

FACULTAD DE CIENCIAS BIOLÓGICAS

Departamento de Biología Celular, Biología Funcional y Antropología Física, Instituto ERI BioTECMED

Doctorado en Neurociencias

Papel de la impronta genómica y su regulación epigenética en células madre neurales: relación con la formación de tumores

Anna Lozano Ureña

Directoras de Tesis
Sacri R. Ferrón e Isabel Fariñas

Valencia, enero de 2021

Dña. Sacramento Rodríguez Ferrón, investigadora "Post Ramón y Cajal" y Dña. Isabel Fariñas Gómez Catedrática ambas del Departamento de Biología Celular, Biología Funcional y Antropología Física, y del Instituto de investigación ERI de Biotecnología y Biomedicina (BioTECMED) de la Facultad de Ciencias Biológicas de la Universidad de Valencia

INFORMAN QUE:

Dña. Anna Lozano Ureña, graduada en Bioquímica y Ciencias Biomédicas por la Universidad de Valencia, ha realizado bajo su dirección el trabajo titulado "*Papel de la impronta genómica y su regulación epigenética en células madre neurales: relación con la formación de tumores*", y que hallándose concluida, autorizan su presentación, a fin de que pueda ser juzgado por el Tribunal correspondiente para la obtención del grado de Doctor por la Universitat de València.

Y para que conste, en cumplimiento de la legislación, firman el presente informe en Burjassot, a 15 de enero del 2021.

Dña. Isabel Fariñas Gómez

fakt farmers

Dña. Sacramento Rodríguez Ferrón

Este trabajo de Tesis Doctoral ha sido posible gracias a un contrato predoctoral financiado por *Subvenciones a la contratación de investigadores predoctorales en formación* de la Generalitat Valenciana (ACIF2016).

La investigación realizada ha sido financiada por los siguientes proyectos de investigación:

- "Impronta genómica en la especificación de las células madre neurales: desregulación en síndromes humanos y cáncer cerebral". Plan Nacional de I+D+I Ministerio de Ciencia e Innovación, PID2019-110045GB-I00 (2020-2023). IP: Sacri R.Ferrón.
- "Identificación de las aberraciones de la impronta genómica durante la formación de tumores en el cerebro adulto". Subvenciones para grupos de investigación consolidables Generalitat Valenciana AICO/2020/367 (2020-2021). IP: Sacri R.Ferrón.
- "Regulación del comportamiento de las células madre neurales por el medio sistémico: el nicho extendido. Ministerio de Economía y Competitividad, SAF2017-86690-R (2018-2020) IP: Isabel Fariñas
- "Papel de la impronta genómica y su regulación epigenética en células madre neurales: relación con la formación de tumores". Plan Nacional de I+D+I MINECO, Ministerio de Economía y Competitividad, SAF2016-78845-R (2016-2019). IP: Sacri R.Ferrón.
- "Efectos directos y remotos de la respuesta inflamatoria sobre las células madre neurales". Generalitat Valenciana, Prometeo de Proyectos de Excelencia, PROMETEO/2017/030 (2017-2021). IP: Isabel Fariñas

A mis padres, Carmen y Guillermo

A mi hermana y cuñado, Elena y Paco

> A mis sobrinos, Paula y Guillem

> > A Lluís

Nadie dijo que fuera fácil. De hecho, dicen todo lo contrario. Encontrar una historia, una buena historia, y plasmarla en un papel no es tarea sencilla. Tampoco lo es expresar lo agradecida que estoy por haber tenido la oportunidad de contar esta historia, pero no puedo cerrar este libro sin dar las gracias a aquellos que han formado parte de él.

Debo comenzar por vosotras, Sacri e Isabel, que me habéis dado la oportunidad de desarrollar no solo un trabajo, si no una pasión. Vuestras enseñanzas, la manera de transmitir y la ilusión con la que lo hacéis, lo increíbemente buenas investigadoras que sois y lo mucho que os preocupáis por vuestra gente, no es fácil de encontrar, y estoy segura que es la razón por la que sigo enamorada de este trabajo. Habéis sido y seguréis siendo mis referentes. Sacri, a ti quiero decirte que has sido una increíble mentora en todos los sentidos. Me has enseñado cada cosa que sé de ciencia, pero también has contribuido enormemente a mi crecimiento personal. Has creido en mí, y me has apoyado en todo momento. Has convertido cada expeimento en un reto emocionante al que enfrentarse. Por todo ello, te estoy enormemente agredicida, pero ninguna palabra podría expresarlo adecuadamente, simplemente, sin ti, no hubiera sido posible. Gracias.

Y como en toda buena historia, el contexto es clave para su desarrollo. Es aquí donde encontramos a los "neuromoles". Sería imposible nombraros uno a uno, pero podéis estar sguros que cada uno de vosotros ha dejado huella. Siempre estáis ahí para decir la palabra de aliento que se necesita, para dar el consejo que resuleve el problema, para apoyar y escuchar. Porque todos sabemos que no somos únicamente un grupo de trabajo, somos un grupo de amigos, en el que nunca faltará un buen disfraz de pirata o de oveja, pijama, peluca, capa de mago o un micrófono; pero lo que sobre todo nunca faltará, es un abrazo. Tan útiles han sido vuestros consejos científicos como los personales. Isabel y Cristina, no solo sois científicas brillantes, si no que estáis formado gente brillante. Mis primeros pasos se hicieron rodeados de las gentes de Fariñas' lab, con los que pensé que no había mejor grupo con el que "rodearse", pero más tarde, tuve la suerte de poder acercarme al grupo de Cris' lab, otro grupo de gentes increíbles. Con vosotros ha sido como si siempre hubierais formado parte de esta historia. Las risas, las conversaciones, las chorradas, han sido un bálsamo en los peores momentos.

Pero debo mecionar a un personaje especial en la historia. Raquel, aunque ya no estás en el lab, no puedo dejar de sentir que sigues siendo mi compañera de bancada. Tú has sido testigo de todos mis fracasos y logros, y los hemos hecho nuestros. Me has enseñado qué es ser una buena científica y una buena amiga. Tuviste que soportar mis constantes preguntas y jamás menguaste tu sonrisa, jamás desististe en tu trabajp, en tu empeño y en tu ilusión. Siempre has sido un ejemplo para mí. Solo tengo palabras de agradecimiento porque jamás me hubiera imaginado una compañera mejor en esta travesía. Como tú dijiste en tu tesis," formamos un equipo y este éxito

también es tuyo". Pero este equipo también ha ido creciendo, y este trabajo tampoco hubiera sido posible sin la enorme y constante ayuda de Esteban y Alejandro. Creo que no he conocido a personas más desinteresadas y trabajadoras como vosotros. Os agradezco tanto vuestra infinita ayuda, y siempre con la mejor de las sonrisas. Da gusto trabajar con gente como vosotros. Me alegra saber que seréis vosotros los que continúen el segundo capítulo de esta historia.

¿Y qué es una buena historia sin viajes? Mi estancia en Cambridge fue corta, pero intensa. He tenido la oportunidad de formar parte de un gran grupo que me ha permitido experimentar nuevas experiencias y a valerme por mi misma. Por eso, también tengo que agradecer a Anne Ferguson-Smith que me acogiese, a Mitsu que me llamó fin de semana y noche también para asegurarse que los resultados de pirosecuenciación salían bien, y a tiempo! Pero hay otro viaje que debo mencionar. Este incluso más corto. Tan solo fueron unos días, però et vaig conèixer. Vas aparèixer en el moment més inesperat, i et vas quedar per a revolucionar la meua vida. Són tantes les coses que m'has ensenyat, cintífica i personalment. I sé, que amb tú, continuaré creixent i podré amb cada nova història que es presente. Eres mi Cajal Girona.

Para cerrar capítulo, gracias a mis compañeros de vida, mis amigos y amigas, Violeta, Clara, Andrea, Vicente, Sara y Willy,... que siempre, siempre, por mucho que el tiempo pase, estáis ahí. Pero, sobre todo, gracias a mi familia. Mi apoyo incondicional, mi mejor modelo. Mis padres, Carmen y Guillermo, me habéis enseñado que los duros momentos siempre se superan, que no importan las adversidades porque siempre nos tendremos los unos a los otros. Vosotros sí sois los héroes de esta historia, luchadores, bondadosos, altruistas, en fin, se me acabarían los adjetivos. Soy quien soy por vosotros. Y por ti, Elena. Siempre has sido mi referente, la persona en la que me quería convertir, mi guía. Paula i Guillem, encara sou molt xicotets, però no ho sembla. És increíble vore crèixer a unes personetes tan literal i figuradament. I encara es més increíble com es pot estimar tant als nebots.

A todos los que formáis parte de mi vida, eternamente, gracias.

"Las preguntas que no podemos contestar son las que más nos enseñan. Nos enseñan a pensar. Si le das a alguien una respuesta, lo único que obtiene es cierta información. Pero si le das una pregunta, él buscara sus propias respuestas."

"Todos tenemos dos mentes: una mente despierta y una mente dormida.

Nuestra mente despierta es la que piensa, habla y razona.

Pero la mente dormida es la más poderosa.

Ella ve en lo más profundo de las cosas.

Es la parte de nosotros que sueña.

Lo recuerda todo. Nos proporciona intuición.

Tu mente despierta no entinde la naturaleza de los nombres.

Pero tu mente dormida sí.

Ella sabe muchas cosas que tu mente despierta ignora."

El nombre del viento – Patrick Rothfuss

Índice

Índice

Introd	lucción	1
	Del zigoto a la célula madre adulta	2
	SCs neurales y neurogénesis adulta en mamíferos	3
	Regulación epigenética de la neurogénesis adulta	7
	Impronta genómica y regulación de la dosis génica	10
	Reprogramación celular y adquisición de un estado pluripotente	16
	Cáncer cerebral: teoría de la célula madre cancerosa y glioblastoma	23
	Impronta genómica y cáncer	32
Objeti	ivos	35
Mater	rial y Métodos	37
1.	Animales experimentales	38
	1.1. Cepas murinas	38
	1.2. Genotipado	40
2.	Cultivos celulares	41
	2.1. Cultivo de MEFs	41
	2.2. Cultivo de células NSCs adultas	42
	2.3. Cultivo de líneas de GBM murinas	45
	2.4. Criopreservación y descongelación de las células	46
3.	Reprogramación in vitro mediante el tratamiento con doxiciclina	46
	3.1. Reprogramación de MEFs	46
	3.2. Reprogramación de NSCs adultas	47
	3.3. Obtención del factor inhibidor de leucemia (LIF)	49
4.	Caracterización de las iPSCs	50
	4.1. Detección de la actividad fosfatasa alcalina (AP)	50
	4.2. Formación de cuerpos embrioides (EBs)	51
	4.3. Cariotipado de iPSCs	53
	4.4. Reactivación del cromosoma X	53
	4.5. Diferenciación de las iPSCs a NP	53
5.	Reprogramación in vivo mediante el tratamiento con doxiciclina	54
	5.1. Reprogramación in vivo de la cepa i4F-B	54
	5.2. Reprogramación in vivo de la cepa GFAP-rtTA;i4F	55
	5.3. Cultivo de células de cerebros de animales GFAP-rtTA;i4F reprogramados	55
6.	Caracterización de las líneas de GBM	56

		6.2. Estudio	del ciclo celular	57
		6.3. Ensayo	de tumoresferas	57
		6.4. Ensayo	de proliferación mediante marcaje con EdU	58
		6.5. Ensayo	de adhesión	58
		6.6. Ensayo	de angiogénesis	59
	7.	Estudio de l	a capacidad de formación de tumores	60
	8.	Detección i	n situ de proteínas	61
		8.1. Inmund	histo/citoquímica	61
		8.2. Citome	tría de flujo	62
	9.	Extracción o	de RNA y análisis de la expresión génica	62
	10.	Estudio del	estado de impronta genómica	63
		10.1. Identif	ficación de polimorfismos de nucleótidos simples (SNPs)	63
		10.2. Deterr	ninación de la expresión alelo-específica	64
	11.	Estudio de l	a metilación del DNA en regiones de control de impronta genómica	64
		11.1. Extrac	ción del DNA genómico	64
		11.2. Anális	is de la metilación por pirosecuenciación	65
	12.	Análisis esta	adístico de los datos	67
Res	sulta	ados		73
	1.	La reprogra	amación de las NSCs a iPSCs in vitro se asocia con cambios en la expre	sión y el
		estado epi	genético de genes improntados	75
		1.1. Las NS	Cs aisladas de ratones reprogramables i4F-B adquieren un estado pluri	potente
		in vitro		75
		1.2. Las iPS	Cs generadas a partir de NSCs adultas pueden ser diferenciadas a pred	cursores
		neural	es	83
		1.3. La repr	ogramación de las NSCs adultas de ratones i4F-B a iPSCs produce alter	raciones
		en la e	xpresión de genes improntados	86
		1.4. La repr	ogramación de NSCs a iPSCs se asocia con cambios en el estado epig	genético
		de gen	es improntados	88
		1.4.1.	La reprogramación de NSCs adultas a iPSCs causa hipometilación en	las ICRs
			que controlan las regiones de impronta genómica	89
		1.4.2.	La reprogramación de NSCs adultas a iPSCs conlleva cambios en el es	stado de
			impronta del gen Dlk1	93

56

6.1. Nucleofección de líneas celulares de GBM

2.	El proceso	o de impronta genómica sufre alteraciones durante la repr	ogramación y
	formación	de tumores cerebrales <i>in vivo</i>	98
	2.1. La exp	resión de genes improntados se encuentra alterada en GBM	98
	2.2. El prod	ceso de impronta genómica se ve alterado durante la formacio	ວິn de tumores
	cerebr	ales	102
	2.2.1.	La reprogramación in vivo de animales GFAP-rtTA;i4F induce la	a formación de
		tumores cerebrales	102
	2.2.2.	Los tumores cerebrales formados muestran cambios de expre	esión en genes
		improntados	121
3.	La enzima	TET3 previene la formación del GBM a través de la regulación	epigenética de
	genes impi	rontados	125
	3.1. <i>TET3</i> d	lisminuye en GBM humano	125
	3.2. TET3 c	ontrola el comportamiento tumoral de las células de GBM murir	no in vitro 126
	3.3. La sob	re-expresión de <i>Tet3</i> previene la formación de tumores in vivo	131
	3.4. TET3 r	egula la expresión de los genes improntados en el GBM	132
Figuras	suplementa	arias	136
Discusi	ón		142
Conclu	sions		155
Bibliog	rafía		157
Summa	ary		181
	-		
Resum	en		194

Lista de abreviaturas

5caC	5-carboxylcytosine	EGF	epidermal grow factor
5fC	5-formylcytosine	EGFR	epidermal grow factor
5hmC	5-hydroxymethylcytosine		receptor
5mC	5-methylcytosine	EMT	epitelial-mesenchymal
aNSC	active NSC		transition
AP	alkaline phophatase	ESC	embryonic stem cell
AS	Angelman syndrome	FACS	fluorescent activated cell
BLBP	brain lipid-binding protein		sorting
bp	base pair	FBS	foetal bovine serum
BrdU	5-Bromo-2'-deoxyuridine	FGF	fibroblast grow factor
BSA	bovine serum albumin	GBM	glioblastoma
BWS	Beckwith- Wiedemann	gDNA	genomic DNA
	syndrome	GFAP	glia fibrillary acidic protein
CAST	Mus musculus castaneus	GFP	green fluorescent protein
	(CAST/Ei)	GLAST	astrocyte-specific glutamate
СВ	cerebellum	000	aspartate transporters
CC	corpus callosum	GSC	glioma stem cell
CDKN1C	cycline dependent kinase	GSK3	glycogen synthase kinase 3
	inhibitor 1c	Н	histone
CDmut	catalytic domain mutated	НМ	hormone mix
cDNA	complementary DNA	Нохр	Homeodomain-only protein
CSC	cancer stem cell	i4F	cepa murina de
CSF	cerebrospinal fluid	166	reprogramación
Cr	chromosome	ICC	inmunocitoquímica
DAPI	4',6-diamidine-2'-phenylindole	ICM	inner cell mass
DCX	doublecortin	ICR	imprinting control region
DFFDA	cell trace Oregon Green 488	IGF2	insulin growth factor 2
	Carboxi-DFFSA-SE	IHC	inmunohistochemistry
DG	dentate gyrus	iPSC	induced pluripotent stem cell
DIV	days in vitro	iPSC-MEF	induced pluripotent stem cell
DLK1	delta-like homologue 1	iPSC-NSC	from MEFs induced pluripotent stem cell
DMEM	Dulbecco's modified eagle medium	IP3C-N3C	from NSCs
DMR	differentially methylated	LIF	leukaemia inhibitor factor
	region	LOI	loss of imprinting
DMSO	dimethyl sulfoxide	MAPK	mitogen-activated protein
DNA	deoxyribonucleic acid		kinase
DNMT	DNA methyltransferase	MEF	mouse embryonic fibroblast
d.p.c	day <i>post-coitum</i>	MEG3	maternal expression gene 3
E	embryonic	mRNA	messenger RNA
EB	embryoid body	Nº cat.	catalog number
EBSS	Earle's Balanced Salt solution	NP	neuroprogenitor
EDTA	ethylendiaminoetetraacetic	NSC	neural stem cell
	acid	ОВ	olfactory bulb
EdU	5-ethynyl-2'-deoxyuridine	OSKM	Oct4, Sox2, Klf4 and c-Myc factors

