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INTRODUCTION AND MOTIVATION

Gravitation combines some of the most intuitive phenomena for humans, and probably

other species [1,2], with the fact of being the only known interaction for which we do not

have a satisfactory ultraviolet (UV) complete theory yet. General Relativity (GR) is our

first successful relativistic theory of gravitation, and has passed all observational tests up to date,

predicting as well several phenomena such as e.g. the recently detected gravitational waves [3–5]

or the correct light bending during the 1919 solar eclipse [6] (see also [7]). GR has a natural

interpretation in geometrical terms, where the gravitational interaction is actually understood as

the dynamics of the spacetime geometry upon which matter fields evolve. From this perspective,

the gravitational field is traditionally encoded in the metric of a (pseudo-)Riemannian manifold

and related to its corresponding curvature tensor, although there are (apparently) equivalent

interpretations in terms of other geometrical objects such as the torsion or nonmetricity tensor of

particular types of affine connections, as done in the teleparallell frameworks [8–12].

From this perspective, gravity is a theory of the dynamics of spacetime itself, a view which led to

fruitful developments such as the birth of cosmology as a scientific discipline with the pioneering

works by Slipher, Lemaitre, and Hubble [13–15]. Furthermore, it naturally accommodates the

Friedman-Lemaître-Robertson-Walker (FLRW) metric, which provides the best description of

cosmological observations up to date through the ΛCDM model, though the presence of unob-

served components in the stress-energy tensor of our universe is required [16] to describe the

standard cosmological model, and some tensions with observations have arisen recently [17–20].

As well, it predicted the existence of compact objects from which nothing could ever escape after

crossing certain spacetime region, namely black holes and their event horizon. Both, the study

of cosmology and of compact objects are nowadays established and active disciplines within

gravitational physics, and both signal one of the main caveats of GR as a fundamental theory for

the gravitational interactions, namely the presence of singularities both at early times and at the

center of black hole spacetimes.

From the classical perspective, these singularities signal a breakdown of spacetime which

physical observers can reach in a finite proper time. Though this is not inconsistent at the

classical level, it is extremely unpleasant to accept the idea that observers can disappear from

the universe if they fall into a singularity. From the quantum point of view, this is even worse
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INTRODUCTION AND MOTIVATION

due to the fact that it would imply information loss after the black holes have evaporated via

Hawking radiation, which is incompatible with unitary evolution as required by quantum physics.

Taking seriously the quantum nature of the gravitational field, however, offers a way out to

this problem. Indeed, though non-renormalisable, GR is a well behaved quantum effective field

theory of the gravitational field up to the Planck scale [21–23], where it looses unitarity. Hence,

classical solutions containing singularities with unbounded curvature scalars are physically

meaningless beyond the Planck scale, where quantum effects of gravity are expected to dominate,

thus changing the nonperturbative structure of the theory. In that way, the singular backgrounds

present in GR would differ strongly from the exact solutions of the UV complete theory at scales

beyond the Planck mass, rendering the classical singularities as unphysical by pushing them out

of the regime of validity of the classical theory. Indeed, it is generally believed that the correct

UV completion of GR will heal those singularities due to quantum effects. This happens in some

candidates to be the UV completion of GR such as Loop Quantum Gravity, which apparently1

regularises the Big Bang and Schwartzschild singularities by corresponding bounces [24–32].

Though there are reasons to search for departures of GR in its infrared (IR) regime to see if

any of the effects commonly attributed to Dark Matter and Dark Energy can be accounted for

in this way [33], the strongest motivation to look for departures of GR is the finding of a UV

complete theory for quantum gravity, since we know that GR needs modifications in the UV to

be physically meaningful at high energies. One of the possible ways of doing so is to explore

the landscape of effective theories that can encode Quantum Gravity (QG) effects below the QG

scale and reduce to GR in the low energy limit. To that end, there are several paths to follow. On

the one hand, semiclassical corrections to the Einstein-Hilbert (EH) action arise to guarantee

renormalisability of matter fields in curved spacetimes [34]. Furthermore, quadratic curvature

corrections yield a renormalisable theory of gravity at the expense of loosing unitarity [35–37].

Indeed, higher-order curvature corrections generally lead to the propagation of ghostly degrees of

freedom around arbitrary backgrounds due to the presence of non-degenerate terms with second

order time derivatives of the metric in the action, which unleashes the Ostrogradski instability

(see chapter 7). A possible way to avoid this would be to resort to the metric-affine formalism,

where an independent affine structure is introduced as part of the spacetime geometry.

The metric-affine framework consists on extending GR by allowing more general spacetime

geometries to arise. This is done by introducing an independent affine connection so that the

spacetime is a post-Riemannian2 manifold, namely a smooth manifold with affine and metric

1These findings generally involve Loop quantisation of simmetry reduced spacetimes. Though these effects are
expected to occur also in full Loop Quantum Gravity, I use the word apparently to emphasise the fact that they hve
not been proved rigorously in the full theory yet.

2Here we will use Riemannian (referred to the spacetime manifold) as a synonym of manifold with a metric and
its canonical affine structure, see chapter 2. However, bear in mind that the metric of this spacetime will always
be Lorentzian and not Reimanian. This is commonly denoted by writting (pseudo-)Riemannian, but I think that
(pseudo-)post-Riemannian is too much, and we will generally omit the post- prefix through this chapter to lighten the
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structure which are independent from each other. This independence is encoded in two geo-

metrical objects dubbed as nonmetricity and torsion tensors, which measure departures from

Riemannianity. In this framework, the dynamics of both metric and affine connection are derived

from an action as usual. The original path to this framework came from geometric considerations

shortly after the formulation of GR. Weyl formulated the first metric-affine theory where he

tried to unify gravity and electromagnetism by relating both to a metric-affine spacetime which

had a nonmetricity of the Weyl kind [38]. The seminal works by Cartan [39–42] established a

formulation of a theory of connections without relating them to a metric structure, thus showing

their independent nature. Later, works by Utiyama, Kibble and Sciama [43–45] showed how

a gauge theory of the Lorentz group leads to a theory which was equivalent to GR except for

a coupling between fermions and spacetime torsion which generated a four fermion effective

interaction. The theory is known as Einstein-Cartan-Sciama-Kibble (ECKS) theory. This line of

work was continued by Hehl and collaborators, who developed a gauge theory of the Poincaré

and General Linear groups [46,47]. Parallely, other metric-affine theories that were not based in

gauging any local symmetry were also considered. Indeed, the first-order (or Palatini) formulation

of GR is described precisely by the metric-affine version of the Einstein-Hilbert action. As is

well known, this formulation is equivalent to GR in the absence of fermionic fields, and to ECKS

in presence of them, due to the fact that the connection is an auxiliary field whose equations

force it to be the Levi-Civita connection of the metric (up to a choice of projective gauge) plus a

nondynamical torsion term in presence of fermions. Many relevant results within gravitation,

such as the ADM formalism or Deser’s argument to show that GR is a consistent nonlinear theory

of a massless spin-2 field (see chapter 1) have been derived from this starting point.

Shortly after the results by Stelle that there is a renormalisable gravity theory which is

quadratic in curvature invariants, it was shown that it contains ghostly degrees of freedom in its

spectrum due to the presence of higher-order derivatives of the metric in the Lagrangian of the

theory [35–37]. In the metric-affine framework, the Riemann tensor does not feature derivatives

of the metric, and has only first derivatives of the affine connection. Hence, metric-affine higher

order curvature theories do not have higher derivatives in the Lagrangians, and there was

hope that this would be enough to avoid the Ostrogradskian instability [48, 49]. One of the

central topics of this thesis is to address this issue, as explained below in more detail. More

recently, higher-order curvature metric affine theories have been studied in both cosmological

and astrophysical contexts with interesting results (see below).

Another reason to explore metric-affine theories of gravity is the possibility of them being able

to encode QG effects below the Planck scale. Indeed, it has been argued that, by an analogy with

crystals, which can be described by a smooth metric-affine manifold in the continuum limit, a

quantum spacetime could lead to nontrivial nonmetricity and/or torsion torsion tensors in the

text. We will assume that the metric is always of Lorentzain signature.

3



INTRODUCTION AND MOTIVATION

effective geometry below the Planck scale. Indeed, in the case of crystals, a perfect lattice without

defects leads to a continuum limit where the crystal’s macroscopic properties can be described by

a Riemannian manifold but, in a crystal which features some defects in its crystalline structure,

the corresponding continuum limit is described by a post-Riemannian manifold that may develop

nontrivial nonmetricity and torsion tensors [50–54]. In a parallel way, were QG described in

terms of some discretisation of spacetime which is subject to quantum fluctuations, these could

be seen as dynamical defects that would end up being described by nonmetricity and/or torsion

in the appropriate continuum limit [55, 56]. Indeed, crystalline defects always arise at finite

temperature due to entropic reasons, since they increase the number of available microscopic

configurations, and perfect crystalline structures do not exist in nature. On the other hand, the

continuum limit of a fluctuating quantum geometry could be described by similar principles

where, as the energy density increases [57], limiting configurations which encode spacetime

defects would be entropically favoured.

Before going into the dynamical aspects of metric-affine theories, let us elaborate on the

subtleties that arise by allowing for an independent affine connection. Riemannian spacetimes

can be seen as post-Riemannian spacetimes where the metric-compatibility (or metricity) and

torsion-free conditions are imposed to the connection a priori. The relaxation of the metricity and

torsion-free conditions in a general metric-affine setup introduces some ambiguities in the way

matter fields couple to the geometry, specially spinor fields. This ambiguities are often treated

naively and, in my opinion, there is a lack of understanding about the degree of arbitrariness of

some of the prescriptions employed to bypass these ambiguities. This will be the topic concerning

the first part of the thesis.

We will start in chapter 2 where we will introduce basic notions of differential geometry and

the theory of connections. The aim of the chapter is to bring the question of what structures and

relations are canonical with respect to one another, in the sense that having one mathematical

structure implies having the other, and which ones are arbitrary. The final goal is to show

that there is a canonical way of defining the affine covariant derivative of Dirac spinor fields

in a general post-Riemannian spacetime. Though this problem admits other solutions besides

the canonical one, we expect to understand what is the degree of arbitrariness behind them.

This question will be tackled from the formulation of connections in the theory of fiber bundles,

which will also allow us to formalise the notion of matter fields and gauge fields as sections and

connections in a given fiber bundle. This will also help us in providing a solution to another

ambiguity typically present in the metric-affine framework, namely, the way in which matter fields

couple minimally to geometry, which will be the content of chapter 3, based on [58]. There, we will

show that the usual minimal coupling recipe of replacing Minkowski metric by spacetime metrics

and partial by covariant derivatives leads to nonminimal couplings to the affine connection in

presence of nontrivial nonmetricity and/or torsion. We will also provide a precise definition of
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what I understand as minimal coupling, as well as an algorithm to implement minimal coupling

in generic metric-affine theories which is compatible with the given definition. Then we will

explicitly work out the cases of scalar, Dirac and 1-form fields, showing the differences between

the usual recipe and the one that we propose. After having discussed these issues, we will also go

through the question of what paths do freely falling particles follow within metric-affine theories.

Regarding this question, it is sometimes assumed in the literature that they will follow affine

geodesics, which we argue that cannot be the case provided that matter fields evolve according to

an action principle. This provides a partial answer to an issue that still seems to be confusing

through the literature.

After having the tools to deal with a precise formulation of metric-affine theories and deal

with the ambiguities that appear in the framework, we will dwell into the dynamical aspects of

the theories, emphasising the understanding of their mathematical structure and theoretical or

phenomenological aspects that allow us to constrain the landscape of viable metric-affine theories.

To that end, we will analyse in depth Ricci-Based theories of gravity, a subclass of metric-affine

theories whose action is built in terms of the metric and Ricci tensor of the independent affine

connection. As we will see, understanding the features of these theories leads to valuable insights

on the properties of more general metric-affine theories. We will start this analysis in chapter 4,

based on3 [59,60], where the general structure of Ricci-Based theories and their field equations

will be analysed. As we will see, there always exist an Einstein-like frame for this theories.

The case wihout projective symmetry propagates ghosts degrees of freedom, as will be seen in

chapter 7. However, if projective symmetry is enforced thus forbidding the antisymmetric piece

of the Ricci tensor in the action, the corresponding Lagrangian in the Einstein frame takes the

metric-affine Einstein-Hilbert form. This allows to define a mapping procedure in which the

corresponding RBG4 theory coupled to a given matter sector can be written as GR coupled to a

nonlinearly modified version of the same5 matter sector. This mapping procedure is then explicitly

worked out for RBG theories coupled to an abelian gauge field, and as an explicit example we will

show how Eddington-inspired Born-Infeld (EiBI) gravity coupled to Maxwell electrodynamics

is equivalent to GR coupled to Born-Infeld electrodynamics. This opens the door to the study of

some interesting exact solutions found in EiBI as solutions of GR with the corresponding matter

sector.

Once the structure of the theories and their field equations has been understood, we will

follow by studying some nontrivial aspects of their solution space in chapter 5, based on [61].

As it turns out, the mapping procedure is possible due to the fact that the connection field

equations are an algebraic constraint which can be solved in terms of a new metric, obtained

3The way in which the structure of RBG theories synthesises several results present in the literature, but in
chapter 4 have used a completely general approach which cannot be found explicitly elsewhere.

4We will use RBG as an acronym for projectively invariant Ricci-Based theories.
5In the sense of having the same fields with different interactions.
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INTRODUCTION AND MOTIVATION

from an on-shell field redefinition of the original metric. It is this new metric the one which

obeys Einstein’s equations coupled to a modified matter sector. The algebraic equations that

relate both metrics are nonlinear and, though there always exists one solution which reduces

to vacuum GR, there might be other solutions that are typically overlooked in the literature.

We will give conditions for the existence of anisotropic solutions in the Einstein frame when

the original metric and matter sector are isotropic and homogeneous. We will also provide a

no-go theorem for the presence of these solutions in EiBI gravity and study the behaviour of the

existing anisotropic solutions in quadratic curvature theories. We find that they are pathological

in general, thus providing solid grounds to ignore them in the literature. We also elaborate on

the consequences in spherically symmetric spacetimes, and square the results with the no-hair

theorem in cosmological backgrounds that must be satisfied in the Einstein frame of the theory.

In some subclasses of metric-affine theories of gravity, singularities in cosmological as well

as spherically symmetric scenarios are solved without the need of adding extra degrees of

freedom. Therefore, understanding the structure of these theories could offer some insight into

the plethora of possible theories and solutions to the gravity-matter field equations which are free

of singularities [62–72]. These results are generally at the background level and, though tensor

perturbations have been seen to develop instabilities [73–75], apparently, there are ways in which

this problem can be ameliorated [76,77], and further research in this direction is needed. Having

studied the nontrivial structure of the solution space, and practically ruled out the nontrivial

solutions to the relation between the original and the Einstein frame metric, we are ready to

build in this direction. In chapter 6, based on [78], we study the absorption spectrum of scalar

waves by black hole remnants which behave as wormholes. These solutions arise as spherically

symmetric electrovacuum spacetimes occurring in some RBG theories. Due to the presence of the

throat, we observe resonant absorption lines similar to those occurring in other exotic compact

objects (ECOs) which could be used to distinguish them from regular black hole solutions.

We then turn back to the general properties of RBG theories and beyond. In chapter 7, based

on [60,79], we tackle the longstanding issue of whether higher-order curvature and more general

metric-affine theories of gravity are ghost-free due to their apparent lack of higher derivatives

in the Lagrangian. Our results show how ghost degrees of freedom are a generic feature of the

metric-affine framework. To do that, we explore the particular case of Ricci-Based theories. We

will see that projective symmetry plays a key role in avoiding pathological degrees of freedom

within such class and, when dropped, five extra ghostly degrees of freedom appear through

a 2-form and a vector field that represents the dynamical projective mode. Besides imposing

projective symmetry, we will also analyse geometrical constraints that can be placed in the

theories to render them ghost-free. We will finish the chapter by arguing how the appearance of

these degrees of freedom is not a feature of the particular subclass of Ricci-Based theories, but

a rather general characteristic of the metric-affine framework, though some subclasses may be
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ghost-free. This poses a serious drawback to consider generic metric-affine theories as physically

viable and shows that one must build metric-affine actions with great care if one wants to avoid

the presence of instabilities.

Though the geometric view is the predominant one within the metric-affine literature, we

should not forget that these theories can also be studied from the field theoretic perspective,

where the nonmetricity and torsion fields constitute two extra matter fields that interact in

particular ways with the massless spin-2 depending on the particular theory under consideration.

This viewpoint allows for a systematic study of the metric-affine landscape by resorting to the

Effective Field Theory framework (EFT). In chapter 8, based on6 [80], we will analyse whether

RBG theories fit into the EFT framework finding a negative answer, though they are perfectly

fine effective theories below a given UV scale that controls the induced nonlinearities in the

matter sector. We then elaborate on several aspects of generic metric-affine theories, arguing that,

in the most general case, symmetrised Ricci terms in the action are redundant in the sense that

they only introduce further interactions among the propagating degrees of freedom of the theory,

without exciting any new degrees of freedom. To that end, we build a generalised Einstein-like

frame for general theories and study the perturbative form of the corresponding Einstein frame

metric. By similar reasonings to those in section 7.3, this allows us to argue why ghostly degrees

of freedom will plague generic metric-affine theories of gravity.

The results regarding the perturbative form of the corresponding Einstein frame metric in

terms of the original metric found in the previous chapter show how there are some terms due

to nonlinear symmetrised Ricci operators which are also related to the nonmetricity tensor in

general metric-affine theories. These terms source new interactions in the matter Lagrangian

and are suppressed by a UV scale which controls deviations from standard GR and as well it

is the scale at which nonmetricity becomes nonperturbative. In chapter 9, based on [57,81,82],

we exploit these new interactions in the matter sector to constrain the coupling parameters of

nonlinear symmetrised Ricci operators in general metric-affine theories. Explicit constraints for

RBG models are also derived, finding an improvement of six orders of magnitude compared to

the next most stringent constraints known up to date. Concretely, we find that the UV scale

controlling deviations of GR in theories with nonlinear symmetrised Ricci terms in the action

should be above ∼100 GeV. To our knowledge, this constitutes the first generic effect that, from

the geometric viewpoint, can be unambiguously related to a piece of the nonmetricity tensor in

generic metric-affine theories.

In the third part of the thesis, dubbed as Funhouse,7 we present a miscellanea of works

generally related to metric-affine theories but without a strong link to the study of their generic

6Part of this chapter has been developed by the author while writing the thesis, and it remains unpublished up to
date.

7Note the nod to the wonderful homonimous record by The Stooges.
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INTRODUCTION AND MOTIVATION

properties. In chapter 10, based on work yet to be published [83], we tackle the problem of finding

an effective explicitly covariant action that describes the background evolution of Loop Quantised

cosmological backgrounds. We manage to find a family of metric-affine f (R) theories which can fit

standard Loop Quantum Cosmology (LQC) and other two models of Loop quantised cosmologies,

namely mLQC-I and mLQC-II [84], that arise due to ambiguities in the quantisation procedure.

In chapter 11, based on [85, 86], we present an explicit model which includes spontaneous

breaking of Lorentz symmetry by a vacuum expectation value (VEV) of a vector field in the metric

affine formalism. This model is a metric-affine version of the well known bumblebee model [87],

and can be encoded within the class of RBG theories with nonminimally couplings between

matter and geometry. We study the stability of the nontrivial vacua that break Lorentz symmetry

at a perturbative level in the nonminimal coupling to the geometry, finding a classically stable

spacelike VEV. We then find the effective Lorentz breaking coefficients for such background.

The problem of finding a scale invariant notion of proper time is suggested by the idea that

the laws of nature may be scale invariant in the deep UV, and the proper time defined as the

spacetime length of timelike worldlines is not a conformally invariant notion of time. This problem

was partially solved by Perlick, who defined a Weyl invariant notion of proper time, namely,

a scale invariant notion of proper time in presence of Weyl-like nonmetricity [88]. In chapter

12, based on [89, 90], we will deal with the possibility of generalising this notion in presence

of arbitrary nonmetricity, which is done in a straightforward way. After the definition and its

basic properties are presented, we discuss the conditions for this notion of proper time to be

equivalent to that given by Ehlers, Pirani, and Schild (EPS) by considering compatibility between

the conformal structure defined by light rays and the affine structure defined by the trajectories

of massive particles. We then study the presence of a second clock effect within this definition of

time, and discuss about its (unlikely) measurability.

As a last attraction of the Funhouse, in chapter 13, based on the works [91,92], we will argue

why the recently presented four-dimensional Einstein-Gauss-Bonet theory (4DEGB) is not well

defined. To show that we will first outline why the D → 4 limit in which this work is based is

not a well defined limit in the mathematical sense unless one considers maximally symmetric

backgrounds from start. This leads to undefined field equations in backgrounds which are not

maximally symmetric. We then explicitly compute second order perturbations around maximally

symmetric backgrounds to show that there appears a 0/0 indetermination in the field equations

after the D → 4 prescription is enforced, contrary to what was claimed by the authors of [93].

We then suggest a way to regularise these field equations and argue why no diffeomorphism

invariant action can lead to the regularised field equations. We finish by showing how the

spherically symmetric geometries presented in [93] as a solution of the ill-defined field equations,

which were also claimed to be geodesically complete, are neither a solution of these field equations,

nor of the regularised field equations, nor geodesically complete. Finally, we will conclude the

8



thesis with a brief outlook on the achievements presented through it and the possible research

windows that they suggest.
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Part I

Gravitation and the Metric-Affine
Framework
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Part I - Outline This part is a general introduction to the metric affine framework, as

well as to some mathematical aspects that are relevant to have a detailed understanding of

some subtle issues arising within it. We will begin with a somewhat odd chapter where we will

review the renowned debate of geometry vs. force field that is usually at the heart of many

misunderstandings between the two sides that compose the community of gravitational and

theoretical physicists. To do that I will follow a path in which the relevant aspects of the two

views and their relation to each other will be emphasised, with the aim of reconciling these two

views, as well as showing their strengths and limitations. In passing, my thoughts (and doubts)

on these matters will lay wide open to the reader, which will be of use for them to understand my

perspective on the rest of the work carried on through this thesis. We will then continue with

an exposition of the necessary mathematical framework and some subtle aspects regarding the

coupling between matter fields and metric-affine geometries, which will be of use to start the

main part of the thesis on the same page with respect to these issues.
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1
GRAVITY: FORCE FIELD OR GEOMETRY?

The ideas of Aristoteles regarding motion and free falling bodies were rejected already by

Filoponos around the VI century, who greatly influenced Galileo in his thinking, leading

to the modern concepts of inertia and to the realisation that all bodies fall with the

same acceleration provided that there are no frictional forces. This property of the gravitational

interaction is usually referred to as universality of freefall. An equivalent statement, which is

one of the formulations of the Weak Equivalence Principle (WEP), is that the trajectory of a freely

falling body1 in a gravitational field is determined completely by its initial position and velocity

and the gravitational field, being thus oblivious to the characteristics of the body. Within the

framework of Newtonian mechanics, universality of freefall (i.e., the WEP) has a straightforward

implementation in Newtonian gravity, where, the force felt by material bodies due to a gravi-

tational field2 is proportional to the field, and the proportionality constant is the gravitational

charge of the body (usually called gravitational mass). In order for all bodies to feel an equal

acceleration if seen from an inertial frame, according to Newton’s second law, gravitational charge

must be proportional to inertial mass with the same proportionality constant for all bodies (and

equal to 1 in appropriate units). Though it was later discovered that proportionality to the field

also occurs in the way that bodies respond to other known forces, such as the electric force on a

test body, given by its electric charge times the background electric field, in these interactions the

proportionality constants (charges) had nothing to do with inertial mass. Hence, although for

other forcefields one needs to measure both the acceleration felt by a test body and its mass ratio

in order to know the value of the field at a given point, this is not the case for the gravitational

1By freely falling we mean that it only interacts gravitationally.
2The concept of field may have been introduced much later than the time when these findings occurred, but the

seed of this idea was already latent in those findings.
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CHAPTER 1. GRAVITY: FORCE FIELD OR GEOMETRY?

force, for which it suffices to know the value of the acceleration of any test body at a given point

in order to know the field at that point just by measuring, without knowing anything about the

body’s composition and structure.

Note, as well, that the proportionality constants that calibrate the response of a body to a force

field, namely the charges, are also typically the sources for that force field, whose strength is

also proportional to the charge of the source. From the experimental viewpoint, this raises the

following question. Though force fields like the electric one can be observationally distinguished

by their charges even if they describe the same r−2 behavior, can there exist two distinct r−2 force

fields like the gravitational one, namely fields which propel all test bodies with an equal amount

of acceleration independently of its characteristics, so that their charge is proportional to inertial

mass? Interestingly, we can elaborate the following argument: If two a priori different such fields

existed, their values would be proportional to the inertial mass of the source and therefore to

each other. Hence, there would be no physical scenario in which one of these fields vanishes but

the other is present, and they could only be potentially distinguished by the proportionality of

the corresponding charges to inertial mass. If two such fields have proportionality constants α1

and α2, then because of the property that these fields affect equally to all bodies, I cannot come

up with any empirical way of discriminating a scenario where these two fields exist from another

scenario with only one such field with proportionality constant α1 +α2. Note that this argument3

relies only on universality of freefall. Thus we see that, in any observational regime where the

WEP is backed up by observations, gravity stands out as a special interaction because of its

universality, which has the direct consequence that one only needs to measure the acceleration of

a test body at a point to know the gravitational field at that point, as opposed to acceleration,

mass, and the corresponding charges for other nonuniversal interactions. At the same time, this

guarantees that the trajectories of test bodies affected only by gravitation will be determined

only by their initial position and velocity, independently of any characteristics of the body. On

the other hand, the gravitational charge being inertial mass implies that any existing body will

feel and source gravitational interaction, so that, strictly, the closest that a body can be to a

free particle is if it interacts only with gravity. This fact, together with universality, leads to the

following question: If the trajectory of a closest to free test body is not straight due to gravitational

interactions, but at the same time we know that any test particle with the same initial conditions

would follow that very same trajectory, is it not reasonable to interpret the resulting trajectories

as properties of the space on which the test bodies propagate, instead of their reaction to a force

field?

Another consequence of universality in the above sense is the following: the effects of some

special types of gravitational field cannot be told apart from those of describing motion from

an accelerated frame. This is the conclusion of the well known elevator thought experiment

3Actually this applies for n fields provided that they have the same functional behavior.
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by Einstein, where it is argued that a freely falling observer in a uniform gravitational field

would see no gravitational field at all, as any other freely falling body would fall with the same

acceleration as the observer. Hence, the observer will measure the effects of other interactions

among the bodies as if the gravitational field did not exist. Of course, this would not be true if

the gravitational field is not uniform, as the observer would then measure differences in the

accelerations described by freely falling bodies due to the difference in the field strength at

different points. These effects, which cannot be mimicked by an accelerated frame, are known as

tidal forces and, for a freely falling observer in a general gravitational field, their size increases

with the nonuniformity of the field and with the distance to the observer. Indeed, even in highly

nonuniform gravitational fields, these effects can be made arbitrarily small in a sufficiently small

neighbourhood of a freely falling observer. Hence, locally, freely falling observers will see bodies

around them behave as if there was no gravitational field. This idea can be carried even further

as, if the observer is not freely falling, this will be equivalent to a uniform gravitational field

in a sufficiently local neighbourhood, which will not have any effect on the outcomes of local

experiments disregarding of whether they test gravitational interactions between the test bodies

or any other phenomena. This is commonly known as the Strong Equivalence Principle (SEP), and

it provides a further link between gravitation and geometry, namely, the local validity of Special

Relativity (SR) provides a chronometric interpretation for the metric tensor in GR by relating it

locally to the special relativistic chronometric interpretation of the Minkowskian metric4. In turn,

the fact that we can make a chronometric interpretation of the Minkowskian metric in special

relativity is due to the fact that the matter fields known to exist behave universally in a Lorentz

covariant way. Note that, should this universality of Lorentz covariance be violated within the

matter sector, spacetime intervals could be relative to the fundamental constituents which a

given observer is made of. As a remark, note that the relativistic version of the WEP requires

the gravitational charge to be energy-momentum as opposed to inertial mass, and the SEP then

implies that the gravitational field must also couple to itself through its own energy-momentum.

Note that, in the above discussion, we can distinguish two different aspects in which the

gravitational interaction can be geometrised, with universality playing an enabling role in both

cases. On the one hand, the universality of freefall provided by the WEP allows to think of freely

falling trajectories as straightest paths so that, within this geometric interpretation, their bending

indicates a property of the spacetime where trajectories take place, rather than reaction to a force.

On the other hand universality of Lorentz covariance allows for a clocks and rods interpretation of

the Minkowski metric which together with the SEP allows to lift this chronometric interpretation

of the metric to the metric in GR. Thus the fact that the metric gµν encodes information about

4In coordinates adapted to the freely falling observer, in a small enough neighbourhood around the observer, the
metric looks approximately Minkowskian. Thus should the Minkowski metric have a chronometric interpretation, this
is easily lifted to the GR metric through the SEP. For an explicit operational construction of the Minkowski metric as
encoding the information in clocks and rods built only with timelike and null trajectories as well as Lorentz covariance,
see [94,95].
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CHAPTER 1. GRAVITY: FORCE FIELD OR GEOMETRY?

lengths and time intervals is tied to universality of approximate Lorentz covariance in a small

enough neighbourhood of each spacetime event. Given that GR fulfils both the WEP and the SEP,

it is hard to avoid the temptation of a geometric interpretation of gravitation within this theory,

as well as other theories satisfying these principles. Adopting this viewpoint, then we now ought

to clarify the meaning of gravitational field within GR. The answer is actually not so obvious,

and it was a matter of philosophical debate for quite some years, though currently there appears

to be a consensus in the way in which gravitational physicists think of the gravitational field.

On the one hand, we have Einstein’s view, for whom one of the main achievements of GR (if not

the greatest) was the unification of gravity and inertia into a single theory, which he expressed

through the Einstein Equivalence Principle (EEP), formulated in [96] with the statement that

gravitation and inertia are wesensgleich, translated by Lehmkuhl [97] as ‘the same in their very

essence’. Thus, in his view, the gravitational field and the old inertial fictitious forces are the

same thing, a sort of unified gravito-inertial field in analogy to the (recent by then) unification of

electric and magnetic forces in Maxwell’s theory. Hence, two observers in relative nonuniform

motion that insist on measuring the gravitational field, will differ in their measurements in

such a way that compensates the corresponding fictitious forces. In this view, it does not make

sense of talking about absence of gravity in any context, including Minkowski space, because

inertia can be understood as gravity for some Minkowskian observers, and Minkowsi spacetime

makes as much of a solution with a nontrivial gravito-inertial field as any spacetime with

nonvanishing curvature. Furthermore, it does not make sense for an accelerated observer to talk

about fictitious gravitational fields. The gravito-inertial field would then be associated to the

Christoffel symbols of the Levi-Civita connection of the metric, which do not transform covariantly

under changes of frame so that they can always be made vanishing at a point in the appropriate

(locally freely falling) coordinates. On the other hand, the modern perspective adopted by most

gravitational physicists is that the gravitational field is precisely related to the presence of these

tidal gravitational forces that cannot be mimicked by any particular state of motion for a given

observer. These effects are typically measured through geodesic deviation, which is sensitive

to the local value of the Riemann tensor. Thus, in this view, a gravitational field is related to a

nonvanishing Riemann tensor,5 which being a tensor under changes of frame cannot be made

vanishing anywhere only for some observers: either it vanishes or it does not for all of them. In

this language, the SEP suggests that spacetime should be a locally Lorentzian smooth manifold,

so that the corresponding gravitational theory is diffeomorphism invariant and local experiments

enjoy a local Lorentz symmetry. In this view, there are thus fictitious gravitational fields which

depend on the motion of the observer in much the same way as there are fictitious forces for

accelerated observers. However, the presence of true gravitational fields do not depend on the

observer’s state of motion. We will stick to this later view of the gravitational field for the rest of

5In this case, we mean the Riemann tensor of the Levi-Civita connection of the metric, and not of an arbitrary
connection.
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the thesis.

Whatever of the geometric interpretations one might prefer, both cast the gravitational phenom-

ena as the dynamics of a (pseudo-)Riemannian manifold, and therefore of its Lorentzian metric,

on top of which matter fields evolve. Wheeler coined this view of the gravitational phenomena as

geometrodynamics. Adopting this perspective, one migh wonder about how many geometrody-

namical theories are there that are physically viable to describe the gravitational phenomena as

a geometric effect. This very same question was famously answered by Lovelock in [98,99], but to

better understand the answer, let us clarify some aspects beforehand. By physically viable, it is

meant that the theory does not have higher order field equations, so that it is free from Ostrograd-

skian instabilities (see chapter 7). As well, if an action for such theory is assumed to exist, the

Bianchi identities due to diffeomorphism symmetry imply that the variation of the action with re-

spect to the metric needs to be divergence-free. Lovelock was able to prove that, in four spacetime

dimensions, GR is the unique theory satisfying the assumptions of divergence-free second-order

field equations6. The divergence-free condition is consistent with generic non-vacuum cases: if

the action of the full theory (should it exist) is separated into gravitational and matter sectors,

and both sectors are required to be diffeomorphism invariant on their own, the variation of the

matter action with respect to the metric yields a divergence-free stress-energy tensor to which

the gravitational part of the action couples. Though this might seem in contradiction with the

above formulation of the WEP that gravitational charge equals gravitational mass, note that

for universality of freefall to be consistent with SR in the appropriate limit as required by the

SEP, the gravitational charge cannot be inertial mass anymore, but rather its Lorentz covariant

generalisation, i.e., energy-momentum. The WEP thus generalises in a straightforward manner

to the relativistic case through a coupling through the stress-energy tensor.

We have presented a line of thought in which universality of both freefall and (local) Lorentz

invariance is a necessary and sufficient condition to geometrise gravity. Indeed, these require-

ments allow to describe gravitational phenomena in terms of diffeomorphism invariant dynamics

of a (pseudo-)Riemannian metric and its coupling to the stress-energy tensor of the matter sector.

This is the geometric view of the gravitational interaction and is the picture accepted by part

of the community of gravitational physicists, being most popular among those who study non-

perturbative aspects of the theory or have a stronger background in classical GR. On the other

hand, there is a completely different picture that describes gravity as an interaction mediated by

a massless spin-2 particle. Let us now comment on this view and in what sense this relates to

the geometric one. To start with, we assume Lorentz invariance and face the empirical fact that

gravity is an r−2 long range force, so that it must be mediated by a massless particle. Because of

Lorentz invariance, we can make use of Wigner’s classification to pin down the type of particle

6As is well known, in higher spacetime dimensions there are other theories which also satisfy the requirements,
known as Lovelock theories.
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that the mediator of the gravitational interaction can be. Among fermion or boson, we ought to

choose the later if we want to allow classical (tree-level) emission of the mediator, or exchange

with any other particle, while maintaining conservation of angular momentum. Then, because of

the masslessness due to long-range and Lorentz invariance, we are only left with spins 0, 1 and

2; as there are no Lorentz invariant theories of massless fields of spin 3 or higher that couple

nontrivially in the soft (i.e., macroscopic) limit so that they produce a long-range force [100–102].

The attractive-only nature of the gravitational interaction leaves out of the game spin 1, which

lead to attractive and repulsive forces. Finally, we know that a relativistic theory of gravitation

satisfying the WEP must couple to stress-energy. The leading order coupling of the stress-energy

tensor to a spin-0 field must be through its trace. Since the electromagnetic stress-energy tensor

is traceless, yet we have observed light bending due to gravitational effects, this option is also

ruled out on experimental grounds, leaving only the option of a massless spin-2 field, which can

be represented by a symmetric two-index Lorentz tensor that couples to the full stress-energy

tensor and not only to its trace.

We are thus led to the construction of a Lorentz invariant theory of a massless spin-2 field

which couples consistently with matter. We should start by finding the appropriate kinetic term

for a symmetric Lorentz (0,2)-tensor hµν, which will yield a second order equation of motion of

the generic form Dµν(h). Given that this object has 10 independent components, our kinetic term

must also be such that it yields only the two degrees of freedom associated to a massless spin-2

field. To find such kinetic term, we note that there is a unique Lorentz invariant kinetic term

for a spin-2 field (massless or not) which does not lead to the propagation of pathological ghost

degrees of freedom. This term is the Fierz-Pauli Lagrangian LFP (see chapter 7), which leads to

the well known kinetic operator

Dµν(h)= ∂2h+∂µ∂νh−2∂λ∂(µhν)λ−ηµν
(
∂2h−∂λ∂σhλσ

)
(1.1)

where indices are risen and lowered with the Minkowski metric and h = hµµ. If we focus on the

coupling to the matter stress-energy tensor at the linear level, the lowest order coupling to the

stress-energy tensor is of the form

Dµν(h)= κTµν
m , (1.2)

where κ is a coupling constant with appropriate dimensions. The ghost-free condition completely

specifies the kinetic term which, as a consequence, satisfies the off-shell constraint ∂µDµν(h)= 0,

tied to the Bianchi identities due to a symmetry of the kinetic operator7 under transformations

of the form δhµν =−2∂(µξν). This implies a consistency condition on the choice of stress-energy

tensor to which the spin-2 can couple,8 pointing towards the Belinfante-Rosenfeld stress-energy

tensor due to its symmetry and on-shell vanishing divergence. To study the consistency of these

7And the Fierz-Pauli action up to a total derivative.
8Note that there are several definitions of stress-energy tensor that we could have chosen. See chapter 2 of [103]

for a nice discussion.
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couplings, let us argue in the following line. Given a Lorentz invariant matter Lagrangian

Lm[Ψi], we need to add to the Fierz-Pauli action for the spin-2 field a coupling of the form

hµνTµν
m , so that the total action is9

LFP +Lm +κhµνTµν
m ≡LFP +L̃m[h,Ψi]. (1.3)

Due to the fact that in presence of the spin-2 field only the total stress-energy tensor of matter

plus the spin-2 (and not Tµν
m ) will satisfy the on-shell divergence-free constraint. This can be seen

by noticing that, if we have that ∂µTµν
m = 0 when the old matter field equations δLm/δΨi = 0 are

satisfied, it will not be true in general on-shell for the updated matter field equations10

δLm

δΨi
+κhµν

δTµν
m

δΨi
≡ δL̃m

δΨi
= 0. (1.4)

Allowing for self-coupling of the gravitational field, which is required for e.g. explaining Mercury’s

perihelion precession, will not alleviate the problem unless a gravitational stress-energy Lorentz

tensor tµν such that

Dµν(h)= κ(
T̃µν

m [h,Ψi]+ tµν
)
, (1.5)

Proceeding as above, we could naively build yet another Lagrangian as LFP+Lm+κhµν(Tµν
m +tµν),

but this does not lead to the desired equation given that tµν must depend on hµν and its derivatives

at least quadratically. This would introduce (at least) second order terms in the field equations,

so that sticking with the linear level, we are fine. Following this line, higher order terms could

be aded so that (1.5) is satisfied order by order, but nothing guarantees that we will find the

definite answer in a finite number of steps. A more systematic way to do this would be to exploit

the symmetries of the problem, and resort to the Noether method, which provides a systematic

way to couple theories with a gauge symmetry to external sources in a consistent manner.11 This

can be seen to yield a similar result, in the sense that despite being able to find the necessary

order-by-order corrections to consistently couple the spin-2 field to matter and itself through the

(canonical) stress-energy tensor, the method does not end in a finite number of iterations, unlike

the case for coupling a spin-1 gauge field to an external source. Happily, Deser came up with

a solution to the problem of finding a consistent theory of a self-coupled spin-2 field coupled to

matter by resorting to a first-order form of the Fierz-Pauli action, written in terms of the fields

h̃µν and γαµν as

L (1)
FP1st =

1
κ2

(
ηµν2γλ[µ

ργρ]ν
λ−κh̃µν2∂[µγρ]ν

ρ
)

(1.6)

which is invariant under local transformations of the form δh̃µν =−2∂(µξν)+ηµν∂αξα and δγαµν =
−κ∂α∂µξν, and can be seen to be on-shell equivalent to the 4-dimensional FP Lagrangian for the

9Note that we make explicit the dependence of both Tµν
mat and Lm only the matter fields and their derivatives

(contracted with the Minkowski metric) appear there, and not hµν.
10Note that here the variational derivative acounts for the derivative terms too. See section 3.2.4 of [103] for an

explicit example of the nonvanishing divergence of Tµν
m on-shell for the updated equations after adding the coupling

hµνTµν
m .

11At least to a given order, see e.g. [103] for details.

21



CHAPTER 1. GRAVITY: FORCE FIELD OR GEOMETRY?

redefined field variable

hµν = h̃µν− 1
2

h̃ηµν. (1.7)

To see this, note that the equation for the γ field is a constraint equation which can be written as

γ(α|µ|ν) =
κ

2
∂αhµν. (1.8)

This equation is linear, and can be uniquely solved by adding and subtracting the same equation

with suitable cyclic permutations of its indices, yielding

γαµν = κ

2
(
∂αhµν+∂µhνα−∂νhαµ

)
. (1.9)

Plugging the solution to the constraint for the γ field into the field equations of h̃ written in terms

of the new field variable h leads, after some manipulations, to

Dµν(h)= 0. (1.10)

Being convinced that (1.6) is dynamically equivalent to the usual FP action, before adding matter,

we now need to find an extra term L (2)
FP1st such that it leads to the desired equation Dµν(h)= κtµν

where tµν is the h̃µν stress-energy tensor associated to L (1)
FP1st. The expected correction is

L (2)
FP1st =−2

κ
h̃µνγρ[µ

λγλ]ν
ρ (1.11)

which can be seen to provide a full solution to the problem once the new constraint equation for γ

is taken into account. Indeed, though in terms of the variables h or h̃ the solution to constraint

equation is not known in compact form, by redefining again our field variable h̃µν by√
|g| gµν = ηµν−κh̃µν (1.12)

we are led to a solution of the constraint equation for γ in the compact form

γναµ = 1
2

gνρ
(
∂αgµρ+∂µgρα−∂ρ gαµ

)
(1.13)

where, in the process, indices are risen and lowered with the new field12 gµν . Using this solution

for the constrained γ into the new field equations of h̃µν we can write them in terms of the

redefined field variable as Rµν(g)= 0 where we say that Rµν(g) is the Ricci tensor of the object13

gµν. To see that that this is the full solution to a consistent self-coupled spin-2 theory, we need

that the field equation for h̃µν given by L (1)
FP1st +L (2)

FP1st is indeed consistent with Dµν(h)= κtµν.

This can be verified by undoing the field redefinition of h̃ in terms of gµν and expanding its field

12Note that any nondegenerate symmetric 2-tensor defines an isomorphism between the vector space it acts upon
and its dual.

13Technicaly, Rµν(g) has te exact functional dependence on the symmetric object gµν and its first and second
derivatives as the Ricci tensor of a metric gµν would have. Hence, in short, we say that Rµν(g) is the Ricci tensor of
gµν.
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equation, namely Rµν(g) = 0, in terms of the former (see e.g. [103] for a detailed derivation of

the whole process). Hence, this is indeed a consistent extension of the FP theory including self-

couplings of the spin-2 field through its own divergenceless (Belinfante-Rosenfeld) stress-energy

tensor, which features an infinite number of coupling terms of growing dimension, and reduces

to FP when the coupling κ is set to zero. This extension can be done in the presence of matter

leading as well to a consistent result, and it ends up having the same field equations for the

redefined field variable gµν as the metric field equations in GR which we can interpret as the

metric, so that the theories are equivalent with an appropriate field-redefinition which allows

to encode the infinite coupling terms in a compact form using the field variable gµν, which has

a natural geometric interpretation as the spacetime metric as we argued above. Furthermore,

it appears that the original gauge symmetry of the FP theory that is obtained by demanding

absence of ghosts in the kinetic term of hµν, given by δhµν = ∂(µξν) is now extended to general

covariance.

Although this extension of the FP theory to a nonlinear theory introduced by Deser14 in [105]

leads to GR, it needs not be unique, and there is a result by Wald constraining the possible

extensions to be either generally covariant or having ‘normal spin-2 gauge invariance’, namely

δhµν = ∂(µξν), although this last possibility could be in danger if the spin-2 field couples to

matter through the stress-energy tensor [106]. We can go even further by following Weinberg and

considering a quantum spin-2 particle described by a theory with a Lorentz invariant unitary

and analytic S-matrix, so that the amplitude for the emission of a soft graviton in a process with

N initial plus final particles (without counting the graviton) in a given scattering process with

four-momentum q will be proportional to a term like

N∑
n=1

ηnκn pµn pνn
qµpµn − iηnε

(1.14)

where pn is the four-momentum of some of the in or out particles, ηn = ±1 with plus for out

particles and minus for in particles, and κn is the coupling to each of the particles to the massless

spin-2. Lorentz invariance of the S-matrix requires that the contraction of this term (hence of the

amplitude) with the graviton four-momentum vanishes, which in the soft q → 0 limit yields the

condition
N∑

n=1
ηnκn pνn = 0. (1.15)

Lorentz invariance also requires that the total four momentum of the process is conserved so

that
∑

nηnκn pνn = 0. The only way to satisfy both conditions at the same time is to have all κn

equal in value. This implies that, in the soft limit, massless spin-2 must couple to all particles,

namely all forms of energy-momentum, with the same strength, even to itself15 [100, 107].
14See also the work of Ogievetsky and Polubarinov in [104].
15This result, in my opinion, implies that the graviton is unique by a similar argument that an universal interaction

with an r−1 potential is unique, namely, any theory with several massless spin-2 particles admits an equivalent
formulation with only one massless spin-2 field and a redefined coupling.

23



CHAPTER 1. GRAVITY: FORCE FIELD OR GEOMETRY?

Namely, any Lorentz-invariant quantum theory for a massless spin-2 field must satisfy the

Strong Equivalence Principle in the low energy limit. Weinberg also proved that in such theory,

the spin-2 must couple to a stress-energy tensor, which was later found by Boulware and Deser

to be the Belinfante-Rosenfeld stress-energy tensor in the soft limit [108], so that the low energy

theory for a quantum massless spin-2 must be GR. How does this square with the common lore

that ‘GR cannot be quantised’? Well, it squares by noting that this statement is not accurate

enough. To my knowledge, the strictly correct statement is that we have not found any UV

complete quantisation of GR.16 However, in much the same way as we can deal with a quantum

theory the electromagnetic field below the electron mass described by the Euler-Heisenberg

Lagrangian, we can perfectly make sense of GR as an effective quantum field theory below the

Planck mass, where unitarity breaks down [21,22,109].

We have thus drawn a circle in which we have been able to find that some of the basic postulates

that led Einstein to GR must be satisfied if there is a Lorentz invariant theory of quantum gravity.

We have seen that from the point of view of a classical field theory for a spin-2 field in a

Minkowskian spacetime that couples to itself and to matter we can arrive to GR, and we have

also seen that GR is the unique low energy theory for a quantum massless spin-2 field, which

remarkably must couple universally to stress-energy and satisfy the SEP in the low energy

limit. We also argued above how geometrisation of GR and the chronometric interpretation of the

metric tensor is enabled by the SEP. Hence, we can conclude that the existence of a quantum

massless spin-2 particle implies that there is a universal interaction that can also be described

in geometrical terms as the dynamics of a spacetime geometry influenced by the (other) fields

and on top of which the (other) fields evolve. Which is the preferred picture? That is a matter for

the reader to decide17. However, we can raise some points that could be relevant for making this

decision (take it easy though). On the one hand, the geometric picture allows for a simple generally

covariant description of gravity, where all the nonperturbative effects of the theory are encoded in

the spacetime metric, and one can think in terms of smooth manifolds and use the full machinery

of differential geometry and topology to extract information about the features of the full theory

in an easier way, such as the causal structure and the presence of singularities. Furthermore,

taking seriously the geometric interpretation leads to different quantisation schemes that could

offer insight on the UV completion of GR. A drawback of this interpretation is that there is

no unambiguous way of defining a diffeomorphism covariant stress-energy tensor associated to

the gravitational field. Moreover, even though GR can be interpreted in terms of curvature of a

(pseudo-)Riemannian manifold, it can also be interpreted as the effects of nonmetricity/torsion in

a flat manifold [8–11]. However, a common feature of all these geometrical interpretations is the

fact that, from the field theoretic perspective, the degrees of freedom that they describe always

16Of course there are candidates, but they still have their problems and there is no agreement that such UV
complete theory exist

17I hope you were not expecting that I decide for you!
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correspond to those of a massless spin-2 field [12]. A common drawback against the field theory

description is the failure of this viewpoint in describing nontrivial spacetime topologies. However,

perturbations on top of a nontrivial background of the gravitational field can mimic the effects of

nontrivial topologies. Besides, we know of many examples in nature, such as e.g. the surface of a

fluid, in which it could be argued that the topology can change dynamically.

Whether there is anything fundamental in the geometrisation of gravity, or it is just an artefact,

is for nature to tell. In order to understand what possible behaviours can gravity have at higher

energies, both the field theoretic and geometric viewpoints have been followed. The work in

this thesis is inspired, in origin, by the geometric one, and we will mostly study metric-affine

modifications of GR. However, during the course, the motivations that guided my latest research

leaned closer to the field theoretic mindset. Indeed, thanks to the decomposition of any affine

connection as in (2.82), metric-affine theories can always be written as metric theories plus a

bunch of other terms involving two tensorial fields, namely the nonmetricity and torsion tensors,

and their metric-covariant derivatives as well as interactions with the Riemann tensor.

The key results obtained in this thesis by thinking from this angle are twofold. On the one

hand, we have found that terms in the Lagrangian that are built with the symmetrised Ricci

tensor induce effective interactions in the matter sector which can be used to constrain the

theory. On the other hand, we have shown that terms with the symmetrised Ricci tensor in

the action will lead to propagation of ghosts degrees of freedom which we argued that will

be a generic feature of metric-affine gravity theories, in line with other research [110, 111]

and the common knowledge that it is not easy to modify a theory of a massless spin-2 field

without running into the appearance of instabilities or strong coupling issues [112]. This poses a

drawback to consider metric-affine theories as fundamental theories, unless one is willing to tune

the coefficients of the theory to evade these problems. Even in this case, quantum corrections

could spoil the tunings and bring them18 ghosts back. There are, however, better reasons to

study metric-affine theories than hoping that they provide a solution to the UV completion of

GR. For instance, in some theories, there are interesting kinds of exact solutions, most of the

known ones being compact objects, which have nonperturbative features worth to be studied both

at the theoretical and phenomenological level in order to better understand the landscape of

possible phenomenology that can arise in gravity theories. Furthermore, by an analogy to how

defects in crystals can be described in the continuum limit by effective nonmetricity and torsion

tensors in a smooth post-Riemannian manifold [50–54], a possible spacetime microstructure at

the quantum gravity scale could result in effective spacetimes with nontrivial post-Riemannian

features at some intermediate UV scale. Though this last possibility is highly speculative, and a

clear connection with spacetime granularity and post-Riemannian features is yet to be found, in

18Allow me a homage to the wonderful Louisiana and the southern accents so well portrayed in A Confederacy of
Dunces.
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my opinion, we should keep this interesting possibility open in the back of our minds. In fact,

some promising insights in this direction come from the relation that seems to exist between the

effective description of Loop-quantised geometries and metric-affine f (R) theories, a topic to be

discussed in this thesis.

To close up, in my opinion, the geometrical view of a physical theory should always be guided

by its interpretation in terms of the propagating degrees of freedom and their time evolution

given some initial conditions. Indeed, this way of understanding the phenomena occurring in

the universe still constitutes the basic paradigm of physics ever since Newton materialised it

in his Principia in the XVII century [113]. A field theoretic approach is generally closer to this

view than a geometric one and, from this perspective, it does not make much sense to me to

understand a theory on geometrical grounds unless there is a benefit from it, either because this

view allows to do computations or extract physical conclusions in an easier way, thus shedding

light into some aspects of the theory19, or because it allows one to think in existing problems in a

different way, thus potentially leading to the exploration of new theories or paradigms that would

have not been explored otherwise. In any case, the geometrical-or-not debate is an ontological

one that should be irrelevant as soon as both interpretations agree on the observable phenomena

predicted by the theory.

19For instance, if the is some kind of universality, a geometrical interpretation may offer simplicity in the
understanding of some aspects of the theory, be them phenomenological or theoretical, as has happened with the
understanding of GR historically.
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2
CANONICAL AND ARBITRARY GEOMETRIC STRUCTURES

The primary topics of this thesis range within the realm of metric-affine theories of gravity.

These theories are based on a formulation of gravitational theories in geometrical terms

through a variational principle where the field content of the action is a metric, an affine

connection and other fields usually regarded as matter. The key difference from metric theories

is that while in the later the connection is taken to be the canonical connection associated to the

metric, in the metric-affine formulation it is regarded as a fundamental field whose dynamics is

dictated by extremising the action. In order to be as self-complete as possible, we will introduce

the basic geometric notions of differential geometry that allow to build both Riemannian and

post-Riemannian space-times. This presentation will have the intention of clarifying which

structures are canonical and which are not, where by canonical we mean that can be constructed

only with pre-existing mathematical structure or data and that are unique. In other words:

A given pre-existing mathematical structure allows to build a new canonical structure if this

new structure can be built without any arbitrariness either in the introduction of mathematical

data not available in the pre-existing structure or in the builder’s choices through building

procedure. The reason why I write new in italics is because my viewpoint is that if a structure

is canonical with respect to the pre-existing one, then it must be understood as part of the

preexisting structure rather than a new structure on top of the old one. For instance, given a

vector space with an inner product, one cannot say that the set of all orthonormal basis with

respect to such inner product is a new structure associated to such vector space because there is

one and only one (maximal) set of orthonormal basis associated to that inner product.

Another instance, perhaps of more interest to us, is that of the Levi-Civita connection: Given

a smooth manifold with a metric structure as preexisting structure (see 2.4.2), the Levi-Civita
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connection is canonical and cannot be seen as extra structure arbitrarily chosen by the designer

of the manifold. This does not preclude, of course, the introduction of other noncanonical affine

structures in a manifold with a metric. The reason why I mentioned this example here is because

there is a folklore within the metric-affine community stating that the metric-affine formulation

of a given action functional contains less arbitrariness in the sense that it does not assume

any particular affine structure, but rather lets the action functional determine it. This would

be opposed to the metric formulation, where the connection is chosen to be the Levi-Civita

connection of the metric beforehand. According to our view there must be something wrong with

that statement: a canonical structure can never be an arbitrary choice as it is already present

in the original structure. Still, that folklore carries a hidden truth that our community has

intuitively identified. Indeed, in my opinion, what is hazily believed to be arbitrariness in the

choice of a particular affine connection, is actually arbitrariness in the very definition of what a

spacetime is.

The part of the definition which we all agree upon is that a spacetime is the support1 of the

solutions of some set of field equations for some physical fields. Now, the arbitrary part of the

definition is what are the variables of these field equations (i.e., the physical fields). Although

there can potentially be other choices, the dilemma that concerns us is the choice between

these two options: We can either choose in regarding just a metric tensor as the variable of

the field equations, known as metric formalism, or regarding a metric tensor and an affine

connection as the variables of these field equations, known as metric-affine formalism.2 One

could argue that, if a metric has always to be in the recipe, to add a connection looks like

adding arbitrariness to the game. However, one should bear in mind that some authors have also

considered theories with only an affine connection, where the metric is interpreted as derived

from the connection [114–121] and, therefore, there are indeed other possible choices. As a

remark, let us point out that although these theories typically find difficulties in defining their

coupling to matter, there appears to be recent progress on that issue [119,121].

Thus, we see that rather than choosing or not an affine structure a priori, we have the choice

to define the spacetime either as a smooth manifold with only a metric structure (which has

a canonical affine structure), or as a smooth manifold with a metric and an arbitrary affine

structure, or as a smooth manifold with only an affine structure and an emergent3 metric for

that matter. Once we have chosen this, there is no freedom left but to choose the preferred set

of field equations4 that determine the dynamics of the physical fields. Given that we have this

1Here support refers to the set of points where a function is defined.
2Note that it is not quite right to talk about metric and connection for the variables if these are to define what the

spacetime manifold is. However, this is a shorthand notation for a set of variables that will play the role of a metric
and a connection in the space that is the support of the solutions of the corresponding field equations.

3I did not use the word canonical here because it is not clear to me if the emergent metric in purely affine theories
of gravity is canonical or not.

4If we assume the dynamics to be dictated by an action principle, then this freedom is translated to the choice of a
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freedom in both metric-affine and metric formalisms, we cannot say that there is more freedom

(at this level) neither in one nor the other. Of course, as always, what is the correct definition of

a physical spacetime is not for us physicists to decide, but for the universe to tell. Our role is,

therefore, to find out whether there is any observable difference between these two (or any other)

choices or if, instead, it is just a matter of pragmatism and/or aesthetics to chose one or the other.

It is true, however, that there are claims that the way in which some types of matter fields

couple minimally to the spacetime geometry is rather arbitrary in the metric-affine formalism,

specially regarding spinor fields and the spinor connection. Of course, this arbitrariness stems

from the arbitrary definition of a minimal coupling prescription in this formalism. I have tried to

give an as canonical as possible minimal coupling prescription in metric-affine geometries in [58]

guided by the idea that a minimal coupling prescription when passing from one geometry to a

more general one should couple the fields as little as possible to the elements of the new geometry.

The aim of this section is to give the reader the necessary tools to judge by themselves whether

or not this arbitrariness remains when this definition is employed. Of course, as happened with

the definition of spacetime, the way in which physical fields couple to each other, or to geometry

for that matter, is to be answered by empirical data.

To provide such tools, I will give a self contained approach starting with the definition of smooth

manifold and all the associated canonical structures that it contains, passing through that of

connection in vector and principal (frame) bundles and reaching to the definition of spinor bundle

and spinor connection in a manifold with an arbitrary affine connection and a Lorentzian metric

structure. I believe that the canonicality of the different objects and structures that arise while

doing physics is often a useful guide to physicists, but while working on this thesis, I have often

found myself with unanswered questions about what is canonical in the metric-affine formalism

and what is not. Hence, I will try to put emphasis on making clear which constructions are

canonical and with respect to what pre-existing structure and which are not. Should the reader

have experience on these topics, they can perhaps skip over this chapter. Most of the information

that is includded can be found on e.g. [122–125].

2.1 Differentiable manifolds

The basic ingredient of any (space-time) geometry is that of a manifold. To introduce it, we will

need the notion of topology and topological space. Given a set M, a topology for M is a set τ whose

elements are subsets of M such that

1. Both the empty set and M are elements of τ.

2. Any arbitrary union of elements of τ also belongs to τ.

preferred action functional.
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3. Any finite intersection of elements of τ also belongs to τ.

A pair (M,τ) is a topological space M . The elements of τ are called open sets of M , and as well

a subset X of M is closed in M if its complementary (M-X) belongs to τ. Note that a given set

admits several topologies. In an intuitive sense, a topology provides a broad notion of proximity

or spatial relation between different ‘parts’ of a set. Indeed, a metric5 function defined on a set

canonically provides a topology on such set, called the metric topology, such as the usual n-ball

topology in Rn.

The notion of topology provides enough structure as to define continuity of functions, which

indeed is the basic notion in topology. We say that a map between two topological spaces is said

to be continuous if the inverse image of an open set is an open set. Intuitively, a continuous

function maps ‘nearby’ points to ‘nearby’ points. A homeomorphism is a continuous bijection

with continuous inverse. Two homeomorphic spaces are identical from the topological point of

view.

Another relevant notion is that of Hausdorff space. A topological space is Hausdorff if for any

two different points there are two disjoint open sets each containing one of the points. This

provides a notion of the separability of the space. Any metric space is Hausdorff.

With these notions, we are ready to define the notion of a manifold. An n−dimensional
manifold M is a topological space which is Hausdorff and locally homeomorphic to Rn by a set

of maps φU : M ⊃Oi → Bi ⊂Rn named atlas {(φU ,OU )} such that

1. The union of all OU is M.

2. For any two of these maps φU (OUV )=φV (OUV ), where OUV ≡OU ∩OV are called overlaps.

3. The transition maps φUV ≡φU ◦φ−1
V are continuous.

The pairs (φU ,OU ) are called charts, and they provide a way in which the subsets OU ⊂M can

be seen as open sets of Rn. It is in this sense that M locally looks like Rn. If the transition maps

are C∞, this atlas is a C∞-structure in M , and it defines a smooth n-dimensional manifold.

Two C∞-structures over M are said to be equivalent if the union of all their charts also forms

a C∞-structure on M . As a curiosity, note that a given topological space can be endowed with

several nonequivalent C∞-structures, thus giving rise to different smooth manifolds (see e.g. the

exotic spheres). From here onwards, the symbol M will be used for an n-dimensional smooth

manifold as defined above, which is the basic object of differential geometry.

5In mathematics, a metric function d on a set M is a function d : M2 →R that is symmetric, nondegenerated and
obeys the triangle inequality. In physics we use the term metric more generally, as the Minkowski metric does not
satisfy nondegeneracy on the lightcone.
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2.2. CANONICAL STRUCTURES ON SMOOTH MANIFOLDS

Three basic notions in a smooth manifold are those of coordinates of a point, derivative of a

map and curve on M . Given a chart (φU ,OU ), the maps xµU ≡ prµ ◦φU : OU → R, where prµ are

the standard projection operators into a basis of Rn and µ runs from 1 to n, are called coordinate

maps of the chart (φU ,OU ). For a point p ∈OU , the real numbers xµU (p) are the coordinates of

p in this chart. Charts can also be denoted as (φU ∼ xµU ,O) or simply (xµU ,O), which is called a

coordinate system or chart at p. We will use indices indistinctly both, to denote a particular

element from the collection of elements indexed the corresponding index, and to denote the

whole collection. Thus, the notation φ∼ xµ means that xµ is the collection of coordinate functions

associated to the chart φ by the projectors prµ of a given basis of Rn. Note, however, that in an

abuse of the notation we will call xµU a chart.

We say that f : M → R is differentiable or smooth at6 p ∈ OU ⊂ M if there is a coordinate

system φU such that f̂U ≡ f ◦φ−1
U : U ⊂Rn →R is differentiable at φU (p). We will denote Fp(M )

to the spaces of differentiable functions at p ∈ M . If a function is differentiable over all the

points of an open subset O ⊂ M we say that it is differentiable at O and belongs to F (O).

Differentiablility of functions does not depend on the chart. For two smooth manifolds M and

N of dimensions m and n respectively, a map F : M → N is differentiable at p ∈ M if there

are two charts (φU ,OU ⊂ M ) and (ϕV ,OV ⊂ N ) containing p and F(p) respectively, the map

ϕV ◦F ◦φU
−1 :Rm →Rn is differentiable at p in the usual sense. If furthermore, F is one-to-one

and with differentiable inverse, then F is a diffeomorphism between M and N . Diffeomorphic

manifolds are understood as equivalent manifolds from the point of view of differential geometry.

A (parametrized smooth) curve in M is a differentiable map γ mapping an open subset

of the real line (a,b) to M . The curve is said to pass through p at t0 ∈ (a,b) if γ(t0) = p. A

reparametrization for γ is a monotonous function f :R→R such that γ̃= γ◦ f : ( f (a), f (b))→M is

a different (parametrized) curve with the same image as γ. The coordinate representation of γ by

a coordinate chart xµU is γµU ≡ xµU ◦γ :R→Rn.

2.2 Canonical structures on smooth manifolds

As seen above, smooth charts allow to define a notion of differentiability of functions in M by

exploiting the notion of differentiability that we have in Rn. However, we have not yet defined any

notion of derivative for such functions. The above definitions allow to do so relying exclusively on

the smooth structure of the manifold. In this section we will present a bunch of structures that

arise canonically on every smooth manifold from their smooth structure. More explicitly, we use

the word canonical to imply that the construction is unique and completely determined by the

structures already defined, so that no arbitrary choices have to be made and no extra piece of

6To facilitate readability, we will allow notations like p ∈M instead of p ∈ M to denote an element p of a set M
endowed with a differentiable structure.
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information has to be given. Needles to say, the canonical structures that arise in any smooth

manifold are crucial in the formulations of modern physical theories. Let us briefly discuss their

properties.

2.2.1 Tangent space: vectors are derivative operators

The set of differentiable functions on M forms a vector space over R which is a commutative

algebra with respect to the product of functions. Hence, the directional derivatives of smooth

functions at x ∈Rm along X ∈Rm can be seen as ‘algebraic derivations’ over the algebra Fx(Rm).

By ‘algebraic derivation’ we mean a linear operator over an algebra which obeys the Leibniz rule

with respect to its product. We will denote the set of directional derivatives at x by DFx(Rm). Due

to their linearity, linear combinations of any two elements of DFx(Rm) will also be in DFx(Rm),

which makes it a vector space over R. From an algebraic perspective, we can consider the set of

linear operators over the algebra Fp(M ) which obey the Leibniz rule with respect to the product

of functions. Because their algebraic properties are identical to those of DFx(Rm), they will also

form a vector space over R, which we will call DFp(M ).

Having the above algebraic definition of directional derivatives in mind, let us now try to

provide an ‘infinitesimal meaning’ from the analysis point of view. To that end, let us define the

derivative of a function F (M ) along a curve. Let be a map f : M → R smooth at p and γ(t) a

curve through p at t = t0. The derivative of f along γ at p is

d
dt

f
(
γ(t)

)∣∣∣∣
t=t0

(2.1)

which satisfies linearity, Leibniz and the chain rule. It can be seen that curves through p can be

classified in equivalence classes, where two curves are equivalent at p if they lead to the same

directional derivative of a function at p. The set of equivalence classes of curves at p can be seen

to form a vector space. Let us argue why this should be viewed as a vector space tangent to M at

p. Given a chart xµU over p, define the operators (∂Uµ)p : Fp(M )→R as

(∂Uµ)p[ f ]= ∂ f̂U (x1
U , ..., xn

U )

∂xµU

∣∣∣∣∣
xµU=φU (p)

. (2.2)

With this definition, (∂Uµ)p satisfy both linearity and Leibniz. Hence they are elements of

DFp(M ). This means that any linear combination of the form X p = (X p)µ(∂Uµ)p, where Xµ
p ∈Rn,

is also in DFp(M ). By linearity, X p acts on Fp(M ) as X p[ f ] = (X p)µ(∂Uµ)p[ f ]. By usnig the

algebraic properties of DFp(M ) as well as calculus on Rn, it can be shown that the n operators

(∂Uµ)p induced by a chart xµU form a basis of DFp(M ), which therefore has dimension n. This

basis is called coordinate basis of xµU , and the components of a vector X p ∈ DFp(M ) can be

read off its action on the coordinate functions as (X p)µ = X p[xµU ]. Now, let us deal with the notion

of tangent vector to a curve at a point. Let γ(t) be a curve such that γ(t0)= p. Define the operator
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γ̇p ∈DFp(M ) as

γ̇p[ f ]= d
dt

f (γ(t))
∣∣∣∣
t=t0

(2.3)

which given a chart (φU ∼ xµU ,OU ) over p can also be written as

γ̇p[ f ]= d
dt

[(
f ◦φ−1

U
)◦ (

φU ◦γ(t)
)]∣∣∣∣

t=t0

= ∂ f̂ (x1
U , ..., xn

U )

∂xµU

∣∣∣∣∣
xµU=φU (p)

dγµU (t)

dt

∣∣∣∣∣∣
t=t0

. (2.4)

The components of γ̇p in the basis (∂xµ) are then

γ̇U
p = γ̇p[xµU ]= dγµU (t)

dt

∣∣∣∣∣
t=t0

. (2.5)

For M = Rn, the components of the tangent vector to a curve can be read off the directional

derivative of a function f along the curve as the coefficients of the partial derivatives of f with

respect to the chosen coordinates. This motivates the definition of γ̇p as the tangent vector of γ(t)

at γ(t0)= p. Now note that we can label the equivalence classes of curves having γ̇p as tangent

vector at p by its tangent, which leads to the conclusion that vector space spanned by these

equivalence classes is the tangent space of M at p, usually denoted as TpM . Moreover, since

γ̇ ∈DFp(M ), we have that DFp(M )∼=TpM . This completes the picture of why tangent vectors

to a manifold M are nothing but directional derivatives on F (M ).

For any differentiable map between two m− and n−dimensional smooth manifolds, and given a

smooth map α : M →N , the action of vectors on real valued functions canonically induces a map

α∗ : TpM →Tα(p)N by

(α∗(X p)
)
[ f ]≡Yα(p)[ f ]= X p[ f ◦α] (2.6)

where f ∈Fα(p)(N ). This map is called tangent map, differential or pushforward of α. Given

two charts (xµU ,OU ⊂M ) and (yνV ,OV ⊂N ) such that p ∈OU and α(p) ∈OV , the components of

α∗(X p) read (
α∗(X p)

)ν = (X p)µ
∂yνV
∂xµU

∣∣∣∣∣
xµU (p)

. (2.7)

Note that if M and N were both Euclidean, the action of α∗ on X p is basically the right-

multiplication by the Jacobian of α. Hence this map generalises the notion of total derivative of α

to general manifolds.

As a final remark, let us point out that the above constructions can be done at any point

on the manifold. For instance, the operators ∂Uµ are smooth vector fields in OU and so on.

Therefore, there is a tangent space to every point in M , which will allow to define further

canonical structures stemming solely from the smooth structure of M . A vector field such that

its coefficients in a basis are smooth functions over O ⊂M is called a smooth vector field over

O. Unless stated otherwise, we will refer to smooth vector fields over M just as vector fields
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from here onwards. We will denote the space of smooth vector fields over O ⊂M as Γ(T O). The

meaning of T O will later be clarified, but we can just advance that it is the piece of the tangent

bundle T M above O ⊂M .

2.2.2 Lie bracket, flows and Lie derivatives

Vector fields allow us to introduce a new notion of derivative on a manifold: the Lie derivative.

The aim of this section is to canonically build several objects based on the properties of vector

fields to reach an understanding of the Lie derivative. The first of this objects is the Lie bracket.

Given two smooth vector fields X and Y in Γ(O), their Lie bracket is a third vector field [X ,Y ]

defined by its action on f ∈F (O) as

[X ,Y ][ f ]= X
[
Y [ f ]

]−Y
[
X [ f ]

]
(2.8)

As any other vector field, the Lie bracket acts linearly on F (O). Furthermore, it satisfies the

Jacobi identity, antisymmetry, linearity both in X and Y , and also has the property [X , f Y ] =
f [X ,Y ]+ X [ f ]Y . An important use of the Lie bracket is the characterisation of coordinate basis.

Given a set of k linearly independent vector fields {X1, ..., Xk}, these are elements of a coordinate

basis if and only if they all have vanishing Lie brackets between them, namely iff [Xa, Xb]= 0 for

any pair (a,b).

Given a fixed X ∈ Γ(O), the Lie bracket defines a map LX : Γ(O) → Γ(O) by LX (Y ) ≡ LX Y =
[X ,Y ]. Note that by defining also an action of LX on f ∈F (O) by LX ( f )≡LX f = X [ f ] this map

has a ‘Leibnitz-like’ property

LX ( f Y )= f LX Y + (LX f )Y . (2.9)

We will later see that this ‘Leibniz-like’ property is a proper Leibniz rule with respect to a

given algebra (the tensor algebra) to be introduced later, which makes this map an algebraic

derivation. As well, we will see that it also has an infinitesimal meaning related to the rate of

change of a vector field in a given direction, thus making sense as a derivative also from the

analysis perspective. To that end we need to introduce the concept of flow associated to a vector

field. Given a vector field X ∈Γ(O), the integral curve of X in O ⊂M is a parametrised curve

γ : (a,b) → O whose tangent vector at each point p ∈ M is X p. The existence and uniqueness

theorem of ordinary differential equations ensures that through each point there is only one

(maximal) integral curve of X . A one-parameter group of transformations or flow is a map

σ :R×M →M such that for each t ∈R we have a diffeomorphism σt : M →M and σ preserves

the real sum, i.e., σt+s =σt ◦σs. Due to the bijectivity of σt and the preservation of the real sum,

σ−1
t =σ−t and σ0 = idM . The action of the flow on a given point p ∈M generates a parametrized

curve γp(t)=σt(p) such that γp(0)= p called orbit of p under σ. Any vector field whose integral

curves are the orbits of a flow σ on M is called a complete vector field generating σ. Although

not all vector fields are complete, they always generate a local flow. This allows to prove that, for
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any vector field X , there is always a local coordinate system such that X is an element of the

coordinate basis.

Let σ be the local flow on M generated by the smooth vector field X . Then we can define the

Lie derivative of Y with respect to X as

lim
t→0

Y − (σt)∗Y
t

. (2.10)

Hence, the Lie derivative is a way to measure how a vector Y changes along the integral curves of

X when push-forwarded with the flow generated by X . It can be shown that this limit equals to

[X ,Y ]=LX Y . Therefore, this shows that the algebraic operator defined above is also a derivative

in the sense of analysis, as it describes a rate of change.

2.2.3 Co-tangent space, 1-forms, tensor fields and tensor algebra

Using the smooth structure of M , we have been able to define a vector space at each of its

points, namely TpM . Any vector space canonically defines a dual space as well as a tensor

algebra. In this section we will define the canonical dual and tensor spaces that stem solely from

the smooth structure of M .

The cotangent space at a point p ∈ M , dubbed as T ∗
p M , is the space of R-valued linear

operators on T M , namely its dual space, which as always has the same dimension as TpM .

The elements of T ∗
p M are called 1-forms or covectors at p. The double dual space to any finite

dimensional vector space is canonically isomorphic to V , so that vectors at p act canonically on

1-forms at p by X p[ξp]= ξp[X p] where X p ∈TpM and ξp ∈T ∗
p M .

As for TpM , the cotangent space exists in every point of a smooth manifold. A map that assigns

a 1-form in T ∗
p O at each p ∈O ⊂M such that its action on any (smooth) vector field is a smooth

function O →R is called smooth 1-form field over O. The space of smooth 1-form fields over O

is dubbed as Γ(T ∗O). 1-forms that are smooth over all M will simply be called 1-forms.

Given a chart (xµU ,OU ), the maps dxµU : M 7→ Γ(T ∗OU ) are local 1-form fields that provide a

local basis in T ∗
p M for every p ∈ OU . This basis is dual to the coordinate basis of TpM as

dxµU [∂Uν]= δµν. By linearity, we have that if X = Xµ

U∂Uµ then we can read its components in the

given chart by dxµU [X ]= Xµ.

Using the notion of pushforward map from the previous section, any smooth function α : M →N

defines a map between α∗ : Tα(p)N
∗ →TpM as(

α∗(ξα(p))
)
[X p]= ξα(p)[α∗(X p)]. (2.11)

This map is called pullback map associated to α. Unlike the pushforward, which might fail to

be well defined for vector fields, the pullback map is always well defined for 1-form fields.
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Some 1-forms can be understood as total derivatives of real-valued functions on M 7 in the

following sense. There is a map d : F (O) →T ∗O called differential that associates a smooth

1-form over O to every smooth function f : M →R. This 1-form dubbed d f is defined by its action

on vector fields as

d f [X ]= X [ f ]. (2.12)

and is called differential of f. When acting on a vector field, it gives the directional derivative

of f along X , as a generalisation of the gradient operator in Rn-calculus. Given a chart xµU , the

maps dxµU defined above are just the differentials of the coordinate functions xµU . Given a chart

xµU , it is possible to see from the above definition that the components of d f = d fUµdxµU are

d fUµ = ∂ f̂U

∂xµU
(2.13)

Having defined T ∗
p M , we can consider the space of real-valued multilinear operators acting

on r vectors and s 1-forms. We call this the space of r-contravariant s-covariant tensors, tensors

of rank (r, s) or simply (r, s) tensors at p, denoted by T
(r,s)

p M . This space inherits the vector

space structure from the tangent space and its dual and it has dimension n(r+s). Together with

the tensor product

⊗ : T (r,s)
p M ×T

(m,n)
p M →T

(r+m,s+n)
p M , (2.14)

which is linear and associative, the direct sum of all tensor spaces on p forms an associative

(graded) algebra named tensor algebra at p. A map that assigns an (r, s) tensor at each p ∈O

such that it acts smoothly on all (smooth) vector and 1-form fields is a smooth tensor field
over O. The space of (r, s) tensor fields over O will be denoted by T (r,s)O. A tensor field which is

smooth over all M will be called just tensor field. Note that T (1,0)O and T (0,1)O are Γ(T O) and

Γ(T ∗O) respectively.

Given a chart xµU , the set of all elements of the form ∂Uµ1 ⊗ r...⊗∂Uµr ⊗dxν1
U ⊗ s...⊗dxνs

U forms a

basis of T
(r,s)

p M at each p ∈OU . Hence, an (r, s) tensor field T can then be written as

T = TU
µ1...µr

ν1...νs∂Uµ1 ⊗ r...⊗∂Uµr ⊗dxν1
U ⊗ s...⊗dxνs

U , (2.15)

and TU
µ1...µr

ν1...νs ≡ T
(
∂Uµ1 ...∂Uµr dxν1

U ...dxνs
U

)
are its components on that basis. The components

of the tensor product of T ∈T (r,s)O and S ∈T (p,q)O has components

(T ⊗S)Uµ1...µr+p
ν1...νs+q = TU

µ1...µr
ν1...νs SU

µr+1...µr+m
νs+1...νs+q .

An important operation on the tensor algebra is the contraction C i
j : T (r,s)

p M →T
(r−1,s−1)

p M

where 1≤ i ≤ r and 1≤ j ≤ s and such that

(C i
jTp)µ̃1...µ̃r−1

ν̃1...ν̃−1 = Tp
µ1...µi−1αµi+1...µr

ν1...ν j−1αν j+1...νs (2.16)
7In contexts where the Poincaré Lemma applies, all one forms can be understood as such.
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where (µ̃1...µ̃r−1)= (µ1...µi−1µi+1...µr) and (ν̃1...ν̃s−1)= (ν1... j j−1ν j+1...νs).

The Lie derivative along a vector X can be extended to tensor fields by suitably generalising

the pushforward map of the flow generated by X (see e.g. [125]). This leads to the notion of Lie

derivative of any tensor field on M , which satisfies the Leibniz rule with respect to the tensor

product as anticipated above. In a chart xµ the components of the Lie derivative of T ∈T (r,s)O

with respect to X ∈Γ(T O) can be written as

(LX TU )µ1...µr
ν1...νs =

∂(TU )µ1...µr
ν1...νs

∂xαU
(XU )α− (TU )α...µr

ν1...νs

(XU )µ1

∂xαU
− ...

− (TU )µ1...α
ν1...νs

(XU )µr

∂xαU
+ (TU )µ1...µr

α...νs

(XU )α

∂xν1
U

+ ...+ (TU )µ1...µr
ν1...α

(XU )α

∂xνs
U

(2.17)

As for vectors, LX T is a tensor of the same degree as T. The Lie derivative is a derivation in the

algebraic sense acting on the tensor algebra.

Now that we have defined tensor fields, of which 1-forms and vectors are an instance, we

know that they have been defined in a coordinate invariant way as linear operators on the

tangent and cotangent spaces. However, although they are invariant objects, their components

in a given coordinate frame, by definition, depend on the coordinates employed. To find out how

the components of a tensor in different coordinate basis on an overlap OUV ⊂M are related, we

shall make use of their covariance. Under a change of coordinates xµV (xαU ) on OUV , by definition

of differential, the coordinate dual basis vectors change as

dxµV = ∂xµV
∂xνU

dxνU (2.18)

where xµU (yαV ) only makes sense on the overlap OUV . Since we know that dxµV (∂Vν) = δµν the

coordinate basis vectors must change with the inverse transformation

∂Vµ =
∂xνU
∂xµV

∂Uν (2.19)

and if tensor fields are invariant under coordinate changes, their components must transform

covariantly as

TV
µ1...µr

ν1...νs =
∂xµ1

V

∂xα1
U

r...
∂xµr

V

∂xαr
U

∂xν1
U

∂xβ1
V

s...
∂xνs

U

∂xβs
V

TU
α1...αr

β1...βs . (2.20)

As a remark, let us point out that it is common to introduce tensors as objects with indices that

transform this way, but then their invariant nature under coordinate changes results rather

obscure.

2.2.4 Exterior algebra and differential forms

Tensors which exhibit symmetry or antisymmetry under permutations of their arguments can

form linear subspaces of the tensor algebra. Consider now the set Λs
pM of totally antisymmetric
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(0, s) tensors. This is a linear subspace of T
(0,s)

p M with dimension
(n

s
)
. We can also define the

space of all totally antisymmetric linear operators on TpM as the direct sum of all8 Λs
pM . This

set is a linear subspace of the tensor algebra with dimension 2n, but it is not a subalgebra

with respect to ⊗ because it is not closed under the tensor product. We can define the exterior
product

∧ :Λs
pM ×Λt

pM →Λs+t
p M as T ∧S =A(T ⊗S), (2.21)

where A(T) is the projection of any T ∈T
(0,s)

p M into Λs
pM , i.e., the antisymmetrization operator.

This operation is associative, linear and also has the property αp ∧βp = (−1)rsβp ∧αp where αp

and βp are r- and s-forms respectively. This product gives ΛpM the structure of a graded algebra

called exterior algebra of TpM . Proceeding analogously to tensor fields, a map that assigns

a (rank k) element of the exterior algebra for each p ∈O ⊂M in a smooth way is a differential

k-form field over O and belongs to ΛkO. The space of all differential forms over O is denoted as

ΛO. If the k-form field is smooth over all M we will call it just k-form.

Given a chart xµU , it can be verified that dxµ1
U ∧ ...∧dxµs

U is a basis of ΛsOU . A k-form α can thus

be written as

α=αUµ1,...,µk dxµ1
U ∧ ...∧dxµk

U (2.22)

where αUµ1,...,µk ≡αU [k1,...,ks] are totally antisymmetric coefficients called components of α in that

basis. The differential operator defined above to act on F (O)=Λ0O can be naturally extended to

act over ΛO. We define the differential or exterior derivative as

d :ΛO →ΛO such that d
(
ΛkO)⊆Λk+1O (2.23)

and it has the following properties:

1. Linearity in each ΛkO, this is d(α+β)= dα+dβ for any two k-forms α and β.

2. d f [X ]= X [ f ] for any vector field X ∈Γ(T M ) and scalar function f ∈FO.

3. d2 f = 0 for any scalar function f .

4. d(α∧β)= dα∧β+ (−1)kα∧dβ for any α ∈ΛkO and β ∈ΛO.

This last ‘sort of Leibniz rule’ turns d into an anti-derivation on ΛO in the algebraic sense. An

important property that follows from these properties is that d2β= 0 for any differential form.

Given a chart xµU and a k-form α over OU , the components of dα in such chart are

dαµ1...µk+1
U = (−1)k ∂αUµ1...µk

∂xµk+1
dxµ1

U ∧ ...∧dxµk+1
U (2.24)

8Note that (Λs>n)p(M )= {0}.
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From the respective definitions, it can be seen that both the pullback of a map φ : M →N and

the Lie derivative commute with the exterior differential

d(φ∗α)=φ∗(dα) and LX (dα)= d(LXα). (2.25)

Another operation that we can define on the exterior algebra is the interior product. Given a

vector field X ∈Γ(T M ), the interior product with X is the map

iX :ΛO →ΛO such that iX
(
ΛkO)⊆Λk−1O (2.26)

defined by iXα= C1
1(X ⊗α). This is also an antiderivation in the sense that it satisfies

iX (α∧β)p = iXα∧β+ (−1)kα∧ iXβ (2.27)

where α is an r-form and β any differential form. An important property of the interior product is

LX = iX ◦d+d◦ iX (2.28)

for any vector X ∈Γ(T M ).

2.2.5 Tangent, cotangent and tensor bundles

There is a very interesting class of manifolds whose main characteristic is that they look locally

like the cartesian product of two manifolds called (fiber) bundles. These objects are the natural

arena where connections live. We shall see below that the smooth structure of any manifold

canonically provides several bundles related to the manifold which stem solely from its smooth

structure. Among them, we will be interested in the tangent and co-tangent bundles and the

frame bundle. The tangent and co-tangent bundles are instances of vector bundles which are

somewhat simpler than principal bundles, the class of bundles to which the frame bundle belongs.

Let us then start by describing the tangent bundle, whose features will let us gain some intuition

for the later definitions of general vector and principal bundles.

The tangent bundle of M , dubbed T M , as the set of all tangent vectors to M , i.e., the disjoint

union of all the tangent spaces to M . A point in T M is of the form T M 3 P = (p, X ) = X p.

Therefore, there is a canonical (smooth) map π : T M →M such that π(p, X )= p called projection

that maps all the vectors tangent to a given point in M to that point. Therefore we have that

π−1(p ∈ M ) = TpM , which is called the fiber over p. This guarantees the existence of local

diffeomorphisms ΦU : OU ×Rn → π−1(OU ), called trivialising functions over each trivialising

patch OU ⊂ M , which allow to see T M locally as a product space. This provides T M the

structure of a vector bundle over M as will be clarified below.

