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Introduccion

I ntroduccion

El objetivo de la presente tesis es analizar el impacto de la introduccion de las energias

renovables en el sistema eléctrico espaiol.

La potencia de generacion de electricidad a partir de fuentes de generacion renovable ha
aumentado considerablemente en los ultimos afios. El porcentaje del total de potencia
instalada en la peninsula ibérica que pertenece a energias renovables en 2007 era el 17%,
y en 2013 ascendi6 al 30%. A continuacion, se freno significativamente la inversion en
energias renovables, para retomarse posteriormente a partir de 2018!. Este cambio
obedece a una mayor concienciacion medioambiental en linea con los compromisos
internacionales de reduccion de emisiones contaminantes asumidos por Espaia, y
también al ahorro de costes para las empresas que asi consiguen reducir su necesidad de
permisos contaminantes. En consecuencia, el mix de generacion espafiol cambia
radicalmente, pasa de estar compuesto principalmente por fuentes de generacion
convencionales y seguras (en el sentido de la garantia de suministro), a fuentes de
generacion renovables y de produccion intermitente, sobre todo la edlica y la fotovoltaica,
que dependen de la existencia de viento y sol (La generacion edlica anual pasa de
27.611,65 GWh en 2007, siendo el 10% del total, a 54.713,25 GWh en 2013, el 21% del

total generado?).

Uno de los temas mas discutidos sobre la nueva realidad del mercado eléctrico tras la
irrupcion de las renovables es la cantidad de recursos destinados al fomento de estas

tecnologias de generacion. Por un lado, se generaliza la opinion de la supuesta
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insostenibilidad de la remuneracion a las energias renovables, que explica la burbuja
inversora en Espafia hasta 2013, y su congelacion posterior; por otro lado, se establece la
necesidad de mantener en el sistema fuentes de generacion no-intermitentes para los casos
en los que las renovables no estan disponibles, las cuales exigen alguna retribucion por el
mero hecho de servir de back-up.

Otro de los temas que estdn en el centro del debate se relaciona con la mencionada
intermitencia de las principales fuentes de generacion renovable, la cual se traduce en que
su produccion es dificilmente predecible, lo que puede aumentar la incertidumbre en el
mercado, la volatilidad de los precios y, también, la necesidad de realizar ajustes para

garantizar el suministro eléctrico.

En un mercado, como es el de la electricidad, en el que, en la actualidad, el
almacenamiento a gran escala no es viable econdmicamente, es necesario negociar con
antelacion la entrega, lo cual se lleva a cabo en el mercado diario (con un dia de
antelacion), y posteriormente realizar ajustes para corregir desviaciones y garantizar el
suministro eléctrico. El impacto de estas tecnologias no se limita, por tanto, al mercado
diario, donde se concentra la mayor liquidez, sino que se extiende, asimismo, y de forma
significativa, a los mercados o segmentos de negociacidon posteriores, los cuales deben
ser asimismo objeto de atencidon por parte de los reguladores para adaptarse a la nueva

realidad.

El presente trabajo extiende el estudio del impacto de las renovables sobre el precio en el
mercado diario, cuestion que ha sido ampliamente analizada en la literatura, abordando
aspectos menos estudiados y complejos, como el efecto del comportamiento estratégico
de los participantes y el estudio de dinamicas entre los mercados o segmentos dentro del
Sistema Eléctrico. Estas dinamicas pueden ser clave para lograr una mejor integracion de

las renovables.

El sistema eléctrico espafiol es elegido como ejemplo paradigmatico debido al intenso
crecimiento observado en las renovables en los ultimos afios, en especial de energia
edlica. Los resultados obtenidos son de utilidad tanto para reguladores como participantes
del mercado, profundizando en un mayor conocimiento acerca del funcionamiento del

Sistema Eléctrico.
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Resumen de los Capitulos

Resumen de los Capitulos

Los capitulos que constituyen el contenido de la Tesis son:

e (apitulo 1: Effects of renewable on the stylized facts of electricity prices.
e (Capitulo 2: Impact of wind electricity forecast on bidding strategies.
e (apitulo 3: Analysing the impact of renewables on Spanish electricity final prices

using machine learning techniques.

En primer lugar, en el Capitulo 1, se analiza el impacto de las renovables en el precio
fijado en la subasta del mercado diario, o precio spot, siendo objeto de analisis no solo el
comportamiento del precio en niveles (que se espera se reduzca debido a los menores
costes marginales de las renovables), sino también sus caracteristicas principales, como
son su elevada volatilidad y la existencia de spikes (o saltos inesperados en el precio).
Ambas caracteristicas se observan con frecuencia en los precios eléctricos, pudiendo
cobrar aln mayor importancia dada la intermitencia y menor predictibilidad de la

produccion renovable.

A continuacion, en el Capitulo 2, se amplia el estudio extendiendo el anélisis a los precios
ofrecidos por los agentes en la subasta del mercado diario. Si consideramos que las
renovables tienen un impacto relevante en el precio spot, entonces es razonable esperar
que los participantes tengan en cuenta la prevision de energia renovable
(fundamentalmente eolica por su mayor penetracion) a la hora de tomar decisiones sobre
el precio y la cantidad a ofertar. Es interesante, por tanto, contrastar el comportamiento
estratégico de los agentes incorporando sus estimaciones de produccion de energia edlica

en su matriz de informacion

11
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Por ultimo, en el Capitulo 3, se completa el estudio mediante el andlisis del efecto de las
energias renovables en el precio final de la electricidad y en cada uno de sus componentes;
componentes que recogen los costes en los que incurre el sistema por la puesta en marcha
del resto de mercados y procesos de ajuste que tienen lugar después del mercado diario.
En general, se espera que todos estos costes aumenten ante la mayor necesidad de realizar

ajustes derivada de la intermitencia y menor predictibilidad de la produccion renovable.

12



Resumen del Capitulo 1

Resumen del Capitulo 12

Effects of renewable on the stylized facts of electricity prices.

Este Capitulo se ha publicado en 2015 bajo el titulo “Effects of renewable on the stylized
facts of electricity prices” en la revista Renewable and Sustainable Energy Reviews,
revista cientifica de reconocido prestigio internacional (primer cuartil del © 2019

CLARIVATE ANALYTICS y primer cuartil del Scimago Journal Rank).

Introducci()n

El precio de la electricidad se caracteriza por la elevada volatilidad y la existencia de
spikes, o saltos no esperados en el precio ([1]-[6]). Debido a ello, es practica habitual
incorporar procesos discretos de saltos en los modelos de prediccion de precios eléctricos,
combinados con procesos continuos con la finalidad de poder recoger este

comportamiento especifico ([7]).

Una idea generalizada en la literatura es que el aumento de las renovables en el mix de
generacion eléctrica va a provocar la disminucién del precio en las subastas del mercado
diario. Esto se debe a una cuestion meramente técnica derivada del propio mecanismo de
mercado. En la mayoria de paises, incluido Espafia, el mercado eléctrico funciona
mediante subastas de precio marginal uniforme, que se celebran con antelacion al
momento de consumo de la energia. El mecanismo mas utilizado para asignar la energia
en estas subastas es el del orden de mérito; esto es, los agentes del mercado remiten sus

ofertas de venta o de compra de electricidad (precio y cantidad) para cada uno de los
13
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periodos horarios del dia siguiente. Las ofertas se ordenan para construir las curvas
agregadas de oferta y de demanda. Y, el precio del mercado diario, o también denominado
precio spot, es el precio que oferta la tltima unidad de venta que entra en la casacion para
satisfacer la demanda, donde las curvas agregadas de demanda y oferta se encuentran, y
acaba aplicandose por igual a todos los agentes que participan en el mercado. Las plantas
de generacion renovable tienen en general costes marginales mas bajos que las plantas de
generacion convencional y pueden ofrecer la energia que producen a precios ofertados
inferiores. Por lo tanto, un aumento en las ofertas de renovables deberia tener como
consecuencia el desplazamiento de la curva de oferta del mercado de tal modo que el
precio spot podria acabar fijdndose en un nivel inferior. Este efecto de las renovables se
ha denominado en la literatura efecto de orden de mérito. En el caso del mercado espaiol,
en [8] se estima, utilizando datos de 2006, que la reduccion en el precio spot causada por
el efecto de orden de mérito puede llegar a compensar por el coste en el que se incurre al
incentivar la inversion en energia renovable. Por su parte, en [9], utilizando datos
horarios, también del mercado espaifiol, desde 2005 hasta 2009 se concluye que un
incremento marginal de la produccion renovable igual a IGWh puede conllevar una

reduccion en el precio spot de alrededor de 2€/MW.

Sin embargo, hay que tener en cuenta que la produccion renovable es intermitente, dado
que depende de condiciones climatologicas, de la existencia de viento a una determinada
velocidad, o de las horas de sol. De este modo, se considera que las plantas de generacion
renovable tienden a ser menos predecibles, comparadas con las de energia nuclear o de
origen fosil. En este sentido, en la medida en que se recurra menos a las fuentes de energia
convencional y mas a las fuentes de energia intermitentes, como las renovables, se podria
esperar un aumento en la ocurrencia de saltos en los precios, y/o un incremento de la
volatilidad de los precios de la electricidad. No obstante, podria no ser asi, ya que al
mismo tiempo que aumenta la exposicion de los precios a la volatilidad de las renovables,
también se reduciria la exposicion a la volatilidad del precio de las fuentes de energia

convencional.

En este trabajo vamos a profundizar en el andlisis del efecto de las renovables en el precio
spot en el mercado diario espanol de la electricidad, utilizando un periodo de analisis mas

amplio que en los trabajos previos (desde 2002 hasta el ultimo afio disponible 2013), y

14
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completando el estudio con el analisis no solo del precio en niveles, sino también de sus

caracteristicas principales: volatilidad y ocurrencia de saltos o spikes.

Objetivo y Metodologia

El objetivo principal de este trabajo es verificar si efectivamente el precio del mercado
diario, o spot, se ha reducido como consecuencia del incremento de la produccion
renovable en el mercado; si se ha vuelto mas volatil; y, por ultimo, si ocurren con mayor

frecuencia los denominados saltos inesperados o spikes.

Para ello, los datos utilizados son series temporales de precios spot en euros/MWh del
mercado diario espafiol con frecuencia horaria desde 2001 hasta 2013 (el ultimo afio
disponible en el momento de la realizacion de este andlisis). También se utilizan series
categoricas que nos indican cudl es la tecnologia, o tecnologias, que marcan el precio spot
cada hora, es decir cual es la tecnologia de generacion del participante, o los participantes,
en el mercado cuya oferta de precio de venta coincide con el precio resultante de la
subasta. Los tipos de tecnologia que se consideran en el estudio son los siguientes:
renovables (principalmente edlica, pero también solar, cogeneracion, biomasa y
tratamiento de residuos), térmicas (carbon y fuel-gas), ciclo combinado, nuclear,
hidraulica e hidraulica de bombeo. Finalmente, también se utilizan series de volumen de
energia casada en la subasta del mercado diario en MWh, con frecuencia horaria de cada

uno de los grupos de tecnologias mencionados desde 2008 hasta 2013.

El método de aproximacion al problema que se ha seguido ha sido doble: por un lado, se
ha realizado un andlisis preliminar descriptivo para detectar eventos relevantes en la
evolucion del precio spot; también se ha analizado la evolucion de cual es la tecnologia
que marca el precio marginal o spot en cada momento; y cambios relevantes en el mix de
generacion. Ademads, este andlisis ha resultado ser muy util para adquirir un valioso
conocimiento del mercado. Y, por otro lado, una vez identificados los cambios

significativos, se realiza un analisis mas profundo mediante herramientas econométricas.

15
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Las herramientas utilizadas son las siguientes:

16

Para analizar la relacion entre el porcentaje de produccién renovable y la
tecnologia que marca el precio marginal se ha utilizado una regresion lineal. En
esta regresion, la variable dependiente es el porcentaje de veces que cada
tecnologia marca el precio marginal; y la variable independiente es el porcentaje
de produccion renovable. Las tecnologias consideradas en el estudio son: térmica,
ciclo combinado, hidraulica, hidraulica de bombeo y nuclear.

Para analizar la relacion entre el porcentaje de produccion renovable y el precio
marginal se ha utilizado también una regresion lineal. En este caso la variable
dependiente en la regresion es el precio spot; y la variable independiente es el
porcentaje de produccion renovable. Ademas, aunque el principal foco de
atencion es el estudio del impacto de las renovables, se amplia el analisis para
estudiar también el efecto de otros tipos de tecnologias de generacion (térmica,
ciclo combinado, hidraulica, hidraulica de bombeo y nuclear).

Para analizar la relacion entre el porcentaje de produccion renovable y la
volatilidad y la ocurrencia de saltos o spikes en el precio, en primer lugar, se ha
utilizado el modelo de Cartea y Figueroa (20005) ([7]) para estimar la volatilidad
de los precios a lo largo del tiempo e identificar la ocurrencia de saltos. Este
modelo es de uso habitual y resulta 1til para nuestro propésito ya que incorpora
las principales caracteristicas de los precios eléctricos (reversion a la media, alta
volatilidad y ocurrencia de saltos). Una vez realizada la estimacion del modelo
de precios, se analiza la relacion entre la volatilidad de los precios y la volatilidad
de la produccion renovable mediante un test de correlacion de Pearson, repitiendo
también el mismo analisis con las otras tecnologias. Y, finalmente, para
profundizar en la ocurrencia de saltos, se estima un modelo logistico, en el que la
variable dependiente es el logit de la probabilidad de ocurrencia de un salto en el
precio, distinguiendo entre: saltos inesperados en el precio hacia arriba (que
denominamos saltos positivos), y saltos inesperados en el precio hacia abajo
(saltos negativos). Las variables independientes en este modelo de regresion son

las series de porcentajes de produccion de cada tecnologia en diferencias.



Resumen del Capitulo 1

Todos los analisis de este capitulo se realizan tres veces, una primera considerando todas

las horas de entrega de la energia, una segunda vez considerando solo las horas de entrega

de la energia en las que la demanda es elevada, denominadas horas pico (desde las 08:00h

hasta las 20:00 h en dias laborales), y una tercera vez considerando las horas de entrega

de la energia en las que la demanda es baja, denominadas horas valle (desde 00:00h hasta

las 08:00h y desde las 20:00h hasta 24:00h en dias laborales y las 24h en dias no

laborales).

Resultados

Los principales resultados del analisis preliminar descriptivo son los siguientes:

La tecnologia de ciclo combinado desde 2006 se convierte en la tecnologia que
mas veces marca el precio marginal en la subasta a lo largo del periodo muestral.
Sin embargo, a partir de 2010 es reemplazada por las centrales con tecnologia

térmica o hidraulica.

Respecto a la tecnologia renovable, aun cuando tiene menos posibilidades de
marcar el precio marginal debido a que se sus costes marginales son mas bajos, es
interesante observar como desde 2010 empieza a marcar mas veces el precio
marginal que en el periodo anterior, en especial en horas en las que la demanda

de electricidad es baja (horas valle).

En cuanto a la evolucion de los precios marginales o spot, en el analisis preliminar
descriptivo de su evolucion, no se observa evidencia de que desde 2001 hasta 2013
haya disminuido en nivel significativamente o haya aumentado su desviacion
tipica. Lo que si se observa es que desde 2010 el coeficiente de asimetria, que
antes era positivo, ha pasado a ser negativo, lo que podria tener relacion con la
caida del precio debido a un aumento en el volumen de ofertas de las renovables.
El impacto de las renovables sobre la distribucidn del precio spot, por tanto, podria

estar mas relacionado con la simetria de la distribucion (aparicion de precios mas

17
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bajos con mayor frecuencia), y no tanto con un cambio significativo en su media
o en su desviacion tipica.

Asimismo, a partir de 2010, el niimero de outliers identificados en la serie de
precios spot pasa a ser mayor en horas valle que en horas pico, mientras que en el

periodo anterior ocurria lo contrario.

Finalmente, del andlisis de la evolucion del porcentaje de energia casada en la
subasta agrupando la energia por tecnologias de generacion se deduce un
decrecimiento progresivo de la tecnologia de ciclo combinado desde 2008 hasta
2013, al contrario que la produccién renovable que presenta un crecimiento

continuado.

Los principales resultados de la segunda parte del capitulo, el estudio econométrico, son

los siguientes:

18

Existe una relacién negativa entre el porcentaje de veces que las centrales de
generacion de ciclo combinado marcan el precio marginal y el porcentaje de
renovables (existiendo para otras tecnologias una relacion positiva). De este
modo, se obtiene evidencia de que la tecnologia de ciclo combinado se ha visto

en parte desplazada por las renovables en el mercado diario.

El precio spot del mercado diario de electricidad espaiiol disminuye cuando hay
mas generacion de origen renovable. Este resultado concuerda con lo observado
en la literatura previa, y se debe al propio mecanismo de la subasta en el que las
ofertas de generadores con costes variables mas bajos (como es el caso de las
renovables) son las primeras en resultar casadas (el denominado efecto de orden
de mérito). Por el contrario, el precio spot aumenta cuando hay mas generacion
de las centrales de ciclo combinado y térmicas, resultado que se explica por sus

costes marginales mas elevados.

Se detecta la existencia de periodos de intensa aparicion de spikes, o saltos en el
precio, ocurridos entre mayo y junio de 2010 y de 2013, los cuales se producen

con mayor intensidad en horas valle, coincidiendo con elevados picos de
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volatilidad en el precio. Sin embargo, no parecen tener relacion con aumentos en
la volatilidad de la producciéon renovable. Por el contrario, coinciden con la
aparicion de picos de volatilidad en la produccion de otras tecnologias, como son

la nuclear, la hidraulica y la hidraulica de bombeo.

El test de correlacion confirma que, si excluimos los periodos de intensa
volatilidad en el precio, existe una elevada correlacion positiva entre la
volatilidad de la produccion renovable, que es superior a la volatilidad de otras
tecnologias debido a su naturaleza intermitente, y la volatilidad del precio spot.
Sin embargo, si no excluimos dichos periodos, la correlacién baja
considerablemente (pasa de +63.4% a +27,9%). Por el contrario, la tecnologia
que muestra valores de correlacion mas bajos en todos los casos, incluso
negativos, entre su volatilidad y la volatilidad de los precios, es la tecnologia de

ciclo combinado.

En cuanto a la ocurrencia de saltos o spikes en el precio, los resultados de los
modelos logisticos nos indican que un incremento de la produccion renovable
reduce la probabilidad de que ocurran saltos al alza (positivos) en los precios en
horas pico, siendo no relevante su efecto en los precios en horas valle. Por el
contrario, el incremento de produccion térmica aumenta la probabilidad de que
ocurran saltos positivos en el precio en horas valle, al tiempo que reduce la
probabilidad de que ocurran saltos negativos en el precio, tanto en horas pico

como en horas valle.

Conclusiones

Se confirma para el mercado diario que el incremento de produccion renovable reduce el

precio spot y existe correlacion positiva entre la volatilidad de la produccion renovable y

la volatilidad de los precios. Sin embargo, en el caso de la volatilidad, los resultados

obtenidos también ponen de manifiesto que otras tecnologias diferentes a las renovables,

como la nuclear y la hidrdulica, explican la aparicion de la aparicion de picos notables de

volatilidad. Por otro lado, en contra de lo esperado, el porcentaje de produccion renovable
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ha contribuido a suavizar la ocurrencia de saltos inesperados en el precio (spikes)
caracteristicos de los precios eléctricos, ya que el incremento de la produccion renovable
durante las horas pico de demanda ha tenido como resultado la reduccién de la

probabilidad de que ocurran saltos al alza en el precio.

La distincion entre horas pico y horas valle es sin duda relevante para entender el efecto
de la introduccion de las energias renovables en el precio del mercado diario, resultando
que es en horas valle donde se constata una mayor volatilidad y mayor ocurrencia de
spikes o saltos en el precio, siendo la produccion de las tecnologias térmica y de ciclo
combinado las responsables de dicho incremento en la ocurrencia de saltos positivos en

el precio (precios mas altos).

Los resultados de este capitulo ponen de manifiesto que el impacto de la penetracion de
renovables en la estructura de generacion sobre los precios y el comportamiento de los
mismos no se limita a las estrategias de negociacion de las centrales de energia
renovables que irrumpen en el mercado sino que comporta una accion o reaccion del resto
de tecnologias, manifestada en su comportamiento asimismo estratégico para adaptarse a
las circunstancias del nuevo contexto, en especial aquéllas con capacidad para afectar al

precio. Esta cuestion se aborda en el siguiente Capitulo.
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Resumen del Capitulo 22

Impact of wind electricity forecast on bidding strategies.

El Capitulo 2 de la presente tesis doctoral ha sido publicado bajo el titulo “Impact of wind
electricity forecast on bidding strategies” en la revista Sustainability, revista cientifica de
reconocido prestigio internacional (segundo cuartil del © 2019 CLARIVATE
ANALYTICS y segundo cuartil del Scimago Journal Rank).

Introducci()n

En la mayoria de los paises de nuestro entorno, la electricidad se negocia principalmente
con un dia de antelacion en el mercado diario. Este mercado funciona mediante un
mecanismo de subasta de precio marginal uniforme, en el que consumidores y
generadores envian sus ofertas de compra y de venta de electricidad, compuestas por
precio y volumen, para cada una de las 24 horas del dia siguiente. Estas ofertas se ordenan
por su precio y el precio resultante de la subasta, o precio spot, es aquel que coincide con
el precio de venta de la oferta de venta mas cara que se necesita para satisfacer el total de

la demanda de electricidad para cada hora.

El precio al que una central de generacion de electricidad esta dispuesta a vender su
produccion depende de sus costes de produccion y estos pueden ser muy diferentes
dependiendo de la tecnologia utilizada. Las centrales renovables, por ejemplo, tienen
costes marginales mas bajos y, por tanto, pueden ofrecer su energia a precios menores.
Debido a ello, se sitian en la base de la curva agregada de oferta y suelen ser las primeras

en resultar casadas en la subasta del mercado diario. El aumento de la produccion de
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electricidad procedente de fuentes de generacion renovable generalmente traerd consigo
la reduccién del precio marginal o spot, ya que el aumento de sus ofertas de venta desplaza
la curva de oferta del mercado hacia la derecha y el precio marginal se marca a un nivel

inferior, efecto conocido como el efecto de orden de mérito de las renovables.

Si el aumento de las ofertas renovables en la subasta del mercado diario tiene el impacto
esperado - descenso del precio - y este impacto resulta ser relevante, es logico esperar que
todos los agentes reaccionen incorporando la prevision renovable en sus decisiones de
oferta con el fin ultimo de maximizar sus beneficios. En especial, un cambio de estrategia
de los agentes que se encuentran con mayor frecuencia entre los que marcan el precio

marginal podria tener un impacto significativo en el precio spot que no podemos ignorar.

La complejidad de las estrategias de oferta en el mercado eléctrico ha capturado la
atencion de distintos autores en la literatura ([1]-[5] entre otros). En particular, en [6] se
analizan las estrategias de oferta mediante modelos tedricos y se deduce que el efecto de
orden de mérito de las renovables podria verse incrementado debido a la actuacion de
participantes con poder de mercado. A su vez, en [7], utilizando datos empiricos del
mercado britdnico, se obtiene que los precios eléctricos podrian ser mas elevados, y mas
volatiles, en escenarios con poder de mercado. En el caso espaiiol ([8]), en el periodo
temporal que va desde 2002 hasta 2005, se detecta un comportamiento estratégico
diferente en las centrales térmicas de fuel dependiendo de su tamafio. Finalmente, también
en el caso espafiol, en [9], se identifica un comportamiento estratégico seguido por
algunas centrales de generacion que consiste en aumentar el precio al que quieren vender
en el mercado diario, lo que les dejaria fuera de la casacion en la subasta, siendo requerida
su participacion posteriormente en los servicios de ajuste (en concreto en el proceso de
restricciones técnicas) buscando con ello obtener mayores beneficios. Esto tiene lugar en

el periodo que va desde julio de 2004 hasta febrero de 2005.

El enfoque de este trabajo es diferente, ya que el interés reside en analizar primero en qué
medida los precios de venta ofrecidos por todos los agentes, no solo los de las centrales
de generacion térmica, sino también los de las centrales de ciclo combinado, hidraulicas,

nucleares y renovables, dependen de la prevision de la produccion edlica para el dia
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siguiente; asi como estudiar como a su vez cada estrategia de oferta impacta en la curva

agregada de ofertas del mercado, y por tanto en el precio spot.
Objetivo y Metodologia

El objetivo de este capitulo es identificar cudles son los factores de los que dependen los
precios ofertados por parte de las centrales de generacion de electricidad en la subasta del
mercado diario espafol. En particular, es interesante analizar el efecto que provoca, en su
caso, la prevision de la produccion eolica para el dia siguiente en el nivel ofertado del
precio, asi como identificar diferencias de comportamiento dependiendo de la tecnologia
de generacion de la central que realiza la oferta, con el fin de dilucidar como las diferentes

estrategias acaban impactando en el precio marginal resultante de la subasta (el precio

spot).

Los datos utilizados son series temporales desde 2010 hasta 2013 de unidades de oferta
compuestas por precio (euros) y volumen de energia (MWh) presentadas a la subasta del
mercado diario para comprar o vender electricidad, tanto las series de ofertas finalmente
casadas como las que no resultan finalmente adjudicadas, para cada una de las 24 horas
del dia siguiente; la prevision de produccion edlica para cada hora del dia siguiente que
Red Eléctrica (REE) publica justo antes de la hora limite de entrega de las ofertas de la
subasta. También se incluyen otros datos relevantes para los precios eléctricos como las
series de precios del gas natural negociadas en el National Balance Point (NBP), las series
de futuros sobre el precio de los permisos de emision de CO2 European Union
Allowances (EUA) con vencimiento anual y frecuencia diaria o la reserva de agua en
Espana, serie disponible con frecuencia semanal. En total, el conjunto de datos utilizado

contiene alrededor de 72 millones de registros.

