We study many properties of the projection of the double point space and the new
invariant µD on the source (called double point Milnor number) in Section 4.4. For
example, we study the relation between µD and µI , proving the weak Mond's conjecture
for µD.

Another preparatory section we have skipped is Section 4.3, where we give a version
of the Lê-Greuel formula for map germs on icis. This is also a generalization of the work
of Pallarés-Torres and Nuño-Ballesteros in [NBPT19].

We �nish the chapter giving our desired characterization of the equisingularity in
Section 4.5.

Houston's conjecture raises a question.

Qf : If the total image Milnor number is constant, do the instabilities coalesce?

In other words, can the excellency of a family fail because we have new instabilities
along the family but without having homology in middle dimension?

We already know that this is not true for families of hypersurfaces with isolated sin-
gularities: if the family of hypersurfaces g−1

t (0) = Ht has isolated singularities and the
total Milnor number is constant on t, then there is only one singularity along the family.
A known proof involves working with some local geometric monodromy (see [Trá73b,
Theorems A and B]). Furthermore, we can reproduce the part of having a local geome-
tric monodromy in the setting of map germs using a stabilisation of the germ. Hence,
it could happen that a generalization of the argument for hypersurfaces with isolated
singularities includes the images of map germs as parametrized hypersurfaces.

QX: If the total Milnor number is constant along a family X = {(Xt, t)}t, do the
singularities coalesce?

This is our motivation to begin with Chapter 5, and it is well explained in Section 5.1.
In this chapter, we introduce the concepts of local monodromy and give some results that
led to the proof of a general theorem we were talking about, from Section 5.2 to Sec-
tion 5.8. However, we show in an example of Section 5.7 that the general theorem cannot
work with the setting of map germs.

The last chapter with original results is Chapter 6. We introduce the main idea of
a new technique in Section 6.1, which consist of using all the symmetric structure of
the multiple point spaces by means of representation theory, the Marar-Mond criterion
and an equation that relates the character of a group acting on a simplicial complex
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and the �xed points of the action. As the technique is new, we give several examples in
Section 6.2 with all the details. Finally, we conclude the chapter with two new theorems
whose proof involves this technique in Sections 6.3 and 6.4. The �rst one gives a useful
characterization of having alternating homology in the Milnor �ber of a multiple point
space (with some conditions): the multiple point is non-smooth if, and only if, it has
alternating homology in its Milnor �ber. The second one states that the constancy of µI
implies the constancy of µD in families, in some cases.

Chapter 7 contains a list of open problems we have faced along our work, open ques-
tions we asked ourselves and a general review of the text.

Finally, regarding the appendix, Chapter 6 uses �uently representation theory in all
the arguments, so we advise the reader to see Appendix A. This appendix was made
with the intention of writing a small course of representation theory, because it is not
a common area singularists see. Furthermore, we can also see the basics of spectral
sequences in Appendix B, one can �nd there beautiful well-known examples and the
fundamental concepts of a spectral sequence.
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Chapter 1

Preliminaries

The Dwarf sees farther than the
Giant, when he has the Giant's
shoulders to mount on.

Samuel Taylor Coleridge
The Friend

In this chapter we introduce the main objects we are going to use regarding map
germs and strati�cations.

1.1. Conventions and notation

Throughout this text we shall use some convenient conventions, if the context is
not misleading, that we list here. We also follow some conventions of the main modern
references, such as [MNB20].

If a set is formed by one element we may refer to the set writing only the element
(e.g., x instead of {x}).

All the neighbourhoods are open neighbourhoods.

The set germs are denoted as (X,S) where S is the set where the germ is de�ned,
and they are also called simply germs.

The map germs are denoted as f : (X,S)→ Y , or f : (X,S)→ (Y,R) if f(S) ⊆ R;
S will have always a �nite number of points; and they are also called simply germs.

A mono-germ is a map germ where S has only one point, otherwise it is a multi-
germ.

All the mappings, or germs, are holomorphic until otherwise stated.

Finite maps are proper and �nite-to-one maps.

1
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Usually, in our context, the germs have to be �nitely determined, but we may not
mention this detail in some explanations for the sake of the narrative.

Furthermore, we follow the standard notation to denote some objects:

OX,S is the ring of holomorphic map germs f : (X,S)→ C. It is also written simply
as On if (X,S) = (Cn, S) and the context is not misleading.

mX,S is the ideal of OX,S of functions that vanish on S, also written as mn if
(X,S) = (Cn, S).

θCn,S is the On-module of germs of vector �elds on (Cn, S), also written as θn.

For a map germ f : (Cn, S)→ (Cp, 0), θ(f) is the On-module of vector �elds along
f .

Σ(f) is the critical set of a map f , or a set germ if f is a germ.

The discriminant is the image of the critical set, ∆(f) := f(Σ(f)).

The corank of a mapping at a point is the di�erence between the maximum rank
and the rank at that point.

1.2. Map germs

In this section we give a quick review of map germs and A -equivalence. For more
details and further explanation we recommend [GWdPL76] and we specially recommend
the more up-to-date reference [MNB20], which we follow.

1.2.1. A -equivalence

Studying mappings between manifolds is a self-motivating topic of research conside-
ring its broad context. A holomorphic structure provides a mapping with many interesting
properties, therefore it is a good class of mappings to study. Finally, if we face a tough
problem, a good strategy is to break it down into simpler problems we may solve. This
leads us to study map germs of holomorphic functions.

If we are in the holomorphic world it makes sense to work with map germs modu-
lo biholomorphisms, i.e., it makes sense to de�ne things modulo biholomorphisms in a
holomorphic category.

De�nition 1.2.1. We say that two germs, f and g, are A -equivalent, or left-right equi-
valent, if there are germs of biholomorphisms, φ and ψ, such that the following diagram
commutes

(Cn, S) (Cp, 0)

(Cn, S) (Cp, 0)

f

φ ∼ ψ∼

g

.
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There is a kind of map germs where the question of whether or not two maps are
A -equivalent is simpler than in the general case.

De�nition 1.2.2. Amap germ f : (Cn, S)→ (Cp, 0) is k-determined if it is A -equivalent
to g whenever their Taylor polynomial of order k at S coincide. If a map germ is k-
determined for some k we say that it is �nitely determined or A -�nite.

After this last de�nition, knowing when a germ is �nitely determined becomes a cen-
tral problem. Moreover, as we shall see, �nitely determined germs have more interesting
properties.

Note that A -equivalence is de�ned by means of the group Bihol(Cn, S)×Bihol(Cp, 0)
acting in a certain way on map germs, where Bihol(Cm, R) denotes the group of germs,
de�ned at the set R, of biholomorphisms1, such as φ : (Cm, R) → (Cm, R). This is a
similar situation to what Thom and Mather studied in the 1960s, in the series of papers
[Mat68a, Mat69a, Mat68b, Mat69b, Mat70, Mat71], but they studied the smooth global
case. Indeed, the theory we introduce here is usually called Thom-Mather theory. This is
justi�ed, many of our de�nitions are directly inspired by their work.

Let us delve into it: a smooth map f : M → N is stable if its orbit under the natural
action of Diff(M) × Diff(N) is open in the space of smooth functions C∞(M,N) with
respect to the Whitney topology (see [GG73, De�nition II.3.1]), where Diff(P ) is the
group of di�eomorphisms of the manifold P to itself. Mather developed a way to deter-
mine if a proper map is stable, following the strategy of divide et impera we commented
above, and a considerable part of his six papers of stability of C∞ mappings is devoted
to this: stability of a proper map is equivalent to local stability of its germs and it is also
equivalent to in�nitesimal stability (see, particularly, [Mat69a, pp. 266�268]).

Keep in mind Mather's work and let us go back to the holomorphic, and local, case.
Consider a map germ f : (Cn, S)→ (Cp, 0).

De�nition 1.2.3. (i) A d-parameter unfolding of f is another map germ

F : (Cn × Cd, S × 0)→ (Cp × Cd, 0)

(x, t) 7→ (ft(x), t)

such that f0 = f . Once we take a representative F : U → V × T of F , the maps
ft : Ut → V are called perturbations of f , where Ut × {t} = U ∩ F−1 (V × {t}).
Also, Cd is called the parameter space and usually we omit it if it is clear from the
context.

(ii) Two d-parameter unfoldings of f , F and G, are equivalent as unfoldings, or simply
equivalent, if there are two germs of biholomorphisms, Φ and Ψ, which are them-
selves unfoldings of the identity in Cn and Cp, respectively, such that the following

1This is a glimpse of an important topic regarding singularity theory, see [Wal81, MNB20] among
others.
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diagram commutes

(Cn × Cd, S × 0) (Cp × Cd, 0)

(Cn × Cd, S × 0) (Cp × Cd, 0)

F

Φ ∼ Ψ∼

G

.

(iii) An unfolding is trivial if it is equivalent to the unfolding f × id, i.e., the unfolding
that maps (x, t) into

(
f(x), t

)
.

Remark 1.2.4. Essentially, an unfolding of f is revealing what is nearby f or, in other
words, what are the possible deformations of f . If every unfolding of a map germ f is
trivial then we say that f is stable, meaning that every little perturbation of f will not
change anything modulo A -equivalence. Otherwise we say that f has an instability, or
it is unstable.

Example 1.2.5. Immersions and submersions are stable (see [MNB20, Exercise 3.2.4]).

Example 1.2.6. By Whitney's classi�cation of stable mono-germs from Cn to C2n−1 in
[Whi44], the stable mono-germs from C2 to C3 are:

immersions

(x, y) 7→ (x, y, 0),

and Whitney umbrella

(x, y) 7→ (x, y2, xy).

Moreover, the stable multi-germs from C2 to C3, by [MNB20, Theorem 3.3], are:

transverse double points{
(x, y) 7→ (x, y, 0)
(x, y) 7→ (x, 0, y)

and transverse triple points
(x, y) 7→ (x, y, 0)
(x, y) 7→ (x, 0, y)
(x, y) 7→ (0, x, y)
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Example 1.2.7.

The map germ

f : (C2, 0)→ (C2, 0)

(x, y) 7→ (x, xy + y3)

is called the Whitney cusp map and it is sta-
ble.

If a germ f is stable then every unfolding is trivial but, if f is not stable, not every
unfolding of f carries the same information. For example a trivial unfolding of f will
give us no information. Within this sort of partial order of carrying information there
are maximal unfoldings, the so-called versal unfoldings.

De�nition 1.2.8. Let f : (Cn, S) → (Cp, 0) be a germ and consider the unfolding
F : (Cn × Cd, S × 0)→ (Cp × Cd, 0). Then:

(i) If we consider a germ h : (Ca, 0)→ (Cd, 0), the pull-back of F by h is the unfolding

h∗F : (Cn × Ca, S × 0)→ (Cp × Ca, 0)

(x, t) 7→ F
(
x, h(t)

)
,

and it is denoted by h∗F .

(ii) The unfolding F is versal if any unfolding G of f is equivalent to h∗F for some
germ h : (Ca, 0)→ (Cd, 0), where Cd and Ca are the parameter spaces of F and G
respectively.

(iii) The unfolding F is a miniversal unfolding if it is a versal unfolding with minimal
dimension on the parameter space.

The intuitions one should have regarding these last de�nitions are:

the pull-back of an unfolding simply carries part of the information of the original
unfolding to another unfolding with other parameter space,

a versal unfolding contains all the possible information of f , and

any versal unfolding is equivalent to a constant unfolding of a miniversal unfolding
(see [MNB20, Exercise 5.1.5]).

Example 1.2.9. The map germ

f : (C, 0)→ (C2, 0)

x 7→ (x2, x5)
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has F (x, a, b) = (x2, x5 + ax3 + bx, a, b) as miniversal unfolding.

In Figure 1.1, there are represented in the parameter space of F the di�erent pertur-
bations of f (see [MNB20, Example 5.3] for all the computations and a similar represen-
tation, but taking into account the di�erent real representations).

Figure 1.1: Representation of the parameter space of the miniversal unfolding F (x, a, b) =
(x2, x5 + ax3 + bx, a, b) of f(x) = (x2, x5).

An interesting mathematical object arises from the previous example. We can observe
in Figure 1.1 that there is a set, denoted as B(F ), where the deformation presents insta-
bilities, and we see it because adjacent perturbations have di�erent A -classes since they
even have di�erent topological type. Furthermore, it seems that it has some geometric
properties. This set is the bifurcation set and in order to study it we need to work with
maps instead of map germs, considering that we have to take a representative of the
unfolding to de�ne it. Therefore, we need some notion of stability of a map.

De�nition 1.2.10. A map f : X → Y is locally stable if the restriction to the critical
set is �nite and the germs (f)y : (X, f−1(y) ∩ Σ(f))→ (Y, y) induced from f are stable
for every y ∈ Y .

Remark 1.2.11. This notion is very related to Mather's notion of∞-structurally stable,
see [Mat69a, Theorem 3].

As we were anticipating:
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De�nition 1.2.12. The bifurcation set of a representative of an unfolding F , say F :
X → Y ×U , is the set B(F ) in the parameter space where the mappings fu : X ∩F−1

(
Y ×

{u}
)
→ Y are not locally stable, i.e., fu is not locally stable if u ∈ B(F ).

There are some technicalities to assure that the representative of the unfolding is well
chosen, they can be found in [MNB20, Section 5.4]. Furthermore, we can take the set
germ

(
B(F ), 0

)
and forget about taking representatives.

Remark 1.2.13. There is an important piece of notation regarding the bifurcation set:
the stable perturbations. If we have a representative of an unfolding of f as before, any
parameter u outside the bifurcation set gives us a stable perturbation, i.e., a perturbation
of f that is locally stable. We always omit the word locally because it is clear that a
perturbation is a map, not a map germ.

Let us stop for a moment to introduce a very useful concept (see Figure 1.2).

De�nition 1.2.14. A stabilisation of an unstable germ f : (Cn, S) → (Cp, 0) is a one-
parameter unfolding F (x, t) =

(
ft(x), t

)
such that there is a representative where ft is

locally stable for every t 6= 0.

Figure 1.2: Real representation of the stabilisation ft(x) = (x2, x3 + tx).

This last de�nition is equivalent to saying that the unfolding F has (B(F ), 0) =

({0}, 0). Furthermore, if we consider a versal unfolding and take a line in the parameter
space such that it intersects B(F) only at the origin, then the induced unfolding by this
line will be a stabilisation. To be more precise, if the versal unfolding is F and the line
is parametrized by L, then L∗F is a stabilisation.

Remark 1.2.15. This situation does not always happen. For example, the bifurcation
set of the unfolding could be the whole parameter space. Although, there are some
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dimensions where we can guarantee that any �nitely determined map has versal unfolding
with a null bifurcation set: the nice dimensions in Mather sense (see [Mat71, p. 208]
and [MNB20, Sections 5.2,5.3 and 5.4] for further explanations and properties). Outside
these dimensions there are examples where we cannot �nd a stable perturbation nearby.
However, if the germ is of corank 1 and �nitely determined, then the same result holds
in general (see [MNB20, Proposition 5.6])2.

Now that we have introduced the concept of stability in some depth, it is interesting
to have in our set of tools some way of determine if a germ is stable or even how far
from being stable a map germ is. For this purpose, we will translate many properties of
the map germ into properties of some algebraic structures, as algebraic geometers do.
For example, it would be easier, in general, to check the dimension of some vector space
instead of proving if every unfolding of a map germ is equivalent to the trivial unfolding.
In any case, this translation is far from being straightforward.

Let us begin introducing the structures.

De�nition 1.2.16. For a map germ f : (Cn, S)→ (Cp, 0) we denote by

tf : θn → θ(f)

the map ξ 7→ df ◦ ξ and by
ωf : θp → θ(f)

the map η 7→ η ◦ f , where θ(f) is the module of vector �elds along f .
With this notation, the OCp,0-module

NAe(f) :=
θ(f)

tf(θX,S) + ωf(θCp,0)

is the Ae-normal space and its dimension as vector space is the Ae-codimension of f ,
Ae-codim(f).

In some sense, the Ae-codimension, sometimes referred simply as codimension, mea-
sures how far a germ is from being stable. This expression of NAef is an elegant way of
writing {

dft
dt

∣∣∣∣
t=0

: F (x, t) =
(
ft(x), t

)
is any unfolding of f

}
{
d(ψt ◦ f ◦ φt)

dt

∣∣∣∣
t=0

: ψ0 = id, φ0 = id

} ,

or, in other words, it compares what can be achieved in�nitesimally using a trivial unfol-
ding with what can be achieved using any unfolding (see [MNB20, 3.2] for all the details).
With this in mind, the following de�nition is very natural.

De�nition 1.2.17. A map germ f : (Cn, S) → (Cp, 0) is in�nitesimally stable if it has
Ae-codimension 0.

2The condition of corank 1 is highly useful in many problems. For example, it gives more structure
to many objects, as we will see.
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This de�nition is not completely new for us, recall Mather's work:

Theorem 1.2.18 ([MNB20, Theorem 3.1]). A map germ is stable if, and only if, it is
in�nitesimally stable.

This gives us a way of computing whether a germ is stable or not, as it was the case
for Mather. Therefore, from now on, we use indistinctly the terms stable or in�nitesimally
stable.

The Ae-codimension is a central piece in the study of A -equivalence of germs, almost
every basic object in this topic has a strong relation with it. For example, �nite de-
terminacy and �nite Ae-codimension are equivalent, what was studied by �rst time in
[Mat68b]. Furthermore, even the degree of determinacy and the codimension are related
(for a precise estimate for the determinacy degree see [MNB20, Theorem 6.2]).

Theorem 1.2.19 (see [MNB20, Theorem 6.1]). A germ is �nitely determined if, and
only if, it has �nite Ae-codimension.

Roughly speaking, if the Ae-codimension measures the di�erence between a trivial
unfolding and a versal unfolding, there has to be a relation of the codimension with a
versal unfolding because the latter contains all the information of the near perturbations
of the germ. However, the parameter space of a versal unfolding could carry redundant
information if it is not miniversal. Here is where the relation is clear, the dimension of
the parameter space in a miniversal unfolding is exactly the codimension of the germ if it
is A -�nite. This is a corollary of the following theorem (proved �rst in [Mar76, Theorem
3.3]).

Theorem 1.2.20 (see [MNB20, Theorem 5.1]). Consider a map germ f : (Cn, S) →
(Cp, 0) and an unfolding F (x, u) = (fu(x), u) of f , where u = (u1, . . . , ud). Then, F is a
versal unfolding if, and only if,{

∂fu
∂u1

∣∣∣∣
u=0

, . . . ,
∂fu
∂ud

∣∣∣∣
u=0

}
generates the C-vector space

θ(f)

tf(θn) + ωf(θp)
.

At this point we have two ways to determine if a map germ is �nitely determined:
we can try to �nd a versal unfolding or we can compute if the Ae-codimension is �nite.
There are more ways, and a very useful one is using the Mather-Ga�ney criterion. This
is a geometric criterion to determine if a map germ is �nitely determined, although it
does not give the degree of determinacy. Furthermore, the Ae-codimension also appears
in the usual proof, which is based on a shea��cation of the quotient that appears in the
codimension (see [MNB20, Section 4.5] for the details).
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Theorem 1.2.21 (Mather-Ga�ney criterion, see [MNB20, Theorem 4.5]). A germ f :
(Cn, S)→ (Cp, 0) such that S ⊆ Σ(f) has �nite Ae-codimension if, and only if, there is
a small enough representative of f , f : X → Y , such that

(i) Σ(f) ∩ f−1(0) = S, and

(ii) the induced map f | : X − f−1(0)→ Y − {0} is locally stable.

This theorem is also expressed as the germ f has isolated instability, because the
germs are stable near the point 0.

Remark 1.2.22. We generalize many of these notions for the case of map germs with
an isolated complete intersection singularity (icis) in the source in Section 4.1.

1.2.2. Topology

Until now, we have not mentioned anything about the topology of a germ. In this
work we focus on �nitely determined germs, so we leave the rest of the cases aside from
now on.

A good �rst question to ask would be if two A -equivalent germs share some in-
teresting topological property, or if there is a topological property that characterizes
A -equivalence. A �rst approach to answer this question would be to look at the image
of the map germ, but this has some problems.

An obvious problem is that the image of a map germ f : (Cn, S) → (Cp, 0) is equal
to the set germ (Cp, 0) if n ≥ p, we shall return to this later. Moreover, the image of
a germ is not that interesting, it has locally conical structure. Locally conical structure
means that if we take a representative f and consider its image, im(f), then im(f) ∩ B
is homeomorphic to the cone on im(f) ∩ S, where B is the closure of a small enough
ball and S the sphere of the same radius. The details of this can be found in [MNB20,
Theorem B.7], but see also the conic structure lemma of Burghelea and Verona ([BV72,
Lemma 3.2]) stated for Whitney strati�ed sets in the smooth case and the classical
results of Milnor in [Mil68] using vector �elds. Therefore, if we study the image of a germ
we should focus on the link, i.e., im(f) ∩ S, which is expected to be a knotted sphere.
There are classical results on this topic, such as [Bra28], and the theory was further
developed in [Fuk85, Fuk82, MNnB16, NnB18]. However, this theory is neither very rich
nor developed compared to the theory of Milnor �brations we can reproduce with map
germs. Furthermore, the link is still present in this theory as well (see Lemma 3.1.4).

We have presented in a dissimulated way an interesting object from the topological
point of view, without saying anything about it. The reader may know that we are
referring to Example 1.2.9 and Figures 1.1 and 1.2. We can �nd our topological object
there.

De�nition 1.2.23 (see [MNB20, Chapter 8]). Consider an A -�nite germ f : (Cn, S)→
(Cp, 0) with (n, p) nice dimensions or f of corank one. Then:
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The discriminant of a stable perturbation of f , with n ≥ p, has the homotopy type
of a wedge of spheres of dimension p− 1, whose number is the discriminant Milnor
number and is denoted by µ∆(f).

The image of a a stable perturbation of f , with p = n+ 1, has the homotopy type
of a wedge of spheres of dimension n, whose number is the image Milnor number
and is denoted by µI(f). Note that in this case the discriminant coincides with the
image.

In both cases, the discriminant of the stable perturbation is called the disentangle-
ment of f .

Remark 1.2.24. We will cover the case p > n + 1 later in the text, in a more general
setting (see, in particular, Section 4.2). This case is more complicated because the reduced
homology is not concentrated in one dimension.

Example 1.2.25. Consider the map germ

f : (C, 0)→ (C2, 0)

x 7→ (x2, x3).

This germ has A -codimension one and a stable perturbation is ft(x) = (x2, x3+tx), with
t 6= 0. We have a real representation of this stabilisation in Figure 1.2 that suggest that
µI(f) = 1. However, as the complex spaces im(ft) have dimension one, we can represent
them faithfully and con�rm this intuition (see Figure 1.3).

Figure 1.3: Representation of the perturbations ft(x) = (x2, x3 + tx).

These two objects, µI and µ∆, are invariant by A -equivalence and do not depend
on the stable perturbation3. All the technicalities concerning the structure of a wedge

3Sometimes, within the area, these objects are wrongly called topological invariants. This is not
because they are invariant by topological left-right equivalence, it is because they are invariant by
A -equivalence and they refer to the topology of something.
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of spheres are given in [MNB20, Section 8.3], but the main point of the prove is to use
Thom-Mather's isotopy lemmas and the properness, as a subset, of the bifurcation set.
There are also some considerations to be made so we take stable perturbations that
are near enough to f to have all the topological information, see in particular [MNB20,
Propositions 8.1 and 8.2].

Remark 1.2.26. The original de�nition of the image Milnor number is due to Mond
(see [Mon91, Theorem 1.4]) using a stabilisation, say (ft, t), but it is equivalent to our
de�nition using any stable perturbation. Given a stable unfolding (fs, s) we can take the
sum of unfoldings,

F (x, t, s) =
(
ft(x) + fs(x)− f(x), t, s

)
,

which is also stable and, if ft was stable for any t 6= 0, then (t, 0) is outside the bifurcation
set of F . See Lemma 3.1.4 and its following comments for more details.

The resemblance of this theory to the theory of isolated singularities of hypersurfaces
is striking. Consider a hypersurface with isolated singularity H and an A -�nite germ f ,
then, many objects related to H have an equivalent object related to f (see Table 1.1):
the conical structure of the non-perturbed object, the wedge structure of the generic �ber
and the disentanglement, the Tjurina number and the Ae-codimension, etc. Furthermore,
it inspires us to study new aspects of the singularities of mappings, for example study if
the Milnor-Tjurina relation for hypersurfaces has an equivalent relation for singularities
of map germs. Following this question, recall that we have said that the Ae-codimension
is related to almost everything and the equivalent concept of the Tjurina number is the
Ae-codimension, so one expects a relation between µ∆ or µI with the Ae-codimension
similar to the Milnor-Tjurina relation (see [MNB20, Section 8.9.4]).

Hypersurface H Germ f

Conical structure of H Conical structure of the discriminant of f

Aminiversal unfolding ofH has parameter
space of dimension the Tjurina number τ

A miniversal unfolding of f has parameter
space of dimension the Ae-codimension

The �ber Ht has the homotopy type of a
wedge of spheres

The disentanglement of f has the homo-
topy type of a wedge of spheres

The number of spheres is the Milnor num-
ber, µ

The number of spheres is the discriminan
or image Milnor number, µ∆ or µI

Milnor-Tjurina relation

τ ≤ µ

with equality in the weighted homogeneo-
us case

Damon-Mond results Mond's conjecture

µ∆ ≥ Ae-codim µI ≥ Ae-codim

with equality in the weighted homogeneo-
us case

Table 1.1: Comparison between hypersurface singularities and singularities of map germs.
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For the discriminant Milnor number the relation is known and it is due to Damon
and Mond.

Theorem 1.2.27 (see [DM91, Theorem 1 and Corollary 3]). Let f : (Cn, S) → (Cp, 0)
be A -�nite and (n, p) be nice dimensions with n ≥ p. Then

µ∆(f) ≥ Ae-codim(f),

with equality if f is weighted homogeneous.

On the other hand, for the image Milnor number we only know the relation in two
pairs of dimensions.

Theorem 1.2.28 (see [dJvS91, Theorem 4.2] and [Mon95, Theorem 2.3]). Let f :
(Cn, S)→ (Cn+1, 0) be A -�nite, n = 1 or 2. Then

µI(f) ≥ Ae-codim(f),

with equality if f is weighted homogeneous.

In the rest of the dimensions little to nothing is known about this proposition, and
it is known as Mond's conjecture:

Conjecture 1.2.29 (Mond's conjecture). Let f : (Cn, S) → (Cn+1, 0) be A -�nite,
(n, n+ 1) nice dimensions. Then

µI(f) ≥ Ae-codim(f),

with equality if f is weighted homogeneous.

There is also a weaker version of Mond's conjecture that we call weak Mond's conjec-
ture:

Conjecture 1.2.30 (Weak Mond's conjecture). Let f : (Cn, S)→ (Cn+1, 0) be A -�nite,
(n, n+ 1) nice dimensions. Then µI(f) = 0 if, and only if, f is stable.

This conjecture is weaker in the sense that when a germ is stable it has Ae-codimension
equal to zero. In a joint work with Nuño-Ballesteros we solved this conjecture for the
corank one case (see [GCNB21, Theorem 3.9]), and this can be seen in Theorem 3.1.22 of
Section 3.1.2. We also have an unpublished proof for any corank that we will publish soon.

It is worth mentioning that there is an obvious obstacle to draw these kind of objects.
For example in Figure 1.2 we cannot draw the actual object, but a real representation of
what it is like. In these cases, we draw an object that condensates the main topological
traits we want to emphasize4. There is a case where we can actually represent the object
as it is two-dimensional: when the object is a complex curve. Figure 1.3 is a nice example
of this, and similar examples will appear later.

Remark 1.2.31. We also study these notions for the case of map germs with an icis in
the source in Section 4.1.

4The good real pictures are real representation of these kind of objects that have all the important
information. See, for example, [Mon96].
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1.2.3. A �nal observation

This text pays especial attention to problems in the dimensions (n, n+1). This seems
to be the hardest case to study things in general because, usually, things behave properly
if n ≥ p (and we know it) and things behave badly if p > n+ 1 (and we know it), but we
do not know what happens for p = n+ 1. Take, for example, the Milnor-Tjurina relation
for map germs.

If n ≥ p the relation is µ∆ ≥ Ae-codimension with equality in the weighted homo-
geneous case, and it is known true (see [DM91, Theorem 1 and Corollary 3]).

If p = n+ 1 the relation is µI ≥ Ae-codimension with equality in the weighted ho-
mogeneous case, and few cases are known (see [dJvS91, Theorem 4.2] and [Mon95,
Theorem 2.3]).

If p > n + 1 one can take the relation
∑

i≥1 βi( im(ft)) ≥ Ae-codimension with
equality in the weighted homogeneous case, and it is known false (see, for example,
[Hou97, Example 4.26] for an example with Ae-codimension 5 and disentanglement
homotopically equal to the wedge of two 2-spheres and two 3-spheres).

This is the reason this text deals especially with these dimensions.

1.3. Strati�cations

Now, we are going to shortly introduce the basics of strati�cation theory, given that
almost any result on this work relies on a strati�ed structure in some way. For more
details we suggest [Tro07], [GWdPL76] and [Mat12] among others.

1.3.1. Regularity conditions

A strati�cation is, essentially, a partition of a set into manifolds, with some regularity
conditions. For example, a variety V can be decomposed into manifolds by considering
V −Σ(V ), Σ(V )−Σ

(
Σ(V )

)
, etc. (see [Whi57]). For a nice introduction to this topic see

[Tro07].

De�nition 1.3.1. Let X be a closed subset of a manifold M . A (smooth) strati�cation
of X is a partition S of X into submanifolds Si of M , called the strata, such that every
point of X has a neighbourhood which meets �nitely many strata, i.e., the partition is
locally �nite. In that case X is said to be strati�ed and the strati�cation is S = {Si}i.

A usual control condition on a strati�cation is the frontier condition.

De�nition 1.3.2. Given a strati�cation S = {Si}i, it satis�es the frontier condition if
Sr ⊆ St − St for any two strata Sr and St such that Sr ∩ St 6= ∅.

Finally, some conditions that guarantee certain topological structure of the strati�-
cation are the Whitney conditions.
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Figure 1.4: Strati�cation of a Whitney umbrella.

De�nition 1.3.3. Consider a strati�cation of the subset X of M , say S = {Si}i, and
two strata Sr and St such that Sr ⊆ St − St. Furthermore, say that dimM = m and
dimSt = t. Then:

(a) The pair (Sr, St) satis�es Whitney's condition (a) at p ∈ Sr, or they are (a)-regular
at p, if for any sequence {qn}n ⊆ St converging to p such that {TqnSt} has limit τ
one has TpSr ⊆ τ , using a local chart at p and the Grassmanian Gmt .

(b) The pair (Sr, St) satis�es Whitney's condition (b) at p ∈ Sr, or they are (b)-regular
at p, if for any two sequences {pn}n ⊆ Sr and {qn}n ⊆ St converging to p such that
{TqnSt} has limit τ and the lines pnqn tend to ν one has ν ∈ τ , using a local chart
at p.

When any pair of strata as above satis�es the frontier condition and are Whitney (b)-
regular at all points we say that the strati�cation is a Whitney strati�cation.

Figure 1.5: A set with: a Whitney strati�cation (left); a strati�cation without frontier
condition (center); and a partition that is not locally �nite, hence not a strati�cation
(right).

Note. Whitney's (b) condition implies Whitney's (a) condition (the converse is not true)
and if, in addition, the strati�cation is locally �nite5, as we have de�ned strati�cations,
then the frontier condition is also satis�ed. See [Tro07] for more information.

5Some texts do not consider the condition of locally �nite strata in the de�nition of strati�cations.
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Remark 1.3.4. Note that the Whitney (b)-regularity is not a topological property, it
depends on how the strata is arranged along the ambient space. More precisely, it is an
invariant by di�eomorphisms but not by homeomorphisms (actually, it is a C1-invariant,
see [Tro79, Corollary 3.3]). The following example illustrates this.

Example 1.3.5. If we consider the subset of R3

X =
{

(x, y, 0) ∈ R3 : y ≥ 0
}
,

it is obviously Whitney (b)-regular with the strata S1 :=
{

(x, 0, 0) ∈ R3
}
and S2 :={

(x, y, 0) ∈ R3 : y > 0
}
. Although, if we consider the subset depicted in Figure 1.6, we

see that it is not Whitney (b)-regular even though it is homeomorphic to X by a map
that restricts to a homeomorphism on each stratum (even on the ambient). This subset
can be obtained with a bump function and a homothecy, and the problem is that it is
not di�eomorphic to X.

Figure 1.6: Strati�ed set that is not Whitney (b)-regular.

In general, in particular if one has a categorical way of thinking, once an object
is given the following think to ask about are the morphisms, in this case we have the
strati�ed mappings.

De�nition 1.3.6. A mapping f : X → X ′ is strati�ed ifX andX ′ are Whitney strati�ed
sets such that the restriction of the mapping on each stratum of X is submersive onto
a stratum of X ′, i.e., f(Sα) ⊆ S′β and the induced map f |Sα : Sα → S′β is submersive
where Sα is a stratum of X and S′β is a stratum of X ′. In this case, we say that the
strati�cations of X and X ′ are a strati�cation of f . A strati�ed mapping is also called a
strati�ed submersion.

One should expect a control condition on strati�ed mappings to assure some structure,
the Thom condition (see Figure 1.7).

De�nition 1.3.7 (see [GWdPL76, p. 23]). Let f be a strati�ed submersion between
X,X ′ and consider Sr and St two strata of the strati�cation of X. We say that St is
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Figure 1.7: Representation of the Thom condition.

Thom regular over Sr at p ∈ Sr relatively to f if any sequence of points {qn}n ⊆ St
converging to p is such that

kerDp f |Sr ⊆ lim
n

kerDqn f |St ,

when the limit exists.

If f is Thom regular for any pair of strata at every point we simply say that f
is a Thom map, that it satis�es the Thom Af condition or that it satis�es the Thom
condition. In this case, the strati�cation of f is a Thom strati�cation of f .

Remark 1.3.8. It could be convenient to notice that

kerDqf |S = Tqf |−1
S (f(q)),

so the Thom condition of De�nition 1.3.7 can be translated to

Tpf |−1
Sr (f(p)) ⊆ lim

n
Tqnf |−1

St (f(qn)).

Example 1.3.9. Not every mapping has a strati�cation such that it is a Thom map,
for example the mapping f : R2 → R2 so that f(x, y) = (x, xy) does not admit a Thom
strati�cation (see [GWdPL76, p. 24])6.

6Indeed, Thom maps were called maps without blow-ups by Thom.
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Figure 1.8: Depiction of f : R2 → R2 so that f(x, y) = (x, xy).

1.3.2. Relation with map germs

We are interested in map germs in the pair of dimensions (n, p) with p > n, as they are
the dimensions where everything behaves badly (recall our comments in Section 1.2.3).
One technical obstacle we face when we study the images of germs in those dimensions is
that we do not have isolated singularity as complex spaces, for this reason we need to �nd
a strati�cation with good properties. There is a natural strati�cation that is Whitney
(b)-regular.

De�nition 1.3.10. Consider a stable map germ f : (Cn, S) → (Cp, 0) such that it has
corank one or (n, p) are in the nice dimensions. Then, the strati�cation by stable types of
the discriminant of f has two points, y1 and y2, in the same stratum if, and only if, the
germs

(f)y1 : (Cn, f−1(y1) ∩ Σ(f))→ (Cp, y1) and

(f)y2 : (Cn, f−1(y2) ∩ Σ(f))→ (Cp, y2)

are A -equivalent. There is an induced strati�cation in the source of f , these two strati-
�cations are the strati�cation by stable types of f .

As we were saying, this strati�cation is Whitney (b)-regular (see [MNB20, Corollary
7.5]). Also, the name of stable types is taken because, obviously, this strati�cation iden-
ti�es stable singularities of the same A -class. Indeed, there is an analogous de�nition of
the strati�cation by stable types of a locally stable map (recall De�nition 1.2.10).

In contrast, it could happen that f : (Cn, S) → (Cp, 0) has instabilities. Howe-
ver, if the instability is isolated we can extend the strati�cation by stable types of
f : (Cn−S, S)→ (Cp−0, 0), that is locally stable, with the strata S and 0 in source and
target, respectively, and call this strati�cation strati�cation by stable types of f . If the
instability is not isolated we may reproduce this algorithm in some cases and we still call
this strati�cation strati�cation by stable types of f , for example if we have an excellent
unfolding in Ga�ney's sense (see Figure 1.9).

De�nition 1.3.11 (see [Gaf93, De�nition 6.2]). We say that a one-parameter unfolding
F of an A -�nite germ f : (Cn, S) → (Cp, 0) is excellent if there exists a representative
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F : X → Y × U , where Y and T are open neighbourhoods of the origin in Cp and C
respectively, such that f−1

t (0) = S and ft : Xt−S → Y −{0} is a locally stable mapping
with no 0-stable singularities, where t ∈ T and ft are the perturbations given by F .

Figure 1.9: A depiction of the failure of excellency because there are new 0-stable singu-
larities in ft for t 6= 0.

Remark 1.3.12. When the unfolding is excellent, F : X − S × T → (Y − {0}) × T is
locally stable so we have a well de�ned strati�cation by stable types. This extends to
F : X → Y × T just by adding S × T and {0} × T as strata in the source and target,
respectively. These are, in fact, the only 1-dimensional strata.

A common situation is having an unfolding, or perturbations, of a map germ f . Say
that it has only one parameter, so it induces the family {ft}|t|<ε. A �rst immediate
question is if this family is trivial (as unfolding, recall De�nition 1.2.3). If it is not trivial
it could occur that all the terms of the family are still the same in the strati�ed sense.

De�nition 1.3.13. We say that a one-paremeter unfolding F as in De�nition 1.3.11 is
Whitney equisingular if F : X → Y × T is a Thom strati�ed map with the strati�cation
by stable types.

Remark 1.3.14. We study the relation between excellency and Whitney equisingularity
in Chapter 4, in particular in Section 4.5.

If a one-parameter family is Whitney equisingular we can use Thom-Mather's second
isotopy lemma to prove that the family is topologically trivial, using a projection to the
parameter space. This means that the family (ft, t) is topologically left-right equivalent
as unfolding to the constant unfolding of f0.

De�nition 1.3.15. A one-parameter unfolding (ft, t) : (Cn ×C, S × 0)→ (Cp ×C, 0) is
topologically trivial if there are two homeomorphisms, Φ and Ψ, that make the following
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diagram commutative,

(Cn × C, S × 0) (Cp × C, 0)

(Cn × C, S × 0) (Cp × C, 0)

(Cn, S) (Cp, 0)

(ft,t)

Φ Ψ

(f0,t)

π1 π1

f0

.

As we have mentioned, a Whitney equisingular unfolding is topologically trivial. The
converse was known as Ruas' conjecture (with an equivalent statement, see [Rua94]) but
was proved false in [RS19, Section 5].



Chapter 2

Multiple points and icss

Much work has been done on the
study of the topology of �bres of
maps and this sequence allows us deep
insights into the topology of images.

Kevin Houston, An introduction to

the image computing spectral

sequence

[Hou99]

In this chapter we introduce the multiple point spaces and the Image-Computing
Spectral Sequences (icss in short).

Great part of this text deals with icss because, as we have said in Section 1.2.3,
things are usually more di�cult to prove or compute when p = n+ 1. In particular, µ∆

can be, in general, computed with algebraic tools while µI cannot be easily computed
most of the time (see for example [MNB20, Sections 8.7 and 8.8]). We can use di�erent
techniques to compute µI , and one of them is using an icss if the multiple point spaces
behave well (for example, as we will see, in corank one).

For a nice introduction to these topics, although it does not cover some recent work,
the reader is referred to [Hou99], which is our main reference in this section. See also
[MNB20, Sections 9 and 10] for a self-contained review with the approach of [CMM19].

2.1. Introduction

The icss are spectral sequences that compute the homology of the image of a map-
ping (see De�nition B.2.3). Therefore, as we did with the Generic theorem of spectral
sequences at the end of Appendix B.2, theorems of icss are of the following form:

Generic theorem of icss. Let f : X → Y be good, then

E1
p,q
∼= AHq(Dp+1(f)) =⇒ Hp+q( im(f))

21
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with d1 induced from the projections π : Dk(f)→ Dk−1(f).

The coe�cients of the homology vary from one theorem to another, as the de�nition
of good mapping at the beginning of the theorem. In any case, many maps are good
enough for our purposes.

Observe that the entries of the �rst page of the spectral sequence are the homology
of alternating chains, AH∗, of the multiple point spaces of f , D∗(f). This is foreseeing
that in the chains of the spaces Dr(f) we will have an action of a group of permutations
Σk (see Appendix A.1).

2.2. Multiple points

In this section we introduce the multiple point spaces, whose alternating chains give
homology groups that are the entries of the icss we discuss later.

When we talk about multiple point spaces of a map f : X → Y we do not want a
partition of X or Y by counting preimages of f because, as we will see in Sections 2.4
and 4.4, these sets could present more complicated singularities than the spaces we will
de�ne.

With this in mind, there is one immediate (and naive) de�nition we could give. We
are inspired by Houston's comments in [Hou99, p. 309] for the following de�nition.

De�nition 2.2.1. Let f : X → Y be a �nite map, then the idiot k-th multiple point
space is

IDk(f) :=
{

(x1, . . . , xk) ∈ Xk : f(xi) = f(xj), ∀i, j
}
.

Remark 2.2.2. This de�nition is equivalent to taking recursively �bred products, star-
ting with X ×Y X. For this reason this is called in [CMM19] the k-fold product of X
�bred over f , and it is denoted as W k(f).

The problem with this de�nition is that it always includes some noise that provides
no information, i.e., the diagonals

∆(Xk) :=
{

(x1, . . . , xk) ∈ Xk : xi = xj , ∀i, j
}

are always included in IDk(f). To solve this we could take the following de�nition.

De�nition 2.2.3. Let f : X → Y be a �nite map, then the strict k-th multiple point
space is

Dk
S(f) :=

{
(x1, . . . , xk) ∈ Xk : f(xi) = f(xj) and xi 6= xj , ∀i 6= j

}
.

The problem with the de�nition of the strict multiple point spaces is that it is not
algebraic or analytic in general, therefore we would like to take the closure of this space.



2.2. MULTIPLE POINTS 23

De�nition 2.2.4. Let f : X → Y be a �nite map, then the k-th multiple point space is

Dk(f) :=
{

(x1, . . . , xk) ∈ Xk : f(xi) = f(xj) and xi 6= xj , ∀i 6= j
}
.