P	postnatal	SHH	sonic hedgehog
PBS	phosphate buffer saline	SNC	central nervous system
PCR	polymerase chain reaction	SNP	single nucleotide polimorfisms
PDGFA	platelet-Derived Growth Factor	SNRPN	small nuclear
	A		ribonucleoprotein polypeptide
PEG	paternal expression gene		N
PFA	paraformaldehyde	SOX2	SRY-sex determining region Y-
PGC	primordial germ cell		box 2
PI3K	phospoinosite 3-kinase	SSEA1	stage-specific embryonic
pNSC	primed NSC		antigen 1
PWS	Prader-Willi Syndrome	SVZ	subventricular zone
qNSC	quiescent NSC	T/E	trypsin/EDTA
qPCR	quantitative PCR	TDG	thymidine DNA glycosylase
RA	retinoic acid	TET	ten-eleven translocation
			protein
RG	radial glial	U	units
RMS	rostral migratory stream	VL	lateral ventricle
RNA	ribonucleic acid	WT	wild type
RT	retrotranscription	Xa	active X chromosome
rtTA	transcriptional activator	XCI	X chromosome inactivation
SC	stem cell	XCR	X chromosome reactivation
SCNT	somatic cell nuclear transfer	Xi	inactive X chromosome
scRNA-seq	single-cell RNA sequencing	ZFP57	kruppel-like zinc finger protein
SGZ	subgranular zone		

Introducción

Del zigoto a la célula madre adulta

La formación de una nueva vida conlleva un proceso enormemente complejo de mecanismos celulares, moleculares y epigenéticos que actúan de forma coordinada permitiendo la generación y especificación de los diferentes tipos celulares que conformarán al nuevo ser (Gilbert SF, 2000). Tras la fecundación, el zigoto se divide por un proceso conocido como segmentación dando lugar a nuevas células hijas llamadas blastómeros y formando una estructura conocida como mórula. Todas estas células iniciales son totipotentes, es decir, capaces de formar cualquier tipo celular del embrión y a los tejidos extraembrionarios. Tras estas primeras divisiones, los blastómeros se reorganizan dejando un espacio interno, o blastocele, lo que da lugar a una estructura conocida como blástula o blastocisto, en la cual se detecta una capa superficial o trofoblasto y un conjunto de células más interior que constituyen la masa celular interna (ICM), que serán las responsables de la formación del embrión. Las células de la ICM, también conocidas como células madre (SCs) embrionarias (ESCs), tienen un potencial más restringido, ya que no pueden generar tejidos extraembrionarios y se consideran, por tanto, células pluripotentes (Chambers & Smith, 2004; Surani, Hayashi, & Hajkova, 2007). A partir de este momento del desarrollo embrionario, las células que se van generando inician procesos de especificación perdiendo, de este modo, su capacidad pluripotente para dar lugar a los diferentes tipos celulares específicos de tejido (Figura 1). Por lo tanto, las SCs, pueden ser clasificadas en función de su potencial de desarrollo como totipotentes (capaces de formar todos los tipos celulares embrionarios y extraembrionarios), pluripotentes (capaces de formar los tipos celulares de cualquier capa embrionaria), multipotentes (capaces de formar un subconjunto de linajes celulares, normalmente específicos de tejido) y unipotentes (capaces de dar lugar a un único tipo celular diferenciado maduro) (**Figura 1**) (Sobhani et al., 2017).

Las SCs específicas de tejido permanecen indiferenciadas en el organismo adulto, manteniendo la capacidad de auto-renovación y de formación de los diferentes tipos celulares restringidos que conforman el tejido en el que residen (Cheung & Rando, 2013; Wagers & Weissman, 2004). Estas células son clave para la homeostasis tisular y, generalmente, se mantienen en un estado inactivo o quiescente hasta que se activan para contribuir al aporte celular de dicho tejido o para su reparación en caso de daño (Bonfanti, 2013; Schwartz & Rhiner, 2018). Por ello, entender los procesos intrínsecos y las interacciones que establecen las SCs con su microambiente especializado, también conocido como "nicho", son imprescindibles para comprender los procesos de auto-renovación y diferenciación, así como sus implicaciones en situaciones patológicas e incluso para su potencial uso en medicina regenerativa.

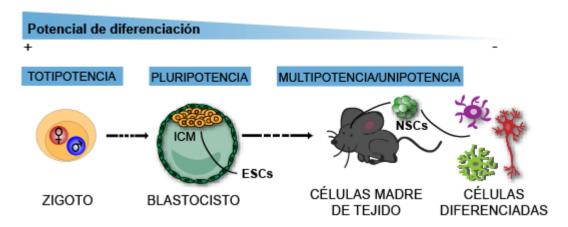


Figura 1. Potencial de desarrollo de los distintos tipos de SCs. Tras la fecundación se forma el zigoto, una única célula con capacidad totipotente que dará lugar al desarrollo del embrión y de los tejidos extraembrionarios. El zigoto comienza rondas de división que dan lugar a la formación de una estructura conocida como blastocisto, el cual contiene las células de la masa celular interna (ICM) responsables de la formación del tejido embrionario y por tanto, con capacidad pluripotente. Estas células, también conocidas como células madre embrionarias (ESCs), forman las tres capas germinales que conforman los tejidos del animal adulto. Estos tejidos contienen SCs adultas de tejido implicadas en la regeneración y homeostasis de dichos tejidos gracias a su capacidad de auto-renovación y diferenciación en células específicas del tejido, como por ejemplo las células madre neurales (NSCs) localizadas en el cerebro adulto capaces de formar células especializadas: neuronas, astrocitos y oligodendrocitos.

SCs neurales y neurogénesis adulta en mamíferos

La presencia de SCs somáticas ha sido descrita en la mayoría de tejidos adultos incluyendo la sangre, la piel, el intestino, el tracto respiratorio, los testículos o el músculo (Becker, Mc, & Till, 1963; Jiang et al., 2002; Qu-Petersen et al., 2002; Toma et al., 2001; Umar, 2010). Aunque durante décadas se consideró que en el sistema nervioso central (SNC) no se producía renovación celular, en los años 60, Joseph Altman propuso la existencia de células precursoras no diferenciadas en el cerebro adulto de mamíferos que serían capaces de formar nuevas neuronas (Altman, 1962). La existencia de producción de nuevas neuronas en el cerebro de los mamíferos, primero roedores y luego primates, incluyendo la especie humana, se demostró en las décadas siguientes (Kempermann, Song, & Gage, 2015). La neurogénesis adulta es el proceso de formación de nuevas neuronas a partir de SCs neurales (NSCs) presentes en ubicaciones específicas del cerebro postnatal. Este proceso está restringido a dos regiones en el cerebro de los mamíferos adultos: la zona subventricular (SVZ) en la pared de los ventrículos laterales, y la zona subgranular en el giro dentado (DG) del hipocampo (SGZ) (Figura 2) (Kempermann et al., 2015; Lim & Alvarez-Buylla, 2014).

La SVZ es el nicho neurogénico más activo en roedores, está ubicado inmediatamente adyacente a la capa de células ependimarias que limita los ventrículos laterales y contiene NSCs llamadas células B1 que comparten características con los astrocitos debido a su origen glial. Por ello, las NSCs expresan marcadores como la proteína fibrilar acídica glial (GFAP) o el transportador

de aspartato-glutamato específico de astrocitos (GLAST), pero también Nestina, la proteína cerebral de unión a lípidos (BLBP) o Sox2, marcadores presentes también en las células de la glía radial (RG) embrionaria (Giachino et al., 2014; Lagace et al., 2007; Merkle, Tramontin, Garcia-Verdugo, & Alvarez-Buylla, 2004). Además, las NSCs tipo B1 presentan una morfología bipolar similar a las células de la RG, con un proceso apical que se intercala entre las células ependimarias, y que acaba en un cilio primario inmerso en el líquido cefalorraquídeo (CSF) de los ventrículos laterales. Así, los finos procesos apicales de una o varias NSCs aparecen rodeados por una roseta de células ependimarias que forman una estructura conocida como molinillo o "pinwheel" (Mirzadeh, Merkle, Soriano-Navarro, Garcia-Verdugo, & Alvarez-Buylla, 2008). El proceso basal de las NSCs contacta con los vasos sanguíneos que irrigan la zona (Tavazoie et al., 2008) (Figura 2). Las NSCs B1 dan lugar a progenitores neurales de alta tasa de proliferación llamados células tipo C. Estos a su vez, generan neuroblastos o células tipo A que expresan el marcador doblecortina (DCX). Estas células migran por el camino migrador rostral o RMS hasta alcanzar el bulbo olfatorio (OB) donde maduran como interneuronas que se integran en los circuitos cerebrales de la zona (Figura 2) (Ghosh, 2019; Ming & Song, 2011; Obernier & Alvarez-Buylla, 2019; Varela-Nallar & Inestrosa, 2013; C. Zhao, Deng, & Gage, 2008). Las NSCs de la SVZ también son capaces de generar oligodendroblastos que migran al cuerpo calloso (CC) y al estriado donde se diferencian en oligodendrocitos maduros, aunque este proceso ocurre de forma menos frecuente (Menn et al., 2006; Sohn et al., 2015).

En la zona subgranular (SGZ) del DG del hipocampo, las NSCs son conocidas como células radiales o tipo I y son responsables de la formación de los progenitores neurales también llamados tipo II que, a su vez, generan neuroblastos o células tipo III. Estos neuroblastos migran a la capa granular donde las nuevas neuronas inmaduras se diferencian en células granulares que extienden sus proyecciones dendríticas hacia la capa molecular y su axón a la región CA3 de la estructura hipocámpica (Figura 2) (Ghosh, 2019; van Praag et al., 2002; Varela-Nallar & Inestrosa, 2013; C. Zhao, Teng, Summers, Ming, & Gage, 2006).

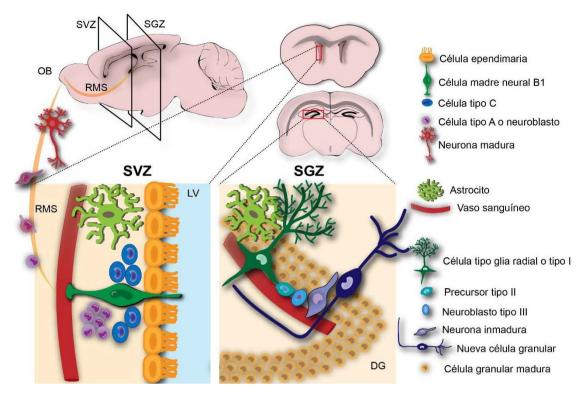


Figura 2. Nichos neurogénicos en el cerebro adulto de mamíferos. Representación de los dos nichos neurogénicos presentes en el cerebro adulto de roedores: zona subventricular (SVZ) y zona subgranular (SGZ) en el giro dentado (DG) del hipocampo, donde se localizan las NSCs y sus progenitores, responsables de la formación de nuevas neuronas. En la SVZ, las NSCs tipo B1 dan lugar a las células tipo C que proliferan y forman neuroblastos o células tipo A que migran por el camino migrador rostral o RMS hasta el bulbo olfatorio (OB) donde se diferencian terminalmente en interneuronas. En la SGZ, las células madre tipo I dan lugar a precursores tipo II, que a su vez forman neuroblastos o células tipo III para dar lugar a neuronas inmaduras que formarán las células granulares.

Aunque las NSCs de los dos nichos neurogénicos adultos tienen su origen en la RG embrionaria, el desarrollo de estas sigue distintos cronogramas (Ghosh, 2019). Las NSCs adultas de la SVZ provienen de la RG que se divide durante el período embrionario E13,5 – E15,5 y se mantiene relativamente quiescente hasta edades postnatales (Fuentealba et al., 2015; Furutachi et al., 2015) (Figura 3). En cambio, el origen de las NSCs adultas de la SGZ es más incierto. Las NSCs de esta región se forman al final de la gestación, y las células aquí localizadas se dividen para dar lugar a las NSCs adultas (G. Li, Fang, Fernandez, & Pleasure, 2013). Sin embargo, Nicola Z et al. observaron la presencia de células positivas para marcadores de NSCs y progenitores que situaban una zona germinal en la SGZ que aparecía en los días postnatales P7-14 (Figura 3) (Z. Nicola, Fabel, & Kempermann, 2015). Recientemente se ha descrito la presencia de células que expresan el marcador Hopx que permite marcar las NSCs adultas del DG, pero también precursores del neuroepitelio en E11,5 y en el DG primitivo, sugiriendo un precursor neural especificado desde estadios embrionarios tempranos responsable del proceso de neurogénesis en la SGZ (Berg et al., 2019) (Figura 3).

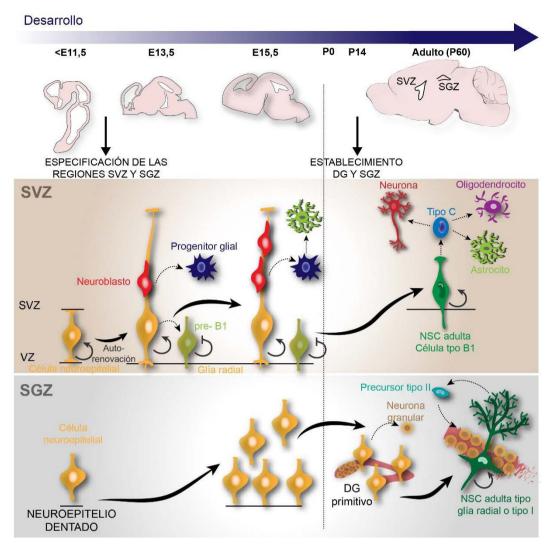


Figura 3. Origen embrionario de las NSCs adultas en la SVZ y la SGZ en mamíferos. Esquema de la formación de las NSCs adultas desde su origen embrionario. Las NSCs procedentes de la SVZ se originan a partir de las células neuroepiteliales, situadas adyacentes al ventrículo. Estas células forman proyecciones basales por las cuales migran los neuroblastos recién formados. Este primer proceso de neurogénesis tiene lugar a la edad embrionaria comprendida entre E13,5-E15,5. Durante el desarrollo, además de la formación de nuevas neuronas, las células madre, denominadas células de la glial radial (RG), también inician procesos de gliogénesis. Las RGs son las células que darán lugar a las NSCs adultas o células tipo B1 en el adulto (P60), que se dividirán en progenitores de rápida amplificación o células tipo C que, a su vez, formarán neuronas, a partir de los neuroblastos, pero también, células de la glía, como son los astrocitos y los oligodendrocitos. En el caso de la formación de las NSCs adultas de la SGZ, el establecimiento del giro dentado (DG) y de la SGZ se produce al día postnatal 14 (P14), pero su origen procede en el neuroepitelio dentado donde se encuentran las células neuroepiteliales responsables de la generación de NSCs adultas o tipo glía radial (o tipo I) en la SGZ. Las NSCs de la SGZ darán lugar a las neuronas granulares, que se integrarán en el DG, a través de la formación de progenitores intermedios llamados precursores tipo II.

