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Chapter 1

Introduction

Motivation and Objectives

Motivation. Since its inception, humanity has gradually sought opportunities to invent
tools for improving its living conditions. Beginning with the Stone Age and the control of
fire, the first metals such as copper, bronze and iron were gradually subdued by humans. The
invention of language and writing allowed to make a qualitatively big leap in the development
of society. Knowledge has become possible to accumulate knowledge and pass it to future gen-
erations. For hundreds of years, humanity has been refining its tools, constantly experimenting
and pushing different theories.

A new round of instrumental development was the great industrial revolution of the XVIII-
XIX centuries, during which there was a mass transition from manual to machine work. The
main consequence of the industrial revolution was industrialization - the transition from a
predominantly agrarian economy to industrial production. This contributed to the invention
of new equipment and devices, as well as the use of new types of energy. Technical achieve-
ments in electricity and magnetism and new advances in chemistry accelerated the development
of humanity and added diversity in instrumentation. A recognized classic expertize of post-

industrialism time, D. Bell, has identified 3 major technological revolutions [1]:

e The invention of the steam engine in the XVIII century;

e The scientific and technological achievements in the field of electricity and chemistry in
the XIX century;

e The creation of computers in the XX century.
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It is worth to note that, the rapid development of technology also requires a large amount
of energy. Finding this energy and being able to minimize its consumption while improving
efficiency has become a new challenge for scientists. In order to replace non-renewable resources
such as coal, oil or gas, renewable sources from water, wind and solar radiation have gradually
been used. This forces scientists to develop materials and structures based on them that can
effectively transfer energy for its application.

In order to open new paths for technological applications now, at the beginning of the XXI
century, there is an active search for materials that could be complementary of the pioneer
semiconductors such as Silicon or Germanium. Thus, interest in the study of mono-, polycrys-
talline films and nanocrystals of different compounds has increased significantly, as for instance
the ones from the A;;By; family. The interest on this family is due to the enormous potential
applications that they could have in different areas like anti-reflective, absorption and window
layers of photovoltaic heterojunction [2, 3], tandem solar cells (SC) [4], base layers of pho-
todetectors [5, 6], hard radiation detectors |7, 8], LEDs, gas sensors, pyro- and piezoelectronic
devices [5,6,9], etc. The compounds of this family make possible to obtain materials with a
band gap from a few hundredths of eV (from mercury chalcogenides) up to 3.72 eV (ZnS) or
even more if we go to MgO based compouds.

Among all the variety of II-VI materials, there are 2 sets of semiconductors that have
attracted particular interest due to their unique features. The first one includes oxides of
group-12, elements like zinc and cadmium with a high transparency at the visible optical
range. They have been widely studied for use in various electro-optical applications, among
other, as Transparent Conductive Oxides (TCOs). The other set is formed by the diluted
magnetic semiconductors (DMS) from the II-VI compounds that, in addition to the ordinary
properties of a semiconductor, have enhanced magnetic properties. Improving the methods to
obtain these interesting materials in a systematic and reproducible form and in-depth studies
of each of them open the door to find new opportunities.

Since TCOs have good conductivity, they can be used as electrodes when the situation
requires low resistance electrical contacts without blocking the light. This ability opens up
great opportunities in the field of solar cells, plasmonic and other applications. The main
requirements for TCOs to be used as contacts in a solar cell are: (i) a high conductivity enough
to minimize resistive losses and (ii) minimal optical absorption over the wavelength range in
which the solar cell absorber is responsive. Typically, as the conductivity of a TCO is increased,
the NIR (near infrared) wavelength range transparency is reduced as a result of enhanced free
charge carrier absorption. Thus, in the design of TCO materials, a trade-off is sought between
these two properties.

Both Zinc Oxide (ZnO) and Cadmium Oxide (CdO) can be TCOs with their strengths and

weaknesses. ZnQ is a semiconductor of the II-VI material family, which has been devoted to a
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large number of scientific works. ZnO thin films have direct band gap, high exiton energy, stable
electrical and optical properties, good electron mobility at room temperature, and depending
on the growth conditions and doping a high carrier concentration [10]. The oxygen vacancies
and zinc interstitials make this material an n-type semiconductor. It is worth to note that
reliable p-type doping of ZnO remains difficult. This problem originates from low solubility of

p-type dopants and their compensation.

Some of the properties of CdO were described long ago [11,12]. CdO has a small indirect
bandgap and a larger direct bandgap [13]. CdO generally possesses large carrier concentrations
that generate a pronounced Moss-Burstein (MB) effect which can considerably extend the op-
tical bandgap [14]. Doped CdO samples [15] have mobilities and conductivities which are an
order of magnitude (ore more) higher than the typical conductivities of the industry-standard
TCOs. Undoped CdO thin films usually exhibit low resistivity due to native defects of oxy-
gen vacancies and cadmium interstitials [16]. Thus production of high-quality CdO films is

important in the development and improvement of TCO.

Ternary compounds are an option to modify the properties of binary structures, thereby
expanding the range of application of the material. This results in changes in characteristics
such as lattice parameters, bandgap width, carrier mobility, or transmittance. The properties of
ternary compounds are highly dependent on the materials as well as on the growth techniques.
In particular, materials with different lattice parameters or different crystal phases (wurtzite
or zincblende in the case of ZnO and CdO) are difficult to combine. Tensions and impurities
due to low crystal quality result in low optoelectronic properties [17]. Thus an important point
will be the optimization of crystal growth conditions to achieve a good crystalline quality and

consequently better optoelectronic properties.

Obtaining ternary compounds of CdZnO allows changing the properties of the initial binary
compounds, adjusting them at least potentially to the needs of modern materials engineering.
However, CdO has the structure of rock salt, which is different from the structure of wurtzite
Zn0O. Therefore, a high concentration of zinc in the CdO host or Cd in the ZnO matrix is

expected to lead to a phase mixing or phase coexistence.

Due to the difference between the effective ionic radius of Cd** (0.95 A) and the ionic radius
of Zn>* (0.74 A) [18], Zn ions can easily penetrate into the CdO crystal lattice and substitute Cd
ions in their equivalent crystallographic position. The difference between the ionic radii (22 %)
is more than the 15 % required for the formation of a solid substitution solution according to the
Hume-Rothery rules [19]. The material properties will be affected by a large lattice mismatch
between ZnO and CdO, which will cause internal stresses, deformations, lattice distortions, or
defects in films. For these reasons, alloying one material with another is a complex task that

requires the selection of the optimal growth conditions.
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Thin films of Zn,_,Cd,O alloys have been prepared by several physical and chemical de-
position techniques such as spray pyrolysis [18], sol-gel [20], radio-frequency magnetron co-
sputtering [21], pulsed laser deposition [22], atomic layer deposition [23], MOVPE [24], laser
molecular beam epitaxy (LMBE) [25] and electrochemical deposition |26]. Although C'd** ions
can easily replace Zn?" in a crystallographic lattice, it has been shown that the thermodynamic
solubility limit of Cd in ZnO is ~ 2 % in thermal equilibrium condition [27]. Most authors
claim [28-31] that, at a concentration of Zn < 20 %, the ternary compounds retain the cu-
bic structure. Other authors assert that the wurtzite phase in CdZnO films appears at zinc
concentration of ~ 50 — 70 % [23,24,30]. When the content of Zn is in the range from 20 to
50 %, phase mixture will exist, which means the coexistence of the cubic phase of CdO and the
hexagonal phase of ZnO in thin films of the ternary compound CdZnO. A typical scheme for
the formation of different phases is shown in Figure 1.1. The existence of a two-phase region
can be a hindrance to stable operation when micro- and optoelectronics devices are the goal.

Regarding Semi-magnetic semiconductors (SMSC), also called diluted magnetic semicon-
ductors (DMS) these are semiconductor compounds II-VI, IV-VI and III-V, in which part of
the non-magnetic cations are replaced by ions of a magnetic transition metal or rare earth
metal, such as Mn, Fe, Co, Cr, Ni, Sm, Er, Dy, Gd [32]. Due to its properties, DMS combine
elements of the physics of semiconductors and magnetism, which is a unique opportunity for
research [33| and technology. Compared to classical semiconductor alloys, the random distribu-
tion of magnetic ions leads to the appearance and development of individual magnetic phases

depending on the concentration of magnetic ions [32].
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Figure 1.1: Crystalline phases formation depending on the Cd concentration [30].



Among alloying elements, the inclusion of Mn atoms in the II-VI lattice demonstrates phe-
nomena such as negative magnetoresistance, giant Faraday rotation, and spin glass behavior.
This element (Mn) may be part of different alloyed structures, but our attention will be drawn
by the Mn alloy with thin films of ZnS and ZnTe, due to the wide band gaps and optical features
of these binary compounds, some of which will be commented below. Changing the alloying
parameter allows to change the spectral optical characteristics when applied in optoelectronics.

The optical properties of ZnTe are well known [34]. This compound is an interesting ma-
terial for use in optoelectronics because it has high radiation efficiency. The synthesis of a
ternary alloy based on it can offer a bandgap adjustment for wider applications. In particu-
lar, the resulting compounds of semi-magnetic solid solutions Zn;_,Mn,Te thin films present
interesting photoluminescent, magnetic and magneto-optical features making possible to use
these compounds for designing devices of micro- and optoelectronics, photovoltaics and spin-
tronics [35,36]. The authors of reference [37] showed that the total photoluminescence intensity
for a ternary sample with a content of 4.5 % Mn is approximately five times higher than for a
pure ZnTe film. This means that the probability of nonradiative recombination processes will
nonlinearly depend nonlinearly on the concentration and increases with increasing Mn content.
In this case, the bonds for free light hole excitons in pure ZnTe are 12.7 meV, which is less than
in ZnSe and ZnO, which are 21 meV and 60 meV at room temperature, respectively [37].

Like ZnMnTe, the ternary compound ZnMnS also belongs to DMS family. ZnS is a typical
wide-gap (~ 3.8 eV) II-IV semiconductor material with a direct band gap. ZnS is chemically
more stable and technologically more suitable than other semiconductor materials, so it is
considered a promising host material for Mn?* ions that can exhibit a broad emission peak,
Manganese is usually used as a dopant in applications as displays, electronic devices, laser
devices, as optical coatings, solid state solar window layers, optical sensors, photocatalysts,
light sources, photocopy lamps, etc. [38-40.

Mn alloyed ZnS and ZnTe films have been fabricated by using different physical and chemical
methods such as metal-organic vapor phase epitaxy (MOVPE) [41], molecular beam epitaxy
[42], pulsed laser deposition [43], chemical bath deposition [44], radio frequency magnetron
sputtering [45] and others. As substrate for obtaining nanocrystalline Mn alloyed thin films, it
is possible to use different materials among them glass, silicon, or quartz [44].

Cadmium Telluride (CdTe) is another typical representative semiconductor of II-VI group.
Due to its optoelectrical properties, it can be used like an n-type material in simple and cheap
thin film CdS/CdTe solar cells [46,47]|. The conductivity of CdTe can be changed depending on
the growth conditions. CdTe grown under Cd-rich conditions is n-type due to the Fermi-level
being pinned at or near the midgap by the compensating donor defect C'd; to meet equilibrium
conditions. On the other hand, in the Te-rich limit, CdTe has p-type conductivity, since the

Fermi energy is pinned close to the valence band maximum [48].
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Over the past 40 years, the effectiveness of CdTe in solar cells field has increased significantly.
Kodak in 1981 received CdTe cells with an efficiency of 8 % [49], and in February 2016, First
Solar, the largest manufacturer of thin film technology CdTe, announced that it had reached a
record 22.1 % conversion efficiency in its CdTe cells [50]. Girish Kumar and Koteswara Rao [46]
made an interesting comparison of CdTe with other semiconductors.

Despite the wide range of use of CdTe as a semiconductor (wich will be briefly described in
Section 2.2), the search for heterojunctions and compounds based on it continues. Heterojunc-
tions CdTe/CdS and CdTe/CdSe have been well studied |[51]. Nevertheless, heterostructures
with TCOs, in particular the p-n heterojunction of CdTe/CdO has been less studied. Over the
past 20 years, the problem of obtaining and studying the structure of CdTe/CdO was considered
only in a few papers [52-54]. Complexity in the formation of this structure is due, between
other factors, to the lattice mismatch between the lattice parameter of CdO (4,69 A) and
CdTe (6,49 A). Another difficulty is the control of the preferential orientation of the layer when
growing on the underlying one, in which the lattice parameter is mismatched, these difficulties
makes the study of the CdTe/CdO heterostructure an attractive challenge for fundamental

research.



Objectives. In the context of the above commented interest on the II-VI materials the
main goal of this thesis is to study of crystal growth of some A;;By; functional materials,
determining the structural, optical and electrical properties, as well as surface morphology and
the study of the influence of different growth parameters on the structural properties of the
obtained materials.

Thus we will have carried out not only an in-depth study of growth but also the character-
ization of the studied materials. Obtaining films of binary and ternary compounds with good
crystalline quality requires the choice of a suitable method and growth parameters, but to do
that a correlation between growth conditions and properties must be established.

In order to a better understanding about the solubility limit and how the transition from
one phase to a mixed one affects the structural properties of the CdZnO ternary compounds,
we have conducted growth and characterization correlated studies of these films. Among other
techniques of growth, the MOCVD method was chosen for this research. MOCVD is a techni-
cally complex and expensive method, but has great versatility and reproducibility, as well as
easily scaled to production.

To obtain ZnMnTe and ZnMnS films, we have chosen the close space vacuum sublimation
method (CSVS). Design features of this method allow obtaining films, under relatively well-
controlled process in conditions close to thermodynamically equilibrium [55-57]. The simplicity
and the low cost make possible to carry out a large number of experiments for a detailed analysis
of compounds alloyed by Mn.

As in the case of CdZnO, in order to obtain the CdTe/CdO heterojunctions, the MOCVD
method was used. The scarcity of information about this heterojunction increases interest
in its research. Previously, our group had already analyzed these binary compounds of the
heterostructure [58,59], and these studies have been the starting point of our research.

I would like to comment that the two growth methods cover two approaches to the growth
methodology: a more accurate, multiparameter-controlled system (MOCVD) and consequently
expensive methodology, and one not too much expensive, and less parameter controlled as the
CSVS without renouncing to offer good layers for some applications.

In accordance with the objectives, the following methods for the characterization of the
samples have been used: AFM, scanning and transmittance electron microscopy, X-ray diffrac-
tion analysis, energy-dispersive X-ray spectroscopy, Particle Induced X-ray Emission (PIXE)

and optical spectroscopy for transmittance, reflectance and absortion measurements.



Chapter 1. Introduction

Structure of the tesis

The work consists of six chapters, which include the introduction, main information, con-
clusions and the list of references. The thesis is posted on 255 pages, contains 128 figures and
25 tables. The list of used references contains 330 publications.

In Chapter 1 motivation, object and subject of study of this thesis work are presented.

Chapter 2 shows a detailed description of the methods for obtaining films of A;;MnBy
chalcogenides and oxide-based film, as well as general information on the growth parameters
and conditions for the growth of these materials.

Thereafter, in Chapter 3, the different characterization methods for the study of morphol-
ogy, structural and substructural properties, electronic and optical features are described.

Oxides of A;; By group, ZnO and CdO in particular, and their heterostructure are presented
in Chapter 4. In it, the influence on the morphology of films of growth temperature, deposition
time, amount of precursors and used substrate is shown. The influence of Zinc concentration
on the composition of films CdZnO is given. Also in this chapter the heterostructures based
on CdTe/CdO will be analyzed.

In Chapter 5 we present the structural properties of chalcogenides alloyed with Mn, in
particular, ZnMnTe and ZnMnS. The morphology of the formed structures, the change in the
lattice parameter and the final content of Mn in the deposited films are shown. The orientation
of the films, the crystallite size and the density of dislocation will be described.

Finally, in Chapter 6 we summarize the main conclusion resulting from this work.

The results obtained in the work have both a fundamental and an applied significance. The
new information on the crystalline structure and substructure, the chemical composition, the
film surface morphology, their optical characteristics, depending on the physical and technolog-
ical growth conditions, should contributes to the development of materials based on the A;; By

binary compounds.

Publications. The results of the thesis work are published in 8 articles, 7 of them indexed in

Scopus data base. They will be referenced at the end of the thesis in Related articles.
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Chapter 2
Materials and growth technique

This chapter is devoted to a brief description of the materials and crystal growth methods
used in this thesis. In the first part of the chapter, we will consider the characteristics of the II-
VI oxides (ZnO, CdO, CdZnO), and other II-VI materials like CdTe and ZnTe and ZnSe, these
two last showing magnetic properties when alloyed with Manganese (ZnMnTe and ZnMnS). In
the second part of the chapter, two methods for producing thin layers of these materials such
as the chemical vapor deposition method MOVCD and the close space sublimation CSVS will

be presented. The growth parameters and used substrates will be analysed.

It should be noted that, despite the fact that we will talk about the some of the properties
of materials which justify the interest on them, our work has been focused mainly in terms of

crystal growth and morphological and structural characterization.

2.1 Zn0O, CdO and ternary alloys

Nowadays, probably the most widely used TCO in the industry is indium tin oxide (ITO).
However, due to the fact that the primary metal of the film (indium) is expensive and not too
much abundant, and the fragility and insufficient flexibility of the ITO layers, alternative mate-
rials are being investigated [60]. As alternative compounds, oxides like zinc oxide and cadmium
oxide has been proposed, consequently in recent years they have played an important role in
the field of TCO. In the first Subchapter 2.1, we briefly consider the physical properties of these
oxides of the II-VI group and the ternary structure based on them. The main characteristics,
production methods and problems inherent in these materials, which we have studied during

our research, will be described.
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Chapter 2. Materials and growth technique

2.1.1 Zinc oxide (Zn0O)

Depending on the growth conditions, ZnO crystallizes in three forms: the hexagonal struc-
ture of the wurtzite, the cubic structure of zinc blende (sphalerite) and the cubic structure
of rock salt. The wurtzite structure is the most stable under environmental conditions and
therefore the most widespread [61]. In this structure, the atoms are far away to compensate for
their repulsions. Thus, each zinc atom is surrounded by a tetrahedron of 4 oxygen atoms and
vice versa, as can be seen in Figure 2.1. Zinc blende can be stabilized when ZnO is grown on
substrates with a cubic lattice structure [62] and finally the structure of rock salt is obtained

only at relatively high pressures of ~ 10 GPa [63].

Zinc blende

Wurtzite

Rocksalt

(a) (b) ()

Figure 2.1: Stick-and-ball representation of ZnO crystal structures [64]:
(a) Cubic rocksalt, (b) cubic zinc blende, and (c) hexagonal wurtzite. Shaded grey and black spheres denote

Zn and O atoms, respectively.

The lattice parameters at the wurtzite structure are a ~ 3.250 Aand ¢ ~ 5.205 A; and their
ratio ¢/a ~ 1.60 is close to the ideal value for the hexagonal cell ¢/a = 1.633 [65]. ZnO has
a predominantly ionic bond, as most of the IT-VI compound semiconductors. Some physical
characteristics of the material are shown in Table 2.1.

Although sapphire is one of the more suitable substrates for the growth of ZnO layers, high-
quality ZnO crystalline layers can be obtained on different substrates [69]. Different growth
methods have been used to obtain ZnO as spray pyrolysis (SP) [61], physical vapor trans-
port (PVT), hydrothermal, chemical vapor deposition (CVD), molecular beam epitaxy (MBE),
pulsed laser deposition (PLD), or chemical vapor deposition from the vapor phase of metal-
organic precursors (MOCVD) [64].
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2.1. ZnO, CdO and ternary alloys

Property Values
Stable phase at 300 K Wurtzite, P63mc
Lattice parameter a, A 3.250 [66], 3.2495 [67]
Lattice parameter ¢, A 5.205 [66], 5.2069 [67]
Density, g - cm ™3 5.642 [66]
Melting temperature, °C’ 1975 [67]
Energy bandgap, eV 3.37 (at 300 K) [66,67], 3.437 (at 4 K) [68]
Exitation binding energy, meV 60 (at 300 K) [66,67]
ag: 6.5 x 1076 [67]

Linear expansion coefficient o , °C~1 6
co: 3.0 x 10

Table 2.1: Physical properties of Zinc Oxide (ZnO)

ZnO is a non-toxic and biocompatible material [70]. Due to the wide band gap (£, = 3.37eV),
ZnO has a high optical absorption in the UV (320-400 nm) region. On the other hand, due to
the high energy of the excitons (60 meV), it is possible an effective laser generation at room tem-
perature (RT) [71,72]. Combination of the ZnO optical, electrical and piezoelectric properties
are used in piezoelectric devices [73], Li-ion batteries [74], light-emitting diodes (LEDs) [75,76],
gas sensors |76, 77|, chemical sensors, biosensors, UV sensors or pH sensors [78].

Zn0 is a material that can be grown in a wide variety of morphologies. Structures such as
nanorods, nanowires, nanonails, nanobelts, nanorings, nanospirals and nanohelixs have been
synthesized and studied [79], in addition to the growth of bulk and layers.

Mostly, ZnO is a semiconductor of n-type conductivity due to excess of zinc atoms, which
results in the presence of such inherent defects as oxygen vacancies (Vp) or zinc interstitials
(Iz,). The un-doped ZnO obtained by the chemical vapor deposition technique is characterized
by a typical room temperature carrier concentration of ~ 10'6 e¢m =3, that can be increased with
doping by different elements up to 102! ¢m™3 [80]. It was found that electron concentration
changes from 5.9 x 10'" em™ to 4.0 x 10" em ™2 resulted in a reduced mobility and carrier
scattering time, as electron effective mass varied from 0.23 my to 0.26 mq [81]. In addition, other
common defects include zinc vacancies (Vz,), oxygen interstitials (Ip), as shown in Figure 2.2.
This scheme qualitatively represents the energy levels of intrinsic point defects in ZnO and

energy transitions that can occur.
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Figure 2.2: Schematic diagram showing possible radiative transitions in ZnO due to various defects, such as

Zn and O interstitials, and vacancies [82]]

In the wurtzite structure, the difference in electronegativity between Zn and O atoms,
in combination with a low degree of symmetry, leads to spontaneous polarization in some
crystallographic directions. From the point of view of obtaining thin ZnO layers with a flat
surface morphology, nonpolar orientations become the best option. In this sense, nonpolar
oriented ZnO obtained using MOCVD on R-sapphire are of particular interest. Moreover, the
optimization of the growth parameters is very important in heteroepitaxy processes in order to

obtain films without significant loss of crystalline quality.

2.1.2 Cadmium Oxide (CdO)

CdO crystallizes in the rock-salt structure consisting of a face centred cubic (fec) lattice
with a two atom basis, Cd at (0,0,0) and O at (1/2, 1/2, 1/2), with a lattice parameter
~ 4.695 A [83] as shown in Figure 2.3. The fundamental band gap of CdO is indirect at
~ 0.84 eV (~ 1480 nm) [84], and this is much too low for optical transparency (380 to 740 nm),
therefore transmission of visible spectrum occurs at the CdO direct band gap of ~ 2.28 eV
(~ 500-560 nm) [85]. Heavy carrier concentration leads to a Moss-Burshtein shift, which can
increase the band gap to 3.25 eV (~ 380 nm) [86]. CdO has a high carrier concentration
( > 10%' em™3) [86, 87], which can also lead to a high conductivity. Table 2.2 shows some
characteristics of the material.

Due to the characteristics listed above, CdO can be used as material for gas detectors [88,89),
solar cells [90], photodetectors [91], and other photo-optical and optoelectronic devices [92-94].

There are many ways to obtain thin films and nanostructures of CdO. This wide range
of processes includes MOCVD [83,95], PLD [84], SP [96], thermal evaporation (TE) [97],
PVT [92], radio frequency magnetron sputtering (RF) [93] etc. Different growth parameters
will affect the structural properties of the material, leading to differences in optical and electrical

characteristics.
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2.1. ZnO, CdO and ternary alloys

Figure 2.3: Crystal rocksalt structure of CdO [98].

Property Values

Lattice parameter a, A 4.695 [13,83], 4.689 [85]
Density, g - cm ™ 8.15 [13,85]
Melting temperature, °C’ > 1500 [13,85]
Indirect bandgap, eV 0.84 [13,85]
Direct bandgap, eV 2.28 [85,95]

Linear expansion coefficient o , °C~1 4 x 107° | at 27 ... 497 K [85]

Table 2.2: Physical properties of Cadmium Oxide (CdO)

Zuniga-Pérez et al. [99] showed that the morphological and structural properties of the
micrometric layers of CdO largely depend on the orientation of the substrates. The MOCVD
method allowed to obtain [002] oriented CdO compounds on R-sapphire with high crystalline
quality and flat layer morphology.

Despite the high number of articles devoted to CdO, there are few publications where the
layers had good crystalline quality and thickness of the order of 100 nm or lesser, which could be
used in some optical devices. In the works of A. Huerta-Barbera et al. [100,101], CdO films on
R-sapphire with a threshold thickness of the order 40 nm, below which island-shaped structures
appear, were achieved. Using chemical etching to increase the density of inherent nucleation
points on the substrate they managed to get very thin films with truly flat morphologies with
thicknesses up to 20 nm. So we want to carry out an in-depth study of this well-known material
in order to find the growth conditions at which the compounds has good crystalline quality and
able to be used in various heterostructures, like CdTe/CdO.
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Chapter 2. Materials and growth technique

2.1.3 Ternary compound of CdZnO

Due to the properties of ZnO and CdO they can be used in various fields. In addition,
the synthesis of ternary compounds based on these binary semiconductors will further expand
the scope of applications. Structures of ZnCdO (hexagonal Zn rich compound) will lead to a
redshift of the band gap of ZnO and the ability to cover the visible light range. In the case of
CdZnO (cubic Cd rich compound), the direct gap of CdO will be extended by the presence of
Zn. In both cases, the properties of the resulting compound will depend on the content of the
alloying element, but several problems will appear due to the difference in the cubic structure

of CdO and wurtzite structure of ZnO, depending on this content.

7Zn ions can enter into the CdO crystal structure in a substitutional position, and the Zn
content will affect the structural, optical, and electrical properties of the material. Influence
of the alloying element on optical characteristic was shown [102] in Cd;_,Zn,0 (x < 10 %)
thin films prepared on glass substrates by the spray pyrolysis technique at 470 °C. At higher
concentrations (20 % < x < 80 %) the films presented a mixed structure of cubic and hexagonal
phases. When the concentration of Cd increases from pure ZnO one can observe in addition
to the variation of the film colour (from transparent to yellow), a variation in the average
transmittance, which is about 60-70 %, which is lower compared to pure ZnO (~ 90 %) [31]. On
the contrary the introduction of more zinc in the CdO structures will increase the transmittance
and the width of the band gap due to the blue shift of the edge of the bandwidth [18].

In CdZnO ternary compounds, depending on the Zn concentration, X-ray patterns associ-
ated with the (200) and (111) planes corresponding to the cubic crystal structure of pure CdO
will gradually shift to higher angles and will be replaced by peaks related to the (100), (002)
and (101) planes of hexagonal structure of ZnO |31, 103].

In reference [102] was showed that, under its experimental conditions, if the threshold of
3 % solubility of Zn in CdO films was exceeded, the intensity of XRD peaks decreased, which
indicated a decrease in the crystallinity of the compound when defects appear in the crystal

structure due to an excess of Zn inclusions in the lattice structure.

With a decrease in the concentration of Cd in the ternary compound CdZnO, the size
of the crystalline grains usually decreases. Theoretically, an increase in grain size, thickness
and packing density of the film should have a negative effect on the transmittance, which
has an opposite dependence to them [104]. An increase in polycrystallinity when it is alloyed
with an additional element will lead to unevenness in the lattice and therefore scattering and
absorption increase and the transmittance must inevitably be reduced. Earlier, our research
group showed [29] that at a low concentration of Zn (C'dg.95Zn¢.050) the mobility of compounds
increases, with a gradual decrease at a higher concentration of Zn. The initial rise of mobilty

indicates the good crystalline quality of the CdZnO layers, but with increasing of Zn content into
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2.1. ZnO, CdO and ternary alloys

the cubic crystals, they start to be oriented in different directions with futher phase mixing
of the cubic and wurzite crystal structure. Degradation of electron mobility led to rise in
the resistivity of CdZnO alloy. Along with growth of the Zn content, carrier concentration
has upward trend that can be responding to the formation of intrinsic defects. At a certain
concentration of zinc atoms, the oxygen vacancy (V) will begin to decrease, since the Zn?*
ions tend to form separate ZnO centers with O?~, and, consequently, the resistivity begins to
increase [18].

The growing method, growth time, growth temperature, substrate and other conditions of
the synthesis of the compounds will affect the properties of the resulting films. The authors of
ref. [20,24,105] showed that increasing the growth temperature, the Cd content in the CdZnO
ternary compounds can decrease. A high growth temperature contributes to the formation of
large crystal grains [23]. On the other hand thermal annealing (as 450 °C for SP or 300-600 °C’
for RF magnetron sputtering method), is an important way to improve the quality of crystals
and the optical properties of thin films. In the papers [102,106] it was presented that annealing
can favor a better crystallinity of the material.

A simplified equation (E,;=3.36-0.063z) for the band gap of the w — Zn,_,Cd,O compound
at 10 K, was proposed in [24]. A more complex expression for the optical band gap was
presented in [22,107]:

EngZnO _ (1 _ I)EQZ” + ngCdO - b$(1 - I) (2'1)

where, z is the Cd content, b is the bending parameter, and E¢®?° and E¢%"© are the band
gaps of the CdO (~ 2.28 eV) and ZnO (~ 3.37 eV), respectively. In their work Bakke at el. [23]
gave approximate equations for the parameters of the crystal lattice for the wurtzite phase of

CdZnO ternary compounds at a high concentration z of Zn (z > 50 %):

Uhesagonal = 358 — 0.332; Chezagonat = 5.85 — 0.54z (2.2)

In recent years, there have been many publications devoted to CdZnQO, but the overwhelm-
ing majority of the obtained compounds were polycrystalline. Most ternary structure studies
focused on compounds rich in Zn with a wurtzite phase. A. Huerta-Barberd in her work [101]
investigated the inclusion of cadmium in the hexagonal lattice of ZnO and Zinc into the cubic
one of CdO. For the first case, the study of the structural parameters as a function of the growth
temperature made possible to optimize the temperature at which is possible to introduce Cd
more than 8.5 % into the hexagonal lattice. For C'dy_,Zn,O compounds with different growth
times and Zn content, a maximum Zn incorporation of 10.4 % into the cubic lattice was found
at which a unique out-plane orientation [002] remains and for higher zinc concentrations the
coexistence of phases appear. Also for 10.4 % of Zinc content a very low value of resistivity was

shown, which is, not only a record value for this type of material, but also comparable to other

17



Chapter 2. Materials and growth technique

transparent conductive oxides that dominate the market today, opening up new possibilities

for optoelectronics.

2.2 Cadmium telluride (CdTe)

CdTe has a crystal structure of zinc blende [85]. This structure is formed by two intersecting
face-centered cubic sublattices (one for Cd atoms and the other for Te atoms), with the unit
cell shifted by 1/4 along the [111] direction between each other. Its common unit cell contains
8 atoms, four of Cd and four of Te. Atoms are located in such a way that around each atom
there are four atoms of the other element that are located at equal distances from each other are
located at the vertices of the tetrahedron with the center in the other element. The structure
of CdTe does not have a center of symmetry, as in the case of the structure of diamond, since
the atoms that form the basis are different. The view of the CdTe unit cell and the coordinate

system are shown in Figure 2.4.

Figure 2.4: The unit cell of cubic zinc-blende crystal structure for CdTe. Dotted lines define the boundaries

of the unit cell, and solid lines represent Cd-Te bonds.

CdTe is a direct-band-gap E,; ~ 1.49 eV material, which is close to the optimal band gap,
theoretically established, for solar cells (1.28 V) [108|, and a high optical absorption coefficient
(> 5x10° cm™1) above the gap [109]. Some of the basic structural properties of CdTe are listed
in Table 2.3. Depending on the process of obtaining the material, some of the characteristics of
CdTe can vary, especially the electrical properties are very sensitive in respect to doping and

presence of defects in the material.
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2.2. Cadmium telluride (CdTe)

Property Values

Lattice parameter a, A 6.481 [59,110], 6.46 [85]

Density, g - em™ 5.85 [59], 5.87 (at 4K) [85]

Melting temperature, °C’ 1092 [59, 85]

Energy bandgap, eV 1.49 (1.606 at 4K) [59], 1.475 [85], 1.512 [110]

Linear expansion coefficient o , °C~t  4.932 x 107° 4 1.165 x 10797 + 1.428 x 101272
at -253 ... +147 °C' [85]

Table 2.3: Physical properties of Cadmium Telluride (CdTe)

CdTe provides a good performance over a wide temperature range and it is used as infrared
optical material for optical windows and lenses [111]. Besides it can be used in various science
fields, such as solar cells [112,113], LED [47], [114], some biological application [115,116], X-
ray and gamma detectors [117]. CdTe can be alloyed with mercury to make infrared material
detector (HgCdTe) [118]. CdTe, alloyed with a small amount of zinc (up to 20 %), is an excellent
solid-state X-ray and gamma-ray detector (CdZnTe) [118,119].

CdTe films can be obtained by different physical and chemical method, such as space subli-
mation [120], SP method [121], chemical bath deposition (CBD) [122], MOCVD [123], thermal
evaporation [124], PLD [125, 126|, sputtering [127], electrodeposition [128, 129] and others.
CdTe is shown as a semiconductor of particular interest, both for its applications and for its
capabilities, although the devices produced with it are below its theoretical characteristics and
potentialities, often due to defects whose control, probably, has not been optimized in the

growth process.

I. Mora-Ser6 in his work showed [59] that the polarity of the surface and the orientation
of the substrate affect both the texture of the layer and the growth rate. Thus, the substrate
orientation is of great importance in the growth of layers. The study showed that, GaAs can
be adequated for the preparation of CdTe . Depending on the growth condiions one can grow
CdTe with (111) or (100) orientation over (100) GaAs, while growth over (111) GaAs always
gives (111) oriented CdTe by using MOCVD. Obtaining layers of one or another orientation on
GaAs, as well as polycrystalline layers with grains with both orientations or even with different
ones, will depend on the previous treatments to which the substrate is subjected.

Despite the wide variety of substrates (GaAs, Si, InP, InSh, sapphire, and others), as well
as the possibility of creating heterostructures of the CdTe/CdS or CdTe/CdSe type, the search
for alternative substrates and compounds for heterostructures continues. In [130] authors used
bi-layer TCO structures CdO:Sn/SnO as substrate for the fabrication of CdS/CdTe solar cells
that exhibited a conversion efficiency of 14.3 %. The TCO layers were deposited using MOCVD,

and closed-space sublimation was used to prepare the semiconductor layers - CdS and CdTe.
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Other authors [131] fabricated C'dy9Zng15/CdTe photovoltaic device on substrates of different
TCOs: fluorine doped tin oxide (FTO), ITO and CdO. The device layers on the CdO substrate
delaminated but devices with 0.8 um CdTe absorber layer were successfully made onto 240 nm
thick CdS onto CdO and compared favourably with the silmilar device on ITO. Solving the
growth problem, fabrication and optimization of C'dTe/CdO and CdO/CdTe heterostructures
could be of great interest for applications in short-wavelength optoelectronic devices, where CdO
can be chosen as window material and CdTe as absorber for the fabrication of n—CdO/p—CdTe

heterojunction solar cells.
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2.3. A;;MnBy; chalcogenides

2.3 A;;MnBy; chalcogenides

The concept of DMS materials was known for a long time, but only at the end of 80’s of
the last century such materials were presented on the example of GaAs and InAs films alloyed
with Mn [132]. These new DMS materials have high potential for creating new electronic
magnetic devices. There must be some form of ordering among the magnetic moments of
a material, in order to exhibit magnetic properties. For an antiferromagnet the moments are
aligned anti-parallel throughout the material, whilst for a ferromagnet the moments are parallel
aligned. An important parameter for this ordering is the temperature, since if the thermal
energy is larger than the ordering energy, then the material will lose its magnetic properties.
For antiferromagnets, this temperature is the Néel temperature, whereas for ferromagnets it
is the Curie temperature. The main disadvantage of current DMS materials is that their
Curie temperature is below room temperature and results in a loss of magnetic ordering in
everyday applications under ambient conditions. Another key issue is the suitable growth
process for synthesis and chemical stability of the materials with added magnetic ions. For
instance, manganese has a low solubility in GaAs and at large concentrations, x > 0.1, results

in metallic-like conduction, eliminating the semiconducting behaviour [133].

CdTe

CdSe CdS

Cub

ZnSe ZnS

Figure 2.5: A diagrammatic overview of the AL Mn,BY! alloys and their crystal structures. The bold lines
indicate ranges of the molar fraction x for which homogeneous crystal phases form. ”"Hex” and ”Cub” indicates

wurtzite and zinc blende, respectively [134].
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As a rule, ternary alloys formed by substituting Mn for the group IT element in the A;; By
lattice retain the crystal structure of the "parent" A;; By compound [134]. Exceptions to this
rule are Zn,_,Mn,S and Zn,_,Mn,Se, which exhibit the structure of the cubic A;; By host
for low Mn content, but above a certain value of x show the wurtzite structure. In the case of
Zny_zMn,S, the ZB structure is maintained at a Mn concentration of 10 % or less (Figure 2.5).
A natural upper limit on the Mn mole fraction z in DMS is imposed by the fact that MnBy

does not crystallize in the zinc blende or wurtzite structures [134].

Next we will consider some characteristics of ZnMnTe and ZnMnS compounds, as mate-

rials for potential use in modern electronics.

2.3.1 Zinc manganese telluride (ZnMnTe)

One of the most typical representatives of DMS is Zny_,Mn,Te , which can be considered
as mixed of crystalline systems between two zinc-blended materials, ZnTe and MnTe [135]. In
this compound, Zn?* ions are replaced by Mn?* ions. The Figure 2.6 shows a primitive cell
of ZnTe containing 32 atoms in equal proportion, where one of Zinc nodes is substituted by an
Mn atom. The crystal ionic radius of Zn*? is 0.88 A, but Mn*? is depends on the spin state,
therefore can be 0.81 Afor the low spin state and 0.97 A for the high spin state [136]. The
increase in the Mn content will lead to an increase in the lattice parameter of the compound
Zni_.Mn,Te, in addition to an increase in the band gap, and the generation of a certain
density of punctual defects of the vacancy and interstitial types which can disturb the lattice
parameter. Vacancy and their more complex systems based on should, as a rule, decrease the
lattice parameter, and atoms in interstitials positions should increase it [137].

In references [134,138] it was shown that Zn,_,Mn,Te exhibits the zinc blende (ZB) struc-
ture with the composition x < 0.86. In respect to the band gap, it changes from an energy
band gap of 2.28 €V (ZnTe) to 2.9 eV (zincblende MnTe) [139].when the Zn*" ions are replaced
by Mn?** ions.

Studying the lattice parameter using 2 methods (RBS and EDX), the authors of ref. [140]
showed that, depending on the Mn content, the lattice parameter varied from 6.1037 to
6.3595 A. The result is consistent with the Vegard’s law, according to which the lattice pa-
rameter of a ternary alloy should be linearly proportional to the chemical composition.

The lattice constants perpendicular to the interface (a L) of the Zn;_,Mn,Te layers grown
on GaAs (100) were found by using the separation between the GaAs substrate (400) peak and
the Zn,_,Mn,Te (400) peak of double crystal rocking curves [141] and turned out to be equal:

a L (z) = 6.1056 + 0.2403z (2.3)
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Apart to spintronic applications, ZnMnTe compounds can be used in other fields where
non-magnetic properties of the material can be useful. It was reported that ZnMnTe alloyed
with O could be considered as a suitable material for photovoltaic [142]| or thermoelectric [143]
devices. On an other hand, ZnMnTe alloyed with Cr may be a good candidate for solid-state
infrared lasers [144].

Figure 2.6: Representation and labeling of unit cell structure for Zn;_, Mn,Te crystalline solid state [145]

There are many different methods for preparing ZnMnTe compounds, among which metal-
organic vapor phase epitaxy (MOVPE) [41], molecular beam epitaxy [42], pulsed laser deposi-
tion [43], Bridgman method [146], hot-wall epitaxy [140], etc.

In some methods, a temperature of the order of 400 °C is required to obtain the Zn,_,Mn,Te
compound, but sometimes this value is higher. Thus, the temperature of the Brigman furnace
should be maintained at about 1000 °C' and for low Mn concentrations, good quality large crys-
tals of Zny,_,Mn,Te can be grown, but with high contents of Mn the quality of the crystals is
worse [134]. Taking into account the potencial applications of this material, the use of relatively
low-cost growth methods which could make possible to obtain films of good crystalline quality,

is an interesting challenge.
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2.3.2 Zinc manganese sulfide (ZnMnS)

Manganese alloyed zinc sulfide (ZnMnS) is a semiconductor with transparency in the UV-
visible region. It is used as main material for thin film phosphors devices [45], cathode-ray
tubes [117], antireflection coatings [148], light-emitting diodes [149], thin film electroluminescent
displays |150], and photonic technologies |[151]. Unit cell of pure ZnS with alloyed Mn atom at

Zn-site is shown in Figure 2.7.

ZnS exists in two different crystal structures: cubic zinc blende and hexagonal wurtzite
structure. In the cubic crystal structure of ZnS, the optical properties are isotropic. The
crystal structure of the zinc blende is a face-centered cube with a ~ 5.4093 A, beloging to the
space group F43m. The transition from ZB to the wurtzite structure occurs at 1020 °C. The
hexagonal space group is now C6mec with lattice parameters of a ~ 3.811 Aand ¢ ~ 6.234 A
[152].

The a-MnS phase is a stable form of MnS. It has a rock salt structure with a lattice
parameter a ~ 5.2236 A. On the other hand,3-MnS is a metastable form that has a cubic
zinc blende structure with a ~ 5,600 A, while the v-MnS phase is a metastable form with
a hexagonal wurtzite structure with a ~ 3,976 Aand ¢ ~ 6,432 A. Metastable forms can be

stabilized by the formation of solid solutions with ZnS, in wich Mn atoms are substitutional at

0. 0 0,
b, 6

soma 7Zn sites.

66&

Figure 2.7: The relaxed wurtzite structures of ZnS alloyed with Mn. The gray, yellow and purple balls
represent the Zn, S and Mn atoms, respectively. [153]
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The lattice parameter of the films of the Zn;_,Mn,S samples obtained at different levels
of alloying, can be calculed using the equation for the determination of average distance of
cations-cations (d.) [154]:

do(Zny_M,S) = (3.8300 % 0.0005) + (0.1391 & 0.0010)z (2.4)

providing a value of d.=3.843 Afor £=0.10. The lattice parameters a and ¢ for a wurtzite
crystal are then obtained from the relations [154]:
8

a=d.c= (g)(l/ch (2.5)

Mn alloyed ZnS thin films have been obtained by using different physical and chemical
methods such as resistive thermal evaporation [38], chemical bath deposition [44], radio fre-
quency magnetron sputtering [45], vapor phase [155], chemical co-precipitation [156], liquid-
solid-solution (LSS) [157], molecular beam epitaxy [158|, metal-organic chemical vapor deposi-
tion [159] and hydrothermal method [160]. As a substrate for obtaining nanocrystalline ZnMnS
thin films, it is possible to use different materials among them, glass, silicon, and quartz [44]
are frequently applied.

It was shown in [160] that the crystal size of Mn*T-alloyed ZnS nanoparticles synthesized
by the hydrothermal method and treated at 90 °C' were in the range ~ 2.8 + 0.1 nm and the
size had no the apparent change with the content of Mn*2 ions from 1 % to 20 %. On the other
hand, the crystal sizes of ZnMnS(10 %) nanoparticles prepared by this method slight increase
in the range 2.5 ~ 3.4 nm when synthesis temperature rise from 70 °C' to 110 °C. Authors in
reference [161] presented that an increase in the Mn concentration from 1 to 40 % leads to a
gradual decrease in the lattice parameter from 5.402 to 5.316 A. Moreover, as in the previous
work, the particle size did not depend on the Mn content and it was in the range of 1.8 +
0.2 nm. Therefore, obtaining high-quality compound films by low-cost methods is a promising
way to produce switching devices, creation of buffer layers for photodetectors and sensors,
resistors, transparent heating elements, electro-optical modulators, electromagnetic protective

layers, optical coatings, window photoconverters, etc.
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2.4 Metallorganic chemical vapor deposition technique

2.4.1 Metallorganic chemical vapor deposition system

Metal Organic Chemical Vapor Deposition (MOCVD), sometimes called Metal Organic
Vapor Phase Epitaxy (MOVPE), is a method that is based on the gas-phase transfer of consti-
tutive elements (usually in the form of the precursor) to a substrate where they will react. The
deposition ultimately occurs through a chemical reaction on the surface of the substrate and
usually leads to high-quality deposition of thin films under optimized growth conditions. This
method is well suited for the production of layers with high-quality surface morphology and
precise control of the thickness and uniformity used for different types of devices: lasers, LEDs,
photocathodes, heterostructural bipolar transistors, thin-film transistors, transparent conduct-
ing oxides, photodetectors, and solar cells [80,162,163]. Although there may be some discussion
in the name of the method, it is not significant. If MOVPE can be represented as epitaxial
growth with a given relationship between layer and substrate structures, then MOCVD will
have a more general meaning, which includes the growth of both epitaxial and non-epitaxial
layers.