La metodologia utilizada para abordar el analisis consiste en la estimacion de modelos de
datos de panel en los que la variable dependiente es el precio medio ofrecido en la subasta
del mercado spot de los agentes que comparten la misma tecnologia de generacion. Los
grupos de tecnologia considerados son: ciclo combinado, térmica (que incluye carbon,

fuel-gas y fuel-oil), hidroeléctrica, nuclear, y resto de tecnologias de generacion,
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principalmente renovables. Se estiman, por tanto, un total de 6 modelos de datos de panel

diferentes, uno para cada tipo de tecnologia de generacion.

En cada modelo de datos de panel se incluye como seccion cruzada la hora de entrega de
la electricidad (24 horas). Esto tiene sentido ya que en un mismo momento del tiempo los
participantes del mercado deben presentar sus ofertas para cada una de las 24 horas del
dia siguiente. Cabe esperar, por tanto, que los precios ofrecidos estén correlacionados
entre si, siendo al mismo tiempo diferentes atendiendo a los distintos niveles de demanda

de cada hora del dia.

Una de las variables explicativas en los modelos de datos de panel es la prevision edlica
elaborada por el operador del sistema eléctrico espafiol, Red Eléctrica Espaiiola (REE).
Esta prevision se pone a disposicion de todos los participantes del mercado justo antes de
la hora en la que deben enviar sus ofertas para las subastas del mercado diario.
Adicionalmente, junto con la prevision eolica, se incluyen otras variables que podrian
influir en las decisiones de oferta de los agentes como son: el precio del gas natural
negociado en el hub NBP; el precio de las emisiones de CO2 (EUA); la reserva de agua
en Espafia, que se incluye como porcentaje sobre la capacidad total de los embalses:-una
variable ficticia indicadora de si se trata o no de un dia laborable y el precio medio

ofrecido del dia anterior (lag 1 de la variable dependiente).

Con anterioridad a la estimacion de los precios medios de oferta se realizan test de ajustes
para identificar el tipo de modelo de datos de panel adecuado para cada tecnologia. Los
test aplicados son: el test F, que sirve para contrastar si la seccion cruzada, en este caso
la hora de entrega, es significativa; El test de Durbin-Wu-Haussman para seleccionar si
el modelo de datos de panel mas adecuado es el modelo de datos de panel de efectos fijos
o de efectos aleatorios; y el test de Maddala-Wu para contrastar la falta de estacionariedad
en las series. Los resultados de los test indican que el modelo de datos de panel adecuado
para explicar los precios medios ofrecidos por las centrales de ciclo combinado, térmicas
e hidraulicas es el modelo de datos de panel con efectos fijos, siendo la seccion cruzada
la hora de entrega. Por lo tanto, existen caracteristicas diferentes que dependen de cada

hora de entrega que permiten explicar los precios ofrecidos de estas centrales. Por el
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contrario, en el caso de las centrales nucleares y renovables, es mas adecuado utilizar un
modelo de regresion sin seccion cruzada.

Adicionalmente, en todos los casos el precio del gas natural (NBP) y el precio de las
emisiones de CO2 (EUA) se incluyen en los modelos a estimar en forma de ratio debido
a su elevada correlacion, con el fin de evitar problemas de multicolinealidad. Para
controlar la multicolinealidad, se ha utilizado el indicador VIF (variance inflation factor),
obteniéndose que este factor se mantiene en niveles aceptables (inferiores a 2) incluyendo

ambas variables como ratio.

Una vez estimados los modelos de datos, y por tanto el efecto de la prevision edlica sobre
el precio medio ofrecido por cada tecnologia, se completa el andlisis con un ejercicio de
simulacion. En este ejercicio, el precio ofrecido por los participantes del mercado que son
generadores es modificado restando a su valor la parte que depende de la prevision edlica,
la cual se calcula como la prevision edlica para el dia siguiente multiplicada por el
coeficiente correspondiente que se ha estimado con el modelo de datos de panel. Con los
precios de oferta modificados del modo descrito, se construye una nueva curva de oferta
agregada y se simula el procedimiento de casacidén obteniendo el precio marginal o spot
resultante para cada hora. Seguidamente, se analizan las diferencias entre este nuevo

precio spot simulado y el precio spot real u observado.

Resultados

Los principales resultados obtenidos en la estimacion de los modelos de datos de panel

son los siguientes:

e La prevision eodlica para el dia siguiente es uno de los factores que explican el
precio al que los generadores estan dispuestos a vender su produccion, con la
excepcion de las centrales nucleares. Este resultado es coherente con la escasa
flexibilidad de las centrales nucleares para afrontar paradas en su produccion, lo
que les otorga un menor margen de maniobra para poder tomar decisiones

estratégicas.
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e No todas las tecnologias de generacion reaccionan de la misma manera ante un
posible incremento esperado de la produccion edlica para el dia siguiente. En
particular, destaca el comportamiento de las centrales térmicas y de ciclo
combinado, las cuales aumentan sistematicamente el precio ofertado cuando se
espera mayor produccion edlica, incrementando por tanto el riesgo de quedar

fuera de la casacion de la subasta.

e Existen también diferencias de comportamiento que tienen que ver con el nivel de
demanda esperado: los precios ofrecidos por las centrales térmicas y centrales de
ciclo combinado son mas bajos en dias laborales, cuando la demanda esperada es
alta, y mas altos en dias festivos, mientras que, para el resto de las centrales, el

parametro asociado a la variable laboral no es significativo.

e El ratio del precio del gas (NBP) y el precio de las emisiones de CO2 (EUA) no
es significativo para explicar los precios ofrecidos de las centrales nucleares y
renovables. Contrariamente, si lo son para las centrales de ciclo combinado,

hidraulicas y térmicas.

e En general, los agentes reducen sus precios ofertados cuando hay mayor
porcentaje de reserva de agua en los embalses, lo cual permitiria una mayor
produccion hidraulica, excepto las centrales térmicas, que ofrecen precios mas

altos cuando el nivel de reservas de agua es elevado.

e Finalmente, en cuanto a la hora de entrega de la energia, es relevante destacar
como las centrales de ciclo combinado y las centrales térmicas ofrecen precios
mas altos en las primeras ocho horas del dia, y mas bajos en el resto. Por su parte,
las centrales hidraulicas también ofrecen precios mas altos en las primeras horas
del dia; sin embargo, la magnitud del efecto es menor que en el caso de las

centrales de ciclo combinado y térmicas.

Cada una de las estrategias de oferta que hemos descrito altera la composicion y la forma
de la curva agregada de oferta, y, por tanto, puede alterar también el precio spot. En la

ultima parte del capitulo, se realiza un ejercicio de simulacion para tratar de cuantificar,
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de forma aproximada, el impacto que tienen las decisiones de precio tomadas por las
centrales a partir de la prevision edlica sobre el precio spot. Los resultados obtenidos
indican que son las centrales térmicas las que tienen un impacto mayor, llegando a
incrementar el precio spot en un 1.14% en media en el afio 2013. Sin embargo, dado que
hidraulicas y renovables tienen el comportamiento contrario, el efecto global resultante
es algo menor, y al final se estima que el precio spot se ve incrementado en un 0.36% en
media, debido al efecto de la prevision edlica sobre el comportamiento de oferta de los

agentes en la subasta del mercado diario.

Conclusiones

La prevision edlica se ha convertido en un factor clave para explicar los precios ofertados
por los agentes del lado de la oferta en la subasta del mercado diario, si bien se detectan
notables diferencias segun la tecnologia de generacion. No todos los agentes reaccionan
de la misma manera ante un incremento esperado de la produccidon eolica para el dia
siguiente. En concreto, cabe destacar el comportamiento estratégico de las centrales
térmicas y de ciclo combinado. Asi, del andlisis realizado se deduce que estas centrales
ofertan su electricidad a precios mas elevados cuanto mayor es la produccion eolica
esperada y, por tanto, incurren en un mayor riesgo de quedar fuera de la casacion. Este
resultado es muy relevante, dado que estas centrales han marcado tradicionalmente el
precio marginal de la subasta del mercado diario y son lo suficientemente flexibles como
para poder participar en los procesos de ajuste o mercados posteriores, con el consiguiente

impacto sobre el precio de todos ellos.

Es importante resaltar que el resto de tecnologias presentan el comportamiento contrario.
Su comportamiento estratégico es coherente con el objetivo de garantizar la casacion de
sus ofertas en las diferentes sesiones de subasta que componen el mercado diario. Es
decir, ofrecen precios mas bajos cuando la prevision eolica esperada es mayor. De este
modo, aunque el comportamiento estratégico de las centrales térmicas y de ciclo
combinado impulse el precio hacia arriba, dicho efecto se ve compensado por el
comportamiento del resto de las centrales, las cuales ofertan a precios menores en las

mencionadas circunstancias de mercado. De este modo, el resultado global es que el
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precio del mercado diario se ve incrementado, pero en menor medida. Concretamente, se
ha estimado que, en media, el precio aumenta alrededor de un 0.36%.

El comportamiento de las centrales térmicas y de ciclo combinado consistente en
aumentar el precio ofrecido cuando hay mayor riesgo de quedar fuera de las subastas del
mercado diario puede resultar contra-intuitivo. Sin embargo, podria justificarse
atendiendo al hecho que el mercado de producciéon eléctrico no se limita al mercado
diario, si bien es el mercado con mayor liquidez, sino que estd compuesto por una
secuencia de mercados y procesos posteriores hasta llegar a la entrega efectiva de la
electricidad. Los resultados obtenidos vienen a confirmar que las decisiones tomadas por
los agentes en el mercado diario forman parte de un comportamiento estratégico global
que tiene en cuenta su participacion no solo en el mercado diario sino también en el resto
de mercados y procesos; esto es, en el conjunto del mercado de produccion eléctrico. En
este sentido, algunos generadores podrian tener el incentivo de desplazar su produccion
desde el mercado diario hacia otros segmentos de negociacion, procesos o mercados
posteriores, en los que tipicamente se premia la flexibilidad (mercados de balance) y en
los que existe una menor competencia, buscando maximizar sus beneficios considerando
todos los procesos y segmentos de negociacion del mercado considerado como un todo,
y no aisladamente cada uno de ellos. Por lo tanto, los mercados y procesos que se celebran
tras el mercado diario, cobran especial importancia, sobretodo en el estudio del impacto
de las renovables. El estudio del impacto de las renovables en estos mercados y procesos

se aborda en el Capitulo 3 de la presente Tesis Doctoral.

30



Resumen del Capitulo 2

Referencias

[1] Weidlich, A.; Veit, D. A critical survey of agent-based wholesale electricity market
models. Energy Econ., 2008, 30, 1728-59.

[2] Gountis, V.P.; Bakirtzis, A.G. Bidding strategies for electricity producers in a
competitive electricity marketplace. IEEE Trans Power Systems, 2004, 19, pp. 356—
65.

[3] Veit, D.J.; Weidlich, A; Krafft, J. An agent-based analysis of the German electricity
market with transmission capacity constraints. Energy Policy, 2009, 37, 413244,

[4] Jonsson, T.; Pinson, P.; Madsen H. 2010. On the market impact of wind energy
forecast. Energy Econ., 2010, 32, 313-320.

[5] Li, G.; Shi, J. Agent-based modelling for trading wind power with uncertainty in the
day-ahead wholesale electricity markets of single-sided auctions. Appl. Energy, 2012,
99, 13-22.

[6] Twomey, P.; Neuhoff, K. Wind power and market power in competitive markets,
Energy Policy, 2010, 38, 3198-3210.

[7] Green, R.; Vasilakos, N. 2010. Market behaviour with large amounts of intermittent
generation. Energy Policy, 2010, 38, 3211-3220.

[8] Ciarreta, A.; Espinosa, M. Supply Function Competition in the Spanish Wholesale
Electricity Market. The Energy Journal, 2010, 31, 4, 137-157.

[9] Furi6 D.; Lucia, J. Congestion management rules and trading strategies in the Spanish

electricity market. Energy Econ., 2009, 31, 48-60.

31






Resumen del Capitulo 3

Resumen del Capitulo 3

Analysing the impact of renewables on Spanish electricity final
prices using machine learning techniques.

Introducci(’)n

En este capitulo se completa el estudio sobre el impacto de las renovables sobre el
mercado de electricidad espafiol analizando su efecto sobre el precio final de la
electricidad en Espafa. El precio final de la electricidad depende del precio del mercado
diario, o precio spot, que es su principal componente, pero también incluye otros
componentes que capturan todo lo ocurrido en el resto de mercados que tienen lugar
después del mercado diario, y que podrian verse afectados a su vez por el incremento de

la produccién de origen renovable.
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El operador del mercado, OMIE, gestiona el mercado diario, en el que se negocia la
energia que se entregard el dia siguiente. Este es el mercado que tiene mayor liquidez.
Tras el mercado diario, tiene lugar la negociacion en el denominado mercado intradiario,
cuyo disefio facilita que los mismos agentes que han participado en el mercado diario
puedan realizar ajustes a sus posiciones asumidas en este ultimo, en momentos
progresivamente mas cercanos a la entrega a medida que se van sucediendo las subastas

de las diferentes sesiones del mercado intradiario.

El operador del sistema, REE, gestiona los denominados mercados de balance con el
objeto de resolver incidencias de indole mas técnica, y posibles desviaciones ocurridas
posteriormente a la negociacion de los agentes. Parte de estos procesos son los
denominados mercados de restricciones técnicas que se celebran justo después de cada
sesion del mercado diario o mercado intradiario. En estos mercados, se revisa el programa
de entrega de electricidad, resultante de la subasta atendiendo a criterios exclusivamente
econodmicos, para determinar si este es viable desde un punto de vista técnico. Otros
procesos gestionados por REE son los que tienen que ver con la gestion de las
desviaciones respecto al programa de entrega de electricidad, los cuales incluyen el
proceso de reserva adicional a subir, banda secundaria, banda terciaria y gestion de
desvios en tiempo real. Adicionalmente, el operador del sistema tiene a su disposicion
otras dos herramientas para la gestion de los posibles desvios: los pagos por capacidad y

el servicio de interrumpibilidad.

La actuacion de estos mercados o segmentos de negociacion tiene lugar de forma
sucesiva, desde el cierre del mercado diario hasta el momento de la entrega efectiva de la
energia, y, logicamente, todos los costes derivados de los mismos se incorporan al precio
final de la electricidad. En este contexto, la intermitencia en la produccion de las
renovables y la mayor dificultad a la hora de predecir la cantidad de electricidad generada
a través de estas fuentes de generacion podrian suponer un incremento en los costes
asociados a gestionar las desviaciones respecto a los programas de despacho iniciales, y
en consecuencia un incremento en el precio final de la electricidad que debe pagar el

consumidor.
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Autores como [1]-[3] analizan la habilidad de los distintos disefios de mercado para hacer
frente al reto que supone la integracion de las renovables. En general, se considera que
una de las claves para reducir los costes adicionales de ajuste derivados de las renovables
son los mercados intradiarios, siendo preferible que los agentes acudan a estos antes que
a los otros mercados de ajuste mas caros. Sin embargo, no es menos cierto que con la
irrupcion de las fuentes de generacion de origen renovable, los generadores de tipo
convencional podrian tener el incentivo econdmico de trasladar su produccion a los
mercados de ajuste, tipicamente mejor remunerados y con menor competencia. En base a
todo ello, entendemos que es de gran interés profundizar en los factores determinantes de
la negociacion en cada uno de estos procesos o mercados posteriores de negociacion para

entender mejor su funcionamiento.

En este trabajo se propone abordar el estudio del impacto de las renovables sobre los
precios finales de la electricidad a través del estudio de cada uno de sus componentes mas
alla del precio spot, que se corresponden con los costes derivados de todos los procesos
intermedios que tienen lugar entre el mercado diario y la entrega efectiva de la
electricidad. Para ello, en este capitulo se propone la utilizacion de técnicas de aprendizaje
automatico (machine learning), una incorporacion reciente a esta rama de la literatura,

que hasta donde sabemos, se han aplicado principalmente a la modelizacion de los precios

spot ([4], [5]).

Objetivo y Metodologia

El principal objetivo de este capitulo es analizar el impacto de la produccion renovable
en el mercado diario sobre cada uno de los componentes del precio final de la electricidad.
Los componentes del precio final objeto de analisis son: (i) el coste de los mercados
intradiarios; (ii) el coste de los mercados de seguridad o restricciones técnicas, (iii) el
coste del resto de procesos de ajuste agrupados en un mismo epigrafe ( mercados de
reservas secundaria, terciaria, gestion de desvios en tiempo real, etc.), (iv) el coste
derivado de los pagos por capacidad para remunerar la disponibilidad de determinadas
plantas de generacion convencionales por si fuera necesario atendiendo al nivel de

demanda existente, y, por ultimo, (v) el coste del servicio de interrumpibilidad que se
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destina a remunerar la retirada de ofertas por parte de grandes consumidores como

compensacion por reducir su consumo en caso de necesidad.

La metodologia aplicada en este tercer Capitulo de la Tesis Doctoral requiere de la
elaboracion de una exhaustiva base de datos. En total, se consideran 264 variables
potencialmente predictoras de cada componente del precio final a lo largo de un amplio
periodo de tiempo, desde 2012 hasta 2018. El set de variables se genera a partir de
informacion que procede de todos los mercados y procesos que componen el sistema
eléctrico, y contiene con frecuencia diaria: el precio, volumen de energia casada, y
porcentaje de energia casada por tipos de tecnologia de generacion en el mercado diario;
el indice de precios del Carbon, Argus/McCloskey’s Coal Price Index Service (API2),
referencia para el carbon que se importa en el Noroeste de Europa,; el precio de futuros
del gas natural negociado en el hub de los Paises Bajos denominado Title Transfer Facility
(TTF); variables indicativas de diversa informacion sobre el uso de la interconexion con
Francia (nimero de horas del dia con el 100% de utilizacién en ambos sentidos y el spread
de precios spot entre Espana y Francia); variables de calendario cuyo objetivo es captar
la estacionalidad a distintos niveles (diaria, mensual y anual); variables retardadas (7 dias)
de los componentes del precio final de la electricidad; asi como la media de los precios
ofertados de venta en el mercado diario y de compra y venta en el mercado intradiario de

cada tipo de tecnologia de generacion.

El ingente nimero de datos con el que se trabaja, dado el ambicioso numero de variables
predictoras consideradas, aconseja la utilizacion de técnicas de machine learning, las
cuales estan especialmente disefiadas para trabajar con grandes volumenes de datos. En
concreto, se ha profundizado en el estudio y aplicacion de la técnica de arboles de
regresion para dar respuesta empiricamente a las preguntas e inquietudes planteadas

anteriormente.

El procedimiento que se ha seguido es el siguiente:

e En primer lugar, se ha dividido la muestra de datos en dos: El 70% de las
observaciones se utiliza para entrenar el algoritmo de aprendizaje automatico, y

el otro 30% para validarlo.
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En segundo lugar, se procede a realizar los entrenamientos con aprendizaje
automatico. Dado que a priori se desconoce cudl es la mejor técnica de arboles de
regresion para modelizar cada componente del precio final se realizan pruebas con
tres técnicas diferentes: Clasification and Regression Tree (CART) y sus
versiones mas avanzadas: Random Forest y Gradient Boosting. En total, se llevan
a cabo 15 entrenamientos.

Cada entrenamiento se valida utilizando para ello las métricas de error habituales:
El error absoluto medio (MAE) y la raiz de la media de la suma de los errores al
cuadrado (RMSE).

A continuacién, se mide la importancia de cada una de las 264 variables para
explicar cada componente del precio final. Dado que no se trata de un modelo
clasico en el que se estiman coeficientes, lo que se utiliza es una medida de
importancia de la variable basada en el RMSE. Esta medida es el incremento del
RMSE atribuible a la exclusion de dicha variable en la estimacion, medida
habitual utilizada en este tipo de algoritmos ([6], [7]);

Finalmente, para examinar la relacion de cada variable importante con el coste, se
recurre a la generacion de graficos de efecto local acumulado, ALEPIots ([8]).
Estos graficos muestran en el eje de la X los distintos valores de la variable y en
el eje de la Y el efecto local que tiene cada valor de la variable sobre el coste
estimado por el modelo. Este efecto esta centrado sobre la media, de modo que si
por ejemplo el efecto local acumulado es + 1.5 para un determinado valor de la
variable, esto quiere decir que para dicho valor el coste estimado por el modelo es

superior a la media, en concreto se estima que es 1.5 veces superior a la media.

En la interpretacion de los resultados se presta atencion especial a la importancia que

como factor tiene el porcentaje de produccion renovable casado en el mercado diario. Sin

embargo, también se identifican el resto de potenciales factores determinantes pues la

inclusion de tal cantidad de variables constituye una oportunidad unica para analizar

como lo ocurrido en alguno de los mercados o segmentos de negociacion del sistema

eléctrico afecta a lo que ocurre en los siguientes, lo cual es de gran valor para poder

comprender mejor el funcionamiento del sistema eléctrico.
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Resultados

De entre las tres técnicas aplicadas, la técnica de arboles de regresion (machine learning)

denominada Random Forest es la que permite explicar mejor con un margen de error

aceptable (inferior al obtenido con otras técnicas como CART y XGBOOST) los costes

imputados al precio final de la electricidad. Asimismo, mediante la utilizacion de la

medida de importancia (el incremento del RMSE), junto con los graficos del efecto local

acumulado (ALEPLOT), se ha podido identificar alrededor de 10 variables que tienen

una importancia considerablemente mayor que las demas, asi como, lo que es mas

importante, interpretar el tipo de relacidon que existe entre cada variable relevante y cada

coste. Los principales resultados obtenidos se exponen a continuacion:
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Los costes de las restricciones técnicas dependen del porcentaje de renovables
casado en el mercado diario, obteniéndose una relacion lineal y positiva entre
ambas variables: cuanto mayor es el porcentaje de renovables en la casacion del
mercado diario, mayor es el coste asociado a la gestion de restricciones técnicas.
Este resultado es consistente con la idea de que la intermitencia y la consiguiente
mayor dificultad de prediccién de la electricidad generada a partir de fuentes
renovables generarian una mayor necesidad de ajustes, y, por tanto, mayores
costes para el sistema. Sin embargo, también se estima un mayor coste derivado
de la gestion de restricciones técnicas en periodos de menor demanda, lo que
resulta ciertamente mas dificil de explicar por razones técnicas, pudiendo

corresponderse con comportamiento estratégicos de los agentes.

Los costes de los otros procesos de ajuste diferentes del proceso de restricciones
técnicas (procesos de gestion de reservas y desviaciones sobre el programa)
también aumentan cuando el porcentaje de renovables casado en el mercado diario
crece. Asimismo, se observa una relacion lineal y positiva entre los costes de
ajuste y una variable relacionada con el comportamiento estratégico de los
agentes: cuando los generadores de las centrales de ciclo combinado aumentan el
precio al que estan dispuestos a vender su energia en el mercado diario, aumentan

los costes estimados de ajuste.
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En lo que respecta al mercado intradiario, los resultados obtenidos son claramente
diferentes. El porcentaje de produccion renovable casada en el mercado diario no
aparece directamente como uno de los factores més relevantes para explicar su
coste. Por otra parte, se observa como la relacion entre la mayor parte de las
variables predictoras y el coste a predecir es no lineal y mas compleja. Asi, el
coste del mercado intradiario es decreciente para porcentajes de produccion de
centrales térmicas en el mercado diario inferiores al 10%, y creciente por encima
de este valor. Ocurre lo contrario para el caso del porcentaje de produccion de
centrales hidraulicas en el mercado diario, que pasa de creciente a decreciente en
torno al valor del 9%. Ademas, se observa una relacion més compleja con el precio
del mercado diario: precios muy bajos del mercado diario (entre 0 € MWh y 20
€/MWh) se corresponden con costes del mercado intradiario elevados. A partir de
20 €/MWh la relacion es decreciente hasta 45 €/ MWh y creciente superado este
valor hasta estabilizarse a partir de 60 €/ MWh. Adicionalmente, se identifican las
siguientes variables como factores relevantes para explicar el coste del mercado
intradiario: el precio ofertado por las centrales renovables en el mercado diario y
el precio del futuro del gas natural negociado en el hub TTF, siendo el coste del
mercado intradiario mas elevado en los casos en que los precios ofertados por las
centrales renovables se encuentran entre 10 €MWh y 20 €/ MWh (valores

intermedios) y cuando el precio del futuro del gas es més bajo (inferior a 20 €).

Por su parte, los pagos por capacidad dependen principalmente de términos
autoregresivos y del nivel de la demanda casada en el mercado diario. Cuando la
demanda es elevada, los pagos por capacidad aumentan. Esto es debido a que en
su mayor parte se trata de los pagos al servicio de disponibilidad a medio plazo

que se calculan en funcién de la electricidad demandada estimada.

Por ultimo, en cuanto al coste del servicio de interrumpibilidad, este depende
principalmente de términos autoregresivos, del indice de precios del carbon
(API2), y de factores de calendario, en especial del afio 2018. En este sentido,

cabe apuntar que, en 2018, el servicio de interrumpibilidad fue objeto de revision
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y reformas para mejorar su competitividad® y adaptarlo a la normativa europea®,

siendo el resultado obtenido coherente con este hecho.

Conclusiones

Los resultados obtenidos permiten concluir que el aumento de la produccién renovable
en el mercado diario tiene un efecto sobre los mercados y procesos que vienen después.

En particular, conlleva:

(1) mayores costes derivados de los procesos de restricciones técnicas,

(i)  mayores costes derivados del resto de procesos de gestion de desvios hasta el
momento de la entrega de la energia y

(111)  mayores costes en el mercado intradiario para escenarios en los que el precio del
mercado diario es mas bajo, lo que contribuye a incrementar el precio final de la

electricidad.