With the help of these local diffeomorphisms, coordinates xµU in OU ⊂M provide coordinates

in π−1(OU ) ⊂T M by the smooth map (xµU , Xµ

U )◦ΦU : π−1(OU ) → R2n, where (xµU , Xµ

U ) maps the
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point (p, X ) ∈OU ×Rn to the ordered 2n-tuple
(
xµU (p), Xµ

U (p)
)

formed by the n coordinates of the

point p and the n components of the vector X p in the coordinate basis ∂Uµ at p, which are called

the fiber coordinates of (p, X ) in the trivialisation ΦU . In an overlap OUV , where xµV are smooth

functions of xµU , we have that the fiber coordinates associated to the trivialisations ΦU and ΦV

relate as

Xµ

V = ∂xµV
∂xνU

Xν
U (2.29)

which is a smooth and invertible transformation law as it is given by the Jacobian of the coordinate

transformation. Note that this is just the transformation law for components of a vector field

under a change of coordinate frame (2.20). The Jacobian here plays the role of transition function

between trivialising patches. Since the transition functions (Jacobians) belong to the matrix

group9 GLn, we say that GLn is the structure group of T M .

With this definitions, we see that the smooth structure of M canonically defines T M and

provides a smooth structure to it, which makes it into a 2n-dimensional manifold. Note that a

vector field can be seen as a map from M to T M which maps every point p ∈M to an element

of the fiber above that point π−1(p) in a smooth fashion. Such map is called a (cross) section of

T M , which is indeed a vector field on M . The space of sections of the tangent bundle is denoted

as Γ(T M ).

This construction can be adapted straightforwardly to the cotangent spaces at each point in M ,

leading to the co-tangent bundle T ∗M , as well as to the spaces of (p, q) tensors at each point

in M , which leads to the (p, q) tensor bundle T (p,q)M . However, both the cotangent and (p, q)

tensor bundles can also be canonically constructed in a more elegant fashion by applying the

associated bundle construction to T M (see below). A section of the co-tangent bundle is a 1-form

field on M , and a section of the (p, q) tensor bundle is a (p, q) tensor field on M . Although it

would be more correct to call Γ(T (p,q)M ) to the space of tensor fields on M , we will abuse of the

notation and use the symbol T (p,q)M for both the (p, q) tensor bundle and for the space of (p, q)

tensor fields over M to simplify the notation.

2.2.6 Frame bundle over M

Consider now the collection of all frames of tangent vectors at each point p ∈M , dubbed FM ,

and the (smooth) projection map π : FM → M assigning the point p to every frame of TpM .

The fiber π−1(p) consists of all frames in TpM . In contrast to the elements of T M (vectors),

which can be acted upon by GLn only when a particular basis has been chosen, the group of n×n

invertible matrices acts naturally on frames. Furthermore, this action is fiber-preserving, since

it transforms a frame at p into another frame at p, thus mapping each fiber onto itself. This

9We will write GLn or GLV to denote the group of changes of frames on an n-dimensional vector space V. We will
generally refer to real vector spaces, but most results apply to complex vector spaces as well.
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mapping is one-to-one and, therefore, given a particular element e ∈ π−1(p) (a frame at p) we

can write any other element f of the fiber above p as f= eg for some g ∈GLn. Therefore, we can

identify each fiber in FM with its structure group GLn, which acts on the right on each fiber

by its action on itself. This provides FM with a structure of principal GLn bundle, as will be

clarified below.

The local trivialisation of the frame bundle is made explicit by the diffeomorphisms ΦU :

OU ×GLn →π−1(OU ), which define the identity section σU associated to the trivialisation ΦU as

σU (p)=ΦU (p, e) where e is the identity element of GLn. Thus, we have that ΦU (p, g)=σU (p)g.

There is an associated diffeomorphism ΦU p : GLn → π−1(p) mapping the abstract fiber GLn to

each fiber π−1(p) by ΦU p(g) =ΦU (p, g). In an overlap OUV we have that ΦU p(g) = σU (p)g and

ΦV p(g)=σV (p)g which are generally different elements of FM but lay on the same fiber π−1(p).

Therefore, we know that tUV (p) =ΦU p ◦Φ−1
V p : GLn → GLn must be an element of GLn called

transition function such that ΦV (p, g)=ΦU (p, tUV (p)g). We say that g are the fiber coordinates

of ΦU (p, g) in the local trivialisation OU×GLn. As well, the transition functions satisfy tUV = t−1
VU

and tUV tVW tW X = tU X .

2.3 Bundles and connections

The tangent, co-tangent and frame bundles are examples of the various fiber bundles that are

canonically associated to any smooth manifold. In those instances, the original manifold acts as

the base space of the bundle, and the tangent spaces at each point as the fibers. These notions

can be generalised to construct general fiber bundles over a manifold. Since principal bundles

are the natural spaces where connections live, understanding their properties will help us in

understanding what are general affine connections and why they act the way they do on the

different physical fields.

2.3.1 Vector and frame bundles

A (smooth) fiber G-bundle, usually denoted as (B,π,M ,F,G), consists of three smooth man-

ifolds M , B and F respectively called total (or bundle) space, base space and (abstract)
fiber; a Lie group G that acts on the left on the abstract fiber F and is called structure group;

and a (smoth) projection map π : B → M such that π−1(p) is diffeomorphic to F for any point

p ∈ B. We say that π−1(p) is the fiber above p ∈ B. For an open cover of M by {OU } there exist

local trivialisation diffeomorphisms ΦU : OU ×F →π−1(OU ), and we say that the point ΦU (p, f )

has the fiber coordinates f on such trivialization. Naively, we shall see trivializations in a

similar way as we see coordinates on a regular manifold: they allow to express a point on the

bundle in a more familiar way which we know how to operate with. On an overlap OUV , the

diffeomorphisms ΦU p : F →π−1(p) defined by ΦU p( f )=ΦU (p, f ) define the transition functions

by tVU (p) f =φ−1
U p◦φV p( f ), where tUV is an element of G which corresponds to the transformation
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of F given by φ−1
U p ◦φV p. The fiber coordinates satisfy ΦV p( f )=ΦU p (tVU (p) f ), and the transition

functions must satisfy

tUV = t−1
VU and tUV tVW tW X = tU X . (2.30)

Note that given a base space and a fiber, their cartesian product forms a trivial bundle. Any fiber

bundle which admits a global trivialisation of the form M ×F is said to be trivial.

A (cross) section of B is a map σ : M → B such that σ◦π= id(M ). Hence, it associates to a

point p ∈ B an element of the fiber π−1(p) in a smooth way. The reason why it is called a cross

section is because it ‘goes across each fiber’ exactly one time as the argument travels through

the base space. All these constructions apply to any fiber bundle, but we are mostly interested in

bundles with fibers of particular types, namely vector spaces and Lie groups.

A rank k vector bundle is a fiber bundle E with fiber Rk (or any k-dimensional vector space)

equipped with its standard basis and with the structure group being GLk. The local trivialisations

are diffeomorphisms ΦU : OU ×Rk → π−1(OU ). Given a frame, the way in which the structure

group acts on the fibers is by matrix multiplication on its elements. Hence, given two local

frames eU = (eU1, ...,eUk) and eV = (eV1, ...,eV k) above the trivialising patches OU and OV , the

components of an element of X ∈π−1(OUV ) above the overlap will satisfy XV
a = tVU

a
b XU

b if the

two frames are related by eV a = eUb tVU
b

a where tUV ⊆GLk.

In general, rank k vector bundles naturally have GLk as their structure group and if it is not

explicitly stated otherwise, a rank k vector bundle has structure group GLk. However, if extra

structure (a G-structure) is specified such that the structure group can be reduced to a linear

subgroup G ⊂ GLk then we say that E is a rank k vector G-bundle and denote it by EG . In a

vector G-bundle, there is a preferred class of frames called G-frames such that in an overlap

OUV two such frames eU and eV are related by an element of G as eV a = eUb gb
a with gb

a ∈G.

We will generally use latin indices for fiber coordinates and components of the elements of

a general bundle and greek indices for coordinates on M and components of elements of T M

and T ∗M and the associated tensor spaces. A useful concept that allows to relate rank n vector

bundles over M to the tangent bundle T M is that of a (vector bundle) soldering form, which

is basically a linear isomorphism ‘gluing’ the abstract fiber of E to the tangent bundle. The

soldering can be seen either as a vector valued 1-form over T M or as a vector valued 1-form

on E. Therefore its components will have a latin index and a greek one, allowing to relate the

components of a vector in any n-vector bundle in a given frame to the components of the tangent

bundle in a coordinate basis.10 In particular, if the solder form is given by eU a
α it defines a frame

10The structure group of the tangent bundle is a representation of the diffeomorphism group on M (which can be
seen as the group of changes of coordinates on M ). Strictly, this is why we cannot consider arbitrary G-frames on
T M . To do that, one has to ’glue’ an abstract rank n vector G-bundle over M to T M through the soldering form,
which gives a canonical map of arbitrary G-frames from such vector G-bundle to T M .
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eU a from the coordinate frame ∂Uµ by eU a ≡ eU a
α∂Uα. The inverse isomorphism will be denoted

by eU a
α and will define the dual frames eU a = eU a

αdxa
U .

The rank k vector bundle E∗ over the same base space and with the same structure group as E

but with transition functions t∗UV = (t−1
UV )> is called the dual bundle of E. As well, two vector

G-bundles EG and E′
G with ranks k and k′ which share base space allow to define the tensor

product bundle as the rank kk′ vector G-bundle with transition functions tUV ⊗ t′UV . We will

see that these bundles can also be built from E via the associated bundle construction. Note that

the co-tangent bundle is the dual bundle of T M , and the bundle of (p, q) tensors over M is the

tensor product bundle T M ⊗ p...⊗T M ⊗T ∗M ⊗ q...⊗T ∗M .

We will see that physical fields are sections over various vector bundles that can be built above

the spacetime manifold. Thus, the concept of section in a vector bundle allows to generalise the

concept of vector (and more general) fields on M in a powerful manner. For instance, it allows to

define vectors on M that need not be tangent to M , or even belong to a vector space with the

same dimension as M . We see then that the concept of vector bundle generalizes that of tangent

bundle. The tangent bundle (and any tangent tensor bundle) is a particular case of vector bundle

over M with abstract fiber Rn and the fiber over each point TpM 'Rn. Its transition functions

belong to GLn and a (smooth) section of the tangent bundle is what we defined as (smooth) vector

field in M back in section 2.2.1. It can be proven that a rank k vector bundle is trivial E 'M ×Rk

if and only if there exist k linearly independent global sections, i.e., if and only if it admits a

global frame. When T M is trivial we say that M is parallelizable (such a manifold admits a

trivial connection, see section 2.3.2).

A principal G-bundle is a fiber G-bundle PG with its own structure group as abstract fiber

F =G. The structure group acts on the left on each fiber via transition functions as in any G-fiber

bundle, but there is also a right action RG : G →Diff(F =G) of the structure group on the abstract

fiber given by the right action of G into itself which is not possible in a general fiber G-bundle and

provides principal bundles of richer structure. Given a local trivialization ΦU : OU ×G →π−1(OU )

such that Φ−1
U p(u)= gu

U for u ∈π−1(OU ), this right action is defined by Rhu ≡ uh =ΦU p(gu
U h) for

any h ∈G.

The existence of this right action allows to define a local trivialisation from a local section in a

principal bundle, leading to the concept of identity section. Given a local section σU : M → PG

over OU ⊂M , there is a canonical local trivialisation defined as follows: to each up ∈π−1(p ∈OU ),

because the action of a group on itself is regular, there is a unique element gu
U ∈ G such that

u =σU (p)gu
U . The map defined by Φ−1

U (up)= (p, gu
U ) is a diffeomorphism mapping πOU →OU ×G,

and therefore its inverse is a local trivialisation. Conversely given a local trivialisation, {ΦU ,OU }

of PG , the identity section associated to such trivialisation σU is defined by σU (p)=ΦU (p, e),

where e is the identity element of G. Note that the right action of G on σi(p) ∈π−1(p) is σU (p)h =
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ΦU (p, eh)=ΦU (p,h), which is why σU is called the identity section associated to ΦU .

A relevant instance of principal bundle is the bundle of frames of sections of a rank k vector

bundle E, namely the frame bundle of E, denoted by FE. An element of FE is a frame of E over

a point p ∈M . Note that, whereas GLk does not have a natural action on vectors in the fibers

of E until a basis in Rk is chosen (then GLk acts on the fibers by matrix multiplication), this is

not the case for FE where GLk acts canonically on frames via matrix multiplication, without

having to make any arbitrary choice.11 Thus, the fibers of FE can be identified with the matrix

group GLk as follows: Consider a frame eU = (eU1, ..., eUk) on a trivialising neighbourhood OU .

Then, because the action of GLk on the space of frames is regular, to each element of the fiber

over p ∈OU , fU ∈π−1(p) where fU = (fU1, ...,fUk) corresponds a unique gf ∈GLk such that fU can

be written as fU = eU gf or if matrix multiplication is written explicitly as fUb = eUa gfa
b. This

proves that the fibers of FE can be identified with the abstract fiber GLk, and FE is a principal

GLk bundle. In the next section we will see that given a vector G-bundle E, there is a unique (up

to isomorphism) associated principal G-bundle which is FGE. This allows to canonically build

the frame bundle of any smooth manifold FM as the unique principal GLn-bundle associated

to T M . Note that, as usual in the literature, we use the notation FM instead of FT M for the

frame bundle of a manifold.

Note that, if provided with a G-structure, we can also consider the bundle of G-frames of E,

dubbed as FGE. It is possible to see in an analogous manner that FGE is a principal G-bundle.

For instance, structures such as orientation, volume forms or (pseudo)-Riemannian metrics on

M allow to reduce the structure group of FM from GLn to GL+
n, SLn and On respectively. We

will write FGM for the G-frame bundle of M .

The associated bundle construction: relating frame and vector bundles

Two G-bundles over the same base space and sharing trivializing neighbourhoods and transition

function are said to be associated bundles. Associated bundles are unique (up to bundle

isomorphism): given a principal G-bundle and a left action of G a manifold F, there is a unique

associated G-bundle with fiber F. As well, there is a unique principal G-bundle associated to a

given G-bundle.

A common way of finding associated bundles is through representations ρ(G)⊆GLk of structure

groups G, which associates a vector G-bundle to a G-frame bundle as follows. Let PG be a

principal G-bundle over M with transition functions tUV on overlaps OUV , and ρ : G →GLm a

representation of G into some matrix subgroup of a general linear group ρ(G)⊆GLm. There is a

canonical rank m vector G-bundle over M with transition functions ρ(tUV )≡ ρUV on the same

overlaps OUV . We denote that vector bundle as Eρ

G and we say that PG and Eρ

G are associated

11Recall that general linear groups can be seen as the group of changes of frame.
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though ρ(G). A rank k vector G-bundle Eρ

G is associated to its G-frame bundle FGE. We also say

that the rank m and k vector bundles Eρ

G and EG are associated through ρ.

A nice property of G-frame bundles of M is that they have a canonical (principal) soldering

form12 of their tangent bundle T FGM to their associated vector G-bundle given by the dif-

ferential of the projection: π∗ : T FGM → T MG . At a point ep on FGM , which corresponds

to a frame eU over the point p ∈ OU , π∗ projects V ∈ Tep FGM down to T MG and takes the

components of the resulting vector13 π∗(ep,V ) ∈TpM in the Rn-frame eU . The definition using

the projection makes the soldering form trivially horizontal. By pulling θG back to T MG via

the identity section over OU we find a T MG-valued 1-form in M , denoted by eU = σ∗
Uπ∗. We

say that eU : T MG →T M ‘solders’ the elements in the vector G-bundle associated to FM to

the tangent bundle of M with the canonical structure group of T M , i.e., a representation of

Diff(M ). As we will see, the existence of a soldering form will allow to define the torsion of a

linear connection on T M , which does not make sense for linear connections in general vector

bundles unless they are also soldered to T M .

Let us mention several instances of vector bundles associated to another vector bundle which

are relevant in physics. Given a rank k vector G-bundle EG , consider the dual representation

by ρ∗ : G →G such that ρ∗(tUV )= (t−1
UV )> where G is a subgroup of GLk. We have that Eρ∗

G ≡ E∗
G .

Particularly, note that the T ∗M is the associated bundle to T M through the dual representation.

As well, the (p, q) tensor representation ρ⊗ p...⊗ρ⊗ρ∗⊗ q...⊗ρ∗ leads to the (p, q) tensor bundle as

EG ⊗ p...⊗EG ⊗E∗
G ⊗ q...⊗E∗

G . As a last example, consider the adjoint representation of a Lie group

G given by Ad : G →GL(g) by Ad(g)≡ Adg = Lg∗ ◦Rg−1∗ : g→ g where g is the Lie algebra of G,

namely g≡TeG. The adjoint bundle EAd is the vector Ad(G)-bundle with fiber g and transition

functions Ad(tUV )≡ AdUV = L tUV∗ ◦Rt−1
UV∗ ∈GLg.

2.3.2 Connections on bundles

In a general fiber bundle B, the projection π : B → M allows to define a canonical notion of

verticality of its tangent vectors as vectors which are tangent to the fibers. Intuitively, since

vectors are directional derivatives, a vector tangent to a fiber will be a directional derivative along

the fiber, which given that moving along a fiber implies laying above the same base space point,

should vanish when projected down to the base space. Hence, a vector is vertical if its projection

to the base manifold vanishes. More precisely, a tangent vector to the fiber bundle X ∈Γ(T B) is

vertical if π∗(X )= 0 where π∗ is the pushforward of π (see section 2.2.1). The subset of vertical

vectors at q ∈ B forms a vector subspace called vertical subspace VqB, and the disjoint union of

12The canonical soldering form of the frame bundle induces a canonical soldering of its associated vector G-bundle
to T M . A soldering form on the frame bundle is an Rn-valued form on FM

13Note that the fibers of T MG are still the tangent spaces to M at its points, although the diference between
T M and T MG is that the second is a vector G-bundle while the former is a vector bundle with structure group a
representation of Diff(M ).
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all the vertical subspaces form the vertical bundle V B, which is a sub-bundle of T B with the

vertical subspaces as fibers, and can be seen as a distribution in T B. The notion of verticality of

vectors tangent to B allows to define a notion for horizontality for p-forms on B: A p-form on B is

a horizontal form if it vanishes when any of its arguments is a vertical vector.

Note that the existence of a canonical notion of vertical tangent vectors relies in the projection

to the base space that comes with the deffiniton of fiber bundle. We could then ask whether there

is any canonical notion of horizontal tangent vectors. There would be one (built in full analogy

to vertical vectors) if there was a canonical projection from the bundle to the abstract fiber F.

Although for trivial bundles B =M ×F we can define such canonical projection, that is not the

case for general fiber bundles, and therefore, there is no canonical notion of horizontality in

general fuber bundles. The extra structure needed to define a sensible notion of horizontality on

a general fiber bundle is that of an Ehresmann connection.

An Ehresmann connection is a (smooth) assignation of a horizontal subspace HpB at each

point p ∈ B such that TpB =VpB⊕HpB. The smoothness of the separation, carried out by defining

a vertical projection, allows to define the horizontal bundle or horizontal distribution HB and

have that T B =V B⊕HB as the direct sum of bundles. Given that p-forms define distributions

in a natural manner, an Ehresmann connection is specified by a vector valued connection
1-form on B, which is a (local) V B-valued 1-form on B denoted by ω, that defines the horizontal

distribution as its kernel HV = ker(ω), i.e., that projects to he vertical subspace. Explicitly, from

T B = V B⊕HB we can write any tangent vector to B as X = X H + XV and ω(X ) = XV where

X H ∈ HB and XV ∈V B. Having this notion of horizontality, we can define vertical forms as those

which vanish whenever any of the arguments are vertical. A type of Ehresmann connections that

are interesting to us are linear Ehresmann connections, which are Ehresmann connections on

vector bundles whose connection 1-form is linear in the fiber coordinates. We will see that this is

equivalent to a Koszul connection which is a generalization of affine connection

In a principal G-bundle, a G-compatible splitting TpPG =VpPG ⊕HpPG defines a principal
G-connection, where G-compatibility means that Hpg = Rg∗Hp. This splitting is defined by

the principal connection 1-form ωG , which is a g-valued vertical 1-form on PG that projects any

element of TpPG into VpPG ' g. The compatibility with the right G-action is expressed through

the property R∗
gω

G = Adg−1ωG . On a principal bundle PG , an Ehresmann connection such that

Hpg = Rg∗Hp defines a principal G-connection. As well, a principal connection 1-form ωG defines

a G-compatible Ehresmann connection 1-form ω through the pushforward of the right G-action

RG∗ : g→T PG since RG∗(ωG(X ))= XV =ω(X ) where X ∈T PG .

A connection on a rank k vector bundle E, called linear or Koszul connection, is a linear

map ∇ :Γ(E)→Γ(E⊗T ∗M ) that maps sections on E (vectors) to sections on E⊗T ∗M (E-valued
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1-forms on M ) and which satisfies the following Leibniz rule

∇( f X )= f (∇X )+ X ⊗d f (2.31)

for any f ∈F (M ) and X ∈Γ(E). Given a frame eU on E over OU ⊂M there exists a gl(k,R) matrix

of 1-forms over OU called connection 1-forms ωU
a

b such that

∇eUb = eUa ⊗ωU
a

b. (2.32)

Using a chart xµU we can write ωU
a

b = ωUµ
a

bdxµU , and we call ωUµ
α
β the connection coeffi-

cients of ∇ in the chart xµU and the frame eU . Thus, for a general section X ∈ Γ(E), we have

that

∇X = eUa ⊗
(
dX a

U +ωa
U b X b

U

)
≡ eUa ⊗∇X a

U , (2.33)

where X = X aeUa. Equations (2.32) and (2.33) are also known as Cartan structure equations

associated to ∇.

We call covariant derivative of X ∈ Γ(E) in the Y ∈ Γ(T M ) direction to ∇Y X ≡ (∇X )[Y ].

Given a chart xµU where Y =Y µ

U∂Uµ we write

∇Y X = eUa ⊗Y µ

U

(
∂UµX a

U +ωUµ
a

b X b
U

)
≡ eUa ⊗Y µ

U∇µX a
U (2.34)

where ∇µ ≡ ∇∂Uµ
. Note that ωa

b = ωUµ
a

bdxµU depends linearly on the fiber coordinates. It is

possible to show that a Koszul (and therefore affine) connection on a vector bundle is univocally

related to a linear Ehresmann connection on that vector bundle and vice versa. If the vector

bundle is the tangent bundle of the base space M , the covariant derivative seen as an operator

∇ : Γ(T M )×Γ(T M ) → Γ(T M ) is usually regarded as the definition of affine connection on a

manifold.

The matrix of curvature 2-forms θU
a

b of the connection ∇ is defined as

θU
a

b = dωU
a

b +ωU
a

c ∧ωU
c

b ≡
1
2

RU
a

bµνdxµU ∧dxνU (2.35)

where the coefficients RU
a

bµν are the components of the Riemann curvature tensor of ∇ in the

given frame and chart. A linear connection univocally defines (and can be defined as) a notion to

relate elements of the different fibers of E that generalises that of parallelism known as parallel
transport. We say that a section X ∈Γ(E) is parallel along a curve γ(t) :R→M if ∇γ̇(t)X = 0.

We can generalise the action of a connection to act on p-form sections of E (note that as defined

above it acts on 0-form sections of E). This generalization leads to the exterior covariant
differential ∇ :Γ(E⊗T ∗M p)→Γ(E⊗T ∗M p+1) mapping E-valued p-forms to E-valued (p+1)-

forms on M by

∇(X ⊗α)= (∇X )∧α+ X ⊗dα. (2.36)
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The fact that ∇X is a 1-form section of E implies that on an overlap OUV we have (∇X )U =
(∇X )V , which requires that ωV

a
b = t−1

UV
a

cωU
c

d tUV
c

b+t−1
UV

a
cdtUV

c
b or if writing implicitly matrix

multiplication

ωV = t−1
UVωU tUV + t−1

UV dtUV (2.37)

where ωU and ωV are the local matrices of connection 1-forms over the patches OU and OV . From

this relation, it is straightforward to see that the difference of two Koszul connection 1-forms

(associated to different connections) transforms as a global 1-form on M , namely ωV − ω̃V =
t−1
UV (ωU − ω̃U ) tUV .

Supose now that we reduce the structure group of E to some subgroup G ⊂ GLk so that ∇
is a Koszul connection on a rank k vector G-bundle. We say that ∇ is a G-connection if the

parallel transport of a G-frame along any curve γ(t) :R→OU ⊂M is also a G-frame. The matrix

of 1-forms of a G-connection is a g-valued 1-form. To prove it, let eU be a G-frame over OU at

and ∇ a G-connection. Then, any parallelly transported G-frame fU (t) along γ(t) must also be

a G-frame, and therefore can be written as fU (t) = eU g(t) where g(t) ∈ G ∀t. Because fU (t) is

parallelly transported along γ(t), we have that (∇fUa)[γ̇]= 0 for each vector in the frame. Then

fUb ⊗
[
g−1b

cωU
c

d[γ̇]gd
a + g−1b

cdgc
a[γ̇]

]
= 0 ∀ t (2.38)

Using that g(t) is a 1-parameter subgroup of a Lie group we have that dg[γ̇]= g(t)g′(0) where

g′(0) ∈TeG ≡ g, and therefore g−1b
cdgc

a[γ̇]= g′(0)b
a ∈ g. For the above equation to vanish along

any curve and for all parallelly transported frames, the first term has to cancel g−1b
cdgc

a[γ̇]

and therefore it is also in g. Finally, we have that L∗g ◦R∗g−1 maps g to itself, and therefore

L∗g ◦R∗g−1
(
g−1ωU [γ̇]g

) = ωU [γ̇] ∈ g c.v.d. An Ehresmann connection will be an Ehresmann G-

connection if it is associated to a Koszul G-connection.

Associated connections

Given a Koszul G-connection ∇ on a rank k vector G-bundle EG and a (faithful) linear represen-

tation ρ : G →GLm, the associated bundle construction canonically induces a linear G-connection

on the rank m vector G-bundle Eρ

G in the following way. Let ωU be the g-valued connection 1-form

associated to a frame eU over a trivialising patch OU such that ∇eUa = eUb ⊗ωU
b

a. Then the

pushforward of the representation ρ∗ : g→ glm canonically defines the ρ∗(glm)-valued connection

1-form ω
ρ

U on OU by its action on X ∈Γ(T M ) as

ω
ρ

U [X ]= ρ∗(ωU [X ]). (2.39)

It can be verified that in an overlap OUV the induced connection 1-form transforms as a connection

one form

ω
ρ

V = ρ−1
UV ω

ρ

U ρUV +ρ−1
UV dρUV (2.40)
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where ρUV ≡ ρ(tUV ) are the transition matrices of Eρ

G . We call these (Koszul) connections associ-
ated connections through ρ.

There is as well a canonical principal connection on FGE defined by the g-valued connection

1-form on FGE

ω∗ = g−1
U π∗(ωU )gU + g−1

U dgU (2.41)

where gU are the fiber coordinates of the point at which ω∗ is considered. It is possible to verify

that this satisfies the requirements for a principal connection 1-form, and that it does not depend

on the trivialising patch, i.e., that it is indeed a global object in FGE, see e.g. [122,124]. As well,

given a G-connection on FGE the pullback of the principal connection 1-form by the identity

section σU : OU → FGE over each trivialising neighbourhood OU induces a G-connection 1-form

on EG over OU . For these connections to be canonically associated (meaning that having one we

have the other without any extra structure) we need that if the connection on FGE is induced

from a G-connection on EG by (2.41), the pullback of ω∗ by the identity sections lead to the

original G-connection 1-form on EG over each trivialising patch. That this is the case can be seen

as follows. σ∗
i : T ∗

σi(p)FGE →T ∗
p M maps g-valued 1-forms on FGE to g-valued 1-forms on M . By

definition of pullback we have

(σ∗
Uω

∗)[X ]=ω∗[σi∗X ]= g−1
U (π∗ωU )[σU∗X ]gU + g−1

U dgU [σU∗X ]. (2.42)

By definition of identity section we have that the fiber coordinates of the point σU (p) ∈π−1(p) are

gU = e ∀ p ∈ OU . Therefore dg vanishes along σU∗X , arriving at (σ∗
Uω

∗)[X ] = π∗(ωU )[σU∗(X )]

which by definition of pullback is ωU [(π∗ ◦σU∗)X ]. By definition of section π◦σU = id(M ) and

using the properties of the pushforward map π∗ ◦σU∗ = (π◦σU )∗ = id(M )∗ = id(TpM ) ∀ p ∈M .

Therefore ωU [π∗ ◦σU∗(X )]=ωU [X ] and we have arrived at

σ∗
U (ω∗)=ωU (2.43)

c.v.d.14 We say that the principal and Koszul connections described by ω∗ and ωU are also

associated connections. In general, we will talk about associated connections as being ‘the

same connection acting on associated bundles’, and we will denote all of them by ∇. Some relevant

examples of associated connections that are of common use are the connection on the dual and

tensor bundles. Given a Koszul G-connection on EG described by the 1-form ωU in the frame

eU the trivialising patch OU , the dual vector bundle E∗
G was defined in section 2.3.1. The above

algorithm leads to an associated connection on E∗
G which in the dual frame to eU is described by

the connection 1-form

ω
ρ∗
U [X ]=−ωU [X ]> (2.44)

where X ∈Γ(T M ). Therefore, when acting on a section of the dual bundle X ∈Γ(E∗
G) such that

X = XU a eaU (where eU is the dual frame to eU ) we can write

∇XU a = dXU a +ω>
U

a
b XU b = dXU a −ωU

b
aXU b. (2.45)

14This is the Valencian way for q.e.d. A litlle hommage to my high school math teacher.
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As expected, this leads to the usual law for covariant differentiation of (0,1) tensors. Now we

can generalize this to the (p, q) tensor representation, which leads to the usual law for covariant

differentiation of (p, q) tensors. We will write it for the particular case of (1,1) tensors but the

result is well known in general

∇TU
a

b = dTU
a

b +ωU
a

cTU
c

b −ωU
c

bTU
a

c. (2.46)

2.4 Noncanonical structures on a smooth manifold

We have presented all the canonical structures that exist in any smooth manifold and that

are based solely on its differential structure. However, in order to do physics, there are other

structures, that are not canonical, that we wish to introduce on a manifold, in order for it to be

what we know as a space-time.

2.4.1 Orientation and volume element

First of all, we would like to present the notion of orientability and that of volume element.

This notion is fundamental in order to be able to define an arrow of time. We will also see that

any orientation in an n-dimensional manifold provides a volume element.

Given an n-dimensional (real) vector space V , two basis in V are said to have positive orientation

if the GLn transformation relating them has positive determinant. An n-dimensional manifold M

is called orientable if there exists an atlas for M having positive Jacobians in each overlap of its

charts. This is true if and only if there exists a smooth n-form that does not vanish anywhere in

M . In an orientable manifold, it is possible to pick up an orientation in each TpM in a continuous

manner. In such a manifold, a pseudo-tensorial object is a tensor that changes sign under a

change in orientation.

Given that the space of n-forms in an n-dimensional manifold is a 1-dimensional vector space,

an n−form that does not vanish anywhere on M has definite sign. Note that if there is an n-form

dV that does not vanish anywhere, then any n−form a(p)dV where a ∈ FM is also nowhere

vanishing also has definite sign. A choice for a particular nowhere vanishing n-form dV in M

assigns an orientation to M , and the pair (M ,dV ) is called an oriented manifold, where dV

is its volume element. Any orientation of the form adV with a ≤ 0 is said to assign opposite

orientation to M as compared to the one assigned by dV . The volume element provides a notion

of volume spanned by an n-tuple of linearly independent vectors at a point p ∈M . This notion

allows to define integration of n-forms in any n-dimensional smooth manifold (see e.g. [126]).

A volume form dV also defines a canonical isomorphism ?dV : F (O)→ΛnO over O ∈M by

?dV f = f dV , (2.47)
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with the property dV = ?dV 1. This isomorphism allows to define the divergence operator
DivdV :Γ(T O)→F (O) associated to that volume form by its action on a vector field X ∈Γ(T O)

as

d
(
iX dV

)=DivdV (X )dV . (2.48)

This operator plays a crucial role in defining conserved quantities in a covariant way through a

particular instance of the celebrated Stokes’ theorem that can be stated when the volume form is

associated to a metric, namely the Gauss-Ostrogradski theorem (see chapter 3 for more details).

2.4.2 Metric structure

The metric structure is central in physics, as it allows to define a notion of distance between

any two space-time points. Furthermore, it provides for a canonical choice of volume element as

well as a connection on M and its associated bundles, as we will see below.

In physics, a metric structure on M is a nonsingular (0,2) tensor field g ∈T (0,2)M . Because

it is nonsingular, a metric tensor has an inverse metric tensor g−1 ∈ T (2,0)M such that in

any basis (g−1
U )µαgUαν = δµν. For simplicity we write gU

µν = (g−1
U )µν. The pair (M , g) is called

(pseudo-)Riemannian manifold.

The metric of physical space-time will be pseudo-Riemannian, meaning that its eigenvalues

are (1,−1,−1,−1). Thus, there is a frame eU on a neighbourhood of any point p ∈OU such that

g(eUa,eUb)≡ gU ab = ηab where η is the (mostly minus) Minkowski metric when written in carte-

sian coordinates. Given such a basis, any other basis ẽU related to it by a local Lorentz transfor-

mation, i.e., an element of O(1,3), also satisfies g(ẽUa, ẽUb)= ηab. Indeed any such transformation

at p leaves invariant g(X ,Y ) for any two vectors defined at p. Therefore, a pseudo-Riemannian

manifold is canonically endowed with a local O(1,3) symmetry15 and a local lightcone structure

that allows to label vectors as timelike, spacelike or null according to the sign of their norms.

The existence of an O(1,3) metric structure provides T M and associated bundles with an

SO+
(1,3)-structure, thus allowing to reduce the structure group of the frame bundles to SO+

(1,3),

yielding the bundle of positively oriented orthonormal frames over M and the associated tangent

bundles with structure group SO+
(1,3). As we will clarify below, (Dirac) spinor fields will be sections

of an associated vector bundle via the spinor representation of SO+
(1,3) called the spin bundle.

A metric structure on M provides a local linear isomorphism Ig : TpM →T ∗
p M by associating

to a vector X the 1-form Ig X (Y )= g(X ,Y ). In components, it works as follows: given a frame eU

on T OU ⊂T M and its dual frame eU , the components of Ig X when written in the dual frame

eU are

(Ig X )µ ≡ XUµ = gUµαXU
α. (2.49)

15Any metric structure on a manifold provides a local symmetry group.
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Whenever there is a metric, we will write the components of a vector and those of its associated 1-

form with the same symbol without making explicit the use of this isomorphism. This isomorphism

extends in a straightforward manner to (p, q) tensor fields and p-forms, and is also used to rise

and lower the indices of these objects.

A metric also provides us with a volume form as follows. The metric volume (pseudo) form

dV g is the unique n-form on M that associates to an orientation of TpM and any positively

oriented orthonormal basis the value +1. In an orthonormal coordinate system xµU at p ∈OU the

volume form dV g must be of the form ±dx1
U ∧ ...∧dxn

U where the sign is defined by the choice of

orientation. It can be seen that in general coordinates the expression for dV g reads

dV g =p−gU dx1
U ∧ ...∧dxn

U (2.50)

where −gU stands for the absolute value of the determinant of g in the given chart.

A metric g also induces a canonical isomorphism ?g :ΛkOU →Λn−kOU coined as Hodge dual
that generalises the ?dV isomorphism defined by any volume form. We will give its definition

only in local coordinates xµu, and it is as follows. Let F = FUµ1...µk dxµ1
U ∧ ...∧dxµk

U be a k-form on M .

Its Hodge dual is the (pseudo) (n−k)-form ?gF = (?gF)Uµ1...µn−k dxi1
U ∧ ...∧dxin−k

U on M defined by

(?gF)Uµ1...µn−k =
p−gU Fµ1...µk

U εµ1...µkµk+1...µn (2.51)

where εµ1...µn is the Levi-Civita symbol of n indices. It can be seen that ?g?g F = (−1)k(n−k)+sF

where s is the number of negative eigenvalues of the metric (0 for Riemannian metrics and 1 for

Lorentzian metrics), generalising the analog property of ?dV . The components of the Hodge-dual

of a contravariant k-form can be seen to be

(?gF)Uµ1...µn−k = (−1)s
p−gU

FUµ1...µkε
µ1...µkµk+1...µn . (2.52)

The Hodge dual allows to write the divergence operator associated to the volume element of the

metric, namely Divg as

Divg X =?gd?g Ig(X ), (2.53)

which can be straightforwardly generalised to act on the covariant version of arbitrary p-forms.

Apart from the divergence operator, the Hodge dual can also be used to define another differential

operator that is canonical in presence of a metric, namely the codifferential operator δg :ΛkO →
Λk−1O by its action on any k-form F as

δgF = (−1)n(k+1)+s+1?g d?g F. (2.54)

Because ?g
2 ∝ 1 and d2 = 0 it is straightforward to check that δ2

g = 0 as well. This allows to

define a generalisation of the Laplacian and d’Alembertian operators to arbitrary manifolds with

metric called Laplace-de Rham operator and dubbed by 2g :ΛkO →ΛkO as

2g = dδg +δgd. (2.55)
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These operators play a crucial role in physical theories where the physical fields are sections of

the bundle of k-forms over spacetime, particularly in gauge theories where matter and gauge

fields are 0- and 1-form sections of some vector bundle over spacetime.Through this work, we

will generally use volume elements associated to a metric, so that, in general, we will drop the

subindices of the Hodge operator to ease the readability of the notation.

Another relevant notion that is canonically defined by a metric structure is that of Killing

vector fields. We say that X ∈Γ(T M ) is a Killing vector field if

LX g = 0. (2.56)

The infinitesimal interpretation is that X generates infinitesimal isometries of the metric. Namely,

an infinitesimal diffeomorphism xµU 7→ xµU + εXU
µ generates a change in the metric given by

δεg = εLX g. Therefore, Killing vector fields are associated to infinitesimal diffeomorphisms that

leave g invariant. The one parameter groups of transformations generated by Killing vector fields

leave the metric (and therefore the local geometry of a (pseudo-)Riemannian manifold) invariant,

and therefore their generators will be associated to symmetries of the metric.

Spin structure and spin bundle S M

A (pseudo)-Riemannan metric on M is equivalent to a G-structure on FM , where G is the

orthogonal group associated to symmetries of the metric. For a Minkowskian metric, this group

is O(3,1), and by choosing the canonical orientation and volume form associated to the metric,

we can reduce it to an SO+
(3,1) structure on FM , which allows to define the frame of positively

oriented (and time-oriented) orthonormal bundles over M FSO+
(3,1)

M .

Spinor representations are typically understood as representations of the Spin groups, which

are the double cover groups of special orthogonal groups. Particularly, there is a 2 to 1 homo-

morphism Λs : SL(2,C) → SO+
(3,1) such that Λs(A) =Λs(−A) yielding a two-valued spinor repre-

sentation of SO+
(3,1) as the usual representation of SL(2,C) in terms of 2×2 complex matrices. In

this representation, every Lorentz transformation is associated with two matrices ±A ∈ SL(2,C).

Choosing one of both matrices, this representation, usually dubbed as D(1/2,0), is the spinor
representation of SO+

(3,1), and acts on left handed spinors ΨL. The (complex) dual representa-

tion (see 2.3.1) using A†−1 and denoted D(0,1/2) is called cospinor representation of SO+
(3,1)

and acts on right handed spinors.

There is a representation ρs : SL(2,C) →GL(4,C) which we call Dirac representation defined by

ρs(A)=
(

A 0

0 A†−1

)
(2.57)
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which acts naturally in Ψ= (ΨL,ΨR)> ∈C4 dubbed as D (1/2,1/2). The 4-component spinors acted

upon by D (1/2,1/2) are called Dirac spinors. In order for the Dirac operator to be well defined,

Dirac spinors should transform under a Lorentz transformation Λ(A) as Ψ 7→ ρs(A)Ψ.

Consider now a manifold with a pseudo-Riemannian metric g. This induces an SO+
(3,1)-structure

on the frame bundle, which can be reduced to FSO+
3,1

M and over a trivialising patch OU ∈ M ,

an orthonormal frame eU satisfies g(eUµ,eUν) ≡ gUµν = ηµν where in an overlap OUV 3 p we

have eV (p) = eU (p)tUV (p) whith tUV (p) ∈ SO+
3,1. While in Minkowski space the choice among

the two possibilities ±A ∈ SL(2,C) for a given Lorentz transformation Λ(±A) is global, the choice

among ±A(p) = t̃UV (p) ∈ SL(2,C) corresponding to Λ(p) = tUV (p) ∈ SO+
(3,1) must be carried in a

smooth manner. If this can be satisfied and the chosen matrices t̃UV (p) also satisfy the transition

function conditions (2.30) we say that there is a lift of the structure group of T M from SO+
(3,1) to

SL(2,C) and we say that M has a spin structure.

If M has a spin structure, the complex rank-4 vector bundle S M associated to the SL(2,C)

tangent bundle through ρs, which according to the associated bundle construction has transition

functions ρs
UV ≡ ρs(t̃UV ), is the Dirac spinor bundle over M .

2.4.3 Connections on M

Although the tangent spaces of a manifold are smoothly patched together in the tangent bundle,

there is no canonical way in which to relate tangent spaces at different points i.e different fibers

of T M . An affine connection on M provides such a notion as a particular case of vector bundle

Koszul connection. As we saw in section 2.3.2, we can build connections on the associated bundles

to EG from a Koszul G-connection on EG . Thus, by giving an affine connection to M , we will be

able to canonically induce connections in the tensor and spinor bundles of M .

Affine connections as linear connections on T M

An affine connection on M is a Koszul connection in T M . As seen in section (2.3.2), this is

equivalent to a bilinear operator ∇ : T M ×Γ(T M )→Γ(T M ) called covariant derivative that

assigns (in a smooth way) a vector ∇Yp X ∈TpM to a vector Yp ∈TpM at p and a vector field X

near p ∈M in a way which satisfies the following Leibniz-like rule for smooth functions at p

∇X p ( f Y )= X p[ f ]Y + f∇X p Y . (2.58)

By in a smooth way we mean that if X is a smooth vector field, then ∇X Y must also be smooth.

In a coordinate frame ∂Uµ on T OU , there exists a set of coefficients ΓU
α
µν such that

∇µ∂Uν =ΓU
α
µν∂Uα. (2.59)

These symbols are called coefficients of ∇ in the coordinate frame ∂Uµ, and the analog of (2.34)

∇µXν
U = ∂UµXν

U +ΓU
ν
µαXα

U (2.60)
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By using the canonical soldering form of the frame bundle FM into the tangent bundle T M ,

we are able to use noncoordinate (or nonholonomic) frames in T M by eU a = eU a
α∂Uα and

eU a = eU a
αdxαU . We can then define the connection coefficients in a general frame as done in

(2.32) by ∇eU a = eU bωUµ
b

adxµU . Then, it is straightforward to see that

ωUµ
a

b = eU a
α

(
∂UµeU b

α+eU b
νΓU

α
µν

)
(2.61)

where ∂UµeU b
α is the component expresion of deU b

α. Given that ωa
b =ωUµ

a
bdxµU , we have that

ωU k
a

b = eU k
µωUµ

a
b. From the general relation between the connection coefficients in trivialising

charts of an overlap OUV (2.37), we can find the relation between the connection coefficients in

different coordinate charts of an overlap OUV as

ΓV
α
µν =

∂xαV
∂xβU

[
∂xρU
∂xµV

∂xσU
∂xνV

ΓU
β
ρσ+

∂2xβU
∂xµV∂xνV

]
. (2.62)

Given any pair of vector fields, the curvature transformation of an affine connection is the

linear transformation R(X ,Y ) on each TpM defined by

R(X ,Y )= [∇X ,∇Y ]−∇[X ,Y ]. (2.63)

In a coordinate frame ∂Uµ, this transformation can be written as a matrix R(∂Uµ,∂Uν)α jβ =
RU

α
βµν, and therefore RU

α
βµν are the components of a (1,3) tensor called Riemann curvature

tensor of the affine connection, which are given by

RU
α
βµν = 2∂[µΓU

α
ν]β+2ΓU

α
[µ|σ|ΓU

σ
ν]β, (2.64)

Given the canonical soldering form, we can write the components of the Riemann tensor in

an arbitrary frame eUµ, and it is possible to see that we can also define the (local) matrix of

curvature 2-forms θU
a

b defined in (2.35) can be written as

θU
a

b =
1
2

RU
a

bkl ekU ∧ elU . (2.65)

To each affine connection (or a connection in any vector bundle with a soldering to T M ),

besides from the curvature tensor, we can always associate another geometric object named

torsion tensor. This can be done using vector-valued p-form notation or usual tensorial notation.

Given an affine connection, its vector valued torsion 2-form τ is defined by its action on two

vector fields X ,Y as

τ[X ,Y ]=∇X Y −∇Y X − [X ,Y ]. (2.66)

Given a frame eUa we have that τ= eUa ⊗τU
a where τU

a can be written as

τU
a = 1

2
TU

a
i j eiU ∧ ejU (2.67)
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and TU
a

i j is the torsion tensor which in an arbitrary frame can be written as16

TU
a

i j = 2ωU
a

[i j] −2[eU i,eU j]a. (2.68)

Note that this only makes sense if X and Y can be identified via soldering with objects belonging

to T M . Therefore, in a coordinate frame, we have that TU
α
µν = 2ΓU

α
[µν]. This is the reason why

a torsionless connection is also called symmetric. If we have a connection, there is a nice relation

between its coefficients in a frame, the exterior derivative of the elements of the dual frame, and

the torsion 2-form. Such relation completes Cartan’s structure equations, and reads

d eU a =−ωU
a

b ∧ eU b +τU
a. (2.69)

The curvature of a manifold provides information about a global notion called distant paral-

lelism. We say that a manifold is parallelizable if its tangent bundle is trivial, i.e., if it can be

covered by a single frame e. In such case, one can define a connection that vanishes in such a

frame ωi
j = 0 and therefore the frame fields are covariantly constant ∇e= 0, which by construc-

tion in (2.35) means that the curvature 2-forms vanish in such a frame. Since the curvature

2-forms are covariant objects, we can conclude that a parallelizable manifold admits an affine

connection with vanishing curvature. In such case, it is clear that the torsion 2-form measures

the failure of eµ to be closed, as d ea = τa.

Connections provide a way to relate different fibers in fiber bundles. Therefore, affine connec-

tions provide a recipe to relate vectors in tangent spaces at different points on M . This relation

stems from the concept of parallel transport. Let ∇ be an affine connection on M and γ(t) a curve

through p at t = 0. Let X p be a vector at p. When expressed in a coordinate frame, the equation

defining parallel transport ∇γ̇Y = 0 reads

dYU
µ

dt
+ΓU

µ
αβγ̇U

αYU
β = 0, (2.70)

which is a 1st order differential ODE. Given the initial condition Y (0)= X p, this equation has

a unique solution for Y (t). We say that Y (t) is the parallel transport of X p along the curve γ.

In general, we say that a vector field X is parallel along a curve γ(t) if ∇γ̇X = 0 everywhere on

the curve. This notion allows to single out a special class of curves called autoparallel as those

curves whose tangent vector is parallel along the curve. Note that this notion is not invariant

under reparametrizations, for if ∇γ̇γ̇= 0, then after a reparametrisation γ̃(τ) = γ(t(τ)) we have

that ˙̃γ = (dt/dτ)γ̇. Therefore if γ(t) is autoparallel then we have that ∇ ˙̃γ ˙̃γ = (dτ/dt)(d2t/dτ2) ˙̃γ

which is generally different from zero, implying that γ̃(τ) is not autoparallel. However, it is

well known that γ̃(τ) is autoparallel of a connection ∇̃ that is related to ∇ by the projective

16Here by [indices] we denonte (normalised) antisymmetrisation with respect to such indices. As well, we use
(indices) for symmetrisation. An index between two vertical bars | are omitted in the (anti)symmetrisation process.
For instance, 2ωk

[i j] =ωk
i j −ωk

ji , and 2ω[k|i| j] =ωki j −ω jik.
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transformation ω̃U
a

b = ωU
a

b +δa
bξ where ξ is the 1-form such that ξ[ ˙̃γ] = −(dτ/dt)(d2t/dτ2).

Projective symmetry has proven to be physically relevant in some gravitational theories, as we

will see below.

Spin connection on S M from an SO+
(3,1)-connection on T M

Equipped with the associated bundle construction, we are now in the position to understand the

subtleties behind the relation between the spin connection in S M and a general affine connection

in M . To that end, note that a spin connection is a linear connection on the ρs (
SL(2,C)

)
-vector

bundle S M , and therefore it will be described by an ρs (sl(2,C)) connection 1-form on M . Now,

note that while the spinor representation of SO+
(3,1) is given by the 2 to 1 homeomorphism Λs :

SO+
(3,1) → SL(2,C), the pushforward of the representation maps bijectively17 their corresponding

Lie algebras. Hence, for a given so(3,1) connection 1-form over OU ⊂M , there is a unique sl(2,C)

connection 1-form ωΛ
s

U such that Λs∗
(
ωΛ

s

U [X ]
) = ωU [X ]. This construction is a canonical lift of

the connection in T M with structure group SO+
(3,1), i.e., an SO(3,1)-connection in T M , to a

connection in T M with structure group SL(2,C), i.e., an SL(2,C)-connection. Note that the lift

has been carried out exactly in the same way as is done for inducing associated connections

through the associated bundle construction. However, since the spin representation is not strictly

a representation (Λs(−A) 6= −Λs(A)) but a projective representation, it was not guaranteed that

this construction would be successful in this case. Now that we have a linear connection in the

SL(2,C) tangent bundle, we can build a linear connection in the spinor bundle (recall it is a vector

bundle as the fibers are C4) by means of the Dirac representation ρs through the associated

bundle construction which leads to a connection on S M defined by

ωs
U [X ]= ρs

∗
(
ωΛ

s

U [X ]
)
. (2.71)

By construction, this connection is canonically associated to the original SO+
(3,1)-connection

through the associated vector bundle construction. In order to compute explicitly the spin

connection 1-form in S M in terms of the SO+
(3,1) connection 1-form in T M we would need to

compute first the isomorphism Λ∗ between Lie algebras. Following [122], this leads to ωΛ
s

U =
(1/2)

∑
a<bσaσb(ωi)ab where σ0 = 1 and σi are the Pauli matrices. This is the SL(2,C) connection

1-form on the SL(2,C) tangent bundle built from the SO+
(3,1) tangent bundle. Using now ρs∗ we can

now obtain the ρs (
SL(2,C)

)
-connection on S M in terms of the SO+

(3,1) connection 1-form on T M ,

which reads

ωs
U = 1

8
ωU ab[γa,γb], (2.72)

17Given that ωΛ
s

U [X ] ∈ sl(2,C) is the tangent vector at the identity of SL(2,C) of the 1-parameter subgroup

exp(tωΛ
s

U )⊂ SL(2,C), we have that Λs∗(ωΛ
s

U [X ])= d
dtΛ

s
(
exp(tωΛ

s

U [X ])
)∣∣∣

t=0
. Although we know that Λs

(
±exp(tωΛ

s

U [X ])
)

corresponds to the same Lorentz transfromation, the pushforward of Λs is a map between Lie algebras only for tangent
vectors at the identity of SL(2,C). Given that only +exp(tωΛ

s

U [X ]) is the identity at t = 0, only the tangent vector at

the identity of the 1-parameter subgroup +exp(tωΛ
s

U [X ]) will be an element of sl(2,C). Therefore, Λs∗ maps the Lie

algebras only when applied to the tangent vector at the identity of the 1-parameter subgroup +exp(tωΛ
s

U [X ]). Hence
the map is 1 to 1.
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where ωU ab =−ωU ba ∈ so3,1. Therefore, for a section over OU in the spinor bundle Ψ ∈ Γ(S M )

we have that its covariant exterior differential reads

∇Ψ= dΨ+ωs
UΨ= dΨ+ 1

8
(ωs

U )ab[γa,γb]Ψ, (2.73)

and therefore its covariant derivative along X ∈T M is

∇XΨ≡∇Ψ[X ]= dΨ[X ]+ 1
8
ωU ab[X ][γa,γb]Ψ, (2.74)

which in a coordinate frame xµ, by taking X = ∂µ reads

∇µΨ= ∂UµΨ+ 1
8
ωUµab[γa,γb]Ψ. (2.75)

Here ωUµab =ωU ab[∂µ]. Although it is important to keep in mind that components of objects in

bundles over M depend on the chosen trivialising patch, we will frequently drop the U subindex

to relax the notation, thus for instance writing just

∇µΨ= ∂µΨ+ 1
8
ωµab[γa,γb]Ψ. (2.76)

Through the associate bundle construction, we can also derive the canonical connection on the

dual spinor bundle S M∗ from the affine connection. After some manipulations, this yields

∇µΨ̄= ∂µΨ̄−Ψ̄ωs = ∂µΨ̄− 1
8
ωµabΨ̄[γa,γb]. (2.77)

2.5 Post-Riemannian space-times

When gravity is viewed from the geometrical perspective, it can be said that the three inde-

pendent noncanonical structures over a smooth manifold introduced above; namely the volume

element, metric, and affine connection; play a crucial physical role. In classical GR, a space-time is

a manifold with a metric structure which induces canonically a volume form and a connection (the

Levi-Civita connection, see below), usually called (pseudo-)Riemannian manifold. Modifications of

GR rooted in the geometrical view that do not want to give up the smooth structure can arise from

introducing an independent affine connection or volume element (or both). Usually, in metric-

affine gravity theories, the space-time is a manifold with a metric structure and its canonical

volume form but an independent affine connection. The work carried out in this thesis concerns

mainly metric-affine theories of gravity, and therefore we will here give a detailed account of

several geometric objects that can be canonically defined in such space-times, which we will call

post-Riemannian manifolds. However, to better understand what is new in post-Riemannian

manifolds with respect to Riemannian ones, it will be useful to present a fundamental theorem in

differential geometry which shows how a metric induces an affine connection in a canonical way.
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2.5.1 The Levi-Civita connection

Given an O1,3 metric structure g on a manifold M , the pair (M , g) is called a (pseudo-
)Riemannian manifold. The fundamental theorem of Riemannian geometry guarantees that

there is a unique Koszul connection on T M dubbed as ∇g with vanishing torsion and which

is compatible with the metric in the sense that ∇g g = 0 as a (0,2) tensor-valued 1-form.18 This

connection is called the Levi-Civitta (or Riemannian) connection of g and is canonical in a

Riemannian manifold (i.e., it exists once the metric exists). As shown above, there is a unique

principal SO(1,3)-connection in FM associated to the Koszul SO(3,1)-connection called Levi-

Civita connection. Therefore, by definition, an O1,3 metric defines a canonical SO(1,3)-compatible

splitting of T FM into horizontal and vertical spaces.

Given a frame eUa, the metricity condition can be expressed as

dgab −2 gω(ab) = 0 (2.78)

where gωab ≡ gωk
b gak. Therefore note that, when written in an orthonormal frame, the metricity

condition is equivalent to skew-symmetry of the matrix of connection one-forms gω(ab)|orth. = 0.

The components of the Levi-Civitta connection in a coordinate frame can be found as follows.

By writing the ‘1-form components’ and because the dxk
U ’s are linearly independent the above

equation implies

∂µgαβ−2gΓ(α|µ|β) = 0 (2.79)

By (2.68), the torsionless condition in a coordinate frame implies gΓk
[i j] = 0. By summing and

subtracting suitable permutations of the above equation we arrive at

∂αgβµ+∂βgµα−∂µgαβ−2gΓµ(αβ) = 0. (2.80)

Using again that gΓµ[αβ] = 0 we arrive at the well known Christoffel symbols, which describe the

coefficients of the Levi-Civita connection when written in a coordinate frame, namely

gΓαµν = 1
2

gαβ
(
∂µgνβ+∂νgβµ−∂βgµν

)
. (2.81)

The Levi-Civitta connection has the nice property that its autoparallel curves are the geodesics
of the metric g, i.e., the curves of extremal length between fixed points in M . However, since the

length of a curve is a reparametrization-invariant quantity, this property is shared with a family

of connections related to the Levi-Civita connection by a projective transformation.19

18(p,q) tensor-valued p-forms are defined in an analog fashion as vector p-forms. The covariant differential of a
(p,q) tensro T is a (p,q) tensor valued 1-form ∇T such that its action on a vector field X is (∇T)[X ]=∇X T

19I have the intuition that this is behind the results by Ehlers Pirani and Schild where they find that the most
general connection that is compatible with the conformal and pre-geodesic structure defined by null and timelike rays
is a Weyl connection [127]
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As a final remark, I would like to emphasise that a metric structure canonically induces an

affine connection, namely the Levi-Civita connection. It is canonical in the typical sense that

no extra structure has to be introduced, nor any arbitrary choice has to be made (it is unique).

The canonical nature of this connection will become clearer later, where we will see that any

affine connection can be written as the Levi-Civita connection plus other tensorial corrections

involving the torsion and nonmetricity tensors. Hence, it will become apparent that introducing

an extra affine connection is equivalent to choosing particular nonmetricity and torsion tensors.

In this sense, one could think that adding an independent affine structure introduces more

arbitrariness. Nevertheless, there are gravitational theories made only with an affine connection

where the metric is derived from the connection. In the end, as we already pointed out in the

introduction, the arbitrariness that exists in the design of our theories concerns only the choice

of fundamental degrees of freedom (only metric, only connection, both, etc.) and the choice of a

particular dynamics for them (either via a choice of action principle or field equations). Thus,

in my opinion, any of these frameworks has the same degree of arbitrariness at a foundational

level, and only experiments can allow us to determine if any of the chosen frameworks are able to

provide valid or consistent physical descriptions.

2.5.2 A general affine connection

From the exposition in section 2.4.3, it is clear that an affine connection can be introduced

even if we have no metric structure on M . In this section we will first outline several properties

of a general affine connection and build a plethora of geometric objects from it. I will try to

emphasise which of these properties/objects do not need the notion of a metric and which of them

do. However, bear in mind that in metric-affine theories of gravity, there is always a metric and a

connection at play, so that we will be able to define and use all the objects and properties written

below.

Given a metric g and a general affine connection ∇, the tern (M , g,∇) will generally be called

a post-Riemannian manifold.20 In such spaces there is a canonical (0,2) tensor-valued 1-form,

called nonmetricity 1-form Q =∇g, which measures the departures from metricity of the affine

connection. The torsion tensor and nonmetricity tensors measure departures from Rieman-

nian geometry in the following sense. In a coordinate frame, the connection coefficients can be

decomposed as

Γαµν = gΓαµν+Lα
µν+Kα

µν (2.82)

where Lα
µν and Kα

µν are the distortion and contortion (1,2) tensors respectively. These objects

20Also known as metric-affine manifold, or non-Riemannian manifold. Although the later can introduce confusion
with the terminology usually used by mathematicians.
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are linear combinations of the nonmetricity and torsion tensors as follows

Lα
µν = 1

2
gαβ

(
Qβµν−Qµβν−Qνβµ

)
Kα

µν = 1
2

gαβ
(
Tβµν+Tµβν+Tνβµ

)
.

(2.83)

Therefore, a Riemannian geometry can be seen as a particular case of metric-affine geometry

with vanishing nonmetricity and torsion tensors. The tensorial nature of these objects stems

from the fact that the difference of the connection coefficients of two different affine connections

is always a (1,2) tensor (recall that the difference of two Koszul connection 1-forms is a global

1-form on M ). Hence, although Γαµν and gΓαµν do not transform as tensors and the expressions

for their components will generally vary when expressed in two different frames, this will not

be the case for Lα
µν and Kα

µν, which will be written as above in any given frame. Particularly,

although there generally exist frames in which Γαµν or gΓαµν vanish at a given point, neither

Lα
µν nor Kα

µν can be made to vanish at any point by a choice of frame.

The above splitting of the connection coefficients can also be carried out in a general frame by

means of (2.82), leading to

ωk
a

b = gωk
a

b +La
kb +Ka

kb (2.84)

where gωk
a

b = eaα(deb
α)k + gΓa

kb and we have defined gΓa
kb ≡ eaαek

µeb
βgΓαµβ.

We see that in a post-Riemannian space-time there are three basic covariant geometrical

objects that one can construct from the connection, namely its nonmetricity, torsion and Riemann

curvature tensors (or their analog tensor-valued forms). Both the torsion and nonmetricity tensors

(or their contortion and distortion combinations) measure the departure of a connection from

the Riemannian connection and, therefore, they are post-Riemannian in nature. In light of the

above decomposition (2.82), it should be apparent why Riemannian geometries can be seen as

a particular case of post-Riemannian ones. Another view to understand why the Levi-Civita

conection is canonical is due to the fact that, given only a metric, the only canonical choice is

the trivial choice for both torsion and nonmetricity, as any other choice would be arbitrary in

the sense that it would require to endow M with two additional tensor fields (i.e., to add new

structure). It is in this sense that, given a metric, the Levi-Civita connection is a canonical affine

connection on M .

For completeness, let us also give the definition of other relevant objects that are built from the

Riemann curvature tensor which, as a reminder, is given by

Rα
βµν = 2∂[µΓ

α
ν]β+2Γα[µ|σ|Γ

σ
ν]β. (2.85)

These objects are the Ricci, homothetic, and co-Ricci curvature tensors respectively

Rµν = Rα
µαν , Hµν = Rα

αµν and Pµ
ν = gαβRµ

ανβ. (2.86)
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Note that while the Ricci and homothetic tensors do not require the existence of a metric, the

co-Ricci does. As well, note that the homothetic tensor is the trace of the matrix of curvature

2-forms (hence it is a 2-form). Unlike the Riemann tensor of the Levi-Civita connection, the only

index symmetry of the Riemann tensor of a general affine connection has only antisymmetry in

its two later indices (which are the 2-form indices of the associated curvature 2-form). Hence,

the Ricci tensor is not symmetric for a general affine connection, which will have important

consequences regarding the stability of metric-affine theories (see chapter 7).

It will be useful to write down how the different objects that are defined from the connection

coefficients relate when two connections are related by the most possible general transformation

Γαµν = Γ̄αµν+δΓαµν. For the Riemann tensor we have that

Rα
βµν(Γ)= Rα

βµν(Γ̄)+2∇̄[µδΓ
α
ν]β+ T̄λ

µνδΓ
α
λβ+2δΓα[µ|λ|δΓλν]β, (2.87)

where the connection-related objects with an over-bar are defined in terms of the background

connection Γ̄αµν. By taking the corresponding traces we find

Rµν(Γ)= Rµν(Γ̄)+2∇̄[αδΓ
α
ν]µ+ T̄λ

ανδΓ
α
λµ+2δΓα[α|λ|δΓλν]µ ,

Hµν(Γ)= Hµν(Γ̄)+2∂[µδΓ
α
ν]α ,

Pµ
ν(g,Γ)= Pµ

ν(g, Γ̄)+∇̄νδΓµαα−∇̄αδΓµ α
ν + T̄λ

ναδΓ
µ
λ
α+2δΓµ[ν|λ|δΓλα]

α .

(2.88)

The torsion and nonmetricity tensors of the two connections relate by

Tα
µν(Γ)= T̄α

µν+2δΓα[µν] ,

Qαµν(g,Γ)=Qαµν(g, Γ̄)−2δΓ(µ|α|ν) ,
(2.89)

and therefore, the corresponding contortion and distortion tensors satisfy

Kα
µν(Γ)= Kα

µν(Γ̄)−δΓ(µν)
α+δΓα[µν] +δΓ(µ

α
ν) ,

Lα
µν(g,Γ)= Lα

µν(g, Γ̄)−δΓ(µ
α
ν) +δΓα(µν) +δΓ(µν)

α .
(2.90)

The properties of the different geometrical objects related to a general affine connection stated

above are all that we will need in the rest of the thesis. Particularly, we will be mostly interested

in the transformation properties of the Ricci tensor under a projective transformation, given by

δΓαµν =−ξµδαν, which are

Rµν(Γ)= Rµν(Γ̃)− (dξ)µν. (2.91)

Hence, while the symmetric part of the Ricci tensor is invariant under a projective transformation,

its antisymmetric part changes proportionally to the fieldstrength of the projective mode. As a

curiosity, let us point out that in metric-affine GR, which is invariant under projective transfor-

mations, the transformation properties of the full Riemann tensor under projective symmetry can

be used to remove the curvature divergence of the metric-affine Krestchmann scalar RµναβRµναβ
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in a Schwartzschild geometry [128]. However, as could not be otherwise, the singularity in the

metric structure is still there and appears through the projectively-invariant scalar RµναβRαβµν.

We have all the metric-affine identities and definitions from this section that we will need

through the thesis. Let us then carry on to elaborate on how a general affine connection defines a

connection on the spin bundle.

Spin connection on S M from a general affine connection

We have outlined above how to obtain explicitly the linear connection on the spin bundle

canonically associated to the Levi-Civita connection, i.e., an SO+
(3,1)-connection on T M . However,

in metric-affine theories, we wish to work with more general affine connections, i.e., linear

connections on T M which need not be SO+
(3,1) connections. This might be seen as introducing

some degree of arbitrariness in the process because of the following reason. While sl(2,C) maps to

so(3,1) in a one to one fashion, this is not possible in general for other general Lie subalgebras

of gln. Hence, for affine connections more general than the Levi-Civita connection, it is not

guaranteed that the whole connection can be lifted to the spin bundle in a canonical manner.

This was explained in [129], where they propose that one can always decompose the matrix of

connection 1-forms ωab into its symmetric and antisymmetric pieces. The antisymmetric piece

will be an element of so(3,1), which consists of antisymmetric 4×4 matrices. However, there is no

canonical way to lift the symmetric part of the connection 1-form to the spinor bundle associated

to the SO+
(3,1) tangent bundle, i.e., to the Dirac spinor bundle S M . As explained in [129], this

does not mean that only the Levi-Civita piece of a general affine connection gets lifted canonically

to S M . By computing the spin connection canonically associated to a general affine connection

by the same procedure used in 2.4.3, we find that the canonical spin connection is still given by

(2.72), namely

ωs
U = 1

8
ωU ab[γa,γb], (2.92)

which, by using the general decomposition of the affine connection 1-form (2.84), can now be

decomposed as

ωs = gω
s +ωs

PR, (2.93)

where gωs is the piece corresponding to the SO(1,3) connection (the Levi-Civita connection) and

ωs
PR encodes the post-Riemannian part. In terms of the torsion, nonmetricity and the Christoffel

symbols these objects read

gω
s
µ =

1
8

gωµ
a

b[γa,γb] and ωs
PRµ =

1
8

ecµ
(
Kacb +Q[ab]c

)
[γa,γb]. (2.94)

Therefore, we see that there are other pieces of a general affine connection which are associated

to nonmetricity and torsion which also get canonically lifted to the spin connection on S M .

Nevertheless, note that while the canonical lift is able to lift all the torsion-related piece of the

connection, it is blind to some pieces of the distortion tensor, and therefore, of the nonmetricity
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tensor, as it only lifts Q[ab]c. This can be traced back to the fact that a (Dirac) spin connection

1-form must be so(1,3)-valuated, and the other parts of the nonmetricity tensor are associated

to pieces of the affine connection 1-form that are in gln but not in so(1,3). Concretely, the piece

L(a|c|b) is the piece of the connection 1-form which is not part of so(1,3), and therefore does not get

lifted to the spin connection in S M . This part corresponds to the shear and expansion during

parallel transport, which vanish if the nonmetricity vanishes.

Even though we have seen that the canonical lift of a general affine connection to the Dirac

spinor bundle lifts all the torsion-related and part of the nonmetricity related components,

Dirac spinors evolve through the Dirac operator γµ∇µ. When applied to a spinor field this

operator reads γµ∇µΨ = γµ(dΨ)µ+γµωs
µΨ. As we will see in more detail in section 3 we have

that γµωs
µ = γµgωs

µ− i/8Tabcεabcdγ
dγ5, which implies that the coupling of a Dirac spinor to the

geometry of M through the Dirac operator associated to the canonical spin connection (2.94) is

blind to all the post-Riemannian terms except for the totally antisymmetric part of the torsion.

In [129] a noncanonical lift for the expansion piece (the traceful part of L(a|c|b)) was devised, but

no lift was found for the shear (the traceless part). Inspired by the action of the expansion piece

of the connection on vector fields, this noncanonical lift consists of adding a piece proportional to

the identity to the canonical spin connection 1-form, leading to

ωs
NCµ =ωs

µ+
1
8

Lα
µα. (2.95)

Note however that this lift is quite arbitrary, as we could have also chosen to lift other post-

Riemannian pieces by adding terms such as for instance Qα
αµ, Tα

µα, Qaµb[γa,γb], or any other

combination that we might think of.

Let us conclude with the following remark: although a canonical lift can be found that lifts

a general affine connection to the spin bundle, some would feel that there is some degree of

arbitrariness in the process due to the fact that we have to make a choice whether to lift the

expansion due to nonmetricity or not. However, in my view, the canonical lift of a general affine

connection from the tangent bundle to the spin bundle is unique and determined entirely by the

associated bundle construction, which makes it laking of arbitrariness. On the other hand, the lift

of the expansion piece proposed in [129] is arbitrary: we could well choose to multiply the lifted

piece by any factor or add other post-Riemannian terms and the result would still be a connection

in S M . Another way to couple spinor fields would be to consider spinor representations of GLn

instead of the special orthogonal groups. The problem with this idea is that there are no finite-

dimensional unitary spinor representations of GLn. There are, however infinite-dimensional

unitary spinor representations which lead to the concept of world spinors, discussed in e.g. [47].

Up to date, it is not clear to me how to end up with a Dirac spinor that correctly describes the

observed Standard Model particles from these world spinors. Of course, in the end, whether our

universe is post-Riemannian or not, what are the type of fields that describe the existing degrees
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of freedom, and whether noncanonical pieces should be a part of the physical spin connection

when nonmetricity or torsion are nontrivial is a matter of our interpretation of experimental

data, which must be the guide to the correct answer(s). These considerations, however, help in

clarifying the notion of minimal coupling of spinor fields to the geometry of a spacetime with a

general affine connection that I will introduce below.
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3
ON COUPLING MATTER TO AN AFFINE CONNECTION

As is known, the interaction mediated by a massless spin-2 field can be interpreted in

geometrical terms due to the crucial fact that it has to satisfy the Equivalence Principle.1

Indeed, the original view of GR by Einstein is as a geometrical theory, and this way of

interpreting the gravitational interaction has led to powerful techniques both in the understand-

ing of the structure of the theory as well as the phenomenology that it predicts. Following this

view, a natural way to explore what kind of gravitational theories lay beyond GR is to enhance

the geometrical framework in which it is formulated. Besides the usual interpretation of GR is

in terms of curvature of a Riemannian manifold, where the affine structure is taken to be the

canonical affine structure provided by the metric, there are other geometrical arenas in which

this theory can be given a geometrical interpretation where an independent affine structure

plays a central role. Paradigmatic examples are provided by the Teleparallel Equivalent [8],

Symmetric Teleparallel Equivalent to GR [9,10], and General Teleperallel equivalent to GR [11],

where curvature vanishes and the geometrical interpretation of the gravitational interaction

is realised through the torsion and/or nonmetricity of the affine structure. These different geo-

metrical interpretations of GR suggest a particular direction in which to explore modifications

to enhance the geometrical framework where one assumes that the gravitational interaction is

not only described by a metric, but also by an independent affine connection. This is known as

the metric-affine framework, and encodes a vast number of gravitational theories, ranging from

gauge theories of gravity [130] to Palatini theories2 [131] or the different Teleparallel classes

mentioned above.

1See chapter 1 for a quick review of the arguments that lead to these conclusions.
2Here by Palatini theories we mean metric-affine gravity theories where the action is built only with the Riemann

tensor and related invariants. I will not use this term in general, but rather write metric-affine curvature-based
theories, which I find more instructive.
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A crucial task within the metric-affine framework, is to understand if it is possible to find

experimental probes that can test the existence of post-Riemannian features in the geometrical

interpretation of the gravitational interaction. One way to pursue this goal is to understand the

different ways in which matter fields can couple to the independent connection, which would

allow us to elaborate different tests to probe these couplings. In this direction, in Riemannian

spacetimes, there is an algorithm that allows to build a matter sector that is minimally coupled

to a Riemannian geometry starting from its Minkowskian counterpart which can be given a

solid motivation from the use of general coordinates in Minkowski space. Through this chapter

I will argue why, in my view, and despite the fact that it is usually employed in the literature,

this algorithm is not well motivated from a coordinate independent point of view when general

post-Riemannian geometries are considered, and that it leads to contradictions and undesired

results. I will also propose a notion for coupling matter to a post-Riemannian spacetime minimally

that does not suffer from these problems and has its roots in arguments relying on observer

(coordinate) independence of physical equations.

A side-effect of choosing a particular coupling of the matter fields to the spacetime geometry

is the fact that this determines the type of trajectories that freely falling particles will follow.

However, in the literature, it is sometimes assumed3 that autoparallel paths (sometimes called

affine geodesics) of the affine connection play an analog role as geodesics in Riemannian geome-

tries do. We will also argue why, in general, nontrivial couplings between matter and connection

deviate free particles from following metric geodesics, and they follow the autoparallel paths of

an effective connection which depends on the particular coupling and is not, in general, the full

affine connection. In fact, we will also argue that it is not clear that an action can be formulated

so that the corresponding solutions to its field equations yield, in the eikonal limit, autoparallel

paths of a general affine connection, which clashes with the common expectation that matter

fields are described by an action principle.

3.1 A prescription for minimal coupling

To stand on the same ground, let me start by discussing the general meaning of minimal

coupling between matter and geometry as I understand it, and the subtleties behind the usual

algorithm that is regarded as a minimal coupling prescription. In general, one can define a notion

for minimal coupling between matter and geometry whenever one promotes the geometry of a

base space where a given physical theory is already formulated to a more general geometry. To

my understanding, the idea is to couple the matter fields to the geometry as little as possible,

namely, to leave things as they were as much as possible, without being inconsistent with any

3This can be seen e.g. in [90,132,133], where there are definitions of geometric clocks assuming that test bodies
follow affine geodesics. Note that I have also made this assumption as a co-author of one of these works, although I
later learnt that it is, at best, very optimistic.
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physical principle. Now in principle, one could just say that minimal coupling could consist on

using the Minkowskian field equations and not coupling the matter fields to the geometry at all.

However, that would be inconsistent with the principle of (general) relativity, namely, that the

physical laws are formulated equally for any observer, and even with covariance.4 We will see

that taking seriously covariance already in Minkowski spacetime leads to a nontrivial minimal

modification of the matter field equations (or Lagrangians) that introduces a coupling between the

matter and the geometry when going to more general spacetimes. Having no other fundamental

principles that force us to introduce additional couplings, this requirement together with the idea

of modifying things as little as possible are the cornerstones behind the usual idea of minimal

coupling to the spacetime geometry.

When providing prescriptions for minimal minimal coupling for passing from a Minkowskian

(or pseudo-Riemannian) spacetime to a general metric-affine spacetime, the crucial role played

by requiring covariance in Minkowski space is usually overlooked, and this leads to the loss of

the idea of coupling to the geometry as little as possible. In my view, this comes from the fact

that, when passing from a Minkowskian spacetime to a Riemannian one, all that most texts

will say about minimal coupling is just a statement giving the usual algorithm that defines

minimal coupling to a (pseudo-)Riemanian geometry, which is usually similar to: Wherever you

find a Minkowski metric η or a partial derivative ∂ in flat space-times, substitute them by the

(pseudo-)Riemannian metric g and its covariant derivative ∇g respectively. This (century-old)

algorithm stems from taking seriously the covariance of physical laws in Minkowski space, and

then using the same coordinate-independent differential operators when formulating the theory

in a Riemannian spacetime, i.e., leaving things as they were as much as possible. Nevertheless,

this fact is commonly overlooked in most treatments, with the consequence that this simple

algorithm is usually elevated to the category of definition of minimal coupling to a geometry, and

employed in some works on metric-affine theories as such. Though perfectly fine for (pseudo-

)Riemannian spacetimes, this prescription leads to undesired consequences when passing from

a Minkowskian or (pseudo-)Riemannian spacetimes to a metric-affine one, such as the loss of

gauge invariance when applied to a gauge field, or to different results when applied directly to

the field equations instead of the Lagrangian. In order to escape from this undesired results, let

us try to understand how this prescription stems from taking seriously the covariance of physical

laws in Minkowski spacetime. In the process, it will become clear how observer-independence is

also enough to provide an algorithm for passing from a Minkowskian (or Riemannian) spacetime

to a metric-affine one which respects the idea of coupling to the geometry as little as possible.

The resulting minimal coupling prescription, besides respecting the idea of introducing minimal

4Here coordinate invariant and observer-independent should be understood as equivalent. Covariant will imply
a stronger condition, namely, besides being observer-independent, a covariant object (that takes values in some
fiber-bundle) is an object which is not only coordinate-invariant, but also independent of the local trivialisations
employed to describe the bundle. Given that the choice of trivialisation is just a purely mathematical choice due to the
formalism employed, it must not have physical consequences. Hence, covariance must also be required.
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modifications, will be free from all the above mentioned issues, with the exception of giving

different results for spin-1/2 fields if applied to the Lagrangian or to field equations. We will

show how the application of the algorithm to the field equations leads to non-conservation of the

fermionic vector current.

Going to the point, let me try to find a minimal coupling prescription by taking seriously

covariance in Minkowski space. As explained in section 2.2.1, the operator ∂ with which field

equations in Minkowski are usually written is associated to a given coordinate frame (or observer).

Hence different coordinate systems will generally yield different ∂ operators and, therefore, ∂

will yield a non-coordinate-invariant object when applied over any covariant object like a tensor

or spinor field. Hence, observer independence of physical theories implies that a particular choice

of ∂ cannot be employed in the construction of physical theories even in Minkowski spacetime,

where it will be a different operator for two non-inertially-related observers. Given that, usually,

field theories are first formulated in a Minkowskian spacetime and for inertial observers, the

symbol ∂ is commonly used. Thus, in order to apply a notion of minimal coupling that stems from

covariance, one must formulate the Minkowskian field theories in terms of covariant operators. In

chapter 2, we introduced several coordinate-invariant differential operators, such as the exterior

differential d, the co-differential δg, or the covariant derivative ∇. Suitable combinations of these

operators, like the wave5 operator 2g ≡ dδg +δgd, will also be coordinate-invariant operators,

and therefore will yield coordinate invariant objects when applied to covariant matter fields.

Recall that d is defined in any differentiable manifold without adding extra structure, δ requires

a metric structure that provides the notion of Hodge dual, and ∇ requires an affine structure.

In Minkowski spacetime, there is a metric structure η and a canonical affine connection,6 and

therefore the three mentioned operators are canonically defined in this spacetime. Thus, to define

a minimal coupling prescription guided by covariance, we must unveil what are the covariant

differential operators that are used in Minkowski spacetime and just use the same covariant

operators generalised to a general spacetime. This can also be written as a simple algorithm:

Identify which are the covariant differential operators used in the Minkowski spacetime formula-

tion of the corresponding matter Lagrangian, and then use the same Lagrangian with the same

covariant operators as they are defined in the general metric-affine case.

In order to see whether this algorithm is effective, let us see whether we can find out which

are the covariant differential operators appearing in the Lagrangian and field equations of free

scalar, spinor and 1-form (or vector) fields. To that end, it will be useful to take into account that

5Known as the Laplace-de-Rham operator, which generalizes the Laplacian to any manifold with a metric
structure.

6Minkowski space is parallelizable, and therefore there exist (inertial) frames in which the connection 1-form
vanished ω= 0. It is possible to see that this affine structure is also the canonical one associated to the Minkowski
metric, ans therefore ∇η is its correpsonding covariant derivative.
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only first-order differential operators appear in these Lagrangians. For scalar and spinor fields,

given that they can be seen as 0-forms,7 the δg operator annihilates them, so that it cannot play

any role in the Lagrangian, since it only depends on first derivatives of the fields. For a free scalar

field φ, the two remaining operators are equivalent dφ = ∇φ for any affine connection so that

both can be used. However, using the exterior differential, in general metric-affine spacetimes,

implies using only the metric structure and not the affine one, so we will do that to keep things

minimal. Regarding the field equations, the kinetic term is typically written as ∂µ∂µφ, which

is equivalent to both ηµν∇ηµ∇ηνφ or 2ηφ, where 2η ≡ dδη+δηd. Note that, since the canonical

connection in Minkowski is the Levi-Civita connection of the Minkowski metric, both terms

couple the scalar field only to the metric structure. However, we will find that the differential

form notation is more transparent when generalised to post-Riemannian spacetimes, and we will

use 2η to write the free scalar field equations in Minkowski and we will see that the minimally

coupled Lagrangian leads to the same field equations replacing it by 2g. As a remark, let me

point out that when the scalar field is also fiber-valued for some nontrivial vector G-bundle over

M , dφ is not covariant under local changes of trivialisation of the bundle, and therefore the

covariant exterior differential must be used in its place. This operator features a differential part

given by d and a coupling to the G-connection 1-form of the corresponding G-bundle, which has

nothing to do with the affine connection8 (see section 2.3.2 for the definition of exterior covariant

differential).

For a 1-form field A, it can be seen that with this operators, the only kinetic term that

is covariant and does not lead to ghost-like kinetic term for the longitudinal mode must be

proportional to (dA)2 up to boundary terms. This is usually encoded in the requirement of gauge

invariance to the kinetic term of 1-form fields, which guarantees the propagation of two (three)

healthy degrees of freedom for a massless (massive) 1-form field. In a Minkowski or (pseudo-

)Riemannian spacetime, it is satisfied that (dA)µν = 2∇g
[µAν], but this is not the case in more

general spacetimes. Since the key point that leads to that kinetic term can be encoded into the

requirement of gauge invariance, which is formulated naturally in the language of differential

forms, we will stick to the use of d for minimally coupling the vector field. This argument is clearer

at the level of field equations, where again the covariant form of ∂µ∂µA can be written as δηdA (or

2ηA in the Lorentz gauge). This kinetic structure leads to the divergence-free constraint for the

fieldstrengh of the vector field, which is required if coupled to a conserved current. All the gauge

structure of 1-form fields is formulated solely in terms of exterior differentials and Hodge duals,

which require only the notion of a metric but not that of a connection.9 We will see below that, if

7More precisely, 0-form sections of the trivial bundles M ×R or M ×C and the spin bundle S M respectively
8This is the case of, e.g., the Higgs field, which is an element of a vector SU(2)×U(1)-bundle which interacts with

the gauge fields corresponding to the SU(2)×U(1)-connection 1-forms.
9However, recall that a canonical connection is given once we have a metric. Indeed, it can be seen that the

coordinate-independent differential operators defined for p-forms can always be written in terms of the canonical
covariant derivative associated to the metric if the Hodge dual operator is also the one defined by that metric.
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one insists on using the affine covariant derivative to express observer-independence (instead of

using the exterior differential), then, when going to a post-Riemannian spacetime, there will arise

some extra couplings to the torsion that do not arise when using the exterior differential. These

new terms do not respect the idea of coupling to the geometry as little as possible, which goes

against the spirit of the idea that I have of minimal coupling. Furthermore, they break the gauge

invariance, providing an effective mass term to the gauge fields and potentially unleashing the

propagation of a longitudinal polarisation. This could give rise to strong coupling issues around

vanishing torsion backgrounds, or instabilities around generic torsion backgrounds.

spin-1/2 fields Ψ are a bit trickier because the kinetic term employed must be invariant under

changes of local trivialisation in the spinor bundle, but ∂Ψ is not in general. This forces us to

use the covariant exterior differential associated to the Minkowskian affine connection seen

as a linear connection in the spinor bundle or, in a more familiar language, the associated

spinor covariant derivative (see section 2.4.3). Then, our prescription for spin-1/2 fields will

be to employ the covariant derivative ∇ of the affine structure. As we will see, unlike the case

of scalar and 1-form fields, this prescription will yield different results when applied to the

Lagrangian instead of the field equations, leading to a violation of the conservation of the vector

current. Furthermore, it also introduces a nontrivial minimal coupling of the spinor field to the

post-Riemannian features of the geometry, particularly to the totally antisymmetric part of the

torsion tensor. This shows how the algorithm facilitated above can indeed be implemented to yield

the corresponding minimally coupled theories in a general metric-affine spacetime starting from

a Minkowskian one. In the following, we will analyse in detail what are the differences between

this prescription and the usual one of replacing η by g and ∂ by ∇ everywhere. To that end, it will

be useful for us to make a detour and derive the form of the Euler-Lagrange equation for any

Lagrangian containing the derivatives of the matter fields inside affine covariant derivatives,

and reproduce Noether’s theorem that guarantees conservation of the fermionic vector current.