Finally, the problem with this de�nitions is that, although it is analytic, the equations
are very hard to �nd in general. Despite this, we will usually work with this de�nition.

Remark 2.2.5. We modify the de�nition of multiple point spaces in De�nition 2.4.2,
where we deal with map germs. However, we leave this for Section 2.4 and keep the
previous de�nitions until then.

With the three de�nitions above we have that

Dk
S(f) = Dk(f) ⊆ IDk(f) = W k(f),

and each de�nition has its issues. However, observe that every de�nition has a high
symmetric structure. Indeed, we can take Σk acting by permutation of the entries of
(x1, . . . , xk) and this de�nes an action of Σk in IDk(f), Dk

S(f), and Dk(f).
As there are some common developments for the di�erent de�nitions of multiple point

spaces, let Zk be IDk(f), Dk
S(f) or Dk(f). Now, assume that the action is compatible

with a cellular structure given in Zk in the sense that the action takes cells to cells and,
whenever a cell is �xed as a set, the cell is point-wise �xed. In this case, there is an
induced action of Σk in the chain complex C∗(Z

k), where we are omitting the coe�cients
on purpose. Then we can take the submodule

CAlt
∗ (Zk) :=

{
c ∈ C∗(Zk) : σc = sgn(σ)c,∀σ ∈ Σk

}
,

called the alternating chains of Zk.
We have left the coe�cients omitted because this is the alternating isotype of the

representation of Σk in C∗(Z
k,C) if we take coe�cients in C (see Appendix A.1). Hence,

we can compute it with the projection to the alternating isotype given in Theorem A.4.5:

PAlt : C∗(Z
k,C) −→ C∗(Z

k,C)

c 7−→ 1

k!

∑
σ∈Σk

sgn(σ)σc,

or, as we are in a �eld, we can take AltZ := k!PAlt instead of PAlt.
On the other hand, if we take coe�cients in Z, we can do something similar, as

[Hou07, Theorem 2.12] shows:

CAlt
∗ (Zk,Z) ∼= AltZC∗(Z

k,Z), (2.1)

where AltZ is de�ned as we have done above (this isomorphism is exempli�ed in Exam-
ples 2.3.2 and 2.3.3). This is, in fact, the de�nition Houston takes in [Hou99] and the
reason to de�ne AltZ as k!PAlt.
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If the di�erential of the chain complex commutes with the action of the group, we can
take the homology of CAlt

∗ (Zk), denoted as AH∗(Z
k)1. At �rst glance, it depends on what

is Zk between the three multiple point space de�nitions. However, all these homologies
coincide (see [Hou99, Theorem 2.7]):

AH∗(Dk
S(f)) ∼= AH∗(Dk(f)) ∼= AH∗(IDk(f)).

So, as Houston said in [Hou99], it turns out that the idiot's de�nition is not so idiotic
after all. Indeed, it can be useful to use IDk instead of Dk when the equations of Dk are
hard to determine, as the equations of IDk are easier.

Remark 2.2.6. To �nish this section, observe that we take the alternating part of the
chain complex and, then, its homology to obtain AH. Nevertheless, we could have taken
the homology of the chain complex and then the alternating part, what is called the
alternating homology2. The alternating homology, denoted as HAlt, does not coincide in
general with AH (see Example 2.3.2). As a matter of fact, we do not know in general
when they are isomorphic or not and, in the case they are not isomorphic, what the
di�erence is.

However, there are some situations where we do know that they coincide. The �rst case
was proven by Goryunov (see [Gor95, Theorem 2.1.2]), and it happens when we take AH,
or HAlt, on the �ber of a Σk-invariant icis (isolated complete intersection singularity).
Another case happens when the coe�cients are taken in a �eld of characteristic zero (see
[MNB20, Proposition 10.1]). With this last case we can prove the �rst one, as the integer
homology and rational homology coincide in that circumstance.

2.3. Icss and examples

Studying the multiple point spaces of stable perturbations gives a lot of information
of their images by means of the icss. The theorems that give an icss have been evolving
through the years, being increasingly general and with new approaches. We show below
the most general version we have so far.

The theory of icss starts with a theorem given by Goryunov and Mond in [GM93,
Proposition 2.3] for rational homology and A -�nite map germs. This being a promising
technique at the moment, Goryunov extended the results on icss with [Gor95, Corollary
1.2.2] for �nite maps and integer homology. Years later, Houston proved [Hou07, Theorem
5.4] with a bigger class of maps, an action of an additional group, any coe�cients and
homology of the pair. Finally, Cisneros Molina and Mond developed a new approach in
[CMM19] and Mond and Nuño-Ballestero gave a self-contained introduction to this topic
with the new approach in [MNB20, Section 10].

1Observe that the notation AH is to avoid confussion with AltH given by an operator Alt. This was
done in [CMM19, MNB20] as well.

2This notation is not common in the area, usually the alternating homology is the homology of the
alternating chains (i.e., AH), what is in deep contradiction with the notation of representation theory.
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As we were saying, the most general theorem of icss takes into account the action
of another group H. In particular, the chains we take to compute the homology have to
be alternating for H as well. We will state the theorem omitting the group H, as it is
not necessary for our immediate purposes. Also, the theorem considers a large class of
maps, the so-called good maps (see [Hou07, De�nition 5.1]). However, �nite simplicial
maps between locally �nite simplicial complexes are good (see [Hou07, Proposition 5.3])
and that is general enough for us.

Theorem 2.3.1 (see [Hou07, Theorem 5.4]). Let f : X → Y be a continuous map and
X̃ a subspace of X. Assume that f : X → Y and f | : X̃ → Y are good maps in the
sense of [Hou07, De�nition 5.1] and that Dk(f |) is a subcomplex of Dk(f) for all k ≥ 1.
Then, there exists a spectral sequence

E1
p,q = AHq(Dp+1(f), Dp+1(f |);G) =⇒ H∗(f(X), f(X̃);G),

where G is a coe�cient group and the di�erential d1 is induced by the projections π :
Dk(f)→ Dk−1(f) for any k.

The de�nition of convergence of a spectral sequence, what is happening in the theo-
rem, is given in De�nition B.2.7.

We give some examples now.

Example 2.3.2 (see [Hou99, Example 5.1] and [MNB20, Example 10.1]).

The homology of the projective plane
RP 2 can be computed with Theorem 2.3.1
if we consider the quotient map

q : D → RP 2,

which identi�es antipodal points on the
boundary of the disc D.

First of all, observe that

D2(q) =
{

(x, y) ∈ D ×D : q(x) = q(y), x 6= y
}
⊆ S1 × S1.

Therefore, using angular coordinates,

D2(q) =
{

(z, z + π) : z ∈ S1
} ∼= S1

and the action of Σ2 is simply the antipodal action.
With the cellular decomposition given here, it is

easy to check that

CAlt
0 (D2(q),Z) = 〈p1 − p2〉

CAlt
1 (D2(q),Z) = 〈e1 − e2〉

and that ∂(e1−e2) = (p2−p1)−(p1−p2) = 2(p2−p1).
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Therefore, taking quotients, AH0(D2(q),Z) =
Z/2Z and AH1(D2(q),Z) = 0. The remaining mul-
tiple points are empty, so the spectral sequence given
by Theorem 2.3.1 has the shown �rst page.

E1
∗,∗ =

AH2 0 0 0
AH1 0 0 0
AH0 Z Z/2Z 0

D1 D2 D3

Finally, this spectral sequence collapses at the �rst page, because the di�erential bet-
ween Z/2Z and Z has to be zero, and there are no extension problems (see De�nition B.2.5
and the end of Appendix B.2). Hence, as Hi(RP 2) =

⊕
r+s=iAHs(Dr+1(q)), one has

that

Hi(RP 2,Z) =


Z, i = 0
Z/2Z, i = 1

0, i > 1
.

This example also illustrates that AH does not coincide in general with HAlt. To be
more precise,HAlt is always a subgroup ofH and, in this example, AH0(D2(q),Z) = Z/2Z

is not a subgroup of H0(D2(q),Z) = Z.

Example 2.3.3 (see [Hou99, Example 5.2]).

We can compute the homology of the pinched to-
rus PT with Theorem 2.3.1 as well, but the map that
collapses a generatrix of the torus to a point is not �-
nite. On the other hand, we can use the identi�cation
of the north pole and the south pole of S2,

q : S2 −→ PT

N, S 7−→ p

Obviously, D2(q) =
{

(N,S), (S,N)
}
, Σ2 acts by

permutation of the two points and CAlt
0 (D2(q),Z) is

generated by (N,S) − (S,N). Hence, as Dk(q) = ∅
for k ≥ 3, the �rst page of the spectral sequence is as
shown.

E1
∗,∗ =

AH2 Z 0 0
AH1 0 0 0
AH0 Z Z 0

D1 D2 D3

The problem is that the spectral sequence could not collapse at the �rst page if some
di�erential is not zero, and between the entries (1, 0) and (0, 0) we could have something
non-trivial. However, recall that the �rst di�erential is induced by the projection π :
Dk(q) → Dk−1(q), so this di�erential is, indeed, zero because AH0(D2(q)) is generated

by [(N,S)− (S,N)]. Again, as Hi(PT ) =
⊕

r+s=iAHs(Dr+1(q)), one has that

Hi(PT,Z) =

{
Z, i = 0, 1, 2
0, i > 3

.

Why the alternating part?

After seeing Theorem 2.3.1 and these examples, the reader could ask what the al-
ternating part has that do not have other parts to be present in these considerations.
Actually, we will answer this question partially in Chapter 6, where only the alternating
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isotype has the properties we need (see, in particular, Lemmas 6.3.2 and 6.3.3). Nevert-
heless, the fundamental reasons can be seen in the approach of the di�erent theorems of
icss:

The approach of [Gor95, Hou07] is constructing a semi-simplicial resolution of f(X),
i.e., a space with the same homology than f(X) with better properties (see [Hou07,
De�nition 4.4]). By construction, this realization is related in a natural way to the
multiple point spaces by means of the alternated chains, after some consideration
regarding their dimensions (see [Gor95, Section 1.2] or [Hou07, Proposition 4.8]).

The approach of [GM93] is similar to the previous one but in algebraic terms (as
noted by Goryunov in [Gor95, p. 45]). It is an alternating subcomplex that makes
certain complex of sheaves exact, allowing us to compute the homology of f(X)
(see [GM93, pp. 49�51]).

Finally, the approach of [CMM19] is constructing a double complex whose associa-
ted spectral sequence is the icss. In this case, only the alternating chains give the
double complex structure (see [CMM19, Lemmas 2.2 and 2.3]).

It is possible, however, that these reasons are expressions of some fundamental fact
in a deep sense.

2.4. Multiple points of map germs

Going back to our setting of singularities of map germs, to compute the image Milnor
number (and, in general, images of germs where p > n) we can use Theorem 2.3.1 in
two ways: with a stable perturbation and X̃ being empty or with a stable unfolding and
f | in the theorem being a stable perturbation (hence X̃ will be the domain of a stable
perturbation).

However, if one is given an A -�nite germ f , it could be very di�cult to �nd a stable
perturbation fs of f , in general, so we would like to relate the multiple points of f and
those of fs in some way. This can be done in some cases, but the de�nition of multiple
point spaces for map germs has to be adapted to �t with our ambitions. The relation
does not exist without this modi�cation, as the following well-known example shows.

Example 2.4.1. Consider the map germ f : (C, 0) → (C2, 0) given by f(x) = (x2, x3).
Then, with the notation of De�nitions 2.2.3 and 2.2.4, any small enough representative
of the germ is such that D2(f) = D2

S(f) = ∅. In contrast, a stable perturbation fs has
D2(fs) = D2

S(fs) 6= ∅.
Indeed, we can take fs(x) = (x2, x3 + sx) as a stable perturbation and it maps

the points P = s1/2 and Q = −s1/2 to (s, 0). More precisely, D2(fs) = D2
S(fs) ={

(P,Q), (Q,P )
}
(see Figure 1.3 for a proper illustration of fs).

We follow [NBPS17, Proposition-de�nition 2.5] to state the modi�ed de�nition.



28 CHAPTER 2. MULTIPLE POINTS AND ICSS

De�nition 2.4.2. The kth-multiple point space of a mapping or a germ f , denoted as
Dk(f), is de�ned as follows:

Let f : X → Y be a locally stable mapping between complex manifolds. Then,
Dk(f) is equal to the closure3 of the set of points

(
x(1), . . . , x(k)

)
in Xk such that

f
(
x(i)
)

= f
(
x(j)
)
but x(i) 6= x(j), for all i 6= j.

When f : (Cn, S)→ (Cp, 0) is a stable germ, then Dk(f) is de�ned analogously but
in this case it is a set germ in

(
(Cn)k, Sk

)
.

Let f : (Cn, S) → (Cp, 0) be �nite4 and let F (x, u) = (fu(x), u) be a stable unfol-

ding of f . Then, Dk(f) is the complex space germ in
(
(Cn)k, Sk

)
given by

Dk(f) = Dk(F ) ∩ {u = 0} .

The fact that Dk(f) is independent of the choice of the stable unfolding F can be
found in [NBPS17, Lemma 2.3 and Proposition-de�nition 2.5].

There is an interesting simpli�cation that can always be done. Suppose F : X ×
U → Y × U is a mapping of the form F (x, u) = (fu(x), u). Then, Dk(F ) contains

only k-tuples
(
x(1), u, . . . , x(k), u

)
with the same parameter u. So, it is more convenient

to embed Dk(F ) in Xk×U by identifying such a k-tuple with the point
(
x(1), . . . , x(k), u

)
.

In the particular case of a corank 1 mono-germ f : (Cn, 0)→ (Cp, 0), we have explicit
equations for the multiple point spaces Dk(f). These are given by the so-called divided
di�erences of f , which were introduced by Mond in [Mon87, Section 3] (see also [MNB20,
Section 9.5]). The multi-germ version is similar (also in corank 1), it can be found in
[MM89, p. 555].

Example 2.4.3. With this de�nition, the germ given in Example 2.4.1 has D2(f) ={
(0, 0)

}
.

We can con�rm this with a stabilisation. For example, the one given by fs(x) =
(x2, x3 +sx) is well represented in Figure 1.2 and, together with Figure 1.3, validates our
claim. On the other hand, we can also use the divided di�erences we were talking about
above, because they give the equations of D2(f). In this case, they are(

f1(x1)− f1(x2)

x1 − x2
,
f2(x1)− f2(x2)

x1 − x2

)
= (x1 + x2, x

2
1 + x1x2 + x2

2) = 0,

which has only the point
{

(0, 0)
}
as solution.

Recall that we said in Section 2.2 that the di�erent multiple point spaces we could
consider (IDk(f), Dk

S(f) and Dk(f), as de�ned in De�nitions 2.2.1, 2.2.3 and 2.2.4) had
a natural action of Σk, and the homology of the alternating chains allowed us to compute

3As these sets are constructible, this coincides with the Zariski closure.
4It is here where there are stable unfoldings, see [MNB20, Theorem 7.2].
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the icss. With the new de�nition for germs nothing changes, because we will only use
the multiple point spaces of a stable perturbation to compute the icss, and in this case
the de�nitions coincide.

Observe also that, when we are studying disentanglements, we can take the alterna-
ting homology, HAlt, instead of the homology of the alternating chains, AH, because the
disentanglement has the homotopy type of a wedge of spheres and we can take rational
homology to compute the number of spheres (see Remark 2.2.6).

The relation that emerges with this new de�nition can be seen in the Marar-Mond
criterion (see [MM89, Theorem 2.14]), which was later generalized for multi-germs by
Houston (see [Hou10, Theorem 2.4 and Corollary 2.6]):

Theorem 2.4.4. For f : (Cn, S)→ (Cp, 0) of corank 1 and �nite, with n < p:

(i) f is stable if, and only if, Dk(f) is smooth of dimension p − k(p − n), or empty,
for any k ≥ 1.

(ii) If Ae-codim(f) is �nite, then, for each k with p−k(p−n) ≥ 0, Dk(f) is empty or an
icis of dimension p−k(p−n). Furthermore, for those k such that p−k(p−n) < 0,
Dk(f) is a a subset of Sk, possibly empty.

There is also an important piece of information hidden in this result. Given an icis

Dk(f) from Item (ii), as Dk(fs) is smooth if fs is a stable perturbation of f by Item (i),
it is not di�cult to see that the Milnor �ber of Dk(f) is Dk(fs). This will be a central
idea along the following chapters.

Remark 2.4.5. See also Section 4.2 for a generalized version of this theorem for germs
with an icis in the source, speci�cally De�nition 4.2.1 and Lemma 4.2.3.

In contrast with the corank one case, where we have the divided di�erences and the
Marar-Mond criterion, multiple point spaces of germs with corank greater than one are
horrendously behaved, as far as we know. Even the stable germs have considerably bad
algebraic properties. Notwithstanding this, the double point space of a map germ f still
has a known algebraic structure. The n× n minors of (αij)ij ; for αij given by

fi(x1)− fi(x2) =
n∑
j=1

αij(x1, x2)
(
(x1)j − (x2)j

)
, for i = 1, . . . , p;

together with fi(x1) − fi(x2) give the equations of D2(f) (see [Mon87, Section 3] or
[MNB20, Section 9.4]).

On the other hand, although the homology ofDk(ft) is present in di�erent dimensions
(see [Mon16]), the homology of the alternating chains is only present in middle dimension
and it is free, similarly to the corank one case. This is proven in [Hou97, Theorem 4.6].

Remark 2.4.6. We will exploit further the symmetric structure of the multiple point
spaces in Sections 4.2 and 4.4 and Chapter 6.



Chapter 3

Excellent unfoldings

There is an A -orbit open in the
K -orbit.

Raúl Oset Sinha

This chapter contains the results of a joint work with Nuño-Ballesteros, [GCNB21].
This paper was completed with [GCNB20], as we had in mind a �nal objective: to prove
that we have Whitney equisingularity under some (few) conditions.

In particular, this chapter gives conditions under we have an excellent unfolding and
Chapter 4, which contains the results of [GCNB20], uses this to solve our equisingularity
problem in corank 1. However, some results of the �rst paper were extended on the second
one after we encountered some technical problems, so we will cover these extended results
in Chapter 4 as well.

3.1. Basic properties of the image Milnor number

Some properties of the image Milnor number were part of the folklore for some time,
but formal proofs of these facts were never published. During the �rst stage of our research
the need of these properties became evident and instead of simply accepting them we
began to work on formal and detailed proofs. Surprisingly, they turned out to need deep
arguments to be proved.

3.1.1. Conservation of the image Milnor number

The �rst basic property we will need is the conservation of the image Milnor number.
Loosely speaking, this conservation means that when you consider an A -�nite germ, for
example f , and you perturb it to something that keeps having instabilities, say ft, the
homology that you can see in the image of ft plus the homology that has to appear if
we stabilize its remaining instabilities is equal to the original image Milnor number of f .
In short, the homology of the image of a perturbation plus its image Milnor numbers is

30
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always constant (see Theorem 3.1.7 for a formal statement).
To prove this property, we recall the de�nition of the Milnor �bration (the basic

references are [Mil68, Theorems 4.8 and 5.11], but see also our more detailed introduction
of this topic in Section 5.2). Let g : (Cn+1, 0) → (C, 0) be a holomorphic non-zero
function which de�nes a hypersurfaceX = g−1(0) in (Cn+1, 0) with arbitrary singularities
(either isolated or non-isolated). We �x a Whitney strati�cation on X, as de�ned in
De�nition 1.3.3. We denote by Bε the closed ball of radius ε centred at 0 in Cn+1, with
boundary Sε = ∂Bε and interior B̊ε = Bε − Sε.

A Milnor radius is a number ε > 0 such that Sε′ is transverse to X, for all ε′ such
that 0 < ε′ ≤ ε. This implies that X ∩Bε is homeomorphic to the cone on X ∩Sε (recall
the comments of the beginning of Section 1.2.2).

Once we have �xed ε > 0, there exists η > 0 such that

g : g−1(D̊η) ∩Bε → D̊η

is a locally trivial �ber bundle over D̊η − {0}. Here, D̊η is the open disk of radius η
centred at 0 in C. The choice of η has to be made in such a way that t is a regular value
of g and Sε is transverse to g

−1(t) for all t such that 0 < |t| < η. This is called the Milnor
�bration and the �bres are called Milnor �bres.

As we need to study a family of images, now we consider an r-parameter deformation
of g, that is, a holomorphic germ G : (Cn+1 ×Cr, 0)→ (C, 0) written as G(y, u) = gu(y)
and such that g0 = g. Then, G de�nes a hypersurface X = G−1(0) in (Cn+1 × Cr, 0),
which is a deformation of X. We assume that X also has a Whitney strati�cation whose
restriction to {u = 0} coincides with that of X.

De�nition 3.1.1 (see [Sie91, p. 2]). We say that the deformation G is topologically trivial
over the Milnor sphere Sε if, for η and ρ small enough,

(Sε × B̊ρ) ∩G−1(D̊η) D̊η × B̊ρ
(G,id)

(3.1)

is a strati�ed submersion with strata {0}× B̊ρ and (D̊η −{0})× B̊ρ on D̊η × B̊ρ and the

induced strati�cation on (Sε × B̊ρ) ∩G−1(D̊η).

Since we have a Whitney strati�cation on X , the restriction of Equation (3.1) to each
stratum in the target is a locally trivial C0-�bration, by Thom-Mather's �rst isotopy
lemma (see [GWdPL76, Theorem 5.2]), hence the words topologically trivial in De�ni-
tion 3.1.1.

Now, we introduce the primary tool we will use (see also the previous work of Lê
D�ung Tráng in [Trá87, Trá92]):

Theorem 3.1.2 (see [Sie91, Theorem 2.3]). With the notation of De�nition 3.1.1, let G
be a deformation of g which is topologically trivial over a Milnor sphere. Let u ∈ B̊ρ and
suppose that all the �bres of gu are smooth or have isolated singularities except for one
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special �bre Xu := g−1
u (0)∩Bε. Then Xu is homotopy equivalent to a wedge of spheres of

dimension n and its number is the sum of the Milnor numbers over all the �bres di�erent
from Xu.

The condition that G is topologically trivial over a Milnor sphere is necessary in
Theorem 3.1.2, as the following example shows.

Example 3.1.3. Consider G : (C3 × C, 0)→ (C, 0) given by G(x, y, z, u) = xy − u. For
u 6= 0, Xu = g−1

u (0) ∩Bε has not the homotopy type of a wedge of 2-spheres (in fact, it
has the homotopy type of S1). See its representation in Figure 3.1.

Figure 3.1: Representation of the �bers of Example 3.1.3. Notice the failure of the topo-
logical triviality over a Milnor sphere.

Let f : (Cn, S)→ (Cn+1, 0) be an A -�nite germ, that is, with �nite Ae-codimension.
By the Mather-Ga�ney criterion (see Theorem 1.2.21), this is equivalent to that f has
isolated instability. In particular, f is �nite and, hence, its image is an analytic hyper-
surface (X, 0) in (Cn+1, 0). We take a holomorphic function g : (Cn+1, 0) → (C, 0) such
that g = 0 is a reduced equation for X. We will assume that either (n, n + 1) are nice
dimensions in Mather's sense or f has corank 1. In both cases, X has a natural strati-
�cation given by the stable types (see Section 1.3.2). This strati�cation is analytically
trivial, so it is a Whitney strati�cation (see [MNB20, Corollary 7.5]).

Consider now an unfolding F : (Cn × Cr, S × {0}) → (Cn+1 × Cr, 0) of f . Write
F (x, u) = (fu(x), u), as usual, with f0 = f . We denote by (X , 0) the image of F in
(Cn+1 ×Cr, 0) and choose a holomorphic function G : (Cn+1 ×Cr, 0)→ (C, 0) such that
G = 0 is a reduced equation of X and g0 = g, where gu(y) = G(y, u). We also consider
in X the natural Whitney strati�cation by stable types outside the instability locus and
some strati�cation in the instability locus. This strati�cation of X has the property that
its restriction to u = 0 coincides with the strati�cation of X by stable types. We say that
G is a deformation of g induced by the unfolding F .

Lemma 3.1.4. Let f be A -�nite such that either (n, n + 1) are nice dimensions or f
has corank 1. Any deformation G induced by an unfolding F is topologically trivial over
a Milnor sphere.
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Proof. The proof of this lemma is basically the same that appears in [Mon91, proof of
Theorem 1.4] in the particular case that F is a stabilisation of f . On one hand, f is A -
�nite, hence it has isolated instability, so f is locally stable on Sε (recall De�nition 1.2.10).
On the other hand, g is regular on Sε by de�nition of Milnor radius. Since Sε is compact,
we can assume, after shrinking ρ if necessary, that fu is locally stable on Sε and gu has
no critical points on Sε, for all u ∈ B̊ρ. Now we prove that

(Sε × B̊ρ) ∩G−1(D̊η) D̊η × B̊ρ
(G,id)

is a strati�ed submersion.
In fact, let (y, u) ∈ (Sε×B̊ρ)∩G−1(D̊η). If y ∈ Xu, then fu is stable at y and, hence,

F is (analytically) trivial in a neighbourhood of (y, u). This implies that the induced
strati�cation in (Sε × B̊ρ) ∩ X is also (analytically) trivial in a neighbourhood of (y, u).
In particular, the map

(Sε × B̊ρ) ∩ X {0} × B̊ρ
0×id

is a strati�ed submersion at (y, u). Otherwise, if y /∈ Xu, then y is a regular point of gu,
therefore (y, u) is a regular point of (G, id). It follows that

(Sε × B̊ρ) ∩G−1(D̊η − {0}) (D̊η − {0})× B̊ρ
(G,id)

is a submersion at (y, u). QED

It follows from Theorem 3.1.2 that, for all u small enough, Xu is homotopy equivalent
to a wedge of spheres of dimension n and its number is the Betti number

βn(Xu) =
∑

y∈Bε−Xu

µ(gu; y).

Remark 3.1.5. Note that, since f is A -�nite in this case, we can consider a stabilisation
of f and �nd the image Milnor number, µI(f) (see De�nition 1.2.23). This is in fact the
de�nition of µI(f) given originally by Mond in [Mon91, Theorem 1.4] in terms of a
stabilisation instead of a stable unfolding.

Remark 3.1.6. When (n, n + 1) are not nice dimensions and f has corank > 1, the
de�nition of µI(f) can be done analogously by taking Mather's canonical strati�cation
of the image instead of the strati�cation by stable types and taking a parameter u such
that fu is topologically stable instead of stable. However, we will not consider these cases.

The following property is the so-called conservation of the image Milnor number.

Theorem 3.1.7. Let f be A -�nite such that either (n, n+ 1) are nice dimensions or f
has corank 1. Let F be any unfolding of f and take u ∈ B̊ρ, with ρ > 0 small enough.
Then,

µI(f) = βn(Xu) +
∑
y∈Xu

µI(fu; y),

where µI(fu; y) is the image Milnor number of fu at y ∈ Xu and Xu := im(fu).
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Proof. By taking the sum of F with a stable unfolding, we can assume that F is itself
stable. Since f is A -�nite, f has isolated instability at the origin by the Mather-Ga�ney
criterion. This implies that fu has only �nitely many unstable singularities, which we
denote by y1, . . . , yk ∈ Xu, hence,

∑
y∈Xu

µI(fu; y) =

k∑
i=1

µI(fu; yi).

Also, by Theorem 3.1.2, the equation of Xu, gu, has only �nitely many (isolated) critical
points on Bε −Xu, which we denote by z1, . . . , zm, so that

βn(Xu) =
m∑
j=1

µ(gu; zj).

For each i = 1, . . . , k, we choose a Milnor ball Bεi for gu at yi contained in Bε.
Analogously, for each j = 1, . . . ,m, we choose also a Milnor ball Bδj for gu at zj contained
in Bε−Xu. We will assume that the balls Bε1 , . . . , Bεk , Bδ1 , . . . , Bδm are pairwise disjoint
(see Figure 3.2).

Figure 3.2: Balls in the target.

Again by Theorem 3.1.2, for each i = 1, . . . , k, there exists an open ball B̊ρi centered
at u and contained in B̊ρ such that

µI(fu; yi) = βn(Xu′ ∩Bεi) =
∑

w∈Bεi−Xu′

µ(gu′ ;w),

for all u′ ∈ B̊ρi −B(F ). We set U1 = B̊ρ1 ∩ · · · ∩ B̊ρk (see Figure 3.3).
For each j = 1, . . . ,m, zj is an isolated critical point of gu and Xu ∩ Bδj = ∅. By

the conservation of the Milnor number of a function, there exists another open ball B̊τj
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Figure 3.3: Balls in the parameter space.

centered at u and contained in B̊ρ such that

µ(gu; zj) =
∑
w∈Bδj

µ(gu′ ;w),

and also Xu′ ∩Bδj = ∅, for all u′ ∈ B̊τj . As above, we set U2 = B̊τ1 ∩ · · · ∩ B̊τm .
Consider the compact set

K = Bε −

 k⋃
i=1

B̊εi ∪
m⋃
j=1

B̊δj

 .

Since gu has no critical points on K −Xu, there exists another open neighbourhood U3

of u in B̊ρ such that gu′ has no critical points on K −Xu′ , for all u
′ ∈ U3 −B(F ).

Finally, again by Theorem 3.1.2,

µI(f) = βn(Xu′) =
∑

w∈Bε−Xu′

µ(gu′ ;w)

=

k∑
i=1

∑
w∈Bεi−Xu′

µ(gu′ ;w) +

m∑
j=1

∑
w∈Bδj

µ(gu′ ;w)

=
k∑
i=1

µI(fu; yi) +
m∑
j=1

µ(gu; zj),

for all u′ ∈ U1 ∩ U2 ∩ U3 −B(F ). QED
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Remark 3.1.8. There is another proof of this theorem using the additivity of the Euler-
Poincaré characteristic, due to Nuño-Ballesteros and Peñafort Sanchis. The main idea is
to split Xu into two parts, the union of balls around the instabilities and the comple-
mentary, and compare them with the image of a stable perturbation. Outside the little
balls there is no change because the mapping is locally stable, and inside the little balls
we have the wedge of spheres that gives the image Milnor number of each instability.
Comparing both characteristics gives the desired result.

A straightforward consequence of Theorem 3.1.7 is that the image Milnor number is
upper semi-continuous.

Corollary 3.1.9. With the conditions and notation of Theorem 3.1.7,

µI(f) ≥ µI(fu; y),

for all y ∈ Xu.

The upper semi-continuity of µI(f) has been also obtained by Houston in [Hou10,
Theorem 4.3] but in the particular case that f has corank 1 and either s(fu) ≤ d(fu) or
s(fu) and d(fu) are constant (see De�nition 3.1.14 for the de�nitions of s(fu) and d(fu)).

Another consequence of the conservation is the topological invariance of the image
Milnor number for unfoldings. Recall De�nition 1.3.15: we say that an unfolding F is
topologically trivial if it is topologically A -equivalent as an unfolding to the constant
unfolding.

Corollary 3.1.10. With the conditions and notation of Theorem 3.1.7, if F is topologi-
cally trivial, then

µI(f) =
∑
y∈Xu

µI(fu; y).

Proof. Write F (x, u) = (fu(x), u), Φ(x, u) = (φu(x), u) and Ψ(y, u) = (φu(y), u).
Then ψu ◦ fu ◦ φ−1

u , for all u. Hence, Xu is homeomorphic to X, which is contractible.
QED

Remark 3.1.11. Recently, Fernández de Bobadilla, Peñafort Sanchis and Sampaio have
published a note proving that the image Milnor number is a topological invariant, not
only for families, when the dimensions are (2, 3) (see [FdBPnSS19, Theorem 3.3]).

We can say more when F is good in Ga�ney's sense, see [Gaf93, De�nition 2.1].
Roughly speaking it means that F has isolated instability uniformly. We will assume
that F is a one-parameter unfolding which is origin-preserving, that is, ft(S) = {0} for
all t.

De�nition 3.1.12. We say that an origin-preserving one-parameter unfolding F (x, t) =(
ft(x), t

)
is good if there exists a representative F : U → W × T , where U is an open

neighbourhood of S ×{0} in Cn×C and W, T are open neighbourhoods of the origin in
Cn+1, C respectively, such that
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(i) F is �nite,

(ii) f−1
t (0) = S, for all t ∈ T ,

(iii) ft is locally stable on W − {0}, for all t ∈ T .

Corollary 3.1.13. If F is a topologically trivial and good unfolding of an A -�nite germ
f , then µI(ft) is constant for the family of germs ft : (Cn, S)→ (Cn+1, 0).

3.1.2. Weak form of Mond's conjecture

In this subsection we prove the weak version of Mond's conjecture in corank one (see
Conjecture 1.2.30). In order to do this, we need the multiple point spaces and the icss
we presented in Chapter 2, in particular the multiple point spaces for map germs that
we de�ned in De�nition 2.4.2.

With that in mind, we follow Houston for the following de�nition.

De�nition 3.1.14 (see [Hou10, De�nition 3.9]). Let f : (Cn, S)→ (Cp, 0), n < p, be A -
�nite of corank 1 and let F (x, t) = (ft(x), t) be a stabilisation of f . We set the following
notation:

s(f) = |S|, the number of branches of the multi-germ;

d(f) = sup
{
k : Dk(ft) 6= ∅

}
, where ft is a stable perturbation of f .

The k-th alternating Milnor number of f , denoted by µAltk (f), is de�ned as

µAltk (f) :=



dimQH
Alt

n+1−k+1

(
Dk(F ), Dk(ft);Q

)
, if k ≤ d(f),∣∣∣∣∣∣

s(f)∑
`=d(f)+1

(−1)`
(
s(f)

`

)∣∣∣∣∣∣ , if k = d(f) + 1 and s(f) > d(f),

0, otherwise.

The value of µAltk (f) when k = d(f) + 1 and s(f) > d(f) can be simpli�ed using∣∣∣∣∣
s∑

`=d+1

(−1)`
(
s

`

)∣∣∣∣∣ =

(
s− 1

d

)
.

This equality can be proven easily by using elementary properties of binomial numbers.

Another useful property is the following lemma, which gives a relation between s(f)
and d(f).

Lemma 3.1.15. In terms of De�nition 3.1.14, the inequality s(f) > d(f) can only
happen when d(f) has the maximal possible value.
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Proof. Suppose that the maximal possible value for d(f), for map germs of the type
f : (Cn, S)→ (Cp, 0), is m. We will assume, for the sake of the contradiction, that for a
map germ f in this pair of dimensions d(f) < m but d(f) < s(f).

Let k be min
{
s(f),m

}
, hence d(f) < k. If we prove that Dk(ft) is not empty, for ft a

stable perturbation of f , we arrive to a contradiction. To simplify the argument, assume
that we have a stabilization F (x, t) = (ft(x), t) of f , so that ft is a stable perturbation
for every t 6= 0, and this unfolding is inside another unfolding F of f that is stable as a
map germ, i.e., F(x, t, u) =

(
ft,u(x), t, u

)
such that ft,0 = ft.

Given that k ≤ s(f), necessarily Dk(f) has at least a point. In fact, since f has
s(f) branches passing through the origin of Cp, any subset of S with k distinct points
determines a point in Dk(f). However, notice that

Dk(f) =Dk(F) ∩ {t = 0, u = 0} and

Dk(ft0) =Dk(F) ∩ {t = t0, u = 0} = Dk(F ) ∩ {t = t0}

as well, by de�nition. Hence, ifDk(F ) has bigger dimension thanDk(f) we �nish because,
then, the intersection with {t = t0} will contain at least a point, otherwise the dimensions
would be equal.

In fact, since k ≤ m and f is A -�nite, it follows by [MM89, Theorem 2.14] that
dim Dk(f) = nk − p(k − 1). The stabilisation F of f is also A -�nite (see [MNB20,
Exercise 5.4.2]), so that dim Dk(F ) = (n + 1)k − (p + 1)(k − 1). Since both sets are
non-empty, dimDk(F ) > dimDk(f), and this �nishes the proof. QED

For instance, for a germ f : (Cn, S) → (Cn+1, 0), we have s(f) > d(f) only when
d(f) = n+ 1. We discuss this further in Remark 4.2.2.

The motivation for the de�nition of µAltk (f) is the following result by Houston which
shows that, for a corank 1 germ f : (Cn, S)→ (Cn+1, 0), the image Milnor number µI(f)
is equal to the sum of all the alternating Milnor numbers.

Proposition 3.1.16 (see [Hou10, De�nition 3.11]). Let f : (Cn, S)→ (Cn+1, 0) be A -�-
nite of corank 1. Then,

µI(f) =
∑
k

µAltk (f).

As the reader could imagine, the proof of this result is based on an icss such as the
one in Theorem 2.3.1. Moreover, the above equality leads to a general de�nition when
we consider the situation of a germ f : (Cn, S) → (Cp, 0), with p ≥ n + 1. In that case,
µI(f) can be also interpreted in terms of the homology of the disentanglement of f (see
[Hou10, Remark 3.12] for the details).

Another thing we need to prove the weak version of Mond's conjecture is the following
result, due to Wall.

Suppose g : (Cn+1, 0) → (C, 0) has isolated singularity at 0. Let U = On+1/Jg be
the Milnor algebra, where Jg is the Jacobian ideal, generated by the partial derivatives
∂g/∂yi, 1 ≤ i ≤ n+1. Denote by Xt = g−1(t)∩Bε the Milnor �ber, where 0 < δ � ε� 1
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and 0 < |t| < δ. We assume G is a �nite group of automorphisms of (Cn+1, 0) that leaves
g invariant. This implies that we have induced actions of G on Xt and on U .

Theorem 3.1.17 (see [Wal80, Theorem of p. 170]). With the above notation, we have
an isomorphism of CG-modules

Hn(Xt;C) ∼= U ⊗C Λn+1(Cn+1)∗,

where Λn+1(Cn+1)∗ is the (n+ 1)th exterior power of the dual (Cn+1)∗.

Obviously, the same is true if we replace C by Q and consider homology instead of
cohomology.

We are now able to state and prove the following essential lemma about the structure
of the alternating homology of the multiple point spaces:

Lemma 3.1.18. Let f : (Cn, S)→ (Cn+1, 0) be unstable of corank 1 and A -�nite, which
admits a 1-parameter stable unfolding F (x, t) = (ft(x), t). Take ft a stable perturbation of
f and k = 2, . . . , d(f). Then, HAlt

n−k+1

(
Dk(ft);Q

)
6= 0 if, and only if, Dk(f) is singular.

Furthermore, if HAlt

n−k+1

(
Dk(ft);Q

)
6= 0, then HAlt

n−k′+1

(
Dk′(ft);Q

)
6= 0 for all k′ =

k, . . . , d(f).

Proof. To prove the �rst part we begin with the case S = {0}. We use the Marar-Mond
criterion, Theorem 2.4.4. Since F is stable, Dk(F ) is smooth and Dk(f) is a hypersurface
inDk(F ) with isolated singularity and with Milnor �breDk(ft). Moreover, the symmetric
group Σk leaves invariant the de�ning equation of Dk(f) in Dk(F ). By Theorem 3.1.17,
we have an isomorphism of CΣk-modules

Hn−k+1(Dk(ft);C) ∼= U ⊗C Λn−k+2V ∗,

where U is the Milnor algebra of Dk(f) in Dk(F ) and V = T0D
k(F ) is the tangent space

of Dk(F ) at the origin. If Dk(f) is singular, then U 6= 0 and contains the constants.
Now, we will see that these constants, after tensoring with Λn−k+2V ∗, are contained in
the alternating part.

From [MM89, Proposition 2.3], we can take Σk-invariant equations for Dk(F ) in
Cn × Ck. Since F has corank 1, we assume that Dk(F ) is embedded in Cn × Ck with
coordinates x1, . . . , xn, y1, . . . , yk and that Σk acts by permuting y1, . . . , yk. It follows
that the tangent space V has Σk-invariant linear equations of the form

ai(y1 + · · ·+ yk) +

n∑
j=1

bi,jxj = 0, for i = 1, . . . , n.

Hence, we can split V as V = V1 ⊕ V2, where

V1 = {x1 = 0, . . . , xn = 0, y1 + · · ·+ yk = 0} ,
V2 = V ∩ {yi = yj , 1 ≤ i < j ≤ k} .
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If ω1, . . . , ω` is any basis of V ∗2 , then

λ = (dy1 − dy2) ∧ · · · ∧ (dyk−1 − dyk) ∧ ω1 ∧ · · · ∧ ω`

generates Λn−k+2V ∗ and is Σk-alternating. This shows that H
n−k+1

(
Dk(ft);C

)
has non-

zero alternating part in the mono-germ case.
Suppose now that S is any �nite set. Let Dk

1(F ), . . . , Dk
m(F ) be the connected com-

ponents of Dk(F ). Each Dk
i (F ) is a mono-germ at a point

(
z(1), . . . , z(k), 0

)
∈ Sk × {0}.

We also denote by Dk
1(f), . . . , Dk

m(f) the connected components of Dk(f) such that
Dk
i (f) ⊂ Dk

i (F ) for any i.
AsDk(f) is singular, without loss of generality, we can suppose thatDk

1(f) is singular.
Assume that Dk

1(f) is a mono-germ at
(
z(1), . . . , z(k)

)
∈ Sk and let G ≤ Σk be the

stabilizer of this point. By following the same argument as in the mono-germ case but
with Dk

1(F ), Dk
1(f) and G instead of Dk(F ), Dk(f) and Σk, respectively; we �nd a

non-zero element v in the homology of Dk
1(ft) which is G-alternating.

Now, for each i = 1, . . . ,m, we choose a permutation σi ∈ Σk that takes Dk
1(ft)

into Dk
i (ft). We claim that ω =

∑
i sgn(σi)σiv is a non-zero element in the homology of

Dk(ft) which is alternating.
Let τ be an element of Σk. For each i = 1, . . . ,m, τ takes σi

(
z(1), . . . , z(k)

)
in-

to some other σj(i)
(
z(1), . . . , z(k)

)
, where j(i) = 1, . . . ,m. We can write τσi as τσi =

σj(i)

(
σ−1
j(i)τσi

)
, and

(
σ−1
j(i)τσi

)
∈ G. Hence,

τω = τ
∑
i

sgn(σi)σiv

=
∑
i

sgn(σi)
2 sgn(τ) sgn(σj(i))σj(i)v

= sgn(τ)
∑
i

sgn(σj(i))σj(i)v.

But if j(i1) = j(i2), for some i1 6= i2, then

g = (τσi1)−1 (τσi2) = σ−1
i1
σi2

is in G, as it �xes
(
z(1), . . . , z(k)

)
. We have σi2 = σi1g and both σi1 and σi2 take Dk

1(ft)
to the same component, which is absurd. Hence, τω = sgn(τ)ω.