La mayor parte de los conocimientos que tenemos sobre la capacidad de auto-renovación y diferenciación de las NSCs han sido basados en el comportamiento de estas células tras su aislamiento y cultivo *in vitro*, debido a la falta de marcadores únicos y decisivos que las identifique (Ming & Song, 2011). La posibilidad de cultivar estas células *in vitro* fue mostrada por primera vez a partir de la disección del parénquima estriatal y la SVZ de ratones jóvenes, obteniéndose cultivos celulares en suspensión en medio sin suero y en presencia del factor de crecimiento

epidérmico EGF, que crecían en forma de agregados que se denominaron *neuroesferas* (Reynols BA y Weiss S, 1992). Estos agregados podían ser disociados y subcultivados de nuevo en las mismas condiciones, permitiendo la formación de nuevas esferas, denominadas neuroesferas secundarias, y la propagación del cultivo. En condiciones adherentes y tras la retirada de los mitógenos, estas neuroesferas generaban células diferenciadas de los tres linajes característcos del SNC, astrocitos, neuronas y oligodendrocitos, demostrando así su capacidad multipotente (Reynolds & Weiss, 1992). Los cultivos de neuroesferas han sido ampliamente utilizados (Belenguer, Domingo-Muelas, Ferron, Morante-Redolat, & Farinas, 2016; Bull & Bartlett, 2005; Ferron et al., 2007; S. Wang et al., 2020) y han aportado una herramienta clave para el estudio de los mecanismos que regulan la actividad de las NSCs, tanto en condiciones fisiológicas como patológicas.

Estudios más recientes han permitido el desarrollo de estrategias para la identificación de las NSCs a través de la expresión de combinaciones de marcadores de membrana mediante la implementación de la tecnología de "selección de células activadas por fluorescencia" o FACS. Esta herramienta no solamente ha permitido la identificación y discriminación de las NSCs y sus progenitores, sino también de sus distintos estados de activación, posibilitando la identificación de una población de NSCs quiescentes (qNSCs) y otra de activadas (aNSCs), que difieren transcripcional y fenotípicamente (Basak et al., 2018; Belenguer et al., 2020; Codega et al., 2014; Dulken, Leeman, Boutet, Hebestreit, & Brunet, 2017; Llorens-Bobadilla et al., 2015; Mich et al., 2014; Morizur et al., 2018; Pastrana, Cheng, & Doetsch, 2009). Las NSCs quiescentes adultas tendrían su origen durante el desarrollo embrionario y permanecerían en este estado de quiescencia hasta su activación en el organismo adulto (Fuentealba et al., 2015; Furutachi et al., 2015). Además, se ha detectado un estado intermedio, denominado "primed" (pNSCs), de células quiescentes pero con propensión a la activación (Belenguer et al., 2020; Llorens-Bobadilla et al., 2015).

Regulación epigenética de la neurogénesis adulta

La neurogénesis adulta es un proceso dinámico que se regula por factores intrínsecos y extrínsecos con el fin de mantener un balance adecuado entre la auto-renovación y la capacidad de generar progenie diferenciada (Gage, 2000; Lim & Alvarez-Buylla, 2016; Ming & Song, 2011; Varela-Nallar & Inestrosa, 2013). Por ejemplo, señales extracelulares procedentes del nicho, como los morfógenos Notch, Wnt o Shh activan cascadas de señalización intracelulares involucradas en el proceso de neurogénesis (Bond, Ming, & Song, 2015; Obernier & Alvarez-Buylla, 2019; Varela-Nallar & Inestrosa, 2013). También reguladores del ciclo celular y factores

transcripcionales se han descrito como mecanismos intrínsecos cruciales en la regulación de la neurogénesis adulta (Ming & Song, 2011; C. Zhao et al., 2008). Por ejemplo, la deleción del factor transcripcional Sox2 causa la disminución de la población de NSCs (Ferri et al., 2004), representando un factor clave en la regulación de las NSCs adultas (Shimozaki, 2014).

Los mecanismos epigenéticos son también clave en la regulación del proceso de neurogénesis. Las modificaciones epigenéticas consisten en los cambios heredables en la función génica que no implican alteraciones en la secuencia de DNA (Bird, 2007; Jaenisch & Bird, 2003), pero que modulan la expresión génica mediante cambios directos en la estructura de la cromatina o generando lugares de unión para el acceso a la cromatina de factores transcripcionales (Ordog, Syed, Hayashi, & Asuzu, 2012). El DNA se organiza en forma de cromatina que se enrolla alrededor de un núcleo de histonas, conformando estructuras llamadas nucleosomas (Figura 4A). Los mecanismos epigenéticos actúan sobre estas estructuras mediante modificaciones químicas en las colas de las histonas, como la acetilación, metilación, fosforilación y ubiquitinación (Figura 4A), o del DNA, como la metilación y la hidroximetilación (Figura 4A, B) y los RNAs no codificantes ((Kaikkonen, Lam, & Glass, 2011; Ming & Song, 2011)). Estos mecanismos epigenéticos interaccionan entre ellos con el fin de generar un sistema robusto de control que permite mantener la identidad celular (Bird, 2007; Montalban-Loro, Domingo-Muelas, Bizy, & Ferron, 2015; Yao et al., 2016).

La metilación del DNA es uno de los mecanismos epigenéticos más comunes en la regulación de la expresión génica e implica la transferencia de un grupo metilo de forma covalente al carbono (C) 5 del anillo de pirimidina de la citosina, dando lugar a la forma 5-metilcitosina o 5mC (Figura 4B) (Fitzsimons et al., 2014; Jin, Li, & Robertson, 2011). Aunque esta reacción puede ser producida en cualquier citosina del genoma, en los mamíferos, el 98% de la metilación del DNA ocurre en las llamadas islas CpG (Jin et al., 2011) y generalmente se asocia con la represión de la expresión génica (Fitzsimons et al., 2014). Las enzimas encargadas de mediar la reacción de metilación son las DNA metiltransferasas (DNMTs) (Figura 4B). En concreto, la DNMT1 está implicada en el mantenimiento de la metilación del DNA tras el proceso de replicación, en el cual la hebra recién sintetizada debe ser metilada. La enzima DNMT1 reconoce el DNA hemi-metilado y de esta forma, se asegura de mantener las marcas de metilación en el nuevo DNA sintetizado (Fitzsimons et al., 2014; Kohli & Zhang, 2013). Por otro lado, la metilación de novo ocurre gracias a las enzimas DNMT3A y DNMT3B, utilizando la DNMT3L como co-factor en el proceso (Figura 4B) (Jin et al., 2011; Lozano-Urena, Montalban-Loro, Ferguson-Smith, & Ferron, 2017). Estas enzimas DNMTs se encuentran altamente expresadas en las NSCs postnatales y están implicadas en el

proceso de neurogénesis y la maduración neuronal (Feng et al., 2010; Fitzsimons et al., 2014; Lozano-Urena et al., 2017; Okano, Bell, Haber, & Li, 1999; H. Wu et al., 2010).

La desmetilación del DNA también juega un papel clave en la regulación génica durante el desarrollo y puede producirse de forma pasiva o de forma activa (X. Wu & Zhang, 2017). La desmetilación pasiva hace referencia a la pérdida de las marcas de metilación debido al proceso de replicación en ausencia de la maquinaria de mantenimiento de la metilación (Kohli & Zhang, 2013). En cambio, la desmetilación activa del DNA implica la eliminación del grupo metilo y es catalizada por enzimas (X. Wu & Zhang, 2017). Este proceso requiere de un primer paso de oxidación del grupo metilo, transformándolo en el grupo 5-hidroximetilado o 5hmC (Figura 4B). Si bien este grupo es considerado un intermediario del proceso de desmetilación activa, por sí mismo el 5hmC actúa también como marca epigenética importante (Fitzsimons et al., 2014; van den Hove, Chouliaras, & Rutten, 2012). De hecho, los niveles de 5hmC en el cerebro son mayores con respecto a otros tejidos y están implicados en el proceso de neurogénesis (Fitzsimons et al., 2014; Hahn et al., 2013; Montalban-Loro et al., 2019). La oxidación del grupo 5mC está catalizada por las enzimas dioxigenasas TET, que tras la formación de 5hmC, continúan oxidando dando lugar al grupo 5-formilcitosina (5fC) y posteriormente al grupo 5-carboxilcitosina (5caC) (Figura 4B) (S. Ito et al., 2011). En mamíferos existen tres miembros de la familia TET: TET1, TET2 y TET3, todos ellos implicados en la reacción de oxidación del grupo 5mC (S. Ito et al., 2011; X. Wu & Zhang, 2017). Mientras que los niveles de expresión de Tet1 y Tet2 son elevados durante el embrión en ratones, únicamente *Tet3* mantiene sus niveles altos en el adulto (Montalban-Loro et al., 2019). Finalmente actúa la enzima timidina DNA glicosilasa o TDG, proteína implicada en la reparación del DNA (Cortazar, Kunz, Saito, Steinacher, & Schar, 2007; Kohli & Zhang, 2013), la cual escinde mediante decarboxilación la base modificada 5caC para ser sustituida por una nueva citosina no metilada (Cortellino et al., 2011) (Figura 4B).

Se ha relacionado a las enzimas TET con el estado de pluripotencia en el blastocisto y las ESCs mediante la hipometilación de regiones reguladoras clave (S. Ito et al., 2011; Koh et al., 2011). Además, los niveles de 5hmC del DNA son altos en las ESCs, en etapas tempranas del embrión y en el cerebro adulto, sugiriendo un papel relevante de estas enzimas durante dichos procesos (S. Ito et al., 2011). De hecho, los niveles de expresión de *Tet3* son altos en NSCs adultas, participando en la función de estas células y el proceso de neurogénesis en el cerebro adulto (Montalban-Loro et al., 2019). Además, cabe destacar que el proceso de desmetilación del DNA es también crucial en el cáncer, ya que la hipometilación global del genoma es uno de los eventos clave en el desarrollo de un proceso maligno (ver apartado 6.5) (Jin et al., 2011).

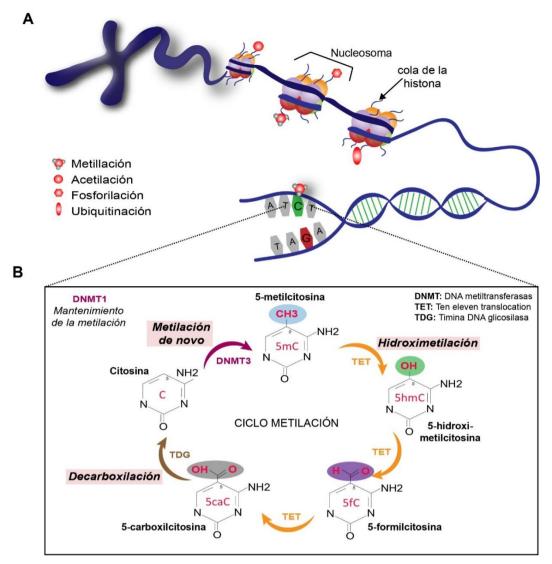


Figura 4. Mecanismos epigenéticos de regulación génica. A) El DNA se encuentra estructurado y compactado en forma de cromatina mediante complejos llamados nucleosomas. Estos nucleosomas están formados por 8 histonas, alrededor de las cuales se enrolla la hélice de DNA. En el extremo N-terminal de las histonas se producen las modificaciones postraduccionales que las regulan como son las metilaciones, las acetilaciones, las fosforilaciones o las ubiquitinaciones. B) Esquema del ciclo de metilación/desmetilación del DNA. El carbono 5 de la citosina puede ser metilado por las enzimas DNMTs, DNMT3A/DNMT3L y DNMT3B (metilación de novo) y DNMT1 (mantenimiento de la metilación) dando lugar al grupo 5-metilcitosina (5mC). La desmetilación activa del DNA implica a las enzimas TET1, TET2 y TET3 que catalizan la oxidación del grupo metilo formando el grupo 5hmC, que a su vez puede ser oxidado a las formas 5-formilcitosina (5fC) o 5-carboxilcitosina (5caC) por estas mismas enzimas. El paso final de eliminación de la modificación de la citosina está catalizado por la enzima TDG.

Impronta genómica y regulación de la dosis génica

En los mamíferos, la mayoría de genes se encuentran expresados a partir de ambos alelos. Sin embargo, existe un pequeño porcentaje de genes cuya expresión procede únicamente del alelo materno o del alelo paterno, resultando en una expresión monoalélica (**Figura 5A**) (Ferguson-Smith, 2011; Ishida & Moore, 2013). En el genoma de mamíferos, se han descrito aproximadamente 150 de estos genes, llamados *genes improntados*, (lista completa en

http://www.mousebook.org/mousebook-catalogs/imprinting-resource) (Tucci, Isles, Kelsey, Ferguson-Smith, & Erice Imprinting, 2019), y generalmente se encuentran agrupados en "clusters", aunque algunos de ellos están presentes de forma aislada (Figura 6) (Barlow & Bartolomei, 2014; Choi et al., 2005; Ferguson-Smith, 2011; Kagitani et al., 1997). Esta agrupación de los genes improntados permite una regulación de forma conjunta de regiones situadas a gran distancia en un mismo cromosoma a partir de un elemento común de DNA conocido como región de control de impronta genómica (ICR) (Abramowitz & Bartolomei, 2012; Dindot, Person, Strivens, Garcia, & Beaudet, 2009). Las ICRs son regiones del DNA diferencialmente metiladas (DMRs) situadas en ambos cromosomas parentales (Figura 5A) (Barlow & Bartolomei, 2014) y pueden estar metiladas en el cromosoma heredado maternalmente o en el cromosoma paterno, definiendo el patrón de expresión de los alelos improntados (Figura 5A). La deleción de estas regiones reguladoras conlleva la pérdida de impronta genómica en los genes situados en el cluster bajo el control de la ICR mutada (Figura 5B). De esta forma, una mutación de la ICR situada en el cromosoma heredado paternalmente resulta en un patrón de expresión propio del alelo materno, mientras que la mutación del ICR materno resulta en un patrón de expresión propio del alelo paterno (Figura 5B) (Barlow & Bartolomei, 2014; Ferguson-Smith, 2011; Lozano-Urena et al., 2017).

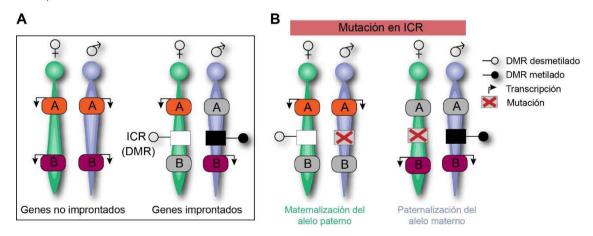


Figura 5. Los genes improntados son regulados por metilación en las regiones de control de impronta (ICR). A) Las células somáticas en mamíferos presentan un cromosoma heredado maternalmente (verde) y un cromosoma heredado paternalmente (azul), de tal manera que los genes no improntados se expresan o se reprimen en ambos alelos; sin embargo, los genes improntados presentan una expresión monoalélica a partir del alelo materno (A) o del alelo paterno (B), manteniéndose silenciado en el otro alelo. Este patrón de expresión de los alelos improntados se regula mediante metilación diferencial del DNA en una zona concreta llamada región de control de impronta genómica (ICR) situado en ambos cromosomas, materno y paterno. B) Las mutaciones en la región ICR dan lugar a la pérdida de la impronta genómica en los genes improntados situados bajo la regulación de la región ICR alterada. La mutación en el alelo paterno da lugar a un patrón de expresión propio del alelo materno por lo que se produce la "maternalización" del alelo paterno, mientras que la alteración en la región de control en el alelo materno da lugar a la "paternalización" del alelo materno.

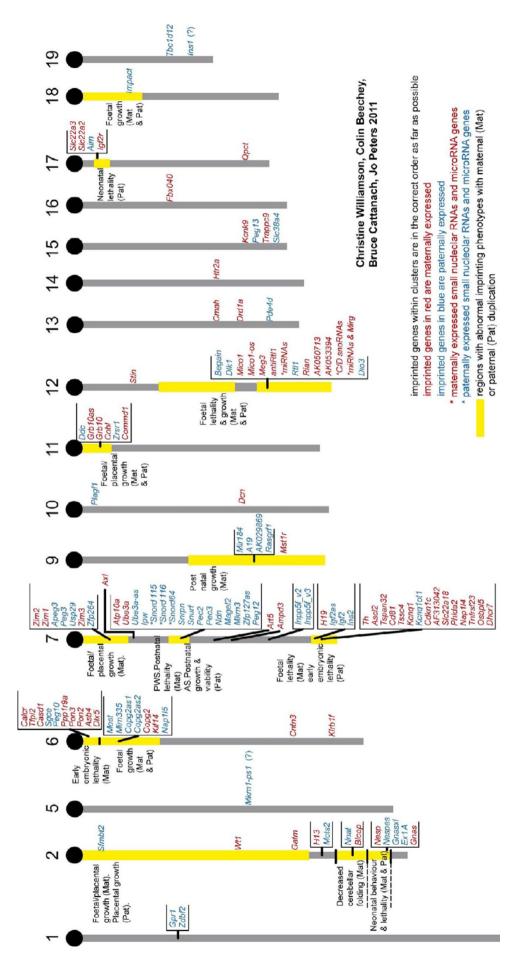


Figura 6. Los genes improntados se organizan en clusters. Mapa genómico de la localización de los genes improntados en el genoma murino en los 19 cromosomas somáticos. Los genes improntados se encuentran generalmente agrupados en clusters (indicado en cajas amarillas). Los genes improntados expresados maternalmente están indicados en rojo, mientras que los genes improntados de expresión paterna se indican en azul. Esta imagen se ha obtenido de http://www.mousebook.org/all-chromosomes-imprintingchromosome-map.

