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Preface

This doctoral thesis deals with the study of properties and interactions
of light mesons. More specifically, we focus on hadronic decay and scattering
processes, which are dominated by effects of the strong interaction in the
low-energy regime. Concrete examples that will be addressed are the weak
decay of a kaon into two pions, and the scattering of three pions.

A peculiarity of the strong interaction is that perturbative expansions
fail at hadronic energy scales. For this reason, genuine nonperturbative
tools are essential to obtain first-principles predictions. The central tech-
nique employed in this work is Lattice Field Theory, which uses a discretized
spacetime to stochastically estimate physical quantities in a quantum field
theory. We will also make use of Effective Field Theories, as they pro-
vide a complementary description to the dynamics of light hadrons. The
mathematical formulation of the strong interaction—Quantum Chromody-
namics (QCD)—and the methods to resolve its dynamics will be addressed
in Chapter 1.

The original research of this dissertation is divided in two parts, each
with a dedicated chapter. Chapter 2 describes our study of the 't Hooft limit
of QCD using lattice simulations, while in Chapter 3 we consider processes
that involve multiparticle states.

The 't Hooft limit provides a simplification of nonabelian gauge theo-
ries that leads to precise nonperturbative predictions. We will analyze the
scaling with the number of colours of various observables, such as meson
masses, decay constants and weak transition matrix elements. An impor-
tant question we address is the origin of the long-standing puzzle of the
AT = 1/2 rule, that is, the large hierarchy in the isospin amplitudes of the
K — mm weak decay. This is an example in which the 't Hooft limit seems
to fail.

Regarding multiparticle processes, we will discuss generalizations of the
well-established Liischer formalism to explore three-particle processes from
lattice simulations. The focus will be on the highlights of our contribution,
such as our implementation of the finite-volume formalism that includes

il



higher partial waves, and the first application of the formalism to a full lat-
tice QCD spectrum. We will also comment on the extension of the approach
to generic three-pion systems. These will enable lattice explorations of scat-
tering processes in some resonant channels, as well as phenomenologically
interesting decays to three pions.

A detailed summary in Spanish of the motivations, methodology, results
and achievements of this thesis will be given in Chapter 4. The final part of
the thesis (Part II) includes the peer-reviewed publications that constitute
the body of this dissertation. Their original published form has been kept.
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Chapter 1

Resolving the dynamics of the
strong interaction

The strong interaction is one of the fundamental forces known in Nature.
Its name originates from the fact that at the femtometer scale it is much
stronger than the other three interactions: electromagnetism, the weak force
and gravitation. Historically, the study of the strong interaction is tightly
linked to nuclear physics. In fact, a well-known manifestation of the strong
force is that it holds nucleons (protons and neutrons) together in atomic
nuclei. Its strength is such that it overcomes the electromagnetic repulsion
of the positively charged protons.

Nowadays, we know that quarks and gluons are the fundamental parti-
cles that carry the colour charge responsible for the strong force. Yet, what
we observe in experiments are colourless bound states thereof—what we call
hadrons. This phenomenon is called confinement, and it will be addressed
later in this thesis, along with the mathematical theory behind the strong
interaction—Quantum Chromodynamics (QCD). It is interesting to point
out that most of the mass of nucleons is the energy of the strong force that
binds the constituent quarks. The largest fraction of the mass of the visible
Universe has therefore its origin in this interaction.

Whilst QCD is well established, obtaining predictions from first princi-
ples is a challenging endeavour. More specifically, methods that compute
physical observables by means of perturbative expansions fail to converge
in the low-energy regime. The formulation of QCD on a spacetime lattice—
lattice QCD—is the state-of-the-art ab-initio treatment. It is a numerical
approach in which physical observables are obtained from stochastically esti-
mated correlation functions. Lattice QCD has flourished in the last decades
achieving a precision matching or exceeding that of experimental measure-
ments in many observables of interest. In addition, Effective Field Theories
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(EFTs) provide a complementary tool, based on symmetry relations, which
enable the extraction of physical information in an efficient way.

In this first introductory chapter, I will present the mathematical formu-
lation of QCD, along with its peculiarities in comparison to other theories,
specifically its low-energy behaviour. Then, I will turn to the discussion of
existing methods to solve it. The concept of Effective Field Theories will
be introduced in Section 1.2, and more specifically, the paradigmatic Chiral
Perturbation Theory. The final part of this chapter—Section 1.3—will be
dedicated to Lattice QCD.

1.1 Quantum Chromodynamics

The Standard Model (SM) of particle physics is the theory that suc-
cessfully describes all known phenomena in the subatomic domain. It is a
quantum field theory based on the following gauge symmetry group:

SU3).® SU12), @ U(1)y, (1.1)

which explains the strong and electroweak force between three families of
elementary fermions (quarks and leptons). In addition, a scalar sector de-
scribes the Higgs force, giving different masses to all the elementary par-
ticles. We refer to Quantum Chromodynamics (QCD) as the subset of
elementary fields that are charged under the SU(3). subgroup.

The matter content in QCD includes the gauge fields, or gluons, and the
fermionic fields, or quarks. There are six flavours' of the latter (up, down,
charm, strange, top and bottom), organized in three families:

() () 6) &

Each family contains two quarks with different electric charge. The quarks
in the upper row of Eq. (1.2) are positively charged (@ = +2/3), and the
ones in the lower row are negatively charged (Q = —1/3). As will be seen
in Chapter 2, electroweak interactions that involve quarks from different
families will be a central topic of this thesis.

The charge of the strong interaction is called colour. The name is an
analogy to red, green and blue, as it can take three different values in
QCD. More rigorously, (anti)quarks transform under the (anti)fundamental
irreducible representation (irrep) of the SU(3),. colour group. In the absence

I'Each quark flavour is abbreviated to the first letter of its name, e.g., u for up.
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of interactions, the quark Lagrangian would be
Liree =Y qr(7,0" —my)ay, (1.3)
f

where each quark field is really a colour triplet ¢; = (q(r),qﬁg),q}b)), and

r,g,b label the three possible colours. It is the easy to see that Lg.. is
invariant under global SU(3). transformations. As we will see in Chapter 2,
it will be useful to leave the number of colours in the gauge group, N., and
the number of active flavours, Ny, as parameters that one can vary.

The QCD Lagrangian [13] follows from imposing the principle of gauge
invariance to the Lagrangian in Eq. (1.3). In other words, we promote
SU(3). to be a local (gauge) symmetry. This simply means that the colour
convention can be chosen locally, without altering the physical outcome.
The corresponding gauge transformation of the quark fields is

q; — U(x)qy, with U(z) = ") ¢ SU(3) (1.4)

where t, are the SU(3) generators (Gell-Mann matrices) and 6% are real and
scalar functions of the spacetime position. The consequence of this is the
need for an additional vector field—the gluon field—that transforms under
the adjoint irrep of the gauge group:

A, — UAU + ;(aMU)UT. (1.5)

Note that there are 8 gluons, one per generator: A, = A}L,.

The most general renormalizable CP-conserving” Lagrangian that is in-
variant under the simultaneous action of the two transformations in Egs. (1.4)
and (1.5) is

. 1 Y
Locp =Y qrliv, D" —my)qy — St B ™, (1.6)
f
with .
D, = 8, +igsl, A% and F,, = —[D,,D,), (1.7)

and g, being the QCD coupling. This simple expression is the Lagrangian
of Quantum Chromodynamics. Interactions between quarks and gluons are
encoded in the covariant derivative, D,. In addition, note that the second
term in Eq. (1.6) is a kinetic term for the gluons, and also includes gluonic
self-interactions as SU(3) is nonabelian [14].

2C is charge conjugation and P is parity. CP is the composition of both transformations.
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A further term that is allowed by gauge invariance is the 6-term:
E@Z—QNf %U"F F,uu (18)
8T pem

where " = e#"P?F,,. This term is interesting for various reasons. First,
it is a total derivative, and yet its integral is a topological invariant that
takes integer values: the topological charge. Second, it violates CP. Since
no CP-violation has been found in the strong interactions, the coupling 6 is
generally set to zero. It will be however relevant for part of the discussion
in Chapter 2.

While Eq. (1.6) is rather simple, there remains the question on how
to use it for predictions of physical quantities. One would be tempted to
use perturbation theory and Feynman diagrams, as is customary for, e.g.,
Quantum Electrodynamics (QED). However, this will turn out to be useful
only in the high-energy regime.

1.1.1 Asymptotic freedom and confinement

In contrast to QED, the magnitude of the strong coupling decreases
with growing energy, such that gs() — 0 when p — oo. This is known
as asymptotic freedom. The understanding of this behaviour has played a
crucial role in the development of QCD, as recognized by the 2004 Nobel
prize to the discoverers: Gross, Politzer and Wilczek [15,16]. The other side
of the coin is that the interactions become strong at lower energies (long
distances). This leads to a failure of perturbative expansions, but also to
the confinement of quarks and gluons within composite states. These are
called hadrons, and they are the asymptotic states of QCD.

In the framework of perturbative QCD, all quantities can be computed
as an expansion in the coupling, oy = ¢2/(47). When considering higher or-
ders in the loop expansion, divergences appear and need to be reabsorbed in
a redefinition (renormalization) of the bare gauge coupling and bare quark
masses. The regularization procedure introduces an arbitrary energy scale,
at which the renormalization condition is set. The fact that observables do
not depend on this arbitrary scale leads to a scale dependence of the renor-
malized coupling. The physical interpretation is that this is the effective
coupling at the center-of-mass energy of the process of interest.

In perturbation theory, the scale dependence of the coupling is described

via the beta function:
dovg

W = Blas). (1.9)
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At one loop [15,16], it takes the form®

a? _ 11 2
B(as) = _7ﬁ0 [1 + O(Oés)] y with 60 = ch — *Nf. (110)

AT 3 3
Note that with N, = 3 and N; < 6, one has 3, > 0, which ensures a decreas-
ing coupling with increasing energy, ergo, asymptotic freedom. Combining
Egs. (1.9) and (1.10), we obtain the one-loop expression for the running

coupling:
2

: (1.11)
Apep

m = o log
where Agep is an integration constant that fixes the coupling. It has
the physical interpretation of a dynamically generated scale that defines
the nonperturbative regime, as(Agep) — o0o. Experimentally, one finds
Agcep ~ 300 MeV. Perturbation theory breaks down around and below that
energy scale, and other tools such as effective theories and lattice QCD
are essential to study the dynamics of the strong interaction. This will be
addressed below in Sections 1.2 and 1.3.

Over the years, experimentalists have collected a plethora of data of the
running coupling, along with convincing evidence for asymptotic freedom.
This is summarized in Fig. 1.1.

0.35 \ T T T
[\ T decay (N°LO) +=- ]
low Q? cont. (N°LO) e |
03 L DIS jets (NLO) H— ]

Heavy Quarkonia (NLO)
e*e jets/shapes (NNLO+res) H ]
r \ pp/pp (jets NLO) Fe— A
025 EW precision fit (N3LOY-e— 7]
r pp (top, NNLO) v

& L ]
gm 02 \\ -
3 I \ j
0.15 F
0.1F
b= a (Mz?) = 0.1179 = 0.0010
005 [ n poa il n Lol n rov ol ;
1 10 100 1000

Q[GeV]

Figure 1.1: Summary of determinations of a; as a function of the energy scale Q.
Source: PDG [19].

3Tt must be noted that the beta function has been computed up to five loops [17,18].
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1.1.2 Symmetries in QCD

Symmetries (and symmetry breaking) play a crucial role in the strong
interaction. As already mentioned before, the relevant degrees of freedom
at low energies are the hadrons. In fact, the accidental and/or approxi-
mate symmetries of the QCD Lagrangian determine to a large extent the
properties of hadrons and their interactions.

According to the Noether’s theorem [20], each continuous symmetry
transformation implies a conserved charge. The most obvious example in
QCD is a global phase transformation of all quark fields, ¢ — exp (i6) g,
which leads to baryon number conservation. Since a phase is an element of
the group U(1), we will say that this is a symmetry group. In addition, a
similar transformation can be applied to each quark independently

qy — exp (i0y) qr, (1.12)

leading to individual quark flavour conservation, e.g., strangeness and charm-
ness conservation.

Chiral symmetry is the most important one in the description of the low-
energy spectrum of QCD. To see this, let us first consider the Lagrangian
in Eq. (1.6) in the massless limit. If we decompose the quark fields in their
chiral components:

1-— 1+
B 2 P+ Prg=qr + g, (1.13)

¢ 2 2

the Lagrangian takes the form:

A Locp 3 ara(0.D")arr + 2 dra (0,04, (1.14)
7 7

which means that the two chiralities decouple in the massless limit. Since a
phase transformation can be applied to each flavour and chiral component
independently, it is clear that the global symmetry group is

G=U1)r@SUNs)r®@U(1), ® SU(Ny)L. (1.15)

It will be convenient to take linear combinations of the transformations:
vector transformations rephase both chiralities in the same way, while axial
transformations do it in opposite directions.

The dynamics of the strong interaction results in a nonvanishing quark
condensate,

% = (0lg9/0) = (0|grqr + Grqr|0) # 0, (1.16)
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which is not invariant under the action of axial transformations. Therefore,
the symmetry group is spontaneously broken to the vector subgroup:

where the subscript V' indicates vector transformations. It turns out that
the U(1)y symmetry is just baryon number. Moreover, in the case of only up
and down quarks, the SU(2)y group is related to famous isospin quantum
number. Its associated conserved charges are thus the total isospin, and its
third component, I and I5.

It is well known that a spontaneously broken global symmetry leads to
massless particles, known as Nambu-Goldston bosons (NGB) [21-23]. The
Goldstone theorem states that there are as many massless excitations as
broken generators. They have the same quantum numbers as the associated
Noether charge, i.e., they are pseudoscalars (spin zero, but negative parity).

The previous discussion is however only valid for QCD with massless
quarks. In the real world, the mass term mixes left and right components,
and thus the axial symmetries are also explicitly broken. This causes the
would-be NGB to obtain a nonzero mass—they become pseudo-Nambu-
Goldstone bosons (pNGB). The pNGB can be identified with the three
pions (7%, 7°), since they are the lightest hadrons in the QCD spectrum.
In the next section, flavour symmetries will be used to classify the hadronic
states.

An important point that has been omitted so far is related to the axial
U(1)a symmetry. While at the classical level it is conserved, it is broken
at the quantum level by the chiral anomaly [24,25]. One can see this in
the fact that the divergence of the conserved current is nonvanishing, and
couples to the topological term of QCD:

A v pv ; a
Oty = Ny ZF™WE™, with J4 =3 570505 (1.18)
7

An elegant explanation for this is that the measure of the path integral
is not invariant under axial transformations [26]. The chiral anomaly also
explains why the 1’ meson it is not a light hadron, i.e., it is heavier than
pions, kaons and the eta meson [27-30]. We will come back to the properties
of the 1’ meson in Chapter 2.

1.1.3 Low-energy hadron spectrum

In the early days of the study of the strong interaction, more and more
experimental evidence for hadronic states appeared. It then became clear
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that a classification scheme ought to be developed. This is the origin of the
so-called quark model [31-33], which in fact precedes the development of
QCD. Our present understanding is that hadrons are strongly-interacting
particles made up of quarks and gluons. The quark model, at least in its
original form, assumes that all the quantum numbers are carried by the
quarks within hadrons. The hadrons are thus colourless objects (singlets)
of the gauge group, that is, colour is permanently confined.

There are various ways to build up colourless objects with quarks. First,
a colour singlet can be made up of a quark-antiquark pair. In the language
of group theory, one object in the fundamental irrep and one in the anti-
fundamental irrep may be combined into a singlet: 3, ® 3, D 1.. The re-
sulting state—a meson—will have an integer spin, and will carry no baryon
number. Similarly, three quarks can be combined into colourless state, since
3:23.03. D 1.. The composite fermions are called baryons, and they carry
one unit of baryon number. Antibaryons can also be built from antiquarks.
We will not cover more exotic states such as tetraquarks or pentaquarks,
whose existence is under debate.

Let us discuss the case of mesons, which is the main focus of this the-
sis. A @q state can have total spin s = 0 and 1. In the case of zero
relative angular momentum, this results into pseudoscalar (J¥ = 07) and
vector (17) states. With higher ¢, scalar, axial and tensor states can also
be constructed. We now consider only states built from u, d and s quarks.
Thus, we will assume an approximate flavour SU(3) symmetry. A sin-
gle (anti)quark transforms under the (anti)fundamental irrep of the flavour
group. Thus, a single meson state will have either octet or singlet flavour
quantum numbers:

3y @35 — 8 1y. (1.19)

Note that the pseudoscalar octet includes the lightest particles, as they are
the pNGB of the spontaneously broken axial symmetries. This is confirmed
experimentally in the masses of 7, K and 7 mesons. The mass of the
pseudoscalar singlet, the 7/, is found to be much heavier than the octet due
to the anomaly. As expected, the vector resonances, such as p(770) and
K*(892), are also heavier because they are not pNGB.

For reasons that will become clear in the next chapter, it is useful to
include the charm quark in this analysis (N; = 4). Then, one would have a
singlet and a 15 multiplet in quark-antiquark states:

4f®1f—> 15f€91f. (120)

This is illustrated in Fig. 1.2, where the D, D and 7. mesons are included.
Note that the middle layer corresponds to charmless mesons (C' = 0), which
is the case discussed in the previous paragraph (ignoring the 7, meson).
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A similar classification can be done for baryons states, with the addi-
tional difficulty of Fermi statistics. One then concludes that in the Ny = 3
case, there is a baryon octet (which includes the proton and neutron), and
a decuplet (with the A baryons). This is nicely reviewed in the PDG book-
let [19].

The study of the interactions of the pseudoscalar mesons is the central
topic of this thesis. In the following two sections, I will introduce the state-
of-the-art techniques for this purpose.

Figure 1.2: Lightest pseudoscalar mesons, and their quark content in the quark model
picture. Source: PDG [19].
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1.2 Effective Field Theories

Effective Field Theories are a powerful tool to describe the dynamics of
a system, without precise knowledge of its high-energy behaviour. Specif-
ically, EF'Ts incorporate the active degrees of freedom assuming the most
general interactions constrained by symmetries. Their range of validity is
restricted to energy scales below some cutoff A. At that energy, additional
degrees of freedom may become active, or the substructure of existing ones
can be resolved. Our modern understanding of EFTs is based upon the
unproved, yet unquestioned, theorem of Weinberg [34]:

“if one writes down the most general possible Lagrangian, including all
terms consistent with assumed symmetry principles, and then calculates
matriz elements with this Lagrangian to any given order of perturbation
theory, the result will simply be the most general possible S-matrix
consistent with analyticity, perturbative unitarity, cluster decomposition
and the assumed symmetry principles”.

Before turning to EFTs for QCD, we will discuss the classic example of
an effective theory: the Fermi theory. This will be useful to introduce some
basic concepts.

1.2.1 From the Fermi theory to the strong interaction

In the 1930s, Enrico Fermi developed a theory to explain beta decay [35].
His great success was to write down a simple Hamiltonian with four-fermion
interactions that could explain the observed beta spectrum. In fact, his
proposal preceded the development of the electroweak theory by decades.
Nowadays we know that there exists a heavy particle, the W boson with
mass My, whose exchange mediates beta decays, among other processes.
At hadronic energy scales, the W boson is much heavier than the typical
momentum transfer, and so, the interaction can be approximated by a four-
fermion local interaction:

Lrermi = G [uy,(1 — v5)d] [e7,(1 — v5)ve] - (1.21)

In Fig. 1.3, both the fundamental (left) and effective (right) interactions are
shown.

An important notion in the context of EFTs is the so-called power count-
ing. Thus means that every effective theory has a small expansion param-
eter, 6. In the case of the Fermi theory, we have & ~ ¢*/M3,, with ¢*



Effective Field Theories 11

being the (maximal) momentum transfer in the decay. Thus, the picture of
Fig. 1.3b is only valid up to relative O(¢*/Mg3,) corrections.

The connection between the two theories is what we call “matching”.
In this case, it can be carried out in perturbation theory. The idea is to
calculate the same process in the fundamental, and in the Fermi theory
using the diagrams in Figs. 1.3a and 1.3b, respectively. Then, one can
relate the respective couplings by equating the amplitudes. This gives:

2

9w
Gp=—2 1.22
" 4eME, (1.22)

which is the relation between the Fermi constant, Gg, and the weak cou-
pling, gw.

(a) (b)

Figure 1.3: Feynman diagrams explaining beta decay in the fundamental electroweak
theory (left), and in the effective Fermi theory (right). Solid straight lines are fermions,
while wavy lines represent the W boson.

EFTs are also a central subject in QCD. While we have a very successful
theory at high-energies with a “simple” Lagrangian [see Eq. (1.6)], we also
know that the relevant states at low-energies are the hadrons. Due to con-
finement, the low- and high-energy regime of QCD cannot be matched in
perturbation theory, and yet, an EFT description of hadronic interactions
is still possible. The hadronic EFT for QCD is Chiral Perturbation The-
ory, which describes the interactions of pseudoscalar mesons in a consistent
power counting at sufficiently low momenta. As this EFT will be particu-
larly important for the dissertation, it will be discussed in detail in the next
section.

1.2.2 Chiral Perturbation Theory

As explained in Section 1.1.2, the nonsinglet pseudoscalar mesons are
the (pseudo-)Nambu-Goldstone bosons that result from the breaking of chi-
ral symmetry. In fact, their Goldstone nature implies strong constraints
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on their interactions. This can be incorporated into a low-energy EFT
description: Chiral Perturbation Theory (ChPT). Early ChPT-like calcu-
lations of pion scattering go back to Weinberg in the 1960s [36], however,
a more modern version of ChPT was systematized about a decade later by
Weinberg [34], as well as Gasser and Leutwyler [37].

For simplicity, we will first focus on the case of pions (Ny = 2). As
we have seen, we know that the QCD Lagrangian is invariant under the
symmetry group G = SU(2), ® SU(2)g, which is spontaneously broken to
H = SU(2)y. This gives rise to three broken generators, and hence, to three
pions. Since these fields live in the coset space, that is, G/H = SU(2), their
transformation properties are fixed, except for the freedom in the choice of
coordinates on SU(2). The standard choice is to use U(z) € SU(2) with

U(z) = exp V?] ,and ¢(z) = ( fg;(xgx) \/_55(539;)) (1.23)

where F' is a constant with units of energy that will be defined below. This
object transforms under the action of the group G as

U'(z) = RU(x)L, (1.24)

with R € SU(2)g, and similarly for L.

Following Weinberg’s rule, we should write down the most general La-
grangian using the object in Eq. (1.23) that is consistent with chiral symme-
try. Since we aim at describing the low-momentum regime, this Lagrangian
will be organized in (even) powers of momentum, or equivalently, deriva-
tives. The only allowed term with no derivatives is a meaningless constant
in the Lagrangian, because UTU = 1. Thus, the lowest order Lagrangian
has two derivatives:

2

Lo = Ztr o.u0mU (1.25)

and will be given in terms of an unknown coupling, F'. This quantity will be
very important throughout this work, because it is the pion decay constant®
in the chiral limit. Note that a transformation like that in Eq. (1.24) leaves
Lo unchanged.

While the previous Lagrangian describes the dynamics of massless pions
at low energies, we also know that chiral symmetry is explicitly broken by
the mass term. The way to incorporate this is to treat the mass as an
external source. For this, we introduce a spurion field, x, that transforms

4We use the F, ~ 92 MeV normalization throughout this work.
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as X' — RxL', and whose expectation value is related to the quark mass.
This way, an additional operator is invariant under chiral symmetry:

tr {UXT + UTx] : (1.26)

Therefore, the most general Lagrangian at this order becomes:

2 2

Ly = Ztr [0, 00°U"] + BE

tr [Ux+ U], (1.27)

where B is an additional effective coupling related to the quark condensate.
In isospin-symmetric QCD, we have x = diag (m, m), where m is the quark
mass. Expanding to O(¢$?), we have

2Bm

tr ¢* + O(¢") D dunt O 1™ — 2Bmrtr, (1.28)

L= itr 0,00" —

which means that M? = 2Bm, with M being the tree-level mass of the
pions. The beauty of Eq. (1.27) is that it describes the QCD dynamics at
low energies in terms of only two unknown couplings, F' and 2Bm, which
may be fixed by experimental input.

The previous discussion is also valid when the strange quark is included.
This is called Ny = 3 ChPT, for which the Goldstone fields looks like:

0+ %77 V21t V2K

¢o=| Ver  —n'+ e V2KO | (1.29)
V2K- V2KY =2

The Lagrangian is formally” identical to that of Eq. (1.3), although including
the strange quark mass, mg. Therefore, one has x = diag (m, m,ms).

At this point, it will be useful to discuss in more detail the power count-
ing in ChPT, and its range of validity. As we have seen, at leading order an
operator with two derivatives appears together with the mass term. This
way, we should have O(p?) ~ O(m) ~ O(M?) in the low-momentum expan-
sion. We also expect that the expansion parameter is

M2 p2
AL N

5 (1.30)

where A, should correspond to the high-energy scale at which the chiral
expansion breaks down. Thus, A, must be of the order of the mass of lightest
resonance in the QCD spectrum. A standard choice is A, = 47 F}, as it

®We also use the same name for the effective couplings, although their values depend
implicitly in Ny.
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naturally appears in perturbative calculations in ChPT [38]. Numerically,
4AmF, is of the order of 1 GeV, and it is not far from the mass of the p
resonance.

Although L, is very predictive, higher-order corrections are to be ex-
pected, and could be significant in some observables. To improve on this,
one would like to construct the next-to-leading-order (NLO) Lagrangian

Ly = ZLiOu (1.31)

which in the chiral power counting is O(p*). The operators O; will be
Lorentz-invariant and chirally-symmetric combinations of d,U and yx, such
as:

05 = tr [9, U0 (Ux' + UTY)]. (1.32)

While for SU(N;) ChPT there are 11 linearly independent terms, some
relations exist in the case of SU(3) and SU(2), reducing the number of
independent operators to 10 and 8, respectively. The arbitrary couplings
that multiply the operators in the Lagrangian, L;, are called Low Energy
Constants (LECs). The full list of the operators can be found in these
reviews [39,40].

An important point concerns renormalization in ChPT. When calculat-
ing observables in this EFT, one can see that the tree-level diagrams from
L4, and the one-loop contributions from L, have the same power of d in the
momentum expansion. As usual, loop diagrams can be divergent, requiring
a renormalization procedure. In ChPT the solution is to absorb the infini-
ties of loops from L, by an appropriate renormalization of the NLO LECs
that appear in £, [41]. Thus, we say that ChPT is renormalizable order by
order.

During the present dissertation, we will make use of various ChPT pre-
dictions. The results in Refs. [42-44] will be of special importance, as they
include ChPT calculations for generic N theories. Specifically, the Ny = 4
results will be used in Chapter 2, while ChPT predictions for pion scattering
will be needed in Chapter 3.
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1.3 Lattice QCD

The formulation of QCD on the lattice is due to the work of Kenneth
Wilson in the 1970s [45] (see also [46]). Today, lattice QCD (LQCD) is
a well-established ab-initio approach to solve the dynamics of the strong
interaction in the nonperturbative regime.

Lattice calculations rely on high-performance computing. In recent
decades, technological and algorithmic advances have enabled enormous
progress in LQCD. In fact, the uncertainty achieved in lattice results is
comparable to the experimental one in many relevant quantities, e.g., the
violation of CP in kaons (¢'/€). An additional example—very important in
this thesis—are three-particle scattering quantities. While LQCD calcula-
tions already exist, they are difficult to access experimentally.

Another interesting point about LQCD is the following. In real-world
measurements we are limited to a specific value of quark masses, number
of flavours, and number of colours. In contrast, we can pick our simulation
parameters on the lattice, and so it is an excellent tool to experiment with
QCD, and explore various nonabelian gauge theories.

In this section, we will review the formulation of QCD on the lattice.
Part of the discussion will be based on existing reviews [47-49].

1.3.1 Preliminaries

The key feature of LQCD is that the theory can be treated as a statistical
system. Here, we will introduce the relevant concepts and definitions using
the simplest case of a scalar theory.

Let us start with a complex scalar theory with a U(1) symmetry, whose
Lagrangian is

L=09,0'0"0 —V(|g]). (1.33)

In the path integral formulation of a quantum field theory®, the partition
function takes the form:

Z= / DS with S[g] = / d'z L, (1.34)

where S[¢] is the action, and the integral is over all possible field config-
urations, that is, all possible values of the field ¢(x). As can be seen, Z
is complex and does not allow for a simple statistical treatment. However,

6Based on Feynman’s path integral formulation of quantum mechanics [50].
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this can be solved by performing a Wick rotation to the so-called Euclidean
time (2% — —iz!). This way, the action becomes:

S:/d4a:£—>iSE:i/d4x£E, (1.35)

with
L= 8,6'0,6 + V(Io)). (1.36)

Note that the double subscript implies Euclidean metric. It is now clear
that the partition function is strictly real:

zZ- / DéeS519 | with Splg] = / &'z L, (1.37)

and it has now statistical meaning’, since the exponential may be inter-
preted as a Boltzmann weight factor. Hence, the dynamics of this theory
will be the consequence of a statistical average over all possible field config-
urations with weight exp (—Sg). The configurations contributing the most
are the ones near the minimum of the action (its classical solutions).

All the physical information of the theory is contained in the Euclidean
correlation functions. These are defined as the expectation value of a prod-
uct of local fields. For instance, the two-point function in the scalar theory
is:

Ol —9) = 6ot} = 2 [ Do dmofe ¥ (139)

As we will see later, from correlation functions we can extract energy levels—
the spectrum—or the S-matrix elements.

The Euclidean continuum theory needs to be discretized, so that it can
be solved by numerical methods. We define the physical fields on a lattice
with 7" points in the time direction, and L points in each of the three spatial
directions. For the scalar theory, the discretization is achieved by replacing
derivatives by forward differences:

0,0(2) = u0(2) = [0 +af) — 0(a)], (1.39)

where «a is the lattice spacing and [ is a unit vector in the direction pu.
One must also choose the boundary conditions, typically, periodic boundary
conditions are considered.

The final ingredient is a numerical method to compute correlation func-
tions, which involves a multidimensional integral over T' x L3 complex vari-
ables in the complex scalar theory. To do so, Monte Carlo methods are

" Assuming that the potential is bounded from below.



Lattice QCD 17

combined with importance sampling techniques. The main idea is to gen-
erate field configurations, {¢;} , distributed according to the probability
distribution:

pl{o] = e %M. (1.40)

Then, the expectation value of any observable can be calculated as:

(0) = ; / D¢ O(¢) el Njonf gf(?({@-}) +0 (wé—) , (1.41)

that is, an average over the field configurations. In order to obtain a
sequence of configurations with the appropriate distribution, one can use
Markov-chain Monte-Carlo methods. Modern lattice QCD calculations use
the Hybrid Monte Carlo (HMC) algorithm [51], which combines molecular
dynamics with a Metropolis accept-reject step [52,53].

Observables calculated on the lattice suffer from discretization effects.
In order to get rid of them, one must perform a continuum extrapolation by
simulating at different values of the lattice spacing. In addition, quantities
on the lattice are affected by finite-volume effects. These can be avoided if
L and T are much larger than the longest correlation length in the theory,
which is the inverse of the mass of the lightest particle in the spectrum.
However, as we will see in Chapter 3, some finite-volume effects can be used
in our favour to study scattering processes.

While the scalar theory is useful to introduce some concepts, it does
not have two complications present in QCD: fermions and gauge symmetry.
These will be addressed in the subsequent sections.

1.3.2 Fermions in lattice QCD

Unlike for scalars, the naive discretization of fermions is not enough, due
to the problem of fermion doubling. We discuss the origin of this, and how
it can be cured.

Let us first consider free fermions. We recall that the Euclidean contin-
uum Lagrangian can be written as

_ 1 ,_ _ _
L, 0) = 5 (V900 = Ouiby) + oty (1.42)

In the previous equation, we can pick the chiral representation of the 7,

madtrices:
. 0 -1 . 0 —iUk
Yo = <—I 0 > ) and Ve = (ZO’;L 0 ) ) (143)
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where [ is the 2 x 2 identity, and o, are the Pauli matrices. The dis-
cretization can be achieved replacing derivatives with finite differences. The
resulting action can be written in a compact manner:

107 = @t Y 0(a) [57(6,+ ) + mo (o)

(1.44)
= a4z¢a DO‘B (y),

where éu(éz) is the forward(backward) difference operator, and the discrete
Dirac operator is

o 1
Dy =3 g M)as Oyatan + 0ya-ap] + M0dapay- (1.45)
o
In momentum space, the previous equation takes the form:
a i .
Dp,f = (27ra)4(5(p + k) <Z E(%)aﬁ sin(ap,,) + 5agm0> , (1.46)
o

and so, the Fermi propagator becomes

_ 4 etk(z—y)
((@)P(y))r =/B (d " (1.47)

4 . sinkja”?
z (2m) mo + 2,

where the integral runs over the Brillouin zone, i.e., p, € [—7/a,+7/al.

By exploring Eq. (1.47), we can understand the particle content of this
discretized theory. One-particle states correspond to poles in the Fermi
propagator. As can be seen in Eq. (1.47), there is one at k, ~ 0, but
also more at the end of the Brillouin zone in each direction, that is, when
k, ~ m/a. In total, one has 2¢ poles, where d is the number of space-time
dimensions. The interpretation behind this fact is that this discretization
really describes 2¢ continuum fermions, that is, 16 mass-degenerate quarks
in QCD. This undesirable situation is usually referred to as fermion dou-
bling [46,54]. It is in fact a general result for all discretizations of the Dirac
operator under very general assumptions: the Nielsen-Ninomiya no-go the-
orem [55]. The statement is that any local, hermitian, fermionic lattice
action, that has chiral symmetry and translational invariance, will neces-
sarily have fermion doubling.

Let us now discuss Wilson’s solution to fermion doubling—the so-called
Wilson fermions [46]. His proposal was to give up chiral symmetry by adding
the following term (“Wilson term”) to the action

ASy = —5a® S v()d;d, (). (1.48)



Lattice QCD 19

where r = 1 was Wilson’s choice. Note that the corresponding Dirac oper-
ator maintains C, P and T invariance® as well as, vs-hermiticity:

D' = v5Drs. (1.49)

The Feynman propagator then becomes:

_ d*k eik(z—y)

e = o o 5,y 55 4 5,1 sy
As can be seen, in the a — 0 limit, k, ~ 0 yields the correct continuum
denominator. However, around k, ~ 7/a the last term becomes a O(a™")
contribution to the mass of the doublers. Consequently, they decouple in
the continuum limit, as they become infinitely heavy. In practice, there
is a price to pay for a broken chiral symmetry: (i) low-momentum modes
are affected by discretization effects of O(a), as opposed to O(a?) if chiral
symmetry is preserved, and (ii) some quantities, such as the quark mass,
get both additive and multiplicative renormalization

mp = Zm(mo — me), (1.51)

where m,. is the so-called critical mass. Since my and m, are linearly diver-
gent in the cutoff, some fine tuning will be needed to take the continuum
limit at fixed renormalized mass.

1.3.3 Gauge symmetry on the lattice

The treatment of gauge symmetries on the lattice also goes back to the
magnum opus of Wilson [45]. While the continuum gauge fields belong to
the algebra of the gauge group, in the Wilsonian formulation, the gauge
field is represented by an element of the gauge group, i.e., SU(3) for QCD.
If the discretized fields are assigned to the lattice sites, the gauge fields are
assigned to the links between two neighbouring sites. A link is characterized
by a position, x, and a direction p, U,(z). This way, we have:

Uu(z) = e 0@ with A, = t,A, (1.52)
and gauge transformations act as:
Uu(x) = Q2)U,(2)Q (v + aft), with Q€ SU(3). (1.53)

Note that the gauge link transforms as a parallel transporter between two
adjacent points, x and x 4 afi. The smallest, and most local, combination
of links that is gauge invariant is the plaquette:

tr UPM = tr (U (2)U, (z + ap)Uj(x + a)U](x)) (1.54)

8T is the time-reversal transformation.
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x4+ av U,i(xWLCW) x + afi + av
[ .
Ul(x) U,(z + afi)
® i "
’ Ude) TR

Figure 1.4: Representation of a plaquette, U}jll,aq.

A graphical representation of a plaquette is shown in Fig. 1.4. In the naive
continuum limit, the plaquette is related to the field strength tensor as

UE}/&Q — e*ia2gOFuv+O(a3). (155)

Therefore, the lattice action

S[U] = 2]% > > Retr (1-URM), (1.56)
C uv x

with 8 = 2N, /g3, becomes the Euclidean action of a pure Yang-Mills theory
in the continuum limit:

1
STIU) = [ d'e st Fu B + O(a?). (157)

We can also add fermions in the fundamental representation of the gauge
group, which transform as ¢(x) — Q(x)y(z). Then, the coupling of these
fermions to the gauge fields can be incorporated in a gauge invariant way by
replacing the discrete derivatives with a discrete analogue of the covariant
derivative:

B = Vb =~ U)ol + ap) — v(@)] (1.58)
B = Vi = - [0(x) ~ Ul — ayie —ai)] . (159)

Note that using Eq. (1.52), one has V1 = (9, +igoA,)Y + O(a). It can
be easily seen that the combination ¢ (x)V 1 (x) is gauge invariant.
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1.3.4 The Lattice QCD action(s)

Let us now consider QCD. There is not a unique discretization of theory,
but as long as the degrees of freedom and symmetries are preserved, all
versions should lead to the same continuum results. We briefly describe the
LQCD actions that have been used in our work, indicating the advantages
of each choice. Improved actions will be of special relevance, as they suffer
from less cutoff effects.

The standard Wilson formulation of QCD is given by the following FEu-
clidean action:

Srgep = ST + a* > &f(x)DZwa(y), (1.60)

f z,y

with

Dy = uy = 5| 221 = ) Up(®)
m (1.61)
+(1+ %)Ul(x — aft)0syrap |

where ky = (2amy + 8)7!, and the fermion fields have been rescaled with
respect to those in Eq. (1.45) as ¢y — v;/\/2k5. As a consequence of
the breaking of chiral symmetry, the action in Eq. (1.60) leads to O(a)
corrections to physical quantities. While this is acceptable in principle, the
cutoff effects can be sizeable at the typical values of the lattice spacing
that can be simulated. Thus, a reliable continuum extrapolation becomes
computationally expensive.

Alternative fermionic discretizations are also available, e.g., staggered
fermions [56], or domain-wall fermions [57]. We will not discuss them further
as they are not used in this dissertation.

1.3.4.1 Twisted-mass fermions

A variation of Wilson fermions that we have used are twisted-mass Wil-
son fermions [58] (see Ref. [59] for review). It uses a Dirac operator with a
chirally-rotated Wilson term:

1 - =k — W5 T: *
D= E{W(v# + Vi) — ac” 1Y,V L+ mm, (1.62)

which acts on a flavour doublet of quark fields, ©. In the previous equation,
w is the so-called twist angle. Moreover, 73 and 7y are matrices in flavour
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space—the third Pauli matrix and the identity, respectively. Upon the
following change of variables:

Y =e2BTy qh = xel3T, (1.63)

the operator becomes
1 A A .
D = s {3(Vi+ V) = aV, Vo + me e, (1.64)

The new y variables usually receive the name of twisted basis. In this basis,
the mass term can be written as:

me™ ™ = m (15 cosw + ity sinw) . (1.65)

A favourable situation is achieved at maximal twist (w = 7/2), for which
the mass term becomes purely imaginary. In this case, the action also has
an exact flavoured chiral symmetry in the physical basis:

Y — e with k=1,2. (1.66)

A subtlety here is the renormalization. The imaginary part of the mass
renormalizes multiplicatively, while the real part additively. Therefore, one
requires some fine tuning to achieve maximal twist in a nonperturbative
way. In practice, the bare twisted-mass lattice action is

_[1 - L . .
gT™ _ 4 ZX [2{%(Vu +V3) — CLVMV#}TQ + moTo + ipoysTs| X, (1.67)

where mg and pg are now bare parameters, and the latter is called the bare
twisted mass. Maximal twist is ensured if mg is tuned to its critical value.

There are important advantages of twisted-mass QCD at maximal twist:
(i) po plays the role of the bare quark mass that renormalizes multiplica-
tively, (ii) the axial current associated with the exact chiral symmetry does
not requiere renormalization, and (iii) physical observables are only affected
by O(a?) effects, i.e, there is automatic O(a)-improvement [60]. A clear dis-
advantage is that isospin symmetry and parity are broken by cutoff effects,
which implies for instance that charged and neutral pions are nondegenerate.
Although this is an O(a?) effect, it is found to be numerically significant.

1.3.4.2 Improved actions

Improved actions are discretizations with a better scaling to the contin-
uum’. They are especially useful in the case of Wilson fermions, since they
eliminate the leading O(a) cutoff effects.

9A discussion about this can be found in Ref. [61].
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The improvement procedure is also referred to as Symanzik improve-
ment [62,63]. The key point is that close to the continuum limit the lattice
theory may be described in terms of a local EFT:

Log=Lo+al +a’Ly+ ..., (1.68)

where Ly is the continuum Lagrangian, and L, Lo, etc., are linear combi-
nations of local, gauge-invariant operators:

L= ¢Of(x). (1.69)

(2

Here, the operators OF(z) have dimension 4 + k, and they respect the sym-
metries of the lattice theory. For the case of Wilson fermions, it can be seen
that the only relevant operator at dimension 5 is:

O! = ivpo,, Fl 1. (1.70)

Hence, the proposal by Sheikholeslami and Wohlert [64] is to add a term to
the Dirac operator:
imp w o ta

D™P = DY + G o (1.71)
and choose the coefficient ¢y, to cancel O(a) effects'’. Using lattice per-
turbation theory, one can see that ¢y, = 1+ O(g2). Setting ¢y, = 1 is
called tree-level Symanzik improvement. While one loop expressions are
also available [66], a complete O(a) improvement needs a nonperturbative
determination of ¢y, [67,68]. Although twisted-mass fermions already have
automatic O(a)-improvement, the ¢y, term can also be included in the ac-
tion. This will alter only the O(a?) effects, but has been seen in practice'!
to reduce isospin-breaking effects [69].

By means of the improvement of the action, on-shell quantities (particle
masses, scattering amplitudes) approach the continuum as O(a?) (up to
logarithms). However, the improvement of correlation functions requires
also the improvement of the fields, which involves additional counterterms
for the unimproved fields. A particular example is the axial operator, whose
cutoff effects can be parametrized' as [70]:

Al(z) = Za(1 + baamy) {AZ +aca0, P, (1.72)

where Z, is the renormalization constant, and b4, c4 are improvement co-
efficients. An appropriate tuning of the latter is needed to ensure full O(a)-
improvement.

0An alternative version with the cg, term in an exponential has been proposed in
Ref. [65].

"' This statement may depend on the specific choice of gauge action.

12This valid for degenerate quarks.
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r+ab . x + 2af + av

x ¢ x + 2afi

Figure 1.5: Representation of a rectangle Wilson loop, U ﬁ'ff(x)

To conclude, we comment on the improvement of the gauge part of the
action. Although the plaquette action suffers only from O(a?) discretization
effects, Symanzik improvement can also be applied to reduce them. As
proposed by Liischer and Weisz [71], this can be achieved by including
more complicated Wilson loops in the action. The most common choice is
to add rectangular Wilson loops'®*—as shown in Fig. 1.5—to the action:

S[U] =

2@ S JeoRe tr (1= URM) + eRe tr (1-US)]. (1.73)

C uv x

Note that an appropriate continuum limit constrains the relation between
the two coefficients: ¢y + 8¢; = 1. The choice ¢; = —1/12, based on tree-
level improvement, is called the Liischer-Weisz action [71]. Another common
choice, based on empirical evidence, is ¢; = —0.331, and is referred to as
the Iwasaki action [72].

1.3.5 Euclidean Correlation functions in QCD

In this section, we will discuss how to interpret correlation functions
that we will compute from lattice QCD. In particular, we will focus on the
extraction of the spectrum.

Let us start with an example. Consider a field with the quantum num-
bers of a single positively charged pion (J = 0~ and I,I3 = 1,1). An
example of such operator is #+(x) = d(x)ysu(z). Its Fourier transform at
zero momentum is:

At =S 7t (1) (1.74)

We now consider the following correlation function at zero momentum:

Ci(t) = (7F(£)7(0)) = (0]e"t7+(0)e 147 (0)[0) (1.75)

130ther parallelograms can also be included, but are less common in actual simulations.



Lattice QCD 25

where the time evolution of the operator in terms of the Hamiltonian has
been used in the last step. Inserting a complete set of states, we reach the
spectral decomposition of the correlation function:

| 0I7T+\n> ® B

Cr( = T3 Z , (1.76)

where the relativistic normalization of the states has been used, and the
energy of the vacuum is taken to be zero. In the previous equation, the sum
runs over all states with the same quantum numbers: 7F, but also 7+7%#°
and many more. A particularly useful limit is E,,t > Egt > 1, as it pr0v1des
a clean way to measure the mass of the ground state:

L) P e

Oﬂ (t) a1 % ﬁ 2M7r e . (177)

In practice, many simulations are carried out using periodic boundary
conditions (PBC) in time. In this setup, the particle can also propagate
backwards in time, and so Eq. (1.76) becomes:

| m|7r+|n>| o~ Ent o= Em(T—1)
— n m 178
- 5z s Cam

with Zp = tr (e‘HT . Note that this implies that the ground state has the
following asymptotic dependence:

L {0[FF ) 7
T/a>t/a>1 L3 2M, sinh M, T/2

Cr(t) cosh M, (t —T/2). (1.79)
In Fig. 1.6, we show an example for the pion correlator extracted from a
lattice simulation with PBC. The dashed blue line is a fit of the last few
time slices to Eq. (1.79). As can be seen, the mass of the pion can be
measured to a high accuracy. Moreover, one can clearly see how excited
states fall off faster than the ground state, and they are irrelevant in this
case for t/a > 10.

We will see in Chapter 3 that one needs many levels in each channel
to study multiparticle interactions on the lattice. The usual approach in-
volves solving a generalized eigenvalue problem (GEVP). This consists on
measuring a N x N matrix of correlation functions:

Cy; = (0:(t)O1(0)), (1.80)

where O; are distinct operators with the same quantum numbers. Then,
one can solve the eigenvalue equation:

C(t)vn(t,to) = Aalt, to)C(to)vnlt, to), (1.81)
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where ¢ and ¢, are different Euclidean times, with ¢ > ¢5. N energy levels
can be extracted from the time dependence of each eigenvalues \,, (¢, to) [73].
The method relies on the fact that the coupling of each operator to each
state is different.
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Figure 1.6: Euclidean correlator of a pion, see Eq. (1.75). Statistical errors are too
small to be seen, and the y-axis has an unimportant overall normalization. The dashed
blue line is a fit to the last few time slices. The lattice action is Ny = 4 O(a)-improved
Wilson fermions. The lattice spacing is a ~ 0.075 fm and the pion mass is M, ~ 480
MeV. For more technical details see Ensemble 3A20 in Ref. [2].



Chapter 2

Kaon decays and the La ge N
limit of QCD

This chapter is focused on the study of the 't Hooft [74] (or large N.)
limit of QCD using lattice methods. This limit is a well-known and useful
simplification of SU(N,) gauge theories, with and without matter content.
Despite the increased number of degrees of freedom as N, grows, the theory
simplifies to the extent that exact nonperturbative predictions can be made.
In fact, a long-term aspiration has been to solve the theory analytically in
this limit. Our main goal here is to address an open problem in QCD related
to kaon decays.

Even if we solve the theory in the 't Hooft limit, and it provides a
good approximation to N. = 3 for some observables, the description of
hadron decays and interactions involves 1/N, corrections. Lattice QCD
can provide a quantitative, first-principles determination of the subleading
O(1/N.) corrections to the 't Hooft limit by directly simulating SU(V.)
theories at different values of the number of colours [75-77].

We will study a famous failure of large N, in the K — w7 weak decay.
Experimentally, one observes a large ratio of decay amplitudes in the two
possible isospin channels, while large N, arguments predict no such hierar-
chy. This is known as the puzzle of the “Al = 1/2 rule” in kaon decays, and
indicates the relevance of at least some of the subleading 1/N. corrections.
We will use lattice simulations to dissect the large N, behaviour of the am-
plitudes. We will also see that the large N, predictions work reasonably
well, e.g., for meson masses and decay constants.

This chapter is organized as follows. First the 't Hooft limit will be intro-
duced, together with its nonperturbative predictions. The U(1)4 problem
at large N, will also be discussed—another example in which the naive N,

27
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counting seemed to fail. Next, we will address the ChPT description of
large-N, QCD, as well as the “Al = 1/2 rule” in the context of large N..
Then, we will discuss some technical aspects of simulating large-N. QCD
on the lattice. After that, we will summarize the main results of two of the
articles included in the thesis: (i) the IV, scaling of meson masses and decay
constants [2], and (ii) the exploration of weak decay amplitudes related to
the “AI = 1/2 rule” [4]. We will end with some remarks.

2.1 The ’t Hooft limit

We will now address the mathematical formulation and properties of the
't Hooft limit. We use “large N, limit” and “’t Hooft limit” interchangeably.
Part of this discussion is based on Ref. [78], and our recent review [12].

The precise definition of the 't Hooft limit is
N.— 00, A=g’N, =fixed, N; = fixed, (2.1)

where g, is the standard QCD coupling, and A is the so-called 't Hooft
coupling. The renormalization group equation for A\ at large N,

d\ 11N

o o 3

indicates that asymptotic freedom survives, and that the limit is nontrivial
since the coupling becomes strong at low energies. As in QCD, we expect
that a nonperturbative scale is generated dynamically, as well as colour
confinement, and the spontaneous breaking of chiral symmetry. Hence, the
large N, limit captures the most relevant nonperturbative phenomena of
the strong interaction.

The main predictions in the large N, limit originate from counting
powers of N, in correlation functions calculated to all orders in pertur-
bation theory [74]. An important point is that (anti)quarks are in the
(anti)fundamental irrep of SU(N,), while gluons live in the adjoint. Thus,
the former have a single colour index, whereas the latter are represented by
traceless matrices with two colour indices. In order to incorporate this, the
usual notation for gluons in Feynman diagrams becomes the double-line 't
Hooft notation, depicted in Fig. 2.1. Each diagram can then be assigned
a power of N, by simply counting closed loops, and using the fact that
QCD vertices scale as g, ~ 1/v/N.. The power of N, in each diagram is
also related to the topology of the surface and its Euler characteristic. In
the following subsection, we will see some applications of this to obtain
predictions at large ..
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&
AA
X X

Figure 2.1: ’t Hooft double-line notation for gluon lines. Source: Ref. [12].

2.1.1 Nonperturbative predictions at large N,

Let us first address the predictions for mesons at large N.. For this, we
consider hermitian operators with the quantum numbers of a meson, such
as:

Or(z) = (2.3)

1
ﬁCYi(ff)qu(f)a
where I' is a gamma matrix or product thereof, and for simplicity the quark
fields have different flavours, i # j. In the previous equation, the nor-
malization 1/v/N. ensures that the operator creates mesons with O(N?)
amplitudes.

A simple case to explore is that of the two point function

02,1" = <OF<$1)OF($2)> (24)

By inspecting all contributing diagrams, one can gain insight into the
N, dependence. Note that the normalization in Eq. (2.3) adds a factor 1/N,
to each diagram. Let us comment on the examples shown in Fig. 2.2. It is
trivial to see that the dominant one [diagram (a)] has an overall scaling of
N?. Introducing one gluon, as in diagram (b), does not alter the counting:
there are two closed loops, and a g*> ~ 1/N, factor. More generally, diagrams
with any number gluons that do not cross are called planar diagrams, and
have the same power as the diagram without gluons. An example of a
nonplanar diagram is given in (d), since the two gluons cross. Diagrams (c)
and (e) are two examples in which quark loops are included. Each quark
loop reduces a power N, while including a factor of the number of flavours,
Ny.
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N N NN, N2 N 2N?

Figure 2.2: Various diagrams contributing to the correlation function of two meson op-
erators with the Feynman notation (top), and the ’t Hooft double-line notation (bottom).
The power of N, and Ny associated to each diagram is also given.

If the operator in the two-point correlation function is chosen to have
axial quantum numbers, I' = vy7s, it is dominated at large time separation
by the pion contribution. The matrix element is then related to the pion
decay constant, Cor o< F2/N,. Based on the expansion in Fig. 2.2, a simple
prediction can then be derived

F? Ny
A+BY ) 2.5
N, < + N, e (25)
with A and B being constants that do not depend upon N, and Ny. This
can be used to relate the value of F, across gauge theories with different
matter content.

Similarly, one can consider four-point functions in order to study scat-
tering processes. In particular, the dispersive properties are contained in
the connected part of the correlation functions. For instance, the s-wave
scattering length' is just

(OrOrOrOr). 1
N 2.
QormpE <N (2:6)

and so it decreases with growing N.. When inspecting three-point functions,
one can see that similar arguments hold for decay processes. Hence, mesons
in large- N, QCD neither scatter nor decay, and QCD at large NN, is a theory
of free and infinitely narrow states [74,79,80].

(%}

IThe scattering length is proportional to the two-particle s-wave scattering amplitude at
threshold.
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2.1.2 The Witten-Veneziano equation

In this section, we will comment on the so-called U(1)4 problem in the
context of large N.. We will see that a naive counting of powers of N, in
correlation functions seems to be in conflict with phenomenology regarding
the expected pNGB associated to the singlet axial current—the 7’. The
resolution of this problem has brought new insights into QCD and the chiral
anomaly [81,82].

Consider the following gluonic correlation function in QCD:

C(k) = [ d'we™ (g(w)q(0), (2.7)
where the topological charge operator is

A [V
q(z) = MTT[FW{@F“ (@)], (2.8)
and its four-dimensional integral is equal to the topological charge. For-
mally, the correlation function at zero momentum can be related to the par-
tition function in the path integral formulation with a f-term [see Eq. (1.8)]:

0’z
— C(0). 2.9
oz| 0O 29)
Furthermore, the topological susceptibility is just the correlation function
in Eq. (2.7) at zero momentum, x = C(0).

A diagrammatic analysis of this two-point functions yields a O(N?) scal-
ing, since it is a closed gluon loop with a normalization 1/N?2. In the previ-
ous section, we have argued that the contributions of increasing number of
quark loops are suppressed by the corresponding powers of N.:

where () is the sum of all planar diagrams with zero quark loops, C; with
a single quark loop, and so on. Note that their N, scaling is Cy oc N2, and
Cy x N ¢ L

In the case of massless quarks, C'(0) must vanish. This is because the
f-term can be reabsorbed by a chiral rotation. Therefore, there cannot be
a dependence with 6, or equivalently, all derivatives with respect to 6 are
zero. In the pure gauge theory, this is not the case and Cy(k) is in general
nonzero. This way, there is an apparent contradiction in Eq. (2.10) at zero
momentum: how can the full correlation function vanish, if the term with
the leading N, power does not? In order to answer this, let us write the



32 Chapter 2. Kaon decays and the large N, limit of QCD

spectral decomposition of the correlation function as sums over one-particle
poles:
an bn /Nc
Chy= ¥ ot Y s (2.11)
glueballs k? — m£2] mesons k? — Ml%

where a, and b, are O(N?) coefficients. The sum over glueballs® deter-
mines the correlation function in the pure gauge theory, Cy(k). Inspecting
Eq. (2.11), one can deduce that the only way that a cancellation at k = 0
can occur is if there is a meson, such that, M? oc 1/N,. From the quantum
numbers, one can deduce that this hadron is the 7' meson—see Eq. (1.18)
in the previous chapter.

This is an example where the diagrammatic analysis leads to a wrong
conclusion: the leading N, scaling of the correlation function is cancelled
by what naively looks like a subleading one. The consequence of this is the
well-known Witten-Veneziano equation, which connects the mass of the 7’
meson to the topological susceptibility of the pure gauge theory, X, ,,:

2N 2N
ME = "X = T [ dtela@a()var, (2.12)
n' U

where F,, is the decay constant of the 1. As written, Eq. (2.12) is valid for
the case of massless quarks. If quarks are massive and degenerate, then

2N
M2 = M? + F—;"XYM. (2.13)
T]/

n

Note that F,, = F; at large N.. While X, cannot be measured experi-
mentally, it has been determined using lattice QCD [83,84].

2.1.3 Chiral Perturbation Theory at large N,

As suggested by the running of the 't Hooft coupling, spontaneous chiral
symmetry breaking survives at large N, [85]. This means that the lightest
particles in the large N, spectrum are also the pseudoscalar mesons. At
leading order in the quark mass, the pion mass is M? = 2Xm,/F?, and
thus of order N)—see Section 1.2.2. One would therefore expect that the
ChPT description of the pseudoscalar states is still valid.

A subtlety of the chiral EFT in the large N, limit is the treatment of
the 1. From Eq. (2.13), it is clear that the ' becomes a pNGB?® at large
N,., and hence, it must be included in the EFT as a relevant degree of

2Bound states of gluons.
3This assumes that N ¢ is kept fixed. If however Ny/N, = const, then the singlet remains
heavy (Veneziano limit).
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freedom [41,86-92]. Specifically, the matrix of pseudoscalar fields must be
modified as (N = 3 is assumed)

7+ (VB + 1) Vot VaK*
¢ = i '+ (V' ) V2ET | (2.14)

VaK- VIR (v~ om)

with U = exp (i¢/F'). The LO chiral Lagrangian then becomes

2 2

L, = F4tr B, u0mU] + BE

.
o [UxT+xUT] - Ny (0 = 6)°. (2.15)

where y = diag (m, m, ms), and the new coupling 7 is the topological sus-
ceptibility at leading order. We have also included the vacuum angle, 6.
Expanding, one can see that the quadratic terms in 1 are

1 1,02 .
Ly D 58“7)’8”77’ - 5(7)’) {33(27}1 +mg) + 2NfW:| , (2.16)

which means

2N f’T
F2

and coincides with the Witten-Veneziano equation at this order, 7 = Xy,

for Mg = M,.

1

n

(2.17)

Beyond leading order, we must revisit the power counting of this EFT.
A consistent choice for the expansion parameter in large- N, ChPT is [92]

2 2
5~<M“>~(p >~1. (2.18)
4 F; 4 F, N,

Even if § becomes smaller and smaller with growing N., the range of validity
of the chiral effective theory does not increase. This is because the failure of
the chiral expansion will be abrupt when the energy scale reaches the mass
of the lightest resonances, A,. This mass is expected to scale as O(N?),
and so, it remains constant at large N.. Typically, one considers A, ~ M,,.
However, loop corrections in the form of logarithms are suppressed, and
they become irrelevant as N, — oo.

An additional simplification of ChPT at large IV, is related to the scal-
ing of the NLO low-energy constants with the number of colours. Based
on general rules, one can show that only a subset thereof is leading in N,
i.e., Li o« O(N.). They are the ones that correspond to operators with a
single flavour trace. A particular example is Ly, whose operator is given in
Eq. (1.32). The operators with two flavour traces correspond diagramati-
cally to at least two fermion loops, and thus are suppressed by 1/N.. In the
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case of Ny = 3, one has [41,93]:

Ly, Lo, L3, L5, Lg, Lg, Lig o< O(N.),

2.19
2L1 — LQ,L4, L6, L7 X 0(1) ( )

Phenomenological approaches have estimated the leading N, behaviour of
these LECs by assuming that ChPT can be matched onto a theory that
includes heavier resonances with other J* quantum numbers—the resonant
chiral theory [94]. The values for the LECs result from the exchange of these
resonances, and they can be extracted in terms of the measured spectrum,
simple large N, arguments, and imposing the correct behaviour at large p
of certain correlation functions. Alternatively, we will measure them on the
lattice.

2.1.4 The elusive AI=1/2 rule’

The weak decay of a kaon into two pions is a very appealing process
in the context of the 1/N, expansion. An exact nonperturbative prediction
can be obtained in the 't Hooft limit, but this prediction is in conflict
with experimental results. While for many years it has been a benchmark
process for both phenomenological and lattice calculations, it still remains
a challenging one.

In the limit of approximate isospin symmetry, the K — 7w weak decay
has two different decay channels: the two pions in the final state can either
have total isospin of I = 2 or I = 0. Thus, the relevant matrix elements
are:

iAre® = (7)1 Ho| K) (2.20)

where H,, is the electroweak Hamiltonian, and d; are the strong scattering
phases. Experimentally, it has been known for quite some time that the Ag
amplitude is strongly enhanced with respect to As [19]

Ao

= 22.45(6). (2.21)

This fact is referred to as the “AI = 1/2 rule”, since the transition that
dominates is the one where the isospin quantum number changes by half a
unit.

4Part of this discussion is based on the review in Ref. [95]
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K* x N2
w* x*

K() x NC_1/2

Figure 2.3: Leading diagrams in N, for the decays of charged kaons (top), and neutral
kaons (bottom). Source: Ref. [12].

In order to derive the large N, prediction, let us consider the following
physical decay amplitudes:

2 , 1 ,

0 0_0| __ “ id2 20
T[K® =" = \/;AQe Ao, (2.22)
] {KJ“ — 7r+7ro} = ?Agem, (2.23)

where on the right-hand side we have used the isospin decompositions of
the states using the standard Clebsch-Gordan coefficients. In Fig. 2.3, the
leading diagrams for each of the amplitudes are shown, including their ..
counting, as explained in the previous section. From this scaling, one can
infer that the neutral kaon does not decay at large N.. By means of the
isospin decomposition in Eq. (2.22), the following prediction can then be
derived:

Ao
e N

This is over an order of magnitude smaller than the measured value, indi-
cating large 1/N, corrections, or a breakdown of the large N, expansion for
this observable. It seems unlikely that beyond-the-standard-model (BSM)
physics can explain the discrepancy. Since this enhancement enters in the
SM prediction for direct CP violation in kaons (the famous €' /¢), a good
handle on the real part of the amplitude is of great phenomenological inter-
est.

R =V2+O(NY). (2.24)

Ne.—o0

Several explanations have been proposed over the years. First, the mul-
tiscale dynamics (Myw > m. > M) may produce corrections that are
parametrically large but subleading in 1/N.—large logarithms [96]. Sec-
ond, rescattering effects from the pions in the final state have also been
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proposed as a source of enhancement [97,98|. Finally, it is possible that
the enhancement may be largely dominated by intrinsic QCD effects, which
could be understood in an EFT picture.

A few years ago, the RBC-UKQCD collaboration [99] analysed the vari-
ous contributions to K — mw. Their results suggested that the main source
of the enhancement comes from a strong cancellation in A;. More specifi-
cally, there is a negative relative sign between a colour-connected contrac-
tion and a colour-disconnected one, which have different N, scaling but
comparable magnitude. A lattice exploration of the N, scaling of the am-
plitudes involved in this process may have the potential to shed light on the
origin of this enhancement. In this manner, one should be able to disentan-
gle the two contributions rigorously. This has been studied in Refs. [4,7],
and will be addressed below in Section 2.2.3.
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2.2 Lattice QCD with varying N

In this section, we will address our study of the large N, limit of QCD
on the lattice. We will present some technical details of the simulations that
we have carried out. Then, we will discuss two of the articles [2,4] that are
included in this thesis.

2.2.1 Technical aspects

The lattice simulations for this project have been carried out using
HiRep [100, 101}, which is a state-of-the-art lattice QCD code that allows
for simulations with different gauge groups, matter content and fermionic
representations.

The choice for the gauge action in our simulations is the Iwasaki gauge
action, introduced in Section 1.3.4.2. For N, = 3, we use the same value of /3
as the ETM Collaboration [102]. For the other values of N., f is tuned such
that the lattice spacing is as close as possible. Two additional ensembles
with finer lattice spacing are also included. Our simulations have N; = 4
active quarks. This will be important to study the amplitudes related to the
ATl = 1/2rule, for which we need an active light charm quark. Furthermore,
we use O(a)-improved Wilson fermions. For N, = 3, we take the one-loop
value [103]

2
cow =14+ D0 ity D = 0113, (2.25)

P sw? sw

where we use the bare coupling boosted by the average plaquette. For
N. > 3, the complete result cannot be easily reproduced from Ref. [103].
Instead, we use the fact that c{!) is dominated by the tadpole contribution”,
which is of order N, according to Eq. (58) in Ref. [103]. This means that
Csw 18 constant in N, up to effects O(a?/N,).

A summary of the simulation parameters is given in Table 2.1. The
naming scheme for the ensembles is the following. The first number indicates
the value of N.. The letter in the second position refers to the lattice
spacing: “A” for the coarsest. In the third position, there is a number that
indicates the pion mass: 1 for the heaviest. The final position is used to
differentiate two ensembles that only differ in the volume.

We employ maximally twisted quarks [58] for the valence Dirac operator,
i.e., a mixed-action setup [104]. Maximal twist is ensured by tuning the
untwisted bare valence mass my to the critical value for which the valence

>The tadpole diagram is shown in Fig. 4(d) of Ref. [103].
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Ensemble | L* xT | 8 | am® | aM}
3A10 [ 20% x 36 -0.4040 | 0.2204(21)
3A11 [ 24% x 48 -0.4040 | 0.2147(18)
3A20 [ 24% x 48] 1.778 [ -0.4060 | 0.1845(14)
3A30 | 24° x 48 -0.4070 [ 0.1613(16)
3A40 [ 32% x 60 -0.4080 | 0.1429(12)
3B10 [ 24% <48 | oo ] -0.3915 | 0.1755(15)
3B20  [32%x60 | -0.3946 | 0.1191(9)
4A10 | 20% x 36 -0.3725 | 0.2035(14)
4A20 [24°x 48|, [ -0.3752 | 0.1805(7)
4A30 [247x48 |7 -0.3760 | 0.1714(8)
4A40 |32 x 60 -0.3780 [ 0.1397(8)
5A10 [ 20° x 36 -0.3458 [ 0.2128(9)
5A20 [ 247 <48 .0 [-0.3490 | 0.1802(6)
5A30 [24%x 487 -0.3500 [ 0.1712(6)
5A40 | 32% x 60 -0.3530 | 0.1331(7)
6A10 [ 20% x 36 -0.3260 | 0.2150(7)
6A20 [24% x 48| - |-0.3300 | 0.1801(5)
6A30 [24°x 48] -0.3311 | 0.1689(7)
6A40 [ 32% x 60 -0.3340 [ 0.1351(6)

Table 2.1: Summary of ensembles used in this dissertation: [, sea quark bare mass
parameter, m®, and sea pion mass M7 . We keep cg,, = 1.69 in the “A” ensembles, and
Csw = 1.66 in the “B”. In this simulations, Ny = 4.

PCAC mass is zero:

lim m). . = lim 0o (Ao(x) P! (1))

=0 2.26
S Mo = b S (P PTy)) 220

with Ay = uvpys5d, and P = uysd. The bare twisted-mass, g, is tuned such
that the pion mass in the valence and sea sectors match, MY = M?.

This choice has some advantages. First, we achieve automatic O(a)
improvement® [60] regardless of the value of cs,. We observed in Ref. [4]
that, for our gauge action, the choice ¢z, = 0 in the twisted-mass valence
sector minimizes the isospin breaking effects and leads to smaller statistical
errors. Moreover, the renormalized pion decay constant, £}, can be obtained
with no need for a renormalization constant [59]:

— \/5/“[’0 <O|P|7r>bare

F. RVE

(2.27)

6Up to residual sea quark mass effects [105].
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This fact will be a central point in Ref. [2]. Finally, it avoids the mix-
ing of different-chirality operators for weak matrix elements, which will be
essential for Ref. [4].

2.2.1.1 Scale setting

The procedure of computing the lattice spacing, a, in physical units
receives the name of scale setting. Having this conversion is crucial for
lattice calculations, since their outcomes are always given in terms of the
lattice spacing. The main idea is to compute some observable on the lattice
with a very high accuracy, and then use its known value from experiment
to fix the lattice spacing. The scale setting of the ensembles in Table 2.1
has been carried out in Ref. [2], and revisited in Ref. [12]. In this section,
we will summarize the key points.

The gradient flow [106] is nowadays a standard tool for setting the scale
on the lattice [107,108]. It consists on a differential equation that evolves
the gauge fields in a fictitious dimension ¢, the flow time. In the continuum,
the flow equation is

dB t
dBy(z,t _ D,Gop(x,1), (2.28)
dt
where
Gy = 8,B, — 0,8, + [By, B,]. (2.29)

Here, B, (z,t) are the flowed gauge fields, with boundary conditions:
Bﬂ(x7t20> :Au(l’), (230)

and A, (z) are simply the gluon fields of the QCD Lagrangian.

The main advantage of the gradient flow is that it allows for a simple
definition of a renormalized coupling. In particular, the energy density can
be related to the 't Hooft coupling in the gradient flow (GF) scheme:

o gy — 3 Ne 1

_ 2.31
138722 N, Aar(p), (2.31)

1 =

(E@) =

where Agp(u) is defined at the scale u = 1/4/8t. The two-loop matching
between the GF and MS schemes is known [109]. A conventional scale t; is
defined in the literature via the implicit equation
P(E®)|_ =03 (2.32)
=to
While ¢y cannot be measured experimentally, it is an observable quantity
that can be determined from lattice simulations [107, 108, 110]. For our
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simulations with N. > 3, we generalize the definition in Eq. (2.32) as in

Ref. [84]:

3N2 -1
2 _ “ ¢
t (E(t))‘t:to = 0.3 x g2 (2.33)
From previous results [107,108,110], one can infer that
Ny=4
Vio = 0.1450(39) fm. (2.34)
Mr=420 MeV
Then, our scale setting condition becomes
Np=4
(Mvo) = 0.3091(83). (2.35)
My=420 MeV

In practise, this is how the procedure works. First, we measure t,/a? and
the pion mass in each ensemble. Then, we fit to the Chiral Perturbation
Theory prediction for ¢, [111]:

to(My) = t§ (1 - ]];M3> +O(M2), (2.36)

with ¢, k being low-energy constants. Note that the mass dependence of ¢,
is suppressed with N.. Finally, for each value of N, we look for the point in
which the condition in Eq. (2.35) is met. In Fig. 2.4 we show the chiral fits
for ¢ty in the “A” ensembles of Table 2.1. The results for the lattice spacing
is summarized in Table 2.2.

4.40 I \
J]\\;C = i —o—
=4 —a— |

4.20 %c —5

4.00 e=0 .
~ 3.80
3
~
- 3.60

3.40

3.20

300 | | | | |

0.00 0.01 0.02 0.03 0.04 0.05 0.06

(aMy,)? - 3/N,

Figure 2.4: Chiral dependence of ¢y. Source: Refs. [2,12].
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Ensembles | a (x1072 fm)

3A 7.5(2)
3B 6.5(2)
A 7.6(2)
BA 75(2)
GA 75(2)

Table 2.2: Results for the lattice spacing in the various sets of ensembles used in this
work. The error is dominated by that of Eq. (2.35).

2.2.2 Large N, scaling of meson masses and decay
constants

Ref. [2] contains a study of the N, scaling of meson masses and decay
constants. The results allow us to confront the expected N, scaling of
the LECs of the chiral Lagrangian with results from lattice simulations.
Our work goes beyond previous explorations in the literature. The most
extensive one is Ref. [77], which is a thorough study carried out in the
quenched approximation. While this limit captures the correct large NN,
result, it modifies subleading effects in an uncontrolled way. Furthermore,
in Ref. [112] the same quantities were explored with Ny = 2 dynamical
fermions, but at larger pion masses, and no chiral fits were performed.

The lattice setup of this work is the one described in the previous section:
four dynamical fermions, and N, = 3 — 6. We extract the pion mass and
decay constant from the pseudoscalar two-point function. For the latter,
we use Eq. (2.27). Furthermore, we only included the “A” ensembles in
Table 2.1.

First, the ensembles at fixed value of the number of colours are consid-
ered separately, and compared to the SU(N;) NLO ChPT predictions for
F, and M,:

Ny M2 M2 MP
F,=F|1- - _~r _jog=rm 4=, | 2.37
2 nk)e B2 Tt (2:37)
M? 1 M2 M2 M2
2 9Bl 4 T log — 4+ 8T Ly | 2.38
m TN Gk e TRt (2.38)

We employ here the same notation as in Section 1.2.2. Note that if va-
lence twisted-mass fermions are used, the quark mass is m = ug/Zp, where
Zp is the pseudoscalar renormalization constant. Moreover, L,;, Lr are
combinations of renormalized LECs:

Lp=Li+ N;Lj, Ly =2L,— L+ N;(2L; — LY). (2.39)
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(b) LECs of the meson mass.

Figure 2.5: N, dependence of the LO and NLO LECs extracted from fits to Eqs. (2.37)
and (2.38). The figure is taken from Ref. [12], but it uses data from the original article [2].

As explained before, F2, Ly and Lg are O(N,) and B, L, and Lg are O(N?).

The results of the fits to Egs. (2.37) and (2.38) are shown in Figs. 2.5a
and 2.5b, respectively. We also show a fit of the LECs to a leading and
subleading coefficient in the 1/N, expansion:

Lia = LN+ Ly, (2.40)
1 1
F=4/N. (F0+F1NC>, B =Byt Biy (2.41)

As can be seen, the scaling for N, = 4 — 6 is well described by Eq. (2.41),
while 1/N? corrections are significant for F, with N. = 3. Also note that
the extracted B is bare, due to the use of the unrenormalized twisted mass.
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Figure 2.6: Simultaneous chiral and N, fits for F,; (top) and M, (bottom). Bootstrap
samples are depicted as shaded areas around the corresponding central value. The figure

is taken from Ref. [12], but it uses data from the original article [2].