Del analisis realizado se obtiene evidencia de la existencia de un comportamiento
estratégico por parte de los generadores de electricidad en el mercado espaiol, basado en
el disefio de estrategias de negociacion que se desarrollan como parte de una estrategia
coordinada unica tanto en el mercado diario como en el mercado intradiario y demas
mercados y procesos de ajuste (gestion técnica y de balance); es decir, los agentes
participan en los diferentes mercados considerando el mercado como un todo con el

objetivo de maximizar beneficios.

Los factores de los que dependen los componentes del precio final de la electricidad
diferentes del precio spot estan relacionados con el incremento del peso de las renovables
en el mix de generacion, la necesidad de realizar ajustes a las posiciones previamente
asumidas en el mercado diario y el comportamiento estratégico de los participantes en el

mercado.

3 Order ETU/1133/2017
4 Paquete de medidas "Clean Energy for All Europeans", presentado por la Comision Europea el 30 de noviembre de
2016.
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El andlisis de los factores determinantes del precio final de la electricidad, asi como la
interrelacion existente entre la negociacion en los diferentes mercados y procesos que se
celebran o llevan a cabo en el mercado de produccién de electricidad han sido poco
estudiados en la literatura. Hasta donde sabemos, este es el primer trabajo que aborda este
analisis para el mercado espafiol. Detectar y entender las dindmicas existentes en los
diferentes segmentos de negociacion del mercado es clave para avanzar apropiadamente
en las reformas del disefio del mercado, reformas que son necesarias para adaptarse al

reto que supone la integracion de las renovables en el sistema eléctrico.
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Proximos Pasos

P roximos P asos

Una primera extension de este trabajo podria consistir en replicar el anélisis aplicando la
metodologia descrita para estudiar el impacto de las renovables en otros paises o areas de
mercado. Los resultados obtenidos podrian ser diferentes atendiendo a diferencias en la
regulaciéon o en el mix de generacion. La comparacion de los resultados podria
proporcionar lecciones interesantes acerca del funcionamiento y disefio Optimo de los

diferentes segmentos de negociacion de los mercados eléctricos.

Una segunda extension seria ampliar el periodo muestral. El periodo que cubre este
trabajo comprende los afios desde 2002 hasta 2018 (abril), quedando fuera del mismo
reformas posteriores llevadas a cabo por el regulador espafiol. Algunas de las reformas
mas relevantes cuyo impacto podria analizarse en el marco del presente trabajo son: (i)
La puesta en marcha de un mercado intradiario basado en un sistema de negociacion
continua que coexiste con el mercado intradiario organizado en sesiones sucesivas cuya
negociacion se lleva a cabo mediante el mecanismo de subasta; (ii) La participacion de
los generadores renovables en los mercados de balance, motivada por la necesidad de
incrementar la competencia en dichos mercados y reducir los costes de balance (en
especial el mercado de restricciones técnicas); (iii) o la sustitucion de los pagos por
capacidad por un mercado de capacidad cuyo proyecto de orden para su creacion se halla

en la fecha de finalizacion de esta Tesis Doctoral sometido a informacion publica.
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Por ultimo, otra posible extension del estudio realizado consistiria en analizar el impacto
de la generacion renovable en la contratacion de la electricidad a plazo por parte de los
agentes participantes en el mercado, bien en mercados de futuros organizados, bien en

mercados OTC o a través de los contratos bilaterales fisicos.
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Capitulo 1

Capitulo 12

Effects of renewable on the stylized facts of electricity prices.

Abstract

Many countries around the world have increased their renewable installed capacity due
to a greater awareness of climate concerns. Under this new framework, with renewables
being among the main generation sources, the literature warns of a dramatic change in
price behaviour. Some of the most commonly claimed effects of having a significant
proportion of renewable generating sources in the total electricity production mix include:
(1) a systematic decrease in overall wholesale market prices, (ii) a higher occurrence of
price jumps, and (iii) a significant increase in price volatility. The goal of the present
study is to test whether these changes in price behaviour have actually come about. To do
so, we focus on the Spanish day-ahead electricity market as a paradigmatic example. In
line with the literature, it is found a statistically negative relationship between the
renewable generation share and the day-ahead market marginal prices. As well, we have
obtained statistical confirmation of the fact that renewables generation share volatility is
transferred to price volatility, though similarly to other generation technologies. Finally,
in contrast to the general belief that the introduction of renewable generation would give
rise to extreme (positive) prices, according to our results, increases in renewables
generation share reduce the probability of upward jumps in prices. The results obtained

are of interest for portfolio managers, practitioners and regulators.
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Capitulo 1
1. Introduction

One of the most generalized actions all over the world to deal with climate change has
been the promotion of renewable energy sources. Thus, many countries such as Germany,
Spain, USA and China have significantly increased their investment in clean energy
sources. Particularly, in Spain, the electricity generated by renewables in the day-ahead
market was 28% of the total production in 2008 per day, on average, whereas five years
later, in 2013, it had reached 58% of total electricity produced per day, on average,
followed distantly by the remaining generating technologies (Fig. 1). This substantial
change in the Spanish generation mix from conventional generation sources to

renewables in a few years' time will likely be expected to have an impact on the price
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Fig. 1. Daily average share by technologies in the Spanish day-ahead market Technologies are: nuclear
(NUC), renewable (RE), combined cycle (CC), hydraulic (HI), thermal (TER) and others (OT).

The stylized facts of electricity have been widely pointed out in the literature [1-6]. Due
to its well-known intrinsic features, such as its non-storable nature, electricity prices
traditionally exhibit high volatility. As well, extreme observations, outliers (atypical
values) or jumps normally occur more frequently than with other commodities or

financial assets.

The advancement in renewable generation provides social and environmental benefits

related to key areas such as rural development, employment or health, as highlighted by

49



Cristina Ballester Chaves

Burgos-Payéan et al. [21], and that are not always easy to quantify. In addition, it may also

involve changes in the electricity market, with economic impacts.

Several concerns arise when assessing the impact of renewables on the behaviour of
electricity prices. These concerns are related to the fact that most of the renewable
production is intermittent and somewhat unmanaged. Thus, for instance, wind production
depends heavily on the wind speed and direction. In this sense, many voices claim that
this intermittent nature of output from renewables will be transferred to electricity prices,
with the result of an increase in uncertainty and, hence, in greater price volatility and price
risk. The intermittency of renewable generation, when compared to conventional power
sources such as nuclear or fossil fuels, which are assumed to be much more secure and
reliable, together with the fact that electricity cannot be easily stored, are the main
arguments usually given to explain why prices should become even less predictable, and
hence more volatile, as long as generation from renewable sources increases. In addition,
it is this intermittency that may lead to increases in both the number and magnitude of the
so-called price jumps. It should be noted, however, that fuel cost volatility may also be
transferred to electricity prices. Therefore, the displacement of conventional power
sources by renewable generation may contribute to reduce price volatility®, instead of
increasing it, which is just the opposite effect of the one which is anticipated by those

who alert against the use of renewables due to the above-mentioned arguments.

A quite generalized idea related to the impact of the inclusion of renewables as a new
generation source in the electricity market is that it will presumably cause a decrease in
marginal prices. The reason behind this is that renewable producers can be considered as
price takers since they offer very low (close to zero or even zero) prices. Thus, an increase
in the amount of these low price offers is expected to shift the supply curve to the right
with the result of lower marginal prices. Lower prices for electricity would undoubtedly
have positive effects for both consumers and firms, given that the latter use electricity as
an input in their manufacturing process. Therefore, a decrease in electricity prices may

also contribute to increasing overall productivity.

5 We wish to thank an anonymous reviewer for pointing out this impact on price volatility that may even compensate
the previously exposed.
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The goal of the present work is to verify whether the above mentioned assumptions have
been verified in practice, once the penetration of renewables has been significant enough.

Thus, the questions to be answered include:

(i) whether marginal prices may have decreased as a consequence of the entrance of
renewables into the system,
(i1) whether marginal prices have become more volatile, and finally,

(iii)whether marginal price jumps occur more frequently than before.

The relationship between renewables and electricity prices has captured the attention of
many authors in the literature on energy markets: [7] present an overview of research
results on the price effect of renewable production. A common pattern can be observed:
in all markets using a merit order dispatch system, generators with lower marginal costs,
such as renewable producers, contribute to reducing marginal prices;[8] compare two
days with different levels of renewable production but with a similar demand in 2006 in
the Spanish case to find that the cost of supporting the development of renewables,
initially considered to be very expensive, may have been compensated for by the
subsequent decrease in electricity prices; [9] obtain the same conclusions for the German
market, in 2006; [10] investigate the economic impact of a large amount of renewables
in the Nordic Countries. By employing simulations, they conclude that high penetrations
of wind power may push the Nordpool spot market prices down; [11] state that increments
in photovoltaic electricity generation lead to lower marginal prices in the Australian
electricity market; [12] after studying the effect of weather conditions in the Dutch
electricity market (period 2006— 2011), find that an increase in wind speed negatively
affects electricity prices; Finally, [13] carry out an ex-post analysis of the effect of
renewables and cogeneration in the Spanish electricity market. By using a database of
hourly data from 2005 through 2009, their results lead them to conclude that a marginal
increase in renewable production of 1 GWh could be associated with a reduction of almost

2€/MW h in marginal electricity prices.

The Spanish case is chosen as a paradigmatic example to embrace the analysis due to the
massive introduction of renewables sources into the Spanish generation mix during recent
years. To learn about the particular supply-demand situation in the Spanish electricity

day-ahead market, Fig. 2 shows the 24-load curves of four typical days of 2013, one
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Wednesday a season. Each day has been selected to be Wednesday in order to make them
comparable each other. Together with the offered demand, it is represented the offered
supply too. Intra-daily seasonality appears to be significant. Thus, the offered supply and
the offered demand are generally lower for off-peak hours® and, particularly from hour 1
to 8. Similar figures for other two years of the sample period, namely, 2012 and 2010, are
presented in Appendix (Figs. A.1 and A.2). As can be observed, in all cases, the offered
demand is lower than the offered supply, indicating that there is a permanent situation of

excess supply in the market.
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Fig. 2. 24-h load curves of four typical days in 2013 (MW h).

In addition, the 8760- h load duration curves for the difference between the offered supply
and the offered in the last four years of the sample, 2010-2013, is shown in Fig. 3. As can
be seen, it is evidenced the excess of supply over demand for every considered year,
though such an excess is progressively higher from 2010 to 2013. It is also remarkable
the peak observed in 2013. The insight obtained from this graphical analysis is consistent
with the fact that the installed capacity is higher in 2013, mainly due to the continuously

increasing penetration of renewables into the system.

6 Peak hours refers to hours from 8:00 h to 20:00 h on business days, while off- peak hours refers to hours from 00:00
h to 8:00 h and from 20:00 h to 24:00 h on working days and the whole day on weekends and holidays.
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Fig. 3. 8760-load duration curve for the difference between offered supply and offered demand
(MW h) for 2010-2013.

The results of the present study are of interest for both portfolio managers and
practitioners, who, being aware of the need to hedge the price variation risk, aim to
properly know the true characteristics of price behaviour. In fact, it is the intermittency
of renewable generation that is claimed to be responsible for greater price volatility as
well as contributing to an increase in the frequency of price jumps. The higher the price
volatility, the greater the need to hedge power portfolios in order to minimize the negative

effect of adverse price fluctuations.

We extend the previous literature by analyzing the effect of electricity generated by
renewable sources on marginal prices, once a sufficiently long enough sample period is
available. This period consists of approximately six years of data, since 2008, and may
be compared to the earlier years of the whole sample. Besides, the undertaken analysis is
more complete than the previously mentioned works, since it does not only cover the
effect of renewables on the level of prices but also on price volatility and on the frequency
of jumps, taking a two-prong approach. In a first step, a preliminary descriptive analysis
is performed, that is certainly helpful to gain overall insights into the research questions
addressed by this study and to identify which issues require a more in-depth analysis,

which will be carried out in a second step, using econometrical tools.

The rest of the paper is structured as follows. Section 2 describes the data used. Section
3 presents an overview of the changes in the technologies that set marginal prices for the

period 2001-2013, the evolution of the day-ahead market marginal price statistics, as well
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as of variations in the power generation mix within the period of study. Section 4 is
devoted to an empirical analysis of the impact of the renewables share on the marginal
price, on the number of times each technology sets the marginal price and on the marginal

price volatility and jumps. Section 5 summarizes the obtained results and concludes.

2 Data

The dataset used consists of Spanish day-ahead market marginal prices and the generation
sources or technologies setting marginal prices with an hourly frequency, from 2001 to
2013. Furthermore, we have employed the amount of electricity produced by technology
from 2008 to 2013.This dataset is available at the OMIE webpage’, where renewables are
referred to as special regime. The special regime includes mainly wind® but also solar,
co-generation, biomass and waste treatment. From now on, we will refer to this group as
renewable generation sources, RE, in which hydroelectric plants are not included, and to
refer to the remaining technologies, the following nomenclature will be used: TER
(thermal: coal and oil-gas), NUC (nuclear), HI (hydroelectric), BG (pumping
hydropower) and CC (combined cycle).

Finally, the offered demand and supply hourly volumes sub- mitted to the day-ahead
market in of the period covering from 2010 to 2013 have been used to build the
corresponding 24-h load curves and the 8760-h load duration curve that are referred to in

Section 1.

3 . Preliminar Analysis

3.1 Technology setting the marginal prices

In the Spanish day-ahead market, prices and quantities of electricity are determined

through a uniform price auction for each delivery hour of the following day. The price

7 www.omie.es (last accessed April 2014).

8 In 2013, the 49% of the special regime group comes from wind, whereas the percentages for co-generation, solar,
and the remainder included technologies (biomass, waste treatment and mini hydraulic are 29%, 11%, 11% and 11%,
respectively ( (www.ree.es) , last accessed May 2015).
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for each hour is the one paid by market participants whose purchase bids have been
accepted after the bid matching process. This price, called the marginal price, equals the
price of the last sale bid whose acceptance has been required in order to meet the matched
demand °.Then, it is very relevant to identify the technologies and trading strategies of
those plants that set the marginal price, and see whether there have been any changes in
the technologies setting the marginal price throughout the considered period, and,
specifically, during the period of the sample in which the participation of renewables

became significant.

These submitted offers will typically be dependent upon the variable generating costs of
the referred technologies but also on the expected offered prices and quantities submitted
by the rest of the market participants. Sometimes, more than one offer unit sets the
marginal price for a specified hour because they bid at the same price. Indeed, each

technology has 24 occasions a day to set the marginal price.

Sale bids from renewable generators are frequently very low. For that reason, a priori they
should not be expected to be among the technologies normally setting the marginal price.
However, their increasing presence may have altered the supply curve and affect the

probability of other generation technologies to deter- mine marginal prices.

Table A.1 in Appendix shows the average percentage of times a day that each technology
sets the marginal price from 2001 to 2013. According to it, four different periods can be

distinguished:

(1) 2001-2003, in which the main technologies determining the marginal price were
HI and TER (approximately 36% on average for base-load prices).

(i1) 2004-2009, a period in which the most remarkable thing is the huge increase in
CC setting the marginal price.

(111)2010-2013, in which the number of times that CC sets the marginal price

decreases in favour of other technologies, mainly TER and HI. During this period,

° Within the context of electricity, the so-called spot markets are actually day- ahead markets and the marginal prices
resulting from the day-ahead market auction are frequently referred to as spot prices.
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on average, RE sets marginal prices 9.5% (7.4%, 10.5%) of the time for base-load
(peak, off-peak) prices.

When distinguishing between peak and off-peak hours, on the one hand, the leading role
of HI for peak hours can be observed. In fact, HI occupies the first place, on average, for
all the studied periods except for the period 2005-2009 when it is replaced by CC. The
number of times HI sets the marginal price is especially high in 2003, 2010 and 2013.
These were very wet years, which allowed reservoirs to reach high water levels (above
60%) '°.0n the other hand, it is TER that holds the leader position during 2001— 2005 and
2011-2012, for off-peak hours. For the period 2006— 2010, CC exceeds TER in terms of
the number of times it sets the marginal price, whereas in 2010 and 2013 HI becomes the

leader.

It is also interesting to see the difference in setting marginal prices by pumping
hydropower (BG) between peak and off-peak hours. The number of times the BG
technology sets the marginal price reaches 30% in peak hours, whereas this value is much

lower for off-peak hours, around 7%.
3.2 Descriptives statistics of the day-ahead market marginal prices

Fig. 4 shows the evolution of the Spanish day-ahead market marginal price for the period
2001-2013. Table A.2 in Appendix shows the main descriptive statistics of marginal price
by years, distinguishing between peak (Panel B) and off-peak (Panel C) prices.

19 (www.ree.es)
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Fig. 4. Marginal prices in the Spanish day-ahead market.

The lowest base-load prices on average, around 30 Eur/MW h (Table A.2, Panel A), are
those from the early years in the sample, namely 2001, 2003 and 2004. Then, it is in the
period 2005-2008 when average marginal prices reach their highest level, around 50
Eur/MW h, and they are particularly high in 2008 (64Eur/MW h). This period coincides
with years of drought and low water reservoir levels, as well as with the entrance of
combined cycle plants. In the following two years, 2009-2010, prices drop up to 37
Eur/MW h on average. During this period, the drought ends and there is a notable
penetration of renewables into the system. However, for 2011-2012, despite the
increasing contribution of renewables to electricity production, prices rise again up to
levels near 50 Eur/MW h, followed by a slight reduction in prices during 2013. Mean-
peak (Table A.2, Panel B) and off-peak (Table A.2, Panel C) prices are shown to follow
the same pattern as base-load prices, though, as expected, peak prices are always higher

than off- peak prices.

Looking at the standard deviation of daily marginal prices obtained as the daily average
of the 24 hourly marginal prices, there is no clear evidence that price volatility has
increased as a consequence of renewables for the Spanish case. Only in the last year of
the studied sample, 2013, is standard deviation notably higher than in previous years. As
can be observed, skewness takes negative values for the later years in the sample, meaning
that prices that are below the mean are more frequent than prices exceeding it. This result,
a priori, would be consistent with the idea that more renewable production can lead to
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lower prices. Finally, kurtosis indicates the degree of peakedness of a distribution relative
to the normal. According to our results, it seems that the distribution of marginal prices

are generally becoming narrower for the last years of the sample.

As mentioned in the introduction section, prices would be expected to become more and
more extreme as a consequence of the presence of renewables. A great number of extreme
values in the price distribution may be a problem when trying to predict prices. In the
literature, before estimating a model, the values that are considered to be too far from the
central points of the distribution, normally called outliers, are usually replaced by other
more normal values or even ignored. To get some preliminary evidence about the
evolution of extreme values throughout the studied sample, Table A.2 also includes the

percentage of prices

that could be considered as outliers. In this work, outliers are identified following the
procedure described in [14], which consists of defining an outlier as any value which is
outside of the interquartile range, i.e. Q3—Q1 (where Q1 and Q3 are, respectively, the first
and the third quartiles).

From Table A.2, it can be observed that for the first three years of the sample, 2001-2003,
3.3%, 4.7% and 6.6% of base-load marginal prices can be considered as outliers,
according to the described procedure. During the following years there are quite few
outliers, except for the approximately 5% of outliers found during 2004— 2005 in peak
prices. From 2010 onwards, the number of outliers generally increases, reaching similar
levels to the first period. Finally, in 2013, 15% of the observations can be considered as
outliers. Furthermore, we note the huge differences found when peak and off-peak hours
are analyzed separately. Thus, in contrast to what happened in the first years of the sample
(years without renewables), from 2010 onwards, the number of outliers in the time series

of off-peak prices becomes much larger than in peak hours.

3.3 Electricity generation by technology type

The weight of RE has significantly grown, increasing from 29% in 2008 to 59% in 2013,
on daily average. Since 2011, on some days it has even amounted to 80% of the total
production. 78% on average of the energy matched in the Spanish day-ahead market for

the period covering 2008-2013 comes mainly from three generating technologies:
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renewables (RE), combined cycle (CC) and thermal plants (TER). Hydroelectric (HI)
occupies the fourth place, with 7% in 2013.

Table A.3 shows the share of electricity production by generation source, by year, from
2008 through 2013, distinguishing between peak and off-peak prices. It is interesting to
observe the continuous growth of RE throughout the sample, which contrasts with the
progressive reduction of CC, declining from 30% in 2008 to 7% in 2013. Regarding HI
share, it is really quite variable over the years because it strongly depends on annual
rainfall and reservoir water levels. Thus, during wet (dry) years, the hydraulic generation
actively (hardly) participates in the total production of electricity. Finally, TER share
decreases for 2009-2010, though to a lesser degree than CC, to recover a predominant
position since 201 1. The reason behind this may be found in a new regulation that entered
into force in February 2011 (the Royal Decree 134/ 2010), whose aim was to achieve a

minimum level of electricity produced by using domestic coal.

In addition, we must take into account that the studied period includes the global financial
and economic crisis. In 2009, Spanish GDP growth became negative, 3.8%, and economic
activity was considerably reduced, causing a notable decrease in energy demands, -4.7%
' The crisis went on during the later years of the sample. Under this context, it should
be highlighted that the proportion of renewables keeps growing, during both peak and
off-peak hours.

NUC share has reduced slightly overtime, whereas BG share, being more residual (2.5%

on average), was increasing during 2008-2012.

4. Empirical Resuits

The aim of this section is to investigate by using econometric tools, the role that
renewable electricity production may have played in the Spanish day-ahead market,

particularly, whether:

1T (www.ree.es)
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(i) RE share may have effectively altered the number of times each technology sets
the marginal price;

(i) Marginal prices may have on average decreased as a consequence of the
penetration of renewable generation sources into the Spanish electricity system,;

(iii) Price volatility may have increased and been explained by RE share volatility;
and

(iv) RE share may have made price jumps more frequent.

4.1 Renewable share and technology setting marginal price

To study whether the RE share may explain the frequency with which each technology

sets marginal price, the following linear regression model is used:

me;t = O + Be * REt (1)

where me,t is the percentage of times the technology e sets the marginal price in the day-
ahead market on day t and REt is the percentage of renewables in the produced electricity
in the day- ahead market on day t (RE share).

Estimation results are shown in Table 1. As can be seen, there is a significantly positive
relationship between RE share and the percentage of times that TER, HI and BG set the
marginal price, whereas such a relationship is statistically negative between RE share and
the percentage of times that CC does it. These results are confirmed for base-load, peak
and off-peak hours, with the only exception being that for peak hours there is no statistical
relation- ship between RE share and the percentage of times that HI sets marginal price.
In this way it confirms the idea of RE affecting the probability of other technologies
setting the marginal price. Particularly, it can be stated that CC, as technology setting the
marginal price, may have been displaced, partially at least, by the irruption of renewables

into the system in the Spanish case.
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Table 1 Estimates of Model (1). Ordinary least squares estimates of the univariate model (1).

Renewable (RE) share is the independent variable and the dependent variable is the number of
times each technology sets marginal price. The considered technologies are: combined cycle

(CC), thermal (TER), hydraulic (HI) and pumping hydropower (BG). The Newey-West correction

is used to control for heteroscedasticity and serial correlation.

cC TER HI BG

Value t-Statistic Value t-Statistic Value t-Statistic Value t-Statistic

Base-load hours (00:00-24:00)

a 63.7430** 31.96324 14.8768** 11.41163 16.1352** 9.307617 10.22145** 9.579982
p —-0.73435* —-18.97935 0.214637** 7.461359 0.38346™ 10.22468 0.112069** 5179323
Adjusted R? 0.273002 0.035664 0.101389 0.021506

Peak hours (08:00—20:00, business day)

a 50.31431** 1745870 7.376469** 3.927244 35.07231** 13.02311 18.80578** 9.737366
p -0.553015** —10.19001 0.258551** 6.055620 0.095845 1.764.239 0.085766* 2232375
Adjusted R? 0.120268 0.037509 0.003509

Off-peak hours (00:00-08:00 and 20:00-24:00, business day, 00:00-24:00 holidays)

a 73.94679** 33.15469 19.26772** 12.73165 4.286219* 2406686 3.994430™* 4462314
p -0.878278 -20.17791 0.185395** 5.750539 0.562738** 13.91629 0.147374** 7.647749
Adjusted R? 0.298063 0.020864 0.168985

Statistical significance at the 1% (5%) level is denoted by ** (*).

4.2 Renewable share and marginal price

As previously indicated, a greater amount of renewable pro- duction is expected to have
an impact on the day-ahead price due to the auction mechanism itself. Thus, as renewables
generators offer lower prices than most of the other agents in the market, this causes a
shift to the right in the supply curve. To examine this issue, the following linear regression

model is estimated with RE share as the independent variable:

P,=a * B * RE;, (2

where Pt refers to the marginal price in the day-ahead market on day t and REt is the RE
share on day t.

As can be seen in Table 2, the beta coefficient is negative, meaning that the marginal price
will likely decrease with an increase of RE share, and vice versa, confirming that RE
share has the expected effect on the marginal price. In this way, the entry of renewables
into the system would have contributed to reducing the price resulting from the day-ahead
market auction.

However, as seen in Table A.2 and already commented on in the previous section, despite
the fact that RE share has been consider- ably higher for the later years in the sample
period, marginal prices on average have not decreased. To shed some light on this issue,

the regression model (2) has been newly estimated by substituting RE with each of the
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other generation sources. According to the results shown in Table 2, similarly to RE share,
HI presents a statistically negative relationship with (base-load, peak and off-peak)
marginal prices. It is also found a significantly negative relationship between NUC and

(base-load and off-peak) prices and between BG and (off-peak) prices.

Regarding the other types of generation sources, a significantly positive relationship is
found between TER and CC shares with regards to the marginal price, which is an
expected result given that they are technologies with higher generation variable costs.

Therefore, to answer the question set out at the beginning of this section, marginal prices
get reduced with renewables, which is in line with previous literature ([8,13], among

others).