In this section, we briefly describe the MOCVD growth technique. The main processes
occurring inside the MOCVD reactor will be considered, and the features of the system used
during this work will be emphasized. Growth conditions that were used to grow ZnO, CdO,

CdTe films and structures based on them will be presented.

Basic concepts of the growth process

Figure 2.8 is a diagram of the processes that occur inside the MOCVD reactor. The growth
process takes place by introducing precursors into the main gas flow. Material grows at the
reactor, where heated substrates are located. The precursor are driven by an incoming inert
gas, usually Hs, Ny, He, or Ar. Although the use of hydrogen is not always the best choice since
hydrogen can react with organic radicals. After entering the reactor, diffusion and convection
processes take place; the precursors will pyrolise and reach at the surface of the substrates
where adsorption will occur. As the precursor approaches to the substrate and it is broken (py-
rolised), they can be adsorbed onto the surface of the substrate. Under adequate conditions,
when there is an energetically favorable sites for the growth, chains of physical and chemical
reactions can occur at the surface. The processes of adsorption, diffusion, chemical reactions
and the introduction into the lattice leads to the formation of units of ZnO, CdO, CdTe or other
materials, depending on the growth parameters. As a result, a growing film and a by-products
are formed, which should be removed from the reactor in the main flow, to limit the effects on

the further film growth process [58].
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2.4. Metallorganic chemical vapor deposition technique

All processes that occur sequentially in the reactor can be listed as [164]:

1. Transport of precursors to the growth zone of the reactor.

2. Transfer of precursors from the main gas flow onto the substrate surface.

3. Adsorption of precursors on the surface of the substrate.

4. Superficial diffusion, chemical reactions including pyrolysis, nucleation and crystal for-
mation.

5. Desorption by-products, unadsorbed or unreacted reagents.

6. Transfer of reaction by-products from the substrate surface into the main gas flow.

7. The exhaust of reaction-products outside the growth region.

Main Gas Flow

—_—
o
—
0 Gas Phase Reaction @
Desorption of Volatile
\ Surface Reaction Products

Transport to Surface Desorption of
precursor

D—- OO0 Substrate

Surface diffusion Step Growth

Adsorption of
Film Precursor Nucleation and

Island Growth

Figure 2.8: Precursor transport and reaction processes in the CVD system [165].

Since these steps are performed sequentially, the overall speed of the growth process will
be determined by the speed of the slowest process. On the other hand, although the slowest
process limits the speed, when a balance is reached, the crystal growth occurs in stationary
conditions. Jones in his work [165] showed that the growth rate depends on the temperature
of the substrate during the growth of the material (Figure 2.9).

At low temperatures, the surface processes take place slowly due to the speed of the surface
reactions, which are sensitive to temperature; therefore, the growth process is kinetically limited
by the surface reaction. This region is normally called the region of kinetic growth control and
the growth rate increases exponentially with the rising of substrate temperature according to
the Arrhenius equation [165]:

E

Growth,qe exp(—R—;) (2.6)
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where F/4 is the apparent activation energy, R is the gas constant and T is the temperature in
Kelvin. Since the growth rate of the film is controlled by chemical kinetics, the uniform film
thickness can be achieved by minimizing temperature fluctuations over the substrate surface.
In this growth zone, the substrate is of great importance, since its nature and morphology

largely affects the surface processes that limit the reaction.
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Figure 2.9: Plot of the normalized MOCVD growth rate as a function of growth temperature [165].

As the temperature increases, the dependence of the growth rate on temperature shifts to the
diffusion-limited region, since the growth temperature increases the reaction rate exponentially,
while the reaction rate of the diffusion process slows down until the diffusion process becomes
limiting. The transition from one region to another occurs gradually. In this region, the growth
rate changes relatively little with temperature and mainly depends on the process of gas-phase
transfer to the substrate surface, therefore, in this region, hydrodynamic conditions play a
decisive role in the growth rate [164].

In addition to these two regions, a third region is observed where the growth rate decreases
with increasing temperature. This decrease can be associated with various phenomena that
become energetically favorable at high temperatures, such as the formation of a "parasitic"
homogeneous reaction, a decrease in the amount of reagents due to their deposition on the
walls of the reactor, re-evaporation of material from the layer, or desorption of reagents from

the solid surface. This region is called a zone limited by thermodynamic processes [164].
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MOCVD System Description

For a successful crystal growth using the MOCVD method, it is necessary to use a complex
experimental system that guarantees the quality of the material obtained and the safety of
working with hazardous substances, such as metallorganic precursors. Therefore, the MOCVD
system is not only the reactor where crystal growth reactions take place, but also a complex net
of valves and pipelines that control the exhaust gases and precursors entering the reactor [166].

In our case thin films of materials of II-VI group were obtained in a horizontal quartz
reactor (Quantax 226) of the VENT-RUN type. The MOCVD system consists of the reactor
itself, the gas transfer system and the gas exhaust system. Figure 2.10 presents a simplified
diagram of the MOCVD system of the Vent-Run type, gas transfer lines, evacuation path,
location of the reactor and bubblers with metalorganic (MO) precursors. The flow of each of
the lines is controlled by Mass Flow Controllers (MFC), which we will briefly describe in the

next subsection.

. MFC
Coil RF OO T =] VENT
_l_l. 5 3 Carrier for MO
Reactor } T =1 Carrier for TBA
ot {1} TBA
Bubbler
Exit e@—(1+—MO1
Valve MO2
{} Dummy
=] Sweep

Figure 2.10: MOCVD horizontal cell configuration

At rest condition, the system is purged by Hydrogen with high purity, which due to its
potential danger, must be outside in a well-ventilated area.

All processes during the experiment are controlled by console. The console controls the
valves with compressed air that are closed or opened, depending on the growth step. Differ-
ent carrier gases can be used depending on the objectives of the experiment. During system
operation, the gas is distributed to two transport lines: VENT and RUN.

The VENT branch is sent directly to the exit of the system, without passing through the

reactor, and is used as an auxiliary gas line for drive out the carrier gas and precursors that do
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not have to pass through the reactor at some particular growth stage. In turn, with the help
of the RUN branch, various flows inside the reactor are controlled. The step of the experiment
defines which of the lines will be activated. To ensure stable operation of the system, it is
necessary that the pressure in both lines be maintained at the same level, due to pressure
compensation by other lines throughout the entire growth process. This allows avoiding the
possible formation of vortices in the main gas flow or the appearance of reverse voids when
redirecting the Run-to-VENT line or vice versa. For this purpose, an electronic regulator is
used, which controls the branch output and the pressure in the branches, as well as two SWEEP
and DUMMY compensating gas lines. The SWEFEP line allows gas to directly enter the reactor
through a side inlet to balance the flow in the reactor and helps to hold the precursors inside the
reactor. DUMMY line is used in the steps before and after growth when we do not introduce
precursors into the reactor. DUMMY line will always be displayed as the sum of the injection
lines of the precursors involved in the growth and we can always keep the same amount of flow

inside the reactor and avoid possible turbulence or vortices during the growth stage.

Figure 2.11 shows the appearance of the MOCVD system reactor used to grow the thin
films presented in this thesis. The reactor has several inlets for the delivery of precursors and
lines for stabilizing the gas flow. The top inlet is used for the intake of metal precursors and the
bottom inlet for the entrance of the oxygen precursor. This prevents or reduces the interaction
and preliminary reactions in the vapor phase in the internal lines. Precursors are located in
special containers called Bubblers. The name is due to the fact that the carrier gas enters
the container with the precursor through a tube and forms bubbles that are saturated with
precursors vapors and then transported by the carrier gas to the outside. Bubbler’s outlet lines

are heated to temperatures above 50 °C' to avoid possible condensation along them.

= Radiofi€

Figure 2.11: Side (a) and rear (b) view of the reactor, with the designation of independent inputs.
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Inside the reactor are two fundamental elements, such as the deflector and the susceptor.
The deflector is a rectangular cover made of quartz, which is used to conduct the gas flow
inside the reactor, while the susceptor is the element, constituted by graphite, wich will heat the
substrate to the desired growth temperature . Heating is provided by an external radiofrequency
generator. The surface of the susceptor is coated with a layer of silicon carbide (SiC') to prevent
any diffusion of impurities from the graphite, as well as the absorption of gas by graphite pores.
The substrate holder is made of molybdenum, which, due to the high thermal conductivity,
ensures uniform temperature at the substrate, which is controlled from the control panel using
two K-type thermocouples. The distance between the thermocouples and the substrates and
the corresponding temperature difference make necessary to pre-calibrate the temperature.

Finally, all gases, including those that have passed through the VENT line and which,
therefore, have not passed through the reaction chamber, are collected in a common pipe under

the reactor and removed to the atmosphere after passing through the appropriate filters.

2.4.2 Electronic system of MOCVD

The carrier gas, together with the precursor, enters to the reactor chamber to provide the
formation of films of the necessary materials. The amount of flow entering the reactor is
controlled with the help of valves called Mass Flow Controllers (MFC). The value is measured
in units of Volume/Time and under standard pressure and temperature conditions the units are
scem(standard cubic centimeters per minute) or, in the case of main branches, slm (standard
liters per minute). Mass flow controllers consist of a flow sensor, bypass, valve, and control
circuit, as shown in Figure 2.12 [167].

MFC in working position directs the flow of gas from the bubbler to the reactor. A portion
of the main carrier gas flow is introduced into the valve through the base. In the VENT
position, the flow is directed to the external circuit connected to the gas outlet, which allows
stabilizing the flow of precursors before transferring it to the reactor. To achieve optimum
system performance, the pressure on the vent side and entrance side must be balanced.

During MFC operation, the gas flow is divided into two parts, so that one part passes
through the sensor and the other through the bypass. The amount of gas that passes through
the sensor is proportional to the total amount of gas, so by measuring it, we get an indicator
of the total flow that passes through the MFC. The sensor consists of a capillary tube with
two thermistors that surround it at the inlet and at the outlet. When the gas begins to flow
into the sensor, a temperature difference occurs between the inlet and the outlet thermistors,
thermal balance is lost and the temperature distribution of the sensor changes. This change
causes the change in the resistance and it is measured as a change in a signal from 0 to 5 V.

The signals at the input and output resistive elements are compared and the circuit acts on
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the control valve, so the difference between these two signals is zero. This circuit in the form
of a loop with feedback provides protection against changes in pressure and temperature in the
environment and ensures stable operation. In other words, MFC always maintains the target
value by opening or closing the valve. The difference in temperature created between the two
elements depends on the mass flow and the specific density and heat capacity of the gas. The
accuracy of the MFC we use in the MOCVD system is 1 % of the full scale.

3 Compariso

jJau]

Qutput signal : . Input signal
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Flow sensor
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i1 1 Control valve

GAS IN =) =) GAS OUT

Figure 2.12: Structure of Mass Flow Controller [167]

Thermocouple-based MFCs typically use nitrogen as a reference for calibration. In the case
using the other gases, their specific heat capacity and density may not match, what will affect
the value of conversion factor (C.F) and the actual flow rate and can cause abnormal operation
or abnormal flow. Table 2.4 shows the multipliers that should be applied to the MFC readings
for the different gases used in the MOCVD processes.

Gas Ny He Hy Oy Ar Air
Conversion factor 1.0 14 1.0 0993 14 1.0

Table 2.4: Conversion factor for MFC application for various gases [167].
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2.4.3 Our working system

For optimal growth of layers of II-VI group materials, a modified MOCVD Quantax 226
system was used by our Crystal Growth group at the University of Valencia. The working
system has two horizontal reactors of the Vent-Run type (Figure. 2.13), which work alternately
to grow different materials. The system is controlled by a control panel (Figure 2.14), which
regulates the transport lines, as well as the opening and closing of various system valves and
the growth temperature. The transport lines connect the bubblers with the precursors to
the reactor chamber. The bubblers themselves are located in thermostatted baths, where the

required temperature is maintained depending on the task in hand (Figure 2.15).

Figure 2.14: Control panel of MOCVD Quantax 226 system
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Figure 2.15: Photographs of thermostatic baths for precursor cooling

Figure 2.16 shows the components that are located inside of the reactor during the material
growth. To prevent contamination during the formation of films, it is necessary to get rid of the
residual deposition of the previous experiment. The precipitate formed after the experiment
is removed using aqua regia (a mixture of hydrochloric and nitric acid HCl : HNOj3 in a
volume ratio of 3:1) in a well-ventilated cabinet, after which each part is rinsed abundantly
with ultrapure water. Finally, the pieces are dried for at least 12 hours to avoid the remaining

moisture entering the reactor.

Figure 2.16: View of the pieces on which we place the substrate inside the reaction chamber
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2.4.4 Precursors

The molecules used to grow the material in the MOCVD system are usually formed by
atoms of groups II, III, V, or VI associated with one or more organic radicals and /or hydrogen.
The most common designation used in MOCVD to designate precursors are M, E, NP, IP, NB,
IB, TB and A to designate methyl, ethyl, n-propyl, i-propyl (or isopropyl), n-butyl, isobutyl,
tert-butyl and allyl radicals. The chemical nature of these molecules allows their pyrolysis to be
low at relatively high temperatures, releasing the atoms of interest and causing layer deposition,
leaving various organic molecules as a residue [59]. There are different molecules of the same
element, therefore, the choice of precursor must be made depending on the conditions specified

in obtaining the desired material.

In the process of crystal growth, a very important parameter is the amount of material
- precursor that is fed into the system. As we already described above, the precursor was
introduced into the reactor of the system using a carrier gas. The carrier gas passes through a
bubbler with the precursor (Figure 2.17) and blows and extract the molecular fractions of the
required material through the transport tubes to the substrate surface in the reactor. Precursors
may be present in both solid and liquid phases [168,169|. To change the amount of material
produced, it will be necessary to take into account different parameters as the temperature of

the precursor, the pressure in the bubbler, and the flow of gas flowing inside it.
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Figure 2.17: Bubbler for the precursors of MOCVD [168].

35



Chapter 2. Materials and growth technique

Let us use the work of R.J. Betsch [170], who carried out a parametric analysis of control
in the MOCVD system. Suppose that the gases, we work with, follow the laws of an ideal gas.
Thus, the gas inside the bubbler and the precursor vapor are in perfect balance:

NPre PP;:
- % (27)
Ngzzs Ppar

where the variables N and P,,, represent the number of moles and the partial pressure, respec-

tively, superscripts pre and gas represent the metal precursor and the carrier gas, respectively.
In this case, the pressure of the system, or more precisely, the pressure at the outlet of the

bubbler (FPy) is equal to the sum of the partial pressures of the carrier gas (P9.) and the

parcial pressure of the precursor (PP¢). But since the pressure in the system is much greater

than the partial pressure of the precursor (Pyy, » ngﬁ), and, taking into account that we are

in a situation of dynamic equilibrium, the expression will have the form:

pre pre
pre __ gas vap _ gas  __vap
NPTE = o ot — o (2.8)
bub — {4 par bub
where (PIre = PI¢) - since we are in a situation of dynamic equilibrium, that is, the gas

mixture is saturated and, therefore, the precursor partial pressure is equal to its vapor pressure.

If replace the number of moles by the amount of flow we need, the expression will be written

as:
prre
pre _ gas va
Flux(mol/time) - Flux(mol/time) ) Pbub (29)

If we know how much carrier gas is supplied, its pressure and pressure in the bubbler with
a precursor, we can calculate the number of moles of the precursor, which we extract per unit
of time. Since control takes place with the help of MFC, which measures in sccm or slm, and
taking into account that 1 mole of ideal gas takes up 22.4 liters under standard conditions, we
have a direct relationship between measuring MFC and the number of moles per unit time in

the carrier gas:

gas Flux?gcscm)
Flux(mol/mm) = TOO (210)

Substituting equation 2.9 into equation 2.10, we obtain an expression for calculating the
number of moles per unit time for a precursor:
prre Flux(l,

Fluz®®, = = (scem) 2.11
W mat i) = P, 22400 (211)
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P at 298 K (Torr) Melting Boiling  Density Molecular

Metalorganic precursor LogP—B-A,T Constans (A/B) point (°C) point (°C) (g/mL) Weight(g/mol)
(C3H7)oTe Te 3,46 2309 / 8,288 [171] N/A 49 1.365  213.778 [ [172]
(CoHs)2Zn Zn 8,53 2109 / 8,280 [165, 168] -28 117 1.205 123.50 [173]
(CH3)2Cd Cd 35,64 1850 / 7,764 [168] -4,5 106 1.985 142.484 [174]
(CH3);COH 0) 56 2545 / 10,14 [101] 25 82 0.775 74.123 [175]

Table 2.5: Physical properties of precursors.

HaC, CHs CHs HsG,
H,C—2Zn—CH, L H,C _CH,4 H3C%—OH
oy, Hic~ " Te” “CH cd*
CH, Hs e : HsC
(a) (b) (c) (d)

Figure 2.18: Precursors: (a) Diethylzinc (DEZn) [173], (b) Diisopropyl telluride (DIPTe) [176], (¢) Dimethyl-
cadmium (DMCd) [177] and (c) tert-Butanol (t-butanol) [178].

Table 2.5 presents the main parameters of the precursors that we applied in this work.
We used Diethylzine (DEZn), Diisopropyl telluride (DIPTe), Dimethylcadmium (DMCd) and
tert-Butanol (¢-butanol) as precursors for Tellurium, Zinc, Cadmium and Oxygen, respectively
(Figure 2.18).

The vapor pressure of a material depends on the nature of the material and its temperature.

Using the August equation [165,168,171], we can have an expression for each material:

B
LogipPressure(mmHg) = A — T (2.12)

where A and B are two given constants for each material, and T is the temperature of the
termobath with precursor’s bubler in Kelvin. The temperature control will determine the vapor
pressure of the precursors, which will make possible to control the amount of the substance
entering into the working chamber of the reactor.

To recalculate the pressure in Pascal, the equation will take the form:

101.325
760
where 101.335 is the standard atmospheric pressure in kilopascals, and 760 is the equivalent of

(2.13)

Pressure(kPa) = Pressure(mmHg) -

atmospheric pressure in mmHg (Torr) |179)].
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2.4.5 Substrates

During the films growth using MOCVD, the nature and surface state of the substrate is very
important, because the layer nucleation depends on the arrangement of the surface atoms and
their availability to be bound. Moreover, ideally, the substrate should be inert under growth

conditions in order to avoid diffusion into the layer or reaction with the precursors.

The substrate will play the role of support for the thin layer of the obtained material. In
the case when the grown material reproduces the crystal structure of the substrate we have
epitaxial growth. The easiest way to induce epitaxial growth occurs on a substrate of the same
material with a well-defined orientation at the face on which the layer will grow. But it is
not always possible to find substrates of the same material for growing crystals with sufficient
quality or affordable cost, so in many cases, it is necessary to choose alternative substrates that
closely match, as fast as possible, the required conditions. This can affect the structure and
orientation of the resulting layer of material that grows on it. In this case, we are talking about

heteroepitaxy.

During heteroepitaxy, it is important that the lattice parameters of the substrate and the
layer be as similar as possible. Achieving a certain critical thickness, so large that the layer is
forced to relax to its lattice parameter, will lead to the creation of defects, such as dislocations.
The coefficient of thermal expansion of the substrate and the layer should be as close as possible
in order to avoid an additional introduction of defects during the cooling process after growth.
Optimization of the growth process will minimize defects, which will increase the crystalline

quality of the sample.

Using the previous experience with materials of the II-VI group |58,180], sapphire and GaAs
were used as substrates for the growth of materials under study in this thesis. Some parameters
of the substrates are shown in Table 2.6. Thus, oxide films (ZnO and CdQ) were prepared onto
sapphire substrates [180|. This material has probably been the most commonly used substrate,
not only for the growth of layers of these materials but also in obtaining nanostructures. Sap-
phire, or a-AlyO3, is the only aluminum oxide thermodynamically stable at room pressure and

temperature conditions, although there exists a polymorph phase v-Al,Os.

Sapphire crystallizes on the corundum structure and, thus, presents rhombohedral symmetry
(figure 2.19 a). To improve the sapphire surface, chemical polishing and/or chemical etching
processes are carried out. Sapphire plates can be cut to a desired orientation with small
miscuting (less than 0.5°) or others miscuting, and it can be commercially accesible polished
for one or both sides. Sapphire has different natural planes, as the C, M, A or R - planes, which
are used for the production of various materials, including oxygen sublattices with hexagonal

symmetry (Figure 2.20).
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Property Sapphire GaAs

Lattice parameter, a (A) 4.758 [181], 4.763 [182] 5.6515 [183], 5.653 [184]
Lattice parameter, ¢ (A) 12.991 [181], 13.003 [182] -

Density (g - cm ™) 3.98 [181], 3.99 [182] 5.3176 [183]
Melting temperature (°C') 2040 [181], 2053 [182] 1.238 [183]

Band gap (V) 9.5 [185] 1.441 [183), 1.43 [186]

Linear expansion coefficient o, °C' 5.8 x 1075, at 20°C to 50 °C' [181] 5.39 x 107°, at 0 to 30 °C [187]

Table 2.6: Physical properties of sapphire and GaAs

)

(a)

Figure 2.19: Crystal structure of (a) trigonal crystal of sapphire [188] and (b) ZB GaAs [189].

a
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c-plane (0001)
m-plane (1010)
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@®r-plane (1102)

1

Figure 2.20: Sapphire crystal planes [190]
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It have been shown [59] that a suitable substrate for CdTe is GaAs (figure 2.19 b). GaAs
is the third semiconductor most widely used in industry after silicon and germanium. in our
case, GaAs with a (100) £+ 0.5° orientation (from ATX) was used as a substrate with one of
the faces polished with "epyready" quality, with a surface roughness of ~ 0.3 nm, which was
measured using AFM. The substrates were supplied in the form of a two-inch "plate" with a

thickness of 500 mm. These substrates, like sapphire, were cut to obtain smaller substrates
that were used for the growth of CdTe, CdOfilms and the CdTe/CdO heterostructures.

2.4.6 MOCVD growth parameters

In order to obtain films with the desired characteristics, it will not be enough just to use a
suitable substrate. Important factors to be taken into account during the growth of the layer
are the susceptor temperature, the molar ratio and flow of precursors, the flow of the carrier gas,
the reactor pressure and the growth time, in addition to the reactor design, chosen precursors,
carrier gas, etc. Any change in them will affect the physical properties of the obtained films, in
particular, their structural characteristics (crystal quality, lattice parameters, etc.) and their
morphology. All of these changes will be measured using several characterization techniques,
which will be discussed in the next chapter.

As described in Section 2.4.1, the separation into two branches of the injection lines of MO
precursors (DEZn, DMCd or DIPTe) and oxygen precursor (t-butanol) helps to avoid or reduce
parasitic reactions before the precursors arrive onto the substrate. The used growth conditions
are shown in Tables 2.7 and 2.8. Mostly, high purity Nitrogen (6N) was the usual carrier gas,

but sometimes Hydrogen or Helium were used. All films were grown at atmospheric pressure.

ZnO CdO CdTe CdZnO

Parameter
Values

Fluxes (sccm) Carrier 11 1900 1900 2800 1900 (2700)>
Carrier VI 300 300 200 300 (426)?
Dummy 200 150 50 250 (355)2
Sweep 2000 2000 1250 2000 (2840)3
Reactor preassure (Torr) 760
Prec. Ratio (VI/II) 5.04 5.17 0.12-5.25 (10.5)1 5.10
Substrate temp. (°C') 300-400 304 284-380 304
Growth time (min) 1-90 15 602 3.75-15 3
Substrate R, M, A-sapph R-sapph or CdTe  GaAs or CdO R-sapph

Table 2.7: The growth parameters of ZnO, CdO, CdTe layers and structures based on them in the MOCVD
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Precursor Bath temp.(oC) Preassure (Torr) Carrier gas (sccm) Precursor flux (umol/min)
ZnO
DEZn 16 5-35 2.85-19.91
tert-butanol 28 760 5-35 14.35-100.40
CdO
DMCd 12 25 71.77
tert-butanol 28 700 12.5 13.87
CdTe
DIPTe 15 25-475 1.16-52.54
DMCd 12 700 9 (4.5)! 9.99 (4.95)!
CdZnO
DEZn 16 5 5 (7.71)?
DMCd 12 760 20-96 10-48 (14.2)?
tert-butanol 28 25-98 25-98 (35.5)2

Table 2.8: Parameters of precursor fluxes during growth of ZnO, CdO, CdTe layers and structures based on
them in the MOCVD system

1 - In the last experiments with Ratio(VI/I1)=10.5, 2-step growth was made with 1 and 6 min for the steps, respectively, maintaining
the DIpTE flow and decreasing the DMCd one.

2 - Due to the use of He as carrier gas, growth parameters like gas and precursor flow were changed (see Conversion factor in
Table 2.4)

3 - In experiments with higher nominal Zn content, the growth time increased

To obtain ZnO thin films, we applied the previous experience of our scientific group [180].
From this experience, several changes in the values of precursor fluxes, growth temperature
and time were tested to have a film with the lowest thickness and surface roughness. Sapphire
with different orientations (see cut planes in Figure 2.20) was used, and a chemical treatment
of the substrates in some experiments was carried out. Two different positions at the susceptor
were used for placing there the substrates. The first position of the substrate holder is at a
distance of 5.1 ¢m from the entrance to the cell, and the second is at 16.3 cm. The results of

the experiments will be shown and analyzed in Chapter 4.1.

For the growth of CdZnO ternary compounds, R-sapphire, was the choice as substrate,
because the ability of this cut plane to produce CdO films with good structural quality [100,191]
and considering that the cubic phase of the ternary should be similarly matched as CdO. High
purity Nitrogen (6N) was the carrier gas, but for the sample with high Zn content (20 %),
Helium was applied too. In this case, the flow parameters were corrected taking into account

the conversion factor (see Section 2.4.2).
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As mentioned above, GaAs and R-sapphire were used as substrates for the growth of C'dTe
films and CdTe/CdO heterostructures. We used the data obtained in a previous work [59] as
starting point to grow C'dTe thin films. After finding the optimal parameters of the experiment,
a growth series of CdTe/CdO and CdO/CdTe heterostructures were carried out. Since it was
not possible to obtain monocrystalline films with a single orientation, before the beginning of
CdTe films growth, the short time growth (2.5 min) with a reduced temperature (295 °C') was
performed to create more nucleation points. Ultimately, the growth time was reduced and the
ratio of precursors VI-II increased to 10.5. The results of the experiment and their analysis are

given in Section 4.3.
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2.5 Close-spaced vacuum sublimation technique (CSVS)

2.5.1 Close-spaced vacuum sublimation system

It is widely believed that the growth of bulk monocrystals from the vapour phase is of little
practical importance due to the relatively low growth rates inherent at this method. Indeed,
the growth rate of bulk single crystals from the vapour phase is usually equal to tens of pm/h.
Nevertheless this method can be successfully used for growing thin films. The processes of
growing layers from the vapour phase are very sensitive to changes in growth conditions and
the composition of the feed phase. However, the influence of these factors is significantly
smoothed out due to the low growth rates, which contribute to be near of the equilibrium
growth conditions [192].

The advantages of growing crystals in a vacuum (107°-107% Torr) with subsequent conden-
sation on a substrate include the cleanliness of the conditions for obtained materials. Due to
the fact that usually the reactions in the gas phase proceed at relatively low temperatures, a
number of compounds that melt incongruently can be grown by using the vapor phase methods
at temperatures significantly lower than the melting temperature.

Among the methods from the vapour phase there are the thermal evaporation methods.
Despite the advantages of an vacuum thermal evaporation process, as simplicity, low cost, fast

process, and others, this method has some disadvantages, among which we should note that:

e 1) it is difficult to strictly have the same conditions in different processes, as a result of

which the chemical and phase composition from sample to sample can vary;

e 2) the films cannot be grown at high substrate temperatures, as a result of that they
could consist of small crystallites of 0.02-1 um in size and consequently have a carrier

mobility 1-2 orders of magnitude lower than in monocrystals.

To reduce these shortcomings at the synthesis of films, it is possible to use thermal evapo-
ration at short distances from the substrate which is called the close space vapour sublimation
(CSVS), which offers some advantages. The method produces samples in which, after adequate
selection of the growth conditions the composition of the growing crystal can be near to the
composition of the source, and the vapour phase consists only of atoms or molecules that form
the source and crystal.

In this section, we briefly describe the CSVS growth technique. The main processes occur-
ring inside the working volume of chamber under vacuum will be considered, and the features
of the system used during this work will be emphasized. Growth conditions that were used for
growth of ZnMnTe and ZnMnS will be presented.
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Basic concepts of the growth process

To obtain films in modern microelectronics, there are many mechanical, chemical and con-
densation methods. Among them, the growth of crystals from the vapour phase is considered
one of the important methods for obtaining stoichiometric crystalline materials. Vapour phase
deposition is convenient for large scale operations (from the coating of turbine blades to growing
epitaxial layers of semiconductor materials), it can be used to coat irregular-shaped substrates,
including growth on inside surfaces, and offers maximum control of materials properties such
as thickness and composition. Another practical advantage is that it does not involve the con-
tacting of the growing surface with a liquid or solid phase, thus avoiding numerous potential

problems during and after the growth process [193].

Growth from vapour is the preferred phase transition to obtain thin layers, while the growth
of bulk crystals from vapour is more likely an exception as before said, applicable only in case
of unavoidability of other options [194]. The process of crystal growth from the vapour phase
consists of the same steps as the crystallization process from the liquid phase: 1) supply of the
crystallizing component to the growth surface (mass transfer processes); 2) surface diffusion
(migration along the growth surface and the incorporation of atoms into the crystal); 3) diffusion
in the crystal (migration in the crystal); 4) removal of crystallization heat from the growth

surface (heat transfer processes).

From a technological point of view, the methods for growing crystals from the gaseous phase
are divided into three large groups, differing in the way atoms are delivered from the source to
the growing crystal [192]:

1) sublimation-condensation method;

2) chemical reactions of decomposition - reduction method;

3) chemical transport method.

In modern semiconductor technology some technological processes for producing single crys-
tals from the vapor phase in systems with reduced pressure (in vacuum) are used. Mass transfer

in vacuum includes the following three main stages:

1) transition of a substance from a condensed (solid) phase to a gaseous one;

2) transfer of this substance from the source to the substrate under a reduced overall gas
pressure;

3) condensation of vapors of the substance on the substrate.

The transfer of a substance from a condensed phase to a gaseous phase is mainly carried
out by thermal evaporation, which consists in heating the substance to a temperature where
the energy of the surface atoms of the substance becomes higher than their binding energy with
neighboring atoms, as a result of which they acquire the ability to be transfered to the vapor

phase.
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Depending on the relationship between the mean free path of an atom or molecule in a
vapor, [, and the distance from the vapor source to the substrate L, there are two main modes
of mass transfer of the substance in vacuum. At [ < L, the vapor from the surface of the
evaporated substance moves in the form of a continuous flow, which is characteristic of chemical
vapor deposition (CVD) methods. At [ > L, the vapor moves from the evaporation surface in
the form of molecular beam within which atoms or molecules propagate along straight paths,
which is more characteristic of physical vapor deposition (PVD) methods. Consequently, PVD
processes usually proceed under vacuum conditions to maintain the flow in the form of a
beam, while CVD processes usually take place at atmospheric or only slightly reduced pressure
(105 Pa > P > 10? Pa) [194].

The borders between the two classes of vapor phase growth techniques are not sharp. Even
in the processes generally considered as typical physical vapor deposition processes, in most
cases chemical reactions take place.

When growing from the vapour phase, it is customary to isolate diffusion and kinetic growth
regime. If the limiting stage of the process is the supply of material to the growth surface, then
this growth process is spoken of as going at diffusion regime. If the limiting stage is the processes
of migration and incorporation of atoms onto the growing surface, then the growth process is
goberned by the kinetic. If the rates of supply of crystallized material and migration processes
are comparable, then it can be said that the process proceeds in the transition regime.

It is customary to distinguish at least three simultaneously proceeding stages:

1) transfer of reacting substances to the interface - the reaction zone;

2) chemical interaction in the reaction zone;

3) removal of reaction products from the reaction zone. The overall speed of the process
will be determined by the speed of the slowest (limiting) stage.

The main parameters affecting the equilibrium of chemical reactions are temperature, pres-
sure and concentration of reacting substances. In practice, these parameters are usually used
to shift the equilibrium in the desired direction, that is, to regulate the equilibrium degree of
conversion in accordance with the law of mass action.

The sublimation-condensation method can be used to grow congruently evaporating
semiconductor compounds and solid solutions based on them, the components of which have
sufficiently high vapor pressures (= 1 mmHyg), as well as in cases where their growth by other
methods is complicated or leads to crystal degradation. Growth by evaporation and subsequent
condensation is used widely to make thin layers and bulk crystals, as for instance compounds
of cadmium or zinc with sulfur, selenium, or tellurium [195].

Chemical reactions of decomposition - reduction method turns out to be very effective
for growing single-crystal ingots of some compounds from the gaseous phase, the components

of which have low vapor pressures at acceptable growth temperatures. The source consists of
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gaseous molecules containing atoms of a crystallizing material. A crystal of a given composition
is formed as a result of a chemical reaction proceeding on the substrate (or near it) and leading
to the release of atoms of the crystallizing material.

The growth of crystals from the vapor phase by the chemical transport method is based
on chemical reactions, the same as chemical reactions of decomposition - reduction method.
Crystal growth occurs as a result of decomposition reactions of gaseous molecules. When a
gaseous reagent X interacts with a solid, non-volatile substance A at certain temperatures and
vapor pressures X, volatile compounds of different compositions can be formed. Under constant
conditions, a certain state of equilibrium is established between them. If the temperature of
the system will be changed, then the state of equilibrium will be violated and the composition
of the mix components will change. By choosing the conditions under which the formation
reaction of the volatile compound XA predominantly takes place in the source region, and its
decomposition with the release of component A in the crystallization region, it is possible to
provide conditions under which the transfer of A from the source to the growing surface and
the growth of a crystal of substance A will occur [192].

As evaporation in the vacuum, CSVS method allows getting layers with a thickness of a few
angstroms to several tens of microns. At the same time, uniformity and a maximum purity of
the material are achieved, the film growth conditions are easily controlled and it is possible to
use masks for the manufacture of layers of a given configuration. The use of a two-temperature
control (evaporation (7,) and substrate (T;) temperature) allows a better control of the film
growth process. A schematic representation of the working vacuum chamber for evaporation
is shown in Figure 2.21. In some cases to prepare A;; By films two sources can be used. In
this case, a three-temperature control method is used: a substrate (T) and 2 independent
evaporators (T.), one of which contains metal, and the other a chalcogenide. [55].

The quality of the deposited films (chemical composition, degree of structural perfection,
electrical, optical properties) is determined by the evaporation processes of the initial material,
the difference in vapor pressure of the components, the processes and conditions of condensation
on the substrate, and the integrity of the layers is determined by the design feature of the
evaporator.

The vacuum (1 x 107 to 1 x 1077 Pa or 1x1073 to 1x10~Y Torr) allows the growth process
to be carried out at evaporator temperatures lower than when atmospheric pressure is used, in
addition vacuum conditions significantly reduces the film contamination, but the low density
of the material in the vapour phase leads to low growth rates.

The advantages of vapor growth methods can be summarized as follows [194]:

e Crystallization proceeds at temperatures much below the melting point.
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e Also "difficult" materials, wich are complicated to be obtained by other methods (for
example, owing to large differences in the segregation coefficients of the constituents of

an alloy) can be synthesized.

e Mixed crystal composition and dopant concentration can be held constant or changed in

almost any desired manner during growth.
e Generally, the source materials for the synthesis process can be provided with high purity.

e The thickness of crystalline layers to be deposited can be controlled with an accuracy of

one atomic monolayer.

e The crystalline material generally shows good surface morphology, high purity, good

crystallographic perfection and uniform layer thickness.
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Figure 2.21: Schema of a vacuum chamber for condensation of a film by two-temperature method [55]:

1 - Glass or metal cap; 2 - Heating element for heating the substrate; 3 - substrate; 4 - thermocouples for
measuring the temperature of the substrate; 5 - step shutter; 6 - quartz plate; 7 - support for a substrate and a
heater; 8 - shutter; 9 - evaporator; 10 - tungsten or molybdenum spiral for heating the evaporator; 11- handle

for moving the shutter 5.
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Our CSVS system overview

The scheme of the original device for depositing thin films in the CSVS is shown in Fig-
ure 2.22. The main constructive element of the device is a ceramic monolithic cylinder (1),
which forms a compartment for the evaporation of the semiconductor substance (2). At the
bottom of the compartment there is an evaporator, made in the form of a thin tungsten tape (3).
By adjusting the amount of current flowing through the tape, it is possible to change the evap-
oration temperature and, accordingly, the rate of evaporation of the films. The substrate (4)
on which the layers of the three-component compounds are growing is secured to the holder (5)
with the heating element (7). In the process of growing films, the substrate with the help of
a manipulator was pressed to the CSVS sealing it. The substrate was fixed at a distance of
about 25 mm from the evaporator. To reduce the condensation of the evaporating substance
on the CSVS walls, they were heated by means of a heating element (8). The temperature of
this heater was chosen in such a way that the condensation of the substance occurs only on
the substrate (4). To monitor the temperature of the evaporator and the substrate, chromel-
aluminium thermocouples (6, 10) were used, the signal from which comes to the multimeter,
which determine the temperature. To prevent heat dispersion when heating the CSVS, the
walls of the ceramic cylinder with the heating element was surrounded by an auxiliary metal
screen (9), which separated the system from the rest of the vacuum chamber. In the process of
evaporation of the material, the condensation volume is "locked"”, and the gases of the residual
atmosphere do not get into the film.

The temperature of the evaporators, the walls and the substrate was controlled by chromel-
alumel thermocouples < THA-5041300> (6, 10 in Figure 2.22). The signal from which was
driven to ADC multimeters APPA-108N and UT70B.

2.5.2 Temperature control system

Stabilization of the temperature of the substrate, in other words, the temperature of depo-
sition, plays a crucial role for obtaining samples with repeating characteristics. This is due to
the fact that the size of the crystallites and the structure of the condensate is determined by the
temperature of the substrate. At low temperatures, the size of the crystallites can be very small,
with the increase in the temperature of the substrate, the size of crystallites increases. In case
of homoepitaxy during the condensation on monocrystalline substrates there is a temperature
at which the epitaxial growth of the film begins (epitaxy temperature). That is why, for the
production of high-quality samples of semiconductor films, a proportional-integral-differential
(PID) controller, in our case an "OVEN TRM10", for the control unit of the TRIACs and
thyristors (CUTT) is a necessary technological element for obtaining good-quality samples of
semiconductor films (Figure 2.23) [196].
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Figure 2.22: Diagram of the device for the synthesis of chalcogenides by the CSVS method:
1 - CSV walls; 2 - evaporation compartment; 3 - evaporator; 4 - substrate; 5 - holder of the substrate; 6, 10 -

thermocouples; 7, 8 - heating elements; 9 - thermal screen [197].

Compensation wire

: module
{
— | Transformer
\ 1 L
1 l |

Power cord of the substrate

To the pump

Figure 2.23: Functional scheme for obtaining A;; By semiconductor film compounds by condensation in a
vacuum environment with temperature stabilization by using a ?7OVEN TRM10” PID-controller [196].
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The microprocessor programmable TRM10 type regulator with an input sensor (thermal
converter or unified source) is intended for control and management the technological processes,
which requires increased accuracy of the value of the measured parameter [198].

The parameters of the device are set by the user and stored when the power is turned off

in the non-volatile memory of the device.

2.5.3 Our working system

The growth of samples by the CSVS method was carried out at the laboratory of the
"Research of nanoelectronics material" group at the Sumy State University. As charge, ZnMnS
(7 %) and ZnMnTe (5 %) were prepared in Chernivtsi National University in laboratory of
Fochuk P.M. by sublimation of elementary components of these materials. ZnMnTe and ZnMnS
compouds were deposited in the vacuum system VUP-5M (OJSC Selmi, Sumy) (Figure 2.24).

The residual gas pressure in the chamber was no more than 5- 1073 Pa.

Figure 2.24: General view of equipment VUP-5M.

The getting of ZnMnS and ZnMnTe layers was carried out in the CSV in several stages, the

main of which are:
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1) loading of material charge at the evaporating compartments;

2) closure of the ceramic cylinder by the substrate;

4

5) direct evaporation of the loaded substance;

)
)
3) creation of a vacuum in the working volume;
) warm up of ceramic walls and substrate;

)

)

6) cooling the substrate with the film to room temperature.

Structural and optical studies were performed for the obtained samples, the results of which

are given in Section 5.

2.5.4 Substrates

As before commented substrates play an important role in obtaining high-quality deposition,
and the best substrate would be one that ideally matches the lattice of the resulting material,
as in homoepitaxy. Nevertheless, the achievement of homoepitaxy is not always possible, there-
fore, other materials, resistant to chemical reactions and/or diffusion processes are chosen as
substrates. With the development of the solar cell industry, there has been an increase in
the need for low-cost transparent substrates that can grow highly textured polycrystalline thin
films. Glass as such type of substrate, which is widely used for growing various materials. Some

parameters of some glass substrates are presented in Table 2.9.
Glass is an amorphous material (Figure 2.25), that lacks a long range periodic crystalline
structure [199]. At ordinary temperatures, glass is solid with high heat and electrical insulating

properties and is very resistant to many aggressive environments. To obtain glass, the most

Property Soda-lime Silica Borosilicate Phosphate

Si0 (73 %), Na2O (14 %),
Primary compounds CaO (7%), MgO (4%), Si0y, By03 Psos

Al,Os (2%) [200]

Density (gem™2) 2.49 2.23 2.6 [201]
Max. service temp. (°C) 500 550 -
Softing point (°C) 750 820 -
Termal-expansion coefficient «, °C~! 85-95 x 1077 33 x 1077 15 x 1077 [201]
Thermal shock resistance Low Average-High Low
Chemical resistance Average High Low, exept high resistance

to hydrofluoric acid
Application Food containers, windows, Industrial equipment, labora- Bone scaffolds, optical

lamp envelopes -tory and kitchen glassware fibers, heat absorbers

Table 2.9: Some properties and applications of 3 most common commercial glass slider [199,202]
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common method involves heating raw materials into a molten liquid and then rapidly cooling
the liquid in such a way that the atoms remain in a randomly arranged atomic state. In this
case, the atoms are less densely packed than in the quartz crystal, leaving large interstitial

spaces or holes between the atoms, which reduce the density [202].

In the process of glass formation by melting/cooling, mixtures of several raw material pow-
ders are often added (Figure 2.26), which consist of many different components, each of which
plays a role [199]. The addition of components not only increases the density, but also affects
the physical properties and characteristics of the formed glass. One of these characteristics is

the expansion of the glass during heating and compression during cooling.

Although most glasses contain charged metal ions that can carry electric current, the high
viscosity of the glass at room temperature prevents their movement and electrical activity.
Thus, glass is an effective electrical insulator - although this property varies with viscosity,
which in turn is a function of temperature [202]. The high throughput of glass is explained
by the fact that electrons in glass molecules are confined to particular energy levels and they

cannot absorb and reemit photons.

Unlike Soda-lime silica and Phosphate glasses, Borosilicate glasses are usually used in harsh
and demanding conditions. They have good thermal shock resistance and can withstand ex-
treme thermal cycling with minimal effect. For instance, Pyrex, a commercial borosilicate
composition created by Corning, Inc., is commonly used for baking at home or performing
experiments in the lab. Low coefficient of thermal expansion allows the glass to develop fewer

internal stresses during the heating and cooling processes that cause cracking or breaking [199].

(a) (b)

e Si
O

Figure 2.25: Crystal structures of (a) an amorphous SiOs - glass and (b) a crystalline SiOz-quartz [203].
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Calcium

Sodium

Oxygen
Silicon

Figure 2.26: 2D representation of a soda-lime silicate glass with random atomic nature [199].

Thin films of ZnMnTe and ZnMnS were prepared onto borosilicate glass substrates. Before
the growth of the films, the glass substrates were ultrasonically cleaned. Each glass plate had a

size of 75 x 25 x 10 mm and was cut to obtain smaller substrates for the growth experiments.

2.5.5 CSVS growth parameters

A suitable substrate makes easier to obtain films with the desired properties, but the se-
lection of growth parameters also affects the formation of films. Any change in the growth
parameters will influence the structural features of the obtained films, which in turn will affect
the optical and electrical characteristics. The used growth conditions are shown in Tables 2.10.