3.2 Field equations and Noether currents

In order to derive the field equations and the corresponding Noether currents, it is useful to

recall the Stokes’ theorem and Gauss’ law as a particular case. Given that we are admitting

Lagrangians that use the differential operator ∇, it will be useful to write the divergence

operator Divg associated to the (volume form of the) metric defined in terms of the covariant

derivative and the corresponding post-Riemannain corrections. Let M be a smooth orientable

n-dimensional manifold with volume form dV = εdxν1 ∧ ...∧dxνn in some chart. The divergence

operator associated to a general volume form dV is defined by its action on vector fields in (2.48),

This interplay between the exterior-differential structure and the affine-structure only occurs for the Riemannian
connection of the metric used both, to define the Hodge star operator and to identify the space of p-forms with its dual
via a generalisation of the metric isomorphism defined in (2.49).
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which in a particular coordinate chart xµ can be written as

DivdV (A)= 1
ε
∂µ(εAµ), (3.1)

where A = Aµ∂µ. Note that this definition only requires the differential structure of M and a

general volume form defined on it. Neither a metric tensor g nor an affine structure Γ on M are

necessary. The interest of this operator relies in that it satisfies a particular version of Stokes’

theorem which relates the values of the vector field defined in a region V ⊂ M with its flux

through the boundary of the region ∂V . In particular, the general Stokes’ theorem states that∫
∂V
ω=

∫
V

dω , (3.2)

For any (k−1)-form ω ∈ΛpV and k-dimensional orientable submanifold V ⊂M . By taking k = n

and ω= iAdV , and using the definition of the divergence operator (2.48) from Stokes’ theorem

one finds ∫
∂V

iAdV =
∫
V

dVDivdV (A) (3.3)

This is the generalised divergence theorem for n-dimensional manifolds. Now, if a metric structure

g is introduced, using the canonical volume form dVg, it can be seen that iAdVg
∣∣
∂V = g(A, N)dVg̃,

where N is the unit normal to ∂V and dVg̃ is the induced volume form on ∂V by g. The symbol

|∂V stands for restriction to ∂V . Therefore, when a metric is present (and is chosen to define the

volume element), the right hand side of (3.3) can be interpreted as the flux normal to the boundary

enclosing V , and the generalised divergence theorem (3.3) can be seen as a generalisation of the

celebrated Gauss’ law ∫
∂V

g(A, N)dVg̃ =
∫
V

dVgDivg(A) , (3.4)

which relates the divergence of a vector field A inside a closed volume V with the integration

over ∂V of the component of A normal to ∂V . It can be seen that the divergence operator

associated to a metric can also be written in terms of its canonical covariant derivative as

Divg(A)=∇g
µAµ. In spaces where the covariant derivative is not the Riemannian one, it might

be useful to find a similar relation in terms of the corresponding covariant derivative instead of

the Riemannian one. The action of ∇ on (the only component of) an n-form10 ε, in a chart xµ is

given by ∇µε= (∂µε−Γαµαε), and therefore we can write, in general

DivdV (A)= 1
ε
∇µ(εAµ)+Tα

µαAµ. (3.5)

Note that (3.5) is, in general, independent of the metric structure. Indeed, we can generally

provide M with a volume form and an affine structure without having a metric structure, and in

that case, (3.5) is still valid. In a general metric-affine manifold, it is possible to show that

∇µp−g = 1
2

Qµα
αp−g (3.6)

10Recll that, since the space of n-forms in an n-dimensional manifols is of dimension 1, any n-form is proportional
to the trivial one dx1 ∧ ...∧dxn, and therefore is specified only by one component (the proportionality factor). This
component can be seen as a tensor density of weight +1.
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which using (3.5) yields a general relation between the canonical divergence operator associated

to the metric and the general affine covariant derivative as

Divg(A)=∇µAµ+
(

1
2

Qµα
α+Tα

µα

)
Aµ. (3.7)

which, if ∇ is expanded using the decomposition (2.82), reduces to the well-known expression

Divg(A) = ∇g
µAµ. The relation found above between the divergence operator and the affine

structure can be useful to derive the matter field equations for any minimally coupled matter

Lagrangian if the derivatives are written in terms of ∇ (note that d can always be written as ∇
plus corrections depending on the particular affine connection). Thus, here we will be concerned

with a matter action of the form

Sm [Ψi,∇Ψi]=
∫
V

dVgL [Ψi,∇Ψi] , i = 1, ..., N ; (3.8)

where L [Ψi,∇Ψi] is a covariant scalar and i labels the different matter fields, which will be

assumed to be sections of some vector bundle. The corresponding field equations are given by

δSm = 0 for some arbitrary variations of the matter fields δΨi that vanish over ∂V . A given

variation of the field δΨi naturally introduces also a variation in its partial derivative δ(∂Ψi),

and the variational problems that one is used to solve are in terms of the field variables {Ψi,∂Ψi}.

Thus, we can treat ∇Ψi as a function of (Ψi,∂µΨi) and proceed with standard variational methods.

Namely, we can rewritte (3.8) as

S̃m
[
Ψi,∂µΨi

]= ∫
V

dVgL [Ψi,∂Ψi +ωiΨi], (3.9)

where ωi is the connection 1-form in the vector bundle where Ψi is defined. Now we can employ

the standard methods of variational calculus. For an arbitrary variation δΨi we have

δS̃m =
∫
V

dVg

[(
∂L

∂Ψi
+ ∂L

∂(∇µΨi)
ωi

µ

)
δΨi +

(
∂L

∂(∇µΨi)

)
δ(∂µΨi)

]
= 0, (3.10)

where we have used that

∂(∇µΨi)
∂Ψi

=ωi
µ and

∂(∇νΨi)
∂(∂µΨi)

= δµν. (3.11)

By writting ∂Ψi as a function of (Ψi,∇Ψi) by using ∂µΨi = ∇µΨi +ωi
µΨi, we can write an

arbitrary variation of ∂µΨi as δ(∂µΨ̃i)= δ(∇µΨi)−ωi
µδΨi, which using (3.10) leads to

δSm =
∫
V

dVg

[
∂L

∂Ψi
δΨi + ∂L

∂(∇µΨi)
δ(∇µΨi)

]
= 0, (3.12)

which by means of (3.7) can be recast into

δSm =
∫
V

dVg

[
∂L

∂Ψi
−∇µ

(
∂L

∂(∇µΨi)

)
−

(
1
2

Qµα
α+Tα

µα

)(
∂L

∂(∇µΨi)

)]
δΨi (3.13)

+
∫
V

dVg Divg

(
∂L

∂(∇Ψi)
δΨi

)
= 0. (3.14)
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Since the last term is a boundary term by the generalised Gauss’ law (3.4), it vanishes for

variations δΨi vanishing on ∂V . Given that physical solutions are those that extremise Sm

for fixed boundary values (namely for variations δΨi vanishing on ∂V ), the corresponding field

equations are
∂L

∂Ψi
−∇µ

(
∂L

∂(∇µΨi)

)
−

(
1
2

Qµα
α+Tα

µα

)(
∂L

∂(∇µΨi)

)
= 0. (3.15)

Note that while in the Riemannian limit we recover the usual covariant Euler-Lagrange equations,

in the general case there are, apparently, explicit couplings between the nonmetricity and torsion

tensors and the matter fields. However, these apparent couplings are indeed compensated by

taking into account that the covariant derivative of the second term in (3.15) is not the one

associated to the canonical connection of g. To show this, we can use the decomposition of a

general connection (2.82) and split the covariant derivative in front of the second term of (3.15).

This allows us to re-write the above field equations (3.15) as

∂L

∂Ψi
−∇g

µ

(
∂L

∂(∇µΨi)

)
+

(
∂L

∂(∇µΨi)

)
(ωi

PR)µ = 0, (3.16)

where (ωi
PR)µ is the post-Riemannian part of the affine connection 1-form lifted to the vector

bundle where Ψi is defined, and where we have used that in order for L to be covariant,

∂L /∂(∇µΨi) must be a T M -valued section of the dual bundle11, which is accounted by the sign

in the ωi
PR term (see section 2.3.2).

As a by-product of the derivation of (3.15), we can explicitly check whether Noether currents

associated to matter fields described by Lagrangians like (3.8) will be sensitive to nonmetricity

and/or torsion corrections. For completeness, let me start by recalling the geometrical meaning of

a conserved current. In an orientable manifold M a vector field J ∈Γ(O ) is a conserved current

over a region O ⊂M with respect to the volume form dV if it satisfies

DivdV (J)= 0. (3.17)

This definition is only sensitive to the volume element, and not the metric or affine structures,

which implies that the sentence conserved with respect to ∇ does not make sense in general12.

When the volume form is the canonical volume element given by the metric, the divergenceless

condition has an intuitive geometrical meaning when interpreted through Gauss’ law (3.4). From

that perspective, having vanishing divergence over O implies that there is no net flux of J

through ∂V . If the metric is Lorentzian, by resorting to a Cauchy foliation, there is a covariant

quantity QJ associated to any vector field that, for a conserved current, is invariant under change

11In general, it can be seen that for any section of a vector bundle φ ∈Γ(V ), if OUV ∈V is an overlap with two local
trivialisations, by computing ∂L

∂φU
= ∂L
∂φV

∂φV
∂φU

, so that we see how ∂L
∂φ

transforms under change of trivialisation as an
element of V∗.

12This sentence only makes sense when ∇ is ∇g and only if conserved with respect to ∇g is understood as conserved
with respect to dV g.
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of spatial hypersurface, i.e., under time translations. This is why a vector satisfying DivdV (J)= 0

over M is called a conserved current and QJ its associated conserved charge.

Charge conservation can also be understood in geometrical terms as follows. Consider coordi-

nates (x0 = t, xi) adapted to a Cauchy foliation, namely, the Cauchy spatial hypersurfaces of the

foliation are given by the one-parameter family of (n−1)-dimensional submanifolds Σt ⊂M nor-

mal to ∂t. Consider also an (n−1)-dimensional closed ball σt defined on every Σt by (xixi)1/2 ≤ R,

with R an arbitrary constant. Define the closed n-dimensional volume B(t1, t2) ⊂ M as the

volume enclosed by σt1 , σt2 and C ; where C is the union of the boundaries of each σt for t ∈ (t1, t2)

(see figure 3.2 for clarification). Any vector field J defines a charge Q t
J on each Σt given by

Q t
J = l im

R→∞

∫
σt

J tdVg̃ , (3.18)

where J t = g(J,∂t), ∂t is the unit normal to σt and dVg̃ is the volume form induced on Σt by dVg.

Using Gauss’ law (3.4), decomposing ∂B as13 ∂B(t1, t2)= (−σt1 +C +σt2), and for configurations

of Ψ such that J t vanishes quickly enough at spatial infinity14 we find

∫
B

Divg(J)dVg =Q t2
J −Q t1

J . (3.19)

This is valid for any value of t1 and t2. Therefore a charge defined by a conserved vector

current remains constant under time-evolution, i.e., it is conserved. The arguments within this

section are independent of the choice of connection or topology of the smooth manifold. This

puts forward the relevance of the condition Divg(J)= 0 instead of any condition involving any

covariant derivative15, which points out that the expression conserved with respect to a covariant

derivative is not accurate. Indeed, these arguments depend only on the metric (and its canonical

volume form). Taking infinitesimally small δt = t2 − t1, we see that

LtQJ |t=t1δt = (
Q t2

J −Q t1
J

)= ∫
B

Divg(J)dVg. (3.20)

Hence, it is apparent that the condition (3.17) implies that the change in the amount of charge

QJ enclosed in the (n−1)-dimensional surface σt1 is given exactly by the flux of the current J

through the boundary of the n-dimensional volume B, i.e., the amount of charge that exits σt
1 in

the time interval t2 − t1. Therefore, the total charge associated to a conserved current cannot be

created or destroyed.

Having understood the geometric meaning of conserved currents and charges, let me turn to

Noether currents and whether they are sensitive to the affine structure in any sense. In general,

13The sign infront of σt1 is required for ∂B(t1, t2) to have the standard induced orientation from V (t1, t2).
14The precise requirement is that Ψ vanish quiclky enough with increasing R so that the integal over C vanishes

when R →∞.
15Sometimes one reads that for ∇µJµ = 0, J is conserved with respect to ∇
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Figure 3.1: Illustration of the different parts of B and ∂B. The black oriented vector basis define
the orientation of ∂B.

Noether currents have proven to be very useful tools for analysing and extracting physical

information out of field theories, and they lay at the heart of the definition of physical charges.

Noether currents are defined from the properties of an action when acted upon by a continuous

group of transformations of the matter fields, and are conserved for theories symmetric under the

corresponding transformation. Given an action like (3.8) and an infinitesimal transformation of

the matter fields Ψ 7→Ψ+δΨi which leaves the action invariant, we can work out the functional

form for the Noether current associated to this symmetry by the following argument. The first

term in (3.13) vanishes for solutions to the field equations (3.15). Thus, over physical solutions, a

Lagrangian that is invariant under arbitrary infinitesimal transformations δΨi must satisfy

Divg

(
∂L

∂(∇Ψi)
δΨi

)
= 0. (3.21)

Therefore, as stated by the Noether theorem [134], a continuous symmetry of the matter action

implies the existence of an associated conserved current J ∈Γ(T M ) defined as

J = ∂L

∂(∇Ψi)
δΨi, (3.22)

with a corresponding conserved charge given by (3.18). A current defined from a Lagrangian

as in (3.22) is called Noether current, and the corresponding charge is called Noether charge.
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This definitions can be extended to infinitesimal transformations that leave the Lagrangian

quasiinvariant, namely which change it only by a divergence δL = Divg(A), thus leaving the

field equations invariant. In that case, the conserved Noether current is J+ A. Physical charges

are the Noether charges associated to some continuous global symmetry of the matter action.

For instance, the electric and colour charges are associated to the global U(1)EM and SU(3)C

symmetries of the Standard Model action (in spontaneously broken phase). The above equation

(3.22) shows that Noether currents (and charges) might depend on the covariant derivative of

the matter fields unless it enters linearly in the action (or does not enter). Thus, for matter

Lagrangians of the form (3.8), nonmetricity and torsion might play a role in the definition of

Noether currents. Nevertheless, we will see below that they are oblivious for minimally coupled

fields according to the prescription given in section 3.1.

3.3 Analising the minimal coupling prescription

I will now proceed to show the different couplings to the geometry that arise for scalar, Dirac

and 1-form fields, comparing the minimal coupling prescription defined in 3.1 with the usual

(η,∂) 7→ (g,∇) prescription. We will also compare the results of applying both prescriptions on the

Lagrangian or directly to the field equations for each of the fields. Through this section, we will

use the name Usual Minimal Prescription (UMP) to denote the (η,∂) 7→ (g,∇) prescription, and

we will say Minimal Coupling Prescription (MCP) to denote the prescription defined in section

3.1. When an L or an F is added at the end of the acronyms, e.g. MCPL or UCPF, it explicitly

denotes that the particular prescription is being applied at the level of the Lagrangian (L) or at

the level of the field equations (F). As a useful reminder for the rest of the section, let me state

again the two guiding principles for the MCP, namely covariance and coupling to the geometry as

little as possible. Effectively, this will be carried out by applying the following steps: 1) starting

from a covariant (i.e., observer and gauge independent) Minkowskian action, write an action

using the same operators when generalised to an arbitrary post-Riemannian spacetime. 2) In

case of being able to write the Minkowskian covariant action in equivalent ways using different

covariant operators, choose the one that is more minimal in the sense that, when generalised to

metric-affine spacetimes, couples as little as possible to the nonmetricity and torsion. If this choice

is not well defined, then the prescription defined in section 3 is not well defined for that case. We

will see that, for scalar, Dirac and 1-form fields; this prescription gives a unique metric-affine

minimally coupled theory.

3.3.1 Minimally coupled scalar field

As argued in section 3.1, the action of a complex scalar field can be written in Minkowski

space-time with any of the operators d and ∇, since they are all the same when acting on scalar

fields (and equal to ∂ when written in a partiular coodinate frame). However, the covariant wave
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operator 2η of the Minkowskian Klein-Gordon equation is defined, in general, only for p-forms,

and it will prove useful to see φ as a 0-form section of the trivial bundle M ×C. The Lagrangian

for a complex scalar field in Minkowski spacetime written in an explicitly covariant form then

reads

L (0)
M = ηµν(dφ†)µ(dφ)ν−m2φ†φ. (3.23)

where dφ can also be covariantly written as ∇ηφ. This Lagrangian leads to the well known

Klein-Gordon field equation, which in covariant form reads

2ηφ+m2φ= 0,

2ηφ
† +m2φ† = 0,

(3.24)

where recall that 2η = dδη+δηd= ηµν∇ηµ∇ην. Thus we see that the explicitly covariant form of the

Minkowskian scalar Lagrangian and field equations can be equivalently written in terms of the

exterior differential structure or the canonical affine structure, namely using d and δη or using

∇η. Thus, we must check which of both forms is more minimal in its coupling to nonmetricity and

torsion. Note that, if generalising the Minkowskian Lagrangian from the covariant derivative

form, we end up with the same theory as if the UCP (η,∂) 7→ (g,∇) is applied. Let us fist analyse

the generalisation in terms of the exterior differential. If the MCPL is applied as explained in 3.1,

in this case we have to make the substitution (η,d) 7→ (g,d), which leads to the Lagrangian

L (0) = gµν(dφ†)µ(dφ)ν−m2φ†φ. (3.25)

Computing now the field equations associated to this Lagrangian we find16

(2g +m2)φ= 0,

(2g +m2)φ† = 0.
(3.26)

It is then straightforward to check that the MCPF and MCPL lead to the same metric-affine

Lagrangian when applied to the Minkowskian Lagrangian of a scalar field as written in terms of

exterior differential operators. Indeed, in this case, the MCPF is realised through the substitution

(η,d,δη) 7→ (g,d,δg), which effectively consists on (η,2η) 7→ (g,2g). Thus the resulting theory that

arises from this choice17 describes a scalar field in a metric-affine spacetime that does not couple

to the connection at all. If we now do the same with the version of the Minkowskian scalar

Lagrangian written in terms of ∇η, the MCP is realised through the substitution (η,∇η) 7→ (η,∇).

This choice would render the MCP and UCP as equivalent prescriptions for scalar fields. If

applied to the Lagrangian, these prescriptions are also equivalent to the one where the exterior

differential operator is used, so that the corresponding field equations are (3.26) and no couplings

16A quick way of doing it is, for instance, to rewrite the above Lagrangian in terms of ∇φ, use (3.15) or (3.16), and
the re-write again the results in terms of exterior differential operators.

17Namely, the choice of using the MCP for the scalar Lagrangian and field equations written in terms of the exterior
differential structure instead of the affine structure.
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to the torsion or nonmetricity arise. In these cases, the new Lagrangian leads to a Noether

current associated to U(1) transformations (phase shifts), which written as a 1-form through the

metric isomorphism (see section 2.4.2) reads

Ig J(0) = i
(
φ†dφ− (dφ†)φ

)
. (3.27)

subtractiong the corresponding field equations (3.26) we arrive at δg(Ig J(0))= 0, which is equiva-

lent to

Divg(J(0))= 0. (3.28)

Thus these (equivalent) prescriptions maintain the global U(1) invariance of the complex scalar

field in Minkowski and the conservation of the associated current and charge. This could be easily

generalised for scalar fields that are 0-form sections of a nontrivial vector G-bundle, which would

lead to a global G-invariance and an associated Noether current(s) and charge(s).

If we now choose to view the usual partial derivatives appearing in the Minkowskian Klein-

Gordon field equations as covariant derivatives ∇η and apply the MCPF, or also if we applied the

UCPF, the resulting scalar field theory is described by the field equations

(gµν∇µ∇ν+m2)φ= 0,

(gµν∇µ∇ν+m2)φ† = 0.
(3.29)

By using the decomposition of the affine connection (2.82) we can show that

gµν∇µ∇νφ=2gφ+dφ[Σ], (3.30)

where Σµ is the non-Riemannian vector current

Σµ =Qα
αµ− 1

2
Qµ

α
α−Tαµ

α. (3.31)

Hence the field equations corresponding to this choice can be written as

(2g + iΣd+m2)φ= 0,

(2g + iΣd+m2)φ† = 0,
(3.32)

where iΣdφ is the interior product of dφ with the vector current Σ defined in (2.26). These

equations, therefore, contain a nontrivial coupling between the scalar field and the torsion and

nonmetricity tensors. By subtracting both field equations, we find that the codiferential (2.54)

of the 1-form version of the scalar current is given by δg(Ig J(0))=−Ig J[Σ], or equivalently in D

spacetime dimensions and for a Lorentzian metric

Divg(J(0))= (−1)D+1Ig J(0)[Σ]. (3.33)

Thus, this prescription not only features extra couplings to the geometry, but it also has the unde-

sired feature of spoiling the global invariance of scalar fields when passing from a Minkowskian
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to a general metric-affine spacetime. As explained above, these results generalise in a straightfor-

ward manner for any scalar field that is a 0-form section of some vector G-bundle as, e.g., the

Higgs field, which in the Standard Model is a 0-form section of a vector SU(2)×U(1)-bundle.

Given that the other choices (equivalent in this case), which also respect covariance, do not

have any coupling to the nonmetricity and torsion, the rules defined in section 3.1 for defining

a minimal coupling prescription tell us that the theory without these couplings must be the

minimally coupled one. Now, this theory is arrived at by UCPL and MCPL if the derivatives of

the Minkowskian Lagrangian are written as ∇η but not by UCPF or MCPF in this case. Namely,

these two choices lead to different theories if applied at the level of the field equations or of the

Lagrangian. On the other hand, if the derivatives in the Minkowskian Lagrangian and field

equations are understood in terms of exterior calculus, the MCP leads to the same theory if

applied to the field equations or to the Lagrangian. Though this is a purely aesthetic matter, it is

more satisfying to see the scalar field as a 0-form acted upon by exterior differential operators

and have the same results no matter what version of the MCP is applied. Furthermore, unlike in

this case, we will see below that for a 1-form field the only choice leading to a minimal coupling

prescription in the sense of 3.1 is to view the differential operators of the corresponding field

equations and Lagrangian as exterior differential operators.

3.3.2 Minimally coupled Dirac field

A Dirac field is a 0-form section of the spinor bundle (see section 2.4.2). Hence, though d is

observer independent when applied to a Dirac field ψ or its dual18 ψ̄, it is not covariant under

choice of local trivialisations of the spinor bundle. Hence, contrary to the scalar field case, the only

covariant derivative operator that acts on Minkowskian Dirac spinors is the covariant exterior

differential (or the covariant derivative) ∇η. Thus, we conclude that the Minkowskian Lagrangian

and field equations for a Dirac spinor field is written, in an explicitly covariant way, as

L (1/2)
M = i

2
[
ψ̄γµ(∇ηµψ)− (∇ηµψ̄)γµψ

]−mψ̄ψ, (3.34)

which leads to the covariant version of the Dirac equations[
iγµ∇ηµ−m

]
ψ= 0,

ψ̄
[
i
←−∇η

µγ
µ+m

]
= 0.

(3.35)

Thus, apparently, in this case the MCP leads to a straightforward prescription (η,∇η) 7→ (g,∇)

which is equivalent to the UCP both when applied to the Lagrangian or to the field equations.

However, we will see that, unlike for scalar fields, the MCPL and MCPF do not lead to the

same results. Starting with the MCPL, the prescription (η,∇η) 7→ (g,∇) leads to the following

18Note that in order for ψ̄ψ to be covariant, ψ̄ ∈S M∗ if ψ ∈S M .
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generalisation of the Dirac Lagrangian to metric-affine spacetimes

L (1/2) = i
2

[
ψ̄γµ(∇µψ)− (∇µψ̄)γµψ

]−mψ̄ψ, (3.36)

which, by means of (3.16) leads to the field equations[
iγµ∇µ+ i

2

(
(∇µγµ)−γµσµ+ 1

2
Qαµ

αγµ
)
−m

]
ψ= 0,

ψ̄

[
i
←−∇µγ

µ+ i
2

((∇µγµ)−γµσµ+ 1
2

Qαµ
αγµ

)
+m

]
= 0,

(3.37)

where we have defined the post-Riemannian 1-form current

σµ =Q[αµ]
α+Sαµ

α, (3.38)

which satisfies σµ =Σµ+ 1
2Qαµ

α. We have now to make sense of the covariant derivative of the

Dirac matrices. This object is a T M -valued section of the tensor product of the tangent bundle

to S M and its dual bundle, which can also be seen as a 0-form section of the tensor product

bundle T M ⊗T (1,1)(S M ), which is also a vector bundle, and where T (1,1)(S M ) is the bundle

of (1,1)-tensors over S M . Thus, using (2.46) to obtain the connection on T (1,1)(S M ) associated

to the S M connection 1-form ωs through the associated bundle construction, we find that

∇µγα = ∂µγα+Γαµνγν+ [ωs
µ,γα] (3.39)

where the commutator comes from the T (1,1)(S M ) connection. Resorting to the canonical lift,

which allows to obtain a canonical connection in the spinor bundle from an affine connection

given by (2.92), and using the decomposition (2.93), we can show that the following relations hold

∇µγα =−1
2

Qµν
αγν,

γµ∇µψ=
[
γµ∇g

µ−
i
8
εαβµνTαβµγνγ5 + 1

2
γµσµ

]
ψ,

(∇µψ̄)γµ = ψ̄
[←−∇ g

µγ
µ+ i

8
εαβµνTαβµγνγ5 + 1

2
γµσµ

]
,

(3.40)

which, if applied to (3.37), lead to the following field equations for a Dirac field and its dual in a

general post-Riemannian spacetime[
iγµ∇g

µ+
1
8
εαβµνTαβµγνγ5 −m

]
ψ= 0,

ψ̄

[
i
←−∇ g

µγ
µ− 1

8
εαβµνTαβµγνγ5 +m

]
= 0.

(3.41)

Note that, unlike the case for spinor fields, the MCP applied to the Minkowskian Dirac Lagrangian

leads to a minimal coupling between the Dirac fields and some post-Riemannian features of the

geometry, namely the axial part of the torsion tensor. It is remarkable, however, that despite

the spin connection obtained trough the canonical lift applied to a general affine connection
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is sensitive both to nonmetricity and torsion (2.92), only the axial part of the torsion couples

to spinor fields described by the MCPed Lagrangian (3.36). Indeed, this can be understood by

decomposing the kinetic term in the Lagrangian into its Riemannian and post-Riemannian pieces,

which by using (3.40) yields

L (1/2) = i
2

[
ψ̄γµ(∇g

µψ)− (∇g
µψ̄)γµψ

]+ 1
8
εαβµνTαβµψ̄γνγ5ψ−mψ̄ψ, (3.42)

thus getting rid of the rest of the post-Riemannian terms in (2.92) and accounting for the

interaction with the axial piece of the torsion. The above MCPed Lagrangian for Dirac fields

(3.36) has a global U(1) symmetry, with a corresponding Noether current given by

J(1/2) = iψ̄γψ. (3.43)

By adding both equations in (3.41) after multiplying each by the corresponding dual field, and

using Divg(J) =∇g
µJµ for any vector J ∈ Γ(T M ), we end up with conservation of the Noether

current

Divg(J(1/2))
∣∣
MCP(L) = 0, (3.44)

as it could not have been otherwise starting from a U(1)-symmetric Lagrangian. This can be

extended in a straightforward manner if the spinors are also sections of a more general vector

G-bundle for the corresponding Noether current due to global G-symmetry. This happens, e.g.,

for the Standard Model quarks and leptons, which are S M -valued 0-form sections of a vector

SU(3)×SU(2)×U(1)-bundle and SU(2)×U(1)-bundle respectively.

We now want to compare the above results to the ones obtained if the MCP (equivalent to UCP

in this case) is applied directly to the Minkowskian Dirac equations (3.35), which leads to[
iγµ∇µ−m

]
ψ= 0 ,

ψ̄
[
i
←−∇µγ

µ+m
]
= 0.

(3.45)

If the covariant derivative terms are expanded using the connection decomposition of the spin

connection (2.93) derived from the canonical lift (2.92), we find[
iγµ∇g

µ+
1
8
εαβµνTαβµγνγ5 + i

2
σµγ

µ−m
]
ψ= 0,

ψ̄

[
i
←−∇ g

µγ
µ− 1

8
εαβµνTαβµγνγ5 + i

2
σµγ

µ+m
]
= 0,

(3.46)

which shows how, if applied to the Minkowskian Dirac equation instead of the Lagrangian, besides

the interaction with the axial part of the torsion tensor that appeared when the MCP(L) was

applied, the MCP(F) introduces an extra coupling between the Dirac fields and the nonmetricity

and torsion through the post-Riemannian current σµ defined in (3.38). Guided by coupling to the

geometry as little as possible, we conclude that the MCP(L) is the minimal coupling prescription

for Dirac fields according to the criterion given in section 3.1. Another undesired feature of the
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MCP(F) is that, if the equations (3.46) are added (each multiplied by the corresponding dual

field), we find

Divg(J(1/2))
∣∣
MCP(F) =−σ[J(1/2)]. (3.47)

so that the Dirac equation looses the global U(1) symmetry after the MCP(F) is implemented.

This constituted an undesired result for this prescription beyond the criteria given for defining

a minimal coupling prescription in section 3.1. Thus, it could be used to further discriminate

between both prescriptions on physical grounds, as the MCP(F) would generally lead to violation

of the Standard Model global symmetries through the interaction of the Standard Model quarks

and leptons with nonmetricity and torsion, which offers a solution to discriminate between

MCP(L) and MCP(F) on physical grounds, yielding a solution to the question raised in [135].

Before finishing with Dirac spinors, let me elaborate on what would happen if we tried to apply

the MCP to the nonhermitian version of the Dirac Lagrangian, and after applying the MCP to

the Minkowskian version, in general metric-affine spacetimes reads

L (1/2)
NH = ψ̄[

γµ∇µ−m
]
ψ. (3.48)

This action is commonly used also in general Riemannian backgrounds (see e.g. [34]) due to the

fact that it differs from the Riemannian version of the hermitian action by a boundary term

which is irrelevant to the dynamics, namely

iψ̄γµ∇g
µψ− i

2
[
ψ̄γµ(∇g

µψ)− (∇g
µψ̄)γµψ

]=Divg

(
J1/2

2

)
. (3.49)

However, in post-Riemannian spacetimes, the kinetic terms of (3.36) and (3.48) are not related

by a divergence and therefore yield different dynamics. Particularly we have that in general

iψ̄γµ∇µψ− i
2

[
ψ̄γµ(∇µψ)− (∇µψ̄)γµψ

]=Divg

(
J1/2

2

)
+ 1

2
σ[J(1/2)] (3.50)

is satisfied. It is also possible to see how the dynamics generated by the nonhermitian Lagrangian

(3.48) is not consistent with the spin structure in the following sense. From (3.48), we find the

following field equations for spinors and dual spinors[
iγµ∇µ−m

]
ψ= 0,

ψ̄
[
i
←−∇µγ

µ− iσµγµ+m
]
= 0.

(3.51)

Now, it is known that dual spinors must be related by ψ̄=ψ†γ0 in order for them to have the

transformation properties of the elements of S M∗. However, if we take the adjoint equation to

the equation for ψ in (3.51), we arrive to(
ψ†γ0

)[
i
←−∇µγ

µ+m
]
= 0; (3.52)
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which is inconsistent with the identification ψ̄=ψ†γ0 if the second equation of (3.51) has to be

satisfied unless the post-Riemannian terms drop.19 This proves that the nonhermitian Lagrangian

is not only inequivalent to the hermitian one, but unable to describe a covariant theory for Dirac

fields in presence of general torsion and/or nonmetricity. As a consistency check, it is possible to

show that the adjoint equation to the first equation in (3.41) yields

(ψ†γ0)
[

i
←−∇ g

µγ
µ− 1

8
εαβµνTαβµγνγ5 +m

]
= 0, (3.53)

which together with the second equation of (3.41) forces the identification ψ̄=ψ†γ0. This also

happens for the MCP(F) field equations (3.46) and, in this sense, both equations are adequate for

describing a covariant theory for Dirac fields in presence of general torsion and/or nonmetricity.

However, note that the MCP(F) dynamics features non-minimal couplings to the geometry in the

sense of section 3.1.

As a final remark, let us comment on the following subtlety: The meaning of ∇Ψ in post-

Riemannian spacetimes was discussed in section 2.5.2. There it was shown how the canonical lift

of the affine connection (seen as a linear connection on the tangent bundle) to the spinor bundle

leads to a particular form of the spinor connection which is sensitive to post-Riemannian correc-

tions. Now, one could in principle, insist in using only the Riemannian piece of the connection, or

to state it in more technical language, to lift the canonical connection associated to the metric

instead of the affine connection, and it would do a perfect job in maintaining covariance. In this

case, the Dirac Lagrangian and field equations would be

L (1/2) = i
2

[
ψ̄γµ(∇g

µψ)− (∇g
µψ̄)γµψ

]−mψ̄ψ, (3.54)

and [
iγµ∇g

µ−m
]
ψ= 0,

ψ̄
[
i
←−∇ g

µγ
µ+m

]
= 0,

(3.55)

and no coupling to the post-Riemannian features of the geometry would occur. Therefore, this

would be preferred by our prescription for minimal coupling over lifting the affine connection, as

it couples less to the post-Riemannian features of spacetime. From the bundle theory point of view,

given that Dirac spinors are built using only the metric independently of the affine structure,

lifting the horizontal distribution defined by the metric in T M (i.e., the Riemannian connection)

instead of the one defined by the affine connection could seem more natural. Nevertheless, from

the perspective of building a gauge theory of gravity, to obtain GR one needs to consider gauge

invariance with respect to the Poincaré group20SO+
(3,1)oT4. In that case, the spin bundle inherits

the SO+
(3,1)oT4-structure from the tangent bundle and the spin connection must be a SO+

(3,1)oT4-

connection in S M which contains a torsion piece due to the translational part. This torsion piece
19Note that in that case the nonhermitian action is equivalent to the hermitean one, so this problem does not arise.
20Tn is the n-dimensional translation group.
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ends up yielding the same theory for Dirac fields as the one described by the Dirac Lagrangian

after applying the MCP, namely it leads to a Lagrangian of the form (3.42). In this case, minimal

coupling to torsion also acquires the meaning of being minimal in the sense that it arises from

requiring gauge invariance.

3.3.3 Minimally coupled 1-form field

The kinetic term for a 1-form field A, be it massless or massive, is fixed by Lorentz invariance

and absence of ghostly degrees of freedom, and in an explicitly covariant form it reads

L (1)
M =− 1

2p−η Tr[?ηdA∧dA]. (3.56)

This kinetic term happens to be invariant under gauge transformations A 7→ A+dξ, which from

the transformation properties of G-connections (2.37) implies that A can be understood as a

U(1)-connection 1-form21 unless further term in the Lagrangian (e.g. a mass) spoils its gauge

invariance. For our discussion, it will not be relevant whether it is massless or massive, since we

are only interested in the covariant form of the kinetic term. The corresponding field equations

are

d?η dA = 0 (3.57)

which are equivalent to Divη(dA) = 0 and, in the Lorentz gauge, given by Divg A = 0, they can

also be written as 2ηA = 0. The MCP is straightforward to implement just by the prescription

η 7→ g which implies ?η 7→?g. Starting with the application of the MCP on the above Lagrangian

(3.56), we find

L (1) =− 1
2
p−g

Tr[?gdA∧dA] (3.58)

with the corresponding field equations

d?g dA = 0, (3.59)

which are equivalent to Divg(dA) = 0 and, in the Lorentz gauge, given by Divg(A) = 0, they

can also be written as 2g A = 0. On the other hand, by applying the MCP directly to the field

equations (3.57) we find exactly the same equations as (3.59), showing how the MCP for 1-form

fields yields exactly the same theory if applied to the Lagrangian or directly to the field equations,

contrary to the claims in [136]. Let me now compare the theory resulting from applying the MCP

to that resulting from applying the UCP. The Minkowskian Lagrangian for a 1-form field (3.56)

is usually written as

L (1)
M =−ηµνηαβ∂[µAα]∂[νAβ]. (3.60)

21This discussion can be generalised in a straightforward manner for the case when A is any G-connection 1-form.
In that case, the fieldstrength (or curvature 2-form (2.35)) is dA+ A∧ A and the gauge invariant kinetic term features
self-interactions for nonabelian G, though this does not affect substantially the discussion of minimal coupling to the
geometry.
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and the corresponding field equations (3.57) as

∂µ∂
µAα−∂α∂µAµ = 0. (3.61)

If we apply the UCP (η,∂) 7→ (g,∇) to the above Lagrangian we get

L (1)
UCP =−gµνgαβ∇[µAα]∇[νAβ]. (3.62)

This Lagrangian features two couplings to the torsion tensor of the schematic form T A∂A and

T2 A2 which break the gauge of the massless 1-form field Lagrangian. Using (3.15) or (3.16), we

arrive at the following field equations

∇g
µ(dA)µν+ 1

2
Tν

αβ(dA)αβ+
(
∇g
µTαµν+ 1

2
TνµσTα

µσ

)
Aα = 0, (3.63)

We see that if thought of as a background on top of which perturbations of A propagate, spacetime

torsion provides an effective mass term that breaks the gauge symmetry and unleashes the

longitudinal polarisation, thus potentially giving rise to strong coupling issues around torsionless

backgrounds. It also yields an interaction with the velocities of A which can also, in general, be a

source of instabilities.

The UCP(L) thus leads to extra interactions between the torsion and the 1-form field. We can

also apply the UCP as (η,∂) 7→ (g,∇) directly to the field equations (3.61), and we find

∇g
µ(dA)µα+ΓPR

µ
µβ(dA)αβ+2ΓPR

αµβ∇g
µAβ+(∇g

µΓPR
αµ

β−∇gαΓPR
µ
µβ+ΓPR

α
µσΓPR

σµ
β+ΓPR

µ
µσΓPR

ασ
β

)
Aβ = 0.

(3.64)

where ΓPR
α
µν = Lα

µν+Kα
µν is the post-Riemannian part of the affine connection in the decompo-

sition (2.82). We see that the UCP(F) yields a different result from the UCP(L), introducing extra

interactions with both the nonmetricity and torsion tensors which also break the gauge symmetry.

Thus, while for the vector field the MCP yields the same results if applied to the Lagrangian

or field equations, this is not the case for the UCP. Furthermore, the MCP leads to a covariant

theory with no interactions with the post-Riemannian terms, whereas the UCP, in both cases,

features extra interactions that break the gauge symmetry of the kinetic term. Thus, sticking to

the principles that define minimal coupling to the geometry given in section 3.1, we find that the

MCP is the appropriate prescription.

3.4 Freefall in metric-affine theories

By taking the appropriate limits, the matter field equations describe how classical particles

propagate through spacetime. Thus, once the matter Lagrangian for a free22 matter field in a
22Note that in presence of gravity, free means interacting only with gravity. In the context of GR (or other theories

with only a metric) this can be seen as interacting with a background Riemannian geometry, but for meric-affine
theories, free fields can interact with other features of the geometry.
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metric-affine spacetime is specified, the paths followed by its associated particles are specified

by the corresponding field equations. In a purely Riemannian background, free fields follow

metric geodesics, which coincide with autoparallel paths for the Riemannian connection. However,

in post-Riemannian spacetimes, this coincidence is lost: curves that extremise length are not

autoparallel with respect to the affine connection. Dwelling into the literature on metric-affine

theories, one can find works in which it is assumed that free particles could follow the autoparallel

curves of the affine connection in order to uncover phenomenological aspects of the corresponding

theories. Nevertheless, this assumption is usually not backed by finding a set of matter field

equations which describes propagation through autoparallel curves in the appropriate limits. We

will finish this chapter by elaborating on why this assumption does not seem to be compatible

with a matter theory that is derived from a Lagrangian. To that end, let me start by reviewing

the differences between metric and autoparallel curves (or affine geodesics).

The notion of parallely transporting a vector along a curve in an arbitrary manifold is only

defined in terms of an affine connection, which defines a parallel transport equation (2.70). A

curve xµ(t) is said to be an autoparallel of a given affine connection if its tangent vector satisfies

the parallel transport equation along itself, namely if

ẍα+Γαµν ẋµ ẋν = 0. (3.65)

This equation describes the straightest paths defined as those whose acceleration along the

tangent direction vanishes, while the paths that extremise the spacetime interval are described

by the metric geodesic equation

ẍα+ gΓαµν ẋµ ẋν = 0. (3.66)

Unlike the autoparallel equation (3.65), the metric geodesic equation is oblivious to the general

affine structure, and is entirely determined by the metric23, as it should because the length of

curves only depends on the metric. The difference between both equations is accounted for by the

post-Riemannian terms in the decomposition of a general affine connection (2.82), so that the

autoparallel equation reads

ẍα+ gΓαµν ẋµ ẋν =−ΓPR
α
µν ẋµ ẋν. (3.67)

Only experiments can tell us whether particles follow metric geodesic paths, auto-parallel curves

of an independent affine connection, or otherwise. In other words, we can only constrain the

ΓPR−sector by resorting to experiments. However, we can argue which one seems more natural,

with all the caveats that this word might induce, from a theoretical perspective. Let me state the

conclusion that we will reach right away: metric geodesic trajectories seem better aligned with

our current understanding of physics. In the following, I will present the arguments leading to

that conclusion.

23More precisely, it is determined by the canonical affine structure of the metric, or equivalently, by the Levi-Civita
piece in the decomposition of the affine connection (2.82).
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Firstly, the most natural action for a test particle on a gravitational field (that may include a

general connection) is given by its line element. If the trajectory of the particle is xα = xα(λ) for

some affine parameter λ, we can expect its action to be

Sg =
∫

gµν(x)ẋµ ẋνdλ, (3.68)

which leads to the metric geodesic equation and not to the affine autoparallel one. One might

object that the naturalness and our expectation is crucially biased by our prejudice so some

more motivation would seem desirable. That (3.68) is the natural action for the gravitational

interaction of the particle can be motivated by the fact that the particle’s motion should be

described by its velocity ẋα and, in compliance with the Equivalence Principle, it should reduce

to ηµν ẋµ ẋν in a freely falling frame. Furthermore, once we accept that the particle dof ’s are

described by ẋα, (3.68) can be regarded as the lowest order interaction with the metric tensor

from an effective theory perspective. There could be other higher order interactions but they will

be suppressed by some appropriate scale. In fact, we do expect higher order corrections of this

type. The same reasoning can be applied to determine the coupling to the affine connection. If we

stick to the Equivalence Principle for gravity in the geometrical sense24, the connection cannot

couple directly to the particle unless it couples universally (though it is not clear how to do it).

On the other hand, from the field theoretic perspective this could be too restrictive because the

Equivalence Principle is only a required consistency coupling prescription for the massless spin-2

sector of the theory [102,137], and the connection sector could contain additional propagating

degrees of freedom that do not need to comply with the Equivalence Principle, so that there would

be no reason to impose universal coupling to the connection. However, note that any of these

degrees of freedom associated to the connection should be compatible with current bounds on

fifth-force experiments. In this line, if we let the connection couple to the particle, the lowest

order interaction is given by

SΓ =
∫
Υµ ẋµdλ, (3.69)

where Υµ is some arbitrary combination of traces of the connection. The correction to the field

equations coming from this coupling is of the form

δSΓ

δxα
⊃ (

∂αΥµ−∂µΥα

)
ẋµ, (3.70)

which contributes with a Lorentz-like force and, certainly, it does not lead to the affine autoparallel

equation. Again, we can expect higher order corrections, but they will be suppressed by some

24From the field theoretic perspective, the Equivalence Principle must be satisfied as a consistency condition for
the couplings of a massless spin-2 field. Other fields do not need to satisfy it. From the geometrical perspective, gravity
is associated to geometry and, if it has to satisfy the Equivalence Principle, the interaction of matter with spacetime
geometry, namely metric and connection, must be universal. From a field theoretic view, what we regard as geometry
and as matter is arbitrary. Indeed, by virtue of (2.82), any metric-affine theory of gravity can be seen as a metric
theory with nominimally coupled fields which do not need to satisfy universal coupling for consistency of the theory.
Indeed, from this view, the statement of whether gravity satisfies the equivalence principle amounts to whether we
associate any degrees of freedom to the gravitational sector beyond the massless spin-2.
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suitable scale and it will contain higher powers of the particles velocity. Thus, obtaining the

autoparallel equation for the full connection from an appropriate action is substantially more

contrived than obtaining the metric geodesic equation, which in turn appears quite naturally from

the lowest order interactions. In fact, the autoparallel equation (3.65) cannot be obtained from a

standard variational principle in general. Within the context of teleparallel theories where the

curvature vanishes identically, one can design an appropriate variational principle to obtain the

corresponding autoparallel equation as suggested in [138,139]. One can always resort to suitable

constraints and more or less involved couplings leading to the desired equations (whenever

this is possible), but this procedure seems artificial to eventually produce the equations in a

somewhat ad-hoc manner. An objection to the argument could be that there is no fundamental

principle stating that physical equations should follow from an action. After all, not all field

equations can be derived from an action principle. Thus, we could regard Eqs. (3.67) as Lagrange

equations of the second kind with some generalised velocity-dependent force precisely given by

ΓPR
α
µν ẋµ ẋν that go beyond the usual friction forces linear in the velocities and derivable from

a Rayleigh dissipation function. However, our current understanding of physics at the most

fundamental level can be formulated in terms of the path integral whose primary ingredient

is the action (besides an appropriate measure). Let us recall that the standard model of the

fundamental interactions including gravity is indeed described by an action so it is natural,

though not mandatory, to expect that physical equations should follow from an action principle

and, in particular, the motion of particles in a gravitational background.

We will finalise our digression by going back to the idea that a particle is just an idealisation (or

approximation in some cases) of some more fundamental classical or quantum field. As we have

seen above, via the prescription for minimal coupling given in 3.1, standard bosonic fields like a

scalar or spin-1 fields only couple to the metric structure, so it is difficult to justify the appearance

of the connection (other than its Levi-Civita part) in their field equations and, consequently, on

the propagation of the associated point-like particles unless nonminimal interactions are allowed.

Even in this case, the propagation of these fields is usually obtained by applying the eikonal

or geometric optics approximation to the corresponding hyperbolic equation describing their

dynamics. As we saw in the previous section, the field equations of minimally coupled fields

reduce to a wave equation, with the highest order differential operator given by the d’Alembertian

associated to the metric (or a suitable combination operators d and ?g). In that approximation,

the corresponding particle trajectories arises as the curve whose tangent vector is parallel

transported with the canonical affine structure of the metric, namely its Levi-Civita connection.

On the other hand, if we include nonminimal couplings to the connection bosonic field equations,

these will modify the paths of the associated particles in the corresponding approximation, but

ensuring that such modifications will lead to the affine autoparallel equation (3.65) will require

a certain amount of artificiality, if possible at all. When considering fermions that do couple

minimally to the connection, the conclusion is similar. In that case the eikonal approximation
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will exhibit additional torsional forces, but they will not mimic the effect of the affine autoparallel

propagation [140–144].

This discussion is relevant, for instance, concerning the physical importance of geodesically

complete spacetimes in metric-affine theories, meaning spacetimes where the solutions of (3.65)

can be extended to the entire manifold. The incompleteness of these curves can be associated

to the existence of singularities in the affine structure of spacetime. However, it is then crucial

to discern the class of trajectories that carry physical information on the propagation of actual

particles. In view of our discussion, it is most natural to consider the solutions of (3.66) as the

relevant ones in order to draw physical consequences regarding freely falling observers even if we

are in a metric-affine framework. If our matter sector couples to the connection directly, then the

geodesic equations (3.66) cease to be valid to describe the dynamics of particles because we will

need to include the corresponding affine forces, but these will not, in general, be encapsulated

in an autoparallel equation and a case by case study would be required since, as commented

above, universality is no longer a required property of the interactions with an affine connection.

However, geodesic completeness should neither be understood as a sufficiency criterion for absence

of singularities even in Riemannian spacetimes [145]. Indeed, even if free particles do not follow

autoparallel curves, we can think of observers which do by propelling them with the appropriate

4-acceleration that compensates the Lorentz-force like term in (3.65). In a nonsingular spacetime,

not only freely falling observers should be complete, but also accelerated ones, so that autoparallel

completeness is also a necessary (though not sufficient) criterion for absence of singularities in

metric-affine theories. As a final remark, note that the metric determining the trajectories of

different particles could depend on the species around nontrivial backgrounds, as it is the case

for projectively invariant RBG where gravitational waves follow the geodesics of an Einstein

frame metric qµν, while matter fields travel according to the RBG frame metric gµν (see chapter

4 or [146]).
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Part II - Outline

This part constitutes the core of the thesis, where we develop several arguments that allow

to better understand several aspects of the metric-affine framework both at the theoretical and

observational level. To that end, we will first resort to a subfamily of metric-affine theories that

serve as a proxy that illustrates some features of generic metric-affine theories in a cleaner

manner. This family, dubbed as Ricci-Based Gravity theories, is defined by metric-affine actions

whose geometrical part depends only on the Ricci tensor. This might give the impression of

an unnecessary restraint given the huge freedom permitted by the the general metric-affine

formalism. Let us recall at this point that we have a plethora of different geometrical objects that

could be used and which should indeed enter the action, unless some additional guiding principle

is invoked. However, we will see that some of the features of these theories can be generalised to

the full metric-affine family. Studying these features within this simplified class of theories allows

for a clearer understanding of their implications both at the theoretical and phenomenological

levels, which provides valuable insights on the structure of more general metric-affine theories.

Particularly, we will achieve two main results that illuminate the physical properties of generic

metric-affine theories. The first one consists on showing the pathological nature of generic metric-

affine theories due to the presence of ghostly degrees of freedom (see chapters 7 and 9). The

other result is related to an observable effect that occurs in all metric-affine theories provided

that they contain an operator in the action with R(µν) besides the Einstein-Hilbert term. These

effects are better understood from the field theoretic perspective, where they take the form of

effective interactions suppressed by a UV scale at which the perturbative expansion breaks

down. Nonetheless, from the geometric perspective, they are related to a particular piece of the

nonmetricity tensor which is precisely related to these R(µν) operators that appear outside the

Einstein-Hilbert term in the action. To our knowledge, this is the first time that a universal effect

that can be linked to nonmetricity in generic metric-affine theories,25 without depending on the

way it couples to matter, is found.

25Of course this link only makes sense from the geometric point of view.
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4
STRUCTURE OF RICCI-BASED GRAVITY THEORIES

Apart from helping in the understanding of the structure of generic metric-affine theories,

Ricci-Based theories have received considerable attention in the literature [57,59,81,146–153]

due to useful properties that make them appealing and more tractable than other more general

metric-affine theories, as well as the presence of interesting nonperturbative phenomenology

both in astrophysical and cosmological contexts. In particular, as we will see in chapter 7, these

theories are known to be a ghost-free subclass of metric-affine theories with projective symmetry,

and are able to heal singularities that arise in cosmological as well as astrophysical scenarios at

the classical level. In the process of threshing its properties to understand which are relevant to

generic metric-affine theories, we will also make some progress in the understanding of some

theoretical and phenomenological aspects of these theories.

4.1 Ricci-Based Gravity field equations

Ricci-Based gravity theories in D spacetime dimensions are described by any diffeomorphism

invariant action of the form

S [gµν,Γαµν,Ψi]= 1
2

MP
2
∫

dD x
p−g

[
L

(
gµν,Rµν

)+ 2
MP

2 Lm
(
gµν,Γαµν,Ψi

)]
, (4.1)

where L is an arbitrary scalar function that depends on the (inverse) metric gµν and the Ricci

tensor Rµν of an arbitrary connection Γαµν (see section 2.5.2) that is to be determined by the

field equations. Here L is of mass dimension 2, so that in D spacetime dimensions it includes

some (typically heavy) mass scale MG suppressing the couplings of n-th order curvature terms

as MG
D−2(n+1) for n ≥ 2. The second term is the matter action, also dubbed as Sm[gµν,Γαµν,Ψi],

where Ψi stands for the collection of matter fields (and their derivatives), which can in principle
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couple to the connection in an arbitrary way. In unveiling the general structure of Ricci-Based

theories, we will see that those with projective symmetry have particularly nice properties.

However, we can make some general statements on form of the field equations and the existence

of an Einstein frame in general Ricci-Based theories before talking about projective symmetry.

Let us start by analysing its field equations, and then showing how they always admit and

Einstein frame representation in the sense that they can be described by a Lagrangian given

by the ‘Ricci scalar’ of a rank-2 tensor that needs not be symmetric in general. We will then

particularize to the cases with and without projective symmetry. In the former, this rank-2 tensor

will be symmetric and the gravitational sector in the Einstein frame representation will be seen

to be equivalent to GR. In the later case, the rank-2 tensor develops an antisymmetric part due

to the explicit breaking of projective symmetry, making the Einstein frame of the theory mirror

the Nonsymmetric Gravity Theory introduced by Moffat in [154]. In this chapter, we will mainly

focus on the structure of Ricci-Based theories with projective symmetry, which we will denote

by RBGs1, which will allow us to understand many results on particular models of this class

which have been published mainly over the last 20 years. The field equations of general RBG

theories admit several forms that can be reached through algebraic manipulation and which

allow to gain some understanding of the general structure of the theories. We will first consider

metric and connection field equations separately in full generality, including arbitrary couplings

between matter and connection. This will allow us to see how both sets of equations take a

simpler form when projective symmetry is a requirement for the gravitational action. For this

case, we will mainly focus on the subcases of minimal coupling between matter and geometry

and some particular kinds of nonminimal coupling that essentially shares the main features of

the minimally-coupled case. We will leave the detailed analysis of the properties of RBGs without

projective symmetry for chapter 7. There we will see how they can teach us the valuable lesson

that metric-affine theories generally propagate ghost degrees of freedom unless one explicitly

tries to avoid them in the construction of a particular theory, or resorts to a particular subclass

of the metric-affine family that are known to be ghost-free, such as e.g. RBGs with projective

symmetry. We will then comment on the cases with and without projective symmetry in the

gravitational action particularising as well for certain types of couplings between matter and

geometry. Let us start with the metric field equations first.

4.1.1 Metric field equations

The metric field equations obtained by varying (4.1) with respect to the metric, are

∂L

∂gµν
− 1

2
L gµν =MP

−2Tµν, (4.2)

1Sometimes I will explicitly write RBGs with/without projective symmetry to avoid possible confusion.
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where

Tµν ≡− 2p−g
δ
p−g Lm

δgµν
(4.3)

is the usual stress-energy tensor of the matter sector. Note that these field equations are algebraic

for gµν, which suggests that there could be some nontrivial constraints that would complicate the

analysis of the propagating degrees of freedom propagated by these theories when written in the

field variables (g,Γ). We will later see that a field redefinition clarifies the analysis by leading to

the Einstein frame of the theories.

Diffeomorphism symmetry has a consequence on the allowed dependence of L on its variables:

given that L is a scalar under diffeomorphisms, it can only depend on traces of powers of

Pµ
ν = gµαR(αν) and Zµ

ν = gµαR[αν]. (4.4)

Another possible decomposition for these two independent pieces is P µ
ν = gµαRαν and Z µ

ν =
gµαRνα, where P µ

ν = Pµ
ν+Zµ

ν and Z µ
ν = Pµ

ν−Zµ
ν. Using the objects Z and P we can write

the Lagrangian as

L
(
gµν,Rµν

)=F
[
P µ

ν(gµν,Rµν),Z µ
ν(gµν,Rµν)

]
(4.5)

which leads to the general relation

∂L

∂gµν
= ∂F

∂P µ
α

Rνα+ ∂F

∂Z µ
α

Rαν

∂L

∂Rµν
= ∂F

∂P α
µ

gνα+ ∂F

∂Z α
µ

gαν.
(4.6)

Note that for the case with projective symmetry, where the Ricci is symmetric, Zµ
ν vanishes

and, therefore, P µ
ν = Z µ

ν = Pµ
ν. In that case, we must drop the Z dependence from F , and

the partial derivatives ∂F /∂Z cannot even be defined. As a rule of thumb, we can use the above

relations and all the relations that we derive below with ∂F /∂Z = 0. After some manipulations

we arrive to the general relation

∂L

∂Rµσ
Rνσ = gµα

∂L

∂gαν
+ ∂F

∂Z α
β

(
gµαδσβRσν+ gασδµβRνσ

)
, (4.7)

which allows us to write the metric field equations (4.2) and its trace as

∂L

∂Rµσ
Rνσ = ∂F

∂Z α
β

(
gµαδσβRσν+ gασδµβRνσ

)+ 1
2

L δµν+MP
−2Tµ

ν,

∂L

∂Rµν
Rµµ = 2

∂F

∂Z α
β
Z α

β+ D
2

L +MP
−2T.

(4.8)

We can now define a new rank-2 tensor field, which will later be seen to play the role of a metric,

by

p−q qµν =p−g
∂L

∂Rµν
. (4.9)
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Combining the two equations in (4.8) in a clever way, this new tensor allows us to write the metric

field equations as

qµσRνσ− 1
2

qασRασδ
µ
ν =MP

−2

√
−g
−q

[
Tµ

ν−
(

D−2
4

MP
2L + T

2

)
δµν

+MP
2 ∂F

∂Z α
β

(
gµαδσβRσν+ gασδµβRνσ−Z α

βδ
µ
ν

)]
.

(4.10)

Now, we can define a metric-affine version of the Einstein tensor as Gµ
ν(q,Γ) = qµσR(σν) −

1
2 qασR(ασ)δ

µ
ν and write the metric field equations in the convenient form

Gµ
ν(q,Γ)=MP

−2

√
−g
−q

[
Tµ

ν−
(

D−2
4

MP
2L + T

2

)
δµν

+MP
2 ∂F

∂Z α
β

(
gµαδσβRσν+ gασδµβRνσ−Z α

βδ
µ
ν

)]+ qµσR[σν] +
1
2

qασR[ασ]δ
µ
ν.

(4.11)

Note the following argument: from (4.9) we have an algebraic relation that can be used to write

gµν as a function of qµν, R(µν) and R[µν] formally. By writting P and Z again in terms of P and Z,

the metric field equations (4.8) give an algebraic relation between R(µν), R[µν], gµν and the matter

fields through Tµ
ν. Both relations could be used to write R(µν), and by extension L , formally as

a function of qµν, R[µν] and the matter fields. The right hand side would then be a function of

the new tensor qµν, R[µν] and the matter fields. This would allow to define a new matter sector

as L̃m
(
qµν,Γαµν,R[µν],Ψi

)
, and R[µν] can acquire dynamics due to the terms gασRνσ in (4.11). If

such matter sector is found, then the metric field equations take formally the form

Gµ
ν(q,Γ)=MP

−2T̃µ
ν, (4.12)

where T̃µ
µ = qµαT̃αν and T̃ is defined as in (4.3) making the substitution (g,Lm) 7→ (q,L̃m).

These are identically the metric field equations obtained for GR with a matter sector featuring

additional nonlinear terms due to solving gµν and R(µν) in terms of qµν, R[µν] and the original

matter fields. As we said above, these formally defined new matter sector can also contain extra

degrees of freedom due to R[µν] and the antisymmetric part of qµν (see chapter 7). We will see

that this is the case in general in chapter 7, and we will now turn to the case when projective

symmetry is required. In this case, the above arguments become more apparent and there are

no ghostly degrees of freedom. This is (by far) the class containing most of the models studied

in the literature with interesting nonperturbative properties, and we will devote this chapter

to its study. Before turning into the subset of RBGs with projective symmetry, let us define the

deformation matrix Ωµ
ν, which will be of great use later as it encodes the relation between the

new rank-2 tensor qµν and the original metric gµν as

qµν = (
Ω−1)µ

ρ gρν. (4.13)

Taking the determinant on both sides we find Ω= det
(
gq−1)

, and using (4.9) we can write the

inverse deformation matrix as p
Ω

(
Ω−1)µ

ν = ∂L

∂Rµρ
gρν , (4.14)
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where Ω is the determinant of the deformation matrix. Taking the determinant of both sides of

(4.14), one finds

Ω= det
[
∂L

∂Rµρ
gρν

]
. (4.15)

and therefore the inverse deformation matrix is given by

(
Ω−1)µ

ν = 1√
det

[
∂L
∂Rαλ

gλβ
] ∂L

∂Rµρ
gρν . (4.16)

By the same argumentation as above, it is possible to conclude that the deformation matrix can

also formally be written as an on-shell function of qµν, R[µν] and the matter fields. A crucial

property that will be exploited later is the fact that if the symmetries of gµν and Ωµ
ν are not the

same, then the two metrics will describe spacetimes with different symmetries. We will later see

(for the case with projective symmetry) that this is in general possible due to the nonlinearities

if the deformation matrix. To that end it will be useful to rewrite the above definition of the

deformation matrix in a way that can be interpreted as a matrix product, which can be done by

using (4.6), and reads

(Ω−1)µν = 1√
det

[
∂F
∂P ν

µ
+ ∂F

∂Z ν
µ

] (
∂F

∂P ν
µ
+ ∂F

∂Z ν
µ

)
. (4.17)

Let us now turn or attention to RBG theories with projective symmetry.

The case with projective symmetry

In RBGs projective symmetry has a very simple implementation: given that a projective

transformation δξΓαµν = ξµδαν leaves the symmetric part of the Ricci invariant (2.91) and changes

its antisymmetric part as δξRµν∝ (dξ)µν, we have that in RBGs with projective symmetry only

Pµ
ν = gµαR(αν) enters the Lagrangian while Zµ

ν = gµαR[αν] is banned from it, as it would

explicitly break the projective symmetry. Thus in this case Z µ
ν =P µ

ν = Pµ
ν, and we can use the

above relations setting ∂F /∂Z 7→ 0. It can be seen that, in this case, we can rewrite (4.6) and

(4.7) as
∂L

∂Rµν
gνα = ∂F

∂Pα
µ

and gµα
∂L

∂gαν
= ∂F

∂Pα
µ

Pα
ν (4.18)

where we have multiplied the first by gνα. The right hand side of these equations can be written

in matrix notation respectively as

∂F

∂P̂
and

∂F

∂P̂
P̂. (4.19)

Therefore, using (4.6), the metric field equations (4.2) can be rewritten as well in matrix notation

as
∂F

∂P̂
P̂ − 1

2
F I=MP

−2T̂. (4.20)
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By writting the relation between gµν and qµν given in (4.13) in matrix form and inverting it, we

find the relation

q̂ = ĝ Ω̂ or in tensorial form qµν = gµρΩρ
ν, (4.21)

where we have used that ĝ is symmetric and Ω̂ is given by inverting the matrix form of the

definition of Ω̂−1 in (4.16) a

Ω̂=
√

det
(
∂F

∂P̂

) (
∂F

∂P̂

)−1
, (4.22)

After taking ∂F /∂Z → 0 and P µ
ν = Pµ

ν as corresponds to the case with projective symmetry.

Note that the (projective invariant) metric field equations in matrix form (4.20) yield an algebraic

relation between P̂ and T̂. In general, given the nonlinear nature of the left hand side of (4.20),

there will generally exist several algebraic solutions P̂(T̂) that solve the metric field equations

and, substituting the solution on the definition on the expression for the deformation matrix

(4.22), they will lead to different on-shell expressions Ω̂(T), one for each branch of solutions P̂(T̂)

of (4.20). The requirement that the gravitational Lagrangian is an analytic function of R(µν),

namely that F (P̂) is an analytic function of P̂, implies the existence of at least one solution,

which satisfies
∂F

∂P̂

∣∣∣∣
P̂→0

∝ I (4.23)

with a constant proportionality factor. For this branch, we have that Ω̂−1|P̂→0 ∝ I and Einstein

frame metric will be related by a proportionality factor (up to O (P̂) corrections) that can be

reabsorbed as a cosmological constant term on the right hand of the metric field equations.

Note that this branch of solutions would then be identical to vacuum GR if the solution for the

connection is given by the Levi-Civita connection of qµν, as will be seen to be the case for RBG

theories with projective symmetry. However, though the existence of this branch is guaranteed

by the analyticity requirement, one should keep in mind that other nontrivial solutions, each

characterised by its own expression for Ω̂(T̂), can exist due to the nonlinearities of the metric

field equations. However, we will see in section 5 that these nontrivial solutions are typically

unphysical.

Another relevant consequence of projective symmetry is that, due to the fact that only the

symmetric part of the Ricci tensor enters the action, the definition of qµν given in (4.9) now yields

a symmetric rank-2 tensor that can be properly used as a metric. The metric field equations for

RBGs with projective symmetry can now be written in terms of qµν, Γαµν, and the matter fields

as

Gµ
ν(q,Γ)=MP

−2Ω−1/2
[
Tµ

ν−
(

D−2
4

MP
2L + T

2

)
δµν

]
(4.24)

where the possible dependence of the right hand side on the metric gµν can be eliminated by

finding ĝ(q̂,Ψi) as a solution to (4.13) after substituting the deformation matrix by one of the

solutions Ω̂(T̂). Note that the dependence on Ψi of the solution ĝ(q̂,Ψi) enters through the stress

energy tensor but it might be that a more general dependence on the matter fields occurs after
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solving for gµν in terms of qµν and the matter, as gµν is usually present inside of T̂. Using this

argument also in the solutions P̂(T̂), we will be able to write R(µν), and therefore L , as an on-shell

function of the matter fields and the metric qµν. This leads to the possibility of writing the metric

field equations again as the metric field equations of first order GR for some stress-energy tensor

T̃µ
ν that is defined by writing the right hand side of (4.24) as a function of qµν and the matter

fields, leading to

Gµ
ν(q,Γ)=MP

−2T̃µ
ν (4.25)

Unlike the case without projective symmetry, the stress-energy tensor T̃µ
ν does not contain new

matter degrees of freedom, though it generally incorporates new highly nonlinear interaction

terms between the original matter degrees of freedom. In any case, for the above equation to be

equivalent to metric-affine (or first-order) GR, we need that the field equations of the connection

admit the Levi-Civita connection of qµν as its unique solution (up to a projective gauge mode).

We will see that this is indeed the case for RBG theories with projective symmetry, but not the

general one, where the solution to the connection involves new degrees of freedom that are not

present in the case with projective symmetry. These degrees of freedom are described by R[µν]

and a (now physical) projective mode. Though these new degrees of freedom spoil the equivalence

to GR, we will see that there is a similar correspondence with Nonsymmetric Gravity Theory.

4.1.2 Connection field equations

By varying (4.1) with respect to the connection, using the definition of qµν introduced for the

metric field equations in (4.9), the connection field equations can be written as

∇λ
[p−q qνµ

]−δµλ∇ρ [p−q qνρ
]=∆λµν+p−q

[
Tµ

λαqνα+Tα
αλqνµ−δµ

λ
Tα

αβqνβ
]
. (4.26)

where ∆µν
λ

is the hypermomentum defined as

∆λ
µν ≡ 2

MP
2

δ
p−g Lm

δΓλµν
. (4.27)

The above equation can be recast in a more convenient form by introducing a new connection

Γ̂αµν obtained by subtracting a projective mode from the original one as

Γ̂αµν =Γαµν+ 2
D−1

Γλ[λµ]δ
α
ν. (4.28)

This connection identically satisfies Γ̂λ[λµ] = 0. The hypermomentum of the original connection

∆α
µν and the one related to the shifted connection ∆̂αµν are related by

∆α
µν = ∆̂αµν+ 2

D−1
δα

[µ∆̂β
ν]β, (4.29)

where the hypermomentum corresponding to the shifted connection is defined as in (4.27). Note

that this relation implies that the hypermomentum of projectively invariant matter fields satisfies
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∆̂β
µβ = 0. The explicit splitting of the connection into a projective mode done in this way will

prove to be very convenient for analysing the physical content of RBGs both with and without

projective symmetry. The main reason for this is that this splitting allows us to write the general

connection field equations (4.26) as

1p−q
∂λ(

p−q qµν)+ Γ̂µλαqαν+ Γ̂ναλqµα− Γ̂αλαqµν = 1p−q

(
∆̂α

µν+ 2
D−1

δα
[µ∆̂β

ν]β
)
, (4.30)

and by taking its traces, we can derive from it the conditions

∂µ

(p−q q[µν]
)
= ∆̂λ[λν] +2∆̂λ[νλ]

∂α
p−q = Γ̂λαλ+ 1p−q

qµν
(
∆̂α

µν+ 2
D−1

δα
[µ∆̂β

ν]β
) (4.31)

where qµαqµβ = qαµqβµ = δαβ defines qµν (see [155]). After some manipulations, these conditions

allow to write the above equation (4.30) as

∂λqµν+ Γ̂µλαqαν+ Γ̂ναλqµα = 1p−q

[
∆̂α

µν− qµν∆̂ααβqαβ+ 2
D−1

(
δα

[µ∆̂β
ν]β− q[λβ]∆̂α

βα
)]

. (4.32)

For a symmetric metric, or for vanishing hypermomentum, these equations are formally identical

to the connection field equations obtained from the metric-affine version of GR coupled to a

general matter sector. For vanishing hypermomentum and a symmetric qµν, these equations are

algebraic and linear in Γ̂αµν, and are known to admit a unique solution given by the Levi-Civita

connection of qµν up to a choice of projective mode [156]. This result, however, needs not be

extendible to a nonsymmetric qµν, although it provides valuable insight in attempting to find a

formal solution in this case. Consider splitting qµν into its symmetric and antisymmetric parts as

p−q qµν =
p
−h

(
hµν+Bµν

)
(4.33)

where
p−q q(µν) =p−h hµν and

p−q q[µν] =p−h Bµν. We can now use hµν defined by hµαhαν =
δµν as a (symmetric) metric, and split the connection as

Γ̂αµβ = hΓαµβ+ Υ̂α
µβ (4.34)

where hΓαµβ are the Christoffel symbols of hµν defined as in 2.81. The homogeneous equation

corresponding (4.32) (namely the vanishing hypermomentum case) is trivially satisfied by the

symmetric part of qµν and hΓαµν, namely

∂λhµν+ hΓµλαhαν+ hΓναλhµα = 0 (4.35)

identically. Then, by performing the usual trick of adding and subtracting (4.32) with suitably

permuted indices, we can write a formal solution for the connection as

Υ̂α
µν = 1

2 hκλ
[(

∇h
β
Bγλ+∇h

γBλβ−∇h
λ
Bβγ

)
+ 1p−h

(
∆̂βγλ+ ∆̂γλβ+ ∆̂λβγ+ 2

D−1 hλ[γ∆̂
α
β]α

)](
A−1)

κ
α
µν

βγ, (4.36)
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where by definition Aκ
α′µ

′ν′
βγ(A−1)καµνβγ = δα

′
αδ

µ′
µδ

ν′
ν. Here Aκ

α′µ
′ν′
βγ is linear in Bµν and is

given by

Aκ
α
µν

βγ = aκαµνβγ+bκαµνβγρσBρσ

aκαµνβγ = δκαδµβδνγ+ 1
2
δµα

(
hνκhβγ−2δν(βδ

κ
γ)

)
(4.37)

bκαµνβγρσ = 1
2

[
hαγhµσδνβhρκ+δβρhαγhµκhνσ+δργδµαδνβhκσ−hρκδµγhνσhαβ

−δρβhσκδµαδνγ−δρβδσγδµαhνκ−δργhαβhµσhνα−δργδκαδµβhνσ+δρβδκαhµσδνγ
]
.

Note that in the most general case, the hypermomentum will depend on the connection as well,

and the above formal solution will still be an implicit equation for Υ̂α
µν. However, for matter fields

whose hypermomentum does not depend on the connection (e.g. minimally coupled matter fields),

this formal solution will do the job. As a remark, let us mention that if the matter fields have

couplings to the connection through Rµν, instead of including them in the hypermomentum, we

can define it as in (4.27) for variations which keep the Ricci constant, and include the variation

of the matter Lagrangian with respect to the Ricci in the definition of the metric qµν. This

would lead to add the matter Lagrangian to F in (4.22), thus modifying the dependence of the

deformation matrix (and therefore the relation between qµν, gµν) on the matter fields, but keeping

the structure of the connection field equations (4.32).

In any case, we see that the antisymmetric part of the effective nonsymmetric metric qµν

introduces deviations in the connection from being the Levi-Civita connection of hµν∝ q(µν) even

in vacuum. Remarkably, although these deviations are more general than a simple projective

mode, they are due to the explicit breaking of projective symmetry in (4.1), and will be one of

the sources of the pathologies present in RBGs without projective symmetry and in general

metric-affine theories if gravity, as will be shown in chapter 7. For the moment, now that we have

analysed the algebraic structure of the connection field equations in general RBGs, let us discuss

further the details of these equation and its solution in RBGs with projective symmetry.

The case with projective symmetry

As explained in section 4.1.1, the requirement of projective symmetry in RBG theories reduces

to forbid the antisymmetric part of the Ricci tensor from entering the action. In this case we have

that
∂L

∂Rµν
= ∂L

∂R(µν)
(4.38)

which implies that the object qµν defined in (4.9) is symmetric and, as a consequence, the 2-form

Bµν ∝ q[µν] drops from the splitting (4.33). The results that follow (4.33) were derived in full

generality and it can be seen that they are valid for RBGs with projective symmetry simply by

performing the substitution Bµν 7→ 0. Concretely, we have that for RBGs with projective symmetry
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the only deviations of the connection from being the Levi-Civita connection of2 qµν are introduced

by the coupling between the matter fields and the connection as

Υ̂α
µν = 1

2
p−h

hκλ
(
∆̂βγλ+ ∆̂γλβ+ ∆̂λβγ+ 2

D−1
hλ[γ∆̂

α
β]α

)(
A−1)

κ
α
µν

βγ, (4.39)

where now Aκ
α
µν

βγ = aκαµνβγ. Particularly, we see that in presence of matter fields that do

not couple to the connection (such as minimally coupled bosonic fields) the connection is the

Levi-Civita connection of qµν up to a projective (gauge) mode3. This is a remarkable feature of

RBGs with projective symmetry since, in this case, the connection is an auxiliary field that can be

solved algebraically as the Levi-Civita connection of qµν. In the case of including linear couplings

to the connection, then the corresponding hypermomentum depends only on the matter fields

and the connection can be solved algebraically as the canonical connection of qµν plus corrections

involving the matter fields. In any of these cases, we can integrate the connection out and the

resulting theory can be cast only in terms of a metric.

Given that by definition the metric-affine version of the Einstein tensor introduced in (4.11)

satisfies Gµ
ν(q, qΓ)≡Gµ

ν(q), where Gµ
ν(q) is the usual Einstein tensor for the metric qµν, the

metric field equations (4.25) are exactly identical to the Einstein equations for the metric coupled

to a modified stress-energy tensor

Gµ
ν(q)=MP

−2T̃µ
ν (4.40)

where T̃µ
ν is given by

T̃µ
ν =

√
−g
−q

[
Tµ

ν−
(

D−2
4

MP
2L + T

2

)
δµν

]
(4.41)

written only in terms of the matter fields, their derivatives and qµν as explained in 4.1.1. We

then see that the analogy with the Einstein field equations, though purely formal for the case

without projective symmetry (there are even extra degrees of freedom), is fully realised in the

case with projective symmetry, and the gravitational sector is indeed equivalent to that of GR.

As noted in [157], this implies that the only gravitational degrees of freedom present in RBG

theories with projective symmetry are those corresponding to a spin-2 massless field described

by the perturbations to the metric qµν, which seems to be the appropriate object to describe the

gravitational dynamics of the theory.4 In the next section we will see that this equivalence can

be proved in a more transparent way at the level of the action by choosing the appropriate field

variables that describe the degrees of freedom of RBG theories.

2Note that in this case qµν = hµν exactly.
3This is also true if the matter fields couple to the connection only through the symmetric part of the Ricci tensor.

In this cases, the analysis is identical if we include those terms in the definition of qµν.
4Thus, the characteristics of the propagation of gravitational waves will be related to geodesics of qµν. However,

note that minimally coupled matter fields will follow geodesics of gµν.
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4.1.3 The Einstein frame of Ricci-Based Gravity theories

As discussed above, it is possible to obtain the main properties of general RBG theories by

working with the field equations. However, it is more illuminating to re-write the action so that

the gravitational sector looks more familiar and, consequently, the physical content of the theory

is more apparent. In this section we will see that both projectively and nonprojectively invariant

RBG theories admit an Einstein frame representation. In the case with projective symmetry,

the action of the theory will be identical to the Einstein-Hilbert action. On the contrary, when

projective symmetry is explicitly broken, the action for the theory in its Einstein frame will be

equivalent to that of the Nonsymmetric Gravity Theory (NGT) proposed in [154]. We will follow

the procedure presented in [146,147] for the projectively invariant theories, extending it to the

general nonprojectively invariant case.

Let us start by performing a Legendre transformation in order to linearise the action for general

RBG theories (4.1) in the Ricci tensor as follows

S = 1
2

MP
2
∫

dD x
p−g

[
L (gµν,Σµν)+ ∂L

∂Σµν

(
Rµν−Σµν

)]+Sm[g,Γ,Ψi], (4.42)

where Σµν is an auxiliary field.5 In order to put our action in a more familiar form, we can perform

the following field redefinition
p−q qµν =p−g

∂L

∂Σµν
. (4.43)

This definition will allow to express the auxiliary field Σµν in terms of the metric and the object

qµν by inverting the algebraic relation Σµν = Σµν(q, g) defined by (8.22). The dynamics of this

new auxiliary field is given by the constraint Σµν = Rµν, so that the above field redefinition looks

exactly like the definition for qµν given in (4.9) in section 4.1.1 when Σ is on-shell. After this field

redefinition, we can then express the general RBG action in the form

S = 1
2

MP
2
∫

dD x
[p−q qµνRµν+U (q, g)

]
+Sm[g,Γ,Ψi], (4.44)

where we have introduced the potential term

U (q, g)=p−g
[
L − ∂L

∂Σµν
Σµν

]
Σ=Σ(q,g)

. (4.45)

The action (8.23) already features the standard Einstein-Hilbert term in the first order formalism,

but for the object qµν instead of the spacetime metric gµν. As a matter of fact, we can notice

that gµν appears algebraically in the potential U and the matter action so that it is simply an

auxiliary field that we can integrate out by solving its field equations, which are given by

∂U

∂gµν
=p−g MP

−2Tµν. (4.46)

5We will not write explicitly the dependence of L but in this section it should be assumed that L means
L (gµν,Σµν)
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From this equations we can obtain the spacetime metric gµν in terms of the object qµν and the

stress-energy tensor of the matter sector, computed as the variation of the matter action with

respect to gµν as defined in (4.3). We will see below that there is another stress-energy tensor

that we can introduce to make the resemblance with the first-order formulation of GR even more

apparent. Once we have obtained the corresponding solution to (4.46), we can use it to finally

express (8.23) as

S = 1
2

MP
2
∫

dD x
[p−q qµνRµν+U (q,T)

]
+ S̃m[q,Γ,Ψi]. (4.47)

S̃m[q,Ψi] = Sm[g(q,T),Γ,Ψi]. This is the desired appearance of the theory where the gravita-

tional sector reduces to the well-known Einstein-Hilbert action in the first order formalism for a

nonsymmetric metric qµν.

In addition to the purely gravitational sector, we also see how we have generated new couplings

between the object qµν and the matter sector. Such couplings arise after integrating out the

spacetime metric both from the potential U generated when linearising in the Ricci tensor, and

from the explicit couplings of the matter sector to gµν. Notice that matter only enters the metric

field equations (4.46) through the stress-energy tensor obtained as the reaction to variations

of the metric gµν. This further implies that all the newly generated matter couplings will only

depend on Tµν, which guarantees the preservation of the symmetries in the original matter sector.

Notice that since gµν appears in Tµν not as Tµν∝ gµν but in a more involved form, it could be

that if we truly want to eliminate gµν in favour of qµν and the matter fields, the dependence

could also be more general than through Tµν (we have to solve the corresponding equation for

gµν). However, the new couplings will still surely have the same symmetries as the matter action.

It is important to emphasise that the resemblance is purely formal at this point and, in fact,

solving for the connection will fail to recover GR owed to the lack of any symmetries of qµν as

showed in the previous section

The case with projective symmetry: Equivalence to GR

As explained in the previous section, in the case of RBG theories, enforcing projective symmetry

is equivalent to require that only the symmetric part of the Ricci tensor appears in the action.

Therefore, in this case, we can take the auxiliary field Σ(µν) to be symmetric in its two indices

without loss of generality, so that qµν will inherit the symmetric character of the Ricci tensor.

Being a symmetric rank-2 tensor, qµν is then entitled to claim its status as a proper metric

tensor so that the gravitational sector in (4.47) is actually the first order formulation of GR .

The corresponding solution for the connection will then be given by the Christoffel symbols of

the metric qµν (up to the projective mode entering as a gauge mode [156]) instead of those of

the metric gµν. In the Einstein frame we thus recover the usual form of the Einstein equations,

but the right hand side is now given by the stress-energy tensor T̃µν describing the reaction
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of the matter action S̃m to the metric qµν, defined as in (4.3). This stress-energy tensor is

highly nonlinearly related to Tµν [148], and will feature new interactions between all the matter

fields [57,81]. We will latter devote a chapter to the analysis of these interactions, which are the

origin of the different phenomenology and solutions that deviate from the usual GR behaviour.

The apparent differences between RBGs and GR are simply due to the fact that a matter sector

coupled to a projectively invariant RBG corresponds to another matter sector (obtained as a

nonlinear deformation of the previous one) coupled to GR. The peculiar property of the RBG with

projective symmetry is that the interactions in the matter sector present a somewhat universal

form (that of course depends on the specific theory). The new interactions will be generated

through the total stress-energy tensor [81,148]. Assuming that the most relevant interactions in

the gravitational sector of RBG appear at some specific scale MG, which means that the function

L only contains one additional parameter with nontrivial mass dimension, then all the new

interactions in the matter sector will not only be universally constructed in terms of Tµν, but they

all will in turn have the same coupling constant. This means that, if an effect is seen at a given

scale in some sector of the standard model, effects at the same scale will arise in the remaining

sectors. From this perspective, we can interpret RBG theories as a procedure to encapsulate a

universally interacting matter sector in an auxiliary field that plays the role of a nondynamical

affine connection. In particular, this property is precisely what permits to study the dynamics in

terms of a metric gµν for all matter fields at the same time. Let us elaborate on this point a bit

more.

The physical meaning of the two metrics is also apparent in the Einstein frame: the metric gµν
will determine the trajectories of the particles, which will follow the corresponding geodesics6

(provided that they do not couple to the connection). One may then wonder why they do not

follow the geodesics of qµν in the Einstein frame and how to square this with our statement that

these theories are GR. The answer is quite simple. Around trivial matter backgrounds, both

metrics are the same and therefore there is no possible confusion. In the presence of a matter

background however both metrics are different and while matter fields follow the geodesics of gµν,

it is qµν that satisfies Einstein equations. There is no onus however because, also in GR when

matter fields propagate on a nontrivial background (and are coupled to it) the propagation of the

corresponding perturbations does not follow the geodesics of the metric, but those of an effective

metric encoding the effects of the background instead. From the Einstein frame perspective,

this effective metric encoding the effects of the nontrivial matter background is the RBG frame

metric gµν. Paradigmatic examples of this behaviour are for instance K-essence models of scalar

6It is perhaps convenient to explicitly state the physical situation we have in mind and what we mean by particles
and geodesics. We assume that there is some background configuration both for the gravitational sector and the matter
fields. Then, there will be perturbations on top of this background configuration and these perturbations are what we
will call particles, possibly with an unfortunate abuse of language. These perturbations are the ones that will follow
geodesics of a given metric when we consider their free propagation. Of course, living on a nontrivial background, the
propagation will occur in a medium with which these perturbations will interact.
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fields or nonlinear electrodynamics (see e.g. [158–162]). Indeed, as we will explicitly see below,

starting from a standard canonical scalar field and usual Maxwellian electrodynamics in the

RBG frame, the Einstein frame formulation will respectively be K-essence [149] and nonlinear

electrodynamics [59]. This can be seen by explicitly constructing the matter action S̃m if a

particular RBG theory and matter sector are specified. The explicit construction of this action

allows to know what is the corresponding matter sector for which the dynamics of a given RBG

theory is described by the Einstein equations

Gµ
ν(q)=MP

−2T̃µ
ν. (4.48)

where, as we saw in the previous section, the Einstein frame stress energy tensor is related to the

RBG frame stress energy tensor by (4.41) which, if written in terms of the corresponding matter

Lagrangians7 in both frames Lm and L̃m, leads to a relation between them of the form(
gρσ

δLm

δgρσ
−LG −Lm

)
Ω−1/2δµν−2Ω−1/2 gµρ

δLm

δgρν
= L̃mδ

µ
ν−2qµρ

δL̃m

δqρν
(4.49)

where recall that Ω= det
(
gq−1)

is the determinant of the deformation matrix (4.13). Though this

relation holds in general, the process of explictily building the Einstein frame Lagrangian (or

action) is model dependent8 and only a few cases have been worked out [59,149,150]. In the next

section, we will show how to perform explicitly the mapping procedure of any RBG theory coupled

to any nonlinear electrodynamics (NED), i.e., a general theory for a U(1) gauge field. This is, we

will derive the most general form of the Einstein frame matter action S̃m corresponding to this

physical system. Then we will explicitly construct S̃m for a particular RBG theory dubbed as

Eddington-inspired Born-Infeld gravity coupled to Maxwell electrodynamics, which remarkably,

maps to GR coupled to the well known Born-Infeld electrodynamics.