La impronta genómica sigue un ciclo en tres pasos: establecimiento, mantenimiento y borrado (Y. Li & Sasaki, 2011) (Figura 7). La impronta genómica se establece en la línea germinal siendo transmitida al zigoto y mantenida durante el desarrollo y la vida adulta del organismo (Edwards & Ferguson-Smith, 2007). Durante la formación del embrión, las células germinales primordiales (PGCs), responsables de la formación de los gametos, presentan el patrón de metilación característico de las células somáticas. Sin embargo, estas PGCs sufren un borrado de las marcas epigenéticas que establecen la impronta genómica para permitir el re-establecimiento de las nuevas marcas específicas del alelo parental, gracias a que el genoma materno y el genoma paterno se encuentran en compartimentos distintos (Hajkova et al., 2002; Leitch et al., 2013; Lozano-Urena et al., 2017). De esta manera, se pueden llevar a cabo estas modificaciones en función del sexo del que procede el gameto (Figura 7). Las marcas de metilación que se establecen en los gametos son colocadas por la metiltransferasa DNMT3A mediante un proceso de metilación de novo, junto con el co-factor DNMT3L (Bourc'his, Xu, Lin, Bollman, & Bestor, 2001; Hata, Okano, Lei, & Li, 2002; Kaneda et al., 2004; Lozano-Urena et al., 2017). Tras la fecundación, se produce una reprogramación del genoma que elimina la mayor parte de las marcas epigenéticas heredadas, de manera que las marcas de metilación desaparecen (Smallwood & Kelsey, 2012). Esta desmetilación masiva que ocurre tras la fecundación está mediada por TET3 en el caso del genoma paterno, mientras que en el genoma materno la desmetilación pasiva sería la responsable del proceso de reprogramación epigenético (Gu et al., 2011). No obstante, las marcas de impronta genómica específicas deben ser mantenidas y transmitidas a las células hijas. La enzima clave en el mantenimiento de estas marcas en este momento del desarrollo es la proteína ZFP57 (**Figura 7**) (N. Takahashi, Tarumi, Itoh, & Ishizuka, 2015). Posteriormente, es la enzima DNMT1 la molécula implicada en mantener las marcas de impronta genómica tras la división de las células somáticas, preservando las marcas epigenéticas en ambas células hijas. Esto es posible gracias al reconocimiento del nuevo DNA hemi-metilado, de tal manera, que la enzima DNMT1 metila la nueva cadena replicada (Figura 7) (Goll & Bestor, 2005).

Por lo tanto, y dado que las marcas de metilación en las DMRs de las regiones de impronta genómica se producen durante la formación de los gametos, estas DMRs son denominadas como DMRs germinales o gDMR (**Figura 8**). Sin embargo, existen DMRs denominadas somáticas o secundarias (sDMR) que también están implicadas en la regulación de la expresión de genes improntados, y estas adquieren las marcas de metilación tras la fecundación (**Figura 8**) (Edwards & Ferguson-Smith, 2007).

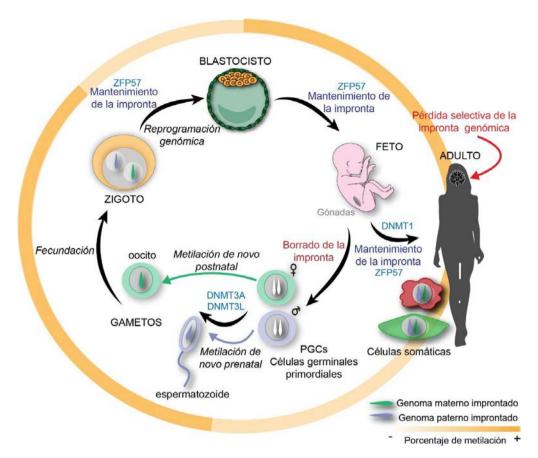


Figura 7. Establecimiento y mantenimiento de la impronta genómica durante el desarrollo. Durante el proceso de formación del organismo, la metilación se presenta como un proceso dinámico en el que el DNA se metila y desmetila para regular la expresión génica. Las células sexuales o gametos contienen el genoma del padre, espermatozoide, o de la madre, oocito, con las marcas de impronta genómica características de cada sexo. Para ello, las células germinales primordiales de las gónadas, que contienen los cromosomas procedentes de la madre y del padre, sufren un borrado de las marcas de impronta genómica. En los gametos se procede a la metilación de novo para establecer las nuevas marcas epigenéticas de manera específica según el sexo. Esta metilación es realizada por las DNA metiltransferasas DNMT3A y DNMT3L. Tras la fecundación, el zigoto, que contiene ambos genomas, se divide y sufre una reprogramación genómica que elimina las marcas heredadas; sin embargo, la metilación en las regiones de control de impronta genómica que identifica el origen materno o paterno del cromosoma, es mantenida mediante la enzima ZFP57. La impronta genómica es un proceso que debe ser mantenido en las células somáticas durante el crecimiento y edad adulta del organismo, y esto es posible mediante la actividad de la enzima DNA metiltransferasa DNMT1. No obstante, a pesar de que la alteración de la impronta genómica está asociada a varias patologías, la pérdida de la impronta genómica ocurre de forma no patológica en genes concretos de forma tejido-específica en el organismo adulto, siendo necesaria para la función celular.

Las sDMRs dependen directamente de la presencia de la gDMR, de manera que estas últimas son necesarias para el establecimiento de la expresión monoalélica de los genes improntados, mientras que las sDMRs están implicadas en el mantenimiento de la impronta genómica (Sutcliffe et al., 1994; Thorvaldsen, Duran, & Bartolomei, 1998; Williamson et al., 2006). Las gDMRs maternas suelen encontrarse en las regiones promotoras de los genes, en cambio, las gDMRs paternas son encontradas en regiones intergénicas (Edwards & Ferguson-Smith, 2007). Curiosamente, la mayoría de las gDMRs descritas se encuentran metiladas en el alelo materno,

mientras que únicamente se han referenciado 4 DMRs metiladas en el cromosoma paterno (Y. Li & Sasaki, 2011; Reik & Walter, 2001).

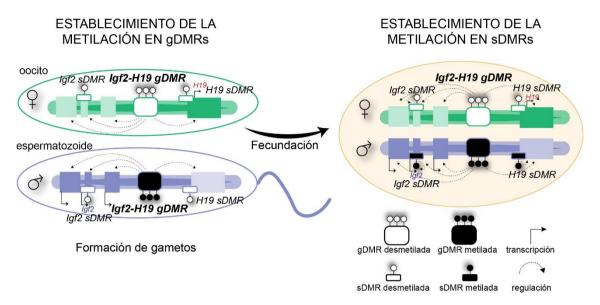


Figura 8. DMRs germinales y somáticas en las regiones de impronta. Las gDMRs establecen las marcas de metilación durante la formación de los gametos, mientras que las sDMRs establecen dichas marcas tras la fecundación. Las sDMRs regulan genes improntados concretos y dependen de las gDMRs, que regulan los genes improntados localizados dentro del *cluster*. En la figura se incluye un ejemplo de *cluster* regulado por H19-Igf2 DMR, paternalmente metilada en el espermatozoide, y que contiene a su vez dos sDMRs paternalmente metiladas que regulan la expresión de *lgf2* y *H19*.

Los genes improntados se expresan principalmente durante el desarrollo embrionario y disminuyen su expresión tras el nacimiento; sin embargo, también presentan una expresión elevada en el cerebro adulto (Coan, Burton, & Ferguson-Smith, 2005; Wilkinson, Davies, & Isles, 2007). Debido a la expresión monoalélica de los genes improntados, las mutaciones o la pérdida de impronta genómica están asociadas a diversas patologías como el cáncer y enfermedades del desarrollo (Cleaton, Edwards, & Ferguson-Smith, 2014; Eggermann et al., 2015; Ishida & Moore, 2013). Precisamente, debido a la elevada expresión de los genes improntados en placenta y cerebro adulto, las alteraciones de la impronta genómica dan lugar a síndromes congénitos que afectan al desarrollo embrionario como el síndrome de Prader-Willi (PWS) o el síndrome de Angelman (AS), y que se caracterizan por problemas neurológicos, de comportamiento y aprendizaje (Hirasawa & Feil, 2010). Sin embargo, aunque las marcas epigenéticas de la impronta genómica son mantenidas durante la edad adulta, también se ha mostrado que este proceso puede ser selectivamente "apagado" en algunos tipos celulares y/o momentos concretos del desarrollo para activar el alelo que se encuentra silenciado (Ferron et al., 2011; Ferron et al., 2015) (Figura 7). Estos cambios en la impronta genómica que ocurren de forma fisiológica son también clave para la correcta función y plasticidad celular.

Los genes improntados han sido implicados en procesos clave del neurodesarrollo, incluyendo la diferenciación neural, la migración y la supervivencia celular (Perez et al., 2015). Por ejemplo, el gen improntado de expresión paterna Dlk1, un ligando atípico de Notch, juega un papel fundamental en la neurogénesis adulta, siendo además crítica la expresión de ambos alelos específicamente en las NSCs de la SVZ para una correcta neurogénesis al OB (Ferron et al., 2011). Curiosamente, el apagado del proceso de impronta genómica en el gen Dlk1 ocurre postnatalmente (Ferron et al., 2011). El gen de expresión paterna Igf2 es otro ejemplo de que el estado de impronta se altera de forma fisiológica en el organismo adulto para regular el proceso de neurogénesis (Ferron et al., 2015; Lehtinen et al., 2011). IGF2 es un factor de nicho secretado en la SVZ de forma paracrina por la vasculatura y el plexo coroideo, compartimentos donde pasa a ser expresado de forma bialélica, para regular la función normal de las NSCs (Ferron et al., 2015). En cambio, el gen Igf2 permanece improntado en la SGZ (Ferron et al., 2015), mostrando la estricta especificación de este proceso de pérdida de impronta. La deleción del gen improntado Cdkn1c, de expresión materna, conduce al agotamiento de la población de NSCs y con ello, al descenso de la neurogénesis en el hipocampo durante el envejecimiento (Furutachi, Matsumoto, Nakayama, & Gotoh, 2013). El gen Cdkn1c, además, ha sido descrito como regulador negativo de la oligodendrogénesis (Kremer et al., 2009). Precisamente este gen se encuentra regulado por otro gen improntado de expresión paterna, Plagl1, que está altamente expresado en las NSCs (Ho-Shing O y Dulac C, 2019). También se requieren niveles altos de expresión del gen improntado de expresión paterna Snrpn, el cual es regulado por la enzima TET3 en las NSCs adultas para controlar la diferenciación astrocitaria (Montalban-Loro et al., 2019). Todos estos estudios demuestran la implicación de los genes improntados y su estado de impronta en la regulación de las funciones en el cerebro adulto de mamíferos, incluyendo un proceso tan específico y crítico como es la neurogénesis.

Reprogramación celular y adquisición de un estado pluripotente

La reprogramación celular es el proceso de revertir células maduras especializadas en toti/pluripotentes. La posibilidad de conseguirlo mediante la expresión controlada de un número mínimo de factores de transcripción ha sido uno de los hitos más revolucionarios de las últimas dos décadas (Omole & Fakoya, 2018; K. Takahashi & Yamanaka, 2006). En 1962 se demostró el primer ejemplo de reprogramación mediante transferencia de núcleos de células somáticas (SCNT) a oocitos enucleados, que conducía a la generación de un embrión genéticamente idéntico a la célula somática donante, demostrando que su núcleo mantenía toda la información genética y que esta podía ser reprogramada al estado totipotente (Gurdon, 1962). El

establecimiento de las líneas de ESCs a partir de blastocistos pre-implantacionales murinos (Evans & Kaufman, 1981; Martin, 1981) y humanos (Thomson et al., 1998) resultó fundamental para entender la regulación de la pluripotencialidad. Se demostró que la fusión de células somáticas con ESCs reprogramaba a las primeras a un estado de pluripotencia (Tada, Takahama, Abe, Nakatsuji, & Tada, 2001). En 2006, Takahashi K y Yamanaka S demostraron que la mera introducción en células somáticas de un número reducido de ciertos factores transcripcionales era capaz de reprogramar células somáticas a células pluripotentes, denominadas células pluripotentes inducidas (iPSCs) (K. Takahashi & Yamanaka, 2006, 2016). Un año después de la generación de iPSCs murinas, consiguieron la reprogramación a iPSCs humanas mediante estos mismos factores (K. Takahashi et al., 2007). Los factores incluidos en lo que pasó a denominarse cóctel de Yamanaka eran Oct4, Sox2, Klf4 y c-Myc. Por ello, el uso del transgén policistrónico OSKM es una de las estrategias más utilizadas para la reprogramación in vitro y también ha sido usado in vivo (Abad et al., 2013; Ofenbauer & Tursun, 2019; Omole & Fakoya, 2018). Otro estudio demostró la generación de iPSCs humanas también mediante 4 factores, pero variando dos de ellos: Oct4, Sox2, Nanog y Lin 28 (Yu et al., 2007). Y más aún, la reprogramación celular inducida ha sido demostrada con el uso únicamente de dos de los factores en fibroblastos fetales de ratón (MEFs) v NSCs (Hester et al., 2011; Nemajerova, Kim, Petrenko, & Moll, 2012), o incluso con un único factor, Oct4, en el caso de los MEFs y células papilares de la dermis y NSCs (Hammachi et al., 2012; J. B. Kim et al., 2009; Y. Li et al., 2011; Yuan et al., 2011; S. Zhu et al., 2010). Los estudios que demostraban la naturaleza reversible de los procesos de restricción del potencial de desarrollo en las células (Figura 9) les valieron el Premio Nobel de Medicina en 2012 a John Gurdon y Shinya Yamanaka, y supusieron un avance clave en el campo de la medicina regenerativa, pero también en el estudio de los procesos que ocurren durante el desarrollo y que permiten la especificación celular.

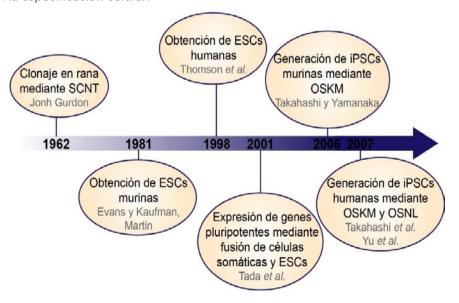


Figura 9. Cronología de los principales descubrimientos en la reprogramación celular. Eventos más significativos que llevaron a la generación de iPSCs. SCNT: transferencia nuclear de células somáticas, ESCs: células madre embrionarias, iPSCs: células madre pluripotentes inducidas, OSKM: *Oct4, Sox2, Klf4* y *c-Myc,* OSNL: *Oct4, Sox2, Nanog* y *Lin 28.* Imagen adaptada de Omole AE y Fakoya, 2018.

Las iPSCs, al igual que las ESCs, pueden ser cultivadas *in vitro* en condiciones específicas para mantener sus propiedades de pluripotencia y auto-renovación. Uno de los factores clave para el cultivo y mantenimiento de estas células es el factor inhibidor de la leucemia o LIF, crítico para el proceso de auto-renovación (Hirai, Karian, & Kikyo, 2011; Smith et al., 1988; Williams et al., 1988). Sin embargo, la presencia de LIF en medio sin suero, aunque esencial, no es suficiente para mantener la pluripotencialidad, por lo que se necesita la adición de suero además de inhibidores de la vía de señalización MAPK/Erk y de la quinasa gliocógeno sintasa 3 (GSK3) (medio 2i) que bloquean la diferenciación de las células pluripotentes (Silva et al., 2008; Sim et al., 2017; Ying, Stavridis, Griffiths, Li, & Smith, 2003).