Thin films of ZnMnS and ZnMnTe films were grown by using CSVS method by sublimation
of the prepared charge in the form of powder after grinding the synthesized materials with the
required Mn content. An important advantage of synthesizing films of ZnMnS and ZnMnTe
by this method is that the vapor phase is in a small volume limited by heated walls. The
high vapor pressure of chalcogenides during condensation significantly exceeds the pressure of
residual gases in the external working volume of the installation by a value of about 10 Pa. This
leads to a decrease in the contamination of the layers of the materials obtained by uncontrolled

impurities from the residual gas atmosphere [197].
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ZnS:Mn ZnTe:Mn

Parameter

Values
Growth time (min) 15 4 and 10
Substrate temperature (°C) 100-550  350-650
Evaporation temperature (°C') 1000 800
Nominal Mn content at the source (%) 7 (6.65) 5
Chamber preassure (Pa, x 1073) 5
Substrate Borosilicate glass
Distance evaporator-substrate (mm) ~ 25

Table 2.10: The growth parameters of ZnMnTe and ZnMnS thin films obtained by CSVS method

In the selection of the growth parameters, we applied the previous experience of our scientific
group with ZnTe [197] and ZnS [204], respectively. Several series of samples were obtained over
a wide range of substrate temperatures. The evaporation temperature remained constant. The
condensation time was usually 10 minutes. Cooling of the resulting films to room temperature

was carried out in vacuum. The results of the experiments are given in Chapter 5.
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Chapter 3
Characterization techniques

For the synthesis of crystals, whose high-quality needs to be tested, it will be necessary to
use adequate growth conditions. Thus characterization of the obtained material is fundamental,
because allows to adjust the growth parameters in order to obtain (if possible) or to be near
of the desired requirements. Therefore, by using an iterative process of synthesis and charac-
terization of the samples, it is possible to advance in optimizing the process for the selected

material.

In this chapter, we will present various methods used in this thesis to characterize the

obtained layers, the results of this characterization will be presented in the following chapters.

Thus, firstly, electron microscopy methods and used equipment will be shown, later the
basics of particle induced X-ray emission and X-ray diffraction, then the method of measuring
the optical transmittance, and finally, the contact potential difference and surface photovoltage

based on atomic force microscope instrumentation system will be presented.

3.1 Scanning Electron Microscopy (SEM)

Traditionally the optical microscope, often referred as the light microscope, is used to obtain
enlarged images of objects (or details of their macroscopic structure), invisible to the naked eyes.
Nevertheless, the spatial resolution is, in some cases, not sufficient, remember that unaided eye
has a resolution ~ 0.1 mm, and light microscopy showing a resolution of ~ 0.2 pm. With the
improvement of technical capabilities it has been possible to develop instruments with higher
spatial resolution, as the electron microscopes (EM), with resolutions in the order of ~ 1.0 nm
in the case of scanning electron microscopies (SEM) or ~ 0.1 nm for transmission electron
experimenters. Electron microscopy is a general term to characterized by the use of an electron

beam, which is impinging on the testing samples.
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Focusing now on scanning electron microcopies, when a beam of primary electrons impinge
on the surface of a sample, the electrons penetrate and propagate through the material. The
depth of interaction or the decrease in the electron beam energy is related with the properties of
the material [205]. In this process, the primary electrons can interact inelastically with atomic
electrons or elastically with atomic nuclei, and generate various types of signals. Detecting and
analyzing these signals [206] allow to get various types of information, as we will see in next
sections.

Figure 3.1 shows the interaction of the incident beam with the surface of the material.
They involve different kind of electrons and consequently generate different typesof signals and

information about the materials:

e FElastic interaction: primary electrons, which can have an energy more than 50 eV, de-

pending on the microscope, do not lose energy when interacting with the material.

— Dispersed and retro-dispersed electrons are electrons that are deflected by the atomic

nuclei of the sample. Retro-dispersed electrons show a large scattering angle.
— Transmitted electrons that cross the material without losing energy.

e [nelastic interaction: the primary electrons transfer energy to the electrons of the mate-

rial.

— Secondary electrons (SE) are electrons from the surface of the material (less than 10 nm),
which are rejected as a result of the incidence of a beam of primary electrons. SE have

an energy lesser than 50 eV.

— Auger electrons (AE) are electrons emitted from the inner layers of the sample that

interact with the primary beam.

— Cathodoluminescence (CL) is an electromagnetic radiation, from the ultraviolet to the
infrared spectrum, which is associated with the emission of photons from relaxation of
the excited of the energy levels at the material that occurs when interacting with the

primary electron beam.

Light elements allow deeper penetration of the beam, while the scattering volume of heavy
elements lies closer to the surface. It should be noted that in addition to the signals described,
other phenomena such as continuous X-ray emission or heat generation also occur. At the same
time, depending on the information collection technique and the type of secondary radiation,
various types of microscopes are used. Below we describe the methods and equipment for

microscopy used in this work.
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3.1. Scanning Electron Microscopy (SEM)

electron beam

Auger Electrons (AE) Secondary Electrons (SE)
surface atomic composition topographical information (SEM)
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Characteristic X-ray (EDX) atomic number and phase differences
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electronic states information
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composition and bond states (EELS) Elastic Scattering

" structural analysis and HR imaging (diffraction
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Scattering

Transmitted Electrons
morphological information (TEM)

Figure 3.1: Interaction volume or electron beam showing different generated signals [207].

3.1.1 The principle of the scanning electron microscope

Using the scaning electron microscope, we can study the morphology of the samples. That is,
scanning microscopes are magnification system that allows to observe the surface characteristics
of the investigated materials. The combination of higher magnification, greater depth of field,
greater resolution (~ 1 nm ) and simplicity of observation of the sample makes SEM a very
useful tool with which we can get a first information about the morphology of our samples.

In the scanning electron microscopy, an electron beam accelerated by a potential difference
of some kV (usually < 30 kV, but it could be higher) focuses on the sample using a set of
electromagnetic lenses. Higher accelerating voltage implies smaller wavelength of electrons and
higher possible achievable resolution.

We can imagine how the wavelength of the incident beam will depend on the applied voltage.
Louis de Broglie showed that every particle or matter propagates like a wave. The wavelength

of a particle or a matter can be calculated as follows [208].
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A= (3.1)

where )\ is the wavelength of a particle, h is Planck’s constant (6.626x1073* J-s), and p is the
momentum of the particle. Since the momentum is the product of the mass and the velocity

of the particle,

A= — (3.2)

mv

Because the velocity of the electrons is determined by the accelerating voltage (V),

1
eV = §mu2 (3.3)
The velocity of electrons can be calculated by
h
A= (3.4)

V2meV

Therefore, the wavelength of propagating electrons at a given accelerating voltage can be

determined by

2
v =2V (3.5)

m

Since the mass of an electron (m) is 9.109 x 103! kg and the charge of the electron is
e = 1.60 x 1071 C,

—34 —10
\ 6.62 x 10 _ 12251070 15 (3.6)
V2x91-103T x 1.6-10-9 x V VV %

The resolution of the SEM is determined by the electron wavelength and the interaction
volume. Compared with the distance between atoms, these parameters are large; therefore,
SEM cannot be used to analyze information about individual atoms.

As described above, the interaction of the electron beam with the sample causes the emission
of electrons and photons. A significant proportion of the emitted electrons will be detected,
which will provide us information about the sample. Using a number of magnetic coils, the
primary beam is scan the sample in the x and y directions. Thus, information is obtained
about its radiation, with the help of which the obtained images are created after processing.
SEM equipment, in order to eliminate electron beam scattering in collisions with air particles,
operates in high vacuum (~ 107% Torr). Figure 3.2 shows a schematic representation of the

scanning electron microscope.
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Figure 3.2: Schematic representation of the design of the scanning electron microscope [209].

A microscope of this type is used to form an image of the signal corresponding to the
secondary electrons and retro-dispersed electrons. They come from the area closest to the
surface of the sample, since the secondary electrons generated in the inner part lose energy
on the way to outside, being absorbed and interacting with the atoms of the material itself.
The number of secondary electrons depends on the angle of collision of the electron beam with
the sample surface, that is, on the topography. Therefore, the signal of secondary electrons is

applied to reproduce the morphology of the sample |210].

3.1.2 Sample’s preparations

In order to prepare the samples for SEM measurements, the samples are placed in a con-
ductive aluminium holder specially designed for the simultaneous placement of various samples
both horizontally and vertically. The used microscope allows us to automate movements, such
as displacement along three axes, in addition to rotating or tilting the sample holder.

In our case, the samples were glued to the holder using a carbon tape and small silver
contacts were placed between the sample holder and the surface of the sample in order to
avoid the accumulation of electron charge on the layer, that makes easy to obtain optimal and

sharp images. For the same reason, the samples with low electrical conductivity were subjected
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to an electroconductive coating of conductive material, a metal such as an alloy of Gold and
Palladium (Au-Pd) in composition 4/1 of the order of 2 nm. This coating is also very useful

for increasing the signal-to-noise ratio [211].

3.1.3 Used equipment - Experimental set-up

Hitachi S-4800 scanning electron microscope

To measure the surface morphology of the oxides and heterostructures studied in this thesis
we used a Hitachi S-4800 electronic microscopic scanning device belonging to the Servei Central
de Suport a la Investigacid Experimental(SCSIE) of the University of Valence (Figure 3.3). This
equipment has a prechamber access for the introduction of samples in order to avoid rupture of
vacuum in the microscope column and, thus, ensures optimal working conditions. The voltage
in the microscope column was ~ 20 kV and an approximate working distance of 8 mm for
obtaining images with good resolution. The degree of image magnification was in the range of
250 to 800,000. In addition, the microscope has a retro-dispersed electron detector, a Bruker
X-ray detector, and a Quantax 400 software, which can be used to perform microanalysis of
samples. The ability to move along three axes, rotating or tilting (-5 to +60°) the sample

holders together with automatic control of the system makes a very versatile and useful.

'
ias

7

Figure 3.3: Scanning electron microscopy Hitachi S-4800.

60



3.1. Scanning Electron Microscopy (SEM)

REMMA-103-1 scanning electron microscope

To measure the surface morphology of ZnMnTe and ZnMnS, as well as the cross section of
these samples, a REMMA-103-1 scanning electron microscope of the “Nanoelectronics materials
research” group of the Sumy State University was used (Figure 3.4). The accelerating voltage
was 30 kV with a secondary electron imaging (SEI) mode resolution of 5 nm. The pressure
in the column of the microscope was not more than 1.33x 1072 Pa. The microscope has a
console, which allows X-ray electron probe microanalysis from beryllium (4) to uranium (92)
using a wave dispersion spectrometer with a sensitivity of 10-100 ppm for both bulk and thin-
film samples. The microscope chamber allows the installation of a sample with a maximum
diameter of at least 100 mm. The sample is moved along the z and y coordinates by 4+ 50 mm
with steps no more than 0.5 pum. The tilt of the platform gives access to a range from —20° to
48°.

Figure 3.4: Scanning electron microscope REMMA-103-1.
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3.2 Transmission Electron Microscopy (TEM)

Unlike SEM, the information in TEM is obtained from the primary beam of electrons inci-
dent on the sample. Due to the high voltage, reaching up to 1 MeV, research with atomic-scale
resolution of tenths of nm can be carried out. Since these microscopes use very high accelerating
voltages, TEM equipment must operate under ultrahigh vacuum conditions (10~7-107° Pa) to

prevent damage of the filament.

3.2.1 Measurement technique

Transmission microscopes mainly operate in two modes: in the parallel beam mode and
in the convergent beam mode. The first mode is the most used and it is applied to form an
image from the signal of electrons transmitted through the sample. On the other hand, the
convergent beam regime is usually used to analyze the chemical composition of a sample using
X-ray dispersive energy spectroscopy. In this thesis, the first mode of operation was used.

For the formation of an imaging of the samples, the TEM detects and processes the electrons
of the beam that has passed through it. Currently, many microscopes make possible to obtain
high-resolution images (HR-TEM) using structural interference of signals from the sample in
the so-called face-contrast imaging [212]. Image of the crystal structure of the sample obtained
by this method allows determining the crystal defects of the material, such as dislocations or
stacking fault. The atomic resolution of these microscopes also makes possible to obtain images
on which atomic lines are observed and values of interatomic distances can be obtained. To
do this, the software applies Fast Fourier Transform (FFT) methodology for processing digital
signals with Fourier transform used in processing analogue signals.

In crystalline samples, part of the primary electron beam is diffracted forming diffraction
patterns (Figure 3.5). These diffraction patterns consist of a series of points formed by different
diffractions of the crystal, around a central point (000), corresponding to a beam that passes
through the sample without any deviation. When studying a polycrystalline sample, these
figures will concentrated circles due to the multi-directional orientation of the single-crystals
of the sample [213]. By analyzing the diffraction patterns, one can determine the structural
characteristics of the samples, since the radius of the r,y,; rings and the corresponding interplanar

distance dp;; are related by the expression:

Thil = Akt = Lg = A (3-7)

where, L, is the distance to the sample and L, - A\ = 1 is the camera constant of the used
transmission electron microscope. By calculating the radius of the diffraction rings (rpx) and

using the transformed equation 3.8 we can determine the lattice parameter of the material.
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1
g = — (3:8)
T hkl

diffractions from 3 properly-oriented crystallites

incident
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Figure 3.5: a) Diffraction patterns formation from a polycrystalline sample; b) electron diffraction patterns

from polycrystalline Ni — Zr deposited on a single crystal of NaCl [213].

From equation 3.8 it can be seen that the interatomic distances are obtained from the

reciprocal of the measured radius between the point under consideration and the central point.

3.2.2 Sample’s preparations

The HRTEM method is very sensitive to the sample thickness. In order to be able to carry
out measurements, it is necessary that the thickness of the material studied be < 100 nm, so
that the electron beam can pass through them. There are several ways to achieve this condition.
One of them is the process of cutting and polishing samples, which is very useful for a detailed
observation of the interfacial characteristics between the substrate and the sample. But this
method is slow, time-consuming and costly, and can also lead to a partial loss of information
about the material studied. If we are only interested in the properties of the material and not in
the interface with the substrate, an easier way to prepare the sample is to scratch the material
from the substrate.

The sample is usually placed in standard grating adapted for the microscope (Figure 3.6).
The TEM grid is an ultra-thin disk whose surface consists of a pattern of nanometric windows
that are transparent to electron radiation. The grid is made of conductive material to avoid
charge accumulation in the sample. Silicone or copper are the usual materials for the manu-
facture of these nets. Usually these nets have a standard diameter of 3.05 mm and a thickness

lesser than a tenth of a millimeter [214].
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R Grating
Gaskets for vacuum

Figure 3.6: Schematic image of the sample holder and grating for TEM [214].

3.2.3 Used equipment - Experimental set-up

Analysis of samples were performed by high resolution transmission electron microscopy
(HRTEM) with a field emission gun TECNAI G2 F20 S-Twin microscope (Figure 3.7) operated
at 200 kV , having the capabilities of selected area electron diffraction (SAED) and energy
dispersive X-ray spectroscopy (EDX) in the facilities of the SCSIE at the University of Valencia.
Vacuum level was 1 x 1075 Pa for the specimen chamber, and 1 x 107% for the electron gun zone,
respectively. Digital Micrograph software was used to collect and post-process data, making
Fast Fourier transforms (FFT). TEM measurements were conducted by Dr. Said Agouram,

who is a member of our research team and the person in charge of the TEM at SCSIE.

Figure 3.7: Microscope FEI Tecnai G2F20 S-Twin.

64



3.2. Transmission Electron Microscopy (TEM)

3.2.4 Energy Dispersive X-Ray Spectroscopy

Although Energy dispersive X-ray spectroscopy (EDX or EDS) is not an electron microscope
method, it was included in this section, since most electron microscopes provide the ability to
perform such measurements, including both X-ray detectors and relevant informative tools for
the quantitative determination of the composition of the material. Thus, in this thesis, EDX
measurements were carried out in the SEM 54800 Hitachi and TEM FEI Tecnai G2F20 S-Twin.

As shown in the introduction of this section, the interaction of the primary electron beam
of an electron microscope with the atoms of the material under study gives different types of
secondary signals. Among these signals, we can find the emission of X-ray characteristics of
each element caused by the release of electrons or the inner layers of an atom (Figure 3.8).
That is, the energy of this radiation is characteristic of each chemical element and therefore

gives us information about the composition of the sample under study.

characteristic
X-ray

“|'\

decay
channels —
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high-energy w
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Auger
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Figure 3.8: Scheme of electron scattering mechanisms [213].

Qualitative analysis in the EDX system is used to identify the elements present in the
sample and quantitative analysis is used to determine the composition. In principle, all chemical
elements with an atomic number greater than 4 (Be) can be detected using this characterization
technique [215,216].

Finally, in addition to quantifying the chemical elements, compositions can be performed at
a specific point in the sample. That is, SEM-based EDX allows comparing the morphology with
the composition of the sample. Another very useful tool, for determining the characteristics of
heterostructures, is the possibility of carrying out quantitative analysis along the sample cross
section |217].
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As was shown above, the accelerating voltage of electrons determines the depth of the
interaction volume. In SEM microscopes, when thin layers are analyzed in order to avoid
masking information about a material layer with information from a substrate, a compromise
must be reached between the electron energy and the depth of interaction. That is, the more
energy in the electron beam, the deeper the interaction volume and, therefore, there is a fraction
of the detected signal that comes from the substrate. On the other hand, if the accelerating
voltage is low, the detected information will come from a superficial layer, but it may not be
enough energy to detect the heavier atoms.

Taking this into account, an accelerating voltage of 10 kV was used for the EDX analysis in

this thesis, to detect the cadmium and zinc content on unmetallized samples.
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3.3 Particle Induced X-ray Emission (PIXE)

Modern scientific achievements in the field of microanalysis and a high level of technology
in this field of activity have made possible to find a solution to many macro tasks by studying
the laws of the microworld. The elemental composition of the substance and the location of
elements in it determine its physicochemical properties. Among the wide variety of methods
that allow determining the distribution of elements in the samples under study, methods using
focused beams of charged particles have several advantages. And, first of all, this is due to
the possibility of non-destructive quantitative microanalysis with a high spatial resolution. In
the past few decades, microanalysis methods using nuclear scanning microprobe (NSMP) have
been developed. The main principle of the microprobe operation is that an accelerated beam
of light ions up to energies of several megaelectron-volts (using electrostatic accelerators, as
a rule) is focused on the surface of the test sample into a spot with dimensions of about one
micrometer. As a result, scanning with the beam and recording the interaction of the particles
of the beam with the atoms of the sample, it becomes possible to determine both the elemental
composition of the tested substance and the map of the arrangement of elements. In contrast
to a scanning electron microscope, there are no fundamental physical restrictions on the spatial
resolution in the NSMP, which is associated with the size of the beam spot due to its small

expansion during passage through the substance.

3.3.1 Principle of PIXE (Particle Induced X-ray Emission)

When a charged particle with sufficient energy (of the order of several MeV'), passes through
a material, it loses energy due to ionization of the inner shell of the atoms through which it
passes. This creates X-rays with wavelengths characteristic of a particular element. This
phenomenon is called Particle Induced X-ray Emission (PIXE) [218].

When the ion interacts with the electrons in the inner shells of the atoms (mainly the shells
K and L), the electrons can get enough energy to throw them out (see Figure 3.9). Quantum
theory states that the electrons of an atom should occupy discrete energy levels in order to be
stable. X-rays are emitted due to the filling of free vacancies with the electron of the outer
shell, but only certain transitions are allowed. The energies of these X-rays are characteristic
of the element, and therefore, if an appropriate energy-dispersive detector is used, spectra can
be recorded and measured to identify the elemental composition of the sample exposed to the
beam.

PIXE is relatively simple and multielemental analytical technique that can be used to iden-
tify and quantify elements ranging from Na to U. Due to the high signal to background ratio,
PIXE is also a nondestructive technique and very sensitive for a wide range of measured ele-

ments with detection limits close to 1 ppm (part-per-million) [219]. Typically, analysis takes
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place in a vacuum chamber using protons and/or a-particles. Due to the large mass of protons
with respect to electrons, the deflection of the beam in the transverse direction is smaller, which
is an advantage and important for proton recording. The lower detection limit for a PIXE beam
is given by the ability of the X-rays to pass through the window between the chamber and the
X-ray detector. The upper limit is given by the ionization cross section, the probability of
the K electron shell ionization, this is maximal when the velocity of the proton matches the
velocity of the electron (10 % of the speed of light), therefore 3 MeV proton beams can be
optimal [220]. Due to its longer probe depth (tens of ym) scanning ion beams can be used not
only to obtain the surface maps measuring, but also the spatial distribution of elements in the

sample.

X-ray . Kg {La
VK ¥

K shell
L shell

M shell

Figure 3.9: X-ray nomenclature based the shell of the hole and the number shell above it from which an

electron comes to fill the vacancy [221]

Usually 2 detectors are installed in the working chamber. Silicon drift detector (SDD) is
used for the analysis of light elements (Na and above). On the other hand, a Si(Li) detector
having large solid angle and a Mylar filter is optimized for the heavy elements (K, Ca and above)
as shown in Figure 3.10. Since protons can interact with atomic nuclei in a sample through
elastic collisions, Rutherford backscattering (RBS) can occur when a proton is repelled at angles
close to 180 degrees. Backscatter provides information on the thickness and composition of the
sample. This technique is powerful for studding the depth profiling of heavy elements in light
substrates. When RBS is done in combination with PIXE, it can be used to determine light
element concentrations, which is not possible by PIXE. Combination of two methods allows a
better analysis. RBS spectra quantification can be done by the SIMNRA software [219].
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Figure 3.10: Schematic representation of the working camera:
1) secondary electron detector; 2) annular surface-barrier detector for RBS; 3) semiconductor detector for PIXE;

4) target; 5) optical microscope with CCD (x100); 6) scanner.

Since the PIXE analysis method is simple and can be used to analyze almost all elements at
the same time with high sensitivity, it is currently used in a wide range of applications including
medicine, materials science, pollution monitoring, mineral exploration, metallurgy, a criminal
investigation, food, and more. In particular, in archeology, geology and art, the method helps

to answer questions about origin, dating and authenticity.
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3.3.2 Used equipment - Experimental set-up

The analysis of the films was carried out, in ZnMnTe and ZnMnS samples, by using char-
acteristic X-ray radiation induced by the proton beam [222]. The investigations were made by
means of the electrostatic accelerator “Sokil” with a proton beam energy up to 2 MeV (Institute
of Applied Physics, NAS of Ukraine, Sumy) as present in Figure 3.11 [223]. Summary spectra
from several areas of the sample surfaces (PIXE) were scanned and point-by point studied using
the micro-beam (u-PIXE). The typical region size was about 200 x 200 ym. The cross-section
of the probe was 4 x 4 um?, the charge Q = 4 x 107!% C/pixel, the scan region was about
50 x50 pixel, the scanning step was 4 pm, the proton energy was £, = 1.5MeV. Under «pixel»
one means a stationary position of the probe at discrete scanning. These studies resulted in
a map of the distribution of the alloyed element (Mn) on the surface area and the element
composition in some regions of the films. The working-out of the PIXE spectra was carried out
by using the program GUPIX 3.

Figure 3.11: Electrostatic accelerator (a) and microanalytical accelerator complex “Sokil” of the IAP NAS of
Ukraine (Sumy) (b)
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3.4 X-Ray Diffraction (XRD)

In 1895, Wilhelm Conrad Rontgen discovered a phenomenon that was later called X-ray
radiation. Tt soon becomes known that X-rays have wavelengths in the range of 1072 — 102 A,
are energetic enough to penetrate into solid materials, and are well prepared to study their
internal structure. Based on these results, many useful tools and techniques for the analysis
and evaluation of materials were developed and tested. This section discusses some of the basic

principles of XRD and the hardware that was used to study the samples described in this thesis.

3.4.1 X-ray diffraction

To perform X-ray diffraction measurements, in addition to an emitter and a detector of
this type of radiation, it is also necessary to have a positioning system of the samples. In this
sense, commercial diffractometers have more or less complex systems that allow the angular
movement in different axes to perform different types of measurements.

In the geometry of Bragg-Brentano, with which we have worked to identify the structural
phases of the materials considered in this thesis, the incident beam and the diffractometer form
an angle 26, being 6 the Bragg angle, the angle between the incident beam and the surface
of the sample. Thus, scans 26-0 are those in which the intensity of the diffracted beam is
measured as a function of the diffraction angle, keeping constant this relationship between the
angles. We can find instruments in which the X-ray source is already fixed while the sample
rotates on angle # and the detector an angle 26 in the same direction. In this case, we talk
about the configuration 26-6. On the other hand, other diffractometers have the configuration
6-0 in which they fix the sample and rotate the X-ray tube and detector at an angle 6, but in

opposite directions.
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Figure 3.12: Basic features of a typical XRD experiment [215].
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Figure 3.12 shows the diffractometer geometry, where the beam from the X-ray tube interacts
at some angle with the sample surface. This angle can vary depending on the position of the
sample and its rotation. The detector measures the intensity of the diffracted beam and can
also be rotated to position it in the desired angular position. The intensity of diffraction as
a function of 20 and the orientation of the sample gives diffraction patterns that allow the

identification of the crystalline phases and crystallite size/microstrain analysis.

3.4.2 Basic principles

Using Miller indices, the distances between the plans of a certain family (hkl) can be related
to the lattice parameters of the crystal structure. This ratio depends on the type of the structure
and can be a complex expression in structures with low symmetry, such as Rhombohedral or
Triclinic. To work with hexagonal lattices, it is convenient to use four Miller - Bravais indices
(hkil), in which the third element i denotes a convenient but degenerate (carrying no additional
information) component equal to -h -k. The angle between the h, ¢ and k components of
the index is 120°, so they are not orthogonal. The [ component is perpendicular to all three
directions h, i, and & [224]. For hexagonal crystals, as for instance ZnO, the interplanar distance

is given by

P4+ k2+102 12

- _>
3a%/4 2
In the case of a cubic structure, such as the structure of CdO, CdTe, ZnMnTe or ZnMnS,

the relationship between the interplanar distance dpy; of the (hkl) plan family and the lattice

N

dhkl = ( (39)

parameter of the structure is determined by

2+ k2412

)

Figure 3.13 shows the Miller indices of lattice planes and indices of directions depending on

[SIES

dhkl = ( (310)

a?

the intersection of the line with the face of the unit cell.

On the other hand, for the analysis of diffraction phenomena we have another very useful
tool, such as the Bragg’s law. This law relates the angle of diffraction, with the interplanary
distances d and the wavelength of the incident radiation. Thus, in Figure 3.14 we have a flat
wave that affects a lattice of atoms that spread it in all directions. Due to the difference in
paths of the waves diffracted by the different atoms, depending on the angle of observation
we can find constructive or destructive interferences. The condition for which a constructive

interference is produced is known as the Bragg’s law:

n-A=2-d-sinf (3.11)
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where n=1.2.3.... is an integer representing the order of diffraction, « it is the wavelength of
the radiation, d is the distance between planes and 6 is the Bragg angle, that is, the diffraction
angle for which the constructive interference occurs. Finally, if we introduce in the Bragg’s
law the first order diffraction, the indexation of the interplanar distances dp,; we can express
as [225]:

A=2- dhkl : sz’n(@hkl) (312)

fo—di00—=| fdz00+
(100) (200) (110)
(102)

Figure 3.13: (a) Miller indices of some lattice planes; (b) Indices of directions. The distance dp; is the (hkl)
plane spacing [226].

Figure 3.14: The geometry of constructive and destructive interference arising in the crystal lattice, which

generates the Bragg law. Image retrieved from [227].
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3.4.3 Coherent scattering size and microdeformation

During the growth on the surface of a substrate, a kind of crystalline layer forms. The
mosaic model is one of the most commonly used models for describing the crystal layer, which
consists of a set of coherent scattering domains (CSD), also called crystallites (Figure 3.15).
These single crystal domains do not have a perfect orientation, so they can be tilted or rotated
relative to each other. Thus, the length of these domains in the direction perpendicular to the
surface, is called length of vertical coherence L, , whereas in the direction parallel to the surface

we call it the length of the horizontal coherence L.
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Figure 3.15: Illustration of a mosaic structure with characteristic parameters [228].

Since each crystal can grow with its own unique orientation, this leads to a relative mis-
orientation between crystalline domains. When there is an out-plane misorientation of the
single-crystal domains (that is, relative to the axis perpendicular to the sample), we call it as
tilt. On the other hand, we call twist the rotation of domains about the same axis, or, in other
words, in-plane misorientation. These characteristics of crystallites (limited size and misorien-
tation) are produced by defects, as dislocations which are a linear or one-dimensional distortion
of the structure. In the layer, each type of dislocation is associated with a local distortion of
the lattice. There are 2 types of dislocations (Figure 5.10). First type is represented by an
additional part of the plane of atoms or a half-plane, the edge of which ends inside the crystal.
They are called edge dislocations and are represented by the symbol 1, which also indicates

the position of the dislocation line. Another type of dislocations, called screw dislocations, can
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be considered as formed by shear stress, where the upper front region of the crystal is shifted
one atomic distance to the right (or left) relative to the bottom. Most dislocations found in
crystalline materials are probably neither a clean edge nor a clean screw, but have components
of both types, then they are called mixed dislocations. The magnitude and direction of the
lattice distortion associated with the dislocations in a crystal lattice are expressed in terms of
the Burgers vector, denoted by b. In addition, even if the dislocations change their direction
and nature inside the crystal (for example, from the edge to the mixed screw), the Burgers

vector is the same at all points along the dislocations line [229].
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Figure 3.16: Schematic representation of a dislocation having an edge, a screw and a mixed one. At point
A, the dislocation is a clean screw, and at point B is a clean edge. For regions in between where there is the

curvature in the dislocation line, the character C' is mixed edge and screw [229].

In addition, single crystals may have a deviation in the interplanar space, whose statistical

value is called microstrain of the lattice and can be expressed as:

= (3.13)

where d is the interplanar distance and Ad is its statistical variation.

All these factors, in addition to the instrumental ones, contribute to the broadening of

diffraction peaks (ideally Dirac’s deltas) and therefore can be detected.
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3.4.4 Williamson-Hall plot

The kinematic theory of X-ray scattering shows that crystallite size and lattice distortion
are diffraction order independent or dependent, respectively, enabling the separation of the two
effects. Williamson and Hall suggested [230] that the broadening AK of peak profiles in the

reciprocal space due to these two broadening effects can be written as

0.9
AK =+ 2K (3.14)

where 0.9 is dimensionless shape factor used for domains approximated to be roughly spherical,
K = 2sinf/\ is the module of the scattring vector, AK = A(26) cosf/\ is the broadening in
the reciprocal space A(26) is the full width at half maximum (FWHM) of the diffraction peaks
in the 260-0 scans, 6 the Bragg angle, A\ the wavelength of radiation, D the average crystallite
size and 1 = (€2)1/2 the square root of the quadratic lattice microstrain (or microdeformation).
The classical Williamson-Hall plot (WH) follow this equation and is a linear function of K.
When there is no microstrain, equation 3.14 can be rewritten as the known Debye-Sherrer’s

formula:

0.9\
D=——" d
A(260) cos (3.15)

where the shape factor of 0.9 can vary with the actual shape of the crystallite, A is the wave-
length of the X-ray and A(26) is the line broadening at half the maximum intensity in radians.

This approach is useful in isotropic cases which can be interpreted with simple spherical crys-
tallite shapes and isotropic microstrains. However anisotropic situations require further efforts.
When strain broadening is caused by dislocations, line broadening is generally anisotropic [231]
and it depends on the hkl reflection, that is, it depends on the orientation and the length of
the diffraction vector. In this case, line broadening can be described in terms of a logarithmic
series expansion of the Fourier coefficients of a peak profile and the average contrast factor
of dislocations Chy [232]. As a consequence, the proper scaling factor of breadths of peak
profile is Kﬁflﬁ, instead of merely K. This is known as the modified Williamson-Hall plot
(MWH) [233-235].

If crystallites are non-spherical, then an additional anisotropy has to be considered [236].
In such a case, the crystallite size must be described by multi-dimensional lengths, with
their lengths dependent on the order of diffraction. With these considerations, the modified

Williamson-Hall method can be adapted and the line broadening can be written as:

0.9 _
AK = =— 4+ aK?*Chu (3.16)

hkl
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where Cl,y; is the average contrast factor of dislocations for the Bragg reflection (hkl), Dy the
average crystallite size for the Bragg reflection (hkl) and « is a constant that depends on the
Burgers vector and the density of dislocations.

The mean contrast factor for a cubic crystal is related to the mean contrast factor of the

Bragg reflection (h00) as given by the equation

Chrt = Choo(1 — gH?) (3.17)
where H? = (h?k* + h?1* + k?1?)/(h* + k* + [?)? and ¢ is a parameter which depends on the
elastic constants and type of dislocations.

The value of ¢ can been obtained by inserting eq. 3.17 into eq. 3.16

AK —0.9/Dpp
K2
and by solving this equation in H? by the least-squares method.

= aCho(l — qH?) (3.18)

3.4.5 Density of dislocations

As said, the CSD size boundaries are formed by dislocations located at their boards, but at
the same time, dislocations in the subgrain are responsible of microdeformations in the material.
To determine the CSD size and microdeformation in chalcogenide films, the used method of
approximation consits in the representation of the X-ray line by triple convolution [237]|. The
relationship between the parameters of the film substructure can be found from the equations:

A tB; —cB
L= St B (3.19)
costh  t0% — Oty
&2 CB?1B2 - 5]20231
16t991 (CBQ — tBl)

(3.20)

where, ,
tan® 6, cos 0,

= a2, ¢ M’Bﬁ =V (Bi)* — (b:)?

0, and 0, are the diffraction angles of the pair of analyzed X-ray lines (for example, [111] and

[222])

B;, b;, By are the measured, instrumental and physical broadening of the respective X-ray lines.
The CSD size L in the films and the microdeformation value ¢ allow to determine the

averaged density of the dislocations (lines - m~2) formed at the subgrain boundaries. This

density of dislocations assuming a cubic-shaped CSD with size L is [238,239]:
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3n
Iz
where n is the mean number of dislocations at each face of the six planes of the block.

PL = (321)

If the dislocations are mostly located in the middle of the subgrains and creates microde-

formation, the dislocation density (lines - m~2) is obtained from the expression:

Yo 2e 4
= F—Z<7> (3.22)

where 2¢ is the width of the microdeformation distribution; b is the modulus of the Burgers

Pe

vector; F is a constant taking into account the increase of the dislocation energy under in-
teraction with other dislocations; Y is a constant depending on the dislocation distribution
function. Yy and Fy are dimensionless constants. In this approach, Yo=25 for the Cauchy
function and Fz=4 for the Gauss one.

Accepting n=Fz=1, equations 3.19 and 3.20 give an estimation the lower limit of p;, and the
upper limit of p.. Somewhat other equation for estimation the total dislocation concentration
(lines - m™2) in the material is given in [240] as:

15¢
p= @l (3.23)

Thus, equations 3.21-3.23 make possible to estimate the concentration of dislocations in the
CSD bulk, at their boundaries, and the total concentration.

Supposing that the CSD’s are of equal axes and the additional broadening of (111) and
(222) X-ray lines compared with (200) and (400) lines is due to the staking fault (SF) presence,
one can calculate the total concentration of the deformation and growth defects (in %) in the
films [238,239):

1 1
o =15«n + B = 304( + )d111 (324)
Lnooy  Lnnn

where o’ is the growth defects’ concentration, 3 stands for the SF' concentration, and d1y) is

an interplane distance.

3.4.6 Pole figures

Pole figures are 2D stereographic projection of distribution of the orientation of crystal
presents in the sample. For a single crystal, these projections will be points that indicate the
symmetry of the considered plane. In the case of polycrystalline samples, each grain has or
may have a different crystallographic orientation, thus exhibiting a randomly distribution of

points. For crystals with a preferred orientation, points tend to be grouped with respect to
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Figure 3.17: Schematic representation of scan patterns and some pole figure with the definition of angles [241].

some particular orientation. Since pole figures give the mean orientation of grains relative to a
given reference system, the orientation of both substrate and film can be determined relative
to the same reference system and, therefore, it will be possible to establish epitaxial relations
between them.

For obtaining pole figures, the rotation angle (¢) of the diffractometer (see Figure 3.17) was
changed from 0 to 360 deg and the inclination angle (/) was changed from 0 to 90 deg, while the
diffraction angle 26 was held fixed for the reflection of interest. The stereographic projection
of the three-dimensional intensity distribution is constructed as a function of two types of
quantities, one of which is represented by the distance from the center of the projection, and
the second of which is represented by the distance measured along a circle of constant radius

from a given radial axis.

3.4.7 Vegard’s law for ternary compounds

Sometimes, to change the properties of binary material it is alloyed making a ternary com-
pound from the host material but with some changes in the lattice parameters and properties.
It could be supposed that the lattice parameters of the ternary compound can be found by a
linear interpolation. This empirical rule is known as Vegard’s law [242,243]. Structural, optical
and electrical properties, however, can deviate from this linear approach. For a compound of
the type ABC, where AC and BC are the initial binary compounds, the expression for the

lattice parameter would be:

aAzBl—zC = - aAC + (1 — .CE) . aBC (325)
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This law is partially fulfilled in some binary compounds having a crystalline structure of
the same type. In the case of materials such as CdO and ZnO, a change in the structure of the

material from rock salt to wurtzite does not allow the direct application of this interpolation.

Similarly to the lattice parameter of a semiconductor we can also write a linear dependence of
the band gap energy £, in respect to the band gap of its binary constituents. Sometimes linear
interpolation between the band gap energy is not accurate enough, and therefore an additional
term is added to take into account the curvature of the band gap energy as a function of the
composition. Empirically, the band gap of the composite semiconductor alloy A,B;_,C' could
be fitted [244] as:

Az B1_.C __ AC BC
EABr—=C = . EAD 4 (1 — ) B +br - (1 — 1) (3.26)

where b is the deflection (nonlinearity) or bowing parameter.

Vegard’s law is rarely fully observed, and more often, deviations from linear behavior occur.
However, it can be used in practice to obtain approximated values when experimental data are

not available for the system of interest.

3.4.8 Used equipment - Experimental set-up

Bruker D8 Advance A25

Bruker D8 Advance A25 diffractometer (figure 3.18) was used to measure the diffraction
peaks of ZnO, CdO and CdTe films obtained using the MOCVD method. Configurations of
Bragg-Brentano geometry was used. The configuration of the 26-0 angles was obtained using
an X-ray tube with a Cu anode (K, = 1.54056 A) and a fast Lynz-eye detector, which allows
us to simultaneously measure an interval of 3° from the angle of 20. In addition, diffractometer

has an automatic sample changer where 45 samples can be loaded.

The diffractometer (Figure 3.18 b) consist of a goniometer (1), the tube, tube stand (2),
the slit system (3 and 5), the sample holder (4) and the detector (6).

The unit is installed horizontally or vertically in a radiation protected housing. A lead glass
window at the front of the radiation protection housing enables the samples to be changed or
the diffractometer mounts to be modified. The window shutter of the tube stand closes auto-
matically when this window is opened. The equipment available allows the characterization of
a wide range of materials of diverse nature such as minerals, plastics, semiconductors, ceramics,

pigments and in general powdery products obtained from chemical synthesis.
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a)

Figure 3.18: Diffractometers of laboratories SCSIE of the University of Valencia:
a) Bruker D8 Advance A25 diffractometer; b) D8 diffractometer, vertical installation [245].

Diffractometer DRON-4-07

The structural investigations of the ZnMnTe and ZnMnS films were performed by using the
diffractometer DRON 4-07 (Figure 3.19) with Ni-filtered Ko radiation of the copper anode in
the range of angles of movement of the Bragg’s angles 26 from 5° to 90°. This unit is designed
for X-ray diffraction studies of polycrystalline materials. The Bragg-Bretano configuration is
used. The step of the angular movement of the detection unit in automatic mode is from
0.02°. The signal accumulation time for each angle of movement of the detection unit is 2 sec.
Qualitative and quantitative phase analysis can be carried out using open structural databases
and packages (GSAS, PSW, XPOWDER et al.). The appearance of the laboratory setup is
shown in the figure.

XRD patterns were used for determining the coherent scattering domain (CSD) size and
the microdeformation grade ¢ in thin films by the broadening of the XRD lines. To resolve the
diffraction broadening caused by physical (/3;) and instrumental (b;) effects Cauchy and Gauss
approximations were used [246]. Besides that, the above mentioned parameters were found
by the threefold convolution method [247]. All procedures of the working-out the X-ray line
profiling (background removing, smoothing, K, doublet resolution) were performed using the
software DTFWIN.
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Figure 3.19: X-ray Diffractometer DRON-4-07 [248].

PANalytical X’Pert MRD

For a more detailed study of the layers of ZnMnTe films, we used the High resolution
diffractometer PANalytical X’Pert Pro (Figure 3.20 a). Williamson-Hall plots and pole figures
were obtained. This diffractometer has a parabolic mirror, which converts a divergent beam
from the X-ray source into an almost parallel beam. The difractometer has a high resolution
goniometer with four rotation axes and a sample holder, which allows to program movements
along different axes and angles of the system with a resolution of 0.01° for ¢» and w, and 0.0001°
for 20 and w, respectively (Figure 3.20 b). Unlike a conventional diffractometer, K,; is the only

radiation source in this line, thanks to a monochromator of four Ge (220) crystals.

The ability to move along the z, y, and z axes allows to make measurements of samples
at different points. For obtaining pole figures, the rotation angle (¢) of the diffractometer was
changed from 0 to 360 deg and the inclination angle () was changed from 0 to 90 deg, while

the diffraction angle 26 was held fixed for the reflection of interest.

Thus, this device allows to get measurements with a high level accuracy, but a longer
measurement time. The instrumental contribution to the broadening of diffraction peaks in

this difractrometer is considered not significant.
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Detector 20

Figure 3.20: High resolution diffractometer PANalytical X’Pert Pro (a), goniometer with rotation axes (b)
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3.5 Optical transmission measurement

The response of semiconductors to electromagnetic radiation is the basis for the implemen-
tation of optoelectronic devices. The search for optimal compounds for their use as optical
sensors, photodiodes, optical coatings, or active layers of solar cells is a priority task, so long
as productivity increases, so do energy costs. The synthesis of new materials with a high in-
teraction of light with the surface should help to obtain compounds for optoelectronic devices
that can operate in the range from infrared to ultraviolet radiation.

The optical characteristics of the studied films were determined using transmittance and
absorbance spectra by optical spectrophotometry. This characterization method determines
which part of the monochromatic light beam is absorbed and which part is transmitted through
the sample, depending on the energy of the incident light beam. The results makes possible to
obtain absorption curves depending on the beam energy with the help of which we determined

the optical bandgap of the compounds.

3.5.1 Basic principles

When a beam with a certain energy hr incide on the surface of semiconductor material with
band gap energy F,, the beam can be transmitted, reflected, absorbed, or scattered. There are

2 situations:

— When hv > Eg, that is, when the energy of the light ray is greater than the energy of the

band gap, photons can excite electrons from the valence band to the conducting band.

— When hv < E;, photons do not have enough energy to excite electrons and pass through

a semiconductor, which will behave as if it were transparent to these electrons.

To determine how much light passes through the investigated material, the transmittance
is used. This parameter shows the ratio of the intensity of the light beam that crossed the

sample, and is calculated as:

(3.27)

where, I(d) is the intensity of light that passes through the sample of thickness d, I, is the
intensity of light without the sample.

On another hand, the amount of absorbed light will depend on the probability of the tran-
sition of the electrons of the valence band to the conducting band. The absorption coefficient
() that characterizes the amount of absorbed light depends on the band gap of the material
and the energy of the incident light, as shown in equations 3.28 and 3.29 for direct and indirect

transitions, respectively:
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hv — E,)z

O{OC(Vh—Vg)Q (3.28)
hv — E,)?

M% (3.29)

It is known that the absorbance coefficient of one layer of a certain material can be found

using the relations:

A= /Oda(a:)dzzz (3.30)

where A and d are the absorbance and layer thickness, respectively, and a/(z) is the absorption

coefficient at z. It should be noted that the units of the absorption coefficient are em ™!

and,
therefore, the absorbance has no units. If the absorption coefficient is uniform along the path

z, then we get the absorbance [249]:

A=axd (3.31)

On the other hand, using the absorption coefficient, it is possible to calculate the depth of
the material, since the light intensity of which will decrease with a depth of 1/e (and 1/10).
This dependence is expressed by the Lambert-Beer law:

I(z) =1y x e™@® (3.32)
I(z) = I, x 107°° (3.33)

where I(z) is the beam intensity at point z, and I is the incident beam intensity.
Comparing equations 3.27, 3.31 and 3.33, we derive the dependence of the transmission and

absorption coefficients using the expression:

T=104=¢* (3.34)

The logarithm of all parts of the equation gives the expression Beer’s law:

A= 10g10(%) = 10%10(%) =2 — logyo %T (3.35)
where %T is the transmittance expressed in percent by doing %T=100xT.

Equation 3.35 shows that from measuring the transmittance as a function of the wavelength
of the incident light beam, we can determine the absorbance and, therefore, the optical band
gap. That is, from the transmission spectrum we can determine for what energy the layer of
a certain material absorb radiation, and for what other energies this layer is transparent. The

boundary between transparency and absorption marks the energy of the band gap.
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To obtain the absorption coefficient of a semiconductor, we will measure the transmittance
of teh sample with plane-parallel faces and thickness d. The transmittance of the specified

sample will be determined by the equation:

](d) B (1 . R>26_ad’
Iy 1—R2~e—20‘d—2R'e—ad'cos4’:\%’l

(3.36)

where the R is reflectance of material than can be find from the Fresnel equations for waves

with normal incidence as:

R~ @ (3.37)

where n is reflective index of material.