This concludes the proof that if Dk(f) is singular, then Hn−k+1
(
Dk(ft);C

)
has non-

zero alternating part. The converse is obvious, for if Dk(f) is smooth then the homology
is trivial and it cannot have alternating part.

For the second part, take k such that Dk(f) is singular. Then, Dk(f) is a subspace

of
(
(Cn)k, Sk

)
, with coordinates x

(j)
i , with i = 1, . . . , n and j = 1, . . . , k, and whose

equations are the divided di�erences, which we represent by φ1, . . . , φr with r = (n +
1)(k−1). Moreover,Dk(f) has codimension r and, by the Jacobian criterion, the Jacobian
matrix A of the functions φ1, . . . , φr has rank less than r at some point in Sk.
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With this setting, Dk+1(f) is de�ned in
(
(Cn)k+1, Sk+1

)
by adding n new coordinates

x
(k+1)
1 , . . . , x

(k+1)
n and n+ 1 new equations φr+1, . . . , φr+n+1. Since the old equations do

not depend on the new variables, the Jacobian matrix of φ1, . . . , φr+n+1 is(
A 0

∗ B

)
,

where B is the Jacobian matrix of the new equations with respect to the new variables.
Obviously, this matrix has rank < r+n+ 1 at some point in Sk+1 and, thus, Dk+1(f) is
also singular, since it has codimension r+ n+ 1. We can proceed recursively for Dk′(f),
with k ≤ k′ ≤ d(f). QED

Let f : (Cn, S) → (Cn+1, 0) be A -�nite and assume that F = (fu, u) is another A -
�nite germ that unfolds f with p parameters. Consider a simultaneous stable unfolding
F = (fu,v, u, v) = (Fv, v) of f and F (with p + q and q parameters, respectively). Now,
choose G : (Cn+1 × Cp × Cq, 0) → (C, 0) such that G(•, •, v) = 0 are reduced equations
of the image of Fv and G(•, u, v) = 0 are reduced equations of the image of fu,v. In that
case, y is a critical point of G(•, u, v) whenever (y, u) is a critical point of G(•, •, v). In
particular, by Theorem 3.1.2, this proves the following lemma:

Lemma 3.1.19. If f : (Cn, S) → (Cn+1, 0) is A -�nite and F is an A -�nite unfolding
of f , then

µI(f) ≥ µI(F ).

However, when we wrote [GCNB21], we only cared about the positivity of these image
Milnor numbers, so we gave an overcomplicated proof with the following two lemmas1.

Let f : (Cn, S) → (Cn+1, 0) be A -�nite. Take F a stable unfolding and choose
G : (Cn+1 × Cr, 0) → (C, 0) such that G(y, u) = 0 is a reduced equation of the image of
F . The relative Jacobian ideal is the ideal Jy(G) generated by the partial derivatives of
G with respect to the variables y1, . . . , yn+1.

Lemma 3.1.20. We have:

µI(f) = 0⇐⇒ G ∈
√
Jy(G).

Proof. We follow the notation of Section 3.1.1. If G ∈
√
Jy(G), then V

(
Jy(G)

)
⊆

V (G). Hence, for any (y, u) such that y is a singular point of gu, we have gu(y) = 0. In
particular, for u /∈ B(F ),

µI(f) = βn(Xu) =
∑

y∈Bε−Xu

µ(gu; y) = 0.

Conversely, if G /∈
√
Jy(G), then V (Jy(G)) 6⊆ V (G). Hence, there exists (y, u) such

that y is a singular point of gu and gu(y) 6= 0. This gives

µI(f) ≥ βn(Xu) =
∑

y∈Bε−Xu

µ(gu; y) ≥ 1. QED

1This was kindly noted by Mond.
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Lemma 3.1.21. Let h : (Cn, S)→ (Cn+1, 0) be A -�nite and let f be any unfolding of h
which is also A -�nite. If µI(f) > 0, then µI(h) > 0.

Proof. Assume that f(x, v) =
(
hv(x), v

)
and denote by (y, v) the coordinates of f in

the target. Let F be a stable unfolding of f . If µI(h) = 0, then G ∈
√
Jy(G) ⊆

√
Jy,v(G),

so µI(f) = 0. QED

Let f : (Cn, S) → (Cn+1, 0) be A -�nite and assume that either (n, n + 1) are nice
dimensions or f has corank 1. Here we prove the following weak version of Mond's
Conjecture in the corank 1 case (see Conjecture 1.2.29 for the original version of the
conjecture).

Theorem 3.1.22 (Weak Mond's conjecture). Let f : (Cn, S)→ (Cn+1, 0) be A -�nite of
corank 1. Then, µI(f) = 0 if, and only if, f is stable.

Proof. Obviously, µI(f) = 0 when f is stable. Assume that f is not stable.
If s(f) > d(f), we know that d(f) = n+1 by Lemma 3.1.15, and also that µAltn+2(f) >

0. Hence, we can suppose that s(f) ≤ d(f).
By the Marar-Mond criterion, either Dk(f) is singular for some k = 2, . . . , d(f) or

Dk(f) ⊆ Sk for some k ≥ n + 2. We suppose �rst that Dk(f) is singular, for some
k < n+ 1.

If f admits a 1-parameter stable unfolding F (x, t) = (ft(x), t), then Hn−k+1

(
Dk(ft)

)
has non-zero alternating part for t 6= 0, by Lemma 3.1.18. Since Dk(F ) is contractible
and k < n+ 1, it follows from the exact sequence of the pair

(
Dk(F ), Dk(ft)

)
that

HAlt

n−k+2

(
Dk(F ), Dk(ft);Q

) ∼= HAlt

n−k+1

(
Dk(ft);Q

)
,

so µAltk (f) > 0.
If f does not admit a 1-parameter stable unfolding, we consider a minimal stable

unfolding F . By taking a generic section on the parameter space, we get a �nitely de-
termined germ F0 which is an unfolding of f and which admits the 1-parameter stable
unfolding F . Now µI(F0) > 0 by the above argument and, hence, also µI(f) > 0 by
Lemma 3.1.19 (or Lemma 3.1.21).

The next case to consider is when Dn+1(f) is singular. Again, we use the exact
sequence of the pair

(
Dk(F ), Dk(ft)

)
, but, in this case,

HAlt
1

(
Dn+1(F ), Dn+1(ft);Q

)
is isomorphic to the kernel of the mapping

HAlt
0

(
Dn+1(ft);Q

)
−→ HAlt

0

(
Dn+1(F );Q

)
(3.2)

induced by the inclusion. Take a singular 0-dimensional component of Dn+1(f), with
multiplicity m > 1. Such component will split into m distinct points in Dn+1(ft), which
correspond to m distinct generators of HAlt

0

(
Dn+1(ft);Q

)
. But these m points are in

the same connected component of Dk+1(F ), for F (x, t) = (ft(x), t). Hence, we get a
non-trivial element of the kernel of Equation (3.2), thus µAltn+1(f) > 0.
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Finally, it only remains to consider the case whereDn+1(f) is smooth butDk(f) ⊆ Sk
for some k ≥ n+ 2. Since s(f) ≤ d(f), Dn+1(f) must contain a point

(
x(1), . . . , x(n+1)

)
such that x(i) = x(j) for some i 6= j, as the projections from the previous Dk(f) to this
Dn+1(f) cover all the possible points in the last space and we have less than n+2 points in
S. This point will also split into several distinct points in Dn+1(ft), which is not possible
if Dk+1(f) is smooth. We deduce that this case cannot occur when s(f) ≤ d(f). QED

Note. The proof of Theorem 3.1.22 is inspired in the proof of [CMWA02, Proposition
4.4]. Here, it is proved that a corank 1 mono-germ of Ae-codimension 1 has image Milnor
number equal to 1, based on the same result of Wall (i.e., Theorem 3.1.17).

The following corollary can be deduced easily from Lemma 3.1.18, Theorem 3.1.22
and their proofs and it gives a sharper estimate of µI(f) when f is unstable.

Corollary 3.1.23. Let f : (Cn, S) → (Cn+1, 0) be A -�nite of corank 1 and unstable.
Assume Hn−k+1(Dk(ft);Q) has non-zero alternating part for some k:

(i) If s(f) ≤ d(f), then µI(f) ≥ d(f)− k + 1.

(ii) If s(f) > d(f), then µI(f) ≥ d(f)− k + 1 +
(s(f)−1
d(f)

)
.

Furthermore, there always exists such a kin Item (i) and d(f) has to be equal to n + 1
and such a k could not exist in Item (ii).

A straightforward consequence of the weak Mond's conjecture is about the dimension
of the relative Jacobian module of f considered in [FdBNnBPnS19]. It is de�ned as

My(G) =
J(G) + (G)

Jy(G)
,

whereG : (Cn+1×Cr, 0)→ (C, 0) is a function such thatG(y, u) = 0 is a reduced equation
of the image of a stable unfolding of f . It is not di�cult to see that the dimension of
My(G) is always ≤ r when f is A -�nite. Moreover, it is shown in [FdBNnBPnS19,
Theorem 6.1] that Mond's conjecture holds for f when My(G) is Cohen-Macaulay of
dimension r.

Corollary 3.1.24. Let f : (Cn, S) → (Cn+1, 0) be A -�nite of corank 1 and unstable.
Then, My(G) has dimension r.

Proof. It follows from [FdBNnBPnS19, Theorem 6.1] that

µI(f) = eOr ((u1, . . . , ur);My(G)) ,

the Samuel multiplicity of the Or-module My(G) with respect to the parameter ideal
(u1, . . . , ur). But it is well known that an R-module has multiplicity > 0 if, and only if,
it has dimension equal to dimR. QED
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3.2. Houston's conjecture on excellent unfoldings

It is not di�cult to see that, if we add a new branch to an unstable multi-germ
f : (Cn, S) → (Cn+1, 0), then its Ae-codimension increases strictly (see for instance
[MNB20, Exercise 3.4.1]). We show the same property for the image Milnor number,
instead of the Ae-codimension. The idea of the proof is easy to visualize, as we can see
in Figure 3.4.

Figure 3.4: Real representation of the creation of more homology via the addition of more
branches. Note that in the complex case this happens in middle dimension.

Given two germs f : (Cn, S) → (Cn+1, 0) and g : (Cn, z) → (Cn+1, 0), we denote by
{f, g} :

(
Cn, S t {z}

)
→ (Cn+1, 0) the new multi-germ obtained as the disjoint union of

f and g. If f and g are both of corank 1 and A -�nite, then

µAltk (f) ≤ µAltk

(
{f, g}

)
,

for all k, since adding a new branch does not kill the corresponding alternating homo-
logy of the k-multiple point space because the new branch just adds more connected
components disjoint from the ones we had before. By Proposition 3.1.16, this implies
that

µI(f) ≤ µI
(
{f, g}

)
.

We may have µI(f) = µI
(
{f, g}

)
when f is stable and g is transverse to f , so that {f, g}

is also stable. In the next lemma, we show that, if f is unstable, then the inequality is
strict.

Lemma 3.2.1. Let f : (Cn, S)→ (Cn+1, 0) and g : (Cn, z)→ (Cn+1, 0) be A -�nite. If f
has corank 1 and µI(f) > 0, then

µI(f) < µI
(
{f, g}

)
.

Proof. By the upper semi-continuity of the image Milnor number (see Corollary 3.1.9),
we can assume that the image of g is a generic hyperplane H in Cn+1 through the origin.
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Let ft be a stable perturbation of f with image Xt. Since H is a generic hyperplane, the
disjoint union {ft, g} gives a stable perturbation of {f, g}, with image Xt ∪H.

Furthermore, Xt ∩ H is also the image of a stable perturbation of the restriction
f̃ :
(
f−1(H), S

)
→ (H, 0). Since H is generic and f is A -�nite of corank 1,

(
f−1(H), S

)
is smooth and f̃ is also A -�nite of corank 1. Moreover, f̃ cannot be stable because
f is a 1-parameter unfolding of f̃ . Hence µI(f̃) > 0, by the weak Mond's conjecture
(Theorem 3.1.22).

Now, just apply the Mayer-Vietoris sequence:

0 Hn(Xt) Hn(Xt ∪H) Hn−1(Xt ∩H) 0

so

µI
(
{f, g}

)
= µI(f) + µI(f̃) > µI(f). QED

We recall, now, the notion of excellent unfolding in Ga�ney's sense we gave in De�-
nition 1.3.11, as the reader will see new connections with previous concepts. Indeed, we
give a reformulation of the �rst de�nition.

De�nition 3.2.2 (see [Gaf93, De�nition 6.2]). A one-parameter origin-preserving unfol-
ding F is called excellent if it is good and it has a representative as in De�nition 3.1.12
such that, in addition, ft has no 0-stable singularities onW−{0} (i.e., stable singularities
whose isosingular locus is 0-dimensional).

Excellent unfoldings play an important role in the theory of equisingularity of families
of germs. In fact, recall that in the strati�cation by stable types of an excellent unfolding
outside the singularity locus extends to the whole space if we add the axes in source and
target (see Remark 1.3.12). See Figure 3.5 for a representation of an excellent unfolding.

Figure 3.5: A non-excellent unfolding (left) due to the presence of a 1-dimensional stra-
tum, of stable or unstable points, distinct from the parameter axis (red and green, res-
pectively), and an excellent unfolding (right) with only one stratum of dimension one
(green).



46 CHAPTER 3. EXCELLENT UNFOLDINGS

The above lemma together with the conservation of the image Milnor number and the
weak Mond's conjecture allow us to prove Houston's conjecture on excellent unfoldings
for the pair of dimensions (n, n+ 1) (see [Hou10, Conjecture 6.2]), which we state now.

Theorem 3.2.3. Let f : (Cn, S) → (Cn+1, 0) be A -�nite of corank 1 and let F (x, t) =(
ft(x), t

)
be an origin-preserving one-parameter unfolding. Consider the family of germs

ft : (Cn, S)→ (Cn+1, 0). Then µI(ft) constant implies F excellent.

Proof. We will use [Hou10, Corollary 5.9], so we only need to show that F is good
and that either s

(
(ft)0

)
≤ d

(
(ft)0

)
for all t or s

(
(ft)0

)
and d

(
(ft)0

)
are both constant,

where (ft)0 is the germ (ft)0 :
(
Cn, f−1

t (0) ∩ Σ(ft)
)
→ (Cn+1, 0) (we keep the notation

ft for the germ at S).
We can suppose that f is not stable, otherwise the result is trivial. We �rst prove

that s
(
(ft)0

)
is constant, that is, f−1

t (0) = S and, hence, (ft)0 = ft. We have S ⊆ f−1
t (0)

and, if the inclusion was strict, then µI(ft) < µI
(
(ft)0

)
by Lemma 3.2.1. But the upper

semi-continuity of Corollary 3.1.9 implies that µ
(
(ft)0

)
≤ µI(f), in contradiction with

the constancy of µI(ft).
The inequality s(ft0) > d(ft0) for some t0 can only happen when d(ft0) = n + 1

(recall Lemma 3.1.15). But s(ft) is constant, so s(ft) > n + 1 ≥ d(ft) and, again, we
have d(ft) = n + 1. This shows that either s(ft) ≤ d(ft) for all t or s(ft) and d(ft) are
both constant.

Finally, we use the conservation of the image Milnor number, Theorem 3.1.7, to show
that F is good. In fact, we get

µI(ft; 0) = µI(f) ≥
∑
y∈Xt

µI(ft; y),

so µI(ft; y) = 0 for all y ∈ Xt − {0}. By the weak Mond's conjecture Theorem 3.1.22, ft
is locally stable on Xt − {0}. QED

One can ask if the converse is true, that is, if excellency implies constant image Milnor
number. We have the following partial result:

Proposition 3.2.4. Let f : (Cn, S) → (Cn+1, 0) be A -�nite with n = 1, 2 and let
F (x, t) =

(
ft(x), t

)
be an origin-preserving one-parameter unfolding. Then, F excellent

implies µI(ft) constant.

Proof. Let n = 1. We have µI(ft) = δ(ft)−s(ft)+1, where δ(ft) is the delta invariant
(see, for example, [Mon95, Lemma 2.2]). Obviously, s(ft) = |S| is constant and we also
have conservation of the delta invariant, which means that

δ(f) =
∑

y∈Σ(Xt)

δ(ft; y),

where Σ(Xt) is the singular locus of the image of ft and δ(ft; y) is the delta invariant of
the germ of ft at f

−1
t (y). Since F is excellent, we have Σ(Xt) = {0} and f−1

t (0) = S, so
δ(ft) = δ(ft; 0) is also constant.
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Let n = 2. We consider the double point curve in the source D(ft), de�ned as
p1(D2(ft)), where p1 : C2 × C2 → C2 is the projection onto the �rst component. Then,
D(ft) is a family of germs of plane curves in (C2, S). Since F is excellent, we can choose
representatives of D(ft) on some open neighbourhood U of S in C2 such that Σ

(
D(ft)

)
is equal to S for all t. This implies that the (usual) Milnor number µ

(
D(ft);x

)
at each

point x ∈ S must be constant. By a theorem of Fernández de Bobadilla and Pe-Pereira,
see [FdBP08, Theorem C], the unfolding F is topologically trivial. So, µI(ft) is constant
by Corollary 3.1.13. QED

We also have the following partial counterexample.

Example 3.2.5. The family ft(x, y) =
(
x, y2, ypt(x, y

2)
)
with

pt(x, y
2) =

(
x− t

2

)2

+

(
y2 − t

2

)2

− t2

8

yields an excellent unfolding over R, but not over C because y = 0 and x = 1
4

(
2t± i

√
2t
)

are curves of non-immersive points (of ft). Furthermore, its image Milnor number is not
constant, µI(f0) > µI(ft) for t 6= 0 (see Figure 3.6).

Figure 3.6: f0 (left) and ft with t 6= 0 (right) as real maps.

Theorem 3.2.3 and Proposition 3.2.4 motivate the following more general conjecture,
where we consider not only the converse of Theorem 3.2.3 in higher dimensions, but also
drop the corank 1 condition.

Conjecture 3.2.6. For every A -�nite germ f : (Cn, S) → (Cn+1, 0) and every origin-
preserving one-parameter unfolding F (x, t) =

(
ft(x), t

)
, F is excellent if, and only if,

µI(ft) is constant.



Chapter 4

Whitney equisingularity

The basic question is the following:
what shall we mean by saying that

the two singularities P , P ′ are

equivalent?

Oscar Zariski, Some open questions in

the theory of singularities

[Zar71]

This chapter is the natural continuation of Chapter 3, and contains the results of
[GCNB20]. Here, we use the results on excellent families to prove that a family is Whitney
equisingular provided a few conditions.

In order to solve this equisingularity problem, we need to extend the theory of map
germs with an icis in the source, in particular, we extend some results we have given in
Chapter 3 for this setting. Moreover, we study a new A -invariant that appears naturally
when we study this setting.

4.1. Map germs with an icis in the source

In [MM94], Mond and Montaldi developed the Thom-Mather theory of singularities
of mappings de�ned on an isolated complete intersection singularity (icis). They also ex-
tended Damon's results in [Dam91], which related the Ae-versal unfolding of a map germ
f with the KD(G)-versal unfoldings of an associated map germ which induces f from a
stable map G. In particular, when the target has greater dimension than the source or
both dimensions coincide, they proved that the discriminant Milnor number µ∆(X, f) is
greater than or equal to the Ae-codimension, with equality in the weighted homogeneous
case. This is a generalisation of Damon and Mond's result Theorem 1.2.27. Here, we
study what happens when the dimension of the source is one less than the dimension of
the target and we consider the image Milnor number µI(f) instead of µ∆(f).

48
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First of all, we �x a bit of notation to get rid of some details. Along this chapter,
(X,S) will be a multi-germ of an icis and f : (X,S) → (Cp, 0) will be a holomorphic
map germ, written also as (X, f). This kind of germs will be called germs on icis as well,
and we may omit the base set of the germ if it does not provide relevant information or
it is clear from the context.

De�nition 4.1.1 (see [MM94, p. 4]). We will say that x ∈ X is a critical point of (X, f)
if either X is smooth at x and f is not submersive at x or if x is a singular point of X.
Besides, we will denote the set of critical points by Σ(X, f), in a similar fashion as in the
case of a smooth source. Furthermore, we will say that (X, f) has �nite singularity type
if the restriction of f to Σ(X, f) is �nite-to-one.

We want to develop the theory we introduced in Sections 1.2.1 and 1.2.2 for germs on
icis. Many de�nitions are similar to the smooth case, but the reader should be cautious
because the fact that we have to carry the icis structure forces us to give slightly di�erent
de�nitions. However, the de�nition of A -equivalence in this setting is straightforward.

De�nition 4.1.2. Two map germs f, g : (X,S)→ (Cp, 0) are A -equivalent if there are
germs of biholomorphisms φ of (X,S) and ψ of (Cp, 0) such that the following diagram
is commutative:

(X,S) (Cp, 0)

(X,S) (Cp, 0)

f

∼φ ψ∼

g

.

As we already know from Chapter 1, the Thom-Mather theory is hugely developed
and well established (see, for example, [MNB20] or [Wal81]). In particular, we know that
the next important notion one should look for regarding A -equivalence is the concept of
unfolding, as we have seen in De�nition 1.2.3.

Compared with unfoldings in the smooth case, unfoldings of germs on icis need to be
compatible with the extra structure we are carrying with us. We cover this in the next
de�nition, which generalizes De�nitions 1.2.3 and 1.2.8.

De�nition 4.1.3 (see [MM94, De�nition 1]). Let f : (X,S)→ (Cp, 0).

(i) An unfolding of the pair (X, f) over a smooth space germ (W, 0) is a map germ
F : (X , S′) → (Cp ×W, 0) together with a �at projection π : (X , S′) → (W, 0) and
an isomorphism j : (X,S)→

(
π−1(0), S′

)
such that the following diagram commu-
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tes
(X,S)

(π−1(0), j(S))
(
Cp × {0} , 0

)
(X , j(S)) (Cp ×W, 0)

(W, 0)

f×{0}j

F

π π2

,

where π2 : Cp×W →W is the Cartesian projection. In this case,W is the parameter
space of the unfolding, and in general we use (Cd, 0) instead of (W, 0). In short, we
will use also (X , π, F, j) to denote the unfolding.

(ii) Given an unfolding (X , π, F, j) of (X, f), the map ft : Xt → Cp induced from F
on Xt := π−1(t) is called the perturbation of (X, f) induced by the unfolding, and
is abbreviated to the pair (Xt, ft).

(iii) In this context, an unfolding of f is an unfolding of (X, f) with X = X × Cd and
with π : X → Cd the Cartesian projection. This coincides with the usual de�nition
for smooth spaces, De�nition 1.2.3.

(iv) Two unfoldings (X , π, F, j) and (X ′, π′, F ′, j′) over W are isomorphic if there are
isomorphisms Φ : X → X ′ and Ψ : Cp×Cd → Cp×Cd such that Ψ is an unfolding
of the identity over Cd and the following diagram commutes:

(X , j(S)) (Cp × Cd, 0)

(X,S) (Cd, 0)

(X ′, j′(S)) (Cp × Cd, 0)

Φ ∼

F

π

Ψ∼

π2j

j′

F ′

π′ π2

.

(v) If (X , π, F, j) is an unfolding of (X, f) over (Cd, 0), a germ ρ : (Cr, 0) → (Cd, 0)
induces and unfolding (Xρ, πρ, Fρ, jρ) of (X, f) by a base change or, in other words,
by the �bre product of F and idCp × ρ:

Xρ := X ×Cp×Cd (Cp × Cs) Cp × Cs

X Cp × Cd

Fρ

idCp×ρ

F

,

where we omit the points of the germs for simplicity.
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(vi) The unfolding (X , π, F, j) is versal if every other unfolding, e.g. (X ′, π′, F ′, j′), is iso-
morphic to an unfolding induced from the former by a base change, (Xρ, πρ, Fρ, jρ).
A versal unfolding is called miniversal if it has a parameter space with minimal
dimension.

As we have seen in the smooth case, an unfolding shows information about the defor-
mations of the germ it unfolds. Hence, again mimicking the smooth case, there is a type
of unfolding that does not contain relevant information: a trivial unfolding. We arrive to
the following de�nition taking into account the icis structure and the previous de�nition
of unfolding in De�nition 4.1.3.

De�nition 4.1.4. A trivial unfolding of a map germ f is an unfolding that is isomorphic
to the constant unfolding (X × Cd, π2, f × idCd , i),

(X,S)

(
X × Cd, S × {0}

)
(Cp × Cd, 0)

(Cd, 0)

f×{0}i

f×idCd

π2 π2

,

where π2 is the projection on the second factor and i is the inclusion (X,S) ↪→
(
X ×

Cd, S × {0}
)
.

On this regard, a map germ is stable if every unfolding is trivial. If the map germ is
not stable, we say that it has an instability or that it is unstable, as in the smooth case.

Following the idea that an unfolding shows information about the perturbations of a
germ, it is evident from the de�nition of stability of a map germ that a germ is stable if,
and only if, it is its own miniversal unfolding. Another way of seeing this is that every
deformation is A -equivalent to the original map germ if, and only if, it is stable. As a
consequence of this, we see that, if a map germ is stable, then (X,S) is smooth and f
is stable in the usual sense. This is related to Theorem 4.1.7 below, where the Tjurina
number of (X, 0) appears.

We already know that the concept of stabilisation is of high interest in the study of
singularities of map germs:

De�nition 4.1.5 (see [MM94, De�nition 2]). A stabilisation of a map germ f : (X,S)→
(Cp, 0) is an unfolding (X , π, F, j) such that the parameter space has dimension one and
fs : Xs → Cp has only stable singularities for s 6= 0, where fs is the induced map by F .

How far (X, f) is of being stable is measured by means of its A -codimension, as in
the smooth case (see De�nition 1.2.16). However, there are some changes compared with
the smooth case, for example the Ae-codimension of f is not equal to the dimension of
the parameter space of a miniversal unfolding when f is a germ on a (non-smooth) icis
(see Theorem 1.2.20).
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De�nition 4.1.6. Let (X,S) ⊂ (CN , S) be a germ of an icis and consider a map germ
f : (X,S)→ (Cp, 0). We de�ne the following objects:

(i) θCp,0 is the module of vector �elds on (Cp, 0),

(ii) the module of tangent vector �elds de�ned on (X,S) is

θX,S :=
Der

(
-log(X,S)

)
I(X)Der

(
-log(X,S)

) ,
where Der

(
-log(X,S)

)
are the vector �elds on (CN , S) tangent to (X,S),

(iii) θ(f) is the module of vector �elds along f ,

(iv) ωf : θCp,0 → θ(f) is the composition with f , and

(v) tf : θX,S → θ(f) is the composition with the di�erential of a smooth extension of
f .

Then, the OCp,0-module

NAe(f) :=
θ(f)

tf(θX,S) + ωf(θCp,0)

is the Ae-normal space and its dimension as vector space is the Ae-codimension of f ,
Ae-codim(f). As usual, we will say that f is A -�nite if this dimension is �nite.

In contrast, the Ae-codimension of the pair (X, f), Ae-codim(X, f), is the dimension
of the parameter space of a miniversal unfolding of the pair (X, f), if it exists, and it is
in�nite otherwise. If the A -codimension of (X, f) is �nite, we say that (X, f) is A -�nite.

It is reasonable to ask for the relation between the Ae-codimension of (X, f), the Ae-
codimension of f and the Tjurina number of X. This is addressed in [MM94, Theorem
1.4] for the case of mono-germs, i.e., when S is a point:

Theorem 4.1.7. Let (X, 0) be an icis and f : (X, 0)→ (Cp, 0) of �nite singularity type,
then f is A -�nite if, and only if, (X, f) is A -�nite. Furthermore, in this case,

Ae-codim(X, f) = Ae-codim(f) + τ(X, 0).

Note. With this result, we see clearly that if a map germ has smooth source and it is
stable in the usual sense then it is stable (and vice versa).

This theorem allows us to prove a very useful result, the Mather-Ga�ney criterion
for germs with an icis in the source (recall the smooth version in Theorem 1.2.21).

Proposition 4.1.8. A map germ f : (X,S)→ (Cp, 0) is A -�nite if, and only if, it has
isolated instability.
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Proof. The instabilities could come from points where X is not smooth, which are
isolated. On the other hand, on the smooth points we have the usual Mather-Ga�ney
criterion (see Theorem 1.2.21), therefore, these points are isolated as well. Using Theo-
rem 4.1.7 �nishes the proof. QED

As in the smooth case, we would like to relate those algebraic A -invariants with some
invariants with a topological �avour. We study what happens when the dimension of the
target is greater than the dimension of the source, especially when the di�erence is 1.

Of course, one expects that, in the case where the source is an icis, the situation is si-
milar to the smooth case, where we have the image Milnor number (see De�nition 1.2.23).
However, let us begin with an hypothesis that simpli�es many arguments because it gi-
ves extra structure to the objects we study, as we have seen in Theorems 2.4.4, 3.1.22
and 3.2.3 and De�nition 3.1.14 among others: the corank one hypothesis.

De�nition 4.1.9. We say that f : (X,S) → (Cp, 0) has corank r if it has a smooth
extension of corank r.

Indeed, Goryunov proved that the image of a stable perturbation of f : (X, 0) →
(Cp, 0) has non-trivial homology only in certain degrees if n < p and f has corank one,
see [Gor95, Theorem 3.3.1]. Furthermore, in [MM94, p. 13], Mond and Montaldi proved
that, for a map germ f : (X, 0)→ (Cp, 0), the discriminant locus of a stable perturbation
has the homotopy type of a wedge of spheres if dimX = n ≥ p, but the same proof works
when p = n+ 1 .

For the sake of completeness, we outline a proof when p = n + 1 based on the same
arguments we used in Section 3.1.1 for the smooth case (recall Remark 3.1.5).

Proposition 4.1.10. Let f : (X,S) → (Cn+1, 0) be A -�nite, where X is an icis with
dim(X) = n. Suppose also that f has corank one or (n, n+ 1) are nice dimensions in the
sense of Mather. In this case, if (Xs, fs) is a perturbation from a stabilisation of (X, f)
with s 6= 0, the image of fs intersected with a Milnor ball has the homotopy type of a
wedge of spheres of dimension n.

As we were saying, the techniques to prove this result are Theorem 3.1.2 and the ones
that appear in Lemma 3.1.4. There are routine technical details of the proof that can be
found there. In any case, to prove this, note that the case of Ae-codimension equal to 0 is
trivial. Otherwise, Xs is smooth and fs is stable outside the origin by Theorem 4.1.7, so
we can take a Milnor sphere Sε such that the image of the stabilisation of the pair (X, f)
is topologically trivial, seen as the zero-set of its de�ning equation G (see Lemma 3.1.4).
One can conclude applying Theorem 3.1.2 to prove that the stable perturbation has the
homotopy type of a wedge of spheres.

The de�nition of image Milnor number in this setting follows naturally from here.

De�nition 4.1.11. For f : (X,S) → (Cn+1, 0) as in Proposition 4.1.10, if (Xs, fs) is
a perturbation given by a stabilisation of f , we will say that the image Milnor number
of (X, f) is the number of spheres, in the homotopy type, of the image of (Xs, fs) on a
Milnor ball, for s 6= 0 (see Figure 4.1). This number will be denoted by µI(X, f).
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Figure 4.1: Illustration of how µI(X, f) works, i.e., of the homology of the image of a
stable perturbation (Xt, ft).

Actually, an equivalent de�nition can be given replacing (Xs, fs) from the stabilisation
for any stable (Xu, fu) from a versal unfolding (or, in general, a stable unfolding) because
any stabilisation can be found inside a versal unfolding by means of a base change, as it
happened in the smooth case (see Remark 1.2.26). This may simplify some arguments or
intuitions and we will use both indistinctly.

For the same reason, the de�nition does not depend on the stabilisation (see [MM94,
p. 12]). Finally, a stabilisation always exists when f has corank one or (n, n+ 1) are nice
dimensions1. In fact, the bifurcation set B of a versal unfolding (X , π, F, j) over (Cd, 0)
is the set germ in (Cd, 0) of parameters u such that (Xu, fu) has some instability (as in
the smooth case). It is enough to show that B is analytic and proper in (Cd, 0).

On one hand, we consider the set germ C in (Cp × Cd, 0) of pairs (y, u) such that
(Xu, fu) is unstable at y. We �x a small enough representative F : X → Y ×U , where Y
and U are open neighbourhoods of the origin in Cp and Cd, respectively. Then, C is the
support of the relative normal module on Y × U , de�ned as

NAe(F |U) :=
θ(F |U)

trelF (θX|U ) + ωrelF (θY×U |U )
,

where θ(F |U), θX|U and θY×U |U are, respectively, the submodules of θ(F ), θX and θY×U
of relative vector �elds (see [MNB20, De�nition 3.9]) and trel(F ) and ωrel(F ) are the
respective restrictions of tF and ωF . The fact that (X, f) has �nite singularity type
implies that NAe(F |U) is coherent (see the proof of [MNB20, Lemma 5.3]) and, hence, C

1This (routine) detail is missing in [MM94].
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is analytic in Y ×U . Moreover, the projection π2 : C → U given by π2(y, u) = u is a �nite
mapping, because (X, f) has isolated instability. Therefore, B = π(C) is also analytic in
U , by Remmert's �nite mapping theorem (see, for example, [BBH+98, p. 5]).

On the other hand, we prove that B cannot be equal to U . Since (X , π, F, j) is a
versal unfolding of (X, f), (X , π) is a versal unfolding of X. Hence, there exists u0 ∈ U
such that Xu0 is smooth. Now, we can apply the classical Thom-Mather theory to the
mapping fu0 : Xu0 → Cp. If either (n, p) are nice dimensions or fu0 has only corank one
singularities, then, for almost any u in a neighbourhood of u0, the mapping fu : Xu → Cp
has only stable singularities (see, for example, [MNB20, Propositions 5.5 and 5.6]).

A desirable property of this topological A -invariant is that it is conservative, as it was
for the usual image Milnor number (see Theorem 3.1.7). The reasoning that proves the
conservation of the usual image Milnor number can be applied verbatim for the general
version, and is based as well on Theorem 3.1.2. Here, we give a sketch of the proof.

Theorem 4.1.12. Let f : (X,S)→ (Cn+1, 0) be as in Proposition 4.1.10, and (Xu0 , fu0)
a perturbation in a one-dimensional unfolding of (X, f). Take a representative of the
unfolding such that its codomain is a Milnor ball Bε. Then,

µI(X, f) = βn
(
fu0(Xu0)

)
+
∑
y∈Bε

µI(Xu0 , fu0 ; y),

where βn is the nth Betti number, if u0 is small enough.

Sketch of the proof. If (Xu0 , fu0) is stable the result is trivial.
Assume that (Xu0 , fu0) is not stable. Then, take a versal unfolding of (X, f) such

that it unfolds the original one-dimensional unfolding and (Xu0,v, fu0,v) is stable for
v 6= 0 small enough. Consider the de�ning equations, G, of fu,v(Xu,v). Now, as f is
stable outside the origin and X is smooth outside the points of S, we can take a Milnor
radius ε such that the family of equations G is topologically trivial over Sε. Now, we are
in the conditions of applying Theorem 3.1.2 and follow the reasoning of Theorem 3.1.7,
but working on Xu0,v and the corresponding instabilities of (Xu0 , fu0). QED

In particular, this implies the upper semi-continuity of the image Milnor number (see
also Figure 4.2).

Corollary 4.1.13. Using the notation and hypotheses of Theorem 4.1.12, µI(X, f) is
upper semi-continuous, i.e.,

µI(X, f) ≥ µI(Xu0 , fu0 ; y).

4.2. Multiple points and the ICSS

One may ask what happens when we have a map germ f : (X,S) → (Cp, 0) with X
icis but dimX = n < p, in general. Houston studied this for the case of smooth source
in [Hou10] using the multiple point spaces of the map germ and an Image-Computing
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Spectral Sequence (icss). We take a similar path, therefore, we need the machinery of
the multiple point spaces we have seen in Chapter 2 for the smooth case.

To simplify notation, (Xt, ft) will be a stable perturbation of (X, f). We also recall
the notion of multiple point space of a locally stable mapping (see De�nition 2.4.2).

De�nition 4.2.1 (see De�nitions 2.4.2 and 3.1.14). The kth-multiple point space, Dk(f),
of a mapping or a map germ f is de�ned as follows:

(i) Let f : X → Y be a locally stable mapping between complex manifolds. Then,
Dk(f) is equal to the closure of the set of points (x1, . . . , xk) in Xk such that
f (xi) = f (xj) but xi 6= xj , for all i 6= j.

(ii) Given f : (X,S) → (Cp, 0) with �nite singularity type, if (X , π, F, j) is a stable
unfolding, then

Dk(f) = J−1
k (Dk(F )),

where Jk =

k︷ ︸︸ ︷
j × · · · × j.

(iii) For a map germ f : (X,S)→ (Cp, 0), we will denote as d(f) the maximal multipli-
city of the stable perturbation of f (i.e., d(f) := max

{
k : Dk(ft) 6= ∅

}
) and s(f)

the number of points of the set S.

These de�nitions behave properly under isomorphisms and base change of unfoldings,
i.e., Items (ii) and (iii) do not depend on the stable unfolding (this is proved in [NBPS17,
Lemma 2.3], which is stated for the smooth case but the proof works for our case).

Remark 4.2.2. As we know from Section 2.4, the multiple point spaces have some
useful properties. In the smooth case, they were exceptionally good because they gave
the Marar-Mond criterion (see Theorem 2.4.4). We prove that the criterion is still true
for germs on icis of corank one in Lemma 4.2.3.

In contrast, in any corank, we know a few facts about them. For example, the proof
of [Hou97, Theorem 4.3 and Corollary 4.4] still works with an A -�nite map germ f :
(X,S) → (Cp, 0), dimX = n, and we can deduce that the dimension of Dk(f) is p −
k(p − n) (if this number is not negative nor Dk(f) is empty). Furthermore, in the pair
of dimensions (n, p), we deduce from [Hou97, Theorem 4.3] that d(f) is at most the
integer part of p

p−n . Finally, taking into account these previous remarks, this maximum
is attained when s(f) ≥ d(f) because the proof of Lemma 3.1.15 only relies on the
dimension of the multiple point spaces.

This lemma generalizes Marar-Mond criterion for the context of multi-germs and an
icis in the source (see Theorem 2.4.4).

Lemma 4.2.3. For f : (X,S)→ (Cp, 0) of corank 1 and �nite singularity type, dimX =
n < p:

(i) (X, f) is stable if, and only if, Dk(f) is smooth of dimension p−k(p−n), or empty,
for k ≥ 1.
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(ii) If Ae-codim(X, f) is �nite, for each k with p− k(p−n) ≥ 0, Dk(f) is empty or an
icis of dimension p−k(p−n). Furthermore, for those k such that p−k(p−n) < 0,
Dk(f) is a a subset of Sk, possibly empty.

Proof. For the �rst statement, if (X, f) is stable, X is smooth and it follows from
Theorem 2.4.4. For the converse, if every Dk(f) is smooth, then, in particular, so is
D1(f) = X and, again, the result follows from Theorem 2.4.4.

For the second statement, note that for the case of X being smooth the statement is
contained in Theorem 2.4.4 as well. Fortunately, if we take a versal unfolding (X , π, F, j)
of (X, f) we can apply that result. Also, for k with p − k(p − n) ≥ 0, observe that
the codimension of Dk(F ) coincides with the one of Dk(f) because outside the isolated
singularities they are smooth and of the same codimension. Furthermore, the only singu-
larities that can appear in Dk(f) are at the problematic points (the ones that come from
S) by the Mather-Ga�ney criterion (see Proposition 4.1.8). It only remains to check that
Dk(f) is a complete intersection, and this is the case as it can be constructed as a pull
back of a complete intersection, Dk(F ), and both have the same codimension.

The other case is trivial. QED

Note that this is the best we can aim for: we need to study D1(f) = X. The following
example illustrates this.

Example 4.2.4. Let (X, 0) ⊂ (CN , 0) be a germ of an icis of dimension n. Then, the
inclusion i : (X, 0) → (CN , 0) is stable in the sense that the Ae-codimension of i is
zero, since ωi is surjective. However, the Ae-codimension of (X, i) is equal to the Tjurina
number of (X, 0). Therefore, after taking a stable perturbation of (X, i), say (Xt, it),
every Dk(it) is empty for k ≥ 2 because we can set it = i and Xt is smooth, and this
implies that Dk(i) is empty for every k ≥ 2 as well.

Remark 4.2.5. The multiple point spaces in corank one are specially friendly, as we
have seen. Indeed, if we consider (X,S) ⊆ (CN , S) and a map germ f : (X,S)→ (Cp, 0)
of corank 1 and �nite singularity type, dimX = n < p, we can simplify even more the
structure of the di�erent Dk(f). This is because Dk(f) is a subset of Xk, therefore a
subset of CNk and, if f is of corank one, we can assume that f has the form

f : (X,S)→ (Cp, 0)

(x1, . . . , xN ) 7→ (x1, . . . , xN−1, h1(x), h2(x)).

Therefore, Dk(f) has many duplicated entries at each point, omitting these duplicates we
can see Dk(f) as a subset of X ×Ck−1. Finally, observe that this identi�cation preserves
the icis structure.

Furthermore, there is a natural action of Σk in Dk(f) by permutation of entries of
the k-tuples of points, as in the smooth case.

Also, recall that all the elements in Σk can be decomposed into disjoint cycles in
a unique way, called the cycle shape, and this inspires a re�nement of the kth-multiple
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point space based on the relations an element σ ∈ Σk gives. To be precise, if we take a
partition of k, γ(k) = (r1, . . . , rm), and αi = # {j : rj = i}, where #A denotes the number
of points in A, one can �nd an element σ ∈ Σk such that it can be decomposed into αi
pair-wise disjoint cycles of length i.

Notation 4.2.6. In this case, the partition γ(k) is called the cycle type of σ (see [Sag01,
pp. 2�3]).

Example 4.2.7. The cycle type of σ ∈ Σ10, such that

σ =

 1 2 3 4 5 6 7 8 9 10

2 6 1 5 4 3 7 9 8 10

 ,

is the partition (4, 2, 2, 1, 1), because σ = (1 2 6 3)(4 5)(8 9)(7)(10) and α4 = 1, α3 =
0, α2 = 2 and α1 = 1.

De�nition 4.2.8. We de�neDk(f, γ(k)) as the subspace ofDk(f) given by the equations
of the �xed points of σ with the usual action, for σ of cycle type γ(k). We may also use
Dk(f)σ instead of Dk(f, γ(k)) to specify the element.

Remark 4.2.9. By symmetry, Dk(f)σ is isomorphic to Dk(f)σ
′
if σ and σ′ have the

same cycle type (recall that the cycle types determine the conjugacy classes). Hence, the
de�nition of Dk(f, γ(k)) works modulo isomorphism. We will omit this detail in general
(see also Lemma 4.2.10).