In Section 2.1.3, we have discussed how the chiral Lagrangian, and its
power counting is modified to incorporate the 7" meson—see Eq. (2.18).
In this case, the NNLO predictions [O(§?)] for the pion mass and decay

constant are [113]:

I B
Fﬂ—: NC<FO+]VC+]VQ>

2

Ny M?

2 (4nF;)?

M2

112

Y

M
+41 (NCL(}J) + L}”) + N2KW

M2\?
72 <F2> + 0(6*)

(2.42)



44 Chapter 2. Kaon decays and the large N, limit of QCD

and
M2 B, B 1 M2 M2
i B = S — T oo —%
om ( TN T N3> TN @ %t e
1 M My M? 0 1
S log —7 4 8« (NCL( Y )> 2.43

In the previous equations, F;, B;, LS\? and Lg) are the coefficients of the 1/N,
expansion of the corresponding couplings—see Eq. (2.41). Furthermore,
Kp ) are complicated combinations of LECs that contribute at the next
order in the chiral expansion: O(M2). Since the mass of the ' meson is
not measured directly, the Witten-Veneziano equation is assumed. Another
technical point is that we choose y? = Ni(47rF7r)2 for the renormalization
scale, in order to cancel the leading N, def)endence. The chiral dependence
for M, and F, along with a global chiral and N, fit to Egs. (2.43) and (2.42)
are shown in Fig. 2.6. As can be seen, the chiral predictions seem to describe
data well, with x?/dof < 1 for F, and x?/dof ~ 2 for M,—see Tables
VI and VII in Ref. [2]. An interesting observation is that the subleading
contribution to some of the LECs is larger than the leading one at N, = 3,
as shown in Table VIII in Ref. [2].

Another result that was exploited in Ref. [2] is that by studying the
first subleading term in the 1/N, expansion, one can derive the values of
certain observables in theories with different number of flavours. This was
discussed explicitly for the decay constant in Eq. (2.5), where the leading
correction goes as Ny/N.. This way, we can infer:

FNe=3N=2 — 81(7) MeV,

2.44
FNe=3N7=3 — 68(7) MeV. (244)

These numbers are in good agreement with various determinations—see the
FLAG report [114] for a summary.

2.2.3 Dissecting the AI=1/2 rule at large N,

The goal of Ref. [4] is to understand the origin of the large 1/N, cor-
rections to the K — 7w amplitudes. For this, we studied for the first time
the NNV, scaling of weak matrix elements relevant to the Al = 1/2 rule. An

earlier exploratory study in the quenched approximation was presented by
us in Ref. [7].
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A direct computation of the X' — w7 amplitudes from lattice simulations
is possible—the Lellouch-Liischer formalism [115]. It is however a complex
calculation with large uncertainties, as evidenced by the recent work of the
RBC-UKQCD collaborations [116]. We follow an indirect path, based on
earlier work on this subject [117,118], that exploits ChPT and involves the
evaluation of simpler K — 7 amplitudes.

The lattice setup is again the one described in Section 2.2.1. We use
both, the “A” and “B” ensembles of Table 2.1. The “B” ensembles have a
finer lattice spacing, and they are used to estimate discretization effects.

Let us now discuss our strategy. In Section 1.2, we argued that at
energies below My, the electroweak gauge bosons can be integrated out.
The weak interactions can then be represented by four-fermion operators.
This is in fact a necessary step to study weak interactions on the lattice, due
to the large separation of scales: My, > % > Agep. For the case of CP-
conserving transitions with variation of strangeness of one unit, AS = 1,
the Hamiltonian takes the simple form [119]:

Haboy = V2GeViVia(k* QF(2) + k= Q(x)) (2.45)
with
Q* = 75 Q*

2.46
2 (s o) () @) o ).

The flavour symmetry group is SU(4), ® SU(4)r. QT transforms under the
(84, 1) irrep, while @~ under the (20, 1). Whereas both operators contribute
to Ay, QT fully determines A,. Thus, the hierarchy of the amplitudes must
be translated into a hierarchy of the matrix elements of the operators. In
addition, k% are the Wilson coefficients, and Zg are the renormalization con-
stants of the bare operator in some regularization scheme. The Hamiltonian
in Eq. (2.45) is valid above the charm mass, m.. An interesting observation
is that the separation of scales My, > m,. induces large logarithms that en-
hance the ratio of Wilson coefficients [119,120]: k™ (m.)/k*(m.) ~ 2. This
is clearly not enough, and suggests that the main source of enhancement
lies elsewhere.

The conventional approach in the literature is to integrate out the charm
quark. The resulting Ny = 3 effective weak Hamiltonian [121] has ten dif-
ferent operators, including the famous penguin operators. In fact, it was
proposed that the latter could be responsible for the AI = 1/2 rule [96].
However, as seen by the RBC-UKQCD collaboration [99, 122, 123], the
contribution from penguin diagrams is not dominant. The effect of the
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charm can then be disentangled by considering the so-called GIM limit, i.e.,
m, = m, [117,118]. In this limit there is no charm threshold, and the
weak Hamiltonian keeps the same structure with just two current-current
operators, after the renormalization-group running. If the Al = 1/2 en-
hancement still occurs in this limit, one can conclude that it is a low-energy
non-perturbative phenomenon, unrelated to the charm threshold. From
the technical point of view, the GIM limit is also advantageous because no
closed quark propagator contributes to the amplitudes. This explains the
choice Ny = 4 for our lattice simulations.

At hadronic scales, a further simplification is possible. This consists of
matching the effective Hamiltonian in Eq. (2.45) to ChPT. At leading order,
only two chiral structures appear with the same transformation properties
as the operators in Eq. (2.46). Correspondingly, there are two weak LECs,
g*, that need to be determined nonperturvatively. This way, the chiral
weak hamiltonian is [117,118]

Heipr = V2GrViVaalg" Q" +97 Q). (2.47)
with
F4
Q* = (VU )uslU0U ) a % (UOUN as(VU )

- (u—=o)]. (2.48)

At this order in ChPT, the ratio of K — 77 isospin amplitudes is given in
terms of the ratio of LECs:

AO 1 [
—=—(1+3=—]. 2.49
Ay 22 < " g*) (2:49)

It is now clear that in this approximation an enhancement in g~ /g* could
explain the AI = 1/2 rule. The couplings can be extracted from the appro-
priate matrix elements obtained from Euclidean correlation function on the
lattice. In particular, the K — 7 amplitudes correspond to ¢g* in the chiral
limit:

A* = (K|K*QF|rx) , Jim A* = gF, (2.50)

More concretely, A* can be obtained from the following ratio (up to Wilson
coefficients and renormalization constants):

s S PR PE)
! %:1928322 Zx,y<P(y)A0(2)>(P(I)Ao(z»’ (2.51)

where Ay and P are nonsinglet axial and pseudoscalar currents with appro-
priate flavour content.



Lattice QCD with varying N, 47
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Figure 2.7: Colour-disconnected (left) and colour-connected (right) contributions to
the three-point function in R*. Source: Ref. [12].

It turns out that the three-point function in the numerator of Eq. (2.51)
gets contributions from two separate contractions that scale differently with
N.. More specifically, there is a colour-connected contraction that is sup-
pressed with 1/N. with respect to the colour-disconnected one, and changes
sign for R*¥—see Fig. 2.7. Therefore, in the strict large N, limit, one has
At = A=, and so Eq. (2.49) recovers the large N, result of v/2.

A careful analysis of the subleading contributions in 1/N, to the ampli-
tudes A% was carried out in Ref. [4]. This is indeed very similar to the one
for F; in Eq. (2.5). The result is that the amplitudes can be expanded as

1 -N 1 .N
Ai:1iaﬁibﬁé+éﬁ+dﬁ;+---, (2.52)

with coefficients @ — d that are independent of N, and N ¢, but can depend
on the pseudoscalar mass. A natural expectation for their magnitude is
O(1). It will be convenient to study the linear combinations

A+ AT 1 Ny
A-—A* 1 .N
5 =yt bﬁg, (2.54)

as they isolate the (anti)correlated coefficients. In our work, we have studied
them in three different situations: (i) quenched simulations (N; = 0) with
M, ~ 570 MeV [7], (ii) Ny = 4 simulations with M, ~ 560 MeV, and (iii)
Ny = 4 with lighter pions: M, ~ 360 MeV. The dependence on N, of the
half-sum and half-difference of the amplitudes are shown” in Fig. 2.8. A fit
to the forms in Eq. (2.54) is also shown as the colour band. Interestingly,
all coefficients are found to be of the natural size. In addition, @ and b are
both negative. This reduces A*, while enhancing A~ in a correlated way.

"See also Table V in Ref. [4]
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Because of the coefficient b, fermion loops are a signifcant contribution
to the enhancement. Regarding the mass dependence in the dynamical
simulations, it seems that it affects mostly the coefficient a, and increases
the ratio A~ /AT towards the chiral limit.

150 L N :0, M, ~ 570 MeV '+—o—i
NI S e
140 | e ¢
130 |-
+
D120 L
110 b
1.00
090 | | | | |
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= 3 ~ e
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Figure 2.8: Half-sum and half-difference of A* as a function of 1/N,. Three different
cases are shown: (i) quenched in blue, (ii) dynamical at a pion similar to the quenched
case (red), and (iii) dynamical at lower M, (orange). Errors are only statistical. The
figure is taken from Ref. [12], but it uses data from the original article [4].

In order to extract g%, we need to perform a chiral extrapolation. Alter-
natively, we incorporate the mass corrections in ChPT. At NLO, the chiral
dependence of A* [124,125] is given by

M, \* M?
+ ™
1F¥3 lo .
[ i (4@;) % A2 ]

A* = (2.55)
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Figure 2.9: Chiral extrapolation of A* and ATA~. We use £ = [M,/(47F,)]’ in the
x-axis. The data points come from the ensembles in Table 2.1, and we use empty squares
for the “B” ensembles (finer lattice spacing). Solid lines indicate a simultaneous chiral
and N, fit. Dashed lines correspond to the chiral extrapolation at N, = 3. The figure is
taken from Ref. [12], but it uses data from the original article [4].

The result of the chiral fit for AT to this function is shown in Fig. 2.9a,
and for the product ATA~ in Fig. 2.9b. With these results, the ratio of
couplings is found to be:

§+ = 22(5), (2:56)

Nc=3

where the error is only statistical. Finally, using the LO ChPT formula in
Eq. (2.49), as well as the NLO correction derived in Ref. [4], an indirect
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estimate for the ratio of isospin amplitudes is:

Ao = 24(5)stat (7)syss (2.57)

?|Np=4,N.=3
which is valid in the theory with a light charm quark.

We end by stating the main conclusions of this work. First, the large en-
hancement observed in the AI = 1/2 rule seems consistent with coefficients
in the 1/N, expansion that are of the natural size, i.e., O(1). It must be
mentioned that a sizeable contribution to the hierarchy originates in quark
loops, that is, N¢/N, effects. Second, the result in Eq. (2.57) suggests that
the enhancement may indeed be largely dominated by intrinsic QCD ef-
fects, instead of rescattering effects or the crossing of the charm threshold.
In fact, even in the simplified setup, our results are consistent with the
recent RBC/UKQCD update at the physical point [116], which appeared
after our work.

2.2.4 Concluding remarks

Lattice Field Theory offers the possibility of exploring the parameter
space of nonabelian gauge theories: different number of colours, flavours
and even fermionic representations. We have used this possibility to study
of QCD in the large N, limit. Our main motivation has been to understand
the origin of the large 1/N, corrections in the ratio of isospin amplitudes
of the K — 7w weak decay. To this end, we have tested the scaling of
various observables with the number of colours: meson masses and decay
constants [2], as well as weak matrix elements [4].

We have observed that all the explored quantities have a 1/N, expansion
with coefficients of O(1). For the case of pion masses and decay constants,
we have been able to disentangle the leading and subleading terms, and even
found that some subleading contributions are non-negligible. In addition, a
milestone in our work has been to reconcile this with the observed AT = 1/2
rule.

Further insight can be gained by exploring other observables using lat-
tice QCD. A nonperturbative test of the Witten-Veneziano equation at large
N, would also be of interest, in other words, properties of the 1’ meson at
large N.. Another compelling direction is the exploration of scattering ob-
servables with growing N.. In fact, some preliminary results on a two-w"
system were presented by us in Ref. [126]. More attractive are resonant
channels—while we know that resonances become stable at N. — oo, sub-
leading corrections may show surprising features. A related question is if
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exotics, such as tetraquarks, survive at large N., and whether this can be
explored on the lattice. We expect to pursue this line of research in the
future.






Chapter 3

Multiparticle processes on the
lattice

The extraction of scattering and decay amplitudes from lattice QCD
simulations has become a hot topic for the lattice QCD community. The
case of two-particle scattering is by now well established for generic 2 — 2
processes, with many applications to different systems, e.g., two baryons
or coupled-channel scattering. In this context, the present frontier has be-
come the determination of three-particle scattering amplitudes and related
decays. Interestingly, lattice QCD can already offer access to three-particle
scattering processes that are hard to determine experimentally.

Compared to collider experiments, the study of hadronic interactions is
intrinsically different in lattice QCD. The reason for this is simple: multiple
particles in a box can never be pulled apart, and thus one cannot define
asymptotic states. Therefore, scattering quantities must be extracted in
some other way. A solution to this was developed by M. Liischer in the
1980s. He realized that the energy levels of the theory in finite volume (and
their volume dependence) contain information about the interactions. The
so-called Liischer formalism is nothing else than a mapping between the two-
particle spectrum and the two-particle scattering amplitude [127,128]. The
existing generalizations to three particles follow the same lines, although
with technical complications that will be address below.

This chapter is organized as follows. In the first section, we will introduce
some relevant concepts to understand scattering processes in infinite volume.
Subsequently, we will revisit the main ideas behind the finite-volume two-
particle formalism for scattering processes and decays. We will then turn
to processes involving three particles in Section 3.2. After a brief review
of the formalism, we will discuss four of the papers included in this thesis:
(i) implementing the three-particle quantization condition including d-wave

93
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interactions [1], (ii) the first application of the three-particle formalism to
analyze a full three-nt spectrum [3], (iii) generalizing the three-particle
formalism to a generic three-pion system [5], and (iv) the formalism for
three-pion decays, such as K — 37 [6]. We will conclude with some remarks.

3.1 Scattering quantities from lattice QCD

In this section, we will cover important concepts of scattering in infinite
volume, and the related finite-volume formalism. First, we will introduce
the S-matrix, the scattering amplitude and the phase shifts, as well as the
notion of a resonance. After that, we will present the Liischer method, i.e.,
the relation between the finite-volume spectrum and the two-particle inter-
actions. We will end by commenting on the Lellouch-Liischer formalism,
used to study two-particle decays from finite-volume matrix elements. This
section will serve as a warm up for the next section, where we will deal with
three-particle processes.

3.1.1 Scattering in infinite volume

The scattering matrix, or S-matrix, is an operator that contains infor-
mation about all the interactions in a given quantum field theory, including
the presence of resonances. Its matrix elements can be obtained from®

S;i = (out|S|in), (3.1)
where the incoming state is |in) = |p;,p,), and |out) = |ky, k) is the
outgoing one. Note that both are considered to be free asymptotic states.
The scattering amplitude is defined as the connected part of this matrix
element:

(out| T |in) = (2m)*6™ (P — Pout)iM (K1, k2; Py, py), (3.2)
with S = 147"
The fact that the S-matrix is unitary, STS = 1, implies the following

constraint for the amplitude of elastic scattering:

2 Tm My(ky, ko;py, ps) =

d’q d*qy
2/ odeo (g eolan) 2 B 4 @IMa(Py P 1. )

(W) ot (k1+k2—Q1—Q2),

(3.3)

'For simplicity, we focus on two identical particles.
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with w(q) = v/m? + ¢?, and the factor 1/2 arises because of having identical
particles. This relation is known as two-particle unitarity. It can be seen
that the following expression satisfies the s-wave projection of the unitarity
condition: 167y/3

s /S

g =", (3.4)

k cot 0y — ik

where &y is the s-wave phase shift, and s = 4(M? + k?). The K-matrix is
closely related to the scattering amplitude:

1 1

= — — ) 3-5
M% ’CS Zp? ( )

where p = k/(16m/s) is the two-particle phase space. Therefore,

s — LOmVs (3.6)

27 kcotdy’

which is strictly real. A standard parametrization for Jy is given by a
momentum expansion, the so-called effective range expansion (ERE):

1 1
k cot (50 = —; + 57’0]432 + O(l{?4) (37)
0

This defines agy as the £ = 0 scattering length, and rq as the effective range.

M

-~ cot 6y

k.
m

Figure 3.1: Toy example of a narrow resonance with Mg ~ 2.4m, I'r ~ 0.15m. The
upper panel shows the squared magnitude of the scattering amplitude as function of the
energy. The middle one is the behaviour of the phase shift in the form kcotdy. The
lower plot corresponds to the phase shift growing from zero to w. Units are arbitrary.
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An interesting outcome of particle scattering is the appearance of res-
onances. The experimental signatures of a resonances is a bump in the
cross-section (o), which is proportional to the squared magnitude of the
scattering amplitude, o o |Mo]?. Mathematically, resonances correspond
to poles of My in the complex plane at /s = Mp — i['g/2, where Mp is
the mass, and I'p its width. The behaviour of an idealized toy resonance is
depicted in Fig. 3.1. In this example, it can be seen that the bump in the
cross-section translates into a zero crossing from above in k cot §g. Equiva-
lently, we see that the phase shift grows from 0 to 7 as the energy crosses
M.

3.1.2 The Liischer formalism

Since lattice calculations are performed in a finite box, scattering ampli-
tudes cannot be obtained in the same manner as in experiments or pertur-
bative calculations. A relevant perspective on this challenge came from the
work of Maiani and Testa [129]. They showed that one cannot in general
obtain on-shell amplitudes from matrix elements of Euclidean correlation
functions®. An ingenious alternative strategy is to exploit the finite-size
scaling: restricting particles to a finite volume shifts their energy in a way
that depends on their interactions. Early work by Huang and Yuan showed
this for the case of hard spheres [131], but the quantum field theory formal-
ism for two-particle scattering was pioneered by Liischer [127,128]. In the
subsequent discussion, we will assume periodic boundary conditions in the
spatial directions, and an infinite time extent. In addition, discretization
effects will be neglected.

Let us consider the simplest case of a state of two identical particles at
rest with mass m in a box of size L. Liischer showed [127] that the energy of
the ground state differs from that of the one-particle states by a correction
that can be expanded in powers of 1/L—the so-called threshold expansion:

2
ABy = By — om = 2T {1 e () e () } Loy, (39)

mL3 L L

where ¢; ~ 2.837, and ¢y ~ 6.375. To the given order in L, this corresponds
to a one-to-one mapping between the energy shift of the two-particle ground
state and the s-wave scattering length, ag. Because of its perturbative
nature, Eq. (3.8) is only valid for big enough boxes, ag/L < 1. In practice,
it is only useful for weak enough interactions may < 1, i.e., in the absence of
resonances or bound states. A physical system for which Eq. (3.8) has been
successfully applied is isospin-2 77 scattering (27 system). Some examples

2A recent proposal tries to overcome this in a different way [130].
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are Refs. [132,133], where results for ag at heavier-than-physical pion masses
were combined with a chiral extrapolation to reach the physical point. It
must also be mentioned that perturbative expansions in 1/L have been
extended to three and more particles, as well as excited states [11,134-138].

The nonperturbative mapping between the two-particle spectrum (up
to inelastic thresholds) and the scattering amplitude was derived first by
Lischer in his seminal work for identical scalars in an s wave. Several
generalizations have followed [128,139-148], and the formalism is currently
able to treat any two-to-two system: multichannel scattering of nonidentical
particles with spin. In fact, the formalism has been successfully applied to
many systems—see the following review [149].

We now turn to the description of the formalism. We will use the no-
tation of Ref. [141], as it will be convenient in the three-particle case. The
two-particle quantization condition (QC2) is a determinant equation whose
solutions are the finite-volume energy levels in the presence of interactions.
It has the form

det [F~'(E, P, L) + Ko(E")| =0, (3.9)

where F' and Ky are matrices with angular momentum indices: ¢m, ¢'m/.
The definition of F' is:

Ak

LT Bk AnY(B)Ye, (B (R
Fel[Ls ey m =), 310
5 lLs 2 (%)31 22w pi(E — i —wpr) \ @ 310

where Yy, are the usual spherical harmonics, k* is the vector k boosted to
the center-of-mass (CM) frame, and

wr = vVm? + k2, wpk:\/m2+(P—k)2. (3.11)

Furthermore, ¢* is the back-to-back momentum in the CM frame, defined

via
E* =\ E? — P? = 2w, = 2,/m?2 + (¢*)% (3.12)

The pole in the integral in Eq. (3.10) is regulated using the principal
value (PV) prescription. Further details and an efficient way to evaluate F'

numerically are given in Ref. [141]. Moreover, the partial-wave expansion
of Ky in the CM frame reads

Ka(P.q",q") = Yin(§") (K2) g (E")Yei (§7), (3.13)

with

(KC2) it = IC500 6 (3.14)
Note that the £ = 0 component is the same as in Eq. (3.6). At this point,
additional comments to this formalism are in order. First, the QC2 can
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be derived by noticing that finite-volume spectrum is given by poles in the
finite-volume correlation function of two-particle operators in momentum
space. Second, all power-law dependence of energy levels in 1/L, such as
the one in Eq. (3.8), is included in the quantization condition. However,
effects that fall off like e ™% or faster are neglected.

In principle, the matrices in Eq. (3.10) are infinite dimensional, and all
partial waves contribute®. To render the quantization condition tractable,
a truncation in ¢ must be applied. This is generally justified, since the
scattering amplitude of higher partial waves is suppressed around the two-
particle threshold: K5 oc (¢*)*. The simplest truncation is given by keeping
only ¢ = 0 interactions, such that the QC2 becomes the algebraic relation

1

— = —Fho.00- 3.15
K3 00,00 ( )

Using Eq. (3.6), it can be brought to the form:

q* cotdo(q*) =

—8qE* | — —PV/ :
n [LS Zk:: (2%)3‘| ka2u)pk(E — Wg — ka)

A visualization of this equation is provided in Fig. 3.2. The yellow line
corresponds to the s-wave phase shift in the form (k/m) cot ¢, following an
ERE parametrization [Eq. (3.7)] with mag = 0.2 and mry = 1. The red
unfilled markers are the right-hand side of Eq. (3.16) with mL = 7, and in
the CM frame, i.e., P = 0. The points in which the two curves intersect
correspond to the finite-volume energy levels. In addition, Fpo oo diverges
for the “free” finite-volume energies, that is, solutions when ay — 0. These
are plotted as vertical dashed lines, and they appear at

k\° o \°
<> :n2<L>, with n € Z° (3.17)

m m

Note that for this example the finite-volume energies are slightly shifted to
the right with respect to the noninteracting ones, indicating mildly repulsive
interactions.

It will also be useful to discuss the role of spatial symmetries in the
Liischer method. Notice that because of the finite volume itself, full rotation
invariance—the SO(3) symmetry group—is reduced to a discrete subset of
transformations that leave a cube unchanged—the octahedral group” (Op).
This leads to angular momentum nonconservation, which can be seen in

30nly even / for identical particles.
4P =0 is implied. If P # 0, the symmetry group is further reduced to subgroups of Oy,.
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(V]
| ®
1
®
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o —167(E/m)Fuo 00
(k/m) cot &y

—10 . L . .
0.0 0.5 1.0 15 2.0

(k/m)*

Figure 3.2: Graphical representation of the QC2 in the case of two identical scalars
with only s-wave interactions. Further details are found in the main text.

3.0

the fact that F' in Eq. (3.9) is not diagonal in ¢. The finite-volume energies
are then shifted by interactions in multiple partial waves at the same time.
Fortunately, this can be used in our favour. In the same way that £m are
the labels of irreducible representations of SO(3), the finite-volume sym-
metry group has several irreps, labelled by Ay, which correspond to good
finite-volume quantum numbers®. Thus, one can measure the spectrum in
a particular irrep, EX(P, L). Besides, the QC2 can be brought to a block-
diagonal form, where each block corresponds to a particular choice of A p.
In consequence, Eq. (3.9) will factorize as:

E et (Paw [F~H(E, P, L) + Ka(E")| Pay) =0, (3.18)

where Py, are projectors to a given block, and the determinant runs over
that same block. In other words, one has a separate quantization conditions
for each irrep. This can be used to gain access to the phase shift of higher
partial waves. For instance, the leading partial wave in the E™T irrep is
d-wave. Likewise, Eq. (3.16) corresponds to the Af QC2, which in the CM
frame gets corrections from ¢ = 4 interactions that one usually neglects.

3.1.3 Two-particle decays in finite volume

The decay of one particle into two other also gets distorted in a finite
box due to the rescattering of the particles in the final state. The problem

5A summary of irreps can be found, e.g., in Appendix A of Ref. [150].
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was first addressed for the K — 7 weak decay by Lellouch and Liischer in
Ref. [115]. They found a way to correct these distortions, and provided a re-
lation between a finite-volume matrix element and the infinite-volume decay
amplitude. In later work, the relation has been generalized to multichan-
nel decays [151]. In addition, it was further realized that a vacuum-to-two
(v* — mm) transition can be treated in a formally identical way [152,153].

The Lellouch-Liischer formalism works at leading order in the insertion
of a external operator (such as H,,), and to all orders in the strong interac-
tions. The transition amplitude of interest is that with a single insertion of
the operator. In the case of K — 7w, it would be

nm - <(7T7T)€m|Hw|K> ) (319)

where the kaon and two-pion states are understood to be asymptotic infinite-
volume states. We have also included the partial wave projection of the
amplitude. Note that angular momentum conservation ensures that only
the s-wave amplitude is nonvanishing for K — 7w, but this may be differ-
ent in other processes. From the lattice perspective, one would measure the
following finite-volume matrix elements using the appropriate correlation
functions:

M = (Ey, P, Apt, LIH (0| K., P, L) (3.20)

To establish the relation between 7 and M, we assume that the two-pion
system has an energy that matches that of the kaon, Ex (P, L) = EX(P, L).
This way, the relation® reads:

1

MP=—— T' |RAJ(EMP,L Tormm 3.21
M 2By (P, L)LS o (R B ’)mem/e ’ (3:21)
where Ry, is the residue of the QC2 at the finite-volume energies
1
A T (A
Rau(Ey, P,L) = P4h_g}1% (B +iPy)Py, —T7 MQPA/“ (3.22)

and 7 has to be understood as a column vector in angular-momentum space.
Note that this version of the QC2 differs from that in Eq. (3.9). This one
uses an i€ regularization for the sum minus integral difference (F;. = F+ip),
and we replace Iy by the scattering amplitude. Both versions lead to an
identical finite-volume spectrum.

In the CM frame, and neglecting the contribution from higher partial
waves, Eq. (3.21) can be brought to the original form by Lellouch and
Liischer [115]:

99(n) |, 0(k) Mg\? | o
I'T)? =87 |n +k |M?, (3.23)
an Ok | ( ky )

6We use the notation of Ref. [153], as it will be more convenient below.
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with
M? Lk
ke =1—% — M2, 5=, 3.24
and "

An interpretation of Eq. (3.23) is that the finite-volume matrix element
and the infinite-volume decay amplitude differ only by a volume-dependent

normalization factor.
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3.2 Three-particle scattering in finite volume

In the last few years, considerable theoretical effort has been devoted
to generalizations of the two-particle Liischer formalism for more-than-two-
particle systems. In fact, applications to simple systems (three charged
mesons) have been successfully undertaken only very recently. In the present
section, we will discuss how to deal with three particles in a finite volume,
and review the contributions to the field achieved in this thesis.

The three-particle formalism has been derived following three different
approaches: (i) a generic relativistic effective field theory (RFT) [1,3,5,9,
154-161], (ii) a nonrelativistic effective field theory (NREFT) [137,162-164],
and (iii) the (relativistic) finite volume unitarity (FVU) approach [165-167].
Recent reviews of the three approaches can be found in Refs. [168, 169].
While the three versions should be completely equivalent, the connection is
not easy to establish—see Ref. [160] for FVU and RFT. A key point that
differs is the precise definition of a scheme-dependent intermediate three-
particle scattering quantity.

Before turning to details, it is worth commenting on the different sta-
tus of the three methods. Only the RFT formalism has been explicitly
worked out including higher partial waves [1], although it should be possi-
ble in the other two cases. On top of that, formalisms for nonidentical [5],
or nondegenerate [161] scalars exist only in the RFT approach, and both
the RFT and FVU formalisms have been confronted with lattice QCD”
data [3,10,167,170-173]. Finally, a three-particle generalization of the
Lellouch-Liischer formalism exists in two of the approaches: NREFT [174]
and RFT [6].

In the remainder, we will focus on the RFT formalism. After a short
summary of the approach, we will summarize the main results of four articles
included in this thesis. We will close the chapter with some remarks.

3.2.1 Relativistic finite-volume formalism

The relativistic three-particle finite-volume formalism was first derived
by Hansen and Sharpe in Refs. [154, 155] for the case of identical scalars
with a Zs, symmetry. Although extensions to more complex systems are
available, we will concentrate on the original version for now. A physical
system for which it is applicable—and has been applied—corresponds to
three charged pions.

"See also similar work in ¢* theory [8,11].
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A complication of the three-particle formalism is the fact that three-
particle scattering amplitudes have physical divergences. This is because
it is possible for two particles to scatter, and then travel arbitrarily far
before one of them scatters again off the third particle. The subtraction of
these divergences will introduce a scheme dependence. This treatment can
be identified in quantities labelled by the subscript “df”, which stands for
“divergence-free”.

While in the two-particle case the quantization condition provides direct
access to the scattering amplitude, for three particles it becomes a two-
step process. First, the three-particle quantization condition relates the
spectrum to an intermediate quasi-local three-particle scattering quantity,
Kags, and to the two-particle K-matrix, Ky [154]. Even if ICys3 is a useful
quantity to parametrize three-body interactions, it is scheme dependent
and hence, unphysical. The second step is then necessary to get rid of the
scheme dependence. It consists of a set of integral equations that map Ky 3
and Cy into the three-particle scattering amplitude, M.

3.2.1.1 The three-particle quantization condition

Let us start with the first step. This uses three-particle energies, ob-
tained from correlation functions with three-particle quantum numbers, to
access the three-particle K-matrix. The central element of the formalism is
the three-particle quantization condition (QC3), which for identical, spinless
particles with a Z, symmetry reads®:

det [F5(E, P, L)™' + Kags(E")| = 0. (3.26)

Even though this looks formally identical to the two-particle quantization
condition in Eq. (3.9), there are several differences. First, K43 and Fj are
matrices in a space that characterizes three on-shell particles in finite vol-
ume. Their indices are angular momentum of the interacting pair, £ m, and
the finite-volume momentum of the spectator particle, k. We will refer to
this as the (kfm) space. In practice, a finite dimensionality is ensured by ne-
glecting interactions in ¢ > /¢y, and using a cutoff function that truncates
values of |k| > kmax. In fact, the scheme in K43 is linked to the particular
choice of cutoff function for k. Finally, F5 is not purely kinematical, but it
also depends on two-particle interactions via Ko. Qualitatively, this means
that pairwise scattering is incorporated into Fj. It also implies that two-
particle interactions must be under control before studying three particles
in a finite volume. In addition, an analytic continuation of Iy below the
two-particle threshold is needed.

8Up to exponentially-suppressed corrections.
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A simplification of the QC3 is achieved within the so-called isotropic
approximation. This involves three ingredients: (i) only s-wave interactions
are considered for the pair, and so, only the £ = 0 component of the matrices
in the QC3 is included; (ii) a3 is chosen to be independent of the spectator
momentum, and it is only a function of the total energy; (iii) Fj is projected
onto the isotropic vector, |1), which has a one in each allowed entry. Because
of this last step, solutions of the QC3 in the isotropic approximation live in
the Af irrep for P = 0. The isotropic three-particle quantization condition
becomes: )

F3°(E) = (1]F3[1) K (B) (3.27)
and does not involve determinants anymore. One can understand this equa-
tion as follows. If one knows the two-particle interactions that enter in F3,
and given an energy level from the lattice, one can determine the value of
Kats at the given energy. It can be considered as the three-particle ana-
logue of Eq. (3.16). An example of this is given in Fig. 3.3. A numerical

exploration of the QC3 in this approximation was carried out in Ref. [157].

4_
NE 21 —104
= mleif&
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=
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Figure 3.3: Example three-particle quantization condition in the isotropic approxima-
tion. The blue line corresponds to Fi*°, while the black line to —1 /lCiff(?B. Here mL =6,
and the s-wave phase shift includes only the scattering length, mag = —10. The inter-
sections of the two curves, marked by open circles, indicate finite-volume energy levels.

Source: Ref. [157].
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For completeness, we present now the definitions” of the various objects
involved. We choose the definition of the spherical harmonics, Vy,,, as in
Ref. [1]. We begin with the cutoff function, which needs to be smooth in
order to avoid spurious finite volume effects. Our choice is

2 0, 2 <0
_ 2,k — _1 1
H<k)_J<4m2> . J(z) = (ixp( Zexp{ 1—zD> (1)<z<1 (3.28)
<z

with B33 = (P — k)?. The matrix Fj is given by

1 [F |
Py = S F_~  F 3.29
’ &w3h KJ+F+G]’ (3.29)

where w is a diagonal matrix with entries wy = (m? + k?)/2. The other
building blocks are yet to be defined. Qualitatively, K, accounts for two-
particle interactions, GG corresponds to finite-volume effects stemming from
one-particle exchange diagrams, and F' includes the sum-minus-integral dif-
ference from loops. More precisely, Ko is a modified version of the two-
particle K-matrix:

~ \—1
(K2) -
kLm,pl/m’

5@,2’ 6m,m’ 5k %
Tom By (g5 7 (@) ot 813, L= H(K)])
2,k\42,

with g3, = /E33/4 — M?. Next,

oo L HP)H(K) AV (k7)Y (p”) 1
pl/m’' klm L3 b2 —m2 q2i/) q;gk 2wk s

(3.30)

(3.31)

where b = P — p — k is the momentum of the exchanged particle, p* is
the result of boosting p to the CM frame of the dimer for which k is the
spectator momentum, and vice versa for k* . Finally,

Fk’ﬁ’m’ pbm —

Sy H (k) H(@)H (Yo (a)Vin(a®)  (3.32)
DR Rk ,

!
q2 k Z +¢ 8wawb(E — W — Wq — wb)

where b/ = P — k — a, and a* is the result of boosting a to the dimer rest
frame, with spectator momentum k. It is generally convenient to choose
the real harmonics.

9These can also be found in, e.g., Appendix A of Ref [1].
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To conclude, we comment on an extension of the formalism proposed
in Ref. [9]. This lifts up a technical limitation of the original QC3, that
prevented the inclusion of resonances or bound states in Ky. The solution
is to use a modified principal value prescription to regulate the poles in the
F matrix, and requires the following changes:

I q*2
[F]kﬁ’m’;pﬁm — [F]kﬂ’m’;pﬁm + 5kp5€’€5m’mH(k) K?()2j’rk) ) (333)
c \— c \— Ii(q53)
1 1 )
[(ICZ) }ké’m’;pém [(’CZ) ]k(’m’;pﬁm N 6kp5€/£6mlmH(k) 327 ’ (334)

where [, is a smooth function. This will be used below when the p resonance
is considered.

3.2.1.2 Relation to the three-particle scattering amplitude

The relation between the two- and three-particle K-matrices and the
scattering amplitude, M3, was initially derived in Ref. [155]. The authors
found a way to define a finite-volume version of the three-particle scattering
amplitude, M3 1, which turns into the desired object in the appropriate
infinite-volume limit.

The finite-volume amplitude is given by

Msp =S{MEY (3.35)

where S stands for the symmetrization operation, and ./\/lg?iu) is an unsym-
metrized version of the amplitude. The later means that one of the incoming
and of the outgoing particles is fixed to be the spectator. More details about
the symmetrization procedure are discussed in Ref. [5]. Furthermore, the
unsymmetrized amplitude is given by:

M7 =D MG (3.36)

where the different objects are defined as:

D) — —MMQ,LGMQ,L?&}L?’, (3.37)
M((;;;)L = ﬁ(Lu)mcldes/Cdf,gR(Lu) ) (3.38)
£ — (2:23)‘1 Py = ; - WMZLF, (3.39)
RU _ (Qfm)l _ ; _ FMZLHGl/MZL, (3.40)
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with M5+ = K5' + F. We note that D% represents the sum over all pos-
2,L 2

sible pair-wise interactions mediated by one-particle exchanges, and Mgﬁg )L

can be understood as the short-distance contribution to the amplitude.

Finally, M3 will be obtained from Mj ; by taking the L — oo limit in
which poles in F' and G are regulated by an ie prescription. Note that the
infinite-volume limit of D% contains the kinematical singularities of the
three-particle scattering amplitude. In contrast, the infinite-volume limit
of the symmetrized version of Eq. (3.38), Magss, is regular. Examples of
solutions to these equations are given in Refs. [157,170,175]

3.2.2 Implementing the three-particle quantization con-
dition including higher partial waves

The RFT approach is the only one that has been explicitly studied
including higher partial waves. This was carried out in Ref. [1], which is
one of the articles included as a part of this thesis. In that paper, we
include d-wave interactions to the three-body formalism, both in the two-
and three-particle sectors.

4.0
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E,! 341
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2.6 El — E3 E5
—-2.0 —-1.5 —1.0 —-0.5 0.0

Figure 3.4: Finite-volume spectrum in the A] irrep as a function of mas in the region
E < 4m with mL = 8.1. The other parameters are: mag = —0.1, rg = Py = Kqg3 = 0.
Source: Ref. [1].

We first study the impact of two-particle d-wave interactions, and focus
on the case of Kqs3 = 0. We consider that the phase shifts in the two lowest
partial waves are given as:

(g5) cot 0g = T + §TO(Q2,k)2 + TgPO(QQ,k)4a (3.41)
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and
1

(a2)>’
and neglect all £ > 2 interactions. An example of our numerical explorations
is given in Fig. 3.4. There we fix the s-wave interactions to be weakly repul-
sive (mag = —0.1), and inspect the spectrum when varying the strength of
d-wave interactions at fixed box size. As can be seen, the effect of d-wave in-
teractions is small when |mas| < 1. However, the spectrum is significantly
shifted when |mas| 2 1, and there is even a state well below threshold. As
argued in the article, this appears to be a three-particle Efimov-like'” bound
state [176], since it survives in the L — oo limit.

(¢54)° cot & = — (3.42)

Another important point we address is the expansion of Ky¢ 3 around the
three-particle threshold. In particular, we consider how this can be done
consistently, and at which order higher partial waves play a role. Since Kg¢3
is expected to be real and smooth in some region around threshold, one can
expand it in a Taylor series in terms of Lorentz-invariant quantities. One can
further use the symmetries of the theory—C, P, T and particle exchange—to
constrain the expansion parameters. This way, the expansion to quadratic
order worked out in Ref. [1] reads:

m*ags = K + K AD + K0 AY + 0(a%, (3.43)
Iciso — ICiijc:?, 4 ICiSO’lA + }Ciso72A2, (344)

- ; ‘ 2,4 2,B .
where KCise, fCised foiso2 jc@A) ang &P are real coefficients, and

3 3
A -Stean oo A=Y E-a, @

i=1 ij=1
are relativistic invariants with

S—9m2 _Sjk—4m2 /_S;k_4m2 ~ tij
Tomz 0 NE g 0 B Tgnr o i =g (346)

A

Note that this result implies that, at quadratic order, only five constants
account for three-body interactions of identical particles. An interesting
observation is that only IC((ff:f;) and IC((fff ) depend on angular variables.

To gain further insight on how the different terms of K43 affect the
spectrum, we use a toy model in which the two-particle parameters are

tuned to those of a physical 37T system [177]:

mag = 0.0422, mry = 56.21, Py = —3.08-107*, may = —0.1867. (3.47)

10A three-particle bound state produced by nearly-resonant two-body interactions.
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Figure 3.5: Energy shift of the first excited state in the A} irrep (top) and E, irrep
(bottom) with various choices of the parameters in Kqs3. The two-particle interactions
are set as in Eq. (3.47). The parameters in fCqr 3 are explained by the legend, with the
convention that a parameter value not given explicitly is set to the value given earlier in

the legend. Source: Ref. [1].

We then explore the shifts in the finite-volume energies produced by some
choices of the terms in Kg4r3. An example of this is given in Fig. 3.5 for the
first excited state in two irreps''. One can notice that all terms shift the

1Tn Ref. [1] we explain how to project the QC3 to the finite-volume irreps. This is

analogous to the two-particle case [Eq. (3.18)].
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energies in the A irrep, with a stronger sensitivity to the isotropic param-
eters. Interestingly, only ICézf:B) couples to the E* irrep. Using information
from these and similar plots, we lay out a strategy to constrain the different

terms in Kgr3 from lattice QCD simulations.

Finally, in Ref. [1] we also explore the circumstances under which the
quantization condition has unphysical solutions—solutions that are arte-
facts of the QC3. We concluded that this unresolved issue will require
further investigation.

3.2.3 The [ = 3 three-pion scattering amplitude

The relativistic three-particle formalism took a qualitative step forward
with its first application to a full lattice QCD finite-volume spectrum. This
was carried out in one of the articles of this dissertation, Ref. [3]. There, we
analysed the 27+ and 37" energy levels in several irreps and moving frames
measure by Horz and Hanlon in Ref. [178] keeping only s-wave interactions.
We found some statistical significance for the first two parameters in the
expansion of K¢ 3, explained in Eq. (3.43).

As explained above, in order to study three-particle interactions, one
must have the two-particle sector under control. For this, we study different
parametrizations of the s-wave phase shift. An interesting observation is
that the spectrum is better fit when incorporating the Adler zero [179],
which is a zero of the scattering amplitude below threshold required by
chiral symmetry. Our proposed parametrization is:

q E5M q* q*
Loty = —2" (By+Bi-L yB, L 1 ). 3.48
M OO E52—2z§< LRIy VERC Ve (3:48)

Note that this diverges below threshold when F3? = 223, which limits the
radius of convergence of polynomial expansions. The data for the two-
particle phase shift is shown in Fig. 3.6, along with three different fits to
Eq. (3.48)—more details are given in the caption. We find a reasonable
description when fixing 22 to its LO ChPT result, 22 = M2

Once we have a suitable model for the two-pion sector, we turn to the
three-particle sector. For this, we perform a global two- and three-particle
fit using simultaneously the QC2 and QC3. For Kg4¢3, we use the following
parametrization

Kars = Ky + Kiry A, (3.49)

which is consistent with keeping only s-wave interactions. The central re-
sults of these fits is given in Fig. 3.7, where we show the confidence intervals
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Figure 3.6: Phase shift obtained from the 27t spectrum of Ref. [178] using the QC2.
d? labels the moving frame from which each data point is obtained. Different fits are
included. Fit 1, corresponds to the form in Eq. (3.48) with By = 0 and 23 = M?. Fit 2
is the same but with By # 0. Fit 3 has By = 0, but we let 23 free. Source: Ref. [3].
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Figure 3.7: 1, 2 and 30 confidence intervals for M 2/Cff§ 5,,0 for different two- and three-

particle fits. The “constant fit” sets ICLSE % = 0 (fit 4 in the article), while the linear term
leaves it free (fit 5 in the article). Source: Ref. [3].
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iso,1

of the parameters of 4¢3 projected to the (ICiffc: Y, Kats ) plane. As can be
seen, the scenario 4¢3 = 0 is disfavoured by 20.

An additional result presented in Ref. [3] is the leading order ChPT
prediction of Kg4¢3. For this, we use the fact that the relation between gt 3
and Mgy 3 is trivial at this order of the chiral expansion,

Katz = Mass [1 + O(MQ/FQ)} , (3.50)

which can be deduced from Eq. (3.38). This way, the result is

M4
M?*Ka3 = ﬁ(18 +27A) = (167 Mag)*(18 4 27A), (3.51)
which is also indicated in Fig. 3.7. Interestingly, the constant term seems
to be reasonably well describe by LO ChPT, whereas there is a significant
tension in the linear term. This behavious has been confirmed by later
work [10], although there is no satisfactory explanation yet.

3.2.4 A generic three-pion system in finite volume

In its original form, the three-particle formalism is only valid for identi-
cal (pseudo)scalars. This limits its applicability to three charged mesons at
maximal isospin, such as 37" or 3K ~. Even if they are satisfactory bench-
mark systems, they are weakly interacting, nonresonant channels. Moti-
vated by this, in another paper of this thesis (Ref. [5]) we provide a gen-
eralization of the RFT formalism to include nonidentical, mass-degenerate
(pseudo)scalar particles. More precise, we focus on a generic three-pion sys-
tem with exact G parity. To illustrate the physical relevance of such exten-
sion, we summarize in Table 3.1 the lowest-lying resonances with quantum
numbers of three pions.

Before turning to the derivation, it is useful to comment on three-pion
states from the point of view of three objects with isospin 1. Their combi-
nation leads to seven irreps:

19101=00102)01=1)000162)e(1e233), (3.52)

which means that total three-pion isospin will have values I, = 0,1,2, 3,
with respective multiplicities 1,3,2,1. The value of the multiplicity is
given by the number of two-pion subchannels, each labelled by the two-
pion isospin I... We then have I, = 0,1,2 if I, = 1, I, = 1,2 for
Linr = 2, and only one value each for I, = 0 and 3, namely I, = 1 and
2, respectively.
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Resonance I.r JE Trrep (P =0)

o782 0 1 T
m(1170) 0 17 7
05(1670) 0 3 A;
7(1300) 1 0 A
a(1260) 1 17 Ty
m(1400) 1 1 T
m(1670) 1 20 E and Ty
(1320) 1 27 Efand Iy
a(1070) 1 47 AF

Table 3.1: Lowest lying resonances with negative G-parity, and which couple to three
pions, in the different isospin (I;rr) and J¥ channels. The fourth column shows the
cubic group irreps that are subduced from the rotation group irreps in the CM frame
(P =0).

The starting point of the derivation is the finite-volume correlation func-
tion:

CLp(P) = [da® [ dx PP (TO;(@)OL(0)).. (3.53)

where O; are operators that annihilate three-pion states. It will be more
convenient to use operators in momentum space'?, related to O; as:

0;(z) = / @bk e O a, b k) (3.54)

sYy

where f(a,b, k) is a smooth function that specifies the detailed form of the
operator. Because of isospin symmetry, all the relevant information can be
obtained from the three-pion sector with zero electric charge. Hence, we
focus on the space of the seven neutral operators:

T (a) To(b) T4 (

7 (b) T (k)
(@) 74 (b) o (k)

O(a,b,k) = | 7o(a) 7o(b) To(k) | . (3.55)

(@) 7 (b) 7o (k)

) (k)

7_(k)

R

#Fo(a) 7o (b
71 (a) Fo(b)

12We use the notation [, = [dk®/(27)>",, with k being the finite-volume spectator
momentum for P. Also, the factor of 1/L3 accompanying each sum is left implicit.
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As the previous equation suggests, all the objects appearing in the three-
pion formalism will have an additional flavour index, running over this
seven-dimensional space.

The detailed derivation is given in Ref. [5]. Here we will just state the
result, and comment on its structure. The three-pion quantization condition

reads
deti gms|1 — Kars(E*) F3(E, P, L)] =0, (3.56)

where the determinant runs over the (k¢m) space and the additional flavour
index. The quantities Kg4¢3 and F3 are defined as their analogous for identi-
cal particles, but they have been promoted to matrices in flavour space—see
Section 2.1 of Ref. [5]. Moreover, the generalized relation to the three-pion
scattering amplitude is established in Section 2.3 of the same reference.

The main result of Ref. [5] is given in Sections 2.4 and 2.5. It corresponds
to projecting the quantization condition of Eq. (3.56) to definite two- and
three-pion isospin. By doing so, one in fact recovers four independent quan-
tization conditions:

det[1 - K, (B FY(E, P, )] =0 | (3.57)

where the superscript [I] accounts for the fixed three-pion isospin. All neces-
sary definitions are given in Table 1 of the corresponding article. Similarly,
one can bring the generalized relation to the three-pion scattering ampli-
tude to a block-diagonal form. It is also important to note that in the same
paper we also discuss the generalized threshold expansion of Kys3, as well
as parametrizations for the three-pion resonances of Table 3.1.

We conclude with an example of the utility of this formalism. In Fig. 3.8,
we present a toy implementation'® of the quantization condition with total
I.» = 0 in the T;" irrep. This corresponds to the channel of the h; res-
onance, and it provides an example in which a complication of cascading
resonant decays happens: h; — pr — 37. Along with the interacting ener-
gies, the free 3w, pm and h; energies are included for comparison. As can be
seen, the actual spectral lines are significantly shifted with respect to the
noninteracting levels. We also see the usual pattern of avoided level cross-
ings. In addition, the finite-volume state related to the toy h; is well below
the position of the pole in Kg¢3. Understanding this and other features will
require further numerical and theoretical investigations.

13The various parametrizations used here do not correspond to the physical ones, and
are chosen for illustrative purposes—see Section 4 of Ref. [5].
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Figure 3.8: Example of finite-volume spectrum for three pions with I, = 0 and
irreps 7;". The interacting energies are depicted with solid lines with alternating colors.
Dashed and dotted grey lines represent the noninteracting levels. More details about the
parameters can be found in the paper. Source: Ref. [5].

3.2.5 Three-particle decays

The final article of this thesis, Ref. [6], deals with the generalization of
the Lellouch-Liischer formalism, explained in Section 3.1.3, to three-particle
decays using the RFT approach. A physical process for which this is use-
ful is the CP-violating K — 37 weak decay. Thus, it nicely connects to
Chapter 2, where another nonleptonic kaon decay was studied: K — 27.
Other transitions that can be treated with the formalism of that work are
the isospin-violating n — 37 strong decay, or the electromagnetic v* — 37
amplitude that enters the calculation of the muonic g — 2.

The article is divided in two parts. First, the formalism for identical
scalars is presented. For this, we make use of the original form of the QC3
of Refs. [154,155]. This is helpful to understand the main features, even
though it does not apply to any system in QCD. In the second part of the
paper, the extension to generic three-pion decays is discussed. This requires
the three-pion formalism of Ref. [5], introduced in the previous section. Here
we will comment only on the first part, and refer the reader to the original
reference for the second.

As in the two-body case, power-law finite-volume effects appear in decays
to three particles. This is because final-state interactions are mangled in
a finite box. Our goal is therefore to derive expressions that correct for
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this distortions (up to exponentially-suppressed corrections). To exemplify
the origin of these effects, we show in Fig. 3.9 three diagrams that produce
them, and one that does not. Since we work in a generic relativistic EFT
to all orders, all contributions are automatically incorporated.

=<

Figure 3.9: Four examples of underlying diagrams contributing to K — 3m, and the
corresponding finite-volume matrix element. The leftmost diagram is a local one-to-three
transition, whose exponentially-suppressed finite-volume effects we neglect. By contrast,
the middle two diagrams have power-like 1/L effects because of the on-shell intermediate
states. This is indicated by vertical dashed lines. Finally, the rightmost diagram depicts
a QCD induced dressing to the weak vertex. Our formalism includes all such interactions
and dressing of the vertices. Source: Ref. [6].

A shared trait of three-particle formalisms is that they are two-step
processes. This also extends to the three-body decay formalism. In the
first part, the finite-volume matrix element—obtained from lattice QCD—
is related to an intermediate quasilocal scheme-dependent quantity (A%YY, ):

2Ex(P)L*{(E,, P, Ay, LiHw (0)| K, P, L) = vt ALY, | (3.58)

where v is a vector, whose outer product defines the residue of the three-
particle quantization condition in a given irrep:

Rau(E2, P, L) = (BN, P, Au, LY (BN, P AL L) . (3.59)

In fact, ALY, plays an analogous role to that of Kq¢3 in 3 — 3 scattering.
For practical purposes, it will be convenient to parametrize it using the
threshold expansion—see Section 2.3 in Ref. [6]. The second step involves
integral equations. In particular, one can define a finite-volume quantity:

1
TW W - APV 3.60
K3r,L L 1 +’Cdf’3F3 K3m>» ( )

whose infinite-volume limit taken in the appropriate way equates the infinite-
volume decay amplitude:

T3 (K)em = lim lim T3, (K)om . (3.61)

+
e=0F L0 E— E+ie

A simplification of the expressions can be achieved in the isotropic ap-
proximation, that is, considering that ALY, = A®° with A®° = const.
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Explicit equations for this are given in Section 2.5 of the paper. It is ex-
pected that this is equivalent to the three-particle decay formalism derived
in the NREFT approach in Ref. [174], when the nonrelativistic limit of our
result is taken.

3.2.6 Concluding remarks

The four articles discussed in this chapter have boosted the applicability
of the three-particle formalism in many ways. We have implemented the
formalism including d-wave interactions [1], as well as irrep projection [1,
3] and moving frames [3]. We have established the threshold expansion
of the three-particle K-matrix [3]|, and developed a strategy to constrain
the different terms from lattice simulations [1,3]. We have been able to
constrain with statistical significance the leading two terms in Kg4¢3, and
tested useful parametrizations of the s-wave phase shift of two pions at
maximal isospin [3]. Moreover, we have extended the formalism to deal
with degenerate nonidentical pions [5], which enables the study of some
QCD resonances, such as the w or h; resonances. Finally, we have presented
the generalization of the Lellouch-Liischer formalism for three particles [6],
and so, one can now study from lattice simulations some phenomenologically
interesting decays: K — 3w, n — 37 and v* — 3.

We have de facto entered an era of three-particle spectroscopy. We
expect to see a blossoming of generalizations and applications of this for-
malism, some of which are already under way. Compelling examples will be
the extraction of resonance parameters from lattice simulations, and explo-
rations of three-particle systems that include particles with spin. The latter
is relevant for the Roper resonance, as well as studies of the three-nucleon
force.

The long-term aspiration of hadron spectroscopy on the lattice is to deal
with processes involving more than three hadrons. Future techniques might
come in the form of N-particle quantization conditions, or possibly involve
a shift of paradigm in the way finite-volume quantities are treated. In
this manner, one hopes to obtain ab-initio studies of, e.g., the charmonium
and bottomonium spectra. Weak decays of heavier hadrons also pose an
interesting problem. An important example is the decay of D mesons,
where CP violation has been recently confirmed [180].






Capitulo 4

Resumen de tesis

En esta tesis doctoral se estudian las propiedades e interacciones de
mesones ligeros. En particular, nos centramos en procesos hadrénicos de
decaimiento y dispersion, como la desintegracién débil de un kadén a dos pi-
ones y la dispersion de tres piones cargados. La prediccion de estos procesos
requiere resolver la teoria que describe las interacciones fuertes.

La formulacion matematica de la interaccion fuerte es la cromodinamica
cuadntica (QCD, por sus siglas en inglés). Un peculiaridad de esta teoria es
que las expansiones perturbativas fallan en escalas de energia hadronicas.
Por esto, se necesitan herramientas no perturbativas para obtener predic-
ciones de primeros principios. El principal método usado en esta tesis es
la formulacion de teorias cuanticas en el reticulo. También emplearemos
teorias efectivas, ya que proporcionan un punto de vista complementario
para entender la dindmica de hadrones ligeros. En la Secciéon 4.1, presenta-
mos un resumen de estos métodos.

Los temas de investigacion de esta disertacion estan divididos en dos
apartados. El primero trata del estudio del limite del gran niimero de colores
(limite de 't Hooft) usando simulaciones numéricas en el reticulo. El objetivo
pricipial es abordar el origen de la regla A = 1/2 en la desintegraciéon de los
kaones, que es un problema abierto clasico en QCD. El segundo se centra en
el estudio de procesos multiparticula en volumen finito, que nos permitira
predecir la dispersion de tres piones a partir de simulaciones en el reticulo.
Estos temas han sido tratados en los Capitulos 2 y 3, respectivamente, y se
resumen en las Secciones 4.2 y 4.3.

Por tultimo, las publicaciones revisadas por pares que constituyen el
cuerpo de esta tesis se pueden encontrar en el compendio de la Parte II.
Hemos mantenido la version original de la revista.
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4.1 Resolviendo la dinamica de la interaccion
fuerte

La interaccion fuerte es una de las fuerzas conocidas en la naturaleza.
Su nombre se debe a que a distancias del orden de femtémetro su magnitud
es mayor que la de las otras tres interacciones: electromagnetismo, la fuerza
débil y la gravitacion. Esta interaccién es la responsable de la estructura
y propiedades del nicleo atémico. En esta breve secciéon, presentaremos la
formulacién matematica de la cromodindmica cuantica, asi como algunas
caracteristicas clave. Asimismo, discutiremos los métodos existentes para
resolver la teorfa: las teorias efectivas y la formulacion en el reticulo.

El Modelo Estandar de la fisica de particulas es una teoria que logra
describir con éxito los fendémenos subatémicos. Es una teoria cuantica de
campos que incluye las interacciones electrodébil y fuerte de tres familias de
fermiones fundamentales (quarks y leptones). Ademads, el Modelo Estandar
incluye un sector escalar, el bosén de Higgs, responsable de dar masa a las
diferentes particulas elementales. Llamamos QCD al conjunto de campos
fundamentales que interaccionan mediante la fuerza fuerte.

La carga de la interaccion fuerte se denomina “color”. Las particulas
fundamentales con carga de color son los seis quarks y los campos gauge
(gluones). El lagrangiano [13] correspondiente viene dado por

. 1 v
EQCD = qu(quu - m>Qf - QF;WFH ) (41)
!

donde f es un indice de sabor con posibles valores (u,d, ¢, s,t,b). Ademas,

. a —i
D, =0, +igit A, y Fu = g—[DH, D,], (4.2)
con A} siendo el campo gludnico, #, las matrices del Gell-Mann y g el
acoplo de la interacciéon. Este lagrangiano se deriva imponiendo la simetria
gauge, o sea, invariancia local bajo transformaciones de SU(N,). En QCD,
hay tres colores, o sea, N. = 3.

En el régimen de altas energias, QCD exhibe una caracteristica que la
diferencia de otras teorias de campos, como la electrodinamica cuantica.
Esta es la libertad asintética [15,16], es decir, el hecho de que la constante
de acoplo decrece al incrementarse la energia. Asimismo, en el marco de
teoria de perturbaciones, el acoplo diverge si la energia se aproxima a una
escala generada dindmicamente, Agcp ~ 300 MeV. Esto indica una ruptura
de la expansion perturbativa a bajas energias.

Una manifestacién no perturbativa de la interaccion fuerte es el confi-
namiento de los quarks y gluones dentro de estados compuestos (hadrones).
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Ello conlleva que no se puedan detectar quarks y gluones en libertad, sino
que los hadrones son las tnicas particulas observables. Sabemos que hay
dos tipos de hadrones: mesones y bariones. Los primeros son bosones, y se
pueden interpretar como estados ligados de un quark y un antiquark. Los
segundos, generalmente mas pesados, son fermiones y se asocian a estados
de tres quarks. El modelo quark es una forma de sistematizar todos estos
estados basandose en teorfa de grupos [31-33].

Durante este trabajo nos hemos centrado en las propiedades de los
mesones mas ligeros. Estos son el octete de mesones pseudoescalares (espin
0 y paridad negativa): los piones (7%, 7°), los kaones (K*, K K% y la
eta (17). Su baja masa se debe a que se pueden interpretar como bosones
de Goldstone [21-23], originados por la ruptura espontanea de la simetria
quiral. Especial mencion merece el mesén pseudoescalar que tiene ntimeros
cudnticos de singlete de sabor, la eta prima (7). Esta particula es mucho
mas pesada que los otros mesones pseudoescalares, ya que recibe una con-
tribucién a su masa de origen topoldgico debido a la anomalia quiral [24,25].

4.1.1 Teoria de perturbaciones quiral

Las teorias efectivas se basan en las ideas de Weinberg [34]. Estas dicen
que los distintos observables en una teoria se pueden calcular usando el la-
grangiano mas genérico que incluye los grados de libertad activos, y que es
compatible con las simetrias existentes. El ejemplo mas famoso de teoria
efectiva es la teorfa de Fermi [35], que sirvi6 para calcular procesos de de-
caimiento electrodébiles mucho antes de descubrir los bosones W. La teoria
efectiva més importante para este trabajo es la teoria de perturbaciones
quirales (ChPT, por sus siglas en inglés) [34,37].

Las simetrias de sabor de QCD y la naturaleza de boséon de Goldstone
imponen restricciones muy fuertes en las interacciones de los mesones pseu-
doescalares. ChPT es, por tanto, una teoria efectiva que describe las inter-
acciones de estos mesones en la region de momento pequeno. En concreto,
en esta teoria se organizan los diferentes operadores de acuerdo al siguiente
contaje:

8~ O(p*) ~ O(M7) ~ O(m), (4.3)
donde M, y m son las masas del pion y del quark, respectivamente. El
objeto principal es la matriz de campos mesénicos’,

0+ %n V21t V2K

p(x) =| V2 —770—1—%77 V2K || (4.4)
V2K~ V2K =2

!Estas expresiones corresponden a ChPT con tres sabores: u,d v s.
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que entra en el Lagragiano de esta manera:

cbg)] |

U(x) = exp [z (4.5)
donde F' es una constante con dimensiones de energia cuya interpretacion
describiremos mas adelante.

Mediante U(x), e imponiendo las simetrias de sabor adecuadas, podemos
escribir el lagrangiano de orden més bajo:
2 2
L= o.u0mUt] + 2Bmb” U+ Ut]. (4.6)
4 4
Como se puede ver, hay dos operadores que aparecen con sus respectivos
acoplos, cuyo valor no estard constrenido por las simetrias, pero que se
podrian fijar con datos experimentales. De hecho, a este orden, F' es la

constante de decaimiento” del pion, y B est4 relacionado con el condensado
quiral.

Tipicamente se necesita ir mas alla de primer orden. Para ello necesi-
tariamos el lagrangiano de segundo orden, £,. Este incluye operadores con
cuatro derivadas, o con contaje equivalente. Estos aparecen multiplicados
por unos acoplos genéricos de baja energia, L;, que se abrevian como LECs,
por sus siglas en inglés. A lo largo de esta tesis se han usado varios resulta-
dos de ChPT. En concreto, en la Seccién 4.2 hemos usado las predicciones
de las Refs. [42-44] para la constante de decaimiento del pion y las masas
de los mesones. Ademads, en la Seccion 4.3 hemos calculado amplitudes de
dispersion de tres piones en ChPT.

4.1.2 Teorias de campos en el reticulo

La formulacién de la cromodindmica cuéntica en el reticulo (LQCD, por
sus siglas en inglés) es un método numeérico que permite resolver la dindmica
de la interaccion fuerte en el régimen no perturbativo. Se basa en el trabajo
de Wilson en los setenta [45]. Mediante LQCD, se ha llegado a calcular
observables con una precision que compite o iguala a la experimental.

El primer punto clave en LQCD es que la teoria de campos se puede
tratar como un sistema estadistico. Para ello, es imprescindible realizar
una rotaciéon de Wick, de tal manera que trabajemos en el denominado
tiempo euclideo (2° — —izf). Asi pues, la funcién de particiéon toma la
forma un significado probabilistico:

zZ = / Dée5519] (4.7)

2En este trabajo usamos la normalizacién F, ~ 92 MeV.



Resolviendo la dindmica de la interaccion fuerte 83

con Sgl¢] = [d*zLE(¢), donde Lx(¢) es el lagrangiano euclideo en funcién
de un campo genérico.

El tratamiento numérico de una teoria de campos requiere la discretizacion
de la misma. En teorias escalares, es suficiente hacerlo de forma naif: susti-
tuir derivadas por diferencias finitas. En teorias gauge con fermiones hay
varias sutilezas técnicas que discutiremos mas abajo. El siguiente paso de
una simulacién de LQCD es generar configuraciones de campos que sigan
la distribucion de probabilidad marcada por la accién. Para ello existen
una serie de algoritmos estandarizados. Uno de los mas sencillos es el de

Metropolis-Hastings [52,53]. Sin embargo, las simulaciones actuales utilizan
el algoritmo Hibrido de Monte Carlo (HMC) [51].

La obtencién de predicciones fisicas se consigue tras tomar el limite al
continuo, es decir, el limite en el cual el espaciado del reticulo, a, se va a
cero. Asimismo, el tamano del reticulo ha de ser lo suficientemente grande
para que no haya efectos apreciables por el volume finito.

4.1.2.1 La accién discreta de QCD

El proceso de discretizacion de QCD presenta dos complicaciones técnicas
que requieren mencion adicional. En esta subseccion los describiremos de
forma cualitativa.

El primero tiene que ver con la presencia de fermiones: una discretizacion
naif de la accion fermidnica tiene como consecuencia el problema de dupli-
cacion de fermiones [46,54]. Esto significa que el limite al continuo de esta
discretizacién no produce un solo campo fermiénico, sino 2¢, donde d es
el nimero de dimensiones. Wilson propuso una solucién pionera para este
problema. Esta consiste en anadir un término a la acciéon con dimensiéon 5
y que rompe la simetria quiral (el llamado término de Wilson). Esto tiene
como consecuencia que los fermiones adicionales adquieren una masa de or-
den 1/a, y por tanto se desacoplan en el continuo. El precio a pagar es que
todas las cantidades escalan como O(a) al continuo, y no O(a?). A esto se
le denomina fermiones de Wilson [46].

Una alternativa que usaremos en esta tesis son los fermiones de twisted
mass [58]. Esta formulacion consiste en anadir un término de Wilson al que
se le aplica una rotacién quiral. Si el dngulo de esta rotacion es w = /2,
tuneado de una manera no perturbativa, la teoria se aproxima al continuo
como O(a?). Ademés, la renormalizacion de ciertos observables, como la
constante de decaimiento del pion, se vuelve méas facil. Sin embargo, una
desventaja es que esta discretizacion rompe las simetrias de isospin y pari-
dad. Esto conlleva, por ejemplo, que el pion neutro y el cargado no tengan
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la misma masa. Aunque esto es un efecto de orden O(a?), habitualmente es
numéricamente significativo.

El segundo asunto a tratar es la inclusion de los campos gauge en el
reticulo. Convencionalmente, los gluones viven en el algebra del grupo
gauge. Sin embargo, en la formulacién wilsoniana los campos gauge se
representan mediante elementos del grupo, los denominados enlaces gauge,
U,(z). En el caso de QCD, estos son matrices de SU(3) que se relacionan
con los campos gludénicos como,

U, (z) = ea904n(®) (4.8)
Sobre ellos, las transformaciones gauge actian de la siguiente manera:
Uu(z) = Qz)U,(2)Q(x + at), donde Q€ SU(3). (4.9)

Mediante la combinacion de varios enlaces gauge en posiciones contiguas,
se puede construir un invariante gauge denominado plaqueta,

tr UPM = tr (U ()U, (z + ap)Uf (z + a2)Uf(2)) , (4.10)
que esta relacionado con el tensor del campo gluénico,
UPlad = gmiaaoFin +0(?), (4.11)

Por tanto, la accion en el reticulo

2]@ > > Retr (1-URM), (4.12)

C uv x

SHAYIU] =

con B = 2N./g?, tiene como limite al continuo la accién de una teoria
Yang-Mills. Asimismo, la version discreta de la derivada covariante es:

Vit = = [Uue)le + o) = 9(2)] (1.13)

Es facil ver que el producto QZVM@/J es un invariante gauge.

4.1.2.2 Funciones de correlacion

Toda la informacion de una teoria de campos esta contenida en las fun-
ciones de correlacién. En concreto, lo que nos interesa para este trabajo son
los niveles de energia y los elementos de matriz.

Considérese la funcién de correlacion a dos puntos,

C(t) = (O(1)0(0)), (4.14)
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donde O es un operador hermitico con ciertos nimeros cuanticos, por ejem-
plo, de un pion cargado. La descomposicién espectral de C(t) tiene la
siguiente forma:

OOn _
L3Z | ’ | | nt’ (415)

donde n son todos los estados de la teoria con los mismos ntimeros cuanticos.
La Ec. (4.15) es, por tanto, una combinacién lineal de exponenciales que
decaen con el tiempo euclideo.

A partir de la Ec. (4.15), se deducir ver que la extraccién del estado
fundamental es particularmente sencilla. Es se debe a que a tiempos grades,
t> 1, C(t) estd dominada por la exponencial que decae mas despacio:

C(t) — Age !, (4.16)

donde Ej es la energia del estado fundamental. Notese que en presencia
de condiciones de contorno perioddicas, las expresiones anteriores adquieren
correcciones por efectos del borde. Por ejemplo, la exponencial en la Ec. 4.16
se convierte en un cosh.

Como veremos mas adelante, para estudios de dispersion en volumen
finito es necesario determinar muchos niveles de energia (el espectro en un
cierto canal). Esto se puede lograr usando tantos operadores con los mis-
mos numeros cuanticos como niveles a determinar. Para ello, es necesario
resolver el problema generalizado de los autovalores (GEVP, por sus siglas
en inglés) [73].
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4.2 Desintegraciones de kaones y el limite de
't Hooft en el reticulo

El limite del gran nimero de colores, o limite de 't Hooft [74], es una
simplificacion muy util de teorias gauge SU(N,.). Mateméaticamente, este
limite corresponde a

N.— 00, A= g’N, = constante, N; = fijo, (4.17)

donde g, es el acoplo gauge, A se denomina el acoplo de 't Hooft, y Ny es el
nimero de sabores. Pese a que el niimero de grados de libertad aumenta con
N, la teoria se simplifica de tal modo que se pueden realizar predicciones
no perturbativas. Ademas, este limite preserva la libertad asintética, el
confinamiento y la ruptura espontanea de la simetria quiral. Por tanto,
mantiene las caracteristicas mas relevantes de la interaccion fuerte.

Es de esperar que el limite de 't Hooft se aproxime razonablemente a
QCD. Sin embargo, la descripcién de procesos de dispersion y decaimiento
necesita correcciones subdominantes en 1/N.. Afortunadamente, LQCD
es un método cuantitativo que permite determinar la magnitud de estas.
Esto se consigue mediante simulaciones en el reticulo a distintos valores de

N, [75).

Uno de los objetivos de esta tesis ha sido explorar la dependencia de
varios observables con el niimero de colores. Nos hemos centrado en dos
temas, incluidos como sendos articulos en la tesis: (i) la dependencia en N,
de las masas y constante de decaimiento del pion [2], y (ii) el estudio de

amplitudes de transiciones débiles relacionadas con el proceso K — 7r y la
regla de AT =1/2 [4].

El resto de la seccién se organiza de la siguiente manera. Primero, en
la Seccién 4.2.1, discutiremos ciertas predicciones del limite de 't Hooft
para observables relacionados con mesones ligeros. Especialmente, nos cen-
traremos en la regla de AI = 1/2, que corresponde a uno de los fallos mas
famosos de las predicciones el limite de 't Hooft. En la segunda parte, la
Seccién 4.2.2, resumiremos los puntos clave de los dos articulos.

4.2.1 Predicciones en el limite de 't Hooft

Las principales predicciones en el limite de 't Hooft provienen de contar
potencias de N, en diagramas calculados en teoria de perturbaciones a todos
los 6rdenes. Para ello, es importante darse cuenta de que los quarks viven en
la representacién fundamental del grupo gauge, mientras que los gluones en
la adjunta. Esto implica que un bucle fermiénico escala como N., mientras
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que uno gluénico como N?. Una representacion ttil para incorporar esto
es la notacién de doble linea para los gluones, mostrada en la Figura 2.1.
Por tltimo, para asignar la potencia de N, a un diagrama se ha de tener en
cuenta que cada vértice afiade un factor de g, ~ 1//N,.

A continuacién, mostraremos algunos ejemplos de predicciones en este
limite. La primera concierne la constante de decaimiento del pion. Esta se
puede sacar de la funcién a dos puntos de operadores con niimeros cuanticos
de vector axial. En la Figura 2.2 su muestran varios ejemplos de diagramas
que contribuyen a tal correlador, asi como su correspondiente potencia de
N.. Combinando todas las contribuciones, se puede ver que la dependencia
dominante en N, y Ny toma la siguiente forma:

F2

Ny
A+B— + ... 4.1
N ( + + ) (4.18)

N,

donde A y B son constantes con dimensién de eneria que no dependen de
Ny ni N.. Esta simple expresion nos permite comparar el valor de F; en
diferentes teorias gauge.

Conclusiones parecidas se pueden sacar para la longitud de dispersion
en onda s, ag. Esta se puede extraer de la parte conexa de la funcién de
correlacién a cuatro puntos:

(OrOrOrOr). 1
N
O[O mE <

ag (4.19)
donde Or es un operador genérico que crea un pion. Este resultado implica
que los procesos de dispersion estan suprimidos con N.. Argumentos sim-
ilares aplican en decaimientos de mesones. Por tanto, se puede decir que
los mesones en el limite de 't Hooft no interaccionan, y QCD se vuelve una
teoria de resonancias infinitinamente estrechas [74, 79, 80].

Otro punto a tratar son las propiedades de la 77’ en el limite 't Hooft. Un
andlisis naif de las potencias de N, en las funciones de correlacion parece
entrar en conflicto con la esperada naturaleza de bosén de Goldstone de esta
particula. La resoluciéon de este problema aumentd nuestro entendimiento
sobre la interacciéon fuerte. Esto se plasma en la ecuacién de Witten y
Veneziano [81,82], que relaciona la masa de este mesén con la susceptibilidad
topoldgica de la teoria puramente gauge:

2Ny 2Ny

ME = M2 =2y = S [ dele@aO)va, (4.20)
n n'

con el operador de la carga topoldgica definido como

A

= mTr[FW(x)FW(I)], (4.21)

q(z)
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y donde F,; es la constante de decaimiento de la 7. En el limite de 't Hooft,
F,; coincide con F;. Aunque la susceptibilidad topolégica no puede ser
medida experimentalmente, ha podido ser determinada usando LQCD [83,
84].