The cosine term that appears in equation 3.36 in the denominator reflects the interference
between waves successively reflected from both sides of the film and leads to the appearance of
maxima and minima in the transmittance spectra for low absorption coefficients. Obviously, this
term tends to zero at high absorption coefficients. Usually, this term is removed by averaging
over the oscillation period, getting:

r D) _(-RF-e (3.38)
I (1 - R?.e2d

When the absorption coefficient is zero, the transmittance of the sample is reduced to the

equation:

(1-R)?
1—R?
In this case, equation 3.38 gives the absorption coefficient as a function of transmittance:

o= I \/ (=SSR (3.40)

One of the most commonly used methods for quantifying the energy of the optical gap
1/x

Ty = (3.39)

band of samples is the linearization of absorption curves representing (ahv)'/* as a function
of the energy of the photon beam, where depending on the type of transition, takes the value
1/2 (for direct transitions) or 2 (for indirect) [250]. This curve linearly depends on photon
energy hv and, therefore, the extension of the straight line to the energy axis makes possible
to determine the band gap of the material [251]. Another option for calculation optical band
gap is based on determining the point of maximum slope of the absorbance curve, since it will
be more accurate and eliminates the human factor when converting the tangent to the slope of
the absorption curve.

When calculating the transmittance spectra of the material, the transmittance curves of

the samples were normalized to the value of the transmittance spectra of the substrate on
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which they were grown. After that, all spectra were normalized in such a way that their
maximum curve value corresponded to 100 % of the possible transmission. This was done so
that, when calculating the absorption spectra from the transmittance spectra, the curves had
a minimum value at low energies. If the transmittance curves have an oscillating character
at high transmittance, then the average value between the maximum and minimum of the
transmittance curve was taken and this value was used to normalize the spectra. This method
can be used only for materials with a direct bandgap because, for materials with indirect
transitions, normalization can affect the slope of the transmittance spectra and distort the
correctness of the calculated results. For direct transitions, similar to those studied in this thesis,
according to equation 3.28 we find that the point of maximum slope is exactly at hv = Eg.
For this, after calculating the numerical derivation of the absorbance curves, the maximum of
their derivatives was determined and, thus, we obtained an estimate of the energy of the band
gap. Only for a series of CdZnO samples that have indirect transitions the extension of the
straight line of the tangent to the maximum slope of the absorption curve to the energy axis

to determine the band gap of the material will be applied.

3.5.2 Used equipment- Experimental set-up

Jasco V-650 spectrophotometer

Spectral studies of the transmittance were obtained using a Jasco V-650 spectrophotometer
in the ISOM laboratories of the Polytechnic University of Madrid. This equipment has two
radiation sources: a Deuterium lamp, which covers a range of 190-350 nm, and a Halogen lamp
in a range from 330 to 900 nm. By changing lamps during the study, any wavelength between
330 and 350 nm can be selected. Wavelength repeatability is £+ 0.05 nm.

The monochromator generates monochromatice light rays for measurements. Before making
a study of the material of interest to us, a check is carried out without a sample to determine the
reference value I (\) in the selected wavelength range. Then, placing the samples in the system,
the transmitted radiation intensity 7(d; \) is determined. The detector of the photomultiplier
detects the emitted radiation and, using computer software, calculates the transmittance of
the material depending on the wavelength of the incident radiation T'(\) = I(d;\)/Io(N).
These values are substituted into equation 3.38 and absorption curves are constructed, the
derivatives of which allow calculating the optical band gap of the material. A picture of the

spectrophotometer is shown in the Figure 3.21.
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Figure 3.21: Spectrophotometer Jasco V-650

Spectrophotometer SF-2000

Investigation of the spectral transmittance coefficient of ZnMnS and ZnMn'Te was carried
out at room temperature by using the spectrophotometer SF-2000 at the National Technical
University “Kharkiv Polytechnic Institute” (Figure 3.22). This device allows to measure the
spectrum from 190 to 1100 nm in just a few seconds with a speed of ~ 9100 nm/min. Spec-
trophotometer has a single-beam optical scheme with an aberration-corrected concave rifled
grating as a monochromator. As sources of UV radiation, high-quality Hamamatsu deuterium
lamps were used, and Philips halogen lamps were used in the visible light channel. The ac-
curacy of the reproduction of the wavelength is 0.004 nm. The hole for optical measurement
of the samples of the spectrophotometer has a diameter of 1 cm, the size of the light slit for

ultraviolet light is 0.5 nm and the smallest spectral slit width for visible light is 1.0 nm.

- ":w—-"t e
(nnc <@ _2000

Figure 3.22: Spectrophotometer SF-2000
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To expand the functionality of the spectrophotometer, a SFO-2000 console for specular and
diffuse reflection was developed and used, which allows recording spectra of specular and (or)
diffuse reflection of various objects. The size of the light spot on the sample can be in the
range of 2-5 mm. The spectrophotometer allows the analysis of the spectra of both liquid and
solid samples. The measurement of the reference sample and several (up to 9) samples can
be carried out automatically by one command from the operator of the device. It supports
to use of several reference samples with respect to the measurement of two or more studied
samples in a single measurement session. This spectrophotometer allows not only to automate

measurements but also to plot measurement curves for a series of samples.
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3.6 Kelvin probe force microscopy (KPFM)

In this section we have turned to an electrical technique, which uses a modification of
the conventional atomic force microscope based on the observations that the Scottish scientist
William Thomson (later Lord Kelvin) performed in 1861 while studying metals. He constructed
a capacitor using two plates made of different metals. By using an electrometer, he observed
that there was an exchange of charge between the two metals when they were approached. This
exchange of charge leads to an electrical force between the plates of the capacitor.

We know that the interaction between the capacitor plates is due to the different values of
the work function of the metals. Lord Kelvin described, as well, a technique for measuring this
work function difference by applying an adequate external bias voltage to the metals which
cancels the force. In this way, he measured the contact potential difference between the two
metals.

Kelvin probe force microscopy (KPFM) was introduced as a tool to measure the local
contact potential difference between a conducting atomic force microscopy (AFM) tip and the
sample, thereby mapping the work function or surface potential of the sample with a high
spatial resolution [252].

Figure 3.23 gives a rough idea of an atomic force microscope set up.

Computer 1 Mechanics
* software * AFM head

XYZ Laser

FyFLE Cantilever
oL TmRTw Photodiode
Y
] FyFLE
DSP | FyFLE
~ y \ - Piezotube
XYZ ) i
XYZ (High voltage
(Low voltage) High voltage e 0%

" electronics

Figure 3.23: Components of a standard atomic force microscope. (FN) and (FL) vertical and lateral deflections
of the laser beam and (X) its total intensity [253].

The principle of operation consists of scanning the sample surface using a tip with a nanome-
ter radius and determining the force resulting from tip-sample interaction [254]. The main

elements of the microscope are:
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3.6. Kelvin probe force microscopy (KPFM)

— Cantilever-tip system: This is a probe, which consists of a tip with a 20-30 nm radius
attached to the end of the cantilever beam of micrometric size. When an image of a
surface is obtained, the distance between the tip and the sample is kept constant by
means of a feedback loop. The signal obtained by the interaction of the tip with the

sample is used as a source of feedback.

— Laser beam detection system: As a result of the interaction of the tip with the sample, the
cantilever beam deflects, which, in accordance with Hooke’s law and taking into account
the cantilever spring constant (¢jeper), creates a normal force (F,) that can be measured

as [255]:

F, = Clever - AZ (3.41)

The laser beam is focused at the end of the cantilever, and the reflected beam is detected
in a split photodiode, which has 4 segments (see Figure 3.23). When the position of the
cantilever changes, the angle of the beam reflection changes, which leads to a change in the
position of the spot on the photodiode. By changing the photocurrent on the photodiode

segments, you can accurately measure the deflection of the beam.

— Piezoelectric Ceramics: This is a high-resolution position element that is used to adjust
the tip-sample distance, as well as to change the relative position between them. The
sample is fixed and mounted in the piezoelectric tube, so when scanning, it is not the

sample that moves.

— AFM control and adjustment system, which consists of a computer, software and digital

signal processor (DSP)

KPFM is mainly based on the AFM instrumentation system. The AFM operates either in
contact (static) or intermediate (tapping) or contactless modes |252].

In the static mode, the AFM tip has direct physical contact with the sample surface, and
the repulsion force of the tip-sample deflects the cantilever tip, allowing to make the surface
topography map with atomic resolution. The deviation of the cantilever proportional to the
load force is monitored and used as a feedback signal.

As the tip moves along the surface of the sample, it may cause damage to soft or brittle
samples. Damage to the surface will be suppressed in the tapping mode. In the dynamic (in-
termediate and non-contact) mode of operation, the cantilever oscillates at or near its resonant
frequency. The interaction between the tip and the sample varies depending on the distance
between them, which affects the vibration amplitudes (intermediate mode) and the resonant

frequency (non-contact mode). The deviation of the amplitude and frequency of measurement,
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with respect to the reference values is used as feedback signal to obtain the surface topogra-
phy of the sample. Therefore, these modes are also called amplitude modulation (AM) and
frequency modulation (FM), respectively [252].

Image processing is performed using the software designed for the microscope. Most often,
polynomial fitting is used to correct the tilt of the substrate, since AFM images usually measure
the absolute height of the sample. Each line in the image is fitted to a polynomial equation.
Then the polynomial shape is subtracted from each scan line, leading to their flatness. Having
processed data and obtained surface topography function h (i, j), it is possible to calculate the
most commonly used parameter for assessing surface quality, that is the Root Mean Square

average (RMS) roughness [256]:

RM Syoughness = | > > _[(i.j) — B2 (3.42)

i=1 j=1

where the summations are performed over all the image pixels (4,7) of the scanned area, maxi-
mum value for the length (I) and width (J) of this area and h is the mean height.

3.6.1 KPFM operation mode: FM mode

As shown in Figure 3.24, the amplitude of oscillations (Figure 3.24 (a)) increases when
increasing the tip-sample distance due to a decrease in the interaction. The feedback system
controls the amplitude change in order to keep a constant value, providing the topography of
the sample surface. The change in amplitude depends on the force between the tip and the
sample.

In this work, we used the FM mode AFM, in which the oscillation frequency of the cantilever
changes as the distance between the tip and the sample changes (3.24 (b)). A feedback system
regulates the frequency change to keep the frequency constant value, allowing the topography
of the sample surface to be acquired. The changes in oscillation frequency are dependent on
the force gradient between the tip and sample. Since the FM mode detects a gradient of
force, rather than the force itself, compared to the AM mode, this mode has a higher spatial
resolution [252].

Figure 3.25 (a) shows the experimental setup for FM-AFM. The detected cantilever de-
flection signal is sent back to the piezoelement through a phase shifter and an automatic gain
control (AGC) circuit to form a self-oscillation circuit, where the cantilever works as a mechan-

ical resonator and determines the oscillation frequency [254].
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3.6. Kelvin probe force microscopy (KPFM)

Figure 3.25 (b) shows the curves of amplitude and ¢ as a function of the resonant frequency
fo- The total phase delay in a self-oscillating circuit must be a multiple of —360° for continuous
sinusoidal output. Under these conditions, ¢ is always maintained at —90° and the oscillation

frequency f; is always maintained at the cantilever resonance.
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Figure 3.24: Schematic image of non-contact AFM operation mode [252]:

(a) Amplitude modulation mode and (b) Frequency modulation mode.
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Figure 3.25: (a) Experimental setup for FM-AFM. (b) Amplitude and phase versus frequency curves with

(dotted lines) and without (solid lines) a tip-sample interaction [254].

As the tip approaches to the surface of the sample, it causes a phase shift Af. Using the
self-oscillation scheme, f; is also shifted by a similar value. The deviation signal is fed to a
frequency detector, which generates a voltage signal proportional to Af. A phase-locked loop
(PLL) circuit is typically used as a frequency detector. The signal Af is fed to the phase-
intensity (PI) controller, which outputs a z-signal to control the distance between the probe

and the sample [3.58].
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3.6.2 Contact potential difference (CPD)

The main feature of KPFM is to measure the contact potential difference (CPD) between
the conductive AFM tip and the sample surface. The expression for calculating CPD can be
represented as [257]:

Verp = (I)l_;;% (3.43)
where e is the elemental charge of the electron with sign, and ®; and ®, are the work functions
of the AFM tip and the sample surface, respectively.

Upon electrical contact between the AFM tip and the surface, due to differences in the
vacuum energy levels, an electrostatic force is generated. Figure 3.26 is a schematic of the
energy levels depending on the work function of the sample surface (®1).and the AFM tip (®s).

In the first situation (Figure 3.26 (a)), the tip and the sample are at a considerable distance
from each other. Two materials have different Fermi levels (Fr) and, if there is no electrical
contact, the vacuum level is aligned. When electrical contact occurs (Figure 3.26 (b)), there is
an alignment of the Fermi levels of the AFM tip and the sample. The electron moves to the
material with a larger work function. In this case, due to the change in the vacuum level, a
potential difference is formed, which is called a contact potential difference (Vopp). If we apply
an external bias voltage (Vs), with the same value as Vopp, but in the opposite direction, then
the potential difference between the vacuum level of the AFM tip and the sample surface can
be eliminated (Figure 3.26 (c)).

Figure 3.26: Three cases of energy levels between different materials. a) The two materials are separated.
b) Two materials are energetically connected, which leads to the occurrence of a Contact potential difference.

c¢) Contact potential difference minimized by applied external bias voltage V, [258].
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3.6. Kelvin probe force microscopy (KPFM)

By applying an AC voltage (Vac) plus a DC voltage (Vpe) to the AFM tip, KPFM measures
the work function of the sample. (V4c generates oscillating electrical forces between the AFM
tip and sample surface, and (Vpe cancels the electrical forces that are originated from CPD

between tip and sample surface |259].

3.6.3 Surface photovoltage (SPV)

Surface Photovoltage (SPV) is a well-known non-contact method based on the analysis of
changes caused by the illumination of surface voltage. The pioneers in this area were Brattain
and Bardeen in the early 1950’s [260] that studied the effect of surface radiation on surface
stress. SPV has been used in the past decades to study semiconductors and semiconductor
interfaces. Using this method, one can investigate the surface and subsurface of a material,
defects, leakage currents on the side of the conductor surface, the optical band gap, and electron-
hole recombination.

The periodic structure of an ideal crystalline semiconductor results in the appearance of
allowed energy bands separated by band gaps. The ending of the periodic structure of a
semiconductor at its free surface may form surface-localized electronic states within the semi-
conductor bandgap and/or a double layer of charge (surface dipole). The formation of surface-
and interface localized states typically involves additional, more complex phenomena than the
symmetry-breaking lattice ending, such as: “dangling bonds”, i.e. the formation of surface
atoms with no upper atom to bind to; surface reconstruction or relaxation, i.e. a change in the
position and/or chemical bonding configuration of surface atoms that minimizes the surface
energy; steps and kinks at the surface; impurity atoms adsorbed on the surface, etc [261].

The appearance of surface-localized states induces charge transfer between the bulk and the
surface in order to establish thermal equilibrium between the two.

The effect of SPV is the change of the surface potential caused by the illumination of the
surface of the material and the subsequent absorption of photons. These photons induce the
formation of free carriers by creating electron-hole pairs via band-to-band transitions (typi-
cally dominant for super-bandgap photons) and/or release captured carriers via trap-to-band
transitions (typically dominant for sub-bandgap photons) [262|. The equation for the SPV
is [263]:

SPV = VS(illumination) - VS(dark) (344)

If the energy of the incident radiation is greater than or equal to the energy of the band
gap of the material, then a band-to-band transition occurs between the valence band and the
conduction band. In materials of good quality, the probability of interband absorption is,

as a rule, several orders of magnitude greater than the probability of absorption in a trap
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[262]. Incident photons generate electron-hole pairs, which are collected by the surface barrier,
which leads to a decrease in the surface potential. Such transitions reduce the bending of the
surface band for a p-type semiconductor (shown in Figure 3.27). When the photon energy is
equal to the width of the band gap, the resulting SPV (negative in p-type, since the bending
of the descending strip is positive by definition) increases significantly [263]. For an n-type
semiconductor, the situation is the opposite. This change allows obtaining the optical width of

the band gap of the material.
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Figure 3.27: (a) Schematic band diagram of p-type semiconductor : (a) Band-to-band transition with illu-
mination energy more o close to band gap energy; (b) Trap to band transition from defect level to conduction

band; (c¢) Trap to band transition from valence band to defect level [263].

When a photon has energy hr, which is below the band gap, the probability of absorption
between the bands is practically zero, since the photons do not have sufficient energy to induce
such transitions [262]. In this case, two different situations are considered. If photons with
energy hv are able to stimulate the optical transition from a defect level ET to the conduction
band (Figure 3.27(b)), then the surface of the band bending increases, that is, the SPV increases.
In another case, if photons with energy hv are able to stimulate an optical transition from the
valence band to the defect level ET (Figure 3.27 (c¢)), the surface band bending reduces, i.e.
SPV decreases [262]. With the foregoing, it turns out that the spectroscopy of the defective

state can be performed on a semiconductor in a contactless and non-destructive way.
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3.6.4 Used equipment- Experimental set-up

Images of the surface topography and KPFM (Kelvin probe or surface potential scans)
were obtained by means of a NanoTec S.L. atomic force microscope (Figure 3.28) of POE-
MAS (Processos optoelectronics en materials avangals i superﬁcies) group. The system is
equipped with a phase-locked loopboard (bandwidth ~ 2 kHz) which maintains the cantilever
at resonance. Pt coated cantilevers (HQ:NSC14/Pt from p-Masch, 4.5 N m~! force constant,
resonance frequency ~ 140 kHz) were used for the experiment. Topography and surface poten-
tial were acquired using the oscillation amplitude as feedback parameter in a single-pass mode.
Measurement of the contact potential difference (CPD) between tip and sample proceeded by
applying a fixed AC voltage (1-1.5 V) at 7 kHz to the AFM tip while the sample was held at
ground potential following the so-called frequency modulation procedure. A second feedback
adjusts the DC bias between tip and sample in order to minimize this interaction and deter-
mine the CPD. The tip-sample distance was maintained around 5-10 nm, resulting in surface

potential imaging with high spatial (~ 20 nm) and potential (~ 20 mV) resolution [264].

Figure 3.28: KPFM of the POEMAS group of the University of Valencia

For making SPV measurements as a source of radiation we used a red laser (633 nm). The
laser beam was focused to hit the point of contact of the microscope needle tip with the sample
surface. The study of CdTe top layer for a series of CdTe/CdO samples was carried out both
with and without laser illumination. Power of laser was changed in the range from 100 to
5 mW.

The measurement results were processed using the software package WSxM5.0 Develop 8.3.
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Chapter 4

Growth and characterization of ZnO,
CdO, CdZnO, CdTe and their

heterostructures

In the previous chapter, we examined the techniques for performing the characterization of
the samples. This chapter will show the results of the growth analysis and characterization of
each of the studied materials of the II-VI group.

Regarding the oxides of cadmium and zinc, the structural features of the films obtained
under different growth conditions will be studied. Later, the results of structural and optical
characterization of CdO-based ternary compounds with different concentrations of alloyed Zn
will be shown. Finally, structural characteristics of the CdTe/CdO heterostructure, electrical
properties of films upon laser irradiation, and the surface potential distribution depending on

the surface morphology of the upper layer of the structure will be presented.

4.1 Zinc oxide: morphological and structural study

4.1.1 SEM and XRD measurements

In order to build electronic devices, the material quality of their constituent components is
of main significance. Control of the growth parameters and selection of the optimal conditions
for obtaining the desired properties has always been a main task in device making. On the
other hand, every year the size of electrical equipment is decreasing to increase ease of use.
The rise in compactness not only reduces weight, cost price and power consumption, but also
increases the velocity, and also simplifies the design of both individual electronic devices and

devices based on them.
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In respect to ZnQO, our task has been to find the growth conditions for obtaining ZnO layers
with the smallest thickness and smoothest surface. To do that, samples were grown using the
MOCVD system (see section 2.4), since this method is suitable for film growth and allows
obtaining samples with good reproducibility [69]. Sapphire substrates with R-, A- and M-
planes, which corresponds to the (1102), (1120) and (1010) planes, respectively, were chosen to
find the parameters for the growth of films with good crystalline quality [265]. The relatively
low cost and availability of different orientations of sapphire, their high optical transparency,
and other characteristics make them a good choice among other substrate options (such as
glass, GaAs, Si, GaN, etc.) for the growth of ZnO films. All samples were placed in 2 rows of
3 samples. The closer row to the precursor inlet to the reactor will be labeled Front (F'), and
the more distant Rear row (R). The first position of the substrate holder is at a distance of
6.4 cm from the entrance to the reactor, and the second is 5.3 cm further. In turn, the samples
are indexed as L, C' and R, which meant Left, Center and Right, respectively (as shown in
Figure 4.1). Due to the features of the reactor which was designed for using H, as carrier gas
and the location of the samples on the substrate holder, the intake of the Ny carrier gas, charged
with the precursors is not completely uniform at the overall of the reactor and the amount of
material for each sample was slightly different. Following the literature, in wich R-sapphire
has shown that is able to introduce a little distortion on ZnO grown on it, first samples were
obtained onto R-plane one side polished epiready sapphire without any chemical or thermal
treatment. Film growth conditions are shown in section 2.4.6.

As said before, Nitrogen (V) was used as carrier gas for the precursors. The reactor pressure
was the atmospheric one. At first, a long growth time (90 min) was chosen to see the effect of
the temperature on the formation of the material layer. In a set of samples, the temperature
was changed in the range of 300-400 oC with a step of 25 °C'. Some representative results of

the experiments are shown in Figure 4.2.

F- front
RL R- rear
RC
Flow — R-right
RR C-center
L-left

Figure 4.1: Arrangement of the samples.
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Figure 4.2: Morphology of surface (a,c.e,g) and cross-section (b,d,f,h) of ZnO grown samples at different
temperatures. The surface temperature was: 300 °C (a, b), 325 °C (c,d), 375 °C' (e,f) and 400 °C (g, h).
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The Figure shows that, depending on the growth temperature, the surface morphology of
the films is very different. It was found that at low temperatures (~ 300 °C'), a thin layer of
the material (~ 220 nm) forms on the surface of the substrate, after crystals of the order of
1 pm are grown. This indicates a columnar growth of the films after a relatively thick and
compact transition layer has been formed. At medium temperatures, these columnar ZnO
structures become less noticeable, and the upper morphology is flatter. The transition from
three-dimension growth to two-dimensional with an increase in temperature was reported by
Ogata et al. |266] in the growth of ZnO structures on R-sapphire, similarly as the results here
obtained. The better temperature conditions in respect the flatness for our samples were in
the range of 350-400 °C. At the same time, the film thickness of almost all samples was
about 540 nm and did not depend too much on the temperature in this range except for the
higher temperature (400 °C') where film thickness decreases to 420 nm, which can be due to
re-evaporation of material from the sample substrate as well as reduction of the grain size in
the thermodynamic regime at the higher temperature.

The temperature 375 °C' was chosen for further studies, since at this temperature the samples
in all the 6 positions showed smooth surface morphology as determined by SEM measurements.
In order to built ZnO-based devices composed of multi-layer structures, e.g., lasers, sensors,
or transistors, flat epilayers are essential. Samples obtained at a relatively higher temperature
(400 °C) had a smooth surface only in the group of samples, which were closer to the entrance
of the precursor to the reactor (Front group). It was experimentally found that in the second
group of samples, the heating temperature was slightly higher. Similarly to the thickness
decrease, the degradation of the surface due to the presence of holes can be associated with a
high-temperature regime of growth (Section 2.4.1) in which the growth rate decreases due to
thermodynamic factors and homogeneous reactions [171] or even due to depletion of reagents
or re-evaporation of precursors caused by high temperature.

For obtaining ZnO samples that should help in reducing the size of potential devices, we
decided to concentrate on reducing the thickness of the films while maintaining the crystalline
quality of the samples, by acting on other growth parameters as the growth time and the
precursor fluxes that enters into the reactor during the experiment. Therefore, first of all we
reduced the time of deposition of the material to find the limit at which the films still have a
flat surface morphology.

Thus, our attention was focused in obtaining films both morphologically and structurally
of high-quality by optimizing the experimental parameters. It was determined that with a de-

position time < 10 minutes and precursors flows 71.77 (for O precursor) and 14.22 pmol/min

102



4.1. Zinc oxide: morphological and structural study

(for Zn precursor), surface morphology changes and becomes rougher as shown in Figure 4.3.
The film thickness was approximately 65 and 42 nm for 10 min and 5 min of growth at 375 °C,
respectively. The sample obtained at 3 min of growth had thickness ~ 40 nm and a more
complex non-planar surface structure. At the same time, the samples that were closer to the
inlet of the carrier gas with the precursor (Front group) were smoother and had more thickness
than those that were further (Rear group). Since usually the thickness of the samples in the
R-group was lesser than in the near group and given the complex surface morphology even at
relatively high temperatures, we could infer that this could be due to the fact that in the rear
part a higher temperature is present leading to less favorable growth conditions as described
above. Moreover, in addition to morphological analysis, a structural analysis was also performed
using XRD studies, that showed that all films had (102) and (110) preferred growth orientation
(Figure 4.4). Peaks at 20 angles of 25.58°, 52.55° and 83.22° correspond to peaks (0112), (0224)
and (3036) of R-sapphire.

Without changing the ratio Ry ;;—5 between the precursors, we reduced the material flow
in order to achieve a slower speed of film formation, which should allow to obtain smooth ZnO
films with lower thicknesses. For this, we changed the amount of material entering the reactor
during the growth of the film. Thus, the incoming gas flow with precursors was reduced 5 times
from 71.77 and 14.22 pmol/min to 14.35 and 2.85 pumol/min for oxygen and zinc precursors,
respectively. Starting from 5 minutes, we gradually increased the time from 5 to 45 min. As
a result, it was found that with a deposition time of 45 minutes, the surface morphology and
thickness of the samples were very similar to the values obtained earlier with 10 minutes of
growth at higher precursor fluxes (Figure 4.5). It can be seen that although the precursors flow
was reduced, the growth time increased equally, and the total amount of introduced substance
did not change very much. This fact shows that we are working in a regime of growth in which
the growth is driven by the total amount of material and not by the rate in which it is injected.
The numerical values of the total amount of precursor used during growth will be presented
later in page 107 (section 4.1.1). At the same time, among the 6 samples of the film, FC and
FR had the best quality. Due to the design features of the reactor, the precursors flow more to
the right side and mix before deposition on the substrate, which can lead to non homogeneous
distribution of the material to all samples or a change in the flow rate depending on the distance
to the reactor inlet. At the same time, samples that are further from the inlet (R-group) have a
higher heating temperature which could cause re-evaporation of the material and the formation
of holes on the surface. The XRD measurements made for samples with growth times of 30

and 45 min showed similar results to those shown in Figure 4.4.
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Figure 4.3: Morphology of surface (a,b) and cross-section (¢, d) of ZnO samples deposited during 10 min (a, ¢)

and 5 min (b, d). Samples were in position Front Center (F'C).
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Figure 4.4: X-ray diffraction of ZnO samples grown over (1102) sapphire during 5 and 10 min
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Figure 4.5: Morphology of surface (a) and cross-section (b) of ZnO samples deposited during 45 min

(14.35 and 2.85 pmol/min for oxygen and zinc precursor, respectively). Thickness was d &~ 68 nm

Previous results show that using the same quantity of material with different precursor’s
flow smooth films can be obtained. In the last series of experiments with low flow, this took
a long time. In order to reduce the growth time, we took an intermediate value of the precur-
sor flow between the previous series of experiments and increased its value in 3 times up to
43.06/8.54 pmol /min for O/Zn precursors. Gradually lowering the growth time from 45 min,
it was found that at time of < 15 min, the films lose their smoothness. Since we previously
found that smoother films are obtained in the temperature range of 350-400 °C/, these tempera-
tures were also used for this precursor flow to obtaining homogeneous films with shorter growth
time. Unfortunately, slight variations in temperature (375425 °C) at 10 min of growth did not
improve the quality of the final films (Figure 4.6). At these conditions and higher temperature
(400 °C'), the surface morphology worsens with the appearance of holes that may be associated
with high-temperature conditions [267]. As before, the samples located closer to the reactor
inlets shown better results, in particular, FC' and FR films. Samples with growth times of 10
and 15 min have XRD patterns similar to those previously measured (Figure 4.4). Neither tem-
perature change nor precursor flow affects the structure phase condition of the resulting films as
expected. It was found that an increase in the precursor flux led to an increase in the thickness
of the resulting films from 32 nm (for 14.35/2.85 pumol /min), 66 nm (for 43.06/8.54 umol /min)
to 100 nm (for 71.77/14.22 pumol/min of O/Zn precursors, respectively) for 15 min of growth.
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Figure 4.6: Morphology of surface (a,c,e,g) and cross-section (b,d,f;h) of ZnO samples deposited during 15 min
[375 °C] (a, b) and 10 min [(375 °C, ¢, d), (350 °C, e, ), (400 °C, g ,h)
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When comparing the results, it was found that the thickness and morphology of the film sur-
face at 15 minutes for 43.06 and 8.54 pmol /min (or 774 umol in total) are comparable with those
obtained for a film with large flow and 10 minutes of growth of 71.77 and 14.22 pumol /min (or
859.9 umol in total) and a smaller flow and 45 minutes of growth for 14.35 and 2.85 pmol /min
(or 774 pumol in total). It seems that at a given temperature (375 °C') at 3 different growth
parameters, samples presented similar results and the films are ordered in a similar way respect
to the morphology.

Knowing the approximate amount of material to obtain thin films with a smoth surface, the
next step was trying to find the growth parameters at which smooth films could be obtained,
while the material flow was increased to reduce the growth time less than 5 min. Incoming flow
of oxygen and zinc precursors was increased up to 100,48 pumol /min and 19,91 pmol /min for O
and Zn precursors, respectively. Several samples were obtained at temperatures below 375 °C
to avoid possible re-evaporation of the material during film growth. As it turned out, neither
a decrease in growth time of fewer than 5 minutes, nor a decrease in growth temperature (340,
350 °C') made possible to obtain a thin film with a smooth surface (Figure 4.7).

Figure 4.7: Typical morphology of surface (a-c) and cross-section (d-f) of ZnO samples deposited during 5 min
[375 °C] (a, ¢) and 3 min at [375 °C] (b, e) and [340 °C] (c, f)
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After analyzing the results, we decided to etch the substrate before the growth of the
material, in order to promote more initial nucleation points as it was presented in paper [268].
Thus chemical etching of the substrate surface was carried out with a solution H3PO, : Hy SOy
in a volume ratio of 1:3 during 3 hours at 120 °C’. The etched substrate was washed with
plenty of distilled water and purged with pure Nitrogen. For the growth of the films, conditions
(growth temperature 375 °C time 5 min, flows 71.77 and 14.22 pmol/min for oxygen and zinc
precursors, respectively) were selected under which the morphology of the film visually becomes
less smooth. Unfortunately, as the results showed, chemical treatment did not improve a lot
the surface flatness of the sample. The sample thickness decreased from 42 to 34 nm, but the

surface was not uniformly smooth and has a small dimples on it. (Figure 4.8).
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Figure 4.8: Morphology of surface (a, b) and cross-section (c, d) of ZnO samples deposited during 5 min:

(a, ¢) without chemical treated substrate and (b, d) with chemical treated substrate.
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Figure 4.9: XRD patterns of the ZnO samples with 5 min of growth time deposited onto the substrate without
chemical treatment: a) M-plane; b) A-plane sapphire

Besides R-plane, M-plane and A-plane sapphires were used as substrate. In the paper [265]
Wang at el. founded that different oriented sapphire substrates can obviously affect types and
content of intrinsic defects, which regulates the structural, optical and Raman properties of
ZnO films. For this reason, using different types of substrate could help in solving the problem
of obtaining more smooth uniform films with low deposition times. As before, these substrates
were also chemically treated to see changes in the resulting films and to compare the results.
The XRD results for the M -plane and A-plane are shown in Figure 4.9, where can be seen that
both of the obtained Zinc Oxide films have a hexagonal structure, which is reflected by the
presence of a family of peaks (1010) — (2020) e, and (0002) — (0004) e, respectively. Figure 4.10
and Figure 4.11 represents morphology measurements results for M- and A-planes sapphire,
respectively what are similar between themselves.

As can be seen from figures 4.10 and 4.11 after chemical etching of the substrate surface
before the film growth, the quality of the films has not been improved to much. In both cases,
the samples grown on untreated substrates had smoother surfaces with a number of holes. Zinc
oxide films obtained on substrates after chemical treatment most likely changed the growth
mechanism from planar to columnar. As can be seen from the figures below, the films were
not homogeneous and consisted of large crystalline grains closely spaced to each other. The
thickness of the samples obtained on the M-plane (1010) sapphire before and after the chemical
treatment of the substrate remained practically unchanged and amounted to about 80 nm. For
a sample on A-plane (1120) sapphire film thickness of the film thickness of the films decreased
slightly from 60 to 50 nm, as a result of chemical treatment. In contrast to the ZnO growth on
R-sapphire, the samples obtained on the A-sapphire surface after chemical treatment do not

have a homogeneous layer, and, like the film obtained on the M-plane, there were polycrystal-
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Figure 4.10: Morphology of surface (a, b) and cross-section (c, d) of ZnO samples deposited onto M-plane
sapphire during 10 min [71.77 and 14.22 pmol/min for O/Zn]: (a, ¢) without chemical treated substrate and

(¢, d) with chemical treated substrate.

line. Reducing thicknesses with growth and crystallite formation corresponds to increasing the
number of nucleation points, which reduces the 1D growth and increases the 2D growth of the
material.

Among the 3 types of substrates used for film growth, the R-plane (1102) sapphire showed
the best surface morphology with lower film thickness with the same growth conditions. There-
fore, further research will be carried out for films grown on (1102) sapphire without preliminary
chemical processing of the substrate.

Zuniga-Perez in his work [180] conducted a study of pure sapphire of different orientations.
It was found that the surfaces of the A-plane and R-plane sapphires consist of clearly delineated
terraces, separated by steps with a height of the order of (0.2-0.4) nm. These steps may have

formed when cutting and polishing sapphire plates (miscut substrates is less than 0.1°). A series
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Figure 4.11: Morphology of surface (a, b) and cross-section (¢, d) of ZnO samples deposited onto A-plane
sapphire during 10 min [71.77 and 14.22 pmol/min for O/Zn]: (a, ¢) without chemical treated substrate and

(¢, d) with chemical treated substrate.

of stripes appear, parallel to the stepped lines, which act as preferred nucleation sites where ZnO
grains begin to grow. Step — terrace morphology creates a diffusion barrier between step and
terrace, which leads to a distribution of the material on the facets of the steps as islands, which
develop along stepped lines to form ordered rows and reproduce the underlying pattern. With
a long deposition time, the periodic order begins to be violated, since the grains nucleated on
adjacent stepped lines cover the substrate and completely mask the underlying periodicity. In
this case, grain nucleation will occur randomly over the surface. Meanwhile, M-plane sapphire
substrates have atomically flat surfaces. ZnO grains dispersed on the surface of the M-plane
(1010) begin to form a continuous film, which grows in the transverse direction due to the grains
appearing on it. A continuous and flat film is gradually formed. At higher deposition times, the

flatness of the ZnO film (Figure 4.10 a, ¢) is only perturbed by grain boundary grooves [180].
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An increase in the nucleation points using a chemical treatment will accelerate the initial
self-organizing growth of material adatoms on the ridges of the substrate terrace, followed by
the growth of adatoms on the initial deposited one, which will eventually lead to a gradual film
growth [268]. In this case, ZnO nanoparticles will be randomly placed on the surface of the
substrate. The growth of nucleation points allows the material to be deposited more compactly,
which will lead to a decrease in the thickness of the grown structures during 3-D film growth.
Since the M-plane sapphire substrate did not have a step-terrace morphology from the very
beginning, the thickness of the films obtained on M-plane substrates with and without chemical
treatment practically did not change. For R-plane and A-plane sapphire, the treatment resulted

in a decrease in the thickness of the deposited ZnO layers as shown above.
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4.1.2 AFM studies

For a more complete study of the sample’s surface, AFM quantitative roughness analysis
was made. Samples grown with different precursor’s flow, temperature and deposition time
were measured. First of all, we tested a series of samples with a long time of growth (90 min)
and deposition temperatures in the range of 325-400 °C' (Figure 4.12). The figure shows a
clear change in surface morphology that was not so obvious in the SEM. With the rise of
the growth temperature, the morphology becomes more uniform and should affect the surface
roughness of the films. It was found that the roughness decreased from 11 nm to 3 nm, when
the growth temperature increased from 325 °C' to 375 °C, and then again increased up to 11 nm
at a temperature of 400 °C’. The repeated growth of roughness may be associated with the
transition to a high-temperature regime in which the growth rate decreases and a re-evaporation
of material from the sample surface caused by high temperature is possible, as was mentioned
above (Section 4.1). Both AFM and SEM studies showed that ZnO films grown up by 375 °C

have a smoother surface, under our experimental conditions.

Figure 4.12: AFM patterns of ZnO samples deposited on R-plane sapphire with different temperature:
325 °C (a), 350 °C (b), 375 °C (c) and 400 °C(d).
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Measuring a series of samples at 375 °C' and 71.77/14.22 pmol /min flow of O/Zn precursors,
with a gradual decrease in the time of growth, we noticed that the surface rms roughness of
the films remained almost constant and was in the range of 1.5-2 nm. Although the SEM
measurement showed that a film with a smooth surface was formed after 10 minutes of growth,
AFM shown that the sample with 5 minutes of growth had a similar rms roughness. With
3 minutes of growth the material is distributed along the edges of the substrate steps, and
we can see them organized into linear and parallel arrays with an rms roughness of ~ 3 nm
(Figure 4.13).

2.0pm

Figure 4.13: AFM of ZnO samples deposited on R-plane sapphire with different deposition time: 30 min (a),
15 min (b), 10 min (c¢), 5 min (d) and 3 min (e)
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Zuniga-Pérez [180] studied the rms roughness of ZnO films as a function of the deposition
time on an R-plane (1102) sapphire at 420 °C with VI/II molar ratio equal 5 and a similar
flow of precursors. The growth temperature was higher than the optimum to enhance surface
diffusion, which is one of the dominant processes during the initial growth stages. The author
showed that initially the rms roughness increased, which was caused by the appearance of the
first islands on the surface of the substrates. It was found that, with a deposition time of
50 seconds to 100 seconds, despite the fact that the films became thicker, the rms roughness
decreases and the minimum rms roughness remains almost constant at about 17 nm, regardless
of the film thickness and suggesting growth in the 2D type.

In our case, a series of samples on R-plane sapphire with a small amount of oxygen and
zinc precursors (14.35 and 2.85 umol /min, respectively) showed that the roughness of the films
decreases with a decrease in the growth time of the material to 10 minutes (Figure 4.14). When
the deposition time to < 5 minutes the deposited film does not have a uniform surface. As
mentioned above, R-sapphire substrates present steps and parallel terraces morphology that
provides nucleation sites at the facet edge of the step, in addition to the free surface bonds,
which act as nucleation points. A number of bands appear, with the average step distance
between the lines, in this case, being about 0.9 um. The roughness value is stabilized and
does not change much regardless of the growth time. With a small amount of time, deposition
material does not have time to fill the gaps between the steps, which leads to an increase in
the roughness of the films.

With flows of 43.06 and 8.54 pumol/min, AFM measurements confirm the results obtained
by SEM and show that the smoothness and thickness of the sample are identical to those of the
conditions: t=10 min (71.77/14.22 pmol/min) and t—45 min (14.35/2.85 pmol/min) as can
be seen in Figure 4.15. Measurements showed that at these growth conditions, with a decrease
in the growth time, the surface roughness of the samples gradually increased from 2 to 6 nm,
while this value was slightly larger for the sample, which was grown at 15 min than for the
sample with a growth time of 10 min. For greater accuracy of the results, the studies were
carried out at several points of the sample.

It was found, that with an increase in the oxygen and zinc flow of precursors into the
chamber of the reactor up to 100.48/19.91 pumol/min, the roughness decreased with a decrease
of deposition time of the material. (Figure 4.16). At the same time, comparison of the samples
grown during the same time but having different precursors flow showed that, an increase in
the flow of precursors leads to a sharp decrease in the surface rms roughness of the film with
deposition time from 5 min to 15 min with a further gradual decrease at 25 min. The material

is evenly distributed over the surface (Figure 4.17).
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Figure 4.14: AFM patterns of ZnO samples deposited with 14.35 and 2.85 pmol/min of O and Zn precursors)
and different deposition times: 45 min (a), 30 min (b), 15 min (c¢), 10 min (d) and 5 min (e). Graph of the
surface rms roughness change calculated using the WSxM 5.0 Develop 8.3 software (f)
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Figure 4.15: AFM patterns of ZnO samples deposited with 15 PSP (43.06 and 8.54 umol/min) of flow and
different deposition time: 30 min (a), 15 min (b), 10 min (c).

Zn0#751
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Figure 4.16: AFM patterns of ZnO samples deposited with 35 PSP (100.48/19.91 umol/min) of flow and
different deposition time: 30 min (a), 15 min (b), 10 min (c¢). Graph of the surface roughness change calculated

using WSxM 5.0 Develop 8.3 software (d)
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Figure 4.17: AFM of ZnO samples deposited during 30 minutes and different flow of O and Zn precursors:

14.35/2.85 wmol/min] (a), [71.77/14.22 pmol/min] (b), [100.48/19.91 wmol/min] (c). Graph of the surface
roughness change calculated using WSxM 5.0 Develop 8.3 software (d)

Figure 4.18: SEM (a-b) and AFM (d-f) patterns of ZnO samples deposited during 15 minutes and different
quantity of precursors: [14.35/2.85 pmol/min] (a, d), [43.06/8.54 pmol /min] (b, e) and [71.77/14.22 pmol /min)
(c, 1)).
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Analysis of samples with the same deposition time (15 min), but a different amount of
precursors flow showed that the sample with values in the middle of the studies range of oxygen
and Zinc precursor’s flow had a higher rms roughness (~ 11 nm) compared to samples obtained
with a larger and smaller flow of precursors during growth (~ 2 nm). Since this sample was
measured at different points and re-measured on different days, it can be concluded that the
results are likely to be reliable. All samples were in the FC position. Comparison of surface
morphology using SEM with a more detailed AFM study is shown in the Figure 4.18.

Low deposition time (5 min) does not allow obtaining homogeneous thin films and deposited
ZnO NPs creatd step-terrace morphology on the sapphire surface. An increase in the flow leads
to an increase in the surface roughness of the sample as can be seen in Figure 4.19.

Earlier it was shown that a series of samples located closer to the entrance of precursors
into the reactor (F-group) had a simpler surface morphology and a slightly greater thickness of
the samples, while the surface of the second group (R-group) was more rough. For this reason,
a sample in the FC position was selected for comparison of chemical treatment effect on the

surface roughness.
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Figure 4.19: AFM patterns of ZnO samples deposited during 5 minutes and different flow of precursors:
[14.35/2.85 pmol/min (a), [71.77/14.22 pmol/min] (b), [100.48/19.91 umol/min] (c). Graph of the surface
roughness change calculated using WSxM 5.0 Develop 8.3 software (d)
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AFM studies have shown that, the sample grown on a substrate chemical treating, slightly
increased its surface rms roughness from 2 to 2.8 nm (Figure 4.20). A slight increase in surface

roughness should be due to an increase in nucleation points.

Zn0 films obtained in this work using the MOCVD method showed good crystalline quality

at the nanoscale. Films of this quality are promising for use in both scientific and industrial
fields.

In conclusion to the section, the temperature at which the largest number of smooth films
of the series are obtained is 375 °C. Samples closer to the inlet the reactor are smoother
and thicker that the ones at the rear positions. A decrease in the thickness while maintaining
the smoothness of the films is possible up to ~ 65 nm, after which holes begin to form on
the surface of the samples. A decrease or increase in the precursor flow only contributes to a
change in the growth time at which the films remain smooth, while the final thickness and the
total amount of the precursors used (~ 800 pmol) remain constant. Chemical treatment of
the substrate by H3 PO, : HySO; solution in a (1:3) ratio at 120 °C' during 3 hours at similar
growth parameters, slightly reduces the film thickness and makes the sample surface smoother.
Among 3 different types of substrate, used at the same growth condition, the best result of

smoothness and thickness was shown by ZnO films grown onto R-plane sapphire.

o e e g g

Figure 4.20: AFM images (a, ¢) and cross-section (b, d) of ZnO samples on (1102) sapphire without chemical
treatment (a, b) and on (1102) sapphire with chemical treatment (c, d).
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The AFM study confirmed the previous results and extended them. It was found that the
samples grown on R-sapphire have the lowest surface rms roughness in the temperature range
of 300-400 °C. The rms roughness value remains stable at 2 nm, but with a short growth time
(< 5 min), the amount of precursors is not enough to uniformly fill the substrate surface and
the material is distributed along the edges of the sapphire morphology steps forming linear and
parallel arrays. A higher precursor flow at the same growth time makes possible to obtain films
with less rms roughness. With a short growth time, an increase in the precursor flow contributes
to an increase the rms roughness. The average value of the rms roughness of ZnO films obtained
on substrates after a chemical treatment slightly increases, which may be a consequence of an

increase in the presence of nucleation points.
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4.2 (CdZnO: morphological and structural study

4.2.1 SEM and XRD measurements

In some cases, the use of binary compounds, such as ZnO or CdO, does not always provide
the properties we could need. For this case, alloying could be an option. In the previous sec-
tion, we analyzed the growth of ZnO films, and taking into account the data that we previously
obtained for a CdO film [99], we have made a study to obtain ternary compounds based on
them. The growth of CdO-ZnO ternary oxides highlights the difficulty of combining materials
with different crystalline structures, that is, hexagonal for ZnO and cubic the case of CdO.
Films of the CdZnO compound enriched with Zn retain a cubic structure if the zinc concen-
tration does not exceed 20 % [28-31]. Fan et al. [269] carried out a first principles analysis
of the phase stabilities, chemical bonds and band gaps. Authors calculated regions of phase
stability of A,Zn;_,O alloys (A = Ca, Cd, Mg), where for Cd,Zn;_,O cubic structure this
region was located at 0.75<x<0.875, which matched the with experimental data performed by
Ishihara et al. [270] on A-plane sapphire substrates. On the other hand Yu et al. [271] grew
layers via a radio-frequency magnetron cosputtering system. They observed, through using X-
ray conventional diffraction measurements, that polycrystalline films had a single-phase cubic
structure at £ < 0.21 and mixed phases at z = 0.29. As can be concluded from the literature,
the incorporation of Cd or Zn into the parent binary compound affects the structure of the
solvent compound differently (hexagonal ZnO or cubic CdO, respectively) depending on the

growth conditions.