Table 2 Estimates of Model (2). Ordinary least squares estimates of the univariatemodel (2).The
dependent variable is the marginal price, while renewable (RE) production share is included as
the explanatory variable. The model is re-estimated by substituting the RE share with the
following alternative technologies: combined cycle(CC), thermal (TER), hydraulic(HI), pumping
hydropower (BG) and nuclear (NUC).The Newey-West correction is used to control for
heteroscedasticity and serial correlation.

RE cC TER HI BG NUC

Value t-Statistic ~ Value t-Statistic ~ Value t-Statistic ~ Value t-Statistic ~ Value t-Statistic ~ Value t-Statistic

Base-load hours (00:00-24:00)

a 70.29** 3431 38.15%*  29.05 31.02%* 2244 57.07** 48.69 4769  32.08 51.89%* 2422
B -050%  -13.18 0.47** 7.00 121% 14.40 -148%  -1061 -0.52 -11 -077*  -233
Adjusted R> 027 0.14 0.36 0.20 0.00 0.02

Peak hours (08:00-20:00zbusiness day)

a 75.61** 2712 43.49% 2420 3821 20.80 61.50** 3492 53.01*  26.86 56.75*  18.52
p -0.51* -9.54 0.42* 484 1.07%* 10.01 -136% -553 -032 -0.69 —-0.86 —1.46
Adjusted R> 025 0.11 0.27 0.11 0.00 0.02

Off-peak hours (00:00-08:00 and 20:00-24:00, business day, 00:00-24:00 holidays)

a 65.45** 33.69 36.39%* 2848 28.04** 2087 53.30* 50.75 4543 3558 4833 2227
B -046" -12.84 0.42** 6.36 119** 14.45 -139*%*  -1164 -117* -221 -061* -203
Adjusted R> 025 011 0.37 022 0.00 0.01

Statistical significance at the 1% (5%) level is denoted by ** (*).

4.3 Renewables share and price volatility

As mentioned in the Introduction, electricity prices tradition- ally exhibit high volatility.
Furthermore, the so-called price jumps are assumed to be relatively frequent. One of the
most important concerns about the integration of renewables into the system is that the
intermittent nature of these technologies may increase price volatility as well as the
number of price jumps, which would end up creating more difficulties when modelling

electricity prices, due to greater uncertainty. Then, what needs to be determined is:
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(i) whether RE generation may be behind price volatility, and

(i1) whether RE share volatility may contribute to the presence of price jumps.
In order to find this out, the model proposed by [15], which was later applied to the
electricity market by Cartea and Figueroa [16], is chosen. This model aims to describe
the main features of electricity prices and it is especially interesting for the purposes of
this study, as it allows price volatility and jumps to be captured.
The model adapted by Cartea and Figueroa [16] is a stochastic process with mean
reversion that includes a discrete jump process (a diffusion model). Under this model,
jumps are defined as large price movements at a particular point that break the continuous
process followed by the price, and price volatility is calculated day-to-day with a moving
window of 30 days. Once estimated, the next step will be to study whether the obtained
estimates may have been altered by changes in the electricity production from renewable

sources.

4.3.1 Model definition

We have (Q, P, F, {Ft}t ¢ [0, T]) a filtrated and completed probability space with finite

time horizon t < co. The spot price on time t, 0 <=t <= T, is defined as:

Pr =exp(f(t)+Y(t)) 3)

where f{(t) is a deterministic function that captures seasonal tendency and Y (t) is a

stochastic process whose dynamics are:

dY: = -aYudt+o(t) dZ; +InJdq; 4)

Y+ is a diffusion process with jumps and mean reversion of the spot price Py; o(t) is the
volatility that depends on time; J is the size of the random jump; dZ is the increment of
standard brownian and dq; is a Poisson process where 1 is the intensity or frequency of
the process (dq: is equal to 1 with probability ld;or it is equal to O with probability (1-
1dy)).
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J is Lognormal:
j -> N(u,6%)
E(J))=1
Their properties are:
J=exp(9),0—>N(-c%/2, c%) (5)
E [In] ]=-6%/2
Varln]J |=c%

The steps to estimate the parameters of the model are as follows:

1. Transformation of the price series in log returns. Previously, once the outliers are
identified using the method described in Section 3, they are replaced by the

average of their neighbouring values'?.

2. Estimation of the long-term trend T:. The function proposed by [17] is used, a
sinusoidal function supplemented by an exponentially weighted moving average
(EWMA), being 2=0.975 (value recommended by [17]). Parameters are
estimated by nonlinear least-squares, using the Gauss-Newton option on PROC
NLIN of SAS.The function is:

Te=a+sin {2n((t/365)+az) } +azt+as EWMA*, (6)
EWMA*=(1-1)Pt+ EWMA™,
3. Once the long-term trend defined in the previous step is subtracted, a second

seasonal component, S, is calculated, which is equal to weekly average.

4. Following [16], the mean reversion is estimated through the following equation:
Yir1-Yi= oYt & (7)
where Y:is the price in logarithms without seasonal components and a is the

mean reversion parameter, which is estimated by ordinary least squares.

12 1t should be emphasized that these values are normally excluded and not employed in estimation because they are
considered to cause serious distortion. Next, it is crucial to know the number of potential outliers that can be expected
within a particular series, and for those series with many outliers, alternative methods are needed, since the removal
of them may cause a loss of information which would translate into less efficient estimates.
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5. To calculate the price volatility in the model, as it is considered not to remain
constant over time, the standard deviation is calculated for a moving window of
30 days, namely, price volatility is calculated day-to-day with a moving window
of 30 days.

6. The technique used to identify jumps in our sample is the one used in [16] and
[18]. It consists of an iterative algorithm that filters the returns whose absolute
value exceeds the standard deviation multiplied by three. The values marked as
jumps are replaced by the average of its non-marked neighbours and the

procedure goes on until all values in the sample are non-marked values.

Table 3 (Panel A) shows the estimation results of the diffusion model with jumps and
mean reversion (4) for the period 2008— 2013, when a non-negligible amount of
electricity generation comes from renewable sources, distinguishing between peak and
off-peak hours. Firstly, some relevant differences between peak and off-peak hours
appear. Thus, the price volatility is higher for off-peak than for peak hours, 0.15 versus
0.9. As well, the frequency of jumps is also notably higher for off-peak hours, whereas
the mean reversion is not much lower as indicated by the value of the a coefficient.
Secondly, in order to study jumps in detail, the number of jumps is also shown (Panel B),
distinguishing between the negative and the positive ones, not only for peak but also for
off-peak hours. As can be observed, negative jumps are much more frequent than positive

for base-load (62 versus 33), peak (38 versus 16) and off-peak (75 versus 40) hours.
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Table 3. Estimation results of the diffusion model with jumps and mean reversion (4). Panel A
shows the diffusion model estimates, distinguishing between peak and off-peak hours: al, a2, a3
and a4 are the parameters used to adjust the long-term seasonal component Tt, (7); [ot] is the
mean 30 days volatility of the price; o indicates the reversion to the mean, and aj, | are the jump
parameters, namely standard deviation and frequency of the jumps, respectively. Panel B,
presents detailed information about the number of outliers, total, positive and negative jumps

detected in the sample.

Panel A parameters al a2 a3 a4 [ot] @ a I
Base-load hours (00:00-24:00) -0.0412 1102 -2.0171 26769 012 023064 0.82 15.833
Peak hours (08:00-20:00, business day) —0.00429 1102 -2.0519 26928 0.09 0.21406 043 9
Off-peak hours (00:00-08:00 and 20:00-24:00, business day, 00:00-24:00 holidays) -0.0450 1102 -19.715 26550 0.5 018140 0.10305 19,167
Panel B outliers and jumps Total 2008 2009 2010 2011 2012 2013
Base-load hours (00:00-24:00)

Outliers 145 0 3 32 12 30 68

Jumps 95 0 3 16 8 21 47

Positive jumps 33 0 2 3 4 6 18

Negative jumps 62 0 1 13 4 15 29
Iterations 6

Peak hours (08:00-20:00, business day)

Outliers 79 0 3 14 3 16 43

Jumps 54 1 1 15 2 9 26

Positive jumps 16 0 1 5 1 3 6

Negative jumps 38 1 0 10 1 6 20
Iterations 5

Off-peak hours (00:00-08:00 and 20:00-24:00, business day, 00:00-24:00 holidays)

Outliers 128 1 2 26 15 23 61

Jumps 115 0 7 32 8 21 47

Positive jumps 40 0 2 15 1 5 17

Negative jumps 75 0 5 17 7 16 30

Iterations

1

Fig. A.3 shows the evolution of jumps throughout the years in the sample. It should be

noted the large number of jumps recorded from January to May, in 2010 and in 2013

which contributed to increasing volatility during these two periods (as can be seen in Fig.

5), and which was even more notable for off-peak hours.
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Fig. 5. RE share volatility and base-load marginal price without seasonal component (Y)
volatility.

In order to measure the relationship between RE share volatility and price volatility, the
Pearson test is used. The two detected high volatility periods, i.e., from January to May,
2010, and from January to May, 2013, have been analyzed separately for peak and off-
peak hours. Results are shown in Table 4. As can be observed, there is a positive linear
relationship between RE share volatility and price volatility for the whole sample, which
becomes stronger when excluding the two high-volatility periods mentioned above, when
the correlation coefficient reaches 63%, in peak and off-peak hours. Compared to the rest
of technologies, this is the highest Pearson test value obtained. Therefore, increases in RE
volatility are accompanied by increases in price volatility. This result is consistent with

the results of [19] for the English market.
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Table 4. Marginal price volatility and production share volatility by technologies. Pearson test
between marginal price (without seasonal component) volatility and the production share
volatility for different generation technologies, distinguishing between peak and off-peak prices.
Included technologies are: hydraulic (HI), pumping hydropower (BG), nuclear (NUC), combined

cycle (CC) and thermal (TER).

RE CC TER HI NUC BG
Base-load hours (00:00-24:00)
Total 0.27978** —0.19049** 0.15136* 0.73057* 0.54517** 0.50646**
Excluded Jan 2010-May 2010 and Jan 2013-May 2013 0.63852** —-0.2125* 0.60925** 0.3417* 0.2564** 0.50315**
Jan 2010-May 2010 and Jan 2013-May 2013 —-0.26351* —-0.15735"* —0.16887** 0.68028** 0.67888** 0.72605**
Peak hours (08:00-20:00zbusiness day)
Total 0.55748** 0.02774 0.30428* 0.67605** 0.48723** 0.45195**
Excluded Jan 2010-May 2010 and Jan 2013-May 2013 0.63255** -0.03463 0.52936** 0.37192* 0.21579* 0.36904**
Jan 2010-May 2010 and Jan 2013-May 2013 0.01435 0.03957 -0.14151* 0.65415** 0.49694* 0.58671**
Off-peak hours (00:00-08:00 and 20:00-24:00, business day, 00:00-24:00 holidays)
Total 0.26882* —0.19898** 018314 0.70779* 057265 0.57316™
Excluded Jan 2010-May 2010 and Jan 2013-May 2013 0.62358** —-0.21330™ 0.61021** 0.25600** 0.38560** 0.53368**
Jan 2010-May 2010 and Jan 2013-May 2013 -0.35802** —0.16690** —0.19043** 0.67545** 0.66119* 0.71528

Statistical significance at the 1% (5%) level is denoted by ** (*).

Nevertheless, it is relevant to mention that significant positive relationships have also
been found, above all when excluding the two detected high-volatility periods, between
the price volatility and the volatility of the shares of technologies other than RE, such as
TER HI, NUC and BG. Furthermore, another very interesting point is the significantly
negative relationship obtained between the CC share volatility and the (base-load and oft-
peak) price volatility.

Focusing on the two periods with the greatest price volatility, namely, from January to
May 2010, and from January to May 2013, the correlation is notably higher for HI, NUC
and BG for base-load and off-peak hours, and even the sign of the correlation between
RE share and price volatility becomes negative. In fact, as is shown in Fig. 6, volatility
peaks in HI, NUC and BG generation match marginal price volatility peaks better than
RE.
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Fig. 6. Base-load Marginal price without seasonal component (Y) volatility, hydraulic share
(HI) volatility and pumping hydropower share (BG) volatility.

Therefore, the volatility of the electricity produced by the different generation
technologies involved in the present study has been transferred to prices, with the only
exception of CC, which presents no relationship at all with peak prices volatility and a
significantly negative one with (base-load and off-peak) prices volatility.

Finally, in order to find out whether there has been a greater number of price jumps as a
consequence of renewables, the jump process must be expressed as a function of the
involved technology shares. A model for discrete choice, as that in [20], is adequate for
this purpose because the event studied is a discrete event, meaning that it has only two
possible outcomes: the jump event occurs or it does not. The model to be estimated is a

logistic regression with the different generation technologies as explanatory variables:

Logit(m)=Log(m /(1- 7)=a+B'X (8)

where 7 is the probability of a jump (in returns without seasonal component) and X is the
matrix of time series in differences of six variables: RE share (d_RE), HI share(d HI),

BG share (d_BG), NUC share (d_NUC), CC share (d_CC) and TER share (d_TER).
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With the aim of identifying the technology or technologies that may better explain the
jump event, the automated procedure denominated stepwise (backward selection) is used.
In the first step, the model does not include any variables. A chi-square test is carried out
with each variable (seven variables, including intercept), and the variable that has the
strongest relationship with the event enters into the model. In the second step, the exercise
is repeated with the rest of variables. Once again, the best variable among those
considered is chosen and the model is re-estimated with the two variables. If both
variables were significant, they would both remain as candidates. However, if one or both
were not significant, then they would be ignored. The process continues as long as there
are non-significant variables that may be considered as candidates for entering into the

multivariate model.

The estimated results of the logistic regression are shown in Table 5.!* The HL goodness-
of-fit test shows if there is any evidence of a lack of fit in the selected model, and the c-
statistic 1s a measure of association for the variables and the event. A c-statistic equals to
0.50 means that the model is not better than a completely random prediction. However,

with a c-statistic equals to 1, then the fit is considered to be perfect.

13 Table 8 only shows in each case the group of variables that turned out to be significant at the end of the stepwise
procedure.
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Table 5. Logistic regression estimates. Model (8). The dependent variable is the logit function of
the probability of a negative jump event in the series of the day-ahead market returns, whereas
explanatory variables are the generation share of different technologies, in differences:

renewable share (d_RE), hydraulics(d_HI), pumping hydropower(d HIB), nuclear(d NUC),

combined cycle (d_CC) and thermal (d_TER). The exercise is repeated with positive jumps as a
new event and splitting the sample for peak and off-peak hours. The number of regressions are
then 6: a, b and c for negative jumps and d, e and f for positive jumps. The coefficient c-statistics
is a measure of association, and the LH test is the Hosmer and Lemeshov test of goodness-of-fit.

This table only shows the group of variables that, following a stepwise procedure, turns out to be
significant in each case.

Model Negative jumps Positive jumps
Base-load hours Peak hours (08:00- Off-peak hours (00:00- Base-load hours Peak hours (08:00- Off-peak hours (00:00-
(00:00-24:00) 20:00, business day) 08:00 and 20:00-24:00, (00:00-24:00) 20:00, business day) 08:00 and 20:00-24:00,
business day, 00:00- business day, 00:00-
24:00 holidays) 24:00 holidays)
(a) (b) (0 (d) (e) (f)
Parameter Value Wald Chi- Value Wald Chi- Value Wald Chi- Value Wald Chi- Value  Wald Chi- Value Wald Chi-
square square square square square square
[ 3616 694.22** -39.319 413.55** -3.442 73046 -4.329 469.47* —4986 213.44** -4.295 453.84**
d_RE -007 96.19* -0109 14.88**
d_HI
d_BG 0.287 5.05*
d_cc 0.078 5.27*
d_TER -0.097 12.70™ -0171  34.47** -0105 16.78** 0.110 8.03**
d_NUC -0.147 447*
c-Statistic  0.591 0.702 0.642 0.632 0.708 0.716
HL test 0.001 25.28 0.023 17.80 0156 11.88 0.002 2499 0234 1046 0.088 13.77
Jumps 62 38 75 33 16 40
Obs. 2191 1523 2191 2191 1523 2191

Statistical significance at the 1% (5%) level is denoted by ** (*).

Firstly, it should be pointed out that when using the time series of base-load prices (Table
5, models (a) and (d)), there is statistical evidence of lack of fit. Therefore, as estimation
results are not valid, they are ignored. The reason can be found in the fact that the sample
including the 24 price observations a day is made up of two very different levels of prices.
So, price levels that would be considered as a positive (negative) jump under the
distribution of off-peak (peak) prices may be considered as normal (meaning that it is not
a jump) under the distribution of base-load prices. Then, when the prices for all the 24 h
are put together, it turns out to be more difficult for the jumps in prices to be detected.
Once the difference between peak and off-peak prices is detected, the picture is more

informative.

Thus, starting with negative jumps in prices, it is observed that when TER share is higher
than in the previous day, then the probability of a negative jump in the price decreases,
for peak and off-peak hours, as indicated by the significantly negative parameter value (-

0.17 peak hours, -0.10 off-peak hours). Additionally, the behaviour of BG share is also
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significant, having a positive effect on the probability of negative jumps, though the fact

that this result only applies for off-peak hours is notable.

Regarding positive jumps in prices, a statistically significant relationship is found
between increases in RE share and the frequency of price jumps, though only for peak
hours. However, the estimated parameter value is negative (-0.10), meaning that an
increase in RE share would reduce the probability of positive jumps for peak prices.
During off-peak hours, the technologies that would have an impact on the frequency of
positive jumps would be: CC and TER, exhibiting positive values for the corresponding
estimated parameters (+0.07 and +0.11 respectively), whereas for NUC it is displayed a

significantly negative coefficient value (-0.14).

This is quite a striking result since, in contrast to the general belief that the introduction
of renewable generation was going to give rise to extreme (positive) prices due to their
intermittency and other supposed production planning and/or management problems, our
results lead us to conclude just the opposite for the Spanish case. Indeed, it is the
probability of a positive jump in peak prices (at the end, higher prices) that is reduced
with increases in renewable generation. With regards to off-peak hours, there seems to be

no statistical relationship between changes in renewables generation and jumps in prices.

5. Conclusion

The promotion of renewable energy sources in electricity systems has been a priority all
over the world to deal with climate change. The advance of renewable technologies has
environmental and social benefits, but it also involves economic impacts. The integration
of clean energy sources is expected to cause relevant changes in electricity prices. In this
work, we focus on the Spanish electricity market to shed some light on this matter.

Together with the evidence obtained regarding the impact of renewables generation on
the level and volatility of prices, other results derived from the role of the other involved
generation technologies have also been provided. The main conclusions can be

summarized as follows.
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Firstly, the picture has become much more informative when peak and off-peak hours are
analyzed separately, confirming the fact that these price series should each be viewed as
different commodities, with different features. Thereby, only when peak and off-peak
prices are considered separately, do some changes that may be caused by renewables
appear. Thus, for the period from 2002 to 2009, price volatility is higher and jumps are
more frequent during peak hours, whereas during the last years of the sample, namely
2010-2013, where renewable generation is much more relevant, the opposite happens.

In line with the literature, there is a statistically negative relationship between the
renewable generation share and the day-ahead market marginal prices. In addition, a
significant relationship has been found between renewables generation share and the
number of times that other technologies such as combined cycle, thermal and hydropower
technology sets the marginal price. This relationship is negative only for the combined
cycle technology. Therefore, it can be stated that renewables may be responsible for the

replacement of CC as the technology setting marginal prices.

As well, we have obtained statistical confirmation of the fact that renewables generation
share volatility is transferred to price volatility. However, significant positive
relationships between the share volatility of other technologies (such as TER, HI, NUC
and BG) and price volatility have been found and are worth being highlighted. Last but
not least, this relationship becomes negative for the case of CC share, indicating that

increases in this generation technology would contribute to reduce price volatility.

Lastly, in contrast to the general belief that the introduction of renewable generation
would give rise to extreme (positive) prices, due to their intermittency and other supposed
production planning and/or management problems, according to our results, increases in
renewables generation share reduce the probability of upward jumps in peak prices,
whereas no significant relation- ship between renewables generation share and jumps in
off-peak prices have been found.

The results of this work can help practitioners and regulators understand how the
inclusion of renewables into the electricity generation system has actually impacted the
level and volatility of day-ahead market prices. One must be conscious of the fact that the
intermittency of these sustainable generation technologies may be transferred to

subsequent markets such as the intraday market. This issue, together with an analysis of
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the strategic bidding behaviour by the market participants when considering the
transmission of information between the different markets and the information related to

the foreseen generation by the different technologies, are left for further research.
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Appendix A

See Tables A.1-A.3 and Figs. A.1-A.3

Table A. 1. Percentage of times each technology sets marginal price on average. Included
technologies are: hydraulic (HI), thermal (TER), combined cycle (CC), pumping hydropower
(BG) and renewable (RE).

Year Base-load hours (00:00-24:00)  Peak hours (08:00-20:00, business day) Off-peak hours (00:00-08:00 and 20:00-24:00, business day, 00:00-24:00

holidays)

HI TER CC BG RE HI TER CC BG RE HI TER CC BG RE
2001 3426 4113 000 1856 000 4051 2559 000 3027 000 3170 49.25 0.00 11.88 0.00
2002 422 3731 000 1734 025 5892 1211 000 2940 020 3438 49.97 0.00 10.81 0.27
2003 43.05 3417 000 1556 158 5807 1381 000 2621 115 3485 4535 0.00 9.60 179
2004 2741 3426 1457 1809 178 3549 1578 1294 2918 147 23.02 43.75 16.06 11.74 192
2005 17.07 3857 2647 1832 216 2632 1881 2233 3340 161 12.02 49.12 29.28 9.73 245
2006 2635 32.76 3933 51 484 1783 2334 2981 827 701 3119 3711 43.61 3.18 3.65
2007 19.98 2798 4347 1284 985 2731 1242 4463 2279 1578 15.09 35.95 4438 712 721
2008 2119 2217 48,00 1011 396 3070 1598 4398 1608 566 14.89 2533 52.02 6.44 314
2009 296 174 4656 1342 411 3737 1053 4121 2208 449 25.00 20.83 50.79 825 418
2010 4245 1563 3264 19.06 955 4498 945 2356 3028 614 4057 18.24 39.03 12.36 113
2011 3176 3273 23.86 1451 768 3389 3053 2236 2052 705 3024 33.84 25.74 10.55 817
2012 3232 30.77 1569 1532 1284 3781 2734 1262 2088 1202 2855 3332 18.07 11.53 1335
2013 4805 313 789 2063 796 5230 2221 463 2680 436 4537 36.37 10.10 16.44 9.74
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Table A. 2. Marginal price descriptive statistics. Descriptive statistics and outliers (in
percentage) of the series of the Spanish day-ahead market marginal prices (2001-2013). Outliers
have been identified following the procedure proposed by Benth et al. [14].

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Panel A) Base-load hours (00:00-24:00)

Mean 30.13 3740 28.96 2794 53.68 50.53 39.35 64.43 36.96 3701 49.92 4724 4426
Std Deviation 10.58 1254 922 6.56 12.33 13.60 8.86 719 558 10.63 499 8.84 1746
Skewness 0.53 134 0.26 0.72 0.40 1.02 125 -0.07 0.46 -1.08 -117 -137 -044
Kurtosis -015 5.04 -097 -017 -030 0.72 197 -0.79 6.10 0.82 4.56 2.60 1.09
% Outliers 3.3% 4.7% 6.6% 0.3% 1.6% 0.5% 0.0% 0.0% 0.3% 5.8% 1.9% 5.2% 15.6%
% Outliers up 2.5% 3.0% 49% 0.3% 1.4% 0.3% 0.0% 0.0% 0.0% 3.6% 11% 3.0% 7.4%
% Outliers down 0.8% 1.6% 1.6% 0.0% 0.3% 0.3% 0.0% 0.0% 0.3% 2.2% 0.8% 22% 8.2%
Panel B) Peak hours (08:00-20:00, business day)

Mean 3741 4707 36.30 3316 67.04 61.72 46.52 712 40.40 42.20 54.51 53.30 51.20
Std Deviation 13.13 15.74 11.67 8.68 16.10 18.32 10.96 8.79 5.97 10.19 6.46 759 17.81
Skewness 0.38 196 -0.00 043 0.35 0.68 110 -0.07 0.53 -1.08 0.00 -155 -0.62
Kurtosis -0.23 7.48 -123 -0.69 -047 -0.29 173 -0.75 9.16 1.26 338 4.56 1.96
% Outliers 3.5% 2.8% 9.4% 5.5% 4.7% 2.8% 0.0% 0.0% 0.8% 43% 0.8% 47% 13.8%
%Outliers up 1.6% 1.2% 4.7% 24% 2.0% 0.8% 0.0% 0.0% 0.0% 2.8% 0.4% 1.6% 6.3%
% Outliers down 2.0% 1.6% 4.7% 3.1% 2.8% 2.0% 0.0% 0.0% 0.8% 1.6% 0.4% 31% 7.5%
Panel C) Off —peak hours (00:00-08:00 and 20:00-24:00, business day, 00:00-24:00 holidays)

Mean 26.50 32.86 2548 25.34 46.77 44,61 3511 60.31 34.83 34.21 4735 4433 40.83
Std Deviation 8.65 9.67 7.01 5.07 8.96 11.07 7.78 6.67 5.75 10.51 719 893 16.79
Skewness 0.44 0.85 0.28 0.86 0.58 118 130 -0.02 0.05 -097 -134 -119 -033
Kurtosis -0.22 3.10 -0.57 036 0.36 1.06 1.60 -0.84 438 0.35 332 1.66 0.88
% Outliers 11% 1.4% 11% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 6.3% 27% 49% 15.6%
% Outliers up 0.5% 0.5% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 41% 1.6% 2.5% 71%
% Outliers down 0.5% 0.8% 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 2.2% 11% 2.5% 8.5%

Table A. 3. Day-ahead market production share of each technology (daily average percentage).
Included technologies are: renewable (RE), combined cycle (CC), hydraulic (HI), thermal share

of each technology. (TER), nuclear (NUC) and pumping hydraulic generation (BG).