Debido a que la ruptura espontanea de la simetria quiral se mantiene en
el limite de 't Hooft, es de esperar que ChPT proporcione una descripcion
adecuada de las interacciones de mesones ligeros. Una observacion relevante
es que la n' se vuelve ligera en el limite de 't Hooft. Por tanto, ha de
ser incorporada en la teoria de perturbaciones quirales como un grado de
libertad adicional [41,86-92]. Esto implica que hay que modificar el contaje
de la siguiente manera:

M, \? p \? 1
(e ) (2 YL 12
4 F; 4 F, N, ( )
A este contaje modificado lo llamaremos contaje de Leutwyler. Ademas, la
matriz de campos se amplia a

0+ J5(v21 + 1) V2rt V2K*
¢ = V2~ —m0 4+ (V21 + 1) V2K° . (4.23)

VaK- VIR (g o)

Una simplificacion adicional de ChPT en el limite de 't Hooft tiene que ver
con la dependencia de los acoplos efectivos con el niimero de colores. En el
caso de tres sabores activos, se puede ver que algunas son O(N.), mientras
que otras son O(1) [41,93]:

Ly, Lo, L3, L5, Lg, Lg, Lig o< O(N.,),

4.24
2L1 —LQ,L4,L6,L7 O(O(l) ( )

La tltima prediccion que discutiremos tiene que ver con la desintegracion
débil de un kaoén a dos piones, que es un canal muy interesante en el cual
se ha detectado violacion de CP. En el limite de simetria de isospin esta
transiciéon tiene dos modos diferentes, en los cuales los piones del estado final
tienen un isospin total de valor 0 o 2. Los elementos de matriz relevantes
son:

iA1= ((n7) | Ho|K) (4.25)

donde H,, es el hamiltoniano electrodébil, y d; la fase de dispersion fuerte.
Los resultados experimentales muestran que el canal isoescalar (I = 0)
domina con respecto al otro [19]:

Ao

7, | = 2245(6). (4.26)
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A esto se le domina la regla de AI = 1/2, ya que la transicién relevante es
aquella donde el isospin cambia en media unidad. Sorprendentemente, el
limite de 't Hooft no predice ninguna jerarquia y se equivoca por un orden
de magnitud:

Re =2 =V2+O(N Y. (4.27)
Ne.—o00

Esto parece indiciar que las correcciones subdominantes en 1/N, son anor-
malmente grandes, o que la expansion falla para este observable. A lo largo
de los anos, se han propuesto algunas explicaciones: efectos del quark en-
canto, de la dispersion de los piones del estado final, o efectos intrinsecos de
QCD que se pueden parametrizar como acoplos efectivos. De hecho, esta
ha sido la pregunta que hemos tratado en un articulo de este trabajo [4].

4.2.2 Simulaciones de QCD en el limite de ’t Hooft

A lo largo de esta tesis hemos llevado a cabo simulaciones en el reticulo
variando el nimero de colores, N, = 3—6. Para las simulaciones, se ha usado
un c6digo publico, HiRep [100,101]. Hemos tomado cuatro sabores degen-
erados, Ny = 4. Ademads, se ha usado la accién de Iwasaki [72] para la parte
gauge, que es una accién gauge mejorada. Respecto a los quarks, hemos
utilizado fermiones de Wilson mejorados® en el mar, y fermiones de twisted
mass en la valencia. Un resumen de nuestras simulaciones y los correspon-
dientes parametros se encuentra en la Tabla 2.1. Para determinar el valor
del espaciado del reticulo en unidades fisicas, hemos utilizado el método del
gradient flow [106]. El resultado de nuestras determinaciones se resume en la
Tabla 2.2. Como se puede ver, tenemos un espaciado aproximadamente con-
stante, a ~ 0.075 fm, para todos los valores de N.. Asimismo, disponemos
de dos simulaciones con un espaciado mas fino a N, = 3, a ~ 0.065 fm, para
evaluar efectos de discretizacion.

4.2.2.1 Dependencia en N, de las masas y constantes de de-
caimientos del pion

En el primer articulo de esta tesis sobre este tema, hemos estudiado la
dependencia de las masas y las constantes de decaimiento con el ntimero
de colores [2]. Para ello, hemos usado las predicciones de ChPT, con y
sin incluir la ' como grado de libertad activo. Mediante ajustes a estas
expresiones, hemos sido capaces de extraer la dependencia dominante y
subdominante en N, de los acoplos efectivos.

3Esto se consigue afiadiendo el término de Sheikholeslami y Wohlert a la accién [64].
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En la primera parte, hemos realizado ajustes a expresiones de ChPT
estandar incluyendo solo los puntos a N, fijo. El resultado se muestra en
la Figura 2.5, donde se puede ver que el comportamiento de los acoplos
es en general compatible con un término dominante y otro subdominante
en N.. La tnica excepcion son los acoplos para F; en N. = 3, donde se
pueden apreciar contribuciones de orden mas alto. Despues de esto, hemos
realizado ajustes a expresiones de ChPT* con la 7/, en los que incluimos
la dependencia en M, y N, al mismo tiempo. Como se puede ver en la
Figura 2.6, se consigue una descripciéon razonable a orden §° en contaje de
Leutwyler.

Concluimos el resumen de este articulo con una observacion. Usando
la Ec. (4.18) y nuestros resultados de los ajustes con Ny = 4, es posible
extrapolar a otros valores del ntimero de sabores. Por ejemplo, obtenemos:

FNe=3N7=2 _ 81(7) MeV, FN=3Nr=3 — 68(7) MeV. (4.28)

Estos valores son consistentes con aquellos recopilados por FLAG [114].

4.2.2.2 Diseccionando la regla de Al = 1/2 en el limite de 't Hooft

El objetivo de otro de los articulos de esta tesis [4] es entender el origen
de las enormes correcciones en 1/N, de la regla de Al = 1/2. Este articulo
es una continuacién de otro trabajo exploratorio previo, Ref. [7], donde un
estudio similar se llevé acabo despreciando efectos de bucles de quark (la
denominada aproximacion quenched).

Aunque ya existen célculos directos de las amplitudes de K — 77w en
el reticulo, estos son complejos y presentan incertidumbres elevadas [116].
Por consiguiente, hemos usado un camino indirecto, basado en la estrategia
de las Refs. [117,118]. La idea principal es usar ChPT y las amplitudes de
transicion K — 7, que son mas sencillas de computar.

A continuacion, resumiremos el procedimiento. Al desacoplar el bosén
W, el hamiltoniano electrodébil que describe transiciones con un cambio
de extraneza de una unidad (AS = 1) se compone de dos operadores tipo
corriente-corriente. Al contrario de otros estudios en el reticulo, optamos
por matener el quark ¢ ligero, y degenerado con quark u (limite de GIM).
Esto tiene dos ventajas principales: (i) separar el efecto de diagramas de
pinguino, y (ii) no se necesita evaluar propagadores cerrados de quarks.
Esto justifica, por tanto, la eleccién de Ny = 4 en nuestras simulaciones.

4Hemos asumido la ecuaciéon de Witten y Veneziano para la masa del singlete, ya que no
la medimos directamente.
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Una simplificacion adicional es posible usando ChPT. A primer orden,
existen nicamente dos operadores con las mismas propiedades de transfor-
macién que los operadores a nivel quark. De esta manera, ChPT predice

que el cociente amplitudes viene dado en términos de dos acoplos efectivos,

g+

Ay 1

-0 1+ 3 4.29

1%, (4.29
Por tanto, es de esperar que la jerarquia en las amplitudes se traduzca en un

gran cociente de acoplos g~ /¢g". Asimismo, los acoplos efectivos se pueden
extraer de simulaciones de LQCD usando las amplitudes K — 7

A* = (K|Q¥|m),  lim A® =g, (4.30)

donde Q7 son los dos operadores del hamiltoniano electrodébil. En nuestro
trabajo hemos explorado la dependencia en N, de A* y extraido ¢g* mediante
ajustes quirales.

En la primera parte del articulo hemos investigado la dependencia en N,
de A* a masa fija. En base a en un andlisis perturbativo de las contribu-
ciones a las funciones de correlacién, esta seria

" 1 =Ny 1 =Ny
A =1=xa Nj:bN2+ N2+dN3+ (4.31)
donde @ — d son coeficientes numéricos. Mediante ajustes de las amplitudes
a la ecuacién anterior, hemos podido comprobar que los coeficientes tienen
la magnitud esperable, es decir, O(1). Del mismo modo, los coeficientes a
y b son negativos, lo que implica un incremento considerable en el cociente
A~ JAT. Ademds, parece que cuando la masa se reduce, a cambia en la
direccion de aumentar el cociente. Esto se muestra en la Figura 2.8 en el
texto principal.

En la segunda parte del articulo, hemos ajustado la dependencia en M,
de A* a la expresién correspondiente en ChPT para obtener los acoplos g=.
Con ello, podemos obtener un estimador indirecto del cociente de ampli-
tudes de isospin:

Ao
A

2
Njy=4,N.=3

— 24(5) et (T)eit (4.32)

donde el primer error es estadistico, y el segundo, sistematico. Notese
ademas que este resultado es solo valido en la teoria con un quark encanto
ligero.

Finalizamos la seccion con las conclusiones principales de este trabajo.
En primer lugar, parece que el enorme cociente de amplitudes es consistente
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con una expansion en 1/N. con coeficientes de O(1). Asimismo, una con-
tribucion importante proviene de efectos de bucles de quark, o sea, términos
N¢/N.. Por ultimo, el resultado en la Ec. (4.32) sugiere que la regla de
AT = 1/2 podria estar dominada por efectos intrinsecos de QCD, y no por
contribuciones la dispersién de los piones, o por haber cruzado el umbral
del quark encanto.

4.2.2.3 Comentario final

Mediante simulaciones en el reticulo se puede explorar el espacio de
parametros de las teorias gauge. En nuestro caso, nos hemos centrado
en variar el nimero de colores del grupo gauge. Hemos calculado varios
observables variando N., y constatado que las cantidades exploradas tienen
coeficientes O(1) en la expansién en 1/N,.. Un gran logro de nuestro trabajo
ha sido reconciliar esto con la regla de AT = 1/2.

Existen otros observables que seria interesante explorar. Un ejemplo
seria realizar un test no perturbativo de la ecuacion de Witten y Veneziano,
midiendo la masa y constante de decaimiento de la 7. También estudiar la
dispersion de mesones ligeros al variar el niimero de colores, posiblemente
incluyendo canales con resonancias. Ademds, podria resultar interesante
investigar si los estados exo6ticos, como tetraquarks, sobreviven en el limite
de 't Hooft, y si esto es factible de calcular mediante simulaciones en el
reticulo.
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4.3 Procesos multiparticula en un volumen
finito

La extraccion de cantidades de dispersion y decaimiento en el reticulo
es un tema candente en la comunidad de LQCD. Desde hace tiempo, existe
un formalismo sélido para describir sistemas de hasta dos particulas, que ha
sido aplicado ya a muchos sistemas complejos. El limite del marco tedrico
actual reside en sistemas de tres particulas, que es el tema central de esta
parte de la tesis.

El estudio de procesos hadrénicos de varias particulas en el reticulo es
intrinsecamente diferente al experimental. Esto se debe a que no se pueden
definir estados asintéticos en volumen finito, ya que no es posible separar
las particulas. En los ochenta, Liischer ide6 un método para sortear este
problema, basado en que los niveles de energia en volumen finito contienen
informacién sobre las interacciones. El método de Lischer [127,128] es por
tanto una correspondencia entre el espectro en volumen finito y la amplitud
de dispersion.

El resto de la seccion esta dividida en dos partes. En la primera revisare-
mos conceptos basicos de dispersion en volumen infinito, y presentaremos el
método de Liischer. En la segunda, comentaremos el formalismo relativista
para tres particulas en volumen finito, asi como las cuatro publicaciones
sobre este tema que componen este trabajo.

4.3.1 Dispersion en volumen infinito y finito

La matriz S, o de dispersion, es un operador que contiene toda la in-
formacién sobre las interacciones de la teoria, inclusive la existencia de
resonancias. El hecho de que sea unitario impone fuertes restricciones en
su comportamiento. Por ejemplo, en el caso de amplitudes de dispersion
elastica de dos particulas, sus elementos de matriz se pueden parametrizar
usando unos angulos. A estos se les denomina desfasajes, y existe uno para
cada onda parcial, ;.

Una caracteristica interesante de los procesos de dispersion es la aparicion
de resonancias. Experimentalmente, estas se manifiestan como picos en la
seccion eficaz. Desde un punto de vista tedrico, su presencia se puede ver
en el desfasaje: este varia de 0 a 7 cuando la energia en el sistema centro de
masas cruza la masa de la resonancia. Un ejemplo de resonancia idealizada
se muestra en la Figura 3.1.
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El célculo de amplitudes de dispersién (o desfasajes) en el reticulo se
realiza mediante el formalismo de Liischer [127,128], y sus correspondientes
generalizaciones [128,139-148]. A la expresién central de este método se
le llama condicién de cuantizacién de dos particulas (QC2, por su nombre
en inglés). Es una ecuacién en forma de determinante, cuyas soluciones
corresponden a niveles de energia en presencia de interacciones en volumen
finito:

det [F~'(E, P, L) + Ky(E")| = 0. (4.33)

Esta ecuacién tiene dos componentes. El primero, F', es una funcion de
naturaleza cinematica con informacién sobre el volumen finito. Su valor
estd fijado si se conocen los niveles de energia en volumen finito, obtenidos
de funciones de correlacion en el reticulo. El segundo, Ko, es una cantidad
de volumen infinito trivialmente relacionada con los desfasajes. Los indices
matriciales de la Ec. 4.33 son simplemente los de las ondas parciales, ¢ m.
Dado que existen infitos valores de ¢, es necesario despreciar las interacciones
a partir un valor de ¢ > /.. Una referencia 1til para entender como aplicar
este método es la siguiente revisién bibliografica [149].

Igual que ocurre en los procesos de dispersion, los decaimientos a estados
de dos particulas también se ven alterados en el reticulo. La solucion a esto
es el método de Lellouch y Liischer [115], que se emplea para corregir la
distorsion provocada por el volumen finito. Un proceso para el cual esta
técnica se ha aplicado es el decaimiento débil K — wm [116], que ya fue
comentado con anterioridad. Es método tambien posibilita la extraccion de
la amplitud v* — 7.

4.3.2 Tres particulas en un volume finito

En los tltimos afios la generalizacion a tres particulas del formalismo de
Liischer ha progresado significativamente, e incluso se ha llegado a aplicar
a sistemas sencillos de tres mesones cargados. Existen tres versiones del
mismo, basados en: (i) una teoria efectiva relativista genérica (RFT) [1,3,
5,9,154-161], (ii) una teoria efectiva no relativista (NREFT) [137,162-164],
y (iii) la unitariedad del volumen finito (FVU) [165-167]. Aunque los tres
deberian ser equivalentes, la conexiéon precisa no es facil de establecer. Uno
de los puntos que difiere es la naturaleza de una cantidad intermedia que
parametriza las interacciones de tres particulas. En este trabajo nos hemos
centrado inicamente en el método RFT.

Una caracteristica del formalismo de tres particulas, que no tiene el
de dos, es que es un proceso con dos pasos. En el paso inicial, se utiliza
la condicién de cuantizacién de tres particulas (QC3, por su nombre en
inglés) [154]. En el caso de particulas idénticas, y sin transiciones 2 — 3, la



Procesos multiparticula en un volumen finito 95

condicién de cuantizacion es:
det |F3(E, P, L)~ + Kag3(E*)| = 0. (4.34)

Aunque formalmente se asemeja a la Ec. (4.33), hay algunos detalles técnicos
distintivos. En primer lugar, K43 no es una cantidad fisica ya que de-
pende de una funcién de cutoff. Aun asi, es una cantidad muy ttil para
parametrizar las interacciones cuasilocales de tres particulas. Por otro lado,
F3 es una funciéon cinematica que también incluye una dependencia en la
amplitud de dispersiéon de dos particulas. Esto ultimo implica que las in-
teracciones de dos particulas son un prerrequisito para estudiar las de tres.
Asimismo, los indices de la matriz son tales que caracterizan el espacio de
fases de tres particulas.

La dependencia de Kq¢3 en la funcién de cutoff se elimina en el segundo
paso [155]. Este consiste en una serie de ecuaciones integrales que conectan
Kat,3 y los desfasajes con la amplitud de dispersion eléstica de tres particulas,
Ms. Varios ejemplos de resolucion de estas ecuaciones estan disponibles en
la literatura [157,170,175].

4.3.2.1 Contribuciones al formalismo de tres particulas

En esta subseccién, procedemos a resumir los cuatro articulos sobre el
formalismo de tres particulas que forman parte de esta disertacion.

El primer articulo, Ref. [1], es un estudio de la QC3 en presencia de
interacciones en onda d. De hecho, el formalismo RFT es el tinico que
se ha implementado explicitamente incluyendo ondas parciales distintas de
¢ = 0. Como mostramos en la publicacién, los efectos de interacciones con
¢ = 2 pueden llegar a tener un impacto significativo en el espectro de tres
particulas. Un ejemplo concreto se puede ver en la Figura 3.4, donde una
longitud de dispersién atractiva en la onda d modifica notablemente los
niveles de energia. Otro punto importante que tratamos es la expansién de
Kats alrededor del umbral de tres particulas, que se simplifica al usar las
simetrias de la teoria. Probamos que a segundo orden en las variables de
Mandelstam, K43 estd compuesta por cinco cantidades independientes, y
solo dos dependen de variables angulares. Del mismo modo, en este tra-
bajo establecemos una estrategia para extraer los diferentes términos de la
expansion de Kg¢3 mediante simulaciones de LQCD.

A continuacién, en otra publicacién [3], aplicamos las condiciones de
cuantizacion a los niveles de energia de dos y tres piones cargados obtenidos
previamente por Horz y Hanlon en simulaciones en el reticulo [178]. Me-
diante ajustes combinados a los dos espectros, podemos constrenir el valor
de los dos primeros términos en la expasion de Kgr3. El resultado de estos
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ajustes sugiere que Kqr3 es distinto de cero, con una significancia estadistica
de 20. Ademas, calculamos la prediccién de Kg¢3 a primer orden en ChPT.
En nuestros resultados se aprecia que el primer término de la expansion de
Kat,3 es consistente con ChPT a primer orden, pero que la tensién es elevada
para el segundo término. Este patrén ha sido confirmado en estudios pos-
teriores [10], y su interpretacion es todavia una incégnita. En la Figura 3.7
se resumen los principales resultados de las determinaciones de g 3.

Asimismo, en la Ref. [5] extendemos el formalismo de tres particulas para
el caso de un sistema genérico de tres piones degenerados pero distinguibles.
Esto tiene un alto interés fenomenoldgico, ya que existen varias resonancias
con modos de decaimiento a tres piones (ver la Tabla 3.1). La caracteristica
principal de esta generalizacién es que los objetos de la condicién de cuan-
tizacion adquieren un indice adicional de sabor. En este trabajo también
presentamos la expansion de Kgr3 en todos los canales de tres piones, y en
presencia de resonancias. Por tanto, este trabajo pone a disposicion todos
los ingredientes necesarios en cédlculos realistas de LQCD para tratar canales
con resonancias (como la w y la hy). Un ejemplo de implementacién el canal
de tres piones con isospin 0 se muestra en la Figura 3.8.

Por dltimo, en la Ref. [6], generalizamos el formalismo de Lellouch y
Liischer al caso de decaimientos de tres particulas. Para ello, nos centramos
primero en un sistema simplificado donde asumimos que las tres particulas
son idénticas. Aunque esto no tiene un analogo claro en QCD, nos sirve
para entender los rasgos generales del formalismo. Igual que en el caso
de procesos de dispersion, este es un método de dos pasos, donde existe
un cantidad intermedia que depende del cutoff. Finalmente, extendemos el
método a un sistema genérico de tres piones. Para ello, usamos el formalismo
desarrollado previamente en la Ref. [5]. En resumen, este trabajo establece
el fundamento tedrico que permitird a medio plazo estudiar varios procesos
de relevancia fenomenolégica mediante simulaciones en el reticulo. Algunos
ejemplos que consideramos son: el decaimiento débil K — 3, la transicién
electromagnética v* — 3w, y la desintegraciéon n — 3w, que es un proceso
mediado por la interaccién fuerte donde no se conserva el isospin.

4.3.2.2 Comentario final

Concluimos esta seccion con unas reflexiones finales. El trabajo de esta
tesis ha supuesto un antes y un después en el formalismo de tres particulas
en volumen finito. Lo hemos implementado eficientemente, y aplicado con
éxito a sistemas fisicos sencillos. También hemos propuesto generalizaciones
para sistemas con mayor relevancia fisica: resonancias y desintegraciones
que involucran tres piones genéricos.
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Es de esperar que en los préximos anos veamos un nimero considerable
de aplicaciones y generalizaciones, por ejemplo, para incluir bariones en el
formalismo. Esto permitiria estudiar la resonancia de Roper y tratar la
fuerza de tres nucleones a partir de primeros principios.

A largo plazo, seria deseable desarrollar técnicas para tratar sistemas de
mas de tres particulas. Estos avances podrian venir, por ejemplo, en forma
de condicién de cuantizacion de N particulas. Una aplicacion relevante seria
el estudio de decaimientos de mesones D, ya que es un sistema donde se ha
detectado violacion de la simetria de CP.
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1 Introduction

There has been considerable recent progress developing the formalism necessary to extract
the properties of resonances coupling to three-particle channels from simulations of lat-
tice QCD, with three different approaches being followed [1-7]. For a recent review, see
ref. [8]. The outputs of this work are quantization conditions, which relate the finite-volume
spectrum with given quantum numbers to the infinite-volume two- and three-particle in-
teractions. This development is timely since simulations now have extensive results for the
finite-volume spectrum above the three-particle threshold; see, e.g., refs. [9-11] and the
recent review in ref. [12]. Turning the formalism into a practical tool remains, however,
a significant challenge. To date, this has been done only for the simplest case, in which
all particles are spinless and identical, the total momentum vanishes, the two-particle in-
teraction is purely s-wave, and three particles interact only via a momentum-independent
contact interaction [4, 6, 13-15].! This is the analog in the three-particle system of the
initial implementations of the two-particle quantization condition of Liischer [16, 17], which
assumed only s-wave interactions and vanishing total momentum.

In the two-particle case, such an approximation makes sense for levels close to the
two-particle threshold, since higher partial waves are suppressed by powers of the relative
momentum. In the meson sector it begins to fail for energies around 1 GeV. Indeed, recent
applications of the two-particle quantization condition use multiple partial waves (see, e.g.,
refs. [18, 19]). Similar considerations apply for three particles, and we expect that for many
resonances of interest one will need to include higher partial waves.

The aim of this paper is to take the first step in this direction by including the first
higher partial wave that enters in the case of identical, spinless particles, namely the d
wave.? In the language of refs. [3, 4, 6], we include dimers (two-particle channels) with
both £ = 0 and £ = 2. At the same time, for consistency, we make a corresponding extension
of the three-particle interaction beyond its local (pure s-wave) form. We will explain how
to implement the formalism in this generalized setting, and show examples for which the
higher-order terms have a significant impact on the finite-volume spectrum.

Three-particle quantization conditions have been developed with three different ap-
proaches. These use, respectively, generic relativistic effective field theory analyzed di-
agrammatically to all orders in perturbation theory (the RFT approach) [1, 5, 7], non-
relativistic effective field theory (NREFT) [3, 4], and unitarity constraints on the two- and
three-particle S-matrix elements applied to finite-volume amplitudes (the finite-volume
unitarity or FVU approach) [6]. To date, only in the RFT approach has the formalism
been worked out explicitly with no limitations on the two-particle partial waves, whereas
in the other two approaches the quantization condition has been written down only for
s-wave dimers.?> Therefore we adopt the RFT approach in this work. Specifically, we use
the formalism of ref. [1], which applies to identical, spinless particles, with a G-parity-

IThere is also an induced three-particle interaction due to the exchange of a virtual particle between a
pair of two-particle interactions. This is included in all approaches.

2The p wave is absent due to Bose symmetry.

31t is expected, however, that there is no barrier to extending to higher waves.



like Zo symmetry that forbids 2 <+ 3 transitions. Another important feature of this
approach is that it can be made relativistic [5], which turns out to simplify the expan-
sion about threshold. Although we use the RFT approach, we expect that many of the
technical considerations and general conclusions will apply to all three approaches to the
quantization condition.

The formalism of ref. [1] is restricted to two-particle interactions that do not lead to
poles in [Co, the two-particle K matrix. If there are such poles, then one should use the
generalized, and more complicated, formalism derived in ref. [7]. For simplicity, we consider
here only examples in which there are no K-matrix poles.

Since our main goal is to show how the formalism works when including higher waves,
our numerical examples are mainly chosen for illustrative purposes and do not represent
physical systems. However, there is one case in nature for which our simplified setting
applies, namely the 377 system. Thus, in one of our examples, we set the two-particle
scattering parameters to those measured experimentally for two charged pions, and illus-
trate the dependence of the resulting three-pion spectrum on the three-particle scattering
parameters. This is similar to the study made in ref. [15] using the FVU approach, except
here we include d-wave dimers.

All three-particle quantization conditions involve an intermediate three-particle scat-
tering quantity that is not physical, but that can be related, in a second step, to the
infinite-volume scattering amplitude by solving integral equations. In the RFT formalism
this quantity is called K4t 3, and the second step is explained in ref. [2]. We do not discuss
the implementation of this second step in the present work. Clearly, it will be important
to do so in the future, but the methods required are quite different from those needed for
the quantization condition.

This paper develops the ideas already sketched in section 4 of ref. [20]. It is organized
as follows. In the next section we recall the quantization condition of ref. [1], and explain
how one can consistently expand Kgr3 about the three-particle threshold, with d-wave
interactions entering at quadratic order. In section 3 we describe the implementation of
the quantization condition including d-wave interactions, focusing on how to make use
of the factorization into different irreducible representations (irreps) of the cubic group.
Subsequently, in section 4 we show results illustrating the effect of d-wave interactions
on the three-particle spectrum, including in section 4.3 the case of the 37" system with
realistic interactions, which is a target for a potential lattice QCD study. In addition, in
section 4.4, we address the issue of characterizing unphysical solutions to the quantization
condition. We summarize and close the discussion in section 5.

We also include seven appendices describing technical details. Appendix A is a collec-
tion of relevant definitions, whereas appendices B and C provide further details concerning
the topics of section 3. Appendix D describes the calculation of the leading contribution
of d-wave scattering to the threshold expansion. Finally, the remaining appendices relate
to the free solutions discussed in section 4.4.3: appendix E motivates the presence of these
solutions in excited states, appendix F explains why they are absent in the isotropic ap-
proximation of refs. [1, 13], and appendix G explains in an example why removing the free
solutions requires higher orders in the threshold expansion of Kgr 3.



2 Threshold expansion of the three-particle quantization condition

As noted above, we consider a theory of identical, scalar particles, with interactions con-
strained only by the imposition of a Zo global symmetry that prevents odd-legged vertices.
In such a theory, the spectrum of odd-particle-number states in a cubic box of length L, with
periodic boundary conditions, is determined by solutions to the quantization condition [1]

det [F3(E, L)' + Ka3(E)] = 0. (2.1)

This holds up to finite-volume corrections that are exponentially suppressed, i.e., which
fall as exp(—mL) up to powers of L, where m is the mass of the particle. In eq. (2.1), F3
and K4 3 are matrices with index space {k,¢,m}, where k € (2r/L)Z? is the finite-volume
momentum assigned to one of the particles (the “spectator”), while ¢ and m specify the
angular momentum of the other two (the “dimer”).* This matrix space will be truncated,
as explained in section 3 below, so that the quantization condition (2.1) becomes tractable.
The matrix Fj is a complicated object given in eq. (3.1) below; all we need to know for
now is that it depends on the two-particle K matrix, Ko. Thus the infinite-volume quan-
tities that enter into the quantization condition are Ko and the three-particle quasilocal
interaction de,3.5

The quantization condition (2.1) is valid only when the CM (center of momentum)
energy lies in the range m < E* < 5m, within which the only odd-particle-number states
that can go on shell involve three particles (rather than one, five, seven, etc.). Here
E*=+E?2-P 2 with (F, ]3) the total four-momentum of the state. As in the previous
numerical studies [3, 6, 13, 14], we further restrict our considerations to the overall rest
frame, with P = 0, implying E* = E henceforth. We also recall that eq. (2.1) assumes that
there are no poles in K9 in the kinematic regime of interest. We discuss the constraints
that this places on the two-particle scattering parameters in section 3.

The aim of this section is to develop a systematic expansion of Kg4¢ 3 about the three-
particle threshold at E' = 3m. To that end, we make use of the fact that, unlike the matrix
F3, Kg¢ 3 is an infinite-volume quantity, and so is defined for arbitrary choices of the three
incoming and three outgoing on-shell momenta in the scattering process, and not just for
finite-volume momenta. It is also important that it can be chosen to be relativistically
invariant, if an appropriate choice of the kinematic function G entering F3 is made [5]
[see eq. (A.3)].

In the remainder of this section, we first recall the threshold expansion of s and its
relation to the partial wave decomposition, and then describe the generalization of the
threshold expansion to gt 3, extending an analysis given in ref. [13]. Finally, we show how
the terms in this expansion are decomposed into the matrix form needed for eq. (2.1).

4Context determines which meaning of m is intended.
5The subscript “df” stands for “divergence-free”, indicating that a long distance one-particle exchange
contribution that can diverge has been removed. For further details, see ref. [1].



2.1 Warm up: expanding /C; about threshold

To illustrate the method that we employ for Kg 3, we first consider the simpler, and well-
understood, case of the two-particle K matrix, Ko. Since Ks is relativistically invariant, it
depends only on the standard Mandelstam variables s, to and ug = 4m? — sy — to. It is
convenient to use dimensionless variables that vanish at threshold,

~ S9 — 4m? q§2 ~ 2 q§2 ~ U2 ‘52
2 4m? m2’ % 4m? 2m2( ), U 4m? 2m2( teo), (22)

where ¢ is the magnitude of the momentum of each particle in the CM frame, and ¢y
is the cosine of the scattering angle. For physical scattering, 82, —ty and —TUsy are all
non-negative, and satisfy

Ay = —1y — T, (2.3)

implying that —t, and —» are both bounded by As.

Since Ko is known to be analytic near threshold, we can expand it in powers of KQ,
ty and Us. The previous considerations imply that, for generic kinematics (i.e., 8 # 0 or
7), all three quantities are of the same order. Bose symmetry implies that the expression
must be symmetric under 5 <> Uy. Thus, through quadratic order we have

Ko =3¢ + &8s+ &A3+5 (12 +a2) + O(A3), (2.4)

where the ¢; are constants (which are real since Ko is real), and we have used the con-
straint (2.3) to reduce the number of independent terms. We now decompose this result
into partial waves, using

Ky = i(ze + DY (Ag) Py(cos0) . (2.5)
=0

All odd partial waves vanish by Bose symmetry, while eq. (2.4) leads to
B ~ 2.\ % ~
]Cg)) =co+c1Aq+ (CQ + 363> A% + O(A%) , (2.6)
1~ ~
K = A3+ 0(AY). (2.7)

The first equation gives the first three terms in the effective range expansion for Kq, while

)

from the second equation we recover the well-known result that IC§2 o ¢3% near threshold.

)

By extending this analysis, one can show that ngZ only enters when we include terms of
O(A}S) in the threshold expansion [13].

The threshold expansion has a finite radius of convergence. In particular, we know that
Ko has a left-hand cut at Ay = —1, so that the radius of convergence cannot be greater
than \&2] = 1. In practice, we truncate the expansion at the order shown in egs. (2.6)
and (2.7) (and set Kéz) — 0 for £ > 3), use a cutoff function such that Ay > —1, and
restrict £ < 5m implying that 82 < 3. We are thus assuming that the deviations from the

truncated threshold expansion are small over this kinematic range.



2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kqr 3, we begin by listing the gen-
eralized Mandelstam variables,

s=FE%, sij=pi+p)=s si;=0i+0)=s, ty= -7, (2.8)
where p; (p}), i = 1-3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,
. 2 Lo — 4m? g
8= _sjk—llm ; _ Sik m ~
A= g Tomr 0 NE T =g (29

where in the definitions of A; and A, (4, j, k) form a cylic permutation of (1,2,3). These

o

sixteen quantities are constrained by the following eight independent relations,
3 3
YA =) A=A (2.10)
i=1 i=1

3 3
Dtp=Ai—-A D ti=A A [i=1,23]. (2.11)
j=1 j=1

Thus only eight are independent: the overall CM energy (parametrized here by A) and
seven “angular” degrees of freedom.® This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 -6 — 4 -2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that A;, Al, —t;; are all non-
negative, and the constraint equations then lead to the inequality

0< A AL —t; <AL (2.12)

Thus all the variables {A, Ai,A;,Ej} can be treated as being of the same order in an
expansion about threshold.

2.3 Expanding K43 about threshold

By construction, Kg¢3 is a smooth function for some region around threshold.” Thus it
can be expanded in a Taylor series in the variables {A, A, Ag,aj}, which are all treated
as being of O(A). Since Kg¢ 3 is real, the coeflicients in this expansion must also be real.
The expansion must also respect the symmetries of Kqr3, which is invariant under [5]:®

e Interchange of any two incoming particles: p; <> p; = A; <+ A, and tir < ;tvjk
e Interchange of any two outgoing particles: p} <» p}; = A} <> A} and thi > thj

e Time reversal: p; <> pi (Vi) = A; <> Al and t;; < t;; (Vij)

SWe call these variables angular since they span a compact space.

"More precisely, what is shown in ref. [1] is that K43 has no kinematic singularities at threshold, a
result that is checked by the explicit perturbative calculations of refs. [21, 22]. There can be dynamical
singularities due to a three-particle resonance, but, generically, this will lie away from threshold.

8The first two symmetries hold because we are considering identical bosons. They would not hold in the
more general case of nonidentical particles, allowing additional terms to be present in KCys 3.



It is then a tedious but straightforward exercise to write down the allowed terms at each
order in A, and simplify them using the constraints (2.10)—(2.11). Through quadratic order

we find
m?Kags = K + K AQ + kG AR + 0%, (2.13)
K0 = K5Pg + Kipy A + Koy A (2.14)
3
AP =Y a2+ AR - A2 (2.15)
=1
3 ~
AP =352 - A%, (2.16)
ij=1

where iisf(j?;? IC(iiSfo’ ’31, ICESE ’32, ICEIQf”?) and lCéfo) are real, dimensionless constants. We thus see
that there is a single term both at leading (zeroth) order and at first order, while there
are three independent terms at quadratic order. The particular linear combinations of the
quadratic terms that appear in egs. (2.15) and (2.16) (and in particular the subtraction of
A? in Af) and Ag)) are chosen based on our numerical experiments described below in
order to ensure that their contributions to the finite-volume spectrum are distinct.

As noted in ref. [13], the leading order contribution to Kg¢ 3 in eq. (2.13) is independent
of momenta p; and p;-. This shows that the isotropic approximation to Kgq¢ 3, defined as
independence of the seven angular variables, arises naturally in the same way as the s-wave
approximation to Co. What we add here is the result that Kg4¢ 3 remains isotropic at O(A),
having only an overall linear dependence on s. Furthermore, at quadratic order, we find
only two terms that depend on angular variables (Af) and Ag)), compared to the seven
angular variables that are needed to fully characterize three-particle scattering. Thus, if
it is a good approximation to truncate the threshold expansion at O(A?%), the number of
parameters needed to describe Kgr 3 is smaller than one might naively have expected.

For most of our numerical investigations, we have restricted ourselves to quadratic
order in the expansion of Kgr3. It is interesting, however, to push the classification to
higher order for at least three reasons. First, in order to know how rapidly the number of
parameters grows; second, to see which dimer partial waves enter; and, third, to investigate
the issue of solutions to the quantization condition with energies given by those of three
noninteracting particles (see section 4.4.3). Thus we have classified all terms of cubic order.
We find eight independent terms: three that are just A times each of the terms of quadratic
order, plus five new angular terms,

3 3 ny
AP =Y (ateay,  AP=YR 21
i 1]
3 = 3 ny
A(C) = ZAﬂfz‘jA;, AE:)) = Zﬁ (A + A) (2.18)
i3 2%
A = Y toytao@ o) (2.19)
o€S3



where o € S5 is a permutation of the indices (1,2, 3). Thus the number of terms is growing
fairly rapidly with order.’

2.4 Decomposing g3

In order to use Kgr3 in the quantization condition, we need to decompose it into the
variables used in its matrix form. This is the analog of the partial wave decomposition of
Ko, described in section 2.1 above.

The steps in this decomposition were presented in ref. [1] and we recall them here. The
total four-momentum P* is fixed, in our case to (E,0). One each of the initial and final
particles is designated as the spectator, with three-momenta denoted k and P, respectively.
Since K4 3 is symmetric separately under initial and final particle interchange, it does not
matter which particles are chosen as the spectators, and we take k= p3 and p = p3’.
The remaining two particles form the (initial and final) dimers. The total momenta of
both dimers are fixed, e.g. to P — p3 in the initial state. For each dimer, we can boost
to its CM frame, and the only remaining degree of freedom is the direction of one of the
particles in the dimer in this frame. We take this particle to be p; in the initial state, and
denote its direction in the dimer CM frame by a*. Similarly, the direction of p} in the
final-state-dimer CM frame is called a’*. Using these variables we can write'®

Kats = Kara(7, a5 k,a*) . (2.20)

The next step is to set each spectator momentum to one of the allowed finite-volume
values, e.g. k = 7i(2n /L), with 7i a vector of integers. The final step is then to decompose
the dependence on a* and @™ into spherical harmonics

Kar 3(7, 0" k,a*) = 4mYp,0 (6™ Kat saperm? et Yom (@%) , (2.21)

where there is an implicit sum over all angular-momentum indices. This defines the entries
in the matrix form of ]Cdf’3.11 In practice, we use the real version of spherical harmonics,
so the complex conjugation in eq. (2.21) has no impact.

The simplest example of this decomposition is for the isotropic terms in Kg¢ 3, namely
K'*° in eq. (2.14). Recalling that E, and thus A, is fixed, K'*° is simply a constant. This
implies that the matrix form of C'° vanishes unless ¢/ = ¢ = 0, and is independent of P, k:

K58 3.ptrmisbem = K0008mr06100mo - (2.22)

The approximation Kgf3 = K% is studied in ref. [13].

9We do not think that there is any significance to the fact that the number of terms depending on
angular variables through cubic order, i.e. 2 + 5 = 7, equals the number of independent angles in three-
particle scattering. The dependence on these angles can be arbitrarily complicated, so there is not a
one-to-one correspondence between variables and functions.

10 As above, the 2-(3+2) = 10 momentum components are reduced to seven independent angular variables
by rotation invariance.

HNote that we follow ref. [1] and drop the vector symbol on the momenta in the matrix indices, in order
not to overly clutter the notation.



(2)

We next work out the decomposition of A’}”, eq. (2.15), which is conveniently written as
AG = [A2 4 AR — A7)+ [A2 4+ AZ] + [A2 + A% (2.23)

The first term depends on k2 and 72, but not on a@* or @’*. This can be seen from
9m2As = (P — p3)? — 4m? = E? — 2Ew, — 3m?, (2.24)

with wy, = V/k2 + m2, and the corresponding result for A}. Thus the first term in eq. (2.23)
leads to a purely s-wave (¢’ = ¢ = 0) contribution to K43, although now with nontrivial
dependence on k and P, so this differs from an isotropic contribution.

The second term in eq. (2.23) can be rewritten using

9m? 2 2 212 2 212 AE? Sk N2
— [AT+ A3] = (p+ - p3s — 2m*)* + (p— - p3)° = (Bwi, — 3m?)* + fore (@ -k)“, (2.25)
2.k

where p+ = p & po, and E;‘Qk = (P — p3)?. To obtain the second form one must explicitly
boost to the dimer CM frame, in which p_ equals 2a*, with a*?> = 9m2A3/4. The first
term on the right-hand side of eq. (2.25) is independent of @*, and thus again contributes
only an s-wave component. The second term, however, depends quadratically on a*, and

thus, through the addition theorem for spherical harmonics,'?

(@R =+ g S Vi @), (226)

leads to both s- and d-wave contributions. In other words, both Kgr 3.p00.k00 and
Kt 3:p00:k2m are nonvanishing. These contributions are straightforward to work out from
the above equations, and we do not display them explicitly.

The final term in eq. (2.23) differs from the second term only by changing unprimed
quantities to their primed correspondents. Thus one finds contributions both to Kgf 3:p00:k00
and Kqr 3.p2m:k00- Overall, we conclude that the angular dependence in Af) leads to both
s- and d-wave dimer interactions, although there are no terms with both ¢ = 2 and ¢ = 2.
The latter result arises from the fact that there are no terms in Af) that depend on both
incoming and outgoing momenta.

Finally, we consider Ag) , given in eq. (2.16). This is more complicated to decompose
because %VZ-]- contains both incoming and outgoing momenta, but this same property leads
to contributions with £ = ¢/ = 2. We provide only a sketch of the decomposition, as the

details are tedious, lengthy, and straightforward to automate. Expanding Ag), one finds

terms that are similar to those dealt with in Af), which lead to additional contributions

to Kar,3;p00:k005 Kdt,3;p00,k2m> and Kar,3.p2m;k00, and a term proportional to
(p_-p ) =aja 5 Sijrsly (2.27)

where p/y = p}| £+ p), i, j, r, and s are now spatial vector indices, and S is a tensor that
depends on k and p and is symmetric separately under ¢ <> j and r <> s. By decomposing

12 Again, in practice, we use real spherical harmonics, so the complex conjugation is not needed.



S into the spherical tensor basis one finds contributions to the ¢ = ¢ = 2 part of Kgr 3,
Kat 3:p2m/:k2m, as well as to the other three components.

In summary, because the terms of O(A?) in Kg¢ 3 are at most quadratic in @* and/or
a'*, they give rise to dimer interactions that are either s- or d-wave. This is the analog of
the result derived in section 2.1 that, at the same order, only ngO) and IC§2) are present.

The generalization to higher order is straightforward. Terms of O(A3), can, in principle

=/
a*

be cubic in @* and/or @, but Bose symmetry forbids odd powers. Thus O(A3) terms
lead only to s- and d-wave contributions to Kg4¢ 3, as we have checked explicitly. In order
to obtain contributions with £ = 4 or ¢' = 4 one must work at O(A*) in the threshold

expansion. The pattern continues similarly at higher order.

3 Implementing the quantization condition

In this section we describe how we numerically implement the quantization condition,
eq. (2.1), when working to quadratic order in the threshold expansion. The expression for
F3 iSlS

1 F = =~
Fy=— |- —-FH'F 3.1
3 L3 3 ) ( )
H=— +F4G (3.2)
a QWICQ ’ '
where all quantities are matrices with indices {k, ¢, m}. K is a diagonal matrix
1 ] 1
= kég/gé 'm T (33)
I:QWICQ plm’skm P " TrLQ(,szng/,)c
where the only nonzero elements are the s- and d-wave terms
L ! —i%—rﬁ—i—P(r)B *4—|-\* |[1—H(E)] (3.4)
0) "~ 167E; a2 0170) G2,k T 192k ’ '
ICM 2.k
1 1 1 { 1 o5 -
— o e - BN (35)
IC?; 16mE; q2,4k aj '

Here E;2k = (P — k)? is the invariant mass of the dimer, while ¢} = 1/E;?k /4 —m? is the
momentum of each particle composing the dimer in its CM frame.'* The expression (3.4)
is the standard form for the effective range expansion through quadratic order, with ag the
s-wave scattering length, rg the effective range, and Py the shape parameter. Expanding
the overall factor of EJ, about threshold, and for now ignoring the 1 — H (k) term, one
recovers the form given in eq. (2.6). Similarly, aside from the 1 — H term, the expression

3This is the form given in appendix C of ref. [1], with F = F/(2w) and G = G/(2w). The matrix H
should not be confused with the cutoff function H(k), which is always shown with an argument.
M These quantities were denoted so and g5, respectively, in section 2.1, but here we need to make explicit

that they depend on k. The notation here is the same as in ref. [1].



for ICS%, eq. (3.5), is equivalent to the earlier result, eq. (2.7). Here the leading order term
is parametrized in terms of the d-wave scattering length as.

The 1 — H terms in the expressions (3.4) and (3.5) arise from the need to introduce a
smooth cutoff function H (k) that vanishes for E33 < 0. We refer the reader to refs. [1, 23]
for further explanation of both the need for this cutoff and the manner in which it enters
these expressions. It is sufficient to note here that the 1 — H term turns on smoothly only
well below the dimer threshold at E3, = 2m. The explicit form of H (k) that we use is
given in appendix A.

As noted above, the quantization condition holds only if there are no poles in K9 in the
kinematic regime under study. The kinematic range of q;k is given by —m? < q§2k < 3m?
(corresponding to 0 < E§2k, < 16m?). The parameters in eqs. (3.4) and (3.5) are thus
constrained so that neither right-hand side vanishes for this range of q;2k In our numerical
investigations, we always use values of the scattering parameters that satisfy these con-
straints. For as the constraint is that mas < 1, with arbitrarily negative values allowed.

The other two quantities appearing in Fj3 are the finite-volume kinematic functions F
and G. The former is essentially a two-particle quantity, and thus is diagonal in spectator

momenta, though not in the angular-momentum indices:'%

ﬁpé’m’;kﬁm = 5pksH(E)F€’m’;€m(E) . (36)

G is a kinematic function that arises from one-particle exchange between dimers, and is
thus a quantity that involves all three particles. In particular, it is not diagonal in any
of the indices. We give the explicit forms of F and G in appendix A, and provide some
details of their numerical evaluation of F in appendix B.

An important property is that épglm/;kgm is proportional to H(p)H (E), and is thus
truncated to the finite number of values of spectator momenta for which H(k) # 0. We
call this number Ngpect(E, L). The same truncation applies to F , due to the factor of
H (E) in eq. (3.6). Both matrices are, however, infinite-dimensional in angular-momentum
space. This is to be contrasted to KCo and KCgr 3, which are (by approximation) truncated
in angular momenta but not in spectator-momentum space. In angular momentum space
the dimension is 1 + 5 = 6 when keeping both s and d waves.

Nevertheless, it turns out that these two truncations are sufficient to reduce the quan-
tization condition, eq. (2.1), to a determinant of a 6 Ngpect-dimensional matrix. To show
this, we first write the quantization condition as

det [F5 '] det [1 + F3Kae3] = 0. (3.7)

It appears from this rewriting that there will be solutions to the quantization condition
when det[F3] — oo, i.e., when Fj3 has a diverging eigenvalue. However, in that case, the
second determinant will, for a general Kq¢ 3, also diverge, leading to a finite product. Thus

15This expansion is often written with a different definition of az, in which a3 is replaced by as. We
prefer the present form since then a2 has dimensions of length.

16\We are abusing notation here, but the two versions of F will always be distinguishable by the presence
or absence of the argument k.
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we expect that the only solutions of the quantization condition (2.1) for general Ky 3 will
be those that also satisfy

det[l + Fglcdf,g] =0. (3.8)

This also makes sense intuitively, since we expect all finite-volume energies to depend upon
the three-particle interaction. The advantage of the form (3.8) is that it has been shown
in ref. [1] that it effectively truncates all matrices that appear (i.e., ﬁ, é, ICo and gt 3) to
Nspect entries in spectator-momentum space and to s and d waves in angular-momentum
space. By “effectively” we mean that elements of the matrices that lie outside the truncated
space do not contribute to the determinant.

In the following, we also consider at times the further truncation to only s-wave dimer
interactions. This is effected by setting to zero all entries in the matrices having ¢ = 2, so
that their dimension becomes Ngpect -

We have now explained how all the matrices contained in the quantization condition
eq. (2.1) are constructed, for given values of E and L. We combine these matrices to
form Fj Ly Kaf 3, and calculate its eigenvalues. For a given choice of L, the finite-volume
spectrum is then given by those values of FE for which an eigenvalue vanishes.

The practical calculation of this spectrum is facilitated by decomposing into irreducible
representations (irreps) of the symmetry group of finite-volume scattering. For a cubic box
with P = 0, this is the cubic group, Op. For the case of pure s-wave dimers, this decompo-
sition has been worked out for the NREFT and FVU quantization conditions in ref. [14]. It
has also been used implicitly in the numerical study of the isotropic approximation to the
RFT quantization condition in ref. [13], since the isotropic approximation automatically in-
volves a projection onto the trivial (A]) irrep.!” The new result that we now present is the
generalization of the decomposition to the case in which one has both s- and d-wave dimers.

3.1 Projecting onto cubic group irreps

We begin by recalling some useful properties of the cubic group, Op. It has dimension
[On] = 48, and ten irreps. Its character table can be found, e.g. in ref. [24]. The labels for,
and dimensions of, the irreps can be seen in table 1 below. Each finite-volume momentum,
k = (27 /L)y, lies in a “shell” (also known as an orbit) composed of all momenta related
to k by cubic group transformations. We refer to this shell as or. There are seven types
of shell, differing by the symmetry properties of the individual elements. We label these
by the form of 7ig: (000), (00a), (aa0), (aaa), (ab0), (aab) and (abc), where a, b and ¢ are
all different, nonzero components. They have dimensions N, = 1, 6, 12, 8, 24, 24 and 48,
respectively. For example, 7, = Z lies in the (001) shell of type (00a), and 7iy = & + 22 lies
in the (120) shell of type (ab0). Each element in a shell is invariant under rotations in a
subgroup of Oy, called its little group, Lg. The little groups for all elements in a shell are
isomorphic, with dimension [Ly] = [Op]/No,.

The four matrices that enter the quantization condition eq. (2.1), namely 2wKs, Kat 3,
F and G, are all invariant under a set of orthogonal transformations U(R), where R € Oy,.

"For a more detailed discussion of the isotropic approximation, see appendix F.
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Specifically, if M is one of these matrices, then

M=URMUR?T, URUR'=1, (3.9)
U(R) = S(R) @ D(R)T, (3.10)
U(R)pglm/;kgm = 5opokSI(,Zp)(R)CSE/ED%)m/(R)- (3.11)

Here the Wigner D-matrix is defined in eq. (A.7), while S(R) permutes the spectator
momenta within shells:

o 1, Rﬁ: ];:
S(R)pk = 50p0k51()kp)(R) = Oppk = ) (3.12)
0, otherwise.

For 2w and Kg¢ 3 this result follows because they are invariant under rotations, while for
F and G it follows from the fact that they are form-invariant under cubic-group rotations
if the quantization axis that defines the spherical harmonics is rotated along with the
spectator momenta.

The matrices {U(R)T}geo, furnish a representation of Op,:
U(RyR)T = U(R)TU(R)T, YRy, Ry €0, and U(13)1 = 14, . (3.13)

One may decompose this reducible representation into irreps I of the cubic group using
projection matrices (see, e.g., ref. [25])

dr

=10,

> xi(RUR)T, (3.14)

ReOy,

where d; is the dimension of I and x;(R) its character.'® An important simplifying property
of U(R), which carries over to Py, is that it is block-diagonal. For the spectator-momentum
indices, this follows because

D(R), Rk=7p

0, otherwise ,

U(R)} = S(R)kp ® D(R) = 0, pD(R) = { (3.15)

which implies that each U(R) is block diagonal in shells, o. We label the resulting “shell
blocks” of Pr as Pr,. These shell blocks inherit from D(R) the property of being block
diagonal in ¢, and we label the corresponding sub-blocks as Py ), with £ = 0 or 2. The
result is that we can write P in the form

P] = diag(PLol, P]’OQ, .. ) y PI,O = diag(PLO(O), PI,O(Q)) . (316)

This simplified structure allows for more efficient computation of the P; matrices, as ex-
plained in appendix C.1.

8Normally one would write x7(R)* in eq. (3.14), but since Oy, only involves real orthogonal transforma-
tions, all characters are real and the conjugation is trivial.
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Using these projectors, we can decompose the quantization condition into separate
conditions for each irrep. From eq. (3.9) we know that [P;, M] = 0, for each of the four
matrices M, from which it follows that

[Pr, Fy ' + Kars] =0 (VI). (3.17)

Using ) ; Pr = 1, and the orthogonality of the projectors onto different irreps, one can
then show that the determinant factorizes into that for each irrep

det[F ' + Kag 3] = HsggtI[PI(stl + Kat3) Prl (3.18)
I b

where the subscript indicates that the determinant is taken only over the subspace onto
which P; projects. Thus the quantization condition for irrep I becomes
det [Pr(F3 ' + Kag3)Pr] = 0. (3.19)
sub,l
If desired, one can also apply the projectors to all the matrices contained in F3, eq. (3.1),
so that the entire evaluation of the quantization condition involves matrices of reduced
dimensionality.

The number of eigenvalues in a given irrep is given by the dimension of the projected
subspaces, d(Pr). This is obtained by summing the dimensions of the sub-blocks,

d(Pr) = Z Z d(Pr.o(0)) 5 (3.20)

o (=0,2

where the sum over o runs over all shells that are “active”, i.e., that lie below the cutoff.
We explain how the d(PLo(g)> are calculated in appendix C.2, and list the results in table 1.
From this we learn, for example, that the k = 0 shell contains one Af irrep for £ =0, and
one each of the ET and T2+ irreps for £ = 2. Note that shells can contain multiple versions
of a given irrep, e.g., the (00a) shell-type with £ = 2 contains two versions each of the E™,
T2+ , Ty and T irreps.

At this stage it is useful to give an example of how shells become active as E and L are
increased. With our cutoff, described in appendix A, the maximum value of ||, 7k max,
is determined by the vanishing of E;?k:

. L (E?—m?
E2,2k =0 = Ngmax = Gy <2E ) . (3.21)

This can be easily converted into the number of active shells, an example being shown in
figure 1. The first fifteen shells are (000), (001), (110), (111), (002), (120), (112), (220),
(221), (003), (130), (113), (222), (230) and (123), at which point examples of all seven
types have appeared.

Although each P is block diagonal in o and ¢, F; 1y Kar 3 is generally not. Thus even
though each eigenvector of Fy~ 14 Kat 3 lies in a single irrep, it will generally be a nontrivial
linear combination of vectors lying in the subspaces projected onto by Py ,s). However, we
can still use table 1 to determine how many eigenvalues will be present in a given irrep for
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shell types
irrep | dim | (000) (00a) (aa0) (aaa) (ab0)  (aab)  (abc)
AT 1 | (1,0 (1,1) (1,2) (1,1) (1,3) (1,3) (1,H)
AT 1 |(0,0) (0,1) (0,1) (0,0) (1,3) (0,2) (1,5)
E* | 2 (0,2 (2,4 (2,6) (0,4) (4,12) (2,10) (4,20)
T | 3 [ (0,00 (0,3) (0,9 (0,6) (3,21) (3,21) (9,45)
T | 3 [(0,3) (0,6) (3,12) (3,9) (3,21) (6,24) (9,45)
AT 1 |(0,0) (0,0) (0,1) (0,0) (0,2) (0,2) (1,5)
A; | 100 (0,1) (0,1) (1,1) (0,2 (1,3) (1,5)
E- | 2 | (0,00 (0,2) (0,4) (0,4) (0,8) (2,10) (4,20)
7 | 3 [ (0,0) (3,6) (3,12) (3,9) (6,24) (6,24) (9,45)
Ty | 3 (0,00 (0,6) (3,12) (0,6) (6,24) (3,21) (9,45)

Table 1. Dimension of irrep projection sub-blocks for each shell-type and angular momentum,
(d(Pr,0(0)), d(Pr,0(2))). Each row corresponds to an irrep of the cubic group Oj, whose dimension

is also listed for completeness.

121 —— mL=3

— mL =25
109 —— mL=7

— mL =9
8_

Nshells
6_
4 1 I
N |
l [
0 T T T T T
1.0 1 2.0 2.5 3.0 4.0 4.5 5.0
E/m

Figure 1. Number of active momentum shells for fixed mL as a function of E.

a given choice of ¥ and L. For example, suppose we have both s- and d-wave interactions
turned on and we are in the F, L regime where only the first two momentum shells, (000)
and (001), are active, so that Nypeet = 1+ 6 = 7. Then the table tells us that F3_1 + Kt 3

has 3 eigenvalues in A] since

d(PAj) = d(PA{r,OOO(O)) + d(PAj,ooo(z)) + d(PAj,om( )) +d(P AT 001(2))

=140+1+1=3. (3.22)
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level | (3,73, 73) | degen. irreps
0 (0,0,0) 1 AT
1 (1,1,0) 3 Af +ET
2 (2,2,0) 6 AfF + EY 4+ T
3 (2,1,1) 12 | A +EY+ T + T + T,
4 (3,3,0) 4 AT+ T

Table 2. Irreps appearing in the lowest energy levels of three identical noninteracting particles.
The first column gives the level number (for values of mL ~ 5), starting at zero. The states are
labeled by the squares of the three vectors 7; that determine the momenta of the particles — see
eq. (3.23) — and these are given in the second column. The third column gives the degeneracy,
and the final column the irreps that appear.

Looking at the other irreps, we see that in this regime there is 1 eigenvalue in A;, 8 in
Ef,3in T}, 9in T,F, 0 in A7, 1in Ay, 2in E=, 9 in T}, and 6 in T, giving the
correct total of 6 Ngpect = 42 eigenvalues. We stress that eigenvalues lying in a given irrep
always come in degenerate multiplets corresponding to the dimension of the irrep. Thus,
for example, the eight eigenvalues in the E™ irrep in the two-shell regime consist of four
two-fold-degenerate pairs.

A point that may lead to confusion when we present results in the following section
is that the number of eigenvalues of F; Ly Kar,3 bears no direct relation to the number
of solutions to the quantization condition. For there to be a solution, an eigenvalue must
vanish, and this occurs only for a subset of the eigenvalues in the energy range of interest.
This point can be seen explicitly if the interactions Ko and Kyt 3 are weak, for then we
expect the number of states to be the same as for noninteracting particles. We quote
in table 2 the irreps that appear in the first few three-particle levels for noninteracting
particles. These states have energies

3
Ee(iiy i) = 3 \/m? 4+ (2n/L)2i2, ity = —iiy — i, (3.23)
i=1

where 71; are integer vectors. As an example of the difference between the dimensions of
Fy Ly Kat,3 and the number of solutions, we consider mL = 5 and the Af irrep, and
focus on the energy range E/m = 3-5. From figure 1 we see that the number of active
momentum shells begins at 2 for £ = 3m, increases to 3 at some point, and then reaches
4 below E = 5m. From table 1 we deduce that the corresponding number of eigenvectors
in the Af irrep are 3, 6 and 8. By contrast, the free levels in this irrep occur at E = 3m,
E =421m, E =5.08m, .... For weak interactions, we expect solutions to the quantization
condition only near these three values, and thus we find that, in all cases, the number of
eigenvalues of Fj Ly Kat 3 significantly exceeds the number of solutions at, or below, the

given energy.
We close this section by noting that the components of Kq¢ 3, given in eq. (2.13), can
themselves be decomposed into different irreps. While it is clear that iffcjg, eq. (2.14),
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lies purely in the Af irrep, we also find that the same is true for the Kézf’?) term. The

IC((ff’?) term, however, has components that lie in the Af, ET, T2+ and T} irreps. For
components lying in the remaining irreps one must go to cubic or higher order in the

threshold expansion.

4 Results

The goal of this section is to illustrate the impact of including d-wave interactions in the
quantization condition. In particular, we aim to determine which energy levels and which
irreps are particularly sensitive to such interactions. We begin, however, with a case where
the impact of d-wave interactions is small, namely the ground state energy with a weak
two-particle interaction. This allows us to test of our implementation of the quantization
condition in a regime where we can make an analytic prediction. We then consider the
impact of a strong d-wave interaction, m|as| ~ 1, comparing its effect on the ground and
excited states, and for different irreps. Next we study the sensitivity of the finite-volume
spectrum of the physical 37T state, with Ko taken from experiment, to the various terms in
Kaf 3. And, finally, we discuss the different types of unphysical solutions to the quantization
condition that appear.

4.1 Threshold expansion including as

In this section we consider the energy of the lightest two- and three-particle states in the
case of weak two-particle interactions, and with the three-particle interaction Kg¢3 set
to zero. The energy of these states (called Eéo) and Eéo), respectively) lie close to their

noninteracting values, and we define the differences as
AE, =EY —nxm. (4.1)

These can be expanded in powers of 1/L (up to logarithms), the results being called the
threshold expansions. These expansions have been worked out in a relativistic theory to
O(L=%) in refs. [16, 21, 23]:*?

4mag aop ap \° ap \° 2mro(ag)?  mag _7
AEy=—2-<1 — — — — L 4.2
2 mL3{ +Cl<7rL>+02<7rL> +03(7TL> F s s PO (42

12 2 G4drn? 20, 3 6 2
AE3:7TCLO{1+d1<7‘:0>+d2<GO> 4 (ao) 3 Bmao mro(ap)

mL3 L L mL3 m2L3 L3
ag 3 mL Mg th (4'3)
—) (d log— | b ——2 L O(L™T).

+(7TL> ( sherloe )} 1smsrs 1O

Here ¢y, C3, and the ¢; and d;, are numerical constant available in the aforementioned
references, and M3 g, is a subtracted three-particle threshold scattering amplitude, whose
definition will be discussed in appendix D.

What we observe from these results is that they depend, through O(L~°), only on
the s-wave scattering length, ag, with the effective range ro first entering at O(L~9).

19The terms up to O(L™°) agree with those obtained previously using nonrelativistic QM [26, 27].
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There is no explicit dependence on the d-wave scattering amplitude at this order. We
can understand this pattern qualitatively as follows.?? The typical relative momentum, g,
satisfies AE ~ ¢?/m, and thus, since AE ~ ag/L3, we learn that ¢> ~ ag/L?. Using the
effective range expansion, eq. (3.4), we then expect that the relative contribution from the
ro term will be roapg® ~ moad/L3, and this is indeed what is seen in eqgs. (4.2) and (4.3).
By the same argument, we expect the ¢* terms proportional to both Py and a to appear
first at relative order O(L~%), and thus contribute to AE, at O(L~%). If this were the
case, it would be very challenging to see the dependence of the threshold energies on as.

However, it turns out that there is an additional contribution of O(L~%) to AFEj3 that
depends on a, and indeed on all higher partial waves, hidden in M3 ;. In appendix D
we calculate the leading dependence on ag in a perturbative expansion in the scattering
amplitudes, finding

m2M3,thr O dine(mag)? (mag)® [1 + O(ag) + O(ag)] ,  dipr = —14110. (4.4)

The appearance of a3, rather than asg, follows from our parametrization of the d-wave K
matrix, eq. (3.5). In order to isolate the ay dependence of AF3, we consider the difference

(;Ed(L, ag, CLQ) = AEg(L, agp, CLQ) - AEg(L,(Lo,(LQ = 0) . (45)
Substituting eq. (4.4) into the expression for AFEs, eq. (4.3), we obtain the theoretical
prediction
SE? dihr (ma0)2 (ma2)5 5 7
—=— ——— |1+ 0 o O(L™"). 4.6
= e e L4 0(a) + 0] + 0 (L) (1)

We have checked that the results from numerically solving the quantization condition
are consistent with eq. (4.6). In particular, we have verified that the leading dependence on
ap, az and 1/L is as predicted. An example of the comparison, showing the L dependence,
is given in figure 2. Agreement at the 10% level holds over many orders of magnitude.
Based on our tests, we find that the major source of this small discrepancy arises from
terms of higher order in ag.

This comparison provides a strong cross-check of our numerical implementation. How-
ever, for weakly interacting system, such as mesons in QCD, one cannot achieve, using
lattice calculations, results for the spectrum with the precision shown in the figure, nor
can one work at such large values of mL. We now turn to situations in which as has a
numerically more significant effect.

4.2 Effects of as on the three-particle spectrum

We begin by studying the strongly interacting regime, where m|as| ~ 1. This regime,
although hardly conceivable in particle physics, represents an interesting academic problem
that is relevant in the physics of cold atoms [29, 30].

In figure 3, we show the three particle spectrum for £ < 4m in two irreps, Af and ET,
as a function of negative may. Here we have fixed the volume to mL = 8.1, and chosen

203ee also appendix C in ref. [28].
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Figure 2. Comparison of the analytical prediction (which is absolutely normalized) with the
results from a numerical solution of the quantization condition. The parameters are mag = 0.1,
mag = 0.25, and ro = Py = Kg¢,3 = 0. The lack of linearity for smaller values of mL is related to
the opening up of new momentum shells.

a weakly attractive s-wave interaction, mag = —0.1, with other scattering parameters set
to zero. We choose negative values for mas in order to avoid the possibility of a pole in
IC§2), eq. (3.5), for which our formalism breaks down. Note that negative ay corresponds,
at least for small magnitudes, to an attractive interaction, as seen from the result for § E?,
eq. (4.6). Since we use a small value of m|ag|, the energy levels at the right-hand edges
of both plots (where as = 0) lie close to the energies of three noninteracting particles
(which are E/m = 3, 3.53, 3.97, 4.02,... for mL = 8.1). As m|ag| increases, the energies
are almost flat, until at a value m|ag| ~ 1, the levels shift rapidly downwards. This shift
begins at smaller values of m|as| for excited states. As the magnitude of as increases, the
excited states approach lower-lying states until an avoided level crossing occurs. We also
observe that states in the ET irrep are more sensitive to d-wave interactions, which seems
to be a general feature, as will be seen in the following section.

Another interesting observation from figure 3 is the presence of a deep subthreshold
state for m|ag| > 1. This resembles the Efimov effect, which describes a three-particle
bound state arising from an attractive two-particle interaction m|ag| > 1 [31]. The Efimov
bound state has been reproduced numerically with only s-wave interactions present, both in
the NREFT approach [4, 14] and in the isotropic approximation of the RFT formalism [13].
Moreover, there is some theoretical work regarding the existence of this generalized Efimov
scenario in the presence of d-wave interactions [30], although there is no result concerning
the asymptotic volume dependence, unlike in the s-wave case [32]. We have been able to
solve the quantization condition numerically up to mL = 37.5 and the bound state energy
barely changes, which strongly suggests that it is indeed an infinite volume bound state.
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Figure 3. Energy levels as a function of mas in the region £ < 4m with mL = 8.1 and may = —0.1,

ro = Py = Kar3 = 0 in the A irrep (left) and the E¥ irrep (right).
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Figure 4. Energy of the subthreshold state in the A} irrep as a function of mL. The parameters
are mag = —0.1, mas = —1.3 and rg = Py = Kqr,3 = 0. Note the highly compressed vertical scale.
Results for mas = —1.3 are shown in figure 4. The volume dependence of the energy is

dominated by effects of the UV cut-off, which manifest themselves as small oscillations
when a new shells become active. These are similar to oscillations observed in several
quantities in ref. [13].

We close by commenting on the impact of using a relativistic formalism, as opposed
to a NR approach, on the results of this section. We expect that the qualitative features
of the results will be unchanged, but that the quantitative energy levels will be changed
once they differ significantly from 3m. Thus, for example, we expect that the energy of the
subthreshold state will be only slightly changed, since it lies at the border of the NR regime.

4.3 Application: spectrum of 37+ on the lattice

The simplest application in QCD for the three-particle quantization condition is the 37T
system, not only from the theoretical point of view — no resonant subchannels — but
also from the technical side — no quark-disconnected diagrams and a good signal/noise
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ratio. Here we use our formalism to predict the 37T spectrum, using values for the two-
body scattering parameters determined from experiment, and a range of choices for the
parameters in de’3.21 Our focus will be on how to differentiate effects arising from the
different components of g 3, listed in eq. (2.13).

An important point in the following is that there is no natural size for the parameters
in Kgr3: the magnitudes of the dimensionless coefficients ICidsf°73, IC;SE ’31, ICLSE 52, lCézf’,’;), and
IC((fff) are not constrained. Strictly speaking, we know this only for 11533, because, in the
nonrelativistic limit, it is related to the three-particle contact interaction in NREFT (a
relation given explicitly in ref. [8]), and it is well known that the latter interaction varies
in a log-periodic manner from —oo to oo as the cutoff varies [33]. But we see no reason
why this should not also apply to the other coefficients. In particular, we note that the
physical three-particle scattering amplitude, M3, does not diverge when ICq¢ 3 does [2, 13].

We take the parameters describing isospin-2 77 scattering from ref. [34]:
maag = 0.0422, maro = 5621, Pp=—3.08-10"% myas = —0.1867. (4.7)

In a lattice simulation, these parameters would be extracted from the two-pion spectrum,
using the two-particle quantization condition. Indeed, there is considerable recent work on
the 27T system using lattice methods, in some cases incorporating d-wave interactions [10,
35-39]. We emphasize that one must determine these parameters with high precision in
order to disentangle the two- and three-body effects in the three-particle spectrum.

For the relatively weak two-particle interactions of eq. (4.7), the energy levels lie close
to the noninteracting energies of eq. (3.23). For the regime of box sizes available in current
lattice simulations, 4 < m;L < 6, there are at most three such levels below the five-
particle threshold, E = 5m, (above which the quantization condition breaks down). For
these levels, the solutions lie in three irreps: I' = Af, ET, T, (see table 2). We denote the
difference between the actual energy and its noninteracting value as

AEL = EL — piree (4.8)
where n = 0, 1,... labels the levels following the numbering scheme of table 2. It is known
that, asymptotically, [40]

r @0 —4

AE, p— +O(L™7). (4.9)

We stress, however, that the asymptotic result is not numerically accurate for the range of
mL that we consider.

Let us start from the ground state, which lies in the Af irrep. Here our expectations
are guided by the threshold expansion, eq. (4.3). In addition to explicit dependence on ag
and 7y, and the implicit dependence on as worked out in section 4.1, the energy depends on
Kat,3 through the Mj 1, /L term. Following the arguments given in section 4.1, we expect

that only Kiffog will enter at this order, with dependence on ICij’fo ’31 suppressed by 1/L? and

that on ICiist :9’2, ICS?";) and ICézf’gB) by 1/L5. This is borne out by our numerical results, shown

21We ignore QED effects, which are numerically small, and, in any case, cannot be incorporated into the
present formalism.
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Figure 5. Energy shift for the ground state in the A irrep, for which Ef*® = 3m. The two-particle
scattering parameters are those in eq. (4.7), aside from the orange curve in the left panel, where
only ag is nonzero. The three particle scattering parameters are as indicated in the legend, and
explained further in the text. We use the convention that a parameter value not given explicitly is
set to the value given earlier. For example, the blue line in the left panel has the parameters set to
Kisos = 300 and Kipy = 135, while K07 = K545 = K& = 0.

in figure 5. The left panel compares results with several choices of parameters: (i) those of
eq. (4.7) plus Kg¢3 = 0 (labeled “s- and d-wave” — black, dotted line); (ii) the same as (i)
but with if‘f‘f3 = 300 and all other parameters in Kg4¢ 3 vanishing (magenta); (iii) the same
as (ii) but with lCide(j ’31 also turned on, taking the three values 135 (blue), 270 (cyan) and
810 (grey); and (iv) the isotropic approximation, i.e., with only s-wave interactions, and ag
the only nonzero scattering parameter (orange). We see that adding d-wave two-particle
interactions has a similar impact to adding Kilsf% = 300, but that adding ICLSE él with a
similar magnitude has almost no impact.

The right panel shows the dependence on 3523, with other parameters fixed at the
values in eq. (4.7). The range we consider is ICiff‘jg = [-1000,+41000]. In order to have
sensitivity to IC&SE?) in this range, a determination of AEy/m with an error of ~ 0.01 is
needed. Such an error can be achieved with present methods. Thus, as noted in ref. [13],
if one has a sufficiently accurate knowledge of the two-particle scattering parameters, one
can use the ground state energy to determine the leading three-particle parameter iff‘fg.
Indeed, this approach has been carried out successfully in refs. [11, 41].

In figure 6, we investigate the sensitivity of the energy of the first excited state to
the various two-particle scattering parameters, comparing the two irreps that are present.
The magnitude of the energy shifts are comparable to those for the ground state, but
the dependence on the scattering parameters differs markedly. This can be understood
because the relative momenta between the particles is nonvanishing for the excited state.
Denoting generically the relative momenta by ¢, this satisfies ¢/m ~ 27/(mL) ~ O(1).
Because of this we expect that the higher-order terms in the effective range expansion, i.e.
ro and Py, should play a much more significant role. This is borne out by the results in
the figure, particularly for the Af irrep. We observe that the effect of these additional

terms is opposite in the two irreps, which is consistent with the prediction of the threshold
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Figure 6. Energy shift of the first excited state in the A irrep (left) and E7 irrep (right). In the
range of mL shown, Ef®®/m = 4.7-3.9. The quantization condition is solved with only two-particle
scattering parameters being nonzero, while Kq¢ 3 = 0. When a parameter is nonzero, its value is
given by eq. (4.7). The solid orange and red curves include only s-wave dimers, the former having
only ag turned on (“only a¢”), with the latter having all three s-wave parameters in Ko nonzero
(“ag, 70, Po”). The dotted black line shows the impact of adding d-wave dimers, with as nonzero
(“s- and d-wave”).
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Figure 7. Energy shift of the first excited state in the A} irrep (left) and E7 irrep (right) with var-
ious choices of the parameters in Kg4¢ 3. The two-particle scattering parameters are given by eq. (4.7)
for all curves. The choices of Kg4¢3 parameters is explained by the legend, with the convention
that a parameter value not given explicitly is set to the value given earlier. For example, the black

line has the parameters set to ICfisf‘jg = 100, ICLSE;} = 90, and IC(iff(f’:,? = 40, while IC((ff:?) = IC((iingB) =0.

expansion generalized to excited states [40]. We also see that adding d-wave dimers has
almost no impact on the AI“ irrep (indeed, the effect is smaller than for the ground state)
while the impact is comparable to that of 7o and Py for the ET irrep. Qualitatively, this
is as expected, since the averaging over orientations in the Af irrep suppresses the overlap
with d-wave dimers.