In this section, the compound of CdZnO with different zinc contents will be considered.
For the growth of CdZnO ternary compounds, a temperature of 304 °C' was chosen, which is
slightly lower than the CdO reevaporation temperature and should facilitate the incorporation
of Zn into the stable CdO cubic lattice [101]. A series of samples Cd;_,Zn,0 with a zinc
nominal content in the range of 0-20 % was investigated. At the same time, during the growth
of samples with a high Zinc content (20%), both Nitrogen, as more typical, and Helium, as an
alternative gas for comparison, were used as carrier gases. Growth conditions are shown in the
Table 2.7. Micrographs of the cross-section and surface morphology are shown in Figure 4.21

and thickness in respect Zinc content are collected in Table 4.1.
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5% Zn nominal
3.03% Zn EDX-5EM
d=280 nm

10% Zn nominal 15% Zn nominal
5.91% Zn EDX-SEM 7.46% £n EDX-SEM
d=340 nm d=255nm

20% Zn nominal 20% Zn nominal

11.5% Zn EDX-SEM 14.7% Zn EDX-5EM
Carrier gas: N2 Carrier gas: He
d=370nm d=265 nm

Figure 4.21: SEM micrographs of Cd;_;Zn,O thin films with different Zn content: 0% (a), 5% (b), 10% (c),
15% (d), 20%-N2 (e) and 20%-He (f). Label d mean the film thickness.

As can be seen from Figure 4.21, the incorporation of Zn atoms into the crystal lattice
of the binary CdO compound leads to a change of surface morphology. The flat surface of
CdO becomes rougher. The Zn atoms introduce a distortion in the host matrix, when it
was included in the CdO crystal lattice during the diffusion regime of film growth (growth
step 4, Section 2.4.1). Figure 4.22 shows a schematic diagram of the atomic arrangement of
the R-sapphire plane and (001) Cdy_,Zn,O plane at the interface, deduced from the observed
epitaxial relationships. Using the axis definition given in Figure 4.22 (a), we can have the

following epitaxial relationships for the out-of-plane C'd;_,Zn,O (001) oriented films [272]:
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Name of sample Thickness, nm Content of Zn, %

CO850 380 0
7.CO8T70 280 5
7.C0O852 340 10
7.CO871 255 15
7.C0854 370 20 (N3)
7.CO8T7 265 20 (He)

Table 4.1: Thickness and nominal content data of C'dy_,Zn,O samples

Cdy_,Zn,0(001)||Aly03(0112)
Cdy_.Zn,0[100]|| Aly03[2110]
Cdy_,Zn,0[010]|| Al,O5]0111])
These epitaxial relationships are coherent with those previously obtained for CdO films

grown on R-plane (1102) sapphire substrates [33,99] as evidence that the epitaxial coupling

with the substrate is not altered as a result of zinc incorporation during the growth.
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Figure 4.22: Schematic diagrams showing the crystals of Cdy_,Zn,O with (001) orientation grown on R-plane
sapphire; (b) schematic diagrams of r-sapphire (left) and CdZnO (right) surfaces in the case of low Zn content.

The squares represent the coincident lattice points, and the indicated distances correspond to the case of £ = 0
(pure CdO). [272].
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For a more detailed analysis of CdO films property changes depending of Zn value be
incorporated into the crystal lattice, in addition to morphological analysis of the sample, the
structural analysis was also carried out using X-ray diffraction and EDX methods. The first
step in the structural characterization of any material is to determine whether it is textured
or not, that is, whether it shows a preferred orientation or not. For CdO films grown on R-
plane (1102) sapphire substrates the typical structure is the single-phase structure of the stable
cubic(ZB) with (200) plane of cubic phase [100]. The X-ray diffraction patterns from the series
of C'dy_,Zn,O thin films with Nitrogen as a carrier gas, are plotted in Figure 4.23. The 3 peaks
at 25.58, 52.55 and 83.22 deg presented for XRD patterns of all samples corresponds to the
(0112), (0224), and (0336) peaks of R-sapphire substrate, respectively. As can be seen from
the figure, the dominant peaks are shifted in respect to the peaks of CdO g9 and C'dO o).
This fact points out the existence of a growth texture with an axis normal to the plane [100].
An increase in the Zn content leads to a shift of the peaks of the material toward large angles
(Figure 4.24). For a sample with 20 % of nominal Zn content obtained with Helium, the shift
of peak position has the highest value. Starting from the sample with 15 % of Zn nominal
content other orientations begin to appear, which are associated with other planes of the cubic
structure, making the polycrystalline character evident in the sample. As the Zn concentration
increases up to 15 %, peaks, that belong to the CdO111) and CdO 229y peaks families, appear.
A hexagonal phase in the resulting series of samples was not found. Only the sample with 20 %
of Zn nominal content grown with Nitrogen, presents a small peak which may correspond to

CdZnO with Rkl indexes (102)p.,, and indicate phase mixing at higher Zn nominal content.

) - = 1- CdO (0%) _
108 A 2 N 2 CdZnO (5%) o
<) o pa 3. CdZnO (10%) 2
s o % = 4- CdZnO (15%) @
10 A 3 o 5. CdZnO (20%) = P
< o = = o1l Q
104 — o O <
—_ : | : a ey
o) @) % 8 o
i“-, 10° 3 [ N ol
> ‘ ) 3
B 10% pean \
c ‘ 1
)
- Ntk
E 10" [ rmimuny
e w 4
!
20 30 40 50 60 70 80 90

20 (deg)

Figure 4.23: XRD patterns of Cdy_,Zn,O samples with different Zn content.
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Figure 4.24: Plotting of dominant (200) peak of CdZnO films with different nominal Zn content.

Differences in the ionic radii of Zn and Cd and in the different stable crystal structures of
the binary compounds limit the growth of single-phase films of ternary C'd;_,Zn,O alloys over
a broad compositional range. To explain the change in behaviour of the properties of samples
after an increase in the Zn nominal value x>15%, consider the work of Martinez-Tomds et
al. [272] who carried out investigation of crystallographic changes in C'd;_,Zn,O films grown
on r-plane sapphire by AP-MOCVD with Zn content x<0.5. In the case of low Zn content
(x=0-0.2) the results were divided into 3 stages. In the first stage (x < 10%), Cd;_,Zn,0O films
have been found to preserve a single-phase cubic structure. Lattice parameter calculations using
Vegard’s law and average rock-salt lattice constants for ZnO and CdO were in good agreement
with EDX measurements. With the rise in the Zn content in the range 10 % < x < 15 %,
the competition began to arise between the misfit stress and the shrinking of the lattice, which
caused an inversion of the deformation of the lattice cell, which becomes enlarged in-plane and
shortened out-of-plane. At the third stage of the transition of the samples from rock salt to
wurtzite at x > 15 %, the inclination of rotated domains of two differently oriented crystals
increased to 30 ¢ from each other and tends to 15 © at each side of the projection of the c-axis
of sapphire on the substrate surface. The authors showed the proposed scheme to explain the
symmetric inclination of the array cells by & 15° and different types of orthorhombic distortions
for each inclined cell in the form of a transition from the rock salt phase to the wurtzite phase,
as shown in Figure 4.25. It has been hypothesized that if these crystallographic structures
would be rich in Zn, this could explain both the high Zn content measured by EDX and the

low Zn content determined from the application Vegard’s law to the Cdy_,Zn,O layers.
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Figure 4.25: Schematic diagrams of the basal planes of the C1_,Zn,O structure during the rock-salt-to-
wurtzite transition: (a) in the early stages; (b) when tilt and orthorhombic distortion have taken place; (c¢) after
transformation to a hexagonal structure; and (d)—(f) the same process but with tilt in the opposite direction.

Small spheres: O; large spheres: Cd or Zn. [272].

Determination of Zn content in the obtained films was carried out using the EDX method
and Vegard’s law for peak position of cubic CdO gy and ZnO(zp). At the same time, the
XRD pattern for the sample with 20% of nominal Zn content showed that the concentration
of Zn slightly decreases when compared with the sample from 15% of Zn. Calculations by
Vegard’s law presented that Zn contents in the samples are 3.66, 5.24, 6.44, 5.93 (V) and
9.31 % (He) for 5, 10, 15, 20 (N3) and 20% (He) of nominal Zn content, respectively. Unlike
the Vergard law, EDX analysis depicted the Zn content to be 3.03, 5.91, 7.86, 11.5 (N;) and
14.7 (He), respectively, which indicates the incorporation of zinc into the crystal lattice of CdO.
Figure 4.26 shows a graph of the content of Zn calculated using 2 different methods.

Literature review shows that the crystal structure of Cd;_,Zn,O films changes with increase
of the content x from rocksalt structure to wurtzite structure around x ~ 0.30 [270,273]. In our
work we investigate films with Zn nominal content x < 20 % and found signs of phase mixing
with the appearance of a weak hexagonal C'dZnO1p2) phase at a high Zn nominal content.
Substitution of Cd atoms with Zn atoms will decrease the lattice parameter of CdO, due to
difference in the atomic radii of the material, which is 0.97 A and 0.74 A for Cd and Zn,
respectively [274]. To find lattice parameter we use equation for peak position of (200) cubic
phase of CdO:
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W2+ k2 +12)2
sin ¢

a= )\< (4.1)

where, \ is x-ray wavelength (1.5406 A), (h,k,1) are Miller indexes and 6 is Bragg’s diffraction

angle for the maximum intensity. For comparison, we also use the expression for Vegard’s law:

a(x) = (1 — x)a(CdO) 4 za(Zn0O) (4.2)

where a(Cd0)=4.6953 Aand a(Zn0)=4.211 A [269] are the rock-salt lattice constants of the

binary compounds and a(z) is the undistorted lattice parameter of the ternary alloy. Results

of calculations are depicted in Figure 4.27.
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Figure 4.26: Zn content determined by EDX as a function of Zn content calculed by Vegard’s law (a) and as

a function of Zn nominal value (b).

As we can see, from Figure 4.27, the lattice parameter calculated by 2 different methods
differs. Computation behind the (200) peak position shown that increasing Zn content in the
samples leads to decreasing of lattice parameter value of the ternary structure from 4.6955 to
4.6511 , due to incorporation of Zn atoms into CdO crystalline lattice. In this case, the value
of the lattice parameter for a sample with 20 % of the nominal Zn corresponds to the 10 % of
Zn concentration calculated using Vegard’s law. This result approximately coincides with the
values that we obtained above by EDX study. The smaller value of the lattice parameter with
the presence of zinc suggests that the C'd?>" ions are partially substituted by the smaller Zn*"
ones. It is worth to note that a new hexagonal phase starts to appear.

Using XRD pattern and diffraction profile processing program DifWin, we found FWHM
for the (200) peaks of CdO of the samples. The crystallite size of the as-grown films has been
calculated using Debye-Scherrer’s formula [275] from HRXRD data:

kA
D pr—
b cost

(4.3)
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where, D is the crystallite size, £k=0.94 is dimensionless shape factor, A\ is X-ray wavelength
(usualy 1.5406 A), 3 is the FWHM and @ is Bragg’s diffraction angle for the maximum intensity.
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Figure 4.27: The calculated lattice constant for C'dy_,Zn,O films with various Zn nominal content calculated

by 2 different methods.

Figure 4.28 presents FWHM of XRD patterns and crystallite size depending on the Zn con-

tent in the samples.
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Figure 4.28: FWHM of XRD patterns and crystallite size as a function of Zn content.
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From figure above, we can see that with increasing Zinc nominal content value of FWHM
for the (200) peaks of CdO also increases in the range 0.20-0.46 degree (respectively, crystallite
size decreases from 0.76 to 0.33 nm). A small exception to the rule is the sample with content
x=15% of zinc. This may be due to the fact that at this concentration other orientations begin
to appear and are associated with other crystallographic planes of the cubic structure, which

indicates the polycrystalline nature of the sample.

4.2.2 Transmittance and absorption spectra

Spectral studies of a series of samples of CdZnO with different Zn contents showed that all
samples presented transmittance in the range 70-90 % that increased with the rise of Zn content
in the wavelength range 300-900 nm. As mentioned before in Chapter 2, the introduction of
more zinc in the CdO structures will increase the transmittance and the width of the band gap
due to the blue shift of the edge of the bandwidth [18]. Above was found, that the thickness
of the samples was different and did not depend on the increase in zinc concentration. Light
absorbance is dependent on the transmittance of the material, which can be affected by surface
roughness. Higher surface roughness can increase diffused light, which in turn will lead to
reduced transparency. Light will be scattered at different angles at each interface and lead
to an increase in the average optical path length. With the non-perpendicular incidence of
light at the interface, the reflection coefficient will rise, and the increase in reflection at the
inner interfaces leads to more efficient light trapping, which further increases the absorption of
light [276]. Due to its high transparency [185], sapphire will have no effect on the results of
CdZnO measurements and the spectra of pure sapphire has high transmission over the entire
measurement range with a wavelength of 300-900 nm. (see Figure 4.29). The alternation of
maxima and minima on the transmittance curves is associated with interference due to the
small thickness of the samples. It is known that the film thickness and refractive index are
important parameters for the interference of thin films. In this case, the minimum optimal film
thickness will be of the order of QWOT (quarter wave optical thickness) and it is determined
by the equation:

where, \ is wavelength, and n is the refractive index.

We can see gradually displacement of slope toward to higher wavelength in the transmittance
spectrum of the samples. To find absorbance spectra of the samples we converted transmittance

data using Beer’s law described in equation 3.35.
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Figure 4.29: Room temperature normalized transmittance spectra of the CdZnO samples with a different

nominal Zn content.

Typical absorption coefficient for C'd;_,Zn,O series with the rising Zn content are shown
in Figure 4.30 (a, b). The slope of the absorption coefficient of Cdy_,Zn,O thin films with
increasing Zn tends to blue shift, similar to those observed in the works of other authors [29,277].
To determine the optical band gap (E,,,,) of compounds we used the 2 methods described
in Section 3.5.1. We have applied the common expression valid for direct-gap and indirect-
gap semiconductors (in case of CdZnO equation 3.28 for direct electron transition was used).
Extrapolation of the linear part (ahv)? — hv dependence down to interception with the energy
axis enables us to determine the bandgap of the compounds as shown in Figure 4.30 (¢, d).
As can be seen from Figure 4.30 the introduction of Zn leads to an increase in the width of
the optical bandgap. The position of the energy axis intersection is clearly shifted toward
higher energies with an increase in the Zn concentration from 2.53 to 2.76 eV, which means an
increase in the incorporation of Zn atoms in the CdO lattice. At the same time, the sample,
where Helium was used as a carrier gas, has a wider bandgap. The ternary compound of CdZnO
at low Zn concentrations can have an indirect bandgap, due to properties of binary CdO. As
already mentioned in Section 3.5.1, the normalization of the transmission spectra affects their
slope and will distort the results of the determination when calculating using the method of

constructing the tangent to the absorption spectra.
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In the second method, in Figure 4.31 (a, b), it can be seen the influence of increasing of
the Zn content in the CdZnO ternary compound leads on the absorbance. To estimate the

approximate E, . value, the determination using the derivative of the absorbance spectrum

Yopt

was made. As can be seen from Figure 4.31 (¢, d), the introduction of Zn leads to an increase
in the £

9ope Width. The position of the derivative peaks is clearly shifted toward higher energies

from 2.60 to 2.81 eV, and, as in the calculations by the first method, similary as before the
sample with He as carrier gas has higher value of bandgap.

Comparing the results obtained by the two methods, it can be noticed that E,, _, calculated

Gopt
by the second method is wider by ~ 0.05 eV. This difference can be caused by the indirect
band gap of CdO, which distorts the calculated data. Using different carrier gases should affect
the thickness of the resulting films of the material due to the difference between helium and
nitrogen in the coefficient of thermal diffusion and the probability of collisions. The thermal
diffusion coefficient of nitrogen is lower; also this gas has a higher collision probability than
helium in the gas phase. Based on these mechanisms, the average of deposition rate with
nitrogen were higher than with helium, and therefore the material film should be thicker and
favour the incorporation of Zinc, which corresponds to the results presented in the Table 4.1.

Figure 4.32 shows the value of the optical band gap as a function of the Zn content in the
films calculated using EDX method. As seen from the curve of the figure the sample obtained
with Helium contains more Zinc and therefore its bandgap is wider since cubic ZnO has a higher
energy of band gap than CdO.

Yu et al. |271] presented that the curves of transmittance spectra of Cd;_,Zn,O layers
showed over 80 % transmittance in the visible region, which corresponds to the range 70-90 %
obtained by us. However, z = 0 and z = 0.29 had an absorption tail and a gentle curvature
slope, respectively, indicating a deterioration of optical properties. Thus, the bandgap energies
according to the x composition ratio were distributed from 2.574 (z=0, CdO) to 2.892 eV
(z = 0.21). However, the bandgap energy of z= 0.29 was observed at a slightly smaller value
of 2.834 eV due to the polycrystalline character of the sample. In our case, after an increase
in the nominal value of Zinc by more than 15 %, the value of the band gap increases not so
rapidly for both the sample obtained with Nitrogen as carrier gas, and for the sample obtained
with Helium. The value of the band gap in the latter case will be 2.82 eV for the method of
the tangent to the slope of the absorption spectra (or 2.87 eV for derivatives of absorbance

spectra), which is comparable to the results described above.
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that were used to determine the optical band gap.
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Figure 4.32: Optical band gap as a function of the Zn content in the films calculated using EDX method.

As can be seen, the ternary compound helps to solve the problem of obtaining high trans-
mittance in the visible region for materials with insufficiently wide bandgap. The limited
transparency of CdO at shorter wavelengths is improved by alloying of films with Zn. In this
case, the complexity of the problem of obtaining CdZnO will consist of competition between
the symmetries of rock-salt (RS) and wurtzite (W). The study of the structure confirms the
presence of both phases. (100) orientation dominates below the critical Zn content of less than
15 %; otherwise, phase mixing occurs, at the tops of the (100) planes observed the development
of grains with the (111) orientation with rising the Zn content, the lattice parameter decreases
and the bandgap increases. At 20 % of the nominal Zn concentration, the final films have only

about 10 % of real Zn content.
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4.3 CdTe/CdO heterostructures

Often, to improve functional characteristics, heterostructures are used, which consist of lay-
ered structures of various semiconductors, differing in the band gap. Such a structure so-called
heterojunction makes possible to efficiently control the mobility of charge carriers, their recom-
bination, and also the light fluxes inside the heterojunction. In addition, each component plays
an additional role in creating multifunctionality. Heterostructures represent an opportunity
to manufacture efficient solar cells from highly absorbing thin-film materials without substan-
tial losses through electron—hole recombination at the front surface. This is illustrated by the
structures of the CdS/CdTe and CdS/CIGS solar cells where a wide-band-gap semiconductor
(like CdS) serves as a “window” partner to a lower-band-gap “absorber” where most of the power
is generated [278]. On the other hand, the CdTe/CdO system may be of interest due to its
potential applications in short-wavelength optoelectronic devices [279]. However, the growth
of high-quality CdTe/CdO heterostructures is very difficult because of the large lattice mis-
match (38.4%) between both materials; therefore, the determination of the growth parameters
at which the desired material properties can be obtained is an important task.

Despite the fact that there are many different methods for producing heterojunctions,
MOCVD is one of the main ones. In this section, we present some of our structural and
electrical results of obtained CdTe/CdO heterostructures with a smoother surface and pre-

ferred orientation [100]. Structural and morphological characterizations were carried out using
SEM, AFM, and XRD research, and for electrical characterization KPFM was used.

4.3.1 Structural characterization

We have previously proved that R-plane (1102) sapphire is well suited for the growing of
CdO(100y and GaAs with orientation [100] is good to use for CdTe(1gpy. In Figure 4.33, we see a
diffraction pattern of CdO. The spectrum has 2 series of peaks, which correspond to sapphire
(blue) and cubic CdO (red), respectively.

Before starting the study of the formation of heterostructures, we studied each of the layers
separately using previous results of our scientific group [59, 180]. Following these studies the
starting point for the CdTe growth was the temperature of 284 °C' for the growth of CdTe on
GaAsop). Having a constant growth temperature value and changing the ratio of precursors
from 0,12 to 1, we noticed that at a value of Ry /;;—0.5 the surface of the samples was flatter,
and the CdTe films had (111) orientation, as shown in Figure 4.34.
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Figure 4.34: Surface morphology of CdTe grown on GaAs at 284 °C' with different VI/II molar ratio: 0.12 (a);
0.28 (b); 0.5 (¢); 1 (d). Thickness of the samples were 190 nm, 400 nm, 650 nm and 1 um, respectively. The

insert is the XRD pattern of typical CdTe obtained in position FC with VI/II molar ratio ~ 0.5.
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Leaving the value of Ry;/;; unchanged at 0.5, the growth temperature was varied in the
range of 284-380 °C' with increment of 10 °C'. As can be seen from Figure 4.35, with an increase
in temperature, the surface morphology becomes more uniform, but at 340 °C, pyramidal
structures begin to appear, which disappear at temperatures above 360 °C'. At the same
time, in the temperature range of 340-360 °C', the thickness of the films slightly decreases
in comparison with other temperatures. XRD studies show that the peaks (111), (311), and
(511)/(333) correspond to C'dT ey, as well as peaks (200) and (400), which belong to GaAs
are seen at all range of growth temperature. Since the XRD pattern at 350 °C' exhibits only
peaks of the (100) family, this temperature was chosen for the growth. The pyramidal structure
of the surface morphology observed at this growth temperature is typically related to the (100)
orientation. The chosen temperature is in the middle of the growth temperature range at
which we obtain a similar surface morphology. Micrographs of surface morphology and X-ray

diffraction patterns are shown in Figure 4.36.

10.0ky.8 6TITOORT™ T

Figure 4.35: Surface morphology of CdTe grown on GaAs with VI/II molar ratio equal to 0.5 at different
temperatures, °C: 284 (a); 304 (b); 320 (c); 340 (d); 360 (e) and 380 (f) Thickness of the samples 720 nm,
1 pum, 1 pm, 800 nm, 700 nm and 900 nm, respectively.

Using the Te/Cd precursors ratio at which the surface of the samples was flatter and
more uniform (Ry;/;;=0.5) and varying the value of time and temperature of growth, we
conducted the growth of CdTe/CdO/R-sapphire (with VI/II molar ratio 0.5 and 2 for CdTe)
and CdO/CdTe/GaAs heterostructures (with VI/II molar ratio 0.5 for CdTe). Growth time
for CdO was 30 min and for CdTe - 60 min (Figure 4.37). In this case, if the CdO layer was
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Figure 4.36: Surface morphology with cross section (a) and XRD patterns (b) of CdTe film deposited at
350 °C growth temperature on GaAs (100) substrate. Thickness of film was 750 nm.
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Figure 4.37: Surface morphology with cross section of CdTe/CdO (a, b) and CdO/CdTe (c, d) heterostructures
grown into R-plane sapphire (a, b) and GaAs (c,d). VI/II molar ratio was: 0.5/5 (a); 2/5 (b); 5/0.5 (¢ and d)
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deposited on the R-plane sapphire, then N, was used as the carrier gas, and Hy was used for the
CdTe layer grown onto GaAs substrate. This was done because it was previously found that
this choice is better for CdTe films’ growth. It was found that an increase in the Te ratio leads
to an increase in the thickness and roughness of the film. It is worth to note that, we could not
get flat heterostructures with orientation [100]. If the bottom CdO layer had orientation [100],
top layer was no flat and had orientation [111] or both.

Thus, we carried out the growth of heterostructures in 2 steps, where the layer of CdTe
was deposited onto the surface of CdO film previously grown on sapphire substrate. The first
step consisted of the growth for a short time at a lower temperature to increase the density
of nucleation points, while the second step we maintained a higher temperature, which should
provide us obtain layers that meet our structural requirements.

A series of CdTe/CdO heterostructures were grown, where the CdTe layer was deposited
during 60 min on a smooth C'dO(y0) layer preliminarily grown on R-sapphire. Firstly, layers
were grown with reduced temperature during 2,5 min at 295 °C' and later deposition temper-
ature was increased in the range of 330-370 °C' with an interval of 10 °C. Other experimental
parameters for obtaining the samples are shown in Table 2.7. All samples had rough surface
morphology with thickness in order 220 nm for 330 °C' and 300-330 nm for the rest tempera-
tures (340-370 °C'). At lower temperature, the surface processes take place slower due to the
velocity of the surface reaction, which is sensitive to temperature; therefore, the growth pro-
cess is kinetically limited by the surface reaction (see Section 2.4.1). XRD studies have shown
that in the obtained heterostructures, the CdTe layer had both (200) and (111) orientations.
The reason for this behavior is related with the mismatch between the lattice parameter of
CdO (4,69 A) and CdTe (6,49 A). Typical surface morphology and XRD pattern of CdTe/CdO
heterostructure are presented in Figure 4.38 and growth results are shown in Table 4.2

As in previous experiments, although the lower layer had the orientation [100|, we could
not obtain the upper layer with the same orientation. A comparison of the XRD intensities of
the CdTewo0) and CdTeq 111y peaks showed that the highest ratio R of 0.7 was obtained at 350
°C' and decreased with increasing or decreasing temperature (Table 4.3).

The AFM characterization was used to study the surface morphology in more detail. Sam-
ples were measured at several points. The average rms roughness value for each sample was
taken. Some measurements were duplicated one day after for comparison of results. All samples
showed values in the range 45410 nm. Typical roughness distribution presented in Table 4.3.

Figure 4.39 (a) and (b) shows the topographic image and the contact potential difference
(CPD) of the site with the same surface area for the sample grown at 350 °C, which were
measured simultaneously. CPD implemented between the tip of the microscope needle and the
sample surface using the Kelvin probe force microscopy (KPFM) on base on the AFM described

above. The main task of measuring this series of samples was to determine a difference in the
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Figure 4.38: Surface morphology of CdTe/CdO heterostructures grown into GaAs substrate with different
2nd step growth temperature, °C: 330 (a); 340 (b); 350 (c); 360 (e); 370(f). In Figure (d) presented XRD

pattern of the sample grown at 350 °C.
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Sample T of growth, °C' t, min Ratio (VI/II)  Crystal Substrate
orientation

CO1012 (CO1015) 304 15 5 100 R-sapphire
step 1: 295 2.5

CT1044 0.5 111, 100 CO1015
step 2: 350 57.5
step 1: 295 2.5

CT1046 0.5 111, 100 CO1012
step 2: 330 97.5
step 1: 295 2.5

CT1048 0.5 111, 100 CO1012
step 2: 370 57.5
step 1: 295 2.5

CT1052 0.5 111, 100 CO1012
step 2: 340 57.5
step 1: 295 2.5

CT1055 0.5 111, 100 CO1012

step 2: 360 57.5

Table 4.2: The main parameters of the growth of the heterostructure CdTe/CdO

Second step Roughness, nm CPD (FWHM), mV
Sample CdTe(400)/CdTe(111)
temperature, °C
CO1012 8 768 (63)
CT1046 330 0,065 45+5 150 (69)
CT1052 340 0,184 50£10 28 (44)
CT1044-01 45+5 219 (73)
350 0,637
CT1044-08 4010 160 (74)
CT1055-01 40+5 50 (94)
360 0,316
CT1055-12 30£5 -72 (51)
CT1048-09 90+5 599 (195)
370 0,198
CT1048-21 60£10 321 (40)

Table 4.3: The main parameters of growth and data obtained using KFPM method.

work function of the samples in dependence of the surface morphology. This information will
be important if this heterostructure will be used in the development of electronic devices and
it will be necessary to form metallic electrodes for contacts. Samples were measured on the top
of CdTe layer of heterostructure at several points. In Figure 4.39 (b), bright and dark areas

associated with higher and lower surface CPD zones, respectively, can be distinguished.
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Figure 4.39: Typical AFM image (a) and ACPD map for CdTe surface of CdTe/CdO heterostructure
(b). Distribution of roughness size (¢) and distribution of potencial (d) in different part of CdTe surface
(Tyrowth = 350 °C).

From a comparison of both images, a clear correlation was established between the morpho-
logical faces and the surface CPD. Differences in CPD can be attributed to changes in surface
charge density. Although the faces belong to the same crystallographic family, they are not
electrically equivalent.

To determine the different charge regions present in the sample, the distribution of the
surface contact potential within the region of Figure 4.39 (b) was measured, as shown in Fig-
ure 4.39 (d). The distribution shows only two peaks centered around +232 mV and 4302 mV
relative to the average surface contact potential of the entire image (Table 4.3). The width of
the distribution peak is due to boundary effects and/or sample inhomogeneities. At the same
time, the differences in CPD are larger than the typical noise of these measurements (20 mV)
and therefore they cannot be artefacts. Therefore, only two types of “charge domains”, with an
average surface contact potential difference of 70 mV, are present in the sample. Tennyson [280]
claims that local variations in the open-circuit voltage (Voc) are due to the fact that different
grain orientations can act as distinct centers for recombination within the material. For CdTe

surface different grain interfaces showed different Ve
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Figure 4.40: Topography of surface (a, d), CPD map (b, ¢) and 3D model of CPD distribution on the sample

surface (c, f).

To know how the surface morphology affects CPD, we built a 3D model where the dis-
tribution of the potential over the surface was superimposed on the surface structure itself
(Figure 4.40). As can be seen from the obtained image, the top of the grains has a higher
value of CPD than the grain boundaries (GBs) between them. This may indicate the absence
of significant recombination, which is explained by inversion in the GB core [281]. Changes in
GB core currents can be attributed to changes in the GB band bending. Such changes may
be due to differences in oxidation state between GB. In addition, it is likely that differences
in measurement geometry due to surface roughness and physical dimensions of the AFM tip

cause some variability between GB.
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4.3.2 Parameters for the growth of heterostructures

Since the deposition of the material for a long time with a preliminary decrease in tempera-
ture at the first step for the formation of nucleation points did not allow to obtain CdTe/CdO/R-
sapphire heterostructures with relatively smooth surfaces and a preferred orientation (100) of
the upper CdTe layer, which would repeat the film’s orientation of the CdO layer, it was decided
to change the growth parameters. Therefore, the preparation of CdTe films on the CdO surface
was carried out in only one step with Ry7/;7=0.5, and the growth time decreased to 5 min.
The final CdTe film hadn’t a continuous layer, but only granules are formed, as presented in
Figure 4.41 (a). Since these growth parameters of the film did not meet our expectations, the
VI/II molar ratio was raised up to 4 without increasing the growth time (Figure 4.41 (b)). The
deposited upper layer turned out to be very rough, and its thickness was 140 nm. Reducing the

growth time to 1.5 min only reduced the layer thickness and did not allow making the surface

more uniform Figure 4.41 (c).
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Figure 4.41: Surface morphology and X-ray patterns of CdTe/CdO/R-sapphire samples with shorter growth
time and greater ratio: a) 5 min growth with Rw1/11=0.5; b) Increasing Ratiovr/rry up to 4; ¢) Leaving the

same Ratioy,r; but decreasing growth time to 1.5 min.
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Expecting that a decrease in temperature would make possible to obtain a thinner CdTe film
and a simpler surface morphology, it was decided to obtain the layer at a temperature of 295 °C’
with 1 min of growth time. This led to the formation of CdTe particles on the CdO surface,
which did not completely cover the surface of the lower layer. An increase in the VI/II molar
ratio up to 5.25 only made possible to obtain large particles. At an even lower temperature

of 250 °C', no CdTe particles were formed on the surface even when the VI/II molar ratio was

doubled to 10.5, as can be seen in Figure 4.42.

Figure 4.42: Surface morphology with top image (inlet part at the right side) of CdTe/CdO/R-sapphire
heterostructures with 1 min of growth at 295 °C' (a, b) and 250 °C' (c, d) and with different VI/II molar ratio:
R=4 (a); 5.25 (b and ¢); 10.5 (d).
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Since the low growth temperature with a high VI/II molar ratio did not allow to produce of
CdTe, in order to solve this problem, it was decided to return to the 2-step growth of the upper
layer. First deposition step was carried out for a short time in 1 min with low temperature at
250 °C' to increase the density of nucleation points and then passed evaporation of only one of
element at higher temperature 295 °C' during 6 min. In the case when only the DIpTe precursor
was supplied in the second step, the deposited film had a no smooth surface morphology and
a high thickness up to 100 nm. On the other hand, when only DMCd was used, solitary CdTe
particles formed on the surface, which did not completely cover the lower CdO layer. The

results are shown in Figure 4.43.
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Figure 4.43: Two-step growth of CdTe layer of CdTe/CdO/R-sapphire heterostructures with a Ratio~ 10.5:

a) Te precursor only; b) Cd precursor only.
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4.3. CdTe/CdO heterostructures

None of the growth parameters considered above made possible to obtain a thin continuous
CdTe layer with a relatively uniform smooth surface. Developing the idea of obtaining the top
layer at a low temperature of 250 °C, single-step growth with growth time increased to 3 min
was performed. Finally sample with a relatively continuous CdTe upper film about 30 nm thick
was obtained. It can be seen in Figure 4.44 that the surface morphology is islands that are

closely spaced.

x50.0k 1.00 pm

20.0kV x100k : . 20.0kV x150k

Figure 4.44: Surface morphology with tilted cross-section view (a), and films thickness determination (b)

obtained for sample with a relatively continuous film.
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heterostructures

4.3.3 Electrical characterization

The morphological and structural features of CdTe/CdO heterostructure are still largely
unexplored. Methods such as atomic force microscopy (AFM) and Kelvin probe force mi-
croscopy (KPEFM) allow research to be done at the nanoscopic level. Since surface defects of
films can affect the surface potentials and the rate of recombination of charge carriers, the study
of the magnitude of the surface potential depending on the surface morphology for different
illumination power may be of scientific interest.

To conduct surface photovoltage (SPV) studies for a series of samples in the temperature
range 330-370 °C we used the same AFM equipment, which system parameters for SPV mea-
surements described in Section 3.6.4. The SPV is defined as the light-induced variation of the
surface potential, in other words, the potential difference with and without irradiation [282].
Surface potential Vs what is the energy difference between the bottom of the conduction band
at the surface and the bottom of the conduction band in the semiconductor bulk was measured.
Due to the different signs of the equilibrium surface potential, the SPV is positive in n-type
semiconductors and negative in p-type semiconductors [282]. The investigation of the local
range of the samples showed that dark and light lines on the Kelvin map what corresponds
to grains and hollows on the samples, respectively, are less informative. More distinct results
of SPV presented plane parts of samples. SPV variety as a function of the light irradiation
presented in Figure 4.45.

When the light power of the incident radiation decreased, the SPV value also decreased
accordingly, as shown in the Figure 4.45. The calculated measurement values with a lamp
power of 100 W for other samples are presented in Table 4.4.

Some samples were re-measured after several days to confirm the results and exclude the
influence of the instrumental factor. Depending on the results obtained, the samples were

divided into 3 groups:
e SPV > 0: 350, 370 °C;
e SPV=0: 360 °C}
e SPV < 0: 330, 340 °C.

The difference in the SPV values may be due to the different surface morphology of the
CdTe/CdO heterostructures, depending on the growth temperature. As mentioned in Sec-
tion 4.3.1, at the temperature range 340-360 °C', the surface morphology of the samples had
a pyramidal structure, which could affect the distribution of photons during irradiation of the

samples.
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Figure 4.45: SPV distribution as a function of an applied power of laser with and without illumination
obtained for sample CdTel048 (370 °C)

Other reasons affecting the distribution of SPV are:

— At photon energies larger than the band gap a saturation value should be reached by
the SPV value, but often strong electron-hole recombination at the surface significantly
reduces the SPV.

— Photocarriers can also contribute to a change in tip-sample capacitance as the result of
photon-generated charges in the sample or tip. A change in the capacitance gradient can
lead to a potential systematic error in SPV measurements using KPFM techniques, as

was shown in [283].

— Although XRD measurements showed peaks related to the composite materials of the
heterostructure, in air-exposed surfaces a thin oxide layer is expected to be formed. Ad-
sorption of oxygen may produce a T'eO; layer. Adsorbed oxygen results in the formation

of Cd and or Te oxides, which also produce surface states [284].
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heterostructures

Sample Second step CdTe(400)/ CPD SPV
temperature, °C° CdTe(111)  (FWHM), mV ~ (100 W), mV

CO1065 768 (63)
CT1046 330 0,065 150 (69) -11
CT1052 340 0,184 28 (44) 4

219 (73) 10
1044 350 0,637

160 (74) 10

50 (94)
1055 360 0,316

-72 (51)

321 (40) 40
1048 370 0,198

440(61)/ 490(41) 30

Table 4.4: Data obtained using the KFPM method with a 633 nm laser and other results for films obtained

with different growth temperatures.

As can be seen above, the growth conditions of CdTe/CdO compounds affect the structural
state, optical and electrical properties of the material. An in-depth study of the growth, as well
as the characteristics of the materials being studied, allows selecting the growth parameters for
obtaining compounds with a good crystalline quality, which increases the possibility of their
use in various fields of electronics. Since, over the past decades, the problem of obtaining
and studying of CdTe/CdO compound was considered only in a few papers and CdTe/CdO
heterostructures obtained by the MOCVD method almost were not reported, this work was
supposed to show the complexities of obtaining and characterizing heterostructures. Research
has shown that it is difficult to grow good compounds with a planned flat surface, not only
because of the lattice mismatch, but also not easy selection of growth parameters. Because of
the surface relief, the distribution of the surface potential is not uniform, which could affect

the properties of the build device based on that heterostructure.
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Chapter 5

Effect of Mn alloying on structural and
optical properties of ZnTe and ZnS
thin films

In this chapter we are going to present the influence of the alloying of Mn on the structural
and optical properties of the binary compounds ZnS and ZnTe deposited by the close-spaced
vacuum sublimation method onto glass at different growth conditions. The morphology of the
surface, preferred orientations, grain size and density, lattice parameters, spectral dependences
of the transmittance T (\), reflectance R (A) and the absorption (\), as well as the bandgap

(Eg) for each material were measured and the corresponding parameters calculated.

5.1 Structural and morphological studies of Zn,_,Mn,Te
thin films

5.1.1 Morphological study

Magnetic and optoelectronic properties of materials depend strongly on structural and sub-
structural characteristics. Lattice deformations and extended defects such as grain boundaries
and dislocations affect the crystalline quality and can dramatically change material’s proper-
ties. The knowledge of the structural and substructural characteristics can allow not only the
work to the optimization of growth parameters, but also the selection of specific samples having
the desired characteristics (crystallite size, dislocation content) for high quality technological
devices.

Morphology of the samples was studied through scanning electron micrographs by using a

Hitachi S-4800 microscope, described in Section 3.1.3. Figure 5.1 depicts the SEM micrograph
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Chapter 5. Effect of Mn alloying on structural and optical properties of ZnTe
and ZnS thin films

of Zny_,Mn,Te alloyed films with nominal 5 % of Mn grown over glass at different substrate
temperatures during 10 min. It is worth to note that growth temperature will also act on
the Mn content as we will see later. Grains in the range from 600 to 800 nm with a density
2x 102 —1x 102 N Ps/m?, respectively, can be observed at the selected substrate temperature.
The grains seem to be randomly distributed, without any organization over the substrate.

Studies have shown that a thin-crystalline transition layer was formed, followed by the
growth of crystallites oriented in the plane (111) parallel to the substrate. It should be noted
that the stage of nucleation is forced because it is associated with an unfavorable process of
formation of a new interface - the interface between the new phase and the medium in which
this phase arises. To do this, it is necessary to perform a certain work, that is, to overcome some
energy barrier, after which the system already spontaneously passes into a thermodynamically
equilibrium state with the formation of macroscopic components. The cross sectional study of
samples shows that at high substrate temperatures there is a transit from the growth of long
to small columns. This fact is due to the very rapid growth of crystallites oriented by (111)
plane parallel to the film surface. As a result, an axial texture [111] of film growth was formed,
perpendicular to their surface.

The thickness of the samples at lower temperatures 623-723 K (350-450 °C') was 2.5 pm,
and with increasing temperature, this value first decreased to 2.15 pm at 773 K (500 °C'), then
to 1.9 um at 823 K (550 °C). At higher temperatures, the film thickness increased to 2.8 um,

which could indicated rapid columnar growth of crystallites.

Figure 5.1: Top (upper) and cross-sectional (lower) SEM images obtained from the Znj_,Mn,Te films with
5% of nominal values of Mn deposited over glass at various substrate temperatures: (a, d) Ts = 623 K (350 °C);
(b, ¢) Ty = 773 K (500 °C); (c, ), Ty = 923 K (650 °C).
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5.1. Structural and morphological studies of Zn,;_,Mn,Te thin films

Crystalline grains in the nano and submicron range are constituted by several crystallites,
defined also as single regions separated by grain boundaries [285]. Consequently the obtained
values from SEM images can only be considered as values related to the overall size of the
particle, the homogeneity of films, the absence of cracks, holes, etc. If they have a single or
polycrystalline structure can be only assessed by XRD and/or HRTEM measurements, as we

will present in Section 5.1.6

5.1.2 Lattice constant and Mn content

The crystalline quality of an alloyed material generally decreased as a consequence of the
incorporation of foreign elements into the host. Therefore, we used XRD measurements (see
Section 3.4.1) to assess the degree of distortion in the parent lattice which additionally affect
the substructural characteristics of the material. Figure 5.2 shows conventional 260-0 patterns
from Zn,_,Mn,Te films grown at different substrate temperatures. Diffraction peaks indicate
that all samples have cubic structure with an apparent (111) preferred orientation as found also
by other authors [286]. No diffraction peaks of extraneous phases were found, suggesting that
Mn?** ions substitute into the Zn?* sites. The positions of the diffraction peaks are near to
the ones corresponding to the crystallographic card of ZnTe (JCPDS-ICCD No 00-015-0746).

The lattice parameter for each sample was obtained by plotting the diffraction order (h* +
k% + %) versus 2sin @/ where 0 is the Bragg angle and A the wavelength of the X- ray beam.
Calculated values of the lattice parameter as a function of the substrate temperature are shown
in Table 5.1 and Figure 5.3 (a). It is observed that the lattice constant at a substrate temper-
ature of 623 K (350 °C') is larger in respect to the value indicated ZnTe in the crystallographic
card, being this enlargement indicative of the Mn incorporation. However, this incorporation
decreases as the substrate temperature increases and it could be due to re-evaporation of Mn at
higher temperature or non incorporation, as it will be discussed later. It can be seen from the
Figure 5.3 that the lattice parameter calculated for the samples at growth temperatures more
than 500 °C' (773 K) does not change, in fact the calculed lattice parameter coincides with the
values for Zn'Te, which means the absence or reduced Mn incorporation into the samples.

The effect of Mn atoms on the ZnTe lattice can be analysed from a comparison among ionic
radii. The ionic radius of Zn?* ions is 88 pm but the one of Mn depends on the coordination
number and the spin states of the ions [287]. The crystal ionic radius of Mn*" ions for the low
spin state is 81 pm and for the high spin sate is 97 pm. The experimental large value of the
lattice constant with the presence of manganese can suggest that the Zn?" ions are partially
substituted by the bigger Mn?* ones, that is, those with a high spin state. The increase of the
lattice constant with the Mn content has been found also by other authors during the growth

of Zny_,Mn,Te ingots [288]. However a shortening has been also reported from ZnMnTe films
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Figure 5.2: X-ray diffraction patterns from Zni_,Mn,Te films with 5% of nominal values of Mn deposited
over glass at various substrate temperatures: 623 K, 723 K, 773 K, 823 K, and 923 K (350 °C, 450 °C, 500 °C,
550 °C, and 650 °C).

on MnTe buffer layers grown on sapphire [42], and it has been explained as a residual thermal
strain that was not ruled out.