There is a property of the deformation matrix that, besides being of great use through this

procedure, gives powerful insights on the structure of the solution space and the phenomenology

of the theory. Given that the deformation matrix is an on-shell function of the matter fields

through the stress-energy tensor and one of the metrics (either gµν or qµν), Ω̂ can always be

expanded as a power series of the stress-energy tensor. By the Cayley-Hamilton theorem, in D

spacetime dimensions, this power series will be of the form

Ω̂(T̂)=
D−1∑
n=0

Cn

(
T

MQ
D

)
T̂n

MQ
nD (4.50)

where Cn are arbitrary (analytic) functions of its argument and T =Tr(T̂). Here MQ should be

seen as a UV scale that characterises deviations from the metricity condition as, given that

the connection field equations guarantee that ∇qµν = 0, the nonmetricity tensor will be of the

7This can be done from the definition of stress-energy tensor (4.3).
8In the above equation, this model dependence is encoded in qµν and Ω.
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schematic form ∇ ĝ ∼ (∇Ω̂)q̂ which will vanish for MQ →∞. The requirement that a given RBG

Lagrangian reduces to the Einstein-Hilbert action at low energies (up to a redefinition of the

cosmological constant) implies that

lim
T̂→0

Cn 6=0 = 0 and lim
T̂→0

C0 =λ (4.51)

where λ is a finite constant. As explained in section 4.1.1, the requirement of analyticity of the

Lagrangian as a function of the Ricci guarantees the existence of a branch of solutions with a

deformation matrix satisfying these conditions. For this branch, the above expansion can also be

written in tensor form as

Ωµ
ν =λδµν+Oµ

ν

(
Tµ

ν

MQ
4

)
(4.52)

where λ is a constant and Oµ
ν is an analytic function of the stress-energy tensor that vanishes in

vacuum9. In this branch of solutions Ω̂(T̂) we have that in vacuum gµν =λqµν, and both theories

are exactly described by the Einstein-Hilbert action with a cosmological constant10. Furthermore,

we will see in chapter 5 that the other branches, if existing, are generally pathological from the

physical perspective, thus providing a motivation for the choice of this branch in phenomenological

analyses, which is rather established in the literature.

4.2 Mapping RBGs to GR coupled to an abelian gauge field

As we explained in the previous section, there is a choice of field variables that allows to write

RBG theories with projective symmetry11 coupled to a given matter sector as GR coupled to a

nonlinear deformation of that matter sector with the same degrees of freedom but a different

set of interactions. In this section, we will explicitly build the correspondence for a matter sector

consisting of a NED (i.e., a U(1) gauge field). To that end, it will be useful to introduce the basic

invariants that can be built with an abelian gauge field. Given a 1-form field A there are only

two basic building blocks that can be used to build a Lagrangian that is both diffeomorphism and

gauge invariant, namely its fieldstrength F = dA and its Hodge dual ?F. Using the definition of

Hodge dual given in section 2.4.2 it is possible to derive the following relations

Fµ
λFλ

ν = Kδµν+ (?F)µλ(?F)λν ,

(?F)µλFλ
ν =−2Gδµν.

(4.53)

where K = −1
2 FαβFαβ and G = 1

4 Fαβ(?F)αβ. Using these equations, the algebraic structure of

products of even and odd number of field strength tensors can be reduced to a sum of four different
9Note that any Lagrangian that is an analytic function of the Ricci tensor will satisfy limRµν→0 ∂L /∂Rµν∝ δµν.

On shell, this translates into limTµ
ν→0 Oµ

ν = 0 or also limMQ→0 Oµ
ν = 0

10The value of the cosmological constant described by the two metrics will be shifted proportionally to (λ−1).
11Through this section we will only consider RBG theories with projective symmetry even if it is not stated

explicitly. I might write only RBG theories to shorten the writing, but I will be referring to RBG theories with
projective symmetry.
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tensorial structures, namely

Fµ
λ1 Fλ1

λ2 · · ·Fλ2k−2
λ2k−1 Fλ2k−1

λ2k = a2k(K ,G)δµλ2k +b2k(K ,G)Kµ
λ2k

Fµ
λ1 Fλ1

λ2 · · ·Fλ2k−1
λ2k Fλ2k

λ2k+1 = a2k+1(K ,G)Fµ
λ2k+1 +b2k+1(K ,G)(?F)µλ2k+1 ,

(4.54)

where we have defined Kµν = ∂K /∂gµν = FµρFρ
ν, and its trace is (unconveniently) given by

gµνKµν = 2K . In particular, the following identity will be useful

Kµ
λKλ

ν =G2δµν+KKµ
ν . (4.55)

The above relations (4.54) allow to write the most general diffeomorphism and gauge invariant

Lagrangian that can be built out of a U(1) field as a function only of the invariants (K ,G). Let

us also note that, since G is parity-odd, only even powers of G are allowed in the Lagrangian in

a parity preserving theory. In this section, we will assume a four-dimensional spacetime and a

matter sector consisting of a general diffeomorphism invariant U(1) gauge field. Therefore, the

matter Lagrangian Lm(K ,G) will have an arbitrary dependence on K and G. The stress-energy

tensor (4.3) for such a matter sector is given in general by

Tµ
ν =

(
Lm −G

∂Lm

∂G

)
δµν−2

∂Lm

∂K
Kµ

ν . (4.56)

The success of being able to carry out the mapping procedure explicitly depends on the ability to

identify the most general tensorial dependence of Ωµ
ν on the matter fields. Making use of (4.55),

we can conclude that the most general deformation matrix (and inverse) for this matter sector

will be of the form

Ωµ
ν = A(K ,G)δµν+B(K ,G)Kµ

ν ,

(Ω−1)µν = C(K ,G)δµν+D(K ,G)Kµ
ν ,

(4.57)

where the relation between the coefficients is

A = C+DK
C2 −D2G2 +CDK

and B =− D
C2 −D2G2 +CDK

, (4.58)

or equivalently

C = A+BK
A2 −B2G2 + ABK

and D =− B
A2 −B2G2 + ABK

, (4.59)

where we have omitted the functional dependence of A, B, C and D to lighten notation. Note

that the particular form of Ωµ
ν, and therefore of the coefficients A, B, C and D, are completely

specified once a particular gravitational Lagrangian and matter sector are chosen. Lastly, using

again (4.55) on (4.57) we can write the determinant of the deformation matrix as

Ω= (
A2 −B2G2 + ABK

)2 = 1(
C2 −D2G2 +CDK

)2 , (4.60)

These results are in close analogy to the case where the matter sector is described by scalar

fields [149], where arbitrary powers of the scalar kinetic terms Kµ
ν can be written as linear

112



4.2. MAPPING RBGS TO GR COUPLED TO AN ABELIAN GAUGE FIELD

combinations of the δµν and Kµ
ν, which allows to write the tensorial structure of a general

deformation matrix in a closed form and compute its determinant. Therefore, we see that this

key property of the deformation matrix that allowed to explicitly construct the mapping for a

scalar matter sector transfers to a matter sector consisting of an abelian gauge field as well.

Having developed the above results, we are now in position of writing the basic ingredients of

the Einstein frame stress-energy tensor T̃µ
ν. The dependence of the deformation matrix and the

above relations imply that it will also be a NED, and therefore it will have the form

T̃µ
ν =

(
L̃m − G̃

∂L̃m

∂G̃

)
δµν−2

∂L̃m

∂K̃
K̃µ

ν , (4.61)

where the tilded variables are defined in analogy to the ones without tilde substituting the RBG

frame metric gµν by the Einstein frame metric qµν. In general, through this section, tilded objects

will imply that their indices are risen or lowered with the Einstein frame metric. For instance,

we will write F̃µ
ν = qµαFαν = (Ω−1)µσgσαFαν. Using (4.53) and (4.57) we can derive a relation

between the fundamental objects in both frames, which in matrix notation reads(
F̃µ

ν

(?F̃)µν

)
=

(
(C+DK) −D G

DG (C+DK)

)(
Fµ

ν

(?F)µν

)
; (4.62)

which reminds of a duality rotation. From this relation it follows that

K̃µ
ν = DG2[2C+DK]δµν+

[
(C+DK)2 + (DG)2]

Kµ
ν

G̃µ
ν =−Ω−1/2Gδµν =

(
D2G2 −C2 −CDK

)
Gδµν

(4.63)

where K̃µ
ν = F̃µ

ρ F̃ρ
ν and we have introduced G̃µ

ν ≡ F̃µ
ρ(?F̃)ρν. Tracing these equations, one

finds the general relation between the scalar electromagnetic invariants in both frames given by

K̃ = [
(C+DK)2 +3(DG)2]

K +4CDG2

G̃ =GΩ−1/2 =G
(
C2 −D2G2 +CDK

) (4.64)

which explicitly proves that it is always possible to express the Einstein frame U(1) invariant

scalars K̃ and G̃ in terms of the ones in the RBG frame. For convenience let us also write the

inverse relations, which are(
Fµ

ν

(?F)µν

)
=

( (
Ã+ B̃K̃

) −B̃ G̃

B̃ G̃
(
Ã+ B̃K̃

) )(
F̃µ

ν

(?F̃)µν

)
, (4.65)

and also

Kµ
ν = B̃G̃2[2Ã+ B̃K̃]δµν+

[
(Ã+ B̃K̃)2 + (B̃G̃)2]

K̃µ
ν ,

Gµ
ν =−G̃

[
Ã

(
Ã+ B̃K̃

)− B̃2G̃2]
δµν .

(4.66)
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which leads to

K = [
(Ã+ B̃K̃)2 +3(B̃G̃)2]

K̃ +4ÃB̃G̃2 ,

G = G̃
[
Ã(Ã+ B̃K̃)− B̃2G̃2]= G̃Ω1/2 .

(4.67)

This is an explicit manifestation that the mapping is an invertible construction, namely, one can

also build an RBG frame for GR coupled to a given matter sector if the corresponding RBG matter

sector is found. In other words, if the deformation matrix is known in terms of the Einstein frame,

the corresponding field variables with which one would build the matter action in the RBG frame

can be obtained in terms of those in the Einstein frame.

Once we have explicitly computed the relation between the appropriate field variables in each

of the frames, we can now build the matter Lagrangian of the Einstein frame by means of (4.49).

For the particular case when both matter sectors are composed of an abelian gauge field,12 after

equating the coefficients of the two independent tensorial structures, we obtain that the following

two equalities must be satisfied13

L̃m =Ω−1/2
[
2

(
K
∂Lm

∂K
+G

∂Lm

∂G

)
−LG −Lm

]
, (4.68)

K̃µ
ν
∂L̃m

∂K̃
+ 1

2
δµνG̃

∂L̃m

∂G̃
=Ω−1/2

(
Kµ

ν
∂Lm

∂K
+ 1

2
δµνG

∂Lm

∂G

)
. (4.69)

The first of these equations provides a parametric representation of L̃m in terms of the K and G

invariants of the RBG frame. The Lagrangian L̃m can generally be written as a function of the

Einstein frame invariants K̃ and G̃ by means of (4.67). However, note that the particular form

of these relations depends on the particular gravitational model under consideration through

the model dependent coefficients that define the deformation matrix A and B (or C and D). The

second equation leads to a relation between the partial derivatives of the matter Lagrangians

which, by taking its trace and using the first equation leads to a parametrization of the matter

Lagrangian in the RBG frame by the Einstein frame invariants given by

Lm =−LG +Ω1/2
[
2

(
K̃
δL̃m

δK̃
+ G̃

δL̃m

δG̃

)
−L̃m

]
, (4.70)

and which can be written in terms of the RBG frame invariants K and G by means of (4.67).

We would like to point out that the gravitational Lagrangian can be related to the Legendre

transform of the matter Lagrangians by adding (4.68) and (4.70) as

L [Lm]+Ω1/2L
[
L̃m

]=LG , (4.71)

12Note that, as explained above, if the RBG frame matter Lagrangian Lm describes an abelian gauge field, there
is no assumption in asserting the Einstein frame matter Lagrangian L̃m also describes an abelian gauge field, as this
is ensured by the tensorial structure of the deformation matrix (4.57) derived only from the requirement that Lm
describes an abelian gauge field.

13There are some subtleties behind this argument. The interested reader is referred to Appendix B of [?] for details.
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which can also be written in terms of the traces of the stress-energy tensor in the two frames as

T +Ω1/2T̃ =LG . (4.72)

Let us remind the reader that these relations hold on the physical solutions of the theory. In order

to make a quick check, let us recover a result that is already well known in the literature, namely,

that the metric-affine version of quadratic (or Starobinski) f (R) gravity is exactly equivalent to

GR when both theories are coupled to a Maxwellian electrodynamics.

4.2.1 f(R) theories coupled to a U(1) gauge field

Let us start by particularising the above arguments when the RBG model lies between the

subset of f (R) gravitational Lagrangians. Namely, we will take the gravitational sector of the

action to be described by an action of the form

S f (R) =
1
2

MP
D−2

∫
dD x

p−g f (R) . (4.73)

For this subclass of (projective invariant) RBG theories, the relation between the RBG and

Einstein frame metric, and therefore the deformation matrix, take the particular form of a

conformal transformation as

qµν = f
− 2

D−2
R gµν and Ωµ

ν = f
2

D−2
R δµν . (4.74)

which in four dimensions reproduces the well known relation for metric-affine (or Palatini) f (R)

theories [131]

qµν = fR gµν . (4.75)

Recall that as in all projectively invariant RBG theories, on the physical solutions of the theory,

the gravitational Lagrangian and its derivatives can be written as a function of the trace of the

stress-energy tensor, as is apparent from the metric field equations

fRR−2 f (R)=MP
2−DT (4.76)

which give an algebraic relation between R and T. In four spacetime dimensions, the matter

action in the Einstein frame of f (R) theories is thus provided by (4.68)

L̃m = f −2
R

[
2

(
K
∂Lm

∂K
+G

∂Lm

∂G

)
−Lm −MP

2 f (R)
]

, (4.77)

where K and G are the electromagnetic invariants in the RBG frame. In this case, of the two

coefficients that characterise a deformation matrix of a general (projective invariant) RBG coupled

to a NED (4.57), only the one in the δµν term is nontrivial, which leads to the following relations

between the electromagnetic invariants in the two frames

K = fR K̃ and G = f 2
RG̃. (4.78)

115



CHAPTER 4. STRUCTURE OF RICCI-BASED GRAVITY THEORIES

Let us now illustrate the above discussion with a particular example example of a UV f (R)

correction, namely the metric-affine Starobinsky model, which is described by the action

Ss = 1
2

MP
2
∫

d4x
p−g

(
R+αR2)

, (4.79)

where α= (6MG
2)−1 has dimension of the inverse length squared in the International System

of units. In this case f (R) = R +αR2 so that the metric field equations (4.76) imply that the

curvature is proportional to the Legendre transform of the matter sector with respect to the

electromagnetic invariants

R =−8MP
−2

(
Lm −G

∂Lm

∂G
−K

∂Lm

∂K

)
, (4.80)

Using the above results, the relations between the electromagnetic invariants in different frames

obtained by using (4.78) read

K̃ = K

1−16ακ2
(
Lm −G ∂Lm

∂G −K ∂Lm
∂K

) , G̃ = G[
1−16ακ2

(
Lm −G ∂Lm

∂G −K ∂Lm
∂K

)]2 . (4.81)

The above equations allow to write K and G as functions of K̃ and G̃, and therefore the Einstein

frame matter Lagrangian (4.77) can be written in terms of the Einstein frame invariants. In the

case in which the RBG frame matter sector is given by Maxwell electrodynamics, i.e., Lm = K /2,

the traceless property of the Maxwellian stress-energy tensor leads to the result K̃ = K and

G̃ =G. In that case, the Einstein frame matter Lagrangian that follows from (4.77) also describes

a Maxwellian electrodynamics, namely

L̃m = 1
2

K̃ (4.82)

and the metrics in both frames are on-shell equivalent qµν = gµν as well. This proves that our

framework recovers previous results derived for a particular RBG model, namely, that metric-

affine Starobinsky theory gravity is equivalent to GR when both theories are minimally coupled

to a free Maxwellian electromagnetic field. This motivates us to derive new results concerning

other RBG theories that do not fit in the f (R) subclass. To that end, in the next section, we

will consider a popular RBG theory called Eddington-inspired Born-Infeld gravity, which in the

weak field expansion recovers the Starobinsky theory plus additional quadratic and higher order

corrections in the Ricci tensor.

4.2.2 Eddington-inspired Born-Infeld gravity coupled to a U(1) field

In this section, we will explicitly derive the Einstein frame matter Lagrangian L̃m resulting

from an RBG frame matter Lagrangian Lm that describes a U(1) gauge field coupled to Eddington-

inspired Born-Infeld gravity theory (EiBI). This theory has inspiration in the purely affine

model introduced by Eddington [114], and a purely metric version was considered by Deser
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and Gibbons [163] which was seen to be plagued by ghosts. Then, Vollick [164] introduced a

more general metric-affine version of the theory without projective symmetry which was seen

to be equivalent to an Einstein-Proca system. Later, a more restricted version with projective

symmetry14 which got rid of the extra Proca field was considered by Bañados and Ferreira in [62].

Since then, a lot of work on different aspects of the projective invariant version of the theory has

been carried out. Some of the first works analysed collapsing matter, finding that EiBI admits a

variety of compact objects not allowed in GR [165–167]. In the subsequent years, several authors

have shown that within EiBI there exist black holes solutions with central wormholes (also

known as black bounces [168–182]). These objects turn out to be supported by matter which (in

the RBG frame) does not violate the energy conditions, and describe spacetimes which are, in

general, geodesically complete, thus offering new alternatives to address the issue of singularities

in the classical theory [65,66,70–72,183–188]. Recently, an analysis of the quasinormal modes of

an AdS wormhole in EiBI has revealed interesting phenomenological properties [189]. As well,

there are recent claims that GR coupled to Born-Infeld electrodynamics can sustain wormholes

without violating the classical energy conditions [186,190]. The stability and properties of scalar

perturbations of these objects were recently studied in [191]. Cosmological and inflationary

scenarios within EiBI have also been developed in [73–76,192–205]. Parallelly, several works

aiming to constrain the energy scale at which EiBI deviates from GR were developed considering

different physical scenarios. First astrophysical and cosmological constraints were worked out

in [206], then stronger constraints from nuclear physics phenomena were obtained in [207,208],

and the most stringent constraints up to date come from particle collision experiments at LEP

and LHC [57,80,81]. On the other hand, the work of Delsate and Steinhoff [209,210] can be seen

as a primitive version of the general mapping procedure for RBGs described here but restricted

to isotropic perfect fluids in EiBI. An analogous approach had been used before by Fatibene and

Francaviglia [211] in the context of f (R) theories. For a recent up to date review on EiBI and

generalizations see [146].

In order to particularise the general discussion on explicitly performing the mapping to the

Einstein frame of a general projective invariant RBG coupled to a U(1) gauge field, let us begin

by defining the action of the EiBI theory as a UV (or high-curvature) modification of GR of the

form

SEiBI =MP
2MBI

2
∫

d4x
[√

− ∣∣gµν+MBI
−2Rµν

∣∣ −λp−g
]

, (4.83)

where MBI is a new scale that suppresses the higher curvature deviations from GR and we will

work in four spacetime dimensions. The EiBI Lagrangian is the given by

LEiBI = 2MBI
2
[√∣∣δµν+MBI

−2 gµαRαν

∣∣ −λ]
(4.84)

14The requirement of projective symmetry was not noticed by the authors at that time, but their requirement that
only the symmetric part of the Ricci tensor appears in the action is equivalent to requiring projective symmetry to
Vollick’s version of the theory, as explained in section 4.1.
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In an expansion in inverse powers of MBI
2, the metric-affine version of the Einstein-Hilbert action

with a cosmological constant given by Λ= (λ−1)/MBI
2 is recovered. By (conveniently) defining

qµν = gµν+MBI
−2Rµν , (4.85)

we can see that the EiBI metric field equations obtained from varying (4.83) with respect to the

metric can be written as
p−q qµν =p−g

(
λgµν−MQ

−4Tµν
)

(4.86)

where remember that qµν is defined15 by qµαqαν = δµν and MQ = (MPMBI)1/2 is the geometric

mean of the Planck mass and the mass scale MBI that will be seen to be associated to departures

from metricity16 and to play a central role in phenomenological aspects of the theory (see chapter

9). Using (4.13), implies that when the field equations are satisfied the (inverse) deformation

matrix can be written on-shell as a function of the stress-energy tensor, which reads

p
Ω

(
Ω−1)µ

ν =λδµν−MQ
−4Tµ

ν . (4.87)

From this relation, and using the stress-energy tensor for a general NED (4.56), we can derive an

explicit expression for Ω in EiBI coupled to a general electrodynamics,which reads

Ω1/2 =
[
λ+MQ

−4
(
G ∂Lm

∂G −Lm

)]2 −
[
2MQ

−4 ∂Lm
∂K

]2
G2 +2MQ

−4K
[
λ+MQ

−4
(
G ∂Lm

∂G −Lm

)]
∂Lm
∂K . (4.88)

Either from this result, or from (4.87), we can derive the form of the coefficients of the tensorial

decomposition of the deformation matrix (4.57), which are given by

C =Ω−1/2
[
λ+MQ

−4
(
G
∂Lm

∂G
−Lm

)]
and D = 2MQ

−4Ω−1/2 ∂Lm

∂K
. (4.89)

Having identified the structure of the deformation matrix of EiBI coupled to a general NED, we

are now ready to build the Einstein frame matter Lagrangian L̃m that corresponds to an RBG

frame matter Lagrangian Lm describing a general NED. Using the above results, the equations

describing this correspondence (4.68) and (4.69) particularised to an EiBI coupled to a general

NED read

L̃m =Ω− 1
2

[
2

(
K
∂Lm

∂K
+G

∂Lm

∂G

)
−Lm +MQ

4λ

]
−MQ

4 , (4.90)

K̃µ
ν
∂L̃m

∂K̃
+ 1

2
δµνG̃

∂L̃m

∂G̃
=Ω−1/2

(
Kµ

ν
∂Lm

∂K
+ 1

2
δµνG

∂Lm

∂G

)
. (4.91)

15Actually, we defined first qµν by (4.9) and then qµν as its inverse. However, it can be seen that, by reformulating
the EiBI action (4.83) with a suitably introduced auxiliary field qµν, the field equations of the resulting equivalent
formulation will tell us that qµν is given by (4.85) and its inverse by (4.86). See section 2.6 of [146] for a more detailed
derivation.

16Namely, the nonmetricity tensor will be proportional to inverse powers of MQ (hence the suffix Q), and it would
vanish if this scaled is pushed to infinity.
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Using now (4.88) we get

L̃m = 2
(
K ∂Lm

∂K +G ∂Lm
∂G

)
−Lm+MQ

4λ[
λ+MQ

−4
(
G ∂Lm

∂G −Lm

)]2−
(
2MQ

−4 ∂Lm
∂K

)2
G2+2MQ

−4K
[
λ+MQ

−4
(
G ∂Lm

∂G −Lm

)]
∂Lm
∂K

−MQ
4 . (4.92)

which provides a parametric representation of the Einstein frame matter Lagrangian L̃m in

terms of the original RBG frame invariants K and G. Given an explicit form for the RBG frame

matter Lagrangian, we can write K and G in terms of K̃ and G̃ by means of (4.67). Let us

provide a particular example which will turn to be a new interesting result relating Born-Infeld

electromagnetism and Born-Infeld gravity in a nontrivial way.

A duality: Maxwell + EiBI as GR + BI electromagnetism

As a particular example of the mapping technique developed above, we will prove the conjecture

that EiBI gravity coupled to Maxwell electromagnetism can be rewritten as GR coupled to Born-

Infeld electrodynamics. This was partially proved only for static configurations in [150], where

the analogy of a general NED an anisotropic fluid (only valid for purely electric or magnetic

cnfigurations) was used. We will then start with the Maxwell Lagrangian Lm = K /2 in the RBG

frame. Thus, using (4.92), the Einstein frame Lagrangian in terms of the RBG frame invariants

K and G will be given by

L̃m = 2MQ
4 (

2λ+MQ
−4K

)[
4λ2 −MQ

−8(K2 +4G2)
] −MQ

4 . (4.93)

Now, we can use (4.67) to write the RBG frame invariants K and G in terms of the Einstein frame

invariants K̃ and G̃, which will allow us to write the Einstein frame matter Lagrangian L̃m as a

function of the Einstein frame metric qµν and the U(1) gauge field. To that end, we need first to

obtain the explicit form of the determinant of the deformation matrix, which from (4.88) reads

Ω= [
λ2 −MQ

−8 (
K2 +4G2)]2

(4.94)

as well as the explicit form of the coefficients of the inverse deformation matrix (4.57), which

using (4.89) take the form

C = 2
(
2λ−MQ

−4K
)

4λ2 −MQ
−8 (

K2 +4G2
) , D = 4

4λ2MQ
4 −MQ

−4 (
K2 +4G2

) . (4.95)

Plugging these results back into (4.64), the Einstein frame invariants can be written in terms of

the RBG ones as

K̃ = 4
4λ2K +εκ2 (

4λ+εκ2K
)(

K2 +4G2)[
4λ2 −MP

−8 (
K2 +4G2

)]2

G̃ = 4G[
4λ2 −MP

−8 (
K2 +4G2

)] ,
(4.96)
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which if inverted, give the RBG frame invariants K and G in terms of the Einstein frame

invariants K̃ and G̃ as

K =
2MQ

4 (
MQ

4K̃ −4λG̃2)(
1+MQ

−4λK̃ ±
√

1+2MQ
−4λK̃ −4MQ

−8λ2G̃2
)

(
K̃2 +4G̃2

)
G =−

2G̃
[
MQ

8 −4MQ
4λK̃ +2λ2G̃2 ± (

MQ
8 +MQ

4λK̃
)√

1+2MQ
−4λK̃ −4MQ

−8λ2G̃2
]

(
K̃2 +4G̃2

) .

(4.97)

Inserting these expressions into the above relation (4.93), we obtain

L̃m =MQ
4

1−2λ±
√

1+2MQ
−4λK̃ −4MQ

−8λ2G̃2)

2λ
. (4.98)

In the asymptotically flat case (i.e. Λ= 0, given by λ→ 1), taking the positive sign in front of the

square root, defining a new mass scale

β2 =−MQ
4/2, (4.99)

and writing K̃ and G̃ in terms of the gauge fieldstrength and its dual (see below (4.53)); we find

that the Einstein frame matter sector is described by the well known Lagrangian for Born-Infeld

electromagnetism [212], namely

L̃BI =β2

(
1−

√
1+ 1

2β2 FµνF̃µν− 1
16β4 (Fµν(?F̃)µν)2

)
. (4.100)

This constitutes the proof that EiBI gravity coupled to Maxwell electromagnetism can be written

as GR coupled to Born-Infeld electromagnetism with the appropriate change of variables in field

space. These type of correspondences can be used to establish a map to relate known properties

of a Born-Infeld gravitational sector and unknown properties of GR, and vice-versa. Particularly,

the existence of novel exact solutions in EiBI (or any RBG) could be used to unveil unknown

solutions of GR coupled to the appropriate matter sector [213,214].
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5
NON-TRIVIAL ASPECTS OF THE RBG SOLUTION SPACE

In section 4.1 of the previous chapter we saw that an appealing feature of RBG theories

with projective symmetry1 is that the independent affine connection turns out to be an

auxiliary field that can be integrated out as the Levi-Civita connection of a metric tensor

qµν that can differ from the spacetime metric gµν in a nontrivial way in presence of matter.

This deviation is encoded in the deformation matrix, and will be different for each branch of

(algebraic) solutions Ω(T̂) of the metric field equations (see the discussion below (4.22)). As well,

we have also seen that, through an involved field redefinition, RBG theories admit an Einstein

frame representation with a nonlinearly modified matter Lagrangian when the gravitational

field variables are written in terms of the metric qµν (which can always be done on-shell). In this

Einstein frame it becomes apparent that the role of the connection is that of an auxiliary field

which, when integrated out, provides new effective interactions among the degrees of freedom

of the matter sector. At a perturbative level, these interactions can be used to constrain the

theories (see chapter 9) and, in some cases, the full matter Lagrangian after integrating out the

connection can be solved, establishing an equivalence between a given RBG coupled to a matter

sector with GR coupled to a nonlinearly modified version of the same matter sector, as we have

shown explicitly in the previous section for EiBI coupled to Maxwell electrodynamics, which

can be written as GR coupled to Born-Infeld electrodynamics by appropriate field redefinitions

after the connection has been integrated out. In the Einstein frame representation, exact and

numerical solutions can be found by standard methods [151,213–218]. The key aspects that allow

to pass from the RBG frame to the Einstein frame can be traced back to the existence of the

1Through this section we will only consider projectively invariant RBG theories. I might write only RBG theories
to shorten the writing, but I will be referring to RBG theories with projective symmetry.
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deformation matrix Ωµ
ν which, as explained in section 4.1 relates both metrics as2

q̂ = ĝ Ω̂ or in tensorial form qµν = gµρΩρ
ν, (5.1)

where the deformation matrix is given by

Ω̂=
√

det
(
∂F

∂P̂

) (
∂F

∂P̂

)−1
, (5.2)

and where the different on-shell expressions Ω̂(T̂) arise through the different solutions P̂(T̂) of

the metric field equations for RBG theories with projective symmetry (4.20) seen as an algebraic

equation for P̂. Though a solution that is perturbatively close to GR at sufficiently low energies

is guaranteed by analyticity (see section 4.1.1), the nonlinear terms3 of (4.20) involving higher

powers of P̂ may allow for other solutions. The existence of these solutions that might deviate

nonperturbatively from vacuum GR will depend on each particular RBG model.

In this section, our aim is to show the existence of other solutions in generic RBG models. To do

this, we will resort to a particular case where the matter sector and the Einstein frame metric

gµν are isotropic. To that end, we will derive the necessary conditions that have to be satisfied

by an RBG model for the existence of solutions Ω̂(T̂) that do not realise the symmetries of the

stress-energy tensor and the Einstein frame metric. We can as well take these conditions as the

sufficient conditions that have to be satisfied by a given RBG model so that, in presence of an

isotropic matter sector, the nonlinearities of the equations that determine the deformation matrix

as a function of T̂ do not allow for other solutions apart from the one that is perturbatively close

to the isotropic solution of vacuum GR at sufficiently low energies. In cosmological applications

of RBG models, it is typically assumed that the deformation matrix has the same symmetries

as the energy-momentum tensor and the spacetime metric, so that both metrics share the same

symmetries. The existence of this solution is guaranteed by demanding that the nonlinear

corrections amount to at most a cosmological constant in the low energy limit. As explained in

section 4.1, in RBG theories with projective symmetry, the matter degrees of freedom evolve

in the background given by the spacetime metric and gravitational waves can be associated to

perturbations of the metric qµν. Hence gravitational waves propagate in the background defined

by the Einstein frame metric (see [157]) and, therefore, the possible existence of anisotropic

deformation matrices for an isotropic cosmological fluid could introduce interesting effects in

gravitational wave propagation that may be worth studying. This puts forward that, besides

its relevance from a purely formal view of understanding the overall structure of the solution

space of RBG theories with projective symmetry, these results could also be of physical interest

2Though the following equations are already in the text, see (4.21) and (5.2), I have rewritten them here because
they will play a key aspect in this section, and I think that doing so will facilitate the reader if she wants to access
them quickly.

3Note that, for the particular case of the metric-affine Einstein-Hilbert action there are no nonlinear terms, so
that there is a unique solution given by a trivial deformation matrix Ω̂= I.
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in cosmological scenarios, and could be extended as well to astrophysical scenarios with spherical

or axisymmetric symmetries.

To pursue our aim, it will be useful to reformulate the Lagrangian of a projective invariant

RBG theory as follows. As explained in section 4.1, given that the Lagrangian of an RBG with

projective symmetry must be a scalar built in terms of gµν and R(µν), it can only depend on the

matrix Pµ
ν = gµαR(αν) or P̂ in matrix notation. The Cayley-Hamilton theorem guarantees that

we can express an N ×N matrix in terms of its first N −1 powers and the identity matrix. This

implies that we can express any scalar4 function of P̂ in terms of the traces Xn = Tr(P̂n) of its

first N powers. In this section we will particularise to four spacetime dimensions so that we

need only to consider Xn with n = 1, ...,4. With this setup, we can write a generic Lagrangian for

an RBG theory with projective symmetry5 as a function of these four invariants. Through this

section, it will be useful to redefine P̂ as the matrix form of MG
−2 gµαR(αν) so that now P̂ and Xn

have vanishing mass dimension. We will also assume that all the higher-curvature corrections

are controlled by the scale MG, so that it will be useful to use the following dimensionless

parametrisation for the RBG Lagrangian

F
[
X1(P̂), X2(P̂), X3(P̂), X4(P̂)

]=F (P̂) , (5.3)

which are related to the original form of the Lagrangian (4.1) as in (4.5), namely

MG
2F

[
MG

−2 gµαR(αν)]=L
(
gµν,R(µν)

)
, (5.4)

where recall that L has mass dimension 2 and an implicit dependence on MG. Note that an

explicit dependence on a UV energy scale has been extracted from the Lagrangian so that F has

zero mass dimension and we have defined the dimensionless invariants Xn = X̃n/MQ
2n. Through

the section we will consider that the matter action has no dependence on the connection, which

is true for minimally coupled bosonic fields. Fermionic fields would only introduce a 4-fermion

interaction that (presumably) would not alter our conclusions qualitatively, though the results

might loose clarity if these interactions are included. We will also make extensive use of the

metric field equations in matrix form given in (4.20), which in this parametrisation read

P̂
∂F

∂P̂
− 1

2
F I= (MPMG)−2T̂. (5.5)

Note that the Einstein-Hilbert term in this parametrisation is MG
−2R so that any RBG La-

grangian which introduces corrections to GR at quadratic or higher orders in the curvature tensor

will couple the graviton to the stress energy tensor with the inverse of the squared Planck mass

and not with MP
−2MG

−2. Nevertheless, the departures from metricity and the new interactions

that arise in the matter sector are controlled by the effective scale MQ = (MPMQ)1/2 and become

nonperturative when the energies reach MQ, see chapter 9.
4Here, that the Lagrangian is a scalar function implies that it has to be a function of traces of products of P̂.
5Through this section we will only consider RBG theories with projective symmetry even if it is not stated

explicitly. I might write only RBG theories to shorten the writing, but I will be referring to RBG theories with
projective symmetry.
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5.1 Anisotropic deformation in isotropic backgrounds

We will use the particular case when the matter sector is described by a perfect fluid with

isotropic pressure to illustrate the possibility that the nonlinearities of the field equations admit

other solutions for Ω̂(T̂) besides the one that is perturbatively close to vacuum GR at low energies.

In most of the cases treated in the literature, the isotropy of the stress-energy tensor is assumed

to be inherited by the deformation matrix which, since the existence of that solution is guaranteed

by analitycity, is a consistent assumption. Our interest in this work is, however, to go beyond

this assumption and explore whether solutions with a deformation matrix that does not inherit

the isotropy of the matter sector are possible. This would imply that RBG and Einstein frame

metrics do not share the same symmetries either. The existence of such solutions is plausible due

to the nonlinear nature of the equations (were they linear, the symmetries of the stress-energy

tensor must always be inherited by the gravitational sector), in close analogy to the existence of

Bianchi I solutions in a universe filled with an isotropic fluid. We will expand on this analogy in

Section 5.3.

Our ansatz for the stress-energy tensor and the matrix P̂ will then be

Tµ
ν =


−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 and Pµ
ν =


P0 0 0 0

0 P1 0 0

0 0 P2 0

0 0 0 P3

 , (5.6)

which leads to a diagonal deformation matrix

Ωµ
ν =


Ω0 0 0 0

0 Ω1 0 0

0 0 Ω2 0

0 0 0 Ω3

 ; (5.7)

and also to a simple relation between the Xn and the eigenvalues of P̂, given by

Xn =
3∑

i=0
Pn

i . (5.8)

In this scenario, the metric field equations as given in (5.5) read

P0
∂F

∂P0
= 1

2
F − ρ̄, (5.9)

Pi
∂F

∂Pi
= 1

2
F + p̄ for i = 1,2,3; (5.10)

where no summation over i is taking place, and where we have normalised the density and

pressure as ρ̄ = ρ/(MP
2MQ

2) and p̄ = p/(MP
2MQ

2). We can split the spatial equations (5.10) into
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the isotropic part given by the trace

1
3

3∑
i=1

Pi
∂F

∂Pi
= 1

2
F + p̄ (5.11)

and the anisotropic part given by

Pi
∂F

∂Pi
−P j

∂F

∂P j
= 0 for i 6= j (5.12)

We can alternatively use the parametrization of the RBG Lagrangian in terms of the invariants

Xn given in (5.3) to rewrite the anisotropic part of the field equations (5.12) as

4∑
n=1

an(Pn
i −Pn

j )= 0, for i 6= j (5.13)

where an = n∂F/∂Xn. Out of these three conditions, only two of them are independent because

the sum of the three equations identically vanishes. Moreover, since the equations are invariant

under permutations of Ω1, Ω2 and Ω3, we can take the two independent conditions to be

a1(P1 −P2)+a2(P2
1 −P2

2 )+a3(P3
1 −P3

2 )+a4(P4
1 −P4

2 )= 0,

a1(P1 −P3)+a2(P2
1 −P2

3 )+a3(P3
1 −P3

3 )+a4(P4
1 −P4

3 )= 0
(5.14)

From these equations we can easily obtain a set of necessary conditions for the existence of

solutions with a nonisotropic deformation matrix. A remarkable result is that, since these

equations do not depend on the matter content, it is only the precise form of RBG Lagrangian

theory what will determine whether anisotropic solutions are possible or not. The way to proceed

then is to solve (5.14) for two of the components of Ω̂ for the anisotropic branch of solutions

(if any) and, then, use (5.11) and (5.9) to obtain the full solution with the components of the

matrix P̂ in terms of the ρ̄ and p̄. Obviously, the isotropic solution with Ω1 =Ω2 =Ω3 satisfies

(5.14). However, given the nonlinearity of the conditions, it is possible to have multiple isotropic

branches. It is guaranteed by construction that for one of these branches the nonlinearities will

become irrelevant at low energies. The next nontrivial example is the case with axisymmetry, i.e.,

two components are equal and different from the third. Without loss of generality we can assume

Ω1 =Ω2 6=Ω3, which implies that P1 = P2 6= P3. In that case, the first of the two conditions in

(5.14) is trivially satisfied, but the second one still represents a constraint. In the general case

eqs. (5.9), (5.11) and (5.14) will also be contraints that should be interpreted as necessary but

not sufficient conditions that a particular theory of isotropic matter plus gravity has to fulfil in

order to admit at least one anisotropic solution. Besides finding nontrivial anisotropic solutions

from those equations, one needs to further corroborate that they can be physical. for instance,

the resulting Ω̂ must be positive definite so that the metric of both frames have the same causal

character. In the following we will illustrate these considerations with some explicit examples.
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5.1.1 Anisotropic deformations in vacuum

Let us see whether there is any theory within the projectively invariant RBG class which

admits an anisotropic deformation matrix in vacuum. The interest is twofold: 1) because if there

is no such theory, all the anisotropic solutions that can be constructed in the presence of matter

will not have a well behaved infrared behavior. 2) Because any theory within the RBG class that

admits an anisotropic vacuum deformation, since it also admits an isotropic one by construction,

will have a nontrivial vacuum structure that could potentially introduce vacuum instabilities.

The metric field equations in vacuum are given by (5.9) and (5.10) with ρ̄ = p̄ = 0, which can be

written as

Pµ
∂F

∂Pµ
= 1

2
F , (5.15)

where µ= 0,1,2,3 and no sumation over µ is understood here. In general, the above equation

implies an on-shell relation of the form P0(P1,P2,P3). For the particular cases of isotropic

(P1 = P2 = P3) and axisymmetric (P1 6= P2 = P3) deformations, this dependence is reduced to

P0(P1) and P0(P1,P2) respectively. By using the definition of the deformation matrix in matrix

form (5.2), from (5.15) we also arrive to another on-shell condition that must be satisfied by any

vacuum anisotropic solution, that is

Ωµ

Ων
= Pµ

Pν
∀µ,ν. (5.16)

Since we are demanding that all the eigenvalues of Ω̂ are positive, the above equation implies

that the Pµ’s must all have the same sign when the field equations of the corresponding theory

are satisfied. Yet another condition imposed by the positivity of the Ωµ’s and the dynamics of

RBG is that the following relation
F

Pµ
> 0 ∀µ (5.17)

must hold on-shell. This implies that the Lagrangian must also have the same sign as the Pµ

when the field equations are satisfied. Thus, in principle, an RBG satisfying this conditions could

have anisotropic vacuum solutions. Let us now turn to the analysis of some sub-classes of theories

that are of particular interest.

5.1.2 No anisotropic deformations in EiBI and inspired theories

Let us now analyse the particular class of EiBI, which is one of the most extensively analysed

metric-affine theories (see [146] and also section 4.2.2). The EiBI Lagrangian (4.84), written in

matrix form and in the parametrisation employed in this section, reads

FEiBI = det
(
1+ P̂

)1/2 −λ , (5.18)

When particularised to this type of Lagrangian, the anisotropic part of the necessary conditions

for the existence of solutions with anisotropic deformation matrix in an isotropic background
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(5.12) yields

det
(
I+ P̂

)1/2
(

Pi

1+Pi
− P j

1+P j

)
= 0, i 6= j. (5.19)

Since det
(
1+ P̂

)
must be nonvanishing and Pi > 0 in order to have a regular deformation matrix,

the only solution to the above equation is Pi = P j and, therefore, the solution must be isotropic.

This implies that no anisotropic solutions exist in presence of isotropic matter in EiBI. This

result agrees and generalises the findings in the literature. For instance, Bianchi I solutions

within the EiBI theory were studied in [219] and it was found that the deformation matrix was

indeed isotropic for an isotropic fluid despite having a Bianchi I ansatz for qµν and gµν. The

spherically symmetric configurations of EiBI theory coupled to an anisotropic fluid have also

been studied in [187] with an isotropic deformation matrix. Again, when going to the isotropic

case, the obtained solutions for the deformation matrix also become isotropic (in fact, they are

proportional to the identity matrix, which is a consequence of having considered a cosmological

constant-like fluid).

The result that no anisotropic solutions exist within EiBI gravity can be generalised in a

straightforward manner to the functional extensions of the EiBI theory considered in [220],

where the action is given by an arbitrary function f of the scalar det
(
1+ P̂

)
. In that case, the

above condition generalises to

f ′det
(
1+ P̂

)( Pi

1+Pi
− P j

1+P j

)
= 0, i 6= j, (5.20)

which again, given that f ′det
(
1+ P̂

)
must be nonvanishing and Pi > 0 to have a well behaved

deformation matrix, implies that the only possible solution is the isotropic solution with Pi = P j.

Therefore, no anisotropic solutions exist in presence of isotropic matter in EiBI inspired theories

either.

5.1.3 F(X1, Xn) theories

General results can also be obtained for theories that have a Lagrangian defined in terms of X1

and only one of the higher order scalars Xn with n = 2,3 or 4. The presence of X1 is imposed in

order to guarantee the existence of one branch of solutions continuously connected with the EH

Lagrangian at low curvatures. For these particular cases, the two independent conditions (5.14)

are

a1(P1 −P2)+an(Pn
1 −Pn

2 )= 0,

a1(P1 −P3)+an(Pn
1 −Pn

3 )= 0.
(5.21)

For the axisymmetric case, we can choose P2 = P1 so that the first equation is trivially satisfied,

and we have a relation P3(P1). For a completely anisotropic solution without axisymmetry, the

equations (5.21) imply a relation P3(P1,P2) of the form

an

a1
= Pn

1 −Pn
2

P1 −P2
= Pn

1 −Pn
3

P1 −P3
. (5.22)
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For n = 2, this relation can be reduced to P1 +P2 = P1 +P3 which in turn implies P2 = P3 and,

consequently, only axisymmetric solutions are allowed. For n = 3 we instead obtain two branches

of solutions, the axisymmetric one, and a second branch with P1 +P2 +P3 = 0 so the completely

anisotropic solutions for n = 3 must have P̂ with traceless spatial part. Finally, for n = 4 we again

have the axisymmetric branch and possibly another completely anisotropic branch defined by the

relation

(P2
1 +P2

2 )(P1 +P2)= (P2
1 +P2

3 )(P1 +P3). (5.23)

As can be seen by writing the explicit solutions for P3

P3 =−
P1 +P2 ±

√
−((P1 +P2)2 +2P2

1 +2P2
2 )

2
or P2 = P3, (5.24)

this equation has no real solutions other than P2 = P3 which is also an axisymmetric solution.

Thus, for n = 4 there can be no completely anisotropic branches.

Solving the space of potentially anisotropic solutions for the general case is very cumbersome

so in the next section we will focus on the quadratic theory which encodes the lowest-order

corrections to the Einstein-Hilbert term. This will be relevant for the general theories with

solutions that are perturbatively close to those of the Einstein-Hilbert action at low energies, so

that it will be possible to extract information for the general theories from our analysis of the

quadratic one.

5.1.4 General quadratic theory

The Lagrangian for a general quadratic metric-affine RBG theory with projective symmetry, if

parametrised in terms of the invariants Xn, reads

F = X1 +αX2
1 +βX2. (5.25)

Note that the parameter that would have gone with X1 is fixed to 1 in order to recover the

Einstein Hilbert action at low curvatures. Although this theory may seem to have 2 independent

dimensionless parameters α and β, one of them can be absorbed into the mass scale MG
2 and

there is only one free parameter (besides the new scale MG). Thus (5.25) is the most general

quadratic Lagrangian within the RBG family that reduces to the metric-affine Einstein Hilbert

action in the low curvature limit and captures the perturbative effects of any nonlinear theory in

that regime. Of course, there could be nonperturbative effects that are not properly captured by

(5.25), although this would typically imply strong departures from GR in the low energy regime

which could be observationally accessible. In order to obtain the dependence of the curvatures

Pi in terms of the energy content we make use of (5.9) and (5.10), which particularised for the

general quadratic action (5.25) read

P0 −Tr
(
P̂s

)+α[
3P2

0 +2P0 Tr
(
P̂s

)−Tr2(P̂s)
]+β[

3P2
0 −Tr

(
P̂2

s
)]+2ρ = 0,

2Pi −Tr
(
P̂

)+α[
4Pi Tr

(
P̂

)−Tr2(P̂)
]+β[

4P2
i −Tr(P̂2)

]−2p = 0,
(5.26)
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where i = 1,2,3 and P̂s is the spatial 3×3 sub-matrix of P̂. From here on, we will drop the bar

in ρ̄ and p̄ to ease the notation, but all the ρ’s appearing in the text should be understood as

normalised by 1/(MG
2MP

2). According to what has been discussed in section 5.1.3, a quadratic

theory can only have isotropic or axisymmetric solutions, but not completely anisotropic solutions

are allowed. Thus, in order to look for solutions to the above system of equations (5.26) we might

first impose isotropy or axisymmetry. In the former case, with P1 = P2 = P3 the above equations

(5.26) reduce to

P0 +3P2 +3p−ρ = 0,

3α
[
2P0P2 −3P2

2 +P2
0

]
+3β(P2

0 −P2
2 )+ (P0 −3P2)+2ρ = 0,

(5.27)

and in the axisymmetric case, we find

P0 +2P1 +P2 +3p−ρ = 0,

(P1 −P2)
[
1+2α(P0 +2P1 +P2)+2β(P1 +P2)

]
= 0, (5.28)

α
[
2P0(2P1 +P2)− (2P1 +P2)2 +3P2

0

]
+β(3P2

0 −2P2
1 −P2)+ (P0 −2P1 −P2

2 )+2ρ = 0,

where we have chosen P1 = P3 6= P2 (note that the physical solutions will not distinguish between

this choice and P1 = P2 6= P3 or P1 = P3 6= P1). Due to the nonlinearities of the systems,both the

isotropic and axisymmetric cases have two branches of solutions. Assuming a barotropic fluid

with p =ωρ, the first isotropic branch (that we will call iso-I) is given by

P0(ρ)=
(3ω−1)(6α+β)ρ−3

(
1−
p

1−[4α(3ω−1)+2β(1+5ω)]ρ+(1−3ω)2(2α+β)2ρ2
)

8β

P1(ρ)= 1+(1−3ω)(2α+3β)ρ−
p

1−[4α(3ω−1)+2β(1+5ω)]ρ+(1−3ω)2(2α+β)2ρ2

8β

(5.29)

and the second isotropic branch (iso-II) is given by the functions

P0(ρ)=
(3ω−1)(6α+β)ρ−3

(
1+
p

1−[4α(3ω−1)+2β(1+5ω)]ρ+(1−3ω)2(2α+β)2ρ2
)

8β

P1(ρ)= 1+(1−3ω)(2α+3β)ρ+
p

1−[4α(3ω−1)+2β(1+5ω)]ρ+(1−3ω)2(2α+β)2ρ2

8β

(5.30)

For the axisymmetric case, both branches have the same solution for P0(ρ), which is given by

P0(ρ)= −2ρ2(1−3ω)2(α+β)(2α+β)+2ρ(α(6ω−2)+β(5ω−1))−1
4βρ(3ω−1)(2α+β)−4β

(5.31)

and the two branches differ in their solutions for P1(ρ) and P2(ρ). The first axisymmtric branch

(axi-I) is described by

P1(ρ)= −2ρ2(1−3ω)2(α+β)(2α+β)+ρ(−4(α+β)+12αω+8βω)−1
4βρ(3ω−1)(2α+β)−4β

P2(ρ)= 2ρ2(1−3ω)2(2α+β)(3α+β)+2ρ(α(6−18ω)+β(3−7ω))+3
4βρ(3ω−1)(2α+β)−4β

(5.32)
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and the second axisymmetric branch (axi-II) is described by the functions

P1(ρ)= 6ρ2(1−3ω)2(α+β)(2α+β)2−4ρ(2α+β)(α(9ω−3)+β(12ω−5))+6α+11β
12βρ(3ω−1)(2α+β)2−12β(2α+β)

P2(ρ)= 2ρ(6α2(3ω−1)+αβ(33ω−17)+β2(15ω−7))−6ρ2(1−3ω)2(α+β)2(2α+β)−3α−5β
12βρ(3ω−1)(α+β)(2α+β)−12β(α+β) .

(5.33)

As far as the deformation matrix Ω̂ is concerned, it can be written in terms of the P ’s by means of

(5.2). For the general quadratic Lagrangian given by (5.25) we find

Ωµ =
[∏3

ν=0
(
1+2βPν+2αTr(P̂)

)]1/2

1+2βPµ+2αTr(P̂)
. (5.34)

Let us analyse the behaviour of these solutions for radiation and matter fluids. The first thing to

notice here is that while the eigenvalues of P̂, and therefore of Ω̂, depend on both parameters α

and β for a matter fluid (ω= 0), they do not depend on α for a radiation fluid (ω= 1/3) except for

the axi-II branch, thus β is the only relevant parameter that controls the behaviour of isotropic

radiation fluids. Then, while for a radiation fluid β 7→ −β is equivalent to ρ 7→ −ρ, for a matter fluid

we find an equivalence between (α,β) 7→ (−α,−β) and ρ 7→ −ρ. Thus, qualitatively, we have one

kind of behaviour for radiation fluids, and two different behaviours for matter fluids, depending

on the sign of αβ.

Isotropic solutions in the quadratic theory

Isotropic solutions (figure 5.1) have already been studied in [221], where asymptotically

Minkowski solutions and bouncing solutions were found. Let me review the behaviour of the

deformation matrix for these solutions as obtained from our analysis. Given that Ω̂ is proportional

to the square root of det
(
FP̂

)
(here FP̂ = ∂F /∂P̂), we must begin by studying the sign of this

determinant for the different solutions (we will assume β< 0). The qualitatively distinct cases for

det
(
FP̂

)
in isotropic solutions are plotted in figure 5.1.

For a radiation fluid we have that det
(
FP̂

)
is positive in the interval ρ ∈ ( 3

16β ,− 9
2β ) and negative

for ρ > − 9
2β in the iso-I branch, and it is positive in the interval ρ = ( 3

16β , 1
6β ) and negative for

ρ > 1
6β in the iso-II. At ρ = 3

16β both branches give the same value for det
(
FP̂

)
, and it becomes

complex (in both branches) for ρ < 3
16β . Thus the two branches come from one single solution in

the complex plane.

The analysis becomes more involved in the general case for the matter dominated case. We find

two different qualitative behaviours that depend on the relative sign between α and β. We see

that each both branches have a zero in det
(
FP̂

)
at positive values of ρ for the case αβ> 0. The

zeros are given by

ρI
0 =

−
√

3αβ+β2 −6α−2β
12α2 +7αβ+β2 and ρI I

0 =
√

3αβ+β2 −6α−2β
12α2 +7αβ+β2 (5.35)
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in the iso-I and iso-II branches respectively. In this cases both branches have det
(
FP̂

) ∈R for all

values of ρ, being monotonically decreasing in the iso-I branch, and monotonically increasing in

the iso-II branch. Only the iso-I branch satisfies det
(
FP̂

)= 1 in vacuum, thus recovering GR. The

case with opposite signs of α and β is more involved due to the fact that there are more possible

values of ρ at which det
(
FP̂

)
has zeroes or poles, as well as intervals in which it becomes complex.

These depend, in general, on the particular values of the parameters α and β. In figure 5.1 we

plotted two of the possible cases. Note that in these cases, the richer structures of zeros and plots

of det
(
FP̂

)
gives rise to disconnected (in a continuity sense) subbranches within the two isotropic

branches. Each of the sub-branches of one of the branches always connects smoothly with one of

the sub-branches of the other branch, thus implying again that each of the branches comes from

a unique solution in the complex plane.

Figure 5.1: The determinant of ∂F/∂P̂ is plotted for both isotropic branches and β=−0.1. The
plot above in the right is plotted for α=−0.01, and the two below for α= 0.01 and α= 0.0345 (left
and right respectively). It can be seen how det

(
FP̂

)= 1 in vacuum for iso-I in all the cases, but
that is never the case for iso-II.

A feature worth to note is that, for isotropic branches, the value of det
(
FP̂

)
in vacuum is

independent of α and β, and it evaluates to 1 for iso-I and to −27/16 for iso-II. Given that the

deformation matrix is proportional to
√

det
(
FP̂

)
, this implies that the iso-II branch does not have
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Figure 5.2: The eigenvalues of the deformation matrix are plotted for both isotropic branches and
β=−0.1. The plot above in the right is plotted for α=−0.01, and the two below for α= 0.01 and
α= 0.0345 (left and right respectively). It can be seen how the deformation matrix reduces to the
identity in vacuum for iso-I in all the cases, but that is never the case for iso-II.

a well defined Einstein frame in vacuum. Regarding the properties of the deformation matrix,

a remarkable feature for the isotropic solutions is that the value of the deformation matrix in

vacuum does not depend on the values of the parameters α and β, and it is the identity for iso-I,

whereas for iso-II we find Ω̂ρ→0 = i
p

3 /2 diag(−3,1,1,1). This implies that while for iso-I the

nonlinearities fade out smoothly in the infrared, this is not the case for iso-II. The consequence is

that the iso-II branch does not have a well defined Einstein frame in vacuum, since there are no

real solutions for the deformation matrix in this case. These properties can be verified in figure

5.2, where we plot the eigenvalues of the deformation matrix for the different cases. From the

plots we can also see how, except for the radiation solutions, matter solutions with αβ> 0 and

one of the subcases of matter solutions with αβ< 0 (corresponding to 3α+β< 0), the deformation

matrix becomes singular at some maximum density, thus jeopardising the construction of the

Einstein frame at higher densities. Physically, this is associated to an actual upper bound for the

energy density allowed in these branches of the theory, a property with the potential to regularise

both black hole and cosmological solutions and, consequently, the avoidance of singularities
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by generating a wormhole throat or a bounce when the energy densities reach this critical

value [63,66,70–72,187,221–226]. It is important to stress, however, that these solutions can

also present other pathologies (instabilities, violations of energy conditions, superluminalities,

etc.). For the 3α+β> 0 subcase of the αβ> 0 solutions6 the deformation matrix does not become

critical at any positive value of ρ.

Axisymmetric solutions in the quadratic theory

Let us now turn to the analysis of the axisymmetric solutions, focusing on whether there is

any viable mechanism of isotropisation at low densities for any of the axisymmetric branches

of the general quadratic theory. Axisymmetric branches are characterised by Pi = Pk 6= P j. We

will assume P1 = P3 6= P2 without loss of generality through this section. As for the isotropic

case, there are two branches of anisotropic solutions, namely axi-I and axi-II, described by (5.32)

and (5.33) respectively. When coupled to a radiation fluid, the axi-I branch does not depend on

the values of α. Concerning the determinant of FP̂ in vacuum, it is independent of the model

parameters for axi-I, and takes the same value as in iso-II (namely −27/16), suggesting that iso-II

might be an isotropic limit of axi-I. However for axi-II, it does depend on the values of α and β as

lim
ρ→0

det
(
FP̂

)
axi−I I =

(3α+5β)2(6α+11β)
(
6α2 +13αβ+9β2)

1296(α+β)3(2α+β)2 (5.36)

Thus, the parameters could in principle be tuned so that det
(
FP̂

)
axi−I I = 1 in vacuum. Generally,

det
(
FP̂

)
has several roots, the number depending on the relations between α and β except for the

radiation case in axi-I, where it vanishes when det
(
FP̂

)∝ (4βρ−9)(4βρ+3)(4βρ+9)2. In figure

5.3 we show plots of det
(
FP̂

)
for both branches in the matter and radiation dominated cases.

Figure 5.3: Plots of det
(
FP̂

)
for axisymmetric solutions, both with values β = −0.1 and α is

chosen so that det
(
FP̂

)
axi−I I = 1 in vacuum for that value of β (α≈−0.0213). The left plot is for a

radiation fluid while the right one is for a matter fluid.

6The sign of 3α+β is related to the structures of zeroes of det
(
FP̂

)
.
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As for the properties of the deformation matrix in vacuum, it is complex for axi-I, taking

the value Ω̂axi−I
ρ=0= i

p
3 /2diag(1,1,−3,1), which is different from that of iso-II, hence implying

that one branch cannot be the isotropisation of the other, as neither can be axi-II due to the

dependence on α and β of Ω̂ in vacuum. This suggests that axisymmetric and isotropic branches

are in general nonperturbatively different even at low densities in the general quadratic theory,

and no isotropisation mechanism takes place in general. However, although it is not possible to

find particular combinations of α and β such that the deformation matrix becomes the identity

in vacuum, we can indeed find particular combinations such that it isotropises in vacuum.

Nonetheless, for axi-II, some of its eigenvalues are always negative in vacuum, thus jeopardising

the hyperbolic nature of the corresponding field equations. Apart from not having a well-defined

Figure 5.4: Plots of the eigenvalues of Ω̂. The top-left graphic is plotted for the values of β=−0.1
and the value of α such that det

(
FP̂

)
axi−I I = 1 in vacuum (α≈−0.0213), the top-right is plotted

for α=−0.01 and the value of β such that Ω̂ isotropizes in vacuum (β≈ 0.1297), and both on the
bottom are plotted for α=−0.01 and β=−0.1 respectively. The axi-I-branch always isotropizes to
iso-I at some nonzero density for both fluids and in a nonsmooth way for the spatial eigenvalues,
but the axi-II-branch isotropizes but not to the iso-I (neither 2) except for a particular value of
the parameters. In this case, the spatial eigenvalue does not isotropize at the same value of ρ as
the temporal one.
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vacuum, the deformation matrix for axisymmetric solutions is, in general, rather involved, as

can be seen with the examples plotted in figure 5.4. There is always a point for which the

axi-I isotropizes and then become anisotropic again as the density grows. At this isotropization

point, the eigenvalues of Ω̂ of axi-I coincide with those of iso-I both for matter and radiation.

Nevertheless, the derivatives of the eigenvalues are never the same for isotropic and axisymmetric

solutions at that point. The hope that an anisotropic solution could then isotropize in a smooth

(and thus predictable) way is in vain. For axi-II, although it isotropizes, it does not meet the iso-I

(which recall that it is the only isotropic branch giving the correct low-density limit).

The above analysis shows that, for the general quadratic theory, even though some branches

of solutions correspond to anisotropic deformations, they are generically pathological at low

densities where the branches do not exist. Obviously, these branches are disconnected from the

solution that continuously connects with GR at low densities. Despite deriving this result only

for quadratic theories, they have far reaching consequences, strongly suggesting that branches of

any theory that are perturbatively close to GR at low densities do not admit smooth anisotropic

deformations. Thus, the anisotropic branches of more general (nonlinear) theories with a smooth

behaviour at low densities, if they exist, must be nonperturbative, i.e., they must strongly rely on

their nonlinear nature.

5.2 Anisotropic deformation matrix in physical scenarios

Having understood which are the necessary conditions for a given RBG theory to have solutions

with anisotropic deformation matrix, we can now analyse the consequences in scenarios with

physical interest, such as cosmological or black hole spacetimes.

5.2.1 Cosmological scenarios

The results obtained in the previous section apply to general spacetimes filled with a perfect

fluid. We will now focus on a cosmological context where the fluid is also homogeneous, i.e., which

have a symmetry under spatial translations. Our interest here is to study a scenario where

the spacetime metric is isotropic but the qµν metric is not, so that matter fields do indeed see

an isotropic universe but gravitational waves propagate in a nonanisotropic background.7 The

spacetime metric will thus have an FLRW form

ds2
g =−N2(t)dt2 +a2(t)d~x2 (5.37)

where we have assumed vanishing curvature of the spatial sections. Since we are exploring

solutions where the deformation matrix is not isotropic, the metric qµν will be of the Bianchi I

7Recall that minimally coupled matter fields propagate in the background of the RBG frame metric in RBG
theories, whereas gravitational waves do so according to the background of qµν [157].

135



CHAPTER 5. NON-TRIVIAL ASPECTS OF THE RBG SOLUTION SPACE

form

ds2
q =−N2

q(t)dt2 +
3∑

i=1
a2

i (t)(dxi)2. (5.38)

We can define the isotropic scale factor ã = [a1a2a3]1/3 and encode the anisotropic expansion in

γi j(t)= e2βi(t)δi j, with βi = log(ai/ã) (no summation over i in the definition of γi j is understood).

The functions βi describing the anisotropic expansion are subject to the constraint
3∑

i=1
βi = 0. (5.39)

We can now use the relations between ai and a to define the function A ≡ ã/a = (
Ω1Ω2Ω3

)1/6 that

relates the isotropic scale factor of the q-metric and the scale factor of gµν. Using this definition,

we can write βi and ãi in the form

βi = 1
2

log
Ωi

A 2 and ãi =
√
Ωi

A
ã. (5.40)

Furthermore, In Bianchi I, one can define 3 Hubble rates and an averaged one as H̃i =˙̃ai/ai and

H̃ =˙̃a/ã respectively, which by using the continuity equation can be written as

H̃ = H
[
1−3(ρ+ p)

(
∂ρ logA + c2

s∂p logA
)]

. (5.41)

This shows how the sign of H and H̃ can be the opposite, so that when the RBG metric gµν is in

an expanding phase, the Einstein frame metric qµν can be in a stationary or contracting phase

(see figure 5.5). By performing some calculations, we find the following equation for H2

3H2

N2M2 =
1
2

(∑
i
Ω0
Ωi

Pi −P0

)
[
1−3(ρ+ p)

(
∂ρ logA + c2

s∂p logA
)]2 − 1

6
∑3

i=1
[
(∂ρβi + c2

s∂pβi)(−3(ρ+ p))
]2 , (5.42)

where the right hand side can be written as a function of ρ and p by solving the field equations

(5.9) and (5.10). We see that the nonlinearities that permit the existence of the anisotropic

solutions also complicate the structure of the corresponding Friedman equation.

5.2.2 Static spherically symmetric geometries

Another relevant physical scenario is that of spherically symmetric solutions. We can then study

what kind of metric qµν we can get from an arbitrary static spherically symmetric spacetime

metric gµν. A general static and spherically symmetric metric can be written as (see e.g. [227]),

ds2
g =−C(r)dt2 +B−1(r)dr2 + r2 (

dθ2 +sin2(θ)dφ2)
, (5.43)

where r measures the area of the 2−spheres. Since Ω̂ can be written in vacuum as an analytic

function of q̂ or ĝ and the matter fields, we can assume an arbitrary but diagonalised Ω̂ =
diag(Ωt,Ωr,Ωθ,Ωφ). Using (5.1) and (5.46) we can then write

ds2
q =−ΩtC̄dt2 +ΩrB̄−1dr2 + r̃2

(
dθ2 + Ωφ

Ωθ
sin2(θ)dφ2

)
, (5.44)
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Figure 5.5: Here we plot the ratio between the Hubble factor of the RBG frame (i.e. that as-
sociated to gµν) and the averaged Hubble factor of the Einstein frame (i.e. that associated to
qµν) for the general quadratic theory given by (5.25). ρ is normalised by 1/M2MP

2 and we have
chosen α=−0.2 and β=−0.1. We can see how there is a density above which a gµν expanding
phase corresponds to a qµν contracting phase and viceversa for both isotropic and axisymmetric
branches.

where

C̄ = C

(
r̃

Ω1/2
θ

)
, B̄ = B

(
r̃

Ω1/2
θ

)
and r̃2 =Ωθr2. (5.45)

This is, in general, not spherically symmetric, unless Ωθ =Ωφ and all the eigenvalues Ωµ depend

only on r, which means that r can be written in terms of r̃ only. In that case we can write r(r̃)

and, without assuming Ωθ =Ωφ, we can write

ds2
q =−C̃(r̃)dt2 + B̃−1(r̃)dr̃2 + r̃2

(
dθ2 + Ωφ [r(r̃)]

Ωθ [r(r̃)]
sin2(θ)dφ2

)
, (5.46)

where

C̃(r̃)=Ωt [r(r̃)]C
[

r̃
Ω1/2
θ [r(r̃)]

]
, B̃−1(r̃)=

(
1− d ln(Ωθ[r(r̃)])

d ln r̃

)
Ωr[r(r̃)]
Ωθ[r(r̃)] B

−1
[

r̃
Ω1/2
θ [r(r̃)]

]
. (5.47)

In this case, the coordinate r̃ also measures the area of the 2-spheres as given by the Einstein

frame metric, and qµν will have a spherically symmetric form provided that Ωθ =Ωφ. If this

condition is not met, the angular coordinates φ is periodic in (Ωθ/Ωφ)−1/22π, and thus qµν will

describe a conical singularity due to a deficit in angle proportional to 1−(Ωθ/Ωφ)−1/2, thus spoiling

the symmetry. On the other hand, if the condition is met and we have spherical symmetry in the

Einstein frame, we can ask ourselves wether the presence (or absence) of horizons is modified in

both frames. Usually, a divergence of the rr of the metric signals the presence of event horizons.

In this case, we see that a divergence in grr at rh is also translated as a divergence of the qrr

component due to analyticity of the deformation matrix, but now at r̃h = rhΩ
1/2(rh) (note that

the prefactor of B̃ does not vanish). Note as well that the tt and rr components of the Einstein
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frame metric will not generally be inverse of each other in the case that those of the RBG frame

metric are (unless Ωθ is constant and Ωr =ΩθΩ
−1
t ). Thus, because Birkoff ’s theorem applies to

the Einstein frame, in vacuum, no deformation matrix that preserves spherical symmetry can

occur except if it satisfies Ωr =ΩθΩ
−1
t and Ωθ =Ωφ are constants.

5.3 Anisotropy in the Einstein frame

After exploring the possibility of having an anisotropic deformation for an isotropic matter

source, it is illuminating to look at the problem from the Einstein frame perspective directly,

where as explained in section 4.1.3 the field equations for RBG theories can be recast into

Gµ
ν(q)=MP

−2T̃µ
ν. (5.48)

From this perspective, it is hard to evade the question of how to square the obtained anisotropic

deformations with the (cosmological) no-hair theorems of GR [228]. This becomes even more

pressing in view of the form of the source of the Einstein equations for qµν, given in (4.41)), which

is isotropic provided both Tµν and gµν are. Then, how do we reconcile the general result that

the shear decays with the persistent anisotropic solutions obtained in the precedent sections?

The resolution to this dichotomy again comes from the nonlinearity of the Einstein equations

that allows to have anisotropic solutions even if the source is isotropic. The no-hair theorems for

cosmological solutions, for instance, states that the anisotropic shear typically decays during the

expansion. In our case, we have obtained that it is possible to have an anisotropic deformation,

which is equivalent to having a Bianchi I metric for qµν even if gµν is of the FLRW type. That the

anisotropy can be maintained can be understood from the fact that an expanding solution for the

matter fields requires that the metric gµν describes a growing scale factor, but the evolution for

the metric qµν, besides being anisotropic, does not need to correspond to an expanding phase, as

can be seen in figure 5.5. For instance, if this anisotropic evolution describes a contracting phase,

the shear corresponding to qµν can actually grow substantially while the metric gµν describes

an isotropic expanding phase. On the other hand, even if the evolution also corresponds to an

expanding phase, the effective expansion of the metric qµν can be slower than the one experienced

by matter fields, namely that of gµν, so that it can persist after many e-folds of the matter fields

expansion.

An interesting example to consider in some detail is that of a cosmological constant or, more

generally, matter sectors that are able to support maximally symmetric backgrounds in the RBG

frame. A quick glance at (4.41) reveals that a cosmological constant in the RBG frame also gives

a cosmological constant in the Einstein frame. If we assume Tµν =Λgµν, then we find that

T̃µ
ν =−LG +Λ√

detΩ̂
δµν ≡ Λ̃δµν. (5.49)
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By virtue of the Bianchi identities associated to diffeomorphisms, we find that Λ̃ must also be a

constant so that the solution for qµν will also correspond to a maximally symmetric metric. It can

happen however that a positive Λ can lead to a negative or vanishing Λ̃. However, drawing any

physical conclusion from this is of limited interest since in the absence of propagating matter

fields, the only physically relevant object is the metric qµν that describes the characteristics

of the propagation of gravitational waves. In this respect, it should be noticed that what one

would call vacuum configuration in the RBG frame is different from the vacuum configuration

in the Einstein frame. For instance, if we have a vacuum configuration with Tµν = 0, in the

Einstein frame this configuration could give rise to a cosmological constant. Likewise, if we define

the vacuum in the RBG frame as the configuration with trivial matter fields, we can have a

cosmological constant, but the value of the cosmological constant in both frames can be different.

The physical effect that could be measured comes when we compare the propagation of grav-

itational waves and some matter fields. As explained in section 4.1, in the minimally coupled

case that we are considering, the matter fields follow the geodesics of gµν while gravitational

waves see the metric qµν (see also [157]). To illustrate this, let us assume that gµν = ηµν and Ω̂

is anisotropic so we have qµν = diag(N,a,b, c) and, for simplicity, we will assume that they are

constant (i.e. we are considering vacuum configurations). If we now compare the trajectories of

photons and gravitons, they respectively follow the null geodesics of the metrics:

ds2
g =−dt2 +d~x2, (5.50)

ds2
q =−Ndt2 +adx2 +bdy2 + cdz2. (5.51)

If we emit a graviton and a photon at t = t0 from the origin along the z−direction, we will have

zphoton = t− t0, zgraviton = N
c

(t− t0) (5.52)

so their trajectories differ as ∆z = (
1− N

c
)
(t− t0). This would of course be tightly constrained

by the observations of the neutron star merger GW170817 [4]. An important point to realise is

that this effect of the anisotropic Ω̂ cannot be absorbed into a coordinate redefinition, since that

would affect the propagation of the matter fields and the relative separation would remain. In

the standard case, the fact that all fields follow the same metric is what allows to absorb the

anisotropic solutions of vacuum Einstein equations that we have considered into a redefinition of

the coordinates so that it does not have any physical effect. Furthermore, notice that this effect

does not depend on the deformation matrix being anisotropic, but it will arise whenever Ω̂ 6= 1.
The fact of having an anisotropic deformation matrix will further introduce polarisation and

direction dependent effects.

Let us end our discussion on the Einstein frame by explaining another subtle point that usually

arises when going to this frame. This subtlety is related to the need of solving the nonlinear
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equation for the deformation matrix that has been the core of this chapter. The Einstein frame

formulation of the RBG theories can be achieved directly working at the level of the equations, in

which case one ends up with Eq. (5.49). In those equations, the right hand side depends on the

metric gµν so, in order to properly have the differential equations determining qµν, one needs to

solve the equation for the deformation matrix Ωµ
ν. It is then usually assumed that the solution

can be written as a covariant expression of the stress-energy tensor. As explained in section 4.1.3,

by virtue of the Cayley-Hamilton theorem, one is then entitled to make the ansatz

Ω̂=
3∑

n=0
cnT̂n (5.53)

with cn some scalar functions of the invariants of Tµ
ν. However, though this is a very reasonable

and natural guess for the branch that is perturbatively close to GR in vacuum, it does not (always)

cover the full space of solutions. This should be clear from our results above and, owed to the

nonlinear nature of the matrix equation satisfied by Ω̂, more general solutions are possible

where the explicit covariant relation exhibited in (5.53) is spontaneously broken. For example,

in vacuum, one can have solutions where Ω̂ is not proportional to the identity so that Lorentz

invariance is spontaneously broken. The same can happen for nonvacuum situations. In the

construction of the Einstein frame at the level of the action directly, the same situation occurs

when one has to integrate out the metric gµν. Again, this has been done in section (4.1.3) by

solving its algebraic equation, which is nonlinear and allows for branches of solutions that do

not explicitly preserve covariance. After plugging these solutions in the action, the matter sector

will then contain the effects of those nontrivial branches. In this respect, it is interesting to

notice that the equivalence to GR must be understood in a broader sense, since the branches

with broken symmetries will give rise to matter sectors where these symmetries are also broken.

Interestingly, the loss of symmetries in the matter sector could alter the number of propagating

degrees of freedom.

As a conclusion, we see that the usual isotropic ansatz employed for the deformation matrix in

physical applications within RBGs with an isotropic matter sector, besides being a natural choice,

it may be necessary to avoid the pathologies that we have discussed in the evolution. We should

notice however that the suitability of the isotropic deformation was not guaranteed a priori. As

an example we can mention the cosmological isotropic bouncing solutions that can be unstable

due to the growth of the shear in the contracting phase and something along these lines (barring

the obvious differences) might have happened for the solutions with isotropic deformation in

RBGs. Our analysis then provides a strong support for the physical motivation of the isotropic

ansatz for the deformation matrix in projective invariant RBG theories.

140



C
H

A
P

T
E

R

6
ABSORPTION BY BLACK BOLE REMNANTS IN METRIC-AFFINE

GRAVITY

In the previous chapter, the general structure of RBG theories with and without projective

symmetry were presented. Both cases were seen to admit an Einstein frame where the

gravitational sector is described by metric-affine GR and Nonsymmetric Gravity Theory

[229] respectively. Moreover, in the case with projective symmetry, we saw that the solution

space has nontrivial branches of solutions in which the symmetries of the RBG frame may not

be the same a those of the Einstein frame even when the matter fields of the RBG frame also

satisfy them. This chapter will be devoted to the study of a general class of exotic compact objects

with interesting properties that arise as spherically symmetric solutions of RBG theories with

projective symmetry1 coupled to a free Maxwell field in the branch that connects with GR at

low energies. We will mainly be concerned with their absorption properties when scalar waves

are scattered off them, though we will also perform a preliminary geodesic analysis that will

correspond to the eikonal approximation of the scalar absorption profile.

In the last years there has been increasing interest in the study of compact objects which

may figure as astrophysical alternatives to classical black holes (BHs) or exhibit unconventional

features, such as hair or signs of new high-energy physics [230–235]. This interest has grown in

parallel with the development of gravitational wave detectors, which have provided convincing

evidence that collisions between massive astrophysical-size compact objects occur frequently

[?, 4,233,236–239] and, together with the first images of supermassive black holes [240,241], can

be used to unveil properties of the strong field regime of the gravitational interaction. However,

1Through this chapter, I will only be referring to RBG theories with projective symmetry. However, I will drop the
explicit statement with projective symmetry and write simply RBG theories in order to facilitate the information flow.
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the current capabilities of such observatories are yet insufficient to confirm or rule out the

existence of the BH event horizon itself and we will have to wait for future developments in order

to have a chance to settle this issue, as well as other related questions. Therefore, the possibility

to test subtle details of the strong gravity regime is still beyond our current techniques, and we

must do our best to scrutinise the spectrum of phenomenological possibilities from a theoretical

perspective.

Among the various open questions posed by BH investigations, understanding whether space-

time singularities [145,242–244] are real, or an artefact of our mathematical models, is one of the

most challenging problems both from technical and philosophical perspectives. Though the BH

event horizon is taken by some authors as a possibility to minimise this issue, adopting an out

of sight, out of mind attitude, a lot of effort has been devoted to the construction of nonsingular

alternatives for BH interiors. In this sense, the physical nature of singularities has been attacked

from different perspectives in the literature, including non-linear corrections on the matter

fields [245–251] for a general analysis of this issue), as well as non-perturbative effects [252],

fully dynamical models of BH formation and evaporation [175,253–257], quantum-gravitational

pressure counter-effects preventing the formation of the singularity [27,28,171,258,259], or via

the replacement of the event horizon by a compact surface mimicking the Schwarzschild radius

as seen from far away observers [233,260].

We are interested in exploring some properties of a family of nonsingular BH solutions which

arise generically in RBG theories coupled to regular matter fields. These solutions were first found

by exploring semiclassical gravity effects on Reissner-Nordström BHs of quadratic RBG theories

[225,261], and were later seen to be solutions of Eddington-inspired Born-Infeld gravity [?, 225]

(see section 4.2.2). The most remarkable property of these new solutions is that they represent

geodesically complete spacetimes with wormhole structure [?, 66,70,225,261], where a spherical

throat replaces the central singularity found in GR when coupled to a Maxwell field due to the

higher-order curvature terms of the RBG action. Among the various families of solutions of this

electrovacuum theory, there is a subset which is completely regular, in the sense that curvature

invariants are bounded everywhere, even at the wormhole throat [?, 65,70,71,225,225,261,261].

These solutions smoothly interpolate between Schwarzschild-like BHs (when their mass is

sufficiently high) and naked solitons (when their mass approaches the Planck scale), always

having a wormhole of finite area at their center. For this reason, because they smoothly connect

massive BH solutions with Minkowski spacetime, they can be regarded as natural candidates for

BH remnants [262,263]. Thus, this unconventional family of massive topological entities offers an

interesting environment to study qualitative new features of BH remnants. With this idea in mind,

a first step to understand their properties can be taken by studying their interaction with scalar

waves. Given that their BH phase is essentially identical to that corresponding to Schwarzschild

BHs [225,261], here we focus on the horizonless configurations (naked solitonic phase), which
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can be seen as two copies of Minkowski spacetime connected by a spherical wormhole, where the

energy density concentrates. Due to the fact that these objects are horizonless alternatives to

standard BHs and that they usually present photospheres, they fit well into the classification of

extreme/exotic compact objects (ECOs) found in [264]. ECOs can be further characterised into

subclassses, namely UCOs (ultra-compact objects) and ClePhOs (clean photosphere objects) [264].

UCOs are compact objects with a photosphere and ClePhOs are UCOs with an effective radius

very close to the Schwarzschild radius. It was recently found in [265] that, due to an “effective

cavity" between ClePhOs’ effective surface and its photosphere, ClePhOs present an absorption

spectrum characterised by Breit-Wigner like resonances which could allow for experimental

searches. In this chapter, we will be mainly devoted to replicate the analysis that was done

in [265] in order to study the absorption properties of other types of ECOs existent in alternative

theories, in search of characteristic signatures that could distinguish them from regular BHs

or other ECOs [266]. As we will see, the absorption spectrum of the family of regular solutions

studied here exhibits a pattern associated to a rich structure of quasibound states in the remnant

phase similar to that found for ClePhOs in [265], thus allowing to tell them apart from regular

BHs of the same mass. Throughout this chapter, we will use the metric signature (−,+,+,+) and

natural units, such that G = ~= c = 1.

6.1 Spherically symmetric electrovacuum solutions

The BH solutions we are going to study arise naturally in RBG theories by coupling them to a

spherically symmetric and static Maxwell electric field. They are characterised by a line element

of the form

ds2 =−A(x)dt2 + 1
A(x)Z 2+(x)

dx2 + r2(x)
(
dθ2 +sin2θdϕ2)

, (6.1)

where

A(x)≡ 1
Z+(x)

[
1− rS

rc

(1+δ1 H(x))
z(x)Z 1/2− (x)

]
, z(x)≡ r(x)

rc
, Z±(x)≡ 1± 1

z4(x)

r2(x)= 1
2

(
x2 +

√
x4 +4r2

c

)
, rc ≡

√
lGrq , δ1 ≡ 1

2rS

[
r3

q

lG

]1/2

, r2
q ≡ 2q2.

(6.2)

Here the x coordinate, defined through (6.2), takes values in the whole real axis (−∞,+∞). The

parameter rS defines the Schwarzschild mass rS = 2M. The length lG is related to the mass

scale MG by lG = (p
2 MG

)−1
, and controls the nonlinear deformations of the matter sector in the

Einstein frame of the corresponding RBG (see section 4.1.3). The function H(x) is given by

H(x)=− 1
δc

+ 1
2

√
z4(x)−1 [ f3/4(x)+ f7/4(x)], (6.3)

where

fλ(x)= 2F1[1/2,λ,3/2,1− z4(x)] (6.4)
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are hypergeometric functions, and δc ≈ 0.572069 is an integration constant needed to find the

correct behavior at spacelike infinity. The different parameters appearing in the line element (6.1)

can be rewritten as functions of the dimensionless parameters Nq ≡ q/e (with e being the proton

charge) and the charge-to-mass ratio δ1, defined in (6.2). Let us write these relations explicitly

q = eNq , rq = 2lPNq/Nc , rS = r3
c

2δ1l2
G

, (6.5)

where lP is the Planck length and Nc ≡
√

2/αem ≈ 16.55 is a critical number of charges, which

represents the transition from BH (Nq > Nc) to naked wormhole (Nq < Nc). In the definition of

Nc, αem is the fine structure constant. These definitions show how the line element (6.1) is totally

specified by the two dimensionless parameters (δ1, Nq) plus the scales lG and lP. This family of

metrics leads to three qualitatively different types of spacetime, depending on the relative values

of δ1 and Nq. with respect to the critical values. These three types are:

1 Schwarzschild like solutions: characterised by δ1 < δc, they possess an event horizon

(on each side of the wormhole) for all values of Nq.

2 Reissner-Nordström like solutions: With δ1 > δc, they may exhibit; on each side of the

wormhole; two, one (degenerate), or no horizons, like in the usual Reissner-Nordström (RN)

solution of GR.

3 Regular solutions: With δ1 = δc, if Nq > Nc, one finds one horizon on each side of the

wormhole (similar to the Schwarzschild case). If Nq = Nc, the two symmetric horizons meet

at the wormhole throat, r = rc (or x = 0). For Nq < Nc the horizons disappear yielding a

wormhole that connects two asymptotically Minkowskian universes. We will refer to these

solutions as BH remnants, as they are continuously connected with BH configurations.

The existence of such remnants, which may arise at the end of BH evaporation or due

to large density fluctuations in the early universe [267], might be of special relevance

for the understanding of the information loss problem [268] and may also have potential

observational consequences [?]. It is important to note that when the charge-to-mass ratio

δ1 is set to the value δc, the mass spectrum of the solutions is completely determined by

the charge parameter Nq, through the relation [65]

M = mP

( Nq

Nc

)3/2 (
lP

lG

)1/2
nBI , (6.6)

where nBI = π3/2/(3Γ[3/4]2) ≈ 1.23605. Up to a
p

2 numerical factor, this mass/energy

expression is identical to the one found for point charges in the Born-Infeld electromagnetic

theory.
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From here on we will refer to these as Type I, II and III solutions. All the above cases rapidly

tend to the standard GR solutions just a few rc units away from the wormhole throat (located at

r = rc).

6.2 Light rays and scalar waves

We now shift our attention to the properties of geodesics and propagation of scalar waves in the

spacetime defined by the line element (6.1). Since it represents a static and spherically symmetric

geometry, we have two Killing fields, ξ1 = ∂t and ξ2 = ∂ϕ, which satisfy ∇(
g(u,ξi)

)
[u] = 0 along

metric geodesics with tangent vector uµ. Due to spherical symmetry, we may restrict our attention

to geodesics at the equatorial plane (θ = π/2), without loss of generality. The two Killing fields

give the following conserved quantities along equatorial geodesics

E =−Aṫ,

L = r2(x)ϕ̇,
(6.7)

where a dot over a quantity means its derivative with respect to the affine parameter of the

corresponding geodesic.

6.2.1 Capture of null geodesics

For metric geodesics we also have conservation of the norm of their tangent vector, g(u,u)=−k,

where k = 0 for null geodesics and k = 1 for (affinely-parametrized) timelike geodesics. Using (6.1)

and (6.7) we can therefore write

1
2

m̃(x)ẋ2 +Ve f f (x)= E2, (6.8)

where we have defined

Veff(x)≡ A(x)
(

L2

r2(x)
+k

)
, and m̃(x)≡ 4/Z 2

+(x). (6.9)

The above equation (6.8) is similar to that of a Newtonian particle of variable mass m(x) and

energy E2 in a central effective potential Ve f f . As we can see in figure 6.1, the effective potential

associated to null geodesics presents a well at the wormhole throat, with one maxima on each

side, defining two unstable photospheres. The minimum of the potential, at the wormhole throat,

is related to a stable photosphere. We can see that the depth of the potential well increases as the

normalised number of charges ns increases. Intuitively, concerning scalar waves, this is telling

us that the wormholes will be more absorptive the more charged they are, because their area

grows linearly with the charge. Moreover, from the presence of a potential well, we can anticipate

the existence of quasibound modes around the throat in the wave regime. Indeed, the absorption

spectrum of scalar waves, computed in Sec. 6.2.2, shows the existence of these modes.
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Figure 6.1: The left image is the effective potential Veff(x), given by (6.9) and normalised by r2
c/L2,

for null geodesics (k = 0) in BH remnant spacetimes. Here ns = Nq/Nc. Note that for values of
ns ≈ 1 we have a more pronounced potential well at x = 0, and the well disappears as ns → 0 (or
Nq → 0). The right image is the corresponding phase portrait for ns = 0.9. Vertical lines show the
maxima of the effective potential. We see two unstable equilibrium points at the maxima of Veff
and a stable equilibrium point at the central minimum x = 0.