In figure 7 we illustrate the dependence of the same two excited states on the five
parameters in Kg¢3, eq. (2.13). Because ¢/m ~ O(1) we expect that, unlike for the

ground state, the energy should be sensitive to all five parameters, and not just to 11533-
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Figure 8. Energy shift of the second excited states in the Af irrep (top left), the ET irrep (top
right) and T, irrep (bottom). The meaning of the legend is as in previous figures.

This is borne out for the Af irrep, where there is strong sensitivity to all three isotropic

parameters, and a somewhat weaker dependence on IC((ff’?) and IC((ff’f). As noted above,

only IC(%?)B) affects the ET irrep, and figure 7 illustrates this dependence.

The’energy shift for the second excited states are shown in figure 8. We show results
only for those volumes for which the states lie below the five-particle threshold, which
requires mL 2 5.2. The AT energy-shift depends on all parameters in Kg4¢ 3, while the E+
and T. 2+ irreps depend only on IC((ff’,f). The results show a similar dependence on parameters
as for the first excited states. We also find that the ET and T, irreps show the greatest
sensitivity to ag of all the states considered.

To sum up, a possible program for determining the coefficients in Kg¢ 3 up to quadratic

order in the threshold expansion is as follows:
1. Determine aq, 79, Py, and ao from the two-body sector using standard two-particle
methods.
2. Extract IijSfo3 from the threshold state.

3. Use states in the Et and T, irreps to calculate K28
2 df,3

4. Use the excited states in the A]L irrep to obtain the rest of the parameters. The
most difficult parameter to determine would be IC((ff’?), because its contribution to

the energy is smaller.
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Further information could be obtained using moving frames, as has been done very suc-
cessfully in the two-particle case. The formalism of ref. [1] is still valid, but the detailed
implementation along the lines of this paper has yet to be worked out.

We close by commenting on the importance of using a relativistic formalism for the
results that we have presented in this section. We note that the excited states whose
energies we consider lie in the relativistic regime. For example, at mL = 5.5, the relativistic
noninteracting energy of the second excited state is E®® = 4.80m, to be compared to
the nonrelativistic energy 3m 4 2m(27/(mL))? = 5.61m. Nevertheless, it may be that
the energy splittings AEL are much less sensitive to relativistic effects, and it would be
interesting to implement the NREFT approach including d waves in order to study this. We
do expect, however, that the parametrization of the three-particle interaction will require
additional terms once the constraints of relativistic invariance are removed.

4.4 Unphysical solutions

In this section we describe solutions to the quantization condition that are, for various
reasons, unphysical. These fall roughly into two classes (although there is some overlap):
solutions that occur at the energies of three noninteracting particles (which we refer to as
“free solutions”, occurring at “free energies”), and solutions that correspond to poles in
the finite-volume correlator that have the wrong sign of the residue. The latter were first
observed in ref. [13] within the isotropic approximation. In the following, we begin with a
general discussion of the properties of physical solutions, and then discuss the two classes

of unphysical solutions in turn.

4.4.1 General properties of physical solutions

We recall here the properties that physical solutions to the quantization condition, eq. (2.1),
must obey. This extends the analysis presented in ref. [13] for the isotropic approximation.
The key quantity is the two-point correlation function in Euclidean time,

Cr(r) = (0j0(r)0"(0)[0) , (4.10)

where the operator O has the correct quantum numbers to create three particles (and
here also has P = 0). We stress that its hermitian conjugate is used to destroy the states.
Inserting a complete set of finite-volume states with appropriate quantum numbers, we
find the standard result

Cr(n) =" ;,;jexm—Emr), (4.11)

J
where E; > 0 are the energies relative to the vacuum, and the ¢; are real and positive.
Fourier transforming to Euclidean energy and Wick rotating yields

B =Y e = 1<; , (4.12)
- E2—E]2 (E+E;)(F - Ej)

J

where F is the Minkowski energy that appears in the quantization condition. Thus C7(FE)
is composed of single poles whose residues, for E > 0, are given by i times real, positive
coefficients.
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Next we recall from the analysis of ref. [1] that the correlator can also be written as
1
Fy Ly Kat 3

CL(E) = AT A:Z\AT-W(E)PX ok (4.13)
j J

where A is a column vector, and to obtain the second form we have decomposed F; ! +Kar,3
in terms of its eigenvalues \;(E) and eigenvectors v;(FE).?? Since Fy ' + Kq 3 is real and
symmetric, the eigenvalues are real.

It follows from comparing eqs. (4.12) and (4.13) that

(a) X\j(E) cannot have double zeros. This is because, in the vicinity of a double zero at
E;, C(E) would have a double pole, CL(E) o< 1/(E — E;)?. The same prohibition
applies to higher-order zeros.

(b) Eigenvalues of F Ty Kas,3 that pass through zero (and thus lead to solutions to the
quantization condition) must do so from below as E increases. To understand this,
note that, if A\;(E) has a single zero at E = E;, then

{

CL(E) = |AT - v;(E;)|? + non-pole.. (4.14)
T N(B(E — Ey)
Comparing to eq. (4.12) we learn that
d\;(E)
NA(E;) = 2 . 4.1
B =T, > (415)

This is the generalization of a condition found in ref. [13] for the isotropic approxi-
mation (where there is only a single relevant eigenvalue).

Any solutions to the quantization condition that do not satisfy both of these conditions we
refer to as unphysical.

We are aware of only three possible sources for unphysical solutions. First, they can
arise from the truncation of the quantization condition to a finite-number of partial waves.
Second, they could be the result of an unphysical parametrization of Ko and Kg¢3; for
example, the truncation of the threshold expansion for Kg4f3 could be unphysical. And,
finally, the exponentially-suppressed terms that we have dropped could be large in some
regions of parameter space, particularly for small mL. We now present examples of un-
physical solutions that we have found in our numerical investigation.

4.4.2 Solutions with the wrong residue

In this section we give examples of unphysical solutions to the quantization condition that
do not satisfy eq. (4.15), i.e. which lead to single poles whose residues have the wrong
sign. These were observed in the isotropic approximation in ref. [13], where it was found
that they occurred only when \ICiffoﬁ\ was very large. Here we investigate how this result

generalizes in the presence of d-wave dimers.

22For the sake of brevity, we do not show explicitly that the quantities also depend on L.
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We first investigate whether unphysical solutions can be induced by adding d-wave
interactions alone, with 4¢3 = 0. We do not find such solutions for large negative values
of mao — the results obtained in section 4.2 all correspond to zero crossings in the correct
direction. However, as magy approaches unity (which, as we saw in section 3, is the upper
bound allowed for the formalism), we do find examples of unphysical solutions. Since we
have seen in sections 4.2 and 4.3 that the impact of d-wave interactions is greater for irreps
other than A;r, we focus on the ET irrep, and work in the vicinity of the energy of the first
noninteracting excited state, E{ree. In figure 9, we plot the smallest eigenvalue in magnitude
of Fy Ly Karz = Fy Lin the Et irrep as a function of energy, for two different values of
mL and a range of positive values of mas approaching unity. The only other nonvanishing
scattering parameter is mag = —0.1. Consider first the left panel, with mL = 8.1. When
as = 0, there is a solution at E ~ E{ree = 3.53m, as shown by the lowest level in figure 3b.
As as is increased, the energy shifts upwards, as expected since positive as corresponds
to a repulsive interaction. When mas = 0.9, the level is at F; ~ 3.6m, and moves to yet
higher energies as mas increases. These solutions are physical, as shown in the bottom-
left inset. For mas = 0.9 and 0.91, however, there is also a single unphysical solution near
E = 3.85m, which displays the additional unphysical behavior of having a decreasing energy
with increasingly repulsive ao. Furthermore, for mas = 0.92, there is a triplet of solutions
— two unphysical and one physical. Since they are clearly related, we consider all three
to be unphysical. For even larger mas, there are no solutions in the energy range shown.

The right panel, figure 9b, displays a similar pattern, with an additional twist. Here
mL = 10, so that E{ree = 3.36m. The energy of the physical solution lies above this, and
increases with increasing mas. There is also an unphysical solution at higher energy, whose
energy decreases with increasing mao. The new feature is the presence of a double zero
at E{ree. As discussed above, this is manifestly unphysical since it leads to a double pole
in Cp(F). It is also unexpected, as its energy lies at that of noninteracting particles. We
discuss such solutions in detail in the following section.

Another example of unphysical solutions in shown in figure 10, this time induced by

a large, negative value of ICEIQf’f). Recall that, out of the parameters in Kgqr3, the ET
irrep is only sensitive to lCéQf’éB). Again, there are physical solutions that have the expected

behavior of increasing energy with increasingly negative IC((ff’SB) (which corresponds to a

repulsive interaction), but there are also unphysical solutions at higher energy with opposite
dependence on Kézf’f). Eventually, for large enough |IC((12f’f)| both solutions disappear.

We do not yet7 understand the source of these unp};ysical solutions, i.e. which of the
three possible sources mentioned at the end of the previous section are most important.
This is a topic for future study. Our attitude is that, if a physical solution is well separated
from an unphysical one, and its behavior as interactions are made more attractive or
repulsive is reasonable, then we accept the physical solution and reject the unphysical one.
The examples we have shown occur when the interactions are strong and repulsive, in
which limit the two solutions come close together, and at some point become unreliable.
For attractive interactions, the two solutions are far apart, often with the unphysical one
lying outside the range in which the quantization condition is valid. In this regime, which

includes that discussed in section 4.2, we trust the physical solutions.
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Figure 9. Smallest eigenvalue in magnitude of Fy Lin the Et irrep as a function of the energy for
two different values of mL. The parameters are mag = —0.1 and rg = Py = Kg¢ 3 = 0. Physical and

unphysical solutions as well as a double pole at the free energy (to be discussed in section 4.4.3)
are indicated.
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Figure 10. Eigenvalue of F; Ly Kas,3 with smallest magnitude in the EV irrep as a function of

the energy. The parameters are mL = 8.1, mag = mag = 0.1, 1o = Py = 0, and Kgr3 = 0 for all

terms except Ké?:g) .

We conclude by stressing that, in the case of three pions in QCD, the interactions are
relatively weak, and we do not expect unphysical solutions to be relevant.

4.4.3 Solutions at free particle energies

This section concerns “free solutions”: solutions to the quantization condition that, even
in the presence of interactions, lie at one of the energies given in eq. (3.23). We expect
that, in general, there will be no such solutions. Exceptions can occur only if the symmetry
of the finite-volume three-particle state is such that the chosen interactions do not couple
to it. An example in the two-particle sector is that, if P = 0, a finite-volume state lying
in the ET irrep would not be shifted from its noninteracting value if only s- and p-wave
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Figure 11. Examples of solutions to the quantization condition for Kq¢ 3 = 0 occurring at the free
energy Ef°° (shown in all plots as the vertical dashed line). Plots show eigenvalues of Fj Lasa
function of E/m, with mag = 0.1, rg = Py = 0 and mL = 5. Solutions to the quantization occur
when an eigenvalue crosses zero. (a) Aj irrep with only ¢ = 0 channels; (b) E* irrep, with only
¢ =0 channels; (¢) 7} irrep, with both ¢ =0 and 2, and mas = 0.1; (d) E* irrep, with both £ =0
and 2, and mas = 0.1. For the E* /T irreps, all eigenvalues are doubly/triply degenerate. In (d),
both apparent crossings are in fact avoided, as illustrated by the inset.

interactions were included, since the lowest wave contributing to E* has £ = 2. One
question we address here is where such examples occur in the three-particle sector.

We were prompted to study this issue by finding examples of free solutions in our
numerical study. One example has already been seen above, in figure 9b, and further
examples are shown in figure 11. The first two plots show solutions with only s-wave
channels included. In figure 11a, which shows results for the Af irrep, we see a double zero

free
1

at the first excited free energy, £7°¢, as well as a solution shifted to slightly higher energies.
The latter is expected, since the repulsive interactions should raise the energy of the free

state. In the ET irrep, by contrast, there is a single zero at E{ree, with the unphysical sign
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Level 14 Irreps with zeros Zeros removed by

T - 2,4 2,B 2,B 2,B
E{ “ 0 A% Ty ET(1) (IC((if,:}) or ’Cfif,fﬂ)); ’C((if,B); ]Cf(lf,S)
Efrce 0& 2 AT Tr; BEY > quartic for each

. - e 2,4 2,B 2,B 3,B 3,E
By 0 AT T T (’Céf,g) or ’Céf,g ); ’C((if,?) ) (’C((if,?)) or ’Cém )
Efee 0&2 A EN TS T T, > quartic for each

Table 3. Irreps in which free zeros appear for the first two excited levels when Kg¢3 = 0. The
“(1)” in the first row denotes that the Ef*°®, £ = 0 free zeros in the E7 irrep are single roots with
unphysical residue; all other free zeros in the table are (unphysical) double roots. Also noted are
the lowest-order terms in the threshold expansion of K4 3 that remove the free zeros. The notation
“> quartic” indicates that a term of at least quartic order is needed. Note that cubic-order terms

are needed to remove the ngee, ¢ = 0 free zeros in the T, irrep, as neither of the quadratic terms

2,A 2,B . . .
’Cfifi,?») and ’Céf::%) has nonzero eigenvalues in this irrep.

for the residue, as well as an interacting solution at higher energy. The other two plots
show examples of free zeros when s- and d-wave channels are included. Both the 77 irrep,
shown in figure 11c, and the ET irrep, shown in figure 11d, have a double-zero at Efree,

We find similar results for higher excited free energy levels, in which case they appear
in an increasing number of irreps. We list these irreps for the first two excited free energies
in table 3. There are, however, no free solutions for the lowest free energy E(f)ree =3m.?

In all the examples we have found, the free solutions are also unphysical — they are
either double zeros or single zeros with the wrong residue. We do not know if this is a
general result. Also, although the examples shown above are for g3 = 0, free solutions
also occur when some components of Kg¢ 3 are turned on. Indeed, one of the questions we
address in the following is which components of Kg4¢ 3 are required to either remove the free
solutions or move them away from Effee. Our first task, however, is to understand in more
detail when and why free solutions occur. All such solutions originate from the fact that
F and G have single poles at all the free energies. These can lead to poles in F3 and thus
zeros in Fy 1. We analyze in detail only the lowest two free energies, i.e. those with level
number n = 0 and 1 in the notation of table 2, and then draw some general conclusions.

For I ~ E(f)ree = 3m, the only elements of F and G that have poles at Eéree have
vanishing spectator momenta and ¢ = 0,24 specifically

- 1~ 1
Foo0;000 ~ §G000;000 ~Po= 16m3L3(E — 3m)

(4.16)

Here we are using the symbol ~ to indicate “up to nonpole parts”. All other elements of
these matrices, and of KCg, either vanish or are of O(1). From table 1 it now follows that
poles in F and G only appear in the AT irrep, and the issue is whether these lead to a
pole in F3.

Z3Strictly speaking, this is only true when one uses the improved form of the quantization condition given
in eq. (A.13), and described in appendix A, which removes spurious solutions to eq. (2.1).
24Pole contributions with £ = 2 and/or £ = 2 vanish because, at the pole, @* = @’* = 0.
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To address this we consider the simplest case in which the volume is chosen such that
only the lowest two momentum shells are active, which is the case for mL =~ 5. From
table 1 we then see that in the AI“ irrep the matrices are three dimensional, with indices

([shell 1,¢ = 0], [shell 2,¢ = 0], [shell 2,¢=2]) . (4.17)

We will use a 1 4 2 block notation for the matrices, since this conveys all the necessary

information. Close to Egee the matrices have the form?2°

~ (po+0O() 0 ~  (2po+0O(1) O1)
b= ( i 0 0(1)) , O= ( 0(9(1) (9(1)) ’ (4.18)

where O(1) elements are constrained only by the fact that F and G are symmetric. Kq is
a diagonal matrix with O(1) elements. From this it follows that

HeF i (k) = (3p0+(’)(1) O(1)) Lo (3390 +O(1/R) 0(1/p0)>

ol o@) O(1/po) o(1)
(4.19)
and thus in turn that
FH™'F = (po/?z;(rl(;(l) gg;) = F=0(). (4.20)

We thus find that free poles at Egree cancel in F3. This argument generalizes to any number
of active shells, since there are no additional poles, and the only change is that the second
block in the above analysis is enlarged. The result agrees with our numerical finding that
there are no free poles at Eéree.

Next we consider poles at the second free energy, E{ree. For mL ~ 4—6 there are then
three active shells, so the matrices to consider become larger, e.g. six-dimensional in the
Af irrep, and the analysis correspondingly more complicated. We work out the case of
the Af irrep in appendix E, both with ¢ = 0 channels only and with ¢ = 0 and 2 channels
included. In both cases we find that F; ' has a double zero at E = Ef¢. This lies in a
one-dimensional subspace of the full matrix space, and what differs between the two cases
is this subspace. For ¢ = 0 only, the matrix indices are

([shell 1,¢ = 0], [shell 2,¢ = 0], [shell 3,¢=0],...), (4.21)

with the dimension depending on the choice of L. The double zero of F; ! lies, in this case,

()] = \/Z <\/6, ~1,0,. ) . (4.22)

For ¢ = 0 and 2, the matrix indices are

in the space spanned by

([shell 1,¢ = 0], [shell 2,¢ = 0], [shell 2,¢ = 2], [shell 3,/ =0], ...), (4.23)

Z5There are also potential poles in the ¢ = 2 components arising from the vanishing of g5, and g3, in G
and F, egs. (A.3) and (A.9). However, as discussed at the end of appendix A, the quantization condition
can be formulated such that these purely kinematical poles are canceled, and it is legitimate to ignore them.
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and the space of the double zero of F; i spanned by

(z1] = % (\/6,—1,—\/5,0,...) . (4.24)
The factors in egs. (4.22) and (4.24) result from the form of the spherical harmonics and
the size of the first two shells. They are thus kinematical.

These analytic results confirm what we find numerically. For example, the double zero
at E{ree shown in figure 11a exactly matches that expected from the analysis of appendix E,
and we have checked numerically that it lies in the predicted subspace.

We now discuss how the single zeros at free energies arise. There is a particularly
simple case in which we can easily understand these analytically: the ET irrep when we
keep only s-wave channels and choose mL such that only the first two shells are active. We
must also choose mL such that E{ree < 5m (so that the formalism applies); one example
is mL = 3.8, for which E{ree = 4.86m. In fact, as shown in table 1, the first shell has
no ET component for £ = 0, so this simple case actually involves only the second shell,
for which the E* irrep appears once. Although the ET irrep is two-dimensional, within
this space all matrices are proportional to the identity. Thus the matrices are effectively
one-dimensional.

The second shell consists of six elements, which we label by the direction of the spec-
tator momentum k in the following order

k€ o001 = (2m/L){—%, =, —#,%,9, 2} . (4.25)

In this basis, the E* eigenvectors can be chosen as

%(1,0, —1,—1,0,1) and \/%(—1,2, -1,-1,2,-1). (4.26)
It is then simple to calculate the pole terms to be
F=1[p1+0(1)] and G=1[p, +0O(1)], (4.27)

where
1

~ 8mwiL3(E — Efe)’

P (4.28)

It immediately follows that
F
3

% ~FH'F| =-2Lan+ou/m) . (4.29)

Fr—
3 6L3

Thus F3 indeed has a single pole at E = E{ree, and Fy L a single (doubly degenerate) zero.
Increasing L so that there are more active shells does not change the pole structure or the
presence of the single zero. We also see that the zero in Fj ! has a negative coefficient,
implying that it decreases through zero, consistent with the behavior seen in figure 11b.
Thus we have understood in a few simple cases why the free zeros listed in table 3
appear. It is interesting to contrast this to the results of ref. [13], where the quantization
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condition was studied numerically in the isotropic approximation. In that work no free zeros
in £y U were found. At first this may seem puzzling, because the isotropic approximation
is a subset of our analysis when we restrict to £ = 0 channels. The resolution is that the
additional isotropic projection that is used is orthogonal to the subspace in which the zeros
live. This is demonstrated in appendix F, along with a derivation of the precise relation
between the isotropic approximation and the analysis carried out here.

The final stage of our analysis is to study whether the inclusion of components of Kgr 3
removes the free zeros. Here by “remove” we mean that there is no longer a solution to the
quantization condition at a free energy. This can be accomplished either by removing the
solution altogether (which is possible for a double zero, which only touches the axis) or by
moving it away from the free energy (the likely solution for a single zero). We expect that
if Kqr3 were not truncated then there would be no free zeros, since there would be some
overlap between the state and the three-particle interaction. This is indeed consistent with
what we find. What turns out to be surprising, however, is which components of Kyt 3 that
are needed to remove the free zeros.

We first consider the ¢ = 0, Af case. To remove the double zero, it must be that the
projection of Kyt 3 into the space of zeros is nonvanishing:

[Kar,3(BY)]2) # 0, (4.30)

where |z) is defined in eq. (4.22). Here the square brackets indicate the matrix that results
when Kgr 3 is decomposed into the kfm basis and projected into an irrep. Note that this
equation need only hold for E = Ef° i.e. at the energy of the free zero.
The isotropic parts of Kg¢3, eq. (2.14), do not solve the problem. These terms have
the matrix form
K] oc [1x) (1], (4.31)

where

(x| = (1,\/6, \/ﬁ) . (4.32)

Since this vector is orthogonal to |2}), it follows that, for all energies,
[KC™][a) =0, (4.33)

so that eq. (4.30) is not satisfied. The form of |1x) follows from the fact that K¢ is
independent of the spectator momentum, so that the Af projection simply gives factors of
the square root of the multiplicity of the shells. We thus expect that the inclusion of any
dependence on the spectator momentum will lead to a [[Cqs 3] satisfying eq. (4.30). This
is what we find in practice with both of the quadratic terms, i.e. those with coefficients
ICSQf:?) and IC((ff’BB) [see egs. (2.15) and (2.16)].

This result is an example of a general pattern: the part of Kgr3 that “removes” the
free zeros comes from terms that involve higher values of ¢ than those being included in
Fy . Here, we need quadratic terms, which have both ¢ = 0 and 2 components, in order
to remove the free zeros from the ¢ = 0 part of Fy ! To be clear, the £ = 2 components
of the quadratic terms play no role; it is simply that by going to higher order one obtains
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a more complicated form of the ¢ = 0 parts, and this is sufficient to remove the unwanted
free zeros. Further examples of this are shown in the last column of table 3, where we list,
for all irreps that enter in a given free momentum shell, the terms in Kg¢ 3 that remove the
free zero.

The second example we consider is the combined ¢ = 0 and 2 part of Fy Lin the Af
irrep. In this case, we need

[Kat 3(BT*)]|21) # 0 (4.34)

[with |z1) given in eq. (4.24)] in order to remove the free zeros. We find numerically
that this equation is not satisfied by any of the quadratic or cubic terms contributing to
Kat 3, but that quartic terms do satisfy it.?6 This exemplifies the general pattern discussed
above: quadratic and cubic terms contain only ¢ = 0 and 2, while quartic terms include
also £ = 4 parts. We were initially surprised by this result, because Kg4f 3 is an infinite-
volume quantity, while |z;) arises from finite-volume considerations. However, we show
analytically in appendix G that orthogonality follows solely from the rotation invariance
and particle-interchange symmetry of Kgr 3, together with the fact that quadratic and cubic
terms contain only £ = 0 and 2 parts. Thus it is an example of the phenomenon described at
the beginning of this section, in which symmetries make the finite-volume state transparent
to certain interactions. It is also clear from the arguments in appendix G that all that is
required for eq. (4.34) to be satisfied is to use contributions to K43 that involve £ > 4, i.e.
terms of quartic or higher order in the threshold expansion.

Finally, we consider the case of the single zero in the ET irrep for £ = 0 channels only,
shown in figure 11b. Here we aim to shift the zero away from the free energy. This is
accomplished by including a contribution from Kg4¢ 3 that lives in the ET irrep. As noted
in the final paragraph of section 3, the lowest-order term in the threshold expansion for
which this is the case is the IC((ff’BB) term. Thus, once again, we have to use a term in gt 3
that contains higher values of ¢ (here ¢ = 2) than are included in Fj.

These theoretical arguments are supported by our numerical results. We show two
examples in figure 12. These correspond to the two cases shown in figures 11a and 11b,
except that we have turned on IC((ff”?) and IC((ffng), respectively. We expect the double-zero
in the former case (AiF irrep) to removed by the addition of any quadratic term in Kgs 3,
and the figure shows that ICéQfZ?) does the job. In figure 12b, corresponding to the ET irrep,
we need to use the IC((ff’BB) term, since lCéQf’?) does not contain an £+ component. Since this
is a single zero, it is not removed, but is r7ather shifted to a non-free energy. Note, however,
that it remains unphysical because it decreases through zero. In fact, for higher values of
IC((ff’f), the zeros coalesce and then disappear.

7We close this section with two general comments on the nature of the resolution that
we have presented to the problem of unwanted free solutions. The first concerns the result
that we need higher-order terms in the threshold expansion of K4t 3 in order to remove the
free zeros of a given order in F3_1. On its face, this invalidates the threshold expansion, for
we are evaluating distinct terms in the quantization condition at different orders. We do

not think this is the case, however, because we know that, above threshold, all terms in

free,
1 )

26Tn this case it is crucial to set the energy to E for other energies eq. (4.34) is satisfied.
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Figure 12. Effect of turning on Kg¢3 on the free solutions shown in figures 11a and 11b, with
all other parameters unchanged. Eigenvalues are now those of Fj 1y Kags. (a) Af irrep with
K3 =8000; (b) B irrep with K577 = 8000,

the expansion of g4 3 are present at some level, and it only takes an infinitesimal value for
the coefficient of the requisite higher-order term to remove the unwanted solution. Thus
we conclude that we can proceed, in practice, by truncating the expansion of all quantities
at the same order in the threshold expansion, and simply ignore the free solutions.

The second comment concerns the fact that our resolution fails if the coefficient of the
required parts of Kg¢ 3 vanish. In fact, this would require the simultaneous vanishing of an
infinite number of terms in the threshold expansion, since higher-order terms in the correct
irrep can remove the free solutions. Thus it would require an enormous fine-tuning, which
seems highly implausible, especially because there is no enhancement of the symmetry of
Kaf 3 at the tuned point.

5 Conclusions

The work presented in this paper is the first step towards the systematic inclusion of
higher partial waves in the three-particle quantization condition. We have used the generic
relativistic field theory (RFT) approach, formulated so that the three-particle scattering
quantity, Kqr 3, is Lorentz invariant. This invariance proves very important in simplifying
the threshold expansion of Kg4¢ 3. Indeed, we find that, at quadratic order and for identical
particles, only five parameters control the contribution from the three-particle sector, of
which only two describe dependence on angular degrees of freedom. This provides a simple
starting point for studying the impact of Kqr 3. Working at quadratic order implies keeping
both s- and d-wave two-particle channels (dimers). We have numerically implemented the
quantization condition at this order, and obtained several new results that we now highlight.

— 34 -



The first of these is to determine the projection onto irreps of the cubic group including
higher partial waves. This has previously been done only for the case of s-wave dimers [14].
The generalization is nontrivial, since both the spectator momentum and the parameters
of the dimer transform. While we have worked this out explicitly only for coupled s- and
d-wave dimers, the formalism holds for dimers with any angular momentum.

Second, we have understood how the two-particle scattering amplitudes in higher par-
tial waves enter in the 1/L expansion of the energy of the three-particle ground state. We
find that all even partial waves enter at O(1/L°), and have calculated analytically the de-
pendence on the d-wave amplitude in the weak-coupling limit and for Kq¢ 3 = 0. Although
this contribution itself is likely too small to be seen in present simulations of three-particle
systems, we have used it as a nontrivial check of our implementation.

Third, we have shown that d-wave interactions, if they are moderately strong, can
have a sizable effect on the finite-volume three-particle spectrum. For example, we have
presented evidence for a generalized Efimov-like three-particle bound state induced by a
strongly attractive d-wave two-particle interaction.

Fourth, we have shown how the five parameters describing Kgr 3 lead to distinguish-
able effects on the spectrum of the 371 system, suggesting that they can be separately
determined in a dedicated lattice study. Indeed, this is the system within QCD to which
our truncated formalism is most applicable.

Finally, we have characterized solutions to the quantization condition that are unphys-
ical. These presumably arise because of the truncation to a small number of partial waves,
and the fact that we have dropped terms that are exponentially suppressed in mL. One
class of solutions generally appears when either the two- or the three-particle interactions
are strong and repulsive. Our approach is to use parameters such that there are no un-
physical solutions near to the physical solutions of interest. The second class of solutions
are those that occur at the energies of three noninteracting particles. We have presented
numerical evidence and analytical arguments that these are removed if sufficiently high-
order terms in Kg4¢ 3 are included. We expect that other approaches to the three-particle
quantization condition will face similar issues, for which our observations may be relevant.

There remain many directions for future study. In order to make our implementation
more useful, it is important to generalize it to moving frames. The underlying formalism
of ref. [1] applies in all finite-volume frames, but the projectors onto irreps will need to be
generalized to account for the reduced symmetry. Another important generalization is to
include subchannel resonances, i.e., dynamical poles in y. For this one must implement
the formalism of ref. [7], and go beyond the threshold expansion. Finally, we recall that
Kat 3 is an intermediate quantity, related to the physical three-particle scattering amplitude,
Ms, by integral equations. Since it is only by looking for complex poles in M3 that one
can study three-particle resonances, it is crucial to develop methods to solve the necessary
integral equations.

To conclude, we would like to restate that, as it is a relativistic approach, our imple-
mentation can simultaneously be useful to both the lattice QCD community and the field
of cold atom physics.
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A Definitions

Here we collect definitions of quantities appearing in F3, eq. (3.1), that are not given in
the main text.
We begin with the cutoff function:

B E;Qk — (1 + ag)m?

Hk)=J Al
(F) = J(2). B (A1)
0, z2<0
J(z) =< exp (—%exp [— 1:2})’ 0<z<1 (A.2)
1, 1<z
with ay € [—1,3) a constant. We choose ay = —1, corresponding to the highest cutoff, in

all our numerical investigations.
For G we use the relativistic form suggested in ref. [5],

G L 1 H@HE) AV () Ve (7)1 (A.3)
pl'm’;kbm = I3 pr b2 — m?2 q;f;; q;@k 2Wk ) .

where b = P —p—k is the momentum of the exchanged particle, p* is the result of boosting
p to the CM frame of the dimer for which k is the spectator momentum, and vice versa.
Explicitly, we have

| |

—(1—B2)"V2 A4

7= (= D k) + wpnBik + 5, B =
with k* given by p <> k. Finally, ygm(];) are harmonic polynomials,

Vim (k) = kYo (k) (A.5)

where Yy, are the real spherical harmonics. The elements of G are clearly straightforward
to evaluate numerically.
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For completeness, we quote the real d-wave harmonic polynomials
(k)
(k)
ViarYao(k) = V5(2k3 — ki — k3) /2, (A.6)
(k)
(k)

The associated Wigner D-matrices are
Dimi im(R) = / 4 Y (RF) Yo () = 600D, (R) | (A7)

where R is a rotation matrix. They are orthogonal matrices, and implement rotations of
the spherical harmonics:

y4
Yim(Ri) = Y DY) (B) Vi (7). (A.8)
m/'=—/{

Finally, F (E) is a sum-integral difference that is proportional to the zeta functions
that appear in the two-particle quantization condition [16, 17]. It requires ultraviolet (UV)
regularization, and can be written in various forms that are equivalent up to exponentially-
suppressed corrections. The form that follows from that presented in ref. [1] is

=,

~ o |1 d3a 1 H@)HDb)ATYVp (@*) Ve (@)
FR)emtiem = [LS Z P / (277)3] (5 1,)7+ 16wiwawy(E — wy — wa — wp) (A.9)

where b = P — k — a here, and @* is the result of boosting a to the dimer rest frame, with
k the spectator. Here the UV regularization is provided by the product of H functions,
and the integral over the pole is defined by the principle value prescription (leading to
a real result). Instead, we use a different form that is simpler to evaluate numerically.
Following the steps similar to those used in ref. [42], we change variables and introduce
a new regularization, finding that, up to exponentially-suppressed corrections, F can be
rewritten as

~ 1 =) A Yy (P) Ve (7)
F(R)prorp = —PV [ &n, mo e (Al
(R)ermsem 3272 Lwy (E—wy,) Z V/ " x2—7r2 xt+ (A.10)
where @ = 7i,(27/L), x = ¢3 ;L /(27), and
[y - - ﬁa : ﬁk 1 1 :|
(Mg, Ng) = g + 7 ——=1)4+—1, A1l
(s ) R (1) (A1)

with k = fix(2m/L). The UV regularization is now provided by the exponential in the
integrand, and is parametrized by a > 0. What is shown in ref. [42] is that the o dependence
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is exponentially suppressed in L, and that, in practice, one should choose a value that is
small enough that the dependence on « lies below the accuracy required. We find that
a =~ 0.5 is usually small enough.

An important technical point is that, as seen from eq. (3.6), in the full matrix form
ﬁpglm/;kgm, ﬁ(lg) is always multiplied by H (E), from which it follows that v is always finite
and real whenever ﬁpg/m/;kgm is nonvanishing.

We close this appendix by commenting on the factors of ¢* (which we use generically
for g3 4, or q§7p) in the denominators of G and F. These lead to poles for particular kinematic
configurations, which in turn can lead to solutions to the quantization condition. These
solutions appear to be similar to free solutions discussed in section 4.4.3, but are in fact
spurious. To understand this we need an argument given in appendix A of ref. [1], which
shows that the factors of ¢* in the denominators are always canceled by corresponding
factors in the numerators of Ko, Kqr3, and the end cap factors A" and A in the finite-
volume correlation function Cr(E) [see eq. (4.13)]. The presence of the necessary factors
of ¢* in Ky can be seen from eq. (3.5), while those in Kg¢3 arise from the quadratic
dependence on @* and a’* described in section 3.1. Indeed, one can derive a version of the
quantization condition in which all such factors are absent. To do so, we define the matrix

Qp@’m’;kém = 5pk5€’f(5m’mq>2kfk . (A12)

Then, from the arguments of ref. [1] we know that we can write the end caps as 4 = QA
and AT = ATQ, with A and A" nonsingular. Thus an alternative, improved form of the
quantization condition is

det[(QF3Q) ™ + Q 'Kar3Q 71 = 0. (A.13)

Now we observe that, by simple algebraic manipulations, we can rewrite this form of
the quantization condition in terms of QﬁQ, QéQ, Q'@ ! and Q_llCdﬁgQ_l, in all of
which the factors of ¢* cancel. Since the difference between the two quantization conditions
is a factor of det(Q?), it follows that the solutions to the new form, eq. (A.13), are the
same as those to eq. (2.1), except that spurious solutions to the latter, arising from the
factors of ¢*, are removed. In conclusion, we can use the original form of the quantization
condition, eq. (2.1), as long as we ignore the spurious solutions.

B Numerical evaluation of F

In this appendix we describe some technical details concerning the evaluation of F (E)

B.1 Evaluating the integrals

An advantage of the form eq. (A.10) is that the integrals can be evaluated analytically.
Dropping overall factors, the integral that is needed is

a(xz?—r2)

€ —
[gm’;ﬂm = PV/ dgnawzlﬂ'y[/m/(r)ygm(’ﬁ) . (Bl)
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Changing variables to 7, we find

a(z?—r2)

€ _
Igm’;ém = ’yPV/dSTQ_rQ‘lWyZ’m’(F)yZm(T) = 5€’E5m’mlf7 (B'2)

X

2,2
ea(w r?)

12t (B.3)

I = 4myPV / rPdr—;
re =T

The remaining integral can be evaluated analytically for all . The explicit result for £ =0
was worked out in ref. [13], and we have extended this to the ¢ = 2 case. For convenience,
we quote both results

IF = 4mry {— \/? Leoo? | Tpg (@)] (B.4)

o2 2
2 2 4 2.4 5
I = 4my [—1 / %3 +ear 8+ LT goa® %Erﬁ (\/ aa?Q)} : (B.5)

B.2 Cutting off the sum

The sum in eq. (A.10) is convergent, but in practice we must introduce a cutoff in order to
evaluate it numerically. We use a spherical cutoff, |7,| < nmax, and in this section explain
how we choose nmax-

The basic idea is to split the sum S as

S == S< + S> 5 <B6)

where S. is the contribution from below the cutoff, and Ss the remainder. Assuming that
the pole in the summand lies well below the cutoff, then Ss can be well-approximated by
a remainder integral, R~. We evaluate this integral, and then choose npyax such that R~
lies below our desired accuracy. The resulting n,.x depends on E, L and the orbit of k.

Dropping overall factors, and changing the overall sign, the sum of interest from
eq. (A.10) is

a(me 2)

8 = H(R) Y S " 4m Yy (7)Y (7). (B.7)

~ r2 _ g2

Na

Here we have included the cutoff function H (E) that enters in the expression for ﬁpg/m/; Llms
eq. (3.6). Although this is an overall factor, it will play an important role in the determi-
nation of Nmax.

The integral R~ that results when replacing the sum over 7, with an integral is more
easily evaluated by changing variables to 7. The relation between i, and 7, eq. (A.11), can
be rewritten as

ng

VT = N, ~ T =MNal (B.8)

with || and L defined relative to k. The cutoff is chosen such that nmax > ng, implying
that the ny/2 term in the expression for 7 is subleading. Dropping this term, we find
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that a spherical cutoff on 7, corresponds to an ellipsoidal cutoff on 7. This makes the
integral difficult to evaluate, so we replace this with a spherical cutoff, |7] < A, choosing
A = nmax/vi- We call the resulting integral Ry. The resulting spherical region is a superset
of the original ellipsiodal region, so that we overestimate the remainder, Ry > R, since
the integrand is positive.

To evaluate R we make two further approximations. First, we drop the 22 term in the
denominator, which is subleading since r2 > 22 within the region of integration. Second,
we make the replacement 47Yy,, (7)Ye, (7)) — 1, which leads to an overestimate of the
integral. Then we find

Ry~ Ry = »ka(E)zm/ dr (=)l (B.9)
A
’kaE axQﬂfErfc\fA 0=0=0
= CwH(k)e® T{2he=N 4 | /TErfe[\/aA]}, /+¢=2  (B.10)
ka(E) ar® T L(3A + 2aA3)e N + 2 /TEife[aA]}, ¢ +(=4.

The overall factor of «y; is the Jacobian from changing the integration variable from 7, to
7. We choose the A by specifying a tolerance € (we use e = 107%) and numerically solving
Rp = €.2” Given A, we then obtain the cutoff for the sum using nmax = YA.

We can now explain why we include the factor of H(k) in S. As |k| approaches the
value where H (E) vanishes, 7, diverges. This leads to an increase in muymay, both from
the factor of ; in R, and because Nmax/A = ;. However, this increase is more than
compensated by the very rapid drop in H (E) near the end point, so that npyax is always
finite.

B.3 Using cubic symmetries

Symmetries can be exploited to optimize the computation of F. Tt follows from eq. (3.6)
that F'(Rk) can be obtained from F'(k) via an orthogonal transformation for any cubic-
group transformation R € Oy,

F(REK) = D(R)F(k)D(R)" . (B.11)

Here D(R) is the Wigner D-matrix defined in eq. (A.7). Thus once one has computed F(k)
for some finite-volume momentum %, one can use eq. (B 11) to obtain F(K') for all & in the
same momentum shell. Furthermore, for each initial F (k:) that one computes directly, any
symmetries of k can be used to simplify the construction of F (E) In particular, if R is in
the little group of k (so that Rk = k), then eq. (B.11) says that F(k) is invariant under the
transformation. This often leads to linear relationships between several matrix elements
ﬁg/m/,gm(lg), in which case one need only compute the linearly-independent elements in
order to construct the full matrix.

2TIn practice we use the ¢/ = ¢ = 0 result for R, in all cases, which is a further approximation, but one
that we find makes a small numerical impact.
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C Further details of the projection onto cubic group irreps

We collect here some results that we have found useful in the computation of the projection
matrices and the determination of their properties.

C.1 Computing Pj efficiently

The projector Py is defined in eq. (3.14). As explained in the main text, it is block diagonal
in momentum shells and in angular momentum, with blocks Pr ). Here we explain how
to simplify the computation of P; 4 by reducing the sum in eq. (3.14), which runs over
all 48 elements of Oy, to a sum over the elements of the little group of an element of the
shell under consideration.
Let k" and K be two elements of the orbit. Then, from egs. (3.14) and (3.15), we have
dr

[PI,O(E)}k.//k/ = m Z XI(R)(sk;%k//D(Z)(R), (Cl)
ReOy,

where 0y 1 is unity if RE' = K’ and zero otherwise. Thus the sum is restricted to those

elements of Oy, that rotate &’ into k”. A convenient representation of these elements makes
use of an (arbitrarily chosen) canonical element of the orbit, denoted k. Let Ry, be an
element of the little group Ly of k. Then all the elements of Oy, that rotate k¥’ to k" can be
written as Ry, Rr, Rir, where Ry is any choice of transformation from K to E, and Ry
is any choice of transformation from k to k”. Thus the number of elements contributing to
the sum in eq. (C.1) is [Lg], the dimension of L. This allows us to rewrite the projector as

d
[Pro@)my = [07;] > x1(Ryrk RRyp ) DY (Rpr RRyr ) (C.2)
ReLy,
d 1
= 5 P (Rin) T S (R RR)DO(R) | DO(Rye),  (C.3)

ReLy

where N, = [Op]/[Lg] is the number of elements in the orbit.

Once we have constructed the block projectors, we combine them into P; using
eq. (3.16). In practice, we want to reduce our original matrices (M = F etc.) down
to the part that lives in the projected subspace, which has dimension d(Pr). To do so,
we evaluate the eigenvalues and eigenvectors of Pr. Since P is a projector, its eigenval-
ues \; are either zero or unity. We keep only the eigenvectors with unit eigenvalues, for
these span the projection subspace. We orthonormalize the eigenvectors, and label them
{ﬁi}?ilil ). The reduced matrix is then given by

Mgt =g M-w o (,jel—d(Py). (C.4)
C.2 Dimensions of irrep projection subspaces

As explained in the main text, in order to determine the number of eigenvalues of M that
fall into a given irrep we need to compute the dimensions of the sub-block projectors,

d(Pro0)) = Tr P o) - (C.5)
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Using the result for the projector, eq. (C.3), we find

d(PI,o(f)) = Z Tr [P],O(Z)]k/k/ ) (06)
k'co
d
= ﬁ > xu(R) e DO(R), (C.7)
Kl RreL,

where the trace is only over the angular momentum indices, m, and to obtain the second line
we have used the cyclicity of the trace, the fact that Ry = Rlzkl,, and the standard group-
theoretic result x(R'RR'~') = x(R). The resulting dimensions are collected in table 1.

D a, dependence of Mg,

In section 2, we show that to determine the as dependence of the three-particle threshold
energy, we need to calculate the corresponding dependence of M3 1. The calculation is
described in this appendix.

We begin by recalling from ref. [23] that Mg 41, is defined by doing the minimal sub-
tractions necessary to have a finite quantity at threshold,

M3 thr = lim [Mg(O, a'’*;0,a%)
6—0

o ok Bk _ - Bk Bk _ - -
—1o5(0,4"";0,a )_/5(27r)3:1(k1)_/5(27r)3(27r)5’):2(k1’k2)

(D.1)

Here M3 is the three-particle scattering amplitude, expressed in terms of the same variables
used for Kg¢ 3 in eq. (2.20). The infrared (IR) divergence of M3 at threshold is regularized
using the d-scheme of ref. [23], and three subtractions are needed in order to obtain a finite
result. The explicit expressions for Iy, Z; and Zy are given in section D of ref. [23], but
will not be needed. All we need to know here is that the subtractions depend on ag, but
not on as. Thus dependence on ay can only enter through Msy itself.

To determine this dependence it is useful to recall the definition of the divergence-free
scattering amplitude from ref. [2],

Maes(p, @k, a*) = Ms(p, d' " k,a*) — D(p, ¥ k,a*) . (D.2)

Here D is a quantity that depends only on the two-particle scattering amplitude Mo, whose
expression will be given below. It is chosen so as to subtract IR divergences from M3 not
only at threshold, but also above. Reordering eq. (D.2) as M3 = Mgs3 + D, we note
that, in general, both contributions to M3z depend on as. However, we also know from
ref. [2] that Mg¢ 3 vanishes when Kg¢ 3 = 0. So, in this limit, which is the case we consider
numerically, M3 = D. This allows us to calculate the as dependence of Mgs. We know
that this dependence is finite at threshold because no as-dependent subtraction was needed
in eq. (D.1).
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Before calculating the as dependence of Mg, it is instructive to relate the two sub-
tracted versions of Msj,

M3 e = Mg 3(0, a'’";0,a%) . + IR finite terms. (D.3)

Since, as already noted, Mg¢ 3 vanishes when Kqr 3 = 0, we see that it is the IR finite terms
that must contain the contribution to M3 ¢, from higher partial waves.

What we have learned so far is that, for Kg¢ 3 = 0, the as dependence of M3 ¢, is given
by that of D evaluated at threshold. Here we are interested in determining the leading
dependence, which, as discussed in the main text, is proportional to a3. This is given by

Mg,thr D) a27d (D.4)

Here Dy, is D(p, d’*;E, a*) evaluated at F = 3m and p = k= 0, so that there is no
dependence on a* and a™. In fact, D itself diverges in this limit, but the derivative in
eq. (D.4) does not.

To proceed, we need the explicit expression for D, given in ref. [2]. It is obtained by
symmetrizing over initial and final momenta the quantity D% which is given by

Mo (P)G> (B, H Ma(8)G (5, k) My (k) +

(D.5)
Here [, = [ d®s/(2m)3, and the a* and a™* dependence has been decomposed into partial

DO (5 F) = —Ma(F)G™ (5, F) Ma(5)+ /

waves, so that all quantities are implicitly matrices in angular momentum space. The
spectator-momentum dependence is, however, kept explicit. Ma(p) is the two-particle
scattering amplitude for the dimer when the spectator-momentum is p. As for Ky [see
eq. (3.3)], it is diagonal in angular momentum

M2(m€’m’;€m = 5€’€5m’mMéé) . (D.G)

It contains all (even) partial waves, including, in particular, the d-wave amplitude. Finally,
G is given by
_ H(p)H(k &) 47 Yo () Vo (5)

2 2 w0 %l )
b*—m 4249 1

(D.7)

where the kinematic quantities are the same as those appearing in eq. (A.3). Equation (D.7)
is the relativistically-invariant version of the definition given in eq. (81) of ref. [2].

At threshold, only the s-wave part of D(“%) is nonzero, and symmetrization simply
leads to an overall factor of 9:

—o

dDiy B ngog 30(6, 0)
d(a3)

(D.8)

az=0

Looking at eq. (D.5), we see that the s-wave projection implies that the factors of My
on both ends are pure s-wave, so the first appearance of d-wave scattering occurs in the
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second term. This gives the leading as-dependent part of D(%4):

Diiog(0,0) D Iy = / Z o L MO @) (0, 5)MP (5) G005, MO (@) . (D.9)

m=—2

At leading order in perturbation theory in ag and as, /\/l(g) lCég), with IC( ) given by the
leading terms in eqs. (3.4) and (3.5). Inserting these results, we find that I is IR and UV
convergent, so we do not need to actually take the derivative in eq. (D.8). By numerical
evaluation we find

14109.6
M3 e D 9Ig = — OIS (mag)?(maz)°[1 + O(ag) + O(a3)] . (D.10)

This gives the leading term in the result (4.4) quoted in the main text. The corrections
in (D.10) arise from the subleading terms in the expressions for ng).

We close with two further observations. First, a similar calculation with MgQ) in I
replaced by any (even) higher-order amplitude leads to a nonzero contribution to M3 g,
Thus all higher partial waves contribute to AFE3 at O(L~°). Second, higher-order terms in
D) will also contribute to M3 ihr, although suppressed by powers of a,. For example, the
first term not shown in eq. (D.5), which has four factors of Ma, leads to contributions to
AE;3 proportional to aja3/L5 and aZal®/L°. These are of the same order as the corrections

in eq. (D.10).

E Free solutions at the first excited energy

In this appendix we analyze free solutions to the quantization condition in the Ai’ irrep at
the energy of the first excited noninteracting state, Ei®® = m +2w; (with w; = {/m?2 + k2

and k;, = 27/L). Our aim is to understand when F; ' has zeros at this energy, and to
determine their properties. We work with box lengths 4 < mL < 6 such that there are
three active shells, although the final result generalizes straightforwardly to any number
of shells.

E.1 Ai" irrep with s and d waves

We first consider the case in which both £ = 0 and ¢ = 2 channels are included. The
matrices that enter into the quantization condition are then six dimensional: the first
three indices as in eq. (4.17), and the remaining three from the third shell (one with ¢ = 0,
and two with ¢ = 2; see table 1). The free poles enter only in the first two shells, and are

proportional to
3

8L3mw} (E — Efree)

p= (E.1)

It will be useful to introduce the vectors

1 51
(w1 = (1,0,0,0,0,0), (va] = (o, \@ ﬁ,o,o,o) , (E.2)
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in terms of which the pole parts are given by [using eqs. (A.9) and (A.3)]

F = p(jor) (1] + 2[v2) (v2]) + O(1), (E.3)

G = 2p (Jv1){va| + [v2) (V1] + |v2)(v2]) + O(1). (E.4)

As in the example discussed in section 4.4.3, all we need to know about the O(1) contri-
butions are that they are real and symmetric. The relative factor of v/5 between the two
terms in (vo| arises from Yaq(2) = v/5Ypo(2). Combining the results for F' and G we find

H = 5plwi)(wi| + O(1),  |wi) = \/g(\vﬁ +2[v2)) - (E.5)

Thus, while the pole parts of F and G are both of rank 2, that of H is of rank 1, due to a
partial cancelation.

In the following, we determine the pole structure of F3, aiming to find a basis in which
this structure is simple. We begin by changing to a more convenient basis, namely |w;)

|wg) = \/E(Zlvﬁ = |v2)) (E.6)

and any choice of four other vectors filling out the orthonormal set. We use a 1+ 1+ 4

combined with

block notation, in which

500 9/5 —2/50
H=p|000|+0(1) and F=p|-2/5 6/5 0| +O(1). (E.7)
000 0 0 0

The inverse of H has the form

1/(5p) + O(1/p?)  aia/p+O(1/p*)  diz/p+ O(1/p?)

f[ﬁ1 = alg/p+0(1/p2) 0422—1-522/1)4-0(1/])2) 52234—0(1/])) , (ES)
ali/p+00/p")  dR+O0fp)  am+O(1/p)

where the quantities a2, agg, S22 etc. are given in terms of the O(1) parts of H in a way
that is not pertinent. At this stage we can see that FH'F will contain a double pole
proportional to agy that will have the form of an outer product, as well as a complicated
single-pole term. Performing the algebra we find

A ~130 a b —Z

0

L3F3:p22—522 3 90|+p| b —9a—6b3z|+00), (E.9)
0 00 -7 3 0

where a, b and 7 are given in terms of the a;; and [ao.

Thus we have learned that F3 contains a free double pole that can be written

-ﬁmwmu<m=$vmmﬂﬂmvw» (E-10)
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The form of |z;) is determined entirely by the pole structure of F and H , although the
overall coefficient is determined by the O(1) parts. Qualitatively we can say that although
F contains two independent poles in this irrep, the H~! factor cancels one of them, leading
to a left-over double pole.

We conclude by discussing the impact of the single pole contribution to F3. First we
note that the coefficient of p can be written as

1

— (8a + 6b)|x1 ) {x1| — —— (|z1) (22| + |T2) {2 E.11
( 1) (] NI (|z1)(@2| + [22)(21]) (E.11)
where the new normalized basis vector is

<$2’ = N2 (9a + 3b,3a + b, —102) . (E.12)

Thus in the basis consisting of |z1), |x2) and four other orthonormal vectors, F3 has the
141+ 4 block form

fp*+gp hp 0
Fy = hp 0 0] +0(1), (E.13)
0 00

where f, g and h are known constants. This matrix can be diagonalized using a final,
fourth basis. All we need to know here is that, close to the pole, when |p| > 1, the shift in
the eigenvalues due to the off-diagonal hp term is +(hp)?/(fp? + gp) ~ O(1). Thus in the
final basis we have

F3 = diag [fp® + gp+ O(1),0(1),0(1),0(1),0(1), O(1)] , (E.14)

and thus
Fy' =diag [1/(fp*) + O(1/p?), 0(1),0(1),0(1),0(1),0(1)] . (E.15)

Note that the size of the change to this final basis is proportional to 1/p, and thus vanishes
at the zero of Fy3 ! 5o that the double zero lies in the subspace spanned by |z1).

In summary, we find that the single pole in Fj is hidden beneath the double pole, such
that in the inverse there is simply a double zero. As L is increased, there are more active
shells, but the only change to the result of this section is that the number of vanishing
components of |x) increases [see eq. (E.10)]. The nonvanishing components are unchanged.

E.2 Ai’_ irrep with only s waves

We have repeated the previous analysis for the case of only £ = 0 contributions and

28 The matrices are now three dimensional, with one entry per shell.

three active shells.
We do not present the details, except to note that we follow the same steps as in the
previous subsection, and find very similar conclusions aside from some changes in factors. In

particular, Fy~ ! still has a double zero, but this now lives in the space spanned by the vector

()| = <\/§,—ﬁ, 0) , (E.16)

where entries are ordered as in eq. (4.21).

28This builds upon, and corrects, the analysis given in appendix C of ref. [1].
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F Properties of the isotropic approximation

This appendix recalls the definition of the isotropic approximation, describes its relation
to the work of this paper, and explains why the free solutions discussed in section 4.4.3 are
absent in this approximation.

The isotropic approximation was introduced in ref. [1] and used in the numerical in-
vestigation of ref. [13]. It involves three components: (1) Only ¢ = 0 dimer channels are
included in ﬁ, G, Ky and Kat,3; (2) The resulting Kg¢ 3 is taken to be independent of the
spectator momentum, although dependence on the total energy E is allowed; (3) Fj is
projected onto the isotropic vector |1x), which has a unit entry for every available choice
of spectator momentum. Note that the third step automatically picks out solutions in the
Ai" irrep.

The isotropic approximation is thus a subset of an approach we use several times in
this paper, namely restricting dimers to ¢ = 0, keeping only the isotropic part of Kqf 3 in
the expansion about threshold, and projecting onto the Af irrep. We refer to this as the
“low-energy Af approximation”. The major difference is the absence of the third step —
we do not project onto |1x). A minor difference is that, for KCq¢ 3 to be purely isotropic,
we must work only at linear order in the threshold expansion. Thus we can have at most
a linear dependence of Kg4¢ 3 on E?, as opposed to the arbitrary dependence allowed in the
isotropic approximation.

To explain the relationship between the two approximations, we begin in the low-energy
A;r approximation. All matrices, including F3, are labeled by an index denoting the shell
of the spectator momentum, as shown in eq. (4.21). All matrices have the same finite
dimension given by the number of shells lying below our cutoff. Since Kg¢3 is isotropic,

the quantization condition is?”

det ([F5] ™' + [1g)K=(1k|) =0, (F.1)
where the square braces indicate the A}, £ = 0 matrix, and

(x| = (1,\/6, \/ﬁ) (F.2)

in this basis. The entries here are the square roots of the sizes of the shells. We can rewrite
the determinant in the quantization condition as

1+ (L] (B3] 1) €
det[Fg] ’

det ([F5] ") det (1 + [F3]|1g) K™ (1k]) = (F.3)

where we have used det(14 M) = exp trln(1+4 M), expanded in M, used the cyclicity of the
trace, and resummed. The isotropic approximation consists of keeping only the solutions
arising from the numerator on the right-hand side of eq. (F.3), i.e. those satisfying

Fiso = (1g|[Fs]|1x) = —1/K°. (F.4)

2Note that [F3]™' = [F; '] because of the cubic symmetry of the components of Fj.
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It follows from eq. (F.3) that any solution in the isotropic approximation is also a solution
in the low-energy Af approximation, barring an accidental, and unexpected, juxtaposition
with a zero of det([F3]).3° Thus, aside from this caveat, which appears to be irrelevant in
practice, all solutions to the low-energy Af approximation that require a nonzero K'*° are
also obtained in the isotropic approximation.

What are lost in the isotropic approximation are solutions to the quantization con-
dition (F.1) that arise when an eigenvector of F3 diverges (so that det([F3]) — oo) while
Féso remains finite. This requires that the corresponding eigenvector of F3 is orthogonal to
|1x). In our experience, this only happens for solutions that occur at free energies (which,
we recall, means one of the energies of three noninteracting particles in the given volume),
although we do not know of a fundamental reason why this should be so. Furthermore, it
was found numerically in ref. [13] that there are no free solutions in the isotropic approxi-
mation. Taken together, these observations suggest that the isotropic approximation picks
out all the non-free solutions to the quantization condition obtained in the low-energy A}
approximation.

In the remainder of this appendix we explain analytically the result found numerically
in ref. [13], namely that there are no free solutions in the isotropic approximation. As
discussed in section 4.4.3, such solutions occur first at £ = E{ree, and there yield a double
pole in det(F3) lying in the space spanned by |z}), eq. (4.22). This pole is, however, absent
in the isotropic approximation because (1x|z}) = 0, so the pole is removed from Fj iso,

Our aim is to generalize this argument to any excited free energy. We will do so for
P= 0, and for an excited state in which the three momenta, labeled k p and b=—k— a,
lie in different shells, e.g. k= kr(0,0,1), p = kr(1,1,0) and b = kr(—1,—1,-1), with
kr, = 27 /L. We denote the degeneracies of these shells by N, Na, and N3, respectively (6,
12 and 8 in our example). For each choice of k from shell 1, we define Ny as the number
of choices of p from shell 2 that can lead to a free solution, and define N3 analogously. By
cubic symmetry Nj2 and Ni3 do not depend on the choice of k from shell 1. Clearly we
have Ni2 = Ni3, since each solution contains both a p’ and b. We define Nog = Ny and
N31 = N3o analogously. The total degeneracy of free-particle solutions is then

Nsoi = N1N12 = NoNo3 = N3Ny . (F.5)

As above, we denote the £ = 0, A parts of F and G by [F] and [G], which are indexed
by the shell number. The poles in these matrices occur only when both indices lie in one of
the three shells discussed above, and thus we can focus on this three-dimensional subspace.
The matrices in this subspace have the form

N Nis 0 0 B 0 vV Ni2Na3 +/N12N3;
[F} =p 0 N23 0 +O(1) and [G] =Dp N23N12 0 \/N23N31 +O(1)7
0 0 Ns V' N31N12 /N31Nas 0

(F.6)

30This holds also when K™ — 0, for then a solution to eq. (F.4) implies that [F3] has a diverging
eigenvalue, and thus that det([F; ']) — 0.
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where
1

- 8 L3wgwpwp(E — wi, — wp — wp)

(F.7)

The coefficients in [F] count the number of choices of @ in eq. (A.9) that lead to the pole.
For example, for the (1,1) element, there are Nis + N1z = 2Np2 choices, which combines
with the overall factor of 1/2 in F to give the quoted result Ni2. To understand the form of
[G] consider the (1,2) element of the pole part. This arises from each of the Ny solutions,
multiplied by the normalization factors for the A] projections, 1/y/N7Na. Then we use

Nogj N1 N1 N Nog
= B /NN F.8
NN, NN, 127723 (F.8)

to obtain the quoted result.
Combining, we find that the pole part of H lives in a one-dimensional subspace,

[H] = [F] + [G] + [1/(2wK3)] = [W)Ap(W1| + O(1) (F.9)

N N N.
W1’ = (\/ 12 \/ 23 \/ 31) , A= Niyg+No3+N3p. (FlO)

Here we are assuming that Ko does not have a zero at E = El*®. Tt follows from eq. (F.9)
that [H]~! has the form (see, e.g., eq. (C14) of ref. [1]):

) = ) 2 s 01 ) 3 (W) 00+ W + Y 07

i#1 1,j7#1

(F.11)

Here |W3) and |W3) are any choice for the other two members of an orthonormal basis of
which |W7) is a member. Note that only the coefficient of the first term is known; for all
other terms only the power of p is known.

We can now calculate the pole part of F?i,so, which requires projection with (1x|. Within

(1| — (\/171 VN, \/173> , (F.12)

our subspace

from which it follows that

(1k|[F] = pv/ANsor (Wi | + O(1), (F.13)
(1g|[F[1k) = 3pNsor + O(1),, (F.14)
(1 |[F)[H] ' [F]|1k) = pNsor + O(1) (F.15)
and thus that _
Fye = %(hd <[§] —[F] [H]‘l[ﬁ]> I1x) = O(1). (F.16)

As claimed, all poles have canceled from Fi%.
It is straightforward to generalize this result to the case that two or more shells are the
same, and also to moving frames, i.e. P = 0, although we do not present the details here.
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G Failure of eq. (4.34) for quadratic and cubic terms in the threshold
expansion

As noted in the main text, we find numerically that the following results hold,
2 ree 3 Tee
K3 (EF)[e1) = Kogy (BT )|er) =0, (G.1)

where the superscript on Kg¢ 3 indicates the order in the threshold expansion of Ky 3.
The vector |z1) is given in eq. (4.24), and the square brackets indicate the A} projection
of g3 expressed in the kfm basis. Our aim here is to give an analytic explanation for
these results.

We can rewrite eq. (G.1), using the symmetry of ICq¢ 3 and the form of |z1), as

e i = \/g KE D+ DK a6 B= B, i (G.2)
The ordering of the indices is given in eq. (4.23). We recall that the v/6 here arises because
the first shell has 6 elements, while the /5 arises because Yoo(2) = V5Y50. The superscript
on Kqr 3 indicates that the equation should hold for both the quadratic and cubic terms in
the threshold expansion.

We wish to demonstrate eq. (G.2) for any choice of i. To do so we first change notation,
recalling from section 2.4 that the E, £, m indices can be replaced by dependence on /2, ar.
Here we are also replacing the spectator-momentum index k with E, both in order to be
more explicit, and because Kgf 3 is an infinite-volume quantity that is defined for all k. At
first, we make this change only for the initial-state indices, leading to the hybrid notation
Kass(E;p, ', m'; k, a*).3! In terms of this new quantity, we claim that eq. (G.2) holds for
any choice of the index ¢ if

IC((ff:g) (E{ree; (‘)’7 0,0; E7 a*) + chEff’é) (E{ree; 6, 2,0; /2, a*)
_ ]Cézf:;)(E{ree; kr2,0,0:; E’ &*) 4 \/SIC(%:? (E{ree; krz,2,0; E7 &*) ) (GS)

is valid for all k and a*, and for one choice of ¢. To understand this, first note that (G.3)
applies for an arbitrary initial state, and this subsumes all possible values of the finite-
volume index i. As for the final state, to obtain eq. (G.2) we need to project onto the Af
irrep. Doing so, the second term on the left-hand side of eq. (G.3) vanishes, as can be seen
from the absence of an ¢ = 2 entry in the A row of the (000) shell column in table 1.
This is why it is sufficient if eq. (G.3) holds for one value of c. The A] projections of the
remaining three terms in eq. (G.3) leads to the three terms in eq. (G.2). The averaging
over the first shell leads to the factors of /6 in the latter result. Note that to perform
this averaging one must also use the rotation invariance of Kgr 3. It is also important that
m’ = 0 in the last term in eq. (G.3), since this is the component that lives in the A irrep
when the spectator momentum lies in the Z direction.

313We are abusing notation by using the same name, Kar,3, for the function expressed in terms of different
variables, but the number of indices uniquely determines which choice of basis we are using.
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In the following, we demonstrate that eq. (G.3) holds if ¢ = v/5. There are three inputs
needed for this demonstration. The first is the observation that the same configuration of
final-state particles can contribute to both sides of eq. (G.3). To explain this we need
to write both initial and final states in the form used prior to their decomposition into
harmonics, so that we have Kg¢ 3(E; p, a"™; E, a*). Then one can show, using permutation
symmetry alone, that

Kar3(E; 0, 2k, 6*) = Kag 3(BT®; k2, 2, k, a*) . (G.4)

This result holds for any term in the threshold expansion of Kg¢ 3 (or, indeed, for the entire
quantity), and thus we do not include a superscript. To understand eq. (G.4), note that the
three particles in the final state have momenta 0, k72 and —kz 2. Calling 0 the spectator
momentum yields the left-hand side of eq. (G.4), while calling k1,2 the spectator yields the
right-hand side. Since both choices describe the same momentum configuration, they must
be equivalent due to the permutation symmetry of Kgs 3.

The second input is that Kézfzg) is either independent of, or quadratic in, a"”*. This is
explained in section 2.4, and is in one-to-one correspondence with the fact that only s- and
d-waves contribute.

The final key input concerns angular averaging of a quadratic form:
A A 1 1
(Rt Vig) | ,_g + VB (Rif1; Vij) }K:Q,mzo =3Vitg (2V33 — Vip — Vao) = Va3,  (G.5)

where V;; is an arbitrary tensor. In other words, the combination appearing on the left-
hand side can be evaluated by setting n = 2. The same is trivially true for a quantity that
is independent of 7.

Combining the second and third key inputs, we deduce that

K (B 5,0,05F,6%) + VBKSEY (B:5,2,0:k, %) = KG ) (Bs ,a"* =2;k,6") (G.6)
holds for any choice of E and 5. Applying this to both sides of eq. (G.3), with E = Efr*¢ and
7 = 0 for the left-hand side and §' = k; 2 for the right-hand side, we find that eq. (G.3) with
c = /5 is equivalent to the first key identity eq. (G.4). This establishes the desired result.

This derivation will fail for terms of quartic and higher order in Ky 3, since the combi-
nation of ¢ = 0 and 2 parts that appears in eq. (G.6) will no longer allow the replacement
of @’* with z, implying that eq. (G.4) cannot be used. For example, considering one of the
terms that arises in quartic terms, we find

(d/* . ﬁ)4

/=0 + \/S(a’/* ’ ﬁ)4

0'=2,m'=0 7é ﬁAzl . (G7)

We have checked this numerically by decomposing the simplest of the quartic terms and
finding that eq. (G.1) does not hold.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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Abstract We perform an ab initio calculation of the N,
scaling of the low-energy couplings of the chiral Lagrangian
of low-energy strong interactions, extracted from the mass
dependence of meson masses and decay constants. We com-
pute these observables on the lattice with four degenerate
fermions, Ny = 4, and varying number of colours, N. = 3—
6, at a lattice spacing of @ >~ 0.075 fm. We find good agree-
ment with the expected N, scaling and measure the coeffi-
cients of the leading and subleading terms in the large N,
expansion. From the subleading N, corrections, we can also
infer the Ny dependence, that we use to extract the value
of the low-energy couplings for different values of Ny. We
find agreement with previous determinations at N, = 3 and
Ny = 2,3 and also, our results support a strong paramag-
netic suppression of the chiral condensate in moving from
Ny=2to Ny =3.

1 Introduction

The ’t Hooft limit of QCD [1] is well known to capture
correctly most of its non-perturbative features, such as con-
finement and chiral symmetry breaking. Large N, inspired
approximations are often employed in phenomenological
approaches to hadron physics [2—11], but systematic errors
from subleading N, corrections are only naively estimated.

Lattice Field Theory offers the possibility of ab initio
explorations of the large N, limit of QCD, by simulating at
different values of N, [12,13]. Several studies have already
been performed. In Ref. [13] a thorough study of mesonic
two-point functions was carried out in the quenched approx-
imation, a limit that captures correctly the leading order terms
in N, but modifies subleading corrections in an uncontrolled
way. Furthermore, in Ref. [14] a similar study was performed
for N = 2-5 using Ny = 2 dynamical fermions at rather
high pion masses.

4 e-mail: fernando.romero@uv.es

In addition to the standard approach, the study of QCD
in the large N, limit can also be achieved using reduced
models (see [15] for areview). In this context, there has been
significant progress regarding the properties of mesons [16—
20].

Besides, lattice simulations have been used to perform
studies of various observables in theories with different num-
ber of colours, flavours or fermion representations in the con-
text of Beyond-the-Standard-Model theories. Some recent
results can be found in [21-26] and for recent reviews see
[27,28].

In this work, we use previously generated lattice configu-
rations with N. = 3-6 and four dynamical fermions. Our par-
ticular choice of Ny has also advantages for weak matrix ele-
ments [29]. On these ensembles, we compute meson masses
and decay constants as a function of the quark mass at the
different values of N.. We fit these to chiral perturbation the-
ory (ChPT) in order to extract the leading order and next-to-
leading order low-energy chiral couplings (LECs). We then
study their N, scaling and extract the first two terms in the
"t Hooft series. Our study builds on previous lattice determi-
nations of the LECs for N, = 3 [30-44], whose main results
are summarized in [45].

Interestingly, within the large N, expansion, the 1/N, cor-
rections have a well-defined linear dependence on N ¢, while
the ’t Hooft limit is independent on N y. Using this fact, we
can predict the low-energy couplings at different values of
Ny up to higher orders in N,. This allows us to compare
with previous determinations, and check the prediction of
paramagnetic suppression at large Ny of Refs. [46,47].

This paper is organized as follows. First, we describe chi-
ral perturbation theory predictions and the relation to the
large N, limitin Sect. 2. In Sect. 3, we present the lattice setup
that involves a mixed-action formulation. Next, we explain
our scale setting procedure at different N, consistent with ’t
Hooft scaling in Sect. 4. In Sect. 5 we present the results of
our chiral fits to the meson mass and decay constant, first
at fixed N, and then combined with the large N, expansion.
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We also present results for theories with different values of
N ¢, compare with previous literature and discuss systematic
uncertainties. We conclude in Sect. 6.

2 Chiral perturbation Theory predictions

The light spectrum of QCD is the result of the pattern
of spontaneous chiral symmetry breaking, SU(Ny)p x
SU(Nf)r — SU(Ny)r+r. ChPT represents accurately the
dynamics of the expected pseudo-Nambu-Goldstone bosons
(pNGB), i.e., the lightest non-singlet multiplet of pseu-
doscalar mesons (the octet for Ny = 3), at sufficiently small
quark masses. The increase in the number of colours while
keeping the ’t Hooft coupling constant, » = g>N., is not
expected to modify these features. On the other hand, in the
large N, limit, QCD reduces to a theory of narrow and non-
interacting resonances and, as a result, the interactions of
pNGB within the effective theory decrease with N, improv-
ing the convergence of the perturbative series. One complica-
tion of the large N, expansion is the role of the singlet pseu-
doscalar meson, i.e., the n’. Its mass originates in the explicit
U (1) 4 breaking by the anomaly. In QCD this contribution to
the mass is at the cutoff scale of the chiral effective theory
and it is therefore integrated out. However, the anomalous
contribution to the singlet mass decreases with N, and in the
large N, limit the n” becomes degenerate with the remaining
pPNGB:s. The effective theory should consequently include an
additional singlet pseudoscalar meson in the spectrum. The
corresponding effective theory has been studied long ago
[48-53]. A new power-counting is needed which involves a
simultaneous expansion in 1 /N, and the usual chiral expan-
sion in the quark mass and momenta. A consistent power
counting was implemented in Refs. [52,53]:

O@B) ~ O(p?) ~ Olmg) ~ Omz) ~ ON). M
In the following we will concentrate on the non-singlet mul-

tiplet masses and decay constants. We now compare the usual
SU(Ny) ChPT to the U (Ny) ChPT for these observables.

2.1 SU(Ny) effective theory

AtLeading Order (LO) in the standard SU (N ) chiral expan-
sion there are only two couplings for any number of degen-
erate flavours, related to the chiral condensate and the meson
decay constant. At Next-to-Leading Order (NLO), and for an
arbitrary number of degenerate flavours (N > 3), 13 more
LECs are needed, but only two combinations enter in the
observables of interest. For Ny degenerate flavours, ChPT
predicts at NLO [54-56]:

@ Springer

N M2 2
Fr=F|1——L T _jog ™1
2 (4mFy)? 2
2 2
T (W54 NpL)|
T
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M2

Nf (471F @rnF)? 82

2 3)
JT
2
b

+8F (2L — L5+ Np(2LG — Lg))],

in terms of the LO couplings, B, F, and the NLO Gasser—
Leutwyler coefficients, LZ) s, 6,8('U“)’ defined at the renormal-
ization scale w.

Equations (2-3) are valid for an arbitrary number of
colours, but the LECs scale with N, as (for a review see

[57D):
O(N.): F2,Ls, Lg; O(1) : B, Ly, L. “)

Loop corrections are suppressed in 1/ FI% = O(1/N.), and
hence the loop expansion is expected to converge better at
larger N,.