Existen distintos marcadores característicos de las células pluripotentes, como son los factores de transcripción Oct4, Sox2 o Nanog, implicados en el silenciamiento de genes asociados a la diferenciación (Kashyap et al., 2009). Nanog es un factor transcripcional que regula el mantenimiento del estado pluripotente de las ESCs murinas al actuar como represor de genes implicados en diferenciación (Chambers et al., 2003; Shi et al., 2006), siendo el principal factor en el mantenimiento de la pluripotencia de la ICM in vivo (Allouba, ElGuindy, Krishnamoorthy, Yacoub, & Aguib, 2015). Nanog se une al promotor de otro gen de pluripotencia, Rex1, y activa su transcripción (M. Y. Son, Choi, Han, & Cho, 2013). Rex1, también conocido como Zfp42, es un marcador del estado pluripotente y es requerido para el mantenimiento de la auto-renovación y del potencial de diferenciación (Meek et al., 2020; M. Y. Son et al., 2013). SSEA1 o CD15 es una molécula expresada en las ESCs murinas y en las iPSCs que comienza a expresarse en etapas tempranas durante la adquisición de la pluripotencia (Teshigawara, Cho, Kameda, & Tada, 2017). De hecho, la expresión de marcadores de pluripotencia sigue un patrón de eventos secuenciales que comienza con la aparición de la actividad fosfatasa alcalina (AP), seguido de la expresión de SSEA1. En este momento las células se encuentran en un estadio intermedio entre la célula somática y la iPSC (Figura 10). La expresión de los genes Oct4 y Nanog endógenos marca la reprogramación completa de la célula (Brambrink et al., 2008). Acompañando al aumento de expresión de Oct4 y Nanog se produce el silenciamiento progresivo de los genes exógenos utilizados para la inducción de la reprogramación (Brambrink T et al. 2008; Teshigawara R et al. 2017).

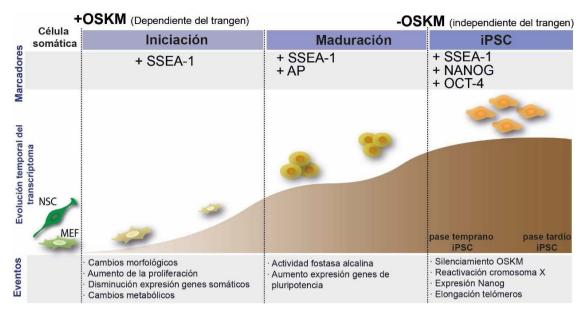


Figura 10. Eventos moleculares clave durante el proceso de reprogramación celular. La reprogramación celular desde la célula somática, como por ejemplo fibroblastos embrionarios de ratón (MEFs) o las NSCs, conlleva una serie de eventos que ocurren de forma secuencial y que dan lugar a estados celulares intermedios que expresan marcadores de pluripotencia (SSEA1 y AP o fosfatasa alcalina) hasta alcanzar el estado de pluripotencia completo, dando lugar a las llamadas células madre pluripotentes inducidas (iPSCs), en la cuales se produce la reactivación del cromosoma X silenciado y la expresión de los marcadores pluripotentes *Nanog* y *Rex1*. El proceso de reprogramación celular da lugar a cambios metabólicos, como el aumento de la proliferación, y epigenéticos, como son la hipometilación. Figura adaptada de David L y Polo JM, 2014.

La conversión de las células somáticas a iPSCs implica el aumento en la expresión de genes asociados a pluripotencia y, en consecuencia, la disminución de la expresión de marcadores de célula diferenciada (Brambrink et al., 2008). Por tanto, los eventos que tienen lugar durante el proceso de reprogramación mantienen el siguiente orden: activación de la fosfatasa alcalina, silenciamiento de la expresión específica de genes somáticos, expresión del marcador SSEA1 y el silenciamiento de los genes exógenos junto con la expresión de los genes endógenos *Oct4* y *Nanog* (Figura 10) (Teshigawara et al., 2017).

Todos estos eventos son posibles gracias a la actuación de los mecanismos epigenéticos que remodelan la cromatina para permitir la expresión o represión génica (Apostolou & Hochedlinger, 2013; Papp & Plath, 2013). Uno de los eventos llamativos en el proceso de adquisición de la pluripotencia es la reactivación del cromosoma X silenciado. Las células somáticas de mamíferos hembras, dotadas con dos cromosomas X, sufren una inactivación de uno de los dos cromosomas (XCI) como estrategia de compensación de la dosis génica del cromosoma sexual entre hembras y machos. Esta inactivación se produce de forma aleatoria durante el desarrollo embrionario temprano (Bar, Seaton, Weissbein, Eldar-Geva, & Benvenisty, 2019). Es tras la implantación cuando se produce la inactivación del cromosoma X materno o paterno de forma aleatoria (Cantone & Fisher, 2017). El cromosoma inactivado (Xi) expresa el RNA no-codificante *Xist*,

molécula responsable de dicha inactivación, mientras que el cromosoma X activo (Xa) expresa el RNA antisentido *Tsix* (Cantone & Fisher, 2017), que reprime la expresión de *Xist* (J. T. Lee & Lu, 1999). La expresión de *Xist* está regulada por los factores transcripcionales Oct4, Sox2 y Nanog (Cantone & Fisher, 2017; Navarro et al., 2008; Ohhata & Wutz, 2013), por lo que las células pluripotentes son capaces de regular a *Xist* reprimiendo su expresión y aumentando la expresión de *Tsix*, y así permitiendo la reactivación del cromosoma Xi (Cantone & Fisher, 2017; Janiszewski et al., 2019). Por ello, uno de los sucesos remarcables en el proceso de adquisición de un estado completo de pluripotencia es la reactivación del cromosoma Xi en las células de animales hembra, de manera que la célula pasa a presentar dos cromosomas X activos (XaXa) (Cantone & Fisher, 2017; Ohhata & Wutz, 2013; Pasque & Plath, 2015).

Una célula pluripotente se define por su capacidad de formar distintos tipos celulares procedentes de las tres capas germinales, mesodermo, endodermo y ectodermo. El crecimiento de las células pluripotentes en cuerpos embrioides (EBs) permite estudiar el potencial de diferenciación de estas células (Sheridan, Surampudi, & Rao, 2012). Para ello, se han desarrollado métodos tanto para la generación de células de tejidos específicos como para la diferenciación de forma estocástica hacia las tres capas germinales (Sheridan et al., 2012) demostrando ser una estrategia muy útil para promover los pasos iniciales de diferenciación (Bibel, Richter, Lacroix, & Barde, 2007; Sheridan et al., 2012).

En la generación de iPSCs se han utilizado tanto estrategias integrativas como no integrativas (Omole & Fakoya, 2018). Los retrovirus han sido, por ejemplo, una de las herramientas más utilizadas para introducir los factores de reprogramación y, aunque se trata de una metodología eficiente y relativamente sencilla, la reprogramación completa a iPSCs conlleva el silenciamiento de los genes exógenos virales, y no siempre este silenciamiento es eficiente (Omole & Fakoya, 2018). También se han utilizado lentivirus que, al igual que los retrovirus, son capaces de integrarse en el genoma (Blelloch, Venere, Yen, & Ramalho-Santos, 2007; Yu et al., 2007). No obstante, uno de los aspectos que más preocupan con el uso de vectores virales es la integración aleatoria del transgén con el consiguiente riesgo de mutaciones (Montini et al., 2009; Omole & Fakoya, 2018). Por ello, se han desarrollado otras estrategias integrativas mediante vectores no virales como el uso de liposomas, la electroporación de DNA (Omole & Fakoya, 2018) o la transfección de transposones *piggybac* co-transfectados con una transposasa. Si bien este sistema evita el riesgo de mutagénesis, existen transposones endógenos sobre los cuales podría actuar la enzima transposasa (Omole & Fakoya, 2018) y, además, los métodos no virales presentan una menor eficiencia (**Tabla 1**).

Los sistemas no integrativos incluyen vectores virales como son los adenovirus (Stadtfeld, Nagaya, Utikal, Weir, & Hochedlinger, 2008) o el virus Sendai (Fusaki, Ban, Nishiyama, Saeki, & Hasegawa, 2009). En el caso de los adenovirus, la eficiencia es muy baja en comparación a los retrovirus o lentivirus, y además, requiere múltiples infecciones (Omole & Fakoya, 2018). El virus Sendai en cambio es un sistema eficiente pero la replicasa de RNA del sistema es muy sensible al contenido de la secuencia transgénica y, al replicarse constitutivamente, la eliminación del vector es complicada (Fusaki et al., 2009; Omole & Fakoya, 2018). También existen sistemas no integrativos no virales como pueden ser los vectores episomales, RNAs o proteínas; no obstante, estos sistemas tienen una eficiencia baja con respecto a los integrativos y requieren transfecciones repetidas para mantener los factores exógenos activos (Omole & Fakoya, 2018) (Tabla 1).

La creación de vectores policistrónicos virales o no virales ha permitido la expresión de los factores necesarios para la reprogramación bajo el control de un único promotor aumentando de esta forma la eficiencia de la reprogramación y reduciendo el riesgo de mutagénesis (Carey et al., 2009; Omole & Fakoya, 2018). Además, se han desarrollado sistemas inducibles (con tetraciclina o doxiciclina, por ejemplo) que permiten controlar la expresión de los factores *in vivo*, y por tanto, el momento de la reprogramación, reduciendo de esta forma los efectos del silenciamiento ineficiente y la reactivación del transgén (Omole & Fakoya, 2018). Por ejemplo, dicha reprogramación *in vivo* ya ha sido conseguida en ratones transgénicos mediante un sistema inducible por doxiciclina que permite la expresión del transgén OSKM (Abad et al., 2013; Ohnishi et al., 2014; Rodriguez-Matellan, Alcazar, Hernandez, Serrano, & Avila, 2020), y por otro grupo utilizando células de la retina murina que reprograman a células progenitoras mediante fusión celular (Sanges et al., 2013). El proceso de reprogramación *in vivo* conlleva la formación de tumores en el organismo (Ofenbauer & Tursun, 2019; Srivastava & DeWitt, 2016), convirtiéndolo en una herramienta atractiva para el estudio de la reprogramación celular en el contexto del cáncer.

Tabla 1. Sistemas de reprogramación celular vitro. Se desarrollado distintos sistemas para expresión de los factores de reprogramación celular aue pueden integrarse o no en el genoma. Las ventajas (verde) e inconvenientes (rojo) de cada sistema han sido indicadas.

	Virales	Retrovirus	Eficiente y sencilla Silenciamineto del transgen ineficiente Mutagénesis
SISTEMAS		Lentivirus	Eficiente y sencilla Mutagénesis
INTEGRATIVOS	No virales	DNA: liposomas o electroporación	No mutagénesis Menor eficiencia
		Transposones	No mutagénesis Menor eficiencia Transposones endógenos
	Virales	Adenovirus	No mutagénesis Eficiencia baja Múltiples inyecciones
		Virus Sendai	No mutagénesis. Eficiente DÍficil eliminación del vector Sensible según el transgen
SISTEMAS NO INTEGRATIVOS	No virales	Vectores episomales	No mutagénesis Eficiencia baja Múltiples inyecciones
		RNA	No mutagénesis Eficiencia baja Múltiples inyecciones
		Proteína	No mutagénesis Eficiencia baja Múltiples inyecciones

La reprogramación de células somáticas a un estado pluripotente conlleva modificaciones epigenéticas durante el proceso de reprogramación. Estos cambios epigenéticos incluyen la metilación del DNA, la modificación de histonas y la reactivación del cromosoma X silenciado; cambios que regulan la proliferación, supervivencia, pluripotencia y diferenciación celular (Meissner, 2010). Más concretamente, se ha descrito una pérdida variable de la impronta genómica (LOI) durante la reprogramación a iPSCs (X. Li, Li, Yang, & Bai, 2019; Takikawa et al., 2013). De hecho, los cambios en impronta genómica han sido sugeridos como un posible marcador para la pluripotencia (Do et al., 2009; M. J. Kim et al., 2013). Los genes improntados cuyo estado de impronta se pierde más comúnmente en las iPSCs humanas son H19, IGF2, MEG3, PEG3, PEG10 y MEST (Bar, Schachter, Eldar-Geva, & Benvenisty, 2017; J. Kim, Bergmann, Choo, & Stubbs, 2007; Ma et al., 2014; Perrera & Martello, 2019; Pick et al., 2009; Rugg-Gunn, Ferguson-Smith, & Pedersen, 2005, 2007). Ejemplo del papel de los genes improntados en el proceso de reprogramación son los ratones deficientes en el gen improntado Peg3 que muestran una mayor expresión de genes de pluripotencia en ESCs y una mejora de la eficiencia en la reprogramación tanto a partir de MEFs como de NSCs (Theka, Sottile, Aulicino, Garcia, & Cosma, 2017). También el estado de impronta del cluster Dlk1-Dio3 situado en el cromosoma 12 de ratón, se ha descrito como posible marcador del estado de pluripotencia debido a su frecuente alteración en las iPSCs

(X. Li et al., 2019; Y. Li et al., 2011). La expresión monoalélica de estos genes improntados está regulada por los niveles de metilación de sus regiones DMRs en las cuales uno de los alelos parentales se encuentra metilado mientras que el otro alelo está desmetilado. Por ello, la pérdida de impronta genómica se correlaciona con alteraciones en los niveles de metilación de las DMRs de genes improntados (Bar S *et al.* 2017). Curiosamente, las DMRs metiladas paternalmente parecen estar más afectadas por la pérdida de impronta que las metiladas maternalmente (Bar et al., 2017; Rugg-Gunn et al., 2007).

Sin embargo, algunos estudios defienden que la presencia de procesos de LOI representa una aberración de las células que las convierte en potencialmente peligrosas para su uso como herramienta terapéutica, en lugar de una característica epigenética inherente (Bar et al., 2017). Por lo tanto, la metilación del DNA en las regiones de control de impronta genómica puede suponer una barrera epigenética importante para la reprogramación celular (De Carvalho, You, & Jones, 2010).

Cáncer cerebral: teoría de la célula madre cancerosa y glioblastoma

A pesar de los progresos realizados en el diagnóstico y el tratamiento del cáncer, se mantiene como una de las principales causas de muerte en el mundo (Ayob & Ramasamy, 2018). El pensamiento convencional que se tenía acerca del origen del cáncer establecía que la enfermedad era resultado de la acumulación de cambios genéticos en células somáticas maduras que daban lugar a la proliferación descontrolada de dichas células formando el tumor; sin embargo, la idea que ha ido captando mayor apoyo en los últimos años sugiere que la heterogeneidad presente en los diferentes tipos de cáncer se debe a una jerarquía celular dentro de la masa cancerosa, en la cual las llamadas células madre cancerosas (CSCs) se encuentran en la cúspide de dicha jerarquía (Ayob & Ramasamy, 2018; Fabian, Vereb, & Szollosi, 2013; Reya, Morrison, Clarke, & Weissman, 2001). Estas CSCs serían las células responsables del origen y la sustentación del tumor gracias a su capacidad de auto-renovación y multipotencia, características que comparten con las SCs de tejido, pero, además, serían responsables de la resistencia a los tratamientos (Bomken, Fiser, Heidenreich, & Vormoor, 2010; Gangemi et al., 2009). Precisamente, esta última capacidad de resistencia a quimioterapia y radiación sugiere un origen a partir de SCs quiescentes que mantendrían dicho estatus durante su transformación maligna (Ayob & Ramasamy, 2018; Gilbert & Ross, 2009).