In order to calculate the absorption cross section of light rays by naked wormholes, we need

to find the position of the circular orbits, i.e., the photospheres. Though, strictly speaking, the

position dependence of m̃(x) breaks the equivalence with the particle of mass m in a central

potential, by definition, the photospheres are the trajectories satisfying ẍ = 0 with the initial

condition ẋ0 = 0. Let us see how, as in the constant mass case, the photospheres also correspond

to the maxima of the effective potential. In order to prove this, we can write (6.8) as

ẋ =
√

2[E−Veff(x)]
m̃(x)

, (6.10)

where the right hand side can be written as f (x). The above equation can be mapped into the

autonomous system

ζ̇= f (x,θ)= θ (6.11)

θ̇ = g(x,θ)=
√

m̃
2
θ

(
m̃′√E−Veff

2m̃
− V ′

eff

2(E−Veff)

)
with the constraint θ =√

2[E−Veff(x)] /m̃(x) , where Ė = 0 has been used. As usual, the equilib-

rium points (x,θ0) of this system are given by the two conditions f (x0,θ0) = 0 and g(x0,θ0) = 0.

The first condition is θ0 = 0, which together with the constraint equation, and given that m̃(x) is

bounded, implies E =Veff(x0). If the first condition holds, with the use of the constraint equation

the second condition can be written as
V ′

e f f (x0)

2
√

E−Veff(x0)
= 0, (6.12)

which implies that V ′
e f f (ζ0) has to vanish quicker than

√
E−Veff when approaching x0. The

conditions for equilibrium points together with the constraint equation yield θ0 = ẋ0 = 0 and

146



6.2. LIGHT RAYS AND SCALAR WAVES

V ′
e f f (x0)= 0. Stable points are always associated to constant equilibrium solutions, which in this

case describe circular orbits (x = x0,θ = ẋ = 0) related with extrema of the effective potential.

In figure 6.1 we plot the phase portrait of the system, which is qualitatively equivalent to the

constant mass case in a central potential, and allows to quickly grasp the stability properties of

the orbits for different initial conditions. There we can see how light signals with E >Veff(ζ0) will

go from one asymptotic region to another. Light signals with E <Veff(ζ0) emitted in the region

|x| > |x0| will bounce back to infinity in their corresponding asymptotic region. More interestingly,

light signals with E <Veff(x0) emitted in the region |x| < |x0| would stay in that region bouncing

back and forth. As stated above, the effects of this region will later be shown to generate quasi-

normal modes for scalar waves. Null geodesics impinging from infinity, which reach and stay at

the maximum of the potential are called critical, and they are characterised by Veff(xmax)= E2.

This relation fixes their impact parameter, b ≡ L/E, to be

bc =
√

L2

Veff,max
= rmax√

Amax
, (6.13)

where the subindex max denotes evaluation of the corresponding function at xmax. The critical

impact parameter is related to the frequency of the unstable circular null geodesic by

Ωl = b−1
c . (6.14)

Null geodesics with b > bc are scattered by the BH remnant and stay in Region I (defined in

Subsec. 6.2.2), whereas those with b < bc overcome Veff,max and cross the wormhole throat to

Region II. The classical absorption cross section for BH remnants is then given by

σc =πb2
c =

πr2
max

Amax
. (6.15)

Despite that in our model it is not possible to solve V ′
eff,max = 0 analytically, it is always possible

to find xmax through a numerical approach. In figure 6.2 we present a plot of the total absorption

cross section for null rays absorbed by a naked wormhole as a function of ns. We can see that

the absorption cross section increases monotonically with the (normalised) number of charges.

Therefore, for an observer at infinity, ns can be regarded as an effective dissipative coefficient. As

it will be seen later, this analogy can be extended to the analysis of scalar wave absorption by the

wormhole.

6.2.2 Absorption of massless scalar waves

As it is well known, the absorption of null geodesics is associated to the high-frequency limit

(geometric optics approximation) of scattering planar massless waves [?,?]. The geodesic analysis,

however, is not sensitive to the full range of phenomena that waves can experience, provid-

ing incomplete information about the absorption and scattering spectra, as well as the modal
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Figure 6.2: Null geodesics absorption cross section of BH remnants for different values of ns.
Recall that BH remnant solutions are characterised by δ1 = δc and ns = Nq/Nc ∈ (0,1).

structure of the spacetime. These characteristics are also strongly dependent on the spin of the

waves considered [269–274]. As a first approach to this problem, we consider massless scalar

waves, which provide interesting insights on the features of the spacetime beyond the geodesic

approximation [70,275,276] .

Let us consider a minimally coupled massless scalar field Φ described by (9.6). The correspond-

ing field equations are (see section 3.3.1)

2gΦ= 1p−g
∂µ

[p−g ∂µΦ
]= 0. (6.16)

Its Einstein-frame action will generally feature self-interaction terms which will be of O (∂Φ3)

or higher. Since we are interested in linear perturbations, we will neglect these corrections and

solving (6.16) in the background described by the line element (6.1) with appropriate boundary

conditions will suffice. Given that the background is spherically symmetric, we use separation of

variables to decompose the field as

Φ= φ(t, x)
r(x)

Y`m(θ,φ), (6.17)

where Y`m(θ,φ) are the scalar spherical harmonics. Plugging (6.17) into (6.16) we obtain the

1+1-dimensional wave equation(
∂2

∂r2
?

− ∂2

∂t2 −Vϕ(r?)
)
φ(x, t)= 0, (6.18)

where the effective potential Vϕ is given by

Vϕ(r?)= A`(`+1)
r2 + d2r

dr2
?

, (6.19)
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Figure 6.3: Effective scalar potential Vϕ [given by (6.19)] for BH remnants. The plots with `> 1
are normalised by `(`+1), for better visualization. We note the presence of a well centered at
x = 0, which gets deeper as the limit n = 1 is approached, and is shallower for higher multipoles.
We also note the similarity of Vϕ with the potential obtained in the null geodesic analysis, Veff
[given by (6.9)], plotted in figure 6.1.

and we have defined a tortoise-like coordinate r? by

dr? ≡ dx
AZ+

. (6.20)

and satisfies
d2r
dr2

?

= AZ+
d
dx

(
AZ+

dr
dx

)
. (6.21)

Equation (6.18) can be reduced to an ordinary differential equation by resorting to separation of

variables, decomposing the function ϕ(t, x) as φ(t, x)=ϕ(x)e−iωt, which leads to[
d2

dr2
?

+ω2 −Vϕ(r?)
]
ϕ(x)= 0. (6.22)

In figure 6.3 we show the effective scalar potential Vϕ for different choices of ns. For BH

remnants, we have that a potential well may appear at r = rc, showing different features from

the BH case. The potential is consistent with the one from the geodesic analysis, given by (6.9).

Proper boundary conditions should be supplemented to (6.22). The Penrose diagram of remnant

configurations and the corresponding illustration of the scattering problem is depicted in figure
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Figure 6.4: Penrose diagram for a BH remnant configuration (δ1 = δc and Nq < Nc). The wormhole
is represented by the vertical timelike trajectory denoted by rc. The triangular sectors on each
side represent two asymptotically Minkowskian universes. The arrows represent the scattering
of the massless scalar waves.

6.4. The right and left hand sides of the diagram are identified as Regions I and II, respectively.

We are interested in planar waves incoming from past (null) infinity on the bottom right part

of the diagram, J−
I , being reflected to J+

I and transmitted to J+
II . In Region I, asymptotically

(r →+∞), we have

ϕRI (x)≈A`me−iωr? +R`meiωr? , (6.23)

where A`m is the amplitude of the incoming wave and R`m the amplitude of the reflected one. To

write (6.23) we have used the fact that the potential vanishes asymptotically. The wave coming

from J−
I is scattered by the compact object, leading to a phase difference between A`m and

R`m. The compact object can also partially absorb the wave, resulting in a difference in the

moduli of the amplitude of the incoming and reflected waves. In the case of BHs, the absorption is

associated to a purely ingoing wave into the horizon. For wormholes, which is the case of the BH

remnant treated here, we identify the absorption with the part of the wave that is transmitted

through the throat to the other side (Region II). To describe the scattering phenomenology, we

have to compute the phase-shift δω`, which is related to the reflection coefficient by

e2iδω` = (−1)`+1 Rω`

Aω`
. (6.24)

In general, the phase-shift is complex whenever |Rω`| 6= |Aω`|, i.e., when there is dissipation in

the system. The absorption cross section is given by [277]

σ=
∞∑
`=0

σ`, (6.25)
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where σl is the partial absorption cross section for each multipole, given by

σl =
π

ω2 (2`+1)Γω`, (6.26)

with

Γω` = 1−
∣∣∣∣Rω`

Aω`

∣∣∣∣2 (6.27)

being the transmission coefficients. To compute the reflection coefficient, we must impose that the

boundary conditions in the asymptotic limit of Regions I and II are satisfied, resulting in equations

for the amplitude of the wave in those limits. This can be done by analytical approximations of

the wave function or by numerically integrating it from the asymptotic limit of Region II to the

asymptotic limit of Region I, and comparing the result with the asymptotic form given by (6.23).

Trapped modes

Due to the shape of the potential, quasibound states can exist, associated to the potential

well located at r = rc. These quasibound states are similar to the trapped modes arising in

ultracompact stars [278], and in the eikonal limit they are related to the stable null-geodesics

existing at r = rc [279]. The modes are complex, having small imaginary part due to the tunneling

to the asymptotic regions of spacetime. They are determined by the boundary conditions

ϕ=
{

e−iωr? , x →−∞,

eiωr? , x →∞,
(6.28)

which generates an eigenvalue problem for the frequency ω. The existence of trapped modes in

the BH remnant case is a crucial difference from the BH spacetime, where the imaginary part is

associated to the timescale of the unstable null geodesic [280]. The quasibound modes generate a

signature in the absorption spectrum, leading to narrow spectral lines in it. In fact, this signature

has been also found in weakly dissipative ultracompact stars, where the trapped modes give rise

to structures similar to the Breit-Wigner resonances in nuclei scattering [265]. The position and

the structure of the spectral lines depend on the nature of the compact object and, therefore, they

may be used to tell them apart.

In the eikonal limit, the real part of the trapped modes ωr can be found through the Born-

Sommerfeld quantization rule [281]∫ r?b

r?a

dr?
√
ω2

r −Vϕ(r?) =π(n+1/2), (6.29)

where ωr
2 <Vϕ, n is a positive integer, and r?a,b are the inner turning points, defined through

ωr
2 −Vϕ = 0. As previously mentioned, the imaginary part of these modes is usually very small,

what leads to the presence of resonant narrow peaks in the transmission coefficient. From (6.29)

we can find the position of the resonant peaks, and we also find the relation [279]

ωr ∼ a`+b, (6.30)
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Figure 6.5: Real part of the fundamental (n = 0) and first three overtones (n = 1,2,3) frequencies
of the trapped modes, obtained through (6.29), as a function of `, for the case ns = 0.9.

where b is a constant that depends on the overtone number (see figure 6.5) t, and

a = lim
x→0

A(x)1/2

r(x)
(6.31)

is the angular frequency of the stable null geodesic. The above result tells us that the frequency

of the trapped modes is evenly spaced with the overtone number. Such characteristic generates

interesting patterns in the transmission coefficient.

In addition to the trapped modes, an approximation based on the Breit-Wigner expression for

nuclei scattering can be used to describe the absorption cross section. Essentially, when ω≈ωr,

we have [265]

Γω`|ω≈ωr ∝
1

(ω−ωr)2 +ω2
i
, (6.32)

where ωi is the imaginary part of the mode. We can see that the transmission factor peaks at

ω = ωr with a height that depends on the imaginary part of the mode. Conversely, the above

expression can also be used to extract the frequencies of the trapped modes from the computation

of the transmission factor.

6.3 Absorption cross section and phenomenological
implications

We can now analyse the numerical results for the absorption cross section of planar massless

scalar waves by BH remnants. The absorption properties are intrinsically related to the geodesic

quantities, as noted before. Therefore we choose to normalize the absorption cross section by

its corresponding classical limit. Such normalization brings our results closer to observational

quantities, and it also makes easier to compare them with those obtained for BHs within GR.
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Figure 6.6: Scalar absorption cross section of BH remnants for different values of ns. The
absorption cross section is normalised by the classical cross section and the frequency by the
light-ring frequency. Narrow peaks arise when trapped modes exist in the potential well. The
dotted lines correspond to the Schwarzschild BH case.

In figure 6.6 we plot the absorption cross section for massless planar scalar fields as a function

of the frequency, which we normalised by the light-ring frequency value Ωl given by (6.14). The

absorption cross section is normalised by its classical counterpart, so that the plots in figure 6.6

tend to unity in the high-frequency regime. We note that the absorption in the low-frequency

regime is different from the Schwarzschild BH result, showing a Breit-Wigner type resonant

behavior for some given frequencies, indicating the presence of trapped modes in the potential

well around the wormhole throat. This result is analog to recent findings regarding the absorption

spectrum of ClePhOs, as reported in [265]. We note that the (normalised) number of charges ns is

analog to the absorption parameter K of [265]. figure 6.7 is a plot of the transmission coefficient

of BH remnants as a function of the frequency. From the left panel of figure 6.7, it can be seen

that for a fixed multipole `, the number of peaks increases as ns approaches the unity. Moreover,

the number of peaks for a fixed value of ns increases as we increase the multipole number `, as it

can be seen in the right panel of figure 6.7. These different peaks enter at different frequency

regimes, as it can be seen in the absorption plots of figure 6.6. For a peak to be pronounced in the

absorption spectrum it has to have a frequency high enough to penetrate the potential barrier,

i.e., ω2 ∼Veff,max. We note from (6.26) that the absorption cross section contains a multiplicative

factor of ω−2.
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Figure 6.7: Representative cases for the transmission coefficient in BH remnants. Left panel: As
noted in the behavior of the effective scalar potential Vϕ, trapped modes are more likely to arise
for ns ≈ 1, and this feature impacts the transmission coefficients, generating resonant peaks.
Right panel: In addition to the ns dependence, more resonant peaks appear for higher values of `,
as illustrated here for the ns = 0.9 case.

The results presented in the previous section indicate that the family of objects considered

in this work has similar absorptive properties as ClePhOs. The existence of a Breit-Wigner

like structure is due to the fact that the remnants, like ClePhOs, have an inner structure with

two characteristic surfaces on which the waves can resonate. Nonetheless, though the peaks

in the absorption spectrum of dissipative star-like ClePhOs are similar to the case of the BH

remnants explored here, the overall absorption is different, what may provide an observational

discriminator for the existence of event horizons in different kinds of compact objects. We notice

that at higher frequencies, the absorption by BH remnants tends to the Schwarzschild BH result,

being equivalent to the capture cross section of null geodesics. This is not the case for weakly

dissipative star-like ClePhOs, for which the high-frequency absorption cross section tends to

σc(1−|K |2), with |K | ≈ 1. Therefore, there is clearly a distinctive signature of star-like ClePhOs

that allows to discriminate them from BH remnants. 2

Another feature of these BH remnants that could be analysed in order to find observable

discriminators from standard BHs and/or other ECOS is their emission spectrum. In this regard,

note that the emission spectrum of ECOs will also have characteristic lines described by Γωl and,

therefore, their emission spectrum will probably also be similar to that of ClePhOs, what further

hinders their distinguishability within the ECO family. We also note that, since these features

depend on the geometric properties of the objects, electromagnetic and gravitational perturbations

may present similar characteristics. The work presented through this chapter represents a first

step in understanding the phenomenological implications tied to these BH remnants regarding

its interaction with external perturbations, and we have focused on the scalar case for simplicity.

While this is important to get a grasp on more complex structures, it should be clear that an

2Recall that for ns = 1 our solutions develop a horizon, so that we are restricted to 0< ns < 1.
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analysis of the full gravitational wave perturbations is needed to further quantify the physical

phenomena explored here. In this sense, we expect that a Breit-Wigner like spectrum will still be

present for gravitational waves and will converge to the scalar field one in the high-frequency

limit, where the geodesic approximation is valid. However, at lower frequencies it is difficult

to anticipate quantitative results. Though such an analysis is not yet available for the RBG

family of theories, some general conclusions can be extracted from the basic properties of these

theories. In particular, given that Ricci-Based gravity theories recover Einstein’s equations in

vacuum, the propagation of gravitational perturbations only involves two polarizations that

travel at the speed of light, which is an important viability test for modified theories of gravity,

especially after the simultaneous observation of gravitational and electromagnetic radiation from

a neutron star merger [282–288]. Additionally, since the modified dynamics of RBGs manifests

itself via nonlinearities induced by on the matter sector, the coupling between gravitational and

matter modes must be important, potentially leading to new observational features. Thus, in the

general case, a dedicated analysis of the perturbation equations for gravitational waves and their

phenomenological implications should be carried out for each gravity theory that generates the

line element (6.1). In this respect, since the remnants considered here have an electric charge,

gravitational perturbations couple with electromagnetic ones generating new modes and more

spectral lines in the absorption spectrum, which could be analised by extending the methods

previously developed in the literature [269, 289–293]. Therefore, ideally, one can potentially

observe the gravitational sector through its imprint on the electromagnetic one, and the new

couplings generated by the modified dynamics could help to discriminate between GR and other

theories. In this sense, we notice that the effects of the nonlinearities of RBG theories have only

been studied explicitly in microscopic systems [57,80,81], and astrophysical scenarios shall reveal

new physical implications of these nonlinear couplings.

The work that has led to the elaboration of this chapter aimed to be the first step in the

characterisation of the interactions between wormhole ECOs and matter fields, revealing that

they present absorptive spectral features very similar to those of star-like ClePhOs [265]. The

implications of such result are two-folded: (i) They allow to distinguish ECOs from standard

GR BHs at the observational level, and could also be used in order to discriminate between the

different modified gravity approaches that are studied today and do not predict the existence of

ECOs; (ii) They can be used to distinguish wormhole and star-like ClePhOs, since their absorption

spectra have distinctive features, like the high-frequency limit. Following the classification of

the solutions provided in Sec. 6.1, our study has focused on spherically symmetric compact

objects with δ1 = δc and 0 < ns < 1, for which there is no event horizon (which are called BH

remnants). The mass spectrum of this set of solutions is bounded above by (approximately) the

Planck mass [65], limiting their astrophysical motivation. 3 Nonetheless, our analysis paves the

3More massive alternative BH remnants are possible if nonlinear effects in the matter sector are taken into
account [294].
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road to the study of the spectral properties of other types of solutions with higher astrophysical

relevance. In particular, the solutions studied here are geodesically complete and possess bounded

curvature scalars everywhere. But there exists another branch of solutions, with different charge-

to-mass ratio, δ1 > δc, for which curvature scalars diverge at the wormhole throat, despite being

geodesically complete as well. In this part of the spectrum we find what could be seen as naked

divergences, 4 as opposed to naked singularities (which are geodesically incomplete). Since the

interaction of matter fields with regions of extreme (even divergent) curvature is well defined

in scenarios with wormholes (see [66] for a concrete example involving the model considered

here and [72,295] for different models in GR), it is important to evaluate in detail the observable

impact that such curvature divergences might have on the absorption and emission spectra of

such objects.

4The geodesic completeness of such naked objects would make cosmic censorship hypotheses unnecessary.
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GHOSTS IN METRIC-AFFINE THEORIES OF GRAVITY

In field theories, physical observables are related to functions over spacetime which we call

fields and which obey some set of partial differential equations which are generally linear or

quasilinear and well-posed. These equations will admit a set of exact (i.e., nonperturbative)

solutions called backgrounds or vacua. We are here interested in field theories which admit

perturbative wave-like solutions propagating on top of such vacua. Particularly on the stability of

such vacua under initially small perturbations.

Although mathematically acceptable, solutions that grow unboundedly are pathological from

the physical point of view, as they typically predict divergences on some observables which have

catastrophic consequences that are not observed. Of course, if the rate of growth of perturbations

can be made small enough, then such predictions can be made compatible with current observa-

tions. As well, if the solutions that grow unboundedly are calculated using some approximations,

then the best we can conclude is that the approximation is not physically valid. In particular,

if one finds that perturbations on top of a particular background grow unboundedly,1 this does

not generally allow to conclude that the theory is physically meaningless, but rather that such

background is unstable.

From a classical point of view, though they are legitimate solutions, unstable backgrounds

are seen as pathological because the set of initial conditions that leads to this solution has zero

phase space volume, i.e., perfectly fine tuned conditions are required to reach such a physical

situation. From the quantum mechanical point of view, the situation is even more dramatic as,

even if having perfect fine tuning in the initial conditions, quantum fluctuations would always

1Typically, perturbations that grow unboundedly are also called unstable degrees of freedom.
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destabilise the background. Therefore, unstable backgrounds are only acceptable if the timescale

of the instabilities is big enough to be compatible with observations.

The presence of unstable degrees of freedom in gravitational theories has played a prominent

role in determining physically viable theories beyond GR, and particularly in the search for

a UV complete theory of gravity. To begin with, the presence of ghostly instabilities already

shows up when building a general kinetic term for a (massless or massive) spin-2 field. To see

this, let us accept that spin-2 fields are naturally described by a rank-2 symmetric tensor field2

hµν. The most general local and Lorentz invariant kinetic term for this type of field (around a

Minkowskian background) is of the form

L K
2 = 1

2
∂αhµν

(
b1∂αhµν+2b2∂µhνα+b3ηµν∂αh+2b4ηαµ∂νh

)
, (7.1)

and it is well known that, unless the coefficients satisfy b1 = b4 = −b2 = −b3, there will be

Ostrogradski ghosts (see section 7.1.1 below). This can be seen, for instance, by decomposing hµν
as

hµν = hT
µν+2∂(µξν) (7.2)

where ∂νhT
µν = 0. Then hT

µν has 6 independent components and ξµ the other 4. Now, with this

decomposition, it is apparent that the above terms will give rise to Ostrogradskian instabilities

unless the coefficients bi are tuned so as to avoid second-order derivatives for ξµ in the Lagrangian.

Therefore, the requirement of absence of ghostly degrees of freedom in a theory for a Lorentz

invariant symmetric rank-2 tensor field uniquely fixes the form of the kinetic term, which is

the linearised version of the Einstein-Hilbert term3. Note that this form of the kinetic term is

oblivious to ξµ, which implies that it is invariant under gauge transformations hµν 7→ hµν+∂(µξν).

This has the consequence that hµν only propagates 2 degrees of freedom corresponding to a

massless spin-2 field [296,297].

If we now try to add a mass term for the tensor field, to maintain Lorentz invariance it must

be proportional to hµνhµν− ah2 where h = ηµνhµν. Because this mass term breaks the gauge

symmetry of the kinetic term, it will generally provide a kinetic term for the ξ modes which,

unless a = 1, can be seen to propagate a ghostly scalar degree of freedom already at the linear

level (see e.g. [296, 297]). Hence, we see that absence of ghosts at the linear level also fixes a

possible mass term for the graviton to be the Fierz-Pauli mass term, which (for b1 =−1) leads to

the Fierz-Pauli Lagrangian

L2 =−1
2
∂αhµν∂αhµν+ 1

2
∂αhµν∂µhνα−∂µhµν∂νh+ 1

2
∂αhµνηµν∂αh− 1

2
m2 (

hµνhµν−h2)
(7.3)

2Note that, in general, these fields have 10 independent components, and therefore can describe also additional
degrees of freedom.A massless spin-2 field carries 2 degrees of freedom while a massive spin-2 field carries 5.

3Let us point out that the Maxwellian kinetic term is also the unique Lorentz invariant and local kinetic term for
a vector field that guarantees the stability of the field around Minkowski.
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as the unique Lagrangian for a massive spin-2 field that does not propagate ghosts at the linear

level and around Minkowski spacetime. By decomposing the vector field ξµ, which plays the role

of a Stüeckelberg field (see section 7.2 below), as ξµ 7→ Aµ+∂µπ, we see that the Fierz-Pauli mass

term provides dynamics to both Aµ and π which propagate a helicity-1 and a scalar degrees of

freedom respectively. Thus, the Fierz-Pauli theory for a massive spin-2 field propagates 5 degrees

of freedom corresponding to the helicity-2, 1 and 0 modes.

Nevertheless, the linear level is not the end of the story. The nonlinear terms introduced by the

Fierz-Pauli mass terms can be seen to provide higher-order derivatives for π that, though not

relevant around trivial backgrounds, can become relevant around some nonlinear background

configuration. This implies that there will always be backgrounds around which the higher

derivative terms excite a sixth degree of freedom that will be an Ostrogradski ghost known as

the Boulware-Deser ghost [296–298]. We then see that one of the more immediate modifications

to GR from the field theory point of view, i.e., giving a mass to the graviton, already gives rise to

unstable degrees of freedom easily. Remarkably, recent findings show that there are nontrivial

ways to evade such instabilities leading to ghost-free massive gravity [299,300] (see also [296]

and references within).

From the geometrical perspective, there is a central result known as Lovelock theorem that

essentially goes in a similar direction. In 4 spacetime dimensions there is only one geometric

object that can be built off the metric and its first and second-order derivatives which is divergence

free and symmetric [99]. By the Bianchi identity under diffeomorphisms, this implies that in

4 dimensions there is only one diffeomorphism invariant Lagrangian (up to boundary terms)

that is built solely from the metric and its (first4) derivatives that gives rise to second-order

field equations for the metric. In turn, this leads to the finding of the k-th order Lovelock terms

which generalise the Einstein-Hilbert term and become a boundary term in 2k spacetimes

dimensions. The Einstein-Hilbert term is the first-order Lovelock term and is a boundary term in

2 spacetime dimensions, and in 4 spacetime dimensions, the only nontrivial Lovelock terms are

the Einstein-Hilbert term and the Gauss-Bonnet term

RαβµνRαβµν−4RµνRµν+R2, (7.4)

which is a boundary term in D = 4. Hence the only diffeomorphism invariant action that gives

second-order field equations in 4 spacetimes dimension is (dynamically equivalent to) the Einstein-

Hilbert action. This leads to the conclusion that no modifications of GR which contain only a metric

field and that keep diffeomorphism invariance can be formulated in 4 spacetime dimensions. Any

diffeomorphism invariant modification would thus include extra fields (i.e., degrees of freedom).

Particularly, if new diffeomorphism invariant terms (different from the Gauss-Bonnet term)

4Note that though the Einstein-Hilbert term contains second derivatives of the metric, these can be seen to be a
boundary term. Indeed, the original form of the action for GR by Einstein did not contain the derivative terms [301].
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are added to the Einstein-Hilbert action, the resulting field equations for the metric will be of

higher-order, leading to the propagation of Ostrogradski ghosts.

These results contrast with the motivation that stems both from quantum field theory in

curved spacetimes and from considering quantum corrections for the gravitational field. On

the one hand, the renormalizability of matter fields in curved spaces was seen to require the

presence of quadratic curvature terms in the effective action [34,302]. On the other hand, the

nonrenormalizability of GR [109,303] motivated the exploration of theories with higher-order

curvature invariants in the quest for a UV complete theory of gravity. A key result in this direction

is the classic work by Stelle [35] in which a theory with quadratic curvature corrections to the

Einstein-Hilbert term was proven to be renormalizable. Though this was the first positive result

in finding a UV complete theory of the gravitational interaction, it was seen that the theory

suffers from a fatal drawback for it to make physical sense as a fundamental theory: it was

shown to either be nonunitary or contain a massive spin-2 ghost in its spectrum. This result was

questioned [36,304] due to the identification of the ghost from the bare propagator, which was not

correct in the presence of unstable particles, such as the ghost was. The criticisms argued that if

the correct (dressed) propagator was used, the ghost poles were gauge dependent and thus not

physical. However, later work contradicted such claim showing the gauge independence of the

ghost poles [37]. On another line, there are recent results suggesting that there might be a way of

quantising higher-order derivative theories in a way which avoids both ghost degrees of freedom

and loss of unitarity. This is achieved by requiring only an antilinear Hamiltonian instead of

a hermitian one, which has implications on what is the Hilbert space of physical states for the

quantised theory [305–308]. If these results are correct, extending them to Stelle’s renormalizable

model would be a major achievement in the field.

Due to the results mentioned above, the idea that the appearance of ghosts in renormalizable

theories of gravity was due to the higher-order derivative terms in the field equations introduced

by the higher-order (metric) curvature terms permeated the community. Then, researchers in

the field of metric-affine (also Palatini or 1st order) gravity theories realised that these higher

derivatives of the metric do not appear when higher-order curvature invariants are considered in

the metric-affine approach, where the connection is a priori independent of the metric and the

Riemann has only first-order derivatives of the connection. Apparently, the idea that metric-affine

theories would be free of ghosts due to this property spread through the (more geometrically

oriented) community. This idea was reinforced by the discovery that several theories that contain

ghosts when formulated in the metric formalism, such as e.g. Born-Infeld or Stelle’s quadratic

gravity, are ghost-free when formulated in the metric-affine approach. However, although higher-

order derivatives are sufficient to have ghosts as shown by Ostrogradski, their presence is not a

necessary condition for a theory to contain unstable degrees of freedom.

In this chapter we will present the results of a joint work with Jose Beltrán Jiménez in which we
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disprove the widespread belief that metric-affine theories of gravity do not contain ghosts [60,79].

We show that a class of metric-affine theories whose action is an arbitrary function of the metric

and the Ricci tensor generally contains ghosts unless projective symmetry is imposed. These

findings allowed us to argue why generic metric-affine theories will contain ghost degrees of

freedom in their spectrum, and that care should be taken in their formulation if one wants to

avoid their presence. Our findings point in the same direction as other recent works [111,309].

7.1 Instabilities and their physical implications

We are interested in classifying different type of instabilities that can arise in field theories

admitting wave-like perturbations around their vacua according to their physical implications.

For our purpose, it will suffice to consider scalar perturbations around a nontrivial vacuum which

varies with a characteristic time T and length scale L. That vacuum could be an exact solution

for the same scalar field, a gravitational background, or any exact solution for the fields in the

theory. We will only worry about perturbations of the scalar field, described by the scalar degree

of freedom φ. The results presented here can be found with more detail in e.g. [16,310–312].

On such a background, the leading order perturbations of the real scalar field are described by

a Lagrangian of the form

Lφ = 1
2

(
aφ̇2 −b(∂iφ)2 −µφ2)

, (7.5)

where a, b, µ are coefficients that vary on the characteristic scales of the background and we use

the mostly minus signature. Neglecting the variations of the background, the energy density and

field equations are

T00 = 1
2

(
aφ̇2 +b(~∇φ)2 +µφ2)

and φ̈− b
a
∇2φ+ µ

a
φ=O (T−1,L−1) (7.6)

and

φ= Aei
(
ωt−

√
b
a
~k·~x

)
+Be−i

(
ωt−

√
b
a
~k·~x

)
where ω2 = a−1

(
b~k2 +µ

)
(7.7)

are a basis of solutions and corresponding dispersion relation up to O (T−1,L−1) corrections. Note

that the perturbations have an effective mass meff =
√|µ|/a . Depending on the sign of a, b and µ

the perturbations remain small or become unstable in different ways. For illustrative purposes, it

will suffice to consider a spatially homogeneous background slowly varying in time, though the

arguments generalise in a straightforward manner. Let us depict all the possibilities.

Stable case: a > 0, b > 0 and µ≥ 0

In this case ω is always real and the energy density is always positive. The perturbations

remain bounded propagate at speed
p

b/a in natural units. If b ≤ a then the perturbations travel

at subliminal speeds. If b > a then they are superluminal which, although it is not a problem

regarding their stability, it signals that the theory is not the low energy description of a Lorentz
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invariant UV complete quantum theory [313]. If b = 0 the perturbations travel at the speed of

light, but one has to be careful for even the smallest modification in the background (e.g. the

backreaction of the perturbations) could make them be superluminal.

Tachyonic instability: a > 0, b > 0 and µ< 0

Although high-momentum perturbations are fine, ω becomes imaginary for sufficiently low

momentum, namely for |~klow| < |µ|/b. This has the consequence that, at late times, low-momentum

modes become dominated by an exponential growth as φ ∼ e|ωlow|t where |ωlow| ≤ meff. The

characteristic time of the instability, namely the time when the exponential growth becomes

dominant will roughly be tc ∼ m−1
eff . We then have to distinguish two cases: 1) when tc ¿ T

the exponential growth of the perturbations destabilises the background driving the system

nonperturbatively far from it. That vacuum is therefore unstable. 2) when tc À T we have that

the background evolution is much quicker than the time required for the instability to develop

and therefore the background is stable for times t ¿ tc, when perturbation theory gives valid

predictions provided that there is a regime where meff ¿ T−1 ¿ω (or ω−1 ¿ T ¿ tc), i.e., when

the high energy modes that are stable are also insensitive to the background evolution. Given

that this instability was derived from perturbation theory over an almost constant background,

the results cannot be trusted and one needs to perform a nonperturbative analysis of the full

system to know its stability properties at late times.

Gradient or Laplacian instability: a > 0 and b < 0 or a < 0 and b > 0

This kind of instability is always problematic since for high-momentum modes ω becomes

imaginary and the perturbations are dominated by an exponential growth φ ∼ ekt with an

arbitrarily fast growth rate and the background is therefore unstable. Note that for the cases with

aµ> 0 the modes with low-enough momentum |~k| ≤√|µ/b| do not develop instabilities. Hence

one might think that in this case, an effective theory for the low momentum with a suitable

cutoff Λ modes could be physically sound over such background. However note that in this case,

low-momentum modes have a characteristic time far above the cutoff of the EFT tlow >> tΛ ∼Λ−1

and therefore will be sensitive to the instability, while the modes with tk << tΛ are far above the

cutoff of the EFT (k ÀΛ). Hence a theory with a gradient instability is physically meaningless,

i.e., it makes no reliable predictions.

Ghostly instability: a < 0 and b < 0

In this case, high momentum modes are stable and at the classical level, we should only worry

about a tachyonic instability for the low-momentum modes in the case that µ> 0. Nevertheless,

this case is highly problematic if the perturbations are quantised, for they violate either conser-

vation of probability or carry negative energy (see e.g. [311]). Accepting that we do not want to

deal with nonunitary theories, let us elaborate on what would happen in the case of the quanta
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carrying negative energy. In the best case scenario, these quanta couple only to gravity.5 Given

that they carry negative energy, the process |0〉→φφ+γγ mediated by a graviton is kinematically

allowed. Moreover, given that the final momentum of the particles can be arbitrarily high while

keeping energy conservation due to the negative energy of the ghosts, the phase space integral

diverges and the creation rate is arbitrarily large unless the theory is treated as an EFT with a

Lorentz-violating cutoff Λ. In such case, the decay rate of the vacuum due to this process will be

of order Λ8MP
−4. Arguing in this manner, an upper limit for the cutoff of an EFT with ghosts

was set from the observations of the gamma ray spectrum coming from the universe [311]. Thus,

we see that although ghosts do not necessarily predict classical instabilities, their existence in a

quantum theory precludes its viability unless it is an EFT and the cutoff is sufficiently low. The

possibility that nonperturbative physics might stabilise the vacuum through a ghost condensate

(a vacuum expectation value for the ghost field) has also been discussed [314].

These arguments can be generalised for systems with more degrees or freedom as follows.

Consider the Lagrangian describing perturbations for N degrees of freedom encoded in the

spacetime functions φ1, ...,φN

Lφ = 1
2

(
aIJφ̇

I φ̇J −bIJ(∂iφ
I )(∂iφ

J)−µIJφ
IφJ)

, (7.8)

by diagonalising aIJ , bIJ and µIJ we can know whether any of the degrees of freedom is unstable

and how. Negative eigenvalues of bIJ and /or aIJ imply the existence of ghost and/or gradient

instabilities, and negative eigenvalues of µIJ signal the presence of tachyonic instabilities. If

we want to identify which are the pathological degrees of freedom, then we must perform field

redefinitions such that they lead to canonical and diagonal kinetic matrix. If it is possible to do

so, then it will be possible to identify the pathological degrees of freedom and the nature of their

pathologies.

As a remark, let us point out that, here, each φI should be a truly propagating degree of freedom.

Though this is strictly redundant, sometimes the word degree of freedom is misused for fields

whose dynamics may be constrained by the field equations. We are assuming that in (7.8) the

φI are all dynamical, and the constraints have already been integrated out. For instance, in a

Proca theory described by Aµ, there are only three propagating degrees of freedom, given that

the 0 component of the 1-form field is constrained. Thus I runs only from 1 to 3, and one cannot

assume φIµ = Aµ−1 for all values of I. This usually complicates a full stability analysis in theories

that contain fields which are not scalars, where the correspondence between the field components

and the propagated degrees of freedom is not straightforward.

5Recall that, for consistency reasons, a massless spin-2 field must couple universally as explained in chapter 1
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7.1.1 Ostrogradski ghosts

There is a powerful theorem by Ostrogradski [48] that poses a major restriction to the allowed

Lagrangians that can describe a fundamental theory. The key consequence of this theorem is

that any nondegenerate6 Lagrangian with time derivatives of higher order than one describes a

system with ghost instabilities. This restricts any Lagrangian that is a candidate to describe a

fundamental theory to have at most first-order time derivatives, or to be dynamically equivalent

to a Lagrangian of such class. This restriction becomes extremely powerful if combined with

Lorentz symmetry: only first-order derivatives can enter the Lagrangian of a fundamental theory,

as any temporal derivative comes in hand spatial derivatives if the Lagrangian is to be Lorentz

invariant (or generally covariant). Thus, this theorem plays a key role in illuminating the path

towards a UV complete theory of gravity, for we know that any (purely metric) theory with higher-

order curvature invariants which is not of the Lovelock or f (R) forms will have ghostly degrees

of freedom in its spectrum which (in principle, though see [305–308,315]) cannot be tolerated

in a fundamental theory. As well, the theorem also forces us to be careful on how we couple

matter fields nonminimally to curvature invariants, since generic couplings between curvature

and matter fields will ‘excite’ the piece of the curvature tensor with second order derivatives

for the metric. Indeed, there has been much research on finding out the allowed couplings for

different types of matter fields, see e.g. [33,316–320]

Given its major importance, let us give a brief review of the theorem and its consequences.

We will prove the theorem only for systems with a finite number of degrees of freedom, closely

following the nice review [49], but see e.g. [321] for an analysis in field theories. To prove the

theorem, let us consider a system of one degree of freedom q(t) described by a Lagrangian

L(q, q(1), ..., q(N), t) which is a function of q and its first N time-derivatives (and possibly of time).

The physical trajectories are the solutions to

N∑
i=0

(
− d

dt

)i ∂L
∂q(i) = 0 (7.9)

which using the chain rule can be rewritten as

(−1)N q(2N) ∂2L
(∂q(N))2 +F(q, q(1), ..., q(2N−1))= 0 , (7.10)

leading to a 2N-th order differential equation for q(t) provided that

∂2L
(∂q(N))2 6= 0. (7.11)

If this condition does not hold, the proof still holds if there is any n > 1 such that the above

condition with the replacement N → n does hold. In that case, the system is described by a 2n-th

6By nondegenerate, we mean that the higher-order time derivatives cannot be integrated by parts and written in
terms of first-order time derivatives alone plus a boundary term.
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order differential equation, and there exists a dynamically equivalent Lagrangian which can be

reached from the original one by integrating by parts and which is a function of q and its first n

time-derivatives. The proof of the theorem that follows can be applied to that Lagrangian without

loss of generality. A Lagrangian satisfying the condition (7.11) is usually called non degenerate.

However, we will use the term non-N-degenerate7 for a Lagrangian satisfying (7.11), so that we

can use the term nondegenerate for Lagrangians that are non-n-degenerate for some n > 1. Let

us also point out that the non-n-degeneracy condition is coordinate independent. This is easily

seen for a coordinate change x(q), which leads to

∂2L̃
(∂x(n))2 = ∂L

(∂qn)2

(
dq
dx

)n
(7.12)

and we have dq/dx 6= 0 for any well defined coordinate change.

Since a 2N-th order ODE requires 2N pieces of initial data to determine a solution, the

phase space of the system will be 2N-dimensional and therefore we need to find 2N canonical

coordinates Q i and Pi. A suitable choice of canonical coordinates is

Q i = q(i−1) and Pi =
N∑
j=i

(
− d

dt

) j−i ∂L
∂q( j) = 0. (7.13)

Note that PN = ∂L/∂q(N) which is a function of (Q1, ...,QN , q(N)). Hence, by the inverse function

theorem, nonN-degeneracy implies that there exists a function A(Q1, ...,QN ,PN ) such that

PN = ∂L
∂q(N)

∣∣∣∣ q(N) = A
q(i−1) =Q i

(7.14)

is an identity. This choice of canonical coordinates leads to the Hamiltonian

H(Q i,Pi, t)=
N∑

i=1
Pi q(i) −L

∣∣∣∣∣ q(N) = A
q(i−1) =Q i

=
N−1∑
i=1

PiQ i+1 +PN A−L(Q1, ...,QN , A, t) (7.15)

which generates time evolution in the sense that for any observable f (Q i,Pi) we have ḟ = { f ,H}.

Particularly, the dynamics of the system given by (7.9) is recovered by

Ṗ1 =− ∂H
∂Q1

=−PN
∂A
∂Q1

+ ∂L
∂Q1

+ ∂L
∂q(N)

∣∣∣∣ q(N) = A
q(i−1) =Q i

∂A
∂Q1

= ∂L
∂Q1

, (7.16)

and the rest of the equations give the definitions of Q i and Pi<N so that the two systems of

equations are equivalent.

Now, notice that all the momenta enter linearly in the Hamiltonian (7.15) except possibly

PN . This result is coordinate independent, as it only relies in the nondegeneracy condition, and
7As a remark, let us point out that the nonn-degeneracy condition for systems with more than one particle is that

the determinant of ∂2L
∂q(n)

i ∂q(n)
j

6= 0.
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implies that the Hamiltonian is unbounded from below. In particular, there will be at least N −1

degrees of freedom whose energy is not positive definite. Hence, even if the Lagrangian does not

depend explicitly on time, so that the Hamiltonian is conserved, this has the consequence that

the degrees of freedom carrying positive energy can be infinitely excited by exciting negative

energy degrees of freedom while keeping the total energy conserved. Although this might not be

a problem for a single particle system, whenever we have an interacting quantum theory which

suffers from the Ostrogradskian instability (i.e., a ghost), the vacuum will decay with infinite

decay rate as explained above. Therefore, a theory suffering from Ostrogradski instabilities can

only make physical sense as a low energy theory valid up to a cutoff scale.

Let us note that these results have also been extended to systems with odd-order equations

of motion [322, 323] and have been seen to survive canonical quantisation8 [323, 324], while

path integral quantisation may yield a theory that recovers unitarity at low energies [315]. As

well, there are recent results that suggest that an alternative quantisation method that requires

an antilinear Hamiltonian instead of a hermitian one could render healthy higher-derivative

quantum theories [305–308]. As a final remark, let us mention a recent generalisation of this

result achieved by looking into the relation between the existence of ghosts and the constraints of

a system9 [325].

7.2 Ghosts in curvature-based metric-affine theories

In metric-affine theories the connection is an independent field and therefore higher-order

curvature invariants do not introduce higher derivatives of the metric. This fuelled the hope

that metric-affine higher-order curvature theories (and general metric-affine theories) could be

ghost-free. Here we prove that, although there are subclasses of metric-affine theories which are

ghost-free, this hope is not fulfilled when general metric-affine theories are considered. To that

end we consider a particular class among all the metric-affine theories of gravity for which we

know how to solve the connection (at least formally), which allows to unveil the presence of ghosts

in the full nonlinear theory. Our results also show that these ghosts, which are present in the

spectrum of generic metric-affine theories, cannot be cured in general by considering nonminimal

matter couplings.

We will show the presence of these ghosts in two different ways, which will also clarify the

instability problems of Non Symmetric Gravity theories [154]. One of these ways will consist on

resorting to the Stueckelberg trick, which is a nice construction that allows to take a massless

limit of the action of a would-be gauge invariant massive field (the mass breaks the gauge

symmetry) without loosing degrees of freedom in the process. To simplify the understanding of

8Although the gosts can be avoided at the cost of loosing unitarity.
9Recall that any higher-order nondegenerate Lagrangian can always be cast equivalent to a first-order one with

auxiliary fields and constraints.
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our results, we will begin by introducing this nice technique and showing a simplified example of

how the ghosts emerge in the theories that we considered.

Stüeckelberg’s trick: a warmup proxy with scalar and spin-1 fields

One of the ways in which the presence of ghosts in RBGs without projective symmetry will

be shown is by resorting to the decoupling limit of the Stüeckelberg modes of a 2-form field. As

we have seen above, a massless 2-form propagates a scalar degree of freedom while a massive

2-form propagates three degrees of freedom. We will see below that in the action of RBGs without

projective symmetry, there appears a massive 2-form field and a vectorial projective mode which

does not have a proper kinetic term, and which couples gravitationally (their coupling is ∝MP)

to the massive 2-form. The Stüeckelberg mechanism allows to separate two of the modes related

to a massive 2-form from the third one, which can be associated to the scalar mode propagated by

a massless 2-form.10 Then, the decoupling limit, where the mass of the 2-form vanishes, allows to

decouple the scalar degree of freedom propagated by the massless 2-form from the other two. In

this limit, it will become apparent that the coupling between the projective mode and the massive

2-form hides the presence of two ghostly degrees of freedom propagated by a massless vector

field, which can naturally be associated to the projective mode.

For illustrative purpose, let us consider a simpler system of a scalar and massive spin-1 field

which serves as an analogy for the behaviour of (part of) the ghostly sector of an RBG without

projective symmetry. This system will be described by the Lagrangian

L =−1
4

FµνFµν+λAµ∂µϕ+ 1
2

m2 A2, (7.17)

where the spin-1 and the scalar field play analog roles to the massive 2-form and the projective

mode that appear in RBGs without projective symmetry respectively. The scalar imposes the

constraint

∂µAµ = 0, (7.18)

while the spin-1 field equations are

∂µFµν+λ∂νϕ+m2 Aν = 0. (7.19)

Let us start by counting degrees of freedom so that we can explicitly see that the Stüeckelberg

trick preserves the number of propagating degrees of freedom after taking the decoupling limit.

The expected number of propagating degrees of freedom is 4: the 3 polarisations propagated by

the massive vector field and the scalar one. Although it may seem that the constraint imposed by

the scalar field could alter this counting, the counting is indeed correct. To see that, let us see the

number of initial Cauchy data that we need to provide as initial conditions for field equations. In

10See the analog result for a massive vector field in e.g. [297].
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principle we should give the values of all the dynamical fields and their first (time) derivatives.

However, we have constraints, and some of them can actually be expressed in terms of the others.

Concretely, the constraint provided by the scalar field equation can be written as

Ȧ0 +∂i A i = 0 (7.20)

which tells us that the time derivative of A0 on the Cauchy surface is determined by the initial

values of A i. On the other hand, the temporal component of the vector field equations gives

−∂i Ȧ i +λϕ̇+m2 A0 = 0 (7.21)

that allows to express the initial value of A0 in terms of the values of ϕ̇ and Ȧ i on the Cauchy

surface. We have exhausted all the constraints and we obtain that we only need to give the

initial values of A i, Ȧ i, ϕ and ϕ̇, what corresponds to 8 phase space conditions, i.e., there are 4

dynamical degrees of freedom, in agreement with our expectations.

An alternative way of counting the number of propagating modes which at the same time

sheds some light on their stability properties is realised by resorting to the Stüeckelberg trick

and taking the decoupling limit. As explained in e.g. [297], for a Proca field described by the

Lagrangian

LProca =−1
4

FµνFµν+ 1
2

m2 A2, (7.22)

where F = dA, the Stüeckelberg trick consists on restoring the U(1) gauge-invariance of the

vector field by introducing a new scalar degree of freedom called Stüeckelberg field through the

replacement A → A+ 1
m dχ, which leads to the Stüeckelbergised Proca action

L =−1
4

FµνFµν+ 1
2
∂µχ∂µχ+ 1

2
m2 A2 +mAµ∂µχ. (7.23)

Contrary to what happens in the massless limit of the Proca action, which leads to the loss

of the longitudinal degree of freedom propagated by the massive vector field, the massless (or

decoupling) limit of the Stüeckelbergised Proca action, namely

L =−1
4

FµνFµν+ 1
2
∂µχ∂µχ , (7.24)

still describes the 3 degrees of freedom propagated by the Proca field: 2 encoded in the massless

vector field and one encoded in the Stüeckelberg field. Furthermore, this massless limit decouples

two of the degrees propagated by the vector from the scalar one, which is the reason why it is

called the decoupling limit. Thus the decoupling limit of the Stüeckelbergised Proca action

describes a free spin-1 gauge field and a free scalar field which can be put into correspondence

with the transverse and longitudinal polarisations propagated by the massive vector field. Hence,

the Stüeckelberg trick allows to somehow isolate the transverse modes of a massive vector field

from its longitudinal mode.
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The Stüeckelbergisation of the above Lagrangian (7.17) leads to

L =−1
4

FµνFµν+∂µχ∂µϕ̄+ 1
2
∂µχ∂µχ+ 1

2
m2 A2 +mAµ(∂µϕ̄+∂µχ), (7.25)

where we have performed the field redefinition ϕ 7→ ϕ̄= λ
mϕ. If we now take the decoupling limit

m → 0, we find

L =−1
4

FµνFµν+∂µχ∂µϕ̄+ 1
2
∂µχ∂µχ. (7.26)

Note that, although the Stüeckelberg field decouples from the gauge spin-1 field as usual, it still

couples to the original scalar present in (7.17). In this limit, it becomes much more apparent

that the theory progates 4 degrees of freedom corresponding to the 2 transverse modes, the

longitudinal polarisation and the original scalar field. As well, this limit allows to clearly see the

pathological behaviour of the scalar field due to the absence of a proper kinetic term (∂ϕ̄)2. As

explained in 7.1, the presence of a ghost can be seen computing the eigenvalues of the associated

matrices aIJ and bIJ , which in this case are both the same due to Lorentz invariance of the

background (it is Minkowski space). Let us define K IJ = aIJ = bIJ , where I and J run through

(χ,ϕ), and call it the kinetic matrix of the scalar sector. This matrix is11

K̂ =
(
1/2 1/2

1/2 0

)
, (7.27)

and its eigenvalues are (1±p
5 )/4. Given that there is a negative eigenvalue in both aIJ and

bIJ (namely in the kinetic matrix), there is a ghostly degree of freedom around Minkowski. To

correctly identify the ghost, note that by means of the field redefinition χ 7→ χ− ϕ̄, the above

Lagrangian (7.26) reads

L =−1
4

F2 − 1
2
∂µϕ̄∂µϕ̄+ 1

2
∂µχ∂µχ, (7.28)

where now the kinetic matrix has canonical eigenvalues for scalar fields although one of them

(namely the one corresponding to ϕ̄) with the wrong sign. We then see the unavoidable presence

of a scalar ghost associated to ϕ̄ and therefore ϕ in the original Lagrangian (7.17).

7.2.1 Ghosts in RBG theories without projective symmetry

Projective symmetry has played a crucial role in the development of the general framework

of RBG theories, with prominent examples like e.g. Eddington-inspired Born-Infeld gravity,

whose implications seem to have been partially unnoticed by the community until recently.

Historically,12 the different RBG models that were considered featured only the symmetric part of

the Ricci tensor in the action13 due to the fact that this restriction allowed to solve the connection

11That K̂ in (7.27) is the kinetic matrix stems from the fact that (∂µχ,∂µϕ̄)K̂(∂µχ,∂µϕ̄)> gives the scalar kinetic
terms in (7.26).

12Let us use this word though the story of these developments is as recent as (approximately) these past two
decades.

13With a few particular examples of very simple dependences on the antisymmetric part, see e.g. [326–328].
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easily as the Levi-Civita connection of an auxiliary metric. This apparently ad hoc restriction

can be seen to actually be a consequence of requiring projective symmetry to a general RBG

action, as explained in section 4, though this fact appears not to have been relevant to the

eyes of the researchers until recently. Indeed, a recent work by Afonso and collaborators [147]

put the spotlight on this symmetry, which allowed them to conclude that torsion does not play

any physical role if both the gravitational and matter sectors respect this symmetry, as it is

described by a spurious projective mode. Following this line, Jose Beltrán-Jménez (one of the

authors of [147]) encouraged me to study what would happen with these theories if the projective

symmetry was dropped, thus allowing the presence of the antisymmetric part of the Ricci tensor

in the action. Our expectations were that the explicit breaking of projective symmetry limited

its consequences to give dynamics to the spurious projective mode, promoting it to a (likely)

massive vector field which propagates 3 new degrees of freedom and we would end up with an

Einstein-Proca-like system. Nevertheless, it soon became apparent that the explicit breaking of

projective symmetry in RBG theories has more subtle and deeper consequences than expected, as

it ended up unleashing 5 new ghostly degrees of freedom. In what follows, we present a detailed

account of the arguments leading to these conclusions.

In section 4.1.3 we showed how RBG theories (with or without projective symmetry) admit an

Einstein frame so that if projective symmetry is enforced, their gravitational sector is equivalent

to that of GR in the sense that they both propagate a massless spin-2 degree of freedom14. This

becomes clear from the fact that, in the projectively invariant case, the Einstein frame metric qµν,

defined by (4.9), is symmetric; its dynamics is described by the Einstein equations coupled to the

stress-energy tensor of a given matter source; and the connection is the Levi-Civita connection

of this metric qµν. The explicit breaking of projective symmetry in the RBG Lagrangian allows

the full Ricci tensor to appear in the action, thus jeopardising the symmetric nature of the

corresponding qµν. This crucially changes the situation and the Einstein frame representation of

the theory is no longer GR, as it resembles the Nonsymmetric Gravity Theory (NGT) introduced by

Moffat [154], which has already been explored in different versions. Although the nonsymmetric

frame of generalised RBGs does not exactly reproduce Moffat’s nonsymmetric gravity, it does

so in certain limits. A crucial difference is the coupling to matter fields, although even this can

be made equivalent by ad hoc choices of the matter couplings in Moffat’s theory. This points to

the fact that the pathologies that plague Moffat’s theory [155,329] (see also [229,330–339]) will

also be a feature of RBGs without projective symmetry. We will provide a detailed analysis of

the pathologies that plague RBGs without projective symmetry and, as a by-product, this will

contribute to an alternative understanding of the origin of the pathologies on NGT.

Let us start by considering vacuum solutions, so that no matter fields are present15 and the

14Recall from chapter 1 that a massless spin-2 field is universal, and there is a unique consistent nonlinear theory
for massles spin-2 fields.

15We allow the appearance of a cosmological constant like term Ū that accounts for a possible nontrivial dependence
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analysis of the gravitational sector becomes cleaner. As shown in section 4.1.3, the action for

vacuum RBG theories without projective symmetry in their Einstein frame is written as

S = 1
2

MP
2
∫

dD x
[p−q qµνRµν+ Ū

]
, (7.29)

where Rµν is the Ricci tensor of a general affine connection (see section 2.5.2), qµν is a metric with

an antisymmetric par, which will be encoded in the 2-form Bµν ≡ q[µν], and U is some potential

for the nonsymmetric object qµν. Of course, in the case of a symmetric qµν, this term can only

contribute a cosmological constant by virtue of covariance, but for the nonsymmetric case, it

can have a nontrivial structure with relevant consequences. In fact, such a term was invoked

in [155] in an attempt to resolve the pathologies of Moffat’s theory. However, different methods

seem to conclude that the instabilities that plague this theory around arbitrary backgrounds

cannot be healed in this way. We will start by analysing the problem in the decoupling limit of the

Stüeckelbergised action for the 2-form as, in our opinion, is the simplest and most transparent

procedure to show presence of pathologies. We will then proceed to show the same results through

the exploration of the field equations of the theory, which will allow us to include matter and

show that it does not help in curing the pathologies of the theory.

A detour: Identifying the degrees of freedom propagated by a 2-form field

Before starting our analysis of the pathologies of RBGs without projective symmetry, due to the

appearance of the 2-form Bµν = q[µν], it will prove useful to identify the degrees of freedom carried

by a massless and massive 2-form field. To that end, let us consider the action for a massless

2-form in D = 4, namely

S =− 1
12

∫
d4x

p−g HαβγHαβγ (7.30)

with Hαβγ ≡ ∂[αBβγ]. The number and type of degrees of freedom contained in the 2-form can

be identified, for instance, by dualising the above action. To that end, let us rewrite it in its

first-order form

S =−1
6

∫
d4x

p−g
(
Παβγ∂[αBβγ] −

1
2
ΠαβγΠ

αβγ

)
, (7.31)

where Παβγ are the conjugate momenta of the 2-form Bµν. Upon variation with respect to the

conjugate momenta we obtain

Παβγ = ∂[αBβγ], (7.32)

while the 2-form field equations give

∂αΠ
αβγ = 0, (7.33)

which are of course the Hamilton equations of a Kalb-Rammond field. Since the conjugate

momentum is divergence-free as imposed by the 2-form field equation, namely ? d?Π= 0 (see

section 2.4.2), in 4 dimensions this constraint is realised through Π = ? dφ where ? stands

of U on the background qµν solution.
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for the Hodge dual and φ a scalar field. By definition of the Hodge dual (2.51), we then have

Παβγ = Hαβγ∝p−g εαβγµ∂µφ, and plugging the solution of the constraint imposed by the 2-form

into the above action we end up with

S =
∫

d4x
p−g ∂µφ∂µφ, (7.34)

showing that a Kalb-Rammond field indeed propagates a scalar degree of freedom. This procedure

can formally be done at the level of the path integral Z = ∫
[DΠ][DB]eiS by integrating out

the 2-form field. Since the action is a quadratic form in the momentum, the integration can

straightforwardly be performed giving a functional delta that imposes the constraint.

Let us now turn to the case of a massive 2-form field. Again, we will resort to its first-order

formulation

S =−1
6

∫
d4x

p−g
(
Παβγ∂[αBβγ] −

1
2
Π2 + 1

2
m2B2

)
, (7.35)

where we see that the 2-form now becomes an auxiliary field instead of a Lagrange multiplier

imposing the divergence-free constraint on the conjugate momentum as in the massless case. The

field equation for the momentum again gives its relation with the derivatives of the 2-form as

(7.32). The 2-form equations however now give

∂αΠ
αβγ−m2Bβγ = 0. (7.36)

Using this equation to solve for the 2-form in terms of the conjugate momentum and plugging it

into the action (notice that this is an algebraic equation for Bµν), we can rewrite the action as

S = 1
12

∫
d4x

p−g
(

1
m2 ∂αΠ

αβγ∂λΠλβγ+Π2
)
. (7.37)

We can now dualise this action16 by means of Hαβγ∝ εαβγµAµ and after canonically normalising

Aµ by Aµ 7→ (m/2)Aµ, the above action can equivalently be expressed as

S =
∫

d4x
p−g

(
−1

4
FµνFµν− 1

2
M2 A2

)
, (7.38)

where M2 = 3m2. We have then that our original massive 2-form field action is dual to the Proca

action and, consequently, it propagates three degrees of freedom. Note that the scalar degree of

freedom propagated by the massless 2-form can be identified with the longitudinal polarisation

of the Proca field, and the two extra degrees of freedom carried by the massive 2-form correspond

to the transverse polarisations. Indeed, we will see below how when considering the decoupling

limit of the Stüecklebergised action for a massive 2-form, the Stüeckleberg fields that restore the

gauge symmetry of the 2-form come in the form of a gauge spin-1 field which naturally propagates

16Note that the Hodge dual of a p-form has the same number of independent components than the p-form, as
they live in vector spaces of the same dimension

(n
p
)= ( n

n−p
)
, and therefore it does not alter the counting of degrees of

freedom.
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the two transverse polarisations.

For completeness, let us also discuss what happens for more general interacting 2-form fields.

Again, starting from its first-order formulation, we can write

S =
∫

d4x
p−g

[
Παβγ∂[αBβγ] −H (Bµν,Παβγ)

]
, (7.39)

where H is the Hamilton function that defines the interacting theory. Following the same

procedure, we can obtain the 2-form field equations as

∂αΠ
αµν =− ∂H

∂Bµν
. (7.40)

This equation now can be algebraically solved (at least formally) for the 2-form field to obtain

Bµν = Bµν(Π,∂ ·Π). We can then integrate out the 2-form field by plugging this solution into the

action so we obtain S =S [Π,∂ ·Π]. If we dualise this theory to a vector field as above, we finally

get that our original action can be rewritten as S =S [Fµν, Aα], i.e., as an interacting massive

vector field. If the Hamiltonian function does not explicitly depend on the 2-form field, i.e., if

we have a gauge 2-form field, then Eq. (7.40) is instead solved by H =? dφ as in the massless

case above, so the action can instead be expressed as S =S [(dφ)2] that describes an interacting

shift-symmetric scalar field.

This dualisation procedure can also be applied to cases when the 2-form field is coupled to some

matter fields and even for nonAbelian 2-form fields with some internal group structure. After

having presented a detailed account of the number and type of degrees of freedom carried by a

massless and massive 2-form, and having as well presented the Stüeckleberg trick, we have now

all the necessary tools to approach the study of the number and stability of degrees of freedom in

RBGs without projective symmetry.

Ghosts in the decoupling limit of the 2-form

To study the decoupling limit of the Stüeckelbergised 2-form, let us consider the antisymmetric

sector perturbatively up to quadratic order so that

qµν = q̄µν+
p

2
MP

(
Bµν+αBµαBα

ν+βB2 q̄µν
)
, (7.41)

with q̄µν an arbitrary symmetric metric, Bµν a 2-form field corresponding to the antisymmetric

part of qµν, and where the parameters α and β account for the possibility of field redefinitions at

quadratic order (see e.g. [155]). The numerical factor and the Planck mass have been introduced

for convenience. When expanding the action of RBGs without projective symmetry in the Einstein
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frame (7.29) around such a background at second-order in Bµν we find17:

S (2) =
∫

d4x
√−q̄

[1
2

MP
2R q̄ − 1

12
HµνρHµνρ− 1

4
m2B2 −

p
2 MP

3
Bµν∂[µΓν]

+ 1−2α+4β
4

R q̄B2 +αR q̄
µνBµαBν

α−R q̄
µναβ

BµαBνβ
]

(7.42)

where Hµνρ = 3∂[µBνρ] the field strength of the 2-form field, m2 is the mass generated from Ū ,

and Γµ is the projective mode of the connection. In order to make apparent the presence and

nature of the instabilities, let us first consider a flat background so the couplings to curvature in

(7.43) disappear and it becomes clear that the pathologies arise already around Minkowskian

backgrounds.

As well as for the vector field, the Stüeckelbergisation of the 2-form is realised through the

introduction of the Stückelberg fields bµ which restore its gauge symmetry via the replacement

Bµν→ B̂µν+ 2
m∂[µbν], which in a Minkowskian background q̄ = η leads to

S (2)
Stuck., flat =

∫
d4x

[
− 1

12
HµνρHµνρ− 1

4
m2B2 −∂[µbν]∂

[µbν] −mB̂µν∂
[µbν]

−
p

2 MP

3
Bµν∂[µΓν] −

2
p

2 MP

3m
∂[µbν]∂[µΓν]

] (7.43)

In order to properly take the decoupling limit, we have to redefine Γµ 7→ 3mp
2 MP

Γµ and keep it finite

(i.e., take MP →∞). Taking then the decoupling limit m → 0, we see how the scalar mode of the

gauge invariant 2-form sector described by B̂µν decouples from both the Stüeckelberg field (which

corresponds to the extra modes carried by the 2-form when it is massive) and the projective mode.

The relevant sector of the action in the decoupling and on a Minkowskian background is then

S (2)
dec,flat =

∫
d4x

(
− 1

12
ĤµνρĤµνρ−∂[µbν]∂

[µbν] −2∂[µbν]∂
[µΓν]

)
(7.44)

We see that the decoupling limit shows the presence of five degrees of freedom: one associated

to the massless 2-form B̂µν and two associated to each of the helicity-1 modes described by the

Stüeckelberg field bµ and the projective mode Γµ respectively. This is of course the expected

counting for (7.43) corresponding to a massive 2-form and a gauge spin-1 field. In this decoupling

limit it is then apparent that the theory is plagued by ghost-like instabilities owed to the mixing

∂[µbν]∂
[µΓν] that comes in without the diagonal ∂[µΓν]∂

[µΓν] element. Indeed, the kinetic matrix

K̂ =
(
−1 −1

−1 0

)
, (7.45)

has eigenvalues (−1±p
5 )/2, one of which is negative, which in a Lorentz invariant background

(aIJ = bIJ = K̂ IJ) implies the presence of ghostly degrees of freedom as explained in section
17Here we will stick to the D = 4 case for simplicity. In arbitrary dimensions, the analysis can be carried in a

similar fashion, although taking into account that the degrees of freedom carried by each field might change with the
dimension.
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7.1. More explicitly, if we diagonalise the kinetic matrix by means of the field redefinition18

bµ = Aµ+ξµ, Γµ =−2ξµ the action (7.44) reads

S (2)
dec,flat =

∫
d4x

[
− 1

12
ĤµνρĤµνρ−∂[µAν]∂

[µAν] +∂[µξν]∂
[µξν]

]
, (7.46)

showing that ξµ is a ghost around a Minkowskian background as it has a Maxwellian kinetic

term with the wrong sign.

Let us now turn on the symmetric sector by dropping the Minkowskian condition on q(µν)

and allow for an arbitrary curved q̄-background. It should then be clear that while the ghosts

that we uncovered around a Minkowskian background will generally persist, the nonminimal

couplings to the curvature in (7.43) will present additional pathologies. Within our approach we

can readily see and interpret the nature of these pathologies as Ostrogradskian instabilities (see

section 7.1.1) associated to having higher-order derivatives in the Lagrangian for the metric q̄,

which leads to higher-order equations of motion for the Stueckelberg fields that will propagate

Ostrogradski ghosts. The presence of Ostrogradski instabilities within NGT has not been properly

identified, and it represents yet another problem for NGT besides the pathological asymptotic

fall off behaviour discussed in [155].

To show the presence of the Ostrogradskian instabilities through the Stüeckelberg trick,

we now must take care that the decoupling limit now needs to take into account that the

curvature scales as R ∼ MP
−2, and the appropriate limit to be taken is m → 0 and MP → ∞

with Λ≡ mMP fixed. In this limit, the Stückelberg fields bµ will feature nonminimal couplings

with the schematic form ∼ 1
Λ2 R q̄dbdb. These couplings feature second-order time derivatives of

the metric which generically give rise to higher-order equations of motion and Ostrogradskian

instabilities as explained in section 7.1.1. An exceptional case is provided by the Horndeski

vector-tensor interaction found in [340]. Having the two free parameters α and β in (7.41) that

allow for field redefinitions at quadratic order, one would be tempted to say that the pathology

is not physical since the Horndeski interaction could be reached by an appropriate local field

redefinition. Nevertheless, it is worth noticing that even this Horndeski interaction presents

pathologies around relevant backgrounds [341]. Furthermore, we need to remember that this is

the quadratic action and it is expected that going to higher perturbative orders, new higher-order

nonminimal couplings will be generated. Since there are no healthy such terms beyond the

Horndeski interaction in four dimensions, these will need to be trivial modulo field redefinition to

avoid re-introducing the pathologies.

At this point, the pathological character of these theories should be unequivocal taken at

face value. One could argue that interpreted as effective field theories, there could be a certain

regime of validity at low energies. However, the very presence of the ghosts already around a

18Note that the coefficients are chosen so that the redefined fields are canonically normalised.
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Minkowskian background shown above makes this hope difficult to realise. In this respect, this

ghost could be stabilised easily by introducing a healthy kinetic term for the projective mode,

namely ∂[µΓν]∂
[µΓν]. Although such a term cannot be generated from RBGs, within the EFT

approach, it must appear unless projective symmetry is assumed to be a symmetry of the EFT,

along with a bunch of other terms accompanying it. An EFT approach to the restricted class of

Poincaré gauge theories has been pursued in [110], and a recent work shows the presence of

ghostly degrees of freedom for generic quadratic metric-affine EFTs [111] around Minkowskian

backgrounds. The nonminimal couplings however, being (irrelevant) higher dimension operators,

should typically be perturbative and, consequently, the associated ghosts would only come at a

scale beyond the cutoff. As well, it might be possible to tune some coefficients to push the ghosts

to higher scales so that the corresponding irrelevant operators could have nonperturbative effects

on the low-energy phenomenology.

Let us mention that a potential caveat of our analysis (up to now) is that we have neglected the

matter sector, but this should not worry us too much since including matter fields will hardly

render the theories stable. Rather, one could expect a more pathological behaviour. We will

address this point later to show it explicitly.

Another view on the problem with additional degrees of freedom

In the previous section we have shown how vacuum RBG without a projective symmetry (or

vacuum NGT for that matter) are plagued by ghostly instabilities arising from two sectors,

namely: the dynamical projective mode whose mixing with the 2-form leads to the necessary

presence of a spin-1 ghost and the nonminimal couplings of the massive 2-form field that gives

rise to Ostrogradski instabilities. This has been neatly shown in the decoupling limit of the

Stüeckelbergised action of the 2-form field. Here we will show the appearance of these pathologies

in an alternative manner, namely by tracing the appearance of the new degrees of freedom in the

action and taking into account the nature of their field equations. Let us consider our family of

theories described by the action

S [gµν,Γ]= 1
2

∫
dD x

p−g F
(
gµν,Rµν

)
, (7.47)

where we again consider vacuum RBGs without projective symmetry. Let us now separate

a metric contribution to the connection from the rest, i.e., let us perform the following field

redefinition

Γαµβ = hΓ
α
µβ+Υα

µβ (7.48)

where hΓ
α
µβ are the Christoffel symbols (2.81) of the (symmetric) metric hµν, which is defined

through the splitting of the nonsymmetric metric as

p−q qµν =
p
−h hµν+

p
−h Bµν (7.49)
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with
p−h hµν =p−q q(µν) and

p−h Bµν =p−q q[µν]. Using the transformation properties of the

Ricci tensor under an arbitrary change in the connection (2.88) for the field redefinition (7.48),

we can write the generalised RBG action in its Einstein frame (7.29) as

S = 1
2

∫
dD x

p
−h

[
Rh −ΥλαµΥαµλ+Υα

αλΥ
λ
κ
κ−Υα

αλΥ
λ
µνBµν

−Υα
νλΥ

λ
αµBµν−Bµν∇h

αΥ
α
µν−Bµν∇h

νΥ
α
αµ+U (B)

]
.

(7.50)

where ∇h is the covariant derivative with respect to the Levi-Civita connection of hµν, we have

used the fact that the connection hΓ
α
µβ is torsion-free, and we have dropped a boundary term.

Notice that we have used (and will use in the subsequent manipulations) hµν as the metric so we

will raise and lower indices19 with hµν and its inverse hµν. The field equations for the free part of

the connection Υα
µν obtained by variation of the above action are

∇h
αBµν+δαµ∇h

βBνβ−Υµν
α−Υν

α
µ+hµνΥβ

βα+δαµΥνβ
β

+Bµ
βΥ

ν
α
β−Bν

βΥ
µβ

α−BµνΥβ
βα−δαµBβλΥ

νβλ = 0.
(7.51)

Taking the trace with respect to α and ν of the above equation we obtain

∇h
µBµν = 0 (7.52)

which constrains the 2-form field Bµν to be divergence-free. Enforcing this constraint into the

connection field equations (7.51) we arrive at

∇h
αBµν−Υµν

α−Υν
α
µ+hµνΥβ

βα+δαµΥνβ
β

+Bµ
βΥ

ν
α
β−Bν

βΥ
µβ

α−BµνΥβ
βα−δαµBβλΥ

νβλ = 0.
(7.53)

The divergence-free constraint on the 2-form in (7.52) can also be written as ?d?B = 0 where ∗
is the Hodge dual associated to hµν, see sections 2.4.2 and 2.4.2. The solution to this equation is

given by B =?dA where A is a (D−3)-form if the spacetime dimension is D. Particularizing to

D = 4 we have that Bµν can be expressed as the dual of the field strength of some 1-form Aµ, so

that the constraint (7.52) derived from the connection field equations implies

Bµν =− 1

2
p−h

εµναβ∂[αAβ]. (7.54)

Notice that this is an exact constraint so that it becomes clear that the 2-form can propagate

at most the same number of degrees of freedom as a vector field, according to what we saw in

section 7.2.1.

It is also easy to see that a projective mode Υα
µν = ξµδαν is a solution when Bµν = 0. This was

indeed expected since for vanishing Bµν we recover the usual projective-invariant theory whose

19Recall that any metric defines a canonical isomorphism between the tangent space and its dual that in practice
corresponds to raising and lowering indices as defined in (2.49).
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connection is the Levi-Civita connection of hµν up to a projective mode. As a matter of fact, in

the case of RBG where projective symmetry is explicitly broken, this projective mode is the only

dynamical component of the connection and the remaining components of Υ can be expressed in

terms of Bµν by solving (7.51). We will later show this in detail and we will find a perturbative

solution up to lowest order in Bµν.

Since the equations are linear in Υα
µν, the projective mode can be regarded as a homogeneous

solution for Υα
βγ in the general case, i.e., it belongs to the kernel of (7.53). In order to isolate this

projective mode (homogeneous solution) from the remaining nondynamical part of the connection

(nonhomogeneous solution), it proves useful to introduce the shifted connection

Υ̂α
µν =Υα

µν+ 1
D−1

Υµδ
α
ν (7.55)

with Υµ = 2Υα
[αµ]. This shifted connection satisfies Υ̂α

[αµ] = 0 and it is invariant under a pro-

jective transformation of Υα
µν. In terms of these variables the action (7.50) can be written

as

S = 1
2

∫
dD x

p
−h

[
Rh− 2

D−1
Bµν∂[µΥν] −Bµν∇h

αΥ̂
α
µν−Bµν∇h

νΥ̂
α
αµ+ Υ̂α

αλΥ̂
λ
κ
κ

−Υ̂αµλΥ̂λαµ− Υ̂α
αλΥ̂

λ
µνBµν− Υ̂α

νλΥ̂
λ
αµBµν+U (B)

]
.

(7.56)

We then see that the projective mode Υµ is in fact the responsible for the divergence-free

constraint on the 2-form field. From this form of the action we can already understand the root of

the pathologies. Firstly, the absence of a pure kinetic term for the projective mode will render

this sector unstable on arbitrary Bµν backgrounds. To show this, let us consider a background

where the 2-form develops a nontrivial profile. On such a background, and leaving out kinetic

terms and/or nonminimal couplings that will not affect our argument here, the relevant sector is

described by

S ⊃
∫

dD x
p
−h

(
Bµν∂[µΥν] −m2MαβµνBαβBµν

)
, (7.57)

where m2 is some mass parameter and Mαβµν the mass tensor that depends on the background

configuration with the obvious symmetries of being antisymmetric in the first and second pair of

indices and symmetric under the exchange (αβ)↔ (µν). If the background 2-form field is trivial,

the mass tensor reduces to Mαβµν = hα[µhν]β, so in that case we have

S ⊃
∫

dD x
p
−h

(
Bµν∂[µΥν] −m2BµνBµν

)
. (7.58)

We can diagonalise this sector by performing the field redefinition Bµν = B̂µν+ 1
2m2 ∂

[µΥν], which

turns the above action into

S ⊃
∫

dD x
p
−h

(
1

4m2 ∂[µΥν]∂
[µΥν] −m2B̂µνB̂µν

)
, (7.59)

which after the field redefinition Υµ 7→ 2mΥµ becomes

S ⊃
∫

dD x
p
−h

(
∂[µΥν]∂

[µΥν] −m2B̂µνB̂µν
)
, (7.60)
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Once this sector of the gravitational action has been diagonalised, it becomes apparent that the

projective mode acquires the usual gauge-invariant Maxwellian kinetic term for a vector field,

but with the wrong sign. Hence, we clearly see that the presence of a ghost around a trivial

Bµν background is unavoidable.20 However, there is the possibility that within a nontrivial Bµν

background the 2-form field behaves as a ghost condensate [314]. In order to see if this is possible,

notice that in a general Bµν background, the diagonalisation requires a field redefinition of the

form

Bµν = B̂µν+ 1
2m2Λ

µναβ∂[αΥβ] (7.61)

with Λµναβ satisfying generally

MαβλκΛλκ
µν = hα[µhν]β. (7.62)

In this case, the relevant sector of the gravitational action can be written as

S ⊃
∫

dD x
p
−h

(
1

4m2Λ
αβµν∂[αΥβ]∂[µΥν] −m2MαβµνBαβBµν

)
. (7.63)

or

S ⊃
∫

dD x
p
−h

(
Λαβµν∂[αΥβ]∂[µΥν] −m2MαβµνBαβBµν

)
. (7.64)

after the field redefinition Υµ 7→ 2mΥµ. As explained in section 7.1, in order to see whether the

ghost persists in the general case, we have to look at the eigenvalues of Λαβµν, which now plays

the role of the kinetic matrix. The ghostly nature of the projective mode is avoided if Λαβµν is a

super-metric with negative eigenvalues, i.e., if it has the same signature as −hα[µhν]β being hµν a

Lorentzian metric (as then it would have a negative eigenvalue corresponding to the kinetic term

of Υµ). On the other hand, stability of the 2-form sector requires a mass matrix with positive

eigenvaluess, i.e., with the signature of +hα[µhν]β. These two conditions are however inconsistent

with each other by virtue of the relation (7.62) and therefore no ghost condensation can stabilise

the theory. However, we find that the presence of a ghost in the projective sector of generalised

RBGs is unavoidable and occurs in an arbitrary background. This is the ghost found in 7.2.1 in

the decoupling limit of the corresponding Stüeckelbergised action.

It is interesting to notice that the redefinition of the 2-form field that diagonalises the quadratic

action for the trivial background configuration corresponds to a gauge-like transformation for

the 2-form, hence, its field strength will be oblivious to such redefinition. In particular, this

means that kinetic terms with the correct gauge invariant form H2 will not be affected by the

diagonalisation and, therefore, cannot change our conclusion about the presence of a ghost. The

same reasoning applies to nontrivial backgrounds that vary weakly as compared to m2. If this is

not the case, one might envision that sufficiently strongly varying backgrounds could give rise to

20One could argue that by changing the sign of (7.60) the ghost can be transformed into a tachyonic instability.
However, one should keep in mind that (7.60) is a piece of the action and what would look like a tachyon in (7.60)
would actually be a ghost when the full action is considered, as the signs of the eigenvalues of the kinetic matrix tell
us.
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a stabilisation à la ghost condensate. Even without taking into account couplings to gravity, it

should be apparent that there will always be UV modes with a sufficiently high frequency for

which the background is effectively constant and, therefore, our discussion above will also apply,

thus showing the pathological character of these modes. A natural way around this problem is to

assume that those modes are beyond the regime of validity of the theory and, consequently, it

does not pose an actual problem. In that case however, the full EFT approach should be taken

from the very beginning. Moreover, there will also be nonminimal couplings to the curvature,

which after diagonalisation will introduce yet additional pathologies arising from that sector so

our hopes stand on shaky grounds anyways. To understand this, we must look at the connection

equations (7.51), from where it is apparent that the solution for Υ̂ will have the schematic form

Υ̂∼ ∇hB
1+B

. (7.65)

Plugging this solution back into the RBG action, written as (7.56), and integrating out the

nondynamical piece of the connection Υ̂, additional terms like (∇hB)2 and B(∇h)2B will arise.

The latter can be integrated by parts to be put in the form of the former. Doing this however

can result in nongauge invariant derivative terms and/or nonminimal couplings arising from

commuting covariant derivatives. Both of such terms are potentially dangerous and the source of

Ostrogradskian instabilities. Finally, let us comment on the remarkable fact that the quadratic

derivative terms generated in the action can be brought into the standard gauge-invariant kinetic

term of a two form. However, this is an accident of the leading order solution and it is broken at

higher-orders. Let us see this explicitly by finding a solution for the connection.

Formal and perturbative solutions for the connection

Let us proceed to find solutions for the connection, so that we can explicitly see that they

have the schematic form shown above. We will first illustrate the form of the solutions for the

connection by considering vacuum configurations, so that the action is given by

S = 1
2

∫
dD x

[p−q qµνRµν+U (q)
]
. (7.66)

The connection equations for this action are the same as we obtained in (4.26) or (4.32), i.e., the

connection deprived of its projective mode satisfies

∂λ(
p−q qµν)+ Γ̂µλαp−q qαν+ Γ̂ναλp−q qµα− Γ̂αλαp−q qµν = 0. (7.67)

This equation does allow, at least formally, to algebraically solve for the connection in terms of

qµν. With this in mind, let us again decompose the connection as in (7.48), so that we extract

the Levi-Civita connection of the symmetric component of hµν. The projectively transformed

connection (??) is therefore given by

Γ̂αµβ = hΓ
α
µβ+ Υ̂α

µβ (7.68)
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where Υ̂ is defined as in (7.55). We can now introduce the above splitting (7.68) into the connection

equations equations (7.67). By performing the usual trick of adding and subtracting the resulting

equation with suitably permuted indices, we can write a formal solution for the connection as

Υ̂α
µν =

[
1
2

hκλ
(
∇h
βBγλ+∇h

γBλβ−∇h
λBβγ

)](
A−1)

κ
α
µν

βγ, (7.69)

where by definition Aκ
α′µ

′ν′
βγ(A−1)καµνβγ ≡ δα

′
αδ

µ′
µδ

ν′
ν. Here Aκ

α′µ
′ν′
βγ is linear in Bµν and is

given by

Aκ
α
µν

βγ ≡ δκαδµβδνγ+ 1
2
δµα

(
hνκhβγ−2δν(βδ

κ
γ)

)+bκαµνβγρσBρσ

bκαµνβγρσ = 1
2

[
hαγhµσδνβhρκ+δβρhαγhµκhνσ+δργδµαδνβhκσ−hρκδµγhνσhαβ

−δρβhσκδµαδνγ−δρβδσγδµαhνκ−δργhαβhµσhνα−δργδκαδµβhνσ+δρβδκαhµσδνγ
]
.

(7.70)

In order to explicitly show the appearance of problematic couplings, it will suffice to give a

perturbative solution to leading-order in B. To that end, let us consider a trivial 2-form background

and expand around it, leaving the symmetric sector hµν completely general. The only task then

is either to compute the O (B0) term of (A−1)καµνβγ or to directly solve the equations (7.51) for Υ̂

expanded as a power series. Let us proceed with the second method by expanding Υ̂ as a power

series of the 2-form B in the form

Υ̂α
µν =

∞∑
n=0

Υ̂(n)
α
µν, (7.71)

where the sub-index n implies that the quantity Υ̂(n)
α
µν is of order O (Bn). We can now use (7.68)

to split the connection symbols that appear in (7.67). Plugging the above expansion of Υ̂α
µν into

the resulting equation, we obtain

∇h
λBµν−BµνΥ̂(0)

α
λα−Bν

αΥ̂(0)
µα

λ+Bµ
αΥ̂(0)

ν
λ
α

+hµνΥ̂(1)
α
λα− Υ̂(1)

µν
λ− Υ̂(1)

ν
λ
µ− Υ̂(0)

µν
λ− Υ̂(0)

ν
λ
µ+hµνΥ̂(0)

α
λα =O (B2).

(7.72)

Notice that this equation is consistent with substituting the perturbative series (7.71) in (7.53),

as it should be.21 The zeroth order term gives the equation

Υ̂(0)
µν

λ+ Υ̂(0)
ν
λ
µ−hµνΥ̂(0)

α
λα = 0, (7.73)

which after contracting with hµν gives Υ̂(0)
α
λα = 0 for D 6= 2. This leaves us with the equation

Υ̂(0)
µν

λ+ Υ̂(0)
ν
λ
µ = 0. Doing the usual permutation trick we arrive to the unique solution (the

equations are linear)

Υ̂(0)
α
µν = 0, (7.74)

which ensures that the Levi-Civita connection of hµν is, up to a projective mode, the solution for

the affine connection for a symmetric metric. Indeed, this was expected given that for vanishing
21To see this explicitly, one should take into account the equation resulting from contracting α and µ in (7.53)

together with the identity Υ̂α[αβ] = 0, wich leads to Υ̂νββ−BβλΥ̂
νβλ = 0.
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Bµν we are just solving for GR, which has the Levi-Civita connection of the metric as the only

solution up to a projective mode (see e.g. [156,342]). Plugging the 0-th order result into (7.72), we

arrive to the equation for the O (B) term, which reads

∇h
λBµν− Υ̂(1)

µν
λ− Υ̂(1)

ν
λ
µ−hµνΥ̂(1)

α
λα = 0. (7.75)

Contracting with hµν we arrive at the condition Υ̂(1)
α
λα = 0 for D 6= 2, which leads to the equation

∇h
λBµν− Υ̂(1)

µν
λ− Υ̂(1)

ν
λ
µ = 0. (7.76)

Again, this equation can be uniquely solved by performing the permutation trick, which yields

Υ̂(1)
α
µν = 1

2
hαλ

(
∇h
µBνλ+∇h

νBλµ−∇h
λBµν

)
(7.77)

in agreement with previous results in NGT obtained in [329]. As well, this also agrees with

the formal solution (7.69) given above as, though the form of aκαµνβγ in (7.70) suggests that

the formal solution has more contributions to first-order in B than (7.77), it can be seen that

aκαµνβγΥ̂(1)
α
µν =Υ(1)

κ
βγ+O (B2), which implies that the formal solution (7.69) and the first-order

perturbative one (7.77) are consistent

As stated in the end of the previous section, and analogously to the results on NGT in [329], the

dependence of Υ̂ on the derivatives of Bµν will introduce additional pathologies in the 2-form field.