Keeping only leading and subleading dependence on N,
a convenient parametrization is

F=\/E<Fo+%), B= Bo-l-f]—lc 5)
and

Ls+NsLy=Lp=NLY + LY, 6)
2Ly — Ls+ Ny(QLg — Lg) = Ly = N.LY + L. (1)

Note that according to the scaling of Eq. (4) and the definition
of Eq. (7):

L 1
0) 5

LY ==4+0(—),
F NC+ (NC)

2Lg — L 1

0) 8 5

LW=""_""10(—). 8
M N, + <Nc) ®)

The NNLO Lagrangian of the SU (N ) theory is also known
[54-56]. At this order we will instead only use the U(Ny),
to which we now turn.

2.2 U(Ny) effective theory
In the U(Ny) ChPT at NLO, ie., O(8"), the result can be

read from Eqgs. (2) and (3) and the different N, scalings of
the LECs in Egs. (5) and (7):

Fr = /Ne (Fo + %) [1 + 4 N LY+ 0(52)} )
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and
m2=2(B,+ 2 1+8M’%NL(O)+(’)82
T = 0 F{, m F_% cby 9] -

(10)

The NLO corrections are not enough to explain the data
in this case, therefore going to NNLO is essential. At NNLO
new features appear, because the singlet contributes to the
mass loop corrections. The necessary results can be found in
Ref. [58]. For degenerate flavours, they simplify to:

Fi P Ny M? M2
Fr=yN:|Fo+—+-—=)|1--L—Z5log—ZF
" ( TN NZ)[ 2 GrFo? 0

M2 M2\
+4=5 (VL + LY) + N2 K (-”)
g

FZ
+ 0(8%}, (11)
and

B, B
2 1 2

1 M2 M2 1 M | M,

X —_— — = — 0g —-

Ny GrF 2 02 T Ny @nFp? ot 2

M3 © , ;O o (M2
+8=Z (N.LY + L)) + N2K) (F—g) +06Y |,
/g /g

12)

where K I(DO)M are combinations of Lg?), LE‘(}) and new LECs
that appear in the U (N y) case. For details see [58]. Note that
for degenerate quarks, there is no n-n’ mixing.

The n’ mass in this expression can be taken in the large N,
limit, where it is given by the Witten—Veneziano formula:

M2 = M2 + zngx, = M2 + M},
where y; is the topological susceptibility in pure Yang—Mills,
recently computed in the large N, limit in Ref. [59].

Note that even though we use the same notation for the
LECs in both chiral expansions, they are different: in the
SU(Ny) ChPT the LECs encode the effects of integrating
out the n’. The matching of the two theories starts at NNLO
[53,60] and only affects the coupling B and L;;) of the above
[53,60]:

(13)

2
1 M

[Blsuwv,) = [Bluwy) (1 - _—2“) ’
N/ (47 Fy) 14

(0], <[] e
M Isuwy) MJuwy  8Ny(4m)? ’

2
with 1 = log %

2.3 Ny versus N, dependence

A diagrammatic analysis of fermion bilinear two point func-
tions shows that within the large N, expansion, the leading
order N. — oo limit is Ny independent and the NLO is
O(Ny/N¢). We should confirm this expectation also in ChPT
formulae above, in particular given the explicit dependence
on Ny. It turns out that within the U(N ) expansion, the
large N, expansion yields the expected behaviour: the terms
in 1/N s exactly cancel when the large N, expansion is taken
at fixed M. We expect therefore that the LECs should also
satisfy this same scaling.

On the other hand within the SU (N y) expansion or in the
U(Ny)when M; < M,y,thatis when the chiral limitis taken
first, anomalous 1/N s terms appear coming from an expan-
sion in My /M,,. In the U (N¢) expansion such dependence
is explicit, butin the SU (N y) it permeates to the LECs which
can no longer be assumed to have the expected O(N¢/N,)

dependence, as can be explicitly seen in the matching of fo)
in Eq. (14).

This way, at the order we are working, we can assume the
expected scaling in N ¢ of the U (Ny) and SU (N y) couplings
except in the case of [Lﬁ}[)]SU(Nf).

3 Lattice setup

We have generated ensembles for SU (N, ) gauge theory with
Ny = 4 degenerate dynamical fermions, varying N. = 3-6,
using the HiRep code [61]. Some of them have been already
presented in Ref. [62]. We have chosen the Iwasaki gauge
action (following previous experience with 2+1+1 simula-
tions [63,64]) and O(a)-improvedl Wilson fermions for the
sea quarks. Our simulations use the standard Hybrid Monte-
carlo (HMC) algorithm with Hasenbusch acceleration. We
include five layers in each of the fermionic monomials.
Interestingly, we observe that the tuning of the integrator
at N, = 3 yields similar results at other values of N, (at
similar pion mass) for the acceptance rate, which we keep at
80-90%. The computational cost of each step in Montecarlo
time scales as ~ N, 3, with the advantage of a more efficient
parallelization at large N,.

In order to achieve automatic O(a) improvement and
avoid the need of a non-perturbative determination of nor-
malization factors, we employ maximally twisted valence

I For N, = 3, we take the perturbative value of ¢gy, = 1 + c§{3 g2

from Ref. [65], where we use the plaquette-boosted coupling g2 =
2N./(BP) = O(1/N,). For other values of N., we use the fact that the
one loop coefficient is dominated by the tadpole contribution, which
is of order N, (see Eq. 58 in Ref. [65]). This way, ¢y, is constant up
to subleading corrections in N,, which have an effect of 0(a2 /N¢)
in physical observables. The full result cannot be easily reconstructed
from Ref. [65].
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quarks, i.e., the mixed-action setup [66] previously used
in Refs. [67-69]. Maximal twist is ensured by tuning the
untwisted bare valence mass, m" to the critical value for
which the valence PCAC mass is zero:

B (AP _ (15)

s v —
il e = M0 PO
where A*(x) = W(x)y*p W(x)and P(x) = ¥ (x)p ¥ (x).
The bare twisted mass parameter g is tuned such that the
pion mass in the sea and valence sectors coincide, M) =
M. The normalized meson decay constant F; can then be
obtained from the bare combination [70]:

i 2100 (O P|70 ) pare

Fr = e (16)

The results for the meson masses and decay constant in the
mixed-action setup can be seen in Table 3. We have achieved
a good tuning of mc,c and the pseudoscalar masses are com-
patible within one or two sigma with their pure Wilson value
(see Table 1). When the tuning to maximal twist is not per-
fect, we correct the bare quark mass (and thus Fy) as follows
(see also [70]):

7 2
apo — auo\/l + (&> , (17
apo
ZAampcac 2
aF; — aF; |1+ (—) . (18)
apo

where the axial normalization constant, Z 4, can be obtained
non-perturbatively by matching the valence bare twisted
mass with the PCAC mass measured in the sea sector:

10 = ZamSye, for MY = M. (19)

4 Scale setting at large N,

The scale setting for different values of N, is performed using
the gradient flow scale /8%, via the determination of 7o/ a?.
In QCD, with N. = 3, the standard definition of f is:

(PPE®))

1=ty

—c=03. (20)

The leading dependence in N, is known [71] in perturbation
theory:

3 N>-1
2 c
t“E()) =

E@) 12872 N.

AGF (4) , 21

where Agpr(q) is the gradient flow ’t Hooft coupling at the
scaleqg =1/ +/8t. Hence, as in Ref. [59], we will generalize
fo to an arbitrary N, as:

3N2 -1

=c(Ne) =3

2
(t"E(@)) — 8N

c(3). (22)

@ Springer

Notice that the choice here is not unique. In particular, one
could choose another coupling in a different scheme (such as
MS), and this would induce corrections at order O(N r/Ne)
in dimensionful quantities.

We also need the value of #y in physical units. This is
known from lattice simulations for Ny = 2 [72,73] and
Ny = 3 [74] degenerate quarks and at a reference pion mass
Mier = 420 MeV:

Np=2
— 0.1470(14) fm,
Myt (23)

Ny=3
= 0.1460(19) fm

N
N

ref

We can use these to perform a linear extrapolationto Ny = 4,
motivated by the weak Ny dependence:

Ny=4

N = 0.1450(39) fm. (24)

ref

Our scale setting condition involves therefore the dimension-
less quantity

(M /1)

In order to reduce discretization errors we have performed
a tree level improvement of 7. In Ref. [75], lattice perturba-
tion theory is used to improve (tzE (t)) and thus, 5. The
prescription is:

2 n
(PED)q = (IPEW®) )imp [HZCzn (%) } (26)

where the coefficients C,, depend on the gauge action, the
flow action and the definition of E(¢) (clover or plaquette).
The coefficients for the Iwasaki gauge action, the plaquette
action for the flow and the clover definition of E(t) are:

= 0.3091(83). (25)
Mrer

Cy = —0.262333, C4 = 0.0936935,

27
Ce = —0.048002, Cg = 0.0320211.
The numerical results after the improvement, t(l)mp /az, are
shown in Table 1.
Finally, Eq. (25) requires g at M. The mass dependence
of fy has been studied in chiral perturbation theory in Ref.
[77]. For degenerate flavours it is given by

to =1 (14K M?) + O(M*), (28)

where k 1/(F7,)2 = O(1/N,) and so the chiral depen-
dence is suppressed in N.. We have performed accordingly
a linear fit in M to extract the reference value. The mass
dependence of t(l)mp for the different values of N, can be seen
in Fig. 1. As expected, the slope is suppressed with N.. The
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Table 1 Summary of our

ensembles: S, sea quark bare Ensemble LPxT B am’ aMy t(i)mp/az

;’Ii;slﬁirsz";frv'ﬁekiﬁ sea 3A10 20% x 36 1.778 —0.4040 0.2204 (21) 3.263 (50)

csw = 1.69 throughout 3A20 243 % 48 —0.4060 0.1845 (14) 3.491 (32)
3A30 243 % 48 ~0.4070 0.1613 (16) 3.740 (39)
3A40 323 % 60 —0.4080 0.1429 (12) 3.855 (27)
4A10 20% x 36 3.570 — 03725 0.2035 (14) 3.494 (45)
4A20 243 x 48 —0.3752 0.1805 (7) 3.565 (26)
4A30 243 % 48 ~0.3760 0.1714 (8) 3.593 (29)
4A40 323 % 60 —0.3780 0.1397 (8) 3.723 (23)
5A10 20% x 36 5.969 —0.3458 0.2128 (9) 3.532 (17)
5A20 243 % 48 —0.3490 0.1802 (6) 3.614 (18)
5A30 243 % 48 ~0.3500 0.1712 (6) 3.664 (24)
5A40 323 % 60 ~0.3530 0.1331 (7) 3.776 (19)
6A10 20% x 36 8.974 ~0.3260 0.2150 (7) 3.619 (17)
6A20 24% x 48 ~0.3300 0.1801 (5) 3.696 (17)
6A30 243 % 48 —03311 0.1689 (7) 3.721 (15)
6A40 323 % 60 ~0.3340 0.1351 (6) 3.820 (17)

Table 2 Results for the 7/a> } 11 and the lattice spacing as a function
of N.. The first error is statisticéﬂ, the second comes from the uncer-
tainty in ¢y in physical units, the third stems from the difference in the
definitions of E(¢) after improvement, and the fourth are finite volume
effects estimated from Ref. [76]

N, to/a?| Mo a (x1072 fm)

371 (D (12)a(3) 1

3 7.53(4)(19)4,(12)a(3)
4 3.64(1)(3)1(12)a 3)L

5

6

7.60(1)(20)4, (12)4 3)
7.54(2)(20)4, (12)a 3)
7.48(1)(20)4, (12)a3) 1

3.69(2)(3)1 (12)a ()L
3.76(1)(2)1 (12)a ()1

results of the scale setting can be seen in Table 2, where we
also include the systematic uncertainties. The leading uncer-
tainty comes from the error on the value of #y in physical
units, the discretization error is estimated from the differ-
ence in two definitions of E(¢) after improvement, and the
finite volume systematic error is estimated from Ref. [76].
As it can be seen, the scale setting yields a uniform lattice
spacing for all the values of N.. From now on, we will quote
our results in terms of the lattice spacing a = 0.0754 fm,
corresponding to N, = 5.

5 Chiral perturbation theory fits

The results for M, and F, in the mixed-action setup are
presented in Table 3. We want to compare these results to
the expectations in ChPT described in Sec. 2 in order to the
extract the LECs and study their N, scaling.

Before addressing the fits, we need to explain some tech-
nical issues regarding the finite volume effects, the renormal-

ization scale and the fitting strategy. We then perform fits at a
fixed value of N, to test the ansitze for the N, scaling of the
LECs in Egs. 5 and 7. After that, we perform simultaneous
chiral and N, fits. We present a selection of relevant results
for the latter, and conclude the section with a discussion on
systematic errors.

5.1 Finite volume effects

Our ensembles have M; L > 3.8 in all cases so we expect
finite volume effects to be small and suppressed as 1/N,.
Still, we find that for the decay constant they can be of O (1%)
and thus we correct them as [78,79]:

1
My (L) = My [1 + & (M L)+ 0(5;2)} .9
2N/
Ny, _ 2
Fr(L) = Fx [1 — 75 1Mz L)+ O )] , (30)
. M2 O .
with & = W, while g;(x) is given by

x>1 24

244/2 e*
810 K@) ~ U2e

Jr o

We will use the corrected results for the analysis.

(€29}

5.2 Renormalization scale

The NLO couplings are usually defined at © = 47 F or at
the p mass, u = M. Still, in the context of the large N,
expansion these are two very different choices, since the for-
mer scales with /N, deviating from the physical cutoff of
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4.40 : 4.40
4.20 ' 1 420 - 1
400 1 400 '
~  3.80 4~ 3.80
2 2
-5 3.60 4 < 3.60
3.40 B 3.40
3.20 _ . 3.20 |- 3
300 | | E | | | 300 | | : | | |
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Fig. 1 Mass dependence of t(i)mp /a?. The vertical line corresponds to the value M2 = Mrzef

Table 3 Results obtained in the

mixed action setup, with Wilson Ensemble Gl aro aMz lampeacl aFx
iﬁ;‘;;‘?;‘ih"envt:lzszz :;‘ft;r”vs;zd 3A10 04214 0.01107 02216 (20) 0.0000 (3) 0.04405 (41)
use ey — 1.69. as in the sea 3A20 —0.419 0.00781 0.1834 (6) 0.0001 (2) 0.04023 (24)
sector 3A30 —0.4187 0.00632 0.1613 (11) 0.0008 (2) 0.03678 (33)
3A40 —04163 0.00513 0.1423 (7) 0.0006 (3) 0.03554 (15)
4A10 —03875 0.01030 02037 (11) 0.0001 (2) 0.05131 (37)
4A20 — 03865 0.00844 0.1803 (9) 0.0000 (4) 0.05037 (26)
4A30 — 03865 0.00778 0.1717 (9) 0.0001 (4) 0.04913 (31)
4A40 —03851 0.00546 0.1416 (5) 0.0001 (2) 0.04608 (15)
5A10 —03611 0.01225 02114 (13) 0.0003 (4) 0.06125 (32)
5A20 —03611 0.00906 0.1799 (10) 0.0001 (4) 0.05767 (30)
5A30 — 03607 0.00824 0.1706 (13) 0.0000 (4) 0.05647 (40)
5A40 —0359 0.00509 0.1328 (5) 0.0002 (2) 0.05278 (18)
6A10 —03415 0.01298 02142 (6) 0.0003 (2) 0.06813 (21)
6A20 —03414 0.00956 0.1801 (4) 0.0002 (2) 0.06435 (25)
6A30 —03414 0.00803 0.1668 (5) 0.0002 (2) 0.06278 (24)
6A40 —0.3409 0.00542 0.1342 (4) 0.0000 (1) 0.05929 (14)
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the chiral effective theory, which is expected to be set by
the lighter resonances, such as the p. The scale u = 4w F is
instead the scale at which ChPT breaks down, which for large
enough N, is much higher than the scale at which new reso-
nances appear. In the context of large N,, it is therefore sen-
sible to choose a renormalization scale more closely related
to the physical cutoff that does not scale with N.. Keeping
the scale related to 4 F', however, has some advantages for
fitting, so we choose:

3
Ne
which has no leading dependence on N.. Using this scale,
the NLO predictions can be conveniently written as:

n? = —(@4nF)>?, (32)

Fr =F [1 —2¢log (%E) + 64n2€LF(M)] , (33)

Mz

m

1 N, )
_ 23 [1 + 1o <?g> 1287 sLMw)] . G4

where m = g, the bare twisted mass. Note that in this
expression B is bare, since the quark mass is also bare. The
value of the non-singlet pseudoscalar normalization constant,
Z p, is thus needed.

5.3 Fitting strategy

Some care is needed to perform the fits in Eqs. (33) and (34).
The complication comes from the fact that both coordinates,
(x,y) = (&, Fp) or (x,y) = (€, MJ% /o) have correlated
errors. In particular the Ordinary Least Square (OLS) method
is not appropriate, since it assumes no errors in x coordinate.
An alternative approach is the York Regression (YR) [80], in
which the x2 function is:

2 . Ty —1
X~ = Zn{%}n [Ri %4 R,':I , (35)
l
where we have defined the two-dimensional vectors:

R;i(8;) = (f (xi +68i) — yi, 8i), (36)

where f is the fitting function, and V is the x, y-covariance
matrix, estimated using bootstrap samples. In order to
account for autocorrelations, we vary the block-size of the
bootstrap samples. We find that blocks of ~ 20 units of Mon-
tecarlo are sufficient, and we do not observe a clear N, depen-
dence. We also estimate all the errors of the fit parameters
via bootstrap resampling.

5.4 Fit results at fixed N,

First we consider each N, separately and perform a fit of the
data points to extract F, Lr(u) and B, Ly (u). The NLO fit
results for these quantities are shown respectively in Tables 4
and 5. The N, dependence of the LECs is shown in Figs. 2

Table 4 NLO Fits for F; for separate values of N,

N, aF//N; LFp/Nc x*/dof
3 0.0088 (9) 0.0046 (14) 0.7/2
4 0.0155 (6) 0.0013 (3) 3.9/2
5 0.0175 (4) 0.0011 (2) 2.2/2
6 0.0188 (2) 0.0011 (1) 0.4/2
Table S Fits for M, for separate values of N,
Ne aB Ly /N x*/dof
3 1.564 (55) 0.00086 (10) 10.2/2
4 1.560 (37) 0.00064 (7) 1.472
5 1.648 (30) 0.00031 (6) 0.12
6 1.610 (20) 0.00031 (4) 9.5/2
r 0.006
0.025 + b af/VA. b Le/Ne
0.020 1 . F0.004
‘e,
aF
L .. Ly
]V(: +. N(:
0.015 1 = | 0.002
+ --------------- e '¢l -------- + ---------
0.0104 gerereeer
+ r0.000

Fig. 2 N.dependence of F'//N. (red) and L r (blue). The dotted lines
are the best fits to Egs. (5) and (7) excluding the data points at N, = 3

and 3. It can be seen that the scaling is well described by
leading and subleading N, corrections for N. = 4-6, while
there seems to be significant 1/N? corrections for N, = 3
in the case of F and L. In the case of B and L, errors are
larger and there is no sign of 1/ NZ. Interestingly, the data
suggest that the large N, limit of Ly, ~ 0.

5.5 Simultaneous chiral and N, fits

We now consider a global fit including several data points at
different values of N.. We first perform a SU (N )-NLO fit
to the subset N, = 4-6, including leading and subleading N,
corrections for all the LO and NLO LECs, as parametrized
in Eqgs. (5) and (7). We linearize the fit by considering the
following parametrization

_ PV g 10g (M
Fy —JE(FME) [1 2slog( 3 s)}

37
+ 6426 YN (Ne(FLR)® + (FLR)D).

@ Springer
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1.851 { aB b Ly/N.
,,,,,, L 0.0008
175
L 0.0004
B Ly,
aB | T - T‘I
165 | e ol ‘
T + ............. L 0.0000
L —0.0004

Fig. 3 N, dependence of B and L. The dotted lines are the best fits
to Egs. (5) and (7) including all points

M}T_zB B . 11 N,
m o <°+E>[ T Og<7é)] (38)

+2567% (Ne(BL® + (BLi)") |

where (FLp)© = FL'?, while (FLp)V = FLY +
LY Fy, and (BLy)©® = BoL') and (BLy)V = B, L) +
BoL).

Secondly, we consider the U(Ny)-NNLO expansion,
since we have checked that the U (N y)-NLO expressions fit
the data very poorly. We also linearize the fit by considering
the following fitting functions:

FF N.
Fr = \/ﬁc<Fo+ Vl + N_22> [1 — 2& log (?5)]

c c

+ 64726/ N, (NC(FLF)(O) 4 (FLF)(”>

2
+N2/N. (167125) KO, (39)
M2 Bl B 1 N,
Tx o (By+ 2+ 22 14+ —£10g (=
- <0+N¢.+N§ + 8 log| 56

1 a N, a
oaler i) (5 ()

125672 (NC(BLM)O + (BLM)(”)

2
— 64N> (16n2§> KO, (40)
where
M2
=N2—0 | 41
=N g F)y? “D

and Mg is given by the Witten—Veneziano formula for the
n’ mass valid in the large N, limit (see Eq. 13). We use the
result for the topological susceptibility from Ref. [59],

x =7.03(13) - 107, (42)

@ Springer

We convert to lattice units using the value of 7y/a” in the
previous section and substitute F — +/N.Fp, as extracted
from the global F fit. We find ap ~ 6.5, a value we fix in
the fit.

In summary we compare the following fits:

(1) Fit 1: SU(Ny)-NLO fit to Egs. (37) and (38) including
the data subset N, = 4-6.

(i) Fit2: U (N f)-NNLO expansion fit to Egs. (39) and (40)
including the full data set.

The results for the fitted parameters in the global fits are
shown in Tables 6 and 7, and the quality of the fits is shown
in Fig. 4a, b. We also quote in Table 8 the results for the NLO
LECs from these fits. Errors are large, but there are significant
correlations between the parameters as can be seen in Fig. 5.

5.6 Selected results

We will now quote some results that can be inferred from
our fits. We first focus on the decay constant in the chiral
limit. Using a = 0.0754(23) fm, we get from our fits at fixed
Ny =4

Fitl : —— — (67(3)—26(4)&) (3%)*MeV

1 .m_ N, o eV,

o F - Ny 86(37) .
Fit2 : = = (70(2) 22(5) T )(3%) MeV,

(43)

where the Ny dependence assumed is the expected one as
discussed in sec. 2. Note that no Ny dependence is assumed
in the 1/N? terms. The first error is just the one obtained
from the fits in Table 6 and the second error of 3% is the one
corresponding to the lattice spacing determination. For two-
and three-flavour QCD we get:

Fitl : FN=3Nr=2 = 86(3) MeV,
FN=3Nr=3 = 71(3) MeV,

Fit2 : FN=3Nr=2 = 81(7) MeV,
FNe=3Nr=3 = 68(7) MeV,

(44)

(45)

where we have taken into account the correlations between
the different terms in Eq. (43), and we have assumed no N ¢
dependence on the last term of the Fit 2. These results are in
perfect agreement with phenomenological determinations:

FNr=2 — 86.2(5) MeV in Ref. [81],

N;=3 : (46)
FY/= ~71.1 MeV in Ref. [82],
and also lattice results (see Ref. [45]). In addition, we can
compare to previous results in the large N, limit in the
quenched approximation:
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Table 6 Different fits for the decay constant as described in the text

Fit Fo F F (FLp)© (FLp)® kY x2/dof
1 0.0255 (12) —0.040 (6) - 47 (9.5)- 1076 48 (5.1)- 1075 - 0.79
2 0.0266 (9) ~0.034 (8) ~0.033 (14) —8(10)-10°° 5.6 (4.4)-107° 7.6 (6.4)- 1077 0.9
Table 7 Different fits for the - © o 0 5
meson mass as described in the Fit By B B, (BLu) (BLy) Ky x~/dof
text 1 170(11) —05(5) - ~0.00046 (29)  0.0056 (15) — 2.0
2 1.72 (7) —1.8(5) 1.8 (1.5) —0.00017 (25) 0.0066 (10) 1.309) - 1076 2.4
0.0704 A N.=3 A N.=3
S 469 Ny
0.065 s N.=5 a N.=5
o N.=6 147§ N =6
0.0604 2 SUM)NLO | | e SU(4) NLO
—— U(4) NNLO , 21 — u@) Lo
o 0055 aMy
atn B 4.0 A
0.050
3.8 1
0.045 |
3.6 1
0.040 |
3.4 1
0.035 A
0.'04 0.'06 0.'08 0.’10 0.'12 0114 0'416 0.I04 0.'06 O.IOS 0.'10 0112 0i14 0'.16
M2 M
1672F2 1672 F2

(a) Chiral fits for the decay constant.

(b) Chiral fits for the meson mass.

Fig. 4 Data and NLO/NNLO fits for the decay constant and meson mass. The central value is shown together with the bootstrap samples used for

fitting. The results include finite-volume corrections as in Eq. (30)

F
v/ Ne Ne—o00

— 56(5) MeV, Ref. [13]. 47)

This value is 20 away from the results in Eq. (43). This
discrepancy may be explained however with the lack of
non-perturbative normalization constant and discretization
effects, which in their case are of O (a).

Regarding the coupling, B = X/F?, we do not have a
non-perturbative value of Zp, up to this factor we get:

Fitl : = — 7, (1 70(11) — 0.12(12) Ny
1 N ~— . — V. —_— .
2= oF N,
X Ny 1.8(1.5)
Fit2 : — = Zp (1.72(7) = 0.4537) =L — =222
i2: =5 = Zp ( ) Ny - )

(48)

From Ref. [83], we can obtain the 1-loop perturbative result
for the normalization constant:

Zp(N. =3) =0.555, (49)

which at the order we are working is independent of N .
With this, we obtain for N, = 3:

Fith Np=4  — =5 =226(1)(7)" GeV,  (50)
Np=3 = o5 =2315)()" GeV. (51)

b
Np=2  — 5 =2353)(D) GeV. (52)

where the first error is systematic, the second comes from the
scale setting, and we omit any systematic errors regarding
the normalization constant. Combining these results with the
ones in Egs. (44) and (45), we obtain:

(53)
(54)

23Ny =2) =257(2)(9)" MeV,
S (Ny =3) =223(4)(8)" MeV,

which is compatible within 1o with the numbers quoted in
Ref. [45].We can also consider the ratio of condensates for

@ Springer
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Table 8 Values for the LECs

. (0) (¢Y] (0) (1)

from the fits in Tables 6 and 7 Fit Ly Ly Ly Ly,
1 1(4)-1074 23 (13)-10~* —20 (15) - 1072 29 (6) - 10~*
2 -3 (4)-107* 17 (18) - 1074 —-1(1)-107* 37 (7) - 107

131 By

1

\|/|/

F Jal Lo B J30

(a) Fit 1 for the decay constant. (b) Fit 1 for the mass.

N
TN
Z
N
o
®
.

A ‘ B

i 4

A (4 @

Fy ) F Lo B By 30
(¢) Fit 2 for the decay constant. (d) Fit 2 for the mass.
Fig. 5 Correlations between fitted parameters
Ny = 2 and Ny = 3, where the Zp factor drops (up to Regarding the NLO LEC for the decay constant, we get
subleading Ny dependence): from Fit 1:
Lp(w) N -

SN =2) 2R 10° =0.1(4) +0.63) 5L + 0N, (57)
————— = 1.49(10), (55) N Nc
X(Nr=3)

while for the NLO LEC for the mass, we can only give the

which shows good agreement with the prediction Ne scaling at Ny = 4:

Ny=4

EWNy=2) _ - Ly U9 g 022 + 2O L o). 69)
SN, =3 " 1.51(11) in Ref. [47]. (56) N, N,

@ Springer
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In the case of Fit 2, we can provide both results together:

LrUD 103 = —034) + 04 & O(N2),

N, N
L N (59)
M 03 = —0.1(1) + 0.9(2)7" +O(NI).

From Egs. 57 and 59, we can infer the N = 3, Ny = 3
results:

Fitl : Lp(p) = 2.1(3) - 1073,
Fit2 : Lp(p) = 0.4(2.1) - 1073, (60)
Ly(p) =2.4(8)-1073.

For N, = 3, Ny = 2, it is more common to quote 03 and {4:

_ ArF,
O3 =2log X | — 16(47)°L
MY

Ny=2,N.=3
M

3

(61)
- 4 Fy 2, Nyp=2,N.=3
£4:210g <W)+4(47T) LF .
This way, we obtain:
Fit 1: 44 = 5.1(3),
(62)

Fit 2: 3 = 0.4(1.6), {4 =4.1(1.1).
\_Ve stress that U (!Vf) 3 in fit 2 is not the same as the standard
£3 in SU(Ny). £4 agrees instead at 1-20 with the results
quoted in Ref. [45].

5.7 Comments on systematics

The most important systematic uncertainty comes from the
finite lattice spacing. Even though a continuum extrapolation
would be needed to quantify this error properly, we can get
an estimate by comparing the pion mass made of different
combination of sea and valence quarks. In particular, Chiral
Perturbation Theory in the mixed-action setup predicts that
the chiral logs for F;; depend upon the mixed pion mass [84]:

pmixed LOCWL 5 pon® 4 m®), (63)

where m" is the renormalized quark mass in the valence sec-
tor and m® in the sea action. We have measured this mixed
pion in one ensemble:

Ensemble 3A10 — aM™*¢ = (0.2201(26), (64)

obtaining a result which is compatible within errors with
both, the sea and valence quark pions.

A different estimate comes from the dependence on ¢y, in
the valence sector. We have recomputed the decay constant
for ¢5yy = 0 in the 3A10 ensemble, obtaining [Fr].,,=0 =

0.04303(40), within 2% of the value at the nominal cgy.
The effects of a change in c;,, are in principle O (a?), which
can be estimated at ~ 2% for this observable. This concerns
however only the charged meson sector, since the neutral pion
is known to have higher discretization effects with twisted
mass. That issue is out of the scope of this work, and it will
be addressed in future publications. in N, We end this section
with a last word on the chiral fits. We find that our data is well
described by ChPT at the order we worked. Still, we cannot
exclude that higher order corrections might be relevant in the
range of masses we are considering. A robust study on the
convergence of ChPT would require simulations at lighter
quark masses and a proper continuum extrapolation.

6 Conclusion and outlook

In this work we presented the first lattice determination using
dynamical fermions of the N, scaling of the couplings in the
chiral Lagrangian that contribute to the meson masses and
decay constants (see Egs. (43), (48) and Table 8). We have
been able to disentangle the leading and subleading terms and
we found that the subleading contributions are typically non
negligible. In fact, we find that the value for Lj; at N, = 3
seems to be dominated by the subleading corrections, and
the fit result suggests an accidental cancellation of 2Lg — L5
in the large N, limit.

From our chiral fits and theoretical expectations, we have
been able to infer the values of the couplings for theories
with different numbers of flavours, Ny = 2 and Ny = 3
at N. = 3. We find that our results nicely agree with those
in the literature regarding L, Ly and F (see for exam-
ple Ref. [45] for a summary of results). For B we need to
improve our determination, including a non-perturbatively
determined renormalization factor. On the other hand, as long
as this factor has a small Ny dependence, we can estimate
the ratio of B and the chiral condensate for Ny = 2 and
Ny = 3. We find excellent agreement with the prediction of
paramagnetic suppressions of Refs. [46,47].

We would like to stress that the results presented in this
paper are complementary to similar studies that can be per-
formed in reduced models [16-20] or the quenched approxi-
mations at large N, [13], since both of these approaches must
yield the leading order result as N, — oo. Given the strong
correlations presents in our results (see Fig. 5), a precise
determination of the dominant N, term would significantly
improve the determination of the subleading N, corrections,
and hence the determination of the physical values at N, = 3.
We are willing to provide the bootstrap samples if requested.

As for the future, we would like to mention that our ensem-
bles have a big potential to study other physical observables.
We plan to use them to analyse the scaling of other quanti-
ties, such as the K — 7 matrix elements (see [29,62] for

@ Springer
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previous results). We also believe that the study of scattering
amplitudes is a relevant quantity of study at large N.: on one
hand quantities such as the I = 2 w scattering length give
access to LECs of the chiral Lagrangian; on the other hand the
study of the behaviour resonances at large N, is interesting,
as it may shed light about their nature [10,11,85,86].
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I =3 Three-Pion Scattering Amplitude from Lattice QCD
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We analyze the spectrum of two- and three-pion states of maximal isospin obtained recently for
isosymmetric QCD with pion mass M ~ 200 MeV in Horz and Hanlon, [Phys. Rev. Lett. 123, 142002
(2019)]. Using the relativistic three-particle quantization condition, we find ~2¢ evidence for a nonzero
value for the contact part of the 3z (I = 3) scattering amplitude. We also compare our results to leading-
order chiral perturbation theory. We find good agreement at threshold and some tension in the energy
dependent part of the 3z scattering amplitude. We also find that the 2z (I = 2) spectrum is fit well by an
s-wave phase shift that incorporates the expected Adler zero.

DOI: 10.1103/PhysRevLett.124.032001

Introduction.—Lattice QCD (LQCD) provides a
powerful (if indirect) tool for ab initio calculations of
strong-interaction scattering amplitudes. The formalism for
determining two-particle amplitudes is well understood
[1-12], and there has been enormous progress in its
implementation in recent years [13-32] (see Ref. [33] for
areview). The present frontier is the determination of three-
particle scattering amplitudes and related decay amplitudes.
LQCD calculations promise access to three-particle scatter-
ing processes that are difficult or impossible to access
experimentally. Examples of important applications are
understanding properties of resonances with significant
three-particle branching ratios (including the Roper reso-
nance [34], and many of the X, Y, and Z resonances [35]),
determining the three-nucleon interaction (important for
large nuclei and neutron star properties), predicting weak
decays to three particles (e.g., K — 3x), and calculating the
3z contribution to the hadronic-vacuum polarization that
enters into the prediction of muonic g — 2 [36].

Three-particle amplitudes are determined using LQCD
by calculating the energies of two- and three-particle states
in a finite volume [37,38]. The challenges to carrying this
out are twofold. On the one hand, the calculation of spectral
levels becomes more challenging as the number of particles
increases. On the other, one must develop a theoretical
formalism relating the spectrum to scattering amplitudes.
Significant progress has recently been achieved in both
directions, with energies well above the three-particle
threshold being successfully measured, and a formalism
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for three identical (pseudo)scalar particles available. The
formalism has been developed and implemented following
three approaches: generic relativistic effective field theory
(RFT) [39-45], nonrelativistic effective field theory
[46—49], and (relativistic) finite volume unitarity (FVU)
[50,51] (see, also, Refs. [52,53] and Ref. [54] for a review).
To date, only the RFT formalism has been explicitly
worked out including higher partial waves. The application
to LQCD results has, so far, been restricted to the energy of
the three-particle ground state, either using the threshold
expansion [55-57], or, more recently, the FVU approach
for 37" [51].

Recently, precise results were presented for the spectrum
of 27" and 3zt states in O(a)-improved isosymmetric
QCD with pions having close to physical mass, M ~
200 MeV [58]. These were obtained in a cubic box of
length L with ML = 4.2, for several values of the total

momentum P = (2r/L)d with d € Z3, and for several
irreducible representations (irreps) of the corresponding
symmetry groups. Isospin symmetry ensures that G parity
is exactly conserved and, thus, that the 2z and 3z sectors
are decoupled. In total, sixteen 27" levels and eleven
3zt levels were obtained below the respective inelastic
thresholds at E; =4M and E* =5M, Here, E; and

E* = VE*-P* are the corresponding center-of-mass
energies, with E the total three-particle energy.

The purpose of this Letter is to perform a global analysis
of the spectra of Ref. [58] using the RFT formalism and
determine the underlying 3z interaction. This breaks new
ground for an analysis of the three-particle spectrum in
several ways: we use multiple excited states, in both trivial
and nontrivial irreps, including results from moving frames.
Therefore, this analysis serves as a testing ground for the
utility of the three-particle formalism in an almost physical
example. An additional appealing feature is that the size of

Published by the American Physical Society
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the 377" interaction can be calculated using chiral pertur-
bation theory (yPT). We present the leading order (LO)
prediction here.

After this Letter was made public, an independent study
of the results of Ref. [58], using the FVU approach,
appeared [59].

Formalism and implementation.—All approaches to
determining three-particle scattering amplitudes using
LQCD proceed in two steps, which we outline here. In
the first step, one uses a quantization condition (QC), which
predicts the finite-volume spectrum in terms of an inter-
mediate infinite-volume three-particle scattering quantity.
In the RFT approach, the QC for identical, spinless particles
with a G-parity-like Z, symmetry takes the form (up to
corrections of O(1%) that are exponentially suppressed in
ML) [39]

det [F3(E, P,L)™" + Kar3(E")] = 0. (1)

Here, F; and Ky 3 are matrices in a space describing three
on-shell particles in finite volume. They have indices of
angular momentum of the interacting pair, £, m, and finite-
volume momentum of the spectator particle, k. F3 depends
on the two-particle scattering amplitude and on known
geometric functions, while Ky 5 is the three-particle
scattering quantity referred to above. It is quasilocal, real,
and free of singularities related to three-particle threshold
(and so “divergence-free”, i.e., df), thus, playing a similar
role to the two-particle K matrix C, in two-particle
scattering. It is, however, unphysical, as it depends on
an ultraviolet (UV) cutoff. Given prior knowledge of /X,
and a parametrization of /Cy; 3, the energies of finite-volume
states are determined by the vanishing of the determinant in
Eq. (1). The parameters in Ky 5 are then adjusted to fit
to the numerically determined spectrum. Examples on
how to numerically solve Eq. (1) have been presented in
Refs. [42,44,45].

The second step requires solving infinite-volume integral
equations in order to relate Ky 3 to the three-particle
scattering amplitude M;3. In fact, as explained below, it
is a divergence-free version of the latter, denoted Mg 3,
that is most useful. The equations relating g3 to Myes
were derived in Ref. [40], and solved in Ref. [42].

The parametrizations we use for Ky and /Cy 5 are based
on an expansion about two- and three-particle thresholds.
For IC,, this leads to the standard effective range expansion
(ERE), recalled below. At linear order in this expansion
only s-wave interactions are nonvanishing, with d-wave
interactions first entering at quadratic order (p-wave
interactions are forbidden by Bose symmetry). For Ky 3,
the expansion is in powers of A = (E*2 —9M?)/(9M?),
and was developed in Refs. [42,44] based on the Lorentz
and particle-interchange invariance of /Cy; 3. Through linear
order in A, Ky 5 is given by

_ foiso  __ g-is0,0 iso, 1
Kars = Kits = Kars + Kars A (2)

where ICE“&O and ICi;ﬁf; are constants. There is no depend-
ence on the momenta of the three particles at this order;
this corresponds to a contact interaction, and leads to the
designation “isotropic” (iso). Momentum dependence first
enters at O(A?).

In our main analysis, we keep only the s-wave two-
particle interaction and the isotropic terms in Eq. (2). With
these approximations, the QC of Eq. (1) reduces to a finite
matrix equation that can be solved by straightforward
numerical methods. Previous implementations have con-

sidered only the three-particle rest frame, P=0 [42,44.,45]
(see, also, Ref. [48,51]). Here, we have extended the
implementation to moving frames, so that we can use all
the results obtained by Ref. [58].

In the Supplemental Material [60], we provide further
details of the implementation for a general frame, as well as
additional details concerning the fits and error estimates
described in the remainder of this Letter.

XPT prediction for Ky 5 and Mgs3.—Mgyes and Ky 3
have not previously been calculated in yPT, so here, we
present the LO result. The LO Lagrangian in the isosym-
metric two-flavor theory is [61,62]

F? M*F?
= Ttr(aﬂ Uoru') +

0 \/iﬂ”L >
\/57[— -9 ’

L

- with

tr(U+U"),

U=e?" and ¢ = < (3)

Here, F is the decay constant in the chiral limit, normalized
such that F, =92.4 MeV. We note that, at this order,
F = F,. Expanding in powers of the pion fields, £ =
Log+ La, + L + -+, we need only the 4z and 67
vertices.

From L,,, we obtain the standard LO result for the 27"
scattering amplitude [63],

2M2 _ E*Z
My =2 EE )

which displays the well-known Adler zero below threshold
at E5?> = 2M? [64]. Given the ERE parametrization of the
s-wave phase shift,

1 rq 3 4
geotdy(q) =——+—+Prig-+---, (5)
ap 2

where ¢> = E4?/4 — M?, one can infer from Eq. (4) the LO
results for the scattering length and effective range

2

Mao = W and M2ra0 =3. (6)

032001-2
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FIG. 1. LO contributions to the three-particle scattering am-
plitude M5. Momentum assignments must be symmetrized.

The 3z% amplitude M3 is given at LO by the diagrams
of Fig. 1. As is well known, M3 diverges for certain
external momenta, as the propagator in Fig. 1(a) can go on
shell. This motivated the introduction of a divergence-free
amplitude in Ref. [39]

Mgz =Mz =D, (7)

D= 5{-Mysn) Ml | 0. (9

where 51, = (p1 +p2)*, s = (ki +k)% b=pi+
P> — k3, and S indicates symmetrization over momentum
assignments. D is defined to have the same divergences as
Mas, so that their difference is finite. At LO in yPT, only the
LO term in D contributes, and we find

4

M
M*Mgyss = F
— (16xMag)*(18 + 27), 9)

(18 +27A)

a result that is real and isotropic. As a side result, we have
also calculated the related threshold amplitude that enters
into the 1/L expansion of the three-particle energy [65],
finding My, = 27TM?/F*.

The last step is to relate Mgys3 to Kye 3. We find these
quantities to be equal at LO

Ktz = Mges[1 + O(M?/F?)], (10)

so that [Cy 5 is also given by Eq. (9). This implies that /Cy 3
is scheme independent at LO in yPT. We can also quantify
the expected size of the corrections, finding them to range
between 10% and 50%, with the larger error applying to the
term linear in A.

Fitting the two-particle spectrum.—Determining the
two-particle phase shift is an essential step, as it enters
into the three-particle QC. In particular, we need a para-
metrization valid below threshold, as the two-particle
momentum in the three-particle QC takes values in the
range ¢°/M? € [-1,3]. We extract information on the
s-wave phase shift using a form of the two-particle QC
that holds in all frames for those irreps that couple to J = 0.
We use the bootstrap samples provided in Ref. [58] to
determine statistical errors, so that correlations are
accounted for properly.

We use a parametrization of the phase shift (adapted
from that of Ref. [66]; see, also, Ref. [67]) that includes the
Adler zero predicted by yPT, as well as the kinematical
factor E7

2 4
q q
(11)

We either set z3 = M2, the LO value, or leave it as a free
parameter. By and B; are related in a simple way to a
and r. Previous lattice studies have used the ERE, Eq. (5)
(see, e.g., Refs. [68—70]), but this has the disadvantage, due
to the Adler zero, of having a radius of convergence of
|¢*| = |M?* = 23/2| ~ M?/2. In particular, the ERE gives
results for —1 < g?/M? < 0 that are substantially different

q EM
L cots =2
M o(@) E? —273

TABLE I. Fits of the two-particle spectrum to the Adler-zero form of gcoté,, Eq. (11).

Fit B, B, B, 2/ M? y2/d.of. May M?ray,
1 -11.2(7) -2.1(3) . 1 (fixed) 12.13/(11-2) 0.089(6) 2.63(8)
2 —10.4(9) —3.7(1.0) 0.5(3) 1 (fixed) 9.75/(11-3) 0.096(8) 2.3(3)
3 —11.7(1.8) -2.0(4) 0.94(22) 12.06/(11-3) 0.091(9) 2.4(9)
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FIG. 2. Values of gcotd, obtained from the two-particle
spectrum of Ref. [58] using the two-particle QC, together with
various fits.

from the Adler-zero form. This is related to the fact that
in (11), By and B, are both of next-to-leading order (NLO) in
xPT, in contrast to the ERE form where r and P are both
nonzero at LO, as can be seen from the explicit yPT
expressions given in Ref. [68]. The formal radius of
convergence of our expression (11) is |¢*| = M?, due to
the left-hand cut, but following common practice, we ignore
this and use it up to g>/M? = 3. We find that fitting with the
restriction |g%|/M? < 1 has only a small impact on the
resulting parameters. We have also checked that fits using
the ERE form provide a worse description of the data.

The results of several fits are listed in Table I and shown
in Fig. 2. All fits give reasonable values of y? divided by the
number of degrees of freedom, )(2 /d.o.f., and yield values
for M?ray close to the predicted LO value of 3. Using the
value of F obtained from the same lattice configurations in
Ref. [71,72], the LO chiral prediction from Eq. (6) is
May = 0.0938(12), and this is also in good agreement with
the results of the fits. Overall, we conclude that the
spectrum from Ref. [58] confirms the expectations from
xPT. We choose the minimal fit 1 as our standard choice
since B, is poorly determined (fit 2) and the Adler-zero
position is consistent with the LO result if allowed to float
(fit 3).

We have performed a similar fit to the five energy levels
from Ref. [58] which are sensitive only to the d-wave
amplitude. Despite very small shifts from the free energies,
we find a 30 signal for the d-wave scattering length,
(Ma,)> = 0.0006(2). The smallness of this result is

2500
2 iso
M ICdfy3

2000 A

1500 4

1000 1

QJj/T [l

01 t —— LOYPT
— Linear Fit
Constant Fit

—500

00 02 04 06 08 10 12 14 16
A

FIG. 3. Results for M2Ki; from individual three-particle
levels, using method 1, together with constant and linear fits,
and the LO prediction of yPT.

qualitatively consistent with the fact that this is a NLO
effect in yPT, and justifies our neglect of d waves in the
three-particle analysis.

Fitting the three-particle spectrum.—Now, we use the
three-particle spectrum to determine ICiff"j. Eight levels are
sensitive to lCiff‘g, while three are in irreps only sensitive to
two-particle interactions. Since all levels are correlated, a
global fit to two- and three-particle spectra is needed to
properly estimate errors.

Before presenting the global fits, however, we use an
approach (“method 17) that allows a separate determination
of ICff& for each of the eight levels sensitive to this
parameter. Within each bootstrap sample, we fit the two-
particle levels to the fit 1 Adler-zero form described above,
and then adjust ICESES so that the three-particle QC repro-
duces the energy of the level under consideration. The
results are shown in Fig. 3. The values of Kii; are all
positive, and a constant fit yields M2KCLe; = 560(270)
with y?/d.o.f. =8.5/7. The LO yPT result (given by
M?ICe5 = 360 + 540A, taking May from fit 1) is reason-
ably consistent with the linear fit, as shown. This indicates
that a significant result for lCiff% of the expected size may be
obtainable.

This fit does not include three-particle energy levels in
irreps sensitive only to &y. These, however, can be used as a
consistency check. We find good agreement between the
data and the energies predicted by the QC.

TABLE II. Global fits to the two- and three-particle spectrum using the two- and three-particle QCs.

Fit B, B, 3/M? M2ICSY MY 72/d.of. Ma, M?ra,
4 —11.1(7) -2.3(3) 1 (fixed) 270(160) 27.06/(22-3) 0.090(6) 2.59(8)
5 —11.1(7) —2.4(3) 1 (fixed) 550(330) —280(290) 26.04/(22-4) 0.090(5) 2.57(8)

032001-4
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FIG. A4. One, two, and three-sigma confidence intervals for
leCiff% for the two different global fits (4 and 5).

To establish the true significance of the results for i,
we perform global fits to the eleven two-particle and eleven
three-particle levels that depend on &, and/or Ki52;. We do
so both for constant and linear ICfiSf‘fS. The results are
collected in Table II. Fit 4 finds a value for ICLS& that
has around 1.8¢ statistical significance and also gives
values for B, and B; that are consistent with those from
fits 1-3 above and with the LO yPT predictions. The p
value of the fit is p = 0.103.

In fit 5, we try a linear ansatz for K5, and find that the
current dataset of Ref. [58] is insufficient for a separate
extraction of both constant and linear terms. We note,
however, that, even in this fit, the scenario IC(ift% =01is
excluded at ~2¢.

In Fig. 4, we present a summary of the errors resulting
from the global fits. We also include the value from LO
¥PT, along with an estimate of the NLO corrections. As can
be seen, the constant term agrees well with the prediction,
whereas the larger disagreement for the linear term is only
of marginal significance given the large uncertainty in the
xPT prediction.

One concern with our global fits is that we are using the
forms for K, and K beyond their radii of convergence.
For ICiff‘g, we do not know the radius of convergence, but a
reasonable estimate is that one should use levels only with
|A] < 1. To check the importance of this issue, we have
repeated the global fits imposing g>/M? < 1 and A < 1, so
that the fit includes only five 27" and five 3z levels. We
find fit parameters that are consistent with those in Table I,
but with much larger errors. For example, the result from
the equivalent of fit 4 gives MKy = 610(350).

We close by commenting on sources of systematic
errors. The results of Ref. [58] are subject to discretization
errors, but these are of O(a?), and likely small compared to
the statistical errors from [58]. The quantization condition

itself neglects exponentially suppressed corrections, but
these are numerically small (e ~ 1%) compared to our
final statistical error. Errors from truncation of the threshold
expansion for Ky and Ky ; are also present but harder
to estimate.

Conclusions.—We have presented statistical evidence for
a nonzero 3z contact interaction, obtained by analyzing
the spectrum of three pion states in isosymmetric QCD with
M ~ 200 MeV obtained in Ref. [58]. This illustrates the
utility of the three-particle quantization condition. It also
emphasizes the need for a relativistic formalism, since most
of the spectral levels used here are in the relativistic regime.
It gives an example where lattice methods can provide
results for scattering quantities that are not directly acces-
sible to experiment.

We expect that forthcoming generalizations to the
formalism (to incorporate nondegenerate particles with
spin, etc.), combined with advances in the methods of
lattice QCD (to allow the accurate determination of the
spectrum in an increasing array of systems), will allow
generalization of the present results to resonant three-
particle systems in the next few years.
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Abstract We study the scaling of kaon decay amplitudes
with the number of colours, N, in a theory with four degen-
erate flavours, Ny = 4. In this scenario, two current-current
operators, Qi, mediate AS = 1 transitions, such as the
two isospin amplitudes of non-leptonic kaon decays for
K — (wm)j=02, Ap and A;. In particular, we concentrate
on the simpler K — 7 amplitudes, A*, mediated by these
two operators. A diagrammatic analysis of the large-N, scal-
ing of these observables is presented, which demonstrates the
anticorrelation of the leading O(1/N.) and O(N¢ /N, 3) cor-
rections in both amplitudes. Using our new Ny = 4 and pre-
vious quenched data, we confirm this expectation and show
that these corrections are naturally large and may be at the
origin of the Al = 1/2 rule. The evidence for the latter is
indirect, based on the matching of the amplitudes to their
prediction in Chiral Perturbation Theory, from which the LO
low-energy couplings of the chiral weak Hamiltonian, g,
can be determined. A NLO estimate of the K — (7w7);=0.2
isospin amplitudes can then be derived, which is in good
agreement with the experimental value.

1 Introduction

Significant progress has been achieved recently in the lat-
tice determination of K — (wm);=0 2 amplitudes and the
CP violating observable €’/¢ [1-3]. In particular, a large
enhancement of the / = 0 amplitude over the I = 2 one
has been reported, albeit with too large uncertainty to be
considered a satisfactory first-principles determination of the
Al = 1/2 rule.!

In Ref. [5] an analysis of the different contributions was
made and it was suggested that the main source of the
enhancement lies in a strong cancellation of the isospin-two

! While this paper was under revision, a significantly improved result
at the physical point was made public [4].

2 e-mail: fernando.romero@uv.es (corresponding author)

amplitude, as a result of a negative relative sign between
the colour-connected and colour-disconnected contractions,
with the two contributions adding up in the isospin-zero chan-
nel. In Refs. [6-8] we proposed to study the N. dependence
of the amplitudes, because the two contributions scale differ-
ently in large N, and therefore can be rigorously disentangled
in this limit. The enhancement, if explained in this fashion,
seems to require unnaturally large-N, corrections with the
appropriate sign.

Interestingly, the large-N, limit of QCD [9,10] has also
inspired several phenomenological determinations of these
and related observables [11-19] (for a recent discussion
see [20-22]). It is well known, however, that the leading-
order large-N. prediction for the ratio of the amplitudes,
limy, 00 Ag/A2 = V2,ie.,n0 Al = 1/2 rule whatsoever.
The subleading N, corrections should therefore be very large,
which could be consistent with the previous hypothesis, but
casts doubts on the phenomenological approaches that make
use of large-N, inspired approximations: if we know that
there must be significant large-N, corrections to explain the
Al = 1/2, why should we trust approximations that neglect
subleading N, terms?

The N, dependence can be studied from first-principles
in lattice QCD by simply simulating at different number of
colours [23-27]. In our previous work [6-8] we explored
the related weak amplitudes K — 7 and K — K in the
quenched approximation, and found no unnaturally large
subleading N, corrections, although we confirmed the exact
anticorrelation of these corrections in the two isospin chan-
nels. The quenched approximation introduces however an
uncontrollable systematic error, which in practice is often
found to be relatively small in most quantities. Since we are
interested in subleading N, corrections, quenching effects
are expected to enter at this order of the N, expansion
and therefore need to be included. The main goal of this
paper is to extend our previous study beyond the quenched
approximation, which will allow us to determine from first-
principles the subleading N, corrections to the Al = 1/2

@ Springer
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rule, in a simplified setting with four degenerate flavours,
my, =mg = mg = me.

This paper is organized as follows: in Sect. 2 we discuss
our strategy for the lattice study of K — 7 transitions; in
Sect. 3 we discuss the N, scaling of the amplitudes; Sect. 4
deals with the necessary results in Chiral Perturbation Theory
to connect to K — m; Sect. 5 describes the setup of our
lattice computations; in Sect. 6 we discuss our physics results;
and we conclude in Sect. 7.

2 Strategy

The Operator Product Expansion allows to represent CP-
conserving AS = 1 transitions by an effective Hamilto-
nian of four-fermion operators. At the electroweak scale,
n ~ My, we can neglect all quark masses, and the weak
Hamiltonian takes the simple form:

2
]‘Ivész1 = /d4x ng Vl;ksvud Z kg(/“’/) QU(X7 w), (1
4MW o—t

where g‘zV = 42GgM EV Only two four-quark operators of
dimension six can appear with the correct symmetry prop-
erties under the flavour symmetry group SU(4)r, x SU(4)R,
namely

0F(x, ) = Z35 () (T (T4 () + T3 () T4 (x) .

—[u < c]),

where J,, is the left-handed current J;/ = (¥'y, P_y/); i, j
are quark flavour indices; P+ = %(1 =+ y5); and parentheses
around quark bilinears indicate that they are traced? over spin
and colour. Z 5 (w) is the renormalization constant of the bare
operator Q¥ (x) computed in some regularization scheme as,
for example, the lattice. There are other operators that could
mix with those above: however, they vanish in the limit of
equal up and charm masses, that we refer to as the GIM limit
[28]. From the lattice point of view the GIM limit is very
advantageous, not only for the simpler operator mixing, but
also because no closed quark propagator contributes to the
amplitudes. Even though the presence of a heavy charm was
argued long ago to be at the origin of the Al = 1/2 rule
via the mixing with penguin operators [29], the relevance
of penguin contributions has been found to be small in non-
perturbative studies [1,30].> If we want to test the primary
mechanism of the A/ = 1/2 enhancement proposed in [5],
the GIM limit may be good enough.

2 This basis can be related to the more traditional one by means of Fierz
identities.

3 The dominance of current-current operators over penguin contribu-
tions was also pointed out in the Dual QCD approach [11].

@ Springer

The operators Q7 (u) are renormalized at a scale u in
some renormalization scheme, being their u dependence
exactly cancelled by that of the Wilson coefficients k% ().
It is also possible to define renormalization group invari-
ant (RGI) operators, which are defined by cancelling their
dependence, as derived from the Callan-Symanzik equations,

0° =& (u)0° (W), 3)

with

i
o Neg*Hw)\
Cw=\37;

o o2
. {_/gw N [y @ _ VL” W

0 B bog
where g(u) is the running coupling and 8(g) = —g°> > bn
g, v (g) = —g? >on y,‘,’gzn are the S-function and the
four-fermion operator anomalous dimension, respectively.
The one- and two-loop coefficients of the S-function, and
the one-loop coefficient of the anomalous dimensions, are
renormalization scheme-independent. Their values for the

theory with Ny flavours are [31-36]

PR R L PV 5)
OT @2 |33

1 [34 13 1
by=——|=N>—(=N.——|Ns|, 6
: (471)4[3 ¢ (3 ¢ N(.> f] ©)
and for the operators Qi [37,38]

1 6
+

= |+6— —|. 7

% (4n>2[ N] @

The normalization of ¢? (1) coincides with the most popular
one for N, = 3, whilst using the 't Hooft coupling A =
N.g%(u) in the first factor instead of the usual coupling, so
that the large-N, limit is well-defined.

Defining similarly an RGI Wilson coefficient

I’ég’ — k()

¢ ()
we can rewrite the Hamiltonian in terms of RGI quantities,
which no longer depend on the scale, so that

ro A0 kU(M ) N Ao
ko 07 = [TMH [¢7 () 0% ()]

= k7 (Mw) U (1, Mw) Q% (w),

where (1 is a convenient renormalization scale for the non-
perturbative computation of matrix elements of QF, which
will be later set to the inverse lattice scale a~!. The fac-
tor U% (0, My) = ¢° (u)/¢° (My), therefore, measures the
running of the renormalized operator between the scales u
and My . Ideally one would like to evaluate this factor non-
perturbatively, as has been done for N, = 3 [39,40], but

®)
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such a challenging endeavour is beyond the scope of this
paper. We will instead use the perturbative results at two
loops in the RI scheme [41,42] to evaluate the Wilson coeffi-
cients k% (My ), the running factors U (i, My ), and ¢(w).
This implies relying on perturbation theory at scales above
w > a~' ~2.6GeV. Similarly we will also use lattice per-
turbation theory to estimate the renormalization factors Z 3,
that are known to one loop* [43,44].

We are interested in considering K — 7 amplitudes in
the two isospin channels, that we can extract from ratios of
three-point correlators

C3i(y, Z,X)

(10)
= <Pdu(y)[0suud(z) :I: OSduu(Z)]PMS(.X)>,

where

PU(x) =9 0ysy! (x), O =gl y i gty (1)
and the two-point correlators

C(y.2) = (PU (A @), (12)

with Af (x) = ¥/ () yoysy/ (x).
From these correlators we define the bare lattice ratios:
C5 (.2, )
Z0—X0—> 00 Zx,y Czu (y, Z)Clzls (x, Z)

Yo—z0—>00

(13)

which are proportional to the K — 7 matrix elements with
a convenient normalization. The renormalization factors for
these ratios, Z=~, are obtained from the ratio of the renormal-
ization factors of the four fermion operators, and the current
normalization factors that appear in the denominator.

From the renormalized ratios

R° =Z°R°, (14)
we can obtain the RGI normalized ratios
R° =£~(a—1) ZOR°, (15)

and the normalized® K — 7 amplitudes, written either in
terms of the RGI or the renormalized ratios, as

A% = k" R% = k° (Mw)U® (@', My)RC. (16)

4 The NLO running of the coupling and four-quark operators have been
performed fully in the Ny = 4 theory, using the value of Agg(Ny = 4)
by the ALPHA Collaboration in Ref. [42]. We have checked that the
effect of running from Ny = 5 from My to the b quark mass, and
then with Ny = 4 down to the lattice matching scale amounts to few
per mille effects on the running factors. This is completely negligible
within the uncertainty of our final results.

> Note that our normalization in Eq. (13) cancels two powers of the
decay constant in the physical amplitudes.

Table1 Perturbative renormalization constants and RG running factors
for the ensembles with Ny = 4. Z¢ (a*l) have been computed at
one loop in tadpole-improved perturbation theory using the results in
[43,44], whereas U® and k° are computed using the two-loop MS
coupling. The star labels the simulation points with finer lattice spacing,
a ~ 0.065 fm. In the evaluation of ¢” (a~!) we have used Agg(N; =
4) =298 MeV from Ref. [45]

Ne  k*Mw) U@ ' My)  Z'@) @)

3 1.041 0.843 0.841 1.456

3 1.041 0.852 0.844 1.471
1.032 0.877 0.884 1.367
1.026 0.899 0.909 1.302
1.022 0.914 0.926 1.255

N, k= (Mw) U™ (a=!, My) Z=@™h & @™h

3 0.918 1.433 1.320 0.488

3 0.918 1.400 1.314 0.476
0.947 1.254 1.195 0.602

5 0.961 1.179 1.137 0.679
0.970 1.137 1.104 0.731

All the required factors to reconstruct the physical amplitudes
are summarized in Table 1 for Ny = 4 (this work), and in
Table 2 for the quenched case [6,7].

3 large-N, scaling of K — m amplitudes
3.1 Diagrammatic expansion of A*

A simple diagrammatic analysis of the three and two point
correlators of Egs. (10, 12) shows a clear pattern of the large-
N, scaling, and demonstrates the expected anticorrelation of
the leading large-N, corrections of the A amplitudes.

After integration over fermion fields, the correlators are
obtained from the gauge averages of the colour-disconnected
and colour-connected contractions of Fig. 1, corresponding
to the operator insertion O**“¢ and 0*9"*  respectively.

In Figs. 2 and 3 we show the scaling with N, of the lowest-
order diagrams contributing to these correlators. The leading
N, dependence of both the renormalized and bare correlators
are therefore of the form:

(PYIITy = N, (a+bFC> +...,

N.
<PdMOsMMdPuS>: (Pdu]ﬁd><Pqu;:s>+c+dN_f+s

C

N+
<Pduosduupus> — N(,- ( + fN—f> +..., (17)

c

where all the coefficients a — f in these expressions (each
of them related to one or more diagrams in Figs. 2 and 3)

@ Springer



638 Page 4 of 12

Eur. Phys. J. C (2020) 80:638

Table2 Perturbative renormalization constants and RG running factors
for the runs with Ny = 0 of Refs. [6,7]. Z7 (a~1) have been computed
at one loop in tadpole-improved perturbation theory using the results
in [43,44], whereas U° and k° are computed using the two-loop MS
coupling. Note that the values of Z° (¢~") differ from those in Refs.
[6,7], where bare lattice perturbation theory was used. Furthermore,
the values of k% and U? also supersede the ones in Refs. [6,7]. In the
evaluation of ¢ (a~!) we have used Ags as described in Ref. [6]

Ne K+ (Mw) Ut Mw) Zt@™h ¢ta™
3 1.029 0.877 0.956 1.412
4 1.025 0.897 0.963 1.340
5 1.021 0.911 0.969 1.285
6 1.018 0.923 0.973 1.243
7 1.016 0.932 0.976 1.212
8 1.014 0.939 0.979 1.187
17 1.007 0.969 0.989 1.091
N k™ (Mw) U~(a™", Mw) Z @™ &@h
3 0.942 1.312 1.087 0.511
4 0.959 1.206 1.061 0.619
5 0.969 1.153 1.047 0.690
6 0.975 1.121 1.038 0.740
7 0.979 1.101 1.032 0.776
8 0.982 1.086 1.027 0.803
17 0.992 1.037 1.012 0.907

S ORES S

Fig. 1 Left diagram: O (x) insertion or colour-disconnected con-
tribution to C3i in Eq. (10). Right diagram: O*?"* (x) insertion or colour-
connected contribution to C;E in Eq. (10)

@@ o)
@ @ O(N.Ny)
(©) oY)
(d) ()

Fig. 2 N¢, Ny scaling of various contributions to the colour-
disconnected contraction, corresponding to the 0*““4 (x) insertion

@ Springer

O(N.)
(e)

O(Ne)
(f) O (Ny)

Fig. 3 N, N scaling of various contributions to the colour-connected
contraction, corresponding to the O*¢“* (x) insertion

are independent of N. and Ny. These relations imply that
the leading N, corrections in the & correlation functions of
Eq. (10) are of O(N 3, N¢N¢), but factorizable. On the other
hand, the leading non-factorizable corrections are of O(N,)
and O(Ny), and cancel in the sum of the & correlators:

N .
C{ +C; = disconnected + ONY +0 (N_f> +onn,
Cf —C5 = OWNe) + OWNf) + -+ (18)

They are therefore fully anticorrelated in the + correla-
tors. Importantly, the anticorrelated terms include the leading
fermion loop corrections, O(N ). These relations also imply
the following scaling of the renormalization factors:

Z++Z_ 1 N
0 S
——1 O O

5 + (N2>+ <N3)+
0

zZt—77 N
o(()re()

and a similar one for the Wilson coefficients, k°. This depen-
dence can be explicitly checked in the perturbative coeffi-
cients known up to two loops in the MS scheme [41,42].

These results imply the following scaling of the ampli-
tudes:

Q

at—1xat 15 4z +df . (20)
TN TN TN TN ’

where the coefficients @ — d are combinations of the coeffi-
cients @ — f in Eq. (17), and are also independent of N. and
Ny, and a natural expectation is that they are O(1).

Not only the leading corrections N~ ! are, therefore, fully
anticorrelated in the ratios, but also the leading effects of
dynamical quarks, O(Nr). Note that this analysis does not
predict the sign of the different terms, i.e., the sign of the
a — d coefficients, only the (anti)-correlation between the
two isospin channels. This way, a negative sign of & and b
results into an enhancement of the ratio A= /A™.
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3.2 ’t Hooft vs. Veneziano scaling

As we will see the number of active flavours, N ¢, plays arel-
evant role in the 1/N, expansion of the K — 7 amplitudes.
The scaling in N is in fact the difference between the ’t
Hooft and Veneziano limits of QCD. While the former keeps
N ¢ constant when taking N. — o0, the latter keeps the ratio
Ny /N constant. From Eq. (20), it is then clear that a and b
have the same scaling in the Veneziano limit (the same holds
for ¢ and d). In our simulations, we will be studying the ’t
Hooft limit, since we keep N ¢ fixed, but the quantity N s /N,
is large (ranging from 4/3 to 2/3, depending on N.), so its
contribution may be very significant even for naturally large
@ — d coefficients.

4 AS =1 amplitudes in Chiral Perturbation Theory
4.1 Chiral Dependence of the K — m amplitudes

The chiral dependence of the ratios in Eq.(13) can be studied
within the framework of Chiral Perturbation Theory (ChPT)
with Ny = 4 active flavours. An extensive discussion of this
framework can be found in Refs. [28,46]. Here we just sum-
marize the required formule, and refer to those references
for details.

The weak Hamiltonian in Eq. (1) can be translated to an
effective weak Hamiltonian in terms of meson fields pre-
serving the flavour symmetries. Since the operators O+ and
O~ transform under representations of SU (4)r of dimen-
sion 84 and 20, their ChPT counterparts must be constructed
accordingly. At leading order, there are only two terms, with
couplings g%, that need to be determined non-perturbatively:

Hg/hPT — g+o+ _i_g*O*, (2])

with

0% =Y T FHU8UNWUHU ., (22)
ijkl

where U is the chiral meson field, 7, j, &, / are flavour indices,
and cf.’j « are Clebsch-Gordan coefficients (see Appendix A
in Ref. [28]).

By means of the chiral weak Hamiltonian in Eq. (21) and
the standard NLO ChPT Lagrangian, the chiral predictions
for the normalized amplitudes in Eq. (16) are found to be:

M, \* M? i
AT =gt [1 ¥3 (47”’; ) (logu—g +L’i(u))} , (23)
s

where L, are the NLO counterterms®. The NLO corrections
in Eq. (23) are fully anticorrelated. Extrapolating the ratios in
Eq. (13) to zero pion mass, one can determine the leading low-
energy couplings (LECs) of the chiral weak Hamiltonian:
+ : +

g = leﬂ o AT (24)
The extracted values of g* can then be used to make pre-
dictions of other observables, such as the K — mm decay
amplitudes.

We now turn to the analysis of the combined chiral and
N, dependence. First, we note that Eq. (20) should hold at
any pion mass, and therefore we expect:

Ny

Ny
XNz +CXN_3

+d, L

1
gf=1+a,—=+b Foo 25
Ne¢

Furthermore, by comparing the chiral dependence in Eq. (23)
with the N, scaling in Eq. (20) we can see that both L', and
L” mustbe O (N ?), and identical at this order. The next term
in the 1/N, expansion for L', could in principle differ:

Ll‘izL(O)_'_NLLE;)_}_.... (26)
.
Hence, the combination of Eq. (23) with Egs. (25,26) can be
used to do global fits including different meson masses and
values of N,.

It will be convenient to also study the chiral and N, depen-
dence of the product of AT A~. The reason is that the leading
chiral and N, corrections cancel out, which leads to a more
robust chiral extrapolation. The chiral corrections for this
quantity are

2
ATA™ = g+g_ |:1 +3 ( M ) (L — Lcr)j| ) 27

dr F
with
te 1+1+ﬁ1+ (28)
= aO— —+...,
88 v TP
M _
., LU —L
L -l =——"F+. ., (29)
N

where o« and 8 depend on the coefficients a, — d.
4.2 Relation to K — mr amplitudes
Once the effective couplings g& have been extracted from

the chiral extrapolations of the ratios AT, they can be used
to compute the K — mm weak decay amplitudes. The two

6 L’ are a combination of standard QCD NLO LECs with those asso-
ciated to higher order operators in the chiral weak Hamiltonean. See
Refs. [47] and [46] for explicit expressions.
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pions in the final state can be in a state with total isospin
I =0or2:

iApe = () IHGPTIKO), (30)

where §; is the two-pion scattering phase. The ratio of the
two amplitudes can be calculated at leading order in ChPT
using the Hamiltonian in Eq. (21) [28,48]:

Ao _ 1 (1+3g> 31)
Ay 22 gt)

The measured hierarchy of ~ 22 between Ag and A, must
then be translated into a large ratio of the couplings g*. Note
that for g™ = g~ = 1, the expected large-N,. result is recov-
ered, Ag/A, = +/2. Large 1/N. corrections in the g~ /g+
ratio could therefore be the origin of the Al = 1/2 rule.

We have also derived the ChPT NLO result for the non-
degenerate case in which we send the pion mass to zero,
while keeping the kaon mass at its physical value’. As we
are forced to work in the exact GIM limit, we must also send
the charm quark mass to zero with the up quark mass. The
calculation for my > m, = mg = m, = 0 yields:

Ao 1 8"
€ s = 5 5 (113 ot
Ap My Mp—0,MY 22 g 3)
L (1 L1 g—> M2 | A2y (
1242 17g%) (4nFx)*> ~ MZ'

where A is an unknown scale that contains information of
the NLO LECs of the effective Chiral Lagrangian and the
effective weak Hamiltonian. We note that the NLO effect
tends to enhance (reduce) the ratio for Aefr > Mg (Aefr <
Mg).

5 Lattice setup
5.1 Simulation and matching of sea and valence sectors

Our lattice setup is the same as the one presented in Ref. [27],
and we refer to it for details on the simulations and scale
setting. We use ensembles with N y = 4 dynamical fermions
foran SU (N,) gauge theory, with N. = 3—6. They have been
generated using the HiRep code [50,51]. We have chosen the
Iwasaki gauge action (following previous experience with
2+1+1 simulations [52]) and clover Wilson fermions for the
sea quarks, with the plaquette-boosted one-loop value of ¢,
The simulation parameters are shown in Table 3. We find that
a separation of > 10 units of Montecarlo time produces no
autocorrelation in the ratios. The lattice spacing is found to
be a ~ 0.075 fm for all values of N, (see also Ref. [27]). In

7 See Ref. [49] for similar calculation in Ny =3 ChPT.

@ Springer

Table 3 Summary of the simulation parameters of the various ensem-
bles used in this work

Ensemble N, B Cow T x L amy) # configs
3A10 3 1.778 1.69 36 x20 —0.4040 195
3A11 48 x 24 —0.4040 81
3A20 48 x 24 —0.4060 155
3A30 48 x 24  —0.4070 149
3A40 60 x32 —04080 94
3B10 3 1.820 1.66 48 x24 —0.3915 182
3B20 60 x32 —03946 164
4A10 4 3570 169 36x20 —0.3725 82
4A30 48 x 24 —0.3760 153
4A40 60 x32 —0.3780 55
5A10 5 5969 169 36x20 —0.3458 52
5A30 48 x 24 —0.3500 39
5A40 60 x32 —0.3530 36
6A10 6 8974 169 36x20 —0.3260 35
6A30 48 x 24 —0.3311 30
6A40 60 x32 —0.3340 40

addition, we have produced two ensembles with a finer lattice
spacing, a ~ 0.065 fm, to estimate discretization effects.

In order to achieve automatic O (a) improvement8 [55]
and avoid the mixing of different-chirality operators for weak
decays, we employ maximally twisted valence quarks [56],
i.e., the mixed-action setup [57] previously used in Refs.
[53,54]. Working in twisted quark field variables, maximal
twist is ensured by tuning the untwisted bare valence mass
m" to the critical value for which the valence PCAC mass is
Zero:

; . o (AY () PIE (y))
m m =

= ——— =0. 33
mV¥—mer peac mVLn}ﬂcr 2<PU (X)le(y» G

The bare twisted mass parameter (g is tuned such that the
pion mass in the sea and valence sectors coincide, M) = M.

Since twisted mass already provides O (a¢) improvement,
the clover improvement parameter c, can be chosen to be
an arbitrary value in the valence sector. We choose ¢, = 0
in the valence sector? for this work, our main motivation
being that this minimizes the isospin breaking effects coming
from the twisted-mass action. In addition, this will allow
for a partial crosscheck of the systematics due to the use
of perturbative renormalization constants, by comparing the

8 As discussed in [53,54], there are residual O (a) cutoff effects from
virtual sea quarks, which are proportional to am® and carry coefficients
that are O («?) in perturbation theory. These effects are expected to be
numerically very small and thus irrelevant for the discussion below. It
is also worth stressing that using the one-loop value of ¢, will also lead
to residual effects of O (a asz).