For determination of the content of manganese, we used the Vegard’s law (section 3.4.7):

a(Zny_ Mn,Te) =x-a(MnTe)+ (1 —z) - a(ZnTe) (5.1)

where a(MnTe) and a(ZnTe) are the lattice constants, that correspond to the zinc-blende phase
(0.6105 and 0.6337 nm), respectively [289,290]. The values z of the Vegard’s law are reflected
in Table 5.1 and Figure 5.3 (b).

The second method of Mn concentration measurement was EDX analysis coupled with
HRTEM (see section 3.2.4). The partial incorporation of Mn in the ZnTe lattice can be seen in
Table 5.1. Although the trend is the same, that is, the Mn content decreases as the substrate
temperature increases, the interval of the EDAX values (0.7 to 2.05 %) is lower than that from
the Vegard’s law expected from the XRD measurements (0 to 3.7 %). All these quantities
are considerably lower than the nominal value (5 %) thus the decrease in the concentration
of manganese can be due to its re-evaporation from the substrate or not incorporation in the
transport and deposition processes with increasing growth temperatures. Also as a consequence
of re-evaporation or change in the growth mechnism a decrease in the thickness of the film
samples with increasing growth temperature at the same deposition time can be expected, as

mentioned in [291] and experimentally found by us in Section 5.1.1.
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5.1. Structural and morphological studies of Zn,;_,Mn,Te thin films

623 K 723 K 73 K 823 K 923 K

Substrate t ture K (°C
ubstrate temperature K (°C’) (350 °C') (450 °C) (500 °C) (550 °C) (650 °C)

Lattice constant by XRD (nm)
(£0.0004 nm)
Mn content by Vegard’s law (at %)

0.6111 0.6107 0.6102 0.6102 0.6102

3.7 1.9 0 0 0
(£0.1)
Mn content by EDX (at %)

2.1 2.0 0.6 0.6 0.7
(£0.1) [292]

Table 5.1: Lattice constant and Mn content determined by XRD and EDX in Zn;_,Mn,Te films with 5% of

nominal values of Mn deposited over glass at various substrate temperatures.
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Figure 5.3: Lattice constant of Znji_,Mn,Te films deposited over glass: (a) as a function of substrate
temperature [from 623 K to 923 K (350 °C' to 650 °C)]; (b) as a function of the Mn content, obtained from the
Vegard’s law.

The problem of the incorporation of Mn into Zn;_, Mn,Te films was considered earlier [293]
by using the PIXE method. A series of samples were used for this study. which was obtained
with the same growth conditions, but with a higher content of the nominal Manganese value
(10%). A typical aggregate PIXE spectrum (on the logarithmic scale) from the Zn,_,Mn,Te
films irradiated with a proton beam is shown in Figure 5.4. It can be seen that only the lines
of the solid solution components (Zn, Mn, and Te) are present in the spectra. The results
of analyzing the elemental composition of the samples are presented in the Table 5.2. The
table shows that the Zn;_,Mn,Te films exhibit a trend towards a decrease in the manganese
concentration from 3.04 to 1.62 at % when the layer growth temperature 7, is increased from
623 to 823 K (from 350 to 550 °C'). The obtained films were characterized by Te predominance
(Cznsrin/Cre =0.73-0.91).

155



Chapter 5. Effect of Mn alloying on structural and optical properties of ZnTe
and ZnS thin films

L T
LhTeu; a €L
10000 |Tews b
] 10000
10004Zn -
E 10004
8 3 3
S 100 £
= 100 ]
o E = 1005
S 3™
10+ 104
1 T T T T T T v T T T v T 1” v T — 7717
2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 18
Energy,keV Energy.keV

Figure 5.4: The total PIXE spectrum from the Zn;_,Mn,Te (x ~ 10 % nominal) films induced by the proton
beam with energy 1.5 MeV (on the area 200x200 pm). The substrate temperature Ts: 623 K [350 °C] (a),
723 K [450 °C] (b).

Ts, K (°C) Zn, wt % Mn, wt % Te, wt % Zn,at % Mn,at % Te,at % Czn/Cre Czninin/Cre
623 (350) 28.9 1.70 69.40 43.47 3.04 53.49 0.81 0.87
723 (450) 30.55 1.09 68.36 45.68 1.94 52.38 0.87 0.91
823 (550) (sample 1) 26.22 1.02 72.76 40.51 1.88 57.61 0.70 0.74
823 (550) (sample 2)  26.34 0.88 7278 40.72 1.62 5766 0.71 0.73

Table 5.2: The elemental composition of the Zn;_,Mn,Te (x ~ 10 % nominal) films.

The measurements were conducted at several points on the sample surface and the used
method revealed no changes in the solid solution composition over the film area. The maps of
manganese distribution in Zn,_,Mmn,Te films obtained at different deposition temperatures 7T’
are presented in Figure 5.5. The scales next to the maps (0-80 and 0-50) denote the number
of quanta of characteristic X-ray radiation induced by the focused proton beam in the range of
energies corresponding to the MnKa peak in the spectrum in Figure 5.4. These studies showed
that the distributions of Mn denoted with different shades of green in Figures. 5.5 (a) and
5.5 (b) were somewhat different from each other, as its concentration decreases with increasing
film-deposition temperature. However, the differences in the characteristic X-ray radiation
yield in each pixel are at the level of statistical variability. Therefore, we may conclude that

manganese is rather evenly distributed over the sample area.
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Figure 5.5: Maps of Mn distribution on the sample surface at a scanning step of 4 um (the surface area is
200 x 200 pm). (Scan area is 50 x 50 pixels). The substrate temperature Ts: 623 K [350 °C] (a), 723 K
[450 °C] (b).

5.1.3 Out-plane orientation of films

The high intensity of the (111) peaks in XRD patterns suggests an out-plane preferred
orientation. However, this can only be confirmed from texture analysis [294]. For this case,
we calculated texture coefficients Cy., (proportional to the number of crystallites in a given
orientation) and the degree of preferred orientation, f (numerical value that indicates how

much a crystal is well oriented).

Both parameters depend on the number of analyzed peaks N. In present study, N = 6,
since only 6 major directions of X-ray diffraction are involved (111, 200, 220, 311, 331 and
422). The corresponding value for a perfectly oriented sample is f = /N —1 = 2.236. The
values obtained from XRD patterns of films are reflected in Table 5.3. This table shows texture

coefficients and preferred orientation of films, allowing an accurate comparison among samples.

It can be observed in Figure 5.6 that at lower temperature [623 K (350 °C)] the dominant
crystallographic planes of crystallites are the (111) for all temperatures. This means that the
film has a degree of preferred orientation f near to that of a perfectly (111) oriented sample.
As the substrate temperature increases, the number of crystallites with a (200) orientation
increases and f decreases. Finally at high temperatures the value of f is again almost equal
to that of a perfect oriented sample. This preferred orientation (111) is typical for ZnTe films,

mainly when it is alloyed with metals [295].
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Mn content by

(LL1)(200) (220) (311) (33D (422) f prov o doey (40.1)

Perfectly oriented 2.236

623 K (350 °C) 0.567 0.119 0.020 0.048 0.042 0.104 2.087 2.1
723 K (450 °C) 0.518 0.409 0.029 0.103 0.076 0.198 1.875 2.0
773 K (500 °C) 0.520 0.379 0.045 0.123 0.088 0.165 1.881 0.6
823 K (550 °C) 0.572 0.109 0.005 0.027 0.040 0.101 2.110 0.6
923 K (650 °C) 0.568 0.149 0.005 0.027 0.039 0.104 2.092 0.7

Table 5.3: Texture coefficients and degree of preferred orientation (f) in Znj_,Mn,Te films with 5 % of

nominal values of Mn deposited over glass at various substrate temperatures.
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Figure 5.6: Texture coefficients for some major directions obtained from Zn,_,Mmn,Te films deposited over
glass at various substrate temperatures [from 623 K to 923 K (350 °C' to 650 °C)].

5.1.4 In-Plane orientation of films

Pole figure analyses from HRXRD measurements were performed to determine both the
relative quantity of (111)-oriented crystallites and the in-plane orientation of films (more details
in Section 3.4.6).
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The experimental pole figures of the {111} reflection for all samples are shown in Figure 5.7.
All of them exhibit a broad peak with its maximum at an inclination angle = 0 deg and a
broad ring at an inclination angle at v ~ 70 deg. As a reference, the theoretical position of poles
for a perfectly oriented sample is also shown, where three poles can be observed 70 deg apart
from the central one. The measured broad ring corresponds to these lateral poles, indicating a
random azimuthal orientation. This is known as uniaxial orientation or fiber texture, being in
this case the [111] direction the fiber axis [296]. In other words, the films possess an out-plane
preferred orientation but no in-plane preferred orientations.

The area under the peak (111) is related to the amount of material that diffracts in this
direction; consequently, we can use this area to evaluate the quantity of cristallites that are
oriented within a certain inclination angle. Figure 5.8 supplies, for all samples, the calculated
mean diffraction intensity in the azimuthal angle as a function of the inclination angle v from
0 to 90 deg. The central peak is broad, with a half-width at half maximum of about 10 deg.
From the integration of this peak intensity, we can determine the percentage of (111)-oriented
crystallites as the ratio of the area named A (reaching an inclination angle of 10 deg) in respect
to the sum of the two areas named A and B. Results are shown in Table 5.4 for (111)-oriented

crystallites within two inclination angles.
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Figure 5.7: Poles for the (111) reflection: (a) theoretical position for a perfect oriented sample in the cubic
system. Experimental values for Zn,_,Mn,Te films deposited over glass at various substrate temperatures:
(b) 623 K (350 °C), (c) 723 K (450 °C), (d) 773 K (500 °C), (e) 823 K (550 °C), (f) 923 K (650 °C).
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Figure 5.8: Average intensity over the rotation angle of the symmetrical (111) reflection as a function of the
inclination angle ¥ from Zn;_, Mn,Te films deposited over the glass at different substrate temperatures: 7"
623 K (350 °C), 723 K (450 °C), 773 K (500 °C), 823 K (550 °C'), 923 K (650 °C'). The area marked as A is

proportional to the crystallites having a (111) orientation within 4+ 10°.

Mn content by EDX

(at %) (£ 0.1)

Substrate 623 K 723 K 773K 823 K 923 K
temperature K(°C) (350 °C') (450 °C') (500 °C') (550 °C) (650 °C')
Oriented within £ 10°  91.7% 92.2% 85.3% 82.9% 90.0%
Oriented within 4 20°  95.5% 95.4% 92.8% 91.9% 95.3%

2.1 2.0 0.6 0.6 0.7

Table 5.4: Percentage of (111)-oriented crystallites within a defined inclination angle for Znj_, Mn,Te films

deposited over glass at different substrate temperatures (uncertainties ~ 0.1 percent)

The calculated values indicate that the percentage of particles with a (111) orientation
within £ 10 deg is high (in the range of 83 to 92 %) for all the substrate temperatures. The
variation in the percentages is small, decreasing with the substrate temperature but finally
increasing at the highest temperature of 923 K (650 °C). That is, the most of the grains
(~ 90 %) present a (111) preferred orientation within an inclination angle of £10 deg in all the

range of growth temperatures.
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5.1. Structural and morphological studies of Zn,;_,Mn,Te thin films

Once the crystal lattice, Mn content and preferred orientation have been ascertained, sub-
structural characteristics of films will be analyzed. This will allow the determination of the

mono or polycrystalline character of grains that constitute the film.

5.1.5 Coherent scattering domain and microdeformations

As it is known, the X-ray line broadening is caused not only by the instrumental effects
but also by small coherent scattering domain (CSD) sizes L, microdeformations (¢ = Ad/d)
and distortions of the crystal lattice, in our case the staking fault (SF) defects. The average
CSD size L and the microdeformation grade € in Zn;_,Mn,Te samples was studied by the
broadening of (111)-(222) and (200)-(400) X-ray diffraction peaks of the cubic phase. This
procedure has allowed defining the substructural parameters of the films in directions normal
to these crystallographic planes. Table 5.5 lists the results obtained by the Cauchy and Gauss
approximations as well as the more precise data from the X-ray line threefold convolution
method. Figure 5.9 shows results of comparison made for the CSD size and microdeformation
grade in ZnTe and Zn;_,Mn,Te films calculated using the three approximations.

Table 5.5 and Figure 5.9 point out the CSD sizes and microdeformation values calculated by
the threefold convolution method are intermediate between the data produced by the Cauchy
and Gauss approximations having a good correlation. Further we discuss the results from the
threefold convolution method as the most precise one [247].

As it can be concluded from the Table 5.5 and 5.9, insamples obtained under temperatures
higher than 623 K (350 °C') the CSD size decreases from L ~ 136 nm down to ~ 81 nm, then
it increases up to ~ 131 nm for samples grown at 773 K (500 °C') in the direction normal to
the (111) planes (Figure 5.9, a). The maximum size for samples obtained at Ty = 600-650 K.
At the same time, the microdeformation grade in this direction decreases with increasing 7T
from € ~ 1.12 x 1073 to € ~ 0.62 x 1073 and increases up to 0.89 x 1072 (Figure 5.9, b). This
behavior is similar to what we obtained before in paper [297], where values of CSD size and
microdeformation grade were minimum with Tg ~ 600-650 K. The nature of this phenomenon
can be explained by transit from the growth of long to small columns at the higher temperature,
as was commented in Section 5.1.1. It should be noted that, as mentioned earlier, that the
samples obtained at the growth temperature of > 773 K (500 °C') almost do not contain
manganese.

These results are in a good agreement with those obtained previously by our scientific group
for pure Zn'Te films at similar growth conditions [298], and the functions L — T and ¢ — T are
presented in Figure 5.9 (a, b) on the curve 4. Parameters L and ¢ take their minimum value in
the temperature range 650-750 K, where a change in the thickness of the films is observed and

a transit from the long to small columns appears. At the same time, Zn;_,Mn,Te films
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Mn content Lnm e, 103

T, by EDX (hkl) Approximation by From Approximation by From o, K
K (°C) (at %) Gauss  Cauchy  convolution Gauss  Cauchy  convolution

623 )1 (111)-(222) 122.18  196.79 13632 131 0.82 1.12 079
(350) (200)-(400) 4222 4841 42.62 1.42 0.49 1.08

723 90 (111)-(222) 80.44 92.00 81.16 0.84 0.19 0.62 0.31
(450) (200)-(400)  63.77  90.95 63.98 1.76 1.05 1.38

773 0 (111)-(222) 12291  178.96 131.69  1.08  0.58 0.89 ool
(500) (200)-(400) 101.22  200.07 12564 188 1.41 1.69

823 0 (111)-(222) 132.56  210.46 146.98 118 0.71 1.00 ool
(550) (200)-(400) 109.14  243.10 146.05  2.05 1.61 1.88

923 07 (111)-(222) 123.36 174.91 130.96 1.01 0.51 0.82 0.03
(650) (200)-(400) 103.63  198.22 12620  1.75 1.28 1.56

Table 5.5: Substructural characteristics of Zny_,Mn,Te thin films.
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Figure 5.9: The effect of a decrease in Mn content with growth temperature T on the CSD size (a) and the
microdeformation grade (b) of the films Zny_, Mn,Te (1-3) and ZnTe (4) films. The approximation is done
according to Cauchy (1), Gauss (3), and to the method of threefold convolution (2).

had the larger CSD size and microdeformation grade compared with pure ZnTe films (Figure
5.9 a, b).

Using the known microdeformation values and well-known expression for Hooke’'slaw o = E'¢
(where, E is the modulus of elasticity and ¢ is the strain) we have calculated the microstress
grade in the Zn;_,Mn,Te samples (Table 5.5). Microstress level in Zn;_,Mn,Te was calcu-
lated acording microdeformation (Table 5.5) and using the Young’s value (F = 64 GPa) for
ZnTe [298]. It is shown that the microstress grade in Zn,_, MnxTe films changes in the interval
o= 39.5-71.6 MPa. These values are close to the values of ZnTe films (o = 20-83 MPa) [298]
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and lesser than o = 67.5-130.7 MPa, that was found by us for Zn,_,Mn,Te samples with 10 %
Mn nominal content grown in the range Ty = 423-823 K (150 -550 °C') during 15 min. [297].

The three different ways of the CSD size calculation show a typical feature: the calculated
values Lno0)> L(nnn). Suppose as in [298-301] that the CSD have equal axes but the SF mainly
contribute to the line broadening responsible for the reflection from the (hhh) planes. Then,
it is possible to determine the total concentration of deformation and growth defects o’ in

Zny_Mn,Te films according to the equation 3.24. These results are listed in Table 5.5.

T, K (°C) (hkl) L,nm & 10> o, MPa pg, 10" lin/m?  p., 10" lin/m?®  py., 1014 lin/m?

623 (350)  (111)-(222) 136.32 1.12  71.6 1.61 1.47 3.49
723 (450)  (111)-(222) 81.16 0.62 395 455 0.45 3.23
773 (500)  (111)-(222) 131.69 0.89  57.0 1.73 0.93 2.88
823 (550)  (111)-(222) 146.98 1.00  64.0 1.39 1.17 2.90
923 (650)  (111)-(222) 130.96 0.82  52.8 1.75 0.80 2.68

Table 5.6: Microdeformations and dislocation density in Zni_,Mn,;Te films.
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Figure 5.10: Dependence of the dislocation density with growth temperature in Zn;_, Mn,Te (1-3) and ZnTe
(4) films: at the subgrain boundaries (1), in their bulk (2) and the general dependence (3, 4) using the reflexion
(111)-(222).
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As can be seen, the average SF concentration in Zny_,Mn,Te films decreases with reducing
Mn content from 1.73 % (T = 623 K [350 °C]) up to 0.03% (T = 923 K [650 °C|) where very
small content of Manganese was found. For unalloyed ZnTe films these values decreased in the
growth temperature range Ty =323-693 K from 0.67 % to 0.04 % [299]. As established, the
size of the CSDs is significantly smaller than the grain size. If we assume that the CSDs are
equiaxed, and the additional broadening of lines (111) and (222) is associated with the presence
of SF, then with the rising of 7 the value of the Mn content decreases, the stability of the
cubic phase of the compounds increases, the probability of disruption of the order of planes
(111) alternation decreases, the concentration of SF decreases accordingly.

Table 5.6 and Figure 5.10 illustrate the results of calculating density of dislocations at the
CSD boundaries, in the CSD bulk and the total dislocation density in Zn,_, Mn,Te films made
according to the equations 3.19-3.21. As it is seen, the data have a good correlation within
order of magnitude. These films are characterized by considerably low values of the dislocation
density pr. = (2.68—3.49) x 10 (see, for example, [240], where for ZnTe films p = (6.3—16.6) x
10 lin/m?). As the Mn content decreases with rising substrate growth temperature, the total
dislocation concentration in the films defined from the (111-222) reflexions is decreasing (Figure
5.10). However, this value is larger than in pure ZnTe films pr. = (7.8 — 21.4) x 107! lin/m?
obtained by our scientific group at similar growth conditions [298]. Thus, the manganese
alloying leads to the degradation of the substructure of Zn'Te films: the microdeformations and
microstresses as well as the concentration of the SF and dislocations are increased, as could be

expected due to the incorporation of the foreing element into the host Zn'Te.

5.1.6 Crystallite size and density of dislocations

In polycrystalline materials, as is our case, information about the average shape, crystallite
size, and lattice strain can be determined by X-ray line profile analysis [302].

The classical Williamson-Hall plot (equation 3.16) of data from Zny_,Mn,Te films grown
at 350 °C' is shown in Figure 5.11 (a) and reveals a strong anisotropy. To avoid misleading, in
this section we will use the celsious degress (°C') for temperatura and K for the dimensionless
factor (as mentioned in the section 3.4.4). When the broadening AK of line profiles is plotted as
a function of K2C}; to determine the value of « (constant that depends on the Burgers vector
and the density of dislocations) and Dy, (Figure 5.11, b), it can be seen that points are grouped
along three straight lines with more or less the same slope, but with different intersections at
K = 0. This is indicative of different crystallite sizes that depend on the order of diffraction.
The longer crystallite size is that given by planes [hhh|, followed by the corresponding to the
planes (£00), (311) and (331), being the shorter one that defined by planes (220) and (422).

Taking into account the angles between crystallographic planes, the behaviour is consistent
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with a prismatic crystallite having the [111]| direction along the column axis; this direction
defines the longitudinal size of crystallite (Dj,,) and the last set of planes, the transversal size
(Diransy)- The second set of planes is constituted by planes inclined in respect to the column
axis (see Figure 5.11, ¢). The obtained crystallite sizes follow the relation Djyng > Dinciined >
Diransy- If films are formed by such a type of crystallites, the intense {hhh} peaks in the XRD
pattern would be produced by a majority of crystallites in vertical position, while the other
low-intensity peaks would be produced by few inclined or lying crystallites. These elongated
crystallites evidence a columnar growth and confirm the strong texture of films. Columnar
growth is usually explained by a faster growth in a particular direction. On non crystalline
substrates, generally nuclei grow in a random orientation, but if the growth is faster in a
privileged direction, this orientation eventually outgrows the other orientations and becomes

dominant.

We solved the equation 3.18 in H? by the least-squares method (Figure 5.11, d). The value
of C'hoo has been determined from the elastic constants of ZnTe [303] and the data indicated
in [304,305], giving in Chgo=0.24, value which results to be the same for the screw and edge
dislocations. On the contrary, the value of q depends on the proportion between screw and
edge dislocations. The best linear regression provides ¢~2, which indicates a clear prevalence

of screw dislocations in the ZnMnTe films [303].

The mean longitudinal and transversal crystallite sizes have been calculated from XRD
patterns of Zn,_, Mn,Te films grown at different temperatures and are shown in Figure 5.12 (a).
The mean longitudinal size of crystallites at low temperature [623 K (350 °C)]| is about 170 nm,
increasing considerably with the substrate temperature, when Mn content goes down. The
mean transversal size also increases, but less. The aspect ratio Djgng/Diransy goes from 3.5 to
5 as the Mn content decreases. Comparing the transversal size with values obtained by SEM,
we conclude that columnar grains is turn consists of crystallites, that is are polycrystalline, like

the whole array of the obtained films.

If the broadening of the line profile is attributed to dislocations, according to the MWH
method the slope « can be expressed [305,306] by:

w2 pl/?
a=—0 (5.2)

where p is the dislocation density, b is the modulus of the Burger’s vector of dislocation (for
f.c.c. crystals b = a//2, where a is the lattice constant) and B is a constant that can be taken
as 10 for a wide range of dislocation distribution [307|. Calculated values as a function of the

substrate temperature are shown in Figure 5.12 (b).

165



Chapter 5. Effect of Mn alloying on structural and optical properties of ZnTe

and ZnS thin films

0,025
a) ZnMnTe WH 350°C
0,020 - 422
220
L]
= ® 331
' 0,015+ 400
£ Mg 444 g
x
<
0,010 200 ® W 333
222
0,005 - 111 B Longitudinal
a @ Inclined
Transversal
0,000 . g ;
0 3 6 9
K(nm™)
G Sl
c)
(200) plane
Limliﬂéd
L|w ]
: : (20-2) plane
i I
f= = = = - I
I,’f - - :
(112) plape :
(4-2-2) plane‘I
_____ - ,
! L!ransv :

12

0,025
b) zZnMnTe MWH 350 °C
0,020 - a2 g
20 - _--7 400
- A - 3 -7
g015 -~ M, @-~ e
= 200 e S AR
g o .
0010,  _.-® =
o =77 333
- H L itudinal
| - 222 ongitudina
0,005 & @ Inclined
11 =
ransversal
0,000 ; ; :
0 3 6 9 12
K2C(nm?)
3,6x10*
d) znMnTe MWH 350 °C
—3,0x10 -
* 40.0 B Longitudinal
—é % ~. @ Inclined
52,4)(10 7 ~ Transversal
< o8 T 3
“21,8x10* e
g X . 220
s ., ~ 4331
7 1,2x10™ d
< X 422 ~. 1M i
a Igzz
6,0x10° 339,
444 o l
0,01 — ; S
0,0 0,2 0.4 0,6
HZ

Figure 5.11: From data of Zni_,Mn,Te films grown at 623 K (350 °C): (a) Williamson-Hall plot; (b)
Modified Williamson-Hall plot; (¢) some crystallographic planes in a prismatic crystallite; (d) plot of eq. (3.16)

as a function of HZ2.

850
B D longitudinal, for {hhh}
@& D transversal, for {220} and {422} ]
e
'

650 4 e
T .
£ ZnMnTe L
= .

-

@

450 - -
5 n-
E -7
“=S - .
g. 250 T [ ]
Is} ||

a) L
50 (et o s SN
300 400 500 600

Temperature (eC)

700

1,6x10"
ZnMnTe

 1,2x10"

= .. m

43' Bl

£ %

2 8,0x10™ N

AY

§ L

R ~

i IR

o 14 | o

5 40x10 . m
=] b) S

300 400 500 600 700

Temperature (eC)

Figure 5.12: (a) Crystallite size and (b) dislocations density from Zny_,Mn,Te films deposited over glass at
different substrate temperatures [from 623 K to 923 K (350 °C' to 650 °C')]. Dashed lines are a guide for the

eye.

166



5.1. Structural and morphological studies of Zn;_,Mn,Te thin films

Figure 5.13: (a) HRTEM image of a Zn;_, Mn,Te film grown on glass at a substrate temperature of 623 K
(350 °C"). The arrow indicates the direction of the Burger’s vector for the screw dislocations, the same as the
axis of this type of dislocation. (b) Inverse FFT (IFFT) filtered image of crystallite showing the distribution of
dislocations along the [111] direction. The arrows mark some of the screw dislocations that can be observed in

the squared area of the FFT image.

The average dislocation density is slightly Mn content dependent, maintaining a value of
about 1-10% m~2 at low and mean temperatures and reducing its value until about 2-10'* m =2
when the growth is made at the higher temperature of 923 K (650 °C)with lowest value of Mn
content.

The presence of dislocations is confirmed by HRTEM. Figure 5.13 (a) shows the HRTEM
image of a crystallite of a Zn;_,Mn,Te film grown at 623 K (350 °C') in which the direction
of the Burger’s vector has been indicated. For screw (111) dislocations, the Burger’s vector,
the dislocation line, and the axis of the screw dislocation follow the same direction. In Fig-
ure 5.13 (b), the Inverse FFT (IFFT) filtered image of this previous image is shown which
reveals the distribution of dislocations along the [111] direction. The arrows in Figure 5.13 (b)
mark some of the screw dislocations that can be observed in the squared area of the FFT image.
Similar images for the samples, obtained at lower temperatures, exhibit a higher concentration

of dislocations, thus confirming the results obtained by XRD.
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5.2 Structural and morphological properties of Zn,_,Mn,S
thin films

5.2.1 Morphological study

The morphological studies of the obtained layers show that the Zn;_,Mn,S films deposited
on glass substrates at T,>373 K (100 °C') were polycrystalline, as can be seen in Figure 5.14.
At growth temperatures < 373 K was not possible to obtain high-quality films of solid solu-
tions Znqi_,Mmn,S. In semiconductor layers, surface stress, apparently related to the thermal
expansion coefficient, can led to cracking and further destruction of the continuity of the layer.
Unlike Mn-free ZnTe, Mn-free Zn$S [308] has a cubic structure only at low temperatures (< 573 K
[300 °C']). Therefore, it may be interesting to note how the Mn aloying will affect the structural
properties of the compounds depending on the temperature. The surface morphology of the
Zni_,Mn,S films deposited from semiconductor-grade blend with 7 % of nominal Mn content

is depicted in Figure 5.14.

Figure 5.14: Surface morphology of Znji_,Mn,S films (T, = 1473 K) obtained at different substrate temper-
atures Ty: 373 K [100 °C](a); 523 K [250 °C] (b); 723 K [450 °C](c).

At low substrate temperatures Ts < 623 K (350 °C) columnar growth of compound films
was observed. This was due to secondary nucleation during the film growth, where ready-made
solid particles of material become nucleation points. As a result, the shape of the grain turned
to spherical and this trend disappeared at higher growth temperatures. Comparing with the
results for pure ZnS [308] grown at similar conditions, it can be seen that the Mn alloying in

the ZnS:Mn compound slightly changes the film morphology from uniform to granular. Futher
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morphology changing at higher temperatures can be explained by a change in the mode of
growth of samples from planar (7s < 673 K [400 °C]) to columnar (75 > 673 K [400 °C]).
Hwang et al. [309] grew ZnS thin films onto glass substrates using RF magnetron sputtering
at various substrate temperatures ranging from 373 K to 673 K (from 100 °C to 400 °C). The
XRD measurements of the films revealed that crystallinity of the films can be improved by
rising temperature from 373 to 623 K (100-350 °C'), where FWHM values were ranging from
0.384° to 0.141° and increased at 673 K (400 °C) to 0.154°, that indicate the deterioration of the
crystallinity of the films due to defects or/and dislocations. Authors presented that crystallite
size and grain size were increased from 22.3 to 60.8 nm and from 27.2 to 69.4 nm with rise
in the growth temperature in the range 373-623 K (100-350 °C'). For 673 K (400 °C) those
values were decreased to 55.6 and 66.2 nm, respectively. Comparing with our results, it can be

assumed that the deterioration of the film quality is due to a change in the growth mode.

The films had a grain size D = 0,65-3,13 pm while it increased with increasing substrate
temperature Ty from 373 to 773 K (100 to 450 °C'). Thickness decreased in the range d ~ 2.25-
3.58 um with the rise of growth temperature. As the analysis showed, the calculated values
of D were similar to ZnS films deposited under similar conditions [310] and similar to those
obtained in the work [157]. On another hand, authors of ref. [311] synthesized manganese-
doped ZnS nanoparticles by coprecipitation of Zn?T and Mn?* precursors and got the size of
crystallites an order of magnitude smaller than in this work. Grains density was in the range
0.18 x 10*2 — 1.16 x 10'? NPs/m? and decreased with the rise of growth temperature, as result

of reduction of Mn content, as it will be discussed later.

In |312] Mote et al. presented that the average crystallite size decreases with increasing Mn
concentration in the Zn;_,Mn,S samples prepared by a chemical method at room temperature.
It means that the Zn?"* ions are replaced by Mn?* ions in the ZnS matrix without changing
the cubic structure. Since the ionic radius of Mn>t ions can be both 0.81 A(for the low spine
state) and 0.97 A(for the high spine state), reduction of average crystallite size may be due to

small grain growth in comparison with undoped ZnS nanocrystals.

5.2.2 Lattice constant and Mn Content

It is assumed that the process of films growth of all compounds with the zinc blende structure
(ZB), on glass substrates, will be basically similar. Initially, the formation of a thin-crystalline
transition layer at the substrate occurred with subsequent cone-shaped expansion of crystallites
oriented (111) parallel to the substrate. In the case of films with the wurtzite structure (W),
the peculiarities of their structure formation were mainly determined by the rapid growth of

crystallites that presented oriented plane (0002) parallel to the substrate.

169



Chapter 5. Effect of Mn alloying on structural and optical properties of ZnTe
and ZnS thin films

Diffraction patterns of Zn,_,Mn,S films obtained at different substrate temperatures are
shown in Figure 5.15 (b). As can be seen from the figures on the diffractograms of the
Zni_Mn,S layers, reflections from the crystallographic planes (111), (200), (220), (311),
(222), (400), (331), (420) of the cubic phase are recorded. Diffraction peaks corresponding
to elemental Mn (300) observed at a lower temperature (373-623 K [100-350 °CY), disappears
at higher temperatures (> 623 K [350 °C|), and this means that the Mn has been better alloyed
into the crystal lattice of ZnS (or the concentration of elemental Mn has decreased greatly). At
the same time, in the majority of cases the dominant intensity is the peak (111), this indicates
the presence of brightly expressed texture in films.

A study using high-resolution transmission electron microscopy (HRTEM) CSS-grown poly-
crystalline ZB CdTe thin films [313] showed that WZ phase in A3 Bg compounds can exist in a
special form, as thin WZ layers buried in the ZB host crystals. Thus, they cannot be detected
easily by x-ray diffraction. WZ phase formation occurs due to violation of the order of stacking
of close-packed layers: the transition from a three-layer packaging ... AaBbCcAaBbCec... typical
of ZB, to a two-layer ... AaBbAaBb..., which causes the formation of WZ, where the letters Aa,
Bb, Cc indicate three possible projected positions of the atoms The result is a cubic matrix with
a large number of SF and WZ phase layers. The geometric relationship between the WZ layers
and the ZB host is [111]ZB||J0001]WZ, [110]ZB||[1120]WZ. It should be noted that the thin WZ
layers are always found in high-density planar defects regions. On the other hand it is worth to
note that mismatch is not found between these two structures. Dimitrova et al. [314] carried
out the analysis of the energetic establishment of polymorphic phases in the A;Bg compounds,
according to which the stability of the ZB structure rise in the series CdS-ZnS-CdSe-ZnSe-
CdTe-ZnTe. Therefore, the existence of an unstable hexagonal phase in ZnMnS films can not
be discarted.

In addition, the powder mixture (charge) that was used to obtain Zn;_,Mn,S thin films was
two-phase, which led to the formation of wurtzite peaks at a higher temperature (Figure 5.15
a). The reason for this lies, first of all, in the energy plan of the formation of sphalerite and
wurtzite phases of compounds. Earlier it was found [308], that for zinc sulfide the difference
between these energies (the formation of sphalerite and wurtzite) is equal to "0", that is, the
formation of these phases has the same probability. At T, > 673 K (400 °C) in the films of
Zny_.Mn,S, there are traces of the hexagonal phase, the amount of which somewhat increases
with increasing temperature of growth. Most reflections on the diffractograms are fixed only
from the plane (100),,, (002),,, (100),, and (103),, wurtzite, indicating the presence of a texture
in this phase (Figure 5.15 b). Thus, high-temperature deposited films films Zn,_, Mn,S with
7 % nominal values of Mn are two-phase. Comparing with pure ZnS films [301], this compound

also tends to change the cubic structure to hexagonal with increasing growth temperature
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Figure 5.15: The diffractograms from the charge at RT (a) and the Zni_,Mn,S films (b) obtained under

different growth temperatures.

at > 573 K (300 °C). In the works [315-318], it was shown that the main peaks for ZnMnS
films are the peaks corresponding to the (111), (220) and (311) planes, of the cubic zinc¢ blend
structure.

Usually, the real concentration value of the alloyed element does not coincide with its nom-
inal value. For this reason, it is necessary to calculate this value after the process of obtaining
films. Investigation of the elemental composition of solid solutions films was carried out using a
the scanning electron microscope REMMA-103-01 by X-ray spectral microanalysis (EDX). For
the transition from mass concentration to atomic (C;), the standard equation is used in [319].
To estimate the deviation of films composition from stoichiometry, relations of atomic con-
centrations Cy/Cp, Cairn/Cp were used. The corresponding results for a serie of samples
obtained under different growth substrate temperature conditions are given in the Table 5.7.
Measurements were made at several points of the samples surface. It should be noted that,

with the accuracy of the method, not significant changes of the solid solution composition over

the area of the film was detected.

Ts, K (°C) Zn,wt % Mn, wt% S, wt% Zn,at% Mn,at% S,at % Cz,/Cs Czuinm/Cs

Charge 72.50 6.86 20.64 59.06 6.65 34.29 1.72 1.92
373 (100) 20.94 8.55 70.51 11.97 5.82 82.21 0.15 0.22
523 (250) 73.09 3.00 23.91 58.27 2.85 38.88 1.50 1.57
623 (350) 69.70 3.17 27.14 54.11 2.93 42.96 1.26 1.33
673 (400) 69.06 2.61 28.33 53.15 2.39 44.46 1.20 1.25
723 (450) 66.69 1.96 31.35 50.16 1.75 48.08 1.04 1.08

Table 5.7: Results of the determination of the elemental composition of Zni_,Mn,S films with 7% of nominal

values of Mn
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The typical characteristic spectra of X-ray spectroscopic microanalysis of the blend (charge)
and the Zn;_,Mn,S film sample are shown in Figure 5.16. It can be seen that only the lines
of major solid solution components are manifested in the spectra. Uncontrolled and residual
impurities were not observable within the limits of the method accuracy. Figure 5.17 shows the
dependences of the atomic concentration of Cyy, (a) and the ratio Cy,/Cs, Czninm/Cs (b) at
the growth temperature of the material. The dashed lines in the figure correspond to the value

of these ratios in the charge powder.
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Figure 5.16: (a) Fragments of characteristic X-ray spectra (EDAX) from the charge and (b) the film of the
Zni—eMn,S solid solution obtained at Ts = 673 K (400 °C) and Te = 1273 K (1000 °C).

Studies have shown that with increasing in the substrate’s temperature from 7Ty = 373 K to
723 K (100 to 450 °C'), the atomic concentration of manganese in Zn;_,Mn,S films monotoni-
cally decreases from 5.82 to 1.75 at. %, while the ratio of the total atomic concentration of zinc
and manganese (Cz,1m) to the atomic sulfur concentration (Cy) initially increases from 0.22
to 1.57 (Ty = 623 K [350 °C]), and with further growth of the substrate temperature begins
to decrease to 1.08 (Ts = 723 K [450 °C|) which is the more ideal stoichiometric proportion
between the elements. These results correlate with EDAX analysis for ZnS films presented in
paper [309] for the growth temperature 373-673 K (100 to 400 °C') where it was shown, that,

the Zn/S ratio of the films decreases from 1.19 to 1.04 with rising of substrate temperature,
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Figure 5.17: Dependence of the atomic concentration of Cyp, (a) and the ratio Cz,/Cs (1), Czpnt+rn/Cs (2)
(b) at the growth temperature.

following to a more ideal value of the ratio. As can be seen from the table, the atomic Mn
content in the charge did not differ much from the initial nominal values of 7 % calculated
before the synthesis of the charged material thas was 6.65 at. % measured using EDX.

The lattice parameter of A; Bg compounds is a characteristic extremely sensitive to changes
in the stoichiometry of the material, the introduction of impurities, oxidation, and so on, in fact
precisely the lattice parameter measurerent makes possible to study these changes. The lattice
constant of the material was found both at the position of the K,; component line (111) under
the XRD definition at the large corners, and by the Bradley-Jay and Nelson-Riley extrapolation
methods. It should be noted that the results obtained by both extrapolation methods are well
consistent with each other, although the Nelson-Riley method is more accurate (0.001 % vs.
0.002 % for the Bradley-Jay method [320]). Therefore, we will mainly analyze the results
obtained by Nelson-Riley method.

The results of determining the lattice parameter of Zn;_,Mn,S films by two approximative
methods are given in Table 5.8. The dependence of the stable lattice values obtained with the
use of three methods from the substrate temperature is shown in Figure 5.18.

Experimental values of the lattice parameter of Zn;_,Mn,S in the films are in the range of
a = 5.6406-5.6424 A. As can be seen from Figure 5.18, the dependence of the crystallographic
constant of the film material on the growth temperature is complex. In the layers obtained at
low temperatures (75 ~ 373 K [100 °C]), the chalcogenide lattice parameter is slightly higher
than in high-temperature ones. With further increasing substrate temperature up to 673 K
(400 °C'), an increase in the crystallographic constant to a = 5.644 Awas observed. Finally, in

the high-temperature conditions, the lattice period again decreases to a = 5.6406 A. The beha-
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T. K (°C) Mn content by A ZnMnS s A

’ EDX (at %) Nelson-Riley (+ 0.01 %) Bradley-Jay (£ 0.02 %) Line [111]
373 (100) 5.82 5.6423 5.6322 5.6465
523 (250) 2.85 5.6424 5.6420 5.6428
623 (350) 2.93 5.6420 5.6404 5.6430
673 (400) 2.39 5.6440 0.6353 5.6500
723 (450) 1.75 5.6406 5.6367 5.6425

agzns = 5406 A, agrrns=5.6147 A

Table 5.8: The value of the lattice parameter of Zn;_,Mn,S found by different methods.
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Figure 5.18: The dependence of lattice parameter of Zn,_, Mn, S film as a function of the growth temperature
T,: W - Using position of the K, component line [111]; e - by the Bradley-Jay method; and A - Nelson — Riley

method. The error bar shows the deviation from the average value calculated for each point.

viour of the lattice parameter at 673 K (400 °C') can be explained by the fact that this point can
serve as a transition temperature when the growth mode changes from planar to columnar at
T > 623 K (350 °C'). At the same time, XRD measurements showed that at this temperature the
hexagonal phase begin to appear, and the number of crystallites with ones in samples obtained
at the (222) orientation sharply increases in comparison with the average temperatures (523-
623 K [250-350 °C]). For comparison, ZnS films had smaller lattice parameter, which varied
in the range a = 5.4060-5.4196 A, depending on the temperature [321]. In [322] the authors

produced ZnS:Mn in nanocrystalline form by a chemical method and obtained somewhat smaller
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values of the lattice period, while this parameter decreased with increasing concentration of
manganese in compounds.

Earlier in Section 5.1.2 was mentioned that the crystal ionic radius of Zn*" ions (88 pm) is
lesser than ionic radius of Mn?" ions with high spin sate (97 pm). The large value of the lattice
constant with the presence of manganese suggests that the Zn?" ions are partially substituted
by the bigger Mn?* ones, which corresponds to the results obtained in this work, similarly to
the case of Zni_,Mn,Te.

5.2.3 Out-plane orientation of films

The high intensity of the (200) peaks in the X-ray diffraction patterns indicates the preferred
orientation of the films, which we will check using texture analysis (texture coefficients and the
degree of preferred orientation, f). As well as Zny_,Mn,Te, Zn,_,Mn,S films had N = 6 of
major directions of X-ray diffraction (111, 200, 220, 222, 400 and 420). The value for a perfectly
oriented sample is f= /N — 1 = 2.236. Texture coefficient values and preferred orientation of

films obtained from X-ray diffraction patterns of the samples are shown in Table 5.9.

(111) (200) (220) (222) (400) (420) f Mn content by

EDX (at %)
Perfectly oriented 2.236
373 K (100 °C) 0.039 2486 0.174 2.121 0.278 0.901 0.966 5.82
523 K (250 °C') 0.115 2.850 0.164 1.160 0.580 1.132 0.924 2.85
623 K (350 °C) 0.044 3.756 0.166 1.041 0.229 0.764 1.282 2.93
673 K (400 °C) 0.068 3.761 0.234 1.724 0.212 0.810 1.368 2.39
723 K (450 °C) 0.061 2.965 0.222 1.637 0.216 0.898 1.236 1.75

Table 5.9: Texture coefficients and degree of preferred orientation (f) in Znj_,Mn,S films with 7 % of

nominal values of Mn deposited over glass at various substrate temperatures.

Figure 5.19 shows that for all temperatures the dominant crystallographic planes of crystal-
lites are the (200). For a lower temperature [373 K (100 °C')| a large number of crystallites have
an orientation (222), but this value decreases at meddle temperatures (523-623 K [250-350 °C1)
and again increases at high temperatures (673-723 K [400-450 °C|]) when hexagonal phase ap-
pears. The degree of preferential orientation f is almost 2-2.5 times less than the corresponding
to a perfectly oriented sample and increases with rising of substrate temperature. The texture
coeflicients of the (200) oriented samples, as well as the value of f, increase with an increase
in the substrate temperature, but at 723 K (450 °C'), this value decreases, which is associated

with an increase in crystallites with the (222) orientation.
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Figure 5.19: Texture coeflicients for some major directions obtained from Zn;_,Mn,S films deposited over
glass at various substrate temperatures [from 623 K to 923 K (350 °C' to 650 °C)].

5.2.4 In-plane orientation of films

Calculations using the method of reversed pole figures allowed to reveal the axial growth
texture [111] in Zny_,Mn,S films with cubic structure, whose perfection improved with in-
creasing samples thickness and depended on the growth temperature of obtained films (see
Figure 5.20).

Reducing texture of layers of chalcogenides in the region of lower substrate temperatures
is most likely due to the change in the mechanism of growth from planar to columnar with
increasing temperature, as described above. The deterioration of the texture quality of reversed
pole figures of the (111) axial cubic peak of the films with increasing growth temperature was
observed. It should be noted that a similar texture in the cubic films of A;;By; compounds is
predominant, since this direction coincides with the direction of the fastest growth of crystallites.
For higher temperatures, structures (220) or (420) can also be observed. These films show

similar results with the ZnS compounds that was obtained by our group in another work [308].
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Figure 5.20: The dependence of the pole density P; on the angle ¢ between the axis of the texture and the
normal to the reflecting plane for the Zny_,Mn,S films: T,=373 K (M), 523 K(e), 623 K (A), 673 K (V),
723 K(«1).

The substructure features of Zn;_,Mn,S films obtained by the CSVS method have been
little studied. Nevertheless this compound has unique photoluminescence and magneto-optical
properties, which can be affected by the substructural properties. Thus the study, analysis and
control of this propreties can drive the possibility of creating a number of devices for micro-
and optoelectronics, photovoltaics and spintronics. The effectivity of these devices depends on
the transport properties of the free charge carriers (by the product of the mobility and the
lifetime), which in turn are determined by the recombination centers concentration in the ma-
terial. In this case, the surface and various types of semiconductor defects will play the role of
recombination centers, which determines the carrier lifetime. At the same time, dislocations,
which form small-angle edges of coherent scattering domains (CSD) and lead to microdeforma-
tion, can act as traps for charge carriers, determining the electrophysical characteristics of the
material, including the lifetime of charge carriers. Similar role is played by two-dimensional
defects such as staking fault (SF) . This determines the relevance of the study of ZnMnS films
substructure parameters, depending on the growth parameters at which the concentration of
defects is minimised.