If we take into account the group action and the subspaces Dk(f)σ, we have a re�ne-
ment of Lemma 4.2.3. It is a generalization of [MM89, Corollary 2.15] for the context of
multi-germs and an icis in the source and [Hou10, Corollary 2.8] for the context of icis
in the source.

Lemma 4.2.10. With the hypotheses of Lemma 4.2.3 and γ(k) a partition of k, we have
the following.

(i) If f is stable, Dk(f, γ(k)) is smooth of dimension p − k(p − n) − k +
∑

i αi, or
empty.

(ii) If Ae − codim(X, f) is �nite, then:

(a) for each k with p− k(p−n)− k+
∑

i αi ≥ 0, Dk(f, γ(k)) is empty or an icis

of dimension p− k(p− n)− k +
∑

i αi,

(b) for each k with p − k(p − n) − k +
∑

i αi < 0, Dk(f, γ(k)) is subset of Sk,
possibly empty.

A proof of this lemma can be seen in [Hou10, Corollary 2.8], because the same proof
applies once we know Lemma 4.2.3. In any case, observe that the Item (i) is a conse-
quence of Lemma 4.2.3 and the fact that we are adding k −

∑
i αi equations to the ones
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of Dk(f) to form Dk(f, γ(k)), as each ri of γ(k) gives ri − 1 more equations. Item (ii)
follows the same idea of Item (i).

From the homology of the Milnor �ber of the multiple point spaces, a special part will
serve our purposes: its alternating part. We have seen in Chapter 2 that the alternating
part of the homology of the spaces Dk(f) gives a lot of information of im(f) but, as we
will take things further, we make a general de�nition.

De�nition 4.2.11. Given a sing homomorphism, sgn : G→ {±1} where {±1} ∼= Z/2Z,
and a linear action of a �nite group G on some C-vectorial space H, we say that the
G-alternating part of H is the set

{h ∈ H : gh = sgn(g)h, for all g ∈ G} ,

and we denote it by HAltG . If the group is Σk, then the sign homomorphism is the usual
sign of a permutation and we simply write HAltk or HAlt if the group is clear from the
context.

Remark 4.2.12. Recall that, in terms of representation theory, HAltG is the isotype of
the sign representation of the representation H (see Appendix A, in particular De�ni-
tion A.1.9 and Example A.1.4). Furthermore, the sign homomorphism can be de�ned as
the usual signature, or sign, for permutations for every �nite group, seen as a subgroup
of a ΣN by Cayley's theorem (see [Rob96, Proposition 1.6.8]).

With the study of the multiple point spaces, we are able to obtain a lot of information
of images of stable perturbations in any pair of dimensions, as long as n < p. This is
done by means of an icss, as the one we have shown in Theorem 2.3.1. For example,
in [Hou10], Houston uses an icss as we are going to use it now. It will appear in later
techniques as well.

The �rst application of Theorem 2.3.1 we will show here is a result that follows
the idea of [Hou10, Theorem 3.1] and generalizes it when the source is an icis and we
consider integer homology. Moreover, it is a generalization of [Gor95, Theorem 3.3.1], for
multi-germs.

Theorem 4.2.13. Consider a map germ f : (X,S) → (Cp, 0) of �nite Ae-codimension
and of corank 1, with X icis of dimension dimX = n < p. Then, the reduced inte-
ger homology of the image of a stable perturbation of (X, f) is zero except possibly in
dimensions

(i) p− k(p− n) + k − 1 for all 2 ≤ k ≤ d(f),

(ii) d(f)− 1 if s(f) > d(f), and

(iii) n if X is non-smooth.
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Proof. Apply Theorem 2.3.1 to a versal unfolding of (X, f), say (X , π, F, j), and its
restriction to π−1(t) = Xt that gives a stable perturbation, (Xt, ft). Hence, we have the
spectral sequence

Er,q1 (F, f) := HAltr+1
q (Dr+1 (F ) , Dr+1 (ft) ;Z) =⇒ H∗(F (X ) , ft (Xt) ;Z).

This spectral sequence, of homology type, collapses at the second page instead of the
�rst one (see Table 4.1), because all the di�erentials are trivial except the ones at the
bottom row which may be non-zero (e.g., when X is smooth there are some cases where
these entries are non-zero, as the quadruple point of a map germ from C2 to C3). From
this, we can recover the limit of the spectral sequence and deduce the result.

First of all, take into account that F (X ) is contractible. Furthermore, by Lemma 4.2.3,
the reduced homology of Dk(ft) could be non-trivial only in middle dimension, therefore,
the groups

Hi(F (X ) , ft (Xt) ;Z)

are possibly non-trivial when

i = r + dimDr+1 + 1

= r + p− (r + 1)(p− n) + 1

= p− (p− n)(r + 1) + (r + 1),

for 2 ≤ r + 1 ≤ d(f). This comes from the convergence of the spectral sequence (see
De�nition B.2.5, the end of Appendix B.2 and Examples 2.3.2 and 2.3.3).

The last possibly non-trivial entry after collapsing the sequence is E
d(f)+1,0
2 . This

comes from the fact that the bottom row of the �rst page is an exact sequence. This, in
turn, comes from applying Theorem 2.3.1 for F and its restriction to ∅, deducing that
the non-trivial part of the bottom row has to be exact because F (X ) is contractible (one
can also apply the proof and statement of [Hou10, Lemma 3.3] verbatim for this case).

Finally, when r = 0, we have some homology apart from the 0-dimensional, because
D1(ft) = Xt and it is the stable perturbation of the icis X. The homology in this case
appears when i = 0 + dim(X) + 1 and it is equal to µ(X).

Using the exact sequence of the homology of the pair, the result follows. QED

The argument of Theorem 4.2.13 would work for any corank if we were able to prove
that the alternating homology of the pairs (Dk(F ), Dk(f)) of any corank appear in the
same dimensions as in corank one. Unfortunately, the techniques used for the smooth
case do not give what we expect.

Lemma 4.2.14 (see [Hou97, Theorem 4.6]). Let f : (X,S) → (Cp, 0) be an A -�nite
map germ, where (X,S) is a germ of an icis of dimension n < p and codimension r.
Consider a non-empty Dk(ft) and write d for dimCD

k(ft). Then,

(i) for k ≥ 2, HAlt
q (Dk(ft)) = 0 if q 6= 0 or q /∈ [d+ (1− r)k, d], and

(ii) HAlt
q (D1(ft)) is zero for q 6= 0, d.
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7

6 •
5 •
4 •
3 •
2 •
1 •
0 • • • · · ·
r
q

0 1 2 3 4 5 6 7 8 · · ·

HAlt
7

HAlt
6

HAlt
5 Xt

HAlt
4 ft

HAlt
3 ft

HAlt
2 ft

HAlt
1 ft (F, ft)

HAlt
0 F F F · · ·

D1 D2 D3 D4 D5 D6 D7 D8 D9 · · ·

Table 4.1: First page of the spectral sequence Er,q1 = H
Altr+1
q

(
Dr+1 (F ) , Dr+1 (ft)

)
for a

map germ f : (X,S) → (C6, 0) in the pair of dimensions (5, 6) (left) and the schematic
information required after some identi�cations (right).

Proof. Observe that D1(ft) = Xt is the Milnor �bre of the icis D1(f) = X, so we
can assume that k ≥ 2.

For q ≥ d, the space Dk(ft) has the homotopy type of a CW -complex of dimension
d, therefore, there are no alternating chains above dimCD

k(ft). This proves the result
for those q. It only remains to check when q < dimCD

k(ft) for k ≥ 2.
To prove the remaining part of the lemma, we take the proof of [Hou97, Theorem 4.6]

as reference. This argument consists of two steps: controlling the alternating homology of
the pair (Dk(F ), Dk(ft)) by virtue of [Hou97, Theorem 3.30], where F is a one-parameter
unfolding of f , and specify exactly when this pair can have alternating homology using
[Hou97, Theorem 3.13].

The hypothesis of [Hou97, Theorem 3.13 and Theorem 3.30] are not too restrictive,
so we can take a one-parameter unfolding F of f and combine these theorems to prove
that

HAlt
q (Dk(F ), Dk(ft)) = 0

for

q ≤ min
{

(n+ 1− r + 1)k − (p+ 1)(k − 1)− 1, nk − p(k − 1)
}

= nk − p(k − 1) + (1− r)k = d+ (1− r)k.

Therefore, using the exact sequence of the pair and the fact that Dk(F ) contracts to
isolated points in an equivariant way, we have that HAlt

0 (Dk(ft)) ∼= HAlt
0 (Dk(F )) and

HAlt
q−1(D

k(ft)) ∼= HAlt
q (Dk(F ), Dk(ft)), for q > 1. QED

Remark 4.2.15. Actually, this lemma should be stated for the homology of alternating
chains, AH, instead of alternating homology (see Section 2.2). However, if we use rational
homology they coincide (see the end of Section 2.2). If one wants to use integer homology
the same proof works changing HAlt for AH and adding in Item (ii) that the homology
is free if q = 0, d. Nevertheless, Corollary 4.2.16 is well stated as it is, precisely using AH
instead of HAlt.
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Corollary 4.2.16. With the hypotheses of Lemma 4.2.14, the reduced integer homology
of the image of a stable perturbation of (X, f) is zero except possibly in dimensions

(i) p− k(p− n) + k − 1 + s for all 0 ≤ s ≤ (1− r)k and 2 ≤ k ≤ d(f),

(ii) d(f)− 1 if s(f) > d(f), and

(iii) n if X is non-smooth.

Proof. The proof follows from Lemma 4.2.14, Theorem 2.3.1 and a careful inspection
of the icss as in Theorem 4.2.13. QED

Observe that, if X is a hypersurface, this theorem proves that the homology of the
image appears in the same dimensions than the smooth case. Also, note that this theorem
may not be sharp, because [Hou97, Theorem 3.13] only gives a bound to control the
homology of the alternating chains of the pair (Dk(F ), Dk(ft)) and it could be a bad
bound in general.

It is surprising that, in the case of corank one, the same proof does not prove Theo-
rem 4.2.13. This makes us think that there is an argument that avoids the detail of the
codimension of the icis:

Conjecture 4.2.17. Consider a map germ f : (X,S)→ (Cp, 0) of �nite Ae-codimension,
with X icis of dimension dimX = n < p. Then, the reduced integer homology of the
image of a stable perturbation of (X, f) is zero except possibly in dimensions

(i) p− k(p− n)k + k − 1 for all 2 ≤ k ≤ d(f),

(ii) d(f)− 1 if s(f) > d(f), and

(iii) n if X is non-smooth.

Remark 4.2.18. This conjecture and Theorems 4.2.13 and 4.2.16 are related to [LPSZ21,
Theorems 2.3 and 2.8], when the source is smooth and the map germ is not necessarily
A -�nite but the dimensions of the multiple point spaces are controlled. They, and Sec-
tion 4.4, are also closely related with [LPSZ21, Theorem 2.4] in the particular case that
X is the double point space D2(f).

Houston also uses Theorem 2.3.1 in [Hou10] with a versal unfolding F , of a multi-
germ f : (Cn, S)→ (Cn+1, 0), and a section that gives the stable perturbation, ft. Also,
taking into account that the Euler-Poincaré characteristic of every page remains invariant,
see Appendix B.3 and Proposition B.3.3, and that the image of the versal unfolding is
contractible, it remains to compute χ

(
E∗,∗1

)
to get µI(f), and the terms of the sum are

arranged to de�ne Houston's alternating Milnor numbers, µAltk (f) (actually, he computes
them through the limit of the spectral sequence, both ways give the same result).
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These ideas and the previous proofs gave De�nition 3.1.14, and it inspires us to
give a de�nition for germs on icis (see also the simpli�cation and developments of it in
Section 3.1.2, particularly Lemma 3.1.15).

De�nition 4.2.19. Given an A -�nite map germ f : (X,S)→ (Cn+1, 0) of corank one,
with X icis of dimension n, the k-th alternating Milnor number of (X, f), denoted as
µAltk (X, f), is de�ned as

µAltk (X, f) :=



rank HAltk
n−k+2(D

k(F ), Dk(ft);Z), if 1 ≤ k ≤ d(f)

(
s(f)− 1

d(f)

)
, if k = d(f) + 1 and s(f) > d(f)

0, otherwise,

being F its versal unfolding and ft a stable perturbation.

These numbers are very useful because they decompose the image Milnor number,
exactly as in Proposition 3.1.16.

Proposition 4.2.20. For f : (X,S)→ (Cn+1, 0) A -�nite of corank one and X an icis

of dimension n, ∑
k

µAltk (X, f) = µI (X, f) .

Proof. From the proof of Theorem 4.2.13, we only have to check that µAltd(f)+1(X, f)

coincides with the (rank of the) remaining non-zero entries of the spectral sequence after
collapsing, i.e., we have to check that

rankE
d(f)+1,0
2 =

(
s (f)− 1

d (f)

)
.

From [Hou10, Lemma 3.3], which can be stated for general stable map germs with
a verbatim proof, or the constancy of the Euler-Poincaré characteristic of the spectral
sequence (see Proposition B.3.3), we have

rankE
d(f)+1,0
2 =

∣∣∣∣∣∣
s(f)∑

`=d(f)+1

(−1)`
(
s (f)

`

)∣∣∣∣∣∣ =

(
s (f)− 1

d (f)

)
. QED
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Figure 4.2: The �rst alternating Milnor number and its relationship with the deformations
of (X, f) and the µI(X, f). Here, one can also appreciate the conclusions of Theorem 3.1.7
and Corollary 4.1.13.

One term deserves a bit of attention: µ1(X, f). This term does not appear in the
smooth case because it is zero but, in general, it is equal to µ(X) (see Figure 4.2).
Proposition 4.2.20 allows us to reduce the weak Mond's conjecture for icis to the smooth
case given in Theorem 3.1.22.

Corollary 4.2.21. For f : (X,S)→ (Cn+1, 0) A -�nite of corank one and X an icis of
dimension n, µI(X, f) = 0 if, and only if, (X, f) is stable.

Proof. One direction is trivial.

If µI(X, f) = 0 then µAlt1 (X, f) = µ(X) = 0 and we are in the case of smooth domain,
Theorem 3.1.22. QED

Remark 4.2.22. Note that the weak form of Mond's conjecture for the smooth case in
any corank implies, with the same proof of Corollary 4.2.21, the same conjecture for icis
in any corank by means of Proposition 4.2.20, which can be stated for any corank using
Lemma 4.2.14 and always carries a term equal to µ(X).

4.3. A Lê-Greuel type formula

Now that we have a basic building of the image Milnor number with icis in the source,
our last preparatory step is to prove a Lê-Greuel type formula for µI(X, f). In [NBPT19],
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Pallarés-Torres and Nuño-Ballesteros proved a Lê-Greuel type formula in the setting of
the image Milnor number in the smooth case and �nitely determined map germs. Recall
the original Lê-Greuel formula, see [Gre75, Trá74],

µ(X, 0) + µ(X ∩H, 0) = dimC
On

(g) + J(g, p)
.

Here, (X, 0) is an icis with de�ning equation g, p a generic linear projection with H :=
p−1(0) such that (X ∩H, 0) is an icis as well, and J(g, p) is the ideal generated by the
minors of maximum order of the Jacobian matrix of (g, p). Taking into account that
the right hand side of the equation could be seen as the number of critical points of p
restricted to the Milnor �ber of X, it is obvious that the main theorem of [NBPT19] is
a similar result for the context of map germs (see Figure 4.3):

Theorem 4.3.1 (see [NBPT19, Theorem 3.2]). Let f : (Cn, 0)→ (Cn+1, 0) be a corank
1 and A -�nite map germ with n > 1. Let p : Cn+1 → C be a generic linear projection
which de�nes a transverse slice g : (Cn−1, 0)→ (Cn, 0). Then,

#Σ
(
p|Zs

)
= µI (f) + µI (g) ,

where #Σ
(
p|Zs

)
is the number of critical points on all the strata of Zs := im (fs), being

fs a stable perturbation of f .

See [MNnB14, pp. 1380�1381] for the de�nition of transverse slice.

Figure 4.3: Depiction of the Lê-Greuel type formula for map germs.

The strati�cation considered in the image of the stable perturbation fs in the theorem
above is the strati�cation by stable types (see De�nition 1.3.10).

We prove a similar result for multi-germs on icis. The �rst step in this direction is
�nding a version of Marar's formula for this setting. Fortunately, his proof is essentially
combinatorial and one can prove the version we need with almost no modi�cations.
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Given a partition γ(k) = (r1, . . . , rm) of k and αi := # {j : rj = i}, Marar's formula is
the following.

Theorem 4.3.2 (see [Mar91, Theorem 3.1]). Let f0 : (Cn, 0)→ (Cp, 0) of corank 1 and
A -�nite, 2 ≤ n < p, and consider its stable perturbation ft : Xt → Cp. Then,

χ(ft(Xt)) = a0χ (Ut) +
∑
k≥2

∑
γ(k)

aγ(k)χ
(
Dk(ft, γ(k))

)
,

where a0 = 1 and

aγ(k) =
(−1)

∑
αi+1∏

i≥1 i
αiαi!

if Dk(ft, γ(k)) is non-empty, and zero otherwise.

Now, by Theorem 4.3.2 but stated for a stable perturbation of an A -�nite corank 1
map germ f : (X,S)→ (Cn+1, 0), with dimX = n, we have

1 + (−1)nµI(X, f) = #S + (−1)nµ(X)

+
∑
k≥2

∑
γ(k)

aγ(k)

(
β
γ(k)
0 + (−1)dimDk(f,γ(k))µ

(
Dk(f, γ(k))

))
, (4.1)

where #S is the number of points in S and β
γ(k)
0 the zero Betti number of Dk(f, γ(k)).

With Theorem 4.3.1 in mind, we take a generic linear projection p : Cn+1 → C, with
kernel H, which de�nes a transverse slice g := f | :

(
X ∩ f−1(H), S

)
→ (Cn, 0).

Observe that X ∩ f−1(H), which we will call X̃ to simplify notation, is still an icis.
Following the steps of [NBPT19] from here, behold that, if dimDk(f, γ(k)) > 0, then

dimDk(f, γ(k))− 1 = dimDk(g, γ(k)) and, if dimDk(f, γ(k)) = 0, then Dk(g, γ(k)) =

∅. Therefore, if we apply the previous formula to (X̃, g), we get

1 + (−1)n−1µI(X̃, g) = #S + (−1)n−1µ(X̃)

+
∑

k≥2, γ(k):

dimDk(f,γ(k))>0

aγ(k)

(
β
γ(k)
0 + (−1)dimDk(f,γ(k))−1µ

(
Dk(g, γ(k))

))
, (4.2)

If we subtract Equation (4.2) from Equation (4.1), and use that dimDk(f, γ(k)) = n+
1− k − k +

∑
i αi (see Lemma 4.2.10), we have

µI(X, f) + µI(g, X̃) = µ(X) + µ(X̃)

+
∑

k≥2, γ(k):

dimDk(f,γ(k))=0

(−1)
∑
αi+1+n∏

i≥1 i
αiαi!

(
β
γ(k)
0 + µ

(
Dk(f, γ(k))

))

+
∑

k≥2, γ(k):

dimDk(f,γ(k))>0

1∏
i≥1 i

αiαi!

(
µ
(
Dk(f, γ(k))

)
+ µ

(
Dk(g, γ(k))

))
,



4.3. A LÊ-GREUEL TYPE FORMULA 67

where we have simpli�ed the signs expanding aγ(k), and β
γ(k)
0 denotes the same as before.

Once we arrive here, we can keep simplifying signs: if dimDk(f, γ(k)) =
∑
αi + 1 +

n− 2k = 0, then the �rst sign is positive.

On the other hand, we can choose a generic projection and coordinates on source and
target so that p(y1, . . . , yn+1) = y1. Moreover,

Dk(g, γ(k)) = Dk(f, γ(k)) ∩ p̃−1(0),

where p̃ : X × Ck−1 → C is the projection on the �rst coordinate for every k, seeing
Dk(f) as a subset of X×Ck−1 (recall Remark 4.2.5), and it is generic as well (in general
it would be a mapping induced by p ◦ f).

By the comments above, the structure of icis given in Lemma 4.2.10 and the Lê-
Greuel-type formula for icis; we have

µ
(
Dk(f, γ(k))

)
+ µ

(
Dk(g, γ(k))

)
= #Σ

(
p̃|Dk(fs,γ(k))

)
and

µ(X) + µ(X̃) = #Σ
(
p̃|Xs

)
,

where fs and Xs are the stable perturbations of f and X.

Moreover, note that, if dimDk(f, γ(k)) = 0, then

µ
(
Dk(f, γ(k))

)
= m0

(
Dk(f, γ(k))

)
− βγ(k)

0 ,

where m0

(
Dk(f, γ(k))

)
is the multiplicity of Dk

(
f, γ(k)

)
. This can also be seen as the

number of critical points of p̃|Dk(fs,γ(k)).

In conclusion,

µI(X, f) + µI(g, X̃) =
∑
k≥1

∑
γ(k)

#Σ
(
p̃|Dk(fs,γ(k))

)
∏
i≥1 i

αiαi!
.

This is exactly the same point Pallarés-Torres and Nuño-Ballesteros reach in [NBPT19,
Theorem 3.2]. The theorem below follows from there (see Figure 4.3).

Theorem 4.3.3 (see [NBPT19, Theorem 3.2]). For an A -�nite map germ f : (X,S)→(
Cn+1, 0

)
of corank 1 from an icis X of dimension dimX = n ≥ 2, let p : Cn+1 → C be

a generic linear projection which de�nes a transverse slice g : (X ∩ (p ◦ f)−1 (0) , S) →
(Cn, 0). Then,

µI (f,X) + µI

(
g,X ∩ (p ◦ f)−1 (0)

)
= #Σ

(
p|Zs

)
,

where #Σ
(
p|Zs

)
is the number of critical points on all the strata of Zs := im (fs), being

fs a stable perturbation of f .

We complete Theorem 4.3.3 with the case of a one-dimensional icis X.
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Proposition 4.3.4 (see [NBPT19, Theorem 3.1]). Let f : (X,S) → (C2, 0) be an in-
jective map germ on an icis X of dimension one. Consider a generic linear projection
p : C2 → C, then

µI(X, f) +m0(f)− 1 = #Σ
(
p|Zs

)
,

where #Σ
(
p|Zs

)
is the number of critical points on all the strata of Zs := im (fs), being

fs a stable perturbation of f and m0(f) = dimCOX,S/f∗m2 the multiplicity of f .

Proof. We have two strata in the image Zs of the stable perturbation (Xs, fs): the
0-dimensional stratum Z0

s given by the transverse double points and the 1-dimensional
stratum Z1

s = fs(Xs)− Z0
s .

Obviously, #Σ( p|Z0
s
) is equal to #Z0

s , which is equal to µAlt2 (X, f). Since fs is a local

di�eomorphism on Z1
s , #Σ( p|Z1

s
) is equal to the number of critical points of p ◦ fs on

Xs (here the points of Z0
s can be excluded by genericity of p). By the usual Lê-Greuel

formula for X and X ∩ (p ◦ f)−1(0), we have

#Σ(p ◦ fs) = µ(X) + deg(p ◦ f)− 1.

But, again, the genericity of p implies that deg(p ◦ f) = m0(f). Hence,

#Σ( p|Z0
s
) + #Σ( p|Z1

s
) = µAlt2 (X, f) + µ(X) +m0(f)− 1

= µI(X, f) +m0(f)− 1,

by Proposition 4.2.20. QED

4.4. The double point Milnor number

4.4.1. General aspects

Finding conditions for a 1-parameter family to be Whitney equisingular (see De�ni-
tion 1.3.13) requires working on the source and in the target separately. In the case of
the source, we need an object to assure some structure and, as the reader could guess,
the double point set is the best candidate. Furthermore, if the map is nice enough, this
set is the projection of an icis, the double point space (see Figure 4.4). We have some
invariants in this sense.

De�nition 4.4.1. The double point set of f : (Cn, S) → (Cn+1, 0), of �nite singularity
type, is the projection on the �rst coordinate of D2(f), and we denote it by D(f).
Furthermore, if f is A -�nite, we will de�ne the double point Milnor number as

µD(f) := βn−1(D(ft)),

where ft is a stable perturbation of f .

Remark 4.4.2. The double point Milnor number was denoted as µΣ2 in [Hou01] by
Houston.
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Note that we have to de�ne µD(f) through a stable perturbation of f because D(f)
is a hypersurface with (not necessarily) non-isolated singularities, hence there is no way
to de�ne the Milnor number as hypersurface. However, we can still use Siersma's result,
Theorem 3.1.2, to prove that D(ft) in De�nition 4.4.1 has the homotopy type of a wedge
of spheres of middle dimension, as a small deformation of D(f) is topologically trivial in
a Milnor sphere (see De�nition 3.1.1).

The main reason to use this invariant is that µD(f) is the image Milnor number of
certain germ on an icis (X, f) if f has corank one and it is A -�nite (recall Marar-Mond
criterion, Theorem 2.4.4). In that case, µD(f) coincides with µI(D2(f), π).

Hence, we can use all the machinery we developed above if f has corank one. Firstly,
µD(f) is well de�ned by Proposition 4.1.10. Secondly, there are triple points of ft that
also correspond to double points of π and give rise to more homology (as Figure 4.4
represents, there we have depicted a vague idea of the generators of the homology because
some higher-dimensional properties cannot be made visible). Finally, the invariant µD(f)
is also conservative by Theorem 4.1.12:

Corollary 4.4.3. Let f : (Cn, S)→ (Cn+1, 0) be �nitely A -determined, of corank 1, and
fu a one-parameter unfolding of f = f0. Take a representative of the unfolding such that
its codomain, Bε, is a Milnor ball. Then,

µD(f) = βn−1(D(fu)) +
∑
y∈Bε

µD(fu, y).

Remark 4.4.4. Observe that De�nition 4.4.1 can be generalized for every pair of di-
mensions (n, p) as long as n < p and f has corank one. Despite the fact that D(f) could
not be a hypersurface, D2(f) is an icis in this case (again, Marar-Mond criterion, Theo-
rem 2.4.4) and we can de�ne µD(f) by means of the homotopy of the image of a stable
perturbation of

(
D2(f), π

)
, which is controlled by Theorem 4.2.13. One can also use the

Euler-Poincaré characteristic of the image of a stable perturbation, sometimes referred
as vanishing Euler characteristic, see [NBOOT18] for example.

Once more, we focus on the multiple point spaces but, in this case, we deal with

(D2(f), π) and Dk(π), where f has corank one and it is A -�nite. Using the principle
of iteration (see [Kle81, Section 4.1]), the multiple point spaces of a perturbation of f
are isomorphic to the multiple point spaces of a perturbation of π with a shift in the
multiplicity, and the same is true for unfoldings F and Π (of f and π, respectively).
More precisely, Dk(πt) ∼= Dk+1(ft) and D

k(Π) ∼= Dk+1(F ), where the �rst isomorphism
is given by

φ : Dk(πt) −→ Dk+1(ft)(
(x, x1), . . . , (x, xk)

)
7−→ (x, x1, . . . , xk),

(4.3)

and the second one is analogous. This inspires us to compare µAltk (D2(f), π) and µAltk+1(f),
which determine µD(f) and µI(f), respectively. The relation is straightforward conside-
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Figure 4.4: Representation of how the homology of the double point set of a stable
perturbation works.

ring that

µAltk (D2(f), π) = rank HAltk
n−1−k+2(D

k(Π), Dk(πt))

= rank HAltk
n−1−k+2(D

k+1(F ), Dk+1(ft))

and
µAltk+1(f) = rank H

Altk+1

n−1−k+2(D
k+1(F ), Dk+1(ft)).

More precisely, the di�erence between µAltk (D2(f), π) and µAltk+1(f) is the group of per-
mutations that acts.

To ease the notation, we will simply writeH instead ofHn−1−k+2

(
Dk+1(F ), Dk+1(ft)

)
and k will be clear from the context. Consequently, we want to compare the alternating
actions of Σk+1 and Σk < Σk+1 on H, where Σk acts as a subgroup �xing the �rst
entry (by construction of the isomorphism of Equation (4.3)). We will use representation
theory, which we introduced in Appendix A2, to do this. For this reason, we will see H
as a C-vector space.

For each partition of N , say γ(N), there is associated an irreducible representation of
ΣN (see De�nition A.3.11 and Theorem A.3.12), which is called the γ(N)-representation
of ΣN (see Notation A.3.13). Furthermore, the representation that acts by its sign is asso-
ciated to the partition (1, . . . , 1), which is called the alternating representation. Moreover,
from the branching rules (see Appendix A.4 and Theorem A.4.4), we know that the alter-
nating representation of ΣN appears as a restriction of ΣN+1 from both the alternating
representation and the (2, 1, . . . , 1)-representation. Therefore, knowing the character of
the last one will be useful. Unfortunately, we could not �nd it in the literature, so we
compute it here.

Lemma 4.4.5. The character of the irreducible representation associated to the partition
(2, 1, . . . , 1) is

sgn(σ) (�x (σ)− 1) ,

2We recommend the reader to have a look at this appendix before continuing with this part.
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where �x(σ) is the number of entries �xed by the permutation σ.

Proof. If N = 3, the result is trivial. Assume that N > 3; then, we know that the
representation associated to this partition is either the standard or the tensor product
of the standard and the alternating representations (see, for example, [FH91, Exercise
4.14]3). By a careful inspection (but see also [FH91, Exercise 4.6]), we know that it is
not the standard representation, therefore its character is the product of the standard
and the alternating representations. QED

Given any representation V of a �nite group G, Maschke's theorem allows us to
decompose V into isotypes (see Theorem A.1.8). For example, any partition γ(N) of N
has its γ(N)-isotype in V , V γ(N). Recall that this is nothing more than the sum of copies
of the γ(N)-representation that appear in V (see De�nition A.1.9). In the particular case
of the (1, . . . , 1)-isotype, we use the name alternating isotype as well.

As part of the alternating isotype of Σk < Σk+1 comes from the (2, 1, . . . , 1)-isotype of
Σk+1, we want to make explicit the projection formula onto this last isotype. Considering
that we know the character and the dimension of the (2, 1, . . . , 1)-representation, �nding
the projection is very easy (see Theorem A.4.5):

Pk+1 :=
k

(k + 1)!

∑
σ∈Σk+1

sgn(σ) (�x(σ)− 1)σ.

Remark 4.4.6. Observe that one can de�ne the projection Pk+1 with domain any set
where Σk+1 acts, here we will de�ne it on H if nothing is said.

Theorem 4.4.7. Let f : (Cn, S)→ (Cn+1, 0) be A -�nite of corank 1. Then,

µAltk+1(f) ≤ µAltk (D2(f), π)

for k = 1, . . . , n. Furthermore,

(i) for k = 2, . . . , n, µAltk+1(f) = µAltk (D2(f), π) if, and only if, Pk+1 ≡ 0 (or, equiva-
lently, the (2, 1, . . . , 1)-isotype is zero), and

(ii) for k = 1, µAlt2 (f) = µ
(
D2(f)

)
if, and only if, the space Hn−1(D2(ft)) coincides

with its alternating isotype, for ft a stable perturbation of f .

Proof. For k = 2, . . . , n, from the branching rules (see Appendix A.4 and Theo-
rem A.4.4), we know that the alternating isotype of the Σk representation on H comes
exactly from the alternating isotype and the (2, 1, . . . , 1)-isotype of the representation of
Σk+1.

Moreover, the former isotype contributes with the same dimension it has but the
latter makes a contribution of one dimension for each k-dimensional copy it has. This
comes from the fact that, in this isotype, every copy of the (2, 1, . . . , 1)-representation

3This is solved in StackExchange, for example.

https://math.stackexchange.com/questions/250420/s-n-has-only-four-irred-representations-with-degree-n-for-n6
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has dimension k and each one splits into an alternating representation of dimension 1
and an irreducible (2, 1, . . . , 1)-representation of dimension k − 1 when we restrict it to
the subgroup Σk.

As the only di�erence between µAltk+1(f) and µAltk (D2(f), π) is the di�erent groups
acting, Σk+1 and Σk as a subgroup, the result follows for these cases.

On the other hand, Pk + 1 ≡ 0 if, and only if, there is no (2, 1, . . . , 1)-isotype, so
Item (i) follows.

Finally, Item (ii) is trivial, as the only two possible representations of Σ2 are the
trivial and the alternating one. QED

Remark 4.4.8. One can determine the di�erence between µAltk+1(f) and µAltk (D2(f), π),
for it depends on the number of repetitions of the (2, 1, . . . , 1)-representation. For exam-
ple, one can compute it through the inner product between the characters of the whole
representation of Σk+1 and the (2, 1, . . . , 1)-representation (see De�nition A.2.5 and Co-
rollary A.2.10), which is nothing more than counting the number of �xed generators by
Pk+1 in a convenient basis.

Also, for k = n and k = n + 1, one is dealing with zero homology and the multiple
point spaces are points, this ease the relation and we can say something more.

Theorem 4.4.9. With the hypotheses of Theorem 4.4.7, for k = n,

(n+ 1) rank H
Altn+1

0

(
Dn+1(ft)

)
= rank HAltn

0

(
Dn+1(ft)

)
.

Also, for k = n+ 1,

d(f)s(f)2

s(f)− 1
µAltn+2(f) = µAltn+1(D

2(f), π).

Proof. Now, we are dealing with points and the zero homology. In particular, we
can identify the elements in the homology with the 0-chains. Hence, one can �nd a
basis of H

Altn+1

0

(
Dn+1(ft)

)
with elements of the form AltZp, where p ∈ Dn+1(ft) (recall

Equation (2.1)).

The action of Σn+1 on the orbit of p is the regular representation, so it decomposes
into the alternating representation we are considering, n (2, 1, . . . , 1)-subrepresentations
and more irreducible subrepresentations (see Example A.1.4 and Corollary A.2.10). The
contributions to the alternating isotype of the representation of Σn come from: one alter-
nating representation from each (2, 1, . . . , 1)-subrepresentation, each one of the alterna-
ting subrepresentation of Σn+1 will be preserved in the subgroup, and there are no more
contributions from other isotypes. This happens for every orbit of points in Dn+1(ft),
proving the �rst statement.

To prove the second part, recall that µAltn+2(f) comes from the bottom row of the
spectral sequence (see, for example, Table 4.1), and the argument is similar but, now,
working with the multiple point space of the unfolding. Therefore, again, the alternating



4.4. THE DOUBLE POINT MILNOR NUMBER 73

isotype of Σk is k+1 times bigger than the alternating isotype of Σk+1. Hence, if originally
µAltn+2(f) was ∣∣∣∣∣∣

s(f)∑
`=d(f)+1

(−1)l
(
s(f)

`

)∣∣∣∣∣∣ =

(
s(f)− 1

d(f)

)
,

now, µAltn+1(D
2(f), π) is∣∣∣∣∣∣

s(f)∑
`=d(f)+1

(−1)``

(
s(f)

`

)∣∣∣∣∣∣ =
d(f) (d(f) + 1)

s(f)− 1

(
s(f)

d(f) + 1

)

=
d(f)s(f)2

s(f)− 1

(
s(f)− 1

d(f)

)
. QED

Remark 4.4.10. Although these inequalities and equalities are enough for our purposes,
one can specify the relation of µAltn+1(f) and µAltn (D2(f), π) using the ideas of the second
part of the proof of Theorem 4.4.9 and considering the exact sequence of the pair.

Also, one may ask what happens if the group acts by permutation of the elements
of a base for some k < n (this action could be not faithful). Regarding this, there are
algorithms to compute the alternating part based in the same idea: looking for orbits and
the relation between the actions. An upper bound is also possible with the same ideas.

There are some interesting corollaries of Theorems 4.4.7 and 4.4.9. For example, it
could happen that there is not enough space in the homology group to �t a (2, 1, . . . , 1)-su-
brepresentation.

Corollary 4.4.11. With the notation of Theorem 4.4.7, for k = 1, . . . , n, if

rank
(
Hn−1−k+2

(
Dk+1(F ), Dk+1(ft)

))
− µAltk+1(f) < k,

then
µAltk+1(f) = µAltk (D2(f), π).

Proof. The proof is based on the fact that a (2, 1, . . . , 1)-representation of Σk has
dimension k and the ideas of Theorems 4.4.7 and 4.4.9. QED

Another example is an inequality involving the full Milnor number on both contexts.

Corollary 4.4.12. For f as in Theorem 4.4.7, µI(f) ≤ µD(f). This holds with equality
if, and only if, Hn−1(D2(ft)) coincides with its alternating isotype and all the Pi are zero
for all i, for Pi as in Theorem 4.4.7.

Thence, there are some nice characterizations as well, in particular weak Mond's
conjecture for µD(f).

Corollary 4.4.13 (see Theorem 3.1.22). For f as in Theorem 4.4.7, the following are
equivalent:
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(i) f is stable,

(ii) µI(f) = 0, and

(iii) µD(f) = 0.

Proof. If f is stable, then µD(f) = µI(D2(f), π) = 0 as so are all the alternating
Milnor numbers. If 0 = µD(f), then µI(f) = 0 by Corollary 4.4.12, but if µI(f) = 0,
then f is stable by the weak Mond's conjecture for corank 1 (see Theorem 3.1.22).

QED

4.4.2. Delving into other multiplicities

For an f : (Cn, S) → (Cn+1, 0) of corank one, we have studied the homology of the
projection of D2(ft) onto Cn and we have compared it with the homology of the image
of ft, for ft a stable perturbation of f . One can keep looking for relations between the
multiple point spaces using the same ideas.

On one hand, we can reproduce the roles of the image of ft and D(ft) easily:

· · · D3(ft) D2(ft) D1(ft) = Cn Cn+1

· · · D4
3(ft) D3

2(ft) D2
1(ft) = D(ft) Im(ft)

π3
2 π2

1 ft

,

where πkk−1 : Dk(•) → Dk−1(•) is the projection that forgets the last entry, for k =

2, . . . , d(f), and Dk
k−1(•) is the image of πkk−1.

On the other hand, although πkk−1 : Dk(f) → Dk−1(f) has the problem that the

target is an icis as well, the homology of Dk
k−1(ft) is well de�ned for any A -�nite

f : (Cn, S) → (Cn+1, 0) of corank 1. This is a consequence of the icss of, for example,
Theorem 2.3.1 applied to πkk−1 : Dk(ft)→ Dk−1(ft). Hence, again by the iteration prin-

ciple, the Betti numbers of Dk
k−1(ft) are determined by the Σi+1-alternated homologies

of
(
Dk+i(F ), Dk+i(ft)

)
, for i = 0, . . . , d(f)− k.

Furthermore, Dk+i(ft) is the unique �ber, up to isomorphism, of Dk+i(f) and the
action of the permutations does not depend on the stable perturbation, so these Betti
numbers will be well de�ned.

Finally, note that the homology will appear again in middle dimension for the pair
of dimensions (n, n+ 1), for the same reason it happens for D(ft).

Notation 4.4.14. We will simply write βk(f) to denote βn−k+1(Dk
k−1(ft)).

We have compared β1(f) := µI(f) with β2(f) = µD(f) and, similarly, we can compare
βk(f) with βk+1(f). This is very easy if d(f) < n+1 or we have a mono-germ, because we
can forget about the the homology of the pair and the unfolding by the exact sequence of
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the pair. As we were saying, by an icss as in Theorem 2.3.1 and the iteration principle,
arranging the terms in a convenient way, we have

βk+1(f) = rank
⊕
i≥2

HAlti(Dk+i(ft))⊕H(Dk+1(ft)) (4.4)

and
βk(f) = rank

⊕
i≥1

HAlti+1(Dk+i(ft))⊕H(Dk(ft)), (4.5)

from where we have omitted the index of the homology. Therefore, subtracting Equa-
tion (4.5) from Equation (4.4) and using the ideas of Theorems 4.4.7 and 4.4.9, we get

βk+1(f)− βk(f) =
∑
i≥2

rank H(Dk+i(ft))
(2,1,...,1)

i
+ µ(Dk+1(f))

− µ(Dk(f))− rank HAlt2(Dk+1(ft))

, (4.6)

with (2, 1, . . . , 1) partition of i+ 1.

Remark 4.4.15. One can take this to a broader context as long as the �rst page of the
spectral sequence collapses and the iteration principle works.

We put this in practice with some examples.

Example 4.4.16. For f : (C2, 0) → (C3, 0) as in Theorem 4.4.7 and taking k = 1 in
Equation (4.6),

µD(f)− µI(f) =
rank H0

(
D3(ft)

)(2,1)

2
+ µ

(
D2(f)

)
− 0− µAlt2 (f)

=
rank H0

(
D3(ft)

)(2,1)

2
+ rankH1

(
D2(ft)

)(2)
,

where H1

(
D2(ft)

)(2)
is the part of the homology that is �xed by the group Σ2, i.e., the

trivial isotype of Σ2. The last equality is due to the fact that there are only two irreducible
representations of Σ2, the alternating and the trivial one.

Example 4.4.17. For f : (C2, 0) → (C3, 0) as in Theorem 4.4.7, and taking k = 2 in
Equation (4.6),

β3(f)− µD(f) = rank H0

(
D3(ft)

)
− µ

(
D2(f)

)
− rank HAlt2

0

(
D3(ft)

)
= −µ

(
D2(f)

)
+ rank H0

(
D3(ft)

)(2)
,

following the same notation as above.

Note that the triple points of ft are strict in Examples 4.4.16 and 4.4.17, i.e., inD3(ft)
the points are the Σ3-orbit of (a, b, c) with a 6= b 6= c 6= a that come from transverse
triple points (recall Example 1.2.6). Say we have T triple points, then:
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rank H0

(
D3(ft)

)(2,1)
= 4T , as it is the complement of the alternating and trivial

isotype and both representations have dimension one4 (observe, also, that one can
apply the second part of Corollary A.2.10).

rank H0

(
D3(ft)

)(2)
= 3T , as it is the trivial isotype of Σ2 �xing the �rst entry (it

has elements of the form (a, b, c) + (a, c, b)).

rankHAlt
0

(
D3(ft)

)
= 3T , similarly as the previous case.

β3(f) = 6T , as it is simply counting the elements of the orbits.

In conclusion, we have the following results, which were obtained also by Houston with
similar invariants (see [Hou01, Theorems 2.7 and 2.8]).

Proposition 4.4.18. For f : (C2, 0)→ (C3, 0) A -�nite and being T the number of triple
points of a stable perturbation of f ,

µD(f) = µ
(
D2(f)

)
+ 3T.