Year Base-load hours (00:00-24:00)

Peak hours (08:00-20:00, business day) Off-peak hours (00:00-08:00 and 20:00-24:00, business day, 00:00-24:00

holidays)

RE CC HI TER NUCBG RE (CC HI TER NUC BG RE C HI TER NUC BG
2008 2849 30.05 6.04 1327 824 061 2827 3417 667 1212 6.08 085 2841 2877 542 1373 923 044
2009 4035 2644 765 1057 6.66 127 40.03 2979 738 950 536 167 39.71 25.76 761 1119 731 1.00
2010 48,00 1943 951 97 6.07 238 4686 2212 859 950 492 338 4793 19.14 9.62 991 6.71 173
2011 5193 1399 614 148 654 286 4995 1601 601 1566 543 3.77 5255 1362 6.03 1447 713 223
2012 5532 11.02 5.04 1527 699 281 5336 1374 494 1610 552 3.84 5545 9.88 5.09 1553 780 212
2013 5893 6.7 787 1395 656 200 5898 753 776 1499 472 256 5827 647 789 1395 746 164
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Fig. A. 1. 24-h load curves of four typical days in 2012 (MWh).
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Fig. A. 3. Price without seasonal component (Y) in returns and Jumps detected (2008—2013).

References

[1] Schwartz E. The stochastic behavior of commodity prices: valuations and hedging. J
Finance 1997;52(3):923-73.

[2] Lucia J, Schwartz E. Electricity prices and power derivatives: evidence from nordic
power exchange. In: Review of derivatives research, vol. 5 (1); 2002. p. 5-50.

[3] Deng S. Stochastic models of energy commodity prices and their applications: mean-
reversion with jumps and spikes. United States of America: University of California
Energy Institute; 2000 (Working paper, PWP-073).

[4] Knittel CR, Roberts MR. An empirical examination of restructured electricity prices.
Energy Econ 2005;2005(27):791-817.

[5] Huisman R, Mahieu R. Regime jumps in power prices. Energy Econ 2003;25 (5):425-
34.

[6] Karakatsani N, Bunn DW. Modelling the volatility of spot electricity prices, working

paper. London: Department of Decision Sciences, London Business School; 2004.

71



Cristina Ballester Chaves

[7] Wiirzburg K, Labandeira X, Linares P. Renewable generation and electricity prices:
taking stock and new evidence for Germany and Austria. Energy Econ 2013;40:S159-
71.

[8] Saénz de Miera G, Del Rio P, Vizcaino I. Analyzing the impact of renewable
electricity support schemes on power prices: the case of wind electricity in Spain.
Energy Policy 2008;36:3345-59.

[9] Sensfuf F, Ragwitz M, Genoese M. The merit-order effect: a detailed analysis ofthe
price effect of renewable electricity generation on spotmarket prices in Germany.
Energy Policy 2008;36:3086-94.

[10]Holttinen H. The impact of large scale wind power production on the nordic
electricity system. (Dissertation for the title of Doctor of Science in Technol- ogy).
Finland: Helsinki University of Technology; 2004.

[11]McConnell D, Hearps P, Eales D, Sandiford M, Dunn R, Wright M, et al.
Retrospective modeling of the merit-order effect on wholesale electricity prices from
distributed photovoltaic generation in the Australian National Electricity Market.
Energy Policy 2013;58:17-27.

[12]Mulder M, Scholtens B. The impact of renewable energy on electricity prices in the
Netherlands. Renew Energy 2013;57:94-100.

[13]Gelabert L, Labandeira X, Linares P. An ex-post analysis of the effect of renewables
and cogeneration on Spanish electricity prices. Energy Econ 2011;33:S59-65.

[14]Benth E, Benth J S, Koekebakker S. Stochastic modelling of electricity and related
markets, 11. Singapore: World Scientific; 2008.

[15]Benth F, Ekeland L, Hauge R, Nielsen B. A note on arbitrage-free pricing of forward
contracts in energy markets. Appl Math Finance 2003;10(4):325-36.

[16] Cartea A, Figueroa G. Pricing in electricity markets: a mean reverting jump diffusion
model with seasonality. Appl Math Finance 2005;12(4):313-35.

[17]De Jong C. The nature of power spikes: a regime-switch approach. Stud Nonlinear
Dyn Econom 2006;10(3):1558-3708.

[18]Benth F, Kiesel R, Nazarova A. A critical empirical study of three electricity spot
price models. Energy Econ 2012;34:1589-616.

[19]Green R, Vasilakos N. Marketbehaviour with large amounts of intermittent

generation. Energy Policy 2010;38:3211-20.

78



Capitulo 1

[20]Hellstrom J, Lundgren J, Yu H. Why do electricity prices jump? Empirical evidence
from the Nordic electricity market Energy Econ 2012;34:1774-81.

[21]Burgos-Payan M, Roldan-Ferndndez J, Trigo-Garcia A, Bermudez-Rios J,
Riquelme-Santos J. Costs and benefits of the renewable production of electricity in

Spain. Energy Policy 2013;56:259-70.

79






Capitulo 2:







Capitulo 2

Capitulo 22

Impact of wind electricity forecast on bidding strategies.

Abstract

The change in the generation mix from conventional electricity sources to renewables has
important implications for bidding behaviour and may have an impact on prices. The main
goal of this work is to discover the role played by expected wind production, together
with other relevant factors, in explaining the day-ahead market price through a data panel
model. The Spanish market, given the huge increase in wind generation observed in the
last decade, has been chosen for this study as a paradigmatic example. The results
obtained suggest that wind power forecasts are a new key determinant for supply market
participants when bidding in the day-ahead market. We also provide a conservative
quantification of the effect of such trading strategies on marginal prices at an hourly level
for a specific year in the sample. The consequence has been an increase in marginal price
to levels higher than what could be expected in a context with notable wind penetration.
Therefore, the findings of this work are of interest to practitioners and regulators and
support the existence of a wind risk premium embedded in electricity prices to

compensate for the uncertainty of wind production.
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1. Introduction

Because of deregulation, the price for electricity has come to be determined by
competitive bidding by producers and consumers in the wholesale day-ahead market,
where an auction system is generally followed. The electricity supply function is
discontinuous and increases with the level of demand. The resulting price from the
auction, the so-called marginal price, corresponds to the highest price offered by the
supply side from those accepted to satisfy demand. The offered prices to sell electricity
will, in turn, depend on production costs— and these significantly differ among the
generation technologies. Therefore, the generation mix of a specific market area, among
other factors, will likely condition the resulting marginal prices and the success of a given
market design. Establishing the factors affecting price is crucial for all market participants
for obtaining accurate forecasts when planning production and consumption, or when
designing hedging strategies to face the price variation risk to which their positions are

exposed.

Due to greater climate awareness, the inclusion of renewable production in the electricity
system is a goal in most countries. Apart from the promotion of renewable generation,
another measure taken to fight climate change has been the creation of carbon emission
markets. The mechanism works as follows. At the end of each year, firms must deliver
an equivalent number of allowances for their excess emissions. Firms are then provided
with a number of emission allowances that depend on their pollution levels (derived from
their production). Firms that need to increase their volume of emissions must have—or
buy—the corresponding permits in the carbon emissions market. Within this new
framework, in addition to input costs, market participants may have internalised the
expected future carbon prices and wind production forecasts into their decision-making

process when designing their bidding.

In the Spanish case, the development and integration of renewable electricity production
in the electricity market has been a target for the regulator over the last decade. Tables 1
and 2 show the annual figures for installed power capacity and electrical energy in Spain

per generation technology from 2007 to 2013. These tables show that installed wind
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power capacity increased around 68% in the mentioned interval, whereas the amount of

wind generation grew by 98% and reached 20% of the overall generation during 2013.

Table 1. Installed power capacity (MW) from 2007 to 2013.

Technology 2007 2008 2009 2010 2011 2012 2013 A
Hydraulic 17507.3  17555.42  17555.42 17564.63 17571.99 17786.40 17785.98 1.59%
Nuclear 7729.11 7729.11 7729.11 7790.38 7865.99 7865.99 7865.99 1.77%
Coal 11894.79 11897.13  11897.13 11918.11 12158.11 11623.77 11641.23 -2.13%
Fuel + gas 7542.55 7161.10 5994.58 5145.44 3717.33 3428.73 3498.37 -53.62%
Combined Cycle 22390.25 23105.03  24503.01 27146.39 27171.21 27206.47 27206.47 21.51%
Other Hydraulic 1871.49 1981.13 2022.91 2036.94 2042.40 2042.76 2105.70 12.51%
Wind 13667.82 16117.99  18.869,00 19715.31 21174.9 22765.85 23002.3 68.30%
Photovoltaic 636.93 3352.55 3398.1 3838.45 4259.35 4559.53 4667.03 632.74%
Thermal Solar 11.02 60.92 23222 532.02 998.62 1950.02 2299.52 20766.79%
Thermal Renewable 588.17 634.57 782.12 821.13 887.07 975.41 980.05 66.63%
Thermal non-
renewable/cogeneration/  6617.31 6870.29 7076.79 7240.04 7317.65 7280.7 7200.37 8.81%
Others
Overall 90456.74  96465.24  100060.39 103748.84 105164.61 107485.64 108253.01 19.67%

Source: www.ree.es. Last accessed March 2015.

Table 2. Electric energy balance (GWh) from 2007 to 2013.

Technology 2007 2008 2009 2010 2011 2012 2013 A
Hydraulic 26351.80 214282 2386223  38652.87 2757115 1945473 3397028  13.01%
Nuclear 5510247 5897342  52761.04  61989.95 5773136  61470.16  56827.39  21.77%
Coal 75027.85  49646.83  37311.24 2547801 4651861  57661.6 4239779  16.24%
Fuel + gas 1078448 1069097 1005601 955296 747995 754149 700218  2.68%
Combined cycle 7230714  95528.68  82239.39 6859533  55139.86 4251047 2867193  10.98%
Generation 963462 925695 799911 757209  -812895 851161 705351  -2.70%
Consumption
Other hydraulic 41265 463982 545407 682432 529599 464634 71022 2.72%
Wind 27611.65  32159.82 3825283 4354533 4246529  48508.34 5471325  20.96%
Photovoltaic 4839 249796 607239 642277 742512 8202.09 832692  3.19%
Thermal solar 7.63 1538 129.82 69162 183236 344413 444153  170%
Thermal renewable  2588.97 286871  3317.34 333236 431799 475477 50747  1.94%
Cogeneration/others 2345043 2672115 2860073 3097332 323188  33767.25 3229638  12.37%
Net generation 28820829 29591398 280057.99 28848675 279967.53 28344975 273771.03
Pump consumption  -443229  -3802.5  -379419  -445778  -321496 502255  -5957.85
Inter“at;‘;rl‘:iixc}‘ange 575047 1103959 808641  -833268 609013  -11199.95  -6732.14
Overall 27802554  281071.89  268177.39 27569629 27066244 267227.25 261081.04  100.00%

Source: www.ree.es. Last accessed March 2015.

This sustained growth has meant a substantial change in the generation mix from
conventional energy sources to renewables, and changes in the input proportions (among
them, commodity prices) in electricity production costs. Moreover, the inclusion of new
generating technologies in the generation mix may have altered the bidding strategies of

generators and this may have an impact on prices.
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A number of studies can be found in the literature that analyse the impact on spot prices
of increasing renewable electricity production. A common pattern is detected that consists
of a decrease in spot prices because of an increase in renewable production. This is due
to the auction mechanism that is based on a merit order dispatch system (commonly used
in electricity markets). Thus, sellers and buyers, the day before delivery day, submit
quantity-price bids to the auction market. These bids are ranked by price and a marginal
(or clearing) price is set when the supply aggregate curve matches the demand aggregate
curve. Therefore, generators with lower marginal costs, such as renewables, can bid at
lower prices — and these bids are normally positioned at the base of the merit-order and
so are among the first bids matched in the auction. Therefore, an increase in renewables
is expected to change and shift the supply curve in such a way that the spot price could
be set at lower levels. This effect has been called in the literature the merit-order effect'?
of renewables and has been highlighted in previous studies ([1-8], among others). A
reduction in spot prices is welcomed by consumers and regulators. In fact, such a
reduction will mean savings for household and industrial consumers, with the well-known
implications in productivity gains. Such a reduction should also help to compensate for

the economic effort required to finance support for renewables'>.

Agent-based models have been used in the literature to capture the complexity of the
bidding strategy in electricity markets. [10] present an overview of the techniques used
by researchers to capture the dynamics in electricity markets that focuses on the agent-
based models. The authors in [11] propose a model to maximise the benefits of a single
generator that includes the expected behaviour of the rest of the participants and some of
the characteristics of the electricity markets — such as the existence of congestion in the
grid. In [12], an agent-based model is adjusted to the electricity market in Germany and
it is found that the reduction in the spot price caused by renewables is higher when there
are no transmission capacity constraints. The authors in [13] carry out an interesting
theoretical analysis by adding the effect on the spot price of conventional generator’s
strategies in scenarios considering market power, wind and forward trading. In large
wind, conventional generators with market power can follow strategies pushing the price

below competitive price, in order to win more pay buck energy, and doing the opposite

14 For a complete overview of past research on the merit-order effect of renewables see [9].
15 In Europe, the most commonly adopted renewable support mechanism has been a feed-in-tariffs scheme in which
the cost of the project is transferred to customers.
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in lower wind. As a consequence, the benefits for conventional and wind generators will
be asymmetric. However, forward trading could help to reduce this effect. The model in
[13] is empirically tested in [4] by applying it to the British wholesale market, and the
predicted asymmetric benefits are observed. The prices received by wind generators are
lower than the demand-weighted price. Additionally, it is point out that prices can be
higher and more volatile in scenarios with market power. In [14] the relationship between
wind power forecasts and spot prices is analyzed in the Western Danish price area of the
Nord Pool’s Elspot market. In [15] the aim is to find what is the optimal bidding strategy
for a wind generator to maximize profits. The wind generation firms can increase their
net earnings by improving wind forecasting accuracy. Focused on the Spanish electricity
market, [16] test whether the bidding behaviour of large oil-fired thermal generators
differed from that of small oil-fired thermal generators from 2002 to 2005.

Our approach is different as we are interested in distinguishing the effects by generation
technology. Therefore, we study the impact on prices from bidding strategies by thermal,
combined cycle, nuclear, hydroelectric, and renewable generation plants. To do so, we
use a panel data model at an hourly level, similar to the panel data used [8] for the Irish

single electricity market'®

. The period under study, from 2007 to 2013, is characterised
by the installation in Spain of a number of combined cycle and renewable source plants.
Finally, an approximate quantification of the effect of wind production forecasts on the

day-ahead market price is provided.

The main goal of this study is to identify the factors playing a specific role in the bidding
behaviour by generators in the Spanish electricity day-ahead market. We are particularly
interested in the role played by expected wind production as a new key determinant in
this new context. The Spanish market has been chosen as a paradigmatic example due to
the huge increase in wind generation in recent years. Together with expected wind
production and based on the Spanish generation mix, we also control for other potential

noteworthy factors, such as carbon and natural gas prices, and reservoir levels.

Our findings support the existence of a wind risk premium embedded in electricity prices

to compensate for the uncertainty of wind production. It is interesting that it is not wind

16 In [8] model the spot price using an extension of seemingly unrelated regressions (SUR) for panel data models
considering a system of 24 hours, one equation for each hour of the day from 2008 to 2013.
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farms who are behind this premium—but the thermal (fuel oil, natural gas, and coal) and
combined cycle plants who see how their production is being increasingly replaced by

wind power when the wind blows.

This work is organised as follows. Section 2 describes the dataset used to embrace the
analysis. Section 3 presents the methodology to detect the key factors explaining
generator bidding and the results. Section 4 provides a quantification of the estimated
impact of the expected wind production translated into bidding strategies on the marginal
price by generation technology. Finally, Section 5 discusses the research results and gives

some concluding remarks.

2. Data

The data set covers the period from 1 January 2010 to 31 December 2013 and consists of
the following time-series data:

e Quantity-price offers submitted by each generation unit to the day-ahead Spanish
electricity market, to sell or buy energy, and by delivery hour (including matched
and non-matched offers). This data is available on the website of Iberian Market
Operator for Electricity, OMIE (www.omie.es).

e Wind power forecasts released by REE (www.ree.es) on an hourly basis. From all
wind power forecasts available on an hourly basis for each delivery day-ahead
hour, we carefully selected the last wind power forecasts available just before the
deadline for submitting bids to the day-ahead auction markets. The historical
series of data was directly received from REE.

e The day-ahead market marginal hourly prices were downloaded from the OMIE
website (wWww.omie.es).

e National balance point natural gas day-ahead prices. The data was obtained from
the Thomson Reuters database. Originally quoted in GBp/Therm, the data was
transformed into euros/MWh for this study.

e FEuropean emission allowances (EUAs) futures prices corresponding to next
December maturity with a daily frequency, obtained from the Thomson Reuters

database.
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e Hydroelectric reservoir data with a weekly frequency, downloaded from the

Thomson Reuters database.

In short, the overall data set used in the present study includes 72 million records.

3. Empirical Analysis

This work aims at exploring the main factors affecting bidding by generators, and
particularly the role of expected wind electricity production, since wind has recently
entered the generation mix in many countries and expected wind production is becoming
increasingly important. In areas where wind power has a significant share in the
generation portfolio, variations in wind power generation can lead to substantial short-
term changes in the overall supply function. Bids made by wind generators are usually
among the first matched in the day-ahead auction market. This is due to the market
mechanism itself, a merit-order dispatch procedure in which those technologies with
lower variable costs (like nuclear, but also wind) can submit bids with lower prices and
be among the first to be matched. Thus, if the wind blows, marginal prices are expected
to decrease and generation technologies other than wind are likely to be (at least partly)
replaced. Therefore, to optimise profits both renewable and non-renewable generators are
incentivised to behave strategically when submitting bids to an auction market that will

also depend on wind power forecasts.

To embrace this analysis, it was necessary to deal with the data of the whole supply curve
of the day-ahead market (all the offered prices of supply side participants) at an hourly
level. For generator bidders, the day-ahead market is really made up of 24 auctions, one
for each delivery hour. Bids have been grouped by generation technologies to disentangle
differing plant-type strategies. According to the classification made on the OMIE
webpage, bids from generators have been grouped into the following categories:
combined cycle (CC); coal, fuel-gas and fuel-oil thermal plants (CT); hydroelectric (CH);

nuclear (CN); and finally, renewable technologies, mainly wind and solar (CR'7).

17 This category also includes bids coming from cogeneration and surplus production, but these latter bids are of residual
importance because of their relatively scarce associated volume.
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A panel data model has been chosen to make the most of the data. Generators submit bids
for 24 hour blocks at the same time, but the marginal price is set in a different auction for
each delivery hour, and so hourly prices can be considered as separate contracts — but
traded at the same time. A panel data model can capture both the unobserved effect (due
to the delivery hour) and all the predictive information available at the single moment of
bidding.

3.1 Preliminary Analysis

Firstly, for the good specification of the model, a check is made as to whether the
coefficients representing cross-section-specific characteristics are equal for all cross-
sections. To do so, we test for poolability across sections in the panel data model in an F
test, with a null hypothesis that assumes homogeneous slope coefficients for all cross-
sections (hours). As shown in Table 3 (a) the null is rejected for CT, CC, and CH
generation technology plant groups, indicating there are cross-section-specific
characteristics that depends on the delivery hour. Additionally, the Durbin-Wu-Haussman
test (H test) has been used to differentiate between two options to model the cross-section
effect: a fixed-effects model or a random-effects model. Contrarily, the null cannot be
rejected for CN and CR — meaning that a pooling model is preferable when analysing
these latter groups. The results of the H test confirm the previous result that the fixed-
effects model (1) is more suitable than the random-effects model for CT, CC, and CH.
Therefore, for these generation technologies, the fixed-effects panel data model is

adequate [17] and can be defined as follows:
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where:

PMOr1i=
B*WPFt—Lt,ﬁ y* DL: + ¢>e NGt—I/EUAt—2+(,0WRt—1+ 0 PMOk2,t1,i + Ui

Ut,i=Viteti

PMOy.14; is the average supply offered price by the group of generators
sharing the same generation technology submitted on a particular day (day t-
1) for delivering electricity at the day-ahead (day t) for the hour i.

WPFv1i denotes the last available wind power forecast as made public by
REE before the deadline for submitting bids to the day-ahead auction market

for delivering electricity during hour i on day t, and known at day t-1.

DL; is a dummy variable that is equal to 1 if t is a business day and 0
otherwise. It is included in the model to capture the business-day effect on
electricity day-ahead prices.

NG1/EUA.; is the ratio: national balance point natural gas day-ahead prices
on day t-1 divided by ICE ECX European emission allowances next
December maturity closing futures prices at t-2'8. Regarding the latter, we use
lagged prices because the available closing prices at the closure time of the
day-ahead auction market which takes place at t-1 (for delivering electricity
at t) are those of the previous trading session, i.e. at t-2, and

WR¢.1 is the hydroelectric reservoirs on day t-1.

The stochastic component, uy;, is a process made up of two components: vi,
which is assumed to be independent during the days, although it allows for
cross-sectional covariance between the hours, and &;, which is the usual
homoscedastic component, normally distributed N(0,5). Indeed, it is the
specification of a fixed-effects panel model in which the cross-section is the

delivery hour i=1,2...24.

As previously stated, the null hypothesis of poolability could not be rejected for CN

and CR plant groups, which prevented us from using a panel data model as specified

)

18 We firstly considered the inclusion of natural gas and carbon emission price series as separate explanatory variables,
but the higher correlation between them prevented us from doing so. We finally opted to use the series of the ratio
carbon emission prices/natural gas prices to avoid multicollinearity problems.
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in (1) for these generator types. Contrarily, it is more appropriate in this case to use

a pooling model for CN and CR plant groups, as follows:

PMO¢1 4=
o + B*WPFui it v* DLt + 0* NG.I/EUA2+@WRe1+ 8 PMOgo1, + & @

which differs from (1) in the inclusion of an intercept, o, which is the same for all
cross-sections substituting the fixed-effects hourly components, vi, and in that the
stochastic component is a process made up of only one component, &, the usual
homoscedastic component, normally distributed N(0,c).

It is well known that regression models for non-stationarity variables give spurious
results unless the series are cointegrated. Non-stationarity is at least as serious a
problem for panel data sets as it is for aggregate data, since non-stationarity could
cause spurious estimates when estimating static panel models, according to [18]. We
use the unit root test proposed by [19] to test the stationarity of the dependent variable
(PMOx.1.). As is displayed in Table 3, the null hypothesis of a lack of stationarity is
rejected for all the generation technology plant groups. Furthermore, to control for
multicollinearity, the variance inflation factors (VIF) have been obtained (Table 3
(b)). In all cases, VIF is lower than 2.1, a level which is considered acceptable

following [17].
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Table 3. Panel data specification tests: (a) presents the results of the F test, and the Durbin-
Wu-Haussman and Maddala-Wu tests. The F test (F test in the table) is a poolability test and
enables choosing between a fixed-effect panel data model and a pooling model. The null
hypothesis is a homogeneous slope coefficient for all cross-sections (hours) indicating that
a pooling model is preferred. The Durbin-Wu-Haussman test (H test) is used to select
between the existence of random or fixed effects in the panel data model with auxiliary
regression and robust covariance estimators. The null hypothesis is that the random-effect
estimation is preferred (consistent and more efficient). Finally, the Maddala-Wu test (MW
test) is a unit root test for panel data. The null hypothesis is non-stationarity. The tests are
performed for all technologies with the exception of the H test, which is only for combined
cycle generators, thermal, and hydraulics. The significant codes (Sig.) are: 0 “***’ (0.001
#2001 *70.05 .0 0.1 “° 1; (b) presents the variance inflation factors (VIF) to control for
multicolinearity. WPF\.;,;denotes the wind power forecast made public on day t-1 just before
the deadline for submitting bids to the day-ahead market action for delivering electricity
during hour i on day t; DL, is a dummy variable that equals 1 if t is a business day, and 0,
otherwise; NGy.;is the British natural day-ahead trade close price on day t-1; EUA,.> refers
to the European emission allowances next December maturity futures closing prices on day
t-2; WR..i denotes the hydroelectric water reservoirs on day t-1, and PMO,.;..1,is the average
supply price offered by the group of generators the day-before (day t-2) for delivering
electricity on the day-ahead (day t-1) during hour i. combined cycle (CC), thermal (CT),
hydraulics (CH), nuclear (CN) and renewable (CR).

CC CT CH CN CR
(a) Statistic ~ Sig.  Statistic = Sig.  Statistic = Sig.  Statistic ~ Sig.  Statistic = Sig.
F test 6.35 o 18.25 ek 3.07 ek 0.38 0.75
H test 539.07  ***  3537.80  *** 49.42 ek
MW test 104.81 #* 102570 41033 114210 246.18
) VIF VIF VIF VIF VIF
WPF:,1i 1.096 1.116 1.128 1.085 1.087
DL: 1.000 1.002 1.000 1.002 1.001
NG 1 /EUA: 1.640 1.210 1.306 1.105 1.370
WRe1 1.448 1.121 1.240 1.077 1.111
PMOra,i 2.064 1.206 1.440 1.039 1.300
PMOr21,i 2.064 1.206 1.440 1.039 1.300

Before estimation, it is interesting to take a brief look at the main descriptive statistics for
the variables used in the present study, which are displayed in Table 4. As expected,
average offered prices to sell electricity from low variable cost plants, such as CN or CR,
are considerably lower than those offered by higher variable cost plants, namely, CC or
CT. This is true for the four quantiles of the bid-price distributions.