As a matter of fact, upon substitution of this solution into (7.56) and integration by parts, we

arrive at the desired action, similar to (7.43), which features a gauge-invariant kinetic term for

the 2-form together with the nonminimal couplings advertised above. Again, the gauge invariance

of the derivative operators for the 2-form is accidental of this order, but it is broken at cubic and

higher-orders. It is possible, although tedious, to obtain the solution for Υ at arbitrary order by

following this perturbative scheme. Obtaining a full solution in closed form appears to be a more

challenging task.

7.2.2 Matter couplings cannot exorcise the ghosts

In the precedent sections we have only considered matter fields which do not couple to the con-

nection. However, our conclusions on the presence of pathological dof ’s do not change substantially

by coupling the connection to the matter sector. Couplings to matter fields in a metric-affine frame-

work is an interesting issue by itself, specially when it involves spinor fields (see e.g. [47,58,343]).

It is not the scope of this section to carefully go through the different coupling prescriptions to

matter nor their consistency, as this was already discussed in chapter 3. Instead, our aim is to

show how our results above are not substantially affected in the presence of matter fields both

with minimal and nonminimal couplings in general. We will mostly discuss minimal-couplings,

although we will also elaborate on the extension of these results when nonminimal couplings are

also included.
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The nonsymmetric gravity frame for nonminimally coupled fields

Curvature couplings to the matter sector include derivatives of the affine connection in the

matter Lagrangian. This further complicates the connection equation (7.82) by adding extra terms

on the right hand side. However, there is a class of couplings for which, while adding technical

complications, the qualitative results remain the same with just some minor adjustments with

respect to the minimally coupled fields.

We will start by considering bosonic fields whose nonminimal couplings are through the Ricci

tensor. To illustrate this point, we can consider a scalar field ϕ as a proxy for the matter sector. If

we restrict to only first derivatives of the scalar, we can use for instance Rµν∂µϕ∂νϕ or R(∂ϕ)2

in our action. In the usual metric formalism, these two terms are only allowed if they enter

through the specific combination (Rµν− 1
2 R gµν)∂µϕ∂νϕ and accompanied by the appropriate

second derivative interactions of the scalar field in order to avoid Ostrogradski instabilities (see

e.g. [33]). In the metric-affine formalism however, this is not necessary and the dependence on

said terms is completely arbitrary. Let us note that these interactions will not break the projective

symmetry since they only depend on the symmetric part of the Ricci tensor. Interestingly, it has

been suggested in [309] that the projective symmetry could also play a crucial role to guarantee

the absence of ghosts for theories containing up to second-order covariant derivatives of a scalar

field. The authors of [309] also found that in the stable theories the connection is devoid of any

propagating mode as a consistency condition as we argued above.

Our reasoning can be straightforwardly extended to other fields such as vector fields Aµ where

interactions like RµνAµAν or RµνFµαFν
α also respect the projective symmetry and are permitted.

The crucial point of all these interactions is that an Einstein frame still exists where it is apparent

that the connection remains an auxiliary field [147]. In the absence of the projective symmetry,

we will encounter the same pathologies as exposed for the pure gravitational sector and the

inclusion of a contrived matter sector cannot remedy it.

In section 4 we showed how to go to the Einstein frame of RBG theories for minimally coupled

matter fields. Let us see here how to proceed in the presence of nonminimally coupled matter

fields. In this case the action reads

S [gµν,Γ,Ψ]= 1
2

∫
dD x

p−g F
(
gµν,Rµν

)+Sm[g,Ψ,Γ]. (7.78)

Parallel to 7.2.1, we now go to the Einstein frame of the above theory, and after splitting the

corresponding auxiliary metric as in (7.49) and the connection as in (7.48), and also isolating the

projective mode from Υα
µν as in (7.55), we get
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S = 1
2

∫
dD x

p
−h

[
Rh − 2

D−1
Bµν∂[µΥν] + Υ̂α

αλΥ̂
λ
κ
κ− Υ̂αµλΥ̂λαµ− Υ̂α

αλΥ̂
λ
µνBµν

− Υ̂α
νλΥ̂

λ
αµBµν−Bµν∇h

αΥ̂
α
µν−Bµν∇h

νΥ̂
α
αµ+U (B)

]
+ S̃m[h,B,Ψ,Υ̂,Υ].

(7.79)

where now S̃m is the matter action in the Einstein frame, and the variables inside square

brackets means that the matter action can depend on those fields and their derivatives in general.

Concretely Υ stands for the dependence of the matter action on the projective mode, so it will be

absent for projectively invariant matter. It is apparent that the gravitational sector features the

same pathological terms as in vacuum. Obviously, a trivial matter background will not modify

those terms. A nontrivial matter background contributing to the background of the symmetric

part of the metric could in principle help in healing the ghost associated to the projective mode

by providing a healthy kinetic term for it. However, the nonminimal couplings to the curvature

for the 2-form that are generated after integrating Υ̂ out can hardly be cured. In any case, this

would require very specific choices of the matter sector. To make this statement more explicit, let

us consider a particular class of matter sector coupled to the connection.

Ultralocal matter couplings

For mater actions which do not include curvature couplings (i.e., no derivatives of the connec-

tion), we already know that the projective mode will be problematic due to the absence of a proper

kinetic term for it. In order to understand if the inclusion of a general coupling between matter

and connection can solve the instability problems we can now compare the above action (7.79) to

(7.56). First notice that the divergence-free constraint of the 2-form (7.52) that came from the

field equations of the projective mode gets modified if nonprojectively invariant matter actions

are taken into account, and the trace of the hypermomentum acts now as a source for B

∇h
µBµν = D−1

4
∆α

[µα] (7.80)

where ∆µν
λ

is the hypermomentum defined as

∆λ
µν ≡ 2

δSm

δΓλµν

∣∣∣∣
gµν

= 2
δSm

δΥλ
µν

∣∣∣∣
gµν

(7.81)

and which vanishes for matter fields that do not couple to the connection. Looking at the form of

this action, we can see that the projective mode will in general feature the same problems as in

the previous case when the matter and connection did not couple. The Ostrogradski instabilities

that arise from the couplings between the 2-form Bµν and the curvature of hµν will still be there

no matter what matter action we choose. Therefore, we see that allowing for an arbitrary coupling

between matter and connection is not helpful in solving any of the instabilities listed above. To
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explicitly see what kind of couplings arise, we have to solve the connection equation now with

a hypermomentum. Since generally an analytic solution is not possible, even if it is not very

illuminating we will attempt to find a perturbative solution which will already give us a clear

picture of the problem.

The connection equations when a coupling between matter and connection is present are, in

general, given by

∇λ
[p−q qνµ

]−δµλ∇ρ [p−q qνρ
]=∆λµν+p−q

[
T µ

λαqνα+T α
αλqνµ−δµ

λ
T α

αβqνβ
]
. (7.82)

In order to remain as close as possible to the previous analysis in section 7.2.1, it is necessary

to use the shifted connection (7.55) and find the relation between the hypermomentum of the

original connection ∆αµν and the shifted hypermomentum ∆̂α
µν, which reads

∆α
µν = ∆̂αµν+ 2

D−1
δα

[µ∆̂β
ν]β, (7.83)

where the shifted hypermomentum is defined in an analogous manner as (7.81). This implies

that the hypermomentum of projectively invariant matter fields satisfies ∆̂βµβ = 0. We can now

recast (7.82) in the form of (7.67) by doing the same manipulations, thus finding

∂λ(
p−q qµν)+ Γ̂µλαp−q qαν+ Γ̂ναλp−q qµα− Γ̂αλαp−q qµν = ∆̂αµν+ 2

D−1
δα

[µ∆̂β
ν]β. (7.84)

As in the vanishing hypermomentum case, we can obtain a formal solution for the full connection

in the case of arbitrary hypermomentum as

Υ̂α
µν = 1

2
hκλ

[(
∇h
βBγλ+∇h

γBλβ−∇h
λBβγ

)
+ 1p−h

hκλ
(
∆̂βγλ+ ∆̂γλβ+ ∆̂λβγ+ 2

D−1
hλ[γ∆̂

α
β]α

)](
A−1)

κ
α
µν

βγ,
(7.85)

where
(
A−1)

κ
α
µν

βγ is the same operator as in the vanishing hypermomentum case, which is

specified in (7.70). Notice that the above formula points to the fact that the addition of hyper-

momentum does not solve any of the instabilities due to the dependence of Υ̂ on the derivatives

of Bµν. To see that this is the case, let us find a perturbative solution to the connection in an

analogous way to that of 7.2.1. First we need to write ∆̂αµν = ∆̂(0)
α

µν+ ∆̂(1)
α

µν+ ... as a power series

in Bµν, where the superscript (n) indicates that such term is of order O (Bn). Then, after splitting

the shifted connection as in (7.68) and then writing Υ̂α
µν as a power series in Bµν as in (7.71), we

can write (7.82) in an analogous way to (7.72) as

∇h
λBµν−BµνΥ̂(0)

α
λα−Bν

αΥ̂(0)
µα

λ+Bµ
αΥ̂(0)

ν
λ
α− Υ̂(0)

µν
λ− Υ̂(0)

ν
λ
µ+hµνΥ̂(0)

α
λα

+hµνΥ̂(1)
α
λα− Υ̂(1)

µν
λ− Υ̂(1)

ν
λ
µ

− ∆̂(0)
α

µν+ 2
D−1

δα
[µ∆̂(0)

β
ν]β− ∆̂(1)

α
µν+ 2

D−1
δα

[µ∆̂(1)
β

ν]β =O (B2).

(7.86)
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Notice that in general, ∆̂(n)
α

µν might have a complicated dependence on the affine connection,

and thus on Υ̂α
µν, which may complicate further the solution of the above equation for Υ̂α

µν

order by order in Bµν. Thus, in general, one could make a further expansion of each ∆̂(n)
α

µν =
∆̂

(0,n)
α

µν+∆̂(1,n)
α

µν+... where the superscript (m,n) denotes a term of order O (Υ̂m) and O (Bn). Since

the completely general case is rather cumbersome, and is not particularly illuminating, let us

focus on the case where the hypermomentum does not depend on the affine connection, i.e., where

the connection couples to matter only linearly. This would be the case, for instance, of minimally

coupled spin-1/2 fields, which have a hypermomentum of the form

∆(Ψ)
α

µν =−i
p
−h hαρερσµν

[
Ψ̄γσγ5Ψ

]
. (7.87)

Under such assumption, we can expand Υ̂α
µν only in terms of Bµν. Assuming thus no dependence

of the hypermomentum on the connection22 (i.e., the matter couples to the connection only

linearly), we can proceed exactly as in section 7.2.1 to obtain the following zeroth-order solution

Υ̂(0)
α
µν = 1p−h

[
∆̂(0)

µν
α+ ∆̂(0)

ν
α
µ− ∆̂(0)α

µν+ 2
D−1

δλ[ν∆̂
(0)α

µ]λ

+ 1
2(D−2)

(
hµν∆̂(0)αλ

λ−2δα(µ∆̂
(0)

ν)λ
λ
)]

,
(7.88)

where ∆̂(0)
α

(αβ) = 0 and Υ̂(0)
αβ

β = 0 must be satisfied as can be shown from the connection field

equations and the identity Υ̂(n)
α

[αβ] = 0. The first-order solution is obtained equally, leading to

Υ̂(1)
α
µν = 1

2
hαλ

(
∇h
λBνµ+∇h

µBνλ+∇h
νBλµ

)
− 1p−h

[
1
2

(
∆̂(1)α

µν+ ∆̂(1)
µν

α+ ∆̂(1)
ν
α
µ

)
− 1

D−2
δα(µ∆̂

(0)
ν)
γσBγσ+ 2

(D−1)(D−2)
δα(µBν)γ∆̂

(0)
σ
σγ+ 1

D−2
δα(µ∆̂

(1)
ν)σ

σ

+ 1
D−2

δα[µBν]γ∆̂
(0)γσ

σ+ 2
D−1

δα[µ∆̂
(1)σ

ν]σ+
1
2

(
Bµσ∆̂

(0)σ
ν
α−Bνσ∆̂

(0)σα
ν

)
+ 1

2(D−2)
hµνBγσ∆̂

(0)αγσ− 1
D−2

hµνBα
σ∆̂

(0)
γ
γσ− 1

2(D−2)
hµν∆̂(1)ασ

σ

]
,

(7.89)

As we can see, besides obtaining the problematic Υ̂∼∇hB+O (B2) terms that we obtained in the

vanishing hypermomentum case, we here obtain also a bunch of terms that couple nonminimally

the matter fields with themselves and with the 2-form Bµν through their hypermomentum. It is

apparent that the addition of these new terms cannot heal the problematic behaviour of the ∇hB

terms by themselves, thus clarifying why the addition of nonminimal couplings to matter fields

would not solve the instability problem. Indeed, if the theory is regarded as an EFT, the extra

couplings between the unstable 2-form and the matter fields potentially reduce the time-scale in

which the 2-form instability manifests physically through its decay to lighter particles.

22The equation of zeroth order would still be formally valid for ∆̂αµν that depends on the connection, altough in
that case it will be harder to isolate Υαµν.
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7.2.3 Constrained geometries can exorcise (some of) the ghosts

In the precedent sections we have seen that abandoning the projective symmetry in the higher-

order curvature sector of a metric-affine theory results in the appearance of ghost-like pathologies

precisely related to the projective mode and an extra 2-form field that comes from the excitations

of the antisymmetric part that the Einstein frame metric develops if the projective symmetry is

dropped. As is well known, in some cases, in addition to imposing symmetries, there are other

mechanisms that can freeze degrees of freedom23 by imposing suitable constraints, which can

then cure the ghosts if the constraints are the right ones.

We will now discuss the different frameworks where RBG theories with explicitly broken

projective symmetry can be rendered stable, not by imposing additional symmetries, but by

enforcing suitable constraints on the connection, i.e., by restricting to some specific geometries.

In this respect, besides the projectively invariant RBG class, it is known that there are families

of theories which contain higher-order curvature corrections and are stable (ghost-free) for

some particular classes of geometries. We will review some of these known examples where

the connection is deprived of specific components of the nonmetricity and/or torsion. We will

finally show a general result that imposing a vanishing torsion stabilises RBG without projective

symmetry theories transforming it into a theory with an extra interacting massive vector field.

We will see as well how imposing a vanishing nonmetricity is not able to heal the theories.

Torsion-free theories exorcise the ghosts

We will start by showing how imposing a vanishing torsion avoids the presence of ghosts. The

implementation of this constraint can be performed either by only allowing for variations of the

symmetric part of the connection (i.e., assuming a symmetric connection from the beginning) or

by introducing a set of Lagrange multipliers that enforce the constraint Tα
µν = 0 as dictated by

their field equations. The resulting connection equations after taking into account this constraint

reads

∇λ
[p−q q(µν)

]
−∇ρ

[p−q qρ(µ
]
δν)
λ
= 0. (7.90)

Notice that the only difference with respect to the equations for the unconstrained connection is

precisely the trivialisation of their antisymmetric part in µ and ν. Let us decompose qµν again

into its symmetric and antisymmetric parts as in (7.49). Due to the vanishing of the torsion

tensor, the general decomposition of the connection (2.83) lacks the contortion tensor. Thus, the

connection can here be split in a Levi-Civita connection of hµν and a disformation part that

23In this sense, from the Hamiltonian point of view, gauge symmetries are understood as first-class constraints
that reduce the apparent number of degrees of freedom of the system [344].
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depends on the nonmetricity Nλµν ≡∇h
λ

hµν as24

Γαµν = Γ̄αµν(h)+Lα
µν(N) (7.91)

without loss of generality, where the disformation tensor is now built with the nonmetricity of

hµν. The above splitting allows to obtain the following relations that will be of use below

∇λ
(p−h hλν

)=p
−h L̃ν, (7.92)

∇λ
(p−h Bλν

)=p
−h∇h

λBλν, (7.93)

where L̃ν ≡ Lν
αβhαβ is one of the two independent traces of the disformation tensor. The trace of

the connection equation (7.90) together with (7.92) yields

∇h
λBλν = 1−D

1+D
L̃ν, (7.94)

which implies the dynamical constraint25

∇h
ν L̃ν = 0. (7.95)

On the other hand, contracting the connection equation (7.90), with hµν defined as the inverse of

hµν, leads to

Lµ = 2
(2−D)(1+D)

L̃µ, (7.96)

where Lµ ≡ Lα
µα and indices are raised and lowered with hµν. Thus, we see that there is only

one independent trace of the disformation tensor. Using the above relations in the connection

equation (7.90), we are led to

2hα(µLν)
λα = lGhµν+ (2−D)Lαhα(µδν)

λ. (7.97)

Given that the nonmetricity tensor of the auxiliary metric is given by Nλ
µν ≡−∇λhµν =−2hα(µLν)

λα,

which implies the identity Lµ =−1
2 hαβNµ

αβ ≡−1
2 Ñµ, the above equation can be used to re-write

the connection equation (7.97) as a constraint for the nonmetricity tensor

Nλ
µν = 1

2

[
Ñλhµν+ (2−D)Ñαhα(µδν)

λ

]
, (7.98)

which becomes completely specified by its Weyl component (although it is not Weyl-like). Thus

we see that the connection field equations can be fully solved explicitly, and the connection is

given by a disformation piece given by the nonmetricity tensor (7.98) added to the Levi-Civita

of hµν. Given that this disformaton piece is completely determined by Ñµ (the Weyl trace of

24This splitting allows us to write a general affine connection in terms of the torsion, an arbitrary invertible
symmetric 2-tensor, its first derivatives and its covariant derivative (i.e., its nonmetricity with respect to Γ).

25As explained in section 3, the above equation can also be written as ?d?B ∝ L where ∗ is the Hodge dual with
respect to hµν, and since ? ?α∝α for any p-form α, we have that ?d?L ∝ ?d? ?d?B ∝ ?dd?B = 0 because
d2 = 0 on any p-form.
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the nonmetricity of hµν), which is divergenceless by the constraint equations (7.95) and (7.96),

the field equations of the connection describe only the propagation of one additional vector

component, instead of a vector field plus a 2-form as in the most general case. Moreover, from

the divergence-free constraint (7.95) obtained above, this new vectorial component must be a

Proca field, thus propagating only three extra degrees of freedom. The corresponding metric

equations of the system will allow to solve algebraically for hµν as a function of the matter fields

and (possibly) the new vector field Ñµ, which ensures the absence of the pathologies that were

found in the most general case.

To illustrate this, let us re-consider a particular example that has already been treated in the

literature. Assume a metric-affine gravitational Lagrangian of the form

L = R+ c1R[µν]R[µν]. (7.99)

As explained above (see section 2.5.2), this theory explicitly breaks projective symmetry due to

the presence of the antisymmetric part of the Ricci in the action. Therefore pathologies should

arise in the general case unless further constraints are imposed. However, as shown in past

works [326, 327], the torsion-free version of this model reduces to an Einstein-Proca system ,

where the Proca field arises from the connection sector. For more general examples with violation

of projective symmetry but where the torsion-free constraint is imposed, the Proca field will in

general develop nontrivial interactions, as was already discussed in [328] for the Ricci-Based

sub-family F(gµν,RµνRµν) with the torsion-free constraint.

To enlighten the mechanism that renders the torsion-free version of RBG theories without

projective symmetry ghost-free, let us resort to the Einstein frame of the theory making explicit

the torsion-free constraint. The action of the theory can be written as

S =1
2

∫
dD x

p−g
[
F(Σ, A)+ ∂F

∂Σµν

(
R(µν) −Σµν

)+ ∂F
∂Aµν

(
R[µν] − Aµν

)+ 1p−g
λα

µνTα
µν

]
, (7.100)

where λαµν is a Lagrange multiplier that enforces the torsion-free constraint Tα
µν = 0 and Aµν

and Σµν are auxiliary fields that are antisymmetric and symmetric respectively. In an analogue

manner to what we did for general RBG theories in section 4, we can perform field redefinitions

which allow us to algebraically solve for the space-time metric gµν in terms of hµν, Bµν and

the matter fields; thus integrating gµν out. We can then write the Einstein frame action for

torsion-free RBG theories without projective symmetry as

S =1
2

∫
dD x

[p
−h hµνR(µν) +

p
−h BµνR[µν] +U (h,B,T)+λαµνTα

µν

]
. (7.101)

This action gives the same connection equations that we solved above (7.90), so we can take the

above solution (basically the splitting (7.91) and equation (7.98) together) and plug it back into
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the above action. As it can be seen, the solution for the connection satisfies the relations

R[µν] =− 1
2
∂[µÑν],

R(µν) =Rh
µν+

(D−2)(D−1)
16

ÑµÑν− (D−1)
4

hµν∇h
αÑα (7.102)

which, after dropping the surface term ∇h
µÑµ, allow us to re-express the action (7.100) in terms

of the metric hµν, the 2-form Bµν and the vector field Ñµ as

S = 1
2

∫
dD x

[p
−h

(
Rh + (D−2)(D−1)

16
Ñ2 − 1

2
Bµν∂[µÑν]

)
+U (h,B,T)

]
, (7.103)

Notice that this form of the action reproduces the constraint on the 2-form (7.94) as the field

equations of the vector field Ñµ (which correspond to the connection equations in the original

frame of the theory), which read

∇h
µBµν =− (D−2)(D−1)

4
Ñν, (7.104)

and imply the constraint ∇h
αÑα = 0. At the same time the 2-form field equations yield a nonlinear

relation among the 2-form, the field-strength of the vector field Ñµ, and the matter fields given by

∂[µÑν] =
2p−h

∂U

∂Bµν
. (7.105)

This stems from the fact that our final action (7.103) is nothing but the first-order form of a

self-interacting massive vector field coupled to the matter sector.

Going back to the particular case F = R + c1R[µν]R[µν], we can reproduce the above results,

which agree with [326–328]. For this particular example, the metric hµν is exactly gµν, the 2-form

is given by Bµν = 2c1R[µν], and therefore the effective potential reads

U =−(
p
−h /4c1)BµνBµν, (7.106)

which leads to an equation (7.105) of the form

dÑ = 2
c1

B (7.107)

showing that (7.103) is indeed the first-order description of a free Proca field Ñµ with field-

strength proportional to Bµν. To summarize, we have shown in this section that imposing a

torsion-free geometry cures the instabilities for RBG theories without projective symmetry. It

does so by turning the theory equivalent to a healthy Einstein-Proca theory instead of a Non

Symmetric Gravity theory with a ghostly projective mode.
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Weyl geometries

Let us now briefly comment on another paradigmatic extension of the Riemannian framework

introduced by Weyl shortly after the GR inception which has been analised widely in the literature

(see e.g. the nice survey in [345]). This geometry is characterised by local scale (gauge) invariance

and a torsion-free connection so the only nontrivial part of the affine connection is the so-called

Weyl trace of the nonmetricity Aα =− 2
D gµνQαµν. This allows to replace the metric compatibility

condition ∇g
αgµν = 0 by ∇αgµν ≡ (∇g

α− Aα)gµν = 0, which is the C(1,3)-covariant derivative in the

associated bundle to T M (see chapter 2), where C(1,3) is the group of conformal transformations,

which contains the Poincaré group as a subgroup as well as the group of scale transformations

gαβ→ e2α(x) gαβ. (7.108)

Aµ is the corresponding connection 1-form that transforms as Aµ → Aµ−∂µα as required by

(2.37). Aµ is usually called dilaton field, as it is the gauge field associated to dilatations or scale

transformations.

Theories whose actions are constructed in terms of quadratic curvature invariants for a Weyl

connection trivially admit ghost-free formulations and, consequently, imposing the connection

to be of the Weyl form evidently avoids the ghostly pathologies of the general RBG theories.

This constraint can be implemented either by imposing the connection to be Weyl-like from

the beginning or by adding suitable Lagrange multipliers. Now we should impose a vanishing

torsion and also vanishing of all the nonmetricity irreducible components except for the Weyl

trace. Since for the torsion-free case there are no ghostly degrees of freedom, it is clear that

for Weyl geometries, since they are a sub-class of the torsion-free ones, which also feature

additional constraints (nonmetricity is forced to be vectorial), there will be no ghosts either.

General quadratic theories in Weyl geometries have been studied in e.g. [346] where it was shown

that some interesting nontrivial interactions for the Weyl vector can be generated.

Geometries with a general vector distortion of the connection

The affine connection in Weyl geometries is characterised by a vector field that controls the

departure from the Levi-Civita connection. A natural generalisation is to include not only this

vector part, but a general vector piece of the connection in both the torsion and the nonmetricity

sectors. Such a general connection was considered in [347] in the absence of torsion and was

extended to include the torsion trace in [348, 349]. The connection in these geometries can be

parameterised as

Γαµν = Γ̄αµν−b1 Aαgβγ+b2δ
α
(βAγ) +b3δ

α
[βAγ] +b4ε

α
µνρSρ. (7.109)

This is the minimal field content to describe the desired geometrical setup. It is necessary to have

at least two different vector fields with opposite transformation properties under parity in order
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to account for the axial part of the torsion. The remaining vector pieces, i.e., the two nonmetricity

traces and the torsion trace, have been identified (up to some proportionality constant) so that this

sector is fully described by one single vector field. It would be interesting to study the geometries

where the different vector pieces are not identified and if the presence of internal symmetries in

that sector plays any role (see [350] related to this point). The present framework however allows

to substantially simplify the analysis. Within the framework of curvature-based metric-affine

theories, the general quadratic action can be written as

SVD = M2

∫
dD x

p−g
[
R2 +Rαβγδ

(
d1Rαβγδ+d2Rγδαβ−d3Rαβδγ

)
−4

(
c1RµνRµν+ c2RµνRνµ

)
−4Pµν

(
c3Pµν+ c4Pνµ− c5Rµν− c6Rνµ

)−4Hµν(c7Hµν+ c8Rµν+ c9Pµν)
)]

.

(7.110)

where di and bi are some dimensionless constants and M2 some scale and Pµν and Hµν are the

co-Ricci and homothetic tensors (see (2.86) for their definition). This action will generically lead

to instabilities, once again along the lines of what one would expect as discussed in detail above.

In order to guarantee a ghost-free pure graviton sector, it is convenient to impose that the theory

reduces to a Gauss-Bonnet theory in the Riemannian limit, i.e., when Aµ→ 0 and Sρ → 0.

A remarkable result is that, for this general class of theories, it is sufficient to restrict the

geometrical framework rather than the parameters in the action in order to obtain a ghost-free

vector-tensor theory [348,349]. These ghost-free geometries are characterised by 2b1−b2−b3 = 0

and the resulting action reduces to

SVD =µ
∫

dD x
p−g

[
(Rg)2 −4Rg

µν(Rg)µν+Rg
µνρσ(Rg)µνρσ

− α

4
FµνFµν+ξA2∇µAµ−λA4 −β

(
(Rg)µν− 1

2
Rg gµν

)
AµAν

] (7.111)

where α, ξ, λ and β are some constants that are given in terms of the parameters in (7.110) and

Fµν = 2∂[µAν]. The noteworthy property of this action is that the vector field features derivative

nongauge invariant interactions and a nonminimal coupling to the curvature. However, this

nonminimal coupling precisely belong to the class of ghost-free interactions [33].

Thus, the general result regarding the ghostly pathologies has been resolved in the vector

distorted geometries by two conditions, namely: i) imposing the recovery of the safe Gauss-

Bonnet quadratic gravity in the absence of distortion and ii) restricting the class of geometries.

The singular property of the selected ghost-free geometries is that they generalise the Weyl

connection by including a nontrivial trace of the torsion sector while maintaining the Weyl

invariance of the metric (in)-compatibility condition. This can be easily understood by noticing

that the nonmetricity for this restricted class of geometries is Qµαβ = (b3 − b2)Aµgαβ which

is of the Weyl type. However the torsion is nonvanishing and given by Tα
µν = 2b3δ

α
[µAν]. We

refer to [348, 349] for a detailed discussion on the interesting geometrical properties of these

geometries.
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Riemann-Cartan geometries: vanishing nonmetricity does not suffice

Let us now consider the extension of the Riemannian framework to the so-called Riemann-

Cartan geometry, where the connection is allowed to have a torsion component while keeping a

trivial nonmetricity. This can be achieved by introducing a suitable Lagrange multiplier in the

general action for RBG theories without projective symmetry as

S [gµν,Γ,λ]= 1
2

∫
dD x

p−g
[
F

(
gµν,Rµν

)+λαµν∇αgµν
]+Sm[gµν,Ψ]. (7.112)

It is not hard to see that, while the torsion-free constraint heals the instabilities of generalised

RBGs, this is not the case for a constraint imposing the vanishing of the nonmetricity tensor.

Given that the full analysis is rather cumbersome in this case, we will simply highlight the main

differences between the vanishing nonmetricity and vanishing torsion constraints, emphasising

which are the conditions that improve the pathological behaviour of generalised RBGs in their

torsion-free versions that do not occur when the nonmetricity free constraint is imposed.

First of all notice that varying the above action with respect to λαµν one gets the constraint

∇αgµν = −Qα
µν = 0. Now an infinitesimal variation of the above action with respect to the

connection yields

δΓS =1
2

∫
dD x

p−g
∂F
∂Rµν

δΓRµν =−1
2

∫
dD x

p−q qµν
(
∇αδΓανµ−∇νδΓααµ−Tλ

ναδΓ
α
λµ

)
(7.113)

where the conditions Qα
µν = 0 and δΓQα

µν = 0 → δΓLα
µν = 0 are imposed by the Lagrange

multiplier field equation after integrating it out. The root of the difference between the two

cases is the third term in the variation of the Ricci tensor (2.88). In the above variation of the

action, that term vanishes in the torsion-free case (after integrating out the vanishing torsion

field), while this does not occur in the nonmetricity case. As a consequence, the connection field

equations for the vanishing nonmetricity case are

∇λ
[p−q qνµ

]−δµλ∇ρ [p−q qνρ
] = p−q

[
Tµ

λαqνα+Tα
αλqνµ−δµλTα

αβqνβ
]

, (7.114)

thus having the same tensorial structure as the ones in the general case26 (??), which does not

happen in the torsion-free case (7.90). This difference will have consequences in the number

of degrees of freedom propagated in the different cases, as well as in their stability properties.

To make this clearer, let us first decompose the nonmetricity free connection as Γαµν = hΓ
α
µν+

Lα
µν+Kα

µν. Notice that although the covariant derivative ∇αgµν vanishes, this is not true for

∇αhµν, and thus the distortion tensor corresponding to hµν in the connection decomposition

is nonvanishing. We thus see that the nonmetricity free condition does not have as nice an

implementation as the torsion-free condition does, and the structure of the equations is identical

to the general case, having also the divergence-free constraint of the 2-form

∇h
λBλµ = 0. (7.115)

26Notice that here we could drop the
p−q from the connection field equations by defining qµν ≡ ∂F/Rµν. However

since it does not introduce any advantage, we will not do it to facilitate the comparison with the torsion-free case.
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In the torsion-free case, we found instead that the divergence of the 2-form was proportional to one

of the traces of the distortion tensor L̃µ. Thus, in both the torsion-free and the nonmetricity-free

cases the divergence of the 2-form can be eliminated from the field equations. Another important

point is that the absence of Kα
µν in the torsion-free case and the index symmetries of Bµν and

Lα
µν yield the relations (7.92) and (7.93). While (7.92) is still occurring in this case, the analogue

relation to (7.93) is now

∇λ(
p
−h Bλν)=

p
−h∇h

λBλν+
p
−h

(
tαBαν+ 1

2
Tν

αβBαβ

)
, (7.116)

where tα ≡ Tβ
βα and the first term on the right hand side vanishes due to (7.115). Thus, while in

the torsion-free case these relations together with the divergence of the two-form (7.94) allow to

write ∇α(
p−h hαµ) and ∇α(

p−h Bαµ) in terms of the vector field L̃µ, this is not the case in the

nonmetricity free scenario.

The differences between the torsion-free and nonmetricity free cases that have been outlined

rely only on the decomposition of the connection that we have been able to perform in each

case. This in turn allows us to understand the differences in the tensorial structure of the

connection field equations in both cases, which plays a crucial role in determining the constraints

to the degrees of freedom of the full theory due to each of the geometrical setups. In turn, these

constraints could be responsible (in the torsion-free case) of stabilising the theory, but it will not

necessarily be the case in general.

To proceed with the argument, let us split qµν into its symmetric and antisymmetric parts.

On the one hand, due to the symmetrization of µ and ν in the connection field equations in the

torsion-free case, only the contraction ∇αBαµ enters the connection field equations. As explained

above, this can be substituted by L̃µ in the torsion-free case and, together with the relations

(7.92) and (7.93), it allows to find a relation between both traces of the distortion tensor. Then,

since ∇αBµν does not appear in the equations, and ∇αhµν can be written only in terms of Lα
µν,

the connection equation (7.90) allows to find a solution for the full connection as the Levi-Civita

conection of the auxiliary metric plus a distortion part characterised only by the vector field

L̃µ. On the other hand, as well as in the general case, the symmetrization of µ and ν does not

occur in the connection field equations in the vanishing nonmetricity case. Hence, not only its

trace, but also the full covariant derivative of Bµν enters the connection field equations. As a

consequence, the constraint on the 2-form that rendered it as an auxiliary field in the torsion-free

case no longer applies, and Bµν still has dynamics, as in the general case. This difference makes

it impossible to solve the connection only in terms of a new vector field related to the projective

mode.

Indeed, it can be seen that the torsion tensor in this case has the schematic form ∇B/(1+B) as

happened to Υ̂ in section 7.2.1, which will generally lead to the presence of the Ostrogradskian

instabilities propagated by the 2-form. The Einstein frame version of this theory will be formally
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identical to the one of the general case, since the distortion of hµν is not vanishing here. Hence,

the number of propagating degrees of freedom is the same as in the general case, and we are

forced to conclude that the constraint of vanishing nonmetricity does not heal the instabilities of

the full theory: the 5 new degrees of freedom corresponding to the projective mode and the 2-form

will in general also propagate the instabilities found in the general case.

As a final remark, let us note that the Poincaré gauge theories of gravity [44] are formulated

in a Riemann-Cartan geometry. It is known that the general quadratic theories of this class

present pathologies and only very specific choices of parameters give rise to healthy theories (see

e.g. [351–357]). However, it is possible to have phenomenologically viable theories by interpreting

them as effective field theories as done in [110,358].

7.2.4 Ghosts in Hybrid theories

So far we have considered RBG in the pure metric-affine formalism, so that only the curvature

of the full connection enters the action. As explained in chapter 2, every spacetime endowed

with a metric tensor has a canonical connection given by the Christoffel symbols of the metric.

Thus, in any spacetime with a general affine connection, there is a coexistent affine structure

provided by the Levi-Civita connection. The hybrid formalism [359,360] steps outside the purely

metric-affine framework and embraces these two coexisting affine structures so that the action

contains the curvatures of the two connections.

As we will see, rather than improving the situation of the pure metric-affine formalism, delving

into the hybrid framework generically introduces even more pathologies. This may not be too

surprising since the hybrid formalism is prone to the independent pathologies of the metric and

metric-affine formalisms separately from the outset and hence it is natural to expect the same

pathologies at the very least. The existence of pathologies in the hybrid formalism was analysed

in [361] by looking at the propagator on flat spacetime and identifying the presence of ghosts

for a class of hybrid theories whose action is an arbitrary function of the two Ricci scalars Rg

and R and the hybrid Ricci squared term Rg
µνRµν. We will generalise these results to a more

general class of hybrid theories which is the natural hybrid extension of purely metric-affine

RBG theories without projective symmetry and without assuming any background.

To that end, let us consider the following hybrid action

Shybrid =
∫

dD x
p−g f (gµν,Rµν,Rg

µν). (7.117)

We will then proceed analogously to the pure metric-affine formalism to write the action as

Shybrid =
∫

dD x
[p−q qµνRµν+U (Rg

µν, q, g)
]

(7.118)
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where we have defined

U ≡p−g
[

f − ∂ f
∂Σµν

Σµν

]
, and

p−q qµν ≡p−g
∂ f
∂Σµν

, (7.119)

and here f is understood as a function of gµν, Rg
µν and the auxiliary field Σµν, which plays the

same role as the one introduced in metric-affine RBG theories in section 4, i.e., it is constrained

to be Rµν on-shell.

The general hybrid action written in the form (7.118) is sufficient to understand the multi-

ple sources of instabilities. Since we have linearised in the Ricci of the connection Rµν, that

sector alone already reproduces the pathologies associated to the projective mode and the ad-

ditional 2-form field that we have extensively discussed in precedent sections. Furthermore,

even if we impose a projective symmetry in an attempt to avoid those pathologies, we can then

straightforwardly integrate out the connection and obtain the equivalent action

Shybrid =
∫

dD x
[p−q qµνRq

(µν) +U (Rµν, q, g)
]
, (7.120)

so we have an Einstein-Hilbert term to describe the dynamics of the (now symmetric) field qµν as

in the healthy RBG theories with projective symmetry. That pure metric-affine sector is then fine.

However, the hybrid couplings introduce yet two additional sources of pathologies.

On the one hand, if we have an arbitrary dependence on the metric Ricci tensor Rg
µν, the theory

will be prone to the usual Ostrogradski instabilities in the metric sector. Furthermore, even if

we avoid those problems by (for instance) utilising only the Ricci scalar of the metric, that is

known to represent a safe higher-order curvature of the metric formalism, the potential U will

introduce arbitrary interactions between qµν and gµν so we will have an interacting bi-metric

theory that will again introduce ghostly modes unless much care is taken in the construction of

the interactions (see e.g. [362]). We can understand this a bit better by considering a simplified

theory where the metric and metric-affine sectors are split as

Shybrid =
∫

dD x
p−g

[
1
2

Rg +F (gµν,R(µν))
]

(7.121)

where we have separated the pure metric sector described by the Einstein-Hilbert action and the

metric-affine sector on which we have imposed a projective symmetry. Each of these sectors by

itself would seem perfectly fine. However, they can talk to each other through the
p−g factor in

the volume element and this will be the source of the problems. In view of our results above and

neglecting matter fields for simplicity, we can expect to have two Einstein-Hilbert terms once

we integrate the connection out. This is in fact the case, but we also generate a potential so the

action reads

Shybrid =
∫

dD x
[p−q

2
qµνRµν+

p−g
2

Rg +U (q, g)
]

, (7.122)

where the dependence on the general potential term in (7.118) can be separated as the R(g)

term in the above action. The resulting action is then a bi-metric theory where the two metrics
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interact through the potential U and it will suffer from a Boulware-Deser ghost [298]. Since this

potential is determined by the function f , only functions that generate the known ghost-free

potentials [300,362] have a chance to be stable.

It is then clear that resorting to a hybrid action not only cannot cure the found instabilities

in RBG theories, but makes things even worse by introducing yet new sources of ghosts. A way

around this general no-go result for stable hybrid theories results in theories where the bi-metric

construction fails. This happens for theories where only the Ricci scalars are allowed, i.e., theories

described by the action

Shybrid =
∫

dD x
p−g f (R,Rg). (7.123)

We can proceed analogously by performing the corresponding Legendre transformations to

linearise in Rg and R, but now we only need to introduce two auxiliary scalar fields instead of

the tensor Σµν so we can rewrite the action as

Shybrid =
∫

dD x
[p−g χ gµνRµν+p−gϕgµνRg

µν+U (ϕ,χ)
]
. (7.124)

From this action we see that now the connection is nothing but the Levi-Civita connection of a

metric that is conformally related to gµν. In other words, the definition of qµν in (7.119) yields

qµν = χ̃gµν, with χ̃= χ 2
D−2 , so we only introduce an extra scalar instead of the full symmetric qµν.

The action then takes the form

Shybrid =
∫

dD x
p−g

[
(ϕ+χ)Rg +2(1−D)χ

(
2 log χ̃+ D2 −4D−4

2
(∂ log χ̃)2

)
+U (ϕ,χ)

]
. (7.125)

It is then apparent that these theories propagate two additional scalars and avoid the Boulware-

Deser ghosts of the general case. Nevertheless, it was found in [361] that even these theories

seem to present tachyonic or ghostly instabilities around a flat Minkowski background so that it

is unavoidable to have some kind of instabilities.

7.3 On ghostly instabilities in general metric-affine theories

So far we have focused on theories constructed in terms of the Ricci tensor alone as a simplified

proxy to prove the pathological character of general metric-affine theories described by higher-

order curvature actions. Our results should suffice to clearly identify the origin for the potential

pathologies in more general metric-affine theories where not only the Ricci tensor appears in the

action, but also arbitrary nonlinear terms constructed with the Riemann curvature tensor.

In general, if we have an action with an arbitrary dependence on the Riemann tensor formulated

in a metric-affine geometry, we can always introduce the splitting of the connection into its Levi-

Civita part, the torsion and the nonmetricity. That way, it is possible to re-formulate the theory

in a purely Riemannian setup with additional nonminimally coupled matter fields.27 These fields,
27We will expand on this argument in section 9.1.
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i.e., the torsion and the nonmetricity, can be decomposed into their irreducible representations

under some appropriate group, GL(4,R) or ISO(1,3) (the Poincaré group) being natural choices

(see e.g. [47]), and they will feature nonminimal couplings to the curvature and, quite generically,

these will involve either derivatives of the fields or couplings of spin higher than zero. In both

cases, as it is well-known, such interactions are prone to be pathological, as they typically excite

Ostrogradskian instabilities. In the precedent sections we have explicitly shown how these

expected pathologies come about for a particular class of metric-affine theories, but it is clear

that the same problems will persist for more general actions. Particularly, only when the extra

fields drop from the spectrum due to the imposition of projective symmetry could we have stable

theories28 and, in that case, the gravitational sector simply reduces to GR.

It is important to emphasise that we are providing a general argument against some commonly

quoted statements29 that the metric affine theories avoid instabilities because the field equations

remain of second-order. This does not mean however that all metric-affine theories with higher-

order curvature terms featuring additional propagating degrees of freedom (other than the

graviton) will be pathological, but rather that one should be careful on how these theories are

constructed and not give for granted that the very fact of using a metric-affine formulation

prevents the appearance of ghosts from operators involving arbitrary powers of the Riemann

tensor.

Of course, nonpathological theories exist and they can be constructed in a variety of manners

(some of which we have discussed in section 7.2.3, usually introducing additional symmetries,

constraints or geometrical identities. However, it should be clear from our discussion that one

should in general be careful when constructing theories in a metric-affine framework. Indeed,

there are recent works that point in the same direction as our discussion. Particularly, the

general problematic character of metric-affine gravity theories can be seen from the analysis of

the perturbative degrees of freedom of the most general quadratic metric-affine theory around

Minkowski performed in [111]. There, it was shown that already at that level, wise choices of

parameters must be taken to avoid instabilities. Indeed, when all metric-affine covariant terms

(not only curvature-based) are considered in the action, even imposing projective symmetry was

not enough to generally stabilise the theory.

It is important however to stress that our analysis above goes beyond the linear regime

around Minkowski and, in fact, some of the diagnosed instabilities cannot be seen from such

28Except in exceptional cases with constrained geometries, but these cases do not fit into the purely metric-affine
framework, as they involve a priori assumptions on the affine structure of spacetime. Furthermore, the resulting
theories always propagate a massless spin-2 field that can be identified as GR, and the extra fields, like the Proca field
in the torsion-free case, can be regarded as matter feilds.

29From a field theoretic perspective it is evident that having second-order field equations is not a sufficient reason
to guarantee the absence of Ostrogradski instabilities, a straightforward argument being that it is always possible
to reduce the order of the equations by introducing auxiliary fields. However, in the community with a stronger
geometrical approach to gravity this seems to be less clear.
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a perturbative analysis. Thus, though the perturbative analysis gives necessary conditions for

stability, these are not sufficient to ensure the nonlinear stability of the theories. For an example

of how a perturbative analysis may not be sufficient to ensure the stabiility of the full nonlinear

theory see e.g. [353,356,357] within the context of Poincaré gauge theories of gravity.

Let us finally briefly comment on how our results can be relevant from a purely effective field

theorist approach to the metric-affine theories. This approach has been thoroughly pursued

in [110] within the class of Riemann-Cartan geometries including up to dimension 4 operators.

We have seen that higher-order powers of the Riemann tensor generically introduce ghost-like

instabilities in the metric-affine formalism very much like in the metric approach and essentially

for the same reasons. It is possible however to adopt an EFT approach where these would just

be irrelevant operators with perturbative effects below the cutoff of the theory. In this view, the

ghosts are not really part of the perturbative spectrum of the theory because their masses lie

beyond the domain of validity of the EFT so they are harmless. If the gravitational cutoff is

assumed to be the Planck mass and the Wilsonian coefficients are O (1) according to naturalness

arguments, then the resulting EFT will be similar to the usual EFT approach to GR but containing

additional modes that (at least form a field theoretic perspective) can be regarded as matter fields.

On the other hand, if we assume that the Planck scale only represents the cutoff for the purely

metric sector and the metric-affine sector comes in with another cutoff scale Λ<MP, then one

would expect a breakdown of the effective theory at that scale. As commented also in section

8, this implies that classical solutions where the curvature becomes larger than Λ cannot be

generically trusted in the sense that they are mathematical solutions to a set of field equations

that make physical sense only when the energies (curvatures) are kept below Λ.
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8
METRIC-AFFINE GRAVITY THROUGH THE EFT LENS

We have discussed in the previous chapters several features that are particular to RBG

theories, signalling in due case how these features generalise to more general metric-

affine theories. In this chapter we will digress on how RBG theories can be understood

as effective theories, even though they do not fit well into the principles of the Effective Field

Theory (EFT) framework. We will also discuss some generic features expected on an EFT of

a metric-affine gravitational sector and discuss some of the perturbative features of generic

metric-affine theories. To begin with the discussion, let us review the crucial features of RBG

theories that are relevant to it (see chapter 4 for details). The action of RBG theories is of the

form

S = 1
2

MQ
−4

∫
d4x

p−g L (gµν,MG
−2R(µν))+Sm , (8.1)

where L is any analytic function of the metric and the symmetrized Ricci tensor, and Sm

represents the matter action where the matter fields Ψm couple either algebraically to the

connection or through the symmetrised Ricci tensor. The reason why only the symmetric part

of the Ricci tensor is considered is because, as seen in chapter 7, including the antisymmetric

part unleashes ghostly degrees of freedom. This restriction can be enforced through a symmetry

principle, namely by imposing symmetry under projective transformations

Γαµν 7→Γαµν+ξµδαν. (8.2)

By computing the connection field equations it is possible to verify that the connection enters as

an auxiliary field in all RBGs. This is even more apparent in the Einstein frame of the theory

(4.47), where the gravitational sector is described by metric-affine GR for a metric qµν defined

in terms of ∂(L +Lm)/∂R(µν) and on-shell related to the metric gµν and the matter fields. This

on-shell relation is indeed what allows to build the Einstein frame by a field redefinition of the
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metric gµν in terms of qµν and the matter fields, which now yields a matter sector coupled to qµν

with additional interactions1 among the matter fields. In the case that the matter fields couple

to the connection only through the symmetrised Ricci tensor, the equations for the connection

in this frame are algebraic, so that the connection is an auxiliary field that obeys a constraint

equation. Its solution is uniquely given by the Levi-Civita connection 2 of qµν up to a projective

mode, which is unphysical in the case with projective symmetry. Thus, we see that RBG theories

coupled to matter are just constrained theories which, when (some of) the constraints are solved,

turn out to be GR coupled to a nonlinearly modified matter sector with the same matter degrees

of freedom.

These nonlinear modifications of the matter sector can be encoded into the deformation matrix

Ωµ
ν, defined by (4.14), and which relates the metrics gµν and qµν by (4.13), and on-shell for the

metric field equation, can be written perturbatively in terms of the matter fields as

Ωµ
ν =

3∑
n=0

Cn

(
T

MQ
4

)
(Tµ

ν)n

MQ
4n (8.3)

where the Cn are model dependent scalar functions and T is the trace of the stress-energy

tensor Tµ
ν. Strictly speaking, the above on-shell relation (8.3) holds for the (likely more physical)

branch of solutions that reduce to GR in the low energy limit. This can be important because

the deformation matrix satisfies a nonlinear equation in terms of the stress-energy tensor and,

besides the solution (8.3) that could be obtained by imposing Lorentz covariance in both frames,

there could be other branches with spontaneous symmetry breaking (see chapter 5 for details).

However, these nonstandard branches are seemingly pathological and, since we want to recover

GR at low energies, (8.3) is the relevant series expansion for the solution. As a remark, we note

that one could be concerned with the fact that, in the non-perturbative regime of the theory,

the field redefinition that leads to the Einstein frame might be singular. However, that does not

necessarily mean that the solutions written in the Einstein frame variables do not have physical

sense, but it can rather be interpreted as the RBG field variables not being physically sound

field variables in those regimes of the theory. In any case, these concerns escape the realm of

effective theories, which is where the discussion of this chapter takes place. Indeed, from the EFT

perspective, the field redefinition is given by the above perturbative series (8.3), which provides

in fact the relevant regime. An important feature of the above expansion of the deformation

matrix that will be relevant for the later discussion on the embedding on the EFT framework of

1If there is any term that is nonlinear in the symmetrised Ricci tensor present in the gravitational sector of the
action, these new interactions couple every one of the degrees of freedom of the matter sector. If the only symmetrised
Ricci terms, besides from the Einstein-Hilbert term, appear in the matter action coupling nonminimally to some of the
matter fields, the role of this terms is to couple these matter fields to all of the matter fields in the theory.

2If there are matter fields that couple to the connection algebraically (i.e., without derivatives), then these
couplings will not change the auxiliary character of the connection, but will introduce modifications in the connection
that make it depart from the Levi-Civita connection of qµν, just as what happens in metric-affine GR when one
considers Dirac fields, where the connection has a term quadratic in the fermions.
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these theories is that, given that the stress-energy tensor usually satisfies the symmetry of the

matter action, then the symmetries of the original matter sector are generally preserved when

going to the Einstein frame at least at the perturbative level, which is the relevant one within

the EFT framework.

Of course, one can build more general metric-affine theories involving arbitrary functions of

the Riemann, nonmetricity, and torsion tensors as well as their derivatives in the action. As

outlined in chapter 9, such theories generically propagate a massless spin-2 mode encoded in

some metric qµν plus other degrees of freedom that are not present in GR. We first focus on pure

RBG corrections to GR because they provide a particular kind of effects which will also be present

in these more general theories, given that a piece of their action will be of the RBG type, and

may be constrained well before those new degrees of freedom may become observable. Hence, we

will postpone the discussion of the most general case after discussing in detail on the RBG-type

corrections, their interpretation as effective theories, and their possible embedding in the EFT

framework.

8.1 Ricci-Based corrections and EFTs

When the matter sector is interpreted within the realm of the effective field theory framework

(EFT), the fact that RBG theories can be written as GR coupled to a nonlinearly modified matter

sector leads to a curious consequence: there is no observational difference between an RBG and

GR if both are coupled to a matter sector described within the EFT framework. In the EFT

framework (see e.g. [363]) one intends to give a description of the phenomena occurring below the

cutoff scale M where UV physics is accounted for by higher dimensional operators suppressed by

powers of this mass scale.3 The power of this framework stems from the fact that this can be done

in great generality without knowing at all the details of the particular UV theory. This is done as

follows: 1) identifying the set of degrees of freedom (or fields) that describe the spectrum of the

theory in the IR regime. 2) Choose a preferred set of symmetries that is assumed to be satisfied

by the UV theory, which will be referred to as the symmetries of the EFT. 3) Construct the most

general Lagrangian that can be built with all the low energy fields that is consistent with the

chosen symmetries. With this simple algorithm, one parametrises all the possible observable

effects that can be seen by doing experiments involving only low energy degrees of freedom in the

case that the UV theory satisfied those symmetries, no matter what its spectrum or dynamics

would be.

Let us outline how one proceeds in order to build such a Lagrangian. Given a set of asymptotic

states described by the fields Ψi, and a set of symmetries of the EFT, the corresponding EFT

3Here UV/IR (or high/low energy) refers to energies greater/lower than the EFT scale M. By construction, the EFT
will only be physically meaningful at energy scales below M, as unitarity is typically broken above it.
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Lagrangian is defined by Leff = L0 +L d>4
eff where L0 contains all the relevant and marginal

operators (d ≤ 4) and L d>4
eff contains all the possible irrelevant operators (d > 4) that can be built

with the fields Ψi and their derivatives which respect the EFT symmetries. As is well known,

the set of mass dimension-d operators of a given quantum field theory forms a vector space Ad.

Furthermore, two operators are said to be equivalent, in the sense that they contribute equally to

physical observables, if they differ (up to a total derivative) by an on-shell constraint4. Hence, Ad

can be split into the equivalence classes defined by this relation, and it suffices to consider one

operator of each class to have a physically complete basis of Ad (see e.g. [365]). Thus, without loss

of generality we can write

L d>4
eff =

∞∑
n=5

∑
in

α(n,in)

Mn O(n,in), (8.4)

where the set {O(n,in)}in is a basis of An and in runs from 1 to its dimension. The dimensionless

constant α(p,q) is called Wilson coefficient of the operator O(p,q). Assuming naturalness, the Wilson

coefficients will be of O (1) and the EFT defined by (8.4) will be generically valid at energies below

M, as unitarity will typically be violated above this scale for natural Wilson coefficients. As a

remark, it is interesting to notice that the violation of tree-level unitarity does not imply the

necessity of including new physics at that precise scale as shown for instance with the self-healing

mechanism discussed in [366].

Let us now couple a matter sector described by an EFT with Lagrangian Leff to a gravitational

sector given by a particular RBG theory. This might appear as an odd construction because

the EFT philosophy should also be employed in the construction of the gravity sector. However,

there is nothing a priori inconsistent with considering an RBG gravity sector and our interest

here is precisely to discuss how these gravity theories can fit into the EFT framework. Since

a perturbative field redefinition allows to write the theory as GR coupled to a matter sector

with the same degrees of freedom and symmetries as the original one below the scale MQ, the

mapped EFT retains its structure, i.e., the basis of operators of the original EFT is still a basis

of the mapped EFT. In other words, the ‘new’ operators that appear after the field redefinition

that allows to go to the Einstein frame were already present in the original matter Lagrangian.

Before proceeding further, it may be in order to digress a bit here again on the preservation of

the symmetries when going to the Einstein frame. In the EFT matter sector there will be gauge

symmetries that have to do with massless particles and are fundamental for the correct number

of degrees of freedom. We do not expect the Einstein frame formulation of the theory to change

this because the stress-energy tensor of the gauge fields will also be gauge invariant. Regarding

global symmetries, these typically arise as accidental symmetries of the low energy theory but

can be broken by higher dimension operators. Thus, when going to the Einstein frame in the

RBGs no new operators will be generated.

4The field equations of the EFT can be calculated order by order. To a given order, an on-shell constraint is an
operator proportional to the lower order field equations, which by definition vanish on-shell (see e.g. [102,364]).
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In view of the above discussion, we note the following: if the original matter Lagrangian was

already an EFT with cutoff scale M, so that its Lagrangian was a linear combination defined

by the arbitrary Wilson coefficients α(n,in) of the operators {O(n,in)}in , which provide a physical

basis of the space of operators of the theory, it should be clear that the effect of the nonlinearities

introduced in the matter sector after the mapping can be reabsorbed into a redefinition of the

Wilson coefficients5 α(n,in) 7→ α̃(n,in) which schematically looks like

α̃(4n,in) =α(4n,in) +β(n−4,in)

(
M

MQ

)n−4
. (8.5)

where the β(n,in) are related with the Cn coefficients and the (Tµ
ν)n tensorial structures appearing

in (8.3). Since by construction the Wilson coefficients are arbitrary in an EFT6, this redefinition

is not relevant, and the matter sector coupled to the Einstein frame metric qµν describes exactly

the same EFT as the one coupled to the RBG frame metric gµν. There is a subtlety that can arise

here: If the scale MQ is much below the matter EFT scale M, then the redefinitions in (8.5) spoil

the naturalness of the Wilson coefficients, which would generally restrict the range of validity of

the EFT to energies below MQ.

As a consequence of the above discussions we arrive at the following conclusion: though the

predictions of a given RBG coupled to a given matter sector will differ in general from those of

GR coupled to the same matter sector, if the matter sector coupled to the RBG is built within the

EFT framework, its predictions will be indistinguishable from those of GR coupled to the same

EFT. This has been illustrated explicitly in section 4.2 by the coupling of EiBI gravity to Maxwell,

which is equivalent to the coupling of GR to Born-Infeld electromagnetism rather than of GR to

Maxwell. However, if instead of Maxwell we hd considered an EFT for the electromagnetic field,

then the matter sector would be the same in both frames.

If the EFT approach is extended to the gravitational interactions, it is straightforward to

see that the EFT for a general metric-affine sector cannot be reduced to an RBG by imposing

any symmetries involving the metric and/or affine connection, even at the lowest order. To

see this explicitly, let us review the symmetries satisfied by RBG theories and explore the

consequences to their imposition to an EFT of a metric-affine sector at lowest order. Starting with

symmetries related to the metric, RBG theories need not satisfy none appart from invariance

under diffeomorphisms, hence these symmetries would not (in principle) be of any help in reducing

the general metric-affine EFT to an RBG theory. Concerning the affine sector, there is only one

known symmetry that symmetric RBG operators enjoy, namely a projective symmetry. The

lowest order (quadratic) EFT Lagrangian for a general metric-affine sector with diffeomorphism

5Note that by the structure of (8.3), the new operators that will enter the Lagrangian after the mapping are of
mass dimension 4n, and therefore only the Wilson coefficients corresponding to 4n-dimensional operators will be
nontrivially changed.

6Of course, they can be constrained by experiments, thus ruling out regions of parameter space. But regarding the
theoretical construction of the EFT, these are arbitrary coefficients
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symmetry is given by7 [11]

L (2)
MAG =R+a1TαµνTαµν+a2TαµνTνµα+a3TµTµ+b1QαµνTναµ+b2QµTµ+b3Q̄µTµ

+ c1QαµνQµαν+ c2QαµνQµνα+ c3QµQµ+ c4Q̄µQ̄µ+ c5QµQ̄µ
(8.6)

where Q̃µ, Qµ and Tµ are suitale traces of the nonmetricity and torsion tensors. A starting point

to see whether this can be reduced to its RBG piece (the Einstein-Hilbert action) by enforcing

symmetries of the affine sector would be to try projective symmetry. Invariance of the above action

under an infinitesimal or finite projective transformation in an arbitrary spacetime dimension D

leads to the following rank 3 system of linear equations for the 11 coefficients

b1 + (D−1)b2 −4c1 −4Dc3 −2c5 = 0

b1− (D−1)b3 +4c2 +4c4 +2Dc5 = 0

4a1 +2a2 +2(D−1)a3 −2b1 −2Db2 −2b3 = 0

(8.7)

which clearly does not force the general theory to be of the RBG kind. Given that RBGs are not

(in general) invariant under other transformations in the affine sector, it appears hopeless that

symmetries can restrict a general metric-affine quadratic Lagrangian to be of the symmetric

RBG type, even if one has to sacrifice some operators of the symmetric RBG class as well. We

could go on by trying to make sense only of a subclass of the RBG theories by finding a larger set

of symmetries which happen to constrain the general metric-affine quadratic action to lie within

this subclass. For instance, we could consider the three kinds of vectorial transformations of the

connection (see e.g. [348]), but this would only fix five of the coefficients, while actually forbidding

any operator within the symmetric RBG class. Indeed, neither the Einstein-Hilbert Lagrangian

nor the general teleparallel equivalent of GR are invariant under vectorial symmetries other than

the projective one, which suggests that such a theory would not propagate a desired massless spin-

2 mode at low energies even if constraints to the geometry are imposed. Given that symmetries

are unable to make sense of RBG theories within the EFT framework, let us now elaborate on

whether a restriction on the new degrees of freedom that the affine sector can propagate could

select RBG theories among the class of general metric-affine theories. As we know, apart from

the matter degrees of freedom, RBGs only propagate a massless spin-2 mode. Hence, in order

to restrict a general metric-affine Lagrangian to be of the RBG type by restricting the allowed

degrees of freedom, we would end up building the effective field theory of a massless spin-2 field,

which is a purely metric theory that describes GR at low energies [109,367], and where the affine

sector needs not play any role at all. Indeed, the symmetric RBG operators are irrelevant in

vacuum and redundant if one considers an EFT of the matter sector as well. Therefore, it appears

that RBGs cannot be consistently embedded into the EFT framework this way. Actually, this line

of thinking can be reversed, leading to stronger consequences: if there existed a set of symmetries

7These 12 operators form a basis (in the sense described above) of the dimension 2 diffeomorphism invariant
operators that can be built with a metric and a connection.
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that would reduce a general metric-affine EFT to be of the RBG type, this would require that

the resulting effective theory only propagates a massless spin-2 mode in vacuum, which in turn

implies that such theory would be a particular case of an effective theory of a massless spin-2 field

coupled to an effective matter sector, though it would not be the most general possible effective

theory compatible with the symmetries, as required by the principles of the EFT framework. As a

conclusion, we state that RBG theories cannot be properly embedded within the EFT framework

of a metric-affine sector. Nonetheless, this does not preclude RBG theories from being regarded

as physically sound effective theories for perturbative phenomena at energy scales E <MQ, but

then its effects are identical to those of (some of) the irrelevant operators of the matter sector.

These results suggest the possibility of finding other metric-affine operators which are redundant

when a full metric-affine EFT is considered.

From a nonperturbative perspective, there are RBGs able to remove cosmological and black

hole singularities at the classical level, restoring geodesic completeness via the emergence of

wormholes or cosmological bounces. However, quantum corrections in the matter sector of those

theories are likely to strongly backreact onto those backgrounds, potentially rendering them as

unphysical [75]. In this regard, it is important to recall that there are effective theories with

irrelevant operators that satisfy nonrenormalization theorems. This property is important at a

phenomenological level because it allows to have nonperturbative classical effects from nonrenor-

malisable operators while maintaining the quantum corrections under control. The paradigmatic

example is of course General Relativity where the Planck mass in front of the Einstein-Hilbert

term does not get renormalised by graviton loops.8 It receives quantum corrections from matter

loops, but these are typically O (m2/MP
2) . 10−30 for the standard model particles, so that GR

is actually an excellent quantum EFT (see e.g. [21,367,368])9. Of course, there is the problem

of the cosmological constant, but this is a naturalness problem rather than a breakdown of the

EFT. Similarly, theories like nonlinear electrodynamics, K-essence, or Galileon theories exhibit

analogous properties for their quantum corrections. Thus, if we take RBG theories and the matter

sector is composed by e.g. a massless scalar field solely, the Einstein frame version of the theory

after integrating out the connection will give rise to a K-essence model with a Lagrangian of

the form L =Λ4
φK(∂µφ∂µφ/M4), with Λφ and M some mass scales. The nonperturbative regime

of the original RBG theory can then be mapped into a phenomenological effect arising from

nonrenormalisable operators in K where M corresponds to the scale of nonlinearities and Λ

is parameterically given by Λ2 ∼√
MPM (thus playing the role of MQ). The structure of these

scalar theories, in particular their shift symmetry, guarantees that the quantum corrections

8There is a simple argument that explains why this is the case. If we consider the so-called ΓΓ Einstein form for
the GR action (i.e. the Einstein-Hilbert Lagrangian deprived of the total derivative term), then diffeomorphisms are
only realised up to a boundary term. Since Feynman diagrams realise the symmetries in an exact form, all loops can
only generate quantum corrections to the higher order terms.

9My colleague an mentor Jose Beltrán-Jiménez can hardly resist referring to Weinberg’s words on the topic [?]
whenever the topic is up to discusion.
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will come in with derivatives of the Lagrangian ∼ ∂K so it is plausible to have a regime where

∂µφ∂
µφ/M4 & 1 while quantum corrections are kept under control and the irrelevant operators

in the classical action are technically natural (see e.g. [369,370] for explicit derivations of these

statements).Thus, the nonperturbative classical solutions have a chance of surviving and we can

trust their predictions. Similarly, the quantum corrections in nonlinear electrodynamics can be

kept small even in regions where the electromagnetic fields are above the scale of nonlinearities,

namely |Fµν|& M2, being Born-Infeld electromagnetism a paradigmatic example.

Regarding the posibility of the Einstein frame effective operators of the matter sector being

nonrenormalisable operators, so that they can lead to observable nonperturbative effects, an

important concern with RBG theories is that the irrelevant operators generated after integrating

out the nondynamical connection are somewhat universal, in the sense that they will involve

all fields in the matter sector. Therefore, when coupled to the Standard Model, this universal

nature of the RBG theories will typically lead to an EFT in the Einstein frame without any

underlying symmetry or structure guaranteeing any nonrenormalisation result or naturalness of

the resulting interactions like in the case of pure K-essence or nonlinear electrodynamics. Quite

the opposite, the very presence of the Higgs field and its potential already points towards the

impossibility of having nonperturbative classical solutions based on irrelevant operators without

going beyond the regime of validity of the would-be EFT. Leaving aside these issues with quantum

corrections, one should not forget that part of the interest on these theories stems from their

nonperturbative properties as classical field theories, as they accommodate a plethora of exact

solutions with interesting features which can expand our dictionary of viable spacetimes, such as

singularity free cosmological and spherically symmetric backgrounds [62,63,65,214,371,372],

as well as wormholes and other compact objects which behave in interesting and unexpected

ways [67–69,213,215,216,263,373].

8.2 On a general metric-affine sector

We have just argued why RBG theories do not fit the EFT framework because one cannot

reduce a general metric-affine Lagrangian to an RBG one by means of enforcing symmetries. This

suggests to take a closer look at the EFT of a general metric-affine sector to understand what

properties would it have in the perturbative regime, and whether there is any subclass of theories

that do fit well within the EFT framework. To that end, it would be helpful to understand the

general dynamics of these theories, or at least relate some of its aspects to those occurring in

particular subsets among the general metric-affine class that we understand better such as RBG

theories.
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8.2.1 Aspects of general metric-affine field equations

Let us then consider a general diffeomorphism invariant metric-affine, theory where the

fundamental fields are a metric gµν and an affine connection Γαµν. Diffeomorphism invariance

forces the action to depend on scalars built with the metric, the Riemann and torsion tensors

of the connection, and covariant derivatives of these objects.10 Let us split the dependence on

the connection in terms of two variables, namely the symmetric part of the Ricci tensor of the

connection R(µν), and the rest, which we will denote by the dimensionless quantity11 Γ̃Ric and

can depend on the metric as well. Though this splitting, strongly inspired in RBG theories, might

seem quite arbitrary and meaningless, as we will see, the R(µν) terms contribute to the connection

equation in a way that can be absorbed into a new metric qµν related to the metric gµν by a

field redefinition. Due to this fact, some properties of the theory become more apparent when

described with this choice of field variables. In this regard, we will also see that this redefinition

allows to write a piece of the nonmetricity tensor ∇g in a particular form that is related to a

generic effect of the symmetric RBG corrections. We will thus consider an action of the form

S = MQ
4

2

∫
dD x

p−g L
[
gµν,MG

−2R(µν), Γ̃Ric,Ψi
]
, (8.8)

Where Ψi denotes an arbitrary collection of matter fields, usually separated into a matter sector

described by Lm, which couple to the metric at least through their kinetic terms, and in an

arbitrary way to the connection. MG is a heavy mass scale that controls the deviations from

the metric-affine Einstein-Hilbert (EH) term, and MQ is the geometrical mean of this scale and

the Planck scale, namely MQ = √
MPMG . There are several ways to ensure that we recover

GR at low energies for the metric gµν. For instance, one may impose geometric restrictions so

that the curvature vanishes and the Lagrangian reduces to the general teleparallel equivalent

to GR or associated [8–11]. However, the idea of the metric-affine formalism is to avoid any a

priori assumption on the affine structure such as vanishing curvature, torsion, nonmetricity or

combinations. Hence, the only way to ensure that GR is recovered at low energies for the metric

gµν is to impose that the lowest order term in the Lagrangian be the EH term, thus having

L = 1
MG

2 gµνR(µν) +F
[
gµν,R(µν), Γ̃Ric,Ψi

]
, (8.9)

where R(µν) = MG
−2R(µν) is a normalised dimensionless symetrised Ricci tensor and F is a

dimensionless scalar function that encodes higher-order corrections to the Einstein-Hilbert (EH)

term. The vanishing of this action for arbitrary infinitesimal variations of the connection gives

the field equations for the connection, which can be written as

∇λ
[p−g

(
gµν+ ∂F

∂R(µν)

)]
−δµλ∇ρ

[p−g
(
gνρ+ ∂F

∂R(νρ)

)]
=MG

2F̃λ
µν(gµν,R(µν), Γ̃Ric,Ψi) (8.10)

10Note that the nonmetricity appears as covariant derivatives of the metric
11Each of the terms inside Γ̃Ric will be suppressed by powers of a heavy mass scale MG to render it dimensionless.
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where F̃λ
µν (2,1)-tensor with mass dimension −1, so that the leading order terms are of order

MG
−2 and correspond to the linear torsion terms of (4.26). In general F̃λ

µν will be a function of the

metric, Γ̃Ric, the collection of matter fields, though the functional dependence of this (2,1)-tensor

on the matter fields does not arise in the case that they couple to the connection only through

R(µν) or do not couple at all. Note that the hypermomentum term appearing in (4.26) is included

in this tensor, but it is negligible in a perturbative expansion with respect to the other corrections,

as it is of order MP
−2. Defining now

p−g
(
gµν+ ∂F

∂R(µν)

)
=p−q qµν (8.11)

we have that qµν(gαβ,R(αβ), Γ̃Ric,Ψi). Assuming invertibility of this relation, and inverting it

with respect to the metric, allows to write gαβ(qµν,R(µν), Γ̄Ric,Ψi), where a bar over a previously

tilded quantity indicates that its dependence on gµν has been removed in favour of qµν through

the above algebraic relation. We can then write the connection field equations (8.10) as

∇λ
[p−q qµν

]−δµλ∇ρ [p−q qνρ
]=MG

2F̄λ
µν(qρσ,R(ρσ), Γ̄Ric,Ψi). (8.12)

On the other hand, the metric field equations read12

∂L

∂gµν
− 1

2
L gµν = 0, (8.13)

which can schematically be written as the vanishing of some function f̃µν(gρσ,R(ρσ), Γ̃Ric,Ψi)

which, using the algebraic relation between gµν and qµν provided by (8.11) leads to writing the

metric field equations as

f̄µν(qρσ,R(ρσ), Γ̄Ric,Ψi)= 0. (8.14)

Again, these equations in turn provide an algebraic relation R(ρσ)(qαβ, Γ̄Ric,Ψi), which allows to

write the connection field equations (8.12) as

∇λ
[p−q qµν

]−δµλ∇ρ [p−q qνρ
]=MG

2F̂λ
µν

(
qρσ, Γ̄Ric,Ψi

)
, (8.15)

where a hat over a previously tilded quantity indicates that its dependence on R(µν) has been

removed in favour of qαβ, Γ̄Ric and the matter fields through the algebraic relation (8.13). Now, we

know that the homogeneous version of (8.15) is exactly the connection field equation for metric-

affine GR, which is an algebraic equation for the connection. Hence, for the homogeneous case, the

connection is an auxiliary field that can be written in terms of qµν and its first derivatives as the

Levi-Civita connection of qµν as a solution up to a projective mode. However, the inhomogeneous

part, due to the dependence in Γ̄Ric, will generally depend on derivatives of the connection,

turning it into a dynamical field and unleashing potentially dangerous extra degrees of freedom

12Note that here the dependence of the matter fields is inside L so that if decomposed onto a gravitational plus a
matter sector Lm, the first term of (8.13) contains the usual stress-energy tensor of the matter sector that appears
usually in the right hand side of the metric field equations.
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to the theory, as shown in chapter 7. In any case, we know that in the low energy/curvature limit

of the theory, the function F controlling deviations from the Einstein-Hilbert Lagrangian in (8.9)

must vanish (or contribute at most with a cosmological constant), so that in that limit, F̂µ
αβ

is perturbatively close to a projective mode that in such case is spurious due to the projective

symmetry of the EH term. Thus, in the low energy limit, we will have that the connection is

given by the Levi-Civita connection of the metric qµν. In virtue of the decomposition of a general

connection (2.82), this suggests to write the full solution of the connection equation (8.15) as

Γαµν = qΓαµν+Υα
µν

(
qρσ, Γ̄Ric,Ψi

)
, (8.16)

where Υ must be a solution to the inhomogeneous piece of the connection equation, namely

Υα
µσqσβ+Υβ

µσqασ−Υσ
µσqαβ = MG

2

p−q
F̂µ

αβ
(
qρσ, Γ̄Ric,Ψi

)
, (8.17)

and where Γ̄Ric will generally contain up to n-th order derivatives of qµν and up to (n−1)-th order

derivatives of Υα
µν.

8.2.2 Perturbative solutions and a general metric-affine EFT

From the structure of general metric-affine theories, we see that if there are terms in the

action that depend of the symmetrised Ricci besides the EH term, then there is an effective

metric which solves the homogeneous equation for the connection as in RBG theories. Though

the connection will exhibit nontrivial dynamics in the general case as opposed to being an

auxiliary field, we know that at the perturbative level it will be the Levi-Civita connection of qµν

up to corrections suppressed in inverse powers of MG. As well, qµν and gµν will also differ by

perturbative corrections. To see this, note that the leading order term in F that depends on the

symmetrised Ricci tensor will be at least of order MG
−4, as it is associated to the quadratic Ricci

term in F. Therefore ∂F/∂R is at most of order MG
−2. We can use this to invert the definition of

qµν given in (8.11) perturbatively in inverse powers of MG to obtain

gαβ = qαβ− ∂F
∂R(αβ)

+O
(
MG

−3)
. (8.18)

We can now write explicitly the MG
−2 dependence of the correction by defining Θµν as the leading

order term of the expansion of ∂F/∂R(µν) in inverse powers of MG when this derivative is written

in terms of qµν, ∂qµν, Υα
µν and the matter fields Ψi through the algebraic relations (8.11) and

(8.14) and after substituting the solution for the connection (8.16) taking into account only the

relevant terms up to order MG
−2. By doing so, we find the perturbative on-shell relation

gαβ = qαβ−MG
−2Θµν(qµν,∂qµν,Υα

µν,Ψi)+O
(
MQ

−3)
, (8.19)

whereΘ is of 0-th order in MG and of mass dimension 2. In virtue of (8.15), (8.16), the perturbative

expression that we obtain for the nonmetricity tensor Qα
µν =−∇αgµν from the above relation is

Qα
µν =MG

−2∇αΘµν−Υσ
αβqβν−Υσ

αβqβν+O (MG
−3). (8.20)
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Note that in the limit MG →∞, the above theory becomes GR, gµν = qµν, and Υα
µν becomes

an unphysical projective mode, so that the residual nonmetricity can be gauged away with an

appropriate choice of projective gauge. Thus, we see that the scale MG controls both the piece

of the nonmetricity tensor with physical relevance and the difference between the metrics gµν

and qµν. Hence, in any metric-affine theory yielding the EH Lagrangian at low energies and

where the symmetrised Ricci tensor appears in the action in higher order corrections, will have a

connection which, perturbatively, can be written as the Levi-Civita connection of a metric qµν

plus corrections suppressed by a high-energy scale MG that controls the deviations from the

EH Lagrangian. Perturbatively, this metric qµν will differ from gµν due to the MG suppressed

corrections that contain explicitly the symmetrised part of the Ricci tensor through the Θµν. This

goes hand in hand with a nonmetricity tensor that is also controlled by MQ and proportional to

the covariant derivative of this Θµν tensor. Indeed, this nonmetricity tensor necessarily features

two pieces: 1) a piece containing derivatives of the connection that will generally excite new

degrees of freedom associated to it, and vanishes unless the torsion tensor, the nonmetricity

tensor, other irreducible pieces of the Riemann tensor apart from R(µν), appear explicitly in the

Lagrangian (8.9). 2) A piece that is perturbatively related to the Θµν tensor, which is directly

related to the MQ suppressed corrections that contain explicitly the symmetrised part of the Ricci

tensor, perturbatively relates qµν and gµν, and vanishes in the absence of these corrections.

Note that the matter fields in (8.9) couple to the metric gµν at least through their kinetic

terms and the volume element. Thus, by means of (8.19), we can perform a perturbative field

redefinition of the metric so that the matter fields couple to qµν and the action (8.9) will feature

new interactions among the matter fields that were not present in the original matter Lagrangian.

Moreover, these interactions are intimately related to the higher-order symmetrised Ricci cor-

rections to the EH piece of the action, and thus to the presence of a nonmetricity tensor of the

form (8.20). This redefinition may seem arbitrary, but it is motivated by what happens in RBG

theories. There, Γ̄Ric is not present in the action, and the result is that the theory described in

terms of the field variables qµν is GR coupled to a modified matter sector, which is modified

precisely due to the Θ tensor which, in that case, depends only on the metric qµν and the matter

stress-energy tensor multiplied by the inverse squared of the Planck mass, and introduces new

effective interactions through the stress energy tensor suppressed by powers of MQ as we will see

below more explicitly. In the RBG frame of the theory, the nonmetricity tensor is also given by

the covariant derivative of this Θ tensor and is as well controlled by the heavy mass scale MQ,

having as well a close relation to the appearance of effective interactions in the Einstein frame of

the theory.
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8.2.3 Einstein-like frame and ghosts in general metric-affine theories

The above discussion can also be done in a cleaner and more systematic way by building a

generalised Einstein-like frame for generic metric-affine theories, which will also clarify why

the apparently arbitrary field redefinition of the metric gµν introduced in (8.11) is useful. In an

analog manner as for RBG theories, we proceed by linearising the above action (8.8) with respect

to the symmetrised Ricci tensor. Thus, mimicking the procedure, let us linearise the general

Lagrangian for a metric-affine theory (8.8) with respect to the symmetrised Ricci tensor leads to

S = MQ
4

2

∫
dD x

p−g
[
L

(
gµν,Σµν, Γ̃Ric,Ψi

)+ ∂L

∂Σµν

(
MG

−2R(µν) −Σµν
)]

(8.21)

where Σµν is an auxiliary field13 whose field equation is the constraint MG
−2R(µν) provided that

the hessian of the Lagrangian with respect to Σµν does not vanish. When the constraint for the

auxiliary field is implemented, it can be integrated out and the resulting action is exactly (8.8),

so that the theories are equivalent. We can now introduce a new field variable qµν through the

following field redefinition
p−q qµν =p−g

∂L

∂Σµν
, (8.22)

which, by solving algebraically with respect to Σ allows to express the auxiliary field as a function

of the qµν, gµν, Γ̃Ric and the matter fields Ψi through the solutions Σ(q, g, Γ̃Ric,Ψi). Note that

once the constraint stemming from the field equations of the auxiliary field is implemented, the

above field redefinition looks exactly like the definition for qµν given in (8.11). After this field

redefinition, we can then express a general metric-affine action as

S = MP
2

2

∫
dD x

[p−q qµνRµν+MG
2 U

(
q, g, Γ̃Ric,Ψi

)]
, (8.23)

where recall that MQ =MPMG, and we have introduced the dimensionless generalised potential

term

U
(
q, g, Γ̃Ric,Ψi

)=p−g
[
L − ∂L

∂Σµν
Σµν

]
Σ=Σ(q,g,Γ̃Ric,Ψi)

. (8.24)

The action (8.23) already features the standard Einstein-Hilbert term in the first order formalism,

but for the object qµν instead of the metric gµν. Indeed, note that gµν appears algebraically in

the potential U and, therefore, it is an auxiliary field with this choice of field variables whose

field equations are an algebraic constraint

∂U

∂gµν
= 0 (8.25)

that can be solved for gµν to obtain it in terms of qµν, Γ̄Ric and the matter fields Ψi; where the bar

over Γ̄Ric replacing the tilde means that the possible dependence on the metric in Γ̃Ric has been

13We will not write explicitly the dependence of L but in this section it should be assumed that L means
L (gµν,Σµν)
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replaced by the solution. Note that, usually, the matter fields appear in the matter Lagrangian so

that we could split ∂U /∂g into a piece containing only g, q, and Γ̃Ric; and another one containing

the matter fields and g which would be the corresponding stress-energy tensor (4.3) multiplied by

MP
−2. Hence, implementing the constraint equation for gµν back into the action we end up with

S = MP
2

2

∫
dD x

[p−q qµνRµν+MG
2 Û

(
q, Γ̄Ric,Ψi

)]
, (8.26)

where the hat over U accounts for the substitution of g via the constraint. We see that the lowest

order term is just the EH action for qµν and Û contains the deviations to GR and the matter

sector. The metric field equations are now

Gµν(q,Γ)=−MG
2 δÛ

δqµν
(8.27)

where Gµ
ν(q,Γ) is the object on the left hand side of (4.10) with an index lowered with the inverse

of qµν; and the term on the right hand side depends on qµν, Γ̄Ric, and contains the stress-energy

tensor associated to the matter sector coupled to the metric qµν. On the other hand, the connection

field equations will now look

∇λ
[p−q qµν

]−δµλ∇ρ [p−q qνρ
]=p−q

[
T µ

λαqνα+T α
αλqνµ−δµ

λ
T α

αβqνβ
]+ δÛ

δΓλµν
. (8.28)

The derivative of Û with respect to the connection corresponds to a piece of tensor F̂λ
µν on the

right hand side of (8.17) and, when the matter fields appear in a the matter Lagrangian so that

we could split the δÛ /δΓ term into a piece containing only q and Γ̃Ric; and another one consisting

on the hypermomentum, defined by (4.27). To keep with the analogy, following (4.28), we can

define a connection Γ̌ shifted by a projective mode as

Γ̌αµν =Γαµν+ 2
D−1

Γ̌λ[λµ]δ
α
ν. (8.29)

Using the trace of (8.28) and, in terms of the redefined connection, which allows to remove the

torsion terms, we can write the connection equation in a more compact way, namely

∇̌λ
[p−q qµν

]= δǓ

δΓ̌λµν
+ 1

D−1

(
δα

µ δǓ

δΓ̌βνβ
−δαν δǓ

δΓ̌βµβ

)
, (8.30)

where Ǔ is Û with the dependence on the connection rewritten in terms of the redefined

connection Γ̌. The above equation is the analogous to (4.30) with a symmetric qµν, and is exactly

equal in the limit where the gravitational Lagrangian contains only Rµν as, in that case, the

derivatives of Ǔ are just the hypermomentum. Hence, we see that in a general metric-affine

theory reducing to the EH action at low energies, due to the structure of the connection field

equations, it is this metric qµν the one which should be compared to the GR metric, as happens also

in RBG theories. This is the reason why the apparently arbitrary redefinition introduced in (8.11)

turns out to be useful to build a generalised Einstein-frame. Indeed, this choice has the advantage
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of making apparent that the effects of the higher order corrections related to symmetrised RBG

terms in the action of general metric-affine theories do no introduce new degrees of freedom.

Instead, the above form for a general metric-affine theory shows that symmetrised RBG operators

just introduce new interactions through the generalised potential term Ǔ among virtually all

the degrees of freedom of the theory. At a perturbative level, these effects are encoded in the

corrections associated to the Θ tensor, which introduce effective interactions among all the

degrees of freedom of the theory that couple to the metric gµν, coupling in this way all the original

matter fields among themselves, as well as, potentially, to the new degrees of freedom of the

metric-affine sector. Hence, when building an EFT of a metric-affine sector, one expects that

operators pertaining to the RBG sub-class will be redundant.14 If all the operators allowed by

the symmetries are considered for all the propagating degrees of freedom of the theory below the

cutoff scale, then those terms (which we included in Γ̄Ric) will also couple these new degrees of

freedom to the curvature of the metric qµν, as can be seen explicitly by splitting the connection Γ̌

as

Γαµν = qΓαµν+Lα
µν+Kα

µν (8.31)

by means of (2.82), and then rewriting the field equations for the metric qµν, namely (8.27), as

Gµ
ν(q)=−MG

2 δU
δqµν

, (8.32)

where U now stands for Ǔ where the dependence on the connection has been written in terms of

∂q, ∇q and the torsion tensor. As seen in chapter 7 for the particular case where Γ̄Ric depends

only on the antisymmetrised Ricci tensor, around arbitrary q backgrounds, these couplings

are generally prone to excite Ostrogradski ghosts and possibly other instabilities unless the

coefficients are fine tuned to avoid it. In the EFT regime, these instabilities could be pushed

above the cutoff scale of the theory, so that they remain valid effective theories below this cutoff,

though it is not clear that this can be done while keeping the new degrees of freedom within the

spectrum of the low energy theory over generic backgrounds. The take-home message is that, if

one is trying to build a viable metric-affine theory free of these pathologies, then care must be

taken in avoiding these pathological couplings, either by including only the symmetrised Ricci

tensor into the action, or by fine tuning the coefficients to guarantee the stability of the theory,

though this will be generally a difficult task [60,111].

This question is more precisely formulated in the EFT language, where it reduces to finding

all the metric-affine operators that are redundant15 in a metric-affine EFT once all the allowed

operators of the matter sector have been allowed.

14Namely they would only contribute to a redefinition of the respective Wilson coefficients, see section 8.1.
15If the reader is not familiarised with the concept of redundant operator, see the discussion in section 8.1.
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OBSERVABLE TRACES OF NONMETRICITY

F irst works in gravitation which took into account post-Riemannian geometries dealt

with the possibility of including the torsion tensor in the description of gravitation,

and it was seen that fermions naturally generate torsion when coupled to GR [44].