Proof. If f has corank 1, we are done by Proposition 3.1.16 or Proposition 4.2.20. If
f does not have corank one, D2 has dimension one and D3 is zero dimensional, so the
homology is in middle dimension and the same argument can be applied. QED

Similarly:

Proposition 4.4.19. For f : (C3, 0) → (C4, 0) as in Theorem 4.4.7 and being Q the
number of quadruple points of a stable perturbation ft of f ,

µD(f) = 4Q+ µ(D2(f)) +
µ(D3(f))− µT3 (f) + µAlt3 (f)

2
,

where µT3 (f) := rank H1(D3(ft))
(3)

is the invariant homology by Σ3 and µAlt3 (f) is de�-
ned as in De�nition 4.2.19, i.e., the alternating homology by Σ3.

Proof. By Equation (4.6) for k = 1, we have that

µD(f)− µI(f) =
rank H(D3(ft))

(2,1)

2
+

rank H(D4(ft))
(2,1,1)

3

+ µ(D2(f))− 0− µAlt2 (f).

Now, observe that Σ3 has only three irreducible representations: the trivial representa-
tion, alternating representation and the (2, 1)-representation. With this in mind,

rank H(D3(ft))
(2,1)

2
=

rank H(D3(ft))− µT3 (f)− µAlt3 (f)

2
.

4The correct term is degree, see De�nition A.1.2.
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Finally, recall that µI(f) = µAlt2 (f) + µAlt3 (f) + µAlt4 (f) (see Propositions 3.1.16
and 4.2.20). Furthermore,

rank H(D4(ft))
(2,1,1)

3
= 3Q,

as we have a regular representation of Σ4 and we can apply the second part of Coro-
llary A.2.10, and

µAlt4 (f) = Q.

The result follows from here. QED

4.4.3. A useful relation

There is another relation between µI and µD. Let f : (Cn, S)→ (Cn+1, 0) be A -�nite
of corank one and let g : (Cn−1, S′) → (Cn, 0) be a transverse slice. By the Lê-Greuel
type formula (recall Theorems 4.3.1 and 4.3.3), we know that

µI(f) + µI(g) = #Σ(p|Zs) =
∑
Q

#Σ
(
p|Q(fs)

)
,

where p : Cn+1 → C is the generic projection which de�nes the transverse slice, Zs is the
image of a stable perturbation of f , Q runs trough all the stable types in the target and
Q(fs) denotes the points of fs in the target that are of stable type Q.

Using the same argument, we have that

µD(f) + µD(g) = #Σ(p ◦ fs) =
∑
QS

#Σ
(
(p ◦ fs)|QS(fs)

)
,

where now QS runs trough all the stable types in the source.
If a stable type in the source QS corresponds to Q in the target, the restriction

fs : QS(fs) → Q(fs) is a local di�eomorphism and is r-to-one, where r = r(Q) is the
number of branches of the stable type Q. Hence,

#Σ((p ◦ fs)|QS(fs)) = r(Q)#Σ(p|Q(fs)).

Therefore, if µI(ft) and µI(gt) are constant in a family, this implies that µD(ft) and
µD(gt) are also constant, by upper semi-continuity.

Proposition 4.4.20. Let f : (Cn, S) → (Cn+1, 0) be A -�nite of corank one and let
g : (Cn−1, S′) → (Cn, 0) be a transverse slice. If µI(ft) and µI(gt) are constant in a
family, then µD(ft) and µD(gt) are also constant.

The previous argument could make the reader think that, when we deal with Whitney
equisingularity, controlling the target is enough to control the source, or vice versa. This
idea is wrong in general. We take care of the details to control the target and the source
in Section 4.5, and the problem with the previous idea is that µD(g) is not what we need
(see Corollary 4.5.4 and Theorem 4.5.7). See also Example 4.5.8 for an example where
this idea fails.
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4.5. Whitney equisingularity

In [Gaf93], Ga�ney showed that a one-parameter family ft : (Cn, S) → (Cn+1, 0) is
Whitney equisingular if, and only if, it is excellent (in Ga�ney's sense) and all the polar
multiplicities in the source and target are constant on t. The problem is that, for each
d-dimensional stratum in the source or target, we need d + 1 invariants, so the total
number of invariants we need to control the Whitney equisingularity is huge.

In this section, we follow the approach of Teissier in [Tei82] for hypersurfaces with
isolated singularities or Ga�ney in [Gaf96] for icis to show that, in the corank one case,
Whitney equisingularity can be characterized in terms of the µ∗I(ft) and µ∗I(D

2(ft), π)
sequences, obtained by taking successive transverse slices of ft.

In Section 4.3, we already made use of the strati�cation S by stable types of the
image of a locally stable mapping f : X → Y between smooth manifolds X and Y with
dimX = n and dimY = n+ 1 and with only corank one singularities. Since each stable
type is determined by its Mather algebra Q, we can denote by Q(f) the stratum of points
y ∈ f(X) such that the multi-germ of f at y has type Q. Because f is stable, S is a
partial strati�cation of f in the sense of [GWdPL76, Proposition 3.1]. It follows that
we have an induced strati�cation S ′ on X, with strata QS(f) = f−1(Q(f)), such that
f : X → Y is a Thom strati�ed map.

Suppose, now, that we have an A -�nite germ f : (X,S) → (Cn+1, 0) of corank one,
where X is an n-dimensional icis. By the Mather-Ga�ney criterion for germs on icis,
Proposition 4.1.8, we can take a �nite representative f : X → Y , where Y is an open
neighbourhood of 0 in Cn+1 such that f−1(0) = S and f : X − S → Y − {0} is a locally
stable mapping. The strati�cation by stable types on f : X − S → Y − {0} extends to
f : X → Y just by adding S and {0} as strata in the source and target, respectively,
as in De�nition 1.3.10 and its following comments. By shrinking the representative if
necessary, we can always assume that f has no 0-stable singularities, so S and {0} are
in fact the only 0-dimensional strata.

Finally, we give a version of excellency, strati�cation by stable types and Whitney
equisingularity for unfoldings of germs on icis.

Let (X , π, F, j) be a one-parameter unfolding of (X, f) which is origin preserving
(that is, S ⊂ Xt and ft(S) = 0, for all t) so we can see the unfolding as a family of germs
ft : (Xt, S)→ (Cn+1, 0).

De�nition 4.5.1 (cf. De�nition 1.3.11). We say that (X , π, F, j) is excellent if there exist
a representative F : X → Y × U , where Y and T are open neighbourhoods of the origin
in Cn+1 and C respectively, such that for all t ∈ T , f−1

t (0) = S and ft : Xt−S → Y −{0}
is a locally stable mapping with no 0-stable singularities.

When the unfolding is excellent, F : X − S × {0} → (Y − {0})× T is also stable, so
we have a well de�ned strati�cation by stable types. This extends to F : X → Y ×T just
by adding S × T and {0}× T as strata in the source and target, respectively. These are,
in fact, the only 1-dimensional strata (cf. De�nition 1.3.10).
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De�nition 4.5.2 (cf. De�nition 1.3.13). We say that (X , π, F, j) is Whitney equisingular
if F : X → Y × T is a Thom strati�ed map with the strati�cation by stable types.

Now, we recall the de�nition of polar multiplicities, following Ga�ney in [Gaf93].

De�nition 4.5.3. Let f : (X,S) → (Cn+1, 0) be A -�nite of corank one. For each
stable type Q such that d = dimQ(f) > 0 and for each i = 0, . . . , d − 1, the ith-polar
multiplicities in the source and target are

mi(f,Q) = m0

(
Pi(Q(f))

)
, mi(f,QS) = m0

(
Pi(QS(f))

)
,

where the bar means the Zariski closure and Pi(Z) is the absolute polar variety of codi-
mension i of Z in the sense of Lê and Teissier in [TT81, p. 462].

The dth-stable multiplicities are

md(f,Q) = deg
(
π : Pd(Q(F ), π)→ (Cr, 0)

)
,

md(f,QS) = deg
(
π : Pd(QS(F ), π)→ (Cr, 0)

)
,

where, now, (X , π, F, j) is an r-parameter versal unfolding of (X, f) and Pd(Z, π) is the
relative polar variety of codimension d of a family π : Z → Cr (see [Tei82, Section IV.1]).

Finally, we denote by c(f) the number of all 0-stable singularities that appear in a
stable perturbation of (X, f).

It follows from the de�nition of relative polar variety that the top polar multiplicity
md(f,Q) is equal to the number of critical points of p|Q(fs), where p : Cn+1 → C is
a generic linear projection and (Xs, fs) is a stable perturbation of (X, f). Since the 0-
stable singularities are also critical points of p in the strati�ed sense, we get the following
reformulation of Theorem 4.3.1:

Corollary 4.5.4. For a corank 1 and A -�nite multi-germ f : (X,S)→ (Cn+1, 0), X an
icis of dimension dimX = n > 1, let p : Cn+1 → C be a generic linear projection which
de�nes a transverse slice g : (Y, S)→ (Cn, 0), where Y = X ∩ (p ◦ f)−1 (0). Then,

µI(X, f) + µI(Y, g) =
∑

dimQ(fs)=d>0

md(f,Q) + c(f).

Now, we de�ne the µ∗I and µ
∗
D-sequences of a corank one map germ.

De�nition 4.5.5. Consider f : (X,S) → (Cn+1, 0) A -�nite of corank one, with X an
icis of dimension dimX = n > 1. We take a generic �ag of vector subspaces

H(n−1) ⊂ · · · ⊂ H(1) ⊂ H(0) = Cn+1,

such that H(i) has codimension i. We put X(i) = X ∩ f−1
(
H(i)

)
and f(i) = f |X(i)

and

de�ne the µ∗I-sequence of (X, f), or f , as

µ∗I(X, f) :=
(
µI(X, f), µI

(
X(1), f(1)

)
, . . . , µI

(
X(n−1), f(n−1)

))
.

Sometimes we do not consider the top image Milnor number µI(X, f) in the µ∗I -sequence
and, then, we denote it by µ̃∗I(X, f).
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It is well-known that, by generic, we mean a suitable Zariski open in a convenient
space, and this de�nition does not depend on the generic �ag we are taking. The details
can be seen in [MNnB14, pp. 1380�1381].

In next lemma, we see that all polar multiplicities can be seen as top polar multipli-
cities of the corresponding transverse slices.

Lemma 4.5.6. With the hypothesis and notation of De�nition 4.5.5, suppose that Q is
a stable type such that dimQ(fs) = d > 0, for a stable perturbation (Xs, fs) of (X, f).
Then,

md−i
(
f(i),Q

)
= md−i (f,Q) , i = 1, . . . , d.

Proof. By induction, it is enough to prove that

md−i
(
f(1),Q

)
= md−i (f,Q) , i = 1, . . . , d.

To see this, we �rst observe that Q(f(1)) = Q(f) ∩H(1), so the equality for i = 2, . . . , d
follows directly from [TT81, Corollary 4.1.9].

For i = 1, we can see f as a stabilisation of f(1). If ` : Cn+1 → C is the linear form
such that H(1) = `−1(0), this means that f |`−1(t), with t 6= 0, is a stable perturbation

of f(1). In particular, md−1(f(1),Q) is the number of critical points of a generic linear

projection p : Cn+1 → C restricted to Q(f |`−1(t)) = Q(f) ∩ `−1(t). This number can be
also seen as

deg
(
` : Pd−1(Q(f), `)→ (C, 0)

)
, (4.7)

where Pd−1(Q(f), `) is the closure of the set of critical points of (p, `)|Q(f).

On the other hand,md−i (f,Q) = m0(Pd−1(Q(f))). Since Pd−1(Q(f)) is 1-dimensional
and ` is generic, this is equal to

deg
(
` : Pd−1(Q(f))→ (C, 0)

)
, (4.8)

where Pd−1(Q(f)) is again the closure of the set of critical points of (p, `)|Q(f). So, Equa-
tions (4.7) and (4.8) are equal. QED

We arrive to the main theorem, which characterises the Whitney equisingularity of a
family of map germs in terms of the µ∗I -sequences of ft and (D2(ft), π).

Theorem 4.5.7. Let ft : (Cn, S) → (Cn+1, 0) be a one-parameter family of A -�nite
corank one map germs. Then, the family is Whitney equisingular if, and only if, the
sequences µ∗I(ft) and µ̃∗I(D

2(ft), π) are constant on t.

Proof. Suppose that the sequences µ∗I(ft) and µ̃∗I(D
2(ft), π) are constant. First of

all, the constancy of µI(ft) implies that the family is excellent (see Theorem 3.2.3). In
fact, this holds not only for the family ft, but also for all families ft(i), i = 1, . . . , n− 1.

In particular, all the numbers of 0-stable singularities c(ft(i)) are constant (see [Gaf93,
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Proposition 3.6]). By Ga�ney's results in [Gaf93, Theorems 7.1 and 7.3], we need to proof
that all polar invariants in the source and target are constant.

By Lemma 4.5.6, the constancy of the polar multiplicities follows from the constancy
of the top polar multiplicities of all the transverse slices ft(i), with i = 1, . . . , n − 1.
Secondly, we apply recursively Corollary 4.5.4 on ft(i) for i = 0, . . . , n− 2. For any i, we
have

µI(ft(i)) + µI(ft(i+1)) =
∑

dimQ(ft(i))=d>0

md(ft(i),Q) + c(ft(i)).

The polar multiplicities md(ft(i),Q) are upper semi-continuous (see [Gaf93, Proposition

4.15]). Therefore, all md(ft(i),Q) must be constant.
For the polar multiplicities in the source, we follow the same argument, but this time

applied to the family (D2(ft), π). Observe that the polar multiplicities of ft(i) in the

source coincide with the polar multiplicities of (D2(ft(i)), π) in the target. Hence, we

need to study µ∗I(D
2(ft(i)), π). Moreover, it follows from Proposition 4.4.20 that

µD(ft) + µD(ft(1)) =
∑
QS

r(Q)#Σ(p|Q(fs)).

Since the right-hand side is constant, for all the members in the sum are either polar
multiplicities in the target or numbers of 0-stable invariants, so is the left-hand side.
Again, the upper semi-continuity of µD (see Corollary 4.1.13) implies that µD(ft) is
also constant. Hence, as µD(ft) = µI(D2(ft), π), it is enough to consider the reduced

sequence µ̃∗I(D
2(ft), π).

Finally, the converse is easy. If the family ft is Whitney equisingular, so are the fa-
milies ft(i), for i = 1, . . . , n− 1. By Thom's second isotopy lemma, they are topologically
trivial and, hence, their image Milnor numbers are constant (see Corollary 3.1.13 and
take into account that the family has to be good because it is Whitney equisingular).
Analogously, the family (D2(ft), π) must be also Whitney equisingular, which gives the

constancy of the sequence µ̃∗I(D
2(ft), π). QED

The following example shows that µ̃∗I(D
2(ft), π), or even µ∗I(D

2(ft), π), is not enough
to control Whitney equisingularity.

Example 4.5.8. Consider the one-parameter family ft : (C2, 0)→ (C3, 0) such that

ft(x, y) = (x, y4, x5y − 5x3y3 + 4xy5 + y6 + ty7).

This family is an example of topologically trivial family such that it is not Whitney
equisingular, which was shown in [RS19, Example 5.5].

In this example, we also have constancy of µ(D(ft)). Therefore, the source is Whitney
regular as D(ft) is a family of plane curves. In particular, all the multiplicities in the
source and µ∗I(D

2(ft), π) are constant. However, neither the polar multiplicities in the
target nor µ∗I(ft) are constant because the family is not Whitney equisingular (and by
Theorem 4.5.7).



82 CHAPTER 4. WHITNEY EQUISINGULARITY

As a corollary of Theorem 4.5.7, and closing the topic we have started with Exam-
ple 4.5.8, the Whitney equisingularity of a family ft : (C2, S) → (C3, 0) is controlled
by just two invariants in the target. In fact, in [MNnB14], it was shown that ft (of any
corank) is Whitney equisingular if, and only if, µ(D(ft)) and µ( im(ft(1))) are constant,
where µ is the usual Milnor number of a plane curve.

Corollary 4.5.9. Let ft : (C2, S)→ (C3, 0) be a one-parameter family of A -�nite corank
one map germs. Then, the family is Whitney equisingular if, and only if, µI(ft) and
µI(ft(1)) are constant on t.

The proof of Theorem 4.5.7 allows us to state a partial result when only the sequence
µ∗I(ft) is constant. We say that the family ft is Whitney equisingular in the target if there
exists a representative of the unfolding F : X → Y × T as in De�nition 4.5.2 such that
the strati�cation by stable types on Y × T is a Whitney strati�cation. Hence:

Proposition 4.5.10. Let ft : (Cn, S)→ (Cn+1, 0) be a one-parameter family of A -�nite
corank one map-germs. Then, the family is Whitney equisingular in the target if, and
only if, the sequence µ∗I(ft) is constant on t.



Chapter 5

Monodromies without �xed points

For ε ≤ ε0 the space Sε −K is a
smooth �ber bundle over S1, with
projection mapping
φ(z) = f(z)/|f(z)|.

John Milnor, Singular points of
complex hypersurfaces

[Mil68]

This chapter contains the results of the joint paper with Nuño-Ballesteros and Lê
D�ung Tràng, [GCTNB21].

The main result of these works proves that, in a general context, there is a geometric
local monodromy of a germ f : (X,x)→ (C, 0) without �xed points. This is a generali-
zation of a theorem of Lê D�ung Tràng in [Trá75], stated for a smooth source. Also, this
generalization was already stated in Tibar's PhD thesis (see [Tib92]) and in his paper
[Tib93]. We will see the technical details to prove this here (and in [GCTNB21]).

We also show some applications, for germs f : (X,x)→ (C, 0) where X has maximal
recti�ed homotopical depth at x in particular. To be more precise, we show that, given a
family of such functions with isolated critical points and constant total Milnor number,
the family has no coalescing of (non-trivial) singularities.

This last result was our original motivation, having in mind the setting of singularities
of map germs, as we explain in Section 5.1.

5.1. Motivation

Given a one-parameter family ft : (Cn, S) → (Cn+1), one of the conditions to be
excellent is having an isolated instability uniformly. This means that the instabilities do
not split or coalesce along the family. Also, we have seen in Theorem 3.2.3 that a corank
one unfolding that has constant image Milnor number is excellent. In addition, we have
seen in Theorem 3.1.7 that the image Milnor number is conservative, something that is

83
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Figure 5.1: Representations of the non-coalescing theorem for hypersurfaces with isolated
singularities: families of hypersurfaces (above) and their Milnor �bers (below).

expressed as

µI(f) = βn
(

im(ft)
)

+
∑

y∈im(ft)

µI(ft; y).

If we put these two results together, an obvious question arises.

Qf : If the total image Milnor number is constant, do the instabilities coalesce?

To be more precise, if we have an A -�nite germ f and we consider a one-parameter
unfolding given by ft, could

µI(f) =
∑

y∈im(ft)

µI(ft; y)

imply that, actually, µI(f) = µI(ft; yt)?
In other terms, taking into account the conservation of the image Milnor number, if

a family ft is not excellent because we do not have isolated instabilities uniformly, does
homology appear in the image? Equivalently, is βn

(
im(ft)

)
> 0?

Indeed, we know that this is true for hypersurfaces with isolated singularities and
their total Milnor number (see Figure 5.1). There is a proof of this non-coalescing result
using a theorem of A'Campo in [Trá73b, Theorems A and B], where Lê D�ung Tràng
uses an argument that involves the local geometric monodromy of the complex functions
de�ning the hypersurfaces.

On the other hand, we can de�ne a local geometric monodromy using a stabilisation
of an A -�nite germ and the projection to the parameter space. More precisely, if we have
an A -�nite germ f and a stabilisation F = (fs, s), the disentanglement of f coincides
with the generic �ber π−1(s) of the projection

π : im(F )→ C
(y, t) 7→ t
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This led Nuño-Ballesteros and the author to work on a generalization of the proof for
hypersurfaces, together with Lê D�ung Tràng, to see if a general context includes images
of germs in a convenient way.

QX: If the total Milnor number is constant along a family X = {(Xt, t)}t, do the
singularities coalesce?

Unfortunately, as we will see in Example 5.7.3, this general proof does not apply for
our desired and evasive disentanglements.

5.2. Local monodromy

The adjective local in local monodromy makes reference to the Milnor-Lê �bration
of a germ f : (X,x) → (C, 0), where we can take a monodromy. In this section, we
introduce these two concepts: Milnor-Lê �bration and monodromy.

5.2.1. Milnor-Lê �brations

The well-known �bration theorem of Milnor, see [Mil68, Theorem 4.8], states that,
for any non-constant germ f : (Cn+1, x) → (C, 0), one can associate a smooth locally
trivial �bration

ϕε : Sε(x)− f−1(0) −→ S1,

for 1 � ε > 0, induced by f/ |f |, where Sε(x) is the sphere centered at x with radius
ε and S1 is the circle of radius 1 of C centered at the origin. This is usually called the
Milnor �bration.

Milnor also showed in [Mil68, Theorem 5.11] that the �bers of ϕε are di�eomorphic
to B̊ε(x)∩ f−1(c), for 1� |c| > 0. Indeed, it is implicit in [Mil68, Section 11] that, when
we have isolated critical point, the �bration given by

ψε,η : B̊ε(x) ∩ f−1
(
D̊η − {0}

)
−→ D̊η − {0}

is isomorphic to the Milnor �bration on S1, where B̊ε(x) is the open ball centered at the
point x with radius ε. This fact was also re�ected in his work in [Mil66].

Milnor's work was extended by Hamm in [Ham71], for germs f : (X,x) → (C, 0)
de�ned on a smooth X such that X − f−1(0) is non-singular.

Another milestone was [Trá77, Theorem 1.1], where Lê D�ung Tràng proved that,
given a map germ f : (X,x)→ (C, 0) where X is analytic, the mapping

ψ̃ε,η : B̊ε(x) ∩X ∩ f−1
(
D̊η − {0}

)
−→ D̊η − {0}

induced by f is a topological �bration (proved equivalent to the Milnor �bration by
Cisneros-Molina, Seade and Snoussi in [CMSS09]). After this theorem, the last �bration
is usually called Milnor-Lê �bration.
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This topic has been a very fruitful area of research, the reader is refereed to [Sea19] or
[CMTS20, Chapter 6] to see more information about these kind of �brations and related
research.

5.2.2. Construction of the monodromy

Every time we have a �ber bundle over S1 we should think about its monodromy
because it provides useful information of the �bration, and the ones above are not an
exception. More precisely, they lead to a notion of monodromy associated to f at x.

We introduce the construction of a geometric monodromy in three di�erent ways, but
the reader should pay special attention to the last one because it is the one we use later.

Method I: Local triviality of a �bration

Roughly speaking, if we have a �ber bundle ϕ : X → S1, we can build a geome-
tric monodromy by taking the �ber F := ϕ−1(x0) to give a loop around S1. This is
mathematically materialized with the following steps:

1. Consider a point x0 in S1 and a neighbourhood I0 of x0 where the �bration ϕ is
trivial. Then, take a point x1 6= x0 in I0.

2. As there is a di�eomorphism ψ where ϕ−1(I0) F × I0
ψ
∼ , the map

h̃x0,x1 : F × {x0} −→ F × {x1}
(z, x0) 7−→ (z, x1)

can be pushed to the total space X, giving hx0,x1
:= ψ−1◦h̃x0,x1 ◦ψ (see Figure 5.2).

Figure 5.2: Representation of the �rst two steps.
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3. We can repeat this process starting with xi and picking a point xi+1 in a neigh-
bourhood of xi, always in the same direction. This gives the mappings hxi,xi+1 in
X.

4. As S1 is compact, the neighbourhoods can be taken in such a way that eventually we
reach an interval In that contains the point x0. Then, as one can see in Figure 5.3,
we can consider xn+1 = x0 and a geometric monodromy h is the composition

h := hxn,x0 ◦ · · · ◦ hx0,x1 .

Figure 5.3: Representation of the last two steps

Method II: Di�erence between the product and the �bration

As we were saying, the monodromy furnishes a lot of information of a locally trivial
�bration. Indeed, if we have a �ber bundle ϕ : X → S1 with �ber F := ϕ−1(x0), it
is a geometric monodromy what measures the di�erence between X and F × S1: ϕ is
C0-equivalent to the �bration

π̃ : F×I/∼ −→ S1,

with I = [0, 2π] and the relation (x, 0) ∼
(
h(x), 2π

)
for some homeomorphism h and

π̃
(
[x, t]

)
= t. So, in fact, we can take as de�nition of geometric monodromy a homeo-

morphism h that appears in this setting.

Method III: Vector �elds

Finally, let ϕ : X → S1 be a proper strati�ed submersion. In particular, it is a locally
trivial �bration such that the trivialisations are strati�ed homeomorphisms. One can
build on X a strati�ed vector �eld v which lifts the unit vector �eld tangent to S1 (we
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will discuss how at the end of Section 5.4). The integration of this vector �eld de�nes
an homeomorphism h : F → F of a �ber F := ϕ−1(x0) of ϕ onto itself that we call a
geometric monodromy of ϕ.

A geometric monodromy is not uniquely de�ned, but one can prove that its isotopy
class is unique. Therefore, there is an isomorphism induced by a geometric monodromy
of ϕ on the homology (or cohomology) of the �ber F called the monodromy of ϕ.

In the case of the Milnor-Lê �bration one often uses the terminology of local geometric
monodromy and local monodromy of f at the point x.

We turn, now, to the importance of the monodromy of a �ber bundle.
In [Trá75], Lê D�ung Tràng gave a proof of the fact that, for any germ of complex

analytic function
f : (Cn+1, x)→ (C, 0)

having a critical point at x, there is a local geometric monodromy of f at x without �xed
points.

By a well-known theorem of Lefschetz (see, for example, [Hat02, p. 179]), this result
implies that the local monodromy of f at x has Lefschetz number equal to 0. In fact, in
[A'C73, Theorem 1 bis], A'Campo showed that the Lefschetz number is zero in a more
general situation, with heavy mathematical machinery, and attributed the proof of this
theorem to Deligne. Having Lefschetz number equal to zero leads to interesting proper-
ties, as we will see in Section 5.8.

Let (X,x) be any germ of complex analytic space. Here, we give the following gene-
ralization of Lê's theorem:

Theorem 5.2.1. Let f : (X,x) → (C, 0) be a germ of complex analytic function such
that f ∈ m2

X,x. Then, there is a local geometric monodromy of f at x which does not �x
any point.

In particular, this proves:

Theorem 5.2.2 (see [A'C73, Theorem 1 bis]). Let f : (X,x) → (C, 0) be a germ of
complex analytic function such that f ∈ m2

X,x. Then, the local monodromy of f at x has
Lefschetz number equal to 0.

As in [Trá75], the proof of Theorem 5.2.1 uses the notion of relative polar curve, which
is due essentially to Thom. The �rst step, when X = Cn+1, is choosing a su�ciently small
open neighbourhood U of x. For almost all linear function ` : Cn+1 → C, one has that the
critical space of the restriction (`, f)|U−f−1(0) is either always empty or a non-singular
curve. When it is non-empty, we call the closure of the critical space of (`, f)|U−f−1(0)

the relative polar curve Γ`(f, x) of f at x with respect to `.
The remarkable property of the relative polar curve is that, when f has a critical point

at x, its image by (`, f)|U is empty or a curve that Thom called the Cerf's diagram, which
is tangent to the axis of values of ` (see for example [TNBS20, Proposition 6.6.5]).
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We show in Section 5.3 how to adapt this construction to the case that X is singular
at x by taking a Whitney strati�cation. In addition, the condition that f ∈ m2

X,x is used
here in order to prove that the Cerf's diagram is tangent to the `-axis, replacing the
hypothesis for the smooth case of having a critical point at x.

5.3. Relative polar curves

Let f : (X,x) → (C, 0) be the germ of a complex analytic function. We still call
f : X → C a representative of this germ. Let S = (Sα)α∈A be a Whitney strati�cation
of a su�ciently small representative X of (X,x) such that x is in the closure Sα of all
the strata Sα and the set of indices A is �nite.

Using [TN17, Lemma 21], one can prove that there is a non-empty open Zariski subset
Ωα of the a�ne functions such that, for every ` in Ωα, `(x) = 0 and the critical locus Cα
of the restriction (`, f)|Sα−f−1(0) is either always empty or a non-singular curve. Then,
the closure Γα of Cα in X is either empty or a reduced curve (see Figure 5.4).

Figure 5.4: The polar curve appears wherever the gradients of f and ` are colinear.

De�nition 5.3.1. For ` ∈ ∩α∈AΩα, the union ∪α∈AΓα is either empty or a reduced
curve. This curve is called the relative polar curve Γ`(f,S, x) of f at x relatively to ` and
the strati�cation S of X.

Remark 5.3.2. Notice that, if the stratum Sα has dimension one, the whole stratum
Sα is critical and Γα is the closure Sα. In this case, if Sα is connected, Γα is a branch of
the curve Γ`(f,S, x) at x, i.e., an analytically irreducible curve at x.

Using [TN17, Lemma 21], we can also show that one can choose the sets Ωα such
that the restriction (`, f)|Γα is �nite for any α ∈ A. Then, a theorem of Remmert implies
that the image of Γα by (`, f) is a curve, ∆α, for any α ∈ A (see, for example, [BBH+98,
p. 5]).
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De�nition 5.3.3. The union ∪α∈A∆α is either empty or a reduced curve. This curve is
called the Cerf's diagram ∆`(f,S, x) of f at x relatively to ` and the strati�cation S.

Note. When the strati�cation S is �xed, we shall speak of the relative polar curve Γ`(f, x)
and the Cerf's diagram1 ∆`(f, x) without mentioning the strati�cation S. But the reader
must be aware that the notion of polar curve and Cerf's diagram depends on the choice
of the strati�cation.

We shall go back and forth between the case (Cn+1, x) and the general case of germs of
reduced analytic spaces (X,x) and compare them to generalize what we have in [Trá75].
For example, if (X,x) = (Cn+1, x), we can consider a Whitney strati�cation which has
only one stratum.

In [Trá75, p. 418], we have seen that the emptiness of Γ`(f, x) means that the Milnor
�ber of f at x is di�eomorphic to the product of the Milnor �ber of f |{`=0} at x with an
open disc, hence, the local geometric monodromy of f at x is induced by the product of
the local geometric monodromy of f |{`=0} at x and the identity of the open disc.

Also, for a germ of complex analytic function f : (X,x) → (C, 0), in general, we
may suppose that the hyperplane {` = 0} is transverse to all the strata of the Whitney
strati�cation S and it induces a Whitney strati�cation on X ∩ {` = 0}. Then, using the
same arguments of [TN17, Remark 24], we can prove the following:

Proposition 5.3.4. If, for a general linear form ` at x, the relative polar curve Γ`(f, x)
is empty, there is a strati�ed homeomorphism between the Milnor �ber of f at x and the
product of an open disc with the Milnor �ber of the restriction f |X∩{`=0} at x.

The proof of this proposition is based on the techniques Mather used to prove the
Thom-Mather �rst isotopy lemma, see [Mat12, GWdPL76]. We will outline these techni-
ques in Section 5.4 and use them later.

Now, observe that, when (X,x) = (Cn+1, x), the point x is a critical point of f if and
only if f ∈ m2

Cn+1,x. In the case of a germ of complex analytic function on (X,x), the

hypothesis f ∈ m2
X,x replaces the condition that f is critical at x. In fact, a key result

for the proof of Theorem 5.2.1 is:

Proposition 5.3.5. For a su�ciently general linear form `, if f ∈ m2
X,x, the Cerf 's

diagram ∆`(f, x) is tangent at the point (0, 0) to the �rst axis, the image by (`, f) of
{f = 0}.

Proof. Of course, we have a Whitney strati�cation S = (Sα)α∈A on a su�ciently
small representative of the germ (X,x). We may assume that x is in the closure of all
the strata.

It is enough to prove the proposition for the image ∆α of Γα by (`, f), for each α ∈ A.
In [Trá75, Section 2], it was considered that ` is a coordinate of Cn+1 to compare

easily the growth of f and ` along a component of the Cerf's diagram. We are going to

1Observe that the notation used for the Cerf's diagram is not the same notation we use for the
discriminant of a map.
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give a similar proof for the (Cn+1, x) case for any general linear form, and generalize it
twice to reach our current context.

Suppose that (X,x) = (Cn+1, x), for our purpose ` can be expressed as

`(v) = 〈v, a〉 =
n+1∑
i=1

viai,

and we can assume that ‖a‖ = 1. Let us de�ne H as the kernel of ` and, then, any vector
of Cn+1 can be written as a sum of a vector of H and a multiple of the vector a (note
that a is the unitary normal of H).

Now, we can take a parametrization p(t) of Γα and compare the growths of f and `
there. Using De l'Hôpital's rule and identifying ` with its di�erential we have

lim
t→0

(f ◦ p) (t)(
` ◦ p

)
(t)

= lim
t→0

(f ◦ p)′ (t)
(` ◦ p)′ (t)

= lim
t→0

Dp(t)f
(
p′(t)

)
`
(
p′(t)

) .

Furthermore, we can decompose p′(t) as the sum of a vector of H, say p′H(t), and λa,
hence,

lim
t→0

Dp(t)f
(
p′(t)

)
`
(
p′(t)

) = lim
t→0

Dp(t)f
(
p′H(t)

)
+ λDp(t)f(a)

`
(
p′H(t)

)
+ λ`(a)

.

Finally, we know that Df and ` are colinear along p(t), and we have assumed `(a) =
‖a‖ = 1, therefore

lim
t→0

Dp(t)f
(
p′H(t)

)
+ λDp(t)f(a)

`
(
p′H(t)

)
+ λ`(a)

= lim
t→0

Dp(t)f (a)

`(a)

= Dxf(a).

At this point, we see where the condition of f ∈ m2
X,x appears, because this last term

is zero in that case. This proves the tangency of the statement in this context.

If we want the same result on (X,x) ⊂ (CN , x), (X,x) regular at x, the main problem
is that ` is de�ned in X, and we cannot work with such a vector a and space H. What
we can do is to extend ` to the ambient space and work on the tangent bundle of X.
Hence, we can choose a linear function L : CN → C such that L|X = ` and H ′ as the
kernel of L. By genericity, TxX is not contained in H ′ so H ′ ∩ TxX is a hyperplane of
TxX, say H. This happens, nearby x, for every tangent space along a parametrization
of Γα (in this case there is only one stratum), so we can reproduce the computations we
did before.

Lastly, if (X,x) is general, we can still extend ` but we cannot work with the tangent
bundle of X any more (e.g., if (X,x) is a Whitney umbrella at x even x is a stratum
by itself). To avoid this complication, we shall �nd a convenient hyperplane of CN for
the role of H ′ and, then, work with the extension of f when needed. From now on, we
will work with a stratum Sα, or its adherence, but for the sake of the similarity with the
previous cases we will call Y the closure Sα.
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Therefore, our �rst step is to �nd an hyperplane to work with. For this purpose,
consider the (projective) conormal space C(Y ) of Y in CN , this is given by the closure
in Y × P̌N−1 of the space{

(q,H ′) | (q,H ′) ∈ Y reg × P̌N−1 : TqY
reg ⊂ H ′

}
,

together with the conormal map ν : C(Y )→ Y . It is a classical fact (see [Tei82, II.4.1])
that dim ν−1(x) ≤ N−2 or, being more speci�c, there is a hyperplane H ′ outside ν−1(x)
and, by continuity, outside every �ber of ν over a neighbourhood of x in Y .

Therefore, consider a linear form L : CN → C with such a hyperplane H ′ as kernel
and de�ne ` to be L|Y . Furthermore, since f ∈ m2

Y,x, we can take an extension F :

(CN , x)→ (C, 0) of f , such that F ∈ m2
CN ,x.

Finally, as we have done before, consider a parametrization p(t) of a branch of Γα and
compare the growths of f

(
p(t)

)
and `

(
p(t)

)
. To do so, de�ne at to be the unitary normal

of the hyperplane Ht := H ′ ∩ Tp(t)Y in Tp(t)Y , well de�ned by the previous election of
H ′, and let a0 be its limit. We can, now, proceed as before and �nish the computation
with F , i.e.,

lim
t→0

(f ◦ p)(t)
(` ◦ p)(t)

= lim
t→0

Dp(t)f(at)

= lim
t→0

Dp(t)F (at)

= DxF (a0)

= 0.

Note that the election of H ′, for Sα, was made in an open set. Since we have only a
�nite number of strata to which x is adherent, we can take a common H ′ for every Sα
and repeat the computation. QED

Note. The proof of this result is not-
hing more than a technical and proper way
of expressing a simple idea: considering that
D(`, f) = (∇`,∇f)T , the images of D(`, f)
take always the form (r, ∗) and the limit over
the points on a (branch of a) polar curve Γα,
which was parametrized by p(t) in the proof,
has image (r, 0).

Observe that, in the case of a general (X,x), one has to take ` generic enough to
assure that the argument works. In other words, the generic ` that gave the de�nition
of relative polar curve in De�nition 5.3.1 could be not generic enough. This is where the
conormal space C(Y ) plays its role.

Associated with the Cerf's diagram we have the carousel (see Figure 5.5), a construc-
tion which again appears in [Trá75, p. 418]. This is a vector �eld ω over a small enough
solid torus D × ∂Dη centered at the origin in C× C such that:
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(i) its projection onto the second component gives a tangent vector �eld over ∂Dη of
length η and positive direction (called in [Trá75] the unitary vector �eld of ∂Dη),

(ii) its restriction to {0} × ∂Dη is indeed the unitary vector �eld,

(iii) for every component of the Cerf's diagram with reduced equation δα = 0, ω is
tangent to every δα = ε with ε ∈ C small enough, and

(iv) the only integral curve that is closed after a loop in ∂Dη is {0} × ∂Dη.

Figure 5.5: Representation of a carousel ω.

We have a carousel ω by Proposition 5.3.5 and Lemma 5.7.1, and we can use tech-
niques of strati�cation theory to lift ω and obtain a strati�ed vector �eld on X which
is globally integrable. As the carousel projects to a unit vector �eld tangent to S1 by
Item (i), the integral curves of this vector �eld de�ne a local geometric monodromy of
f at x and of its restriction to X ∩ {` = 0} (recall Method III to construct a geometric
monodromy). By the condition given in Item (iv), the �xed points of the monodromy
of f can appear only on X ∩ {` = 0}. Thus, the proof of Theorem 5.2.1 will follow by
induction on the dimension of X at x (see Figure 5.6).

We cover the techniques to lift ω in the next section.

5.4. Lifting vector �elds

The construction of the Milnor-Lê �bration of a complex analytic function f : (X,x)→
(C, 0) when X is a complex analytic space is a consequence of the Thom-Mather �rst iso-
topy lemma. The strategy to prove Theorem 5.2.1 is to take a generic linear form ` on the
ambient space of (X,x) and consider the map Φ = (`, f) : (X,x)→ (C2, 0). We want to
trivialize this map in such a way that its composition with the projection onto the second
component π2 : (C2, 0) → (C, 0) gives the Milnor-Lê �bration of f and its restriction to(
X∩`−1(0), x

)
gives the Milnor-Lê �bration of the restriction f :

(
X∩`−1(0), x

)
→ (C, 0).

This would allow us to use an induction process, as in [Trá75].
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Figure 5.6: Ingredients of the proof of Theorem 5.2.1.

One could think that this could be done just by using the Thom-Mather second
isotopy lemma. Unfortunately, this seems not possible and we are forced to use some of
the ingredients in the proof of the isotopy lemmas, such as controlled tube systems or
controlled strati�ed vector �elds, in order to construct a lifting of the vector �eld which
�ts into our problem.

For the sake of completeness, we include in this section all the de�nitions and main
results that we need for that purpose. However, the impatient2 reader can jump to De�-
nition 5.4.9 to understand Corollary 5.4.13, which is what we actually need.

Instead of the original proof of the isotopy lemmas by Mather in [Mat12], we follow
the notations and statements of [GWdPL76, Chapter II], where the reader can �nd more
details and the proofs of all the results.

We recall that a strati�ed vector �eld on a strati�ed set X of a smooth manifold N is
a map ξ : X → TN tangent to each stratum Sα of X and smooth on Sα, but ξ might not
be continuous. We now give the de�nitions of weakly controlled tube system and weakly
controlled strati�ed vector �eld.

De�nition 5.4.1 (see [GWdPL76, De�nition II.1.4]). If X is a submanifold of N , a
tube at X is a quadruple T = (E, π, ρ, e) where π : E → X is a smooth vector bundle,
ρ : E → R is a quadratic function of a Riemann metric on E that vanishes on the
zero section and e :

(
E, ζ(X)

)
→ (N,X) a germ along ζ(X) of a local di�eomorphism,

commuting with the zero section ζ : X → E so that e◦ζ along X is the inclusion X ⊂ N .

If X is a Whitney strati�ed subset of a manifold N , a tube system for the strati�cation
consists of a tube for every strata.

2And sane.
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De�nition 5.4.2 (see [GWdPL76, De�nition II.2.5]). A tube system T = {Tα}α∈A,
with Tα = (Eα, πα, ρα, eα), for a Whitney strati�cation {Sα}α∈A of some subset X of a
manifold N is weakly controlled if the relation(

πα ◦ e−1
α

)
◦
(
πα′ ◦ e−1

α′
)

=
(
πα ◦ e−1

α

)
, α, α′ ∈ A,

holds for every pair of tubes (Tα, Tα′) where the composition makes sense.

Remark 5.4.3. The notion of weakly controlled tube system for a strati�cation is not
a strange thing to ask. Actually, any given Whitney strati�cation admits a weakly con-
trolled tube system (see [GWdPL76, Corollary II.2.7]).

De�nition 5.4.4 (see [GWdPL76, De�nition II.3.1]). If we have a tube system for a
Whitney strati�cation of X and ξ is a strati�ed vector �eld on X, we shall say that ξ is
a weakly controlled vector �eld if

D
(
πα ◦ e−1

α

)
◦ ξ = ξ ◦

(
πα ◦ e−1

α

)
holds for every tube, using the notation of De�nition 5.4.2.

Next, we give the control conditions relative to a strati�ed mapping (recall De�ni-
tion 1.3.6).

De�nition 5.4.5 (see [GWdPL76, De�nition II.2.5]). Let f : N → N ′ be a smooth map
and X ⊂ N and X ′ ⊂ N ′ two strati�ed sets such that f(X) ⊂ X ′ and the induced map
f | : X → X ′ is a strati�ed map. Assume also that we have a tube system T = {Tα}α∈A
for the strati�cation {Sα}α∈A of X and a tube system T ′ = {T ′β}β∈B for the strati�cation
{S′β}β∈B of X ′. Then, we say that T is controlled over T ′ if

(i) T is weakly controlled,

(ii) f ◦
(
πα ◦ e−1

α

)
=
(
πβ ◦ e−1

β

)
◦ f , for every Sα mapping into S′β , and

(iii)
(
ρα ◦ e−1

α

)
◦
(
πα′ ◦ e−1

α′
)

=
(
ρα ◦ e−1

α

)
holds for every pair (Tα, Tα′) such that

f(Sα ∪ Sα′) ⊆ S′β for some S′β in X ′.