Debido a su similitud con las SCs adultas normales, las CSCs generalmente se caracterizan con marcadores de SC tales como las proteínas CD133, CD44 O CD90, y mediante su capacidad de ser

aisladas y crecidas in vitro; sin embargo, no existen marcadores exclusivos de las CSCs (Ayob & Ramasamy, 2018; Capp, 2019). Estrategias como el aislamiento de células CD34⁺CD38^{bajo} o CD34⁺CD38⁻ en el caso de la leucemia mieloide aguda humana, o células CD133⁺ o CD15⁺ en tumores cerebrales humanos, o CD44⁺CD24^{bajo} o CD44⁺CD24⁻ en tumores de pulmón, han sido utilizadas para la obtención y estudio de las CSCs (Nguyen, Vanner, Dirks, & Eaves, 2012). Sin embargo, la reproducibilidad de estos ensayos está en controversia debido a la alta heterogeneidad entre los cánceres del mismo tipo (Nguyen et al., 2012). Uno de los eventos interesantes observados en el estudio del cultivo de las CSCs de tumores cerebrales fue encontrar la similitud entre los medios utilizados para el cultivo de NSCs y para el cultivo de CSCs (Nguyen et al., 2012; Reynolds & Weiss, 1992), apoyando nuevamente la idea de la SC adulta como el origen de la CSC. Además, esta teoría es defendida por estudios que sugieren que la incidencia del cáncer está proporcionalmente relacionada con el tamaño de la población de CSCs en el tejido (Alcantara Llaguno et al., 2019; Tomasetti & Vogelstein, 2015). Sin embargo, aunque la presencia de CSCs ha sido demostrada en la mayor parte de tumores (Lapidot et al., 1994; Leick, Shoff, Wang, Congress, & Gallicano, 2012), incluyendo los tumores cerebrales (Singh et al., 2004), existe todavía controversia acerca de la SC adulta como el origen de la CSC (Ayob & Ramasamy, 2018; Capp, 2019; Yoo & Hatfield, 2008).

En el cerebro humano existen diferentes tipos de tumores que difieren en el origen celular, y en la parte del cerebro afectada. Generalmente, los tumores cerebrales se nombran de acuerdo al tipo celular que los inicia y/o dónde se localiza. Los gliomas y los meningiomas son los tipos de tumores cerebrales más comunes (Claus et al., 2005). Los gliomas, originados por células de la glía, se clasifican en astrocitoma, astrocitoma anaplásico y glioblastoma (GBM), cuando el origen es astrocitario; oligodendroglioma, cuando el origen es oligodendrocitario; o ependimoma, cuando el origen son los ependimocitos (**Tabla 2**) (Maher et al., 2001). Los GBMs son los tumores primarios cerebrales más comunes y agresivos también llamados de grado IV, con una supervivencia media de entre 12 y 15 meses tras el diagnóstico a pesar de los tratamientos mediante cirugía, radiación y quimioterapia (Bien-Moller et al., 2018).

El diagnóstico del GBM se basa principalmente en la histología del tumor, pero cada vez es más patente la necesidad de estudios moleculares para su clasificación (Neftel et al., 2019). De hecho, una de las alteraciones más comúnmente encontradas en los pacientes de GBM es la amplificación de la molécula EGFR, activador de las vías de señalización Ras/Raf/MAPK y fosfoinositol 3 quinasa (PI3K) que regulan proliferación, supervivencia, migración y tumorigénesis (Ludwig & Kornblum, 2017; Zahonero, Sepulveda, & Sanchez-Gomez, 2015). Esta alteración se encuentra en el 40% de los casos de GBM (Ludwig & Kornblum, 2017; Sugawa, Ekstrand, James,

& Collins, 1990). Otra de las vías frecuentemente alteradas en los pacientes de GBM es la que compete a la vía de p53, en la cual el gen *TP53* se encuentra mutado en el 35% de los casos (Zahonero et al., 2015). Finalmente, la tercera vía más frecuentemente afectada en el GBM es la vía de Retinoblastoma (Rb), en la cual los inhibidores de ciclo celular *CDKN2A* (p16^{lnk4a}) y *CDKN2B* (p19^{Arf}) se encuentran inactivados alternativamente en el 50% de los afectados por GBM (Zahonero et al., 2015).

Una demostración de la heterogeneidad presente en el GBM es la clasificación de subtipos celulares en función de su transcriptoma (Neftel et al., 2019). Mediante estudios de expresión intra-tumorales, al menos tres subtipos celulares han sido identificados dentro de los GBM: tipo pro-neural, tipo clásico, y tipo mesenquimal (Neftel et al., 2019; Verhaak et al., 2010; Q. Wang et al., 2017). Cada subtipo está asociado a distintas alteraciones genéticas; por ejemplo, en el subtipo pro-neural es común observar alteraciones en el gen PDGFRA, un activador de la vía Ras/Raf/MAPK, mientras que las alteraciones en EGFR son más comunes en el subtipo clásico. En cambio, un aumento del marcador CD44 ha sido descrito en el fenotipo mesenguimal (Neftel et al., 2019; H. Zhu et al., 2006). Estos subtipos celulares se pueden encontrar coexistiendo en un mismo tumor e incluso pueden cambiar de un subtipo a otro con el tiempo o los tratamientos (Patel et al., 2014; Sottoriva et al., 2013; Q. Wang et al., 2017). Más recientemente, un estudio por secuenciación de RNA de célula única (scRNAseq) ha mostrado que las células malignas dentro del GBM pueden ser clasificadas en cuatro estados: tipo progenitor neural, tipo oligodendrocitario, tipo astrocitario y tipo mesenquimal (Neftel et al., 2019), y que estos tipos celulares coexisten dentro del tumor, pero la frecuencia de cada uno de ellos cambia dependiendo de las alteraciones génicas presentes en el tumor (Neftel et al., 2019).

Tabla 2. Clasificación de los gliomas en función de su origen celular. Los gliomas pueden ser clasificados atendiendo al tipo celular que los origina, siendo el astrocito el tipo celular responsable de la formación de los gliomas más comunes y agresivos, los glioblastomas.

	Célula de origen	Tipo de glioma
		Astrocitoma
	Astrocito	Astrocitoma anaplásico
GLIOMAS		Glioblastoma
	Oligodendrocito	Oligodendroglioma
	Ependimocito	Ependimoma

El GBM es un tumor cerebral muy

agresivo e incurable, por lo que identificar la célula de origen responsable de la formación de este cáncer puede ayudar a entender los mecanismos implicados en la aparición y progresión del mismo, y con ello, desarrollar estrategias terapéuticas y de diagnóstico precoz. Muchas investigaciones sobre el origen del GBM se han centrado en la identificación de las CSCs en este tipo de cáncer, conocidas como células madre de glioma o GSCs (Singh et al., 2004), responsables

del origen, expansión, recurrencia y resistencia a tratamientos del GBM (Auffinger, Spencer, Pytel, Ahmed, & Lesniak, 2015; Bien-Moller et al., 2018). Inicialmente, se pensaba que la transformación de astrocitos y/o oligodendrocitos sería la responsable de la formación del tumor debido a la capacidad proliferativa de estas células; sin embargo, con el descubrimiento de las NSCs, la teoría de la GSC ha adquirido fuerza, demostrándose la presencia de SCs capaces de formar y sustentar el GBM (Altmann, Keller, & Schmidt, 2019; Ignatova et al., 2002; Lathia, Mack, Mulkearns-Hubert, Valentim, & Rich, 2015; Sanai, Alvarez-Buylla, & Berger, 2005; Singh et al., 2004).

Esta teoría plantea que la elevada capacidad de proliferación de las NSCs y sus progenitores, las hace más susceptibles a la transformación maligna (Chesler, Berger, & Quinones-Hinojosa, 2012). Precisamente, las GSCs comparten muchas características con las NSCs adultas. De hecho, la disgregación y cultivo in vitro del tumor es capaz de generar agregados clonales denominados por algunos autores como tumoresferas, que pueden ser diferenciados en linajes neurales, propiedad que comparten con las NSCs (Gargini et al., 2020; Joseph et al., 2015; Kawamura, Takouda, Yoshimoto, & Nakashima, 2018; Ledur, Onzi, Zong, & Lenz, 2017; Ludwig & Kornblum, 2017). Además, el GBM promueve la formación de vasculatura, para mantener la población de células tumorales, mimetizando así el nicho normal de las NSCs (Calabrese et al., 2007; Chesler et al., 2012). Dentro de estas características compartidas entre las NSCs y las GSCs encontramos diversos factores transcripcionales. Por ejemplo, Sox2 se encuentra altamente expresado en las NSCs en la SVZ adulta, siendo esencial en el mantenimiento de dichas poblaciones (Ferri et al., 2004). SOX2 también aparece aumentado en GBM promoviendo la malignidad del tumor (Berezovsky et al., 2014; Bulstrode et al., 2017). La fosfatasa PTEN está implicada en el control de la proliferación de las NSCs y se requiere para la migración celular y la diferenciación neuronal (Chesler et al., 2012), mientras que la proteína supresora de tumores p53 suele aparecer alterada en GBM (Newcomb et al., 1993). De hecho, mutaciones en PTEN y p53, junto con mutaciones en Rb, en las NSCs adultas de la SVZ, son capaces de formar tumores cerebrales; mientras que estos tumores no fueron encontrados a partir de astrocitos maduros deficientes en estas mismas proteínas (Jacques TS et al. 2010), situando nuevamente el origen de este tumor cerebral en las NSCs. También la pérdida de función de los inhibidores de quinasas dependientes de ciclina p16^{INK4a} y p19^{ARF} aparece de forma frecuente en GBM (Ivanchuk, Mondal, Dirks, & Rutka, 2001). Aunque estas alteraciones no son suficientes para iniciar el tumor, una activación conjunta de EGFR, permite la formación del GBM a partir de NSCs o astrocitos (Bachoo et al., 2002) y, de hecho, la sobre-expresión del gen EGFR aparece en prácticamente la mitad de los casos de GBM humano (Gargini et al., 2020).

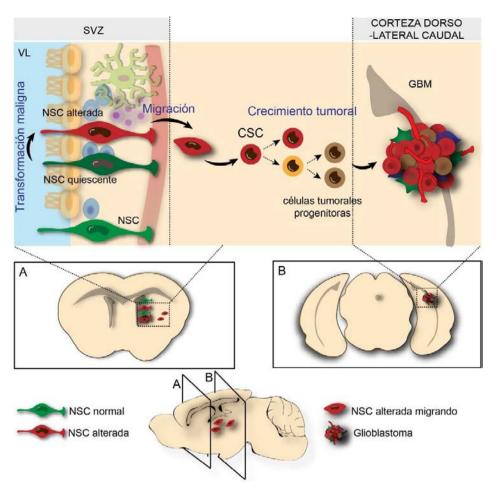


Figura 11. Las NSCs adultas de la SVZ se transforman en CSCs que migran y forman el GBM en regiones distales. Una de las hipótesis más apoyadas sobre el origen del cáncer es la teoría de la célula madre cancerosa, según la cual el GBM se forma a partir de la transformación maligna de las NSCs adultas. Esta teoría se ve reforzada por la presencia de alteraciones propias del GBM que aparecen en las NSCs adultas de la SVZ. Estas NSCs alteradas pueden migrar a regiones distales incluyendo la corteza dorso-lateral caudal donde forman tumores.

Más recientemente se ha demostrado que determinadas mutaciones en NSCs de la SVZ dan lugar a la formación de tumores tipo GBM que migran a diversas regiones del cerebro, como la corteza dorso-lateral caudal, sin afectar la citoarquitectura de la SVZ (Alcantara Llaguno et al., 2019; J. H. Lee et al., 2018) (Figura 11). Además, esta capacidad de formar tumores disminuye a medida que se reduce el potencial de diferenciación, sugiriendo que las NSCs se transforman más fácilmente que sus progenitores (Alcantara Llaguno et al., 2019). Estos estudios, junto con las características compartidas, así como la expresión de muchos otros marcadores que identifican ambas poblaciones celulares, NSCs y GSCs, como Nestina, Vimentina, CD133 o CD44 (Tabla 3), apoyan la teoría de las NSCs como el tipo celular más próximo a las GSCs, y por tanto, el más probable como origen del GBM.

Conocer los marcadores que definen a la célula responsable del origen del cáncer en cerebro es clave para poder aislarla y estudiarla, por lo que la identificación de las GSCs se ha basado en

el uso de anticuerpos que reconocen proteínas presentes en estas células. CD133, proteína de membrana codificada por el gen *PROMININ-1*, fue el primer marcador propuesto para el aislamiento y estudio de las GSCs (Hemmati et al., 2003; Lathia et al., 2015). Esta glicoproteína está implicada en diferenciación celular y en la transición epitelio-mesenquimal (EMT), pero también es un marcador de NSCs (Ludwig & Kornblum, 2017). Si bien se han podido aislar células CD133 positivas a partir de tumores cerebrales humanos, que eran capaces de propagar nuevamente el tumor (Ludwig & Kornblum, 2017; Singh et al., 2004), el uso de este marcador se encuentra en controversia (Brown et al., 2017), debido a que se ha observado en células diferenciadas, y células CD133 negativas son también capaces de iniciar un tumor (Ludwig & Kornblum, 2017; J. Wang et al., 2008).

La proteína de membrana CD44, característica de células mesenquimales (H. Zhu et al., 2006), también ha sido identificada como un marcador de superficie típico presente en las CSCs, individualmente o asociado a otras proteínas de membrana como CD133 (L. Wang, Zuo, Xie, & Wei, 2018). CD44 es un ligando del ácido hialurónico, un componente de la matriz extracelular, cuya expresión se encuentra elevada en las CSCs de diferentes tipos de cáncer (Basakran, 2015; Ishimoto et al., 2011; Mooney et al., 2016; L. Wang et al., 2018) y que, de hecho, ha sido utilizado para el aislamiento y estudio de CSCs, incluyendo las GSCs (Ghuwalewala et al., 2016; Su et al., 2017; L. Wang et al., 2018). Esta molécula está implicada en diversos procesos como son la proliferación, apoptosis, adhesión/migración y angiogénesis asociadas a la malignidad del cáncer (Mooney et al., 2016; F. Wang et al., 2018). Además, CD44 ha sido implicado en el proceso de transición epitelio-mesenquimal que tiene lugar en el cáncer (Ponta, Sherman, & Herrlich, 2003; S. Zhao et al., 2016). Este receptor además regula los estados de quiescencia y diferenciación de las NSCs adultas en la SGZ (Su et al., 2017). Dentro de los subtipos de GBM, CD133 junto con OLIG2 han sido asociados al tipo pro-neural más proliferativo, mientras que la co-expresión de CD133 y CD44 se ha asociado al tipo mesenquimal más invasivo (Brown et al., 2017). De tal manera que aquellos tumores enriquecidos únicamente con CD133 son más proliferativos, en cambio, aquellos que se encuentran enriquecidos por CD44, son más invasivos (Brown et al., 2015).

Otros marcadores de membrana como CD15 o SSEA1 (M. J. Son, Woolard, Nam, Lee, & Fine, 2009) y la Integrina α 6 (Lathia et al., 2015) han sido también utilizados para definir a la población de GSCs (**Tabla 3**). Aunque poco se conoce acerca del papel de SSEA1 en el desarrollo del GBM, sí se han descrito células positivas para SSEA1 capaces de generar el tumor *in vivo* (Ludwig & Kornblum, 2017). El receptor de laminina INTEGRINA α 6, altamente expresado en el embrión, en células madre hematopoyéticas y en NSCs (Fortunel et al., 2003) se expresa también en las GSCs,

co-localizando con CD133 (**Tabla 3**) y regulando así la vasculatura del tumor (Lathia et al., 2015). Otro marcador asociado clásicamente a las NSCs es la proteína de filamentos intermedios NESTINA (Lendahl, Zimmerman, & McKay, 1990; Park et al., 2010); que también se expresa en diversos GBMs correlacionando con una menor ratio de supervivencia en los pacientes afectados (Ludwig & Kornblum, 2017). La proteína VIMENTINA se encuentra expresada de forma ubicua en las células mesenquimales, pero un aumento en la expresión de esta molécula ha sido descrita en diferentes tipos de cáncer, incluyendo el GBM (Satelli & Li, 2011). En el cerebro murino, el gen *Vimentina* se expresa principalmente en células ependimales, plexo coroideo y meninges (**Tabla 3**) (Yamada, Kawamata, Walker, & McGeer, 1992) y regula el estado de quiescencia de las NSCs (Morrow et al., 2020) regulando la polimerización de los filamentos de Nestina (Park et al., 2010). Sin embargo, las muestras de GBM presentan niveles altos de *VIMENTINA* y se asocian con la capacidad de migración e invasión del tumor (Lin et al., 2016; Nowicki, Hayes, Chiocca, & Lawler, 2019) y con una menor ratio de supervivencia en los pacientes (Lin et al., 2016).