The range (R) is calculated as the difference between the largest and smallest offered
prices and indicates the array of prices at which generators of the same technology have
submitted their bids to the auction during the studied sample. This measure of variation
gives us an idea about the most actively strategic plant groups, namely, those groups that
are flexible enough to adapt their bidding to expected supply and demand levels. Thereby,
the highest range is obtained for CC plants (90.11), followed by CT plants (82.52), CH
plants (79.27), CN plants (45.30) and CR plants (27.60). However, it is noteworthy that

the range measure has the disadvantage that it is based on only two observations and fails
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to show how the other observations are arranged between them. The interquartile range
(IR), calculated as the difference between the third and first quartiles, overcomes this
drawback, indicating the spread of the middle 50% of the distribution. Thus, the
interquartile range is again the highest for CC plants (23.24), but now followed at a greater
distance by CH plants (11.58), CT plants (8.71), CN plants (4.55), and CR plants (3.78).
Note that these are still conservative indicators, since we are dealing with average offered
prices by generation source and both the range and interquartile range for each generator

are expected to be higher.

Another statistic that is frequently used to measure variability in prices is standard
deviation. From Table 4, the highest value of standard deviation corresponds to bids from
CC plants (15.27), followed by CH plants (10.19), and by CT plants (8.69). The standard
deviations of CN and CR plants are remarkably lower (respectively, 3.87 and 4.77). The
small standard deviation of the ratio NG/EUA (2.06) needs to be highlighted, as well as
the large standard deviation of the wind power forecasts (2792), consistent with the

variability of wind production that often makes it difficult to predict.

Table 4. Descriptive summary statistics (2010-2013): Descriptive summary statistics of the
variables included in the analysis: PMOe is the average supply price offered by the group e of
generators sharing the same generation technology submitted on a particular day (day t-1) for
delivering electricity on the day-ahead (day t) during hour i; WPFt-1,t,i denote the wind power
forecast made public just before the deadline to submit bids to the day ahead market on day t-1
for delivering electricity during hour i on day t; NGt-1 is the British natural day-ahead trade
close price on day t-1; EUAt-2 refers to the European emission allowances next December
maturity futures closing prices on day t-2 (EUAt-1); WRt-1 denotes the hydroelectric water
reservoirs on day t-1. Combined cycle generators (CC), thermal (CT), hydraulics (CH), nuclear
(CN) and renewable (CR). [Min=minimun, Max=maximum,; median, mean; Ist Qu=25%
quantile; 3rd Qu.=75% quantile; Sd=standard deviation; R=range; IR=interquartile range]

Min. 1stQu. Median Mean 3rd Qu. Max Sd R IR
PMOe=CC 30.03 49.59 66.19 63.35 72.83 120.14 15.27 90.11 23.24
PMOe=CT 42.05 53.99 58.35 59.20 62.70 124.57 8.68 82.52 8.71
PMOe=CH 21.74 48.70 55.55 54.12 60.28 101.01 10.19 79.27 11.58
PMOe=CN 00.00 18.20 20.22 20.62 22.75 45.30 3.87 45.30 4.55
PMOe=CR 05.62 19.40 21.51 20.31 23.18 33.22 4.77 27.60 3.78
WPFt-1,t,i 508.00 3124.00 4776.00 5289.00 6984.00 16264.00 2791.99 15756.00 3860.00
NGt-1/EUAt-2 0.73 1.35 2.85 3.12 4.64 10.11 2.06 9.38 3.29
WRt-1 47.30 65.10 77.70 73.03 81.60 89.20 11.91 41.90 16.50

Table 5 displays the average prices offered by generation technology and by hour and
distinguishing between business and non-business days. Interestingly, the average offered

prices by CC and CT are remarkably higher in the early hours of the day, more
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specifically, in the first eight hours, regardless of whether it is a business or a non-business

day.

Table 5. Average supply price offered by technologies, hours, and business/non-business days.
Combined cycle (CC), thermal (CT), hydraulics (CH), nuclear (CN) and renewable (CR).

Overall Business day Non-business day

Hour CC CT CH CN CR CcC CT CH CN CR CcC CT CH CN CR
1 69.53 6736 5456 2024 23.67 6887 6698 5478 2024 2362 71.05 6824 5404 2026 23.80
2 7312 66.81 5485 20.62 2178 7260 66.62 55.03 20.64 21.76 7431 6726 5444 2058 21.82
3 7250 67.07 5525 2057 2170 7221 6711 5536 20.60 21.66 73.17 6699 55.01 2051 21.79
4 7295 66.60 5539 2051 21.74 7260 66.60 5547 2053 21.71 7375 66.60 5521 2044 2181
5 7147 64.63 5542 2042 2179 7118 6460 5550 2045 21.76 7214 6471 5524 2034 21.86
6 71.08 63.13 55.62 2040 2216 7070 6289 5580 2042 2217 7193 63.69 5521 2034 2214
7 69.57 59.99 5578 2037 2221 6883 5952 56.06 2043 2228 7124 61.06 5514 2024 22.05
8 6534 5683 5522 2036 2051 6430 5653 5539 2045 2056 6770 5751 54.83 20.16 2040
9 6022 5652 5463 2043 19.68 5931 5627 5462 2053 19.67 6228 57.09 5468 2021 19.70
10 59.72  56.05 5390 20.56 19.39 5892 5582 5374 2066 1940 6154 56.58 5426 2036 19.37
11 59.57 55.65 5348 20.63 1936 5895 5541 5326 2071 1937 6096 56.19 5398 2046 19.34
12 59.51 5495 5328 20.62 1929 5893 5474 5303 2070 1928 60.85 5543 53.84 2046 19.31
13 5949 5581 5325 2070 19.16 5892 5557 53.06 2080 19.15 60.78 56.34 53.69 2048 19.17
14 5949 5789 5335 2074 19.04 5893 5761 5323 2084 19.03 60.77 5852 53.62 2052 19.07
15 59.59 5795 5351 20.81 1894 59.06 57.67 5341 2093 1889 60.80 5858 53.73 20.53 19.04
16 59.60 5798 5361 2086 1891 59.05 57.68 5350 2096 1886 60.84 58.66 53.84 20.62 19.02
17 59.56 58.12 5376 20.87 1895 59.01 5776 53.65 2097 1893 60.81 5895 54.01 20.65 19.00
18 59.50 58.16 53.87 20.84 19.09 5896 57.86 5378 2093 19.08 60.72 5885 54.07 20.61 19.10
19 59.34 5833 53.82 2086 1935 5887 58.06 53.81 2094 1936 6040 5895 53.85 20.66 19.33
20 59.35 5840 53.71 20.81 19.64 5890 58.18 53.79 2090 19.65 6036 5890 53.51 20.60 19.62
21 59.34 5827 5320 2074 1999 5892 5801 5335 20.80 19.96 6030 5885 52.86 20.59 20.05
22 59.33 5770 5297 20.76 2034 5890 5749 53.16 20.81 2028 6032 5815 5252 20.65 2047
23 59.74 5818 53.02 20.69 2055 5934 5797 5322 2075 2048 60.65 58.63 5257 2056 20.70
24 61.51 57.92 53.53 2048 2038 6125 5771 53.82 20.58 20.27 62.09 5841 52.89 20.27 20.62

To see whether those differences are statistically significant, a test for equality of
means between the block of the first eight hours of the day and the remaining block of
hours is conducted. Table 6 presents the results in three panels, distinguishing between:
the overall sample (a); the sample only including business-day observations (b); and the
sample including only non-business-day observations (c). As can be observed, the
average offered prices for the first eight hours of the day are significantly different from
those for the remaining hours for all the considered generation technologies. From (a), it
is noticeable that the average offered price for the first eight hours is remarkably higher
than the average offered prices for the block of the remaining hours in the cases of CT
and CC. This difference is just slightly (but significantly) higher in the case of CH and
CR and lower in the case of CN. These results remain the same when moving to (b)
(business days) and (c) (non-business days), with the only exception being CR (that does

not offer a significantly different price for delivery hours on non-business days).
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Table 6. Equality of mean test. A test for equality of means in the bid prices for the block of the

first eight hours and the block of the remaining hours was conducted: (a) presents the results for
the overall sample, distinguishing by generation technology.; (b) and (c) presents the results
focusing on the business (non-business) days. Combined cycle (CC), thermal (CT), hydraulics
(CH), nuclear (CN) and renewable (CR). The sample mean estimates in samples are calculated
and t-statistics are shown. The significant codes (Sig.) are: 0 “*** 0.001 “** 0.01 “*’ 0.05 *’
0.1 "1

CcC CT CH CN CR
(@) [1-8h]  [9-24h] [1-8h] [9-24h] [1-8h] [9-24h] [1-8h] [9-24h] [1-8h] [9-24h]
Mean 70.7 59.6 64.0 57.4 55.3 53.5 20.4 20.7 22.0 19.5
t-statistic 61.0 56.6 14.5 -6.2 44.8
Sig. et wt - — i
(b)
[Business days] [1-8h]  [9-24h] [1-8h] [9-24h] [1-8h] [9-24h] [1-8h] [9-24h] [1-8h] [9-24h]
Mean estimates 70.1 59.1 63.8 57.1 55.4 53.5 204 20.8 21.9 19.5
t-statistic 51 47.7 13.5 -6.3 37.3

sig' *HE *okok *kk *okok *Ak

(©)
Non-business days  [1-8h] [9-24h] [1-8h] [9-24h] [1-8h] [9-24h] [1-8h] [9-24h] [1-8h] [9-24h]

Mean 71.9 60.9 645 579 548 536 203 205 219 195
t-statistic 33.6 30.6 5.9 1.8 24.7
sig b SokF oK . b

3.2 Estimation Results

The panel data estimation results are presented in Table 7 (for CC, CT, and CH generation
technologies) and in Table 8 (for CN and CR generation technologies).

The standard errors have been obtained following [20], since they are robust to serial
correlation over time and specifically convenient when cross-sectional dependence is
present, according to [21]". The obtained R-squared is above 90% for CC, CH, and CR

—and above 60% for all considered generation technologies except CN (54%).

19 To reinforce the robustness of the results, following [22], the standard errors have also been calculated using a robust
covariance matrix that controls for heteroskedasticity and serial (cross-sectional) correlation for fixed-effect models.
Moreover, a wild cluster bootstrapped t-statistics estimation for cluster-robust standard errors in fixed-effect models
was conducted ([23]) that provides asymptotic refinement when the number of clusters is fewer than 30. A double-
clustering robust covariance matrix estimation for panel models was also conducted. All these approaches led us to the
same results as those presented in the main text and so they hold up with remarkable consistency.
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Table 7. Panel data fixed-effects estimation. PMOt-1,t,i = [*WPFt-1,ti+ y* DLt + ¢* NGt-
1/EUAt-2+@WRt-1+ 6 PMOt-2,t-1,i + ut,i ; ut,i =vi + &,i (1). Fixed-effects panel linear models
estimation with nonparametric robust covariance matrix estimators with cross-sectional and
serial correlation ([20]). PMOt-1,ti is the average supply price offered by the group of
generators sharing the same generation technology submitted on a particular day (day t-1) for
delivering electricity on the day-ahead (day t) during hour i; WPFt-1,t,i denotes the wind power
forecast made public on day t-1 just before the deadline for submitting bids to the day-ahead
market action for delivering electricity during hour i on day t; DLt is a dummy variable that
equals 1 if t is a business day, and 0, otherwise; NGt-1 is the British natural day-ahead trade
close price on day t-1; EUAt-2 refers to the European emission allowances next December
maturity futures closing prices on day t-2; WRt-1 denotes the hydroelectric water reservoirs on
day t-1, and PMOt-2,t-1,i is the average supply price offered by the group of generators the day
before (day t-2) for delivering electricity on the day-ahead (day t-1) during hour i. The stochastic
component, ut,i, is a process made up of two components: vi, which is assumed to be independent
over the days but allows for cross-sectional covariance between the hours and &t,i, which is the
usual homoscedastic component, normally distributed N(0, 6). There are three panel data fixed-
effect models, one for each generation technology group. Combined cycle generators (CC),
thermal (CT), hydraulics (CH). The significant codes (Sig.) are: 0 “***’ 0.001 “**’0.01 “*’ 0.05
0.1 7 1.

cCc CT CH
Parameter Value t-statistic  Sig. Value t-statistic  Sig. Value t-statistic  Sig.
B 0.00014 8.00 whx 0.00034 8.09 = -0.00016 -5.99 b
¥ -1.33477 -11.93 o -1.16985 -8.85 b 0.14415 1.30
¢ 0.09844 3.35 *** - -0.34550 -5.64 b 0.14921 3.91 b
® -0.01561 -3.50 ok 0.04181 5.31 B 0.01644 -3.94 b
8 0.95877 195.46 o 0.76171 36.94 b 0.94246 83.82 b
Vi 3.87672 6.68 = 13.05886 10.36 B 4.67539 5.54 b
V2 4.03756 6.78 = 12.96304 10.35 B 4.67676 5.54 b
Vs 4.02245 6.79 b 13.0547 10.37 b 4.6857 5.53 b
Vs 4.06191 6.84 = 12.97138 10.36 B 4.67988 5.52 b
Vs 4.01183 6.83 = 12.53579 10.29 B 4.66785 5.51 b
Vs 4.00611 6.84 = 12.20608 10.23 B 466998 5.51 b
V7 3.95008 6.82 = 11.47737 10.07 B 4.67175 5.51 b
Vs 3.77923 6.72 = 10.72787 9.88 B 4.63409 5.50 b
Vo 3.57346 6.60 = 10.65872 9.86 B 4.60065 5.50 b
Vio 3.55247 6.59 = 10.54579 9.83 B 456004 5.50 b
A%t 3.53845 6.57 = 10.43079 9.79 B 454366 5.51 b
Vi 3.52077 6.53 = 10.22657 9.72 B 455033 5.52 b
Vis 3.50304 6.50 = 10.39007 9.76 B 456618 5.53 b
Vi 3.48723 6.47 = 10.84854 9.88 B 459104 5.54 b
Vis 3.47714 6.44 = 10.82819 9.87 B 4.61774 5.55 b
Vis 3.46436 6.41 = 10.80613 9.86 B 4.63886 5.56 i
Vi 3.45504 6.40 = 10.82202 9.86 B 4.65649 5.56 i
Vis 3.44887 6.39 = 10.82314 9.86 B 4.66564 5.56 b
Vio 3.43959 6.38 = 10.85556 9.87 i 4.6661 5.56 i
V2o 3.44031 6.38 = 10.87333 9.87 B 4.66328 5.57 b
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V2 3.44165 6.38 *x - 10.84575 9.87 x 4.63425 5.57 ok

V22 3.44362 6.39 i 10.7137 9.83 ek 4.61469 5.56 ok

Va3 3.46485 6.41 e 10.84151 9.87 x 4.61226 5.56 ok

Vau 3.54811 6.48 o 10.80414 9.86 ek 4.63071 5.56 o
R-squared 0.95756 0.68220 0.93162
Adj.R-squared 0.95753 0.68194 0.93157

Table 8. Panel data pooling estimation. PMO,.; ;= o+ f*WPF.;,;+ y* DL, + ¢* NG..i//EUA,.;
+ oWRt-1 + OPMOr211: + & (2). Pooling panel linear models with nonparametric robust
covariance matrix estimators for panel models with cross-sectional and serial correlation ([20]).
PMOy.;,; is the average supply price offered by the group of gemerators sharing the same
generation technology submitted on a particular day (day t-1) for delivering electricity on the
day-ahead (day t) during hour i; WPF ., idenotes the wind power forecast made public on day t-
1 just before the deadline for submitting bids to the day-ahead market action for delivering
electricity during hour i on day t; DL, is a dummy variable that equals 1 if t is a business day, and
0, otherwise; NG, is the British natural day-ahead trade close price on day t-1; EUA.; refers to
the European emission allowances next December maturity futures closing prices on day t-2;
WR..1 denotes the hydroelectric water reservoirs on day t-1, and PMOy.2..1,1 is the average supply
price offered by the group of generators the day-before (day t-2) for delivering electricity on the
day-ahead (day t-1) during hour i. The stochastic component &,;, which is the usual homoscedastic
component, normally distributed N(0,c). Nuclear generators (CN) and renewables (CR). The
significant codes (Sig.) are: 0 “***0.001 “**°0.01 *°0.05 " 0.1 * " 1.

CN CR

Parameter Value t-statistic  Sig. Value t-statistic ~ Sig.
a 6.90959 6.18 255307 4.49 .
B -0.00002 -0.97 -0.00008 -7.68 .
¥ 0.03202 0.24 -0.08613 -1.54
¢ 0.03684 0.90 -0.05055 -1.60
® -0.01684 -2.66 **-0.00819 241 *
8 0.72399 17.89 = 0.93633 80.35 .

R-squared 0.54326 0.91421

Adj.R-squared  0.54320 0.91420

Wind production forecasts ()

The t-test for the significance of the coefficient that accompanies the WPF series ()
indicates that the estimated 3 parameter value is statistically significant for all generation
technologies, implying that wind production forecasts have become relevant for all the
supply market participants, with the only exception being CN plants which are shown to
be indifferent with regards to expected wind production. Nuclear plants have the clear

incentive to continuously generate electricity due to the high costs of stopping production.
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It is worth emphasising that the series of WPF employed in the present study corresponds
to the last hourly series made public by REE just before the deadline for submitting bids
for the day-ahead market — since this is the most informative series. The underlying idea
is that generators are expected to consider the wind power forecasts when designing their
trading strategies and consider the most updated predictions just before that deadline. An
a priori expected result is a negative value of the [ parameter, given that the expected
marginal price is supposed to decrease with increased wind production. Thereby, a logical
reaction from bidders would consist in offering lower prices so as not to become
unmatched, obviously without exceeding their own production costs. However, according
to our results, the CT and CC plants would have been generally offering their production
at higher prices when expecting increases in wind production, perhaps trying to
compensate for the presumably lower income resulting from a less-likely required
thermal and combined cycle production. The increase in the resulting marginal prices may
be viewed as a wind premium for the risk of generating less electricity than usual, but at
the same time, these generators would incur a risk of not being matched and so being

dropped from the day-ahead auction.

Business-day dummy (y) and effects by hour (vi)

From Table 7 and Table 8, the parameter value associated with the business dummy
variable, v, 1s significantly negative for CC and CT plants, whereas it is not statistically
different from zero (at the 5% level) for CN, CH, and CR plants. The positive value of
this parameter for CN plants implies that they would offer their production at higher
prices for delivery hours on business days, when marginal prices are typically higher due
to increased demand. However, the opposite holds for CC and CT plants. Therefore, these
latter appear to bid at lower prices for business hours.

As mentioned before, the data panel model for CC, CT, and CH generation technologies
enables differentiation for the specific effects of each hour. Thus, the results are
subsequently enriched with the ve,i parameter value for each generation technology group
e and hour i. Table 7 shows how it is found that CC and CT plants submit their bids to
the market at higher prices during the early hours of the day (from the first to the sixth
hour) when electricity demand levels are lowest. It is of note that during these low demand
periods, electricity is usually generated by plants with the lowest marginal costs because

bids from the remaining plants are normally too high to determine the marginal price and
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they drop out of the auction. The differences in the hourly bids from CH plants are, on
the contrary, very small. Regarding CN and CR plants, as previously explained, the
pooling model is shown to be more suitable, which leads us to conclude that there is no
evidence of differences in strategic bidding behaviour between hours from CN and CR

plants.

Natural gas / CO2 price ratio (¢)

The next step is to look at the effect of natural gas prices and carbon prices on the supply
bids to the day-ahead market. Following previous literature, to avoid multicollinearity
problems caused by correlation between explanatory variables, the ratio natural gas
prices/carbon prices is chosen instead of considering these two series of prices separately,
1.e. as individual independent variables. The natural gas and carbon price series selected
are the corresponding international price benchmarks. The former corresponds to national
balance point natural gas day-ahead prices on day t-1, whereas the carbon price series is
the ICE ECX European emission allowances next December maturity closing futures
prices at t-2. Regarding this latter price series, we use lagged prices because at the closure
time of the day-ahead auction market which takes place at t-1 (for delivering electricity
at t), the available closing prices are those of the previous trading session, i.e. at t-2.
Coming back to Tables 7 and 8, there is statistical evidence that the so-defined ratio does
have an impact on the prices offered by CC, CT, and CH, according to the estimated ¢
parameter value, which is statistically different from zero. The resulting sign of this
coefficient also offers interesting insights. Thus, it is positive for the CC and CH, meaning
that the offered prices by these plant groups would be increasing with natural gas prices
and/or generally decreasing with carbon emission allowance prices. Given that CC plants
use natural gas as fuel to generate electricity, they are negatively affected by increases in
natural gas prices. The plants are then expected to incorporate this information into their
bids as an extra cost. As this type of plant is usually among those that set the marginal
price, whenever they need to generate electricity to satisfy the overall demand an increase
in marginal price would be expected. However, under these market circumstances, CH
plants, being reasonably sure that their bids will still be lower than those from CC plants,
may behave strategically and submit higher bids than usual and seek to profit from higher

marginal prices set by themselves.
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In contrast, the sign of the estimated ¢ parameter is negative for CT, indicating that they
would offer higher prices when expecting lower natural gas prices and/or higher carbon
emission allowance prices. This result is consistent with the fact that thermal plants, being
the most pollutant technology, may have internalised the cost of paying for the carbon
emission allowances into their bids and submit higher bid prices when expecting higher

carbon prices.

Hydroelectric reservoir levels (®)

Hydroelectric plants enjoy an important advantage since they can easily adjust their
production to the amount needed. Of course, the electricity they can produce depends on
annual rainfall, and more specifically, on the water reservoir levels. As only weekly data
was available, each datum is repeated for seven daily periods. The way in which larger
reservoirs can impact on prices is very similar to that of increased wind. In fact, more
reservoirs would imply more capacity to produce electricity and more supply. In times of
water reservoir excess, hydroelectric generators, with very low variable costs, can bid into
the auction market at lower prices. The obtained results are consistent with that idea, with
the only exception being the coefficient for the thermal generation plants. In particular,
the estimated ® parameter value is significantly negative for all the generation technology
plant groups, meaning that bid prices will decrease with hydroelectric water reservoirs,
except for the CT plants for which the estimated @ value is shown to be significantly

positive.

Lagged dependent variable (3)
Finally, the parameter 0 of the lagged dependent variable is strongly significant for all
technologies. In other words, the bid price is strongly influenced by the same bid price

submitted the day before for the same hour.

Summarising the results, firstly, it is evidenced that expected wind power production has
become a new price determinant, since it has been shown to impact on generator bidding
strategies —with the only exception of CN. Secondly, because of variations in the wind
production forecasts, natural gas prices, carbon prices, and hydroelectric reservoirs, the
CH, CN, and CR plants generally behave as expected and consistently submit bids with

the aim of being matched in the day-ahead auction market.
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Nevertheless, according to our results, CC and CT plants offer their production at higher
prices when there is a larger supply of low-cost electricity, i.e. assuming a higher risk of
dropping out of the day-ahead auction. It has been shown that CC and CT plants submit
bids at higher prices: (i) when wind production forecast is larger; (ii) on non-business
days; and (iii) from hour 1 to hour 7 — namely coinciding with low demand levels. CT

plants also bid at higher prices when there is more water in the hydroelectric reservoirs.

4. Quantifying the impact of wind power forecasts on the

marginal price

As shown in the previous section, supply bidders react to wind production forecasting in
a different manner depending on the generation technology. Our aim here is to quantify
the effect of this result on the marginal price level. To do so, we simulate the day-ahead
hourly marginal prices by intersecting the actual (aggregate) demand curve and a
fictitious (aggregate) supply curve built as follows:

Pacer1.ti = Pace,t1,6i -BeWPFe 41 3)
where Pacer1.i denotes the modified offered price; Paees-14i 1S the actual offered price
submitted on dayt-1 by the market participant a of the generation technology group e for
the hour 1 of the delivery day t; Be is the estimated parameter obtained for the generation
technology group e (displayed in Tables 7 and 8), and WPF 1 ; is the wind power forecast,
known at day t-1, just before the deadline for submitting bids to the day-ahead auction
market for hour 1 of day-ahead t.

The simulation exercise covers the whole of 2013 and consists of intersecting the
modified aggregate supply curve and the actual demand to obtain the simulated marginal
price, isolating the impact of the wind power forecast on the bidding behaviour of each
generation technology, and ultimately, on marginal prices. A total of 24 x 5 marginal

prices were simulated. Differences between actual and simulated prices are displayed in

Table 9.
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Table 9. Impact of the WPF on the marginal price. Displays the difference between the actual
marginal price and the simulated spot price, distinguishing by generation technology group. The
daily difference is shown together with the difference per hour for the whole year 2013. Combined
cycle generators (CC), thermal (CT), hydroelectric (CH), and renewable (CR).

CC C¢r c¢cH cCcr TOTAL

Hour/daily average price  0.06 0.50 -0.39 -0.22 0.16

1 0.05 048 -045 -0.22 0.14
2 0.03 048 -038 -0.29 0.18
3 -0.17 026 -0.54 -0.50 -0.13
4 -0.18 031 -049 -0.50 -0.02
5 -0.10 034 -045 -0.46 0.04
6 -0.03 044 -038 -0.35 0.16
7 0.03 059 -025 -0.27 0.33
8 0.08 055 -033 -0.18 0.28
9 0.07 055 -031 -0.22 0.25
10 0.06 043 -045 -0.15 0.10
11 012 048 -040 -0.13 0.15
12 0.12 047 -040 -0.16 0.14
13 013 049 -042 -0.14 0.13
14 012 054 -035 -0.15 0.20
15 011 057 -036 -0.19 0.22
16 014 0.3 -033 -0.17 0.31
17 013 0.68 -033 -0.16 0.35
18 014 061 -032 -0.17 0.26
19 012 0.63 -039 -0.17 0.23
20 011 049 -041 -0.14 0.06
21 012 048 -043 -0.13 0.00
22 013 049 -043 -0.12 0.03
23 0.09 053 -040 -0.13 0.10
24 0.15 0.63 -0.28 -0.15 0.39

The average actual daily marginal price during 2013 was 44.05 euro/MWh, whereas the
average simulated marginal price after removing the estimated effect of the wind power
forecast on the offered prices by the thermal generation group according to the formula

(3), amounts to 43.55 euro/MWh.