In fact, the Thom condition (see De�nition 1.3.7) ensures the existence of a controlled
tube system as follows:

Theorem 5.4.6 (see [GWdPL76, Theorem II.2.6]). Let N,N ′, X,X ′, f as in De�ni-
tion 5.4.5 and assume f | : X → X ′ is a Thom map. Then, each weakly controlled tube
system T ′ of X ′ has a tube system T of X controlled over T ′.

We also have control conditions relative to a strati�ed mapping for strati�ed vector
�elds.

De�nition 5.4.7 (see [GWdPL76, De�nition II.3.1]). Let X,X ′, T , and T ′ be as in
De�nition 5.4.5. Assume that we have ξ and ξ′ strati�ed vector �elds on X and X ′,
respectively. Then, we say that ξ is controlled over ξ′ if
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(i) ξ is weakly controlled,

(ii) D
(
ρα ◦ e−1

α

)
◦ ξ = 0 holds for every Tα, and

(iii) D
(
ρα ◦ e−1

α

)
◦ ξ|f−1S′β

= 0 for every Sα mapping into S′β .

Again, the Thom condition is the key point to lift any weakly controlled vector �eld
in the target to a controlled vector �eld in the source:

Theorem 5.4.8 (see [GWdPL76, Theorem II.3.2]). Let N,N ′, X,X ′, f as in De�ni-
tion 5.4.5 and assume f | : X → X ′ is a Thom map. Let T and T ′ be tube systems of
the strati�cations of X and X ′, respectively, such that T is controlled over T ′. Then, any
weakly controlled vector �eld ξ′ on X ′ lifts to a strati�ed vector �eld ξ which is controlled
over ξ′.

The last ingredient is about integrability of strati�ed vector �elds. Speci�cally, if we
have a strati�ed vector �eld ξ on X and we integrate it on every stratum Sα we have a
smooth �ow θα : Dα → Sα, where Dα ⊆ R×Sα is the maximal domain of the integration,
which contains {0}×Sα. Setting D as the union of every Dα, we obtain a map θ : D → X
that is not necessarily continuous.

De�nition 5.4.9 (see [GWdPL76, De�nition II.4.3]). With the notation of the above
paragraph, if θ is continuous on a neighbourhood of {0} × X we say that ξ is locally
integrable. Furthermore, if D = R×X, we say that ξ is globally integrable.

It is here where the control conditions over the vector �elds play their role:

Theorem 5.4.10 (see [GWdPL76, Theorem II.4.6]). Let N,N ′, X,X ′, f as in De�ni-
tion 5.4.5. Assume also that X is locally closed in N . If ξ and ξ′ are strati�ed vector
�elds on X and X ′, respectively, and ξ is controlled over ξ′ with respect to some tube
system T of X, then ξ is locally integrable if ξ′ is so.

Theorem 5.4.11 (see [GWdPL76, Lemma II.4.8]). Let N,N ′, X,X ′, f as in De�ni-
tion 5.4.5. Assume also f | : X → X ′ is proper. If ξ and ξ′ are strati�ed vector �elds on
X and X ′, respectively, and ξ is locally integrable, then ξ is globally integrable if ξ′ is so.

So, to summarize, if we combine Theorems 5.4.6, 5.4.8, 5.4.10 and 5.4.11 we get:

Corollary 5.4.12. Let N,N ′, X,X ′, f as in De�nition 5.4.5 and assume f | : X → X ′ is
a Thom proper map. If we have a weakly controlled tube system with a weakly controlled
vector �eld ξ′ on X ′ such that it is globally integrable, it lifts to a globally integrable vector
�eld on X.

Corollary 5.4.13. Let f : N → N ′ a smooth map and let X ⊂ N be a Whitney strati�ed
subset such that f | : X → N ′ is a proper strati�ed submersion. If ξ′ is a globally integrable
smooth vector �eld on N ′, it lifts to a globally integrable vector �eld on X.
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Corollary 5.4.13 is a consequence of Corollary 5.4.12 since the Thom condition is
satis�ed in this case (see [GWdPL76, Corollary II.3.3]). We also remark that these two
corollaries, among other things, are used in [GWdPL76] to prove the Thom-Mather iso-
topy lemmas.

Finally, we show how Corollary 5.4.13 can be used to construct a local geometric
monodromy of a function as we said in Method III.

Recall that, given a complex analytic function f : (X,x) → (C, 0), there exist ε and
η with 0 < η � ε� 1 such that

f : X ∩Bε ∩ f−1(∂Dη)→ ∂Dη (5.1)

is a proper strati�ed submersion, for some Whitney strati�cation on the source and the
trivial strati�cation on ∂Dη (see the proof of [Trá77, Theorem 1.1]). By the Thom-Mather
�rst isotopy lemma, Equation (5.1) is a locally trivial C0-�bration with �ber F .

In fact, we have something more: we take on ∂Dη the vector �eld of constant length
η and positive direction and, by Corollary 5.4.13, this vector �eld can be lifted to a
strati�ed vector �eld ξ on the source, which is globally integrable, and its �ow gives a
geometric monodromy.

In the next section, we show that, instead of a Euclidean ball Bε, we can take a conve-
nient polydisc, which is better to proceed with the induction hypothesis we announced at
the end of Section 5.3. Furthermore, we will see in Section 5.6 that Φ = (`, f) is a Thom
map, so we can factorize the lifting of the vector �eld on ∂Dη by Φ (recall Figure 5.6).

5.5. Privileged polydiscs

In [Trá75], instead of a usual Milnor ball B for a function f : (Cn+1, x) → (C, 0), it
is considered a privileged polydisc ∆ = D1 × · · · × Dn+1 with respect to some generic
choice of coordinates z1, . . . , zn+1 in Cn+1. Here, we show how to adapt this notion to
the case of a function f : (X,x)→ (C, 0) on a complex analytic set X.

Assume that dim(X,x) = n + 1 and that (X,x) is embedded in (CN , 0). We take
a representative f : X → C and a Whitney strati�cation in X and C such that f :
X → C is a strati�ed function. We say that z1, . . . , zN are generic coordinates if, for each
i = 0, . . . , n, the (N − i)-plane H i through the origin given by {z1 = · · · = zi = 0} is
transverse to all the strata of X except, perhaps, the stratum {x}.

We consider the set Xi = πi(X∩H i) ⊂ CN−i, where πi is the projection onto the last
N − i coordinates, with the induced strati�cation and the function f i : Xi → C given by

f i(zi+1, . . . , zN ) = f(0, . . . , 0, zi+1, . . . , zN ).

A polydisc centered at 0 in CN is a set of the form ∆ = D1 × · · · ×Dn × B, where
D1, . . . , Dn ⊂ C are discs and B ⊂ CN−n is a ball centered at x. We also denote by
∆i = Di+1 × · · · × Dn × B the corresponding polydisc in CN−i. Each polydisc ∆i is
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considered with the obvious Whitney strati�cation given by taking all combinations of
products of interiors and boundaries on the discs and the ball (see [Trá75, p. 411]).

Observe that a polydisc has a ball in the product of its de�nition. This ball is necessary
to have control on the codimension of X. More precisely, as we will work with the sets
Xi and Xi ∩∆i, we need to stop taking sections as soon as Xi is a curve and, at that
point, we take a ball that completes the product structure we want to �nd (the so-called
polydiscs).

De�nition 5.5.1. We say that ∆ is a privileged polydisc if, for any smaller polydisc
∆′ ⊂ ∆ centered at 0 in CN , all the strata of (∆′)i are transverse to all the strata of Xi,
for all i = 0, . . . , n.

For each privileged polydisc ∆, Xi ∩ ∆i has an induced Whitney strati�cation by
transversality. Also, the function f i : Xi ∩ ∆i → C has isolated critical value at the
origin in C by the curve selection lemma, so (f i)−1(b) is transverse to all the strata of
Xi ∩∆i for all b ∈ C∗ small enough. In particular, there exists η > 0 small enough such
that

f i : Xi ∩∆i ∩ (f i)−1(∂Dη) −→ ∂Dη

is a proper strati�ed submersion and, hence, a locally C0-trivial �bration homotopic
to a Milnor �bration with a homotopy which preserves the �bres. This follows from the
Thom-Mather �rst isotopy lemma and that privileged polydiscs are good neighbourhoods
relatively to {f = 0} in Prill's sense (see [Pri67]), see the end of [Trá75, Section 1] for
more details. In fact, this is the original de�nition of privileged polydisc in [Trá75] in the
case X = Cn+1.

The existence of privileged polydiscs is proved in the next lemma.

Lemma 5.5.2. Any small enough polydisc is privileged.

Proof. We show, by induction on i = 0, . . . , n, that f i has a privileged polydisc ∆i.
The case i = n is obvious since a privileged polydisc is nothing but a Milnor ball.

Assume f i has a privileged polydisc ∆i. We shall �nd a disc Dε such that Dε × ∆i is
a privileged polydisc for f i−1. To �nd it, we use the function ρ : CN−i+1 → R given by
ρ(z) = |zi|.

By the curve selection lemma, we can �nd ε > 0 such that, for any 0 < ε′ ≤ ε,
∂Dε′ × CN−i is transverse to each stratum of Xi−1.

Consider the polydisc Dε′ ×
(
∆i
)′
, for a polydisc

(
∆i
)′

contained in ∆i and ε′ ≤ ε.

We have two types of strata: D̊ε′ ×Rα and ∂Dε′ ×Rα, for some stratum Rα of
(
∆i
)′
. On

the other hand, if we consider a stratum Sβ of Xi−1, and we take the hyperplane section
to get Xi, it gives the stratum S′β of Xi.

By induction hypothesis, Rα is transverse to S′β , that is,

TzRα + TzS
′
β = CN−i, (5.2)

for all z ∈ Rα ∩ S′β . This obviously implies that

C× TzRα + T(t,z)Sβ = C× CN−i,
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which gives the transversality between D̊ε′ ×Rα and Sβ at (t, z).
Moreover, the choice of ε implies that

Tt∂Dε′ × CN−i + T(t,z)Sβ = C× CN−i,

for all (t, z) ∈ (∂Dε′ × CN−i) ∩ (V × Sβ). Therefore, any vector (u, v) ∈ C × CN−i
can be written as (u, v) = (u1, v1) + (u2, v2), for some (u1, v1) ∈ Tt∂Dε′ × CN−i and
(u2, v2) ∈ T(t,z)Sβ . If z ∈ Rα, we also have, by Equation (5.2), that the previous v1 can
be written as w1 + w2, with w1 ∈ TzRα and w2 ∈ TzS′β . We get

(u, v) = (u1, w1) + (0, w2) + (u2, v2),

with (u1, w1) ∈ Tt∂Dε′×TzRα and (0, w2)+(u2, v2) ∈ T(t,z)Sβ . This shows that ∂Dε′×Rα
is also transverse to Sβ . QED

Remark 5.5.3. We see in the proof of Lemma 5.5.2 that the choice of the radius of each
disc of ∆ is independent of the radii of the other discs. The reason of this independence
is that we were asking that ∂Dε′ × CN−i has to be transverse to each stratum of Xi−1

at any point instead of being transverse only at points on Xi−1 ∩ C ×∆i, which would
have given Dε′ a relation with ∆i that restricts it.

5.6. Thom condition for Φ

Now, we show that the mapping Φ = (`, f) : (X,x) → (C2, 0), for a generic linear
form `, can be strati�ed in such a way that it satis�es the Thom condition.

First, we recall the fact that a function always satis�es the Thom condition (see
[BMM94, Theorem 4.2.1], compare to [GWdPL76, Corollary II.3.3] or the work of Hiro-
naka in [Hir77]):

Theorem 5.6.1. Let X be a complex analytic subspace of an open set of CN , f : (X,x)→
(C, 0) be a germ of complex analytic mapping and complex strati�cations S and T res-
pectively in the source and the target that stratify a representative of the germ f . If S is
Whitney regular, the strati�cation of f has the Thom property.

We consider the mapping Φ = (`, f) : (X,x) → (C2, 0), where ` is a generic linear
form. We take a small enough representative Φ : X → W , where W is an open neigh-
bourhood of 0 in C2, such that the Cerf's diagram ∆`(f, x) is a closed analytic subset of
W . Since the Whitney strati�cation S = {Sα} of X is analytic, the set Σ(Φ) of critical
points of Φ in the strati�ed sense is either empty or it is analytic of dimension ≤ 1, by
the genericity of `. We remark that Σ(Φ) contains the relative polar curve Γ = Γ`(f, x),
although Σ(Φ) may have other components contained in f−1(0).

The image D = Φ
(
Σ(Φ)

)
3, if not empty, contains ∆`(f, x), although it may also

contain the axis {v = 0}. We consider in W the Whitney strati�cation T given by the

3We use a di�erent notation to denote the discriminant of Φ to avoid confusion.
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strata W −D,D−{0} and {0}. In order to have a strati�ed mapping, we have to change
the strati�cation in X. We de�ne S ′ as the family of sets of the form Sα∩Φ−1(T )∩Σ(Φ)
and Sα ∩ Φ−1(T )− Σ(Φ), where Sα ∈ S and T ∈ T .

With the purpose of preserving the Whitney regularity, we need the following lemma:

Lemma 5.6.2. Let ϕ : V → W be a smooth mapping, where V ⊂ Rn and W ⊂ Rm are
open subsets. Assume that S is a Whitney strati�cation of a subset X ⊂ V such that for
all S ∈ S, ϕ|S : S → W is a submersion and that T is a Whitney strati�cation of W .
Then,

S ′ = {S ∩ ϕ−1(T ) : S ∈ S, T ∈ T }

is also a Whitney strati�cation of X.

Proof. Take a pair of strata A = S ∩ ϕ−1(T ) and B = S′ ∩ ϕ−1(T ′), with S, S′ ∈ S
and T, T ′ ∈ T . We factorize ϕ as the composition

V G(ϕ) Wi π2 ,

where G(ϕ) ⊂ V ×W is the graph of ϕ, i is the di�eomorphism given by i(v) =
(
v, ϕ(v)

)
and π2(v, w) = w. Therefore, B is Whitney regular over A in V if, and only if, i(B)
is Whitney regular over i(A) in G(ϕ) or, equivalently, in V ×W (recall that Whitney
regularity is invariant under di�eomorphisms: Remark 1.3.4 and Example 1.3.5).

To prove this, observe that we can write i(A) and i(B) in the form

i(A) = i(S) ∩ (S × T ), i(B) = i(S′) ∩ (S′ × T ′). (5.3)

Moreover, i(S′) is Whitney regular over i(S) and S′× T ′ is Whitney regular over S × T .
Let {xn} and {yn} be sequences in i(A) and i(B), respectively, both converging to

x ∈ i(A). We also assume that xnyn converges to a line L and that Tyni(B) converges
to a plane E in the corresponding Grassmannians of Rn × Rm. We have to show that
L ⊂ E.

By taking subsequences if necessary, we can assume that Tyni(S
′) converges to a plane

E1 and that Tyn(S′×T ′) converges to another plane E2×E3, again in the corresponding
Grassmannians of Rn × Rm. Since i(S′) is Whitney regular over i(S) and S′ × T ′ is
Whitney regular over S × T , we have L ⊂ E1 ∩ (E2 × E3).

From Equation (5.3), it follows that E ⊂ E1∩(E2×E3). Furthermore, ϕ|S′ : S′ →W
is a submersion, which factors as the composition

S′ i(S′) Wi π2 .

This implies, by construction, that Tyni(S
′) and Tyn(S′×T ′) are transverse in

(
Tπ1(yn)S

′)×
Rm and, also, that E1 and E2 ×E3 are transverse in E2 ×Rm. Thus, dimE = dimE1 ∩
(E2 × E3) and, hence, E = E1 ∩ (E2 × E3) ⊃ L. QED

Theorem 5.6.3. We can choose the representative Φ : X → W small enough such that
it is a Thom map with the strati�cations S ′ and T .
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Proof. Let us begin seeing that the pair (S ′, T ) is a strati�cation of Φ : X → W .
Hence, the �rst thing to do is showing that the sets of S ′ are submanifolds.

Let Sα ∈ S and T ∈ T . The set Sα ∩Φ−1(T )−Σ(Φ) is a submanifold of Sα −Σ(Φ),
since Φ|Sα−Σ(Φ) is a submersion. The set Sα ∩ Φ−1(T ) ∩ Σ(Φ) is either the point {x} or
has dimension 1 and its closure is analytic. By the curve selection lemma, we can take a
smaller representative such that Sα ∩ Φ−1(T ) ∩ Σ(Φ) is smooth.

By construction, Φ maps strata of S ′ onto strata of T . We have to prove that Φ maps
these strata submersively. Recall that T is given by the strata W −D,D− {0} and {0},
so the only non-trivial case is when we consider a stratum of the form Sα ∩ Φ−1

(
D −

{0}
)
∩ Σ(Φ), mapped by Φ into D − {0}. The two strata in the source and the target

have dimension 1, and Φ is holomorphic and �nite-to-one on Σ(Φ), so necessarily Φ is a
local di�eomorphism.

The next step is to show that S ′ is a Whitney strati�cation. The case of a pair of
strata of S ′ contained in X − Σ(Φ) follows directly from Lemma 5.6.2. The case of a
pair of strata of S ′ contained in Σ(Φ) is trivial, since one of them must be the stratum
{x}. Therefore, we only need to consider the case of A,B ∈ S ′ such that B ⊂ X −Σ(Φ)
and A ⊂ Σ(Φ) has dimension 1. In this case, the set of points in A such that B is not
Whitney regular over A at x is analytic and proper. Again, by the curve selection lemma,
we can take a smaller representative such that B is Whitney regular over A.

Finally, it only remains to show that Φ satis�es the Thom condition. To do this,
consider a pair of strata A,B ∈ S ′ such that A ⊆ B.

If A ⊂ Σ(Φ), the induced map Φ : A→ T is a local di�eomorphism, where T ∈ T , so
the Thom condition is satis�ed trivially. Otherwise, A ⊂ X − Σ(Φ) and also B ⊂ X −
Σ(Φ), so we can assume that A = Sα ∩ Φ−1(T )− Σ(Φ) and B = Sβ ∩ Φ−1(T ′)− Σ(Φ),
for some Sα, Sβ ∈ S and T, T ′ ∈ T .

We take a sequence {xn} in B converging to a point x in A. Moreover, to ease the
notation, we will simply write F gy to refer to the set g−1

(
g(y)

)
for any mapping g and

point y. The Thom condition holds if

lim
n
TxnF

Φ|B
xn ⊇ TxFΦ|A

x , (5.4)

as we showed in Remark 1.3.8. Since x ∈ A = Sα ∩ Φ−1(T )− Σ(Φ) and xn ∈ B = Sβ ∩
Φ−1(T ′)− Σ(Φ), we have

FΦ|B
xn = F

Φ|Sβ−Σ(Φ)

xn and FΦ|A
x = F

Φ|Sα−Σ(Φ)
x ,

therefore Equation (5.4) can be rewritten as

lim
n
TxnF

Φ|Sβ
xn ⊇ TxF

Φ|Sα
x . (5.5)

Now, we use the fact that Φ = (`, f). Since `−1(0) is transverse to Sβ , Equation (5.5) is
equivalent to (

lim
n
TxnF

f |Sβ
xn

)
∩ TxF `x ⊇ TxF

f |Sα
x ∩ TxF `x. (5.6)
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By Theorem 5.6.1, f is a Thom map with the strati�cation S. Thus,

lim
n
TxnF

f |Sβ
xn ⊇ TxF

f |Sα
x ,

which implies Equation (5.6). QED

Remark 5.6.4. With the notation of Theorem 5.6.3, if f ∈ m2
X,x, ∆`(f, x) is tangent to

the axis {v = 0} in C2 (see Proposition 5.3.5). Moreover, we can add W ∩ {u = 0}− {0}
as a new stratum in T and the corresponding strata in S ′ so that Φ : X → W is still a
Thom mapping with the new strati�cations.

5.7. Proof of the main theorem

In this section we give the proof of Theorem 5.2.1. The proof is by induction on
the dimension of (X,x). To do this, we need Lê D�ung Tràng's carousel construction in
[Trá75]. We also refer to [TNBS20, Section 6.8] for a detailed construction of the carousel
for a general plane curve (C, 0).

In our case, we apply this construction for the Cerf's diagram C = ∆`(f, x) of a
holomorphic function f : (X,x)→ (C, 0) with respect to a generic linear form `. The key
point here is that C is tangent to the axis {v = 0} at the origin if f ∈ m2

X,x, where u, v

are the coordinates of the plane C2 (see Proposition 5.3.5).

Lemma 5.7.1 (see [Trá75, p. 418]). Let (C, 0) be a plane curve which is tangent to the
axis {v = 0}. There exist discs D and Dη centered at the origin in C and a smooth vector
�eld ω on the solid torus D × ∂Dη such that:

(i) the projection onto the second component of ω gives the unit tangent vector �eld
over ∂Dη (i.e., the tangent �eld of length η in the positive direction),

(ii) the restriction to {0} × ∂Dη is indeed the unit vector �eld,

(iii) the vector �eld ω is tangent to (Dρ × ∂Dη) ∩ {δ = ε} for all ε ∈ C small enough,
where δ = 0 is a reduced equation of C, and

(iv) the only integral curve that is closed after a loop in ∂Dη is {0} × ∂Dη.

The discs D and Dη in Lemma 5.7.1 are cho-
sen small enough so that there is a disc D1 such
that D ⊂ D1, (D1 × {0})∩C = {0} and {v = t}
intersects the curve C in (D×{0}, C)0 points in
D×Dη, for η ≥ |t| > 0, where (•, •)0 is the local
intersection number at 0.

The geometrical meaning of the carousel is the following: we �rst take a representative
C of the plane curve on some open neighbourhood W of the origin in the plane C2. Let
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L be the intersection of W with the axis {u = 0}. We consider W with the Whitney
strati�cation given by the strata W − (C∪L), C−{0}, L−{0} and {0} and the function
germ π2 : (W, 0)→ (C, 0) given by π2(u, v) = v. The choice of D and Dη is made so that

π2 : D × ∂Dη → ∂Dη

is a proper strati�ed submersion with the induced strati�cation in D × ∂Dη. By con-
ditions in Items (i) to (iii) in Lemma 5.7.1, ω is a strati�ed vector �eld on D × ∂Dη

which is a lifting of the unit tangent vector �eld on ∂Dη. Hence, its �ow provides a local
geometric monodromy h : D × {t} → D × {t} for some t ∈ ∂Dη, which preserves the
point (0, t) and the �nite set C ∩

(
D×{t}

)
. By the condition given in Item (iv), the only

�xed point of h is (0, t). See also the previous representations in Figures 5.5 and 5.6.

Now we can give the proof of our main result:

Proof of Theorem 5.2.1. Assume that (X,x) ⊂ (CN , x). We take a privileged polydisc
∆ in CN at x and a small disc Dη in C at 0 such that the restriction

f : X ∩∆ ∩ f−1(∂Dη)→ ∂Dη

is a proper strati�ed submersion. We claim that there exists a strati�ed vector �eld ξ on
X ∩ ∆ ∩ f−1(∂Dη) which is a lifting of the unit vector �eld θ on ∂Dη and whose �ow
provides a local geometric monodromy with no �xed points. We prove this by induction
on the dimension of X at x.

Assume, �rst, that dim(X,x) = 1. Let X1, . . . , Xr be the analytic branches of X at
x. Then, X ∩ ∆ ∩ f−1(∂Dη) is the disjoint union of all the sets Xi ∩ ∆ ∩ f−1(∂Dη),
i = 1, . . . , r. Hence, it is enough to show the claim in the case that X is irreducible at
x. Let norm : X̃ → X be the normalization of X at x. Since f ∈ m2

X,x, we can take an

analytic extension f : (CN , x) → (C, 0) such that F ∈ m2
N . After a reparametrization,

we can assume that X̃ is an open neighbourhood of 0 in C, {0} = norm−1(x) and
F ◦ norm(s) = sk, for some k ≥ 2. In this case, θ lifts in a unique way by the map
F ◦norm and has a local geometric monodromy with no �xed points. But norm induces
a di�eomorphism on X̃ −{0} onto X −{x}, so we have also a unique lifting on X ∩∆∩
f−1(∂Dη) whose geometric monodromy has no �xed points.

Now, we assume the claim is true when dim(X,x) = n and prove it in the case that
dim(X,x) = n + 1. Let ` : CN → C be a generic linear form and consider the map
Φ = (`, f). We have a commutative diagram as follows:

X ∩∆ ∩ Φ−1(D × ∂Dη) D × ∂Dη ∂Dη

X ∩∆ ∩ `−1(0) ∩ f−1(∂Dη) {0} × ∂Dη

Φ π2

(0,f)
π2

,

where the vertical arrows are the inclusions and π2 is the projection onto the second
component. Here, we choose the polydiscs ∆ and D ×Dη small enough such that Φ is a
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Thom proper map (see Lemma 5.5.2, Theorem 5.6.3, and Remark 5.6.4). The strati�ca-
tion in D× ∂Dη is given by the strata D× ∂Dη − (C ∪L), (D× ∂Dη)∩C and L, where
L = {0} × ∂Dη and C = ∆`(f, x) is the Cerf's diagram.

By induction hypothesis, there exists a strati�ed vector �eld ξ1 on X ∩∆ ∩ `−1(0) ∩
f−1(∂Dη) which is a lifting of θ and whose geometric monodromy has no �xed points.
If C is empty, the claim is obvious by Proposition 5.3.4, so we can assume that C is not
empty.

By the carousel construction in Lemma 5.7.1, there exists a strati�ed vector �eld
ω on D × ∂Dη which satis�es the conditions of Items (i) to (iv). Since ω is a lifting
of θ, it is globally integrable by Theorem 5.4.11. Moreover, ω is not zero along L and
(D × ∂Dη) ∩ C, so we can use the �ow of ω to construct a weakly controlled tube
system T ′ of D× ∂Dη such that ω is weakly controlled. By Corollary 5.4.12, ω lifts to a
strati�ed vector �eld ξ on X ∩∆∩Φ−1(D×∂Dη) which is globally integrable. Moreover,
by using a partition of unity, we can construct ξ in such a way that it coincides with ξ1

on X ∩∆ ∩ `−1(0) ∩ f−1(∂Dη).

Let F = X ∩∆ ∩ f−1(t), with t ∈ ∂Dη, and consider the geometric monodromy h :
F → F induced by ξ. On one hand, ξ is an extension of ξ1, so h

(
F ∩`−1(0)

)
= F ∩`−1(0)

and h has no �xed points on F ∩ `−1(0). On the other hand, Item (iv) of Lemma 5.7.1
implies that h does not have �xed points on F − `−1(0) either. This completes the proof.

QED

The proof relied on the hypothesis of f being in m2
X,x and, actually, this hypothesis

is necessary, even if f has critical point at x in the strati�ed sense. Here we give a couple
of examples which illustrate this fact.

Example 5.7.2. Let (C, 0) be the ordinary triple point singularity in (C3, 0). This is
equal to the union of the three coordinate axis in C3 (see Figure 5.7) and the de�ning
equations are given by the 2× 2-minors of the matrix

M =

(
x y z
y z x

)
.

This gives to (C, 0) a structure of isolated determinantal singularity in the sense of
[NnBOOT13]. According also to [NnBOOT13], we can construct a determinantal smoot-
hing of (C, 0) by taking the 2× 2-minors of Mt = M + tA, where A is a generic (2× 3)-
matrix with coe�cients in C and t ∈ C.

In fact, let

A =

(
0 1 0
0 0 0

)
and let (X, 0) be the surface in (C3 × C, 0) de�ned as the zero set of the 2 × 2-minors
of Mt. The projection f : (X, 0) → (C, 0), f(x, y, z, t) = t, provides a �at deformation
whose special �bre is (C, 0) and whose generic �bre F = f−1(t), for t 6= 0, is a smooth
curve (see Figure 5.7). We can see F as a kind of determinantal Milnor �bre of (C, 0).
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Figure 5.7: Special �ber (left) and generic �ber (right) of Example 5.7.2.

Finally, to �nd a geometric monodromy, we can consider the family of morphisms in
X given by hθ(x, y, z, t) = eiθ(x, y, z, t). As X is homogeneous, this gives well-de�ned
morphisms between �bers of the �bration given by f and h2π = id is a local geometric
monodromy. Furthermore, F is di�eomorphic to a disk with two holes, so H1(F ;Z) ∼= Z2

and the Lefschetz number is −1. In particular, any local geometric monodromy must
have a �xed point. In addition, one can also con�rm the computation of the monodromy
in [BG80, p. 279].

This is not a counterexample of Theorem 5.2.1: a simple computation shows that
f /∈ m2

X,x in this example.

Example 5.7.3. Consider the A4 plane curve singularity (C, 0) whose equation in (C2, 0)
is x5−y2 = 0. The monodromy of the classical Milnor �bre of (C, 0) is well known and we
will not discuss it. Instead, we see (C, 0) as the image of the map germ g0 : (C, 0)→ (C2, 0)
given by g0(s) = (s2, s5), which has an isolated instability at the origin.

Since we are in the range of Mather's nice dimensions, we can take a stabilisation
G = (gt, t) (recall Remark 1.2.15). Observe that the disentanglement of g, say F , can also
be seen as the generic �bre of the function f : (X, 0)→ (C, 0) where (X, 0) is the image
of G in (C2 × C, 0) and f(x, y, t) = t. Hence, we are interested in the local monodromy
of f at the origin.

In our case, we take gt(s) = (s2, s5 + ts). It is easy to see that, for t 6= 0, gt is an
immersion with two transverse double points p = gt(a1) = gt(a2) and q = gt(b1) = gt(b2)
where a1, a2, b1, b2 are the four roots of s4 + t = 0, with a1 = −a2 and b1 = −b2.
Hence, gt de�nes a stabilisation of g0. Observe that the number of double points coincides
with the delta invariant δ(C, 0) = 2. The disentanglement F is the image of gt and is
homeomorphic to the quotient of a closed 2-disk Dt under the relations a1 ∼ a2 and
b1 ∼ b2 (see Figure 5.8). Thus, F has the homotopy type of S1 ∨ S1, so µI(g0) = 2.

The locally C0-trivial �bration is the restriction f : X ∩ (B × S1
η) → S1

η , with the
obvious notation, for a small enough η > 0.

In order to construct a geometric monodromy h : F → F , it is enough to �nd a one-
parameter group of strati�ed homeomorphisms hθ : X ∩ (B × S1

η)→ X ∩ (B × S1
η), with
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Figure 5.8: The mapping gt and the double points, a1, b1, a2 and b2.

θ ∈ R, which make the following diagram commutative

X ∩ (B × S1
η) S1

η

X ∩ (B × S1
η) S1

η

f

hθ rθ

f

,

where rθ(t) = eiθt. In this situation, h : F → F is obtained as the restriction of h2π.

In order to do this, since (C, 0) is weighted homogeneous with weights (5, 2), it is
better to consider the (non-Euclidean) ball B given by |x|5 + |y|2 ≤ 1 instead of a
Euclidean ball in C2. Thus, C∩B = g0(D), where D is the disk in C given by |s|10 ≤ 1/2.
For t 6= 0, F = gt(Dt), where now Dt = g−1

t (B) is the disk in C given by

|s|10 + |s|2|s4 + t|2 ≤ 1.

Given a point (x, y, t) ∈ X, we have (x, y, t) = G(s, t) for some s ∈ C. We de�ne
hθ : X → X as

hθ
(
G(s, t)

)
= G

(
e
iθ
4 s, eiθt

)
.

Now, we have to check that, indeed, this gives a group of strati�ed homeomorphisms. We
consider in X the strati�cation given by {X − Y, Y }, where Y is the double point curve
with equations x2 + t = 0, y = 0. Since G is an embedding on X − Y , hθ is well de�ned
and is a di�eomorphism on X − Y . When (x, y, t) ∈ Y , we have G(s, t) = (s2, 0, t), with
s2 = x and s4 + t = 0. It follows that

hθ(x, 0, t) = G
(
e
iθ
4 s, eiθt

)
=
(
e
iθ
2 s2, 0, eiθt

)
=
(
e
iθ
2 x, 0, eiθt

)
,

and
(
eiθ/2x

)2
+ eiθt = eiθ(x2 + t) = 0. Thus, hθ is also well de�ned on Y , h(Y ) = Y

and the restriction h : Y → Y is a di�eomorphism. It is also clear that hθ : X → X and
its inverse are both continuous, so it is a strati�ed homeomorphism. It only remains to
show that hθ

(
X ∩ (B × S1

η)
)

= X ∩ (B × S1
η), because we have to work with a speci�c

representative, but this a consequence of the equality:∣∣e iθ4 s∣∣10
+
∣∣e iθ4 s∣∣2∣∣(e iθ4 s)4 + eiθt

∣∣2 = |s|10 + |s|2|s4 + t|2.
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The geometric monodromy h : F → F is now the restriction of h2π, which gives h
(
gt(s)

)
=

gt
(
eiπ/2s

)
, that is, it is obtained by a π/2-rotation in the disk Dt.

To �nish, we compute h∗ : H1(F ;Z)→ H1(F ;Z). We recall that F is homeomorphic
to the quotient of Dt under the relations a1 ∼ a2 and b1 ∼ b2. The four points a1, a2, b1, b2
are on a square contained in the interior of Dt and centered at the origin, which is
obviously invariant under the π/2-rotation. We denote by a, b, c, d the four edges of the
square as in Figure 5.9 (cf. Figure 5.10).

Figure 5.9: Monodromy of the �ber F .

We take the cycles a+ b and c+d as a basis of H1(F ;Z). Obviously, h∗(a+ b) = b+ c
and h∗(b+ c) = c+ d = −(a+ b) so the matrix of h∗ with respect to this basis is:(

1 0
0 −1

)
The Lefschetz number is 1 and, hence, any local geometric monodromy must have a �xed
point. In fact, in our construction, there is exactly one �xed point: the origin of the disk
Dt, which is invariant under the π/2-rotation. As in Example 5.7.2, it is not di�cult to
check that f /∈ m2

X,x.

Remark 5.7.4. Example 5.7.3 is the example we were talking about in Section 5.1.
In the next section we show that Theorem 5.2.2 can be used to prove a general non-
coalescing theorem (Theorem 5.8.8). However, as this example shows, Theorem 5.2.2 is
not true for the setting of hypersurfaces parametrised as the image of an A -�nite map
germ.

Figure 5.10: Another representation of h∗ from Example 5.7.3.
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5.8. Applications

The �rst application of Theorem 5.2.1 is the following corollary, which shows that
any hypersurface (with possibly non-isolated singularities) (X,x) in Cn+1 with smooth
topological type must be smooth. We recall that two germs of complex spaces (X,x)
and (Y, y) in Cn+1 have the same topological type if there exists a homeomorphism ϕ :
(Cn+1, x)→ (Cn+1, y) such that ϕ(X,x) = (Y, y).

Corollary 5.8.1. Let (X,x) be a germ of hypersurface in Cn+1. If (X,x) has the topo-
logical type of a smooth hypersurface, then (X,x) is smooth.

Proof. If (X,x) has the topological type of a smooth hypersurface, its Milnor �-
bre is contractible by [Trá73a, Proposition, p. 261]. This implies that (X,x) is smooth
by [A'C73, Theorem 3]. Observe that Theorem 3 of [A'C73] is a consequence of Theo-
rem 5.2.1: Let f : (Cn+1, x) → (C, 0) be holomorphic which gives a reduced equation of
(X,x). The Lefschetz number of the local monodromy of f is 1 and, hence, f /∈ m2

Cn+1,x,
by Theorem 5.2.1. QED

This corollary is related to Zariski's multiplicity conjecture (see [Zar71]) which claims
that two hypersurfaces in Cn+1 with the same topological type have the same multipli-
city. Since a hypersurface is smooth if, and only if, it has multiplicity 1, Corollary 5.8.1 is
just a particular case of the conjecture. Zariski showed the conjecture for plane curves but
it remains still open in higher dimensions. Another related result is Mumford's theorem
in [Mum61], which states that, if X is a normal surface and X is a topological manifold
at x ∈ X, then X is smooth at x.

Our second application is a non-coalescing theorem for families of functions de�ned
on spaces with the Milnor property. In [Trá73b, Theorems A and B], Lê D�ung Tràng
showed an interesting application of A'Campo's theorem (see also [Gab74, Laz73b]). Let
{Ht}t∈C be an analytic family of hypersurfaces de�ned on some open subset U ⊂ Cn
with only isolated singularities. Take B a Milnor ball for H0 around a singular point
x0 ∈ H0 and assume, for all t small enough, that the sum of the Milnor numbers of all
the singular points of Ht in B is constant, that is,∑

x∈Ht∩B
µ(Ht, x) = µ(H0, x0).

Then, Ht ∩B contains a unique singular point x of Ht (recall Figure 5.1).
The purpose of the remaining of the section is to prove an adapted version of this

result in a more general context, namely, for Milnor spaces in the sense of [HT20]:

De�nition 5.8.2. AMilnor space is a reduced complex space X such that, at each point
x ∈ X, the recti�ed homotopical depth rhd(X,x) is equal to dim(X,x).

We refer to [HT20, Section 9.4.2] for the de�nition of the recti�ed homotopical depth
and basic properties of Milnor spaces. In general, rhd(X,x) ≤ dim(X,x), so Milnor spaces
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are those whose recti�ed homotopical depth is maximal at any point. Some important
properties are the following:

1. any smooth space X is a Milnor space,

2. any Milnor space X is equidimensional,

3. if X is a Milnor space and Y is a hypersurface in X (i.e. Y has codimension one
and is de�ned locally in X by one equation), then Y is also a Milnor space.

As a consequence, any local complete intersection X (not necessarily with isolated sin-
gularities) is a Milnor space. Our setting is motivated by the following theorem due to
Hamm and Lê D�ung Tràng:

Theorem 5.8.3 (see [HT20, Theorem 9.5.4]). Let (X,x) be a germ of Milnor space and
assume that f : (X,x) → (C, 0) has isolated critical point in the strati�ed sense. Then,
the general �bre F of f has the homotopy type of a bouquet of spheres of dimension
dim(X,x)− 1.

Then, using the Lefschetz number and Theorem 5.2.2, it is really easy to prove the
following.

Corollary 5.8.4. With the hypothesis and notation of Theorem 5.8.3, if f ∈ m2
X,x, the

trace of the induced map h∗ : Hn−1(F ;Z) → Hn−1(F ;Z) by the monodromy h : F → F
is (−1)n, where n = dim(X,x).

De�nition 5.8.5. With the hypothesis and notation of Theorem 5.8.3, the number of
spheres of F is called the Milnor number of f and is denoted by µ(f). We say that the
critical point is non-trivial if µ(f) > 0.

We want to generalize Lê's non-coalescing theorem for families of hypersurfaces
{Ht}t∈C. As we want to generalize it in the setting of �bers inside Milnor spaces, we
obviously need a convenient concept of family of Milnor spaces and its corresponding
family of complex functions that give the equations of the �bers. This is covered in
De�nition 5.8.6.

Consider a germ of complex analytic space (X0, 0). Let f0 : (X0, x0) → (C, 0) be a
germ of holomorphic function. Let X0 be a small representative of (X0, 0) and let S be a
Whitney strati�cation of X0. We assume that a representative f has an isolated critical
point in the strati�ed sense at 0. We de�ne:

De�nition 5.8.6. A strati�ed deformation of (X0, x0) is a �at deformation π : (X, x0)→
(C, 0), where X is an analytic space with an analytic Whitney strati�cation such that,
for a representative π:

1. π−1(0) = X0 as analytic spaces,

2. π has isolated critical points in the strati�ed sense,

3. the strati�cation of X0 coincides with the induced strati�cation by X on π−1(0).
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Given a strati�ed deformation π : (X, x0)→ (C, 0), a strati�ed unfolding is a holomorphic
mapping F : (X, x0) → (C × C, 0) such that p1 ◦ F|X0 = f0 and p2 ◦ F = π, where
pi : C× C→ C, i = 1, 2, is the ith projection.

We can always assume that X is embedded in CN ×C and choose coordinates in such
a way that π(x, t) = t. So, we can write the strati�ed unfolding as F(x, t) =

(
ft(x), t

)
.

For each t ∈ C, we have a function ft : Xt → C, where Xt = π−1(t). Here, we consider
in Xt the strati�cation induced by X and denote by Σ(ft) the set of strati�ed critical
points of ft.

Example 5.8.7. We consider the function f0 : (X0, 0)→ (C, 0), where X0 is the surface
in C3 given by z2 − y(x2 + y)2 = 0 and f0(x, y, z) = x. The strati�cation in X0 is{
{0}, C0 − {0}, X0

}
, where C0 is the curve z = x2 + y = 0. It is easy to see that f0

has only one critical point in the strati�ed sense at the origin and that µ(f0) = 1 (see
Figure 5.11).

Figure 5.11: The function f0 with a critical point.

Now, we de�ne a strati�ed deformation π : (X, 0)→ (C, 0) and a strati�ed unfolding
F : (X, 0) → (C × C, 0) as follows: X is the hypersurface in C3 × C with equation z2 −
y(x2 + y + t)2 = 0, π(x, y, z, t) = t and F(x, y, z, t) = (x, t). The strati�cation in X is{
{0},D − {0}, C − D,X − C

}
, where D is the curve z = y = x2 + t = 0 and C is the

surface z = x2 + y + t = 0. Again, it is not di�cult to check that all the conditions of
De�nition 5.8.6 hold.

For t 6= 0, ft : Xt → C has two critical points in the strati�ed sense at (±
√
−t, 0, 0),

which are the points in Dt := Xt ∩ D. We see that ft has also Milnor number 1 at each
critical point (±

√
−t, 0, 0) (see Figure 5.12).
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Figure 5.12: The function ft with two critical points.

The following theorem could seem very restrictive due to the length of the hypotheses.
On the contrary, its statement only says that, with a general notion of family of ambient
spaces (X) and a general notion of equation of the �bers (F), if it happens what we have
proven in some cases (Theorem 5.2.1 or Corollary 5.8.4), then we have a non-coalescing
result.