Además de los marcadores de membrana o citosólicos, también han sido descritos diversos factores transcripcionales implicados en el desarrollo del GBM (Tabla 3). Un estudio del 2014 demostró una firma similar al de las ESCs en GBM con un aumento de las proteínas NANOG, KLF4, c-MYC, OCT4 y SOX2 (Elsir et al., 2014; Hattermann et al., 2016), coincidente con los factores utilizados para la reprogramación a iPSCs. El aumento de expresión de estos factores ha sido correlacionado con una menor supervivencia en los pacientes afectados por este tipo de cáncer (Bradshaw et al., 2016; Holmberg et al., 2011) y resultan esenciales para el crecimiento y la capacidad de invasión del tumor (Kuciak, Mas, Borges, Sanchez-Gomez, & Ruiz, 2019; Zbinden et al., 2010).

Los GBMs presentan un fenotipo enormemente complejo debido a los múltiples factores genéticos y epigenéticos implicados en su origen y progresión. Con objeto de elucidar los mecanismos responsables de este tipo de tumor, se han generado modelos animales que recapitulan distintos aspectos de los GBM humanos (Rosenthal & Brown, 2007). Actualmente, los modelos disponibles pueden ser clasificados en espontáneos, inducidos químicamente, diseñados genéticamente, o generados por trasplante (Sampetrean & Saya, 2018). El modelo de generación espontánea del tumor es en el que menos alteraciones se producen por la manipulación experimental; sin embargo, la capacidad de formar tumores en ratones queda limitada a un pequeño número de cepas, cuya incidencia es de alrededor del 1% (Sampetrean & Saya, 2018). Los modelos inducidos químicamente mediante la administración de carcinógenos permite una alta incidencia de tumores con mutaciones típicas del GBM humano (Figura 12A),

pero el inconveniente de esta estrategia es la variabilidad en la predictibilidad y reproducibilidad de la formación de dichos tumores (Sampetrean & Saya, 2018).

Tabla 3. Marcadores moleculares asociados al GBM. Recopilación de marcadores descritos en GBM y las funciones asociadas. El tipo celular no tumoral en el que se ha descrito también se indica, así como su presencia o no en las NSCs.

Marcador molecular	Tipo celular no tumoral asociado	Expresión en NSCs	Función asociada al GBM
CD44	Células mesequimales y células madre	sí	Proliferación, migración y angiogénesis
CD133	Células madre	sí	Proliferación
CD15 o SSEA1	ESCs murinas	MUY BAJA	Auto-renovación
Nestina	NSCs y progenitores	sí	Migración, regulación ciclo celular, "stemness"
Vimentina	Células mesequimales y ependimales meninges, plexo coroideo y NSCs	sí	Migración
Integrina α6	NSCs	SÍ	Auto-renovación y formación del tumor
Olig2	NSCs y progenitores de oligodendrocitos y neuronas motoras	sí	Resistencia y plasticidad, crecimiento
Sox2	Células madre, SNC en desarrollo, NSCs y progenitores	sí	Proliferación, <i>"stemness"</i> y pluripotencia
Klf4	ESCs, células madre mesequimales y NSCs	sí	Fusión mitocondrial, regulación ciclo celular y pluripotencia
с-Мус	SNC en desarrollo y NSCs	SÍ	Proliferación, radio- resistencia y pluripotencia
Oct4	ESCs	NO	Auto-renovación y pluripotencia
Nanog	ESCs y NSCs	MUY BAJA	Proliferación/crecimiento, auto-renovación y pluripotencia

La progresión molecular de los gliomas implica la acumulación de cambios genéticos y epigenéticos que resultan en la pérdida de función de genes supresores de tumores o la activación de oncogenes (Parsons et al., 2008). Diversos modelos genéticos que recapitulan estas mutaciones se han desarrollado para el estudio del GBM, siendo necesaria la alteración de al menos dos de los principales genes implicados (Miyai et al., 2017; Sampetrean & Saya, 2018). Debido a que la ganancia de función del receptor EGFR es la alteración más común en el GBM, diversos modelos genéticos de ratón se han basado en la sobre-expresión de este receptor (Ding et al., 2003; Gargini et al., 2020). Otros genes han sido estudiados en el GBM mediante la generación de ratones que contienen el gen de interés, flanqueado por secuencias loxP, y la recombinasa Cre bajo el control de promotores específicos como el promotor de GFAP, expresado por las NSCs y los astrocitos maduros, o de Nestina, expresando por las NSCs y sus progenitores (Sampetrean & Saya, 2018). Además, esta estrategia también ha permitido la inducción de la Cre por tamoxifeno o doxiciclina (Figura 12B). En los últimos años, el uso de vectores virales para la generación de modelos murinos de GBM se ha extendido para evitar utilizar múltiples cepas murinas y el coste que ello conlleva (Miyai et al., 2017; Sampetrean & Saya, 2018). Este método se basa en la transferencia génica mediante la inyección de vectores

virales (**Figura 12C**). De esta forma, el mismo sistema de recombinación de Cre comentado anteriormente puede ser utilizado en animales transgénicos basados en secuencias loxP, pero en este caso la Cre recombinasa es transducida mediante un vector viral (**Figura 12C**) (Sampetrean & Saya, 2018).

Finalmente encontramos el trasplante como modelo de formación del GBM. Este sistema se basa en la inyección estereotáxica de células cancerígenas en el cerebro del animal (Figura 12D). Se trata de uno de los modelos más reproducibles y utilizados (Sampetrean & Saya, 2018). Este tipo de sistema incluye los xenotrasplantes, mediante la inyección de células de GBM humanas en animales inmunocomprometidos, o los alotrasplantes (Miyai et al., 2017; Sampetrean & Saya, 2018). Si bien este modelo resulta realmente útil para testar la tumorigenicidad de las células y sus características, el uso de células ya transformadas impide el estudio de los mecanismos implicados en el inicio de la transformación.

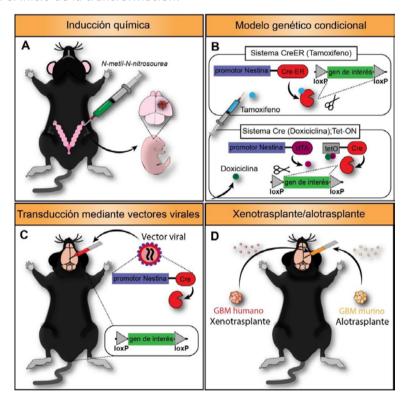


Figura 12. Modelos murinos de generación de glioblastomas. A) El modelo de formación de glioblastomas mediante la inducción química se basa en la inyección transplacental de sustancias cancerígenas, como el N-metil-N-nitrosourea, en hembras preñadas, permitiendo la formación de glioblastomas en el cerebro de los embriones. B) El modelo genético permite generar un sistema condicional para controlar la localización, pero también el momento de la transformación maligna. Sistemas como la *Cre* recombinasa inducible por tamoxifeno o doxiciclina permite la expresión de *Cre* bajo el promotor que se elija, como por ejemplo Nestina, de manera que únicamente las células Nestina positivas expresarán el gen de interés, flanqueado por secuencias loxP, cuando se administre el tamoxifeno o la doxiciclina. C) El modelo genético también permite la expresión del gen de interés, flanqueado por secuencias loxP, mediante la inyección intracraneal de vectores virales que codifican para la *Cre* recombinasa. Este modelo también es compatible con el sistema condicional. D) La formación de un glioblastoma puede ser llevado a cabo mediante la inyección intracraneal de células tumorales humanas (xenotrasplante) o murinas (alotrasplante) en la región cerebral de interés.

Impronta genómica y cáncer

Los genes improntados han sido implicados en el crecimiento embrionario, el crecimiento de la placenta o en el metabolismo del organismo adulto (J. Kim, Bretz, & Lee, 2015; Morison, Ramsay, & Spencer, 2005). Debido a la expresión monoalélica de estos genes, son extremadamente susceptibles a las mutaciones que se pueden ocasionar durante la formación de tumores. Una mutación en el alelo expresado puede conducir al silenciamiento completo del gen, mientras que una mutación en el alelo silenciado puede suponer la expresión bialélica del gen. Precisamente, la LOI es uno de los eventos más comunes y tempranos que ocurren en los cánceres humanos (Feinberg, 2007; Holm et al., 2005; Jelinic & Shaw, 2007; Perrera & Martello, 2019). El 100% de las leucemias mieloides crónicas, tumores de Wilms, meningiomas, así como cánceres de ovario y colorrectales, entre otros, presentan LOI (Jelinic & Shaw, 2007). También se han descrito alteraciones de la impronta genómica en osteosarcomas, hepatoblastomas o incluso gliomas (Jelinic & Shaw, 2007). En consecuencia, la expresión de los genes improntados se encuentra afectada en diferentes tipos de cáncer (J. Kim et al., 2015). Este hecho, junto con la mayor propensión de cáncer en pacientes afectados por síndromes de impronta genómica, subraya la importancia del proceso de impronta genómica en el origen y desarrollo del cáncer (Perrera & Martello, 2019; Uribe-Lewis, Woodfine, Stojic, & Murrell, 2011).

La asociación entre LOI y cáncer mejor caracterizada es el locus IGF2-H19 en el tumor de Wilms (Leick et al., 2012; Uribe-Lewis et al., 2011). Este locus contiene el gen de expresión materna H19 y el gen de expresión paterna IGF2, y la pérdida de impronta genómica en este locus ha sido asociada a gran variedad de tumores (Brouwer-Visser & Huang, 2015; Livingstone, 2013; Raveh, Matouk, Gilon, & Hochberg, 2015), incluyendo los gliomas (Uyeno et al., 1996). Cabe destacar también la mayor predisposición de desarrollar diferentes tipos de cáncer en pacientes con el síndrome de impronta Beckwith-Wiedemann (BWS) que muestran expresión bialélica de IGF2 (Plass & Soloway, 2002). Este evento se encuentra asociado a un aumento de la metilación en la DMR del locus H19-IGF2 y a una disminución en la expresión materna del gen H19 (Plass & Soloway, 2002). El silenciamiento de la expresión materna mediante metilación también ha sido descrito en tumores para el gen improntado que codifica el supresor de tumores p73, un homólogo de p53 (Plass & Soloway, 2002); aunque no siempre el silenciamiento de estos genes es dependiente de metilación (Banelli, Casciano, & Romani, 2000). PEG3 es un gen improntado de expresión paterna implicado en proliferación y apoptosis mediada por p53 (Otsuka et al., 2009). Este gen también ha sido relacionado con diferentes tipos de cáncer como son el cáncer de colon (Zhou et al., 2019) o los gliomas (Kohda et al., 2001; Otsuka et al., 2009). MEG3 es otro de los genes improntados asociados a la proliferación y apoptosis mediada por p53 (Gong &

Huang, 2017; J. Li et al., 2016). En este caso, se trata de un gen de expresión materna situado en el locus *DLK1-MEG3*, que se encuentra silenciado en diversos tumores murinos y humanos, incluyendo los gliomas (Buccarelli et al., 2020; He et al., 2017; Perrera & Martello, 2019). Este locus improntado contiene también el gen de expresión paterna *DLK1* (*Delta-like Homolog 1*) cuya expresión es muy alta en neuroblastoma y GBM (Yin et al., 2006).

Por lo tanto, la alta frecuencia de LOI o de alteraciones en la expresión de genes improntados en diferentes tipos de cáncer, sugieren un papel importante de la impronta genómica en la transformación maligna. De hecho, se ha demostrado la relación entre expresión alterada de *ZFP57*, implicada en el establecimiento de las marcas epigenéticas de impronta genómica, y los GBMs (Cirillo et al., 2014). Además, aunque los cambios de expresión de los genes improntados pueden ir acompañados por alteraciones en los niveles de metilación del DNA en las regiones DMR, se ha observado que el número de pacientes con cáncer que presentan alteraciones en la metilación del DNA es menor que aquellos que presentaban alteraciones en la expresión de genes improntados, sugiriendo que los cambios de metilación del DNA son un evento menos frecuente que los cambios a nivel de expresión (J. Kim et al., 2015). En el caso de la sobre-expresión de *IGF2* en el cáncer de pecho y de colon, la hipometilación de la DMR es más frecuente que la LOI, por lo que el estado de metilación del DMR no es tampoco indicativo exacto de la pérdida del estado de impronta (Y. Ito et al., 2008).

Aunque se han descrito eventos de LOI en gran variedad de cánceres, el origen celular que desencadena un proceso de malignidad todavía se desconoce. Sin embargo, existen diferentes ejemplos que implican a las SCs adultas como las células donde ocurriría esta alteración epigenética (Jelinic & Shaw, 2007; Leick et al., 2012; Sakatani et al., 2005). Uno de los fenómenos encontrados en tumores que apoyan la idea de las SCs adultas como las células de origen del cáncer es la presencia de células no malignas alrededor del tumor en las cuales se detecta LOI, sugiriendo un precursor común en el cual tendría lugar la pérdida de impronta genómica dando lugar a células hijas no tumorales y tumorales, ambos tipos con LOI (Figura 13) (Jelinic & Shaw, 2007). De hecho, en el estudio llevado a cabo por Feinberg AP et al. se propuso la idea de un aumento en la población de SCs como consecuencia de la LOI (por ejemplo, aumentando IGF2), en las cuales podrían acumularse mutaciones (Feinberg, Ohlsson, & Henikoff, 2006), desencadenando el proceso maligno. Esto explicaría además la alta tasa de recurrencia del cáncer en pacientes con LOI.

Figura 13. La LOI en las SCs adultas da lugar a diferentes tipos celulares fisiológicos y tumorales con esta alteración epigenética. La LOI es un evento encontrado de forma frecuente en los tumores humanos. Esta alteración epigenética aparece en las células madre adultas del tejido pero también en los distintos tipos celulares que conforman el tumor, así como en células no tumorales situadas alrededor del tumor, sugiriendo a la célula madre como la célula originaria del tumor que trasmitiría la aberración en la impronta genómica a sus células hijas, tumorales y no tumorales.

Por lo tanto, los estudios realizados sobre impronta genómica y cáncer identifican a este fenómeno epigenético como una potencial y relevante estrategia de diagnóstico precoz y terapéutica en la lucha contra el cáncer, por lo que un mayor entendimiento sobre la impronta genómica y su alteración en el origen y desarrollo del cáncer resulta clave.

Objetivos

El cáncer es la segunda causa de muerte en el mundo debido a la falta de tratamientos eficaces como consecuencia del desconocimiento sobre el origen y las alteraciones responsables de la transformación maligna. El descubrimiento de células madre cancerosas (CSCs) en los tumores con semejanzas a las células madre de tejido, promovieron la teoría de la célula madre cancerosa, que defiende que la transformación maligna ocurriría en estas célula madre de tejido a través de alteraciones genéticas y/o epigenéticas. En el cerebro, entender los mecanismos implicados en la transformación de la NSC es clave para el desarrollo de herramientas de diagnóstico y tratamiento de los tumores cerebrales. Precisamente, la alteración del mecanismo epigenético de impronta genómica es uno de los eventos más comunes y tempranos en el cáncer. Por ello, el principal objetivo de esta tesis es identificar el papel de la impronta genómica y su regulación epigenética en la actividad de las NSCs adultas, y su implicación en el desarrollo de tumores cerebrales.

Los objetivos específicos propuestos en esta Tesis son:

- Estudio de la impronta genómica y su regulación epigenética en célula madre adultas (NSCs) procedentes de la SVZ.
- 2. Estudio del proceso de impronta genómica y su regulación epigenética en el glioblastoma.
- 3. Estudio del papel de la enzima **TET3** en la regulación de la **impronta genómica** durante la **transformación maligna**.

Material y métodos

1. Animales experimentales

Los ratones usados en esta tesis fueron mantenidos en el Servicio de Producción Animal del Campus de Burjassot de la Universitat de València bajo condiciones de 12 horas de luz/oscuridad, a temperatura constante entre 20 y 22 °C, y con acceso libre a comida y agua (ad libitum). Los procedimientos experimentales fueron realizados de acuerdo con las pautas de la ley RD 53/2013 de España y siguiendo los protocolos aprobados por la Comisión de Ética en Investigación Experimental de la Universitat de València. Las camadas fueron destetadas a los 21 días de edad.

En el caso de las técnicas altamente invasivas, como la perfusión, los ratones fueron anestesiados mediante inyección intraperitoneal de una mezcla de Medetomidina (0,5-1 mg por kg de peso del animal; Domtor®) y Ketamina (50-75 mg por kg de peso del animal; Richter Pharma) en solución salina (0,9% de NaCl).