9 This differs from Ref. [27], where we picked ¢, = 1.69. This value
matches the one in the sea sector.
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Table 4 Summary of results for our ensembles with Iwasaki gauge
action and O (a)-improved Wilson fermions with ¢y, = 0 in the valence
sector throughout. The value of the lattice spacing is @ >~ 0.075 fm for
the “A” ensembles (see Ref. [27]), whereas it is a >~ 0.065 fm for “B”
ensembles. We provide the pion mass in the valence sector, aM;, and

the PCAC mass, amp,.
Eq. (13), and in the last column, the chiral parameter & = M2 /(47 Fy)?.
Moreover, &, labels & corrected by finite-volume effects as explained

in the main text

We also include the results for the ratios in

Ensemble N, aM$ amf® apo aM lamy eyl R R~ £ EL

3A10 3 0.2204(21) —0.9353  0.01150  0.2220(19)  0.0004(4)  0.611(17) 1.418(20)  0.1685(56)  0.1626(56)
3A11 0.2147(18) —0.9353  0.01150  0.2184(13)  0.0004(4)  0.627(16) 1.389(18)  0.1520(35)  0.1504(35)
3A20 0.1845(14) —0.9324  0.00815  0.1833(12)  0.0002(5)  0.582(29) 1.450(33)  0.1352(39)  0.1311(39)
3A30 0.1613(16) —0.9311 0.00660  0.1607(15)  0.0002(3)  0.511(44) 1.531(50)  0.1240(35)  0.1165(35)
3A40 0.1429(12) —0.9285 0.00534  0.1413(12)  0.0002(5)  0.554(33) 1.480(34)  0.1033(19)  0.1013(19)
3B10 3 0.1755(15) —0.8962  0.00849  0.1761(11)  0.0001(3)  0.589(16) 1.464(19)  0.1564(40)  0.1495(40)
3B20 0.1191(9) —0.8919  0.00440  0.1206(13)  0.0005(3)  0.489(23) 1.533(24)  0.1017(30)  0.0958(31)
4A10 4 0.2035(14) —0.9058  0.01055 0.2043(28)  0.0010(7)  0.766(14) 1.262(17)  0.1007(36)  0.0978(36)
4A30 0.1714(8) —0.9040  0.00797  0.1736(12)  0.0004(3)  0.699(20) 1.358(30)  0.0803(18)  0.0783(18)
4A40 0.1397(8) —0.9030  0.00551 0.1418(7) 0.0003(2)  0.699(18) 1.379(34)  0.0612(10)  0.0605(10)
5A10 5 0.2128(9) —0.8783  0.01191 0.2112(12)  0.0005(6)  0.824(8) 1.201(14)  0.0735(20)  0.0720(20)
5A30 0.1712(6) —0.8768  0.00810  0.1706(10)  0.0001(4)  0.761(17) 1.274(27)  0.0585(11)  0.0573(11)
5A40 0.1331(7) —0.8753  0.00517  0.1338(10)  0.0001(3)  0.760(22) 1.302(27)  0.0407(10)  0.0403(10)
6A10 6 0.2150(7) —0.8562  0.01280  0.2136(9) 0.0001(3)  0.842(9) 1.170(9) 0.0611(9) 0.0601(9)
6A30 0.1689(7) —0.8548  0.00803  0.1669(7) 0.00043)  0.821(12) 1.185(18)  0.0455(7) 0.0447(7)
6A40 0.1351(6) —0.8548  0.00542  0.1352(3) 0.0000(2)  0.805(9) 1.219(8) 0.0328(3) 0.0325(3)

latter to the non-perturbative determination in Ref. [58] for
N. = 3 (see below). Finally, we also observe that ¢y, = 0
leads to smaller statistical errors.

In Table 4 we present our measurements for the ensembles
used in this work. We have achieved good tuning to maximal
twist, with the PCAC mass being zero within 1 or 2o. In
addition, the valence and sea pion masses are matched also
within 1 or 2o0. The bare results for the ratios are also pre-
sented in the same table, together with the chiral parameter
& = M% /(47 F7)?, that will be used for the chiral extrapo-
lations.

We conclude the discussion of the simulation setup by
mentioning that we will compare the new results with dynam-
ical fermions to the ones in Refs. [6,7]. Those results
used quenched simulations, with plaquette gauge action and
twisted mass fermions. The lattice spacing wasa ~ 0.093 fm
and the the pion mass was fixed at around M, = 550 — 590
MeV for N, = 3 — 8 and 17. In this work, we perform a
reanalysis of these quenched data.

5.2 Comments on systematics

We conclude this section by discussing the systematic errors
that can affect our results.

We start with finite-volume effects. Our ensembles have
M, L > 3.8 in all cases so we expect finite-volume effects
to be small, and suppressed as 1/N,. Still, we find that for

the observable & they can be of O (1%) and thus we correct
for them, as explained in Ref. [27], following Refs. [59,60].
Since B and R differ by a volume-independent propor-
tionality factor, we can use the results in Ref. [61], where the
finite-volume effects of Bg have been calculated. In addi-
tion, it is known that the finite-volume and chiral corrections
of R and R~ are fully anticorrelated [46]. Thus, we find:

—MyL
R*(L) = R* [1 + 6@5W(MHL _ 4)} . (34)
The correction for these quantities is numerically negligi-
ble for our ensembles. While additional finite-volume effects
could be present (see Ref. [60]) we observe that a factor of
two increase or decrease of these finite-volume corrections
alters our results well within the statistical precision.

Concerning discretization effects, we have included the
results from two ensembles with a finer lattice spacing at
N, = 3. Assuming O (a) improvement, we expect that the
finer lattice spacing should reduce by ~ 30% the O (a?) dis-
cretization effects. We observe no significant difference for
these data points in Fig. 6, so we see no sign of sizeable dis-
cretization errors within our statistical uncertainty. We stress
however that a more extensive study is needed for a robust
estimate of the discretization error.

The largest systematic error that we have found is related
to the renormalization constants, which we have estimated
by one-loop perturbation theory. We have first compared the
non-perturbative renormalization constants of Ref. [58] to the

@ Springer
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one-loop perturbation theory results in their setup (they used
csw = 0). The difference is roughly ~ 5% for N, = 3. On
the other hand, we have computed the ratios using ¢, = 1.69
in the valence sector for the 3A10 ensemble. Using the per-
turbative renormalization constants for this new value of ¢,
we get a result that differs from our ¢y, = O result by roughly
20% in the ratio. Since it is unlikely that this effect can be
accounted for by discretization effects, given the tests in a
finer lattice mentioned above, we conclude that there must be
significant non-perturbative effects on renormalization con-
stants for the larger c,,, (the perturbative one-loop corrections
are also significantly larger for the larger value of ¢, ). This
is a large error, and probably a conservative estimate, but it
is comparable to the statistical error we achieve, as it will be
seen later.

6 Results
6.1 N, scaling of K — 7 amplitudes

The physical amplitudes A* can be obtained, as explained in
Eq. (16), from the bare ratios in Table 4, and the renormal-
ization coefficients in Tables 1 and 2. As explained above, a
rigorous way to isolate the (anti-)correlated contributions to
the ratios consists on taking the half-sum and half-difference
of the ratios. By doing so, the two contributions can be fitted
independently since:

A™ 4+ AT 1 ~Ny
—=14+Cc—4+d—=+...,
> ERRE
_ ' (35)
A- — AT 1 ~Nf
—:—a——b—2
2 N, N¢

In the following, we compare the results of the fits to
Eq. (35) in three different scenarios:

1. Quenched results (N = 0) at a heavy pion mass ~ 570
MeV.

2. Dynamical results (N s = 4) at a heavy pion mass ~ 560
MeV (ensembles A10).

3. Dynamical results (N y = 4) at alighter pion mass ~ 360
MeV (ensembles A40).

The results for the coefficients & — d for the three scenarios
are presented in Table 5 and Fig. 4. The coefficients are all
of O(1) and therefore of natural size. Importantly the sign
of the @ and b coefficients is the same and negative. This
implies both terms contribute to reduce the A* amplitude
and enlarge, in a correlated way, the amplitude A~. The fact
that b, d ~ O(1) implies a very large unquenching effect in
the large- N, scaling, and the ratio A~/ AT, which is however
compatible with the expansion in Eq. (35). Specifically, it is

@ Springer

Table 5 Summary of results for the 1/N, fits to the half-sum and half-
difference of the amplitudes A*. Errors are only statistical

Case M, a b x%/d.of.
Half-difference
Nf=0 570 MeV — 1.55(2) — 8.8/6
Ny=4 560 MeV — 1.03(13) — 1.44(13) 6.6/2
Ny=4 360 MeV — 1.49(15) —1.32(18) 0.372
Half-sum
Nf=0 570 MeV 2.1(1) — 3.5/6
Ny=4 560 MeV 1.2(3) 2.2(3) 1.3/2
Ny=4 360 MeV 2.4(4) 1.6(4) 3.2/2

due to b and d being absent for N = 0. The other two coef-
ficients, a and ¢, are comparable in size in the quenched and
dynamical theories. We note however that uncertainties only
include statistical errors, and relative discretization errors and
the systematics of the perturbative renormalization constants
may be significant. Finally, we observe that the mass depen-
dence for the Ny = 4 results seems to affect mostly the
coefficient @, which is consistent with the chiral dependence
in Eq. (23), and goes also in the direction of enhancing the
ratio A~ /AT towards the chiral limit.

6.2 Kaon B-parameter (Bg)

The kaon B-parameter, By, is defined from the matrix ele-
ment of the AS = 2 operator that mediates neutral kaon
oscillations at physical kinematics:

_ _ 8 _
(K°[025=2(w)|K ") = gf,%M,%BK(u). (36)

It is customary to quote the renormalization group indepen-
dent (RGI) version, labelled as By . Its value at the physical
point has been computed accurately in Ny = 2,2 + 1, and
2+ 141 simulations [58,62-66] (see Ref. [67] for a review).

In our setup, B k coincides with the renormalized ratio RT
up to a normalization. Specifically, we have
Bg = Zé+(a—1)1§+ (37)
where ¢* can be read off Table 1. There are two essential
differences in our setup: all meson masses are degenerate,
in particular Mg = M, and we have an active light charm
quark. Both can significantly affect the value of Bg.

We show our results in Fig. 5. We observe a very signifi-
cant N, dependence of é[{ for Ny = 4, and a much milder
one for Ny = 0.For N. = 3, the quenched result agrees with
the standard value of B k> while the Ny = 4 result is about
25% smaller. We have included as bands the Buras-Bardeen-
Gerard (BBG) Dual QCD prediction from Ref. [20], using
inputs on meson masses from our own simulations in both
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i Ny =0, M, ~ 570 MeV '—o— |
150 N = 4, M- ~ 560 MeV —e—s
4+ =4, M, ~ 360 MeV
1.40 |- 1
o130 .
+
o120 ]
=
S 110 F 1
1.00 | ——— 1
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000 005 010 015 020 025 030 035
1/N.
(a)

Fig. 4 Half-sum and half-difference of the amplitudes A* as a func-
tion of N, C._l for three different cases: (i) quenched results from Ref. [6]
in blue, (ii) new dynamical results at a pion similar to the quenched case

100 T T T T T T T
BBG N; =0
BBG Ny =4
this work NJ; =0 e
0.90 this work Ny =4 +—e—
0.80 ol e
. Zo " 3 {
X s s §
‘| 070 3 .
0.60 &
¢
0.50 - e
Il Il Il Il Il Il Il
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
1/N.

Fig. 5 Lattice results for B k > definedin Eq. (37),inthe case of Ny = 0
(see Refs. [6,7]), and Ny = 4 (this work). Error bars are only statistical
errors. We also include the predictions from Ref. [20], where the band
indicates the values obtained when varying the involved matching scale
M from 600 to 1000 MeV

cases — quenched and dynamical. We find that our results
are reasonably compatible with the BBG prediction, in par-
ticular regarding the suppression of Bk in the presence of a
light charm.

To conclude this subsection, we can use the scaling in N,
to infer a value of Bg with three active flavours and quasi-
physical kinematics. For this, we use the coefficients a — d
in Table 5 for the case of Ny = 4 and M, = 560 MeV, and
so predict the value of AT with N. = 3 and Ny = 3 at the
same value of the pion mass, degenerate with the kaon. We
can the get the RGI value Bk as in Eq. (37), extracting R
and using the ¢+ (a~") for three-flavour QCD 0. We find

Bi |y yr. = 0.67)siat(6) 7+ B (38)

10 The required parameters for N, = 3,Ny =3are kT (Mw) = 1.038,
Ut@ !, My) = 0.851, and ¢t (a~!) = 0.841. In the evaluation of
¢° (a~1) we have used Ajg = 341 MeV from Ref. [45].

1.20 T T T
Nt =0, M, ~ 570 MeV '—o—t
N = 4 ML~ 560 MoV —e—
100 - N} =4 M. ~ 360 MeV
o 080L
<t
I 0.60 |
|
=
= 040 |
020 |-
O - - | | | | | |
000 005 010 015 020 025 030 035
1/N,
(b)

(red), and (iii) dynamical results at a lighter pion mass (orange). The fit
results are shown in Table 5. Error bars include only statistical errors

including statistical error, and a ~ 10% error due to the sys-
tematics of the renormalization constants. We also quote a
“fit” error that we estimate by using the N, scaling derived
from a direct fit of the half-sum and difference of R* instead
of AT,

We have not found results in the literature for the degen-
erate case that we can compare to. On the other hand, ChPT
relates the value of By in the degenerate case, to the quasi-
physical (QP) situation with M, = 0 and M at its physical
value:

. 2/ Mg \* ABK
- B 1+ = log —<it
Kk K|MK:M” +3<47TFK) 8 MK ’

where Agff( labels an unknown scale that parametrizes the
effect of the unknown LECs. For Aff’f > Mg, é[gp is larger
than Bg and could be compatible with the existing results
at the physical point from Ny = 2 + 1, N, = 3 simulations
[58,62-66].

(39)

6.3 Extraction of the effective couplings g*

The main goal of this work is to compute the ratio g~ /g* by
extrapolating A to the chiral limit. For the required chiral
extrapolation, we follow the same strategy as in Ref. [48]. We
extract g+ from a chiral fitto AT, and the product g™ g~ from
that of the product AT A~ . The ratio can then be evaluated

(40)

This approach results in a milder chiral extrapolation, that
will hopefully introduce a smaller systematic error.

We have performed two kinds of fits. In Fit 1, we use
all data points with N, = 3 — 6 in a simultaneous chiral
and N, fit using Eqgs. (23) and (27), incorporating the 1/N,

@ Springer



638 Page 10 of 12

Eur. Phys. J. C (2020) 80:638

Table 6 Results for Fit 1: the

: +

simultaneous chiral and N, fits Fit 1 for A () (1) 2

for AT and AT A~. Errors are ax Nyby +cx Nydy L Ly x/dot

only statistical —22(6) —34) 7(7) 2.4(8) —11(4) 12.0/11
Fit 1 for ATA~
a B LY P x2/d.o.f.
1.6(4) —7.29) L4(4) 26.7/13

Table 7 Results for Fit 2: the chiral fit at N. = 3 for AT™ and ATA~.
Errors are only statistical

Fit 2 for A™

g" L, x2/dof.
0.190(27) — 1.1(7) 4.9/5
Fit2 for ATA™

gtg™ L" —L", x2/d.of.
0.80(6) 0.8(2) 6.2/5

expansion of the couplings as in Egs. (25,26,29). In Fit 2, we
fit using only the data with N, = 3, and extract the effective
couplings for this theory. This way, for N, = 3 we find:

Fit I: g7 = 0.187(21),
Fit 2: g7 = 0.190(27),

gtg” =091(4),

41
g g~ =0.80(6). &1
The complete results of these fits are shown in Tables 6, and
7, and also in Fig. 6.

From these results, we obtain for the ratio of couplings at
N, =3:

8

=26(6), %
fit 1

= 22(5), (42)
fit 2

1.00
090
0.80 |
0.70
0.60
0.50
0.40
0.30
0.20

FEEA
[N
DO W

A+

0.00 0.02 0.04 006 0.08 0.10 0.12 0.14 0.16 0.18
Ne
et
(a)

Fig. 6 Chiral extrapolation of A* and the product AT A~. The data
points are also shown in Table 4. Empty squares for N. = 3 indicate a
finer lattice spacing. Solid lines indicate a simultaneous chiral and N,
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where errors are only statistical, but correlations are taken
into account.

6.4 K — mm amplitudes in ChPT

Using the result for the ratio of couplings in Eq. (42), and the
NLO ChPT prediction in Eq. (32), we can obtain an indirect
result for the ratio of isospin amplitudes in the K — nxw
decay for N. = 3. In Fig. 7, we show this prediction as a
function of an unknown effective scale Acft. This prediction,
valid for M, = Mp = 0 and physical Mg, shows small
NLO effects in a wide range of values of the effective scale.
We are now in the position to quote a final result for the
ratio of isospin amplitudes:
Re @
Az Ny=4

= 245 sta (£t (5) z= 3)NLOs (43)

where the central value comes from the fit 2 resultin Eq. (42).
In the previous equation, the various error sources originate
as follows : (i) statistical error, (ii) systematic error from the
difference between fit 1 and 2 in Eq. (42), (iii) a 20% error
from the renormalization constants — see Sect. 5.2 —, and
(iv) a 10% error from the NLO effects — see Fig. 7. Com-
bining all error sources in quadrature results in a ~ 30%

1.50
140 |
1.30 -
120 |
1.10
1.00
0.90
0.80
0.70 e

FREA
IR
DU W

AtA-

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
Ne
ERS
(b)
fit as in Eq. (23). Dashed lines represent the chiral extrapolation of the

data points for N, = 3 following Eqs. (23) and (27). Errors are only
statistical
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35.00

Experiment

NLO ChPT ——
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Re Ao/Az
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Fig. 7 NLO ChPT prediction (in red) for the ratio of K — 7 isospin
amplitudes as a function of the NLO LEC, A.fr. We use the input of
Fit 2 in Eq. (42). This prediction is valid for M, = Mp = 0, and Mg
at its physical value. The shaded area represents the statistical error
associated to the ratio of couplings — see Eq. (42). As a guideline, we
also show the experimental value for the ratio of amplitudes (in blue)

uncertainty on the total result, which is dominated by sys-
tematics. We also stress that this is a result in the theory with
a light charm quark. Interestingly, this indirect computation
yields a value compatible with the experimental result for the
Al = 1/2 enhancement.

7 Conclusions

We have presented the first non-perturbative study of the
scaling of AS = 1 weak amplitudes with the number
of colours, N, = 3 — 6, in a theory with four degen-
erate light flavours Ny = 4. These results have been
obtained from dynamical simulations with clover Wilson
fermions, at @ >~ 0.075 fm and ¢ =~ 0.065 fm and pion
masses in the range 360 — 570 MeV. We have analysed
the K — 7 amplitudes A*, mediated by the two current-
current operators Q4+ of the AS = 1 weak Hamiltonian in
Eq. (1).

The diagrammatic analysis of the large- N scaling of these
observables presented in Sect. 3 allows to classify the sub-
leading N, corrections, and demonstrates the anticorrela-
tion of the leading O(1/N.) and O(N /Nf) contributions
in the AT amplitudes. Our numerical results confirm this
expectation and show that these corrections are naturally
large in the Veneziano scaling limit, i.e., the coefficients of
both corrections are O(1). They can nevertheless explain the
large enhancement of the ratio A~/A™ for N, = 3 with
respect to the N. — oo limit. This involves an unprece-
dentedly large unquenching effect in this ratio, that is nev-
ertheless compatible with natural size O(Ny/N Cz) correc-
tions.

The amplitudes A in the chiral limit can be matched to
their ChPT counterparts, which depend on the leading low-

energy couplings, g*, of the chiral effective weak Hamilto-
nian. From a chiral extrapolation of the combinations A™ and
A1 A~ we have then extracted the couplings g*, which are
finally used to predict in ChPT the ratio of K — (7 7);=0,2
amplitudes. In particular, we have obtained an indirect pre-
diction of the ratio of isospin amplitudes, Ap/Az, by this
procedure which seems to largely account for the elusive
“Al = 1/2 rule”. Our estimate for this ratio in the theory
with a light charm is
Re ﬂ
Azly =4

= 24(5)stat (7)sysv (44)

which suggests that the enhancement may indeed be largely
dominated by intrinsic QCD effects.
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1 Introduction

The computation of scattering amplitudes using lattice quantum chromodinamics (LQCD)

has seen enormous progress in the last few years. The majority of calculations are based

on the finite-volume formalism of Liischer [1], which relates discrete finite-volume energies

in a cubic, periodic, spatial volume of side-length L, to the scattering amplitude of two

identical spin-zero particles. This relation is exact up to corrections scaling as e~ with

m the pion mass, but holds only for energies in the regime of elastic scattering, i.e. below



the lowest-lying three- or four-particle threshold. The formalism has since been extended
to generic two-particle systems [2-11], for which, however, the same restrictions apply.
At unphysically heavy pion masses, many resonances satisfy this restriction, leading to a
recent explosion of LQCD resonant studies as reviewed, for example, in ref. [12]. However,
for physical masses, many experimentally observed resonances have significant branching
fractions to modes containing three (or more) particles. Thus, the development of a multi-
particle formalism is essential in order to gain insight into the nature of these states.

In the last few years, significant theoretical effort has been devoted to extensions and
alternatives to the two-particle Liischer formalism for more-than-two-particle systems. In
particular, a three-particle quantization condition for identical (pseudo)scalars has been
derived following three different approaches:! (i) generic relativistic effective field theory
(RFT) [17-24], (ii) nonrelativistic effective field theory (NREFT) [25-28], and (iii) (rel-
ativistic) finite volume unitarity (FVU) [29-31]. (See ref. [32] for a review of the three
approaches.) At this stage, only the RFT formalism has been explicitly worked out includ-
ing higher partial waves.

These theoretical developments have been accompanied by significant progress in lat-
tice calculations. In previous work, the three-particle coupling was extracted using the
ground state energy in QCD [30, 33, 34], and also in ¢* theory [35]. Going beyond this,
the determination of complete spectra with quantum numbers of three pions has been
achieved by multiple groups in the last two years [36-38]. In fact, very recently, a large
number of three-7" levels (including those in moving frames) has been combined with the
RFT formalism to constrain the three-particle scattering amplitude from first principles
QCD [24].

As the present quantization conditions are only valid for identical particles, their use
is limited to three pions (or kaons or heavy mesons) at maximal isospin, and thus only for
weakly interacting channels with no resonances. Motivated by this, in the present paper we
provide the generalization of the RFT approach to include nonidentical, mass-degenerate
(pseudo)scalar particles. Specifically, we focus on a general three-pion state in QCD with
exact isospin symmetry (and thus exact G parity, preventing two-to-three transitions).

A feature of all three-particle approaches is that the extraction of scattering ampli-
tudes proceeds via an intermediate three-particle scattering quantity, denoted in the RFT
approach by Kgr 3. In particular, the RFT quantization condition provides, for each finite-
volume three-particle energy, E, (L), a combined constraint on KCq¢ 3 and the two-particle
scattering amplitude, Ms. Additional constraints on My are provided by the two-particle
spectrum using the Liischer formalism. Then, in a second step, infinite-volume integral
equations are used to relate Kgr 3 to the physical scattering amplitude, M3. To implement
these steps in practice, one requires a physically motivated parametrization of Kg4¢ 3 that
includes, for example, a truncation in the angular momentum of two-particle subsystems.

Our work generalizes all aspects of this work flow to three-pion scattering for all allowed
values of two- and three-pion isospin. In section 2 we derive the generalized formalism.
We first review the results of refs. [17, 18] for identical particles [section 2.1], before pro-

!See also refs. [13-16].



viding the extensions to non-identical pions, first of the relation between E,(L) to Kat 3
[section 2.2] and then of the integral equations relating Kqr 3 to M3 [section 2.3]. These are
presented for states with definite individual pion flavors. The change of basis to definite
total isospin is given in sections 2.4 and 2.5. An important consequence of projecting to
total isospin is that the results block diagonalize into four separate relations, one for each
of the allowed values of the total three-pion isospin: I =0,1,2,3.

With the formalism in hand, in section 3 we describe strategies to parametrize Kqr 3.
We determine the form of the threshold expansion for all choices of I, and provide
expressions for Kgr 3 that produce three-particle resonant behavior for each of the choices
of Iirx and J¥ for which such behavior is experimentally observed.

To illustrate the utility of the generalized formalism, we present a numerical imple-
mentation for the I = 0 channel in section 4. We do so using forms of Kg¢ 3 that lead
to both vector and axial-vector resonances, mimicking the experimentally observed w and
hi. The finite-volume energies exhibit avoided level crossings associated with the allowed
cascading resonant decays, e.g. hy — pm — 7w,

This completes the main text, following which section 5 gives a brief summary of the
work and a discussion of the future outlook. We include four appendices to address various
technical details. First, in appendix A, we provide further discussion of the derivation of
the generalized quantization condition. Second, in appendix B, we collect the definitions of
the building blocks entering the quantization condition. Third, appendix C describes the
different bases we use for three-pion states. Finally, appendix D summarizes some group
theoretical results that are relevant to the implementation of the quantization condition.

2 Derivation

In this section we derive the quantization condition for general three-pion states. Following
the approach of refs. [4, 17], we first introduce a matrix of correlation functions

Cr.jx(P) = /dIL‘O L A3z e tP@TIE <T0j(x)(9,1(0)>,;. (2.1)

Here (’),JL are OJ; are operators that, respectively, create and destroy three-pion states, with
quantum numbers and additional information specified by the indices j, k. In the following
paragraphs we give a concrete choice for these operators that is particularly convenient
for the present derivation. The correlator is defined in the context of a generic, isospin-
symmetric effective theory of pions. The underlying fields are denoted by w4 (z), 7_(x)
and mp(x), and are normalized such that

(Olmq(2)|m,q,p) = &P, (2.2)

where |7, q,p) is a state with mass m and charge ¢, and p’ = wp = /P?>+m?. We use
Minkowski four-vectors, adopting the metric convention p - & = p%2° — p - . The finite
volume is implemented by requiring that all fields satisfy periodic boundary conditions in
each of the spatial directions., w(x) = 7(x + Le;).



In the derivation of refs. [17, 18], the analysis was simplified by assuming that the inter-
actions of the identical scalar particles satisfied a Z5 symmetry that led to particle number

2 This implied, for example, that there were no intermediate

conservation modulo two.
four-pion states in the correlator C'r. This simplification carries over to the present analy-
sis because we are assuming exact isospin symmetry, so that G parity is exactly conserved,
and serves as the Zs symmetry.

For a given choice of total momentum P, which is constrained by the boundary condi-
tions to take one of the values 2rn /L, with n a vector of integers, the correlator Cr, ;;(E, P)
has poles in E at the positions of the finite-volume eigenstates. Our aim is to derive a quan-
tization condition whose solutions give the energies of these eigenstates.

There are 27 distinct combinations of three-pion fields, assuming that we distinguish
identical fields with position labels, x1, x2, 3. It is useful to understand this multiplicity
from the viewpoint of combining three objects with isospin 1. This leads to seven irreducible
representations (irreps)

19101=08162)01=(1)a00102)a (1626 3). (2.3)

We see that the total three-pion isospin can have values I, = 0,1, 2,3, with respective
multiplicities 1,3,2,1. The multiplicities correspond to the number of possible values of
the two-pion isospin, I.,, that can appear: all three values for I;rr = 1, two values,
L. =1,2, for I = 2, and only one value each for I;;, = 0 and 3, namely I, = 1 and
2, respectively. The situation is summarized in figure 1.

Since we are treating isospin as an exact symmetry, we need only consider one choice of
I, (or, equivalently, one choice of electric charge) from each of the seven irreps. A convenient
choice is to use the combination with vanishing electric charge, since this appears once in
each irrep. Thus, henceforth we focus on the space of the seven neutral operators:

O(CL, b, k‘) = 770 a) %O(b) %0(/{) . (24)

T4 (k)
To(a) 74+(b) 7 (k)
Ty (a) mo(b) 7—(k)

Here we have written the fields in momentum space as this will prove convenient below.
These operators are related to O;(z) via

Oj(r) = / . fla,b, k) e @HHRT O a0 b k) (2.5)

where [, = [dk°/(2m) Y, with the sum over k being over the finite-volume set introduced
above for P. f(a,b,k) is a smooth function that specifies the detailed form of O;. It is

2This is not a fundamental limitation on the derivation; the generalization without a Z» symmetry is
derived in ref. [19].



Figure 1. Sketch of subchannels for pairwise interactions present in each three-pion system with
fixed overall isospin, Iy r. For I = 0 and 3, only one subchannel is present, having I, = 1 and
I:.n = 2, respectively. For I, = 2, two subchannels are present, with I, = 1 and 2, implying
that the three-particle quantization condition lives in a two-dimensional flavor space. For I, = 1,
all three two-pion subchannels contribute (I = 0,1, and 2), leading to a three-dimensional flavor
space. For convenience, we use the shorthand notation (I = 0) = “0”, (Irr = 1) = “p”, and
(Irr = 2) = “(7m)2”, in which we label (when possible) the two-pion subchannels by the renonances
present in them.

convenient for the subsequent derivation to choose f(a, b, k) to be invariant under exchanges
or permutations of its arguments.?

At this point, the reader may wonder why, in eq. (2.4), we have distinguished between
the six different channels with charge composition 74, mg, 7—, by using different momentum
labels, and then multiplied them by a symmetric function in eq. (2.5) so as to apparently
remove the distinction between the channels. The motivation for this construction is to
create a single formalism that can simultaneously treat identical and nonidentical particles.
How this works will become clear below.

Having defined the column of operators, O;, we are now in position to derive a skeleton
expansion for Cp;, exactly as was done in ref. [17]. The only distinction compared to the
earlier work is that the endcaps, appearing on the far left and far right of every diagram,
now represent a column (on the left) and row (on the right), so that each Feynman diagram
encodes a 7 X 7 matrix, defining a contribution to the matrix of correlators, Cr.;. As we
discuss in the following, this matrix structure naturally propagates through all steps of
the derivation so that the final result appears identical to that of ref. [17], but with the
additional flavor channel assigned to each of the building blocks. The final step is to

30ne could also, in principle choose different weight functions for the different entries of the column but
this has no effect on the results derived, and leads to more complicated intermediate expressions.



perform a change of basis into states with definite two- and three-pion isospin. This block
diagonalizes CT.;, as expected, and one recovers four distinct quantization conditions,
one each for I = 0,1,2,3. While the I, = 0 and 3 conditions are one-dimensional
in the flavor index, I = 1 and 2 are 3 and 2 dimensional, respectively, encoding the
coupled-channel scattering of the various allowed I, subchannels.

2.1 Formalism for identical (pseudo-)scalars

In this subsection we review the results of refs. [17, 18] for the case of three identical
particles, which apply here for the I = 3 channel. These results will serve as stepping
stones to the generalization for other values of I;rr. In ref. [17], it was shown that the
finite-volume correlator for three identical (pseudo-)scalars can be written

1

Cr(P)=Cx(P A3 — A

(2.6)

where 7 . )
2wL3><F3£——F7M27LF, Mo,

= . 2.7
3 1+ My G ’ IC2_1+F 27)

This result holds for m? < E2 — P? < (5m)? and neglects L dependence of the form e~
while keeping all power-like scaling. The intuitive picture behind its derivation is that only
three-pion states can go on shell for the kinematics considered, and only these on-shell
states can propagate large distances to feel the periodicity and induce 1/L™ corrections.
The quantities w, F, G, Ko, Kgt 3, A5, Az and C are each defined in detail in ref. [17], as
is the matrix space on which all quantities act.* Here we only give a brief summary of
the most important details, with some additional definitions provided in appendix B. All
objects besides Cf and C,, are defined on an index space denoted by k,¢,m where k
represents the three-momentum for the spectator particle, i.e. is shorthand for a finite-
volume momentum k, and £, m give the angular-momentum of the non-spectator pair. A
cutoff on the k index is built into all matrices so that this index space is always finite.
To intuitively understand the appearance of the cutoff function, note that, for fixed total
energy E and momentum P, if the spectator carries k* = (wg, k) then the squared invariant
mass of the non-spectator pair is

Ey = (E—wy)’— (P—k)>. (2.8)

This becomes negative for sufficiently large k? implying that the state cannot go on the
mass shell and therefore does not induce power-like L dependence. Thus it is possible to
absorb the deep subthreshold behavior into the definitions of Ko, Kqt 3, A5, Az and C and
to cut off the matrix space.

The objects w, F', G, Ko and Kg¢3 are all matrices on the k, ¢, m space, e.g. ' =
Firormy kem, whereas Ay and Az are row and column vectors respectively, e.g. Az = As.kim.
In this way all indices in egs. (2.6) and (2.7) are fully contracted, with adjacent factors
multiplied according to usual matrix multiplication. The L-dependence in these results

4The quantities we call A3 and A} here are denoted A and A’ in refs. [17, 18].



enters both through the index space, k, and through explicit dependence inside of F' and
G, which are defined in egs. (B.7) and (B.3), respectively. The simplest object entering
eq. (2.7) is the diagonal kinematic matrix

Wkt ket = Ok 100 00mrm NV K+ m2 . (2.9)

This leaves only two quantities to define: the two- and three-particle K matrices,
ICo and Kg¢ 3, respectively. The former is given in eq. (B.9). It depends on the two-
to-two scattering phase shift, §y,, in each angular momentum channel, for two-particle
energies ranging from 0 (well below the threshold at 2m) up to E* — m. Here we have
introduced the notation E* = v/ E2 — P2, for the three-particle center-of-momentum frame
(CMF) energy. In practice, one must choose a value fy,,x above which the phase shift is
assumed negligible, in order to render Ky finite-dimensional. Then it can be determined
using the two-particle quantization condition, together with finite-volume energies from a
numerical lattice calculation.

The remaining object, Kgf 3, encodes the short-distance part of the three-particle am-
plitude. We close this subsection by explaining, first, how this quantity can be constrained
from finite-volume three-particle energies and, second, how it is related to the physical
observable, the three-particle scattering amplitude.

The utility of eq. (2.6) is that it allows one to identify the poles in Cr,(P) as a function
of F, corresponding to the three-body finite-volume spectrum for fixed values of L and P.
These pole locations, denoted E, (L) for n =0,1,2,..., occur at energies for which

detk,f,m [1 + de,3(E*)F3(E7 P7 L)] =0 ’ (210)

where we have made the kinematic dependence explicit. Thus, given many values of E,, (L),
ideally for different P and L, one can identify parameterizations of Kg4¢ 3(E*) that describe
the system and fix the values of the parameters. As with Ko, also here a value of £, must
be set to render Kg¢ 3(E£*) finite-dimensional. Indeed, the angular momentum cutoffs in the
two- and three-particle sectors must be performed in a self consistent way, as is described
in ref. [22].

Now, taking ICqs 3(£*) as known, we present its relation to the three-particle scattering
amplitude, Ms, first derived in ref. [18]. As is explained in that work, one can relate Cr,(P)
to a new finite-volume correlator, Mz (P), in a two-step procedure. First we take only
the second term of eq. (2.6), multiply by i, and amputate A;F[2wL3]~! on the left and
[2wL3]71F A3 on the right to reach

F ]! 1 F 1!
CiL(P)=—-|—=]| F 2.11
o(P) [mﬂ] "1+ KarsFs [mm} ’ (2.11)
1
— D)y plu) g ey R 2.12
disc + + L q + ICdf,SF3 af,3/%p, > ( )
where in the second step we have introduced
p) = _[_F [ _E__FMarFI[_F 1T (2.13)
dise = | 213 6w L3 2wL? 2wL3| ‘
F ]!t F ]! (uu)



() F 7
£ = [mm] Py, (2.15)

Fg[QfLS]_l. (2.16)

Note that D) E(Lu) and RS-JU) are closely related to Fj, differing only by the amputation
factors and, in the case of D% by the subtraction of DY | The latter is labeled with the

disc

R

subscript “disc” for disconnected, referring to the fact that these terms arise from diagrams
in which one of the three-particles does not interact with the other two. The second step
towards defining M3 1,(P) is to drop Dé?s’g) and to symmetrize the resulting function with
respect to the exchange of pion momenta. The result is

M, (P) = 8| ME(P)) (2.17)
Uy u 1 u
M.g),L )(P) = D(%u) + Eg )mlcdﬂg]Rg) 5 (218)

where S indicates the symmetrization.” This is explained in detail in section 2.3 below, in
the context of the generic isospin system.

The motivation for these seemingly ad hoc redefinitions is that the new correlator,
M3 1 (P), is closely related to the physical, fully connected three-to-three scattering am-
plitude. Substituting P = (FE, P), the connection is given by

M3(E,P)= lim lim Ms(FE + ic, P). (2.19)
e—0t L—oo
This ordered double limit can be evaluated analytically to produce an integral equation
relating Kqr 3 to the M3. This completes the complicated mapping from the finite-volume
spectrum to infinite-volume amplitudes. Again, we point the reader to ref. [18] for a full
derivation and for the explicit forms of the integral equations.

2.2 Generalized quantization condition

In this subsection we generalize the derivation of the quantization condition [eq. (2.10)]
to the system of three pions with any allowed total isospin. The relation of the general-
ized Kq¢3 to the corresponding generalized scattering amplitude is discussed in the next
subsection.

As explained above, the finite-volume correlator, Cf ;;, becomes a 7 x 7 matrix on
the space of all possible neutral three-pion configurations. We find that, to generalize the
quantization condition, we also need to extend all the objects in the correlator decomposi-
tion [eq. (2.6)], the quantization condition [eq. (2.10)] and the relation to M3 [egs. (2.17)
and (2.19)] to be matrices on the seven-dimensional flavor space. We stress that all objects,

5The quantity ./\/lé?}d”) given here is actually slightly different from the object with the same name defined
in ref. [18]. The distinction is that the Mgfi“) is this work has been partially symmetrized, leading to small
differences in £(*) and R . However, these differences have no impact on the fully symmetrized quantity,
M3, 1, which is identical to that in ref. [18].



Figure 2. Three Feynman diagram topologies required to illustrate the extension to generic isospin.

including Cs, A3 and A5 become flavor matrices, even though the latter are defined as
either scalars or vectors in the kfm indices.

In the original derivation of ref. [17], the first step was to identify a skeleton expan-
sion that expressed Cf, in terms of generalized Bethe-Salpeter kernels and fully dressed
propagators. Cutting rules were then applied to write each diagram as a sum of various
contributions, and summing over all possibilities lead to eq. (2.6). A key feature that will
simplify the present generalization is that the new matrix space can be completely imple-
mented already at the level of Bethe-Salpeter kernels and fully dressed propagators, i.e.
before the steps of decomposition and summation. These final steps, which lead to the
main complications in the earlier work, can then be copied over with the new index space
passing in a straightforward way into F', GG, Ko and the other matrices entering the final
results.

To illustrate this we carefully consider the three diagrams of figure 2. We give expres-
sions for each of these in turn, first for the case of identical particles and then for the general
isospin extensions. In this way, all building blocks are defined for the new quantization
condition, which is then given in eq. (2.44) below.

Beginning with figure 2a, the expression in the case of three identical particles is

0
/ / s A(a)AB)A(k) iot (k,a), (2.20)

where o(k,a) and of(k,a) are endcap factors encoding the coupling of the operator to a
three-particle state and A(a) is a fully dressed propagator. As explained in ref. [17], this

can be rewritten as

cl(py = () + 106(: io (2.21)

where the first term on the right-hand side is the contribution from the diagram of figure 2a
to the infinite-volume correlation function. In the second term we have introduced ¢ and o'
as row and column vectors, respectively, on the kfm space. These are ultimately combined
with other terms to define A% and As, respectively.

In the extension to general three-pion isospin, eq. (2.20) is replaced with

0
ZZ / /dk i0jn(k, a) [A(@)AB)AK) e G0, (kya),  (2.22)
nn’ k,a

where b = P—k—a. Here [A(a)A(b)A(K)] s is a diagonal matrix of propagator triplets, in
which each entry is built from charged and neutral pion propagators according to eq. (2.4).



We repeat the pion content of each entry here for convenience:
[A(a)A(b)A(k)] =diag<[—][0][+]7 [0J[=][+], [=][+][0], [0][0][0],

[+H[=110], [O][+H[=], [+H0H—])7 (2.23)

where [—][0][+] = A_(a)A¢(b)A+(k), etc., the subscript indicating the pion field at the
sink of the two-point function defining the fully-dressed propagator. In fact, in the iso-
symmetric theory, the propagators are all equal as functions, A_(a) = Agp(a) = At(a).
Nonetheless, it is useful to treat these objects as distinct, in order to better identify the
patterns arising in our matrix representation of the Feynman rules.

The endcap matrices, oj(k,a) and a;.l(k:,a), are built from the function f(a,b,k),
introduced in eq. (2.5), that encodes how the fundamental fields, 7y, 74 and 7_, are used
to build up the annihilation operators O;(x). The exact relation is oj;(k,a) = M f(a,b, k),
where

(2.24)

<

I
EE [ EEBNE
E R EERN
EE [ EEBNE
gomdnono
EE [ EERN
EE(EN
EE [ EEBN

O

I

S

|

I

EEECENERN

(Here and below we use empty and filled squares to present matrices of 0Os and 1s as we
find this form more readable.)

This complicated matrix structure in the case of the non-interacting diagram, figure 2a,
may seem surprising. The structure arises simply because six of the seven entries in the
column O;(x) (all entries besides j = 4) are built from 7, 79 and #*, distinguished only
by the momentum assignments as shown in egs. (2.4) and (2.5). Thus, even when all
interactions are turned off, Cr, ;; is still nonzero for any combination of j,1 # 4.

In more detail, the definition of M ensures that eq. (2.22) gives the correct expression
for C’[LQ";]I, for all choices of j and I. Here one must consider three distinct cases. First for j =
4,1 # 4, as well as j # 4,1 = 4, the correlator vanishes, as expected for the non-interacting
contribution connecting a [—][0][+] channel with a [0][0][0]. Second, if both j,1 # 4
then one recovers a non-zero contribution with a factor of 3, MMy, = 6 arising from
the contracted matrix indices. This compensates the 1/6 pre-factor, leading to the correct
expression for a diagram with three distinguishable particles. Finally, j = [ = 4 yields the
diagram with three neutral particles and in this case the 1/6 survives and correctly gives
the symmetry factor for identical particles.

Having demonstrated that eq. (2.22) gives the correct generalization of eq. (2.20), it is
now very straightforward to generalize the decomposition, eq. (2.21). We find

, 1

C(P) = CEI(P) + 3o Fal, (2.25)
iF

[Flji = 50t (2.26)
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where d;; is the identity matrix on the seven-dimensional flavor space. Here we find it
convenient to absorb various factors of 4, w and L into the boldface definitions. Specifically,
we use

ol =ioy. o], =ilo"],. and [CL(P)]; = Cra(P), (2.27)
In the following we generally follow the convention of using bold-faced symbols whenever
flavor-space indices are suppressed.
We turn now to the diagram shown in figure 2b. In the case of a single channel of
identical particles the corresponding expression is

/ / da’ dk:o Aa)A®D)

x iB(d’,b';a,b) Ala)A(b) A(k)ioT(k,a), (2.28)

where B is the infinite-volume Bethe-Salpeter kernel. As we demonstrate in ref. [17] this
leads to a contribution of the form

cP(p) = io iKyiFiol +--- (2.29)

iF

2wIL?
where KCy is the two-particle K matrix, up to some subtleties in the sub-threshold definition,
as discussed in refs. [17, 18]. The ellipsis in eq. (2.29) indicates that additional terms arise
containing less than two factors of F'. Indeed, many of the complications in ref. [17] arise in
the demonstration that these terms can be reabsorbed into redefinitions of C, ¢ and o', in
a consistent way that generalizes to all orders. It is this patterm of absorbing higher-order
terms that leads to the conversion of B into the K matrix.

Following the pattern established above, our next step is to give the isospin general-
ization of eq. (2.28)

PP / By R RO IN

X [A(K) VB, b a, b [A(@)ABYA k) o iy (K@) . (2.30)

All quantities here have been defined, with the exception of [A(k)~'iB(a’,V’; a, b)],pr. This
object is a matrix on the flavor space, with non-zero entries only when the third particles
of the n’ and n” states coincide, see again eq. (2.4). In the case where n’ and n” do have
a common spectator, the entry is defined by setting A(k)~! to the spectator species and
taking B as the Bethe-Salpeter kernel for the scattering of the n’ and n” non-spectator
pairs. We give a concrete expression of this matrix structure (in the context of Ks) in
egs. (2.32)—(2.35) below.

As with eq. (2.22), it is straightforward to show that (2.30) gives the correct result
for the correlator for all choices of j and [. For example, if j = 4 and [ # 4, then the
left-hand loop (containing momenta a’ and V') consists of three mps, and the expression
then forces the spectator in the right-hand loop (that with momenta a and b) to also be a
7o. There are then two options for n” = n"” available, namely n” = 3 and 5 (n” = 4 being

- 11 -



disallowed since [ # 4). These two options correspond to the scattering process in the
Bethe-Salpeter kernel being mo(a’)mo(b') < 74 (a)m—(b) and mo(a’)mo(V') + 7—(a)my(b),
respectively. These give equal contributions because in the loop sums/integrals we can
freely interchange the dummy labels a and b. This redundancy cancels the prefactor of 1/2
for right-hand loop, while leaving it for the left-hand loop, as required for a diagram with
only one exchange-symmetric two-particle loop.

We are now ready to present the isospin generalization of eq. (2.29),
c(P)=oFKyFol +---, (2.31)
where all objects have been defined above besides

K+
Ko = i[2wL?] Ko : (2.32)
K-

Here our notation indicates a block-diagonal matrix, in which the subscript on each block
denotes the charge of the spectator. The blocks are given explicitly by

T_TQy < T_T TT_TQ <— T TT—

Ky = [ bl | , (2.33)
[mo7— < m_mo| [mom— « mom_]
[fomy «—momy]  [momy  mome]  [momy — mim_]

Ko=| [momo ¢ m_my]  [momo < momo| [momo ¢« mym_] |, (2.34)
[rom_ «—m_my] [mpm_ < momo]  [mpmo — mim_]

T4 <= QT O T4 4— T4
o = [momy <= momy]  [mo 7y ¢ Tyl 7 (2.35)
[Tymg < Mo 4] [meme < Tmo)

where each scattering process in square brackets indicates the corresponding two-particle
K matrix. We stress that many entries in these K matrices are trivially related, e.g.

7 (a)ms (F) = 7o (@ (8)] = [ () (V) 7y (B (@) (2.36)

This completes the discussion of figure 2b.
To conclude the extension of the quantization condition, it remains only to consider
figure 2c. Here we immediately give the isospin-generalized expression

=3 X [ [ [ et @S0

x [A(K)"YiB(d 65 9, bpi) e [AD)Abpr) A(K) S
% [A(p) " iB(bye, ks @, b) | [A(@) AD)AD) ity (p,a),  (2.37)
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where b, = P — p — k. All quantities are defined above except for the propagator triplet
with the G superscript, which represents the contribution of the central cut in figure 2c.
To give an explicit expression, we introduce the matrix

Ta (2.38)

I
BRO0OO0O0O00OA0O
gomdtgdod
OomR0OO0O00OA0O
goomgdod
Oo0ooomd
gooomOod
gogobogdgidmn

4

I

=

|

I

—_

This corresponds to interchanging the first and last particles in each channel, which is
what is required by the “switching” of the spectator particle in figure 2c. Note that T is
a reducible representation of the element (13) of the permutation group Ss in the notation
of appendix C. Using this matrix we then have

[A ) AGp) AR5 = [AB)AD) A K)o (TG (2.39)

In ref. [17] we demonstrated that such exchange propagators gave rise to a new kind
of finite-volume cut involving G. We find that the isospin-generalized result is

cPP) =0 FK,GKyFol 4+, (2.40)
where
1
=i GT. 2.41
G zzngG e ( )

We stress that, in contrast to Ky and F, the matrix G does not commute with 1/[2wL?]
on the k, ¢, m index space. For this reason we have been careful to show the order of the
product defining G.

At this point we have introduced the key quantities entering the generalized quantiza-
tion condition: F, Ky and G. With these objects defined, every step in the decompositions
of refs. [17, 18] naturally generalizes to flavor space, with each equation carrying over essen-
tially verbatim, but with extra flavor indices. The only significant difference is that certain
steps, related to symmetrization, require additional justification when flavor is included.
This is discussed in appendix A, where the additional arguments are given. In the end,
one reaches a decomposition of the finite-volume correlator that is exactly analogous to
eq. (2.6) above:

1

Cr(P)=C4(P)— AF3——— A 2.42
L(P) = Cux(P) — Aj T R gy (2.42)
where
F 1 1
Fs=—+F—kF«+—M;y;F My =—7F——. 2.43
3=g - M,,G 2,LF 2,L K1_F (2.43)
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The sign changes in eqs. (2.42) and (2.43) as compared to egs. (2.6) and (2.7) are due to
the factors of 7 that are absorbed into the bold-faced quantities.%

The endcap factors, Ay and Aj, are matrices on the seven-dimensional flavor space,
describing the coupling of each of the seven operators [see eq. (2.4)] to each of the seven
interacting asymptotic states. The exact definitions are unimportant for this work and
it suffices to know that these quantities, like Co(P), have only exponentially suppressed
dependence on L, and do not contain the finite-volume poles that we are after. Thus, just
as in the single channel case, the finite-volume spectrum is given by all divergences of the
matrix appearing between A% and Aj, equivalently by all solutions to the quantization
condition

dety,¢m (1 — Kar3(E*) Fs(E,P,L)] =0, (2.44)

where the subscript f indicates that the determinant additionally runs over flavor space.
Note that this expression will give the spectra of all three-particle quantum numbers si-
multaneously and is therefore not useful in practice. In the section 2.4 below we discuss
how to project this result into the various sectors of definite total isospin.

2.3 Generalized relation to the three-particle scattering amplitude

First, however, we present the isospin generalizations of eqs. (2.13)—(2.19) above, thus
providing the relation between Kgr3 and the physical scattering amplitude. One first
defines the modified finite-volume correlator:

M, (P) = S|M{5 (P)| (2.45)
1
3,L ( ) L 1— de73F df,3vp, ( )
where
DY = p-lp.F-! _ p®W pe® — 1| ¥ L ey, IR 2.47
- 3 disc disc — 3 + 2,L ) ( . )
L") =F 'F;, R\ = FsF ! (2.48)

S now denotes a symmetrization procedure in the multi-flavor system, an extension that
introduces some additional complications as we discuss in the following paragraphs. As
in the case of a single channel, an ordered double limit of M3 gives a set of integral
equations relating Kgr 3 to the physical scattering amplitude, denoted Mg,

Ms(E, P) = lim lim Ms(E + ie, P). (2.49)

e—0t L—o0

It is straightforward to write out the resulting integral equations explicitly, as done for
identical particles in ref. [18], but they are not enlightening and we do not do so here.

SFor completeness, we note that Az and A% include factors of i: they are the flavor generalizations of

+

iAs and iA%, respectively. They are the generalized all-orders endcaps, whose leading terms are o' and o,

respectively. Similarly Kgr, 3 is the flavor generalization of ilCqs,3.
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This concludes the path from finite-volume spectrum, through Kg¢ 3, to the scattering
amplitude M3.

As in the single-channel case, implicit in this procedure is a conversion from the k, £, m
index space to a function of the incoming and outgoing three-momenta. This conversion is
performed simultaneously with a symmetrization procedure. We stress that symmetrization
is needed even for non-identical particles, to ensure that all diagrams are included, i.e. that
the proper definition of the infinite-volume amplitude is recovered.

At this point, it remains only to specify the symmetrization procedure, encoded in the
operator S, for the case of general pion flavors. To do so, we begin by defining

XK 0k, @) = 475 (@50) X550 o Yan (@5 ) | (2.50)

where X ,SQ,L;)], wem Stands for a generic, unsymmetrized quantity, e.g. Mguiu) in the identical-

particle case or an entry of MguLu) in flavor space. Here d;k is the spatial direction of
(wg, a3 ), the four-vector reached by boosting (wa, @) with velocity 8 = —(P—k)/(E—wy).
In other words aj gives the direction of back-to-back momenta of the non-spectator pair,
which have momenta a and P — k — a in their two-particle CMF. The same holds for a5,
with @ — a’ and k — k’. Contracting the spherical harmonic indices, as shown on the
right-hand side of eq. (2.50), leads to a function of momenta whose argument can be take
as k:,dg’k. or, equally well, as k,a. Here we choose the latter convention, i.e. specifying
all momenta in the finite-volume frame, as this makes the symmetrization procedure more
transparent.

We begin with the case of a single channel of identical particles, where the symmetriza-
tion procedure, first introduced in ref. [18], is given by

X (K. b:k,a,b) = SXWY, 1= Y > XUW(phplips,py) . (2.51)
{p5.P) }EP; {P3.P1}EP3

The sums here run over the sets

Ps = {{k:,a}, {a, b}, {b,k:}} and Pj = {{k’,a’}, {a',b'}, {b’,k:’}}, (2.52)

withb=P—-a—kand b = P —a’' — k'. As discussed in ref. [18], this step is necessary
to reach the correct definition of M3, a quantity that is invariant under the exchange of
any two incoming or outgoing momenta. The essential point is that the sum runs over all
assignments of the spectator momentum for both incoming and outgoing particles in X (4%,

To generalize this to non-trivial flavors, we first note that the identical-particle pre-
scription, i.e. simply summing MguLu) over all permutations of the momenta, is clearly
incorrect. The issue is that, for example, the mgm i m_ — mgm7m_ scattering amplitude
is not, in general, invariant under permutations of either the incoming or the outgoing
momenta. Instead, the required property is that amplitudes must be invariant under the
simultaneous exchange of flavor and momentum labels. Summing over such exchanges en-
sures that the all choices of the spectator pion flavor are included, as illustrated in figure 3.

To express this we introduce matrices that rearrange flavors in accordance with a given

momentum permutation. For example, the second element in the set Ps corresponds to
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k — a, a — b, b — k, and should be matched with the following flavor rearrangement:

ootomod

Ri—a (2'53)

Oogoogooo
gdomOn

gogogodgano
gododdmnm
O
I
=
n
I
—_

Il
OmR0O0O00O0O0O
oooOomd
OoOoOmO0O0Ond

N O

We additionally define Rg_,x = I (the identity) and Ryg_p = Ri _,q-The matrices Rg_p,
Ry a, and R, are reducible representations of elements (231), (321), and (1) of S3
[see again appendix C]. This then allows us to succinctly express the generalization of
eq. (2.51) to the space of all possible three-pion flavors

Xerg(K a6k, a,b) = S[XE50 0 crm) (2.54)

= Z Z Rg/—)pg ’ X(%u) (pgvpllvp?npl) : :R'k:—)p3 .
{pé,pi}epé {pS»pl}EPB
(2.55)

Note that the symmetrization also converts us from the index space to the momentum
coordinates (k',a’,b'; k,a,b), and thus leads to the proper dependence for the three-body
scattering amplitude. In fact, the scattering amplitude does not depend on this full set of
vectors, but rather on the subset built from the eight possible Poincaré invariants that can
be built from six on-shell four-vectors. This statement holds regardless of whether or not
the particles are identical.

We conclude this subsection by commenting that, as for the quantization condition
in eq. (2.44), the relation (2.49) is in the basis of three-pion states labeled by individ-
ual pion flavors. The conversion to definite three-pion isospin, and the resulting block
diagonalization, will be addressed in section 2.5.

2.4 Block diagonalization in isospin: quantization condition

We now project the above expressions onto definite two- and three-pion isospin. To achieve
this we require a matrix C such that

3<(7r7r)27r‘ (n_, mo, mq|
2<(7r7r)27r‘ (mo, m—, mq|
o] -
1<(7r7r)27r’ =C- <7T0 , T, 770‘ , (2.56)
(o] (e 17 0
(o] (s e 7]
ol v 7o, 7|

where the subscripts on the bras on the left-hand side indicate the total isospin, I, and
we have indicated the isospin of the first two pions with the shorthand (77)s for Iy = 2, p
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Figure 3. Representation of the symmetrization procedure applied to the outgoing particles. Colors

indicate different flavors.

for I = 1 and o for I, = 0. This notation and some related results are discussed further
in appendix C. A simple exercise using Clebsch-Gordon coefficients shows that the result

is given by the orthogonal matrix

1 1 1 2 1 1 1
V10 V10 V10 5 V1o Vio V1o
1L _1 9 0 0 1 1
2 2 2 2
11 _1 9 1 _ 1 1
2v3 2v3 V3 V3 2v3 2v3
c=| V3 VB_ 1 1 ViR (2.57)
2 2 Vvis V15 V15 2 2
1 1 11
3 —3 0 0 0 -3 3
1 1 1
0 0 B B A 0 0
11 g 1 1 1
V6 V6 V6 Ve V6 V6
The block-diagonalized finite-volume correlator is then given by
1
C-Cr(P)-CT =C-|Cu(P) — AjF3————A3| - CT. (2.58)
1 - Ky 3F3

To further reduce these expressions one can insert CT - C = 1 between all adjacent
factors, so that every matrix is replaced according to X — C - X - CT. One can explicitly
check that this transformation block diagonalizes F, K3, G and Kg¢3 so that the final
quantization condition factorizes into four results, one each for the four possibilities of
total three-pion isospin, Irr = 0,1,2,3. For example, starting with eq. (2.41) above, one
finds (with blank entries vanishing)

1
_1 V3
2 2
_V3 1
2 2
1 1 Vi5 VB
C'G'CT:ZQMLSG 5§ "6 3 (2.59)
ViI5 1 1
6 2 U3
VB o_ 1 1
3 ~/3 3
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det[1 - K}, (E")FY (B, P,L)] =0

1
n_F I 1 1) o 1
By =5+ oM MyL= = m
3 1—M[2’]LGU] K[/ Fl
I FU K} Gl
3 s i[2w LB (), e
1 3
r (10 : SCLP . 2 7%
iF 1
2 2wL3 (0 1) Z[2OJL3] 0 ICp ZQWLBG _ﬁ 1
2 2
1 VI A5
100 ,C(Tl'ﬂ')g 0 0 6 6 3
1| 54E51010 i[2wL3) 0 K, 0 i Lol ¥s 1 L
2wL3 iz 2wL3 6 2 3
001 00K, s
3 /3 3
0 iy i2wIdK, —iglaG

Table 1. Summary of quantization conditions for all allowed values of the total isospin I = I;rx.

We introduce the shorthand G to indicate the block within C - G - T corresponding to
a given total isospin. See table 1 for the explicit definitions. It is interesting to note that
G[g], G[O], and G each correspond to the element (13), as it is defined, respectively, in the
trivial, sign and standard irreps of Ss. In addition G is this same element in a reducible
representation, the direct sum of the trivial and the standard irreps.

For the two-particle K matrix, Ko, the change of basis gives an exact diagonalization,
with each total-isospin block populated by the possible two-pion subprocesses, as illustrated
in figure 1. The quantity F is trivial under the change of basis, since it is proportional
to the identity matrix. Finally, the exchange properties of the pions within Kgr 3 (which
are the same as those of M3 1, and M3) are enough to show that it too block diagonalizes,
but now with all elements non-zero in a given total-isospin sector. We conclude that
the quantization condition divides into four separate relations, compactly represented by
adding superscripts [I] to all quantities. The resulting forms of K[2H and FU as well as the
corresponding quantization conditions, are summarized in table 1. One noteworthy result
is the change in the sign of the G term for I, = 0 compared to that for I, = 3, which
is a consequence of the antisymmetry of the isospin wavefunction in the former case.

2.5 Block diagonalization in isospin: relation to M3

To conclude our construction of the general isospin formalism, it remains only to express
the relations between Kg¢ 3 and the scattering amplitude, M3, described in section 2.3, in
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the definite-isospin basis. Exactly as with the quantization condition, the approach is to
left- and right-multiply the finite-volume correlator, M3 r,(P), by C and CT respectively

C'M3,L(P)'CT:C'S[M:(J,?LU)(P)} =y 3
{p5.p) YEP; {p3,p1}EPs
X C ’ Rf’%pé ' CT ’ C ' Mgu,U)(pgapllup37p1) ' CT . C : Rk:*)p3 . CT .
(2.60)

One can then verify that the change of basis block diagonalizes the various Rg_,p, as well

as M(Lu’“). In other words, the symmetrization does not mix the different total isospin so
that we can write

I 1T I(u,u I
ML) = Y Y R MUl plip ) R, (260)
{p5.p1 }EP; {p3,p1}EPs

where each object on the right-hand is reached by identifying a specific block after the
change of basis. The symmetrizing matrices are defined as follows: Ry/_,;0 = R = I,

Rg]—w = RL[’}—W = (RLI}_W)Q, and RLH_M = RLI,}_)G, are given in table 2. For I, = 0, 2,
and 3, RLI]_W coincides with the element (321) in the irreps of Ss, see egs. (C.9) and (C.10).

To conclude we only need the isospin specific definitions for the building blocks en-

tering MéﬂL(P) These are natural generalizations of eqs. (2.46)—(2.48) but we repeat the

expressions here for convenience:

I(u,u _ u.u I(u 1 I I(u
MY (p) = Dl 4 g >WK£H{3R[LK ) (2.62)
- de,3F3
where
-1 | gl] -1
Dl = (gl FT‘FF[I]MZ,LF[H (FI0)

disc

)
Dl = () " Bl (1) - Dl (2.63)
)

3 Parametrization of Kg¢ 3 in the different isospin channels

In order to use the quantization condition detailed in the previous section, Kg4r 3 must be
parametrized in a manner that is consistent with its symmetries. In the ideal situation, only
a few free parameters will be needed describe Kg4¢ 3 in the kinematic range of interest, such
that one can overconstrain the system with many finite-volume energies and thereby extract
reliable predictions for the three-particle scattering amplitude. There are two regimes in
which this is expected to hold: near the three-particle threshold and in the vicinity of
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(1]
I Rk—>a
3 1
_1 _ 3
9 2 2
V3 1
2 2
TRV I
6 2 3
1| Ve
2 2 /3
VB o1 1
3 /3 3
0 1

Table 2. Summary of the symmetrization matrices entering the relation between the scattering
amplitude and Kglf} 3¢

a three-particle resonance. In this section we describe the parametrizations in these two
regimes.

An important property of Kgr3 that has been left implicit heretofore is that it can
be chosen real.” This applies when Kar3 is expressed as a function of momenta, using
egs. (2.50) and (2.51), rather than in the {k¢m} basis.® The reality of Kgr3 in the case of
identical scalars arises in the derivation of ref. [17] from the use of the PV prescription to
define integrals over poles. The same argument applies here, except that, in addition, one
must choose the relative phases between different flavor channels to be real. This additional
condition is relevant for the multichannel cases, I = 1 and 2.

3.1 Threshold expansion of Kgr 3

Although in the discussion above K¢ 3 appears in the finite-volume quantization condition,
it is important to remember that it is an infinite-volume quantity. In addition, like the
physical scattering amplitude, it is a Poincare-invariant function (equivalently a Lorentz-
invariant and momentum-conserving function) of the six on-shell momenta. It also inherits
from M3 invariance under the simultaneous exchange of particle species and momenta in

"This assumes that, as is the case for QCD, the underlying theory is invariant under T, or equivalently
CP, so that coupling constants in the effective field theory can be chosen to be real.

8In the {k¢m} basis, Kar,3 becomes complex due to the spherical harmonics in the decomposition (2.50).
This applies also to F', G and K2. The key point, however, is that each of these objects, and thus any
symmetric product built from them, is an hermitian matrix on the {k¢m} space. The determinant of any
such matrix, in particular the determinant defining the quantization condition, must then be a real function.
Similarly, since Mgfiu) is hermitian, one recovers a real function upon contracting with spherical harmonics.
This subtlety can be avoided by using real spherical harmonics, as we do in our numerical implementation
below.

—90 —



both the initial and final state, as well symmetry under charge conjugation (C), parity (P)
and time-reveral (T) transformations [19].

To make this final point clear it is useful to introduce Kg¢ 3 (representing here a generic
entry of the flavor matrix Kg¢ 3) as a function of six three-vectors, in direct analogy to the
left-hand side of eq. (2.54). Working in the basis of definite individual pion flavors allows
us to readily express the consequences of various symmetries. For example, the exchange
symmetry can be written as

de,3;[7r+ﬂ'07r* — 7r+7r07r*}(p,1ap/27p:/3;p17p2ap3) =

]Cdf,3;[7T+7TOﬂ'_ — mta—x0] (pllap/Z’pé;plvp?ﬂpQL (31)

where we have swapped the second and third species and momenta on the in-state.” Using
T invariance then implies the following relation,

]Cdf,3;[7r+71'07r— — mta0n—] (plla P/z,Pg),;PpPza pS) =
,Cdf,3;[7r+7r07r* — mta0mr—] <_p17 —D2; —DP3; _p,lu _p/27 _pé) . (32)

Combining with parity implies that Kgr3 is unchanged when the initial- and final-state
momenta triplets are swapped:

K:df,3;[7r+7r07r* «— 7r+7r07r*}(pllap/27pg;p17p2up3) =
de,B;[Tr+7rO7r— — 7r+7r07r—}(pth»Pg;P/pp/mPé) . (33)

This result holds for all theories that are PT invariant.

As proposed in ref. [20], and worked out in ref. [22] for three identical bosons, one
can expand Kq¢ 3 (which in the present case is replaced with the matrix Kgs 3) about the
three-particle threshold in a consistent fashion, and use the symmetries to greatly restrict
the number of terms that appear. The results of ref. [22] apply to the I = 3 three-pion
system; here we generalize them to the I, = 0, 1 and 2 channels. The new feature is the
need to include isospin indices in the particle interchange transformations.

For the parametrizations, we use the same building blocks as in ref. [22],

/ 2
A= ;7372712 , Ai= Sjkg;;mz . A= Sjkg;;m ;b= gt;iz ) (3.4)
with generalized Mandelstam variables defined as
s=FE>, sij = (pi+p;)° = sji, sii = (p; +p;‘)2 =85, tij = (pi —P})z- (3.5)
The power counting scheme for the expansion will be
A~ Ajj o~ A~ tij - (3.6)

9This property may seem obvious, but we stress that it does not hold for individual Feynman diagrams.
Because the definition for Kg4¢ 3 is built up diagrammatically, the exchange invariance does not hold for
various intermediate quantities entering the original derivation and only emerges in the final definition.
This point is discussed in more detail in appendix A.
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As discussed in ref. [22], only eight of the sixteen quantities in eq. (3.4) are independent —
the overall CMF energy, and seven angular variables. The relations between the quantities
will be used to simplify the threshold expansions.

In the following, we work out the leading two or three terms in the parametrizations
of Kgt 3 in each of the isospin channels. A summary of key aspects of the results is given in
table 3. The presence of even or odd values of £ is determined by whether the states in the
isospin decomposition are given by |(7wm)em) and |om), leading to even angular momentum
in the first two pions, or else |p7), leading to odd angular momenta.'® The fact that only
small values of angular momentum appear in the table (¢,¢ < 2) is due to our consideration
of only the lowest few terms in the threshold expansion. Only a few cubic-group irreps
appear for the same reason. All values of ¢ and ¢, as well as all cubic-group irreps, will
appear at some order in the expansion.

311 I rr=3

This is the simplest channel, and has been analyzed previously in ref. [22], from which
we simply quote the results. The [, = 3 state is fully symmetric in isospin, so the
momentum-dependent part of K([ffgg] must be symmetric under particle interchanges. In
the charge neutral sector, there is only a single I = 3 state, and thus no isospin indices
are needed. Kgfzg] is therefore a function only of the momenta, and, through quadratic

order, there are only five independent terms that can appear:

I=3 iso 2,4) A (2 2.B) 4 (2
m2K<[if,3 =k + IC((if,?) )Ail) + ’Céf,:«; )ASB) +0(A%), (3.7)
5 = Kt + Kty A+ Ky A7 (3:8)
3
AR =37 (a2 A7) - A%, (3.9)
=1
3 ~
AP =382 A%, (3.10)
i,j=1

~ i50,1 1-i50,2 1~(2,4 2,B . .
Here KC4P, lCiist 3 ,lCldeO A ,IC((if 3) and IC((if 3) are numerical constants. An extensive study of

how these terms affect the finite-volume spectrum has been performed in ref. [22].

3.1.2 I z=0

The three-pion state with I, = 0 is totally antisymmetric under the permutation of
isospin indices, as shown explicitly by the last row of C in eq. (2.56). Thus, to satisfy
the exchange symmetry exemplified by eq. (3.1), the momentum-dependent part of Kéffzol
must also be totally antisymmetric under particle exchange, in order that the full three-
pion state remains symmetric. Again, no explicit isospin indices are needed, as there is

only one I = 0 state.

10We stress that the notation |pr) indicates only that the first two pions are combined into an isotriplet.
This implies that their relative angular momentum must be odd, but does not restrict the pions to be in a
p-wave.
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I term (0, 0) irreps
3 zisf(:?) (070) Al_
2,A B
3 Ky (0,0),(0,2), (2,0) A
3 Kiy (0,0),(0,2),(2,0),(2,2) AT BTy, T
AS _
0 Ky (1,1) T, 1)
AS,2 _
0 IC((if,?) ) (171) T1
0,0) (0,1)
2 KL A7, T
ans 1,0) (1,1 L
0,0) (0,1
1,2 ’ 5 _
2 ICdf,S A1
1,0) (1,1)
7,3 (0,0),(0,2),(2,0) (0,1),(2,1) .
2 ICdf,3 A1 7T1
1,0),(1,2) (1,1)
0,0),(0,2),(2,0),(2,2) (0,1),(2,1
5 KA (0,0),(0,2),(2,0),(2,2) (0,1),(2,1) A BTy T
’ (1,0),(1,2) (1,1)
(070) T
1 IC(SHS,3 — — — AT
1 KSR 0,00 — — A7
(170) T 7

Table 3. Properties of low-order terms in the threshold expansion of Kg¢ 3. The terms are speci-
ficed by their coefficients in egs. (3.7), (3.12), (3.27), and (3.30). The values of (¢',¢) are obtained
by decomposing the expessions into the kém basis, following the method of ref. [22]. The matrix
structure corresponds to the isospin decomposition of appendix C, which is also used in the afore-
mentioned equations. The final column lists the cubic-group irreps that are present in finite volume
when one considers the rest frame, P = 0. The superscript gives the parity, which includes the
intrinsic negative parity of the three-pion state. The irreps are determined by first working out
which J¥ values are present, and then subducing to the cubic group. Results for I, = 3 are

taken from ref. [22].
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It is straightforward to see that the leading completely antisymmetric term that can
appear in the momentum-dependent part of Kgff:go] is of quadratic order in the threshold
expansion:

I1=0
KElf 3 ! > ’Cdf 3 Z €ijk€mnrlimtin = de 3AS\% (3.11)

ijk
mnr

At next order two new structures arise and the full form can be written

I=0 Al 2 A
K<[if,3] = (’Cdf 3+ ’CdfsslA) A( ) st ’CdeSQAEX% +0(AY), (3.12)
with
AA:% = Z €ijk€mnrtimtinlir - (3.13)
ijk

313 Iipr =2

As discussed in the previous section, and summarized in table 1, the isotensor chan-
nel involves a two-dimensional flavor space. This space can be understood in terms of
the permutation group S3, as described in appendix C. The two isospin basis vectors,
IX1)y = |(mm)2m)y and |x2)y = |pm),, also given in egs. (C.12) and (C.13), transform in
the standard irrep of S3. To satisfy the exchange relations exemplified by eq. (3.1), the
combined transformation of isospin indices and momenta must lie in the trivial irrep of
S3. This requires combining the isospin doublet with a momentum-space doublet also
transforming in the standard irrep. At linear order, there are three momenta, and these
decompose into a symmetric singlet (p; + p2 + p3) and the standard-irrep doublet

§1= \}6(2173 —p1—p2) and &= \2(1?2 —p1)- (3.14)

There is an analogous doublet, &, built from final-state momenta. The symmetric combi-

A
<€2> =¢, (3.15)

ANE
W) = €1 IX1)g + € [X2), = ; =¢, (3.16)
2

where the last two forms introduce a convenient column vector notation. The leading term

nations are then

[Ysym) = &1 |x1)o + &2 [X2)9

in Kgfzz] then becomes

& -6 & &
oym| = K5 MR E,,
) {Vsym| af,3 €6 &6 Kifs & €.

[1=2]
Kairs

iCdfg (205 — Py —ph) - (2ps —p1 —p2)  V3(20h — Pl —ph) - (p2 — 1)
6 V3(ph — 1)) - (2p3 — p1 — p2) 3(ph — ph) - (p2 — p1)
(3.17)
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where IC(Si;l:3 is a constant. Note that this is of linear order in A, since the inner products
§i - & can be written as linear combinations of the #;;. There are no terms of O(AY).

At next order, there are three sources of contributions. First, one can multiply the
term in eq. (3.17) by A. Second, one can build additional basis vectors transforming as
doublets, but of higher order in momentum. Third, one can form Lorentz singlets in more
than one way. We discuss the latter two issues in turn.