Theorem 5.8.8. Let f0 : (X0, x0) → (C, 0) be a function with a non-trivial isolated
critical point and let F : (X, x0) → (C × C, 0) be a strati�ed unfolding of f0 such that X
is a Milnor space. We set Yt = f−1

t (0) and assume that for any x ∈ Σ(ft) ∩ Yt, the trace
of the local monodromy of ft at x in dimension n− 1 is (−1)n, where dim(X0, x0) = n.
Let B0 be a Milnor ball for f0 at x0 and assume that for any t ∈ C small enough,∑

x∈Σ(ft)∩Yt∩B0

µx(ft) = µx0(f0), (5.7)

where µx(ft) is the Milnor number of ft at x. Then, Yt∩B0 contains a unique non-trivial
critical point x of ft.

Proof. Denote by Σ(F) the set of strati�ed critical points of F and assume that
dim(X0, x0) = n > 2. It follows that (x, t) ∈ Σ(F) if and only if x ∈ Σ(ft). Since the
strati�cation of X is analytic, Σ(F) is also analytic. On one hand,

dim Σ(F) ∩ {t = 0} = dim Σ(f0) = 0

and, thus, dim Σ(F) ≤ 1. On the other hand, by Equation (5.7),

Σ(F) ∩ {t = t0} = Σ(ft0) 6= ∅

for t0 6= 0, so dim Σ(F) = 1. Moreover, F−1(0) ∩ Σ(F) = {0}, hence, its image ∆ =
F
(
Σ(F)

)
is also analytic of dimension 1 in (C × C, 0) by Remmert's proper mapping

theorem (see, for example, [BBH+98, p. 5]).

We �x a small enough open polydisc Dη ×Dρ in C× C such that the restriction

F : (B0 ×Dρ)−F−1(∆)→ (Dη ×Dρ)−∆ (5.8)
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is a proper strati�ed submersion and such that ∆ ∩
(
Dη × {0}

)
= {0}. By the Thom-

Mather �rst isotopy lemma, Equation (5.8) is a locally C0-trivial �bration. Given s ∈
Dη − {0}, we have (s, 0) ∈

(
Dη ×Dρ

)
−∆ and, hence, the �bre

F−1(s, 0) ∩ (B0 ×Dρ) =
(
f−1

0 (s) ∩B0

)
× {0}

coincides with the general �bre of f0.

Let t ∈ Dρ and assume that Σ(ft)∩f−1
t (0)∩B0 = {x1, . . . , xk}. For each i = 1, . . . , k,

we take a Milnor ball Bi for ft at xi such that Bi is contained in the interior of B0 and
Bi ∩ Bj = ∅ if i 6= j. Now, we choose 0 < η′ < η such that (s, t) /∈ ∆ for all s with
0 < |s| < η′.

Fix a point s ∈ Dη′ and consider the loop γ(θ) = seiθ, θ ∈ [0, 2π]. This loop induces
a geometric monodromy h : f−1

t (s) ∩ B0 → f−1
t (s) ∩ B0 which coincides, up to isotopy,

with the geometric monodromy of f0 at x0. Moreover, by adding the boundaries of the
balls Bi as strata in the domain of Equation (5.8), we can assume that (recall Method
III of constructing a geometric monodromy):

1. h
(
f−1
t (s) ∩ Bi

)
= f−1

t (s) ∩ Bi and hi = h|f−1
t (s)∩Bi is the monodromy of ft at xi,

for each 1 = 1, . . . , k;

2. h is the identity outside the interior of B1 ∪ · · · ∪Bk.

Let

U = f−1
t (s) ∩

(
B0 − ∪ki=1B̊i

)
and

V = f−1
t (s) ∩

(
∪ki=1Bi

)
.

By considering the Mayer-Vietoris sequence of the pair (U, V ), we get a diagram whose
rows are exact sequences:

0 Hn−1(U ∩ V ) Hn−1(U)⊕Hn−1(V ) Hn−1(U ∪ V )

0 Hn−1(U ∩ V ) Hn−1(U)⊕Hn−1(V ) Hn−1(U ∪ V )

id id⊕
(
⊕ki=1(hi)∗

)
h∗

(5.9)

Hn−2(U ∩ V ) Hn−2(U) 0

Hn−2(U ∩ V ) Hn−2(U) 0

id id

By the exactness in one the rows of the sequence we get

a−

(
b+

k∑
i=1

µxi(ft)

)
+ µx0(f0)− c+ d = 0,
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where

a = rankHn−1(U ∩ V ),

b = rankHn−1(U),

c = rankHn−2(U ∩ V ), and

d = rankHn−2(U).

Our hypothesis implies that
a− b− c+ d = 0.

Finally, we use the fact that the trace is additive, which gives

a−

(
b+

k∑
i=1

tr
(
(hi)∗

))
+ tr(h∗)− c+ d = 0

and, hence,
k∑
i=1

tr
(
(hi)∗

)
= tr(h∗).

Again by hypothesis, tr
(
(hi)∗

)
= tr(h∗) = (−1)n for all i = 1, . . . , k, so, necessarily,

k = 1.
We can use the same ideas if n = 1 or n = 2, with a diagram similar to the one of

Equation (5.9). QED

Observe that the hypothesis of having trace equal to (−1)n at any point can be
relaxed to having trace k 6= 0 that does not depend on the point. Also, the hypothesis of
X being a Milnor space is given to assure that the generic �bers of ft have homology only
in middle dimension (by Theorem 5.8.3). One can prove something similar if, in general,
the non-trivial homology is sparse.

Remark 5.8.9. The proof of Theorem 5.8.8 is just an adaptation of the proof gi-
ven in [Trá73b] for the case X = Cn. A similar argument appears also in the paper
[CNnBOOT21], where it is showed that any family of icis with constant total Milnor
number has no coalescence of singularities.



Chapter 6

Developing a new technique

For the pure geometrician himself this
faculty is necessary: it is by logic that
we prove, but by intuition that we
discover.

Henri Poincaré, Science and method

In this chapter, we cover a joint work in progress with Mond.

Here, we are trying to use the symmetric structure of the multiple point spaces to
translate hard problems of the Thom-Mather theory into elementary problems. We try
to do this with a new technique we are improving. As a �rst milestone, we have been able
to generalize Lemma 3.1.18. Recall that (the �rst part of) Lemma 3.1.18 says that, if you
consider an A -�nite germ of corank one that admits a one-parameter stable unfolding
F (x, t) = (ft(x), t), then Dk(f) is singular if, and only if, HAlt

n−k+1

(
Dk(ft)

)
6= 0. The

generalization consists of dropping the hypothesis of admitting a one-parameter stable
unfolding. For the mono-germ case, we also show that the image Milnor number is cons-
tant in a family if, and only if, the double point Milnor number is constant.

This chapter is strongly based on the fundamentals of representation theory and
we use it �uently. If the reader is not familiar with this theory we recommend reading
Appendix A.

6.1. Introduction

6.1.1. General idea

We have seen in Section 4.4.2 that the symmetric structure of the multiple point
spaces Dk(f) is very useful, and not only its alternating isotype. To be more precise, we
have seen that the (2, 1, . . . , 1)-isotype is useful as well. Nevertheless, it is suspicious that
we cannot use all the symmetric structure of Dk(f) in an elegant way.

114



6.1. INTRODUCTION 115

Observe that the �rst time we use something related to the alternating isotype in
this text is in Lemma 3.1.18 and, to prove it, we use a theorem of Wall that extracts
the alternating structure of a whole object, see Theorem 3.1.17. Indeed, if we look at the
proof of Theorem 3.1.17 in [Wal80], we see that it is based in an interesting equality that
relates an action of a group and the �xed points by the elements of the group.

Let G be a �nite group acting on a �nite simplicial complex M such that �xed
simplices as sets are point-wise �xed. If Mg denotes the �xed points of M by g, then

χG(M)(g) = χTop(M
g), (6.1)

where χG denotes the character of the group G1 and χTop denotes the usual Euler-
Poincaré characteristic. More precisely:

χG(M)(g) :=
∑
i

(−1)i tr g∗ : Hi(M,C)→ Hi(M,C).

Equation (6.1) can be proven using standard arguments (see, for example, [Hat02,
Theorem 2.44] and Wall's comments in [Wal80, p. 172]). Considering the exact sequences

0→ Bn → Zn → Hn → 0 and 0→ Zn → Cn → Bn−1;

where Zn, Bn, Cn and Hn are the cycles, boundaries, chains and homology of M with
coe�cients in C, respectively; and that these sequences split because they are free abelian
groups; one has

tr g|Bn + tr g∗|Hn = tr g|Zn and tr g|Zn + tr g|Bn−1
= tr g|Cn .

Substituting the �rst equation into the second one and taking an alternating sum yields∑
n

(−1)n tr g∗|Hn =
∑
n

(−1)n tr g|Cn .

Observe that the left-hand side of the equation is χG(M)(g) and the right-hand side is
χTop(M

g), as the trace of g|Cn coincides with the number of �xed n-simplexes by g.

If we use Equation (6.1) with the multiple point spaces Dk(ft) and the group Σk, we
obtain a relation between the action of Σk in D

k(ft) and the sets Dk(ft)
σ, with σ ∈ Σk

2.

6.1.2. Equations

Let us examine what we have said little by little. Consider a corank one germ f :
(Cn, 0) → (Cp, 0) that is A -�nite, a stable perturbation ft and σ ∈ Σk of cycle type
(r1, . . . , rm) with αi = # {j : rj = i} (as we have done in Example 4.2.7). Then:

1Wall calls this the equivariant Euler characteristic, but this name is not standard.
2This equation was used before in this context, which was found by the author �nishing this text, see

[HK99, p. 336]. However, the way we are going to use it now is something new.
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Dk(f) is empty or an icis with �ber Dk(ft) and dimension p− k(p− n), if this is
non-negative (see Theorem 2.4.4),

Dk(f)σ is empty or an icis with �berDk(ft)
σ and dimension p−k(p−n)−k+

∑
i αi,

if this is non-negative (see Lemma 4.2.10), and

χΣk

(
Dk(ft)

)
(σ) = χTop

(
Dk(ft)

σ
)
, by Equation (6.1).

De�nition 6.1.1. We will say that the expected dimension of Dk(f), or Dk(ft), is
dk := p− k(p−n), and the expected dimension of Dk(f)σ, or Dk(ft)

σ, is dσk := p− k(p−
n)− k +

∑
i αi.

Moreover, we can decompose the action of Σk using its character table, i.e., we can
decompose χΣk

(
Dk(ft)

)
(σ) considering the di�erent irreducible representations of Σk

and the number of times they appear. For example, if d2 > 0, we have that

χΣ2

(
D2(ft)

)
(σ) = 1 + (−1)d2 trσ∗ : Hd2

(
D2(ft)

)
→ Hd2

(
D2(ft)

)
= 1 + (−1)d2

(
χT (σ)T + χAlt(σ)A

)
,

(6.2)

where χT and χAlt are the characters of the trivial and the alternating representations,
respectively, and T and A are the number of times the trivial and alternating represen-
tations appear repeated in the representation of Σ2. In particular,

A = rankHAlt

d2

(
D2(ft)

)
= µAlt2 (f).

Furthermore, if dσ2 > 0, we arrive to the equation

χT (σ)T + χAlt(σ)A = (−1)2−
∑
i αiµ

(
D2(f)σ

)
(6.3)

using Equation (6.1) and simplifying it.
Another example could be computing this with D3(ft) if d3 and dσ3 are positive:

χT (σ)T + χAlt(σ)A+ χS(σ)S = (−1)3−
∑
i αiµ

(
D3(f)σ

)
, (6.4)

with the new character of the standard representation χS and the number of times it
appears repeated in the representation of Σ3.

However, if dσk ≤ 0, we will have to take into account that the �rst term of χΣk

(
Dk(ft)

)
(σ)

does not cancel out. We will study this in the next section.

6.2. Putting it in practice

For simplicity, in this section we are going to �x some notation and assume some
things:

f : (Cn, 0)→ (Cn+1, 0) is a corank one germ that is unstable but A -�nite,

ft is a stable perturbation of f ,
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Dk(f) 6= ∅ and it is non-smooth until otherwise stated,

σ ∈ Σk has cycle type (r1, . . . , rm) with αi = # {j : rj = i},

dk and dσk are the expected dimensions, de�ned as in De�nition 6.1.1.

As this is a new approach, let us begin with some examples to develop the ideas we
have used in Equations (6.3) and (6.4) and introduce some occurrences in this setting.

Example 6.2.1. If n > 2 and k = 2, we have that d2 > 1 and d
(1 2)
2 = d2 − 1 > 0, so

the equations we could get using idΣ2 and (1 2) are

T +A = βd2D
2(ft)

T −A = −βd2−1D
2(ft)

(1 2)

}
.

Indeed, these equations are correct: the ones of the character of Σ2 and the Euler-Poincaré
characteristic cancel out because D2(ft)

(1 2) 6= ∅, for it is the Milnor �ber of a non-empty
icis D2(f)(1 2) that has to contain the point (0, 0) (the only instability has to be �xed
by any permutation).

As both βd2D
2(ft) and βd2−1D

2(ft)
(1 2) are non-

negative, we arrive to

T +A ≥ 0
T −A ≤ 0

}
.

Obviously, we deduce that A has to be positive if the
solution is not T = A = 0. Precisely, this is what
we are assuming because we have said that D2(f) is
non-smooth, so T +A = βd2D

2(ft) > 0.

Example 6.2.2. If n = 2 and k = 2, we have that d2 = 1 and d
(1 2)
2 = 0, so the equations

we get using idΣ2 and (1 2) are

T +A = β1D
2(ft)

T −A = −β0D
2(ft)

(1 2) + 1

}
.

Moreover, D2(ft)
(1 2) is non-empty because it is the Milnor �ber of the icis D2(f)(1 2),

as before. Hence, considering that β1D
2(ft) ≥ 0 and β0D

2(ft)
(1 2) ≥ 1 we arrive to

T +A ≥ 0
T −A ≤ 0

}
.

Once more, we conclude the same as in Example 6.2.1.

Example 6.2.3. If n > 4 and k = 3, we have that d3 ≥ 3, d
(1 2)
3 = d3 − 1 ≥ 0 and

d
(1 2 3)
3 = d3 − 2 ≥ 0, so the equations we could get are

T +A+ 2S = βd3D
3(ft)

T −A = −βd3−1D
3(ft)

(1 2)

T +A− S = βd3−2D
3(ft)

(1 2 3)

 .
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Again, this equations are correct because D3(ft)
(1 2), D3(ft)

(1 2 3) 6= ∅.
Also, observe that βd3−1D

3(ft)
(1 2) and

βd3−2D
3(ft)

(1 2 3) are non-negative. Hence,

T +A+ 2S ≥ 0
T −A ≤ 0
T +A− S ≥ 0

 .

We see from the second inequality that A is positive
if T is so, and from the third inequality we deduce
that A (or T ) is positive if S is so. This leads to the
same conclusion than Examples 6.2.1 and 6.2.2: A is
positive if the solution is not zero, which is true.

Example 6.2.4. If n = 4 and k = 3, we have that d3 = 2, d
(1 2)
3 = 1 and d

(1 2 3)
3 = 0.

With the arguments we have used in Example 6.2.2 we, again, reach the inequalities

T +A+ 2S ≥ 0
T −A ≤ 0
T +A− S ≥ 0

 .

Hence, the conclusion of Example 6.2.3 remains true in this case.

Example 6.2.5. If n = 3 and k = 3, we have that d3 = 1, d
(1 2)
3 = 0 and d

(1 2 3)
3 = −1.

The equations in this case are

T +A+ 2S = β1D
3(ft)

T −A = −β0D
3(ft)

(1 2) + 1

T +A− S = −β0D
3(ft)

(1 2 3) + 1

 .

However,D3(ft)
(1 2 3) = ∅ because its expected dimension is negative, so β0D

3(ft)
(1 2 3) =

0. One can also reason as in the previous examples to deduce that β0D
3(ft)

(1 2) ≥ 1. This
time, we reach

T +A+ 2S ≥ 0
T −A ≤ 0
T +A− S > 0

 .

The conclusion of Example 6.2.3 prevails again.

One can extract some interesting thoughts from these examples. The �rst one is that
the case where all the expected dimensions are positive is easier. Indeed, the examples
are put in a way that this is the feeling one gets. Another interesting thing is that we
only need one permutation of each cycle type, i.e., conjugacy class. We already knew this
because the characters are invariant in any conjugacy class and, also, Dk(f)σ ∼= Dk(f)σ

′

and Dk(ft)
σ ∼= Dk(ft)

σ′ if σ and σ′ are conjugated (see, respectively, Proposition A.2.3
and Remark 4.2.9).
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Something that is hidden inside the representation theory we are using is that these
systems of equations are always linear systems with a unique solution. This comes from
the fact that the coe�cients of the equations are the characters of the conjugacy classes of
Σk, and they are orthogonal (see Remark A.2.11). Furthermore, the number of equations
and the number of variables coincide: they are the number of conjugacy classes in Σk

(see Theorem A.3.12). Considering that the di�erent A are the alternating homologies of
the multiple point spaces, this proves the following theorem.

Theorem 6.2.6. Given an A -�nite germ f : (Cn, 0) → (Cn+1, 0) of corank one, its
image Milnor number is determined by the spaces Dk(f)σ, for k ≥ 2 and σ ∈ Σk.

6.3. A �rst application

We are going to prove the following:

Theorem 6.3.1. Given an unstable corank 1 A -�nite germ f : (Cn, 0) → (Cn+1, 0), if
ft is a stable perturbation of f , the following are equivalent:

1. Dk(f) has a singularity,

2. Dk(ft) has non-trivial homology in middle dimension, and

3. Dk(ft) has non-trivial alternating homology in middle dimension;

if k ≤ d(f), with d(f) as in De�nition 3.1.14.

However, the proof relies on a combinatorial argument at some points and on an
argument of representation theory at other points. We leave them as lemmas before the
proof of the theorem.

Lemma 6.3.2. Considering an f as in Theorem 6.3.1, dk − dσk is odd if, and only if,
χAlt(σ) = sgn(σ) = −1.

Proof. First of all, observe that dk − dσk = k −
∑

i αi provided that σ has cycle type
(r1, . . . , rm) and αi = # {j : rj = i}.

Assume that the lemma is true for the permutations of k − 1 elements. To create a
permutation of k elements, say σ′, from a permutation of k− 1 elements, say σ, we have
to add the new element to any cycle of σ or leave that element invariant by σ′.

If we add the element to some cycle, the sum
∑

i α
σ
i transforms into

∑
i α

σ′
i , but

notice that we are changing the length of two cycles. Therefore, the sum does not change
because, for some i0, we have that α

σ
i0

= ασ
′
i0
− 1 and ασi0+1 = ασ

′
i0+1 + 1. Hence,

k −
∑

ασ
′
i = k −

∑
ασi = (k − 1)−

∑
ασ
′
i + 1,

so the parity of this number changes. Luckily, this operation changes the sign of the
permutation: sgn(σ) = − sgn(σ′).
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Finally, if we leave the new element invariant neither the sign nor the di�erence
k −

∑
i αi changes.

We �nish the argument by induction, as it is true for Σ2 and D2(f) (see Exam-
ple 6.2.1). QED

Lemma 6.3.3. Consider an irreducible representation R of Σk that is neither the trivial
nor the alternating representation. Then,∑

σ∈Σk

χR(σ) =
∑
σ∈Ak

χR(σ) =
∑
σ/∈Ak

χR(σ) = 0,

where Ak is the alternating subgroup of Σk, i.e., the subgroup given by elements with
positive sign.

Proof. For any �nite group G and non-trivial irreducible representation R′, consider
the inner product of χT and χR′ (see De�nition A.2.5):

〈χT |χR′〉 =
∑
σ∈G

χR′(σ) = 0, (6.5)

where we have omitted the term 1
|G| for convenience.

If we prove that ∑
σ∈Ak

χR(σ) = 0, (6.6)

the lemma follows from Equation (6.5) for G = Σk. However, we can also prove this using
Equation (6.5) with G = An. We can restrict R to Ak and, as long as the restriction
R↓Ak (see De�nition A.4.1) is decomposed as

R′1 ⊕ · · · ⊕R′`

with no copies of the trivial representation of Ak, we can use Equation (6.5) with G = An
and R′ = R′i to prove Equation (6.6).

Hence, the problem is reduced to prove that

R↓Ak∼= R′1 ⊕ · · · ⊕R′`

with R′i di�erent from the trivial representation for every i.
This can be proved using Cli�ord's theorem (see, for example, [Isa76, Theorem 6.2]),

for it shows that all the χR′i are conjugated and, if one R′i were the trivial representation,
then the character of R↓Ak would be a multiple of the trivial character of Ak. This last
thing would be absurd, because we are assuming that R is neither the trivial nor the
alternating representation, and their characters are the only ones that are a multiple of
the trivial character when restricted to Ak. QED

Remark 6.3.4. The proof of Lemma 6.3.3 uses standard arguments in character theory3.
Another proof can be given using [FH91, Proposition 5.1] and a dimensional argument.

3In fact, it was given to the author by Moretó.
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Proof of Theorem 6.3.1. We use the approach we have introduced above and split the
proof in two cases: if none of the expected dimensions dσk are negative and if some are
negative.

Case 1: None of the expected dimensions are negative

For simplicity, we split this case in two subcases:

Case 1.1: All the expected dimensions are positive

Dk(ft)
σ 6= ∅ if dσk > 0, because Dk(ft)

σ is the Milnor �ber of Dk(f)σ and the latter
contains the point (0, . . . , 0) (as in the examples of Section 6.2).

Simplifying the equation

χΣk

(
Dk(ft)

)
(σ) = χTop

(
Dk(ft)

σ
)
,

which comes from applying Equation (6.1) to Σk and Dk(ft), and taking into account
that βdσk

(
Dk(ft)

σ
)
≥ 0, we reach a set of N inequalities taking σ in all the conjugacy

classes of Σk. To be more precise, the inequalities take the form

χT (σ)T + χAlt(σ)A+
∑
i

χRi(σ)Ri ≥ 0, or

χT (σ)T + χAlt(σ)A+
∑
i

χRi(σ)Ri ≤ 0;

where χT , χAlt and χRi are the characters of the trivial, alternating and the remaining
representations of Σk; and T , A and Ri are the number of times these representations ap-
pear in the representation of Σk on Hdk

(
Dk(ft)

)
. Furthermore, the number of inequalities

and the number of variables coincide.
As the coe�cients of the inequalities are the columns of the character table of Σk,

they are orthonormal (see Remark A.2.11). This implies that the set of possible solutions,
Q, coincides with {

(T,A,R1, . . . , RN−2) ∈ RN : T,A,Ri ≥ 0
}

after some rotations and re�ections (see Examples 6.2.1 and 6.2.3 and their �gures).
We want to verify that any non-zero solution of the system of inequalities has positive

A. This is equivalent to checking that the interior of Q contains the set {A ≥ 0}. In turn,
this can be con�rmed if the inner product given by the vector of the coe�cients of every
inequality and the vector (0, 1, 0 . . . , 0) is strictly positive if the inequality has sign ≥ and
strictly negative if the inequality has sign ≤. These three equivalences can be easily seen
if we consider the set Q as the intersection of the half-spaces Hσ given by the inequalities,
whose vector of coe�cients is vector orthogonal the hyperplane de�ning Hσ pointing in
the direction of Hσ if the inequality has sign ≥ and outside Hσ if the sign is ≤ (see,
again, Examples 6.2.1 and 6.2.3 and their �gures).

Observe that the sign of the inequality depends on the parity of the di�erence dk−dσk .
More precisely, the sign of the inequality is ≤ if, and only if, dk−dσk is odd. Furthermore,
the inner product we were considering before is equal to χAlt(σ) = sgn(σ). Therefore,
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we want to prove that dk − dσk is odd if, and only if, sgn(σ) = −1, which was proven in
Lemma 6.3.2.

Case 1.2: The expected dimensions are zero or positive

If some expected dimensions are zero, nothing really changes.

Let us assume that dσ0
k = 0. Again, Dk(ft)

σ0 6= ∅, as Dk(ft)
σ0 is the Milnor �ber

of Dk(f)σ0 and the latter contains the point (0, . . . , 0). However, the equation we obtain
using σ0 takes the form

χT (σ0)T + χAlt(σ0)A+
∑
i

χRi(σ0)Ri = ±β0

(
Dk(ft)

σ0
)
± 1, or

χT (σ0)T + χAlt(σ0)A+
∑
i

χRi(σ0)Ri = ±β0

(
Dk(ft)

σ0
)
∓ 1.

In both cases, as β0

(
Dk(ft)

σ0
)
≥ 1, we reach the same kind of inequality we reached

before with the same dependency on the parity of dk − dσ0
k (observe that the fact that

we are using β0 does not change the sign, the change is only a 1 that is not simpli�ed).
Indeed, we could even have a strict inequality.

The same argument �nishes this case.

Case 2: Some expected dimensions are negative

We are going to make a distinction based on the parity of dk. However, the general
idea is to work with the equations given by the identity

χΣk

(
Dk(ft)

)
(σ) = χTop

(
Dk(ft)

σ
)
,

but taking only permutations σ such that χAlt(σ) = sgn(σ) = −1.

Case 2.1: dk = 0

In this case, all the equations have the form

χT (σ)T + χAlt(σ)A+
∑
i

χRi(σ)Ri = 0

except for the equation we get using idΣk , which is

T +A+
∑
i

χRi(σ)Ri = β0

(
Dk(ft)

)
> 0.

We can use the reasoning of Case 1.1 to prove that A > 0.

Case 2.2: dk > 0 is even

Observe that dσk is odd if we consider a σ such that χAlt(σ) = sgn(σ) = −1, because,
by Lemma 6.3.2, the di�erence dk − dσk is odd. This implies that the equations given by
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these permutations σ, simplifying known characters, take the form

T −A+
∑
i

χRi(σ)Ri = −βdσk
(
Dk(ft)

σ
)
, or

T −A+
∑
i

χRi(σ)Ri = −1,

depending on dσk being positive or negative, as Dk(ft)
σ = ∅ for negative expected di-

mensions.
Consider the set of all odd expected dimensions, EDo. By Lemma 6.3.3, we can take

a positive linear combination of the equations described above such that it is equal to

ζT − ζA =
∑

dσk∈EDo:d
σ
k>0

−ζσβdσk
(
Dk(ft)

σ
)
− ζ0, (6.7)

for some ζ, ζσ, ζ0 > 0 where ζ0 depends on the set {dσk ∈ EDo : dσk < 0}. If ζ0 > 0, which
is equivalent to # {dσk ∈ EDo : dσk < 0} being strictly positive, then every solution has
positive A. For the sake of contradiction, assume that ζ0 is zero.

If # {dσk ∈ EDo : dσk < 0} is zero but there are some negative expected dimensions,
then all the negative expected dimensions are even, i.e., −2 or lower. This is absurd: for
example, taking σ a k-cycle or a (k − 1)-cycle, dσk is the minimum or the minimum plus
one, respectively.

Case 2.3: dk > 0 is odd

In this case, dσk is even if we take σ such that χAlt(σ) = sgn(σ) = −1. Now, however,
the equations take the form

T −A+
∑
i

χRi(σ)Ri = −βdσk
(
Dk(ft)

σ
)
,

T −A+
∑
i

χRi(σ)Ri = −β0

(
Dk(ft)

σ
)

+ 1, or

T −A+
∑
i

χRi(σ)Ri = 1,

depending, again, on dσk being positive, zero or negative.
Proceeding as before, we reach

ζT − ζA =
∑

dσk∈EDe:d
σ
k≥0

−ζσβdσk
(
Dk(ft)

σ
)

+ ζ0, (6.8)

for some ζ, ζσ, ζ0 > 0 and where, now, ζ0 depends on the set {dσk ∈ EDe : dσk ≤ 0} and
EDe is the set of even expected dimensions.

Observe that the term ζ0 is at most ζ. However, the right-hand side of Equation (6.8)
is at most ζ − 1. If ζ0 is equal to ζ, then one of the even expected dimensions, given
by σ0, is zero. But, in that case, notice that β0

(
Dk(ft)

σ0
)
≥ 1 (by the usual argument).
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Hence, in the worst-case scenario, the solution to Equation (6.8) is T = A = 0, otherwise
A > 0.

We �nish the argument taking, now, the equations given by σ such that χAlt(σ) =
sgn(σ) = 1. In this case, the expected dimensions are always odd and the equations take
the form

T +A+
∑
i

χRi(σ)Ri = βdσk
(
Dk(ft)

σ
)
, or

T +A+
∑
i

χRi(σ)Ri = 1,

depending, again, on dσk being positive or negative.
By Lemma 6.3.3, we can take a positive linear combination of these equations such

that it is equal to

ζ ′T + ζ ′A =
∑

dσk∈EDo:d
σ
k>0

ζ ′σβdσk
(
Dk(ft)

σ
)

+ ζ ′0, (6.9)

for some ζ ′, ζ ′σ, ζ
′
0 > 0 and ζ ′0 depending on {dσk ∈ EDo : dσk < 0}. This equation cannot

have as solution T = A = 0 because, at least, βdk
(
Dk(ft)

)
> 0 by hypothesis. QED

Let us re�ect on this proof.
First of all, what is happening is that the set of possible solutions, called Q in Case

1 of the proof, is always as we desire. Indeed, along the cases, the proof is equivalent to
check that the disposition of Q is such that A > 0 if the solution is not T = A = Ri = 0,
for all i.

Moreover, despite the proof is long, one only has to observe the examples of low
dimension (not only the ones given in Section 6.2) to deduce the general behaviour of
the multiple point spaces.

Finally, and most importantly, observe that the whole proof relies on the parity of
dk − dσk , which works well with χAlt(σ) = sgn(σ) by Lemma 6.3.2 . This shows that the
alternating part is somehow special, which can be seen in, for example, Equations (6.7)
to (6.9). Furthermore, observe that the parity of the di�erence dk − dσk depends only on
σ for any pair of dimensions (n, p), with n < p. Indeed, it is always equal to k −

∑
i αi,

with the usual notation, which implies that the proof of Theorem 6.3.1 and Lemma 6.3.2
works in any pair of dimension. Hence, we have proven the following theorem.

Theorem 6.3.5. Given an unstable corank 1 A -�nite germ f : (Cn, 0) → (Cp, 0), with
p > n, if ft is a stable perturbation of f , the following are equivalent:

1. Dk(f) has a singularity,

2. Dk(ft) has non-trivial homology in middle dimension, and

3. Dk(ft) has non-trivial alternating homology in middle dimension;

if k ≤ d(f), with d(f) as in De�nition 3.1.14.
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6.4. Further applications

As we have seen in Theorem 6.3.1, this new approach translates a hard problem of
singularities of germs into a problem of linear algebra by means of the symmetric struc-
ture of the multiple point spaces and representation theory. Furthermore, this promising
technique is not limited to prove things of the multiple point spaces (see, for example,
Theorem 6.2.6). We hope that this approach has many more applications. So far, we have
one more.

Consider a germ f : (Cn, 0) → (Cn+1, 0) that is A -�nite of corank one and a trans-
verse slice g : (Cn−1, 0) → (Cn, 0). We have seen in Proposition 4.4.20 that, if µI(ft)
and µI(gt) are constant in a family, then µD(ft) and µD(gt) are also constant. However,
observe that µD is controlled by the alternating isotype and the (2, 1, . . . , 1)-isotype of
the multiple point spaces, and their dimension is given by A and one of the Ri in the
proof of Theorem 6.3.1 (indeed, in Examples 6.2.3 to 6.2.5, it is denoted as S). As the
system of equations given by

χΣk

(
Dk(ft)

)
(σ) = χTop

(
Dk(ft)

σ
)

is a linear system with a unique solution, we would like to see if the constancy of µI in
a family implies the constancy of the Milnor numbers of Dk(f)σ, which would prove the
constancy of Ri and, hence, the constancy of µD.

Theorem 6.4.1. Let f : (Cn, 0) → (Cn+1, 0) be a germ that is A -�nite of corank one.
If we consider a one-parameter family ft of f and ft has an instability in yt, then the
following are equivalent:

(i) µI(ft; yt) does not depend on t, and

(ii)
∑

ω∈Dk(ft)σ
µ
(
Dk(ft)

σ;ω
)
does not depend on t, for k ≤ d(f) and σ ∈ Σk,

with d(f) as in De�nition 3.1.14.

Proof. First of all, if
∑

ω∈Dk(ft)σ
µ
(
Dk(ft)

σ;ω
)
, then, by the non-coalescence theorem

for icis (see [CNnBOOT21, Theorem3.1] or Theorem 5.8.8), we have only one singularity
(at most) along the family:∑

ω∈Dk(ft)σ

µ
(
Dk(ft)

σ;ω
)

= µ
(
Dk(ft)

σ;ωt
)
,

for ωt ∈ Dk(ft)
σ. This implies that the family ft has only one instability of mono-germ

type, otherwise there would have been more than one singularity in some space Dk(ft)
σ

(see also Lemma 3.2.1). Furthermore, by Theorem 6.2.6, the image Milnor number of
the instabilities are determined by µ

(
Dk(ft)

σ;ωt
)
, which are constant, so µI(ft, yt) is

constant.
Conversely, the constancy of µI(ft; yt) implies that the family is excellent in Gafney's

sense (by Houston's conjecture on excellent unfoldings, Theorem 3.2.3). This implies,
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by the Marar-Mond criterion (see Theorem 2.4.4 and Lemma 4.2.10), that the multiple
point spaces Dk(ft)

σ have only one singularity (at most). Hence,∑
ω∈Dk(ft)σ

µ
(
Dk(ft)

σ;ω
)

= µ
(
Dk(ft)

σ;ωt
)
.

It only remains to prove that the constancy of µI(ft; yt) implies the constancy of every
µ
(
Dk(ft)

σ;ωt
)
.

For the sake of contradiction, assume that this is not true, so some ft0 has di�erent
µ
(
Dk(ft0)σ;ωt

)
for some σ. By the upper semi-continuity of the Milnor number of icis

(see, for example, [NBOOT18, Theorem 4.2]) we have that

µ
(
Dk(f0)σ;ω0

)
≥ µ

(
Dk(ft0)σ;ωt

)
. (6.10)

Hence, consider the equations of the proof of Theorem 6.3.1:

χT (σ)T + χAlt(σ)A+
∑
i

χRi(σ)Ri =


±βdσk

(
Dk(f•)

σ
)

±β0

(
Dk(f•)

σ
)
± 1

±β0

(
Dk(f•)

σ
)
∓ 1

±1

, (6.11)

given by the di�erent σ. If we take Equation (6.11) with any σ applied to f0 and subtract
the same equation applied to ft0 we obtain, on the right-hand side, either something
negative or zero if the sign of the Betti number was negative for f0, something positive
or zero if the sign of the Betti number was positive for f0 or zero (by Equation (6.10)).
Furthermore, at least one of these operations give a non-zero right-hand side, as some
Milnor number of the multiple point spaces changes strictly. As we have seen in Case 1
of the proof of Theorem 6.3.1, such a system of equations given by these subtractions
always give a solution with A > 0, which is absurd if we assume that µI(f0) = µI(ft0)
(recall that the image Milnor number is conservative, see Theorem 3.1.7). QED

Corollary 6.4.2. Let f : (Cn, 0) → (Cn+1, 0) be a germ that is A -�nite of corank one.
Consider a one-parameter family ft of f and ft has an instability in yt. Then, if µI(ft; yt)
does not depend on t, we have that µD(ft; yt) does not depend on t.

Furthermore, in general, if µI(ft; yt) does not depend on t, then βi(ft; yt) does not
depend on t for any i (as given in Notation 4.4.14).

Proof. By Theorem 6.4.1, if µI(ft, yt) is constant, the dimensions of all the isotypes
of all the actions of Σk in D

k(ft) are constant. Then, µD in particular, and βi(ft) for any
i in general, are constant. QED



Chapter 7

Conclusions and future work

A mathematician, then, will be
de�ned in what follows as someone
who has published the proof of at

least one non-trivial theorem.

Jean Dieudonné, Mathematics and

Mathematicians

7.1. Accomplished goals

We have been able to prove a characterization of the Whitney equisingularity for
families of corank one germs from Cn to Cn+1 using a few invariants. To do so, we
have proven Houston's conjecture on excellent unfoldings, proving also some fundamental
results of the image Milnor number. We have also expanded the theory of map germs
on icis, we have given a new invariant (the double point Milnor number) and we have
studied its relation with the image Milnor number.

We have also given a general result to control a local geometric monodromy and we
have applied it to prove a general non-coalescing theorem. Furthermore, we have seen
that this general result does not �t well with the setting of images of map germs and we
have proven a result related to Zariski's multiplicity conjecture.

Finally, we have developed a new technique to study map germs using the symmetry
of the multiple point spaces that translates problems in the setting of singularities of
map germs to problems of linear algebra. In particular, we have been able to prove that
the presence of a singularity in the multiple point spaces implies that its Milnor �ber will
have alternating homology and that the constancy of the image Milnor number implies
the constancy of the double point Milnor number.

However, there are many open questions related to our research.
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7.2. Open problems and future research

Recall that, in Chapter 3, we solved Houston's conjecture on excellent unfoldings for
the dimensions (n, n + 1), which controls excellency of a corank one family in terms of
the constancy of the image Milnor number. A stronger relation would be the equivalence
between excellency and constancy of the image Milnor number in a one-parameter family
of any corank, which we have posed as Conjecture 3.2.6 in Section 3.2 (see also the partial
result Proposition 3.2.4):

Open Problem 1. For every A -�nite germ f : (Cn, S) → (Cn+1, 0) and every origin-
preserving one-parameter unfolding F (x, t) =

(
ft(x), t

)
, F is excellent if, and only if,

µI(ft) is constant.

Note that one implication of this equivalence is Houston's conjecture for the dimen-
sions (n, n+1) stated for any corank. In particular, to prove this conjecture, we need the
weak Mond's conjecture for any corank. Fortunately, Nuño-Ballesteros and the author
have a proof of this result that will published soon. In any case, as the result is still
unpublished, we leave it here as an open problem.

Open Problem 2 (Weak Mond's conjecture). An A -�nite germ f is stable if, and only
if, µI(f) = 0.

Considering another direction to generalize our results, observe that the original con-
jecture was stated for n < p, in general, with the de�nition of the image Milnor number
taken as

µI(f) :=
∑
i

rank H̃i

(
im(f)

)
,

cf. [Hou10, De�nition 3.11]. The main problem to prove the conjecture for n < p is that
the image of maps f : Cn → Cp is not a hypersurface in general, so we cannot use
Siersma's result Theorem 3.1.2 and the homology of the image is not concentrated in
middle dimension, which is an additional di�culty.

Nevertheless, observe that the proof of the conjecture for (n, n+ 1) in Theorem 3.2.3
involves a conservation principle of µI and the weak Mond's conjecture, and it seems
that both things can be proven for n < p by means of the Marar-Mond criterion (see
Theorem 2.4.4), the icss (see Theorem 2.3.1), and our new technique (see Chapter 6).
Hence, the proof of Houston's conjecture for n < p would follow the same steps:

Open Problem 3 (see [Hou10, Conjecture 6.2]). Let f : (Cn, S) → (Cp, 0), n < p, be
A -�nite of corank 1 and let F (x, t) =

(
ft(x), t

)
be an origin-preserving one-parameter

unfolding. Consider the family of germs ft : (Cn, S) → (Cp, 0). Then, µI(ft) constant
implies F excellent.

In turn, this could be used to prove an equivalence between equisingularity of a family
of germs and the constancy of a few invariants, for the dimensions n < p, as we did in
Theorem 4.5.7 of Chapter 4 for p = n+ 1.
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Open Problem 4. Characterize the Whitney equisingularity of a one-parameter family
of A -�nite corank one map germs ft : (Cn, S) → (Cp, 0) in terms of the constancy of a
few invariants, possibly two µ∗I -like sequences.

On the other hand, as we have shown in Section 5.1, the original motivation of
Chapter 5 is proving that we cannot have coalescence of instabilities in an unfolding of
an A -�nite germ f : (Cn, S)→ (Cn+1, 0) with constant total image Milnor number. This
is still open.

Open Problem 5. An unfolding of an A -�nite germ f : (Cn, S) → (Cn+1, 0) cannot
have coalescence of instabilities if the unfolding has constant total image Milnor number.

Furthermore, as we had to see if we could use an argument similar to the one of
Theorem 5.8.8 to prove this, we have studied the monodromy induced by a stabilisation
of an A -�nite germ f : (Cn, S)→ (Cn+1, 0). Surprisingly, the monodromy is not unique
because it depends on the stabilisation we take, which motivates the following open
problem.

Open Problem 6. Study the di�erent monodromies induced by the di�erent stabilisa-
tions of A -�nite map germs f : (Cn, S) → (Cn+1, 0), possibly related to the geometric
structure of the bifurcation set of the the unfoldings of the germs.

As we mention, we have reasons to think that the di�erent monodromies we could
give are closely related to the bifurcation set. This led Nuño-Ballesteros and the author
to study the bifurcation set of an A -�nite germ f : (Cn, S) → (Cn+1, 0) and proving
that it is a purely dimensional hypersurface (it was known, only in corank one, that it
has codimension one, see [MNB20, Remark 9.3]). But, again, we leave it here as an open
problem because it is not published yet.

Open Problem 7. The bifurcation set of a germ f : (Cn, S) → (Cn+1, 0) is a purely
dimensional hypersurface.

Finally, regarding the new technique we have shown in Chapter 6, there is an obvious
di�culty of applying the technique if the corank of the germ is bigger than one, as the
homology of the multiple point spaces is non-trivial in di�erent dimensions.

Open Problem 8. Control the equations given by the relation

χΣk

(
Dk(ft)

)
(σ) = χTop

(
Dk(ft)

σ
)

of Chapter 6 if the germ has corank bigger than one.

Also, there are a couple of open problems where we may use it. Of course, the problems
we list here are not all the problems we are working on. However, these are the most
relevant ones.

Open Problem 9. Relate the topologically triviality and the constancy of the image
Milnor number of a one-parameter unfolding of an A -�nite germ f : (Cn, S)→ (Cn+1, 0)
of corank one.
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We have tried to solve this problem with the ideas of Parusi«ski in [Par99], but the
vector �eld was not continuous. With the new approach, we may use the topological
triviality of the multiple point spaces Dk(ft)

σ, which are icis, and use our technique to
solve it.

In terms of elements instead of families we have:

Open Problem 10. Assume that f, g : (Cn, S)→ (Cn+1, 0) are topologically left-right
equivalent, i.e., using homeomorphisms instead of biholomorphisms for the equivalence,
and A -�nite. Then, µI(f) = µI(g).

And, as a particular case:

Open Problem 11. If f, g : (Cn, S) → (Cn+1, 0) are topologically left-right equivalent
and A -�nite, then f is unstable if, and only if, g is so.