Therefore, the overall daily effect for the year 2013 that may be attributable to the thermal
generation bids may be quantified, on average, at a minimum increase of 0.5 euros/MWh.

Distinguishing between hours, the average increase in the marginal price oscillates

between 0.68 euros/MWh in hour 17and 0.26 euros/MWh in hour 3 (Table 9).
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The overall daily effect for combined cycle plants also means an increase in prices of 0.06
euros/MWh (a maximum of 0.15 euros/MWh in the hour 24 and a minimum of -0.18

euros/MWh in hour 4).

As the beta value for the remaining generation technology plant groups is statistically
negative, the effect of their reaction to wind production forecasts leads to a decrease in
the estimated marginal prices. On average, the decrease in the marginal price attributable
to CH and CR generation groups bidding when reacting to the wind production forecasts,
would have respectively been of -0.39 euros/MWh and -0.22euros/MWh.

In short, the overall effect of the generator bidding strategies linked to the wind
production forecasts for the simulated sample period (year 2013) was an increase in
average marginal prices. Hence, the impact of such strategies is shown to be large enough

to overwhelm the well-known merit order effect of renewables.

5. Conclusion and concluding remarks

The purpose of this work is to analyse the way in which the bidding strategies by
generators have been conditioned by expected wind production, among other key
variables, in the Spanish electricity day-ahead market (which has experienced a

continuously increasing proportion of wind power in the electricity generation mix).

To summarise the results: expected wind production is a new price determinant and is
shown as relevant for the considered supply side participants when submitting their bids
to the day-ahead auction market. Nuclear generators are the only exception — as they
cannot afford to stop production and so lack the flexibility to maximise profits by bidding

strategically.

The average prices offered by CC and CT plants for a given hour have proved to be
systematically higher when expected demand levels are low for the studied sample(when
delivery is taking place on a non-business day and for the first seven delivery hours of
business and non-business days). These results can make sense for generation plants with
low variable costs and enough flexibility (such as CR or CH plants) since it is in situations

of low demand when they tend to submit less aggressive bids and profit from higher prices
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if they are successful in setting the marginal price. Anticipating that during these low-
demand hours, the electricity produced by CN, CH, and CR generation plants will likely
be sufficient to meet demand, the bids submitted by generators can push the marginal
price upward. However, it is a priori difficult to establish why CC and CT, with much
higher variable costs, bid higher prices when expected demand levels remain low, so

incurring the risk of dropping from the auction.

According to the obtained results, the case of CT generation plants deserves a special
mention, since they seem to submit bids at higher prices when: (i) the ratio natural
gas/carbon price is expected to be lower, which is a logical result given that expected
higher carbon prices may imply higher costs precisely for these generation plants; but
also when (i1) wind production forecast is greater; and when (ii1) there is more water in
the hydroelectric reservoirs. Additionally, as mentioned above, their offered prices are

higher, on average, for non-business days and from hour 1 to hour 7.

These results seem to lead to counterintuitive conclusions; however, it does not need to
be so. As is generally known, the spot electricity market is made up of several sequential
trading markets. Market participants submit their bids to buy or sell electricity for each
of the 24 hours of the following day through the day ahead market, which is usually the
most liquid market and whose price serves as the benchmark for forward contracts.
However, given the nature of electricity, the result of the day-ahead 24 auctions must also
be feasible from a technical point of view. In the Spanish case, it is the system operator
(R.E.E.) who takes the responsibility for validating the technical viability of the day-
ahead auction results, as well as for guaranteeing an annually fixed share of domestic coal
for producing electricity to reduce external dependence within the supply security
constraint regulation process. It is possible for market participants to rectify their
previously open positions in the intraday market, which is a balancing market structured
into six new consecutive auction markets. In addition, the system operator also manages

several additional regulated markets to solve real-time deviations.

Therefore, the possibility of trading in sequential markets with different prices and/or the
possibility of being required to produce electricity (to solve technical constraints, to

assure a predetermined level of production by using domestic coal, or to guarantee system
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security in exchange for prices different from the resulting marginal price in the day-
ahead market)may lead generators to coordinate bidding in the day-ahead, and

subsequently, balancing regulated markets or processes.

Moreover, if these latter prices are systematically higher than the day-ahead market price
then generators may prefer to hold back capacity in the day-ahead market to facilitate
subsequent offerings in the next sequential markets, or other processes in which they can
participate. The fact that market participants may consider the outcome of the sequence
of markets, and not each market in isolation, was addressed by [24] for the Californian
market. Also, for the Spanish case, [25] pointed out that some generation plants could
have been submitting sale orders in the day-ahead market at high prices that would not be
matched — and so that they would finally be required to produce electricity to solve
congestion. This approach would have been more profitable according to the regulations
in force during the period in question (from July 2004 to February 2005). [26] investigated
the potential of coordinated bidding in the spot and balancing markets and concluded that
significant profits could be made from such a coordination for the Nord Pool.
Concerning the results of the simulation exercise to quantify the effect of wind power
forecasts on the day-ahead marginal price, the overall effect for the year 2013 was shown
to be negative for electricity consumers, since the aggregated impact of the bidding
strategies carried out by the CH and CR generation plant groups (offering lower prices
for low-demand-level delivery periods) may have pushed marginal prices down
(consistent with the merit-order effect of renewables) but did not overwhelm the increase
in marginal prices produced by the effect of the bidding strategies implemented by the
CT and CC generation plant groups.

The findings obtained in the present work are of interest to practitioners and regulators,
given that they shed light on how the inclusion of renewable generation in the electricity
market has altered the trading strategies of the supply market participants in the day-ahead

market.

The strong presence of renewable generation in many power markets entails changes in
power system planning, operating, and monitoring. These changes need to be considered

and adapted to the operational processes. Conventional technologies such as thermal or
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combined cycle plants have been displaced by wind or solar generation that is
characterised by flexibility and significantly lower variable costs of production. In
addition, non-flexible conventional generation plants incur high operating and
maintenance costs when starting and shutting down. In those cases, where storage
capabilities such as hydro resources are insufficient, conventional generation plants may
be useful inproviding operating reserves as a backup generation to manage the
intermittency of renewable generation, or for guaranteeing system security by resolving
output forecasting errors in the renewable generation models used for planning the day-

ahead plant schedules.

The European Commission (2013) pointed out that the economic impact of balancing
costs needs to be considered in well-designed renewable support schemes. For as long as
renewable generation continues to be intermittent and wind output forecasts for periods
other than very short-term are insufficiently accurate, then three(related)crucial issues
will be: (i) assessing and revising the design of balancing rules considering the
particularities of all the generation technologies involved;(ii) determining the amount of
operating reserves needed to keep the power system functioning securely; and (iii)
revising the way these backup reserves should be remunerated and providing the
appropriate incentives as market signals to incumbent and new entrants that may lead to

more efficient operations in the whole electricity market.

Our results suggest that some conventional generators react to the entrance of renewable
generating sources by behaving in a somewhat strategic manner that contributes to
pushing up marginal prices, and thereby creating a wind risk premium that should be
considered by regulators when thinking about changes in regulation or market design to
adapt to the new market situation. Furthermore, as the need for balancing power is
expected to increase with the growth of fluctuating renewable production, an analysis of
coordinated bidding in the day-ahead and subsequent markets, as well as in the provision
of balancing services for the Spanish case, would also be of interest. This is left for further

research.
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Capitulo 3:

Analysing the impact of Renewables on Spanish Electricity

Markets using Machine Learning Techniques

Abstract

After the introduction of wholesale electricity markets to promote competition in the
electricity liberalisation process undertaken by many countries in recent decades, the
other great challenge to address is the integration of the expanding renewable generation
into electricity systems. Of course, the entry of renewable power into the mix has
significant effects on prices. While much of the previous literature has focused on the
impact of renewable energy on day-ahead market prices, our aim is to extend the analysis
to electricity final prices. To do so, we apply machine learning techniques that allow us
to uncover their main drivers by analysing an exhaustive dataset of variables. Factors
influencing the components of electricity final prices, other than the day-ahead market
price, are much less studied, though they are key to gain insight into the dynamics
between the interrelated trading segments and a-priori technical processes included in the
wholesale electricity market. We expect our results will be of interest to both practitioners
and regulators, as they will provide a better understanding of the functioning of the market
and have implications in the restructuring of the market towards a more sustainable and

competitive electricity system.
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1. Introduction

After the electricity liberalisation process undertaken by many countries in recent
decades, which in most cases entailed, among other measures, the establishment of
wholesale electricity markets to promote competition, the other great challenge to address
is undoubtedly the integration of renewable generation with the aim of achieving a
sustainable electricity system as a base to support the transition to a low-emissions

economy.

Supporting the increased use of clean power (mainly wind and solar) is a key part of
energy policy all over the world. As a result, structural changes to electricity systems are
occurring. One of these changes undoubtedly is the impact of high penetration of
renewable sources on electricity prices.

While most of the previous papers focus on the impact of renewables on day-ahead
market prices (the so-called spot prices), we extend the analysis to study the impact on
final electricity prices, which include not only the day-ahead price but also the costs
incurred in the subsequent processes until the real time delivery of electricity, by

identifying the main determinants of each of their cost components.

Given the day-ahead system-marginal-price auction and the lower generation cost of
renewable sources, such as wind and PV-solar, renewable generators can bid at very low
prices or even bid in at zero, participating as price takers in the day-ahead market. A large
enough number of low-price bids from renewable players can shift the supply-offer curve
in such a way that the resulting auction price is set at a lower level. As a result, more
renewable production is expected to translate into lower resulting prices. This is the so-
called merit order effect of renewables, which refers to the reduction in day-ahead market
prices due to the introduction of renewables into the electricity system and is well
documented in the literature [1] in the Nord Pool, [2] and [3] in the German market, [4]

in the Australian market, and [5] or [6] in the Spanish market, among others.°

20For a complete overview of past research on the merit-order effect of renewables see [7], and recently in the Iberian
Market see [8].
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However, the intermittency of the main renewable energy sources, together with the non-
storability (at a large scale) of electricity, may entail higher market balancing needs and
costs. As electricity is a non-storable commodity, its delivery must be scheduled in
advance. Later, adjustments are normally needed to find a solution for unexpected
deviations from that scheduled. Thereby, the wholesale electricity market is usually
composed of a series of interrelated markets: the day-ahead market, which is the main
market for physical delivery; the intraday market for more short-term adjustments; and,
finally, balancing markets to handle the remaining deviations and other technical issues.
The variability and limited predictability of renewable generation, especially wind (which
depends on wind velocity and direction), could increase the need for balancing in order
to ensure the electricity supply at the delivery moment. Therefore, more renewable
production could lead to more balancing needs, and hence more balancing costs, which
could in the end drive up final electricity prices. In this regard, [9] find a significant
positive difference between real-time and day-ahead market prices, particularly for wind

electricity for the Italian market.

As a consequence of the increasing share of renewable energy sources (RES), the design
of electricity markets is currently being revisited A number of papers have examined the
ability of different market designs to respond to a significant rise in the introduction of
RES. [10] studies the behaviour of total physical adjustment capacity to show that only
with small wind capacity, total adjustments are dominated by conventional (non-
renewable) energy sources. Furthermore, the work highlights the relevance of the
flexibility and liquidity in intraday markets to adjust previously assumed positions,
recommending the Spanish intraday market design as the most effective way to manage
the adjustments. The attractiveness of intraday markets as a mechanism to set balancing
prices, avoiding or (at least) reducing the need for more expensive procedures, has
captured the attention of other research papers. [11] compare different electricity market
designs to determine whether they provide adequate flexibility to deal with intermittency,
finding that the finite auction design of the Spanish intraday market has a better
performance than the alternative continuous trading system, though the number of trading
sessions remains an open question. [12] evaluates the benefits for wind producers to trade

in intraday markets and concludes that participating in intraday markets could be a non-
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optimal choice for market participants under some circumstances, which may generate
additional costs for the system.

Logically, the growth in renewable power generation reduces the need for production
from conventional sources and, as previously mentioned, due to the merit-order effect,
also reduces day-ahead prices. Thus, conventional-source power plants tend to produce
less and, simultaneously, the price received for their production is generally lower than it
used to be before the growth in the penetration of RES. In this new context, the survival
of these power plants may be in jeopardy. In the Spanish market, those conventional-
source facilities that are flexible enough have been receiving capacity payments to
compensate them for their lower revenues (and ultimately to prevent them from closing)
in exchange for acting as a backup to renewables when needed. This mechanism entails

an additional cost that may in the end contribute to pushing up final prices.

Furthermore, the adaptation of these conventional power plants to the new context should
also be considered. Thus, strategic bidding behaviour consisting in avoiding the day-
ahead market in order to force the sale of the production through other “a priori technical”
market segments (because these generally end up being more profitable) has previously
been documented in the literature ([13], [14], [15] or [16]). [13] identify some generating
plants submitting their sale orders to the Spanish day-ahead market at anomalously higher
prices during the period July 2004 to February 2005, in order to remain out of the auction
results and be able to produce their electricity to solve congestions, which was
remunerated at higher prices. [14] also detect strategic bidding behaviour by some thermal
power plants using domestic coal under a particular regulation (Royal Decree 134/2010)
which was in force from 2010 to 2015. This procedure provided priority dispatch to
domestic coal production in the day-ahead market and required a minimum coal share in
the Spanish generation mix. To avoid being matched in the day-ahead market auction and
instead engage in later balancing processes with a remuneration higher than the day-ahead
marginal price, some thermal plants engineered their participation in these latter processes
to obtain higher remuneration. Additionally, [15] provide evidence of counter-intuitive
behaviour by thermal generators, showing that at times of higher wind power forecasts,
thermal generators systematically increase their offer prices, incurring the risk of not
being matched in the day-ahead market auction. Therefore, under some circumstances,

thermal agents appear to be incentivised to withdraw production from the day-ahead
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market to operate in subsequent markets and procedures that begin after it closes, i.e.
intraday and/or balancing markets and processes. [16] estimate more gains for a flexible
plant (hydropower) with coordinated bids considering both markets, the day-ahead and
the subsequent balancing market, in the Nordic Market. The key lies in being able to
anticipate balancing market opportunities before the day-ahead market closure, which
requires an accurate forecast of balancing volumes and balancing pricing, still a difficult
task, but potentially a very profitable one. The consequences, as the authors point out,
could lead to a supply curve transformation, generally with higher prices at the upper end
of the bid curve.

The main goal of this paper is to study the impact of renewable sources on electricity final
prices by means of an exhaustive analysis of each of their components. These price
components, other than the day-ahead market price, mainly respond to intermediate
processes between that market and the real-time delivery of electricity, designed to
guarantee continuous supply and system reliability. The Spanish market is chosen as a
paradigmatic example due to its high level of renewables as well as the particular design
of its intraday market, which has been underlined in previous literature, as indicated
above. Complementarily, the analysis made allows us to disentangle the main drivers of
electricity final prices, taking a step beyond the study of electricity day-ahead market

prices.

This paper is also a great opportunity to explore the dynamics between different trading
segments in the wholesale electricity market through the analysis of final electricity cost
components. To do so, a complete dataset with a huge volume of predictor variables (264
variables) is generated. To deal with such an exhaustive list of variables, we use machine
learning techniques and, particularly, regression trees, since they allow us to examine the
interactions between markets in an attempt to clarify whether what happens in one market
has an effect on the subsequent ones, while handling a large amount of data, most of them
highly correlated, not necessarily linearly. The extensive dataset generated obliges us to
opt for these models to the detriment of other classical parametric models that impose
assumptions that our series do not meet. Machine Learning Algorithms (MLA) are a quite
recent addition to this branch of literature. [17] evaluate the use of the machine learning
techniques (random forest and neural networks) to forecast spot electricity prices,

obtaining competitive results using demand and supply curves as the input of the models.
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[18] summarise the advances of MLA in agent-based modelling of energy markets. The
most common subject to forecast is electricity market prices, but load or renewable

generation are also predicted in recent studies.

The rest of the paper is structured as follows. Section 2 briefly describes the Spanish
electricity system. Section 3 presents the cost components included in the final electricity
price. Section 4 lists the dataset used. Section 5 is devoted to present and discuss the
results after identifying the final electricity price components using Machine Learning

Techniques. Finally, section 6 summarises the main results and concludes.

2, The Spanish Electricity M arket

The Electricity Sector Law 54/1997, of 27 November 1997, marks the beginning of the
electricity industry liberalisation process in Spain. Later, in 2007, the Spanish and the
Portuguese electricity systems were integrated into a common market area, the Iberian
Market. This paper focuses on the Spanish market area, and thus the data used refers

exclusively to the Spanish area.

The management of the liberalised market in the Spanish System is divided into two
areas: economic management, which is assigned to the Market Operator, (OMIE)?!, and
technical and transport network management, which is assigned to the System Operator,
(REE).?? The wholesale electricity market is composed of: (i) day-ahead market, (ii)

intraday market and (iii) balancing markets.?’

The day-ahead market is a daily uniform price auction managed by the Market Operator
in which the participants submit their bids to purchase or sell electricity for the 24 hours
of the following day. The resulting price for each specific hour is determined by the point
at which the supply and demand curves meet, according to a marginal pricing system.

The intraday market allows decisions to be corrected on the day-ahead market using more

2l OMIE-POLO ESPANOL, S.A.
22 Red Eléctrica Espafiola S.A.
23 Additionally, physical and financial bilateral contracts are traded, but they are beyond of the scope of this study.

120



Capitulo 3

updated and accurate forecasts. It is composed of six consecutive auction sessions, each

of them involving several scheduled periods closer to the delivery date.**

In a first step, the resulting marginal price and traded volume of the auctions in both the
day-ahead and the intraday markets are obtained based on merely economic criteria.
Subsequently, it is necessary to ensure that they are also technically feasible. The System
Operator is the entity responsible for their validation from a technical perspective, through
the so-called management of the system’s technical constraints. Thus, network capacity
is analysed to determine whether it is sufficient to accommodate demand, given that the
electricity flows from the generation plants to the consumption points under conditions
that should be sufficiently reliable. As a consequence, the day-ahead and intraday market
auction results are just preliminary and can be altered.

In addition, there are other adjustment processes or balancing markets to ensure the
operation of the system that the Spanish System Operator is responsible for: (i) the
Additional Upward reserve power market mechanism, whose purpose is to provide the
system with the estimated necessary level of upward power reserve; (ii) the Secondary
Control Band, designed to maintain the generation-demand balance by correcting
deviations in temporary action horizons ranging from 20 seconds to 15 minutes; (ii1)
Tertiary Control, to resolve the deviations between generation and consumption and the
restoration of the secondary control band reserve used; and (iv) real-time deviation

management processes.

Lastly, there are still two management tools that the System Operator uses to manage
imbalances: capacity payments and the interruptibility service. Capacity payments are
paid by final consumers to ensure the availability of sufficient generation capacity to meet
the demand for electricity at any time. The increasing share of renewables in the
electricity system motivated their inclusion as an extra cost, due to the intermittent nature
of some renewable sources, specifically wind, and to the reduction in generation by
conventional power plants, which are being progressively replaced by renewable sources
and may not be able to cover costs, to the point of being forced to close. Given the above,

some flexible conventional power plants started to be remunerated by the system through

24 The details of the opening and closing times of each session of the intraday market can be consulted on the Spanish
Market Operator website (www.omie.es). Last accessed: March 2019
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the capacity payments mechanism, for merely being available, thereby serving as a
backup to renewable electricity sources. The interruptibility service, on the other hand, in
force since 2015, is provided by some authorised large power consumers by reducing
their consumption (when required by the System Operator) to maintain the balance

between generation and demand during periods when demand exceeds supply.

Consequently, final electricity prices include several costs other than the day-ahead
market price (its main component). This deserves a closer look in order to disentangle the
effect of renewables, among other potentially key variables, on this final electricity price,

by means of analysing their effects on each of its components.

To summarise, the components of the final electricity price are the following: (1) the day-
ahead market price, (ii) the cost resulting from solving technical constraints, (iii) the
intraday market price, (iv) the cost arising from the processes related to ancillary services
and deviation management, (v) the capacity payments and (vi) the cost stemming from

the interruptibility service.

3. Data

The data used are the price series of the components of the Spanish liberalised market
final electricity prices, at an hourly frequency, from April 2012 to April 2018.%° They are
all expressed in € MWh and are publicly available on the Spanish National Commission
on Markets and Competition website.?® In particular, each component refers to: (i) the
average hourly price series of the day-ahead market (DM, from now on); (i) the average
hourly price series of the intraday market component (IM), which captures the net effect
on the final price of the six sessions of the intraday market; (iii) the average hourly net
effect on the final price of the procedure to solve technical constraints (TTCC), which
includes the costs incurred to handle technical constraints after the day-ahead market

auction, after each of the intraday markets auction, and in the real-time market; (iv) the

25 The Spanish liberalised market involves 89% of the total generated energy.
26 www.cnmec.es (Final Price Free Market (*COM). File: PFMHORAS_COM_yyyymmdd yyyymmdd). Last accessed:
April 2019
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average hourly cost resulting from ancillary services and deviation management (SO); (v)
the average hourly cost related to capacity payments (CP) and, finally, (vi) the average

hourly cost associated with the interruptibility service (IS).

Additionally, we also use the hourly series of bids (price and amount of power)
individually submitted by market participants in order to buy or sell energy,
distinguishing between matched and non-matched bids, both in the day-ahead and in the
first session of the intraday market, since this session is the one in which most of the
intraday market liquidity is concentrated ([ 19]) and for the same sample period. The entire
supply and demand curves can be found on the OMIE website.?” Other energy price series
from April 2012 to April 2018 are also included in the analysis: (i) the Dutch TTF (Title
Transfer Facility) futures prices®®, which have become the natural gas benchmark in
Europe ([20]); (ii) the API 2 index for the coal price*® and (iii) the European Emission
Allowances (EUA) futures prices.’® Finally, data from the interconnexion France-Spain
are also included: the percentage of hours with 100% use, two series (both sides), and the
day-ahead spread (Spanish day-ahead market price minus French day-ahead market

price).’!

4. Machine Learning Estimation

To start, each of the components of the electricity final price, other than the day-ahead
market price, is chosen as a target of each machine learning model: IM (the net cost of
the intraday markets), TTCC (the cost of the system technical constraints together with
the cost of the transitory promotion of domestic coal), SO (the cost of the rest of the
balancing processes managed by the System Operator), CP (capacity payments) and IS

(the cost of the interruptibility service).

A total of 264 variables are used as predictors for each one of the models (Table 1). The

variables can be grouped as follows: (i) variables generated from the day-ahead market

27
28

www.omie.es: (file:curva_pibc_yyyymm.zip, curva_pbc_yyymm.zip and pdbe_stota_yyyymmdd).

Source: Thomson Reuters database

29 Source: Thomson Reuters database

30 These series are available at www.investing.com.

3'These series are available on the IESOE (Electricity Interconnection in South—Western Europe) webpage
(Www.iesoe.eu).

123



Cristina Ballester Chaves

data: the day-ahead market price; the total energy matched in the day-ahead market; and
the mean offer price to sell electricity grouped by technology: combined-cycle plants
(denoted by CC), thermal (CT), hydroelectric (CH), nuclear (CN) and renewables (CR),
mainly wind and solar®?, as well as the share of the electricity matched in the day-ahead
market auction over the amount of electricity offered to be sold, also aggregated by
generation technology. In this latter case, we add a group of offers that are not generators
(O0), but mainly commercial units, self-production or pumping units, among others; (ii)
variables generated from the first session of the intraday market data: mean offer prices
to sell electricity; mean offer prices to purchase electricity; mean offer prices to sell or
purchase electricity, grouped by generation technologies; (iii) balancing costs and
regulated payments, which are the previously mentioned components of the electricity
final price (TTCC, SO, IM, CP and IS); (iv) other commodity prices that are expected to
be determinants of electricity prices, such as natural gas prices (TTF), coal prices (API2)
and carbon prices (EUA); (v) data from the interconnexion France-Spain; and, finally, (v)

calendar variables to control for seasonality (day of the week, monthly and yearly).

Table 1. Predictors for the models

Source Variables Denoted by:

Day-ahead The spot price DM Price

market Total power matched DM E
Mean offer price to sell by combined-cycle power plants | DM_OPSELL CH
Mean offer price to sell by hydroelectric power plants DM _OPSELL CH
Mean offer price to sell by nuclear plants DM _OPSELL CN
Mean offer price to sell by renewable plants DM _OPSELL_CR
Mean offer price to sell by thermal plants DM OPSELL CT
Mean offer price to sell by no generator agents DM _OPSELL_OO
Share of power sold by combined-cycle generators DM PCT CC
Share of power sold by hydroelectric plants DM PCT CH
Share of power sold by nuclear generators DM PCT CN
Share of power sold by renewable generators DM PCT CR
Share of power sold by thermal generators DM PCT CT
Share of power sold by no generators DM _PCT OO

32 This category also includes bids coming from cogeneration and surplus production, but these latter bids are really of
minimal importance because of their relatively limited associated volume.