To proceed systematically, we begin by classifying objects quadratic in momenta, of

the general form p!' p5. The nine such objects contain three standard-irrep doublets:
O =P tueov, LA =8P —pev, (3.18)
and
E(9) = (E(9))".€(8)5") = (6565 — &1¢1, &6 +&¢€7) - (3.19)

The latter is the standard irrep that results from the direct product of { with itself. Each
of these doublets can be combined with the isospin-space doublet to make fully symmet-
ric objects out of both initial- and final-state momenta. These are then combined as in
eq. (3.17) to give a contribution to Kqr 3. When Lorentz contractions are included, as dis-
cussed below, symmetric doublets (£(S) and £(S)) must be combined with other symmetric
objects, and similarly for the antisymmetric doublet £(A). Taking into account also CPT
symmetry, there are then four possible combinations, schematically given by

£(9)'€(S), &£(5)'€(S) +£(S)E(S), £(S)E(S) and £(A)E(A). (3.20)

Lorentz indices can be contracted in three ways:

(0) Guwguv s (11) guw G and  (140) €uppryr - (3.21)

The first two can be used only for the symmetric objects, while the last two can be used
for the antisymmetric objects. We begin with the Lorentz contractions of type (7). Here it
turns out that all three symmetric combinations lead to the same result, namely the outer
product
1=2] _ > -
Ki D28 ei®, (3.22)

where

£@ _ <2A3—A1 — Ay Ag— Ay
V6 TV2

with P = p; + p2 + p3 = p} + p, + p§. Next we consider Lorentz contractions of type (i7).

> x (& P& P), (3.23)

Here we find only two combinations lead to new structures, namely,

KL 5 6(5)™ @ 68w + €)™ @ E(S) . (3.24)
and
KL= 5 E(5)™ 0 E(8) (3.25)
Finally, the contraction of type (iii) leads to
Kgf,:;} D e S(AM @ E(A) (3.26)

which vanishes identically.
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Thus, at this stage, we have found four terms of O(A2). A further potential source of
such terms is to combine contributions linear in ¢ with those cubic in &', and vice versa.
Carrying out an analysis similar to that above, we find, however, that all such terms can
be written in terms of those already obtained. Thus the final form of Kg;f] is

KU = (Kl + Kiha) € 0 8, + K3 £ @ 0 @4
FKE (8™ @ €(S) + ES)™ @ &S ) + KIS
where the superscript T refers to isotensor.

314 Iirr=1

Lastly, we consider the parametrization of K([ilf:gl]. Here the isospin subspace is three-

dimensional and in section 2 we used a basis with definite two-pion isospin,

{I(mm)am)y ;s lpm)y s lom)i} (3.28)

In this section we find it convenient to use a different basis, consisting of a singlet trans-
forming in the trivial irrep of S3 and a doublet in the standard irrep. The relation between
bases is shown explicitly in egs. (C.15)—(C.18) and, in the matrix notation that follows, we
order the basis vectors such that the singlet comes first:

{xs)his Ixans Ix2)} - (3.29)

The presence of two irreps implies a greater number of options for building a fully
symmetric object. In particular, the analysis for the symmetric singlet component is iden-
tical to that for the Irr = 3 sector, with the leading two terms being of O(A") and O(A),
respectively. Combining a final-state singlet with an initial-state doublet, an overall singlet
of O(A) is obtained using the Lorentz-scalar doublet £ @ of eq. (3.23). An analogous
term is obtained by interchanging initial and final states. At this same order, initial- and
final-state doublets can be combined as in eq. (3.17). In total, enforcing CPT invariance,
we end up with

0 & &

100
KU=10) _ (K§§3+K§§§A) 000 +kP [ €@ 0 o
000 ,(2)
0 000 (3.30)
0 0 0

+ADR | 0€ -6 & -& | +0(A%),
0&-&1 & &

where the |y) superscript on the left-hand side emphasizes that we are using the new basis,
introduced in (3.29). The SS and DD superscripts on the right-hand side refer to singlet
and doublet irreps.
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3.2 Three-particle resonances

The threshold expansion derived in the previous section plays a similar role for three-
particle interactions as the effective-range expansion does for the two-particle K matrix. It
provides a smooth parametrization of the interaction, valid for some range around thresh-
old, that respects the symmetries. However, we expect that the convergence of the series
is limited by the singularities in Kg¢ 3 closest to the three-particle threshold, just as the
expansion for Ky is limited either by the nearest poles, possibly associated with a two-
resonance, or else by the t-channel cut. As studying three-particle resonances is one of
the major goals behind the development of the three-particle quantization condition, it
is important to determine appropriate forms of Kg4¢3 in the channels that contain such
resonances. This is the task of the present section.

We begin by listing, in table 4, the total J and isospin for the resonant channels
observed in nature that couple to three pions [39]. We include only cases where the coupling
is allowed in isosymmetric QCD. Resonances are present only for I = 0 and I = 1.
We note the absence of the J = 0%, I =1, ao (980), for which no three-pion coupling is
possible that is simultaneously consistent with angular momentum and parity conservation.
For each resonance, we also note the corresponding subduced cubic group irreps. The cubic
symmetry group including parity (also called the achiral or full octahedral group) defines
the symmetry of the system provided that the total momentum is set to zero. In a lattice
QCD calculation, one can project the three-pion states onto definite cubic-group irreps
by choosing appropriate three-pion interpolating operators, as discussed in appendix D.
Note that, for the values of J¥ arising in the table, a finite-volume irrep can always be
identitifed that does not couple to any other listed values. The final column in the table
gives the lowest three-pion orbit that couples to the irrep(s) for the corresponding state.
The ordering of the orbits is described in appendix D; see in particular table 5.

In the remainder of this section we determine the forms of the entries of Kqg¢ 3 that
couple to three pions having each of the quantum numbers listed in table 4. We stress that,
as in the previous section, this is an infinite-volume exercise. When using the resulting
forms for Kgf],:s in the quantization condition, one must covert the forms given here to the
k¢m index set introduced above. This is a straightforward exercise that we do not discuss
further here.

By analogy with the two-particle case, we expect that a three-particle resonance can be

represented by a pole in the part of K([i[f] 4 with the appropriate quantum numbers [20], i.e.

K = e, —2 4 0[(s — M3)] (3.31)
' s — My

where the superscript |x) on the left-hand side emphasizes that we work in the basis of
definite symmetry states for I rr = 1 (see also appendix C). On the right-hand side, X
labels the quantum numbers, Mx is close to the resonance mass (at least in the case of
narrow resonances), the real constant cx is related to the width of the resonance, and
ICC)I%3 carries the overall quantum numbers. The precise relationship of cx and Mx to
the resonance parameters in M3 is not known analytically, since determining M3 requires
solving the non-trivial integral equations discussed above.
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Resonance Iz JT TIrrep (P =0) 3x orbit
w(782) 0 1 T 4
h1(1170) 0o 1t T, 2
w3(1670) 0 3 A5 4
7(1300) 1 0 A7 1
a1(1260) 11t T, 2
71(1400) 11~ T, 4
m2(1670) 1 27 E and Ty 2
a2(1320) 1 2% ETand Ty 3
a4(1970) 1 4* AT 16

Table 4. Lowest lying resonances with negative G-parity, and which couple to three pions, in
the different isospin and J¥ channels. The fourth column shows the cubic group irreps that are
subduced from the rotation group irreps, assuming that the resonance is at rest (P = 0). The final
column gives the lowest three-pion momentum orbit that contains the corresponding cubic group
irrep, again assuming P = 0.

We stress that, once a form for ICji?) is known, only one sign of cx will lead to a
resonance pole with the physical sign for the residue. The correct choice can be identified by
requiring that the finite-volume correlator C7, has a single pole with the correct residue [20,
22]. In the limit cx — 0, one recovers an additional decoupled state in the finite-volume
spectrum at energy £ = Myx (assuming P = 0), corresponding to a stable would-be
resonance. The form in eq. (3.31) was proposed in ref. [20] for the case of identical scalars
(which is equivalent to the I;rr = 3 channel here) for which ICé;3 is a constant. As noted
above, however, there are no resonances in nature in the I = 3 or I = 2 channels, so
the example given in ref. [20] is for illustrative purposes only. In the following we determine
forms for ICC)fﬁ3 that can be used for all the resonant channels listed in table 4.

We also enforce an additional requirement on ICé(ﬂg, namely that it has a factorized
form in isospin space. This is motivated by the fact that the residues of resonance poles
in My and M3 do factorize, and it was argued in ref. [21] that this carries over to poles
in Ky evaluated at off-shell momenta. Here we assume that this holds also for resonance
poles in Kgr 3. We view this as plausible, but leave the proof to future work.

Before turning to the detailed parametrizations, we comment on the range of validity
for the quantization condition. All the resonances in table 4 have, in principle, additional
decay channels, such as 57 or K K. One must consider on a case by case basis whether
neglecting these is justified, based on the couplings between the resonance of interest to the
neglected channels, as well as the target precision of the calculation. Another possibility is
to work at unphysically heavy pion masses, such that some of the neglected channels are
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kinematically forbidden. While the procedure for including additional two-particle channels
should be given by a straightforward generalization of ref. [19], rigorously accommodating
the 57 state would be a significant formal undertaking.

3.2.1 Isoscalar resonances

The symmetry requirements for the IC()ff 3 are exactly as in the threshold expansion. For
Lirr = 0, this means complete antisymmetry under particle exchange. Useful building
blocks are the following objects:

CMF E _
V=P, enplph 5 (0,=3w_py — p[E — 3ws)) , (3.32)
ijk
CMF
A% = eaps PPPIDS ——  E(0,p,xpy) =E(0,pyxpy),  (3.33)
:E(O>p3xp1) )

where p™# = pi' — ph = (w™,p7), P4 = (w3, p3), etc. The quantities V* and A“ are fully
antisymmetric under particle exchange, and describe a vector and axial vector, respectively,
as can be seen from their forms in the CMF. In particular, the vanishing of the temporal
components in this frame shows the absence of scalar and pseudoscalar contributions (with
the respect to the three-dimensional rotation group).

Taking into account the negative parity of the pion, the momentum-space amplitude
for the JP = 17 w(782) to decay to three pions must transform as an axial vector. This
leads to the following form for Kg¢ 3,

Kgf,?» = A/“Au ) (3.34)

where A" has the same form as A* but expressed in terms of final-state momenta. The
expression (3.34) is manifestly Lorentz and CPT invariant. We have checked explicitly
that, when reduced to the kém basis used in the quantization condition, this expression
transforms purely as a 7] under the cubic group. Indeed, it turns out to be proportional to
the operator Af’%, given in eq. (3.13), that arises in the threshold expansion. Furthermore,
we note from table 5 in appendix D that the lowest three-pion state in a cubic box that
transforms in the 77 irrep lies in the fourth orbit and has momenta (1,1,0), (—1,0,0) and
(0,—1,0) (or a cubic rotation thereof) in units of 27/L. This can be understood from the
fact that, in the CMF, A* vanishes if any of the three pion momenta vanish, as can be
seen from eq. (3.33).

These results have implications for a practical study of the w resonance. As is known
from the study of two-particle resonances, to map out the resonant structure (e.g. the rapid
rise in the phase shift) requires many crossings between the finite-volume resonance level
and those of weakly-interacting multi-particle states. Since the lowest, non-interacting
three-pion state with the quantum numbers of the w lies in the fourth orbit, it occurs
at relatively high energy. Thus for small to moderate volumes, the finite-volume level
corresponding to the w will be the lowest lying state and there will be no avoided level
crossings. Only by going to larger boxes will the level-crossings needed to constrain Kgr 3 in
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detail be present. For physical pion masses the constraint is not too strong — an avoided
level crossing requires mL 2 4.6. However, if working with heavier-than-physical pions,
such as in the example presented in section 4, larger values of mL are needed (mL 2 6.5
in the toy model). These constraints apply, however, only in the overall rest frame. It is
likely that moving frames, for which the constraints will be relaxed, will play an important
role in any detailed investigation of the w resonance.
For the JP = 1% hy(1170), the momentum-space decay amplitude must transform as
a vector, leading to
Kty =V, (3.35)

Only two momenta need to be nonzero for V* to be nonvanishing, and indeed the lowest
momentum configuration transforming as the required Tfr lies in the second orbit and has
momenta (1,0,0), (—1,0,0) and (0,0, 0) (see table 5). Applying the same estimate as above
based on the non-interacting energy, the first CMF avoided-level crossing for physical pion
masses is already expected for mL > 1.8. Thus, for all volumes where the neglected e~™F
is a reasonable approximation (typically requiring mL 2> 4), we expect to recover useful
constraints on the Ay width in all finite-volume frames.

Finally, for the J* = 3~ w3(1670), the momentum-space amplitude must transform as

JP = 3%. One possible form is

Ky = (AuA )P = S(A)(A2) (4, 41), (3.36)

where the second term is required to project against a J© = 17 component. The corre-
sponding cubic-group irrep, A, , appears first in the same three-pion orbit as for the w, for

then the axial current AH is nonzero.

3.2.2 Isovector resonances

We turn now to parameterizations of K(ﬁ;,) in the three-dimensional isovector case, working
always in the y-basis of (3.29) [defined explicitly in egs. (C.15)—(C.18)].

Beginning with the J = 0~ 7(1300), the simplest case in this sector, we note that
these quantum numbers can be obtained from three pions at rest, so that no momentum
dependence is required in ICgf73. However, as we have seen in section 3.1.4, momentum-
independence is possible only for the component connecting permutation-group-singlets in
the initial and final states. For the other components momentum dependence is needed to
obtain a form that is fully symmetric under permutations. Using results from our discussion

of the threshold expansion, we find the following possible form!!

Sr

2
Kis = | dn & ®<sw, dwﬁ?),dﬁsf’)- (3.37)
d7r 5;(2)

1YWe stress that we are not here doing an expansion in momenta, but rather writing a simple form
that has the appropriate symmetries. More complicated expressions consistent with the desired quantum
numbers are certainly possible.
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Here s, and d, are real constants, corresponding to couplings to the singlet and doublet
components, respectively. The outer product structure is necessary due to the factorization
of the residue at the K-matrix pole. We stress that the components of the two vectors in the
outer product must be Lorentz scalars in order that ICgf,3 couples to J© = 0. Thus, for

example, §§2) cannot be replaced by £{'. We also note that we do not expect the momentum-
dependent parts of this expression to be suppressed relative to the momentum-independent
ones, since we are far from threshold.

We can use the properties of the physical 7(1300) resonance to guide our expectations
concerning s, and d,. In particular, the resonance has been observed to have both om
and pr final states [39]. Recalling from appendix C that the first two entries of the vector
space are linear combinations of the states |(77)27); and |o7),, while the third is |p7),, we
see that s, describes the coupling to the former two states, while d, couples to all three.
Thus d; must be nonzero to describe the physical resonance, with its pm decay, while the
importance of s, depends on the details of the amplitude.

Next we turn to the J© = 1% a;(1260). Taking into account the intrinsic parity of the
pion, the decay amplitude must transform as a vector. A possible form is thus

Say Vé“
Kito =g | dan €0 | © (50 V¥ du &, dy &) (3.38)
do, &'
where
14 14 2 14 2
V¥ =erel” + e (3.39)
is a vector that is symmetric under permutations, and
9511 = (gw/ - PMPV/PQ) s (3.40)

is the projector that arises from the sum over polarizations of €,¢},. It projects against P,
and in the CM frame it picks out the spatial part, Vg, which transforms as a vector, while
removing the J¥ = 0% quantity, Vg. We are forced to use a form for V¥ that is cubic
in momenta because the only symmetric vector linear in momenta is simply P*, which
vanishes when contracted with g¥. In contrast to the form for the 7(1300), eq. (3.37), the
doublet portion of the amplitude in eq. (3.38) has a simpler momentum-dependence than
the singlet part. The real constants s,, and d,, play the same role as for the 7(1300), and
again d,, must be nonzero since pr and o7 decays are observed.

Next we turn to the J¥ = 17 m1(1400). It is not possible to construct a fully sym-
metric axial vector from three momenta, and thus the decay amplitude of the symmetric
component vanishes. For the doublet part, a nonzero amplitude can be obtained by com-
bining the completely antisymmetric axial vector A* [eq. (3.33)] with the doublet { @) in
the appropriate manner. This leads to

0

2
Kits = A"g,, A" -6

"(2)
1

o (0. ¢, &) (3.41)
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To parametrize the J© = 2~ m5(1670) requires a tensor composed of momentum vec-
tors, with the appropriate symmetry properties. Using the constructions from the previous
section, we find the following form:

S, TP
1 o o\ UV o\ YV
’Cdfg <gpugay - 3950'95V> d7’l’2 5( )/p ® (STI'QTHVa d7r2 g(S)llL ) dTl'2 5(‘5’)5 ) ) (342)
dr, £(8)37
where
=&+, (3.43)

is a Lorentz tensor that is an Ss singlet. The tensor containing g projects out the J = 2
part in the CM frame.

For the JP = 2% a3(1320) we need to construct a pseudotensor from momentum
vectors. The simplest form that we have found is

SazAlple
1
Kgz g = <gpugg,, — Bgfggf,,> —da, Al | @ (saQAMVu, —dg, AFeY, dazAuglv)Sym 7
dy ATPEL
sym
(3.44)

where the subscript “sym” indicates symmetrizing the tensors.
Finally, for the JP = 47 a4(1970), we need to construct an ¢ = 4 pseudotensor from
momentum vectors. One possible form is

Py, A !

6 3
P P P p P P P p P P P 'y v
df 3 (gu ,u,gu l/gp ng o ?gu’u’guugp’pga’o + %gu’u’gp’a’g,uugpa> TM re ® Tzf e )

(3.45)
Tiwpa _ <5a4 (AMAVApVO’)’ —da4 (A”AVApfg)’ da4 (A“AVApgi')) ) (3.46)
sym
Say(ATAY APV
Tiuupa _ —da4 (AII,I,A/VAIPE/QU) . (347)
da4 (A,'“A,VA,pf,la)

An alternative form replaces two of the axial vectors with vectors (in either or both the
initial and final states).

4 Toy model: spectrum in I, = 0 channel

The goal of this section is to present an example of the implementation of the new quantiza-
tion conditions derived in this paper. We choose the I, = 0 channel, which is the simplest
of the new results, since the quantization condition is one-dimensional in isospin space. The
extension of the implementation to the other channels is, however, straightforward.
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The I = 0 channel is of direct phenomenological relevance, due to the presence of
two (relatively) light three-particle resonances, the w(782) and the h;(1170). In particular,
at physical pion masses, the w lies only slightly above the five-pion inelastic threshold, and
the isospin-violating couplings to two and four pions are weak, so that the three-particle
quantization condition is likely to provide a good description. Indeed, at somewhat heavier-
than-physical pion masses (e.g. M ~ 200 MeV), the w should lie between the three- and
five-pion thresholds. If, in addition, one has exact isospin symmetry, there will be no
coupling to channels with an even number of pions. This example can thus be explored in
a rigorous way using the quantization condition derived in this work, and is an excellent
candidate for the first lattice QCD study of a three-particle resonance.

Another feature of interest in these examples is the presence of the p resonance in
two-particle subchannels. Although the decay w — pm is kinematically forbidden, we
expect, given the width of the resonance, that it will have a significant impact on the
energy levels in the vicinity of the w mass. For the hi, the pr decay is allowed (and seen
experimentally), and thus the system provides an example in which the full complication
of cascading resonant decays, hy — pm — 3w, occurs. We also note that, away from the
three-particle resonance energy, the dominant effect on the three-pion spectrum arises from
pairwise interactions, and thus this spectrum provides an alternative source of information
on the p resonance. Indeed, the effect on the three-particle spectrum is enhanced relative
to that for two pions due to the presence of three pairs.

The implementation of the isoscalar three-particle quantization condition requires only
minor generalizations of the I ., = 3 case implemented previously in refs. [20, 22-24].
Specifically, appendices A and B of ref. [22] provide a summary of all necessary results.
The new features here are two-fold: (i) the expression for Fj contains a relative minus sign
for G compared to that for I = 3 (see table 1), which is trivial to implement; (ii) the
angular momentum indices £, m of the interacting pair contain only odd partial waves.
Concerning the latter point, in our illustrative example we restrict to the lowest allowed
partial wave, namely £ = 1. While odd two-particle partial waves have not previously
been implemented in the three-particle quantization condition, this requires only a simple
generalization from the work in ref. [22], where £ = 0 and 2 were considered. In particular,
we follow that work in using real spherical harmonics, and in the method of projection
onto different irreps of the cubic group.

We now describe how the resonances are included in our example. We stress at the
outset that the parameters we choose are not intended to be close to those for the physical
particles, but rather are choices that allow certain features of the resulting spectrum to be
clearly seen. For the p, we use the Breit-Wigner parametrization:

kO’ M} — E* 6 E?
=) cotdy = 2T (4.1)
My EM, ¢*> M?

with ¢ = 1 and M, = 2.8M,.'? As explained in ref. [23], in order for the three-particle

20ur chosen value of M,/M, corresponds to a theory with M, ~ 320 MeV (see ref. [41]). Our choice
of the coupling g is, however, significantly smaller than the observed value (corresponding to a narrower-
than-physical decay width).
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quantization condition to remain valid in the presence of two-particle resonances, we must
use a modified principal value prescription. This requires the following changes to F' and Ks:

Il(f\)/(‘IEQk)
[F]ké’m/;pﬂm — [F]ké’m/;pﬂm + 6kp5€’é6m/mH(k) 327_(_7 ) (42)
(€) [ %2
_ _ Iy (65%)
[(’CQ) l]ké’m’;pém - [(ICQ) l]ké’m’;pﬁm _6kP5£/£5m/mH(k) 3271" ’ (43)

where £ and ¢ are odd, and in this case £ = ¢/ = 1. We find that Ity " (q) = C/¢?, with
C < —50M?2 is enough to accommodate any resonance in the region M p < 5M,.13

For the three-particle resonances, we use the general form given in eq. (3.31) for Kg¢ 3,
with the specific momentum-dependent expressions for lejf’B and ICZEB given in eqs. (3.34)
and (3.35), respectively. We choose C' = —100M2, and set M, = 4.3M,, My, = 4.7TM,,
cw = 0.02, and c¢p, = 0.42. These choices are motivated by the hierarchy of the resonance
parameters known from experiment, i.e., My, > M,, I',, > T',,. We stress, however, that
we do not at present know how to relate the parameters cx to the physical width, and that
these values are chosen only for illustrative purposes.

The resulting three-pion spectra for two different irreps, 77", are shown in figure 4
as a function of M ;L. As described in section 3.2, these irreps couple to resonances
with J© = 17, i.e. to the w and h; channels, respectively. For comparison, we include
noninteracting energies for the finite-volume 37, pm, and w/h; states. The actual spectral
lines show significant shifts from the noninteracting levels, as well as the usual pattern of
avoided level crossings. For our choice of parameters of the w and hq, the avoided level
crossings are quite narrow. This could be a result of the resonance being narrow, or a
volume suppression of the gap in the avoided level crossings.

Moreover, the finite-volume state related to the toy hi is significantly shifted with
respect to the position of the pole in Kg4¢ 3. To further investigate this feature, in figure 5 we
study the effects of varying ¢y, [the residue of the pole in KCgs 3] as well as C' [parametrizing
the scheme dependence in eqgs. (4.2) and (4.3)]. We stress that C' ultimately encodes a
scheme dependence of K¢ 3, in that one can vary C' and Kgr 3 simultaneously to keep the
finite-volume spectrum and the three-particle scattering amplitude unchanged. It follows
that varying C at fixed Kg¢ 3 corresponds to a change in the physical system, so that the
finite-volume energies should also shift. In short, the four panels of figure 5 correspond to
four different physical systems with the common feature that KCg4¢ 3, in some given scheme,
has the h; pole position. We find that the position of interacting levels moves closer to the
pole position (horizontal dashed line) when either ¢, or C is reduced. This shows that
the large shift in figure 4 is a result of the specific parameters chosen, and not a general

13 A technical aspect of our numerical implication is that the matices F', G and Kz are truncated slightly
before H(k) = 0, by already discarding entries for which H (k) < 107%. This corresponds to truncating
values of E37, slightly above zero and is required because the boost factor vx = (E —wx)/E3 ;. [also defined
in eq. (B.4) below] can become arbitrarily enhanced for near-zero values, leading to numerical instabilities.
In the present case this cut also serves to avoid the unphysical pole in K2 [due to the 1/E term in eq. (4.1)],
which is present even after the Ipy shift is applied.
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Figure 4. Illustrative finite-volume spectra for three pions with I, = 0 and irreps (a) T; and
(b) T}, plotted versus M, L. The interacting spectrum is shown by solid lines, with the alternating
orange and blue colors only used to distinguish adjacent levels. Dashed and dotted grey lines show
the comparison with different noninteracting levels. The parameters used for Ko and Kg¢ 3z are
described in the text.

feature of the system considered. Clearly, future work is needed to fully understand the
interplay of Kgr 3 with the physical resonance parameters and the finite-volume energies.

Finally, we comment that the smaller number of observed levels in the 7] plot, as
compared to the T1+ , can be understood in terms of the antisymmetry of the momentum
wavefunctions — as discussed in appendix D. Indeed, one can understand precisely the
counting of levels in both plots, as we explain in that appendix.

5 Conclusion

This work constitutes the first extension of the finite-volume three-particle formalism to
include nonidentical particles. We have focused on the description of a generic three-
pion system in QCD with exact isospin symmetry. The main difference with the original
quantization condition of refs. [17, 18] is that there are different subchannels for pairwise
interactions (Irr = 0,1, 2) that must be taken into account. The new three-particle quan-
tization condition, and the infinite-volume three-particle integral equations, look formally
identical to those for identical particles, but live in an enlarged matrix space with addi-
tional flavor indices. The central point of this work is to give the explicit forms of all
building blocks in this enlarged space, and to outline a strategy for extracting three-pion
scattering amplitudes, in both weakly-interacting and resonant systems, for all possible
quantum numbers.

As described in section 2, to carry out the derivation it is convenient to first generalize
the quantization condition using the basis with definite individual pion flavors. The final
result is then block-diagonalized by performing a standard change of basis in flavor space,
with the resulting blocks labeled by the three-pion isospin I zr = 0 — 3, and the elements
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Figure 5. Finite-volume energies for various scattering parameters in the Tfr irrep, zoomed in to
focus on energies close to the toy h; resonance. As explained in the text, changing either C or ¢y, ,
changes the physical three-particle scattering amplitude while leaving the pole in Kq 3 fixed. The
bottom right panel corresponds to the parameters of the figure 4b.

within each block labeled by the allowed values of incoming and outgoing two-pion isospin
L. In this way, the three-pion quantization condition turns into a set of four indepen-
dent expressions, to be applied separately to finite-volume energies with the corresponding
quantum numbers. The I, = 3 quantization condition is the same as that for three iden-
tical (pseudo-)scalars derived in refs. [17, 18], while those for I, = 0,1,2 are new. The
implementation of the new quantization conditions is of similar complexity to the I = 3
case, where there have been extensive previous studies [20, 22-24]. They do, however,
exhibit some new features, such as the presence of odd partial waves and different relative
signs between the finite-volume objects involved.

In section 3, we also have addressed the parametrization of Kg¢ 3 in a general isospin
channel, which is a crucial point for the extraction of three-particle scattering amplitudes
from lattice QCD. First, we have extended the threshold expansion of K43 to all values
of Irqr. This is a series expansion about threshold based on symmetry properties of Kgr 3:
Lorentz invariance, CPT and particle exchange. We have worked out the first few terms for
all isospin channels. In addition, we propose parametrizations of g4t 3 to describe all three-
particle resonances present in the I, = 0 and 1 channels. These generate an additional
state in the spectrum, which decouples in the limit of zero coupling.

Given these results, all ingredients are now available for lattice studies of resonances
with three-particle decay channels, such as the w(782) and the h;(1170). These two
I:zx = 0 resonances are particularly good candidates for a first study, as they lie be-
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low the 5M; threshold for slightly heavier-than-physical pions. In section 4 we use the new
quantization condition to determine the finite-volume spectrum for these two channels in
a toy model motivated by the experimentally observed hierarchies of masses and widths.
Our exploration suggests that, in practice, moving frames will be needed to gain insight
in the nature of the resonances, especially in the case of the w(782). We stress, however,
not yet established how the parameters of Kg¢ 3 relate to the physical masses and widths
of the resonances and thus more investigation is needed.

Going forward, the next steps fall into three basic categories. First, it would be
instructive to study various limiting cases, in order to provide useful crosschecks and gain
insights into the structure of the new quantization conditions. One concrete example
would be to study the I, = 2 expressions, continued to parameters such that the p
resonance becomes a stable particle. In this case one can restrict to the energy regime
M,+ M, < /s < 3M,, and the result should coincide with the two-particle, finite-volume
formalism for vector-scalar scattering [43], already used to analyze finite-volume energies
in ref. [38]. Second, it is necessary to further generalize the formalism, so as to describe all
possible systems of two- and three-particles with generic interactions, quantum numbers,
and degrees of freedom. Specific cases, ranked from most straightforward to most difficult,
include three pseudoscalar particles in SU(NNf)-symmetric QCD, three-nucleon systems
(i.e. the inclusion of spin) and, by far the most challenging, Nm — N77 transitions in the
Roper channel (requiring spin, 2 — 3 transitions, and non-identical and non-degenerate
particles). Finally, and most importantly, the application of this formalism to three-pion
resonances using lattice QCD is now well within reach. This will represent the achievement
of a long-standing milestone on the way towards unlocking the exotic excitations of the
strong force.
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A Further details of the derivation

In this appendix we provide more details of the derivation of the result for the generalized
finite-volume correlator, eq. (2.42). As noted in the main text, most of the steps in the
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original derivation of ref. [17] go through, with the only change being the need to gener-
alize the core quantities F'; G and K2 in the presence of flavor [using the definitions of
egs. (2.26), (2.32) and (2.41)]. In other words, almost all of the equations in ref. [17] can
be taken over unchanged as long as one adds flavor indices and uses the new definitions.
There is, however, one step in the derivation that needs further generalization, as we now
explain.

The most challenging part of the derivation of ref. [17] is to show that 4¢3 has the
appropriate symmetry. Since the symmetrization procedure must be generalized here, as
described in section 2.3, a natural question is whether the derivation of the quantization
condition in the presence of flavor leads to the appropriately symmetrized version of Kqt 3,
denoted Kqr 3. A second aim of this appendix is to explain why this is indeed the case.

For the sake of brevity, we assume that the reader has a copy of ref. [17] in front of
them and we do not repeat equations from that work. We refer to equations from ref. [17]
as (HS1), (HS2), etc.!4

The first place in ref. [17] where the discussion does not generalize in a simple way is in
the discussion between (HS140) and (HS146). This concerns the introduction of quantities
with a superscript (s), e.g. A’1*) in (HS140). These are to be contrasted with quantities

(u,w)

having a superscript (u), such as D in eq. (2.47). For the latter quantities, the matrix
index k corresponds to the spectator momentum, while for quantities with superscript
(s), k labels the momentum of one of the nonspectator pair. To be more precise, in the
symmetrization described in eq. (2.51), the choice P3 = {k, a} from eq. (2.52) corresponds
to a (u) quantity, while that with P3 = {a, b} corresponds to an (s) quantity. The third
choice, P3 = {b, k}, leads to quantities denoted by (5) in ref. [17]. These three choices are
illustrated in figure 13b of ref. [17].

We choose our flavor generalizations of A’(1*) and A’1*) such that (HS140) maintains
its form, becoming!®

AP = A0 4 9 A9) F K, | (A1)

With this choice, the coupling of flavor and momentum labels is automatically maintained.

For example, in the product [A’1*)];; [Flji, if j = 2, corresponding to 7o(a)7—(b)74(k),

then the spectator attaching to the endcap has momentum a and is a neutral pion. Thus

no additional permutation matrix is needed. With this choice the symmetrized endcap is
simply given by!'6

A=A L A L A (A.2)

1Some aspects of the derivation of ref. [17] were streamlined in ref. [21], which generalized the derivation
to include a K-matrix pole. We do not refer to the latter work, however, since the notation therein is quite
involved, as there is an additional channel needed for the K-matrix pole, which is not relevant here. In any
case, our aim is not to repeat the derivation, but rather to describe how it can be taken over wholesale.
The more pedestrian approach of ref. [17] is adequate for this purpose.

15The numerical superscripts indicate the order in an expansion in numbers of “switch states”. The
details, described in ref. [17], are not important for the present discussion.

16 A potentially confusing issue is why there are only three terms in the symmetrization sums, as opposed
to six, the number of permutations of the three momenta. In other words, why is it sufficient to have one
contribution from each of the different choices of spectator momenta, while the order of the nonspectator
momenta is irrelevant? In the case of three neutral pions (j = 4) this is because the amplitude is symmetric
under exchange of the nonspectator pair. For other choices of the flavor index j, the two pions in the
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Here we are considering endcaps obtained by summing to all orders in perturbation theory,
and thus there is no numerical superscript. In this notation the complete endcap appearing
in the main text is A5 = o + A’ [see, e.g., eq. (2.42)].

Now we come to the core issue of this appendix. The derivation of ref. [17] produces, in
many places,'” the combination A’ () 4y 2A’ (s), rather than the desired symmetric quantity
A’. The key results needed to allow symmetrization generalize here to

{A@ 1284 FA — AFAM & ACFAM - ACOFA®, (A3)
{ AW 4o A/(s)} FA = A'FA & A'®FA = A/OFA . (A.4)

In each line, the two forms are algebraically equivalent, and we will demonstrate the second
forms. The argument for (the ungeneralized form of) these results given in ref. [17] applies
only for identical particles. Here we give the generalization.

In both egs. (A.3) and (A.4) there is an implicit sum over the flavor indices. The matrix
F is diagonal in flavor [see eq. (2.26)], so the right-hand flavor index of the left endcap and
the left-hand flavor index of the right endcap are the same, and we call this common
index j. In the all-neutral case, j = 4, the arguments of ref. [17] hold and demonstrate
the equalities. For other choices, the equalities hold only after summing over the pairs of
values of j that are related by interchanging the first two pions, i.e. j = {1,2}, {3,5} and
{6,7}. For each of these pairs, we denote the two values as j; and ja. The new results that
are needed are

(Ag?z))kfm = (_1)Z(A§‘7;2)k€m s (A.5)
(Ao = (=1 (AL ) kg (A.6)

as well as a result derived in ref. [17],
(_]-)gle’f/m’;kEm(_l)e - Fk’f/m’;k;fm 3 (A?)

using which it is simple to derive egs. (A.3) and (A.4).

We discuss egs. (A.5)—(A.7) in turn. Note that in the first two of these equations, the
flavor label i plays no role. What eq. (A.5) states is that, if we interchange the momenta
a and b, and interchange the flavors j; and ja, then we obtain the same amplitude. The
factor of (—1) arises because we are decomposing into spherical harmonics with respect
to @* on the left-hand side and b~ on the right-hand side, corresponding to a parity flip in
the CMF of the nonspectator pair. The same explanation holds for eq. (A.6), except here
there is the additional feature that interchanging a and b also interchanges (s) and (3).
Finally, eq. (A.7) encodes the statement that F' vanishes (up to exponentially suppressed
corrections) unless £+ ¢’ is even.

nonspectator pair have different charges, and their order has no meaning in the context of a Feynman
diagram, as long as we associate a given momentum label always with a given flavor, as is the case here.

17Strictly speaking, these quantities should have a common numerical superscript indicating the order in
the expansion in switch states, but this plays no role in the present derivation, so we drop it for the sake of
brevity.
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The remainder of the derivation in ref. [17] generalizes step by step in the presence
of flavor. Each equation holds when the original quantities are replaced by their flavored
(bold faced) generalizations (taking into account the factors of i and 2wL? absorbed into
the bold faced definitions). No new results are needed. For example, the key result given
in (HS196)-(HS198), which is also crucial to allow symmetrization, carries over verbatim
for each choice of flavor indices. Also, the complicated steps in (HS213)-(HS239), which
result in a symmetrized Kg¢ 3, carry over and (using the key results given above) lead to
a Ky 3 with exactly the generalized symmetry properties described in section 2.3. Finally
we note that the inclusion of the generalized three-particle Bethe-Salpeter kernel, Bs, also
follows the same steps as in section IV.E of ref. [17], because B3 has the same symmetry
properties as o, namely those of Ms.

B Building blocks of the quantization condition

This appendix provides a self-contained collection of all necessary definitions to implement
the three-particle quantization condition.
First, we define the cutoff function:

H(k) = J(2), G amm? (B.1)
0, 2 <0,

J(z) =< exp (—;exp {—lizD, 0<z<1, (B.2)
1, 1<z,

where E;Qk = (B —wp)? — (P — k)? and ay € [-1,3) a constant that sets the scheme
for Kqr 3 but does not affect the relation between finite-volume energies and the physical
amplitude. We typically choose a = —1, corresponding to the highest cutoff.

For G we use the relativistic form described in ref. [19],

Gt (E, P, L) = = HLPYH (K] Am Ve (R) Vi, (27) 1

- 73 2 _ 2 *0! b ’
L3 b*—m & Qo 2wy,

(B.3)

where b = P — p — k is the momentum of the exchanged particle and q§2k = E;Qk /4 —m? is
the squared back-to-back momentum of the non-b pair in its CMF. We have also used the
two-particle CMF quantities p* and k*, defined via

P =(n—1) (p- (@)) (k—P) + w5 (k—P) + p,

_|P— kK|
- E—w’

(B.4)

B = (1- 8372,

where & = x/|x|. The definition for k* is given by exchanging p <+ k everywhere. Finally,
Yem (k) are harmonic polynomials,

yfm(k) = ’k’ZYZm(’%)v (B'5)
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where Yy, are the spherical harmonics. In practice, it is more convenient to use the real
spherical harmonics, as discussed in ref. [22].

Next,
Firorm kem (E, P, L) = S Epray om (K) (B.6)

where F'(k) is a sum-integral difference that is proportional to the zeta functions that
appear in the two-particle quantization condition [1, 2]. This object also depends on
(E,P,L) but we leave this implicit, focusing on the role of the spectator momentum.
F (k) requires ultraviolet (UV) regularization, and can be written in various forms that
are equivalent up to exponentially-suppressed corrections. The original form, presented in
ref. [17], uses a product of H functions as a UV regulator. Here, we give a different form
that is simpler to evaluate numerically. Following ref. [4], we write

1 ea(mQ_TQ) 4V /(r)y* (’l")
Fupprm(k) = ——— -PV | & mo 2 bm B.7
et itm(R) 16m2L(E—wy,) [; / n“] 22 _ 2 N , (B7)
where n, = alL/(27), x = g3, L/(2m), and
Ng - N p 1 1
= Na — (=1 — > B.8
(N, Na) = Ng + Ngp [ nZ (W ) + 2%] (B.8)

with k— P = nip(27/L), and 74 as in eq. (B.4). The UV regularization is now provided by
the exponential in the integrand with o > 0. The a dependence is exponentially suppressed
in L but can become numerically significant if « is taken too large. We find that o < 0.5
is usually sufficient. In this regularization, the integral can be performed analytically, as
explained in appendix B of ref. [22].

Finally, we turn to K2, which is a diagonal matrix:

1 } 1
- = Opk0peOm'm ) (Bg)
|:IC2 pl/'m/;kém P Kétj])C
1 1
{63, cot 0e(a3 ) + lasil[L — H(K)]} (B.10)

,Cgf’)g  167E3,

where 0;(q5 ) is the two-particle phase-shift in the ¢th partial wave.

C Three-pion states

We collect in this appendix some additional details concerning the basis we use for the
neutral three-pion states. The first two pions are combined into a state of definite isospin.
The I;r = 2, 1 and 0 states are denoted (77)3, p?, and o, respectively, with ¢ the charge.
The two-pion state is then combined with the remaining pion to create a state of total
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isospin I (denoted by a subscript on the kets listed below). This leads to

[(mm)am)y = \jg (IGmEm) + VBI(rmimo) + |(rm)z 7)) (C.1)
(rmar)y = = ((rm)f ) = ()i me) (©2)
om)y = == (1o + 216m) +1o7m) (©3)
[(mm)am); = \/}0 (V3lrmgmo) 21 (rm)mo) + V3 I(rm)zms)) . (C4)
jom)y = 5 (107 = o7ms) (€5)
o)y = lomo) (C.6)
om)o = = (1077 = 16°70) +107m2) (C.7)

The right-hand sides can be further decomposed into the |r7m) basis used in the main text,
resulting in egs. (2.56) and (2.57).

We make extensive use of the irreducible representations (irreps) of the symmetry
group S3, which describes permutations of three objects. It has 6 elements, divided into
three conjugacy classes as

{(1)}, {(12), (23), (13)} and {(231), (321)}. (C.8)

The three irreps are as follows.

1. The trivial representation, with all elements being the identity. States transforming
according this irrep are denoted |xs).

2. The sign or alternating representation:

(1), (231), (312) — +1,

(12), (23), (13) — —1. (C.9)

States transforming according to this irrep are denoted |xg).

3. The standard representation, which is two dimensional. A convenient choice of basis
vectors, denoted |x1) and |x2), leads to:

10 10 1{ -1 —/3
1{-1+v3 1({ -1 V3 1({-1-V3
(23) — 5 e (231) — 3 s (312) — 3 1
(C.10)
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The three-pion states listed above can be classified according to their transformations
under permutations. The I, = 3 state transforms in the symmetric irrep, the L. = 2
states in the standard irrep, the I, = 1 states in a direct sum of the symmetric and
standard irreps, and the I, = 0 state in the sign irrep. The linear combinations that lie
in the permutation-group irreps are (with the subscript on the ket again denoting isospin)

IXs)g = [(Tm)2m);, (C.11)
X1 = [(Tm)27), (C.12)
[X2)9 = |p7)s (C.13)
V5 2
X1, = T3 [(m7)2m)y + 3 o)y, (C.14)
1
= E<2 |7y, o, mo) + 2 |m—, Ty, W) — |74, WO, W)
— |mo, T, Ty — |mo, T, M) — ]7T_,7r0,7r+>), (C.15)
[X2)1 = |pm)q s (C.16)
2 V5
IXs)p = 3 |(mm)om), + 3 lom), (C.17)
1
= \/T>5<’7T+,7T_,7T0> + |7, Ty, ) + |, WO, T4 ) + T, T, o)
+ |7T0,7T,,7T+> + |7T+,7T0,7T,> -3 |7T0,7T0,7T0> )a (018)
[Xa)o = lpT)g - (C.19)

D Group-theoretic results

In this appendix we collect some group-theoretic results that are relevant for the practical
implementation of the quantization condition described in the main text. We restrict our
considerations to the overall rest frame, i.e. we set P = 0; generalizations to moving frames
are straightforward but tedious.

We begin by listing the irreps that are created and annihilated by operators with
(Irzr). = 0, having the form of three noninteracting pions, each with a definite momentum.
Focusing on annihilation operators, we write

()7 (b () (D.1)

with 7 the Fourier transform of some choice of local pion operator. The indices 1, j, k
denote (I;)., and the constraint that the total operator is neutral restricts the choices
of indices to seven options, as described in appendix C. The momenta are a = 2mm; /L,
b=2rmy/L, and ¢ = —a—b = 2rmg/L. One then projects onto definite isospin using the
results given in egs. (2.56) and (2.57) and appendix C. Operators of this type are typically
used as part of the variational basis in lattice QCD calculations, and the energies of the
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orb. (m%, m3, m%) dim. Iz =0 Ippr=1 L =2 p—
1 (0,0,0) 2 — RBP4+ RY — AT
2 (1,1,0) 21 7 RY + R AT BT A7 E-
3 (2,2,0) 2 15T RY+RY AL BT, TS TS AL ES Ty
4 (2,1,1) g4 RY RV 4+RY Ry R
5 (3,3,0) 28 A}, T RY 4+ RY A7 Ty AL TS AT, Ty
6 (4,1,1) 24 — RBP4+ RV A7 BT AT BT
7 (3.2,1) 168 R R 4Ry 2 R{") R
16 (5,3,2) 336 R{Y R 4+ RY 2 R{'Y R{®

Table 5. Cubic-group irreps for the three-pion operators with P = 0 and total charge zero for
isospin I - = 0, 2 and 3. These results include the intrinsic negative parity of the pions. The
operators are those with the lowest seven noninteracting energies for a cubic box with mL ~ 4,
together with the lowest-lying orbit having the maximal possible dimension. The first column
gives the orbit number, o, the second specifies the orbit, as described in the text, while the third
gives the dimension of the orbit. The remaining columns list the irreps appearing in the orbit,
Rgo). As indicated, results for I, = 1 are given by summing the irreps in the I, = 2 and
Iizr = 3 columns. Entries in the . = 3 column agree with those in table 2 of ref. [22]
(up to intrinsic parity, which is omitted in the earlier work). The missing entries are Rgl) =
Ay E- T, T3, Ty, RSV = A7, Ay 2B- T, Ty, 21,275, R = A7 E-, T, , T, T, Ry =
A7 E-, Ty 2Ty A E+, 2T, T, and R'Y = A7, Ay 2E~, 3Ty 3T, , Af, A} 2E+ 3T}, 3T .

corresponding noninteracting states provide points of comparison for the spectrum of the
interacting theory (see, e.g., figure 4).

Each choice of m; and mg (which fixes m3g = —m; —my) is related to some number of
other choices by cubic group transformations. We specify the resulting orbit by giving the
values of m%, m% and m%, which provide a unique specification for the examples we consider
(although not in general). Each orbit decomposes into irreps of the cubic group, and these
are listed in table 5 for the operators coupling to the seven lowest-energy states in the
absence of interactions. We recall that the irreps for the 48-element cubic group (including
parity) are AI—L, A;E, E*, Tf—L and T;C, with dimensions of {1,1,2,3,3}, respectively. The
result from appendix C that the I, = 1 triplets decompose into a trivial singlet and a
standard irrep doublet under the permutation group S3, leads to the result shown in the
table that the irreps for I, = 1 are simply the sum of those for I =2 and I = 3.

We stress that it is always possible to choose particular linear combinations of operators
that pick out each of the irreps in a given orbit. This is very useful in practice as it restricts
the number of terms in Kg¢ 3 that contribute (see section 3.1), and allows one to consider
the resonances discussed in section 3.2 one by one. We note that certain irreps do not
appear until quite high orbits, e.g. A; and 7] do not appear until the fourth orbit, while
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orb. mf) m?2  dim. irreps
1 0 o0 3 '
2 1 1 18 Ay BT T, Ty 214, T

3 2 2 36 A, Ay, 2B, 201y ,2Ty Ay, E*, 3T, 2Ty

4 3 3 2 A B Ty, 2Ty Ay BV 2T, T

Table 6. Cubic-group irreps contained in pm states. The intrinsic negative parity of the pion
and the rho are included. Orbits are numbered, and specified by the squares of the momenta, with
p, =2mm, /L and p,, = 2rm, /L. The irreps shown are present for each the three allowed isospins,
I, =0, 1, and 2. The dimensions of the orbits apply separately for each choice of isospin.

ET and A; do not appear until the seventh. This leaves only AT, which does not appear
until the sixteenth orbit. This is the lowest “generic” orbit, i.e. one in which all nontrivial
cubic-group transformations have vanishing characters.

In order to interpret the interacting spectra in the presence of narrow two-particle res-
onances, it is also useful to determine which irreps are present assuming that the resonance
is a stable particle. In practice, for the energy range of interest, the most important such
resonance is the p, as shown by the examples in figure 4. Thus we have determined the
irreps created by pm operators, treating the p as a stable particle with J© = 1. There are
three isospin combinations with total (I,r). = 0, and these decompose into total isospin
I,z = 0,1 and 2. Since the p and 7 are different particles, the cubic-group irreps that
appear are the same for all choices of isospin, and the results for the lowest few momentum
orbits are given in table 6. The multiplicities of the 7T irrep agree with the results from
table 3 of ref. [38].

We can use the results in tables 5 and 6 to understand the level-counting in figure 4,
which shows the spectra for Ii.r = 0 and irreps (a) 7} and (b) T;". The energies of
the second to the sixth noninteracting 37 orbits are shown in both panels (the first orbit,
having E//m = 3, lies below the plotted range), as well as the first three noninteracting pm
levels.

For T, (the w channel), we see from table 5 that, for the energy range shown in the
figure, only the fourth orbit contains this irrep. From table 6, we see that the second and
third pm orbits contain the 7}, but not the first. In all but one case, there is only a single
T, irrep present, the exception being the third pm orbit, which contains two such irreps.
These results are consistent with the interacting energies plotted in figure 4a, which can
be interpreted, for mL < 6, as roughly corresponding to the w resonance, second pm orbit,
fourth 37 orbit, and a pair of pr third orbits.

The results for the T, irrep, displayed in figure 4b, can be interpreted in a similar
manner. All the 37 and pm orbits shown in the figure contain this irrep, with unit mul-
tiplicities except for the second and third pm orbits, which have multiplicities 2 and 3,
respectively. This counting, together with the h; state, matches that seen in the figure.
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We have found an error in a statement following eq. (2.5) of our paper, concerning the
function f(a,b, k) that first appears in that equation. The error does not affect the main
results of the published manuscript but leads to various erroneous statements about aux-
iliary quantities used in the derivation, specifically the matrices o(k,a), of(k,a) as well as
the endcap factors Ag and Aj.

The issue arises in the statement that it is convenient to take the function f(a,b,k)
to be exchange symmetric with respect to its three arguments. This has the unwanted
consequence of making six of the seven operators in the column vector of eq. (2.4) identically
equal. This, in turn, implies that many operators are identically zero in the definite isospin
basis, considered in section 2.4. To repair this, the last sentence of the paragraph containing

” should be removed, as should

eq. (2.4), starting “It is convenient for the subsequent. ..
footnote 3 and the next paragraph, beginning with “At this point, the reader may wonder

why...”. The deleted text should be replaced with the following:

As we discuss further below, it is crucial that f(a,b, k) is not symmetric with re-
spect to permutations of its arguments. More precisely, f(a, b, k) is defined such
that all seven operators defining O;(x) are in fact distinct, which is necessary
to ensure that all definite-isospin operators are non-zero.
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The next modification begins with the sentence “The exact relation is oj(k,a) =
M, f(a,b, k), where” appearing immediately before eq. (2.24). The text and also eq. (2.24)
should be removed and replaced with the following:

The exact relation is

fla,b,k) f(b,a,k) f(a,k,b) 0 f(byk,a) f(k,a,b) f(k,b,a)
f(bya,k) f(a,bk) f(k,a,b) 0 f(k,b,a) f(a,k,b) f(bk,a)
fla,k,b) f(bk,a) f(a,bk) 0 f(bya,k) f(k,b,a) f(k,a,b)
o(k,a)= 0 0 0 g(a,b,k) 0 0 0 ,
f(k,a,b) f(k,b,a) f(b,a,k) 0 f(a,b,k) f(b,k,a) f(a,k,b)
f(bk,a) f(a,k,b) f(k,b,a) 0 f(k,a,b) f(a,bk) f(bya,k)
f(k,b,a) f(k,a,b) f(b,k,a) 0  f(a,k,b) f(b,a,k) f(a,b,k)
(2.24)
where

9(a,bk) = f(a,b,k) + f(b,a, k) + f(a, k,b) + f(b,k,a) + f(k,a,b) + f(k,b,a)

is the symmetrized version of f(a,b, k). Here the (i, ;) entry of the matrix can
be understood as the non-interacting overlap of the operator O;(0) with the jth
state. The latter is defined with the convention of eq. (2.4). So, for example,
the (1,3) entry follows from

(0|01(0)|77rmr, j=3) = /a',b',k' (0] f(a b K") 7~T_I(a/) ?ro(lb/) 7~r+§k')|7r_l(a)7r+(b)7ro(lk)> ,

:f(a7k7b)7

where |77, j :3> represents the non-interacting state with momentum assign-

ment given by the index. The 6 different terms in the (4,4) entry arise from
the 3! contractions of the neutral operator with the neutral state.

In these adjustments the quantity M is no longer needed and is replaced everywhere with
0ij(k,a). In addition the parenthetical remark: “(Here and below we use empty and filled
squares to present matrices of Os and 1s as we find this form more readable.)” is now first
relevant after eq. (2.38) and should be moved to this location.

Finally, in the paragraph preceding eq. (2.25), the discussion of the factor of 6 should
be modified. Starting with the sentence “Second, if both j,1 # 4 then one recovers a non-
zero contribution with a factor of...”, the remainder of the paragraph should be replaced
with the following:

Second, if both j,1 # 4 then one recovers a non-zero contribution with a factor
of 6 arising from the contracted matrix indices. For example for j = 1,1 = 2
one finds

S ok, a)oty(k,a) = f(a,b,k) £ (b,a,k)+ f(b,a, k) f*(a,b, k) + f (a,k,b) f* (k,a,b)
) +f(b,k,a)f*(k,b,a)+ f(k,a,b) f*(a,k,b)+ f(k,b,a) f* (b, k,a)
—6f(a,b,k)f*(b,a,k),



where the arrow represents a replacement in the integral that is justified as
all other factors are exchange symmetric with respect to a, b, and k. This
compensates the 1/6 pre-factor, leading to the correct expression for a diagram
with three distinguishable particles. Finally, j = [ = 4 yields the diagram with
three neutral particles and in this case the 1/6 survives and correctly gives the
symmetry factor for identical particles.

These adjustments complete the redefinitions of o(k,a) and of(k,a) and the adjust-
ments to Az and A% follow automatically. All remaining equations and, in particular, all
the main results and conclusions of the paper are unchanged. The implicit assumption
that the on-diagonal entries of A3 and A% are non-zero in the isospin basis, introduced in
section 2.4, is now correct.

For completeness, we also note an additional minor correction. The sum following
eq. (2.5) should be defined with an implicit factor of 1/L3, but this is never stated explicitly.
To correct this, the following should be inserted after the sentence containing eq. (2.5):
“We also adopt the convention here, and below, that the factor of 1/L? accompanying each
sum is left implicit”.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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finite-state interactions. We first derive the result in a simplified theory with three identical
particles, and then present the generalizations needed to study phenomenologically relevant
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1 Introduction

The theoretical formalism for extracting three-hadron scattering amplitudes using lattice
QCD has grown apace in recent years [1-20], and applications to simple systems have been
successfully undertaken [21-31]. In all such studies, the basic approach is to extract the
spectrum of three-hadron states in a finite spatial volume, and to use this information,
by means of general relations, to constrain the infinite-volume scattering amplitudes. In
particular, the spectrum of three-pion and three-kaon states of maximal isospin has been
obtained in multiple calculations with different geometries, and with many values of to-
tal momentum in the finite-volume frame. In the following we abbreviate the latter as
“different frames”.

A natural extension of this work is to consider electroweak transitions to three particles,
e.g. the K — 3m decay. Although challenging, one can now conceive of undertaking a
lattice calculation of finite-volume matrix elements of the form (37, L|Hw|K, L), where
Hyw is the weak Hamiltonian density, and (37, L| is a finite-volume state whose energy



and momentum are tuned to match that of the initial kaon. Here we restrict attention
to a cubic, periodic spatial volume, and L denotes the periodicity (i.e. the box length) in
each of the three spatial dimensions. The question is then how to convert knowledge of
several such matrix elements (with different volumes and frames) into information on the
corresponding infinite-volume decay amplitude, including its dependence on the momenta
of the three outgoing pions. In this work we answer this question, providing the formalism
for a first-principles calculation of the amplitudes for K — 37 and related decays.

The corresponding problem for two-particle K — 77w decays was solved in a seminal
paper by Lellouch and Liischer (LL) [32], where it was shown, for the case of a kaon
at rest in the finite-volume frame, that the relation between the squared finite-volume
matrix element and the magnitude squared of the infinite-volume decay amplitude is an
overall multiplicative factor, the LL factor. This result was subsequently generalized in
many ways [33—49], with the most important extension for our purposes being the work
of refs. [42, 44], in which an alternative and more general formalism was developed for
calculating the LL factors for arbitrary 1 — 2 processes mediated by an external operator.
It is this approach that we use in the main text below to determine the generalization to
three-particle final states.

To derive this generalization we first consider a final state consisting of three identical
particles, and then move to the more phenomenologically interesting case of three pions in
isosymmetric QCD. Exactly as in the two-particle case, the relation between finite-volume
matrix elements and decay amplitudes follows from a quantization condition, which can be
understood as a relation between finite-volume energies and hadronic scattering amplitudes.
In this article we use the form of the quantization condition derived by two of us in refs. 3, 4]
together with its extension to all possible three pion states, derived by all of us in ref. [18].
We refer to this approach as the relativistic field theory method.

We note, as was already stressed in refs. [42, 44], that the basic methodology of relating
finite-volume matrix elements to infinite-volume amplitudes can be applied to a wide range
of processes. To emphasize this in the context of three-hadron final states, in this work we
also describe in some detail how the approach may be applied to the virtual photon decay
~v* — 37 as well as the isospin breaking transition n — 3w. The former process is relevant
for quantifying finite-volume corrections to the hadronic-vacuum-polarization contribution
to (g —2), arising from the isoscalar part of the photon, along the same lines that v* — 77
is used for the isovector part as described in refs. [50, 51].

The remainder of the paper is organized into two parts. In the first, contained in
section 2, we derive the necessary formalism for decays to states containing three identical
particles. To do so, we first summarize the three-particle scattering formalism in section 2.1.
Then, in section 2.2, we derive the relation between the finite-volume matrix elements
and a scheme-dependent intermediate infinite-volume quantity, A%\gw. In section 2.3, we
explain how to systematically expand Af{\gﬂ about threshold based on symmetries, following
which we explain how A}D{\gﬂ can be connected to the physical decay amplitude via integral
equations (section 2.4). To conclude the discussion for identical particles, in section 2.5 we
consider the isotropic approximation in which a more explicit and much simpler expression
can be given, results from which we illustrate with numerical examples.



The second part of the paper, contained in section 3, concerns the case of decays to
three pions in isosymmetric QCD. We begin, in section 3.1, by presenting the appropriate
generalization of the formalism. We then consider the processes v* — 3w, n — 37 and
K™ — 37 in sections 3.2, 3.3 and 3.4, respectively. We present our conclusions and outlook
in section 4.

We included four appendices. Appendix A derives a technical result needed in the
main text. Appendix B presents an alternative derivation of the relation obtained in
section 2.2 using the method of Lellouch and Liischer. Appendix C collects relevant results
concerning the isospin decomposition of three-pion states. Finally, appendix D presents
the generalization of the results of section 3.4 to the decays of neutral kaons.

While this work was in preparation, a formalism for determining three-particle decay
amplitudes to identical scalars in non-relativistic effective field theory (NREFT) was made
public [52]. The authors considered only leading-order (non-derivative) couplings for the
decay and scattering vertices. The formalism presented here goes beyond that of ref. [52]
in several ways: (i) it is valid for nonidentical particles, and thus for the three-pion system;
(ii) no approximations concerning the couplings are made, and no truncation in angular
momenta is required; (iii) it is valid for generic moving frames; (iv) it is derived in a fully
relativistic formalism. We include additional brief comments on the relationship between
the approaches in section 2.5.

2 Derivation for identical particles

We consider first a simple theory consisting of two real scalar fields, the “kaon” K and
“pion” ¢, both having an associated Zo symmetry that conserves particle number modulo
2. Aside from this symmetry constraint, the interactions between these fields are arbitrary.
The physical masses of the particles are myg and m., respectively, and satisfy

3my < mg < 5my . (2.1)

Both the kaon and the pion are stable particles in this theory. To induce decays, we add
an interaction Hamiltonian, suggestively denoted Hyy, that violates both Zy symmetries,
and is chosen to couple the kaon to the odd-pion-number sector. A simple example of the
required Hamiltonian density is

K(z)¢(x)®

Sy (2.2)

Hw(z) = cw

but we need not commit to a particular form; all that matters is that the interaction is
local and has the correct quantum numbers. We treat cy as small, such that we need
only work to first order in this parameter. Decays of the kaon to even numbers of pions,
although kinematically allowed for two pions and possibly also for four pions, are forbidden
by symmetries. The potential decay K — 57 is kinematically disallowed for the mass range
in eq. (2.1).

To understand the intuition behind the following analysis, consider a diagrammatic
representation of the K — 37 amplitude, to leading order in ¢y but to all orders in the



Figure 1. Examples of the underlying diagrams describing the K — 37 decay and the correspond-
ing finite-volume matrix element. The left-most diagram represents a local one-to-three transition
with only exponentially suppressed finite-volume effects. By contrast the middle two diagrams have
power-like L dependence due to the on-shell intermediate states, indicated by the vertical dashed
line. Finally, the rightmost diagram indicates a strong-interaction induced dressing to the weak
vertex. All such interactions, as well as all dressing on the incoming and outgoing vertices are
included in the formalism.

Z, preserving interactions. As we illustrate in figure 1, in such an expansion, the only
on-shell intermediate states are those involving three pions. Arbitrary virtual interactions
between the incoming (dressed) kaon and the final-state pions are allowed, but do not
lead to on-shell intermediate states. One can think of such virtual loops as resulting from
propagation that is localized near Hyy, and they lead to an effective renormalization of the
bare coupling cy,. This is the physics that one expects to be captured by a calculation
of the matrix element in a finite volume. On the other hand, the final-state interactions,
which involve long distance, near on-shell propagation, will be mangled in finite volume,
and it is these distortions that are corrected by the formalism developed in this work.

As stressed in the introduction, throughout this article we take finite volume to mean
a cubic box of side L with periodic boundary conditions on the fields K and ¢. This
restricts momenta to lie in the finite-volume set p = n(27/L), where n is a three-vector
of integers. In our derivation, we drop volume-dependent terms that fall as exp(—m L)
or faster. For typical volumes used in actual simulations, these exponentially-suppressed
terms are much smaller than the power-law volume dependence that we keep. As is quite
standard in these types of analyses, we take the temporal extent to be infinite. We also
work in a continuum effective field theory with the assumption that the discretization
effects entering a numerical lattice QCD calculation using these methods are small and
included in the systematic uncertainties of the finite-volume matrix elements and energies.

2.1 Recap of three-particle quantization condition and related formalism

We make extensive use of the formalism developed to relate the finite-volume spectrum of
three-particle states to the infinite-volume two- and three-particle scattering amplitudes.
A general feature of the formalism is that it involves two steps. In the first, the finite-
volume spectrum is related to an intermediate, unphysical infinite-volume three-particle
K matrix (ICqs3 in the approach of this paper), while, in the second, the K matrix is
related to the scattering amplitudes by solving integral equations. This two-step procedure
carries over naturally to the extension we develop here, with an intermediate, unphysical
decay amplitude (A%Y,  below) determined from the finite-volume matrix elements, and
the physical decay amplitude then obtained from A%\éﬂ via integral equations.



As noted above, we use the approach developed in refs. [3, 4], and our aim in this
subsection is to recall its essential results. One important feature of this formalism for
the case of identical particles is that the intermediate three-particle K matrix, Kq¢3, is
symmetric under separate interchanges of initial and final momenta. This symmetry will
carry over to the intermediate one-to-three amplitude, Alf(\gﬂ, that arises here.!

The central result of ref. [3] concerns the following three-particle finite-volume corre-
lator: -

CM(E, P) = / dxo /L & B2 ~P2) (0T ()01 (0)|0) (2.3)
—0o0

where the superscript indicates that the underlying correlation function is evaluated in
Minkowski space, and T stands for time-ordering. Here o ~ ¢® couples to three pions,
but is otherwise an arbitrary operator possibly containing derivatives. Assuming the Zy
symmetry described above, the kinematic range of interest is

my < E* =VE?2— P2 <5m,. (2.4)

Within this range, it is shown in ref. [3] that the difference between the finite- and infinite-
volume versions of this correlator takes the form?

1

cME,P)-CM(E,P)=iAy—————
L (E,P) (E,P) YET 4 Kar

As. (2.5)
Here all quantities have matrix indices {kfm}, with A% a row vector, A3 a column vector,
while F3 and Kgr 3 are matrices. The index £ is shorthand for the momentum k of one of
the three particles, referred to as the spectator. The values of this index are drawn from
the finite-volume set. The indices ¢m give the decomposition into spherical harmonics of
the angular dependence of the nonspectator pair, when boosted to the pair center-of-
momentum frame (CMF). The sum over k is cut off by a smooth function contained in F'
and G, while the sum over £ is not cut off at this stage. All quantities are also implicit
functions of E and P, with Fj also depending on L. Fj is given by

1 [F 1
G- F——— My F|, My =K;'+F, (2.6)

Fy=——0
T2l |3 T 1+ My G

where w, F, G, and Ky are matrices defined in ref. [3], and (with the exception of w) are
also implicit functions of £, P and, in the case of F' and G, also L. The only detail we
need to know now is that F', G and K9 pick out one of the three particles as the spectator,
so that these are intrinsically asymmetric quantities, an asymmetry that is inherited by Fj.
By contrast, the endcaps A% and As, as well as gt 3, are intrinsically symmetric quantities
that are being expressed in terms of asymmetric variables.

Tt is also possible to derive a simpler (though equivalent) version of the three-particle formalism that
involves an asymmetric K matrix [16] or the asymmetric R matrix [17]. We do not use these results,
however, as the resulting renormalized decay amplitude is less constrained by symmetry, leading to a more
complicated parametrization.

*We are following the notation of ref. [18] since we use results from this work in the physical K — 37
case below. The notation differs slightly from that of refs. [3, 4].



The endcaps play an important role in the determination of the decay amplitude, as we
will see below. The derivation of ref. [3] defines these quantities by an all-orders constructive
procedure, the key feature of which is that it involves loop integrals regulated by a principal
value (PV) scheme. Thus one can think of the endcaps as, roughly speaking, the sum of all
vacuum to three-pion diagrams in which only the short distance contributions from loops
are kept. The long distance part, which leads to final state interactions, and the associated
complex phases, is removed by the use of the PV prescription. We stress, however, that
this qualitative interpretation of the endcaps is not needed to carry through the derivation
described below. A technical result that is important below is that, if the creation and
annihilation operators in CM are related by hermitian conjugation, then A} = Ag. We
prove this fact in appendix A.

From the result (2.5) for the correlator, the quantization condition is seen to be

det(Fy 4 Kar3) = 0. (2.7)

As written here, this equation ignores the residual symmetries of the finite-volume system
that can be used to block diagonalize the matrix Fy Ly Kat,3- The relevant symmetry
group depends on the value of P. For the purposes of this work it suffices to note that for
each group one can identify a set of irreducible representations (irreps), denoted by A, and
for each irrep a row index, denoted u. Fach set of Ay then corresponds to a block so that
eq. (2.7) breaks into a set of independent quantization conditions of the form

dAit [Pau - (F5 '+ Kag) - Pay] =0, (2.8)

where Py, projects out a given irrep and row.
To give the definition of Py, we introduce R as a unitary matrix with the property that

RY- (F; ' + Kars) R, (2.9)

is block diagonal with one block corresponding to each possible value of Ay. The con-
struction of this matrix is a standard group-theoretic exercise, described, for example, in
ref. [12]. We then define P Ap as a diagonal matrix of ones and zeroes that annihilates all
blocks besides that corresponding to the target irrep and row. Finally we define

Pru=R-Py, R, (2.10)

which projects to the target irrep while preserving the {k¢m} matrix space. The matrix
Pap(Fy ! +Kar,3)-Pa, will always have vanishing determinant, since the projection amounts
to setting all eigenvalues with eigenvectors outside the Ay subspace to zero. For this reason,
we include the Ay subscript on the determinant, indicating that this is evaluated only over
the nontrivial subspace.

We stress that egs. (2.7)—(2.10) are formal relations involving infinite-dimensional ma-
trices and must be truncated in practice. This is done by assuming that the two- and
three-particle interactions vanish above some value of ¢. For a given P, Ay and L, this
equation will be satisfied for a discrete set of values of E, which we label EX(P, L) and
often abbreviate as F,.



The final result we need concerns the finite-volume three-particle scattering amplitude,
M3 1, defined in ref. [4]. This is the finite-volume version of the amputated, connected
infinite-volume amplitude M3. What will be important here is how M3 , can be obtained
from Cp by an amputation procedure discussed in refs. [4, 9]. The idea is that, as we
move in from the endcaps we may encounter a factor of F', and this sets the three particles
on shell. An unsymmetrized form of the scattering amplitude, ./\/l‘(lf’“), is then obtained
by keeping terms in C, that have at least two factors of ' — one for incoming and the
other for outgoing particles — and dropping all but the contributions between the two
outermost F's. In fact, this includes some disconnected three-particle diagrams that must
also be dropped. In a final step, the resulting connected amplitude is symmetrized.

We now explain the resulting procedure in detail. We first remove the factors of i, Af
and As, and rewrite the result as®

1 1
R - KusFs, 2.11
F3_1 + Kat,3 3 1 + Kar 3F3 dr3ts ( )
F F 1 1
— - 2wL? —F Kt 3F3.
6wl?  2wI3 1+ My, JG ML 2oL i — B Kagaly 40373
(2.12)

We drop the first term on the right-hand side as it contains a single F, and complete the
amputation by multiplying by the inverse of iF'/(2wL?) on both ends. This leads to

! M 2L3+( F )1F ! K F( ol )1 (2.13)
_— w — ——Kygs - — . i
1+ My G 2F 2w L3 T4 KarsFs 0370\ 203
Expanding out the first term in a geometric series, the leading contribution, My 12wL?, is
disconnected and thus dropped, leading to the final result for Mg&u),
MB,L + Ly 1+ KarsFs a3’ (2.14)
1
D) — —— — My GMay 2wL?, 2.15
L+ My G 2L (2.15)
F N\t 1 1
E(u) = (> F3=-— —uw«— F 2.16
L 2wL? T3 1+ MZLGMQ’L ’ (2.16)
F NP1 1
R = F (> = —FMyp——— 2.17
L= 73\ 2wI3 3 IMa e, (217)

The full amplitude is then given by

Mg =S{M{5"} (2.18)

)

where the symmetrization operator is defined in ref. [4], and discussed in more detail in
ref. [18]. We also note that, following ref. [4], M3 can be obtained from M3 j by taking
the L — oo limit in which poles in F' and G are shifted from the real axis by the usual
1€ prescription.

3We remove the i since the result of removing A5 and As alone is iM3 1.



2.2 Residue method to obtain intermediate decay matrix elements

The approach we follow is adapted from that of ref. [44], and also draws from ref. [42]. The
matrix elements that can be determined in finite volume are

(En, P, At, L[ Hyw (0)|K, P, L) . (2.19)

Here |K, P, L) is a single kaon state, with momentum P drawn from the finite-volume set,
while |E,, P, Ap, L) is a three-particle finite-volume state with the same momentum P,
and with energy FE,. It transforms in the irrep A and in the row u of that irrep. Both
states are normalized to unity. The energy of the kaon state is Ex(P) = (P? + m%)"/?,
with no volume dependence aside from exponentially suppressed effects. The energy of the
three-particle state, by contrast, has a power-law dependence on L. In order to obtain a
matrix element related to the infinite volume decay amplitude, L should be tuned so that
EMP,L) = Eg(P), implying that four-momentum is conserved.? There can be many
such matrix elements, each corresponding to a different finite-volume level, with a different
choice of L needed in each case.

It is useful to sketch how the matrix elements (2.19) would be determined from a
simulation of the theory, carried out necessarily in Euclidean space. We idealize the setup by
assuming an infinite Euclidean time direction, and work with correlators fully transformed

to momentum space. The three correlators that are needed are

Cri(P) = Zx / " da / B e PO\ TeK (24, 2) K(0)[0) | (2.20)
—00 L
Com(P) = / * deg / Bz e P (0| T A (4, ) ALL_(0)0), (2.21)
—00 L
Cresms(P) = / d /L & =P (0| TeAgr (24, 2) Bigr (0)]0) | (2.22)

where P = (P, Py) and =z = (x,x4) are Euclidean four-vectors, whose inner product is
denoted Pz, and Tg denotes Euclidean time ordering.

The correlator Ck 1, determines the normalization constant Zg. It should be chosen
so that

P4—>z‘EK(P)(P2 +m%)Ck(P)=1, (2.23)

which implies that the renormalized kaon field satisfies

1
K, P LIvVZgK(0)0)] = —m— . 2.24
P LIVZRKO0)0)] = s (224
The correlator Cs, 1, determines the coupling of the operator As; to the finite-volume
states |Ey, P, A, L). Here, As; is an operator chosen to couple to three-pion states in a
particular row of the desired finite-volume irrep. In practice, As, will involve pion fields
with phase factors such that they have appropriate relative momenta, and thus will be

4If one were interested in the matrix element (2.19) in which Hw (0) inserted energy, then the subsequent
derivation would still hold in an appropriate kinematic regime. The analysis can also be straightforwardly
generalized to the case where Hw (0) inserts momentum.



complex. Other details of the operator are not relevant in the following. The correlator
will consist of a sum of poles, and we pick out the contribution of the desired state from
the residue
Ry (En, P, Ap, L) = Vi (Ey +iPy)Car ,(P) = L2 (0| A3 (0)| B, P, Aps, LY . (2.25)
4 n
The final correlator, Ck3r 1, can then be used to determine the desired matrix element.