Afterwards, it was discovered that one can obtain the same results by constructing the gauge

theory of the Poincaré group1 [46, 47]. Some authors tried then to understand what could be

the observable consequences of torsion and used them to place experimental constraints to the

possible existence of a nonvanishing torsion tensor in different contexts [374–379]. Despite the

effort put in understanding the observable effects of torsion, the existence (or lack) of observables

related to nonmetricity is not yet well understood. The first works that included nonmetricity, only

took into account a special case of it, namely Weyl-like nonmetricity given by Qαµν = 2Aαgµν [38].

Later on, nonmetricity was studied as a gauge potential arising in the gauge theory of the group

of general affine transformations [46,47], generalising the gauging of the Poincaré group. More

recently, modifications of the GR Lagrangian including (or based on) nonmetricity, such as f (Q)

theories, RBG theories, or general metric-affine theories [8–11,47,59,147,148,380–385] have

been widely considered. Though the observable effects that torsion may have have been studied

in relative depth, the search for physical effects associated to the presence of nonmetricity, if any,

has been historically overlooked. Indeed, though it was pointed out that a second clock effect

would arise in theories with nonmetricity already as a criticism to Weyl’s ideas, in order for this

to be true, one would need to be able to build clocks which measure a proper time that is not

associated to metric geodesics and is sensitive to these nonmetric effects, which might not be

possible with the field content of the universe, hence invalidating the criticisms unless such

clocks are found to exist (see chapter 12 for details).

1Known as Einstein-Cartan-Sciamma-Kibble or ECKS theory.
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In this chapter we will focus on a particular kind of effects that arise in RBG theories that, from

the geometrical perspective, can be traced back to the particular form of the nonmetricity tensor

in these theories. Though these effects will be universal across the matter sector in a precise

sense explained below, they are in general not universal enough so as to respect the Equivalence

Principle, in the sense that freely falling particles might not all follow the same paths. However,

the induced violations will be suppressed by a high energy scale controlling deviations from the

GR Lagrangian. From the field theoretic perspective, the Equivalence Principle is understood as

a consistency condition to couple to a massless spin-2 field, which must couple universally (see

chapter 1). From this viewpoint, the Einstein frame of the theory suggests to see these effects as

effective interactions in the matter sector coupled to GR. Hence, the violations of the Equivalence

Principle can be understood as deviations from the geodesic trajectories due to these effective

interactions, which act as a fifth-force.

Aside from the ontological interpretation of these effects either in terms of field interactions

or as purely geometrical effects, our aim here will be to unveil the general conditions that a

metric-affine theory has to satisfy in order to predict these corrections, explaining how they arise

naturally in RBG theories due to the existence of a metric whose canonical connection is the

solution to the RBG connection equations (namely the Einstein frame metric, see section 4.1). We

will then explicitly compute this effects when the matter sector consists on a minimally coupled

spin-0, spin-1/2 and spin-1 field and arbitrary combinations of them. Then we will constrain

the presence of this effects by considering the corrections to the Standard Model (SM) to the

scattering processes e+e− → e+e−, γγ→ γγ and e−γ→ e−γ, which will allow us to set experimental

constraints to the RBG scale MQ once a particular RBG model is chosen. We will also argue why

these effects can also be expected in generic theories of metric-affine gravity, based on the fact that

they can always be formulated as metric theories coupled to an involved matter sector containing

terms with the nonmetricity and torsion tensors. From the geometrical perspective, this bunch of

other terms contain all the post-Riemannian features of the spacetime geometry, which would be

a metric geometry in their absence. Thus, if one finds physical effects that are associated to these

types of terms in the action, one could say that one has found observable traces of nonmetricity,

torsion, or both. On the other hand, from the field theoretic perspective, this bunch of terms

involving these two tensorial objects that the geometrists would call nonmetricity and torsion

can be rightfully interpreted as two additional matter fields that couple in a particular way

to the degrees of freedom described by the metric sector of the theory, be it a massless spin-2

field, or any other spectrum possibly associated to the corresponding metric sector. From this

perspective, the geometrical viewpoint only makes sense if there is universality, and only in the

case that these two tensorial objects lead to effects in the matter sector that are universal in

some sense could one accept to associate this tensorial objects to the spacetime geometry in a

meaningful way. On the other hand, from the geometrical perspective where gravitation is tied to

the spacetime geometric structure, there is no trouble in accepting that each matter field can

218



9.1. EFFECTIVE INTERACTIONS BELOW NONMETRICITY SCALE

couple differently to the spacetime geometry, though this would lead to violations of universality

and the WEP. When I started my PhD, one of my main goals was to try to shed light into the

question of whether spacetime nonmetricity has some kind of universal physical effects that

would be observable in any theory where it is nonvanishing. I have arrived to the conclusion

that, in general, the effects of the nonmetricity tensor depend on its couplings to the rest of the

degrees of freedom of the theory, so that there are no model-independent (or universal) effects

that arise from the explicit coupling of nonmetricity to matter fields, as one could have expected

from the geometrical viewpoint. However, nonmetricity is a curious object and, as we will see

in this chapter, there are some quite generic effects due to the presence of R(µν) terms in the

action beyond the EH term that, from the geometrical viewpoint, could be related to a piece of

the nonmetricity which takes a somewhat universal form in presence of these corrections but

vanishes in their absence. Remarkably, the appearance of these effects does not seem to depend

on the coupling of nonmetricity to mater so that, in a sense, it provides a partial answer to the

original question. However, as noted above, these effects have a more natural interpretation in

terms of effective interactions among the degrees of freedom of the theory which are suppressed

by a UV scale controlling deviations from GR and will generally jeopardise perturbative unitarity

of the theories.

9.1 Effective interactions below nonmetricity scale

Inspired by the known results in RBG theories, in the previous chapter we elaborated on how,

even in general metric-affine theories, the role of the R(µν) corrections reduces to introduce new

couplings among the matter degrees of freedom. In order to see explicitly how these couplings

appear due to these higher-order symmetrised Ricci corrections, let us turn to the simplest

possible example, namely theories built only with this kind of corrections out of all the possible

diffeomorphism covariant objects that can be built from the connection. Namely, we will analyse

the particular case of Ricci-Based gravity with projective symmetry, which have an action of the

form.

S = MQ
4

2

∫
d4x

p−g L
[
gµν,MG

−2R(µν)
]+Sm[gµν,T[αµν],Ψi], (9.1)

where the matter fields Ψi will be assumed to be minimally coupled spin-0, 1/2 and 1 fields

for simplicity, though this is not necessary for the conclusions of this section to hold. Hence,

the connection can only enter the matter action through the totally antisymmetric piece of the

torsion tensor.2 In this case, we know from chapter 4.1 that the connection will be the Levi-

Civita connection of qµν up to an unphysical projective mode and a hypermomentum term that

is algebraic in the fermionic fields. On the other hand, after integrating out the connection,

2The analysis generalises in a straightforward manner if the matter fields couple nonminimally to the symmetrised
Ricci tensor. In that case, one has to add the term

p−g ∂Lm/∂R(µν) to the auxiliary metric. An example of this will be
shown in chapter 11.
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and performing the field redefinition which allows to write gµν in terms of qµν and the matter

fields, the metric field equations become Einstein’s equations for the metric qµν coupled to a

modified matter sector (4.48). The relation between both metrics is encoded in the deformation

matrix, which on-shell is given in terms of one of the metrics and the matter fields by (4.50). The

perturbative expansion of this expression for the deformation matrix leads to

gµν = qµν−MQ
−4(

αTqµν+βTµν
)+O (MQ

−8), (9.2)

and

Qα
µν =MQ

−4[
α(dT)αqµν+β∇αTµν

]+O (MQ
−8), (9.3)

where α and β are dimensionless coefficients that depend on the particular RBG model under

consideration, Tµν the matter stress energy tensor (4.3) and T its trace. We see that, in this

case, the lowest order deviations between both metrics as well as the leading contributions to

the nonmetricity tensor are controlled by the heavy mass scale MQ. Comparing this to (8.19), we

obtain

Θ
µν

RBG =MP
−2(

αTqµν+βTµν
)
. (9.4)

It is interesting to note that the α term in (9.3) yields a contribution to the Weyl trace of the

nonmetricity tensor that can be eliminated from the nonmetricity tensor with the appropriate

projective transformation. Note, however, that it cannot be removed from the metric, and it leads

to specific observable effects. The possibility of being able to gauge away this term from Qµαβ just

tells us that its effects cannot be associated to the nonmetricity tensor in a theory with projective

symmetry in a gauge-independent way. For the particular subclass of RBG theories consisting

on f (R) theories, only the α term is present in the above relations, which makes sense taking

into account that the presence of nonmetricity in the RBG frame (also known as Jordan frame) of

metric-affine f (R) theories is a matter of projective gauge choice.3 On the other hand, a projective

transformation cannot eliminate the β term from Qµαβ so that, from the RBG frame perspective,

its observable effects can be linked to a nonmetricity tensor of the form (9.3).

As explained in chapter 4, and is apparent because it satisfied the Einstein Equations coupled

to a matter stress-energy tensor, perturbations to the metric qµν describe a massless spin-

2 excitation. In other words, the metric qµν is the responsible of controlling the long-range

gravitational force according to GR. Therefore, in virtue of the Equivalence Principle, the qµν

metric can be made locally Minkowskian by a suitable choice of coordinates. On the contrary, the

deviations of gµν from qµν, which are sensitive to the local distributions of energy-momentum,

cannot be eliminated in this way, which opens the door for apparent violations of the Equivalence

Principle(s) in these theories due to fifth-force like effects as viewed from the RBG frame. From

the Einstein frame perspective, these violations amount to the new interactions on the matter

sector that deviate the associated particles from following the geodesics of the metric. Thus, from

3Projective symmetry is a symmetry of f (R) theories (unless broken by the matter sector).
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this perspective, no violation of the Equivalence Principle(s) occurs, as the deviations are due to

the fact that the matter fields are not free. As a remark, let us comment a bit more precisely on

what we mean by apparent violations of the Equivalence Principle(s). The word apparent here

means that this would be a violation of the WEP only if one insists on interpreting these effects

as having geometrical origin and is willing to assume that they are part of the gravitational

interaction because of that reason. From a field theoretic perspective, the massless spin-2 still

couples universally and the effects are just seen as effective interactions among the matter

sector. In this view gravity is still mediated only by a massless spin-2 and therefore there are no

violations of the WEP or SEP.

In light of the above discussion it is clear that the role played by the metric gµν in RBG

theories is nontrivial. In fact, it is associated to two different kinds of phenomena, namely:

1) the propagation of a masless spin-2 excitation, which is responsible for a long-range force

consisting on Newtonian and post-Newtonian corrections, as well as nonperturbative gravitational

phenomena. These effects are generated by the total amount of energy-momentum within a

spacetime region, namely, through integration over the matter sources. 2) new effects associated

to the local distribution of energy-momentum which are related to the existence of a nonmetricity

tensor of the form (9.3) in the RBG frame. Thus we see that, in RBG theories (as well as in

general metric-affine theories containing the symmetrised Ricci tensor in the action as discussed

in the begining of the section), the long-range interaction associated to a spin-2 field is only a

part of the physical content of the metric gµν, which in general features also new terms that are

sensitive to the local distribution of energy-momentum (and other matter-related quantities in

theories more general than RBG theories). Moreover, from the structure of the field equations,

the existence of these corrections is tied to the on-shell form of the nonmetricity tensor ∇g, and

we shall call them Q-induced interactions.

Knowing that the observable effects of the Θ term can be encoded into a series of new Q-induced

effective interactions that couple all the degrees of freedom of the theory (besides possibly the

spin-2 field associated to qµν), our aim is now to compute the relevance of these corrections in

high-energy observables such as particle collisions in order to constrain the presence of these

corrections. In that context, note that even if our Earth-based Laboratory is not an inertial frame,

the gravitational field of the Earth is extremely weak, so that the Einstein frame metric can be

approximated by qµν ≈ ηµν up to Newtonian and post-Newtonian corrections. We will focus here

on the particular case of RBG theories, though the generic case should not be expected to yield

milder constraints (in fact, it will possibly be the opposite).
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9.2 Q-induced interactions for spin-0, 1/2 and 1

In order to derive the explicit Q-induced corrections to a matter sector consisting of minimally

coupled spin-0, 1/2 and 1 fields on the Earth surface, we can start from (9.2) and, neglecting

Newtonian and post-Newtonian corrections, approximate qµν ≈ ηµν, which leads to

gµν = ηµν−MQ
−4 (

αTηµν+βTµν
)+O (MQ

−8),

p−g = 1+ 4α+β
2MQ

4 T +O (MQ
−8).

(9.5)

Given that the connection is the Levi-Civita connection of qµν, in suitable coordinates, the

connection symbols will vanish up to Newtonian and post-Newtonian corrections which we are

neglecting, unless spin-1/2 are considered, in which case Planck-scale suppressed torsion terms

that can be algebraically written in terms of the fermion fields will also appear. These terms will

only generate interactions among the fermions of the theory, as minimally coupled bosons do not

couple to the connection (see chapter 3). In order to compute the Q-induced interaction for these

cases, we need to substitute the metric in the matter Lagrangians by the expressions in (9.5). It

will also prove useful to write down the form of the Minkowskian stress-energy tensor for these

fields.

Scalar field

The Lagrangian4 for a (complex) minimally coupled scalar field in an arbitrary post-Riemannian

spacetime, with an arbitrary potential, and which can in principle interact with gauge bosons

through a corresponding exterior covariant differential5 denoted by D, reads

L (0) =p−g
[
gαβDαφ

∗Dβφ+V0

]
. (9.6)

where L (s) and Vs correspond to the Lagrangian and an arbitrary potential (so other fields can

appear in Vs) for a field with spin s respectively, with s = 0 in the scalar case. By means of (9.5),

we can expand the above Lagrangian around its Minkowskian version as

L (0) = ηαβDαφ
∗Dβφ+V (0)

0 +MQ
−4L (0)

Q , (9.7)

where, given that Vs can depend on the metric in the most general case, we have defined

Vs =
∞∑

n=0
MQ

−4n V (n)
s , (9.8)

so that V (n)
s do not depend on MQ. The first two terms are the Minkowskian version of the original

Lagrangian (9.6), and L (0)
Q contains the Q-induced effective interactions between the scalar field

4Through this section, we include the volume element in the Lagrangian density, so it is a D-form instead of a
scalar function.

5Namely, the scalar field is a 0-form section of some vector G-bundle with a corresponding G-connection.
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and the stress-energy tensor, and to leading order in inverse powers of MQ takes the form

L (0)
Q =

[
2α+β

2
TMη

µν−βTM
µν

]
Dµφ

∗Dνφ+
[

4α+β
2

V (0)
0 TM +V (1)

0

]
+O (MQ

−4), (9.9)

where the subscript M stands for Minkowskian. These interaction terms mix the scalar field

with all the other matter fields in the theory through the stress-energy tensor, including self-

interactions. Given that the interacting terms are a product of the matter stress-energy tensor

and some piece of the scalar Lagrangian, they will respect all the symmetries of the original

matter sector. Then any minimally coupled spin-0 field in an RBG theory can be identified with

a scalar field with the same quantum numbers that interacts with all the fields in the matter

Lagrangian but evolves according to GR. The Minkowskian stress-energy tensor associated to

(9.6) is given by

T(0)
M µν = ηµν

[
Dαφ∗Dαφ+V0

]−2
[
D(µφ

∗Dν)φ+ ∂V0M

∂ηµν

]
. (9.10)

Dirac field

The Lagrangian for a minimally coupled Dirac field in an arbitrary post-Riemannian spacetime,

with an arbitrary potential, and which can in principle interact with gauge bosons through a

corresponding exterior G-covariant differential6 reads

L (1/2) =p−g
[

1
2

ea
µ
(
ψ̄γa(∇µψ)− (∇µψ̄)γaψ

)+V1/2

]
, (9.11)

where ∇ accounts for the covariant derivative of the spinor bundle and the G-bundle. From

gµν = eaµ ebνηab, by means of (9.5) the solder forms are given by

ea
µ = δa

µ− 1
2MQ

4

(
αTδa

µ+βTa
µ
)+O (MQ

−8), (9.12)

which allows to write the Einstein frame spinor Lagrangian perturbatively as

L (1/2) = 1
2

[
ψ̄γµ(Dµψ)− (Dµψ̄)γµψ

]+V (0)
1/2 +MQ

−4L (1/2)
G , (9.13)

where D is the G-covariant differential which accounts for the gauge interactions. Here we have

already neglected the Planck-suppresed torsion contributions which source a 4-fermion effective

interaction, as they are irrelevant compared to the Q-induced interactions unless MQ approaches

the Planck mass. Again, the first two terms of the above Lagrangian are the Minkowskian version

of (9.11), and L (1/2)
Q contains the Q-induced effective interactions between the Dirac field and the

stress-energy tensor, and to leading order in inverse powers of MQ it takes the form

L (1/2)
Q =

[
3α+β

4 TMη
µν− β

4 TM
µν

][
ψ̄γµ(Dνψ)− (Dνψ̄)γµψ

]+[
4α+β

2 TMV (0)
1/2 +V (1)

1/2

]
+O (MQ

−4). (9.14)

6Namely, the spinor field is a 0-form section of the product bundle S M ×B where B is a vector G-bundle with a
corresponding G-connection.
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These interaction terms mix the Dirac field with all the other matter fields in the theory through

the stress-energy tensor, including self-interactions, respecting the original symmetries of the

action as in the previous cases. Then any minimally coupled spin-1/2 field in an RBG theory can

be identified with a spin-1/2 field with the same quantum numbers that interacts with all the

fields in the matter sector but evolves according to GR. The Minkowskian stress-energy tensor

associated to (9.11) is given by

T(1/2)
M µν = ηµν

[1
2
(
ψ̄γα(Dαψ)− (Dαψ̄)γαψ

)+V1/2
]−[

ψ̄γ(µ(Dν)ψ)− (D(νψ̄)γµ)ψ+2∂V1/2M
∂ηµν

]
. (9.15)

1-form field

The Lagrangian for a minimally coupled spin-1 field field in an arbitrary post-Riemannian

spacetime, described by a G-connection 1-form coupled to an arbitrary potential that might

generally break G-covariance (gauge symmetry) is given by

L (1) =p−g
[

1
4

gµνgαβF†
µαFνβ+V1

]
, (9.16)

where F =DA = dA+ A∧ A. By means of (9.5) we can write the corresponding Einstein frame

Lagrangian perturbatively as

L (1) = 1
4
ηµνηαβF†

µαFνβ+V (0)
1 +MQ

−4L (1)
Q . (9.17)

As in the two previous cases, the two first terms are the Minkowskian version of (9.16), and

L (1)
Q contains the Q-induced effective interactions between the spin-1 field and the stress-energy

tensor, which to leading order in inverse powers of MQ takes the form

L (1)
Q =

[
2α+β

4
TMη

αβ− β

2
TM

αβ

]
F†µ

αFµβ+
[

4α+β
2

TMV (0)
1 +V (1)

1

]
+O (MQ

−4). (9.18)

These interaction terms mix the spin-1 field with all the other matter fields in the theory through

the stress-energy tensor, including self-interactions, respecting the original symmetries of the

action as in the scalar case. Then any minimally coupled spin-1 field in an RBG theory can be

identified with a spin-1 field with the same quantum numbers that interacts with all the fields

in the matter Lagrangian but evolves according to GR. The Minkowskian stress-energy tensor

associated to (9.16) is given by

T(1)
M µν = ηµν

[
1
4

F†
αβ

Fαβ+V1

]
−

[
F†

(µ|α|Fν)
α+2

∂V1M

∂ηµν

]
. (9.19)

As a final remark, note that this is just a perturbative version of the explicit building of the

Einstein frame of the theory, namely the mapping procedure exemplified in section 4.2 with a

1-form field. The Q-induced effective interactions computed here represent the leading order

corrections of the Einstein frame matter Lagrangian with respect to the original one. These

224



9.3. COLLIDER CONSTRAINTS TO Q-INDUCED INTERACTIONS

corrections couple any matter field to the stress-energy tensor, namely to all the matter fields

including itself, in a way which respects the symmetries of the original matter Lagrangian. In

general, the implications of these Q-induced interactions are the following: below the scale MQ,

they describe a series of perturbative interactions that, from the geometrical point of view, can be

directly linked to the nonmetricity tensor. In this view, the scale MQ characterises the scale at

which nonmetricity becomes nonperturbative. From the field theoretic perspective, the Einstein

frame matter Lagrangian is an effective theory which breaks down at the scale MQ (or suitable

combinations of MG and MP in more general theories) so that predictions of the theory cannot be

trusted above the cutoff scale. These corrections enter through the metric gµν and are sensitive

to the local distribution of energy-momentum. Notably these departures are different in nature

from those corresponding to the post-Newtonian behaviour of RBG models which, as usual, are

associated to integrated energy-momentum within the relevant region, instead of feeling the

local distribution of energy-momentum, and are characterised by the Planck scale MP.

9.3 Collider constraints to Q-induced interactions

Following the path of [57,81], where the existence of Q-induced interactions was first noticed

within RBG theories, we will now try to derive their corrections to particle scattering processes

measured at high energy colliders such as e+e− → e+e− and e−γ→ e−γ. These computations will

allow us to constrain the parameters regulating Q-induced interactions within RBG theories

(though the order of magnitude is expected to be similar for more general ones) by looking at data

from experiments in high energy colliders.7

Leading contributions to e+e− → e+e−, γγ→ γγ and e−γ→ e−γ

To find the corrections to the Standard Model (SM) operators contributing to these processes,

we need to compute the self-interaction terms due to the Q-induced corrections of an electron and

a photon field. Starting with the electron, this implies plugging the Minkowskian stress-energy

tensor for the electron field (9.14) into its own Q-induced Lagrangian (9.14). Given that this

process occurs at tree level, we can use on-shell identities. Moreover, since this process has ben

measured at LEP for energies of order 100 GeV, the electron masses can be neglected. Taking

this into account, the leading order Q-induced contribution to Bhabha scattering is given by the

operator [57]

Oe+e−
Q =− β

MQ
4

[
ψ̄e

(
γν

←→
∂ µ+γµ←→∂ ν

)
ψe

][
ψ̄eγ

ν←→∂ µψe

]
. (9.20)

Doing the same for a Maxwell photon, we find [81]

O
2γ
Q =− β

8MQ
4

[
FµνFµνFαβFαβ−4FµνFναFµ

σFσ
α

]
, (9.21)

7Forthcoming work will also test these interactions using ultra-high energy neutrino detections at IceCube [82].
Also in [386] a quick review of microscopic effects in metric-affine theories will include the results in this chapter.

225



CHAPTER 9. OBSERVABLE TRACES OF NONMETRICITY

which is a particular case of the well known C, P, Lorentz and gauge invariant effective La-

grangian describing photon-photon collisions below the mass scale of some charged fermion.

Notice that while the Euler-Heisenberg Lagrangian [363,387,388] obtained by integrating out

a massive lepton in the QED path integral gives a relation b/a =−14/5 , the above Lagrangian

satisfies b/a =−4.

Regarding the contribution to Compton scattering, to obtain the full contribution we must

compute the correction to the electron Lagrangian due to the photon stress-energy tensor, namely

inserting (9.19) into (9.14) and the correction to the photon Lagrangian due to the electron stress

energy tensor, namely plugging (9.15) into (9.18). using again on-shell identities and throwing

away electron masses we find [81]

O
γe−

Q =− 9β
4MQ

4 FµαFν
α

[
ψ̄eγµ(Dνψ)− (Dνψe)γµψ

]
. (9.22)

Even though almost every process is sensitive to contributions appearing in Ricci-Based gravity

theories, obtaining constraints for the scale ΛQ is not a straightforward procedure in general.

Corrections induced in the vertices and in the partition distributions functions of gluons and

quarks make it very difficult to study processes in which particles are produced via pp̄ production.

This makes high-energy data from LHC not convenient for this study and requires to consider

experimental bounds at lower energies. Thus we will use for that purpose current data on

light-by-light and Compton scattering.

Experimental constraints to the nonmetricity scale

Let us consider first Bhabha and Compton scattering as a probe for the Q-induced interactions,

as both processes have been observed at clean high energy colliders such as LEP since decades

ago. The highest energy probes of Bhabha scattering come from LEP [389, 390], where the

experimental cross section at a center of mass energy of
p

s = 207 GeV, and for θacol < 10◦ and

|cosθe± | < 0.96, was measured to be σexp
e+e−→e+e− = 256.9±1.4±1.3 pb. The lowest order Q-induced

contribution to this cross section due to (9.20) comes from the mixing with the SM operators. At

that center of mass energy, the correction is roughly δQσ' 0.35βMQ
−4, and compatibility with

the measurements leads to the order of magnitude constraint [57]

MQ & 0.6β1/4TeV. (9.23)

In turn, the most recent data for the cross-section of Compton scattering comes from the L3

collaboration [391], where the process was measured at different energies as in Tab. 9.1. The

leading order Q-induced correction to the SM differential cross section for Compton scattering in

RBG theories can be obtained from (9.22), and is given by

dσQ
e−γ→e−γ
dΩ = 1

256π2s

[
9
2

(
β

Λ4
Q

)(
3cos2θ+2cosθ+11

)
Q2

e s2 +4Q4
e

cos2 θ+2cosθ+5
cosθ+1

]
. (9.24)
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Figure 9.1: Value of the χ2 for different values of βMQ
−4. The green and blue bands indicate the

allowed values of βMQ
−4 at 1σ and 2σ probability respectively.

where Qe is the electron charge. Note that in the measurements leading to table 9.1, only the

region of the phase space in which |cosθ| < 0.8 is considered. This will be taken into account

when placing the bounds on MQ. As in table 9.1 we have the experimental value measured at

12 different energies, it is convenient to combine all these measurements performing a χ2 test

with 10 degrees of freedom. As figure 9.1 shows, by studying the probability of the resulting χ2

function we can constrain the values of βMQ
−4 up to a certain probability. The green and blue

bands contain the 1σ and 2σ probability respectively.

p
s (GeV) σ

exp
e−γ→e−γ (GeV−2) σ

QED
e−γ→e−γ (GeV−2)

21 771.2±21.6 764.8
29.8 370.6±11.3 381.1
39.7 213.2±5.4 214.7
49.7 128.7±3.9 136.7
59.8 95.0±3.5 94.6
69.8 70.6±2.9 69.4
79.8 55.2±2.6 53.1
92.2 38.8±2.2 39.8
107.2 27.3±2.2 29.4
122.3 20.0±2.1 22.6
137.3 17.3±2.1 17.9
159.3 9.1±2.0 13.3

Table 9.1: Experimental values and SM prediction of the cross section for Compton scattering
taking from [391].

In figure 9.1 the full 1σ probability is in the region β < 0. While the precise implications of

227



CHAPTER 9. OBSERVABLE TRACES OF NONMETRICITY

the sign of this parameter might depend on the model and particular physical scenario under

consideration, in some relevant models this is well understood in cosmological as well as black

hole scenarios. At 2σ we get the constraints

|β|−1/4MQ > 385 GeV for the plus sign in the Lagrangian (4.83), (9.25)

|β|−1/4MQ > 606 GeV for the minus sign in the Lagrangian (4.83). (9.26)

These are bounds for a general RBG theory, though the order of magnitude serves for con-

straining Q-induced interactions in more general theories as well. Once a specific RBG model

is chosen, the value of β is set and the bound is translated to the heavy mass scale MQ (or MG

for that matter). Note that in this case the SM, corresponding to βMQ
−4 = 0 is already in the 2σ

probability region. That means that at 1σ the values of βMQ
−4 giving a lower value of the χ2

(higher probability) will be negative compensating the SM contribution. As mentioned before,

at 2σ the SM is already in agreement with the data so positive values of β give bounds in this

region.

As a particular example, let us consider the widely discussed RBG model named Eddington-

inspired Born-Infeld (see section 4.2.2), β=±1 for the ∓ choice of sign in front of the R(µν) term of

the Lagrangian (4.83). In EiBI, while β = 1 leads to a bouncing cosmology, β = −1 describes

a cosmology in which an asymptotically Minkowski past region connects with the present

contracting branch [62,75]. Interestingly, both solutions avoid the Big Bang singularity8, though

as found in [75], the propagation of gravitational waves (GWs) generally presents instabilities in

these cosmological models. On the one hand, Beltran et. al. show that for a massless scalar field

with β> 0 GWs develop instabilities at the bounce due to the fact that the propagation speed

diverges and the friction term vanishes, pointing a strong coupling problem. On the other hand,

for the asymptotically Minkowski solution where β< 0, they show that the pathologies are due to

the vanishing of the propagation speed, which could in principle be avoided by including higher

derivative terms. Regarding spherically symetric solutions, while β=−1 are generally singular ,

the β= 1 branch remarkably admits nonsingular wormhole space-times when coupled to Maxwell

electrodynamics [146]. The above bounds for a general RBG model can be easily translated to the

EiBI theory for the two signs, so that

MQ
EiBI > 385 GeV for the plus sign in the Lagrangian (4.83) (9.27)

MQ
EiBI > 606 GeV for the minus sign in the Lagrangian (4.83). (9.28)

In some works, it is common to use the parametrisation κ= 2c7~3M−4
Q , which would be constrained

by

|κ| < 3.5×10−14m5kg−1s−2. (9.29)
8Nonetheless, a potential Big Rip singularity could arise if phantom dark energy is considered within EiBI

[195,392], though quantum effects could remove the singularity [197].
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This bound, which is of the same order of magnitude as the one obtained from Bhabha scattering,

improves in 6 orders of magnitude the bound for the scale MQ (and 12 orders of magnitude

for the κ parameter) as compared to other constraints obtained from astrophysical or nuclear

physics [206–208] phenomena.

The two previous processes are present in the SM at tree level, and therefore the Q-induced

interactions are expected to produce a small correction to the observed values. However, light-

by-light scattering occurs at loop level in the SM, hence being strongly suppressed [393–395].

Therefore, it could be used in principle to obtain stringent bounds even from experiments

searching photon self-interactions at lower energies. This has been done with X-ray pulses [396]

obtaining an upper bound for the cross section which can be used to constrain MQ. The differential

and total cross sections for γγ→ γγ that one obtains from the leading order Q-induced corrections

in RBG theories (9.21) at tree level are given by

dσQ
γγ→γγ

dΩ
=

(
β

8MQ
4

)2
1

256π2 s3 [
512+32

(
(1−cosθ)4 + (1+cosθ)4)]

, (9.30)

σ
Q
γγ→γγ =

(
β

8MQ
4

)2
56
5π

s3, (9.31)

By demanding (9.31) to be in agreement with the current experimental limit of γγ→ γγ at 6.5

keV, σexp
γγ→γγ < 1.9×10−27 m2 [397], we can set a lower bound

|β|−1/4MQ > 23.3 keV. (9.32)

Where the value of β is fixed in each particular RBG theory, allowing to constrain directly the

energy scale MQ. Due to the difference in energies at which Bhabha or Compton and photon-

photon scattering are currently tested, and the unobservability of photon self interactions in

the keV range with current experimental precision, the bound obtained in (9.32) is considerably

weaker than the one obtained from Bhabha or Compton scattering in [57,81]. However, future

experiments searching for light-by-light scattering in the keV range could help in tightening

current constraints to electromagnetic self interactions provided that a substantial increase in

the experimental resolution is achieved, and therefore to Q-induced interactions in RBG models

and beyond. If the experimental precision is not improved, higher-energy experiments will allow

us to obtain stringent bounds to RBG. In figure 9.2 we can see how the limit would change if the

precision is improved or the energy scale changes. For instance, keeping the same upper limit

σbound while increasing the energy scale of the experiment in an order of magnitude, bounds will

improve roughly in one order of magnitude. Recently, light-by-light scattering has been measured

by ATLAS at
p

s ∼O (TeV) in LHC ultraperipheric collisions involving pairs of Pb ions [398]. After

an involved analysis that deals with the complexity behind the dirtiness of the measurements

at LHC, these data allow to set a lower bound to the mass scale of Born-Infeld electrodynamics

through its lowest order corrections to Maxwell electrodynamics [399]. Though we cannot use
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Figure 9.2: Expected bounds on ΛQ for different values of the ratio σbound
s3 in logarithmic scale.

Our bound is denoted by a red point.

this analysis for generic Q-induced interactions, we can take advantage of the results in section

4.2.2, where we were able to go beyond the perturbative terms in (9.2) and obtain the full form

of the Einstein frame matter Lagrangian of EiBI gravity coupled to Maxwell electrodynamics,

which turns out to be BI electrodynamics if we identify the heavy scale MQ with the β parameter

of the BI action9 as written in [399] as (2β2)1/4 =MQ. Therefore, from their bounds β& 104 GeV2,

we obtain the bound

MQ
EiBI & 120 GeV (9.33)

As a take-home message from this chapter, one should bear in mind that metric-affine theories

with higher-order corrections or nonminimal couplings to matter featuring the symmetrised Ricci

tensor R(µν) lead to a particular kind of corrections in the matter sector which we dubbed as

Q-induced interactions as their presence is related to the form of a piece of the nonmetricity

tensor ∇g of this theories. For the case without higher-order curvature corrections but with linear

nonminimal couplings of the matter through R(µν), the corresponding Q-induced interactions

couple each of the nonminimally coupled fields with all the matter fields in the theory (including

itself). If there are any terms that are nonlinear in R(µν), either in the matter or in the gravi-

tational sectors, then the corresponding Q-induced interactions couple all the matter fields to

the stress-energy tensor, so that there appear couplings between all the degrees of freedom in

the theory perturbatively in inverse powers of the heavy mass scale MG or MQ that control the

9Do not confuse it with the β parameter controlling Q-induced interactions

230



9.3. COLLIDER CONSTRAINTS TO Q-INDUCED INTERACTIONS

nonlinear terms. Within RBG theories, the interactions are safe, and the theory is a valid effective

theory at energies below the mass scale MQ. For other more general theories, the higher order

corrections generally excite new degrees of freedom. If there are nonlinear R(µν) terms in the

action, these new degrees of freedom will couple, not only to the other fields, but generically to

higher-order derivatives of the metric qµν, potentially introducing Ostrogradskian instabilities

in the theory which will destroy the validity of the EFT unless these degrees of freedom are

sufficiently above the cutoff scale. Thus, it appears that, if dealing with generic metric-affine

theories of gravity, one should either use only this covariant object from all the possible covariant

geometric objects to build the action of the theory or be extremely careful in the way that the

R(µν) terms couple the new degrees of freedom, as this could yield pathological couplings. in line

with the results in chapter 7
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Part III

Funhouse
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Part III - Outline

This is the last part of the thesis. The name is just a pun which reminds us that we do science

because we have fun with it, just as The Stooges did with their music. However, this should not be

interpreted as being less rigorous material. Here we develop some interesting ideas that sprouted

in more relaxed environments, such as interesting conversations with friends (and collaborators,

or a linear combination of both), reflections about some peculiar issues, or speculative ideas

that, in one or the another way, have led to some curious and interesting results that could or

could not lead to deeper insights on the properties of gravitation. Thus, in contrast with the two

previous parts, the reader should expect to find a miscellanea of works which need not be in close

connection to each other, but where interesting results have been achieved.
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10
COVARIANT ACTIONS FOR LOOP COSMOLOGIES

The idea of quantising symmetry-reduced cosmological spacetimes à la Loop dates back to

[400], and consistent quantisation was achieved in [401–403]. There it was shown that the

resulting isotropic and homogeneous cosmological model predicted a big bounce replacing the

Big Bang singularity, a prediction which has later proven to be robust if anisotropies were

allowed [404]. However, Loop quantisation of cosmological backgrounds presents ambiguities in

the quantisation process regarding how the Euclidean and Lorentzain terms of the Hamiltonian

constraint are treated. In recent years, different cosmological models tied to these ambiguities

have been presented [24,405]. Symmetry reduction makes the Lorentzian term be proportional

to the Euclidean one at the classical level. In standard Loop Quantum Cosmology (LQC), the

quantisation is carried out after the Lorentzian term is written in terms of the Euclidean

one. However, quantisation ambiguities arise due to the possibility of treating both constraints

independently in the quantisation process, leading to different effective Hamiltonians which

are expected to be closer in spirit to full Loop Quantum Gravity (LQG). Concretely, two such

Hamiltonians that have already been studied are those governing mLQC-I and mLQC-II [406].

In both cases the Big Bang singularity is replaced by a bounce at around Planckian curvatures.

While mLQC-II predicts a symmetric bounce just as standard LQC, consistent dynamics for

mLQC-I requires an asymmetric bounce with a prebounce branch that is asymptotically de Sitter

in the past [84].

Following the spirit of the work by Olmo and Singh [407], our aim here is to find a covariant

action that provides an effective classical description of the background evolution in mLQC-I

and mLQC-II. As we will see, indeed, there is a family of covariant metric-affine f (R) theories
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that can encode the background evolution of the post-bounce branches1 of mLQC-I and mLQC-II,

as well as that of standard LQC with a choice of parameters. As a cross-check, will see how for

the choice of parameters that lead to standard LQC the corresponding classical effective action

recovers the result found in [407].

10.1 Background evolution equivalence

The background evolution of a cosmological model in metric-affine f (R) theories can be derived

from the RBG field equations2 (4.24), which assuming homogeneity and isotropy, as well as

spatially flat Cauchy slices leads to the following modified Friedmann equation

3H2
f (R) =

fR
[
2κ2ρ+R fR − f

]
2

(
fR + fRR

2
Ṙ
H

)2 . (10.1)

where κ2 = 8πG and we have the following relations valid in any metric-affine f (R) theory

ρ = R fR −2 f (R)
2κ2 and

Ṙ
H

=−12κ2ρ/(R fRR − fR), (10.2)

By imposing equality between the Hubble parameter of f (R) and the corresponding Loop cosmol-

ogy, we can derive the conditions for f (R) to describe a background evolution that is equivalent

to such Loop cosmology. Using then the above relation between the energy density, f (R) and its

derivative fR in such equality, one is led to a 2nd order highly non-linear ODE for f (R) which for

the three Loop cosmology models that we will be concerned with can be encoded into the following

form

fRR = fR

(
B∆− fR A

B∆R+2A(R fR −3 f )

)
(10.3)

where A, B and ∆ are functions of R, f (R), fR that are different for each Loop Cosmology model.

Physical equivalence between the Loop and f (R) bounces requires equivalence of the bounce

densities in both frameworks, which allow us to obtain boundary conditions for the ODE. Given

the uniqueness theorems of ODEs, this leads to a particular f (R) solution to each of the models.

For the three models, the only consistent boundary condition for fR at the bounce is f b
R = 0,

where the superindex b stands for bounce. The ODEs have to be solved numerically due to their

complexity, but the boundary condition f b
R = 0 cannot be handled by numerical methods for

equations of the form (10.3). Assuming that uniqueness theorems hold throughout the whole

range of curvatures R ∈ (−Rb,0), namely that the quotient is regular throughout this interval3, we

can chose to place boundary conditions anywhere. Except for the pre-bounce phase of mLQC-I, we

generally go for boundary conditions at low curvatures because we know that the solution should

1Note that the post- and pre- bounce branches are identical in LQC and mLQC-II, so that in those cases the
effective description covers the full cosmological evolution.

2Note that metric-affine f (R) theories are a subset of RBG theories.
3Actually, we have checked that this is true numerically for each of the solutions.
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reduce to GR in the low curvature limit, and it proves to be easier to find the solution giving a

correct bounce density4 with the initial conditions placed there. The values of the energy density

and f (R) at the bounce are extremely sensitive to the initial conditions for the derivative at low

curvatures, and there exists a critical value for f boundary
R which, if surpassed, leads to a solution

that is not regular through the whole curvature range, spoiling the certainty of uniqueness of the

solution. Although the correct solutions for LQC and mLQC-II clearly satisfy the conditions of

the uniqueness theorems5, this is not the case for mLQC-I, where all seems to indicate that the

would-be solution with the correct bounce density has a divergence of fRR exactly at the bounce

as we will see below. As a remark, note that if uniqueness theorems are satisfied, the existence

of a solution to the ODE that satisfies the required conditions at the bounce but also satisfies

limR→0 fR = 1 is far from being guaranteed, but indeed a surprising feature that indicates that

either the bounce boundary conditions or the R = 0 conditions are attractors of the corresponding

ODEs. To be more explicit, a regular ODE in a given range of values for the relevant variable, its

solution is unique as guaranteed by the corresponding uniqueness theorems. Thus, once boundary

conditions for f (R) and fR are specified at some point within such range, the solution in the full

range is unique, and it is likely not to pass through another point given beforehand unless this is

an attractor in solution space. For instance, if conditions are set at the bounce, it is likely that no

solution with the correct behaviour at low curvatures exists. Given that the bounce is a regular

point for both LQC and mLQC-II, fR |R=0 = 1 is probably an attractor for the three ODEs.

10.1.1 ODE and numerical solution for LQC

The modified Friedmann equation that describes LQC evolution (for a massless scalar) is given

by

3H2
LQC = κ2ρ

(
1− ρ

ρb

)
, (10.4)

where ρb ≡
p

3 /(16π2γ3G2~) and γ is the Barbero-Immirzi parameter. By equating this expression

for the Hubble rate with the one given in (10.1) and using (10.2) to write Ṙ/H and ρ in terms of

R, f (R) and fR , we arrive at an ODE of the form (10.3) with the particular form of the functions

ALQC =
√

2(R fR −2 f ) (2Rc − (R fR −2 f )) ,

BLQC = 2
√

Rc fR (2R fR −3 f ) ,

∆LQC = 1.

(10.5)

The conditions that the bounce density and the bounce accelerations of the scale factor coincide at

the bounce in the LQC and f (R) side lead to a set of conditions with a unique physically relevant

solution given by

f (Rb)=−Rc and fR(Rb)= 0, (10.6)

4We also tried near-bounce conditions for LQC, finding the same solution as boundary conditions at low R.
5Meaning that the boundary conditions for fR that lead to the correct bounce density are below the critical value

and the solutions and ODE are suitably regular from low curvatures to the bounce.
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where the bounce curvature is

RLQC
b =−12Rc (10.7)

and Rc ≡ κ2ρc and ρc is the LQC bounce density. As explained above, the ODE has to be solved

numerically, and the theoretical boundary conditions (10.6) are not well suited for numerical

solving due to the form of the ODE. Using suitable boundary conditions, we find a solution for

LQC which satisfies the uniqueness criteria and gives the correct bounce density with a precision

of up to seven digits. This solution is the same as the one found in [407], and we have also been

able to reproduce it by fixing boundary conditions near the bounce. We will later see how this

solution is acurately reproduced by an analytical f (R) Lagrangian that fits within a 3-parameter

family of Lagrangians and coincides with the one found in [407].

10.1.2 ODE and numerical solution for mLQC-II

As standard LQC, mLQC-II describes a symmetric bounce through a modified Friedmann

equation given by [84,406]

3H2
II = κ2ρ

(
1+γ2 ρ

ρc

)1−
(
γ2 +1

)
ρ/ρc(

1+
√
γ2ρ/ρc +1

)2

 (10.8)

Proceeding as for the LQC case above, by equating the above expression for the Hubble parameter

and the one in f (R) (10.1), using (10.2) we also obtain an ODE of the form (10.3) with the

following functions

AII =
√

2(R fR −2 f )
(
2Rc +γ2 (R fR −2 f )

)
,

BII = BLQC = 2
√

Rc fR (2R fR −3 f ) ,

∆II =

√√√√√√ γ2
(
1+

√
γ2 R fR−2 f

2Rc
+1

)
2γ2 +1−

√
γ2 R fR−2 f

2Rc
+1

,

(10.9)

where note that, in a purely formal way, by substituting γ2 by −1, the above functions become

the ones obtained for LQC in (10.5). The requirements that the solutions have the same energy

density and acceleration of the scale factor at the bounce completely specify the boundary

conditions, which read

f (RII
b )=−4Rc(1+γ2) and fR(RII

b )= 0, (10.10)

where the bounce curvature is

RII
b =−48(1+γ2)(1+2γ2)Rc, (10.11)

and the bounce density in mLQC-II is given by ρII
b = 4(1+γ2)ρc. With these conditions, we can

obtain a numerical solution that seems to satisfy all the required criteria for the uniqueness
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theorems to apply in the relevant curvature range, see Fig. 10.1. The sensitivity of the bounce

density to the initial conditions as well as the stability of the solutions have similar behaviour as

the LQC case.

10.1.3 ODE and numerical solution for mLQC-I

Unlike LQC and mLQC-II, mLQC-I describes an asymmetric bounce where the contracting and

expanding branches are described respectively by the two modified Friedman equations below.

The bounce density in mLQC-I is given by ρI
b = ρc/(4(1+γ2)) and this implies the following value

for the affine curvature at the bounce and boundary conditions

RI
b =−3(1+2γ2)

(1+γ2)2 Rc, (10.12)

f (RI
b)= Rc

4(1+γ2)
and fR(RI

b)= 0. (10.13)

We can attempt the finding of a numerical solution for each of the branches.

Post-bounce phase (-)

The cosmological evolution of the post-bounce phase of mLQC-I is described by the modified

Friedmann equation [84,406]

3H2
I− = κ2

(
1− ρ

ρI
b

)1+ γ2

1+γ2


√
ρ/ρI

b

1+
√

1−ρ/ρI
b


 , (10.14)

Again, by equating the above expression for the Hubble rate to the one in f (R) theories (10.1) we

arrive to an ODE of the general form (10.3), with the particular values of the functions

A−
I =

√
2(R fR −2 f )

(
Rc

2(1+γ2)
−R fR +2 f

)

BI =
√

Rc

1+γ2 fR (2R fR −3 f )

∆−
I =

√√√√√√√ Rc − (1+γ2)(R fR −2 f )+
√

R2
c −2(1+γ2)Rc(R fR −2 f )

(1+γ2)
(
Rc +2 f −R fR +

√
R2

c −2(1+γ2)Rc(R fR −2 f )
)

(10.15)

We have obtained a numerical solution that matches the boundary conditions (10.12). This so-

lution can be seen in Fig. 10.1. This ODE shows the same issues with sensitivity to the initial

value and stability as the other cases. However, there is a qualitative difference with respect

to LQC and mLQC-II: in this case the second derivative of f (R) diverges at the bounce with an
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asymptotic dependence of the form (R−Rb)−1/2.

We also find the following: For boundary conditions leading to bounce densities which are much

lower than the correct value, the convergence of the numerical solver extends to arbitrarily large

curvatures. However, although we can obtain values of the bounce density for the numerical

solution which are very close to the correct bounce densities, for bound densities close enough

to the correct value, the convergence range ODE develops an upper limit at some value of the

affine curvature greater than the bounce curvature. The curvature at which this happens quickly

approaches the bounce curvature when the boundary conditions approach those that give the

correct bounce density. Numeric experiments appear to suggest that this upper limit is the bounce

curvature itself for the solution that would give exactly the correct bounce density, thus spoiling

uniqueness. Hence, it appears that the boundary conditions leading to a correct bounce density,

namely (10.12), are a singular point in the solution space of the ODE describing mLQC-I and

f (R) equivalence.

Pre-bounce phase (+)

The cosmological evolution of the pre-bounce phase of mLQC-I is described by the modified

Friedmann equation [84,406]

3H2
I+ = κ2αρΛ

(
1− ρ

ρI
b

)1+
1−2γ2 +

√
1−ρ/ρI

b

4γ2(1+
√

1−ρ/ρI
b )

ρ

ρI
b

 , (10.16)

where α = (1−5γ2)/(1+γ2), ρΛ = 3/(κ2αλ2(1+γ2)2) and λ2 = p
3κ2γ/2. Again, by equating the

above expression for the Hubble rate to the one in f (R) theories (10.1) we arrive to an ODE of

the general form (10.3), with the particular values of the functions

A+
I =

√√√√√4
p

3
(

Rc
2(γ2+1) −R f ′(R)+2 f (R)

)
(
γ2 +1

)
γκ2Rc

,

B+
I =

√
Rc

1+γ2 fR (2R fR −3 f ) ,

∆+
I =

√√√√√√γ2
(√

Rc
2(1+γ2) +

√
Rc

2(1+γ2) −R fR +2 f
)

2γ2 +1−
√

Rc
2(1+γ2) −R fR +2 f

.

(10.17)

Though we know the boundary conditions at the bounce, these are not well suited for numerical

solving. This was also the case for the post-bounce branch and the other two models, but in

those cases we knew that the boundary conditions at low curvatures must be compatible with

the metric-affine Einstein-Hilbert action to a high degree of approximation. Here, however, the
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prebounce phase does not need to be arbitrarily close to GR at low curvatures (we actually do

not have any physical information about the prebounce phase). Thus, it is not yet clear how to

attempt a numerical solution. Steps to solve this issue are currently being undertaken.

10.2 An f (R) family for Looping them all

In the original paper by Olmo and Singh [407], an analytic approximation to the standard LQC

numerical solution of the ODE defined by (10.5) with boundary conditions (10.6) was given as

f (R)= R
12

(
1− 1

2
ln

[(
R

12Rc

)2])
+ R (R+12Rc)2

6500R2
c

(10.18)

Following their work, we would like now to find an analytic covariant function that describes

the different Loop cosmologies. We will do so by generalising the above function. Let us try

the generalised ansatz consisting on the following 3-parameter family of metric-affine f (R)

Lagrangians

f (R)= ξR
[
1+ (αRc +R)2

βα2R2
c

− 1
2

ln
(

R2

α2R2
c

)]
. (10.19)

Here, the parameter α determines the bounce affine curvature in units of Rc, ξ determines the

value of the Lagrangian at the bounce for a given α, and β is a free parameter with the condition

β≥ 2 so that the derivative of the Lagrangian does not vanish within the interval R ∈ (−Rb,0).

By requiring that this Lagrangian is compatible with the bounce conditions of LQC, mLQC-I and

mLQC-II already fixes α and ξ in the three cases to be

αLQC = 12, α−
I = 3(1+2γ2)

(1+γ2)2 , αII = 48(1+2γ2)(1+γ2),

ξLQC = 1
αLQC

, ξ−I = 1
4(1+γ2)αI

, ξII =
4(1+γ2)
αII

.
(10.20)

By using these values, and minimising the area between the numerical solution and the analytic

approximation, we can find a best fit for the parameter β for each of the models. The best fit

values are

βLQC = 3.84 β−
I = 4.77 βII = 3.10. (10.21)

In figure 10.1, the analytic approximation (10.18) and the numerical solution to (10.3) with the

corresponding functions and boundary conditions, as well as their derivatives are plotted for the

corresponding values of α and ξ, given in (10.20), and the above best fit values of β. In figure

10.2 the same is done with the energy density normalised at the bounce. We can see how the

analytic approximations fit the numerical solution up to deviations of at most around 1% from

low curvatures almost up to the bounce in the energy density profile of the three models. Though

the bounce is perfectly captured in both LQC and mLQC-II, in mLQC-I the second derivative fRR

blows up when approaching the bounce. By performing numerical experiments, we can see how
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Figure 10.1: Plot of the analytical approximation (10.18) with β given in (10.21) and the numerical
solution to the corresponding ODE (10.3). We plot f (R), fR , fRR . The first row is standard LQC,
the second is the postbounce branch of mLQC-I and the third is mLQC-II.

this divergence goes asymptotically like (R−Rb)−1/2. This behaviour can be seen also in ρ which

does not approach the bounce with the correct asymptotic behavior. This issue can be solved by

adding a (R−Rb)3/2 term to the generic form for f (R) in (10.19). As well, we can design ad hoc

polynomial corrections to mLQC-I and -II separately that reduce the deviations to the 0.1% level.
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Figure 10.2: Plot of the energy density normalised at the bounce for the analytical approximation
(10.18) of each model with β given in (10.21) and the numerical solution to the corresponding
ODE (10.3). The first row is standard LQC, the second is the postbounce branch of mLQC-I and
the third is mLQC-II.
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Figure 10.3: Plots of the energy density normalised at the bounce for mLQC-I and -II after the
improved version of the respective analytic approximations (10.22) and (10.23). We also plot the
corresponding numerical solution.

Corrections to the generic Lagrangian

To make the generalised model (10.19) account for the (R −Rb)−1/2 divergence of fRR at the

bounce, as well as the 1% deviations in the energy density profile, we modify it by

f I
−(R)=ξR

[
1+ (αRc +R)2

βα2R2
c

− 1
2

log
(

R2

α2R2
c

)]
+ 8ε

3βα

√
(R+αRc)3

αRc
−

−ε̃
[

(R−αRc)2

10

(
1− R−αRc

10

)
− 1

2
R(R−αRc)

(
R− αRc

3

)]
,

(10.22)

and for mLQC-II we add polynomial corrections without the divergent term of the form

f II(R)=ξR
[
1+ (αRc +R)2

βα2R2
c

− 1
2

ln
(

R2

α2R2
c

)]
+ ε̃ R

105

[
3
50

R4 +
(

29
200

αRc + 5
6

)
R3

+αRc

(
71
600

αRc + 16
3

)
R2 +α2R2

c

(
αRc

25
+ 13

4

)
R+α3R3

c

(
αRc

200
+ 1

2

)] (10.23)

where (α,ξ) are also given by (10.20) and have the same meaning in both cases, the parameter

controlling the bounce divergence of fRR in mLQC-I is ε = 10−2, and the coefficients of the

polynomial proportional to ε̃ are at most of order 1 with ε̃= 10−2. β is again a free parameter that

allows to fit the numerical solution. We obtain almost the same best-fit value for β as without the

correction, namely βI = 4.76 and βII = 2.70. As can be seen in figure 10.3, the fit of the analytical

normalised energy density to the numerical solution improves respect to the general form (10.19)

in both cases, and the divergence of fRR in mLQC-I is captured accurately (see figure 10.2). To

close up, we have seen how the background evolution of isotropic and homogeneous models of

Loop Cosmologies can be mimicked precisely by metric-affine f (R) theories. Even more, these

theories are not completely different for each of the models, but they rather obey the general

nonperturbative behaviour of a family of metric-affine f (R) theories given by (10.19). This result

is rather remarkable as, even though the three Loop Cosmology models stem from a common
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Figure 10.4: Plot of fRR for the improved analytical approximation to mLQC-I from (10.22)
with β−

I = 4.76 and the corresponding numerical solution. The divergent behaviour is captured
perfectly.

framework and differ due to quantisation ambiguities in isotropic and homogeneous spacetimes,

the f (R) theories could all have a different nonperturbative behavior. Nevertheless, we have

shown how this is not the case, and the f (R) models describing the three Loop Cosmologies

originate from the same functional dependence on the affine curvature, each model differing only

in the value of the corresponding parameters. This reminds to the situation where one derives

an effective field theory for general Loop Cosmologies, which would only differ on the value of

the different Wilson coefficients, thus suggesting that f (R) theories could be capturing some

nonperturbative features of LQG. This suggests the study of this family of theories in other

scenarios such as anisotropic cosmologies or spherically symmetric spacetimes to see if it can also

describe their Loop quantised versions. As well, confronting this family with Loop Cosmologies at

the level of perturbations, or trying to find an improved one which does a better job if this one

fails, is also an important direction to be explored in the future.
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11
SPONTANEOUS LORENTZ SYMMETRY BREAKING IN THE

METRIC-AFFINE FRAMEWORK

The consistent inclusion of Lorentz symmetry breaking in a curved space is currently an open

problem, though it is motivated by several approaches to find the UV completion of GR [408–413].

The usual way of including explicit Lorentz symmetry breaking by introducing a constant

privileged direction cannot be generalised in a straightforward manner in presence of a nontrivial

gravitational background while respecting diffeomorphism covariance. This is due to the fact

that the partial derivative operator is tied to a given coordinate system, and it is not covariant

when acting on generic tensor fields (see chapter 2). Covariant differential operators that could

be used to implement the constant condition could be d or ∇. If the privileged direction is defined

by a vector b, imposing the vanishing of db would lead to b = dφ for a given scalar φ, which is not

a Lorentz violating constraint. By imposing ∇b = 0 we end up with a constraint equation for the

connection, or the metric if we do it in the metric formalism, which is not generally acceptable

from the physical viewpoint.

Another possibility is thus to resort to a spontaneous breaking of Lorentz symmetry via a

vacuum expectation value of some field which belongs to some representation of the Lorentz

group which is not the trivial one. The easiest way to go is by considering a vector field with a

potential that leads to the existence of stable nontrivial vacua so that the vacuum expectation

value (VEV) of the field breaks Lorentz symmetry spontaneously. This was done in presence of

gravity by Kostelecky in what is known as the Bumblebee model [87], where a coupling of the

vector field to the Ricci tensor is considered. Several aspects of this model have been studied

over the years, all within the Riemannian framework [414–429]. As well, experimental tests of

Lorentz violating extensions of the Standard Model and GR have led to stringent constraints on
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Lorentz breaking parameters [430–433]. As a first step to study spontaneous symmetry breaking

of Lorentz symmetry within the metric-affine framework, in this chapter we will consider a

metric-affine formulation of the Bumblebee model [85,86].

As we will see, this fits perfectly into the framework of RBG theories already developed in

chapter 4. Indeed, due to the fact that the Ricci tensor appears only linearly in the Lagrangian,

this will be a particularly easy example of Ricci-Based theory with projective symmetry and

nonminimal couplings between matter and geometry. As we will see, the resulting theory admits

an exact formal solution for the independent connection which leads to the emergence of a

nonmetricity tensor generated by the nonminimal Bumblebee coupling to the geometry, which

in the Einstein frame will couple to the rest of the matter fields present in the theory due

to Q-induced interactions. We will first analyse briefly the structure of the theory, building

the corresponding Einstein frame. In the weak gravitational field limit, and perturbatively in

the nonminimal coupling constant, we will study the stability of the Bumblebee vacua. Then,

assuming a generic vacuum for the Bumblebee field, which should be particularised to the stable

one for practical applications, we study the resulting field equations for scalar and Dirac fields,

focusing on the Lorentz violating parameters and their modified dispersion relations.

11.1 The Metric-Affine Bumblebee model

We will consider a metric-affine Bumblebee model where the only nonminimal coupling to the

geometry occurs through the Bumblebee field. This model is described by a Lagrangian of the

form

L = R+ 2ξ
MQ

2 BµBνRµν+ 2
MP

2

[
−1

4
BµνBµν−V (BµBµ±b2)+L MC

m
(
gµν,Ψi)

]
.

Here Bµν = (dB)µν, and we have written the Bumblebee piece of the action separated from

the minimally coupled piece of the matter sector L MC
m , and we have neglected the fermion

couplings to torsion so that L MC
m does not depend on the connection and the effects of the

Bumblebee nonminimal coupling appear more transparent1. The potential of the Bumblebee field

Bµ guarantees that there are nontrivial Bumblebee vacua which spontaneously break Lorentz

symmetry by introducing a privileged direction.

The above action is within the class described by (4.1) with a nonminimal coupling of the matter

sector to the geometry through the Bumblebee field controlled by the dimensionless coefficient ξ.

Following the reasoning in chapter 4, we find that the connection field equations of (11.1) are an

algebraic constraint, so that the connection is an auxiliary field that can be algebraically solved

1Indeed, adding the fermionic minimal coupling to torsion only adds a linear coupling to the connection in the
spinorial sector of L MC

m . This would lead to a Planck-scale suppresed four-fermion contact interaction which we will
neglect for the same reasons as in chapter 9.
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as the canonical connection of the Einstein frame metric

p−q qµν = gµν+ 2ξ
MQ

2 BµBν. (11.1)

This relation allows us to fin β2
g = gµνBµBν, in terms of β2

q = qµνBµBν as

β2
q =β2

g

√
1+ 2ξ

MQ
2βg (11.2)

which can be solved algebraically to find β2
g(β2

q), leading to the expression of gµν in terms of qµν
and the Bumblebee field as

gµν = 1√
1+ 2ξ

MQ
2 β̄

2
qµν+ 2ξ

MQ
2

1

1+ 2ξ
MQ

2 β̄
2

BµBν ,
(11.3)

where we have called β̄2 to the solution β2
g(β2

q) of (11.2) and we can find gµν by inverting the

above equation as a matrix equation. Proceeding as in section 4.1.3, we arrive to the Einstein

frame form of the Bumblebee action (11.1), which reads

LEF = R+ 2
MP

2 L̄
ξ
m

(
qµν,Bµ,Ψi

)
where any barred tensor indicates that its indices are raised and lowered with qµν, so that

the gµν metrics have been substituted by qµν through (11.3) and its inverse. We have now

included the bumblebee terms within L̄
ξ
m, which is denoted by the superscript ξ. In the above

form, it is apparent that, due to the fact that it belongs to the (nonminimally coupled) RBG

subclass of metric-affine theories, the Bumblebee model can be interpreted as GR coupled to

a modified matter sector in which all the matter fields couple to the Bumblebee through Q-

induced interactions with coupling strength ξ/MQ
2, including new self-interactions that modify

the Bumblebee potential.

According to the above form of the Bumblebee action, the metric qµν satisfies the Einstein

equations coupled to a highly non-linear matter sector. Therefore, qµν will depart from the

Minkowski metric only in regions where the Newtonian and post-Newtonian effects are expected

to be relevant, i.e., regions with a strong gravitational field. As a result, as it follows from (11.3),

the metric gµν will not only describe the two propagating degrees of freedom corresponding to a

massless spin-2 field described by qµν, but it will also encode information on the local value of

the Bumblebee field via a conformal factor and a disformal term proportional to BµBν both of

which source nonmetricity as can be seen by noting that the connection field equations are solved

by the constraint ∇αqµν = 0. Thus, the nonmetricity tensor is nontrivial, controled by ξ/MQ
2,

and entirely due to the covariant derivatives of the Bumblebee field. Since this field is expected

to have a nontrivial VEV that spontaneously breaks Lorentz invariance, this is an example of

a gravitationally generated nonmetricity tensor that can develop a VEV. In contrast, in RBGs
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with minimally coupled matter, the nonmetricity is associated to derivatives of the stress-energy

tensor of the matter fields, which vanish in vacuum. Within the assumption that there is a

constant nonmetricity background around the Earth, experimental constraints to all the possible

effective couplings between fermions and photons and nonmetricity were derived from Lorentz

violation searches within Earth laboratories in [434]. Since minimally coupled matter fields do

not couple explicitly to nonmetricity, these constraints do not apply to our model. However, this

model provides an explicit example of a gravitational model with a nontrivial nonmetricity VEV

that the author knows of. Furthermore, note that constraints on Lorentz-violating couplings

such as those in the Standard Model Extension [430] could translate into constraints on the

Bumblebee nonminimal coupling ξ. Below, we will facilitate the translation of these bounds by

deriving the effective Klein-Gordon and Dirac equations in presence of a nontrivial Bumblebee

VEV.

11.2 Weak gravitational field limit

We can now explore the weak gravitational field limit of the model, so that the effects of

the Bumblebee couplings to matter appear transparently. This limit would be applicable in e.g.

non-gravitational experiments on Earth’s surface, where all Newtonian and post-Newtonian

corrections to the Minkowski metric can be safely neglected. Given that qµν satisfies Einstein’s

equations, this amounts to the approximation qµν ≈ ηµν, in the same spirit as in chapter 9.

Considering also ξ as a small coupling, we can write the following perturbative relations between

both metrics

gµν = ηµν− 2ξ
MQ

2

(
BµBν− 1

2
BαBαη

µν

)
+O

(
ξ2

MQ
4

)
(11.4)

where we now raise and lower indices with the Minkowski metric consistently with our approx-

imations. This expression will allow us to write the Einstein frame effective Lagrangians and

field equations for the Bumblebee field, as well as for scalar and Dirac matter fields.

11.2.1 Effective dynamics for matter fields

Proceeding in similar lines as in section 9.2, we can find the effective Lagrangians describing

scalar and Dirac fields perturbatively in ξ/MQ
2, which are given by

L(0) =−1
2Φ(2η+m2)Φ+ ξ

MQ
2Φ

[
BµBν∂µ∂ν+

(
Bµ(∂νBν)+Bν(∂νBµ)

)
∂µ+ m2

2 B2
]
Φ+O

(
ξ2

MQ
4

)
, (11.5)

L(1/2) = Ψ̄(iγµ∂µ−m)Ψ− ξ

MQ
2 Ψ̄

[
i
2 B2γµ∂µ+ iBµBνγµ∂ν+ i

2

(
Bα

(
∂µBα

)+Bν
(
∂νBµ

)+ (∂αBα)Bµ

)
γµ−mB2

]
Ψ+O

(
ξ2

MQ
4

)
. (11.6)

where Q-induced interactions couple the matter field to the Bumblebee and we have neglected

the spinors coupling to torsion as explained above in footnote 1.
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As the Bumblebee field develops a nontrivial VEV, the Q-induced interactions with the Bumble-

bee in the above effective Lagrangians can carry coefficients for Lorentz violation. However, for

these coefficients to be observable, they have to be nonvanishing for a stable nontrivial Bumblebee

vacuum. Thus, before analysing these coefficients, we must study the vacuum structure of the

bumblebee field in search for stable nontrivial VEVs. To that end, we have to specify first a

particular form for the Bumblebee potential which provides spontaneous breaking of Lorentz

symmetry. We will choose the usual Mexican hat potential, given by

V (BµBµ∓b2)= λ

4
(
BµBµ∓b2)2, (11.7)

where λ is a positive weak coupling. Here b2 > 0 and the ∓ sign accounts for the possibility of

having a spacelike or timelike Bumblebee VEV respectively. With this choice of potential, the

Einstein frame Lagrangian for the Bumblebee reads

LBEF =−1
4 BµνBµν+ M2

2 B2 − Λ
4 (B2)2 + ξ

MQ
2

[
BµνBα

νBµBα− 1
4 BµνBµνB2 − 3

4Λ(B2)3
]
+O

(
ξ2

MQ
4

)
(11.8)

respectively, where the Bumblebee effective mass is given by M2 = λb2
(
±1+ ξ

2MQ
2 b2

)
and Λ≡

λ
(
1± 4ξ

MQ
2 b2

)
. Given that we are only interested in the qualitative details of the vacuum structure,

and we are considering ξ as a perturbative coupling, it will suffice to unveil the vacuum structure

in the ξ→ 0 limit. In other words, the perturbative modifications introduced by ξ will not change

the number and nature of the vacua, so that we can study the vacuum structure of the ξ→ 0 case.

11.2.2 Stability of the Bumblebee vacua

The explicitly covariant form of the Bumblebee Lagrangian (11.8) is a constrained theory,

as B0 is non-dynamical due to the gauge invariant kinetic term (see section 7.2). Indeed, the

corresponding field equations for B0 in the ξ→ 0 limit are

λB0

(
B2

0 −B2 − µ

λ

)
−∂iḂi = 0, (11.9)

where B2 = δi jBiB j and µ=±M2. This is an algebraic equation for B0 and, already for the ξ→ 0

case, there will be different branches of the theory corresponding to one of the three solutions to

the above constraint equation. Since we are doing the analysis perturbatively in ξ, we will just be

interested in the vacuum structure of the ξ→ 0 theory, and the stability properties of each of the

vacua will not change perturbatively in ξ. The above constraint equation has three solutions that

can be parametrised in the general form

B(k)
0 = ak

B̄
3A

+a∗
k A (11.10)

where

B̄ ≡B2 + µ

2
, A ≡

∂iḂi

2λ
+

√(
∂iḂi

2λ

)2

−
(

B̄
3

)3
1/3

(11.11)

251



CHAPTER 11. SPONTANEOUS LORENTZ SYMMETRY BREAKING IN THE METRIC-AFFINE
FRAMEWORK

and the three solutions are given by

a1 = 1, a2 =−1+ i
p

3
2

and a3 = a∗
2, (11.12)

so that B(3)
0 = B(2)

0
∗. The only branch admitting a Lorentz invariant vacuum, namely B0 = 0 and

Bi = 0 is the B(1)
0 branch. To see that, take Bi = 0 (then ∂iḂi = 0 too). The values for three branches

are

B(1)
0 |Bi→0 = 0, B(2)

0 |Bi→0 ∝ B(3)
0 |Bi→0 ∝

√
|µ|
λ

, (11.13)

the proportionality factors are given by ±i or ±1 depending on the sign of µ. Now, we should see

whether the different branches have stable vacua where we can compute the quantum corrections

associated to the different fields of the theory. To that end, one has two options: 1) compute the

quadratic actions for perturbations to Bµ =βµ+ B̃µ around any background, then integrate out

the non-dynamical B̃0 by solving the corresponding (linear) constraint equation, and study the

eigenvalues of the kinetic matrix for the perturbations B̃i on top of each of the vacua, or 2) resort

to the Hamiltonian formalism, which we prefer. Thus, after solving the constraint for B0, the

Hamiltonian to analyse reads

Hk =
1
2
~E2 + 1

4
Bi jBi j −

(
ak

B̄2

3A
+a∗

k A
)
∂iE i + λ

4

[
ak

(
B̄2

3A

)4

+a∗
k A4 −2a∗

k

(
B̄2

3

)3 1
A2 −ak

2B̄2

3A
A2 + (B̄2)2

3

]
(11.14)

where we have dropped a constant term and ~E2 = δi jE iE j, where we have defined

E i ≡ ∂LBEF

∂Ḃi

∣∣∣∣
ξ→0

(11.15)

as the conjugate momenta to Bi. The constraint equation is now solved in terms of Bi and the

conjugate momenta as in (11.10) with A now given by

A ≡
∂iE i

2λ
+

√(
∂iE i

2λ

)2

−
(

B̄
3

)3
1/3

. (11.16)

Now we must consider the two possible signs for µ = ±M2, which lead to different vacuum

structures. Let us start first with the µ> 0 case. Here, we see that B̄ is strictly positive for all

values of Bi, and we can write the Hamiltonian perturbatively for each of the three branches as

Hµ>0
k = 1

2
~E2 + 1

4
Bi jBi j + λ

4
(1−n2

k)
(
B2 + M2

λ

)2

+nk

√
B2 + M2

λ
∂iE i + (∂iE i)2

2(1−2n2
k)λ

(
B2 + M2

λ

) (11.17)

252



11.2. WEAK GRAVITATIONAL FIELD LIMIT

Figure 11.1: In the upper row we plot the phase-space potential for the Bumblebee field as a
function V (B,∂iE i) for the three B0 branches in the case µ= M2 > 0. The black dot highlights
the point (0,0,V (0,0)). We can see how only the B(1)

0 branch has a critical point for the potential,
namely a minimum, precisely at this point. This minimum is global within the B(0)

0 branch, but it
is local if considering the full solution space, given that the potential is not bounded from below
for the other branches B(i 6=1)

0 , turning it into a metastable Lorentz invariant vacuum. In the lower
row, the same potentials are plotted close to the trivial configuration B= 0 and ∂iE i = 0. We can
appreciate clearly how the B(1)

0 branch has a minimum at this point, while the two other branches
do not have a critical point there (or actually anywhere).

up to O
(
(∂iE i)3)

corrections, where

n1 = 0, n2 = 1 and n3 =−1 (11.18)

characterise each branch. Now, note that the B(1)
0 branch does not have a linear term in ∂iE i, and

the quadratic term is positive definite, as are all the remaining ones. The configuration Bi = 0

and E i = 0 is a classically stable vacuum with a value for the Hamiltonian of M4/4λ which, in

this branch, is Lorentz-invariant since B0 is also vanishing (11.13). For the other two branches,

this field configuration leads to a vanishing Hamiltonian, so that the Bi = E i = 0 vacuum of the

B(1)
0 branch is a local minimum and, though classically stable, it can decay through tunnelling

processes turning it into a metastable vacuum. For the other two branches, though the field

configuration Bi = E i = 0 is a saddle point of the perturbative Hamiltonian, it can be seen that

this is not the case when including all orders in ∂iE i. In figure 11.1 we plot the relevant piece
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of the full Hamiltonian for each of the branches. As expected, the B(1)
0 branch has a classically

stable vacuum at Bi = E i = 0. However, we see that the potential for the B(2)
0 and B(3)

0 branches

does not have any extremal points due to the fact that its derivative in the ∂iE i direction never

vanishes.

Figure 11.2: In the upper row we plot the phase-space potential for the Bumblebee field as a
function V (B,∂iE i) for the three B0 branches in the case µ=−M2 < 0. The black dot highlights
the point (0,0,V (0,0)) in the B(1)

0 branch plot and the points (±
p

M2/λ ,0,0). We can see how in
the B(1)

0 branch the trivial Lorentz invariant vacuum is unstable, as expected for a tachyonic
mass sign. As opposed to the µ > 0 case, now there is a pair of (degenerate) nontrivial vacua
in the B(3)

0 branch which spontaneously breaks Lorentz symmetry spatially, as the Bumblebee
condenses to (0,Bi) with B=

p
M2/λ . This vacuum is a global minimum within the B(3)

0 branch,
though the potential is not bounded from below for the other branches B(i 6=1)

0 , turning it into a
pair of metastable Lorentz violating vacua. The potential for the B(2)

0 branch does not have any
critical points. In the lower row, the same potentials are plotted close to the trivial configuration
B= 0 and ∂iE i = 0 to allow for better appreciation of these features.
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For the µ< 0 case, the expansion of the Hamiltonian around the trivial configuration reads

Hµ<0
k = 1

2
~E2 + 1

4
Bi jBi j + λ

4
(1−n2

k)
(
B2 − M2

λ

)2

−nk i

√
−B2 + M2

λ
∂iE i + (∂iE i)2

2(1−2n2
k)λ

(
B2 − M2

λ

) (11.19)

which has an imaginary coefficient for the linear term in the B(2)
0 and B(3)

0 branches. For the B(1)
0

branch the trivial configuration Bi = E i = 0 is a temporally broken vacuum with B0 = i
p

M2/λ

which is classically unstable, as can be seen by noticing that the coefficient of the quadratic term

is negative at Bi = 0. For the B(2)
0 and B(3)

0 branches we notice that the imaginary coefficient of

the linear term becomes real at B2
i = M2/λ, however, the perturbative expansion breaks down

precisely at that point, as the coefficient of the quadratic term blows up. Thus, in order to see

whether there are any stable nontrivial vacua on these branches, we should analyse the full

Hamiltonian, which will be real if (
∂iE i

2λ

)2

−
(
B2 − M2

λ

)3

> 0, (11.20)

and is solved by

|B| >
√

3
(
∂iE i

2λ

)2/3

+ M2

λ
. (11.21)

In figure 11.2, we see that in the limiting cases corresponding to ∂iE i = 0 and B=
p

M2/λ there

are two nontrivial minima for which the Hamiltonian vanishes and B0 = 0 as well. We can also

see that for other branches the Hamiltonian is not bounded from below so, although classically

stable, these local minima can also decay through quantum tunneling, being thus metastable

vacua.

Summing up, we see that for the µ = M2 > 0 case we only have a stable Lorentz invariant

vacuum, while for µ =−M2 < 0, there are two vacua: the trivial one, which is unstable, and a

metastable nontrivial vacuum of the form βvac
µ = (0,βvac

i ) with |βvac
i | =

p
M2/λ .

11.3 Lorentz-violating coefficients

We now know that there is a classically stable nontrivial timelike vacuum for the bumblebee

field in the µ< 0 case. We will first consider an approximately2 constant timelike VEV 〈Bµ〉 =
bµ = (0,bi) with δi jbib j = b2 = M2/λ in a weak gravitational field. Later we will generalise for

arbitrary timelike VEVs. Generally, observables which couple to bµ will be sensitive to the

2In presence of a nontrivial gravitational field, this condition is not well defined, but we are neglecting those
effects.
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spontaneous breaking of Lorentz symmetry by the Bumblebee field. Since the present model

displays non-minimal couplings between the Bumblebee field and the matter sources through the

non-Riemannian part of the connection, there will arise several Lorentz violating (LV) coefficients

in the Einstein frame effective matter sector.

Scalar field

The Lagrangian for a scalar field propagating on top of the nontrivial Bumblebee background

takes the form

Lsc = −1
2
Φ(2+m2)Φ+ ξ

MQ
2Φ

[
(sµν∂µ∂ν)+ 1

2
m2b2

]
Φ+O

(
ξ2

MQ
4

)
,

where sµν = bµbν. The O (ξ) terms will typically induce LV coefficients through the VEV of the

Bumblebee field. The sµν term constitutes a modification of the standard kinetic term which can

be encoded in an effective metric for the scalar field of the form gµνeff = ηµν− (2ξ/MQ
2)sµν for a

generic background. However, in the classically stable background, s00 = s0i = 0, which modifies

only the coupling with the spacial derivatives. Hence, a “wrong” signature of the LV coefficient

sµν could trigger Laplacian instabilities around strong enough Bumblebee backgrounds (see

chapter 7). Note, however, that in such case, the perturbative expansion would break down

given that (ξ/MQ
2)b2 would be O (1), and a full non-perturbative analysis would be required.

The correction to the mass term in (11.5) can also be encoded in an effective mass of the form

m2
eff = m2(1− (ξ/MQ

2)b2) which could also trigger tachyonic-like instabilities for a space-like

Bumblebee VEV (again non-perturbative effects could play a non-negligible role).

In order to explore potential instabilities in more detail, let us analyse the dispersion relation

of the classically stable vacuum, which reads

E2 =~p2 +m2 + 2ξ
MQ

2

(
1
2

m2b2 + (~b ·~p)2
)
+O

(
2ξ2

MQ
2

)
. (11.22)

This dispersion relation is healthy for positive values of ξ. For negative values of ξ a tachyonic-like

instability as well as a Laplacian instability (in directions which are non-orthogonal to~b) could

potentially arise. In case that these instabilities appear, we should check their persistence in a

full nonperturbative analysis of the theory.

Dirac field

Let us now turn our attention to the spin 1/2 fields. To explore the physics of our interest

in a more convenient way, we will work with the decomposition of LV coefficients that is more

commonly used in the literature [408,435]. To that end, let us write the weak-field spinor action

on top of a nontrivial Bumblebee background as (11.6) as

Lsp = Ψ̄(
iΓµ∂µ− M̂

)
Ψ, (11.23)
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where Γµ and M are elements of the 16-dimensional Clifford algebra defined by the Dirac gamma

matrices. We can thus expand them in the usual basis of this algebra as

Γµ = eµI + (δµα+ cµα)γα+dµαγ5γ
α+ i f µγ5 + 1

2
gµλασλα,

M̂ = meffI +aµγµ+kµγµγ5 + 1
2

lµνσµν,
(11.24)

where cµα, dµα, eµ, f µ, gµλα, aµ, kµ and lµν are LV coefficients. Comparing (11.6) to (11.23) and

(11.24), we find the non-zero LV coefficients

cµα = ξ

2MQ
2

(
M2

λ
δµα+2bµbα

)
+O

(
2ξ2

MQ
2

)
, (11.25)

meff = m

(
1+ ξ

MQ
2

M2

λ

)
+O

(
2ξ2

MQ
2

)
. (11.26)

We see that within the metric-affine Bumblebee model, the LV coefficients that appear provide a

modification of the fermionic mass through meff and a modification of the standard kinetic term

through cµα. In general, these will introduce modifications in the dispersion relation of spin 1/2

fields. To find them let us write the Dirac equation derived from (11.23) as(
iΓµ∂µ− M̂

)
Ψ= 0 , (11.27)

and multiplying on the left by
(
iΓµ∂µ+M

)
we arrive at[

ΓµΓν∂µ∂ν− i[M̂,Γµ]∂µ+ M̂2]
Ψ= 0 . (11.28)

By using now the relations

{Γµ,Γν}= 2ηµν+ 2ξ
MQ

2

(
M2

λ
ηµν−2bµbν

)
+O

(
2ξ2

MQ
2

)
, (11.29)

[M̂,Γµ]=O

(
2ξ2

MQ
2

)
, (11.30)

M̂2 = m2

(
1+ 2ξ

MQ
2

M2

λ

)
+O

(
2ξ2

MQ
2

)
, (11.31)

we find the following dispersion relation[
E2

(
1+ 2ξ

MQ
2

M2

λ

)
−

(
1+ 2ξ

MQ
2

M2

λ

)(
~p2 +m2)− 2ξ

MQ
2 (~p ·~b)2

]
Ψ=O

(
2ξ2

MQ
2

)
.

For a (constant) spacelike VEV bµ = [0,~b] we obtain

E2 =~p2 +m2 + 2ξ
MQ

2 (~p ·~b)2 +O

(
2ξ2

MQ
2

)
. (11.32)

For any sign of ξ, the O (ξ) term could trigger Laplacian instabilities at the perturbative level,

though a full analysis should be carried out in order to check that the instabilities are not an
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artefact of the perturbative expansion. See [436] for a discussion on the typical energy scales at

which these instabilities become relevant. Available constraints on LV parameters, as well as

on the characteristic scale of instabilities if these are developed, could be used to constrain the

allowed values of the nonminimal coupling sourcing LV in the matter sector.

Arbitrarily varying bµ

If we drop the assumption of constant bµ, we find the effective Lagrangian for scalar fields

Lsc =−1
2
Φ(2+m2)Φ+ ξ

MQ
2Φ

[
(sµν∂µ∂ν)+ tµ∂µ− M2

2λ
m2

]
Φ+O

(
2ξ2

MQ
2

)
,

with tµ = bµ(∂νbν)+ bν(∂νbµ). Note the presence of the additional coefficient tµ in relation to

the standard case (it vanishes for constant Bumblebee VEVs). This coefficient introduces an

imaginary term in the scalar dispersion relation. The modified scalar dispersion relations now

looks

E2 −~p2 −
[

1− ξ

MQ
2

M2

λ

]
m2 − 2ξ

MQ
2 (~b ·~p)2 + 2ξ

MQ
2 (−~b+ i~t) ·~p =O

(
ξ2

MQ
2

)
.

Note the existence of imaginary terms in the above dispersion relation, which only vanish if one

considers a frame where tµpµ = 0. This undesired property leads to complex eigenvalues of the

Hamiltonian operator, which turns out to be non-Hermitian, and potential Laplacian instabilities.

For spinor fields, the dispersion relation is modified in relation to the constant bµ as(
ΓµΓν∂µ∂ν+Γµ(∂µΓν)∂ν+ iΓµ∂µM̂− i[M̂,Γµ]∂µ+M2)

Ψ= 0. (11.33)

Now the relevant relations are

{Γµ,Γν}= 2ηµν+ 2ξ
MQ

2

(
M2

λ
ηµν+2bµbν

)
+O

(
2ξ2

MQ
2

)
, (11.34)

[M,Γµ]= i
2

aασαµ+O

(
2ξ2

MQ
2

)
, (11.35)

M2 = m2

(
1− 2ξ

MQ
2 b2

)
+2maµγµ+O .

(
2ξ2

MQ
2

)
, (11.36)

We find the following dispersion relation

E2
(
1+ 2ξ

MQ
2

M2

λ

)
+ 2ξ

MQ
2 E

( i
2 aiσ

i0 − iγµγβ∂µc0β
)− (

1− 2ξ
MQ2

M2

λ

)(
~p2 +m2)

(11.37)

+ 2ξ
MQ

2

(
−(~p ·~b)2 + iγµγα∂µaα+ i

2 aασαi pi −2maµγµ
)
=O

(
2ξ2

MQ
2

)
.

Although we can see in the form of the terms that Laplacian instabilities could arise, the analysis

of the instabilities in this case appears more intricate than in the constant one. However, we

conclude that a non-constant bµ produces an effective Minkowskian theory which will in general

present instability issues.
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12
A SCALE INVARIANT NOTION OF TIME IN PRESENCE OF ARBITRARY

NONMETRICITY

12.1 Introduction

From a geometrical perspective, the torsion tensor measures the failure to close for infinitesimal

loops built by parallel transport, while the nonmetricity tensor measures how parallel transport

modifies lengths and angles. Concretely, if we decompose the nonmetricity into its irreducible

components, its Weyl component controls the change in length of a parallely transported vector.

spacetimes where the nonmetricity is fully specified by its Weyl component are named Weyl

spacetimes, honoring the first work where this kind of nonmetricity was taken into account

by Weyl [38]. This irreducible component of the nonmetricity tensor transforms as a gauge

1-form under scale transformations of the metric, i.e., it is the gauge field associated to scale

transformations (usually called dilaton field). This fact fostered the interest in Weyl geometries,

since they provide a natural way of introducing scale transformations without changing the

affine structure (which cannot be done in Riemannian geometries). However, though a Weyl-

like nonmetricity is necessary for defining scale transformations that do not change the affine

structure, the usual restriction on the nonmetricity to be of this form in conformal invariant

theories is unnecessary, and this can be achieved with general nonmetricity [89]. In this case

only the vectorial irreducible components of nonmetricity transform as a gauge 1-form, while the

tensorial irreducible components transform trivially by a conformal factor1.

1Concretely under a conformal transformation g 7→ g̃ = eφg in 4 spacetime dimensions, the different irreducible
components listed in (12.18) transform as: Q̃1µ = Q1µ +4(dφ)µ , Q̃2µ = Q1µ + (dφ)µ, S̃µαβ = eφSµαβ and Mµαβ =
eφMµαβ
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Motivated by the discussion of Perlick [88] about how to construct a suitable Weyl-invariant

notion of proper time that reduces to the standard definition of proper time in the Riemannian

limit, and following [133] in its analysis of the physical role played by the Weyl 1-form, in this

chapter we will be concerned about finding a suitable definition of proper time that respects

scale invariance in the presence of arbitrary nonmetricity (or generalised Weyl invariance in the

sense of [89]), and also with the physical consequences of having nontrivial nonmetricity if there

were physical clocks which were sensitive to this notion of time. To that end we will generalise

the parametrisation for generalised proper time (GPT) found in [132] to the case of arbitrary

nonmetricity and find the existence of a conformally invariant second clock effect related to Weyl

component of the nonmetricity tensor. We will then discuss GPT in light of the Märkze-Wheeler

construction (see e.g. [94,95,437]), which allows to operationally define the notion of clock in GR,

elaborating on what kind of matter fields shall one need to build a generalised clock by means of

this construction.