124



Capitulo 3

Spread The difference between Spanish Spot Price and French | SpreadESFR
Spot Price
Intraday Mean offer price to purchase IM_OPPURCHASE
Market Mean offer price to purchase by combined- cycle plants | IM_OPPURCHASE CC
Session 1 Mean offer price to purchase by hydroelectric plants IM_OPPURCHASE CH
Mean offer price to purchase by nuclear plants IM_OPPURCHASE CN
Mean offer price to purchase by renewable plants IM_OPPURCHASE CR
Mean offer price to purchase by thermal plants IM_OPPURCHASE CT
Mean offer price to sell IM_OPSELL
Mean offer price to sell by combined-cycle plants IM_OPSELL CC
Mean offer price to sell by hydroelectric plants IM_OPSELL CH
Mean offer price to sell by nuclear plants IM_OPSELL CN
Mean offer price to sell by renewable plants IM_OPSELL _CR
Mean offer price to sell by thermal plants IM_OPSELL CT
Final price | The capacity payment cost component CP
cost The interruptibility service cost component IS
components | The system operator processes cost component SO
The technical constraints cost component TTCC
The intraday market cost component IM
Interconnecti | Percentage of hours with 100% use Spain -> France Phu ESFR
on capacity Percentage of hours with 100% use France -> Spain Phu FRES

Commodity
prices and
Calendar

variables

Month of the year: 11 dummies (January excluded)
Year: 5 dummies (Year 2011 excluded)

Day of week: 6 dummies (Sunday excluded)

TTF Dutch gas prices

Carbon Prices

API2 coal Prices

February..., December
2012...,2018
Mondays,..., Saturday
TTF

carbon

API2

It should be highlighted that the variables from the day-ahead market can be predictors
for the same day of the target, whereas the rest of variables are lagged. Moreover, all

variables in the dataset are lagged seven days in order to test the relevance of

autoregressive effects.

4.1 Methodology

We use regression trees, a machine learning algorithm, to estimate each of the five models
associated with each cost component of the final price. The algorithm is based on a

recursive partition of the feature space represented by a tree growing. The starting point
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is a root node, which is the space containing all observations. The space is divided into
regions and the target is modelled in a simple way, for instance, as the mean of each
region. The split-point that allows the space to be divided into regions is the one with the
best fit (the one with the lowest estimation error), namely, the one that shows different
separation conditions (for example, day-ahead price above 5S0MWh). Each split-point
drives to a new node (or sub-region), called a leaf, and then new branches are derived
from these until a stop criterion is applied (usually, the sub-region minimum size or the

maximum number of split-points).

There are different versions of the algorithm. The most basic version is known as CART.
The root node is split into two leaf nodes considering the following criteria: taking a set
of predictors {Xi, Xo, ...Xp}, the goal is to select one of them, Xj, and the split-point c to
obtain two sub-regions: RI={X|Xj<c} and R2={X|X;>=c} in such a way that the

following measure is minimised:

RSST=RSSi+RSS:=Y iier1(yi-Yr1)* + Yxiier2(yi-"yr2)*> (1)

where yi denotes the target observed for the region Rj; “yri is the estimated target (the
mean) for the region Ri; and RSS; refers to the residual sum of squares for the region Ri.
In this way, the partition that minimises the total residual sum of squares is chosen.

It should be noted that this is a non-parametric procedure, which has interesting
advantages since it allows us to handle non-normal data or multicollinearity. In addition,
it is also robust even if there are outliers or missing values. Nevertheless, this first version
of the algorithm does exhibit some drawbacks that should be pointed out, such as less
accuracy in prediction compared to other techniques, a high variance in the outcomes,
and a tendency to overfit. To overcome these drawbacks, improved algorithms have been

introduced. Among them, the most popular are Random Forest and Boosting Methods.

The Random Forest technique reduces the variance by estimating more trees and using
bootstrap. The procedure is simple. First, different samples with different sets of
predictors are generated with bootstrap. Second, a regression tree is fitted in each of the
samples. Finally, the mean of the predictions using all the trees is the definite prediction

of the target.
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The Boosting technique increases the accuracy of the result by fitting a chain of multiple
trees, taking as starting point in each step the residues of each previous tree. The
procedure involves first selecting a loss function to be optimised, for example, the Root
Mean Squared Error (RMSE). Then, one tree regression is fitted, followed by a sequence
of tree regressions that are also fitted to explain the errors of the previous tree model.
Finally, a gradient descent procedure is employed to add the outputs, minimising the loss

function.

A priori, it is not known which one will be the best method for our dataset. Therefore, we
apply the three methods: the most basic version (CART) and the other two more advanced
ones (Random Forest and Boosted Regression Trees) to test which one explains and
predicts the targets better. The dataset used to estimate the models include 591,360 items
(2,240 observations for each of the 264 variables covering the period from 1 April 2012
to 19 April 2018), except for the case of the interruptibility service cost component (IS)
model, which is shorter, with 315,480 items (1,195 observations for each of the 264

variables covering the period from 8 January 2015 to 19 April 2018).

The procedure consists of several steps. Firstly, the sample is randomly split into two
samples: a training sample, which contains 70% of the total sample, devoted to training
the algorithm; and a test sample, which uses the remaining 30% of the sample to evaluate
the predictive power of the model. Secondly, each target is estimated using each of the
three versions of the tree-based methods: CART, Random Forest and Boosting. Thirdly,
the performance is evaluated, both in the training and the test sample, to select the most
suitable version for our dataset. To test the market performance, the mean absolute error
(MAE) and the root mean squared error (RMSE) are used. The next step is to extract the
relevant variables, based on the returns of the RMSE. Lastly, the relationship between the
relevant variables and the target is explored in order to obtain the marginal effect of each

variable on the outcome of each of the models.*?

3The software used are the R packages rpart, Random Forest and xgboost. This software also provides feature
importance measures. [21], [22], [23], [24]
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4.2 Parameters

The CART method needs an additional process, the so-called pruning method, to prevent
overfitting. The aim here is to reduce the number of branches, eliminating those that are
not contributing to predicting and may be causing overfitting. To identify the optimal size
for a tree, a tree pruning method using cross validation (CV) is used, following [25].
Through this method we, first, leave out one observation for training and, second, use the
resulting model to predict the observation that has been left out. However, a full leave-
one-out cross-validation is more costly computationally, so it is better to work with k-
fold-cross-validation and cost-complexity function in order to reduce the number of fits
required. A cost-complexity function for trees is CC (tree) = D> RSS; + A, which is the sum
of squared residuals of all terminal nodes plus A, where parameter A is the number of
terminal nodes. In practice, the parameter CP (cost complexity) is used, computed as CP
=MRSS, with RSS being the sum of squared residuals in a tree with no branches. Finally,
the pruning strategy consists of growing a large tree and then pruning it back, considering

the smallest sub-tree with a CV error within one standard error of the minimum.>*

To apply the Random Forest technique, the following parameters are used. First, the
number of trees should not be set too small to ensure that every input row gets predicted
at least a few times to obtain more stable outcomes. In this study, the number of selected
trees is 500. In the splitting process, the variables are selected randomly to prevent
overfitting. The default number of variables to work with in regression trees is p/3 in each
step, where p is the number of predictors (264 in this case). Next, for the boosted trees
method, the RMSE is selected as the loss function. The level of the parameter eta, the
learning rate control, must be decided because a low value for this parameter prevents
overfitting, but a very low value would imply lower computing. In this study, the level is
chosen by trial and error to be 0.05. To avoid overfitting, the subsample ratio is set at 0.5,
which means that just half of the sample is used for growing trees, and the value of the
column sample by tree is 0.85, implying that 85% of the variables are considered when

building each tree.

34The rest of the parameters used are: CP = 0.01 in the initial tree without pruning; MinSplit=20, the minimum number
of observations in a sub-region to be split; MinBucket=20/3 (default value); xval=10, the number of cross-validations;
and maxdepht=30, the maximum number of levels in a tree.
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The metrics of the performance obtained for each target and version are shown in Table

2.

Table 2. Performance Metrics. MAE (Mean Absolute Error) and RMSE (Root Mean Squared

Error)
Target Algorithm MAE RMSE
Training Test Training Test

M CART 0.0693 0.0773 0.1092 0.1197
RAND.FOREST 0.0259 0.0739 0.0424 0.1130
XGBOOST 0.0378 0.0749 0.0510 0.1140
TTCC | CART 0.4859 0.6501 0.6503 0.9289
RAND.FOREST 0.1897 0.4984 0.2782 0.7225
XGBOOST 0.2085 0.4706 0.2817 0.7030
SO CART 0.4336 0.4605 0.6514 0.7420
RAND.FOREST 0.1447 0.3741 0.2590 0.6576
XGBOOST 0.1841 0.3708 0.2663 0.6471
CP CART 0.1852 0.2426 0.3618 0.5273
RAND.FOREST 0.0741 0.2071 0.1520 0.4509
XGBOOST 0.0841 0.1898 0.1394 0.4351
IS CART 0.0100 0.0102 0.0230 0.0239
RAND.FOREST 0.0043 0.0105 0.0122 0.0259
XGBOOST 0.0110 0.0136 0.0177 0.0240

From Table 2, it is confirmed that the CART method, the simplest one, has the worst

performance, since it provides the highest error metrics (MAE and RMSE) for all the

targets. In addition, in spite of the precautions taken in the estimation process, there is

some evidence of overfitting. The error metrics, in general, are a bit higher for the test

sample than for the training sample, which is indicative of overfitting problems. As we

are interested in identifying the relevant factors that would be able to explain the targets,

a good performance in the training sample without too much overfitting may be

considered sufficient for our purpose. It can be observed that the Random Forest method

overall meets the requirements and so this is the method used to carry out the analysis. It

should also be highlighted that the best performance achieved corresponds to the
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interruptibility service and the intraday market, given that their error metrics are the

lowest (<0.045).

Once the model has been estimated using the Random Forest method, we have 264
variables to be analysed. A usual way to proceed with machine learning models is to use
an importance measure, which allows us to identify which variables are the most relevant
ones. We use the increments in percentage of the root mean squared error, which is a
commonly provided measure by the Random Forest statistical packages.** The method to
measure the importance variable is based on the idea that the accuracy of a model will
fall drastically if an important variable is altered, and it would not fall, or would fall by a

lesser degree, if this variable was unimportant (see [26] and [27]).

Accordingly, we proceed as follows. The values of each variable are permutated at
random. Using an out-of-bag portion of data (a portion of data saved which is not used to
train the tree model)®®, the prediction accuracy is calculated before and after value
permutation to check whether there are changes in the accuracy of the estimation. The
differences are averaged and normalised by the standard error. If the standard error is
equal to O for a variable, the division is not done (the measure is almost always equal to
0 in that case). Finally, the increments in percentage of the root mean squared error are

computed and the variables are ranked.

Table 3 shows the ranking for each model. The measure of the importance variable (the
increment in the percentage of the root mean squared error, denoted by %) notably
decreases in the first positions of the ranking. From a visual inspection of the graphical
representation of this measure for each model®’, we limit the number of relevant variables
to ten, since overall, this appears to be sufficient to capture the most relevant factors in

the models.

35 We use the function varimp from package RandomForest in [23].

36 The importance variable estimations have been calculated according to [26] using the out-of-bag method. Before
each tree is constructed, the training set is divided with bootstrapping into two samples; one is used to construct the
tree and the other, the out-of-bag portion, is saved internally to estimate importance variable measures. The tree is run
with the out-of-bag examples twice, once with the values of the variables intact and once with the values of the variables
permutated at random. The differences in accuracy obtained are used to obtain the measure of the importance variable.
37 Figures are available upon request by the authors.

130



Capitulo 3

Table 3. Importance variable measure. The increment in the percentage of the root mean
squared of each variable (%).

TTCC (Technical SO (System Operator IM (Intraday Cost) CP (Capacity | IS (Interruptibility
Constraints) Processes) Payments) Service)
variable % variable % variable % | variable | % variable %

TTCC lagl 45.14 SO lagl 24.35IM_Price_lagl 17.99 (CP_lag7 [40.49(IS lagl 21.46
DM E 22.58 DM_Price 13.38 DM_PCT CT 10.43|CP_lagl [25.26[2018 17.44
DM_Price 19.44 DM_PCT_CR 11.63 IM_Price_lag7 9.09 |August |24.64[IS lag2 14.43
DM PCT CC |18.19DM_PCT CT 10.28 DM _Price 8.67 March 19.2 |April 13.21
TTCC lag7 17.96 SO _lag6 8.97 IDM_PCT_CH 8.04 |CP_lag6 |16.69 |September | 12.46
DM_PCT_CT |17.56 (CP_lag5 8.19 [TTF lagd 7.97 |Saturday |16.53 IS lag3 11.84
TTCC lag2 15.05[SO_lag7 7.97 [TTF lag3 7.54 |CP_lag3 |14.63 November | 10.52
DM PCT _CR |13.47 DM_PCT_CC 7.54 |SO _lag7 7.39 CP_lag4 |14.25July 9.53
Sunday 11.23DM_E 7.03 TTF lag2 7.23 DM _E 13.76 |API2 lag3 | 9.14
DM E lag7 |10.36 DM_OPSELL _CC| 6.81 DM_OPSELL CR| 6.86 |CP_lag2 | 13.4 |API2 lag6

Additionally, the analysis is completed with the accumulated local effects plots (ALE
plots) of each relevant variable (Figs 1 to 5). These plots are made to see the mean effect
of the variable at a certain value compared to the average prediction of the data. In the
abscissa axis we see the values of the variable, whereas in the ordinate axis we see the
estimated local effect following the ALE method.*® The estimated local effect is centred.
Thus, for example, a negative (positive) ALE estimation value equal to -2 (+2) in the
ordinate axis at x=30 in the plot indicates that the predicted value will be lower (higher)
than two times the average of the dependent variable. The magnitude of the estimated
values allows us to rank the variables in importance. Therefore, by plotting the estimated

local effects the relationship between each predictor and the target can be seen.

4.3.1 Technical constraints cost

Fig. 1 shows the ALE plots for the technical constraints cost component corresponding
to its top ten relevant significant factors, which are: the amount of electricity matched in
the day-ahead market (DM_E); the marginal price in the day-ahead market (DM _Price);
the share of power sold in the day-ahead market by combined-cycle plants

(DM_PCT_CC), thermal plants (DM_PCT CT) and renewable plants (DM_PCT CR);

3 We use the R package ALEPIlot. The ALE method is recommended for explaining machine learning models when
predictors are correlated between them [27].
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the technical constraints cost lagged one, two and seven daily periods; and, finally, the
day of week (Sunday) and the amount of electricity matched in the day-ahead market
lagged seven days (DM_E lag 7). As can be observed, the technical constraints cost
depends positively on the share of renewables in the day-ahead market, meaning that
increases in the share of renewable generation are followed by increases in the technical
constraints cost. In contrast, it depends negatively on the share of power generated by
combined-cycle and thermal plants, indicating that when there are higher levels of the
share of power produced by these plants, there are fewer costs for solving technical

constraints.

This result is consistent with the idea that the intermittency and more limited
predictability of renewable production may provoke balancing needs and, as a result,
balancing costs. In addition, technical constraints costs seem to be higher when the levels
of the marginal price, as well as the amount of power sold in the day-ahead market, are
lower. Higher technical restriction costs when demand levels are low are hardly justifiable
due to technical reasons, but they may be explained by strategic bidding behaviour by
market participants. Note that when demand is low, nuclear and renewable plants may
produce enough power to satisfy much of the demand, displacing thermal and combined-
cycle plants, whose variable costs are considerably higher. Under these circumstances,
these plants may try to participate in the subsequent balancing processes, which have been

proved to provide higher incomes than the day-ahead market ([13], [14], [15]).
Additionally, the 7-day lagged amount of electricity sold in the day-ahead market is also

relevant to explain technical constraints costs, as well as autoregressive terms of order 1,

2, and 7, capturing daily seasonality effects.
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4.3.2 System operator processes cost

Fig. 2 shows that the System Operator processes cost is negatively related to the share of
thermal and combined-cycle and positively related to the share of renewable power in the
day-ahead market. Thus, these costs are greater with higher shares of renewable
generation. As opposite to conventional generation such as thermal and combined-cycle
plants, higher renewable production involves a greater need for the management of
deviations. On the other hand, the higher the marginal price and/or the amount of
electricity sold in the day-ahead market auction, the lower the System Operator processes
cost is. Note that it is in scenarios of high demand (and thus high marginal prices) that
thermal and combined-cycle plants are needed to generate power in the day-ahead market.
In addition, there appears to be a positive relationship between the System Operator
processes cost and the capacity payment cost of previous days (CP_lag 5) and also a
positive relationship between this cost component and the average offer price submitted
to the day-ahead market auction by combined-cycle plants (DM _OPSELL CC). The
amount of operating reserves needed to keep the power system functioning securely and
efficiently is a critical issue in power system operation with a large volume of intermittent
production ([29]). The higher the renewable generation, the higher the spare capacity that
the System Operator will require to ensure system reliability. Such a balancing service is
provided by (flexible) plants like combined cycle plants. From the results, it can be
deducted that the bidding behavior of combined cycle plants in the day-ahead market has

a strong connection with the System Operator processes cost, since the average offer price
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submitted to the day-ahead market by those plants arises as one of the drivers of this cost.
Indeed, while submitting higher offer prices to the day-ahead market, combine cycle
plants would drop out of the auction and retain available capacity to participate in
subsequent reserve capacity mechanisms. It is important to note that these plants may
have the incentive to bid in this way, since the strategic reserve capacity provides them
with higher income than the day-ahead market. Finally, autoregressive terms of order 1,

6 and 7 are also relevant to explain the current level of the System Operator processes

cost.
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4.3.3 Intraday market cost

The results of the intraday market model are quite different to those of the TTCC and SO
models and are displayed in Fig. 3. Some non-linear relationships between the intraday
market cost and the main variables that arise as its best predictors have captured our
attention. On the one hand, we note the negative relationship between the intraday market
cost and the share of thermal power in the day-ahead market (DM_PCT CT)) for very
low levels of thermal power*® in the generation mix of the latter, which turns strongly
positive for levels of thermal power higher than 10%. On the other hand, the relationship

between the intraday market cost and the share of hydroelectric power in the day-ahead

3 Levels under the first quartile.
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market (DM_PCT_CH) is positive for values of the share of hydroelectric power in the
day-ahead market from 0% to 9%*°, whereas from that level on the relationship switches

to negative.

Thus, the intraday market cost would decrease (increase) with the share of thermal power
in the day-ahead market, whenever this share was lower (higher) than 10%; and would
increase (decrease) with the share of hydroelectric power in the day-ahead market, for

values of this share lower (higher) than 9%.

Furthermore, the day-ahead market marginal price (DM_Price) contributes to explaining
the intraday market cost and, again, several intervals can be distinguished: this cost is
decreasing for day-ahead market marginal prices between 0 €/ MWh and 45 €/ MWh,
increasing for prices between 45 €/ MWh and 60 €/ MWh and quite stable for prices higher
than 60 €/ MWh.

Another remarkable result that is directly linked to bidding strategies is the relevance of
the average offer price submitted to the day-ahead market auction by renewable plants
(DM_OPSELL_CR). As shown in Figure 3, the relationship between the intraday market
cost and the average offer price for selling electricity by renewable plants appears to be a
bit more complex. In fact, it starts off as a decreasing relationship between them for very
low levels of this average offer price, turns into increasing for average offer prices around

10 €/ MWh and it is mainly decreasing for average offer prices above 20 €/ MWh.

In addition, natural gas futures prices (TTF lags of 2", 3™ and 4™ order) are also relevant
to explain the intraday market cost component. Two “states” are observed here, the
intraday market costs are higher for lower values of the lagged TTF prices (lags of 2",
3™ and 4" order), and lower, for higher values of the lagged TTF prices (lags of 2™, 3
and 4™ order). The transition point is around 20 €/MWh. Finally, the list of predictors is
completed with some autoregressive effects (lags of 1%t and 7™ order) and the 7-lagged
System Operator processes cost (highlighting the relationship between the intraday

markets and the balancing markets).

40 Approximately in half of the cases during the sample period.
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A number of interesting results come out of the empirical analysis regarding the intraday
market. To summarize, except on days with a low percentage of thermal generation in the
day-ahead auction market; generally, the greater the weight of thermal generation in the
day-ahead market, the higher the intraday cost. The increasing need for thermal
generation is usually an indication of strong demand and/or a decrease in available
generation capacity from other generation sources, which would lead to high prices in
both the day-ahead and the intraday markets. This is in line with the result that the intraday
cost is increasing with the day-ahead marginal price when this latter remains between 45
€/MWh and 60 €/ MWh, namely between approximately the average price and the 88th

percentile during the sample period.

On the other hand, the flexibility of hydroelectric plants allows their managers to bid
strategically in the day-ahead and intraday markets to maximize profits. Thereby, as long
as there is no shortage of water reservoirs; in particular, when the share of hydroelectric
power in the day-ahead market exceeds the average value, it is found a negative
relationship between such a share and the intraday market cost, which could be explained
by a shift of hydroelectric plants’ generation from the day-ahead market to the intraday
market where to bid at higher prices with the aim of raising the intraday market auction’s

marginal price.

Interestingly, the intraday market cost appears to be critically linked to the bid prices
submitted by renewable generation plants to the day-ahead market for selling their
electricity and not to the amount of renewable generation. The offered prices at which the
relationship between both variables changes its sign, i.e. 10 € MWh and 20 €/ MWh,
respectively correspond to the 52th and the 83th percentile of the distribution. Therefore,
the intraday market cost would increase for mean and somewhat high day-ahead market
submitted prices by renewables generations and decrease for low and very high levels of

those offer prices.

Finally, natural gas prices and some autoregressive effects complete the list of relevant

variables that help to explain the intraday market cost.
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4.3.4 Capacity payment cost

The relationships between the capacity payment cost and the variables that arise as its

main determinants are displayed in Fig. 4.
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As can be seen, capacity payments in previous days are shown to be followed by current

capacity payments (autoregressive effects with lags of 1%, 204, 31 4% 6™ and 7% order).

Additionally, capacity payments are higher with higher levels of electricity sold in the

day-ahead market. In fact, they decrease in periods of low demand, such as during the

months of March (mild temperatures, no need for cooling or heating) and August
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(typically a vacation period with lower electricity demand from factories) or, at a daily
level, on Saturdays. This result is logical since capacity payments include the medium-
term availability service that is calculated by the System Operator based on demand
levels. Given that the higher the demand, the greater the risk of a lack of supply, capacity
payments are expected to rise (decrease) in periods of high (low) demand. As mentioned
earlier, capacity payments were conceived as payments to be received by conventional
source plants with the aim of ensuring long-term capacity investments. Motivated by the
increasing levels of renewable generation in the electricity system, which were reducing
the share of conventional generation, a new regulation (Minister Order ITC/3127/2011
[30]) was introduced to implement the medium-term availability service, whose objective
was to guarantee sufficient available generation capacity to meet the demand for
electricity at any time. As a result, some flexible conventional plants started to be
remunerated by the system through the capacity payments mechanism, for merely being
available, thereby serving as a backup to renewable electricity sources. It should be noted
that the amount of money paid by consumers through this mechanism has exceeded in a
number of years the amount actually received by generators. This excess, far from being
reduced to exactly match the amount actually due as capacity payments, has been used to
reduce the deficit of the electricity system. Therefore, starting from 2014 in particular,
the capacity payment component of final prices could have been much less than it actually
was. As stated by the Spanish Commission for Markets and Competition*!, it would have
been recommendable that each component of the final price reflects the costs for which
it was created, in the interest of transparency and the transmission of appropriate price

signals.

4.3.5 Interruptibility service cost

Regarding the interruptibility service cost (Fig. 5), this variable itself, but lagged 1, 2 and
3 periods (days), helps to explain it, together with some calendar effects as follows.
According to our results, this cost appears to be higher during the months of April and
September, while it is lower during the months of July and November and the year 2018.
In that year, the System Operator, REE, introduced changes to the procedure with the aim
of achieving greater efficiency in the application of the service (Order ETU/1133/2017),

41 Comision Nacional de los Mercados y la Competencia (www.cnmc.es)
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as well as adapting to EU regulations (the legislative package called "Clean Energy for
All Europeans" presented by the European Commission on 30 November 2016), which
emphasises reaching a more competitive allocation procedure. Among the changes
introduced, we highlight the reduction of the maximum period of time between the notice
that the System Operator issues to service providers and the effective start of the
execution option that involves the reduction of power made available to the system and
the readjustment of the price which serves as a reference to the variable remuneration
corresponding to the effective provision of the service. This change in regulation has
resulted in a reduction in the cost of the service of 0.2 €/ MWh from 2018 on. Finally, coal
prices lagged 3 and 6 periods complete the list of predictors.
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5 o Conclusion

This paper mainly aimed to investigate the impact of renewable generation sources on
final electricity prices, particularly, in the costs incurred in the subsequent processes until
the real time delivery of electricity, designed to guarantee continuous supply and system

reliability.

Additionally, the analysis made has allowed us to disentangle the main drivers of

electricity final prices, which have turned out to be related to the integration of renewable
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generation, balancing needs, strategic bidding behaviour by market participants and

changes to the regulations.

We also find that the increasing share of renewable power in the day-ahead market
auction arises as one of the main determinants explaining rises in those technical
processes and services that are necessary for the secure and reliable operation of power
systems; in particular, higher renewable generation in the day-ahead market auction
involves (i) higher costs derived from the technical constraint resolution process, (ii) a
greater need for the management of deviations by the System Operator which translates
also into greater costs and, finally, (iii) higher prices in the intraday market compared to
the day-ahead market (when day-ahead prices are not too low), which contribute to push
final prices up. It is remarkable that the net effect of these opposing forces for the Spanish
electricity market during the studied period has been a reduction in final prices. Thus, the
added system integration costs from the increasing penetration of renewables haven’t
been enough to compensate for the drops in day-ahead market auction prices due to the

merit-order effect that has been previously highlighted in literature.

The obtained results shed light on the overall impact of renewable generation on
electricity prices, providing new evidence of the fact that market participants strategically
plan their bidding behaviour considering the market as a whole, trying to maximize their
profits as a result of their global participation in the day-ahead market, the intraday market

and the rest of the balancing and deviation management processes.

The factors driving the components of electricity final prices, other than the day-ahead
market price, are much less studied, but they are key in order to gain further insight into
the dynamics between the interrelated trading segments and the technical processes
involved in the wholesale electricity market that should be considered when assessing
changes in the design of the market towards a more sustainable and competitive electricity

system.
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