Here, following ref. [44], we use a composite operator Bgs, that both creates the initial
kaon (implicitly having momentum P) and includes the action of the weak Hamiltonian,

Brsr(x) =vZg  lim {P2 + m%(} /d4y Py () K (z + ), (2.26)
P4~>7,EK(P)

where P = (P, P). The limit picks out the incoming kaon pole, while the factor of P2+m3,
amputates the kaon propagator.® Including all factors we obtain

RKgﬂ(En, P,Apu, L) = PliglE (En + Z'P4)CK37r,L(P) , (227)
4 n

= L3(0| A3, (0)|Ep, P, Aps, LY(E,, P, A, L|Hw (0)|K, P, L)\/2Ex (P)L3.  (2.28)

Without loss of generality, we can choose the phase of the operator and state such that
(0| A37(0)|Ep, P, A, L) is real and positive. Then, combining egs. (2.25) and (2.28),
we obtain

(Epn, P, A, LIHw (0)|K, P, L)\/2Ex (P)L? = Ricon (En, P Aty L)

= . 2.29
VL?R3:(Epn, P, Ap, L) ( )

This matrix element will only be nonvanishing if A and p are chosen to match the trans-
formation properties of Hy (0)|K, P, L). If not, then the correlator Cxsr r(P) and the
residue Rg3, will vanish. For a rotationally invariant Hyy, only the trivial irrep of the lit-
tle group for momentum P will appear (or else the corresponding parity conjugate irrep),
but we develop the formalism allowing for more general cases.

We now evaluate this ratio using the results from the previous subsection. To do so we
first generalize the correlator Cy, of eq. (2.3) by replacing o and ! with general operators
A and B that couple the vacuum to three-pion states, but are, in general, unrelated to
each other:

CY (B P) = [ duy [ da e 0 A@)B(0))0). (2.30)

The analysis of ref. [3] remains valid for CXB, 1., since it requires only that the allowed on-

shell intermediate states involve three pions. Thus the expression (2.5) still holds, except

that the endcaps A4 and Ajs are replaced by new quantities that we call, respectively, APV

5Note that a subtlety arises here due to the fact that the operator Bz, is not local in time. This is not
an issue because the Py — iFk (P) limit is dominated by early y4 so that the K (z + y) operator is ordered
far to the right. Thus only one time-ordering arises, that with the intermediate finite-volume states that
we analyze explicitly.



and BTV. The superscript is a reminder that loops in these quantities are defined using a
PV prescription.

We next do a Wick rotation (z9 — —iz4) on the underlying correlation function, so
that it is evaluated in Euclidean space-time. This results in

o .
Cap.r(P) = / drg / &Pz =P (Te A(2)B(0)) | (2.32)
—00 L
where again P = (P, Py). It follows that C4p 1, can be written
1
CaB,r.(P) = CaB,oo(P /L ——— 2.33
(P) = OapoelP) = A7 (23
where now APV, Fi, Kat,3 and BPV are written as functions of P by setting E = —iP;.

The poles now lie on the imaginary axis, at the positions Py = iFE,, where E,, is a solution
of the quantization condition eq. (2.7).

The reason for these manipulations is that the two correlators that enter into the
expression (2.29) for the desired matrix element, Cs3,; and Cks,, are in the class for which
eq. (2.33) holds. In particular, we can use the results of ref. [3] to write these correlators as

L PV
CSﬂ’,L P) = C37r,oo P)— APX%A T 2.34
(P) (P) TR K (2.34)
1
Cisn,r(P) = Cisnoo(P) — AYY ———— ALY . (2.35)

T Karg T
In eq. (2.34) we are using the result, demonstrated in appendix A, that if the source and
sink operators are related by hermitian conjugation, then the same holds for the endcap
factors. Note that this only holds because the latter are defined with the PV prescription.
We next evaluate the residues that enter eq. (2.29). Since the infinite-volume correla-
tors and the endcaps are smooth, infinite-volume functions, L-dependent poles only arise
from the zero eigenvalues in F3 Ly Kat 3. The required residues are thus

1
PAM ’ F3—1

Rau(EY,P,L) = lim —(E)+iPy) e
df,3

Py —>’LE,,/I\

PAus (2.36)

where the minus sign is for later convenience, and E2 is one of the finite-volume three-pion
energies for the given choice of P, A and L. Ry, is a matrix in the {k¢fm} space, which
can be evaluated explicitly given expressions for Ky (contained in F3) and K4 3. The idea
here is that these quantities have been previously determined (or, more realistically, con-
strained within some truncation scheme) by using the two- and three-particle quantization
conditions applied to the spectrum of two- and three-particle states.

An important property of Ry, is that it has rank one. This is because only one of the
formally infinite tower of eigenvalues of Py, - (Fy 1y Kat3) - Pay will vanish for a given
finite-volume energy E2(P,L). Denoting the relevant eigenvalue by \(E, P, Ay, L) and
the corresponding normalized eigenvector by e(E, P, Au, L), one finds

ONE, P, Ap, L)

1
A _
RA#(Envva)_ ( oE

E, P, Ap,L)e'(E,P,Au,L). (2.37)

)<t
E=EA(P,L)

~10 -



This rank one property of Ry, was first described in the two-particle case in refs. [42, 44].
As is discussed, e.g. in refs. [10, 12, 38], the eigenvalue must satisfy the inequality

(CWE’P’A“’L)’ )_1 >0. (2.38)
0E E=EMP,L)

Thus, defining

_1/2
8E E=EMP,L)

R, can be written as a simple outer product
RA,U,(E;/LX’ P7 L) = U(Erlz\a P’ A/’L7 L)UT(E7/L\7 P7 A/JH L) : (240)

Since Fy~ ! + Kgt 3 is a real, symmetric matrix (assuming that we use real spherical harmon-
ics), the elements of each v are relatively real, with only the overall phase undetermined.
Using these results, we can immediately evaluate the required residues, obtaining

Ra-(EX, P, Ap, L) = |AVv|?, (2.41)
Rican(Ep, P, Ap, L) = (A5 0) (vT AR, (2.42)

where v is an abbreviation for v(EX, P, Au, L). All quantities on the right-hand side are
(implicitly) evaluated at P = (P,iE2Y), with E) = Ex(P). The overall sign in eq. (2.36)
can now be justified. From eq. (2.25), we know that Rs, is positive, and thus the overall
sign in eq. (2.41) must be positive, as shown.5

Choosing the phase of v such that A ~ v is real and positive, and inserting these results

into eq. (2.29), we obtain
2Ek (P)L*(E,, P, Ap, L|Hw (0)|K, P, L) = vT ALY, . (2.43)

This achieves the aim of relating the finite-volume decay matrix element (which could be
determined by a numerical simulation) to a quantity in the generic relativistic field theory,
namely a projection of the quantity A%Y K5r- By using multiple matrix elements, one could
determine the parameters in a truncated approximation to ALY K- The result (2.43) can
also be derived by a generalization of the method of Lellouch and Liischer [32], as we show
in appendix B.

Before turning to parametrizations of ALY, K5r We close this section with a few more
comments on the phase conventions entering the various relations on matrix elements. We
first review the requirements we have imposed above. First, we have fixed the phase of the
state As.(0)|Ey, P, Au, L) by requiring that (0|As;(0)|E,, P, Au, L) is real and positive.
Second, we have required that, while ALY and v(E2, P, Ap, L) may individually carry
phases, these must cancel such that A ~ v is real and positive. We have then demonstrated
that, with these two convention ChOlces, the finite-volume matrix element appearing in

This is in fact the criterion introduced in ref. [10], and studied in refs. [12, 15], to determine whether
solutions to the three-particle quantization condition are physical.

- 11 -



eq. (2.43) must have the same phase as the combination UTAIP<\§7F. Finally, to extract the
value of Ags,, we must establish the phase of v itself, which has been left open so far.
The most natural convention is to simply require Ag;’ and v to be individually real. In
this convention v' is also real, so any phase in the finite-volume matrix element on the
left-hand side of eq. (2.43) (resulting, for example, from a CP-violating phase in Hyy) will
be inherited by ALY, .

As was already discussed in refs. [42, 44], the utility in carefully tracking this phase
information is that it allows one to extract relative phases between various matrix elements.
For example, if the weak Hamiltonian density is decomposed into operators Oi(z) and
Os(x), it follows from eq. (2.43) that

(En, P, A, LJOy(0)| K, P, L) ' ARY o) (2.44)

(Bn, P, A, LIO5(0)| K, P, L)~ o ARY

The overall phase in v cancels, so the phase in the ratio of PV amplitudes on the right-
hand side is given by that of the ratio of the matrix elements on the left-hand side. This
phase information will be passed on to the decay matrix elements by solving the integral
equations described below in section 2.4.

2.3 Threshold expansion of A%‘éﬁ

Since Al;(\gﬂ is an unfamiliar quantity, we discuss its properties in this brief subsection. We
recall that it is an infinite-volume on-shell quantity, given, crudely speaking, by calculating
all K — 3m diagrams with PV regulation for the poles. Thus it is an analytic function of
the kinematic variables, symmetric under interchange of any pair of final-state momenta.
A useful parametrization of A?gw is given by the threshold expansion, which is an
expansion in powers of relativistic invariants that vanish at threshold, for instance
2

2
mij — 9mz

A= (2.45)

9m2
For the decays K — ntatn™ and Kt — 7t7%°, for example, A ~ 0.39 and 0.45,

respectively. Labelling the pion four-momenta p1, p2, and ps3, so that P = px = p1+p2+ps,
the three Mandelstam variables are

3
si=(pj+p)? =@ —p)?, Y si=mi+3m2, (2.46)
=1

where {1, j, k} are ordered cyclically. We will expand in dimensionless quantities that vanish

at threshold, namely A and

s; — 4m?2

A = z (2.47)

9m2
which satisfy >, A; = A. Using this sum rule, and enforcing particle-interchange symmetry
and smoothness, we find”

AR = A%+ AR Y TAT + AP Y AT+ AW T AT+ O(A). (2.48)

"The presence of only a single term in each of the second, third and fourth orders is a pattern that does
not continue to higher orders.
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Here “iso” refers to the isotropic limit, in which the amplitude is independent of the mo-
menta of the decay products. To obtain a strict expansion in powers of A, one would need
to expand the coefficients, e.g.

Aiso _ Z AnAiso,n , (2‘49)

keeping only the appropriate number of terms (e.g. the first five terms if working to fourth
order in A).

To use the threshold expansion (2.48) in the result from the previous subsection,
eq. (2.43), one must convert AYY, to the {k¢m} basis. We recall here how this is done [3].
We first note that the on-shell three-particle phase space with fixed total four-momentum
(and ignoring Lorentz invariance) is five-dimensional. We can parametrize this space in
various ways, one choice being to use a set of five momentum coordinates: p1 ., p1,y, P12,
D2,z P2,y- The remaining five coordinates are then set by the fixed total energy and mo-
mentum. To connect to the {k¢fm} basis we make a different choice, labelled {k,a*}. Here
k is one of the three momenta, e.g. k = p1, while a* is the result of boosting the remaining
two particles to their CMF and picking the direction of one of them, say particle 2. Here
we are using the notation that a quantity with a superscript * is evaluated in a boosted
frame. We then decompose the amplitude into spherical harmonics in the pair CMF,

AR (K Z\ﬁyem a*) ARy (k)em (2.50)

To use the result of the previous subsection we must restrict k to lie in the finite-volume set,

AK37r ke = AR )em‘k:%n/L . (2.51)

The decomposition of the terms in the threshold expansion into the {k¢m} basis is
straightforward but tedious, and we do not present it here. It follows closely the corre-
sponding decomposition of 4¢3 worked out in ref. [12].

2.4 Relating AK37r to the physical decay amplitude

In this subsection we show how the physical K — 37 decay amplitude can be obtained by
solving appropriate integral equations, once the endcap ALY, K5- has been determined using
the results of the previous two subsections. This is the second step of the general procedure
described in section 2.1, and involves relations between infinite-volume quantities. The
method we use follows the strategy introduced in ref. [4]: we consider a finite-volume
correlator whose infinite-volume limit produces the physical decay amplitude, and write
this correlator in terms of Ko, Kqt,3, and in particular ADY, Ko

We begin by recalling that the infinite-volume decay matrix element can be defined by

TK37r = <37l',011t‘,HW(0) |K, P> N (252)

where states are defined using the standard relativistic normalization. The decay rate is

then given by
1 1

= [ dLIPS|Tx3,|? 2.53
3! 2my Ticam|” (2.53)

~13 -



where 1/3! is the identical-particle symmetry factor, and dLIPS is the Lorentz-invariant
phase-space measure. We will use the {k,a*} variables introduced above, in terms of which
the measure becomes

d*k a*  d* Q-

dLIPS =
2w (2m)3 ATwex 4w

(2.54)

Here a*? = q%‘?k is the squared momentum of one of the nonspectator pair in their CMF,
with
% = (Ex(P) —wp)® — (P — k)%, (2.55)

and wg+ = y/a*? + m2 is the corresponding energy.

In order to obtain an expression for Tx3, in terms of Ai\éﬂ, we consider the finite-
volume decay matrix element, T3, . This is defined as the sum of all Feynman diagrams
contributing to Tk3, including appropriate amputations, but evaluated with finite-volume
Feynman rules. A subtlety arises because the energies of three external on-shell pions, each
with a momentum from the finite-volume set will, not, in general, sum to Fx (P). To have
an energy-conserving process, the external momenta in Tk3, 1, must be adjusted. This on-
shell projection is done using the method introduced in ref. [3]. The spectator momentum,
k, is held fixed at a finite-volume value, while the magnitude of a* (the momentum of one
of the nonspectator pair boosted to the pair CMF) is adjusted until energy is conserved.
This requires setting a* = q§7ka*, and leads to the third particle having momentum —a*
in the pair CMF. This is the on-shell projection that appears in all quantities adjacent
to factors of I and G. The projection only affects the external momenta for Txszr 7 —
when written as a skeleton expansion in terms of Bethe-Salpeter kernels, the internal loop
momenta are all drawn from the finite-volume set. This point is discussed at length in
ref. [4]. The result is the quantity Txsx 1.(k,a*).

We will need a variant of this quantity in the following, namely Tl(égm 1 (k,a*), which
we refer to as the asymmetric decay amplitude. This is defined as the sum of the same
set of amputated diagrams with two restrictions: first, if the final interaction involves a
two-particle Bethe-Salpeter kernel, then k is chosen as the momentum for the spectator
particle. Second, if the final interaction involves a three-particle kernel, then the diagram
is multiplied by 1/3. In fact, what appears in the expressions below is T' I(%)W Lokt which
results when we decompose the a* dependence into spherical harmonics as in eq. (2.50).

To obtain the desired expression for Txsr 1 kem, we begin from the correlator
Cks3r,(P), introduced in eq. (2.22), which describes a finite-volume K — 37 process.
We consider the Minkowski version of this correlator, given by

1
Cll\g?m,L(E? P) = Cll\g?ﬂr,oo(Ev P) + Agy_liAE(\?/;ﬂ (256)
Fy + Kar 3

We obtain Txsr r by keeping contributions that have at least one factor of F' (since this
puts the intermediate three-particle state on shell) and amputating all that lies to the left
of the left-most F. Only the second term on the right-hand side contains F's, and we
amputate it as described in section 2.1 by removing A%Y and multiplying by the inverse of
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iF/(2wL?), leading to

o\ -1

(u) v ) ¢ PV

T = F: A 2.57
K3m,L (2&][3 31 ICdf’3F3 K3m» ( )

1
_ o APY 2.58
L 1+ K:df,gF3 K3m» ( )

where ES;“) is given in eq. (2.16). Note that, unlike in the construction of Mgfiu) described
in section 2.1, here there are no disconnected terms to drop.

With the expression for T;;‘??ﬂ;kem in hand, we next note, following ref. [4], that the
result can be extended to an arbitrary choice of k, not just one in the finite-volume set. The
form of eq. (2.58) remains unchanged, and the various quantities extend simply to arbitrary
k, as explained in ref. [4]. The result, T[(;gﬂ’ 1.(E)em, is still a finite-volume quantity, since
internal loops remain summed. We now insert ie factors to regulate the poles in F’ and G,

and take the infinite-volume limit holding k fixed

T (K)o = lim lim T, (k) om . (2.59)
e—=0F L—oo ’ E— E+ie
This gives the correct asymmetric infinite-volume decay amplitude because, in the limit, all
sums in Feynman diagrams that run over a pole (which are those in which three particles
can go on shell) are replaced by integrals in which the pole is regulated by the standard
1€ prescription.
The final step is to obtain the complete decay amplitude by symmetrizing, which
corresponds to adding all possible attachments of the momentum labels to the Feynman
diagrams. This is effected by

TKgﬂ(k, a*) = S {TKgﬂ(k)gm} s (260)
= Ti¢gy (k@) + T3 (@, 5%) + i3, (b, k7). (2.61)

where Tl(égm 1 (k,a*) is obtained by combining TI(;L??W 1 (E)em with spherical harmonics as in

eq. (2.50). The notation in eq. (2.61) is the natural generalization of that given above:
just as (wg+,a*) is the result of boosting (w,,a) to the CMF of the {a,b} pair (with
b=P—k—a), so (wp,b") is the result of boosting (wp, b) to the CMF of the {b, k} pair,
while (wg+, k*) is the result of boosting (wg, k) to the CMF of the {k,a} pair.

Applying this procedure to the result eq. (2.58) for T [(g?))ﬂ ;, leads to a set of integral
equations. Since the steps are very similar to those in ref. [4], we simply quote the final
results. As for T[(;gﬂ, the {k¢m} indices used in finite volume go over in infinite-volume
to a dependence on the continuous spectator momentum, k, as well as an unchanged
dependence on ¢ and m. Thus the matrix indices fm remain, and will be implicit in the
following equations, while the dependence on k will be explicit.

The combination (14 Ms, ,G)~1 My 1, which appears in E(LU) and in F3, goes over in

(u,u)

infinite volume to Dys (P, K)¢'m/.0m (using the notation of ref. [16]), which satisfies

D (b, k) = 3(p — k)Ma(k) — Ma(p) [ G=(p.r)D " (r k), (262
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where G is defined in eq. (81) of ref. [4], and includes an ie-regulated pole, while

5(p— k) = 2,(27)%%(p — k)., (2.63)
MQ(k)é’m’;fm = 5E’€5m’mMgf) (qg,k) ) (264)

/r:/m:l(:;r)?" (2.65)

Here Mge) is the ¢th partial wave of My, evaluated for the CMF momentum of one of the
scattering pair. Given a solution to the integral equation (2.62), and the relation of Fj to
E(Lu), eq. (2.16), the equation satisfied by the infinite-volume limit of X = (1+/Kqar3F3) 7! is

X(pok) = 3(p—k) = | Kaalp.r)ev(r)L (v )X (5,k). (2.66)

In the first term there is an implicit identity matrix in ¢m space. The quantity ppy results
from the infinite-volume limit of F', and is

PPV (T)erm!sem = 00re0mim ﬁ(;\)/(q;,r) ; (2.67)

where pg\), is a modified phase space factor given in eq. (B6) of ref. [16]. Finally,

]'7 u,u ~
£ (r,s) = §5<T —8) — Dég’ )(r, s)ppv(s), (2.68)

which is the infinite-volume limit of E(Lu).

With these ingredients we can write down the relationship of the asymmetric decay
amplitude to ARY,

T (k) = / L0, X (1, 8) AR (3). (2.69)

The full amplitude is then given by symmetrization

Ticsn(k, %) = S {T (K)o } (2.70)

using the definition in eq. (2.60) above. This completes the procedure for determining the
decay amplitude from the finite-volume decay matrix elements. The physical interpretation
of the factors in eq. (2.69) is as follows. £(*) incorporates pairwise final state interactions,
through multiple factors of My alternating with switch factors G*®. T [((qgﬂ becomes complex
both because M itself is complex, and due to the ie in G*°. The quantity X incorporates
final state interactions involving all three particles, with intermediate pairwise scattering.
Since this result derives from an all-orders diagrammatic derivation, the amplitude T3,
will automatically satisfy the required unitarity constraints, and in particular those that

lead to Khuri-Treiman relations describing final-state interactions [53].
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2.5 Isotropic approximation

We close this section by giving an explicit example of how the formalism works when
making the simplest approximations to the decay and scattering amplitudes. We assume
that only the leading, isotropic term in the threshold expansion of the decay amplitude,
A'°_ is nonvanishing — see eq. (2.48). This implies that A?(gw;kém is only nonzero for
£ =m = 0, and is independent of k. In addition, it couples only to three-pion states in
the trivial irrep of the appropriate little group, e.g., the Ay irrep for P = 0 (for pions
with negative intrinsic parity). For the amplitudes My and Kg4¢ 3, we assume that only the
s-wave contributes (so again £ = m = 0) and that Kgr 3 is independent of the spectator
momentum. This is equivalent to keeping only the isotropic term in the threshold expansion
of ICdf,3 [10, 12].

Given these approximations, all quantities entering the definition of F3 depend only
on the spectator momenta. The isotropic nature of AK37r and g3 is represented by
introducing the vector |1) in spectator-momentum space, which equals unity for all choices
of k in the finite-volume set that lie below the cutoff. Specifically,

AYY  — |1) A and Kag3z — \1>IC§§3< |, (2.71)

where A'*° and ICide"73 are constants. Using eq. (2.11), one then finds that

1 1
— —>F3—F3’1> - <1’F3, (272)
Fyl+ Kars Fe + (Kisp5) 7t
where Fi% is the isotropic component of F3,
F'SO = (1| F3|1) . (2.73)

It follows that the only poles in three-particle correlators [e.g. CM of eq. (2.5)] that depend
on ICSR?) occur when the isotropic quantization condition is satisfied, i.e.

e = —(KiRg) ™" (2.74)

There are also solutions at free energies resulting from the F3 terms in eq. (2.72), but these
are an artifact of the isotropic approximation, as discussed in appendix F of ref. [12]. From
eq. (2.72), we can determine the residue using eq. (2.36), finding

R = By |1) 7% (1] Fy, (2.75)

where we have abbreviated the arguments of R, (E,, P, L), and defined

;so__<8F§S°(E,P,L) O[1/K§3(E )])1
= OE OE

. (2.76)
E=E2(P,L)

Here all derivatives are evaluated at the energy EZ'(P,L), a solution to the isotropic

quantization condition. The quantity 71° is real in general, and positive for a physical

solution. Thus we can read off the vector v(E,, P,Au = Ay, L) defined in eq. (2.40),
() = (re) /2 (1] F. (2.77)

n
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Figure 2. Plot of the conversion factor appearing in eq. (2.79) (rescaled as indicated by the plot
label) in the vicinity of the three-particle threshold for the case of constant KiPs. The factor
is plotted versus energy E for P = 0 and mL = 6. The two-particle K matrix, entering Fi*°,
determined by keeping only the scattering length, a, in the effective range expansion. The three
curves correspond to three values of the scattering length, as indicated by the legend, and each
unfilled marker corresponds to the ground-state energy for the corresponding ma value when ICS;E 3=
0. In particular, the blue square corresponds to the non-interacting limit. The fact that the
conversion factor is unity in the latter case indicates that the non-interacting matrix elements are
equal in finite and infinite volume, up to a trivial normalization. More generally, once the scattering
length is determined, these types of curves allow one to directly relate — within the isotropic
approximation — any value of measured three-particle energy (horizontal axis) to a matrix element
conversion factor (vertical axis).

Here we have chosen the overall phase according to the convention discussed above, so that

iso

Un

is real. Using eq. (2.43) we now obtain
2Ek (P)L? (E,, P, A1, L| 1w (0) |K, P, L) = (ri)!/2Fis A% (2.78)
This can be massaged into a simple form for determining A's°

A®(E%)? = 2B (P)LS (E,, P, Ay, L| Hw (0) | K, P, L)?
iso -1 a;giso E*
« <8F3 (E7P7L) + df,S( )

(2.79)

oE oE ) E=E;1(P,L)

Thus, in the isotropic approximation, we need to measure the matrix element to only a
single three-pion state in order to determine A'° at that energy. In figure 2 we plot the
conversion factor appearing on the second line of this equation for the case of constant
ICingg, implying 8K§§3(E*)/6E =0.

The relationship of A™° to Tk, is also substantially simplified in the isotropic approx-
imation. We first note that eq. (2.58) simplifies to

1

(u)iso _ n(u)
TK37r,L - EL ‘1> 1+ K:i(ffo?)ler;so

Al (2.80)
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Taking the infinite volume limit as before, we obtain

T (k,a*) = S{T (k) } (2:81)
where A'
(u),iso _ p(u),iso e
Here the momentum dependence arises solely from the ﬁnal—state interactions in
L (g / DY (k) 8)ppy (s) | (2.83)

where D%’u)(kz,s) still satisfies eq. (2.62), but now with all quantities restricted to ¢ =
m = 0, and

F??o,iso _ /rﬁpv(r)ﬁ(u),im(,r) ) (2.84)
(u,u)

In this case, the only integral equation that has to be solved is that for Dy;", as has been
done recently in refs. [27, 54]. We note that F5° 150 and L(wise are, in general, complex.

The expressions in the isotropic approximation are sufficiently simple that one can
readily combine egs. (2.79) and (2.82) to display the direct relation between the finite-
volume matrix element and the physical amplitude. Unpacking the compact notation used
above slightly, we reach

2
T3 (B mia, m3y) P = 2B (P)LO| (En, P, Ay, L Huw (0) | K, P, L) |

1 ?(OF(E. P L) | OKE(E)
oFr ’

1+ Kispy (E*) F5o'%(E*)

X ﬁiso(E*7m%27m%3) OF

(2.85)

where F (and thus E*) is fixed by the value of finite-volume energy, tuned to E* = Mg
for a physical decay amplitude. We have emphasized that the right-hand side depends on
the two squared invariant masses m?, and m3,, defined by

and have also introduced the symmetrized final-state interaction factor.
Eiso(E*,m%Q,mgg) = E(u),iSO(k) + E(u),iSO(a) + E(u),iSO(b) ) (2.88)

At this stage we can comment on the relationship of our result to that of ref. [52]. We
expect that the isotropic limit, given in eq. (2.85), is equivalent to the result of ref. [52],
aside from differences in the schemes used to define the short-distance quantities. In-
deed, the equations have the same basic structure, with a contribution resulting from final
state interactions (the term involving £*°) and a Lellouch-Liischer-like correction factor.
Demonstrating the precise equivalence, however, is nontrivial, since our approach based
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in short-distance quantities, Kqr 3 and A}p{\éﬁ’ that are symmetric under particle exchange,
whereas the approach of ref. [52] does not symmetrize until the very end. Presumably,
the mapping can be determined using the relation between symmetric and asymmetric
approaches explained in refs. [16, 17], but this is beyond the scope of the present work.

In closing, we note that eq. (2.85) is analogous to the original Lellouch-Liischer relation
presented in ref. [32]. In particular, the two-particle result is reached by making the
replacements

Tllg%w(E m127 m23 — TK?T"(E) )

) (2.89)
Elso( m127 m23) ( )
Kifs(E") — lCz( ) (2.91)

(") — —ip(B) = —igc— (2:92)
F°(E,P,L) — F(E, L), (2.93)

where we have also restricted attention to the P = 0 frame. On the right-hand side we
have introduced the physical K — 77 amplitude Tk, (F), extended to allow for final-state
energies different from the kaon mass. We have also used the two-particle K-matrix, ICo,
and the two-particle finite-volume function, F', both restricted to the s-wave. These are
essentially the same quantities as appearing in eq. (2.6), in the definition of F3, but without
the implicit sub-threshold regulator used there and without the spectator-momentum index.
We have also introduced the two-particle phase-space, p(E), with ¢ = /E?/4 — m?2.
Making the indicated substitutions into eq. (2.85) yields

|Tron(E)|? = 2Mg L8| (E,,, Ay, L| Hw (0) | K, L) |?
1 2 <8F(E,L)—1 N alCQ(E)> ' (2.04)

1 — iK3(E)p(E) oF oF

Substituting the definitions of the scattering phase J(E) and the L-dependent, so-called
pseudophase ¢(FE, L)

Ko(E) = 1677Et2n I(E) ’ F(E, L)~ = 167rEta1;¢(E, L) , (2.95)

one can easily reach eq. (4.5) of ref. [32], after some algebraic manipulations.
This completes our discussion of the formalism in the context of the simplified theory.
We now turn to realistic applications of these results.

3 Applications to physical processes

In this section, we describe the generalization of the previous analysis to processes involving
three-pion final states in isosymmetric QCD. This allows our results to be applied to several
processes of phenomenological interest: (i) the electromagnetic transition v* — 37, which
contributes to the hadronic vacuum polarization piece of the muon’s magnetic momentum,
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(9 —2)u; (ii) the isospin-violation strong decay n — 37; and (iii) the weak decay K — 3,
which has both CP-conserving and violating amplitudes.

The generalization presented here requires the generic three-pion quantization condi-
tion derived in ref. [18]. We start this section by recalling some results from that work,
and presenting the generalization of the formulae derived above to the three-pion system.
We then describe the specific applications to the three processes listed above.

3.1 General considerations

In the derivation in section 2, the “kaon” and “pion” fields were taken to be real scalars with
separate Zs symmetries. Here we consider the physical kaon and pion fields. The former,
which can be either charged or neutral, are complex fields with strangeness conservation
playing the role of the Zs symmetry. The pions are represented by a triplet of fields, with
two complex fields in the definite charge basis (77 and 7~) and one real filed (7°), with
the Zo symmetry being G parity. Both kaons and pions are stable particles in QCD, with
masses satisfying the required inequality, eq. (2.1). The form of the weak Hamiltonian
depends on the decay being considered, but its essential property, unchanged from above,
is that it annihilates one of the kaons and creates three pions. The new feature is the

079 in the neutral

presence of multiple three-pion intermediate states, e.g. 7777~ and 7%
sector, and it is this feature that the derivation of ref. [18] takes into account.

We stress again that, since the weak interactions are added by hand as external op-
erators, we can choose to separately consider operators that create three and two pions,
with G parity ensuring that these two sectors do not mix. We can also consider one at a
time operators that create three pions in states of definite isospin. Indeed, the quantiza-
tion condition of ref. [18] decomposes into separate results for each choice of total isospin.
Finally, we note that, although we couch the discussion in this subsection in terms of the
K — 3w decay, the essential aspects of the discussion apply equally well if the kaon is
replaced by a v* or ), and the weak operator is replaced by the electromagnetic current or
the isospin-breaking Hamiltonian, respectively.

A generic three-pion state can have total isospin I = 0,1,2 and 3. It is, however,
important to note that the isospin of any pair of particles is not conserved — for a given
total isospin there can be several two-pion subchannels with pairwise interactions. As
discussed in ref. [18], the following subchannels contribute

I'=0: {|pm)g },
I=1:{|om)y,|pm);, [(7m)2m); },
I'=2:{|pm)y,|(77)2m), },
I=3:{|(mm)2m)y },

where “o” “p” “(7wm)2” label a two-pion combination with isospin 0,1, and 2, respectively,

(3.1)

and the subscripts on the kets denotes the total isospin. Explicit expressions for these
states for the charge zero (I3 = 0) sector are given in appendix C of ref. [18].

The order of pion fields in each state of eq. (3.1) is a shorthand for the interplay of
momentum and isospin assignment. In particular, if we consider asymptotic states with
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fixed total energy and momentum (E, P) then the remaining degrees of freedom, ¢m and k,
are assigned to the leading pion pair and the third pion field, respectively. As emphasized
in section 2.1, the asymmetric description is natural from the perspective of the finite-
volume formalism, since many of the quantities appearing there, in particular F, G, Ky
and Fj, single out a pion pair in their definition. The result is that there are additional
flavor spaces with dimensions one, three, two and one, for I = 0, 1, 2, 3 respectively. Aside
from this feature, and a minor change in notation (to be described below), the forms of the
final results in ref. [18] are the same as those for identical particles reviewed in section 2.1.

The simplicity of the generalization from three identical particles to three-pion states
carries over to the new quantities needed to discuss decay matrix elements. For this reason
we only quote the results. We begin with the generalization of the Euclidean correlator
Cap,L(P), defined in eq. (2.32). The operators A and B now respectively destroy and
create a three-pion state of definite isospin. The expression for this correlator, previously
given by eq. (2.33), now becomes

1
oy, = ol AtV BVl (3.2)
g ; F!l }]71 _
[F3 df,3
The notation for bold-faced quantities is taken over from ref. [18]: they contain a factor
of i compared to those used for identical particles [which explains differences in signs and
factors of ¢ compared to eq. (2.33)] and also have an additional index corresponding to
the flavor space described above. For example, for I = 1, the endcap APV:U is a three-
dimensional row vector in these indices (in addition to being a row vector in the kfm

indices), while ng] and K([ff}’?) are 3 x 3 flavor matrices (as well as being matrices in the

k¢m indices).® The explicit expressions for the flavor structure of Fg]

are given in table 1
of ref. [18] and we do not repeat them here.

With eq. (3.2) in hand, the derivation in section 2.2 goes over almost verbatim. One
uses the same three correlators, eqs. (2.20)—(2.22), except for the above-described changes
to the kaon field and the three-pion operators. The final result is a generalization of
eq. (2.43):

2By (P)L3EMI P T, Is, Ay, LiHw (0)| K, P, L) = viARS U] (3.3)

Yy

The matrix element on the left-hand side is obtained from the lattice simulation with the

(7]

state of chosen isospin and hypercubic-group irrep. We assume that the weak Hamiltonian

kaon state having the desired quantum numbers, and E;} ! being the energy of a three-pion

couples the kaon to this state, for otherwise the equation is trivially satisfied as both sides
vanish. On the right-hand side the column vector v is an abbreviation for

v(EM P I Ts, Ap, L), (3.4)

80ne difference compared to ref. [18] is that the endcaps in that work are matrices in flavor space, while
those here are row or column vectors. This reflects the fact that creation and annihilation operators in
ref. [18] were chosen to create three-pion states of all isospins, whereas here we consider single operators
with definite three-pion isospin.
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which is a row vector having both {k¢m} and flavor indices, and includes a factor of

1 relative to the v of section 2.2 in order to cancel the factor of 7 in A?;;y]. It is an

eigenvector of [Fg]] -1 —K([ilf]’g with vanishing eigenvalue, and is defined by the generalization
of eq. (2.40):

RE\IZLIB}(EQM],P, L)= lim —(Eé\»[[] + iP4)P[I7I3]¢P[I713}

f. (35)
vvVvV'. .
Pyi—igMl] Aw 1/Fg] —Kgf]j?, An

We stress that we do not include a relative factor of 7 between the definitions of RK};IS] and

R, of section 2.2. The bold quantity defined here thus differs from the R, only by the
addition the flavor index.

The workflow for using eq. (3.3) is as follows: first, one chooses the initial kaon quan-
tum numbers and the form of Hy based on the physical process under consideration. This
determines the allowed values of I and I3 for the three-pion final states. Second, one calcu-
lates the three-pion energy spectrum for one of the allowed values of {I, I3}, using a range
of choices of P, and picking irreps/rows Ay such that the desired K — 37 matrix element
is nonvanishing. Third, one compares this spectrum to the result from the quantization
condition of ref. [18],

det ([Fy'] ! — Kiil,) =0, (3.6)

and uses this to determine (a parameterized form of) Kgf]?). Fourth, with this form in hand

one uses eq. (3.5) to determine the vectors v for levels that have their energies matched to

Ek(P). Finally, one uses eq. (3.3) to provide a constraint on the row vector A?g;rm. By

combining several such constraints can determine a (parametrized form of) A??/);rm.

The second step — connecting to the physical decay amplitude — also mirrors that for
identical particles, which was described in section 2.4. One first introduces an asymmetric
finite-volume amplitude that generalizes eq. (2.58),

N _ (g~ gl 1 PV, [1]
TK37r,L - (F[ ]) F3 AK37r ’ (37)

I I
1= Koy

where FUl is iF/(2wL?) tensored with the identity in the corresponding flavor space [18].
Here again the boldfaced quantity T[Il(]ég)L differs from the T[(%)m ;, used in section 2.4 both
by the addition of flavor indices and by a factor of i. The physical amplitude is then
obtained by taking the appropriate ordered limit and symmetrizing,
1, =5 { tm i T, (3.5)
This limit leads to integral equations that are simple generalizations of those presented in
section 2.4, and which we do not display explicitly. The only subtlety that is introduced by
the flavor indices is the need to generalize the definition of symmetrization, as is explained
in section 2.3 of ref. [18]. We stress that the symmetrization here acts on a column vector
with a single index, rather than on a matrix as in ref. [18].
The results of these steps are the infinite-volume decay amplitudes in the isospin basis.
To convert to a measurable amplitude, e.g. that for K+ — 777970, one must combine the
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isospin amplitudes appropriately. The results needed to do this are collected in appendix C.
In this regard there is a further subtlety concerning the amplitudes that have a multi-
dimensional flavor space, i.e. those with I = 1 and 2. To explain this point (which is not
discussed in ref. [18]) we focus on the example of I = 1. The result from eq. (3.8) is then
three K — [37];=1 amplitudes, each expressed as a function of the three pion momenta.
The issue is that, when one has the full momentum dependence, these three amplitudes
are not independent. In fact, as we explain below, one needs to know only two of the three
in order to completely reconstruct the I = 1 amplitude. Similarly, for the I = 2 case,
only one of the two amplitudes is needed. This redundancy does not, however, lead to any
simplification in the solution of the integral equations implicit in eq. (3.8).

3.2 The electromagnetic transition v* — 37

The electromagnetic process v* — 37w is of phenomenological interest as it contributes,
via the hadronic vacuum polarization (HVP) and the hadronic light-by-light scattering
(HLbL), to the anomalous magnetic moment of the muon [55-59]. Our formalism allows one
to determine the infinite volume amplitude using a finite volume lattice QCD calculation.
In particular, although this is not a decay, the results above are readily adapted — one
simply takes advantage of the fact that one can allow the final three-particle state to take
on any energy and momentum in the relations given above. This then corresponds to a
timelike photon with virtuality ¢ = E2(L, P)? — P2. The analogous two-particle process,
v* — 7w, and its relation to finite-volume matrix elements is discussed in ref. [37].

The replacement of the kaon with a virtual photon simplifies the required lattice cal-
culation. The composite operator Brs-(z) in eq. (2.26) is replaced by the electromagnetic
current J,(z), and the kaon correlator is not required. We consider here only the part of
this current that involves up and down quarks,

Ty = gﬂ'Yl/u - }J'Yuda (39)
3 3
as this leads to the dominant contribution to v* — 3w. No tuning of the volume is needed
to match a given energy; instead, each finite-volume three pion state with appropriate
quantum numbers leads to a result for the desired amplitude with photon virtuality given
by the energy of the state.
The electromagnetic current contains both isoscalar and isovector parts. The latter
has positive G parity and thus, in isosymmetric QCD, couples only to even numbers of
pions, and in particular to the p resonance. What is of interest here is the isoscalar part,

J) = é (@ + dyd) (3.10)

which has negative G parity and thus couples to three pions. The dominant contribution
in the energy range of interest for muonic g — 2 is from the w(782) resonance.

The desired amplitude is obtained using the two-step process explained above. Each
matrix element obtained from a lattice calculation is related to the intermediate PV am-
plitude by

LYHEM P T =0,Au, L|70(0)]0) = vIAL (3.11)
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where v = V[O](Eﬁ\’[o},P, I =0,Ap, L) is obtained from the spectrum of I = 0 three pion

states using eq. (3.5). The irreps A and rows p that lead to nonzero matrix elements

depend on the total momentum P and the Lorentz index v. Note that for I = 0 the
PV,[0]
37,V

alone. We also comment that the left-hand side of eq. (3.11) differs from the corresponding
results for kaon decays, eqs. (2.43) and (3.3), by the absence of a factor of (2E (P)L*)'/2.
This is because, in contrast to the unit normalized finite-volume kaon state, there is no

flavor space is one dimensional, so A and v can be viewed as vectors in {kfm} space

need to correct the normalization of the vacuum, which matches between the finite- and

infinite-volume theories.
PV, 0]

y3m,y Must be

To implement eq. (3.11), the infinite-volume PV amplitude A
parametrized. This is most easily done by using eq. (2.50) to convert from {k¢m} space
to a function of three on-shell momenta, p;, p2 and p3. Up to the overall factor of ¢, the
amplitude is a real, smooth function of momenta, antisymmetric under the interchange of
any pair of momenta, and transforming as an axial vector.’ Expanding about threshold as

in section 2.3 (with m%( — ¢%), the general form satisfying these properties is
PV, 0] _ . - 0 2
ALVl e ot S <Ag3>7r + AR S Az ) . (3.12)
i

Here the A; are the threshold expansion parameters defined in eq. (2.47), and the coef-

ficients A%)W are functions of A = ¢2/(9m2) — 1. For a consistent threshold expansion,
2

Ag%)ﬂ should be a quadratic function of A, while Agg)ﬂ should be a constant. The ellipsis
represents higher order terms. We observe that the threshold expansion begins at higher
order than for the symmetric amplitude discussed in section 2.3.

The second step is to solve the integral equations encoded in the I = 0 ver-

sions of egs. (3.7) and (3.8), which convert AP0

37,V
T,[gmy(pl,pg,pg). Recalling from ref. [18] that the I = 0 state is given by

into the v* — [37];—¢ amplitude,

1
— (]7T+7TO7F> — |97 7Ty + |77ty — a7 + At R0) — |7T+7T77T0>) , (3.13)

V6

with the three pions in each ket having the momenta p1, po and p3, respectively, and noting
that only the I = 0 amplitude is nonzero, we obtain the physical amplitude as

1
iT [y > o e @2 (0] = | ST (o1, p2.9). (3.14)

where the index v refers to the polarization of the virtual photon. '

3.3 The isospin-violating strong decay n — 37

The decay 7 — 37 provides an example where our formalism can be used within the
context of the strong interactions. The key point is that the 7 is stable in isosymmetric

°Tf the intrinsic negative parity of the pions is included the amplitude transforms as a vector, as required
to couple to the electromagnetic current.

10This can also be obtained from the bottom row of the matrix R given in eq. (C.3). Since only the I =0
amplitude is nonzero, the rightmost entry in this row gives the relevant factor.
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QCD, but can decay to three pions in the presence of isospin violation.''! The decay has
a very small partial width, I'(n — 37) ~ 0.7 keV [60], and can be treated at leading order
in an expansion in isospin breaking. Isospin violation in the Standard Model arises both
from the up-down quark mass difference in QCD and from electromagnetic effects. Here,
however, isospin breaking from QCD dominates, since electromagnetic effects are of second
order in « due to the neutrality of the 1. Thus this process is uniquely sensitive to the
up-down quark mass difference. We refer the reader to ref. [61] for a recent review of the
status of phenomenological predictions for these decays.

A natural approach for a first-principles lattice QCD calculation of these decay ampli-
tudes is to simulate isosymmetric QCD with mass term

gAr=0 _ Mt Mmd (wu + dd) , (3.15)
2
but introduce isospin violation through the insertion of the mass difference operator!?
HAI=! = w (au — dd). (3.16)

This brings the calculation into the same class as that for K — 37 decays, with the initial
kaon replaced by the 7 and Hy replaced by H2'=!. We observe that, although isospin-
breaking is being included only at leading order, our formalism includes all rescattering
effects due to final state interactions. Thus it provides an alternative to the dispersive
methods used in present analyses [64, 65].

Since the initial n has I = 0, the final three pion state has I = 1. Thus to obtain the
n — 3w amplitude we can use the results of section 3.1, by simply making the replacement
K — n, and taking I = 1. In this way, we can use the formalism to determine the
E:XT’[” and the final, physical amplitude T%lz,]m. We note that
these amplitudes have a three-dimensional flavor space. For a practical implementation
53\;’[1], and the relation of T%W to the amplitudes into
charged and neutral pions. We provide these results in the remainder of this subsection.

(1]

intermediate PV amplitude A
one needs a parametrization of A

To present the parametrization of AE;;’ , it is convenient to use a different basis
for the flavor space of three-pion states than that of eq. (3.1). The new basis, which we

denote the y basis, uses states that lie in irreps of the symmetric group S3 corresponding
to permutations of the three particles. It is given by [18§]

{ IXs)1s X115 [x2)1 } =

V5 V5 (3.17)

{g o))y + 5 Jom)y s X2 [(wm)om), + 2 o), yml} ,

where |xs) transforms in the trivial irrep of Ss, while {|x1),|x2)} transform in the two-
dimensional standard irrep. We refer to appendix C in ref. [18] for explicit expressions for
the isospin states, as well as further discussion of the group properties.

"Potential decays to 2m and 47° that are allowed by G parity and kinematics are forbidden by parity
conservation, irrespective of isospin breaking.

12YWe note that this method of calculating isospin-violating effects is similar to the perturbative method
introduced in refs. [62, 63], but differs in that here we imagine inserting the operator at a single position
rather than over the entire volume.
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We now adapt the results obtained in ref. [18] for the parametrizations of scattering
amplitudes to that of the intermediate PV amplitude. Working to quadratic order in the
threshold expansion, we find

1
A (g a s g A ai o) Lo
g 0
0 0
+i (A?Yg)}ﬂ +A2§ﬂA) P&y | +idge | (P-&)?— (P-&)* | +..., (3.18)
P-& 2P - &P - &
where Afl’gw, etc. are real coefficients. The notation is as in section 2.3, except for the
replacement mg — my,, and the use of the new quantities
1 1
= —(2p3 —p1 — , and = — — . 3.19
& \/6( p3 — p1 — D2) 13 73 (p2 — p1) (3.19)

The superscripts s and d refer to the “singlet” symmetric and “doublet” standard irrep of
Ss, respectively. We observe that the symmetric part of the amplitude begins at leading
order in the threshold expansion, while that transforming in the doublet enters only at
linear order.

Finally we describe the reconstruction of the decay amplitudes into final states com-
posed of pions with definite charges, which are

T (p1,p2,p3) = Tl — 7°(p1)7° (p2) 7 (ps)] (3.20)
T, 0 (p1,p2,p3) = Tln — 7 (p1)7° (p2)7 ™ (ps)] - (3.21)

Our formalism yields the I = 1 amplitude, which, expressed in the x basis, is

T (p1, p2, p3)
T£]1317r(p17p27p3) =1 7:;1[711] (p17p27p3> . (322)
7:31[712] (p17p2)p3)

The relation between the x basis and that involving particles of definite charge is given in
eq. (C.3). Using this result, and the fact that the amplitudes for I = 0, 2, and 3 vanish,
we obtain

3
T, (p1,p2,p3) = —\/;7;[1] (p1,p2,p3) (3.23)
1 1 1
+0— — 1] _ (1] - (1] 3.24
T, (p1,p2:p3) Tﬁﬁ (p1, P2, p3) 7\/57;,1(1117132,]33) + 5742 (P1,p2,p3) . (3.24)
We note that all three I = 1 amplitudes are invariant under the interchange p; < ps,
so that 7;]+0_(p1,p2,p3) = 7;7+0_ (ps, p2,p1), which is consistent with the positive charge
conjugation parity of the pseudoscalar mesons.
As noted earlier, the two doublet amplitudes are not independent when one uses the
freedom to permute the momenta. A convenient form of this relationship is

1 2
7:1[,12] (p1,p2,p3) = %7:1[711] (p1,p2,p3) + ﬁfﬁ] (p1,p3,p2) 5 (3.25)
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where we stress that the order of the momentum arguments differs in the last term. Using
this result, eq. (3.24) can be rewritten as

1 1
7:7+0_ (p17p2>p3) = \/T>57;[1] (p17p27p3) + ﬁ’];][’ll] (p17p3ap2) . (326)

3.4 The weak decay K — 3w

Finally, we turn to the K — 37 decays that are the primary motivation for this work. We
have left these processes to the end as they are the most complicated to analyze. The main
reason for developing the formalism for a lattice calculation of the K — 37 amplitudes is
to provide a method for determining the CP-violating contribution, so as to allow further
tests of the Standard Model. This is analogous to the situation with K — 27 decays,
where the well-measured CP-violating quantity € /e can now be predicted reliably in the
Standard Model using lattice QCD [66-68].
In the three-particle case, the decay amplitudes are

T (p1,p2,p3) = TIKY — 7 (p1) 7 (p2)7° (ps))]

Tt uopaems) = T — 7~ (o () ()] 20
together with their charge conjugates, and the neutral kaon amplitudes
Ty *(01,02,p3) = T[Ks — 7" (p1)7° (p2)7 ™ (p3)]
w2 (p1,p2,p3) = T[Ks = 7°(p1)7°(p2)7° (p3)], (3.28)
O(p1,p2,p3) = T[KL — 7 (p1)7°(p2)7 ™ (p3)]
TP (p1,p2,p3) = TIKL — 7 (p1)7° (p2)7°(p3)] .

In the absence of CP violation, all are nonzero except for 7}3(5)0. All have been measured
except for those for neutral kaon decays to 37 [60]. The effects of CP violation that are
measurable at present involve the charged kaon decays. Specifically, CP violation shows
up as a difference between Dalitz plot slope parameters in K+ and K~ decays (see ref. [69]
for a review). Experimentally, these differences are on the edge of observability [70, 71].
Phenomenological predictions for CP violating observables achieve a comparatively higher
accuracy [72, 73]. In light of this situation, we focus here on the formalism for the decays
of charged kaons, and specifically on the K decay. The generalization to the K~ decay
is straightforward, and that for the neutral kaon decays is summarized in appendix D.
The operators needed for a lattice study of this process are those of the effective
electroweak Hamiltonian, Hyy. The set of operators that are relevant after running to
scales below the charm mass is given for instance in refs. [74, 75]. Since Hy  contains
only operators that change isospin by 1/2 or 3/2, the allowed total isospin of the 3w
state is I = 0, 1 and 2. For charged kaons only decays to I = 1 and 2 amplitudes
are allowed. Using the formalism described above a lattice calculation can determine
(constraints on) the intermediate amplitudes Al K3 yaul and APV 2] We stress that this can
be done separately for each choice of total isospin, and for the CP-conserving and CP-
violating parts of each operator contained in Hyy. To carry this out in practice one needs,
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as usual, parametrizations of the PV amplitudes. That for A?é;rm is identical in form
to the result given for the n — 37 amplitude in eq. (3.18), with only the labels on the
coefficients changing:

1
ARV (A[;?;;O P A Al Al AQ) 0 (329)
0
0 0
+i (At AGPA) [P | Al (P — (P& |+
P& 2P - P - &

The corresponding result for the I = 2 case is

PV2 2),d,1 2],d,2 P-¢ old2a [(P-&)? — (P-&)?

Here we are using the basis [18]

{Ix)a s Ix2)o} = {l(mm)am)y, lpm)o} (3.31)

which is further discussed in appendix C. We have worked to quadratic order in the ex-
pansions of A[II(]SW since fits to experimentally measured Dalitz plots usually work only to
this order.

PV [1]

Given a determination of A and A[P(\g;rm, the second step of solving the integral

equations leads to the decay amphtudes in the isospin basis. There are five amplitudes'?

T (91, pa. p3)

. T y P25
T[[]é]37r(p17p27p3) =1 7:1[11](]91717%173) ) T[}(]gﬂ(p17p2up3) d 1(p1 b2 p3) ’ (332)
1] 7} A (pr.p2.p3)
Ta2(P1,p2,p3) ’

although, as above, only one from each doublet is independent. The form of this redundancy
is exactly as in eq. (3.25) for both I = 1 and 2. The relationship of the isospin-basis states
to those with pions of definite charges is given in appendix C. Using these results, and
simplifying using the redundancy equation (3.25), we find

T+9(p1,pa,ps3) = —77;[1] (p1,p2,p3) + 7 [7:1[,1](1917192,2?3) + 7:1[71](191,2?27193)}
1 (3.33)
\7 (T4 01,p3,p2) + TS (91,3, p2)]
ey 1 ] 2]
T (P1,p2,p3) = \/7»7; (p17p2,P3) + % {7:1,1(171,1927]?3) - 7:1,1(2917]?27173)}
) (3.34)
7 [T, (p1,p3,p2) — 721[71](]917]737172)] ;
where we have used the vanishing of the I = 3 amplitude.
13There is a potential confusion with the amplitudes for 7 decay that have the same names — see

eq. (3.22). It should, however, be clear from the context to which process the amplitudes apply.
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4 Conclusion

In this article we have derived the formalism that allows the study of three-particle decay
processes using input from lattice QCD calculations. This generalizes the well-established
formalism for two-particle decays developed by Lellouch and Liischer [32] and its subsequent
extensions. Specifically, our formalism applies for decays in which the three particles are
degenerate and spinless, although they do not need to be identical. Thus, in particular, the
phenomenologically important K — 37 decays are now accessible to lattice methods in the
isospin-symmetric limit. Our formalism applies not only to 1 — 3 decay processes, but also
0 — 3 transitions in the strong interactions, such as that for v* — 37, which is relevant
for lattice calculations of the hadronic vacuum polarization contribution to muonic g — 2.

We have divided the presentation into two parts. In the first, given in section 2, we give

¢

a detailed derivation in a simplified theoretical set up in which the “pions” are identical.
This allows us to focus on the essential new features that are introduced when moving
from two to three particles. The derivation is carried out by extending the relativistic
three-particle finite-volume formalism for identical scalar particles [3, 4]. Just as in the
relation between the finite-volume spectrum and scattering amplitudes, the relation we
find between finite-volume decay matrix elements and physical decay amplitudes requires
two steps. In the first, finite-volume matrix elements are used to constrain an infinite-
volume but scheme-dependent intermediate quantity, A%\éﬂ. This quantity plays a role
that is analogous to that of Kgr 3 in the scattering formalism of refs. [3, 4]. The second step
in the formalism is to relate Al;(\éﬂ to the physical decay amplitude, and is analogous to the
relation between /Cqr 3 and the physical scattering amplitude [4]. This relation is achieved
by solving integral equations in infinite-volume that incorporate the effects of two- and
three-particle final state interactions (entering through the two-particle K matrix Ko and
Kat,3, respectively) and leads to a decay amplitude satisfying the constraints of unitarity.

Our derivation is independent of the details of the effective theory, aside from the
assumption of a Zs symmetry analogous to G parity. It holds for decays of “kaons” with
masses up to the first inelastic threshold, mx < 5m,. The approach is relativistic, imply-
ing, for one thing, that the intermediate amplitude A%\gﬂ is Lorentz invariant. We use this
constraint to develop an expansion of Alf(\éﬂ about threshold.

It is instructive to compare the two and three-particle formalisms in more detail. The
first step of our formalism is the analog of the multiplication by the LL factor that is
required for two-particle decays involving only a single channel. In particular, the vector
v that enters the key relation, eq. (2.43), is determined by a combination of scattering
amplitudes and kinematic factors, just as the LL factor is in the two-particle case. The
main new feature compared to the two-particle analysis is the need for the second step.
In the original LL derivation, this step is essentially replaced by the multiplication by the
final-state phase required by Watson’s theorem. It is the more complicated nature of three-
particle final-state interactions that necessitates the solution of integral equations. Another
difference from the original LL result is that, in general, each finite-volume three-particle
matrix element serves only to constrain A%\éﬂ, rather than provide a direct determination.
This difference is, however, only due to the simplicity of the set-up considered in the
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original LL work. If one considers a multiple-channel two-particle system, then each lattice
matrix element again only provides a constraint on physical decay amplitudes [38, 42, 44].
Conversely, if we consider the simplest approximation for three-particle scattering and
decay amplitude, then, as shown in section 2.5, only a single finite-volume matrix element
is required to determine ALY .

In the second part of our presentation, given in section 3, we generalize the formalism so
that it applies for decays to a general three-pion state in isosymmetric QCD. This builds
upon our recent generalization of the formalism for three-particle scattering to include
all three-pion isospin channels [18]. It allows us to address phenomenologically relevant
processes, and we have discussed in detail three applications: the electromagnetic transition
~v* — 37, the isospin-violating decay n — 37, and the weak decay K — 3w. While most of
the features of the formalism for identical particles also hold for three-pion decays, the key
difference is that all quantities have an additional isospin index. One impact of this change
is that the symmetry properties of the generalization of APV differ from those for identical
particles, and we have presented explicit expressions in a threshold expansion that should
suffice for realistic calculations.

An important difference between the process v* — 37 on the one hand and the decays
n — 3w and K — 37 on the other, is that the latter two have a clear physical interpretation
only when the initial and final state energies match, whereas the virtual photon transition
is meaningful for all final state energies. However, the formalism presented here also
holds for matrix elements in which the kinematics are not perfectly matched. In practice,
this freedom can be used to extract A?gw as a function of the final state energy, e.g. by
fitting to multiple closely spaced states. This could be useful both for giving stronger
constraints on the target amplitude and for interpreting the value, including the role of
resonance enhancement in the amplitude, by considering the result for energies away from
physical kinematics.

Although a controlled computation of the K — 27 decay amplitude using lattice QCD
has only been achieved very recently [68], we are hopeful that the extension to K — 37
decays can be undertaken in the next few years. This will require a program of calculations
of the finite-volume three-pion spectrum with all allowed total isospins, in addition to the
calculation of the finite volume K — 37 matrix elements. We note that work on the
second step of our formalism — which requires solving integral equations — can begin
independently of lattice simulations, since the methods required do not depend on the
functional form of the necessary input quantities (K2, Ka¢3 and ARY, ). Indeed, methods
for solving the closely-related integral equations required for three-particle scattering are
under active development [27, 54].

Finally, we note that further generalizations of the formalism derived here will be
needed to allow lattice calculations of all three-particle decay amplitudes of interest. For
example, to address isospin breaking in K — 37 decays requires formalism for three non-
degenerate particles, as well as for multiple, nondegenerate channels. The recent extension
of the three-particle quantization condition to the case of nondegenerate particles is a first
step in this direction [19].
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A Proof that A} = Al

In this appendix, we prove that the quantities A3 and A%, introduced in eq. (2.5), are
related by hermitian conjugation, provided that the same is true of the two operators
entering the corresponding correlation function, eq. (2.3). This result is required to reach
eq. (2.34), which is used, in turn, to derive the main result of section 2.

A constructive definition of the quantities A3 and Aj§ is provided in ref. [3], but it is
cumbersome and difficult to use in proving basic relations. Therefore, here we find it easier
to pursue an indirect method. Our approach is in the spirit of ref. [4] in which Kg¢ 3 is
related to the physical scattering amplitude via a finite-volume quantity, without making
direct use of the complicated constructive definition of ref. [3].

The key idea is to use the relation between Az, A% and their corresponding finite-
volume decay amplitudes. To define the latter we first introduce matrix elements defined
in terms of physical, asymptotic three-particle states:

T'(E,k,a*) = (0|o(0)|3x,in), (A1)
T(E,k,a*) = (3r,out|o'(0)[0), (A.2)

where the arguments on the left-hand side provide a description of the three incoming or
outgoing pions, as described in the text following (2.61). Starting from these, one can give

)

diagrammatic definitions of Téu) and T}J(u , the asymmetric finite-volume decay amplitudes

)

corresponding to Az and Aj respectively. For concreteness, we focus on Tjgu ; the argument
for Ti(u) is analogous. The definition of Téu) is essentially the same as that for TI(%)W’ I
given in section 2.4, except that the initial amputated kaon propagator is absent, so that
the initial kaon state in eq. (2.52) is replaced in eq. (A.2) with the vacuum. In words,
T]gu) (E,k,a*) is the asymmetric finite-volume vacuum to three pion amplitude in which,
if the final interaction involves a 2 — 2 Bethe-Salpeter kernel, then k is the momentum
assigned to the spectator, and if the final interaction involves the 3 — 3 kernel, the diagram

is multiplied by 1/3. The amplitude T'(E, k,a*) in eq. (A.2) is then obtained by taking
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the appropriate L — oo limit and symmetrizing, just as for Tks, in egs. (2.59)—(2.61) of
the main text.
From the analysis given in section 2.4, it then follows that

" " 1
T = X, 45, Xy, =rc"

- A3
L1+ Kag 3 Fs (A-3)

with Téu) a column vector in {k¢m} space, and ES;U) is given in eq. (2.16). This has exactly
the same structure as eq. (2.58), with AIPQ?ZK replaced here with As. A similar analysis
leads to
1
7Y — AlXp, Xp=-—RW, Ad
L 3R R 1 +F3’Cdf73 L ( )

with T° £(u) a row vector in {kfm} space, and R(Lu) given in eq. (2.17). The first key obser-

vation is now that

Xp= Xz ) (A5)

which follows because [I(LU)T = R(Lu), F3 = Fg and Kgr3 = ICIH:). These results themselves
follow from the hermiticity of the building blocks F', Ko and (2wL3)~!G.
The second key relation that we need is

T = (1), (A.6)

which follows directly from the diagrammatic definitions of Té“) and T;J(u) [without reference
to egs. (A.3) and (A.4)], assuming T and P invariance of the effective field theory, and P
invariance of the operator o (ignoring the intrinsic parity of the pion). To make the
argument, we first we note that, aside from phases arising from the operators of and o,
each diagram contributing to Téu) and T L(u) is real. This is because we are working in
finite volume. One way to show this result is to evaluate diagrams using time-ordered
perturbation theory, in which case the only source of imaginary contributions is the ie in
the energy denominators. But in finite volume, the sums over spatial momenta do not
require that the poles from these denominators be regulated, so that € can be set to zero.
Next we note that T invariance implies the relation Té(u)(E, k,a*) = T]gu)(E, —k,—a*)*,
where complex conjugation is only needed because of possible phases arising from o' and
o. Now, using parity invariance, we have that T]E“)(E ,—k,—a*) = Téu) (E, k,a*). Finally,
decomposing into the {k¢m} basis, and taking into account that Ti(u) is a row vector and
Téu) a column vector, we obtain eq. (A.6).
Combining egs. (A.3), (A.4) and (A.6) yields

AL Xp = AlXg. (A7)

The final step is to note that, for any total energy E, Xp is well-defined and invertible
away from a discrete set of values of L for which one of its eigenvalues vanishes or diverges.
Away from these “singular” values of L, we can apply the inverse of X to both sides of
eq. (A.7), and conclude that A% = A;. This demonstrates the desired equality for all values
of the spectator momentum k that lie in the finite-volume sets of the nonsingular values
of L. Assuming that the nonsingular values of L form a dense set, then, given that A3 and
Af are continuous functions of the spectator momentum, we find that A5 = A;ﬂ) in general.
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B Alternative partial derivation following Lellouch-Liischer method

Here we follow the approach of ref. [32], which provides an alternative to the first step of the
derivation, which is presented in the main text in section 2.2. We consider the same theory
as in section 2 but now imagine determining the finite-volume spectrum in the two-pion and
three-pion sectors in the presence of the weak interaction, with Hamiltonian density Hyy (z).
These sectors are still decoupled in the presence of Hyy, differing by whether the total
number of particles is even or odd. The logic of the approach is that the weak interactions
shift the spectrum, beginning at linear order, and these shifts can be calculated in two
ways: (i) from the finite-volume matrix element; (ii) using the quantization condition, due
to a shift in the infinite-volume interactions that depends on the infinite-volume decay
amplitude. Comparing the two results for the shift leads to the desired relation. We stress
that throughout this section we drop contributions of quadratic or higher order in Hy
from all equations.

We begin with the two-pion sector. A key distinction here, as compared to the K — 77
case of ref. [32], is that Hy only couples the single kaon to states with G parity minus.
Thus, the lightest new intermediate state coupling to m7 via the weak interactions is the
K state, which, given the constraint eq. (2.1), has a CMF energy E; that exceeds 4m..
It follows that the spectrum in the energy range E35 < 4m, will only be shifted by second-
order weak processes involving off-shell intermediate Km states. Since we work at linear
order, these can be ignored. Thus the energy levels are unchanged, which, using the two-
particle quantization condition, implies that the two-particle scattering amplitude My is
also unchanged. The latter result can also be seen by studying the modifications to this
amplitude directly in infinite volume.

The situation is different in the three-pion sector. Here the lightest new intermediate
state consists of a single kaon, and this is kinematically allowed; see again (2.1). Levels
away from the kaon energy will be shifted only at second order in perturbation theory.
However, if the volume is tuned so that there is a three-pion level in the theory without
weak interactions whose CMF' energy matches that of a finite-volume kaon, then we must
use degenerate perturbation theory at leading order.'* We consider here only a rotationally
invariant, local form of Hyy (x) [such as that of eq. (2.2)]. In this case, only the trivial irrep
of the appropriate little group will be coupled to the kaon and thus only the tuned QCD
level in this irrep is relevant. The degenerate sector is thus (| K, P, L), |E,, P, A1, L)), and
the Hamiltonian restricted to this sector is

(EK(P) M(P)

MH(P) EK(P)> , M(P)=L*(E,, P, A, LIHw(0) |K,P,L), (B.1)

where the factor of L? arises due to the difference between Hamiltonian and Hamiltonian

4 The difference between finite- and infinite-volume kaon energies is exponentially suppressed in L and
thus neglected in this derivation. Therefore, strictly speaking, the approach described in this appendix
is equally valid whether one tunes the three-pion level to the finite- or the infinite-volume kaon energy.
However, in practice, the tuning should be to the finite-volume kaon as this is the quantity available in the
lattice calculation.
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density. Diagonalizing, we obtain the energies to first order in Hyy,
Ex(P) - E£(P) = Exc(P) + |M(P)|. (B.2)

This is the first result for the energy shifts.

To obtain the second result for the shifts we begin by noting that, when the total CMF
energy Ej lies within O(Hw ) of m, the three-particle scattering amplitude is changed at
linear order in Hyy. This is because of the nearly on-shell process 37 — K — 3w, which
leads to

i My(E5) = iM§ T (B — im0 (Ey) (B.3)
)

= (37, out| [—iHw (0)] | K, P) ——
(3w, out| [—iHw (0)] | K, >E§2—m%<+i€

(K, P|[—iHw (0)] |37, in) , (B.4)

where we have used the superscripts [Hy # 0] and [Hw = 0] to indicate whether the
37 — K — 3w transition is present or absent. Here the dependence on the initial and
final pion momenta is implicit. Although this appears to be of second order in Hyy, the
denominator of the propagator is

E3? —mj = E3(P)* — Ex(P)?, (B.5)
= 2Ex(P)[E3(P) — Ex(P)] + O[(E3(P) — Ex(P))?], (B.6)

and thus of O(Hw) for E3(P) = Ei(P). It follows that the difference between the
perturbed and unperturbed amplitudes at the shifted finite-volume energy is O(Hw ):

5 Mz = SM3([EL(P)? — PHY?), (B.7)

_ . 3mout| Hw(0)|K, P) (K, P| Hy (0) |37, in)
2B (P)|M(P)| '

(B.8)

Our next task is to determine the shift in Kg4¢ 3 that corresponds to that in Ms, for
the former is the quantity that enters the quantization condition. For the sake of brevity,
we write the following expressions in terms of finite-volume quantities, with the L — oo
limit implied. We use the expression for ./\/lgfj;u), eq. (2.14), but need keep only the second,
divergence-free term, since D) does not depend on Kat,3:

oMz =S {omiis) ) (B.9)
(ww _ a1 (w)
Mags =L, 1 +,Cdf73F3’Cdf,3RL ; (B.10)

s plw) ()

_ e K Rl B.11
df,3,L L 1+ de73F3 df731 + F3de,3 L ( )

Next we use eq. (2.58) for the decay amplitude, and the conjugate result for the 37 — K
amplitude, to rewrite eq. (B.8) as

PV
_ w 1 AR A1 (w)
04 Ms = F5 {LL 1+ Kag3Fz 2Ex|M| 1+ F3Kqae3 Ritps (B12)
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where we have suppressed the P dependence in Ex and M. Matching egs. (B.9) and (B.11)

with eq. (B.12), we find
ARG Al
01 af g = F—2 22T, B.13
+Kars = F 2B M| (B.13)
The outer product structure reflects the factorization of the residue at the pole in Mgj.
The final step is to enforce the quantization condition with the shifted amplitude at

the shifted energies. To this end we define
A(E) EF3(E7P7L)_1+’Cdf,3(E*) (B14)

Then the unshifted quantization condition can be written as det[A(Ex)] = 0, and the
shifted version as

det[A(EE) + 04Kar 3] = det[A(Ex) + 61 A] =0, (B.15)

where we have introduced

dA
0+ A = :HM|E + (5:|:de’3 . (B.16)
Ex

Recalling that v is the eigenvector of A(Ef ) with vanishing eigenvalue, and defining v+d1v
as the corresponding eigenvector for A(Fg) + 6+ A, we have

(v! + 610 - [A(Eg) + 6+ A] - (v + dv) = 0. (B.17)

Multiplying out this result, using A(Fg)-v = 0 = vl - A(Eg), and using the fact that
the left-hand side of eq. (B.17) must vanish order by order in Hy (in particular at linear
order) yields

vl LA v=0. (B.18)

Substituting eqgs. (B.13) and (B.16) then gives

dA
U‘I‘.i

MP)| |-

~ U 2B M(P)

PV APVH
-U] _ . f AK37TAK37r . (Blg)
Ex

To evaluate the quantity in square brackets we use egs. (2.36) and (2.40) of the main text,
which imply

T
A(E) = (B — EK)% T X(B), (B.20)
where the first term results from
.'_
AE) 1= 0 E — Eg)° B.21

and X (FE) arises from the non-singular part of A=!. Here we only require that X(E)
satisfies v - X(E) - vf = 0. This relies on the fact that the eigenvectors of A(Ef) form a
complete set that can be used for any A(E). Then X (F) is built from the sum over all
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eigenvector pairs e(eT weighted by E-dependent coefficients, with at least one of the
two vectors e® and el orthogonal to v. From this it immediately follows that
dA
ol co=1. B.22
rael (B.22)
Ex

Finally, inserting egs. (B.1) and (B.22) into eq. (B.19), we obtain
(Wt AYY |2 = 2Bk (P)LS |(E,, P, Ay, L| Hw (0) |K, P, L)|* . (B.23)

This agrees with eq. (2.43) in the main text.

C Relations between three-pion states

In ref. [18], we provided the isospin decomposition for all neutral (I3 = 0) three-pion states,
and described the decomposition into irreducible representations of the group Ss. Here we
provide a result for the neutral sector not given explicitly in ref. [18], since this is needed in
the discussion of the v* — 37 and 1 — 37 processes. In addition, we generalize the results
to the charge 1 (I3 = 1) sector, as these are needed in the discussion of KT decays.

The first result is for the matrix R defined by

|—0+) [(m)om)s
0—+) [(Tm)2m)s = [X1)2
|—+0) [p)s = [X2)2
000) [=R- Xs)1 : (C.1)
[+ —0) Ix1)1
0+ —) Ix2)1
[+0-) lpT)o
where we are using the shorthands
—0+) = |7 (p1)7 (p2)7 ™t (p3)) . [+0=) = [7F (p1)7°(p2)7~ (p3)) , etc. (C.2)
We find
-+ 11 1 _ 1 1 _ 1
Vo 2 V12 V15 Vi2 2 6
1+ -1 1 1 _ 1 _1 1
Vio 2 V12 V15 V12 2 6
1 g_2 1L 2 g L
V10 V12 V15 V12 V6
2 3
L 0 2 L 2 -1
V10 V12 V15 V12 V6
- 11 1 1 1 1
Vo 2 V12 V15 V12 2 6
2+ 1 1 1 _ 1 1 1
Vio 2 V12 V15 V12 2 6
We use the last row of R in sections 3.2 and 3.3.
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We now turn to the charge 1 sector of three pions, giving our conventions for the states
and the relation between the isospin and definite-charge bases. In this sector, the total
isospin can only be I =1, 2 or 3, with degeneracies 3, 2, 1, respectively [18]. The S5 irreps
that appear are the symmetric irrep, labeled |xs);, and the two-dimensional standard irrep,
labeled {|x1); , [x2);}-

The relation to the states in the basis with definite isospin for the first pair is

XF = I(rmom)s )
0 = [(emam)s ©5)
xa)s = lpm)3 (C.6)
Xt = 2 lam)an) + 2 o) 1)
)t = =L (mmam) + 2o ©3)
)t = lom)t )

From this, the relation to the states composed of pions of definite charges is simple to
obtain. What we need in section 3.4 is this inverse of this relation,

[+ 00) IXs)a
0 + 0) Ix1)3
00+ X2)3
oo+ | _- |»i’ ©.10)
’_ + +> |X5>1
+—+) 1)y
++-) Ix2)5
where
Ri= (C.11)

O NI NI O NIE NI
ot ot ot ot ot [$)8

[} [\ no [N} [\o} no

O NI NI O NI= N

ot ot ot ot ot ot
[\ ) [\ N [\ [\

D Formalism for K° — 37 decays

For completeness, we collect here the results needed to apply the formalism to the decays
of neutral kaons. We do so for the K° decay. That for K decay is identical in form,
and by forming appropriate combinations one can determine the amplitudes for Kg and
K, decays.
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The major change compared to K decays is the presence of the I = 0 final state in
addition to those with I = 1 and 2. The parametrization of the intermediate PV I = 0
amplitude requires an antisymmetric combination of the pion momenta that is a Lorentz
invariant. In terms of the parameters defined in section 2.3, we find that the leading term
is of cubic order in the threshold expansion,

AR = A%y [A3(AL = Do) + AF(Ag — Ag) + AJ(As — Ap)| + ... (D.1)

The parametrizations of the I = 1 and 2 amplitudes are as for the K decay discussed in
section 3.4.
We use the same notation for the isospin-basis amplitudes as in eq. (3.32), but now add

Ty (p1.02,3) = iT[% (1, p2.p3) (D.2)

where the subscript “a” denotes the antisymmetric irrep of S3. Using R in eq. (C.3) and
the redundancy result eq. (3.25) we obtain the relation between isospin amplitudes and
those for pions of definite charge,

_3
V15

_ 1 2 1
T+ %(p1,p2,ps) = \/T?)Ts’m (p1, P2, p3) + 5721[,21](111,1727133) + 57&[,21] (p1,p3, p2)

TOOO(p17p2’p3) = 7;[1] (p13p27p3) (D3)

+ LT[” (p1,p3,p2) + LT[O] (p1,p2,p3) - .
\/g d,1 » 2oy \/6 a s M2y
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