To solve this last problem recall Corollary 5.8.1. If we are able to prove this theorem
for icis and translate the topological left-right equivalence of the germs to the presence
of singularities of the multiple point spaces Dk(f), Dk(g) then, as the multiple point
spaces control the image Milnor number (see Theorem 6.2.6), we prove Open Problem 11.
Furthermore, if we are able to translate the topological left-right equivalence of the germs
to the topological equivalence of Dk(f) and Dk(g), we prove Open Problem 10.

To conclude, observe that Open Problem 5 can also be approached with this tech-
nique, as new instabilities in a map ft of an unfolding can be detected by some 0-
dimensional space Dk(ft)

σ, for some σ ∈ Σk.

7.3. A program to solve Mond's conjecture

To conclude this work, there is a program that, if completed, would solve the inequa-
lity

µI ≥ A -codim (7.1)

for A -�nite germs f : (Cn, S) → (Cn+1, 0), which is part of Mond's conjecture (see
Conjecture 1.2.29).

This program consists of three steps.

Step 1

Consider the bifurcation set B(F) of a miniversal unfolding F and the (possibly not
locally �nite) strati�cation given by A -equivalence: two parameters t1, t2 are in the same
stratum if the induced maps ft1 , ft2 are left-right equivalent. Hence, the �rst step consist
of proving that there is a stratum of dimension one in this strati�cation. In that case,
the one-parameter unfolding F = (ft, t) given by this stratum is such that∑

y∈im(ft)

A -codim(ft; y) = A -codim(f ; 0)− 1,
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for t 6= 0 (see [MNB20, Proposition 5.1]).

Step 2

Prove that F is not excellent.
If there is one instability along the family, one needs to prove that there are new

0-stable singularities along the family in order to prove that F is not excellent. On the
other hand, the unfolding F could have coalescence of instabilities, which makes the un-
folding not excellent.

Step 3

Prove that a non-excellent family does not have constant total image Milnor number:∑
y∈im(ft)

µI(ft; y) 6= µI(f ; 0),

for t 6= 0.
If the family does not have coalescence of instabilities, we have proved this in corank

one (see Houston's conjecture on excellent unfoldings, Theorem 3.2.3). In any corank,
this is one of the implications of Open Problem 1.

If the family does have coalescence of instabilities this is Open Problem 5.

If these steps are completed, we can apply induction and prove the inequality part
of Mond's conjecture, given in Equation (7.1). This comes from the conservation of the
image Milnor number (see Theorem 3.1.7):

µI(f) = βn
(

im(ft)
)

+
∑

y∈im(ft)

µI(ft; y).

Hence, in our case,

µI(f) 	
∑

y∈im(ft)

µI(ft; y),

so we have decreased the A -codimension of the instability of f by one but the image Mil-
nor number by one or more. We conclude with an inductive argument on each instability
of ft.



Appendix A

Representation theory

In these days the angel of topology
and the devil of abstract algebra �ght
for the soul of each individual
mathematical domain.

Hermann Weyl, Invariants
[Wey39]

Representation theory is not a usual topic that appears in singularity theory, at least
in singularities of mappings. For this reason, this part is intentionally written to be a
functional introduction to it for the common singularist.

As general references, we suggest [FH91, Isa76, Ste12, Sag01], and we strongly recom-
mend the notes of McNamara and the notes of Kao on this topic for a quick introduction
on basic concepts ([McN13] and [Kao10], respectively).

A.1. Fundamentals of representation theory

Representation theory is the study of the ways a given group can act on vector spaces
or, in categorical terms, the study of the functors from BG to VectK (the category
induced by G with one object and the category of K-vector spaces, respectively). To be
more precise, a representation of a group G is a homomorphism

ρ : G→ GL(V,K)

where V is some K-vector space. Here, we deal with �nite groups and complex vector
spaces (in particular, characteristic zero), but most of the theory showed here can be
generalized to a broader context. We shall follow the common conventions found in the
literature, for example, we shall refer to a given representation simply by the vector space
where it happens, say V , instead of the action of G or omit ρ in expressions like ρ(g)v
to write just g · v or gv.
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http://math.uchicago.edu/~may/REU2013/REUPapers/McNamara.pdf
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Kao.pdf
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Once a structure is given, a straightforward reaction is to ask about its substructures.
In the case of a representation of G on a vector space V one can see that two kind of
substructures arise, representations of G on subspaces and representations of a subgroup
on V . We shall deal with the second one later because the �rst one is more intuitive.
Notice that if G acts on a subspace, then G must �x the subspace when it acts on V .
This is what we call a subrepresentation of V .

De�nition A.1.1. A representation of some group G is irreducible if it has no proper
subrepresentations, otherwise it is called reducible.

The dimension of a representation V also has a name.

De�nition A.1.2. The degree of a representation V is dimV .

If we have a representation of G over V , then V acquires immediately a richer struc-
ture, given that the action takes G to GL(V ) and the later is a ring.

De�nition A.1.3. The group algebra CG, or C[G], is the set of formal sums∑
g∈G

agg,

where the ag ∈ C are zero except for a �nite number of them, together with the sum∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg) g

and the product ∑
g∈G

agg

 ·
 ∑

g′∈G
bg′g

′

 =
∑
g,g′∈G

(
agbg′

)
gg′.

Not surprisingly, the group algebra is an algebra, and a ring. Hence, the richer struc-
ture we were talking about is the structure of CG-module. Therefore, saying that V is
a representation and saying that V is a CG-module is the same. This parallelism keeps
happening when talking about substructures, i.e., a submodule is a subrepresentation.

Now, we introduce some examples. Some of them are given a name because of their
relevance, however, recall that the names are given up to isomorphism.

Example A.1.4. (i) The trivial representation of a group G is the action ρ(g) = idC,
so it is just C with a trivial action.

(ii) The alternating representation, or sign representation, of a group of permutations
Σk is C with the action ρ(g)z = sgn(g)z, where sgn is the signature or sign.

(iii) The representation of Z/2Z over C that sends 0 to idC and 1 to − idC is irreducible
because it has degree 1. In particular, it is the alternating representation of Σ2

∼=
Z/2Z.
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(iv) The representation of Z/2Z over C2 that sends 0 to

(
1 0
0 1

)
and 1 to

(
0 1
1 0

)
is

reducible. This representation has a trivial subrepresentation and an alternating

representation as unique irreducible subrepresentations, which are spanned by

(
1
1

)
and

(
1
−1

)
, respectively.

(v) If G acts on a �nite set X by permutation of the elements, one can de�ne an action
of G on the free vector space generated byX. This is the permutation representation
ofG. Notice that it is reducible in general, for example, it has a trivial representation
spanned by the sum of all the elements of X because this vector is invariant under
the action of G. Item (iv) is an example of this representation, with an adequate
basis.

(vi) The regular representation of G is a permutation representation where the set is G
with the usual product as action.

(vii) The standard representation arises when we have a permutation representation of
Σk over Ck and the action over the standard basis is σei = eσ(i). We already know
that the subrepresentation SpanC {e1 + · · ·+ ek} is the trivial representation, the
orthogonal complement is the so-called standard representation.

(viii) For a representation as in Item (vii) with k = 3, the standard subrepresentation is

spanned by


 1

0
−1

 ,

 0
1
−1

. The action of Σ3 is listed in Table A.1.

σ ∈ Σ3 idΣ3 (1 2) (1 3) (2 3) (1 2 3) (1 3 2)

ρ(σ)

(
1 0
0 1

) (
0 1
1 0

) (
−1 −1
0 1

) (
1 0
−1 −1

) (
−1 −1
1 0

) (
0 1
−1 −1

)
Table A.1: Standard representation of Σ3.

Apart from the substructures, once you are given a structure, a straightforward con-
cept are the morphisms between this kind of structures, especially from the categorical
point of view. In our case, we are given two representations and we want to know what
is a morphism between them. Not surprisingly, a morphism between two representations
(i.e., CG-modules) is a morphism of CG-modules1.

De�nition A.1.5. Given two representations of G, V and W , a morphism between
them is a linear map φ : V → W such that φ(gv) = gφ(v), i.e., the following diagram is

1Or, with categorical terms, a natural transformation between two functors from BG to VectC.
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commutative:

V W

V W

g

φ

g

φ
.

Note also that, with this de�nition, the kernel, ker, and the image, im, of a morphism
of representations is G-invariant.

Proposition A.1.6. Given a morphism of representations φ : V → W , the kernel is a
subrepresentation of V and the image is a subrepresentation of W .

If we have a linear map between spaces of dimension 1, it is an isomorphism or the zero
map. This is because dimension one characterizes an object without proper substructures
in VectC. Something similar happens for representations but, now, having degree equal
to one will not be a necessary condition to have this situation. Although, what we can
say is that if we consider a morphism between two non-zero irreducible representations
then the kernel and the image are the total or the zero subrepresentations. Furthermore,
if one is the total the other is the zero subrepresentation and vice versa . This proves
Schur's lemma.

Lemma A.1.7 (Schur's lemma, see [FH91, Lemma 1.7]). A morphism between two irre-
ducible representations is either an isomorphism or the zero morphism. In particular, it
is equal to the product by some λ ∈ C.

As a result, we can easily prove Maschke's theorem2.

Theorem A.1.8 (Maschke's theorem, see [FH91, Proposition 1.8]). For any represen-
tation V of a �nite group G, there is a decomposition

V = V ⊕a1
1 ⊕ · · · ⊕ V ⊕akk ,

where the Vi are distinct irreducible representations. The decomposition of V into a direct
sum of the factors, the irreducible subrepresentations that appear and their multiplicities
ai are unique.

Sketch of the proof. The complement of a subrepresentation is a subrepresentation,
for if v is in the complement and gv falls into the subrepresentation then g−1gv is both
in the subrepresentation and in the complement. Also, if we have two decompositions of
a representation, the identity between them sends each irreducible subrepresentation to
an isomorphic subrepresentation by Lemma A.1.7. QED

2Here, we present a more sophisticated statement than Maschke's theorem, originally it says nothing
about copies of a representation and uniqueness of copies (cf. [Isa76, Theorem 1.9]).
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This is what happens in the examples listed above. For example, the permutation
representation given in Item (vii) is the sum of a trivial representation and a standard
representation, and this last one is also irreducible.

An important piece of notation arises thanks to Theorem A.1.8, which we use fre-
quently.

De�nition A.1.9. Given an irreducible representation τ , the τ -isotype of a representa-
tion V is the sum of all the irreducible subrepresentations of V isomorphic to τ given in
the decomposition of Theorem A.1.8, and it is denoted as V (τ) or V τ .

In particular, the alternating isotype is also denoted as V AltG , or V Alt if the group is
clear from the context.

A.2. Character of a representation

If a representation of G over V is a homomorphism that sends G into GL(V ), we can
keep studying properties of representations via linear algebra. For example, the trace of
a matrix is invariant under conjugation, tr(A) = tr(P−1AP ), so it can be de�ned over
the classes of conjugacy. In particular, note that, in Table A.1, all the conjugacy classes
of Σ3 have the same trace when represented. The relation between conjugacy classes, the
action of the group and the vector space motivate us to de�ne the trace of representations
as a gear of this machinery, and we shall see that it is of central signi�cance.

De�nition A.2.1. The character of g ∈ G with respect to a given representation ρ is
the trace of ρ(g), and it is denoted by χρ(g). Usually, it is denoted as χV if V is the
vector space where G acts and the action is clear from the context. Finally, an irreducible
character is the character of an irreducible representation.

Example A.2.2. (i) The trivial representation has constant character 1, and we write
it as χT .

(ii) The character of the alternating representation is χAlt(g) = sgn(g).

(iii) The character of the permutation representation of Σ3 over C3, written (here)
simply as χC3 if there is no risk of confusion, is given on the conjugacy classes by

{idΣ3} 3

{(1 2), (1 3), (2 3)} 1

{(1 2 3), (1 3 2)} 0

χC3

χC3

χC3

.

(iv) The character of the standard representation, written in this text as χS , of Σ3 is



A.2. CHARACTER OF A REPRESENTATION 137

given by (see Table A.1)

{idΣ3} 2

{(1 2), (1 3), (2 3)} 0

{(1 2 3), (1 3 2)} −1

χS

χS

χS

.

Some properties of the characters are given, as we were saying, by linear algebra.
For example, the decomposition of the permutation representation of Σ3 explained above
works as it should (see Table A.2).

The properties of the trace, that can be found on any book of linear algebra, give the
following result.

{idΣ3} {(1 2), (1 3), (2 3)} {(1 2 3), (1 3 2)}
χT 1 1 1

χS 2 0 -1

χC3 3 1 0

Table A.2: Character decomposition of the permutation representation over C3.

Proposition A.2.3. For any representations V and W of G, we have:

(i) the character of V is a class function (i.e., it only depends of the conjugacy class),

(ii) χV (g−1) = χV (g), for any g ∈ G,

(iii) χV⊕W = χV + χW , and

(iv) χV⊗W = χV χW .

Let us examine the previous representations and characters of Σ3. We were saying
that the above proposition is satis�ed with the permutation representation of Σ3 over C3

(see Table A.2) but, what is of extraordinary relevance at this point, is that the rows of
the character table of Σ3 are close to be orthonormal.

Notation A.2.4. A character table is a table where the rows are labelled by the irredu-
cible characters of a group and each column by a class of conjugacy (see the case of Σ3

in Table A.3).

{idΣ3} {(1 2), (1 3), (2 3)} {(1 2 3), (1 3 2)}
χT 1 1 1

χS 2 0 -1

χAlt 1 -1 1

Table A.3: Character table of Σ3.



138 APPENDIX A. REPRESENTATION THEORY

With Table A.3 in mind, what we meant by close to be orthonormal is pretty clear.
The rows will be orthogonal if we take into account the number of objects in the class of
conjugacy and they will be orthonormal after normalizing. Furthermore, the normaliza-
tion is simple in that case as well.

De�nition A.2.5. The inner product of characters is given by

〈χ1|χ2〉 :=
1

|G|
∑
g∈G

χ1(g)χ2(g). (A.1)

Theorem A.2.6 (see [FH91, Theorem 2.12]). The irreducible characters of G are ort-
honormal with respect to this inner product.

We shall not go into further details about this inner product, but we state some
important consequences.

Corollary A.2.7 (see [FH91, Corollary 2.14]). Any representation of G is determined
by its character.

Corollary A.2.8 (see [FH91, Corollary 2.15]). A representation V of G is irreducible
if, and only if, 〈χV |χV 〉 = 1.

Note. This corollary proves that the standard representation of Σ3 is irreducible.

Corollary A.2.9 (see [FH91, Corollary 2.13 and Proposition 2.30]). The number of
irreducible representations of G is equal to the number of conjugacy classes in G.

Given a representation V , if we want to unravel the relations of the irreducible su-
brepresentations through this product, we �nd the following:

Corollary A.2.10 (see [FH91, p. 17]). Let V be a representation of G decomposed into
irreducible representations as

V = V ⊕a1
1 ⊕ · · · ⊕ V ⊕akk .

Then, ai = 〈χV |χVi〉 for every i. This implies that 〈χV |χV 〉 =
∑

i a
2
i .

Furthermore, if V is the regular representation of G, then

(i) every irreducible representation of G appears as a subrepresentation,

(ii) ai = dimVi,

(iii)
∑

i (dimVi)
2 = |G|, and

(iv) for any g ∈ G that is not the identity,
∑

i χVi(g) dimVi = 0.

Remark A.2.11. A trained eye could have seen in Table A.3 that the columns are
also orthogonal, this is something that happens in general (see [FH91, Exercise 2.21] or
consider an orthogonal matrix induced by a character table).
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We stop the topic of character theory here. However, the computation of the charac-
ters of a group is an area of research nowadays. The interested reader should learn about
the Murnaghan-Nakayama rule to compute easily characters or groups3, in particular
those of the symmetric groups, for example in [Sta99, Section 7.17] or [FH91, Problem
4.45]. Furthermore, there are striking things in this regard, such as the complexity of
decomposing tensor products of irreducible representations (there are open problems
concerning this and problems that are known NP-hard, see [BI08, IMW17]). Recall also
the standard references to learn more about these topics, such as [Isa76].

A.3. Specht modules

We are going to study the irreducible representations of Σk and give them construc-
tively from the conjugacy classes. A basic known fact is that the conjugacy classes of Σk

are given by the cycle shape of permutations, i.e., the lengths of the cycles that appear in
a cycle decomposition of a permutation. The cycle shapes of permutations of k elements
are bijectively identi�ed with the partitions of k.

De�nition A.3.1. A partition of a positive integer k is a sequence of positive integers
λ = (λ1, λ2, . . . ) that sum to k and are in a non-increasing order. If λ is a partition of k,
we shall write λ ` k.

The construction of the irreducible representations of Σk requires, although each one
is simple, a gobbledegook of de�nitions. We try to present them in a more schematic way
for the sake of clarity.

De�nition A.3.2. A Young diagram is a �nite collection of boxes arranged in left-
justi�ed rows and such that a row is not shorter than the one below4. The number of
boxes in a Young diagram is its size.

Young diagrams of size k are in bijectively correspondence with partitions of k, hence
its use.

Example A.3.3. The partition (5, 4, 1) ` 10 is associated to the Young diagram

.

The partition (5, 2, 2) ` 9 is associated to the Young diagram .

The partition (2, 2, 1, 1, 1) ` 7 is associated to the Young diagram .

3Or see the many resources of character tables one can �nd online.
4A Ferrers diagram is the same thing, but usually with circles.

https://www.jgibson.id.au/articles/characters/
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De�nition A.3.4. If we �ll each box of a Young diagram of size k with the numbers
from 1 to k, we get a Young tableau. In that case, we say that the Young diagram, or the
partition associated to it, that was �lled is the shape of the Young tableau.

If the �lling is made in a way that every number is smaller than the left and below
ones we are doing a standard �lling, and the result is a standard Young tableau.

Young tableaux of size k are in correspondence with permutations in Σk, hence its
utility.

Example A.3.5. The permutation (67948)(1352) ∈ Σ10 is associated to the Young

tableau
6 7 9 4 8
1 3 5 2
10

.

The partition (43185)(26)(79) ∈ Σ9 is associated to the Young tableau
4 3 1 8 5
2 6
7 9

.

The partition (81)(64) ∈ Σ7 is associated to the Young tableau

8 1
6 4
2
3
5
7

. But also with

others, for example, with

8 1
6 4
2
5
3
7

.

There is an obvious action of Σk over the Young tableaux of size k, by permutation
of the boxes of the tableaux.

Example A.3.6. (164)(27)(98)
6 7 9 4 8
1 3 5 2
10

=
1 2 8 6 9
4 3 5 7
10

.

(864)(12)
4 3 1 8 5
2 6
7 9

=
6 3 2 4 5
1 8
7 9

.

(2847)(631)

8 1
6 4
2
3
5
7

=

2 1
6 8
7
5
3
4

.

Two important subgroups of Σk appear with this action: the subgroups that �x the
rows and the columns.

De�nition A.3.7. The row stabilizer of a Young tableau T , R(T ), is the subgroup that
�xes the rows of T . Similarly, the column stabilizer, C(T ), is the analogous de�nition for
columns.

A tabloid is the class of equivalence of tableaux under the equivalence T ∼ T ′ if, and
only if, T = σT ′ for σ ∈ R(T ). They are denoted as [T ].
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Example A.3.8.
1 2 3 4
5 6

∼ 1 3 4 2
5 6

∼ 2 1 3 4
6 5

∼ 4 2 3 1
5 6

∼ · · ·

Finally, our main objects.

De�nition A.3.9. Let T be a Young tableau, its associated polytabloid is

eT :=
∑

σ∈C(T )

sgn(σ)
[
σT
]
.

Example A.3.10. e 1 2 3 4 = [ 1 2 3 4 ]

As we have that C
(

1 2 3
4 5

)
= {(14), (25), (14)(25)}, then

e 1 2 3
4 5

= sgn(idΣ5)
[
idΣ5

1 2 3
4 5

]
+ sgn ((14))

[
(14)

1 2 3
4 5

]
+ sgn ((25))

[
(25)

1 2 3
4 5

]
+ sgn ((14)(25))

[
(14)(25)

1 2 3
4 5

]
=
[

1 2 3
4 5

]
−
[

4 2 3
1 5

]
−
[

1 5 3
4 2

]
+
[

4 5 3
1 2

]
.

These polytabloids are what we shall use to �nd all the irreducible representations of
Σk. To achieve this, it is obvious that we need an action of the group on the polytabloids,
which is σeT = eσT . This can be taken as a de�nition or can be deduced from an action
over the tabloids. Finally, it is not surprising that the CΣk-modules we are looking for
are spanned by polytabloids that come form a certain partition of k.

De�nition A.3.11. The Specht module associated with the partition λ ` k is the CΣk-
module spanned by all the polytabloids eT that have T of shape λ. We shall denote them
by Sλ.

Take for example λ = (k), the only tabloid of that shape is [ 1 2 3 · · · k ] and it
coincides with its associated polytabloid. From here, it is easy to see that the action of
Σk is trivial and that S(k) is the trivial representation of Σk.

A not-much more sophisticated example appears when we take λ = (1, 1, . . . , 1) ` k,
where every tabloid has one Young tableau because R(T ) = idΣk . Here, C(T ) = Σk for
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every Young tableau T , so we only have one polytabloid modulo the sign. Furthermore,

κeT = κ
∑

σ∈C(T )

sgn(σ)
[
σT
]

=
∑

σ∈C(T )

sgn(σ)
[
κσT

]
=

∑
σ∈C(T )

sgn(κ−1κσ)
[
κσT

]
=

∑
σ∈C(T )

sgn(κ−1) sgn(κσ)
[
κσT

]
= sgn(κ−1)

∑
κσ∈C(T )

sgn(κσ)
[
κσT

]
= sgn(κ−1)eT = sgn(κ)eT

for any κ ∈ Σk. This proves that S
(1,...,1) is the alternating representation of Σk.

It is not a coincidence that these modules are irreducible (cf. Corollary A.2.9).

Theorem A.3.12 (see [Sag01, Theorems 2.4.4 and 2.4.6]). The Specht modules are
irreducible, hence, they are all the irreducible representations of the symmetric groups.

Notation A.3.13. On behalf of this theorem, a Specht module Sλ can also be called
the λ-representation of Σk, provided that λ ` k.

Regarding the degree of these representations, we give, without proofs, a basis and
the dimension of them.

Theorem A.3.14 (see [Sag01, Theorem 2.5.2]). The set of polytabloids

{eT : T is a standard Young tableau of shape λ}

is a basis of the Specht module Sλ.

The dimension of a Specht module Sλ is determined, not unexpectedly, uniquely by λ
because it is the number of standard Young tableaux of that shape, but the computation
is not completely straightforward5.

De�nition A.3.15. The hook-length of the entry indexed by (i, j), hi,j , in a Young
tableau is the number of boxes below at the same column and at the right in the same
row plus one, the entry (i, j) itself.

For example, if the Young diagram is , then h1,2 = 6 corresponding to

• • • •
•
•

and h1,3 = 4 corresponding to
• • •
• .

With this, we have the hook-length formula, that gives the dimension of Sλ, λ ` k.
5An interesting anecdote is related to this formula, see [Sag01, p. 125].
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Theorem A.3.16 (Hook-length formula, see [Sag01, Theorem 3.10.2]). With the nota-
tion above,

dimSλ =
k!∏
i,j hi,j

.

For example, S(k) has dimension k!/k!, and so does S(1,...,1). Another example is
S(2,1...,1), that has dimension k!/k(k−2)! = k − 1.

A.4. Substructures: restrictions and projections

At the beginning of this section, we talked about the substructures a representation of
G on V has, which is a natural question to ask, and said that we could consider subgroups
or invariant subspaces. We talked about the second one and gave a reason to call a
G-invariant subspace a subrepresentation, instead of something related to a subgroup:
because a representation is the same than a CG-module and, with this de�nition of
subrepresentation, a subrepresentation coincides with a submodule. Now, we are going
to complete this topic.

De�nition A.4.1. If we have a representation of G on V and we consider a subgroup
H, we can consider the restricted action. In this case, the representation of H on the
same space is called the restricted representation of G and, usually, they are denoted by
ResGHV . If the context is clear, they are also denoted simply by ResV or V ↓H .

Similarly, if we have a representation of a subgroup H on W ⊆ V then we say that
a representation of G on V is induced by W if

V =
⊕

g ∈G/H

g ·W,

which is well de�ned because gh ·W = g ·W , and, usually, they are denoted by IndGHW .
If the context is clear, they are also denoted simply by IndW or W ↑G.

If we focus on the group Σk, there is a nice relation between the induction and
restriction of (irreducible) representations, although there are similar relations in other
contexts. These kind of relations are called branching rules or branching theorems, and
give a restriction of an irreducible representation in terms of irreducible representations
of the subgroup (and vice versa with the induced representation). In the case of the
permutation group, we will see that it is quite visual.

De�nition A.4.2. If we have a Young diagram associated to a partition λ ` k, an inner
box is a box of the diagram that, when we delete it, it leaves a new Young diagram
associated to a partition of k− 1. An outer box is a new box in a position that, when we
add it, gives a new Young diagram associated to a partition of k + 1. The set of these
partitions associated to the Young diagrams that appear when we delete (resp. add) an
inner (resp. outer) box is denoted by ↓(λ) (resp. ↑(λ)).
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Example A.4.3. If we have λ = (5, 5, 4, 1) ` 15, its associated Young diagram is

◦
•

• ◦
• ◦
◦

,

where the dots point the inner boxes and the circles the outer boxes. Hence, when we
delete an inner box we get one of these:

, , or ,

and the partitions in ↓ (5, 5, 4, 1) are, respectively, (5, 4, 4, 1), (5, 5, 3, 1), and (5, 5, 4). If
we add an outer box we get one of these:

, , , or .

and the partitions in ↑ (5, 5, 4, 1) are, respectively, (6, 5, 4, 1), (5, 5, 5, 1), (5, 5, 4, 2) and
(5, 5, 4, 1, 1).

Theorem A.4.4 (Branching Rules, see [Sag01, Theorem 2.8.3]). If we have an irreducible
representation of Σk, say Sλ with λ ` k, then

(i) Sλ ↓Σk−1
∼=
⊕

γ ∈ ↓(λ) S
γ, and

(ii) Sλ ↑Σk+1∼=
⊕

γ ∈ ↑(λ) S
γ.

This theorem gives a way of going from a representation of Σk to a representation of
Σk−1 seen as a subgroup of Σk, for example by �xing the �rst entry, and vice versa.

As the situation with module and submodule is considerably simpler because we just
deal with linear spaces, there should be an analogous way of passing from a module to a
submodule: we are looking for a projection of V into a subrepresentation W .

Theorem A.4.5 (see [FH91, Section 2.4]). If we have a representation V of G that is
decomposed as in Corollary A.2.10 into the sum of irreducible representations

⊕
V ⊕aii ,

then

dimVi
|G|

∑
g ∈G

χVi(g)g : V → V

is the projection of V onto the factor V ⊕aii .
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Spectral sequences

It has been suggested that the name
�spectral� was given because, like
spectres, spectral sequences are
terrifying, evil, and dangerous. I have
heard no one disagree with this
interpretation, which is perhaps not
surprising since I just made it up.

Ravi Vakil, Spectral sequences: friend
or foe?

In this section, we give a very basic introduction of spectral sequences.

As general references, we recommend [Mit69, DR17] as an introduction to the topic,
[McC01] as a basic reference, the extra and �fth chapter of Hatcher's famous book Alge-
braic topology (see [Hat02, Chapter 5]) to have an introduction to some famous spectral
sequences, and [Cho06] to lie to yourself and think that you understand the topic. In
particular, we highlight [DR17] and [McC01], which we follow, for their nice examples
and explanations.

B.1. Informal introduction

If one wants to study an algebraic object with some graduation, such as a graded
K-vector space or a graded K-algebra, but without knowing exactly what is the object,
one could use a spectral sequence. For example, if we want to know the (co)homology of
some topological space we may use some well-known spectral sequences.

Broadly speaking, a spectral sequence plays the role of a series converging to somet-
hing that we want to know, but with more algebraic structure (see Table B.1). What
we mean by this is that a series is a sequence of partial sums, Sn, where each term of
the sequence is related with the previous one by means of a sum, Sn+1 = Sn + an+1,
but a spectral sequence is an ordered countable set of grids, E∗,∗r , with some algebraic
structure (the so-called pages) where a grid is related with the next one by means of the

145

https://pi.math.cornell.edu/~hatcher/AT/SSpage.html
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structure of the former one in a homological fashion, E∗,∗r+1
∼= H(E∗,∗r , dr).

Furthermore, when a series
∑∞

0 an is such that an0+i = 0 for some n0 and every
i ≥ 0, then the partial sums Sn are constant if n ≥ n0. The same thing could happen
between the pages E∗,∗r if the di�erentials dr0+i are zero for some r0 and every i ≥ 0,
what is called collapsing of the spectral sequence. Moreover, when the partial sums are
constant or when the spectral sequence collapses, �nding the limit (

∑∞
0 an and E∗,∗∞ ,

respectively) is very easy. However, both concepts have a general notion of limit.

Series Spectral sequences

Sn E∗,∗r =

• • • •

• • • •

• • • •

• • • •

Sn+1 = Sn + an+1

• • • •

• • • •

• • • •

• • • •

ker/im

• • • •

• • • •

• • • •

• • • •

E∗,∗r+1
∼= H(E∗,∗r , dr)

Sn0+i = Sn0 if an0+i = 0 ∀i ≥ 0 E∗,∗r0+i
∼= E∗,∗r0 if dr0+i ≡ 0 ∀i ≥ 0∑∞

0 an =
∑n0

0 an E∗,∗∞ ∼= E∗,∗r0∑∞
0 an = limn Sn E∗,∗∞ H∗E∗,∗0

Table B.1: Comparison between the elements and basic occurrences of a series and a
spectral sequence (form top to bottom): elements, relation between elements, collapsing,
limit when collapses, and limit.

Assume that we want to study vector spaces over some �eld. In this case, each page
of a spectral sequence is a bigraded vector space E∗,∗r . Evidently, a bigraded vector space
can be arranged in a grid or integral lattice, hence the concept of a sequence of grids. As
we have said, the relation between a page and the next one, say E∗,∗r and E∗,∗r+1, comes
from the extra structure we give to the bigraded vector space, the di�erential structure.
This way, each page E∗,∗r has an endomorphism dr such that dr ◦ dr = 0 and of bidegree
(r, 1− r), i.e., it has the induced maps

dr : Ep,qr → Ep+r,q+1−r
r .

Finally, the relation is by means of homology: E∗,∗r+1 is the homology of (E∗,∗r , dr) or, in
other words,

Ep,qr+1
∼= ker dr:E

p,q
r →Ep+r,q+1−r

r /im dr:E
p−r,q−1+r
r →Ep,qr .
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B.2. Basics on spectral sequences

The minimal object we are going to deal with are di�erential bigraded modules.

De�nition B.2.1. A bigraded module over a ring R is an R-module

E∗,∗ =
⊕
p,q∈Z

Ep,q,

where {Ep,q}p,q∈Z is a family of R-modules. We say that the elements x of Ep,q have
bidegree (p, q) and it is denoted bideg(x). If an element x has bidegree (p, q), we say that
it has total degree p+ q, and it is denoted deg(x).

A morphism φ between bigraded R-modules is a morphism of R-modules such that,
for some (i, j), we have induced morphisms

φ| : Ep,q → Ep+i,q+i

for every (p, q). In that case, we say that φ has bidegree (i, j).

Actually, the pieces of a spectral sequence are not bigraded R-modules, we need a
di�erential structure (see Figure B.1).

De�nition B.2.2. A di�erential bigraded R-module is a bigraded R-module with an
endomorphism d : E∗,∗ → E∗,∗ of bidegree (s, 1 − s) or (−s, s − 1), for some integer s,
and such that d ◦ d ≡ 0.

• • • •

• • • •

• • • •

• • • •

s = 1 and bidegree (−s, s− 1)

• • • •

• • • •

• • • •

• • • •

s = 2 and bidegree (−s, s− 1)

• • • •

• • • •

• • • •

• • • •

s = 1 and bidegree (s, 1− s)

• • • •

• • • •

• • • •

• • • •

s = 2 and bidegree (s, 1− s)

Figure B.1: Sketch of the possible di�erentials in a bigraded R-module.
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The di�erential structure allows us to take the homology of the di�erential bigraded
R-module (see Figure B.2), i.e.,

Hp,q(E∗,∗, d) = ker d:Ep,q→Ep+s,q+1−s/im d:Ep−s,q−1+s→Ep,q .

Observe that we consider this as a bigraded R-module once more. If it has a di�erential
structure as well and we can iterate this process, we have essentially how a spectral
sequence works.

De�nition B.2.3. A spectral sequence is a family of di�erential bigraded R-modules,{
(E∗,∗r , dr)

}
r∈Z, such that the di�erentials dr are all of bidegree (−r, r − 1) or all of

bidegree (r, 1− r) and Ep,qr+1 is isomorphic to Hp,q(E∗,∗r , dr), for all p, q, r ∈ Z.
If all the di�erentials are of bidegree (−r, r−1), it is a spectral sequence of homological

type, and it is a spectral sequence of cohomological type if the di�erentials are of bidegree
(r, 1− r).

E∗,∗1 =

• • • •

• • • •

• • • •

• • • •

ker im

ker/im

• • • •

• • • •

• • • •

• • • •

= E∗,∗2

Figure B.2: Sketch of the process to go from a page to the next one.

There are a lot of things to say about De�nition B.2.3. For instance, E∗,∗r is called the
r-page of the spectral sequence. Also, notice that, in the de�nition of spectral sequence, the
r-page determines the next page by means of its di�erentials, but there is no information
about the di�erentials of the (r + 1)-page. Usually, there is more structure to determine
the di�erentials, but in general they are not relevant.

Furthermore, many spectral sequences start at the �rst or second page, so the E∗,∗r
are not considered if r is less than 1 or 2. This doesn't change the de�nition of spectral
sequence signi�cantly.

A good example of how all the parts of a spectral sequence articulate between one
another is [McC01, Example 1.E], which we reproduce here (with some extra comments)
for the sake of completion. Also, for a nice real example, [DR17, Example 3.6] is recom-
mended.

Example B.2.4 (see [McC01, Example 1.E]). Suppose E∗,∗2 is an algebra given by

E∗,∗2
∼=

Q [x, y, z]

(x2 = y4 = z2 = 0)
,

and assume we know that
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bideg(x) = (7, 1),

bideg(y) = (3, 0),

bideg(z) = (0, 2),

d2(x) = y3, and

d3(z) = y.

Usually, we are not given any information about the di�erentials, especially about
the di�erentials after the �rst page of the spectral sequence (E∗,∗2 in this case). The
information about d2 and d3 is given so the example works smoothly. Furthermore, we
have talked about the structure of spectral sequences when each page is a di�erential
bigraded R-module, not a di�erential bigraded algebra. This is not relevant, because we
only need the structure of algebra (or K-vector space, R-module, etc.) to �t with the
bidegree and di�erential structure1. In the case of a di�erential bigraded algebra, the
de�nition is completely analogous to De�nition B.2.2 with the additional conditions on
the inner product, i.e., we need to say how the inner product behaves with the di�erential
(Leibniz rule) and how the bidegree works with the inner product (see [McC01, De�nition
1.6]):

d(e · e′) = d(e) · e′ + (−1)deg ee · d(e′) and

bideg(e · e′) = bideg(e) + bideg(e′)

for any e ∈ Ep,q and e′ ∈ Ep′,q′ .
The generators of the di�erent algebras Ep,q2 are represented in the following diagram

taking into account the bidegrees of x, y and z and the relations of E∗,∗2 .

• • • • • • • • • • • • • • • • •

• • • • • • • zx • • zxy • • zxy2 • • zxy3

z • • zy • • zy2 • • zy3 • • • • • • •

• • • • • • • x • • xy • • xy2 • • xy3

• • • y • • y2 • • y3 • • • • • • •

.

Now, we have to complete this diagram with the di�erentials. To see if the bidegree of
d2 is (2,−1) or (−2, 1) we use that d2(x) = y3, so the bidegree is (2,−1). This shows
that almost every di�erential in E∗,∗2 is trivial, because they have a trivial Ep,q2 in their

source or target. The exceptions are d2 : E7,1
2 → E9,0

2 and, possibly, d2 : E7,3
2 → E9,2

2 ,
but Leibniz rule sows that the second one is an isomorphism as well:

d2(zx) = d2(z)x+ (−1)2zd2(x) = 0 + zy3.

1Actually, the structure of algebra does not appear after this example, consequently, the reader can
forget about it if it is convenient.
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So, in conclusion, there are two non-trivial di�erentials and they are isomorphisms:

• • • • • • • • • • • • • • • • •

• • • • • • • zx • • zxy • • zxy2 • • zxy3

z • • zy • • zy2 • • zy3 • • • • • • •

• • • • • • • x • • xy • • xy2 • • xy3

• • • y • • y2 • • y3 • • • • • • •

∼

∼

.

For the third page, we have to take the homology of these di�erentials, i.e., Ep,q3
∼=

Hp,q(E∗,∗2 , d2). Observe that, if we have an isomorphism between two entries of a page
E∗,∗r , then those entries are trivial in E∗,∗r+1, because either ker dr is trivial or im dr is
the total. For a similar reason, if a di�erential is zero between two entries, those entries
survive in the next page. Hence, we have the following in E∗,∗3 (with the possible non-
trivial di�erentials):

• • • • • • • • • • • • • • • • •

• • • • • • • • • • zxy • • zxy2 • • zxy3

z • • zy • • zy2 • • • • • • • • • •

• • • • • • • • • • xy • • xy2 • • xy3

• • • y • • y2 • • • • • • • • • •

.

Observe that we know that the bidegree of d3 has to be (3,−2) because d2 has bidegree
(2,−1). Also, with the Leibniz rule and knowing that d3(z) = y, one can show that all
the di�erentials we see in the previous diagram are isomorphisms. Therefore, in E∗,∗4 , we
have

• • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • zxy3

• • • • • • zy2 • • • • • • • • • •

• • • • • • • • • • xy • • • • • •

• • • • • • • • • • • • • • • • •

,

where all the di�erentials are zero. This implies that E∗,∗5
∼= E∗,∗4 , and the following pages

will be also isomorphic to E∗,∗4 for the same reason.

As we were saying in the introduction, the spectral sequences are useful to study an
algebraic object without knowing it exactly. We can do this if we have a spectral sequence
converging to that object we want to study, therefore we need a notion of convergence.
In Example B.2.4, we have seen a phenomenon simpler than convergence.
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De�nition B.2.5. A spectral sequence
{

(E∗,∗r , dr)
}
r
collapses at theM -th term, or page,

if the di�erentials dr are zero for r ≥M . In that case, the page at in�nity is E∗,∗∞ := E∗,∗M .

Example B.2.6 (see [McC01, Example 1.B]). If Ep,q2 = 0 for
|p| > a or |q| > b, for some a, b ∈ N, then the spectral sequence
collapses.

• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •

De�nition B.2.7 (see [McC01, De�nition 2.4]). A spectral sequence
{

(E∗,∗r , dr)
}
r≥2

is
said to converge to the graded R-module H∗ if there is a �ltration F ∗, i.e.,

H∗ ⊇ · · · ⊇ FnH∗ ⊇ Fn+1 ⊇ · · · ⊇ {0} ,

such that E∗,∗0
∼= E∗,∗∞ , where E∗,∗0 depends on H∗ and F ∗ and

Ep,q0 (H∗, F ∗) :=
F pHp+q

F p+1Hp+q
.

In this case, it is denoted as E∗,∗2 =⇒ H∗.

As we know, E∗,∗∞ is very easy to determine if a spectral sequence collapses. There
is a way of de�ning E∗,∗∞ when a spectral sequence does not necessarily collapse, the
interested reader could see this in [McC01, p. 30].

RecoveringH∗ from a spectral sequence is not straightforward. Indeed, the convergen-
ce of a spectral sequence is not unique in general, so it is not true that H∗ is determined
from E∗,∗∞ (see [McC01, Example 1.J]). There are some extension problems that could
occur. However, when we deal with vector spaces and the spectral sequence collapses,
the situation is very simple and recovering H∗ is trivial (see [McC01, Section 1.1]):

Hn =
⊕
p+q=n

Ep,q∞ .

In general, although the convergence is not unique, having a spectral sequence converging
to something you want to compute is very good (see Appendix B.3 for example). So, as
McCleary says in [McC01], we would like to have theorems of the following form:

Generic theorem of spectral sequences. There is a spectral sequence (of R-modules,
algebras, etc.) such that

E∗,∗r
∼= something computable

and converges to H∗ ∼= something desirable.
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B.3. A step further

There are a lot of things that can be said about spectral sequences, but, here, we will
only talk about two more things: the Poincaré series and the Euler characteristic of a
graded vector space.

De�nition B.3.1. Let H∗ be a graded vector space over some �eld K such that Hn

is �nite-dimensional for every n. Then, the Poincaré series for H∗ is the formal power
series

P (H∗, t) :=
∞∑
n=0

(dimKH
n) tn.

In this case, the Euler characteristic for H∗ is χ(H∗) := P (H∗,−1), if this expression
makes sense.

Example B.3.2. If H∗ is the complex homology of some manifold M , H∗(M,C), then
χ(H∗) is the classical Euler-Poincaré characteristic of M .

Note that, if we have a bigraded vector space, E∗,∗, it is a graded vector space
considering the total degree (recall De�nition B.2.1). That way, if E∗,∗ is a bigraded
vector space such that each Ep,q is �nite-dimensional for every p and q, we have a Poincaré
series,

P (E∗,∗, t) :=
∞∑
n=0

dimK

( ⊕
p+q=n

Ep,q

)
tn,

and the induced Euler characteristic, χ(E∗,∗) := P (E∗,∗,−1), if this makes sense.
We can provide a useful partial order relation on the Poincaré series: we will say

that P (A∗, t) ≥ P (B∗, t) if the formal power series P (A∗, t) − P (B∗, t) does not have
any negative coe�cient. For convenience, if P (A∗, t) ≥ P (B∗, t) and the two series are
di�erent, we will write P (A∗, t) > P (B∗, t).

Proposition B.3.3 (see [McC01, Example 1.F]). Suppose that the spectral sequence{(
E∗,∗r , dr

)}
r≥r0 collapses at the N -th page and converges to H∗. Furthermore, assume

that Ep,qr0 is �nite-dimensional for every p, q ∈ Z. Then, Hn is also �nite-dimensional for
every n and

P (E∗,∗r0 , t) ≥ · · · ≥ P (E∗,∗N−1, t) > P (E∗,∗N , t) = P (E∗,∗∞ , t) = P (H∗, t).

Finally, whenever they make sense, χ(E∗,∗r ) = χ(H∗) for every r.
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