To determine the size of the CSD, the level of microstrain and the concentration of SF defects
and dislocations in the chalcogenide films, we have chosen the X-ray method. For research of
semiconductor films of chalcogenides, the newest methods of analysis of diffractograms were

rarely used. It is usually assumed that the physical extension of the diffraction peaks is due
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only to the dispersion of the CSD, then Debye-Sherer formula can be used to determine the
size of the sub-blocks L = kA/f cosf, where k ~0,9 — a coefficient that is weakly dependent on
the grain shape.

As the study has showed, the physical broadering of reflections from planes (111) and (222)
of the cubic phase was greater than (200) and (400). If we consider that the CSDs are evenly
axial, and the additional extension of the lines (111) and (222) is related to the presence of the
SFE defects, we can calculate the concentration of the total amount of deformation and defects
in films [238].

5.2.5 Coherent scattering domain and microdeformations

It is known [238,240] that the magnitude of the microdeformations € and the size of the
CSD L can be used to estimate the average density of dislocations in films. The study of
substructural characteristics of films was carried out by extension of the diffraction peaks (111)
- (222) and (200) - (400).

The results of the determination of L and € in Zn;_,Mn,S films obtained using X-ray peaks
of the Cauchy and Gauss functions without taking into account the anisotropy in the samples
are given in Table 5.10. As can be seen from the table, the values of the substructural param-
eters obtained using various approaches are fairly well correlated with each other. However,
these approximations allow us to determine only the largest values of the size of the CSD (L)
and the smallest values of the microstrains € in the films, because the experimental error of
determination of these values can reach (30-50) %.

For films of chalcogenides with a cubic structure, the dependence of the size of the CSD in
the direction [111] and the level of microdeformations in the same direction on the substrate
temperature obtained using the triple convolution method are shown in Figure 5.21. As can
be seen from the figure, the dependence, of L and ¢ the values obtained by different methods
is similar.

Since the parameters of the films substructure, determined by the triple convolution method,
are the most accurate and close to the real ones; further discussion of the results and additional
calculations were carried out for them.

As a result of the research, it was established (Figure 5.21, a) that with increasing T the
size of the CSD in the direction perpendicular to the planes (111) in the Zn;_,Mn,S films,
initially increases from L ~ 42 nm to L ~ 84 nm, and then decreases to L. ~ 61 nm There is an
optimal temperature interval T, = 500-550 K, in which this size is maximal. The unllowed ZnS
films obtained by us [308] had a lower CSD (L = 33.4-54.0 nm), which suggests that alloying
with Mn increase crystalline regions of material that scatter coherently (and, in general, they

show no coherence with the neighboring ones).
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Mn content Lnm e, 103

T, by EDX (hkl) Approximation by From Approximation by From o, K
K (°C) (at %) Gauss  Cauchy  comvolution Gauss Cauchy  comvolution

373 589 (111)-(222)  41.7 49.1 42.3 1.73 0.71 1.32 919
(100) (200)-(400)  22.8 20.0 23.0 2.08 1.47 1.35

523 - (111)-(222) 717 1274 83.9 2.45 1.83 2.16 -
(250) (200)-(400)  34.1 46.1 35.7 2.73 1.66 2.22

623 503 (111)-(222)  41.7 47.3 42.1 1.47 0.48 1.10 193
(350) (200)-(400) 709 1214 81.4 2.02 1.43 1.76

673 230 (111)-(222) 534 76.6 56.9 2.29 1.45 1.90 .
(400) (200)-(400) 82.0 1738 106.2 2.37 1.88 2.16

723 175 (111)-(222)  58.0 78.0 60.6 1.82 1.02 1.47 0.02
(450) (200)-(400) 587 721 59.9 1.22 0.50 0.94

The level of microstrain in Zn;_,Mn,S films in the direction [111] monotonically increases
with growth temperature from ¢ ~ 1.32 x 1072 to ¢ ~ 2.16 x 1073, and then decreases to
e ~ 1.10 x 1073, after that it rises again to ¢ ~ 1.90 x 1073 (Figure 5.21, b). This generally
correlates with other similar data for ZnS films [308] - the level of microstrains has changed
in the range ¢ = (0.83 — 2.72) x 1073 depending on the temperature. This change at higher

temperatures can be explained by transit from the growth of long to small columns at T > 623 K

Table 5.10: Features of Znj_,Mn,S films obtained using various approximations.

(350 °C'), as well as a reduction of Mn content.
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Figure 5.21: Influence of the substrate temperature Ts on the size of the CSD L (a) and the level of microstrains
(b) of the Znq_,Mn,S films. Approximation was performed by the method of Cauchy (1), Gauss (2) and triple
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5.2.6 Density of dislocations and defects

From the determined values of microdeformation, using the expression for Hooke’s law
o = FEe, we have calculated the level of microstress in the investigated films (Table 5.11). In
doing so, the values of Young’s modulus for ZnS films £E=75 GPa [301] and microdeformation
from the table 5.10 was useds. It is shown that, for example, in ZnMnS films, the level of
microstress varies in the interval o = (7,04-13,83) MPa. The obtained values of the microstrain
level in the range T, = 373-723 K (100-450 °C') were an order of magnitude lower than the
values for pure ZnS deposited by close-spaced evaporation [301], where Kurbatov at al. showed
a monotonic decrease in ¢ from 200 MPa to 30 MPa with an increase in substrate temperature
in the range of 373-973 K (100-700 °C).

The low-angle boundaries of the CSD of different materials are formed by dislocations, while
the dislocations, located in the volume of the block, lead to the appearance of microstrains.
This allows us to estimate the average density of dislocations in films of chalcogenides by the

magnitude of microdeformations € and the size of CSD L.

T, K (hkl) L,nm ¢, 10> o, MPa pr, 10" lin/m? p., 10" lin/m?®  pre, 10* lin/m?

373 (111)-(222) 423 132 847 1.68 2.05 1.33
523 (111)-(222) 839 216  13.83 0.43 5.47 1.10
623 (111)-(222) 421 110  7.04 1.70 1.42 1.11
673 (111)-(222) 569 1.90 12.14 0.93 4.22 1.42
723 (111)-(222) 60.6 147  9.42 0.82 2.54 1.03

Table 5.11: Microdeformation and dislocation density in Znq_,Mn,S films.

We used values L and ¢ in direction [111]. As can be seen from Table 5.5, the obtained data,
with the use of various theoretical models within the order of degree, correlate with each other.
The investigated films of chalcogenides are characterized by a rather low concentration of dislo-
cations (Figure 5.22). Calculations show that they are mainly concentrated on the boundaries
of the CSD, the volume of crystallites is practically free of dislocations. Mn content of the
compound films decreased with rise of growth temperature and the p value, determined after
the (111)-(222) reflections, first decreases, and with a subsequent increase in Ty, it increases.
There is an optimal Mn content ~ 2.9 at. % in the range of T, — 550-650 K, at which the
density of dislocations in the CSD bulk of the samples is minimal.

When determining the CSD size in chalcogenide films by triple convolution analysis, the
usually calculated values of L(x00)> Lnnny. This can be explained as follow: either the CSDs are

in fact uneven, their dimensions in the direction perpendicular to the crystallographic planes

180



5.2. Structural and morphological properties of Zn,;_,Mn,S thin films

™

Dislocation density, p
S

N }f/

»

2 /5 ’

p—
=
—
.l;
1

i

<o
ol
(F¥]

350 400 450 500 550 600 650 700 750
Substrate temperature, K

Figure 5.22: Dependence of the density of dislocations with reduction of Mn content at higher temperature
in Zni_oMn,S films: near the subgrain boundaries (1), in their bulk (2) and the general dependence (3) using
reflexions (111) - (222).

(111) are smaller than in the direction perpendicular to (200), or the CSD are equal, but their
contribution to the physical extension of the lines that correspond to the reflections from the
planes with (hhh), gives SF defects [238, 320).

Let’s consider in more detail the first assumption. As established from the research, the
size of the CSD is significantly smaller than the grain size. We can assume that these sizes in
the direction perpendicular to the [111] planes are confined to the twins, the SF defects and
the CSD themselves are in the form close to cylindrical. In this case, the height of the cylinder

Lnnny, as evidenced by simple geometric constructions, is slightly smaller than its diameter.

If we assume that the CSDs are equal, and the additional extension of the peaks(111) and
(222) is associated with the presence of SE defects, one can calculate the concentration of
the number of deformation and growth defects o/. The results of the calculation of the total
concentration (in %) of the deformation and growth SF defects o/ in the films of the compound
Zny_zMn,S are given in Table 5.10 and in Figure 5.23.

As can be seen from Figure 5.23, the total concentration of SF defects o’ in Zn;_,Mn,S
films varies with the temperature of the substrate from 2.12 % (T, = 373 K [100 K (°C)])
to 0.02 % (Ts = 723 K [450 K (°C)|). For non-alloyed compounds, the value of ZnS was

a’=0.02-1.51 % and increased with increasing temperature |308|.
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Figure 5.23: Dependence of the amount of deformation and growth defects in Zny_,Mn, S films ploted using
of eq. (3.24).

With increasing T stability of the cubic component of the film increases, the probability
of violation of the order of alternation of planes (111) decreases, respectively, decreasing the
concentration of SF defects.

The results of the research show that the features of the substructure of the chalcogenide
films are primarily due to their thermodynamic properties: small change in the energy of the
crystalline lattice during the phase transition of the sphalerite - wurtzite, low interphase energy
when these phases are isomorphic to the planes, and as a result of that, high probability of
error in the alternation of tightly packed planes. The violation of the order of laying these
planes leads to the formation of SE' defects in the films, twins and layers of the hexagonal
phase, specially conjugate to the cubic matrix. These defects finally determine the features of

the substructure of films.
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5.3 Optical (spectral) studies

5.3.1 Transmittance and Reflectance (Bandgap determination)

Transmittance spectra of Zni_,Mn,Te and Zn;_,Mn,S thin films was studied in the
spectral range of 190-1100 nm (Figure 5.24). We studied 3 series of samples with different
growth times. For the Zn;_,Mn,S films the growth time was usually 15 minutes (hereinafter
- series 1) and for Zn;_,Mn,S films growth time was 4 and 10 min (hereafter - series 2 and
series 3), respectively. Other experimental parameters can be seen in the Table 2.10. As shown
in Figure 5.24 (a), transmittance of Zn;_,Mn,S films increases upon reaching the "red border"
at 340-350 nm with the slight decreasing of wavelength at up growth temperature, and it was in
the range of T1 (65-80) % at a wavelength of 1000 nm depending on the sample. This value is
slightly lower for two-phase films [T > 623 K (350 °C')|. On the other hand, for Zn,_,Mn,Te
films a sharp fall of transmittance at wavelengths < 540 nm can be detected, which points to a
good crystallinity of the deposited films. It was found that the transmittance was in the range
Ty ~ (55 —95) % and T3 ~ (40 — 70) % for the series 2 and series 3, respectively. The various
crystallographic and phase structure and the actual composition of the samples grown under
different growth conditions causes the difference in their transmittance coefficient. As shown
above, the samples obtained at a growth temperature > 773 K (500 K (°C)) had a very low
concentration of manganese in their composition. The analysis shows that the maximal value of
the optical transmittance are for the Zn,_,Mn,Te films obtained at the substrate temperature
T, =623 K (350 °C), the minimal value corresponds to the 7, = 923 K (650 °C'). In addition, for
a given wavelength of the incident radiation and the thickness of the samples the transmittance
curves acquire an oscillating character of interference as shown in Figure 5.24 (b) and Figure
5.24 (¢). The same behavior of transmittance curves was obtained by Aqili et al. |323] for

two-sourced thermal evaporated ZnTe thin films onto glass substrate.

The diffuse reflectance reached values of Ry ~ (1—-9) % (for Zny_,Mn,S), Re ~ (1—15) %
and R ~ (15 — 30) % (for Zny_,Mn,Te) for series 1, series 2 and series 3, respectively
(Figure 5.25). A similar situation was observed when calculating the mirror reflectance of light
(Figure 5.26). Unlike diffuse reflection, in which light is reflected from all rough surfaces at
different angles, at mirror reflection, the angle of reflection of the beam coincides with the angle
of the incident light. It was observed that with decreasing Mn content the coefficient R also
increased, which is obviously due to the emergence of films with pronounced pyramidal relief,
ie increasing the surface roughness of the samples. The distance between interference peaks,
both transmission and reflection, will depend on the thickness of the films. According to the
diffraction law (Fabry-Perot interference law), the distance between the maxima (minima) of

the interference curves will decrease with rising material thickness.
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Figure 5.24: Normalized transmittance spectra of (a) Znj_,Mn,S films (series 1) and (b and ¢) Zny_, Mn,Te
films (series 2 and series 3, respectively)
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Figure 5.26: Spectra of mirror reflection of (a, b) Zni_,Mn,Te films (series 2 and 3, respectively)

The difference in the transmittance and the reflectance of films obtained at different growth
temperatures is due to different crystalline and phase structure of these samples, roughness, the
presence of defects on their surface, and the real composition of alloyed manganese. Ozutok et
al. [324] in their work showed that a decrease in the reflectivity of ZnMnS films deposited onto
glass substrates by ultrasonic spray pyrolysis technique with the increase of the Mn alloying
may be explained by the decrease of the film density. In our case, an increase in the deposition
temperature led to a decrease in the Mn content, which corresponds to this suggestion and it
is shown in the Figures 5.24 and 5.25 above.

In order to calculate the band gap of the samples, their absorbance was calculated from the
transmission using Equation 3.35. Once we have the dependence of absorbance on the energy
of the incident light beam, in order to determine the band gap of the layer, we look for the
point of maximum slope of the function. In Figure 5.27 and Figure 5.28, we presented both
the absorbance spectra for 3 series of samples, and its derivative, calculated using the ORIGIN
software, in relation to the energy of the light beam. Thus, the energy of the optical band gap
of the layers was determined from the maxima of the absorbance derivative. As can be seen
from the Figure 5.27 with the rising of the growth temperature, the intensity of absorbance
spectra increases.

In Figure 5.28 (a) can be observed that with reduction of Mn content, the position of the
derivative peak shifts towards higher energies from 3.569 eV (for 373 K [100 °C]) to 3.642 eV
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films (series 1) and (b and ¢) Zny_,Mn,Te films (series 2 and series 3, respectively)
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5.3. Optical (spectral) studies

(for 723 K [450 °C]). For middle temperatures of 523-623 K (250-350 °C'), the position of
the peak is identical, which may indicate a similar manganese content in the samples. The
obtained values of the band gap for Zn,_,Mn,S films correspond to solid solutions based on
MnS (E, = 3.1 eV [325]) and ZnS (E, = 3.66 eV for zinc-blende and E, = 3.82 eV wurzite
structure [326]) at room temperature. Hwang et al [309] indicated that in the case of ZnS
films deposited by RF magnetron sputtering on glass substrate, an increase in the substrate
temperature increases the band gap energy of the films. In their paper, as growth temperature
changed from 373 K to 623 K (100 to 350 °C'), the optical band gap was red-shifted from 3.45 to
3.79 eV, and slightly decreased to E,=3.76 eV at 673 K (400 °C'). In the case of our samples, the
increase in the bandgap with the rise of temperature is most likely associated with a decrease
in the Mn content as a result of its re-evaporation or not incorporation in the transport and
deposition processes at higher growth temperature.

Ghosh et al. in their paper [327] grown nanoparticles of ZnS:Mn by radio frequency mag-
netron sputtering technique on glass and Si substrates at a substrate temperature of 300 K.
They found that with increase Mn content from 0 to 9 % the direct bandgap of the films vary
from 4.12 eV to 3.89 eV and indirect bandgap values varied from 3.7 eV to 3.42 eV. It can be
seen from previous works that a decrease in the Mn content with an increase in growth tem-
perature as a result of re-evaporation or not incorporation of Mn in the transfer and deposition
processes leads to an increase in the films bandgap, which is consistent with our results. The
relatively small difference in the values obtained at different temperatures is explained by the
low content of Mn (or its absence).

On the other hand, in the Zn;_,Mn,Te films (Figure 5.28 b and c), regardless of the
temperature of deposition, the final value of the band gap is about £, = 2.26-2.27 eV. This
value is somewhat different from the values, which we obtained for 10 % of Mn content in
paper [328| - B, = 2.15-2.23 eV, which is due to changes in the concentration of manganese in
films, depending on the growth conditions. The obtained values of F, are similar with those
found for ZnTe single crystals (E, = 2.28 eV) [139] and they are in good agreement with the
data of the study of the optical properties of ZnTe samples deposited by the evaporation method
in vacuum (E, = (2.0-2.2) eV) [329] and (£, = (2.0-2.4) eV) |330].
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Chapter 6
Summary and Conclusions

The world of electronics does not stand still, and gradually new interesting compounds
and properties are found or already known ones are improved to satisfy all modern needs.
Among the variety of II-VI materials, there are 2 sets that have aroused particular interest due
to their unique properties. The first group includes the transparent conductor oxides (TCO)
materials, which have a high conductivity and visible light transparency, they can be used as
electrodes when the situation requires low resistance electrical contacts that do not block the
light. Another group consists of Semimagnetic Semiconductors (SMSC) or Diluted Magnetic
Semiconductors (DMS), which have significant magnetic and luminescent properties. Each
of the materials of these groups has its own advantages and disadvantages in respect some
applications, and, depending on the growth method and growth conditions, their properties
can change.

In order to control the properties of the material more intentionally, heterojunctions or
ternary compounds are used, which make possible to change the properties of the binary struc-
tures, thereby expanding the range of technological applications. Although it is often difficult
to control the properties of materials with different lattice parameters or different crystalline
phases (like wurtzite and zinc blende). Therefore, it is necessary to improve the growth pro-
cess of obtaining these materials in a systematic and reproducible way, in order to solve the
difficulties of put together different lattice structures, reactivity and physical properties.

In the context of the above-mentioned interest, in this thesis we have carried out an in-depth
study of the growth and characterization of some functional materials, ternary compounds, and
heterostructures based on them, such as ZnO, CdZnO, CdTe/CdO, ZnMnS, and ZnMnTe. In
respect to the growth we have chosen two different growth methods: the relatively expensive
multi-parameter control system, metalorganic chemical vapor deposition (MOCVD) with direct
scale to industrial production, and the less expensive and less controlled parameters Close Sapce
Vapor Sublimation (CSVS) method that in some cases and for some applications can be a good

alternative.
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Chapter 6. Summary and Conclusions

In this chapter, we will briefly describe the main results obtained in this work and summarize

the conclusions.

6.1 II-oxides, ternary compounds and heterostructures

based on them.

6.1.1 ZnO studies

With the aim to study thin ZnO films, a series of samples were grown on the R-plane
sapphire by the MOCVD method in the temperature range of 300-400 °C' (with a step of
25 °C). Diethyl zinc (DEZn) and tert-butanol (TBA) were the precursors for Zinc and Oxygen
respectively and Nitrogen was the chosen carried gas. The main conclusions about the surface

morphology of the ZnO films, in correlation with the growth conditions are:

e Different surface morphology can be obtained depending on the growth temperature.
Thus films obtained at 300 °C' had a thin layer of ZnO material on top of which randomly
oriented vertical crystals with a length of 1 um were formed. At the range of higher
temperatures of 350-400 °C', the surface of the films became flatter. A large number
of samples with a smooth surface morphology were obtained at a growth temperature
of 375 °C. The films that were closer to the in-let to the reactor (labelled as Front
group) were thicker and flatter than the samples in the Rear group, where the heating
temperature turned out to be somewhat higher. Taking in mind the growth of thin films,
different experiments were performed. At growth times less than 10 min, thin films with
a smooth surface were not obtained, in the range of temperatures and precursor’s flow
analyzed. All films had the preferred growth orientations (102) and (110).

e At growth times of 10 min, in which flat surfaces of ~ 65 nm thick were obtained at
375 °C, decreasing the input flow of precursors from 71.77 and 14.22 pmol/min to 14.35
and 2.85 pmol/min for Oxygen and Zinc precursors, respectively, we lost the flatness
and to recover this flat surface an increase of the growth time to 45 min was necessary.
The samples in the Front Center (FC) and Front Right (FR) positions turned out to
be of the highest quality. Subsequent increase of precursor flow to 43.06/8.54 pmol /min
proved that an amount of 800 pumol of total precursors and 15 min of growth time, allow
retaining a smooth surface with approximately the same thickness of ~ 60 nm. At higher
material flow (100.48 and 19.91 pmol/min) and a growth time less than 5 min, it was

not possible to obtain a smooth surface morphology.
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e In order to increase the number of nucleation points, chemical treatment of the sapphire
substrate with a solution of H3PO,4 : H3SO, in a volume ratio of 1:3 during 3 hours at
120 °C' was carried out. It was found that chemical etching did not significantly improve
the morphological properties of ZnO films on R-plane sapphire. The sample, which lost
their smoothness with growth time only 5 min at 375 °C', had reduced their thickness
from 42 to 34 nm, but the surface was not uniformly smooth and had some holes. For
comparison, the thickness of the ZnO film grown on the M-plane sapphire with and
without the chemical treatment was in the range of 80 nm, while the thickness of the
sample grown on the surface of the A-plane treated sapphire slightly decreased from 60
to 50 nm with the same treatment. After chemical treatment, the samples were grown on
M- and A-sapphire were polycrystalline, due to increasing nucleation points and reducing

the 1D growth with increasing the 2D growth of the material.

e In respect the rms surface roughness, AFM studies have shown that it decreases in ZnO
films grown in R-plane sapphire from 11 to 3 nm with an increase in growth temperature
from 325 to 375 °C. At 400 °C, the roughness returns to 11 nm, due to be working,
as regards the growth process, at the high-temperature regime. With a decrease in the
growth time for the samples grown at 375 °C, the rms roughness of the film surface
remained practically constant and it was within the range of 1.5-2 nm. With 3 minutes
of growth the ZnO is distributed along the edges of the substrate steps produced in
the cutting process, and they are organized into linear and parallel arrays with an rms

roughness of ~ 3 nm.

e With different precursor’s flow and growth parameters at which is possible to obtain
thin smooth films, the surface rms roughness of the samples has the a similar value,
about 2 nm, and the roughness increases with decreasing the growth time, at the point
in which the homogeneity of the surface starts to disappear. After chemical treatment
of the substrate, the rms roughness of the sample’s surface increased from 2 to 2.8 nm,
compared to the untreated one. The increase in the surface roughness in samples of
34 nm, the thickness is related with the rise of the number of nucleation points, which

will affect slightly the morphology of the sample.

6.1.2 (Cdi_,Zn,0 studies

The introduction of Zn into the crystal lattice of the binary compound CdO, grown on
R-plane sapphire by the MOCVD method by using DEZn, Dimethyl Cadmium (DMCd) and
TBA as precursors, has different effects. Thus:
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e In respect the surface morphology, the flat surface of CdO, obtained under optimazed
growth conditions, becomes rougher when Zn is added. Related to the thickness, the

increase in Zn nominal content in the samples had almost no effect.

e The crystal-structure is also affected. The ternary C'd;_,Zn,O compound has a stable
cubic (ZB) structure with a (200) plane of cubic phase, the same as the binary CdO.
XRD studies have shown the presence ofpredominant 200 and 400 peaks in all samples.
The (200) peak position shifted towards larger angles with increasing zinc content, that
is associated with the difference in atomic radii between Cd and Zn, which affects the
lattice parameter of the ternary compound. No hexagonal phase was observed at low
values of the Zn content, but at 20 % of nominal Zn value the CdZnO02)hex Peak was

present, which indicates the presence of phase mixing at a higher Zn contents.

e HRXRD on CdZnO films shown that at x < 10 % of Zn content the compounds have a
single-phase cubic structure. With the rise in the Zn content in the range 10 % < x < 15 %,
the competition began to arise between the misfit stress and the shrinking of the lattice,
which causes an inversion of the deformation of the lattice cell, which becomes enlarged
in-plane and shortened out-plane. At x > 15 %, the slope of groups of differently oriented
crystallites increases strongly, the ratio between the ¢/a parameters begins to increase,

which will lead to the formation of a wurtzite structure.

e Related to the Zn content, from the Vegard’s law the corresponding values in the samples
were determined as 3.66, 5.24, 6.44, 5.93 (with N, as carrier gas) and 9.31 % (with He
as carrier gas) for 5, 10, 15, 20 (N3) and 20 % (He) of nominal Zn content, respectively,
can be determined. Elementary EDX analysis depicted the Zn content to be 3.03, 5.91,
7.86, 11.5 (Ny) and 14.7 (He), respectively, indicating, once again, the incorporation of
zinc into the crystal lattice of CdO. It is worth to note that the presence of mixing phases

makes unrealistic the values that the Vergard’s law could offer.

e The lattice parameter of ternary compound calculated from the position of the (200) peak
decreased from 4.6955 to 4.6511 A with rising Zn content from 0 to 20 % in the samples.
For the sample with 20 % of the nominal Zn content the lattice parameter, obtained using
XRD measurements is similar to the calculated one by the Vergard’s law for a 10 % of
the Zn concentration. This Vegard’s law calculation roughly coincides with the values
obtained by the EDX method Cd?** substitution by smaller Zn?* ions. The affects the
crystallite size, which is decreased from 0.76 to 0.33 nm, while the FWHM for the (200)

peak is increased in the range of 0.2-0.4 degrees.

e With respect to the transmittance of the Cd;_,Zn,0O with increasing the Zn content,

a gradual shift in the maximum slope of the transmittance curves towards the shorter

194



6.1. II-oxides, ternary compounds and heterostructures based on them.

wavelength of the transmitted light was observed. The position of the peaks of derivatives
of the absorption spectra is clearly shifted towards higher energies from 2.60 to 2.81 eV,
but after 15 % of nominal Zn content, the tendency of rising bandgap decreases due to
la presence of mixed phases. The sample in which helium was used as carrier gas had a
higher shift of the peak position (200) towards larger angles and showed wider value of
optical bandgap (E, ~ 2.87 V).

6.1.3 CdTe/CdO heterostructures

e In order to optimize the growth conditions of the binary compounds for the heterostruc-
ture, a series of CdTe samples were grown by the MOCVD method, on GaAs (100) sub-
strates, in the temperature range of 285-380 °C' with steps of 20 °C' by using Dilsopropyl
Telluride (DIpTe) and DMCd as precursors. XRD of these samples shown the presence
of the planes (111), (311) and (511)/(333). An increase in the flow ratio by increasing
the flow of the DIpTe precursor resulted in a rise in thickness and roughness of the films.
At temperatures in the range of 340-360 °C, the film’s surface became smoother with the
formation of pyramidal structures with film orientation [100], and the thickness decreased

compared with other temperatures.

e In respect to the CdTe/CdO heterostructure, where a CdO layer was deposited on the
R-plane sapphire substrate, the CdO bottom layer had a growth orientation [100]|, and
the upper CdTe layer was oriented in the [111] direction or both. The two materials
have a big lattice mismatch of ~ 38.4 %, which makes harder to get structures with
similar structures orientation. A two-step film’s deposition process was carried out with
the growth of a layer during 2.5 min growth at a lower temperature at 295 °C' in the first
step, and with sebsequently growth of a layer during of 57.5 min at a given temperature in
the range 330-370 °C' in the second step. This two step procedure did not allow obtaining
a CdTe top film with the orientation of the underlying CdO layer. The ratio of the XRD
intensities for C'dTe00) and CdT'e(111) peaks had the highest value R — 0.7 at 350 °C
and decreased for increased or decreased when changing the growth temperature in the
range of 330-370 °C with the growth step of 10 °C.

e At 295 °C' of growth temperature and with reduction the growth time to 1 min, only
individual particles were formed, the size of them varied depending on the ratio between
the Cd and Te precursors. Using a two-steps growth procedure, with 1 min growth at
250 °C' and utilization of only one of the precursors during 6 min at 350 °C' in the second
growth step, made possible to obtain either a thick layer (using DipTe precursor), or
individual CdTe particles (using DMCd), which did not completely cover the lower CdO
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layer. Only with one-step growth for 3 min with a growth temperature of 250 °C' was it

possible to obtain a sample with a relatively continuous upper CdTe film about 30 nm
thick.

e The contact potential difference (CPD) studies of the sample surface showed that different
grain interfaces have distinct work functions, suggesting that the grain boundaries (GBs)
act as distinctive recombination centers. The top of the grains has a higher CPD value
than the GBs between them. Although the faces belong to the same crystallographic fam-
ily, they are not electrically equivalent. Electrical holes are expected to be accumulated in
the GBs, and electrons removed, which reduces recombination at such GB defects. Due

to the surface relief, the distribution of the surface potential was uneven.

e Decreasing the irradiation power of the incident red laser (633 nm) leads, as expected,
to a decrease in the surface photovoltage (SPV). We have studied a series of samples
growth at diferent temperatures in the range of 330-370 °C'. The results could be divided
into 3 groups in which at lower growth temperatures of 330-340 °C' the SPV value was
negative, at meddle temperatures of 350-360 °C' its value was close to zero, and at high
temperatures of 370 °C' the SPV was positive. The difference in the SPV values may be
due to the appearance of morphology with the pyramidal structure in the temperature
range 340-360 °C', which could affect the distribution of photons during irradiation of the
samples. A negative value could be caused by a strong electron-hole recombination at
the surface, which significantly reduces the SPV. Also, photo carriers can contribute to
a change in the capacitance of the probe-sample using KPFM method, which leads to a
potential systematic error in SPV. Finally, adsorption of oxygen with formation of oxides
on the surface of the films could lead to the formation of surface states, which affect the

electrical properties.

6.2 A[]M?”LBV[ materials

6.2.1 Zn;_,Mn,Te studies

Zni_yMn,Te thin films with 5 % of nominal Mn content were grown by the CSVS method
on glass substrates in the growth temperature range of 350-650 °C'. The main conclusions of

the subsection will be devoted to the structural and substructural properties of the compound.

e Grains in the range from 600 to 800 nm with a density of 2 x 10'2 — 1 x 102 NPs/m?,
respectively, were observed. The grain size increased with the rise of growth temperature,

which leads to a decrease in the Mn content, that seems to be randomly distributed,
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without any organization over the substrate. Samples had a fine-crystalline transition
layer, followed by the secondary nucleation growth of crystallites oriented in the plane
(111) parallel to the substrate, the presence of them decrease with increasing growth
temperature. At high temperatures the growth mode changed from long to short columns,
which led to a decrease in the film thickness in the range of 2.5-1.9 um at temperatures
of 623-823 K (350-550 °C').

All samples had a cubic structure with a preferred orientation (111), and their position
approximately corresponds to that of pure ZnTe. At low substrate temperatures of 623 K
(350 °C), the lattice parameter (a) of the Zn;_,Mn,Te samples was greater than that
of ZnTe, which indicate the substitution of larger Mn?*" ions at the Zn?" sites, but with
rising of growth temperature over 500 °C' (773 K), the lattice parameter showed the
constant value close to that of pure binary ZnTe, which means the absence or reduced
content of Mn in the films. The high intensity of the (111) peaks in XRD patterns suggests
an out-plane preferred orientation and the dominant crystallographic planes of crystallites
are the (111) for all temperatures. Samples have a degree of preferred orientation near to

that of a perfectly (111) oriented sample and this orientation is typical for ZnTe films.

The real value of the Mn content calculated using EDX was in the range of 0.7 to 2.05 %
with rising of substrate temperature, which is significantly below the nominal value (5 %)
in the charge. The reason can be the re-evaporation of Mn in the samples surface or
not incorporation in the transport and deposition processes at higher temperature. The
series of Zny_,Mn,Te samples with 10 % nominal Mn content, measured using the PIXE

method, presented that manganese is rather evenly distributed over the sample area.

The pole figures of the {111} reflection showed that Zn;_,Mn,Te samples exhibit a
broad peak with its maximum at an inclination angle at 0 deg and a broad ring at an
inclination angle at ~ 70 deg, indicating a random azimuthal orientation. This uniaxial
orientation shows, that the films possess an out-plane preferred orientation but no in-
plane preferred orientation. The percentage of particles with a (111) orientation within
an inclination angle of + 10 deg is 83-92 % and mostly ~ 90 % in all the range of growth
temperatures. The variation in the percentages is small, decreasing with reducing Mn
content, but finally increasing at the highest temperature of 923 K (650 °C), which is

associated with a change in the growth mode from long to small columns.

Zny_.Mn,Te film has a clear prevalence of screw dislocations. The mean longitudinal
size of crystallites on the samples growth at low substrate temperature 623 K (350 °C)
increases considerably with falling down of Mn content. The mean transversal size also

increases, but less. The aspect ratio Djong/Diransy goes from 3.5 to 5 when Mn content is
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reduced with increasing of the substrate temperature. Comparing the transversal size with
values obtained by SEM, it can be concluded that columnar grains are polycrystalline.
The average dislocation density of the samples is weakly Mn concentration dependent at
low and meddle growth temperatures and decreases when the growth is performed at a
higher temperature of 923 K (650 °C'). For screw (111) dislocations, the Burger vector, the
dislocation line, and the axis of the screw dislocation follow the same direction. Samples
at lower temperature show a higher concentration of dislocations, which confirms the

results obtained using XRD.

e CSD value decreases with reducing of Mn content with the temperature and then increases
at 773 K (500 °C) in the direction of the (111) plane. The maximum value exists in the
temperature range T = 600-650 K, where values of Mn content was minimum. On the
other hand, the microstrain degree in this direction decreased with reducing of Mn with
slightly increasing at higher temperatures. This may be due to a change in the growth
mode from long to short columns. The experimental values of the CSD size and micros-
train degree were higher than for ZnTe films deposited under similar growth conditions.
The average SF concentration in the Zn,_,Mn,Te films decreases with reducing of Mn
content, that indicate improving stability of the cubic phase. Thus, growth alloyed ZnTe
films with Mn atoms leads to degradation of the substructure parameters of ZnTe films,

which is shown as microstrain and CSDs increase, as well as the SE’s concentration.

6.2.2 “Zn;_,Mn,S studies

e Asin the previous case, polycrystalline Zn;_, Mn,S thin films with a 7 % of nominal Mn
content were grown by the CSVS method on glass substrates in the growth temperature
range of 100-450 °C'. At substrate temperatures < 100 °C' the integrity of the films is
destroyed due to the appearance of surface tensions associated with the difference in the
coefficient of thermal expansion between layer and substrate. The Mn alloying of ZnS
changes the film morphology from a more uniform to granular. A change in the growth
mode from long to short columns was observed. With the reduction of the Mn content at
growth temperatures rising from 100 to 450 °C, the grain size (0.65-3.13 pm) increases
with a reduction of the grain density (0.18 x 10'? - 1.16 x 10'> N Ps/m?). The thickness
of the films, on the contrary, decreased with an increase in the 7§, which can be caused
by a change in the growth mode, re-evaporation and non-incorporation of the Mn atoms

at higher temperatures.

e At lower growth temperatures 373-623 K (100-350 °C') the dominant peak intensity for
Zny_ Mn,S samples was the peak of (200) plane, which indicates the presence of brightly
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texture in films with this cubic structure. Similar texture in the cubic films of A;; By
compounds is predominant, since this direction coincides with the direction of the fastest
growth of crystallites. At temperatures of 673-723 K (400-450 °C), the intensity of the
(111) peak decreases strongly, and the reflection from the (200) plane becomes dominant.
Diffraction peaks corresponding to elemental Mn(300) observed at a lower temperature
T, — 373-623 K (100-350 °C'), disappears at higher temperatures [> 623 K (350 °C)],

which may be due to decrease of Mn content.

Charge of the Zinc Sulfide compound with Manganese has both, cubic and wurzite phases,
which at high temperatures led to the formation of a wurtzite phase in the films. The
existence of 2 phases is explained by the absence of a difference between the formation
energy of both sphalerite and wurtzite phases for a pure ZnS compound and their equal
probability of existence. For all growth temperatures the dominant crystallographic planes
of crystallites was (200), and degree of preferred orientation was 2-2.5 times less that the
value correspond to a perfectly oriented sample, increases with reducing Mn content at
mean substrate temperatures of 623-673 K (350-400 °C'), but decreased again at T, >
723 K (450 °C).

The real Mn content decreased with growth temperature, and the ratio between the atomic
concentration of Zinc and Manganese (C(zn4am)) to the atomic Sulfur concentration (Cy)
increased and at a high temperature [T = 723 K (450 °C')| being approximately 1.08 which
is close to ideal stoichiometric proportion between the elements. The lattice parameter
of Zny_,Mn,S films was in the range of 5.6406-5.6424 A and decreased with increasing
growth temperature, which was expected since az,s < aymns and the Mn content tended

to decrease.

The CSD size was significantly smaller than the grain size and changed, with increasing
the growth temperature, in the range 42-84 nm, while in the temperature range Ty = (500-
550) K with a 2.9 at % of Mn the grain size was maximum. The CSD themselves are
in the form close to the cylindrical, where the height of the cylinder L), as evidenced
by simple geometric constructions, is slightly smaller than its diameter. The level of
microstrain in the Zn;_,Mn,S films in the [111] direction is not uniform with reducing
Mn content. A monotonic increase was recorded, after which there was a decrease in the
value and a second increase at high temperatures. This behavior is associated with a
change in the growth mode at T > 623 K.

The microstrain level varies in the range of o = (7.04-13.83) MPa and was mainly con-
centrated on the boundaries of the CSD, whereas the volume of crystallites is practically

free of dislocations. With an increase in temperature, the value of the microstrain level,
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determined from the reflections of the plane (111) - (222), decreases, reaching its mini-
mum at ~ 2.9 at % in the growth range T,=550-650 K, after which the value gradually
increases. With the reduction of Mn content, the stability of the cubic component of the
film increases, the probability of violation of the order of alternation of the (111) planes
decreases, and the concentration of SF, correspondingly, decreases. Low interfacial energy
during the transition from the cubic to the wurtzite phase and small energy changes in the
crystal lattice at phase changes will lead to a high probability of errors in the alternation
of tightly packed planes and the formation of defects, which will affect the structural and

substructural features of the films.

6.2.3 Optical (spectral) studies

With the help of spectral studies, transmission and reflection of the samples were deter-

mined.

e The transmittance of Zn;_,Mn,S films increases reaching the “red border” at 340-350 nm,
while for a series of Zn;_,Mn,Te samples rising of transmittance intensity is observed
at wavelengths < 540 nm. At high values of the wavelength of the incident radiation the
transmission curves acquire the oscillatory character of interference. The diffuse reflection
coeflicient for a series of Zn,_,Mn,S films turned out to be lower than for a series of
Zny_zMn,Te samples obtained at the same growth time. As the Mn content decreases,
the R coefficient increases, which is obviously associated with the appearance of films
with a pronounced pyramidal relief. Zn,_,Mn,Te films with a shorter growth time have
a lower reflection, and this dependence is retained when calculating the mirror reflectance

of this material.

e The values of optical bandgap, determined by the peak maximum of the derivative of
the absorption spectra of the material, shifted towards higher energies from 3.569 eV
(for 373 K [100 °C]) to 3.642 eV (for 723 K [450 °C]) with increasing substrate temper-
ature, which indicated reduction of the Mn content in the samples. For average tem-
peratures of 523-623 K (250-350 °C'), the position of the derivative maximum is similar,
which point to a similar manganese incorporation. On the other hand, both series of
Zny_.Mn,Te samples, irrespective of the growth temperature, had a bandgap of approx-
imately B, = 2.26-2.27 eV, which is associated with a very low Mn concentration in the

films or its complete absence.
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6.3 General conclusions

The work done under this thesis contributes to the study of the growth and characterization
of the binary zinc and cadmium oxides, their associated ternary alloy and the heterostructure
CdTe/CdO, as well as ZnMnTe and ZnMnS.

The effect of growth parameters at the MOCVD method on the structural properties of thin
Zn0 films was shown. In Cd;_,Zn,O films, it was found that at a nominal Zn content of more
than x>15 %, phase mixing and the formation of a hexagonal phase in the cubic Cd;_,Zn,O
ternary compound were observed. The sample obtained by using helium (He) as a carrier gas
had a higher bandgap in respect to the one obtained by using Ny instead.

Difficulties in obtaining high-quality heterostructures based on CdTe/CdO/R-sapphire are
associated with a large mismatch of their lattice parameters, as a result of which the obtained
upper films do not follow the preliminary orientation of the lower one. Optimized growth
parameters were chosen, at which the upper CdTe layer most closely reproduces the preferred
orientation of the underlying CdO layer. Due to the complex morphology, the surface contact
potential is not evenly distributed over the surface of the samples.

It was found that in Zny_,Mn,(Te, S) functional materials, the Mn content decreased with
the rise of growth temperature as a result of its re-evaporation or not incorporation in the
transport and deposition processes at high growth temperatures. For Zn,_,Mn,Te films, an
out-plane preferred orientation was observed with a clear predominance of screw dislocations.
Growth of alloyed ZnTe films with Mn leads to degradation of the substructure parameters of
ZnTe films. For Zn;_,Mn,S films obtained at high temperatures, the existence of cubic and
wurzite phases is observed, due to the fact that the difference between the formation energies
of the sphalerite and wurtzite phases is not significant and the formation of each of the phases
has the same probability.

Optical studies of Zn;_,Mn,(Te,S) showed that in Zny_,Mn,S films, the bandgap in-
creases with the growth temperature, which corroborated a decrease in the Manganese content.
On the contrary, in Zn;_,Mn,Te films, this value did not change significantly regardless of
temperature, which is associated either with the low content of the alloying element or with its
complete absence at high growth temperatures.

The results obtained in this work have both a fundamental and an applied significance. The
new information about the structure and crystalline substructure, the chemical composition,
the film surface morphology, the optical characteristics, depending on the growth conditions
and growth methods, should contribute to the development of materials based on the binary
compounds of A;;By . In general, this thesis allowed not only an in-deep study of the properties
of functional materials depending on the growth conditions but also the acquisition of skills

and wide knowledge of different growth and characterization methods.
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Chapter 7
Resumen en espanol

La presentacién del trabajo que se somete a consideracion para la obtencion del titulo de
doctor se ha organizado en seis capitulos, que incluyen la introduccién, el desarollo de la tesis,
las conclusiones y las referencias. Algunas de las abreviaturas de los términos utilizados en este
resumen no se traduciran del inglés. En algunos casos, esto también se aplicara a la designacion
de las aleaciones ternarias estudidiadas capas ternarias, donde los subindices se omitirdn para
simplificar (por ejemplo, CdZnO y ZnMnTe en lugar de Cdy_,Zn, Oy Zny_,Mn,Te).

En el Capitulo 1 se presenta la motivacién, tema de estudio y objetivos de esta tesis:

Desde sus inicios, la humanidad ha buscado oportunidades para inventar herramientas que
mejoraran sus condiciones de vida. Un gran salto en el desarrollo instrumental fue la gran
revolucién industrial de los siglos XVIII-XIX, durante la cual se produjo la transicién del
trabajo manual al mecanizado. La principal consecuencia fue la transicion de una economia
predominantemente agraria a la produccién industrial. Esto indujo y promovié la invencién de
nuevos equipos y dispositivos. Los logros técnicos en electricidad y magnetismo y los nuevos
avances en quimica aceleraron el desarrollo de la humanidad y agregaron diversidad en la
instrumentacion.

Vale la pena senalar que el desarrollo de la tecnologia también nos enfrenta a problemas
energéticos. Encontrar esta energia y poder minimizar su consumo mientras se mejora la
eficiencia se ha convertido en un nuevo desafio para los cientificos. Para reemplazar los recursos
no renovables como el carbén, el petréleo o el gas natural, se ha utilizado fuentes renovables de
agua, viento y radiacion solar. Esto obliga a los cientificos a desarrollar materiales y estructuras
basados en ellos que puedan general transferir energia de manera efectiva.

Para abrir nuevos caminos a las aplicaciones tecnoldgicas ahora, a principios del siglo XXI,
existe una bisqueda activa de materiales que puedan ser complementarios de los pioneros
semiconductores como el Silicio o el Germanio. Asi, el interés por el estudio de capas mono
y policristalinas, asi como de nanocristales de diferentes compuestos como, por ejemplo, los

de la familia A;;By; ha aumentado significativamente. El interés por esta familia se debe
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al enorme potencial que, en diferentes dreas, podrian tener sus materiales como antirreflec-
tantes, absorventes y ventanas de heterouniénes fotovoltaicas, células solares tandem (SC),
capas base de fotodetectores, detectores de radiacién, LED, sensores de gas, dispositivos piro y
piezoelectronicos, etc.

Entre toda la variedad de materiales II-VI, hay 2 grupos de semiconductores que han atraido
un interés particular debido a sus caracteristicas tinicas. El primero incluye 6xidos de elemen-
tos como zinc y cadmio con una alta transparencia en el rango Optico visible, que se han
estudiado ampliamente para su uso en diversas aplicaciones electroépticas, entre otras, como
oxidos conductores transparentes (TCO). El otro conjunto estd formado por los semiconductores
magnéticos diluidos (DMS) de los compuestos II-VI que, ademds de las propiedades ordinarias
de un semiconductor, tienen propiedades magnéticas.