12.2 Generalised proper time

The fact that the usual Riemannian proper time, which is defined as the arclength of timelike

curves, is not invariant under scale (or Weyl) transformations might be uncomfortable for those

who expect UV physics to be scale invariant. To solve this issue, Perlick found a canonical2 Weyl-

invariant notion of proper time in a Weyl spacetime which reduces to the standard Riemannian

proper time in the appropriate limit [88]. We will call this Perlick time. Recently, it was shown

[132] that GPT coincides with the operational time given by Ehlers, Pirani and Schild in [127],

where they deduced from an operational point of view, and under certain assumptions regarding

freely falling trajectories, that the spacetime manifold could be described by a Weyl spacetime.

In [132] it was shown that the Perlick time interval between two events γ(t0) and γ(t) belonging

to a timelike curve γ : t ∈ I ⊂R 7→ γ(t) ∈M is given by

∆τ(t)=
dτ
dt

∣∣∣
(t=t0)√

g
(
γ̇(t0), γ̇(t0)

) ∫ t

t0

ds
√

g
(
γ̇(u), γ̇(u)

)
e−

1
2

∫ u
u0

duω(γ̇(u)) , (12.1)

where γ̇= dγ(t)/dt, and in a Weyl space the nonmetricity tensor is given by ∇g =ω⊗ g. Our aim

is to generalise this notion giving a definition of proper time in scale-invariant spacetimes with

a general form of the nonmetricity tensor Q, i.e., in generalised Weyl spacetimes in the sense

of [89]. To do so, let us give the definition of Perlick time presented in [88].

A τ-parametrised timelike curve γ : τ ∈ I 7→ γ(τ) ∈ M is a generalised clock if

g
(
γ̇,∇γ̇γ̇

)= 0 ∀τ ∈ I. (12.2)

2Canonical here meaning that uses only the ingredients available in a Weyl structure, or Weyl spacetime.
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The parameter τ parametrising a generalised clock is the generalised proper time (GPT)

measured by the clock. It can be shown that every timelike path3 γ admits a parametrisation

with GPT [132]. In their argument the authors start with a timelike curve γ(t) and show that a

reparametrisation µ : t ∈ I 7→µ(t)= τ ∈ I ′ satisfying

d2µ

dt2 − g
(
γ̇(t),∇γ̇γ̇

)
g

(
γ̇(t), γ̇(t)

) dµ
dt

= 0 (12.3)

has the property that γ̃(τ) = γ ◦µ−1(τ) is a generalised clock. As (12.3) always has a unique

solution for timelike paths, every observer can be a generalised clock. The proof outlined in [132]

is independent of the relation between the metric and affine structure of the spacetime, which

allows us to use their result and follow the steps of [132] to find a general solution for (12.3) in a

spacetime with arbitrary Q. In order to derive this solution, let us start from the identity

(∇X g) (Y , Z)= X (g (Y , Z))− g (∇X Y , Z)− g (Y ,∇X Z) , (12.4)

where X , Y , Z are three arbitrary vector fields. Notice that by definition of the nonmetricity

tensor, Q (X ,Y , Z)≡ (∇X g) (Y , Z). Using (12.4) with X =Y = Z = γ̇(t) and dividing by the tangent

vetor squared we find
g

(
γ̇,∇γ̇γ̇

)
g

(
γ̇, γ̇

) = 1
2

(
γ̇

[
ln

(
g

(
γ̇, γ̇

))]− Q
(
γ̇, γ̇, γ̇

)
g

(
γ̇, γ̇

) )
, (12.5)

which is analogous to Eq.(9) of [132] after the substitution4 Q(γ̇, γ̇, γ̇) 7→ω
(
γ̇
)

g
(
γ̇, γ̇

)
and taking

into account that their d/dt is a derivative in the direction of the curve, so that on a scalar

function it is the action of γ̇ on that scalar function. Combining this equation with (12.3) yields

the following condition for a reparametrisation to lead to a GPT parametrisation in presence of

arbitrary nonmetricity

dµ
dt

= dµ(t0)
dt

[
g(γ̇(t), γ̇(t))

g(γ̇(t0), γ̇(t0))

]1/2
e−

1
2

∫ t
t0

ds Q(γ̇(s),γ̇(s),γ̇(s))
g(γ̇(s),γ̇(s)) . (12.6)

Integrating this equation for µ = τ leads to an operational expression for computing the GPT

elapsed between two events A = γ(t0) and B = γ(t) for the observer γ(t) in spacetimes with general

nonmetricity. This expression reads

∆τ(t)=
dτ
dt

∣∣∣
t=t0

d
u
√

g
(
γ̇(t0), γ̇(t0)

) ∫ t

t0

ds
√

g
(
γ̇(u), γ̇(u)

)
e−

1
2

∫ u
u0

Q(γ̇(s),γ̇(s),γ̇(s))
g(γ̇(s),γ̇(s)) , (12.7)

and reduces to the one found for Perlick time (12.1) if the nonmetricity tensor is specified to be of

the Weyl kind.

3Note that the causal character of a path does not depend on the parametrisation that one uses to describe it as a
curve.

4Notice that this substitution is a particularization of a general nonmetricity tensor to a Weyl-type nonmetricity
tensor.
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A desirable feature for a notion of time is additivity, namely, that the time passed in going

from event A to event B through a path γAB added to the time passed in going from event B to

event C through a path γBC is the same as the time passed in going from event A to event C

through the path γAB +γBC where the sum here must be understood as concatenation of paths.

The proof of the additivity of GPT in Weyl spacetimes given in [132] also works in presence of

general nonmetricity, and therefore the additivity is guaranteed. Moreover, due to the fact that

(12.7) reduces to (12.1) for Weyl nonmetricity and, as proven in [132], (12.1) has the correct Weyl-

Integrable-spacetime (WIST) and Riemannian limits, GPT will also have the correct WIST and

Riemannian limits, thus being a sensible generalisation of Riemannian proper time in presence

of arbitrary nonmetricity.

In post-Riemannian manifolds, the scale invariance of the affine structure implies that the

nonmetricity tensor must transform in a particular way under scale transformations. In fact, one

can verify that the simultaneous transformations

g̃ = eφg and Q̃ = eφ(Q+dφ⊗ g) (12.8)

leave invariant the affine connection (as scale transformations should), where φ is any arbitrary

smooth scalar function [89]. Since conformal transformations do not modify the orthogonality

conditions, from its definition (12.2), GPT is scale invariant independently of the affine structure.

This can also be verified by using (12.8) on the operational expression (12.7) that allows to

explicitly compute the GPT within a given timelike path. Hence GPT is a sensible conformal

invariant notion of time not only in Weyl spacetimes, but also in spacetimes with arbitrary

nonmetricity.

12.3 Relation between GPT and Ehlers-Pirani-Schild proper
time

In the framework introduced by Ehlers, Pirani and Schild (EPS) in [127], one of the key

assumptions that lead to the conclusion that the universe should be a Weyl spacetime5 was the

compatibility between the projective structure defined by the trajectories of freely falling particles

and the conformal structure defined by the trajectories of light rays. They also define a notion

of proper time within this framework which is Weyl invariant and coincides with GPT in Weyl

spaces [132]. In other words, under the restriction to the nonmetricity tensor of being Weyl-like,

the GPT boils down to EPS proper time. In the following, we will be concerned with finding the

most general kind of nonmetricity such that equivalence between EPS and GPT holds. To that

end, we will proceed by following the proof given in [132] for the equivalence of EPS and Perlick

clocks but leaving nonmetricity completely arbitrary.
5Note that from the metric-affine point of view, a Riemannian spacetime is a particular instance of a Weyl space

with ω= 0. However, the canonical affine structure of a Riemannian spacetime is not conformal invariant.
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By definition [127], a timelike curve γ(τ) is an EPS clock, i.e., it is parametrised by EPS time,

if there exists a vector field Vγ parallel along γ(τ) which satisfies

g(γ̇(τ), γ̇(τ))= g(Vγ(τ),Vγ(τ)) (12.9)

along the curve. Differentiating this condition and using that Vγ(τ) is parallelly transported along

γ(τ), namely ∇γ̇Vγ(τ)= 0, the following relation follows from (12.4)

2g
(∇γ̇Vγ, γ̇

)=Q(γ̇,Vγ,Vγ)−Q(γ̇, γ̇, γ̇) (12.10)

where al the quantities are evaluated at a point γ(τ). This condition is valid for any EPS clock in

presence of arbitrary nonmetricity. Hence, by definition of generalised clock (12.2), for any EPS

clock to be also a generalised clock, the condition

Q(γ̇, γ̇, γ̇)=Q(γ̇,Vγ,Vγ), (12.11)

must be satisfied along any timelike curve γ(τ), where Vγ(τ) is the vector field satisfying the EPS

clock condition (12.9) along γ(τ).

Let us now try to answer the opposite question, namely, under which conditions any generalised

clock is an EPS clock. By definition, a timelike curve γ(τ) is a generalised clock if γ̇(τ) and ∇γ̇γ̇
are orthogonal along the curve. Define (locally) a parallel vector field Vγ along γ(τ) as the unique

solution to the the initial value problem

∇γ̇Vγ = 0 with initial condition Vγ(τ0)= γ̇(τ0). (12.12)

Using parallelism of Vγ along γ(τ) and the orthogonality between γ̇(τ) and ∇γ̇γ, subtracting (12.4)

applied to X = γ̇ and Y , Z =Vγ, γ̇, one finds that the initial value problem

d
dτ

(
g

(
Vγ,Vγ

)− g
(
γ̇, γ̇

))=Q(γ̇,Vγ,Vγ)−Q(γ̇, γ̇, γ̇) with Vγ(τ0)= γ̇(τ0) (12.13)

must be solved along γ(τ). The initial condition guarantees the vanishing of both sizes at τ= τ0.

Thus, given the form of the above initial value problem, and the uniqueness of its solution, the

initial condition will remain true along γ(τ), and therefore any EPS clock γ(τ) will also be a

generalised clock, if and only if

Q(γ̇,Vγ,Vγ)=Q(γ̇, γ̇, γ̇) (12.14)

is satisfied along any timelike curve γ(τ). Therefore, the condition (12.14) is a necessary and

sufficient condition for any generalised clock to be an EPS clock.

The natural next step is to find out what is the most general kind of nonmetricity tensor that

satisfies the above condition. To that end, let us proceed as follows. For every timelike curve γ(τ),

define a symmetric (0,2) tensor by q(γ) =∇γ̇g. With this definition, and given an atlas covering γ,

the condition (12.14) can be written as

q(γ)
αβ

(
VγαVγβ− γ̇αγ̇β

)
= 0, (12.15)
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which has to be satisfied for all timelike paths for some parametrisation. The above condition

gives only one algebraic constraint given by (12.14) for 10 independent components of q(γ)
αβ. Thus

the system is indeterminate, which makes sense, given that we know that any Weyl spacetime

satisfies this condition. However, let us try to solve the system step by step to confirm this.

Since it is homogeneous, there is the trivial solution q(γ) = 0 for all γ(τ) which implies that the

nonmetricity must vanish, i.e., a Riemannian spacetime is a particular case of spacetimes where

EPS and generalised clock coincide. There is another solution that can be found by looking at the

definition of an EPS clock (12.9). From that definition, it is apparent that for any spacetime that

satisfies q(γ) =φγg where φγ is an arbitrary scalar function that depends on the particular path.

If that is the case, at each point p ∈M , we can define a 1-form ω ∈T ∗M such that ωp[γ̇p]=φγ(p)

for each timelike path through p, so that for any pair of vectors fields A,B and timelike path

parametrised by γ(τ) we have

q(γ)(A,B)=ω[γ̇]g(A,B), (12.16)

which implies that Q = ω⊗ g, i.e., all Weyl spacetimes are a solution to the above system as

expected. In order to see whether there are any other solutions to the system, we can look at the

above conditions when written in terms of the irreducible components of the nonmetricity tensor.

In 4 spacetime dimensions, the nonmetricity tensor can be decomposed in its Lorentz-irreducible

pieces as

Qµαβ = 1
18 (5Q1µgαβ−Q1αgβµ−Q1βgµα−2Q2µgαβ+4Q2αgβµ+4Q2βgµα)+Sµαβ+Mµαβ, (12.17)

where the different objects are

Q1µ ≡ gαβQµαβ , Q2µ ≡ gαβQαµβ,

Sµαβ ≡ 1
3 (Qµαβ+Qαβµ+Qβµα)− 1

18 (Q1µgαβ+Q1αgβµ+Q1βgµα)− 1
9 (Q2µgαβ+Q2αgβµ+Q2βgµα),

Mµαβ ≡ 1
3 (2Qµαβ−Qαβµ−Qβµα)− 1

9 (2Q1µgαβ−Q1αgβµ−Q1βgµα)+ 1
9 (2Q2µgαβ−Q2αgβµ−Q2βgµα).

(12.18)

After some algebra, we can see that (12.15) leads to a relation between vectorial and tensorial

components of nonmetricity that reads

γ̇µ
(
Sµαβ+Mµαβ+ 1

9
gµ(α

(
Q1β) −4Q2β)

))= 0. (12.19)

Given the tracelessness of both M and S in any pair of indices, taking the trace of this equation

in the two free indices, we find that

γ̇µ
(
Q1µ−4Q2µ

)= 0 (12.20)

has to be satisfied if (12.19) is satisfied. This last equation is satisfied for every timelike path

only if Q1 = 4Q2. Plugging this into the general equation (12.19), we find that M =−S should

hold for it to be true for every timelike path. Thus Q1 = 4Q2 and M =−S must be satisfied by the
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Figure 12.1: Synchronized clocks c1 and c2 follow world lines γ1 and γ2, which are coincident
from point A to B, where they are separated to follow the parts Γ1 and Γ2 of these lines until
point C, where they are once again joined and continue together until point D.

most general kind of nonmetricity satisfying that any EPS clock is a generalised clock. Plugging

these conditions into (12.17) we see that a nonmetricity tensor satisfying these conditions is

Q =Q2 ⊗ g = 1
4

Q1 ⊗ g, (12.21)

namely, the most general kind of spacetime in which any EPS clock is a generalised clock and

vice versa. In fact, a conclusion of the EPS paper is that from its construction based on the

compatibility of the projective and conformal structures defined by freely falling massive and

massless particles, one is led univocally to a Weyl geometry [127], though some subtleties have

been addressed in [438–441]. That is the reason why the EPS time is irrevocably connected to

the geometrical definition of time that uses the metric and the connection introduced by Perlick,

and if one wants to develop a notion of proper time in a spacetime where free particles follow

autoparallels of an affine connection with nontrivial nonmetricity, GPT can be a good candidate

from the theoretical point of view, since it suitably generalises Riemannian and Perlick times6.

Without having much hopes that any real observer could be sensitive to this notion of time, but

driven by pure curiousity, let us explore an important physical effect that such an observer would

feel from the use of this geometrical time. Namely, what is known as the second clock effect.

12.4 GPT and the second clock effect

As a postscript to the original paper by Weyl [38], in which he introduced his geometrisation

of electromagnetism and gravitation by means of a Weyl-like nonmetricity tensor, Einstein

criticised the proposal by stating that the theory would suffer from an unpleasant effect due to

the nonintegrability of lengths, namely, the clock rate of the clocks in the theory would depend

6Though recall that, in general, one cannot find a variational principle for matter fields leading to them following
the autoparallel curves of an arbitrary connection, it can be found for some particular connections.
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on their past histories, which would have imprints in e.g. the spectral lines of atoms which have

never been observed. This effect was later coined as the second clock effect [442]. In order to

illustrate it, consider two clocks c1 and c2 synchronised at event A as in figure 12.1, which are

transported following the same curve until event B, then separated and transported along two

different curves, Γ1 and Γ2, until event C, where they are rejoined and transported to event D

following the same curve again. The proper time τi measured by the clock number i after going

from event C to event D is given by

τi = τ̇i(uiC)√
g

(
γ̇i(uiC), γ̇i(uiC)

) ∫ uiD

uiC

du
√

g
(
γ̇i(u), γ̇i(u)

)
e−

1
2

∫ u
uiC

ds Q(γ̇i (s),γ̇i (s),γ̇i (s))
g(γ̇i (s),γ̇i (s)) , (12.22)

The times from A to C can be computed using Eq.(12.6) as

τi(uiC)= τ̇i(uA)

√√√√ g
(
γ̇i(uiC), γ̇i(uiC)

)
g

(
γ̇i(uA), γ̇i(uA)

) e−
1
2

∫ uiC
uA ds Q(γ̇i (s),γ̇i (s),γ̇i (s)))

g(γ̇i (s),γ̇i (s)) (12.23)

where ui is the parameter of the generalised clock γi. As in [132], after a reparametrisation from

u2 to u1, and using synchronisation at event A, namely γ̇1(uA) = γ̇2(uA), γ̇1(u1C) = γ̇2(u2C) =
γ̇(uC), from the above equations we find

τ2(uD)= τ(uD)
τ̇2(uA)
τ̇(uA)

e
1
2

[∫ u1C
uA

Q(γ̇1(s),γ̇1(s),γ̇1(s))
g(γ̇1(s),γ̇1(s)) ds−∫ u2C

uA
Q(γ̇2(s),γ̇2(s),γ̇2(s))

g(γ̇2(s),γ̇2(s)) ds
]
. (12.24)

Since both clocks have the same scale at the event A, i.e., τ̇1(uA) = τ̇2(uA), we conclude that a

clock that measures GPT will measure a second clock effect in presence of a general nonmetricity

tensor given by

τ̄= τexp
[

1
2

∫
Γ1−Γ2

Q
(
γ̇(s), γ̇(s), γ̇(s)

)
g

(
γ̇(s), γ̇(s)

) ds
]

. (12.25)

This expression reduces to the result found in [132] in Weyl spacetimes. and it is invariant under

the action of conformal transformations (12.8),
∫
Γ1−Γ2

dφ= 0 ( Γ1 −Γ2 is a closed path). Therefore

our construction describes a conformally invariant second clock effect. The observability of this

event depends on whether clocks sensitive to this notion of time can be built with the available

matter content in the universe. In [90], assuming that a muon proper time is the GPT7 allowed

us to set bounds on the irreducible components of the nonmetricity tensor background at the

Muon Storage Ring of |Q|. 10−14cm.

12.5 Is it possible to build a clock that measures GPT?

As a final discussion, let us quickly elaborate on the possibility of measuring this invariant

notion of proper time. Namely, let us digress on the question of whether one can actually construct

7Yes, Iarley and me were still young and bold enough to assume that, and we were surprisingly allowed by our
supervisors!
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a generalised clock with the content of our universe, or whether it is just a funny theoretical

concept. To that end, recall that a physical clock as a clock that measures time as experienced

by physical observers, namely massive bodies. By means of a generalised Märkze-Wheeler

construction, one could in principle build clocks by using light rays and autoparallels of the

connection, instead of Riemannian ones, as done by Märkze and Wheeler in [94,437], and then

study whether this construction bears any relation with GPT. Notice that if it is to be related with

GPT, scale invariance should play a central role on this generalised Märkze-Wheeler construction.

Nonetheless, even if the construction of generalised clocks is possible in this way, that does

not guarantee that it is possible to find such clocks in nature. Particularly, one would need to

find massive particles that follow autoparallel curves of an affine connection with nontrivial

nonmetricity, thus implying a violation of the Einstein Equivalence Principle, which is strongly

constrained experimentally [443]. Furthermore, as we discussed in section 3.4, it is generally not

possible to find an action principle for matter fields leading to autoparallel curves of an arbitrary

connection as the ones followed by freely falling bodies8. General relativity is constructed in

such a way that free test particles follow Riemannian geodesics due to the conservation of the

energy-momentum tensor, which in turn is required by diffeomorphism invariance [444]. In 3.4,

we argued that the characteristic curves of the solutions to the field equations of minimally

coupled fields do not follow autoparallel paths of a connection with nonmetricity, but rather

Riemannian geodesics or autoparallels of a connection with some particular form of torsion

in the case of minimally coupled fermions [140–144]. Hence, they are not well suited to build

generalised clocks within the Märkze-Wheeler construction. Particularly, unless muons are seen

to couple nontrivially to the nonmetricity, were this a feature of our spacetime, they would not

be measuring GPT. However, some proposals for different couplings have arisen recently. For

instance, the case of integrable Weyl spacetimes was addressed in [445], in which a coupling

that obeys the gauge invariance of the geometry and makes free particles follow Weyl geodesics

in this theory was proposed. This issue was also addressed in [446] for non-integrable Weyl

geometry, were the authors concluded that free particles should follow Riemannian geodesics.

In the context of f (Q)-gravity, it has been recently proposed [447] a coupling with matter where

an extra force arises in the equation describing propagation of freely falling particles when

written as a Riemannian geodesic equation. More recently, the case of a non-minimal coupling

between matter and geometry in manifolds endowed with a nonmetric connection has gained some

attention [448–450]. Thus, being optimistic, the issue of whether GPT can be regarded as physical

might depend on the particular model, since the possibility of constructing a generalised clock

within every model depends on its particular geometry-matter coupling. However, a case-by-case

analysis is required to ascertain whether these clocks exist in each particular theory.

8Though this is possible for some particular kinds of connections.
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13
4D EINSTEIN-GAUSS-BONNET THEORY IS NOT WELL DEFINED

In a recent work [93] it was claimed that there exists a theory of gravitation in four spacetime

dimensions which fulfils all the assumptions of the Lovelock theorem [99] yet not its conclusions.

The authors formulated the usual Einstein-Gauss-Bonnet (EGB) theory in an arbitrary dimension

D with a coupling constant for the Gauss-Bonnet term rescaled by a 1/(D−4) factor, as defined

by the following action

S =
∫

dD x
√
|− g|

[
MP

2

2
R+ α

D−4
G −Λ0

]
. (13.1)

Here Λ0 is a cosmological constant term, R is the (metric) Ricci scalar, and G the (metric) Gauss-

Bonnet (GB) term. As it is well known, the GB term is a topological invariant only in D = 4, but

not in higher dimensions, thus generally yielding a nontrivial contribution to the field equations

in arbitrary D > 4. In [93] it is claimed that the contribution of the Gauss-Bonnet (GB) term to the

equations of motion is always proportional to a (D−4) factor, which in principle compensates the

divergence introduced in the coupling constant, thus allowing for a well defined D → 4 limit at the

level of the field equations. It was argued that a nontrivial correction to General Relativity due

to the GB term in (13.1) remains in D = 4. The proposal in [93] is now known as 4-dimensional

Einstein-Gauss-Bonnet theory (4DEGB).

The above action is one of the celebrated Lovelock actions in arbitrary D. In [93] it is claimed

that all the assumptions of Lovelock theorem hold for this action after the D → 4 prescription is

enforced, though it was also claimed that the resulting field equations do violate the conclusions

of the Lovelock theorem. This was supposed to be accomplished by defining a 4-dimensional

diffeomorphism-invariant theory satisfying the metricity condition and having second-order field

equations which differ from those of General Relativity (GR). The authors of [93] then proceeded
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to show the consequences of these modifications to GR in some scenarios with a high degree of

symmetry. These results gained an astonishing amount of attention shortly after publication,

with many works studying the properties of the solutions presented in [93], and other works

criticising several aspects of the 4DEGB proposal [451–455] while, in some cases, relating them

to other well defined theories [456–460]. In this chapter, we will present several arguments that

debunk many of the claims in [93], relating our results to some of the above works.

Let us sum up some of the main ideas of the chapter. It was claimed in [93] that the contribution

of the GB term to the field equations (and not just its trace) is proportional to (D−4), and that this

would imply the GB contribution to the field equations vanishes in four spacetime dimensions.

The authors of [93] then consider a coupling constant with a 1/(D−4) factor that would regularise

the otherwise vanishing GB contribution, now yield a finite correction to the four dimensional

field equations. We will show that, besides a term proportional to (D−4), the GB term contributes

to the field equations with an additional part from which no power of (D−4) can be factorized,

but which nonetheless vanishes identically in D = 4.

Regarding tensor perturbations in D4EGB we will reproduce the results of [93] for linear

perturbations around a maximally symmetric background. This allows to find that, at the linear

level and around maximally symmetric backgrounds, the proposal only propagates a massless

graviton and that the corrections to GR provided by the regularised GB term only enter through

a global α-dependent factor multiplying the linear perturbation equations in GR. Nonetheless we

will see that the field equations describing second-order perturbations contain ill-defined terms

even around a Minkowskian background. Indeed, we will argue that unless one is considering

solutions with enough symmetry so as to force a specific combination of Weyl tensors to vanish in

arbitrary dimensions, the term that is not proportional to (D−4) in the field equations renders

the full D4EGB field equations ill-defined.

Finally, we will comment on the geometries presented in [93] as the D → 4 limit of the spherically

symmetric solutions for EGB theory in D ≥ 5 found in [461]. We will see that the claim made

in [93] that no particle can reach the central curvature singularity in a finite proper time within

these geometries does not hold for freely-falling trajectories with vanishing orbital angular

momentum. Furthermore, we will show that the regularised D4EGB field equations are not well

defined in spherically symmetric spacetimes unless the contribution which is not proportional

to (D−4) is artificially stripped away from the field equations. Also, in the case that this term

is removed, we will see that the spherically symmetric geometries presented in [93] are not

solutions of the remaining field equations in D = 4.
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13.1 The D → 4 prescription

Let us first comment on whether the D → 4 prescription taken in [93] corresponds to a well-

defined continuous limiting process in a topological sense. To that end, consider the k-th order

Lovelock term in an arbitrary dimension D

S(k) =
∫

Ra1a2 ∧ ...∧Ra2k−1a2k ∧?(ea1 ∧ ...∧ea2k ) (13.2)

where Greek indices refer to a coordinate basis and Latin indices to a frame in which the metric

is Minkowskian (see chapter 2). If we analyse the problem in differential form notation, when

varying the action with respect to the dual frame ea we find

?
δS(k)

δ ea
= (D−2k)(D−2k−1)! J(k)

ac ec , (13.3)

where J(k)
ac is a regular tensor built from combinations of the Riemann tensor that differ for each

k.

The second factor in the above equation comes from the contraction of two Levi-Civita symbols.

Therefore, it is of combinatorial nature, namely, it essentially has to do with the counting of the

number of possible antisymmetric permutations of a bunch of indices. Notice that this counting

process is not a continuous process in which the number of indices being counted (or equivalently

the dimension) can take any value, but it ought to be an integer one. Indeed, for (13.3) to be valid,

D must be greater than 2k because a (−1)! cannot arise from counting possible permutations.

Since (13.3) is not valid for D = 2k, it cannot be stated that the factor (D−2k) is the responsible

for the vanishing of (13.3) in D = 2k. The reason under its vanishing can actually be traced

back to the properties of 2k-forms in 2k dimensions. Indeed, by explicitly writing the Hodge star

operator1 in (13.2), in the critical dimension we obtain

?g (ea1 ∧ ...∧ea2k )
∣∣
D=2k = Fεa1...a2k , (13.4)

where εa1...a2k is the Levi-Civita symbol, F is a non-zero constant that depends on k. As a

consequence of this, and the well-known fact that the curvature factors in the action do not

contribute (via spin connection) to the dynamics in Lovelock theories [462], the equations of

motion for the soldering forms are identically satisfied. Observe that this is no longer true if

D > 2k, since, in that case, the Hodge dual of ea1 ∧ ...∧ ea2k is not a 0-form and gives a nontrivial

contribution to the equation of motion of the soldering form.

It is clarifying as well to consider (13.3) as a metric variation, i.e. avoiding the differential form

notation and working directly with the metric components. We can rewrite the general k-th order

Lovelock term (13.2) in an arbitrary dimension D ≥ 2k as

S (k) = (2k)!
2k

∫
Rν1ν2

µ1µ2 ...Rν2k−1ν2k
µ2k−1µ2kδ

[ν1
µ1 ...δν2k]

µ2k

√
|g|dD x , (13.5)

1Recall section 2.4.2
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and its variation with respect to the metric is not proportional to (D−4), but rather of the form

1√|g|
δS(k)

δgµν
= (D−2k)Aµν+Wµν, (13.6)

where no (D−2k) factor can be extracted from Wµν. For instance, the first-order Lovelock term

(the Einstein-Hilbert action) leads to AEH
µν = 0 and WEH

µν = Gµν, which vanishes by algebraic

reasons in D = 2. Analogously, by decomposing the Riemann tensor into its irreducible pieces (see

e.g. [103]), the second-order Lovelock term, i.e. the Gauss-Bonnet term, leads to2

AGB
µν = D−3

(D−2)2

[
2D

D−1 RµνR− 4(D−2)
D−3 RρλCµρνλ−4Rµ

ρRνρ+2gµνRρλRρλ− D+2
2(D−1) gµνR2

]
, (13.7)

WGB
µν = 2

[
Cµ

ρλσCνρλσ− 1
4

gµνCτρλσCτρλσ

]
, (13.8)

where we have introduced the Weyl tensor Cµνρλ. Taking this into account, the field equations

arrived at from (13.1) in arbitrary dimension are3

Gµν+ 1
MP

2Λ0 gµν+ 2α
MP

2

(
AGB
µν +

WGB
µν

D−4

)
= 0. (13.9)

The regularization prescription given in [93] consisted on evaluating D = 4 after calculating the

equations of motion in arbitrary D. If this is done, while the AGB
µν term indeed provides a finite

nontrivial correction to the Einstein field equations if the coupling constant of the GB term is

α/(D−4), the WGB
µν term will be ill-defined in this case since, in general, WGB

µν does not go to zero

asymptotically as (D −4). Indeed, the reason for WGB
µν to vanish in D = 4 is that the Riemann

tensor loses independent components as one lowers the dimension and, in D = 4, this loss of

components imply that WGB
µν necessarily vanishes by algebraic reasons, analogously to what

happens to the Einstein tensor in D = 2. In other words, the reason for these expressions to be

zero in certain dimensions is that they are algebraic identities fulfilled by the curvatures of all

possible metrics in the critical dimension, as opposed to analytic identities at which one could

arrive by a continuous limiting process given a suitable topology. A somewhat simpler example of

the fact that the vanishing of the GB variation is due to algebraic reasons is provided by Galileon

or interacting massive vector field theories. There, it can be seen that due to the Cayley-Hamilton

theorem, the interaction Lagrangian of a given order k identically vanishes for dimensions higher

than the critical dimension associated to k [463].

The authors of [93] appeal to an analogy between their method and the method of dimensional

regularisation commonly employed in quantum field theory. The dimensional regularization

method allows to extract the divergent and finite contributions from integrals that are divergent

2The calculations have been checked with xAct . There is a Mathematica notebook in the supplementary material
of [92] where the calculations are explicitly made.

3Since the trace of WGB
µν is proportional to (D −4), the divergence disappears from the trace of the equation of

motion. This does not occur for the traceless piece of the equation.
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in D = 4 but non-divergent for higher D. It consists on considering the analytic continuation of

such integrals to the complex plane as a function of the complexified dimension D, and then

taking the limit D → 4 in a manner that allows to separate the divergent and finite contributions

of the integrals. A key aspect that ensures the well-definiteness of dimensional regularization

as an analytic continuation is that the regularised integrals are scalar functions which have no

algebraic structure sensitive to the number of dimensions of the space they are defined in.4 Note

however that this is not the case for the Gauss-Bonnet term, which has a nontrivial tensorial

structure that is not well defined for non-integer dimensions. Thus, although the process of

dimensional regularization can be rigorously defined by using the smooth D → 4 limit of the

appropriate analytic continuation of the scalar integrals, this fails to be a continuous limiting

process when the quantities involved have a nontrivial algebraic structure, such as tensors or

p-forms do. It would also be interesting to attempt to find a precise mathematical meaning to the

limiting procedure in the presence of tensor fields which satisfy certain algebraic identities only

in a particular number of dimensions. This could be done, for instance, by introducing a formal

limit (see e.g. [464]) and studying its properties, though it looks like a highly nontrivial task.

13.2 Perturbations around maximally symmetric backgrounds

Despite the above considerations note that, even though the regularisation method proposed

in [93] will not work in general, it suffices for finding solutions that satisfy enough symmetries

so as to render the WGB
µν identically zero in arbitrary dimension. Thus, by symmetry-reducing

the action before enforcing D = 4, we can get rid of the problematic WGB
µν term and arrive to well-

defined equations of motion. This is the case, for instance, of all conformally flat geometries, which

have an identically vanishing Weyl tensor in D ≥ 4, thus satisfying the desired property that

WGB
µν = 0 in D ≥ 4 which makes the D → 4 limit of the symmetry-reduced D4EGB field equations

(13.9) well defined. Maximally symmetric geometries, or FLRW spacetimes, are conformally flat,

and therefore the D → 4 prescription yields well defined field equations in such cases. Let us

analyse the maximally symmetric solutions of (13.9) studied in [93]. In these geometries, the

Riemann tensor is given by

Rµν
ρσ = Λ

MP
2(D−1)

(
δ
ρ
µδ

σ
ν −δσµδρν

)
, (13.10)

and WGB
µν vanishes in arbitrary dimensions as explained above. In this case, the variation of the

GB term is indeed proportional to (D−4) and, therefore, after this symmetry-reduction of the

action (13.1), the field equations (13.9) read

Gµν+ 1
MP

2Λ0 gµν+ 2α
MP

2 AGB
µν = 0, (13.11)

4Typically the tensorial structures within the integrals are extracted from them by employing Lorentz-covariance
arguments, and therefore the integrals to regularise are scalar functions.
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where AGB
µν provides a regular, α−dependent correction to GR. Although these properties will

be shared by all conformally flat solutions, we should bear in mind that arbitrary perturbations

around these backgrounds will be sensitive to the ill-defined contributions that come from the

WGB
µν dependence of the full D4EGB field equations (13.9). Remarkably, the ill-defined corrections

which enter the equations of motion through the αWGB
µν /(D−4) term do not contribute to linear

order in perturbation theory around a maximally symmetric background which, presumably,

is the reason why these ill-defined contributions were not noticed in [93], where only linear

perturbations were considered. Nonetheless, as we will see, the divergent terms related to WGB
µν

will enter the perturbations at second-order. To show this, let us consider a general perturbation

around a maximally symmetric background by splitting the full metric as

gµν = ḡµν+εhµν (13.12)

where ḡµν is a maximally symmetric solution of (13.9). Therefore, the left hand side of (13.9) can

be written as a perturbative series in ε of the form

E(0)
µν+εE(1)

µν+ε2E(2)
µν+ . . . , (13.13)

where E(0)
µν = 0 are the background field equations, E(1)

µν = 0 are the equations for linear per-

turbations, and so on. Using the zeroth-order equation, the linear perturbations in D dimensions

and around a maximally symmetric background are described by5

∇ρ∇µhνρ+∇ρ∇νhµρ−∇ρ∇ρhµν−∇µ∇νh+δµν(∇σ∇σh−∇ρ∇σhρσ)− Λ
MP

2 (δµνh−2hµν)= 0, (13.14)

where h ≡ hσσ, the indices are risen and lowered with ḡµν, and the covariant derivatives are those

associated to the Levi-Civita connection of the background metric ḡµν. By inspection, we can see

that this equation is regular in D = 4. Furthermore, as noted in [93], the equation governing linear

perturbations (13.14) are those ocuring in GR when linearised around an arbitrary background.

Let us now go to quadratic order in the perturbations. For our purpose it will be sufficient to

consider perturbations around a Minkowskian background. By using the zeroth- and first-order

perturbation equations, and enforcing a vanishing background curvature Λ= 0, we can write the

second-order perturbation equations E(2)
µν = 0 as (see the supplementary material of [92])

[GR terms of O (h2)]µν+ α

MP
2(D−4)

×
{
−2∇γ∇αhνβ∇γ∇βhµα+2∇γ∇βhνα∇γ∇βhµα

+2∇γ∇βhνα∇µ∇αhβγ+2∇γ∇βhµα∇ν∇αhβγ−2∇γ∇βhµα∇ν∇βhαγ−2∇γ∇βhνα∇µ∇βhαγ

−2∇µ∇γhαβ∇ν∇βhαγ+2∇µ∇γhαβ∇ν∇γhαβ+ gµν
(
2∇δ∇βhαγ∇δ∇γhαβ−∇δ∇γhαβ∇δ∇γhαβ

−∇β∇αhγδ∇δ∇γhαβ
)}= 0. (13.15)

5Although (13.14) and the equations for linear perturbations in [93] differ by the ordering of the covariant
derivatives of the ∇ρ∇νhµρ term and the sign in the mass term, our equation (13.9) coincides with those in e.g. [103]
for linearized perturbations around a maximally symmetric background. In any case the difference is not physically
relevant, as can be seen by choosing a particular gauge.

274



13.3. AN ACTION FOR THE REGULARISED EQUATIONS?

In view of the above expression,6 it is apparent that even around a flat background, the WGB
µν

piece of (13.9) contributes to the second-order perturbation equations with a term that is ill-

defined in D = 4. These findings provide a clear example which serves to show that the D4EGB

field equations (13.9) are generally ill-defined. As a remark, let us point out that our results are

somewhat in the line to those found in [451], where it was seen that the amplitudes of GB in the

D → 4 limit correspond to those of a scalar-tensor theory where the scalar is infinitely strongly

coupled. Hence, they concluded that this new pathological degree of freedom would only show up

beyond linear order in perturbations.

Going beyond a Minkowskian background, perturbations around arbitrary maximally symmet-

ric backgrounds (13.10) pick up additional terms which diverge as Λ/(D−4) (see the supplemen-

tary material of [92]). Concretely, up to second-order in hµν, there are O (Λ) terms of the form

h(∇2h) and O (Λ2) terms of the form h2. Consequently, Λ-proportional terms provide additional

divergences which make de Sitter and anti-de Sitter backgrounds also ill-defined beyond linear

order in perturbation theory.

13.3 An action for the regularised equations?

We have seen that, unless the WGB
µν term is stripped away from the field equations (13.9) after

taking the variation of the D4EGB action (13.1), they will be, in general, ill-defined. Let us now

comment on the possibility of finding a diffeomorphism-invariant action whose field equations

in D ≥ 4 yield the stripped equations, namely field equations of the form (13.11).7 To find such

an action starting from the EGB one, we should be able to subtract a scalar from the EGB

action so that the contribution WGB
µν disappears after taking the variation with respect to the

metric, yet the diffeomorphism symmetry of the EGB action is not lost. In trying to find such

a term, we are immediately led to an inconsistency due to the form of the Bianchi identities

related to diffeomorphism invariance. To see this, note that the Bianchi identities associated to

diffeomorphism-invariant actions imply that its variation with respect to the metric must be

identically divergenceless [103]. Hence, given that the Gauss-Bonnet term, i.e. (13.2) with k = 2,

is diffeomorphism invariant, it must satisfy this identity. Hence, by using the A-W decomposition

(13.6) and substituting AGB
µν with (13.7), it follows that the off-shell relation

∇µWGB
µν =−4(D−4)

D−2
Cνρλµ∇µRρλ . (13.16)

must be satisfied. Observe that the right-hand side of this equation is not identically zero in

an arbitrary dimension, as can be seen by considering the following counterexample in five
6Note that we have kept the covariant derivatives in (13.15) since our result is not restricted to a particular

coordinate choice.
7Even though the D → 4 process, if understood as a limit, will have the same conceptual problems described in

section 13.1, in this case they might be swept under the rug since the 1/(D−4) dependence actually disappears from
the field equations.

275



CHAPTER 13. 4D EINSTEIN-GAUSS-BONNET THEORY IS NOT WELL DEFINED

dimensions,

ds2 = dt2 −e2tdx2 −e4t(dy2 +dz2 +dw2) , (13.17)

for which the equation (13.16) reads

∇µWGB
µν =−4δt

ν 6= 0. (13.18)

Together with the fact that the variation with respect to the metric of any diffeomorphism-

invariant action is identically divergence-free, the above result implies that the term WGB
µν does

not come from an action that is a scalar under diffeomorphisms and built only with a metric. Con-

sequently, there does not exist any term that can be added to the action (13.1) to cancel the WGB
µν

contribution in the D4EGB field equations (13.9) without spoiling its diffeomorphism-invariance.

Other authors have proposed alternative ways to regularise the action (13.1), generally leading

to a scalar-tensor theory of the Horndeski family [451,452,456,459], thus leaving the Lovelock

theorem intact.

We thus conclude that no diffeomorphism-invariant action can give the desired stripped field

equations (13.11) in D ≥ 4. Nevertheless, nothing prevents the existence of a non-diffeomorphism-

invariant action having (13.11) as its field equations. Should it be possible to find such action,

however, the absence of diffeomorphism invariance would potentially unleash the well known

pathologies that occur in massive gravity (see e.g. [296,297]), thus propagating a Boulware-Deser

ghost [298].

13.4 Geodesic analysis of the spherically symmetric geometries

In addition to maximally symmetric and FLRW spacetimes, spherically symmetric geometries

claimed to be solutions of D4EGB were also considered in [93], where it was stated that they are

described by the 4-dimensional metric

ds2 = A±(r)dt2 − A−1
± (r)dr2 − r2dΩ2

2 , (13.19)

where A±(r) has the form

A±(r)= 1+ r2

32παG

1±
√

1+ 128παG2M
r3

 . (13.20)

First of all, let us point out that D−dimensional spherically symmetric geometries described by

metrics of the form [103]

ds2 = A(r)dt2 − A−1(r)dr2 − r2dΩ2
D−2 , (13.21)

do not in general satisfy that WGB
µν = 0 in arbitrary D ≥ 4. To see this, it suffices to restrict us to

the 5-dimensional case, where there is a nontrivial condition for WGB
µν to vanish for metrics of the
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above form that reads

r2 d2 A
dr2 −2r

dA
dr

+2A−2= 0. (13.22)

This only happens for the particular case A = 1+C1r+C2r2 where Ci are integration constants.

This suggests that (13.20) cannot be regarded as a solution of the D4EGB field equations, given

that (13.9) is not well-defined for D-dimensional spherically symmetric metrics (13.21) in the

D → 4 limit. Indeed, as the authors of [93] explain, the 4-dimensional spherically symmetric

geometries (13.20) were obtained by first re-scaling α with a 1/(D −4) factor in the sherically

symmetric solutions obtained in [461] for EGB in D ≥ 5, and then taking the D → 4 limit of these

metrics, instead of solving the D → 4 limit of (13.9).

Nevertheless, it could be that the spherically symmetric geometries of [93] are solutions of

(13.11), namely the stripped field equation, after being stripped away of the pathological WGB
µν

term. In the supplementary material of [92], it can be seen that (13.11) has four different branches

of solutions for α> 0. Two of them are exactly the Schwarzschild and Schwarzschild-(anti-)de

Sitter

A1 = 1− 2GM
r

,

A2 = 1+ r2

16πGα
− 2GM

r
. (13.23)

and the other two cannot be solved analytically, though their asymptotic behavior near the origin

can be seen to be A ∼= r−3−2
p

3 +O (r0). Thus these solutions can neither be the ones found in [93],

although they approach the Schwarzschild and Schwarzschild-(anti-)de Sitter solutions at spatial

infinity.

Let us now turn to the behavior of the spherically symmetric geometries presented in [93].

As noted in [93], the α < 0 branch of the above solution is not well defined for values of the

radial coordinate below r < (−128παG2M)−1/3, so their analysis focused on the α> 0 branches,

showing that the above metric describes solutions which behave asymptotically as Schwarzschild

or Schwarzschild-de Sitter solutions by choosing the negative and positive signs respectively.

Concerning the former branch of solutions, it was shown in [93] that its causal structure (namely,

the presence or absence of event horizons) depends on the ratio between the mass parameter M

and a new mass scale M∗ =p
16πα/G that characterizes the D4EGB corrections to GR. From

(13.19) and (13.20) it can be shown that the gtt component of the metric vanishes at the spherical

surfaces

r± =GM

1±
√

1−
(

M∗
M

)2
 . (13.24)

In view of this expression it becomes clear that solutions have no horizons for the M < M∗ case,

outer and inner horizons if M > M∗ and one degenerate horizon if M = M∗. Interestingly, the
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Figure 13.1: Plot of the radial ingoing trajectories (in units of rS = 2M) of a free-falling massive
particle in the spacetime (13.19) (dashed lines), and of the Schwarzschild solution (pastel colors)
for different values of the M parameter. At large distances trajectories are indistinguishable. We
have chosen M∗ =G = 1, r(0)= 100 rS and E = 1 for visualisation purposes.

mass scale M∗ plays a role similar to that of the electric (and magnetic) charges in the Reissner-

Nordström spacetime, with the exception that, in this case, the origin of such contributions comes

exclusively from the gravitational field. The effect of the Gauss-Bonnet terms would then be that

of making gravity repulsive at short distances, the magnitude of this repulsion being dictated by

the strength of the GB coupling α.

Regarding the presence of singularities in the solutions, we see that despite the metric compo-

nents (13.20) being finite at the origin

A(r)= 1−
√

2M
GM2∗

r1/2 +O (r3/2) , (13.25)

curvature invariants diverge as R ∝ r−3/2, RµνRµν ∼ RµναβRµναβ∝ r−3. In [93] it is argued that

an observer could never reach this curvature singularity given the repulsive effect of gravity

at short distances. This would imply that the spacetime described by (13.19) is complete in the

sense that no (classical) physical observer ever reaches the curvature singularity at r = 0 in a

finite proper time. Nonetheless, there was no explicit proof in [93] showing that this was indeed

the case. We thus proceed to give a precise answer to the following question: does any (classical)

physical observer reach the curvature singularity of (13.19) in a finite proper time? To answer

that question, it suffices to study the sub-class of radial and freely-falling (classical) observers,

described by radial time-like geodesics. We will also consider radial null geodesics for illustrative

purposes.
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Consider the geodesic equation in the equatorial plane8 θ =π/2 for the metric (13.19),(
dr
dτ

)2
= E2 −Veff(r), (13.26)

with

Veff(r)= A(r)
(

L2

r2 −κ
)
, (13.27)

and where τ is the proper time of the observer that moves along the solution r(τ). Here, κ takes

the values {−1,1,0} for space-like, time-like and null geodesics respectively. E and L are constants

of motion associated with time-translation and rotational symmetries respectively. It will suffice

for our purpose to analyse radial geodesics, characterised by L = 0. Firstly note that since radial

photon trajectories are insensitive to the value of A(r) in a spacetime described by any metric

of the form (13.19), the trajectories stay the same as in GR. The solution to (13.26) for time-like

geodesics is plotted in Fig. 13.1 for the cases with different causal structures. There, it can be seen

that infalling massive particles starting in a region well beyond the Schwarzschild radius (where

the space-time is effectively the same as in GR) reach the curvature singularity at r = 0 in a finite

proper time (no matter what its initial velocity is). Notice that, as can be seen in Fig. 13.2, the

deviations from the GR trajectories are not relevant until the particle is at r ∼= rS. An asymptotic

analysis of the geodesic equation reveals that, while in GR the curvature singularity at r = 0 is

reached with infinite velocity dr/dτ|GR ∝ r−1/2 +O (r0), the geodesics described by (13.19) reach it

with finite velocity

(dr/dτ)2|D4EGB = E2 −1+
√

2M/M2∗ r1/2 +O (r3/2) . (13.28)

It is interesting to note that in the case that the infalling particle starts at rest, no matter what

its initial position is, it will reach the singularity with zero velocity (characterised by E2 = 1):

attractive and repulsive effects compensate each other along the trajectory of the particle. The

above proves that the statement made in [93] that particles cannot reach the central singularity

in spacetimes described by (13.19) do not stand a rigorous analysis, as the singularity is reached

in finite affine parameter. Therefore, the hope that these solutions avoid the singularity problem

is cast into serious doubt. Furthermore, the authors of [93] also claim that under a realistic stellar

collapse, matter would stop before reaching the singularity. This of course must be verified by a

self-consistent analysis of the dynamical collapsing geometry, as was done in [466], revealing that

the singularity indeed forms and gets covered by a horizon. Furthermore, the authors of [466]

also found that if the collapse is modelled à la Oppenheimer-Snyder, where dust is initially at

rest, matter reaches the singularity with zero velocity, in agreement with our results.

We also note that, even if geodesic observers did never arrive at the singularity, the usual

problems regarding curvature singularities would still remain: quantum corrections would be

8Since spacetime is spherically symmetric, geodesics will lie in a plane, which can be chosen as the equatorial one
in suitable coordinates. See e.g. [465] for details on the derivation of the geodesic equation and [70] for the completeness
analysis.
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Figure 13.2: Figure showing how the trajectories of a massive particle in the spacetime described
by (13.19) (in units of rS = 2M) deviate from those of the Schwarzschild solution from GR near the
central curvature singularity. Here, the M = 0.5M∗ case is shown, although all timelike geodesics
show the same behavior near the singularity. Units are M∗ =G = 1.

expected to become non-perturbative near the singularity and the background could not be

treated classically anymore. However, the solutions would be classically singularity free in this

case.

Final remarks

Here we have looked upon the idea of providing corrections to four dimensional General

Relativity by means of the Gauss-Bonnet term devised in [467] and recently revisited in [93]. We

have shown that this idea cannot be implemented for the Gauss-Bonnet (k-th order Lovelock)

term in four (2k) spacetime dimensions by means of the procedure considered in [93] without

encountering inconsistencies. When considering solutions with a high degree of symmetry, such

as maximally symmetric or general conformally flat solutions, this issue gets concealed at the

level of the equations of motion due to the fact that the problematic terms WGB
µν in (13.9) vanish

for arbitrary D in these scenarios. Indeed we have shown that, when considering perturbations

around a Minkowskian (or any maximally symmetric) background beyond linear order, such

inconsistencies are immediately unveiled. This is also aligned with the conclusions at which

the authors of [451] arrived by analysing the tree-level graviton scattering amplitudes in a

Lagrangian-independent way by taking the four dimensional limit of the corresponding scattering

amplitudes in EGB in higher dimensions.

Regarding the spherically symmetric geometries presented in [93], we showed that they do

not attain the required degree of symmetry as to make the problematic WGB
µν term vanishing in
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arbitrary dimension and, thus, bypass the pathologies encountered in the D4EGB field equations

(13.9). By artificially removing the divergent WGB
µν term from (13.9), we encountered four spheri-

cally symmetric solutions, none of which coincides with those presented in [93]. We also showed

that the corresponding stripped equations cannot be derived from a diffeomorphism covariant

action built only with the metric. Moreover, a geodesic analysis of the geometries from [93]

contradicts the observation about the singularity being unreachable by any observer in finite

proper time.

To conclude, let us point out that the idea of extracting nontrivial corrections to the dynamics

of a theory from topological terms by considering a divergent coupling constant is indeed very

appealing, since its range of applicability extends far beyond gravitational contexts. For instance,

it might serve to introduce parity-violating effects in Yang-Mills theories through the correspond-

ing FF̃ terms that are topological in four dimensions. Indeed, a similar idea has been seen to lead

to well-defined theories in the context of Weyl geometry [468–470]. It could thus be interesting to

explore various possibilities in this direction.
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In this thesis we have progressed on the understanding on several theoretical and phe-

nomenological aspects of metric-affine theories of gravity. This class of theories has its

origin in the development by Cartan of a theory of connections [39–42] right after the birth

of GR, and in an attempt by Weyl of unifying gravity and electromagnetism through nonmetricity,

which gave birth to the idea of gauge symmetry [38]. After several decades, this gave rise to

the birth of gauge theories of the Lorentz and Poincaré group as theories for the gravitational

field [43–45, 471], which was later generalised to develop the gauge theory of the full affine

group [47]. Parallel to the development of gauge gravity, which naturally yields metric-affine

geometries, other metric-affine theories, generally metric-affine formulations of higher-order

curvature gravities, were being formulated. This bloomed with the discovery of the acceler-

ated expansion of the universe, where metric-affine (or Palatini) theories of gravity were being

considered to explain in a natural way the value of the cosmological constant. To do this, 1/R

metric-affine corrections to GR were considered [472], but this model was quickly ruled out by

accelerator experiments as an explanation for Λ [473]. Then, other more general IR metric-affine

corrections to GR, generally of the Ricci-Based type, were attempted [474,475], again ruled out as

an explanation for Λ due to their disastrous effects on the stability of the Hydrogen atom [476].

Soon after their failure in providing a natural explanation for the Cosmological Constant

it was seen that these theories were also good in avoiding cosmological singularities at the

classical level. First, a covariant metric-affine f (R) action mimicking the background evolution of

LQC [407], followed by a systematic study of the conditions under which f (R) theories present a

bounce replacing the Big Bang singularity [63], which was seen to be unstable if anisotropies were

included [223]. A similar analysis for other theories has followed this past decade [62,221,371,477].
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At the same time, it was found that singularity avoidance also occurs in spherically symmetric

backgrounds within these theories [65–71,213–216,225,261,263,372,373,478–480] which fostered

their exploration.

When I started my master thesis on corrections to the energy levels of the Hydrogen atom in

spacetimes with nonmetricity, driven by Gonzalo’s supportive advise, I became engaged with the

question of understanding whether there are model-independent effects due to the presence of

nontrivial nonmetricity in the spacetime structure. Though a posible answer came early in my

first publication [57], I did not fully understood its implications until recently, when I built the

generalised Einstein-like frame for generic metric-affine theories in the elaboration of chapter 8.

Then, I realised that though the effects in [57] (and then [81,82]) were derived strictly within

the RBG subclass of theories, they generalise to any metric-affine theories having R(µν) in the

Lagrangian beyond the EH term. Furthermore, the presence of these terms appears to be linked

to a particular form of the nonmetricity tensor when written in the right field variables. Thus,

what first appeared to be an effect that arose only in a very limited subset of metric-affine theories,

it has now been seen to arise in arbitrary ones, provided that they have these terms in their

action. Though my appeal to the geometric view of metric-affine theories has declined since I

started the PhD in favour of a more field theoretic one, from the former perspective these effects

constitute a first answer to the question that stimulated my interest in these theories. And, what

is more important, they allowed to set the stringent constraints up to date to RBG theories and,

possibly, generic metric affine theories (with R(µν) operators beyond the EH term) by using data

from high energy colliders. These results open a new avenue that explores whether these effective

interactions arising in metric-affine theories are only due to R(µν) terms beyond the EH action, or

other contributions to the action also have similar kinds of effects. This question is more precisely

formulated in the EFT language, where it reduces to finding all the metric-affine operators that

are redundant1 in a metric-affine EFT once all the allowed operators of the matter sector have

been allowed.

While scrutinising the properties of RBG theories and beyond, and with the wise guiding of

Jose Beltrán-Jiménez, we found two nice results concerning these theories. One concerns the

possibility of the deformation matrix, and therefore the Einstein frame metric, not having the

same symmetries as the original gµν metric and the matter sector, which is often overlooked in the

literature. This is allowed due to the nonlinear nature of the algebraic equations that determine

the deformation matrix as a function of one of the metrics and the matter fields. Though not all

RBG theories allow nontrivial solutions for the deformation matrix2 given a set of symmetries of

one of the metrics and the stress-energy tensor,3 we showed that generic RBG theories admit

1If the reader is not familiarised with the concept of redundant operator, see the discussion in section 8.1.
2Note that the trivial solution where it has the same symmetries as the metric and stress-energy tensor is always

allowed.
3For instance, we showed that EiBI does not admit any nontrivial solution in presence of an isotropic and
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these solutions for an isotropic and homogeneous metric and stress-energy tensor (see chapter 5).

Moreover, we saw that these branches of solutions were in general not perturbatively close to

GR in vacuum, showing generally a pathological behaviour, and providing a strong argument in

favor of the usual choice of solutions for the deformation matrix. In this line, some questions that

arise are what are the properties of these other branches of solutions when linking backgrounds

with other symmetries, or whether there are any branches which spontaneously break Lorentz

symmetry after the mapping procedure is carried out.

The other result obtained with Jose Beltrán-Jiménez concerns the presence of ghosts in metric-

affine theory. For some parts of the metric-affine community, there was a widespread belief

hoping that the Ostrogradski ghosts present in higher-order metric theories could be exorcised

by resorting to the metric-affine framework, due to the fact that metric-affine higher-order

curvature corrections do not contain higher-order derivatives of the metric. Though there are

known subclasses of metric-affine theories which do not suffer from these pathologies such

as RBGs,4 building on an explicit proof that RBG theories without projective symmetry were

plagued by ghostly instabilities, we found strong arguments suggesting the presence of ghostly

instabilities in generic metric-affine theories, as explained in chapter 7. We also explored the

possibility of freezing the pathological degrees of freedom arising in RBG theories with projective

symmetry by considering geometric constraints, with some positive conclusions. These results

are a central part of the work developed during this thesis, and they suggest to explore the

full metric-affine landscape in search for ghost-free islands in this vast sea of theories.5 This

exploration could unveil relevant symmetries of the metric-affine sector which are necessary

in order to avoid ghosts, such as the projective one. At the same time, this would restrict the

allowed operators on a metric-affine EFT, thus making the task of finding all the redundant ones

suggested by the results in chapter 8 less arduous.

The advent of gravitational wave astronomy headed by the LIGO-Virgo collaboration, as well

as the birth of black hole imaging initiated by Event Horizon Telescope have fostered the quest

for the understanding of the properties of Exotic Compact Objects (ECOs), within GR and

beyond [233,235,264,279,481]. Thus, it is about time to provide a catalog of ECOs that can arise

in metric-affine theories and explore their phenomenological properties. In this thesis we have

taken a timid first step in this direction, exploring the phenomenology amid wormhole solutions

arising in RBG theories. We found that, similar to what occurs with other compact objects [265],

the absorption spectrum of scalar waves is sensitive to the nontrivial structure provided by the

wormhole throat, which generates a resonant absorption spectrum (see chapter 6 and [78]). These

results should be expanded to include other types of perturbations and to the study of emission

and reflection spectra as well. Furthermore, the rapidly growing catalog of exact solutions within

homogeneous metric and stress-energy tensor.
4Recall that we use the acronym RBGs for the cases with projective symmetry unless the contrary is specified.
5Let me remark the fine title of a talk by J. Beltrán-Jiménez named The hazardous landscape of affinisea.
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RBG theories [151,213–218], demands a prompt analysis of the phenomenological properties of

these ECOs, in search for distinctive signatures that allow to discriminate them from compact

objects arising in GR and beyond. In this direction, the mapping of RBG theories coupled to

NEDs developed in section 4.2 could relate possible nonlinearities that leave an imprint on

electromagnetic signals produced in strong gravitational backgrounds (e.g. neutron stars) to

gravitational theories beyond GR.

Lastly, the positive results obtained in mimicking the background evolution of different models

of isotropic and homogeneous Loop quantum cosmologies by a single family of metric-affine

theories f (R), granting robustness to previous results [407], open the possibility of exploring

this relation beyond the background level, as well as in other more general scenarios such as

anisotropic Loop quantum cosmologies [482–485] or singularity-free Loop quantised spherically

symmetric spacetimes [27, 28, 176]. To this end, we should be open to consider other families

of theories beyond f (R), given that, in these theories, the shear typically grows unboundedly

through the bounce [221]. As a long term program, it would also be interesting in diving into the

possible relation of spacetime microstructure and metric-affine effective geometries. In this sense,

with the known results that the continuum limit of crystalline structures with defects lead to

torsion and nonmetricity [50–54] in mind, it could be interesting to devise alternative ways of

defining the continuum limit of QG theories that predict some kind of spacetime granularity in

search for an effective description of our universe at scales where QG effects can be integrated

out but might still manifest through post-Riemannian corrections.
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RESUM

La Gravitació combina un dels conjunts de fenòmens més intuïtius per a l’ésser humà,
i probablement altres espècies [1, 2], amb el fet d’ésser l’única interacció coneguda per
a la qual no tenim una teoría completa en l’ultravioleta satisfactòria a dia d’avui. La

Relativitat General (RG) és la primera teoría relativista de la gravitació concebuda a l’història, i
ha passat exitósament totes les proves experimentals dissenyades fins a dia d’avui, predint pel
camí differents fenòmens com la recent detecció d’ones gravitacionals [3–5] o el valor correcte
de l’angle de deflexió de la llum a l’eclipse de 1919 [6, 7]. La RG sugereix una interpretació
de la gravitació en termes geométric, on les interaccions gravitatòries són interpretades com
la dinàmica de l’espaitemps on la resta de camps de materia és propaguen. Des d’aquesta
óptica, el camp gravitatori es codifica en les propietats de la métrica d’una varietat (pseudo-
)Riemanniana. Tradicionalment, aquest ve descrit per la curvatura d’aquesta métrica, encara
que hi han interpretacions alternatives (aparentment) equivalents en termes d’altres objectes
geomt́rics com la nometricitat o la torsió associats a tipus particulars de conexions afins, com
ocorre als marcs conceptuals de les teories teleparaleles [8–12].

Des d’aquesta perspectiva, la gravetat és una teoria de la dinàmica de l’espaitemps en si, una
visió que va motivar desenvolupaments fructífers com el començament de la cosmología com
a disciplina científica amb els treballs pioners de Slipher, Lemaitre, i Hubble [13–15]. A més,
acomoda de forma natural la métrica de Friedman Lemaitre Robertson i Walker (FLRW), que a
dia d’avuí proporciona la millor descripció que tenim de les observacions cosmológiques a través
del model estándard cosmológic, encara que la presencia de components no observats al tensor
d’energía-moment de l’univers es necessària per tal que aquest model estiga d’acord amb les
dades. Així mateix, també va predir l’existència d’objectes compactes dels que res pot escapar una
vegada dins de certa regió de l’espaitemps, es a dir, forats negres i els seus horitzons. Tant, l’estudi
de cosmologia com el dels objectes compactes són, a dia d’avui, disciplines establertes i actives
dins de la investigació en física gravitatòria, i els dos senyalen un dels majors problemes de la
RG com a teoria fonamental de la interacció gravitatòria, constituit la presència de singularitats
tant a l’univers primitiu (Big Bang) com al centre dels forat negres.

Des del punt de vista clàssic, aquestes singularitats senyalen una ruptura de l’espaitemps a la
que els observadors físics poden arribar en un temps propi finit. Tot i que això no és inconsistent
a nivell clàssic, ens resulta summament desagradable aceptar la idea de que els observadors
físics poden desaparèixer de l’univers si cauen a una singularitat. No obstant, des del punt de
vista quàntic, aquest rebuig no es solament una questió estética, sinó que és inconsistent amb
l’evolució temporal unitària que resideix a la base de les teoríes quàntiques degut a que es perdría
informació al final del procés d’evaporació d’un forat negre a través de l’emissió de radiació de
Hawking. Acceptar el caràcter quàntic del camp gravitatori ofereix una solució a aquest problema.
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De fet, la RG, encara que no és renormalitzable, és una teoria quàntica de camps efectiva per al
camp gravitatori ben comportada fins energies de l’escala de Planck [21–23], on perd unitarietat.
Per aquest motiu, les solucions clàssiques amb divergengies de curvatura no tenen sentit físic a
distàncies més curtes que la longitud de Planck, escala a partir de la qual s’espera que els efectes
quàntics de la gravitació siguen dominants i cambien la estructura noperturbativa de la teoría.
Així, les solucions singulars de la RG es diferenciaríen lo suficient de les solucions exactes de
la teoría completa a escales per baix de la longitud de Planck, deixant aquestes singularitats
fora del régim d evalidessa de la teoría clàssica. En aquest sentit, hi ha la creença generalitzada
que la compleció ultravioleta de la RG solucionarà el problema de les singularitats degut als
efectes quàntics. De fet, aço pareix ocórrer en algunes teoríes candidates a completar la RG a
l’ultravioleta com Loop Quantum Gravity (LQG) [24–32].

Encara que hi han raons per estudiar modificacions a la RG a baixes energíes per tal d’explicar
alguns dels efectes usualment atribuits a la matèria o energía fosques, la motivació més forta per
estudiar desviacions de la RG es trobar una teoría quàntica de la gravitació que puga tindre sentit
físic a energíes arbitràriament altes, ja que sabem que la RG deixa de tenir sentit a l’escala de
Planck si s’accepta que la gravitació es un fenómen quàntic a escales petites. Una de les vies per
obtenir informació sobre el comportament quàntic de la gravitació es estudiar els possibles efectes
residuals detectables a més baixes energíes. En aquesta línia hi ha varies possibilitats. D’una
banda, l’acció d’Einstein i Hilbert (EH) ha de modificar-se amb correccions semiclàssiques per
garantir renormalitzabilitat dels camps de matèria a espaitemps corbats [34]. Correccions quadrà-
tiques en la curvatura quadràtica donen lloc a una teoróa de la gravitació renormalitzable a costa
de sacrificar la seva unitarietat [35–37] degut a que aquestes correccions donen lloc a derivades
d’ordre superior de la métrica, desencadenant la propagació de inestabilitats d’Ostrogradski
(veure capítol 7). Una possible forma d’evitar aquestes inestabilitats es recórrer a la formulació
metric-affí d’aquestes teoríes, on la conexió i la métrica son independents, i els termes no lineals
en el tensor de Riemann ja no contenen segones derivatives de la métrica. Aquest formalisme
consisteix en extendre la RG permitint la aparició de geometríes espaitemporals més gener-
als que les (pseudo-)Riemannianes degut a la introducció d’una connexió afí independent, que
dona lloc a una visió de l’espaitemps com una varietat post-Riemanniana, es a dir, una varietat
diferenciable amb una estructura afí i una mètrica independents. Aquesta independència queda
codificada en dos objectes geométrics anometats tensors de nometricitat i torsió, que mesuren
les desviacions de la Riemannianitat a l’espaitemps. Aquest formalisme té oríge als treballs de
Cartan on es va formular una primera teoría de conexions independentment de l’estructura
métrica [39–42], així com els de Weyl on s’intenta unificar la gravitació i l’electromagnetisme per
mitjà de teoríes gauge [38]. Dins d’aquest formalisme trobem, per una banda, teoríes gauge de
la gravitació, on aquesta es descrita per camps gauge associats a una simetría local del grup de
Poincaré que dona lloc a l’aparició de torsió, treball desenvolupat inicialment per Utiyama, Kibble
i Sciamma [43–45], o altres més generals com la teoría gauge del grup afí, on apareixen curvatura,
la nometricitat i la torsió relacionats amb els camps gauge, principalment desenolupat per Hehl
i col·laboradors [46, 47]. Per altra banda, trobem altres teoríes que no entren dins d’aquesta
formulació gauge dels grups de simetríes locals a l’espaitemps. Aquestes segones tradicionalment
s’han anomenat teoríes de Palatini o de primer ordre, i solen vindre descrites per Lagrangians no
lineals en el tensor de Riemann de la connexió espaitemporal. Aquesta formulació de teoríes no
lineals en la curvatura va generar certa esperança en que la teoría quadràtica i renormalitzable
de Stelle fóra unitària degut a la possible ausencia d’inestabilitats d’Ostrogradski en aquesta
formulació, i a la vegada mantinguera la seua renormalitzabilitat. Un dels resultat centrals
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d’aquesta tesi es una prova de que a les teoríes amb termes no lineals en la curvatura formulades
al formalisme metric-afí també presenten inestabilitats d’Ostrogradski i altres graus de llibertat
inestables de tipus fantasma de forma genérica, així com teoríes metric-afíns més generals.

En aquesta tesi tractem differents aspectes del formalisme metric-afí, així com algunes propi-
etats teóriques i fenomenológiques d’aquestes teoríes. A la primera part, comencem amb una
discusió d’aspectes interpretatius (entre fílosófics i teórics), així com aspectes matemàtics sutils
del formalisme. Concretament, al capítol ?? amb una discusió sobre les diferents interpretacions
possibles de la interacció gravitatória, es a dir, la interpretació geométrica i la interpretació en
termes de camp de força, com les altres interaccions conegudes. Intentarem possar el focus en
les relacions entre aquestes, i les propietats observacionals dels fenómens gravitatóris que les
permeten. Afegirem també una xicoteta discussió sobre les avantatges i els inconvenients de
cadascuna de les interpretacións, i oferirem una idea de quina es l’enfocament de l’autor respecte
als diferents resultat de la tesi en respecte a aquestes interpretacions. Després, als capítosl 2 i 3
oferirem una introducció a questions formals relacionades amb el formalisme mético-afí, aixi com
una discussió de certes subtilesses matemátiques que hi apareixen. Concretament, al capítol 2
presentarem les ferramentes matemátiques necessaries partint del concepte de varietat diferen-
ciable, i fent énfasi en la canonicitat de les diverses estructures. La idea es que el lector tinga
clar al llegir quines estructures matemátiques venen donades de forma canónica respecte a altra
estructura preexistent en el sentit que tenir eixa estructura preexistent garanteix l’existencia de
l’altra de forma unívoca, el que pot entendres com a que son part de la mateixa estructura en
realiat. Creguem que aquestes questions son importants al formalisme metric-afí perquè moltes
de les estructures que són canóniques al formalisme métric, poden deixar de ser-ho al metric-afí,
i mai està de més saber identificar-ho. En concret, la idea es poder arribar a la forma canónica de
la conexió al fibrat espinorial asociada a una conexió afí al fibrat tangent de l’espaitemps (o a
l’espaitemps mateix). Aquesta questió es, amb certa freqüencia, poc clara en la literatura, docs
hi han altres eleccions possibles per a la conexió al fibrat espinorial a part de la canónica. Amb
aquesta discussió tenim la intenció d’intentar aclarir quines d’aquestes eleccions són arbitràries
i perquè, així com donar una idea del grau d’arbitrarietat de cada elecció. Una vegada assolit
aquest objectiu, passem a discutir sobre la definició d’acoblament mínim dels camps de matèria a
la geometría. Tot i que al formalisme métric hi ha una recepta molt senzilla d’acoblament mínim
que deixa aquesta qüestió lliure d’ambiguitats, al intoduïr torsió i nometricitat aquesta recepta
introdueix certs acoblaments que poden entendre’s com no-mínims en un sentit clar. Al capítol
3, basat en [58], discutirem els problemes d’aquesta recepta i mostrarem com en presencia de
torsió i nometricitat, aquesta recepta és usualment formulada de naïf, el que duu a la preséncia
d’acoblaments no-mínims que arriben a trencar la invariància gauge del terme cinétic dels camps
vectorials. Tanmateix, esclarirem una definició precissa del que considerem acoblment mínim, i
propossarem una recepta que es redueix a la usual en espaitems (pseudo-)Riemannians però evita
els termes d’acoblament en presencia de torsió i nometricitat que apareixien amb la formulació
naïf de la recepta i que entraven en conflicte amb la definició que donem d’acoblament mínim.
Com a exemples, discutirem explícitament les diferencies entre la recepta naïf i la proposada
a aquest treball per a camps escalars, de Dirac, i vectorials. Per acabar, argumentarem perquè
les geodésiques afins no son generalment trajectóries de partícules lliures assumint que les
toeríes fonamentals satisfàn un principi de acció extremal, al no poder deduïr-se aquest tipus de
trajectòries de l’aproximació eikonal de camps de matèria descrits pe una acció. Aquesta punt és
confús a la literatura amb freqüència.
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Acabada la part primera, ja haurem mostrat les ferramentes i algunes subtilesses matemàtiques
del formalisme, i podem entrar en matèria estudiant les propietats estructurals i dinàmiques
de teoríes metric-afins. Amb l’objectiu d’entendre aspectes generals de teoríes metric-afins, ens
centrarem primer en una sub-família de teoríes anomenada Ricci Based gravity, ja que aquestes
teoríes tenen propietats estructurals interessants que ens permetràn després entendre propietats
de teoríes metric afins genériques. Començarem el seu anàlisi al capítol 4, basat en [59,60], on
estudiarem la seua estructura general i les seues eqüacions de moviment, mostrant que existeix
una elecció de variables a l’espai de camps que dona lloc a una representació Einsteniana de les
teoríes RBG. Vorem que la sub-família sense simetría projectiva propaga nous graus de llibertat
que donen lloc a inestabilitats tiups fantasma, cas que serà analitzat amb detall al capítol 7.
Al contrari, la subfamília amb simetría projectiva que sonté sols termes amb el tensor de Ricci
simetritzat a l’acció, a la que ens referirem a partir d’ara amb l’abreviatura RBG, tenen un
Lagrangià en la representació Einsteniana idéntic al de Einstein i Hilbert. Vorem que açò permet
definir un procediment de mapeig de teoríes RBG acoblades a un sector de matèria particular
a la RG acoblada a un sector de matéria que és una deformació no-lineal de l’original, amb
noves interaccions, però que no conté nous graus de llibertat. eduïrem aquest procés de mapeig
explícitament per a un camp electromagnètic, i mostrarem un exemple concret en el que la teoría
gravitatòria d’Eddington-inpired Born-Infeld (EiBI) acoblada a una electrodinàmica de Maxwell
serà mapejada a la RG acoblada a una electrodinàmica de Born-infeld, el que obri la possibilitat
d’estudiar solucions exactes trobades en EiBI com a solucions exactes de la RG per a fonts de
matèria exótiques.

Una vegada entesa l’estructura genérica d’aquestes teoríes, seguim estudiant els aspectes
no-trivials del seu espai de solucions al capítol 5, basat en [61]. En aquest capítol vorem que,
degut a la naturalessa no-lineal de les equacions que relacionen la métrica original amb la que
descriu la teoría a la representació Einsteniana, tot i que sempre hi ha una solució d’aquestes
equacions en la que la representació Einsteniana es comporta exactament com la RG en el buit,
poden haver-hi altres solucions possibles per a aquesta métrica, donada la forma de la mátrica
original (o viceversa). Estudiarem el cas particular amb métrica i sector de matéria homogenis i
isótrops. Vorem com, per a aquest cas, a EiBI sols existeix la solució trivial, però al cas general
poden existir altres branques, mostrant-ho explícitament per al cas quadrátic. Vorem també
que aquestes branques tenen un comportament en general patológic, el que ens duu a concluïr
que la elecció de la solució trivial, que és usual en la literatura, està justificada amb motius
físics, tot i que generalment açò es un punt sutil que no estava ben analitzat. Seguim estudiant
solucions particulars de la teoría amb simetría esférica. A aquestes teoríes apareixen objectes
compactes que resolen el problema de la singularitat a nivell clàssic, com forats de cuc. Al capítol
6, basat en [78], estudiarem les propietats de l’espectre d’absorció de pertorbacions escalars per
aquestos objectes, trobant resonàncies que es pareixen a les trobades a altres objectes compactes
exótics (ECOs) degut a la preséncia de la gola del forat de cuc. Aquestos resultats enceten
l’estudi fenomenológic de les propietats d’aquestos objectes relacionades amb la interacció amb
pertorbacions, el que pot servir com a discriminant d’aquestes teoríes front a dades d’astronomía
de múltiples missatgers.

Al capítol (7), basat en [60,79], tornem ara a estudiar propietats estructurals i fenomenológiques
de teoríes métric-afines. Començarem generalitzant les RBG al cas sense simetría projectiva,
el que permet incloure la part antisimétrica del tensor de Ricci en l’acció de la teoría. açò ens
permetrá la qüestió relativament antiga de si el formalisme metric-afí és lliure de inestabilitats de
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tipus fantasma degut a la absencia de derivades d’ordre superior als Lagrangians amb correccions
no-lineals. Els nostres resultats demostren que, al contrari, les inestabilitats de tipus fantasma
ocorren genéricament a teoríes metric-afins. Començarem demostrant açò explicitament a la
sub-família de teoríes RBG on vorem que, al trencar la simetría projectiva explícitament, el mode
projectiu es torna un grau de llibertat que propaga inestabilitats de tipus fantasma, i vorem com
també apareix una 2-forma relacionada amb la part antisimétrica de la métrica corresponent a
la representació Einsteniana de la teoría que excita inestabilitats de tipus Ostrogradski. Així
vorem que, al trencar la simetría projectiva, apareixen cinc nous graus de llibertat inestables a
aquestes teoríes. Vorem també que açò pot solventar-se afegint restriccions geométriques a les
teoríes. Per últim, mostrarem com aquestes inestabilitats també apareixen al formalisme híbrid,
i argumentarem com serán un tret genéric de teoríes metric-afins a no ser que es construixquen
explícitament per evitar aquestos problemes.

Tot i que la visió geométrica es la predominant a la literatura metric-afí, deuríem recordar
que aquestes teoríes poden també entendre’s des de la perspectiva de teoría de camps, on la
nometricitat i la torsió son dos nous camps de matéria que acoplen no-mínimament al camp
d’espí 2 sense massa. Aquest punt de vista és emprat al llarg de la tesi, i permet un estudi
sistemàtic de les possibilitats del formaisme metric-afí per via del formalisme de teoríes efectives
de camps (EFTs). Al capítol 8, basat en [80], analitzarem la possibilitat d’incloure les teoríes
de la sub-família RBG, amb i sense simetría projectiva, al formalisme de les EFTs. Trobarem
que, tot i que aquesta sub-família admet una interpretació com a teoríes efectives per baix d’una
escala típica d’altes energíes, no casen bé amb el formalisme de les EFTs. Després analitzarem
l’estructura d’una teoría genérica metric-afí argumentant que, al cas més general, els operadors
del Ricci simétric son redundants en el sentit de les EFTs que sols introdueixen noves interaccions
entre els graus de llibertat de la teoría, sense introduir-hi nous. Per mostrar aço, construïrem una
repreentació generalitzada Einsteniana per a teoríes generals, el que ens permetrà també mostrar
més explícitament com apareixeràn inestabilitats de tipus fantasma en teoríes metric-afins
genériques. Des d’aquesta representació Einsteniana derivem una forma general per al tensor
nometricitat que pot expandir-se en termes de l’escala d’altes energies que controla desviacions
respecte de la RG. En aquesta expansió perturbativa, veiem que la nometricitat presenta un
terme genéric degut a la preséncia d’operadors amb la part simétrica del tensor de Ricci a l’acció
a banda del terme d’Einstein i Hilbert. Aquestos termes donen lloc a interaccions efectives al
sector de matèria que estudiem amb detall al capítol 9, basat en [57,81,82]. En aquest capítol
estudiarem aquestes interaccions quan el sector de matèria està compossat pel Model Estàndard,
i les utilitzarem per obtenir cotes inferiors l’escala d’energia a la que modificacions a la RG de
tipus metric-afí amb operadors que contenen la part simétrica del tensor de Ricci més enllà del
terme d’Einstein-Hilberno entren en conflicte amb els experiments. Particularitzarem aquestes
interaccions per al cas de teoríes RBG, obtenint les cotes més restrictives a dia d’avui sobre
aquesta classe de teoríes. Si be aquestos efectes són clarament interpretats com a interaccions
efectives des del punt de vista de teoría de camps, des del punt de vista geométric, aquestos poden
relacionar-se amb una forma específica del tensor nometricitat constituint, des d’aquest punt de
vista, els primers efectes observables de la nometricitat que no depenen d’acoblaments específics
d’aquesta a la matèria. Trobar aquest tipus d’efectes constituïa una de les principals motivacions
d’aquesta tesi doctoral al seu comennçament. Des dels resultats obtinguts s’obrin noves vies per
estudiar aquestes interccions en detall en teoríes més enllà dels models RBG així com trobar
altre tipus de constribucions a un Lagrangià metric-afí genéric que tinguen efectes semblants.
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RESUM

Amb els resultats principals continguts a la segona part, la tercera part de la tesi conté una
miscel·lània de treballs que generalment estàn relacionats amb el formalisme metric-afí però que
no tenen un fort vincle amb l’estudi de propietats genériques de l’estructura o la fenomenología
d’aquestes teoríes. Al capítol 10, basat en [83], estudiem el problema de trobar accions covariants
efectives que descriguen la evolució de solucions cosmológiques que apareixen en models de
quantització a la Loop. En aquest capítol trobem una família de teoríes f (R) metric-afins que
són capaces de dur a terme aquesta descripció per a tres models de cosmología quàntica a la
Loop, anomenats com a LQC, mLQC-I i mLQC-II. Particularment, trobem una forma funcional
del Lagrangià amb tres paràmetres tal que, amb una elecció dels valors dels paràmetres, pot
descriure l’evolució de l’univers en aquestes cosmologíes fins a l’escala de Planck, on es dona
el rebot cosmoloógic. Aquestos resultats sugereixen noves vies d’exploració d’aquestes famílies
en altres solucions quantitzades a la Loop on s’ha conseguit millorar el caracter singular de la
RG, com espaitems amb simetría esférica amb solucions de forat negre. Així mateix, aquestos
resultats motiven la possible exploració de teoríes metric-afins com a límit al continu de la
gravetat quàntica de llaços, motivat per l’analogía amb els cristalls amb defectes a la seva
microestructura que en el límit al continu són descrits per varietats amb nometricitat i torsió.

Al capítol 11 estudiem aspectes clàssics del fenómen de ruptura espontània de la simetria
Lorentz en espaitemps metric-afins mitjançant una generalització del model de Bumblebee,
originalment formulat al formalisme métric, al formalisme metric-afí. Concretament, estudiarem
aquesta teoría com un cas de teoría RBG amb simetría projectiva i acoblaments no-mínims entre
la matèria (el Bumblebee) i la geometría a través de la part simétrica del tensor de Ricci. En
aquesta teoría, el bumblebee, un camb vectorial, adquireix un valor esperat en el buit notrivial
degut a un potencial que trenca la simetría Lorentz espontániament. Estudiarem l’estructura de
buit de la teoría per a un potencial quàrtic anàleg al del mecanisme de Higgs del Model Estàndard
perturbativament en l’acoblament no-mínim entre el bumblebee i al geometría, trobant un buit
estable no-trivial que trenca Lorentz espontàniament en el que el valor esperat del Bumblebee és
de tipus espacial. Després estudiem les interaccions efectives de camps escalars i fermiónics amb
aquesta solució que trenca espontàniament la simetría Lorentz, que induixen termes efectius
de violació de simetría Lorenz a les respectives equacions de moviment. Com a curiositat, veiem
que el valor esperat no-trivial del Bumblebee genera, al cas general, un valor esperat al tensor
nometricitat que proporciona una situació similar a la estudiada en [434], on estudiaren effectes
de violació de simetría Lorentz degut a un buit no-trivial del tensor no-metricitat. Així, aquesta
teoría representa el primer model conegut on la nometricitat pren un valor esperat al buit
no-trivial, relaitzant aquesta situació de forma dinàmica.

En el penúltim capítol de la tesi, estudiem el problema de trobar una definició invariant d’escala
per al temps propi en presència de nometricitat genérica. La idea de trobar una noció invariant
d’escala ve motivada per la possibilitat de que l’univers presente eixa simetría a escales d’energía
en l’ultravioleta profund. Els intervals de temps propi mesurat per un observador a la RG venen
definits per la longitud espaitemporal de la seva línia d’univers, que no és invariant d’escala.
Perlick va trobar una definició de temps pròpi que respectava la invariança d’escala en espaitemps
de tipus Weyl, on la no metricitat pren una forma particularment simple, descrita sols per un
vector. Al capítol 12, basat en [89,90] estudiem la generalització de la definició donada per Perlick
per al cas amb nometricitat genérica, que pot fer-se de manera directa. Estudiem l’adecquació de
les propietats d’aquesta definició a la definició d’un temps propi, així com la relació amb el temps
definit per Ehlers, Pirani, i Schild a [127] demanant compatibilitat entre l’estructura conforma
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donada pels rajos de llum, i l’estructura afí donada per les partícules lliures massives, trobant
les condicions que ha de complir la nometricitat per tal que aquestes dues definicions siguen
equivalents. Finalment mostrem la presencia d’un segon effecte de rellotge per a aquesta definició
de temps, comentant sobre la improbable possibilitat de detectar-ho.

A l’ultim capítol de la tercera part de la tesi, basat en els treballs [91, 92], presentem una
crítica a diferents aspectes del recent treball [93], on es presenta la teoria Einstein-Gauss-
Bonnet quadridimensional (D4EGB). En aquest capítol argumentem que aquesta teoría, tal i
com està presentada a [93], no està ben definida, degut a que el límit que els autors prenen
per tal d’obtindre les equacions de moviment no es un procés matemàticament ben definit per
a estructures tensorials, a no ser que es consideren solucions particulars per a la métrica amb
simetría maximal. La conseqüència es que les equacions de moviment presentades en [93]
no estàn ben definides fora d’este tipus de métriques. Ho mostrem explicitament considerant
pertorbacions de sogon ordre al voltant d’un background maximalment simétric Minkowskià, i
veiem que les equacions per a les pertorbacions no estàn ben definides degut a una indeterminació
de tipus 0/0. Despres mostrem que, si regularitzem les eqüacions llevant els termes mal definits,
aleshores no hi ha acció invariant baix diffeomorfismes que depenga sols d’una métrica que
done lloc a eixes eqüacions regularitzades. Finalment demostrem que les métriques esféricament
presentades a [93] com a solucions de la teoría no són slucions ni de les equacions que no estàn
ben definides, ni de les regularitzades, i que, a més, no són geodésicament completes com s’afirma
a [93]. Aço darrer ho trobem al veure que trajectories en caiguda lliure de partícules massives
radials arriben a la singularitat de curvatura central en un temps propi finit. inalment, presentem
les conclusions de la tesi amb futures línies d’investigació obertes arran dels resultats obtinguts.
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