Tanto el 6xido de zine (ZnO) como el 6xido de cadmio (CdO) pueden ser TCO con sus for-
talezas y debilidades. Para mejorar las propiedades del material es posible utilizar compuestos
ternarios, que son una opcién para modificar las propiedades de las estructuras binarias, am-
pliando asi el rango de aplicacién del material. Esto da como resultado cambios en carac-
teristicas tales como los pardmetros de red, ancho de banda prohibida, movilidad de portadores
o transmitancia. cabe notas que las propiedades de los compuestos ternarios dependen en gran
medida de las técnicas de crecimiento. En particular, los materiales con diferentes parametros
de red o diferentes fases cristalinas (wurtzita o zincblenda en el caso de ZnO y CdO) son dificiles
de combinar. Las tensiones y imperfecciones debidas a la baja calidad del cristal pueden dar
como resultado propiedades optoelectrénicas inadeduadas. Por tanto, un punto importante
serd la optimizacién de las condiciones de crecimiento de los cristales para conseguir una buena
calidad cristalina y, en consecuencia, mejores propiedades optoelectronicas.

La obtencién de compuestos ternarios de CdZnO es un reto atractivo ya que la diferencia
entre las extructuras cristalinas de los compuestos binarios y las diferencias en los pareametros
de red y tamafio de los radios ionicos de Cd** (0,95 A) y Zn** (0,74 A) hacen augurar la
presencia de una miscibiidad restringida y la presencia de mezcla de fases.

Por su parte los semiconductores semi-magnéticos (SMSC) o semiconductores magnéticos
diluidos (DMS), combinan elementos de la fisica de los semiconductores y el magnetismo, lo
que constituye una oportunidad tnica para la investigacién y la tecnologia.

La inclusién de dtomos de Mn en la red II-VI puede mostrar fenémenos como magnetor-
resistencia negativa, rotacién de Faraday gigante y comportamiento de espin. Este elemento
(Mn) puede ser parte de diferentes estructuras aleadas, pero nos fijaremos en la aleacién de Mn
con peliculas delgadas de ZnS y ZnTe, debido a las propiedades Opticas de estos compuestos
binarios.

Por otro lado, el telururo de cadmio (CdTe) es otro semiconductor representativo tipico

del grupo II-VI. A pesar de la amplia gama de uso de CdTe como semiconductor, continta
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la bisqueda de heterouniones y compuestos basados en él. Debido a sus propiedades op-
toeléctronicas, se puede utilizar como material tipo p en células solares CdTe/CdS simples y
baratas, por esta razén, las heterouniones CdTe/CdS y CdTe/CdSe han sido bien estudiadas.
Sin embargo, las heteroestructuras con TCOs, en particular la heterounion p-n de CdTe/CdO
ha sido menos estudiado. La complejidad en la formacién de esta estructura se debe, entre otros
factores, al desajuste de la red entre el parametro de red de CdO (4,69 A) y CdTe (6,49 A). Otra
dificultad es el control de la orientacién preferencial de la capa al crecer sobre la subyacente, en
la que el pardmetro de red no coincide ni tampoco sus coeficientes de expansion térmica, estas
dificultades hacen que el estudio de la heteroestructura CdTe/CdO sea un atractivo desafio
para la investigacién fundamental.

En el contexto del interés comentado anteriormente sobre los materiales II-VI el objetivo
principal de esta tesis es el estudio del crecimiento cristalino y caracterizacién de algunos de
los materiales de esta gran familia. La obtencién de capas de compuestos binarios y ternarios
con buena calidad cristalina requiere la elecciéon de un método y pardmetros de crecimiento
adecuados, pero para ello se debe establecer una correlacién entre las condiciones de crecimiento

y las propiedades, lo que serd desarrollado en esta tesis.

Capitulo 2

El Capitulo 2 muestra las principales propiedades de los materiales utilizados con una de-
scripcion detallada de los métodos para la obtencion de peliculas de calcogenuros de A;jfMnBy
y peliculas a base de 6xidos, asi como informacién general sobre los pardmetros de crecimiento
y las condiciones para el crecimiento de estos materiales.

La estructura de la wurtzita de ZnO es la mds estable en condiciones ambientales y, por
tanto, la mdas extendida. Los pardmetros de la red de ZnO con estructura hexagonal son
a~ 3250 Ayc~ 5205 A;y su relacién ¢/a ~ 1.60 esta cerca del valor ideal para la celda
hexagonal ¢/a = 1.633. El ZnO tiene un enlace predominantemente iénico, como la mayoria de
los semiconductores II-VI. Debido a la amplia banda prohibida (£, = 3,37 eV), el ZnO tiene
una alta absorcién éptica en la regién UV (320-400 nm). Por otro lado, debido a la alta energia
de los excitones (60 meV), es posible una generacién ldser a temperatura ambiente. El ZnO
es un semiconductor de conductividad de tipo n debido al exceso de atomos de zinc, lo que
resulta en la presencia de defectos inherentes como vacantes de oxigeno (V) o intersticiales de
zine (Iz,).

Por su parte el CdO cristaliza en la estructura de sal de roca que consta de una red ciibica
centrada en las caras (fcc) con una base de dos dtomos, Cd en (0,0,0) y O en (1/2, 1/2, 1/2),
con un pardmetro de red ~ 4.695 A. La banda prohibida fundamental de CdO es indirecta

a ~ 0,84 eV (~ 1480 nm), y esto es demasiado bajo para la transparencia 6ptica (380 a
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740 nm), sin embargo la transmisién del espectro visible se produce debido a la banda prohibida
directa de ~ 2,28 eV (~ 500-560 nm). La alta concentracién de portadores y al efecto Moss-
Burshtein, puede aumentar la banda prohibida a 3,25 eV (~ 380 nm). Esto hace que el CdO
sea Opticamente transparente, ya que, usualmente y sin dopar, tiene una alta concentracién de
portadores (> 102! em™3).

Debido a las propiedades de ZnO y CdO, estos semiconductores se pueden utilizar en varios
campos. Ademas, la sintesis de compuestos ternarios basados en estos semiconductores binarios
ampliard atin mds el alcance de sus aplicaciones. En el caso de CdZnO (compuesto rico en Cd
y de estructura ctibicoa), el gap directo de CdO se extendera por la presencia de Zn. En
ambos casos, las propiedades del compuesto resultante dependerdan del contenido del elemento
de aleacion, pero apareceran varios problemas debido a la diferencia en la estructura ciibica del
CdO y la estructura de la wurtzita del ZnO, dependiendo de este contenido.

El lo que refiere al CdTe con estructura cristalina de zinc blenda (ZB) es un semiconductor
con una banda prohibida directa de ~ 1,49 eV, que estd cerca del intervalo de banda éptimo,
tedricamente establecido, para las células solares (1,28 eV) y un alto coeficiente de absorcién
optica (> 5 x 10°cm™'). La conductividad de CdTe se puede cambiar dependiendo de las
condiciones de crecimiento. Asi el CdTe crecido en condiciones ricas en Cd es de tipo n debido
a que el nivel de Fermi estd fijado en o cerca del medio de la banda prohibida por el defecto del
donante compensador (]der . Por otro lado, en el limite rico en Te, CdTe tiene conductividad
de tipo p, ya que la energia de Fermi estd fijada cerca del maximo de la banda de valencia.

En lo que se refiere a los DMS la aleacién ZnMnTe, que puede considerarse como una mezcla
de sistemas cristalinos entre dos materiales de zinc blenda, ZnTe y MnTe. En este compuesto,
los iones Zn?" se reemplazan por iones Mn*'. Y la banda prohibida se puede, en principio
controlar mediante la composicién. El radio iénico de Zn es 0.88 A, pero de Mn depende del
estado de giro, por lo tanto, puede 0.81 Apara el estado de giro bajo y 0.97 Apara el estado de
giro alto. En este sentido, un aumento en la concentracion de Mn conducird a un aumento en el
parametro de red del compuesto ZnMnTe, ademds de un aumento de la banda prohibida, y la
generacion de una cierta densidad de vacantes e intersticiales que pueden alterar el pardmetro
de red. Con respecto a la banda prohibida, cambia entre labanda prohibida de energia de
2.28 eV (ZnTe) a 2.9 €V (zincblenda MnTe), cuando los iones Zn** son reemplazados por iones
Mn?+.

El sulfuro de zinc aleado con manganeso (ZnMnS) es un semiconductor con transparencia
en la region visible UV y gap directo ancho (~ 3,8 eV). El ZnS es quimicamente estable y
se considera un material anfitrién prometedor para los iones Mn?*t. Como regla general, las
aleaciones ternarias formadas sustituyendo el elemento del grupo II por Mn en la red de A;; By
retienen la estructura cristalina del compuesto de A;; By "parental". Las excepciones a esta

regla son ZnMnS y ZnMnSe, que exhiben la estructura del anfitrion A;; By cibico para un
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contenido bajo de Mn, pero por encima de un cierto valor de x muestran la estructura de
wurtzita. En el caso de ZnMnS, la estructura de ZB se mantiene a una concentracién de
Mn del 10 % o menos. En la estructura cristalina cibica de ZnS, las propiedades dpticas
son isotrépicas. Se trata la estructura cristalina cuba centrada en caras con ~ 5.4093 A La
transicion de ZB a la estructura de wurtzita ocurre a 1020 °C'. La estructura hexagonal tiene
los parametros de red de a ~ 3.811 Ay ¢ ~ 6.234 A.

Para el crecimiento de los materiales estudiados en esta tesis se utilizaron dos métodos
de crecimiento, que abarcan dos enfoques de la metodologia de crecimiento: un sistema maés
preciso, multipardmetro el Metal Organic Chemical Vapor Deposition (MOCVD) y, en conse-
cuencia, una metodologia costosa, y uno no demasiado costoso y menos parametro-controlado,
como el Close Space Vacuum Sublimation (CSVS) sin renunciar a ofrecer buenas capas para
algunas aplicaciones.

El MOCVD se basa en la transferencia en fase gaseosa de elementos constitutivos (general-
mente en forma de un precursor) a un sustrato donde reaccionaran. La deposicién finalmente
ocurre a través de una reacciéon quimica en la superficie de un sustrato y generalmente conduce a
una deposicion de alta calidad de peliculas delgadas en condiciones de crecimiento optimizadas.
Este método es muy adecuado para la produccién de capas con una morfologia superficial de
alta calidad y un control preciso del grosor y la uniformidad utilizados para diferentes tipos de
dispositivos.

Por su lado el CSVS permite obtener capas con un grosor de unos pocos angstroms a varias
decenas de micrones, por evaloracion en vacio. La fase de vapor consta solo de dtomos o
moléculas que forman la fuente y el cristal y se puede lograr una buena uniformidad y una
gran pureza del material, las condiciones de crecimiento de la pelicula se controlan ficilmente
y es posible utilizar méscaras para la fabricacién de capas de una configuracién determinada.
El uso de un control de la temperaturas de evaporacién (T.) y la del sustrato (7;) permite un
mejor control del proceso de crecimiento. Este método se ha utilizado para el crecimiento de
peliculas delgadas de ZnMnTe y ZnMnS.

En lo referente a los substratos, se hae utilizado zafiro cortado en diferentes planos (en el
caso de estructuras de ZnO, CdZnO y CdTe/CdO); y vidrio transparente para peliculas de
ZnMnS y ZnMnTe.

Capitulo 3

En el Capitulo 3 se describen los diferentes métodos de caracterizacién para el estudio de la
morfologia, propiedades estructurales y subestructurales, caracteristicas electrénicas y épticas.

Para el estudio morfologico de las muestras se ha empleado la microscopia electronica de barrido
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(SEM) y la microscopia electrénica de transmision (TEM) combinada con microscopia de fuerza
atomica (AFM) para determinar la rugosidad cuadratica media (rms) de la superficie.

En el SEM, cuando un haz de electrones primarios incide en el drea de la superficie de
una muestra, los electrones penetran y se propagan a través del material. La profundidad
de la interaccién o la disminucion de la energia del haz de electrones estd relacionada con las
propiedades del material. Los elementos ligeros permiten una penetraciéon més profunda del
haz, mientras que el volumen de dispersién de los elementos pesados se encuentra més cerca de
la superficie. En este proceso, los electrones primarios pueden interactuar de forma ineldstica
con electrones atémicos o eldsticamente con niticleos atémicos y generar varios tipos de senales.
Un microscopio de este tipo se utiliza para formar una imagen de una senal de electrones
secundarios y electrones retrodispersados. La senal principal, sin embargo, muestra electrones
secundarios.

A diferencia de SEM, la informacién en el TEM se obtiene del haz primario de electrones
que incide en la muestra y es transmitido. Debido al alto voltaje, llegando hasta 1 MeV o méds
en algunos microscopios, se pueden realizar investigaciones con resolucién a escala atémica de
décimas de nm. En la AFM, el principio de funcionamiento consiste en escanear la superficie
de la muestra utilizando un cantilever con la punta con un radio nanométrico y determinar
la fuerza resultante de la interaccién punta-muestra. Un sistema de realimentacion regula el
cambio de frecuencia para mantener un valor constante de la frecuencia, lo que permite adquirir
la topografia de la superficie de la muestra.

Entre las senales generadas por el SEM, la emision o las radiaciones de rayos X se pueden
utilizar para la determinacién de la composcion. Esto se llama andlisis de rayos X de en-
ergia dispersiva (EDX) el cual permite correlacionar la morfologia con la composicién de la
muestra. El voltaje de aceleracién de los electrones determina la profundidad del volumen de
interaccion. Es decir, a mds energia en el haz de electrones, mas profundo es el volumen de
interaccién. Otro método para el estudio de la composicién es la emisiéon de rayos X inducida
por particulas (PIXE). Cuando una particula cargada, con suficiente energia (del orden de var-
ios MeV), atraviesa un material, pierde energia debido a la ionizacién de la capa interna de
los dtomos por los que pasa. Esto crea rayos X con longitudes de onda caracteristicas de un
elemento en particular. El PIXE es una técnica analitica relativamente simple y multielemental
que se puede utilizar para identificar y cuantificar elementos que van de Na a U. En el caso del
método EDX, se pueden detectar todos los elementos quimicos con un nimero atémico superior
a4 (Be).

La informacién sobre las propiedades estructurales y subestructurales de los materiales se
obtuve utilizando difraccién de rayos X de alta resolucion (HRXRD). El método permite realizar
un barrido 20 — 6 en el que se mide la intensidad del haz difractado en funcién del dngulo

de difraccién (), manteniendo constante esta relacién entre los dngulos. A diferencia de un
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difractémetro convencional, la capacidad de mover el soporte con muestras a lo largo de los ejes
z, y v 2z permite realizar medidas de muestras en diferentes puntos. De la posicion de los picos
se puede extraer informacién del tipo de la estructura, asi como de las fases presentes, mientras
que de la forma de los picos se puede deducir la calidad cristalina de la muestra. La intensidad
de difraccién en funcién de 260 y la orientacién de la muestra dan patrones de difraccion que
permiten realizar andlisis del tamano de la cristalita/microstress, con gran precisién de alto
nivel, por un tiempo de medicién méas largo.

Las caracteristicas opticas de las peliculas obtenidas se determinaron utilizando espectros
de transmitancia y absorbancia mediante espectrofotometria éptica. Este método de caracter-
izacion determina qué parte del haz de luz monocromatica se absorbe y qué parte se transmite
a través de la muestra, dependiendo de la energia del haz de luz incidente. A partir de estos
valores se obtendra laabsorcién en funcién de la energia del haz con cuya ayuda se determina
la banda prohibida éptica de los compuestos. Los espectros de transmitancia del material
se normalizaron de tal forma que su valor maximo de curva correspondiera al 100 % de la
transmitancia posible. Esto se hizo para que, al calcular los espectros de absorcién a partir
de los espectros de transmitancia, las curvas tuvieran un valor minimo a bajas energias. Las
propiedades eléctricas de unas peliculas se investigaron utilizando los métodos de diferencia de
potencial de contacto (CPD) y fotovoltaje de superficie (SPV). Para este propésito, se utiliz6
Kelvin Probe Force Microscopy (KPFM) para medir la diferencia de potencial de contacto local
entre una punta conductive de AFM y la muestra, mapeando asi la funcién de trabajo del ma-
terial o el potencial de superficie de la muestra con una alta resolucién espacial. En el caso de
SPV, para hacer un analisis de los cambios de voltaje superficial provocados por la iluminacién
se utilizé como fuente de radiacién un laser rojo (633 nm). El rayo del ldser se enfoc6 de manera
que incidiera en el punto de contacto de la punta de la aguja del microscopio con la superficie

de la muestra.

Capitulo 4

El studio de los 6xidos del grupo A;;, ZnO y CdO en particular, y su heteroestructura
se presentan en el Capitulo 4. En él se muestra la influencia en la morfologia de las capas
respecto de la temperatura de crecimiento, tiempo de deposicién, cantidad de precursores y
sustrato utilizado. Se estudia la influencia de la concentracién de zinc en las capas de CdZnO,

y finalmente, se analiza la heteroestructuras CdTe/CdO.
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Estudios del crecimiento cristalino de capas delgadas de ZnO

Con el fin de estudiar la influencia de las condiciones de crecimiento sobre la obtencién de ca-
pas delgadas de ZnO con morfologia plana y minimo grosor, se ha estudiado la dependencia de la
morfologia de capas de ZnO crecidas sobre zafiro-R en funcién de la temperatura de crecimiento
en el rango de temperaturas de 300-400 °C' durante 90 min. Las capas obtenidas a temperat-
uras mds bajas muestran la presencia de una una fina capa de transicién material /substrato
sobre la cual se produce el crecimiento ulterior de cristales de ZnO. A temperaturas mas altas,
la superficie de las capas presentan una morfologia mas plana, especialmente en el rango 350-
400 °C'. De hecho, a 375 °C, las muestras presentan una morfologia de superficie plana. Las
peliculas que estaban més cerca de la entrada al reactor (el grupo Front) eran més gruesas y
planas que las muestras del grupo Rear, donde la temperatura de crecimiento era algo més alta.
Al aumentar la temperatura se produce una degradacién de la superficie debido a la presencia
de agujeros que se puede asociar con un régimen de crecimiento de alta temperatura, en el
que la tasa de crecimiento disminuye debido a factores termodindmicos, o la reevaporacién de

precursores causada por una temperatura mas alta.

Para tiempos de crecimiento de 10 min, en los que se obtuvieron superficies planas de
~ 65 nm de espesor a 375 °C/, al disminuir el flujo de entrada de precursores de 71,77 y
14,22 pmol/min a 14,35 y 2,85 pmol/min para los precursores de Oxigeno y Zinc, respectiva-
mente, perdimos la planitud /uniformidad y para recuperar esta superficie plana fue necesario un
aumento del tiempo de crecimiento a 45 min. Las muestras en las posiciones FC y FR resultaron
ser de la mas alta calidad. El aumento posterior del flujo de precursores a 43.06/8.54 pmol/min
demostré que una cantidad de 800 pmol de precursores totales y 15 min de tiempo de crec-
imiento, permiten retener una superficie lisa con aproximadamente el mismo grosor de ~ 60 nm.
A mayor flujo de material (100,48 y 19,91 pmol/min) y un tiempo de crecimiento menor de

5 min, no fue posible obtener una morfologia de superficie lisa y uniforme.

Para aumentar el nimero de puntos de nucleacién, se llevé a cabo un tratamiento quimico
del sustrato de zafiro con una disolucién de Hz PO, : H3SO, en una relacién de volumen de 1:3
durante 3 horas a 120 °C'. Se encontré que el ataque quimico no mejord significativamente las
propiedades morfoldgicas de las peliculas de ZnO en el zafiro del plano R. Las muestras, que
perdié su tersura con un tiempo de crecimiento de solo 5 min a 375 °C, ha reducido su espesor
de 42 a 34 nm, pero la superficie no era uniformemente lisa y presentaba algunos agujeros. A
modo de comparacién, el espesor de la pelicula de ZnO que crecié en el zafiro del plano M con
y sin el tratamiento quimico estaba en el rango de 80 nm, mientras que el espesor de la muestra
que se crecié en la superficie quimicamente tratada del zafiro en el plano A disminuyé un

poco de 60 a 50 nm con el mismo tratamiento. Después del tratamiento quimico, las muestras
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que estan crecidos en zafiro M-y A- eran policristalinas, debido al aumento de los puntos de

nucleacion y la reduccién del crecimiento 7D con aumentando el crecimiento 2D del material.

Los estudios de AFM han demostrado una disminucién en la rugosidad de la superficie rms
de las peliculas de ZnO crecidas en zafiro del plano R de 11 a 3 nm con un aumento de tem-
peratura de 325 a 375 °C. A 400 °C, la rugosidad vuelve a 11 nm, por estar trabajando en
régimen de alta temperatura. Con una disminucion en el tiempo de crecimiento para las mues-
tras obtenidas a 375 °C', la rugosidad rms de la superficie de la capa permanecié practicamente
constante y estuvo dentro del rango de 1.5-2 nm. Con 3 minutos de crecimiento, el material se
distribuye a lo largo de los bordes de los escalones del sustrato, y podemos verlos organizados

en matrices lineales y paralelas con una rugosidad rms de ~ 3 nm.

Con diferentes pardmetros de crecimiento y flujo de precursores en los que es posible obtener
peliculas delgadas y lisas, la rugosidad rms de la superficie de las muestras tiene el mismo valor,
aproximadamente de 2 nm, y aumentd al disminuir el tiempo de crecimiento. Para muestras
con el mismo tiempo de crecimiento pero diferente flujo de precursores, se encontré que un
aumento del flujo conduce a una fuerte disminucién en la rugosidad de la superficie rms de
la pelicula en el rango de tiempo de deposicién de 5 a 15 min, con una disminucion gradual

adicional a los 25 min.

La muestra que crecié sobre el sustrato después de un tratamiento quimico aumenté lig-
eramente la rugosidad rms de su superficie de 2 a 2.8 nm. El aumento en la rugosidad de la
superficie deberia estar asociado con el aumento del niimero de puntos de nucleacién, lo que

afectard la cantidad de material depositado durante el crecimiento.

Estudios del crecimiento cristalino de compuesto ternario de Cd_,Zn,O

Se ha estudiado la aleacién Cdi_,Zn,O creciendola mediante el método MOCVD sobre
substratos de zafiro-R usando DEZn, Dimetil cadmio (DMCd) y TBA como precursores.En las
condiciones en las que es posible obtener CdO de alta calidad cristalina, la superficie se vuelve
més rugosa cuando se agrega Zn. Sin embargo, el aumento del contenido nominal de Zn en las

muestras casi no tuvo efecto sobre su grosor.

El compuesto de CdZnO ternario tiene una estructura cibica estable (ZB) con un plano
(200) de fase cibica, igual que el CdO binario. El desplazamiento del pico de difraccién (200)
hacia dngulos mas grandes con la incorporacién de Zn estd asociado con la diferencia de radios
atémicos entre Cd y Zn, lo que afecta al pardmetro de red del compuesto ternario. No se
observé fase hexagonal a valores bajos del contenido nominal de Zn, pero al 20 % del valor
nominal de Zn aparecié el pico de C'dZnO(1p2)her; 10 que indica el inicio la presencia de una

mezcla de fases.
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Los estudios de difracciion de alta resolucion (HRXRD) mostraron que a x < 10 % del
contenido de Zn, los compuestos tienen una estructura ciibica monofasica. Con el aumento del
contenido de Zn en el rango de 10 % < x < 15 %, comenzé a surgir la competencia entre la
tension de desajuste y el encogimiento de la red, lo que provoca una inversion de la deformacion
de la celda de red, que se agranda in-plane y sevreduce en out-plane. En x % 15 %, la relacion
entre los pardmetros ¢/a comienza a aumentar, lo que favorecerd la formacién de una estructura
de wurtzita.

A partir de la ley de Vegard se puede determinar que los contenidos de Zn en las muestras
son 3.66, 5.24, 6.44, 5.93 (con Ny como gas portador) y 9.31 % (con He como gas portador) para
5, 10, 15, 20 (V) y 20 % (He) del contenido nominal de Zn, respectivamente. El analisis de EDX
mostré que el contenido de Zn era 3.03, 5.91, 7.86, 11.5 (N) y 14.7 % (He), respectivamente.
Vale la pena senalar que la presencia mezcla de fases hace poco realistas los valores que podria
ofrecer la ley de Vergard.

El pardmetro de red del compuesto ternario calculado a partir de la posicién del pico (200)
disminuyé de 4.6955 a 4.6511 A con el aumento del contenido de Zn de 0 a 20 %. Para la muestra
con un 20 % del contenido nominal de Zn, el parametro de red, obtenido mediante mediciones
de XRD, es similar al calculado por la ley de Vergard para un 10 % de la concentracion de Zn.
Lo que coincide aproximadamente con los valores obtenidos por el método EDX. El tamano
de la cristalita se redujo de 0.76 a 0.33 nm, mientras que la FWHM para el pico (200) se
incrementé en el intervalo de 0.2-0.4 grados.

Con respecto a la transmitancia del CdZnO al aumentar el contenido de Zn, se observé un
desplazamiento gradual en la pendiente maxima de las curvas de transmitancia hacia la longitud
de onda maés corta de la luz transmitida. El espectro de absorbancia, se desplaza claramente
hacia energias mas altas de 2.60 a 2.81 €V con la incorporacion de zinc. Pero después del 15 %
de contenido de Zinc, la tendencia de aumentar de la banda prohibida disminuye debido a la
presencia de fases mixtas. La muestra en la que se utilizé Helio como gas portador tenfa un
valor mas ancho de banda prohibida (~ E, = 2.87 eV).

Heterostructuras de CdTe/CdO

Con el fin de optimizar las condiciones de crecimiento de los compuestos binarios para la
heteroestructura, se crecieron una serie de muestras de CdTe por el método MOCVD, sobre
sustratos de GaAs (100), en el rango de temperatura de 285-380 °C', sobre sustratos de GaAs
(100), utilizando diisopropilo de teluro (DIpTe) y DMCd como precursores. La XRD de estas
muestras mostré la presencia de los planos (111), (311) y (511)/(333). Un aumento de la
relacién entre el flujo de los precursores aumentando el flujo del precursor de DIpTe resulto

en un aumento en el grosor y la rugosidad de las peliculas. A temperaturas de 340-360 °C), el
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grosor de la muestra disminuyé y la superficie de las peliculas se volvié méds lisa con la formacién
de estructuras piramidales. La orientacion de las peliculas se cambié a (100).

Con respecto a la heteroestructura de CdTe/CdO, donde la capa inferior [100] de CdO se
deposité sobre el sustrato de zafiro del plano R, la capa superior de CdTe se orienté en la
direccion [111] o en ambas. Los dos materiales tienen un gran desajuste de red ~ 38,4 %, lo
que dificulta el que la orientacion del CdO se mantenga en la capa de CdTe. Para atacer este
problemasw llevé a cabo un proceso de deposicién de pelicula de dos pasos con el crecimiento
de una capa durante 2,5 min de crecimiento a una temperatura de 295 °C' en el primer paso,
y con el posterior crecimiento de una capa durante 57,5 min a una temperatura en el rango
330-370 °C en el segundo paso. Sin embarga este procedimiento de dos pasos, exitoso en otros
casos, no permitié obtener una pelicula superior de CdTe con la orientacién de la capa de CdO
subyacente. La relacién de las intensidades de XRD para los picos de CdTe (400) y CdTe (111)
tuvo el valor mdas alto R = 0.7 a 350 °C' y disminuy6 al cambiar la temperatura de crecimiento
en el rango de 330-370 °C.

Los estudios de diferencia de potencial de contacto (CPD) sugieren que los limites de grano
(GB) actian como centros de recombinaciéon. Aunque las caras pertenecen a la misma familia
cristalogrifica, no son eléctricamente equivalentes y parte superior de los granos tiene un valor
de CPD mis alto que las juntas de grano (GB) entre ellos. Se espera que se acumulen huecos
en las GB, pero se eliminan los electrones minoritarios, lo que reduce la recombinacion en tales
defectos de GB.

A 295 °C' de temperatura de crecimiento y con una disminucién del tiempo de crecimiento
a 1 min, solo se formaron particulas individuales, el tamafnio de las mismas varié dependiendo
de la relacién entre los precursores de Cd y Te. El uso de un procedimiento de crecimiento
de CdTe de dos pasos con 1 min de crecimiento a 250 °C' y la utilizacién de solo uno de los
precursores durante 6 min a 350 °C' en el segundo paso de crecimiento, permitié obtener una
capa gruesa (utilizando el precursor DipTe), o particulas separadas de CdTe (usando DMCd),
que no cubrieron completamente la capa inferior de CdO. Solo con el crecimiento en un paso
durante 3 min con la temperatura de crecimiento de 250 °C' fue posible obtener una muestra
con la pelicula de CdTe relativamente continua de aproximadamente 30 nm de grosor.

La disminucién de la potencia de irradiacién del ldser incidente (633 nm) conduce, como
se esperaba, a una disminucién del fotovoltaje superficial (SPV). Los resultados de SPV se
pudieron dividir en 3 grupos en los que a temperaturas mas bajas de crecimiento de 330-340 °C
el valor fue negativo, a temperaturas medias su valor fue cercano a cero y a temperaturas altas
de 370 °C' el SPV fue positivo. Un valor negativo podria deberse a una fuerte recombinacién
de huecos de electrones en la superficie, lo que reduce significativamente el SPV. Ademss,
fotoportadores pueden contribuir a un cambio en la capacitancia de la sonda-muestra, lo que

conduce a un posible error sistemédtico en las mediciones de SPV utilizando métodos KPFM.
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Finalmente, laadsorciéon de oxigeno con formacién de 6xidos en la superficie de las peliculas
podria conducir a la formacién de estados superficiales que afectan las propiedades eléctricas.

El desajuste de la red y las dificultades para optimizar las condiciones de crecimiento no
permitieron obtener superficies planas y con orientacién preferenciallo que afecta la morfologia
de la superficie y debido al relieve de la superficie, la distribucién del potencial de la superficie

fue desiguals.

Capitulo 5

En el Capitulo 5 se presenta el crecimiento y propiedades de los calcogenuros ZnTe y ZnS
aleados con Mn para bajos contenidos del mismo. Se analiza la morfologia, caracteristicas

estructrurales, y respuesta optica con respecto al contenido de Mn.

Estudios de Zny_,Mn,Te

Las peliculas delgadas de ZnMnTe con un 5 % del contenido nominal de Mn, fueron obtenidas
mediante el método CSVS sobre sustratos de vidrio en el rango de temperaturas de crec-
imiento de 350-650 °C. Se observaron granos de 600 a 800 nm con una densidad de 2 x 10'2
~ 1 x 10" NPs/m?, respectivamente. El tamafio de los granos aument6 con el aumento de la
temperatura de crecimiento, lo que conduce a una disminucién del contenido de Mn.

En las muestras de ZnMn'Te aparece una capa de transicion entre el substrato y el material
sobre la que crecen cristales orientados en el plano (111) paralelo al sustrato. A altas temperat-
uras del substrato el modo de crecimiento cambié de columnas largas a columnas cortas, lo que
provocé una disminucién en el espesor de la pelicula en el rango de 2.5-1.9 ym a temperaturas
de 350-550 °C.

El patrén XRD es una estructura cibica con una orientacion preferencial (111) para todas las
muestras, y su posicién corresponde aproximadamente a la del ZnTe puro. A bajas temperaturas
del sustrato de 623 K (350 °C), el pardmetro de red de las muestras de ZnMnTe es mayor que
el de ZnTe, lo que indica la sustitucién de iones Mn?T més grandes en los sitios Zn**, pero
con un aumento de temperatura de crecimiento superior a 500 °C el pardmetro de red mostré
un valor constante cercano al del ZnTe binario puro, lo que significa el ausencia, o contenido
reducido de Mn, en las peliculas. La alta intensidad de los picos (111) en los patrones de XRD
sugiere una orientacion preferencial out of plane y los planos cristalograficos dominantes son
los (111) para todas las temperaturas de crecimiento.

El valor real del contenido de Mn calculado por EDX disminuye en el rango de 0.7 a 2.05 %
con un aumento en la temperatura del sustrato, que esta significativamente por debajo de la

valor nominal (5 %) en la carga. La razén de esto puede ser la re-evaporacién del Mn en la
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superficie de las muestras o no incorporacién en los procesos de transporte y deposicién a mayor
temperatura. El estudio mediante PIXE mostro que el manganeso estd distribuido de manera
bastante uniforme en el drea de la muestra.

Las figuras de polos de la reflexién 111 mostraron que las muestras de ZnMnTe exhiben un
pico ancho con su maximo en un angulo de inclinacién de 0 grados y un anillo ancho en un
angulo de inclinaciéon de ~ 70 grados, lo que indica una orientacién azimutal aleatoria. Esta
orientacién uniaxial muestra que las peliculas poseen una orientacién preferencial out-plane
pero no orientacién preferencial en in-plane. El porcentaje de particulas con una orientacion
(111) dentro de + 10 grados es de 83-92 %.

Las peliculas de ZnMnTe en el rango estudiadotienen una clara prevalencia de dislocaciones
de tornillo. El tamano longitudinal medio de los cristalitos aumenta considerablemente con
la caida del contenido de Mn en las muestras obtenidas a mayor temperatura. El tamano
transversal medio también aumenta, pero menos. La relacién de aspecto Djopng/Diyansy va de 3,5
a b cuando el contenido de Mn se reduce al aumentar la temperatura del sustrato. Comparando
el tamano transversal con los valores obtenidos por SEM se puede concluir que que los granos
columnares son policristalinos.

La densidad promedio de dislocaciones es débilmente dependiente de la concentracién de
Mn a temperaturas del sustrato bajas y medias y disminuye cuando el crecimiento se realiza
a una temperatura mayor de 923 K (650 °C'). Para las dislocaciones del tornillo (111), el
vector de Burger, la linea de dislocacién y el eje de la dislocacién del tornillo siguen la misma
direccion. Las muestras obtenidas a menor temperatura muestran una mayor concentracién de
dislocaciones, lo que confirma los resultados obtenidos mediante de rayos X.

El valor de CSD disminuye al reducir el contenido de Mn con la temperatura y luego
aumenta a 773 K (500 °C) en la direccién del plano (111). El valor maximo existe en el
rango de temperatura T, = 600-650 K, donde los valores de contenido de Mn fueron minimos.
Por otro lado, el grado de microestres en esta direcciéon disminuyé con la reduccion de Mn y
aumenta ligeramente a temperaturas mds altas. Esto puede deberse a un cambio en el modo de
crecimiento de columnas largas a cortas. Los valores experimentales de tamano de CSD y grado
de microestres fueron mas altos que para las peliculas de ZnTe depositadas con condiciones de
crecimiento similares.

El ensanchamiento de la reflexién de las lineas (111) y (222) indica la presencia de fallos
de apilamiento (SF') y una mejora en la estabilidad de la fase ciibica con menor contenido de
Mn. La concentracion media de SF en las peliculas de ZnMnTe disminuye con la reduccién del
contenido de Mn, lo que indica una mejora de la estabilidad de la fase ciibica. Por lo tanto, las
peliculas de Zn'Te aleadas con Mn sufren la degradacién de los pardmetros de la subestructura
de las peliculas de ZnTe, lo que se muestra a medida que aumentan la microdeformacién y las

CSD, asi como la concentracion de SF.
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La transmitancia de las peliculas de ZnMnTe muestra un fuerte aumento en la transmi-
tancia a longitudes de onda > 540 nm, lo que indica una buena cristalinidad de las peliculas
depositadas. A valores altos de la longitud de onda de la radiacién incidente, las curvas de
transmision adquieren un cardcter oscilatorio de interferencia, cuya distancia entre los picos
aumenta con el aumento de la temperatura. Con la reduccién del contenido de Mn aumenta
el coeficiente R, lo que obviamente estd asociado con la aparicién de peliculas con un relieve
piramidal pronunciado. Las peliculas de ZnMnTe con mas corto tiempo de crecimiento tienen
un coeficiente de reflexion més bajo, y esta dependencia se mantiene al calcular el coeficiente

de reflexién especular de este material.

Los célculos de la banda prohibida se realizaron utilizando el maximo del pico de la derivada
de los espectros de absorcién del material, mostrando que independientemente de la temper-
atura de crecimiento, tenfan una banda prohibida de aproximadamente £, — 2.26-2.27 eV, que
corrobora la presencia de una concentracién de Mn muy baja en las peliculas o su ausencia

total en las obtenidas a mas alta temperatura.

Estudios del crecimiento cristalino de Zn;_,Mn,S

Como en el caso anterior, se obtuvieron, mediante el método CSVS , muestras policristalinas
de ZnMnS con un 7 % de contenido nominal de Mn sobre sustratos de vidrio en el rango de
temperatura de crecimiento de 100-450 °C'. A temperaturas del sustrato < 100 °C se destruye
la integridad de las peliculas debido a la aparicién de tensiones superficiales asociadas a la
diferencia en el coeficiente de expansién térmica entre capa y sustrato y las condiciones de
crecimiento poco favorables a la constitucién de una estructura cristalina estable. La presencia

de Mn cambia la morfologia de la pelicula de ZnS desde una méds uniforme a una granular.

Con la reduccién del contenido de Mn con el incremento de la temperatura de crecimiento
el tamano de grano aumenta (0,65-3,13 pm), con una reduccién de la densidad (0,18 x 10'2 -
1,16 x 102 NPs/m?). El grosor de las peliculas, por el contrario, disminuy6 con el aumento
de la T, lo que puede ser causado por un cambio en el modo de crecimiento, reevaporacion y

no incorporacion de los atomos de Mn a temperaturas mas altas.

Entre todas las reflexiones de los planos cristalograficos a temperaturas de crecimiento més
bajas 373-623 K (100-400 °C), la intensidad dominante es el pico (111), que indica la presencia
de una textura expresada con una estructura cibica [111], ya que esta direccién coincide con
la direccion de el crecimiento més répido de las cristalitas. A temperaturas de 673-723 K (400-
450 °C'), la intensidad del pico (111) disminuye fuertemente y la reflexién desde el plano (200) se
vuelve dominante. Los picos de difraccion correspondientes al Mn elemental (300) observados

a una temperatura mas baja T, = 373-623 K (100-350 °C'), desaparecen a temperaturas més
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altas [> 623 K (> 350 °C')], lo que puede deberse a la re-evaporacién y/o no incorporacién de

Mn en las muestras.

El material de partida tenia las fases cubica y wurtzita, lo que a altas temperaturas proba-
blemente favorece la formacién de la fase de wurtzita en las peliculas depositadas. La existencia
de 2 fases se explica por la ausencia de una diferencia entre la energia de formacion de las fases
de esfalerita y wurtzita para un compuesto de ZnS puro y su igual posibilidad de existencia. El
ndimero de cristalitos con una orientaciéon (200) aumenta con la temperatura de crecimiento y
el grado de orientacion preferencial sube al reducir el contenido de Mn en temperaturas medias
del sustrato de 623-673 K (350-400 °C'), pero vuelve a bajar a Ty > 723 K (450 °C).

El contenido real de Mn disminuyé con la temperatura de crecimiento La relacién entre la
concentracion atémica de zinc y manganeso (C(zn+Mn)) y la concentracion atémica de azufre
(Cs) aument6 y a alta temperatura [Ty = 723 K (450 °C')] siendo aproximadamente 1,08, que
se acerca a la proporcién estequiométrica ideal entre los elementos. El pardmetro de red para
una serie de muestras de ZnMnS estavu en el rango de 5,6406-5,6424 Ay disminuy6 con el
aumento de la temperatura de crecimiento, lo que se puede esperar ya que az,s < ayns ¥ 1a

concentracion de Mn tendfia a disminuir.

El tamano de la CSD fue significativamente menor que el tamano del grano y cambi6 con el
aumento de la temperatura en el rango de 42-84 nm, mientras que en el rango de temperatura
T, = (500-550) K con 2.9 % atémico de Mn, su valor fue maximo. El nivel de microestres en la
direccién [111] no es uniforme con la reduccién del contenido de Mn. Se registré un aumento
mondétono, después del cual hubo una disminucién en el valor y un segundo aumento a altas
temperaturas. Este comportamiento estd asociado con un cambio en el modo de crecimiento
en T, > 623 K. El tamano de las CSD es significativamente menor que el tamano del grano.
Podemos suponer que estas dimensiones en la direccién perpendicular a los planos (111) se
limitan a las maclas, los defectos SF y los propios CSD estdn en la forma cercana al cilindrico.

En este caso, la altura del cilindro L), es ligeramente menor que su didmetro.

El nivel de microestres vario en el rango o = (7.04-13.83) MPa y se concentran principal-
mente en los limites del CSD, mientras que el volumen de cristalitos estd practicamente libre
de dislocaciones. Con un aumento de temperatura, el valor del nivel de microesfuerzo, deter-
minado a partir de las reflexiones del plano (111) - (222) disminuye, alcanzando su minimo en
~ 2.9 % atémico en el rango de crecimiento Ty = 550-650 K, después de lo cual el valor aumenta
gradualmente. Con la reduccién del contenido de Mn, aumenta la estabilidad del componente
cibico de la pelicula, disminuye la probabilidad de violacion del orden de alternancia de los
planos (111) y, en consecuencia, disminuye la concentracién de SF. La baja energia interfacial
durante la transicién de la fase cubica a la de wurtzita y los pequenos cambios de energia

en la red cristalina en los cambios de fase conducirdn a una alta probabilidad de errores en
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la alternancia de planos compactos y la formacién de defectos, que afectardn la estructura y
caracteristicas subestructurales de las peliculas.

La transmitancia de las peliculas de ZnMnS aumenta al alcanzar el "borde rojo" a 340-
350 nm, Con la reduccién del contenido de Mn aumenta el coeficiente R, lo que obviamente
estd asociado con la aparicién de peliculas con un relieve piramidal pronunciado. Los célculos
de la banda prohibida muestran que esta se desplaza hacia energias méas altas desde 3.569 eV
(para 373 K [100 °C]) a 3.642 eV (para 723 K [450 °C]) con el aumento de la temperatura
del sustrato, lo que indica, de nuevo, una disminucién en el contenido de Mn en las muestras.
Para temperaturas medias de 523-623 K (250-350 °C'), la posicién del méximo es similar, lo

que apunta a una incorporacién de Mn similar.

Capitulo 6

Finalmente, en el Capitulo 6 hemos resumido las principales conclusiones resultantes de
este trabajo, parte de las cuales ya han sido descritas con anterioridad y ahora sintetizamos
brevemente.

El trabajo realizado en esta tesis ha contribuido al estudio del crecimiento y caracterizacion

de los 6xidos binarios de zinc y cadmio, la aleacién ternaria asociada y la heteroestructura
CdTe/CdO, asi como los DMS, ZnMnTe y ZnMnS.

Se ha analizado el efecto de la temperatura y los pardmetros de crecimiento sobre las
propiedades estructurales de peliculas delgadas de ZnO y el compuesto ternario CdZnO cibico
del que tambien se ha estudiado su respuesta optica . Las dificultades para obtener het-
eroestructuras de alta calidad basadas en CdTe/CdO estén asociadas con un gran desajuste de
sus parametros de red, como resultado de lo cual el CdTe no reproduce fielmente las propiedades
de la capa de CdO, difiucltando el procesado de la heteroestrcutura. De hecho debido a la com-
pleja morfologia, el potencial de contacto superficial no se distribuye uniformemente sobre la
superficie de las muestras.

Se encontré que en materiales funcionales ZnMn (Te,S) obtenidos con el método CSVS sobre
vidrio, el contenido de Mn disminuyé con el aumento de la temperatura de crecimiento como
resultado de su re-evaporacién o no incorporacién en los procesos de transporte y deposicién a
mayor temperatura. Para las peliculas de ZnMnTe, se observé una orientacién preferencial out-
plane con un claro predominio de las dislociones de tornillo. La incorporacién de Mn induce una
degradacion en las peliculas de ZnTe. Para peliculas de ZnMnS obtenidas a altas temperaturas,
se observa la existencia de fases cibica y wurzita. debido a que la diferencia entre las energias
de formacion de las fases de esfalerita y wurtzita no es significativa y la formacién de cada una

de las fases tiene la misma probabilidad.
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Los estudios épticos de los estos DMS mostraron que en las peliculas de ZnMnS la banda
prohibida aumenté con la temperatura de crecimiento, lo que corrobora una disminucién en el
contenido de Manganeso. Por el contrario, en las peliculas de ZnMnTe este valor no cambio
significativamente independientemente de la temperatura, la cual estd asociada o con el bajo
contenido del elemento de aleacién o con su completa ausencia a temperaturas méas altas.

Los resultados obtenidos en este trabajo tienen un significado tanto fundamental como
aplicado. La nueva informacién sobre las condiciones de crecimiento, la estructura y sube-
structura cristalina, la composicién quimica, la morfologia de la superficie de la pelicula, sus
caracteristicas épticas, dependiendo de las condiciones fisicas y tecnoldgicas de crecimiento,
debe contribuir al desarrollo de materiales basados en los compuestos binarios de A;;By ;. En
general, esta tesis permitié no solo un estudio en profundidad de las propiedades de los ma-
teriales funcionales en funcién de las condiciones de crecimiento, sino también la adquisicién
de habilidades y un amplio conocimiento de los diferentes métodos de crecimiento y caracteri-

zacion.
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