1.1. Cepas murinas

Todos los experimentos fueron realizados en hembras y machos de ratones adultos de entre 2 y 4 meses de edad. Las cepas de ratón utilizadas fueron las siguientes:

- <u>C57BL/6</u> (Mus musculus domesticus): cepa salvaje utilizada como fuente de muestras biológicas para los diferentes experimentos in vitro e in vivo, así como para la expansión de las distintas cepas murinas utilizadas.
- <u>CAST/EiJ (Mus musculus castaneus)</u>: ratones obtenidos de *Jackson Laboratory* (Número de Stock: 000735), que pertenecen a la subespecie de *M. musculus* característica del sudeste asiático, utilizados para los estudios de impronta por seguimiento de SNPs. En esta tesis se han generado animales híbridos mediante cruces recíprocos con la cepa i4F-B de *Mus musculus domesticus*.
- <u>i4F reprogramables:</u> ratones cedidos por el Dr. Manuel Serrano del centro CNIO de Madrid. Este modelo de ratón reprogramable contiene un casete policistrónico inducible por doxiciclina que codifica para los cuatro factores de transcripción murinos, Oct4, Sox2, Klf4 y c-Myc (OSKM), bajo el control de un sistema Tet-On, y el cDNA de una forma optimizada de la proteína reversa transactivadora controlada por tetraciclina rtTA*M2 (rtTA) inserto en el locus *Rosa26* (R26-rtTA; Beard et al., 2006). El tratamiento de estos animales con doxiciclina permite la expresión de dicho casete. Para generar este modelo, fibroblastos fetales (MEFs; del inglés

"mouse embryonic fibobrasts") de ratones R26-rtTA (MEFs R26:rtTA) fueron infectados utilizando un lentivirus con la construcción TetO-OSKM, de manera que al tratar las células con 1 µg/ml de doxiciclina, se reprogramaron dando lugar a células madre pluripotentes inducidas (iPSCs). Estas células pluripotentes fueron expandidas y microinyectadas en blastocistos de 3,5 d.p.c. (day post-coitum) de ratones albinos C57B/6J-Tyr^{c-2J}/J para generar quimeras. Tras los cruces con animales C57BL/6, en la F1 se obtuvieron las líneas modificadas OSKM;R26-rtTA i4F-A e i4F-B (Figura 1A), que se han utilizado en este trabajo, y se caracterizó el punto de integración del transgén en cada caso mediante "gene walking". Se determinó que en la línea i4F-A el casete estaba integrado en uno de los intrones del gen Neto2, que codifica una subunidad transmembrana de los receptores kainato liberadores de glutamato, situado en el cromosoma 8, mientras que, en la línea i4F-B, el casete se encontraba en uno de los intrones del gen Pparg, que codifica para un receptor nuclear implicado en la transmisión de señales de proliferación, situado en el cromosoma 6, al igual que el locus Rosa26 (Figura 1B) (Abad M et al. 2013). En ambos casos comprobaron que dicha inserción no afectaba a la expresión de los genes en los cuales se encontraba el transgén. En este trabajo hemos denominado i4F a una línea derivada de la i4F-A que fue cruzada con ratones C57Bl6 a fin de obtener animales con el casete pero sin el alelo Rrosa26 modificado con el rtTA.

- B6.Cg-Tg(GFAP-rtTA*M2)1Rmra/J (GFAP-rtTA): ratones obtenidos de Jackson Laboratory (Número de Stock: 014098). Portadores del transgén GFAP-rtTA que contiene el promotor de la proteína humana GFAP dirigiendo la expresión de rtTA*M2. Esta cepa proporciona una herramienta Tet-On que permite la expresión inducible de genes en células que expresan Gfap.
- <u>GFAP-rtTA;i4F</u>: ratones generados a partir del cruce entre animales reprogramables i4F-A
 heterocigotos para el transgén OSKM y ratones GFAP-rtTA. Este modelo animal permite la
 expresión inducible por doxiciclina de los 4 factores transcripcionales de forma específica en
 las células positivas para GFAP.
- <u>Nude</u>: ratones obtenidos de Charles River. Ratones homocigotos para una mutación espontánea (*Foxn1nu*, formalmente *Hfh11nu*) que presentan un crecimiento anormal del pelo y defectos en el desarrollo del epitelio del timo. Los ratones *Nude* carecen de un timo funcional y producen un número reducido de células T maduras lo cual les lleva a sufrir una falta de inmunidad celular, por lo que no rechazan tejidos alo- y xenotransplantados.

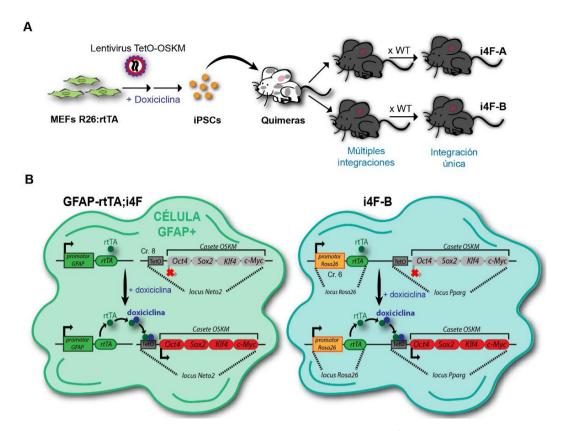


Figura 1. Generación de ratones reprogramables GFAP-rtTA;i4F e i4F-B. A) Esquema de la generación de animales reprogramables i4F-A e i4F-B en el laboratorio del Dr. Manuel Serrano. Fibroblastos embrionarios de ratones portadores del activador rtTA en el locus Rosa26 (MEFs R26:rtTA) fueron infectadas con un lentivirus portador de la construcción TetO-OSKM para generar ratones reprogramables. Mediante el tratamiento con doxiciclina de los MEFs infectados, se obtuvieron iPSCs que fueron inyectadas en ratones albinos C57B/6J-Tyr^{c-2J}/J formando así quimeras. Estos ratones quimera se cruzaron con ratones silvestres (WT; del inglés wild-type) de fondo genético C57/BL6 hasta conseguir una única copia del transgen (integración única) en dos regiones distintas del genoma, dando lugar a las cepas murinas i4F-A e i4F-B. Figura modificada de Abad M et al. 2013. B) Esquema de los modelos reprogramables GFAP-rtTA;i4F e i4F-B (Abad M et al. 2013). Las células GFAP positivas (GFAP+) del modelo GFAP-rtTA;i4F expresan los cuatro factores de transcripción del casete OSKM (situado en el locus Neto2 en el cromosoma 8) en presencia de doxiciclina debido a la presencia del rtTA bajo el promotor de GFAP. Todas células del modelo i4F-B expresan el casete OSKM tras la inducción con doxiciclina debido a la expresión ubicua de Rosa26, promotor bajo el cual está el activador transcripcional rtTA (en el cromosoma 6). En este caso, el transgen se encuentra localizado en el mismo cromosoma que el activador transcripcional, por lo que segregan de forma conjunta.

1.2. Genotipado

El genotipo de las distintas cepas usadas en esta tesis fue determinado mediante reacción en cadena de la polimerasa de punto final (PCR; "Polimerase Chain Reaction") usando DNA genómico extraído de un pequeño fragmento de oreja y procesado de acuerdo con el protocolo establecido en el kit comercial Thermo ScientificTM PhireTM Animal Tissue Direct PCR Kit (Thermo Fisher, nº cat. F140WH). La presencia del alelo mutante o salvaje fue detectada usando 2 μl de DNA genómico a partir de una dilución 1:20, y posterior amplificación mediante PCR usando cebadores específicos (**Tabla 1**). En el caso de las cepas i4F-A y i4F-B se utilizó ReadyMixTM

REDTaq® PCR Reaction Mix with MgCl₂ (Sigma, nº cat. R2648), mientras que la cepa GFAP-rtTA requirió el uso de Kapa 2G HS taq polymerase (Kapa Biosystems, nº cat. KK5510). Las condiciones específicas para cada PCR están detalladas en la **Tabla 1**. Para el genotipado de los animales generados a partir del cruce de la cepa i4F y la cepa GFAP-rtTA, se realizó una PCR para la detección del casete policistrónico y otra PCR para la detección del activador rtTA.

El tamaño de cada producto de PCR fue resuelto mediante electroforesis en gel al 2-3% de agarosa preparado en tampón TAE (40 mM de Tris-HCl pH 7.6, 20 mM de ácido acético y 1 mM de EDTA) con 1x Real Safe (Real©, nº cat. RBMSafe). La detección en el gel del fragmento amplificado se hizo mediante colorante de carga comercial (Thermo fisher, nº cat. F-350). El resultado fue observado y fotografiado mediante luz UV en un transiluminador Kodak.

Tabla 1. Cebadores y condiciones de PCR para el genotipado de las cepas murinas. Se muestran las secuencias, temperatura de hibridación (Tº) y ciclos de amplificación de los cebadores usados. 65TD60 indica un protocolo de PCR con *touch-down* en la que la Tº comienza a los 65 grados durante 15 segundos y reduce 0,5 grados cada ciclo durante 10 ciclos. Tras esto, se realizaron 28 ciclos a 60 grados.

Gen	Secuencia de la sonda (5'-3')	Amplicón	Alelo	T (°C)	Ciclos
i4F-A	125B-F AAAGTCGCTCTGAGTTGTTAT	500 bp	WT	60	40
	127B-R GGAGCGGGAGAAATGGATATG	-			
	ORF2-F GGATGGAGTGGGACAGAGAA	378 bp	OSKM	-	
	ORF2-R GTGCCGATCCGTTCACTAAT	-			
i4F-B	125B-F AAAGTCGCTCTGAGTTGTTAT	500 bp	WT	60	40
	127B-R GGAGCGGGAGAAATGGATATG	-			
	Pparg-F CAGCATCAAATGGCTCGGTA	350 bp	OSKM	-	
	OSKM-R GCACCATCCAAAGGTCAGTG	-			
GFAP-rtTA	oIMR7338 CTAGGCCACAGAATTGAAAGATCT	324 bp	WT	65TD60	10+28
	oIMR7339 GTAGGTGGAAATTCTAGCATCATCC	=			
	12933 GAAGGCGAGTCATGGCAAG	200 bp	rtTA	-	
	12934 CAATACGCAGCCCAGTGTAAA	-			

2. Cultivos celulares

2.1. Cultivo de MEFs

Para testar la capacidad de reprogramación de las células procedentes de ratones i4F-B, se utilizaron MEFs obtenidos a partir de ratones i4F-B portadores del transgén OSKM. Los MEFs se obtuvieron de embriones de 13,5-14,5 d.p.c. a partir de ratonas preñadas de la cepa i4F-B. Los

embriones se extrajeron tras el sacrificio de la madre por dislocación cervical y se colocaron en placas Petri con PBS estéril (Biowest, nº cat. X0515). Los órganos con mucha irrigación sanguínea (corazón, hígado y pulmones) fueron descartados puesto que la sangre puede interferir con el cultivo de los MEFs. Las cabezas de los animales fueron utilizadas para el genotipado de los animales (**Tabla 1**). El resto del cuerpo fue troceado en pequeños fragmentos utilizando una cuchilla (Fine Science Tools, nº cat. 10316-14) y los fragmentos fueron recogidos en tubos de 15 ml con PBS y centrifugados a 200 xg durante 5 minutos. A continuación se eliminó el PBS y se añadieron 3 ml de PBS con tripsina/EDTA al 0,05% (Life Technologies, nº cat. 25200-056) y 100 unidades/embrión de DNAsa I (Labclinics, nº cat. LS002007) previamente filtrada. Las muestras fueron incubadas con dicha solución a 37 °C durante 15 minutos, y agitación cada 5 minutos mediante vórtex. Transcurridos los 15 minutos, la tripsina fue inactivada añadiendo 10 ml de medio de cultivo de MEFs (**Tabla 2**). Las células se centrifugaron a 200 xg durante 5 minutos y se eliminó cuidadosamente el sobrenadante. Finalmente, se sembraron las células de cada embrión en medio de cultivo MEF en un frasco de 75 cm² (T75) previamente tratado con gelatina (Panreac, nº cat. 142060.1210) al 0,2% en PBS (2 horas a 37°C).

Tabla 2. Preparación del "medio MEF". FBS HI (del inglés "*Fetal Bovine Serum High Inactivated"*): suero fetal bovino inactivado mediante calor (55 °C durante 30 minutos).

Reactivo	Concentración trabajo	Concentración stock	Proveedor	Nº Cat.
DMEM High Glucose	1x	1x (4 °C)	Biowest	L0101
FBS HI	10%	Puro (-20 °C)	Labclinics	S181B-500
L-Glutamina	2 mM	200 mM (-20 °C)	Gibco	25030-081
Antibiótico/Antimicótico	1x	100x (-20 °C)	Gibco	15240-062

Los cultivos primarios generados fueron mantenidos durante 24 horas, tras las cuales las células se pasaron y sembraron tras una dilución 1:3 a frascos de T75 previamente gelatinizados y en medio MEF fresco. Para el pase se utilizaron 3 ml de tripsina/EDTA durante 5 minutos a 37°C.

2.2. Cultivo de NSCs

La obtención y cultivo de NSCs se realizó a partir de ratones de ambos sexos de 2 meses de edad de la cepa i4F-B. El protocolo utilizado para ello ha sido descrito previamente por nuestro laboratorio (Ferron SR *et al.* 2007; Belenguer G *et al.* 2016). Los detalles se describen a continuación. Los animales fueron sacrificados mediante la técnica de dislocación cervical. Los cerebros se extrajeron y colocaron en placas con PBS estéril frío (Biowest, nº cat. X0515), y fueron diseccionados bajo la lupa con un par de bisturíes (harpoint™ Stab Knife, 22.5 Degree, Straight nº

cat. 72-2201). Previamente a la disección de la SVZ, los OBs y el cerebelo fueron descartados y ambos hemisferios se separaron para poder diseccionar los nichos neurogénicos (Figura 2). La SVZ fue delimitada de manera que el tejido que rodea la zona fue finamente cortado y descartado, separando ambas SVZ del resto del cerebro. Tras la disección de la región de interés, las SVZ de cada ratón fueron troceadas y enzimáticamente digeridas con una solución de papaína (12U/ratón; Worthington Biochemical Corporation, nº cat. LS003120) previamente activada (30 minutos a 37°C) que contenía 0,2 mg/ml de clorhidrato de L-cisteína (Sigma, nº cat. C8277) y 0,2 mg/ml de EDTA (Sigma, nº cat. E6511) en medio EBSS (Earle´s Balanced Salt Solution, Gibco[™], nº cat. 24010-043). Las muestras se incubaron en esta solución durante 30 minutos a 37°C, y transcurrido dicho tiempo, la papaína fue inactivada con 5 ml de medio NSC control, sin mitógenos (Tabla 3). Tras el lavado, las muestras fueron centrifugadas a 300 xq durante 5 minutos y cuidadosamente disgregadas mecánicamente mediante micropipeta (p1000). Una vez se obtuvo una suspensión celular homogénea, las células se sembraron en medio NSC completo, es decir, medio NSC control con los mitógenos factor de crecimiento fibroblástico básico (bFGF) y factor de crecimiento epidérmico (EGF) (Tabla 4), distribuidas en 8 pocillos en placas de 48 pocillos (p48) en un volumen final de 0,5 ml. Las células fueron incubadas a 37 °C y 5% de CO2 atmosférico durante 5-7 días in vitro (DIV).

En estas condiciones, las células diferenciadas mueren, y las NSCs y sus progenitores proliferan formando agregados clonales llamados neuroesferas (**Figura 2**) hasta alcanzar suficiente tamaño para el subcultivo.

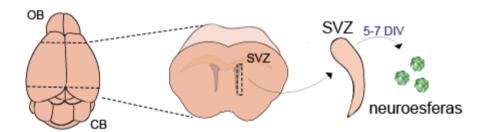


Figura 2. Obtención de células madre neurales de la SVZ de ratones adultos. Las NSCs adultas se obtuvieron a partir de la disección de la SVZ de ambos ventrículos laterales de ratones adultos de dos meses de edad. Para ello, los bulbos olfativos (OB) y el cerebelo (CB) fueron descartados para la visualización de la zona de interés. Una vez obtenidas las SVZs, éstas fueron disgregadas enzimática y mecánicamente hasta conseguir una suspensión celular homogénea que fue sembrada para el cultivo de las NSCs. Éstas crecen en forma de agregados llamados neuroesferas.

Una vez obtenidas las neuroesferas primarias, éstas pueden ser subcultivadas y expandidas mediante disgregación enzimática y siembra de las células individuales en las mismas condiciones. Sólo algunas de las NSCs son capaces de formar nuevas neuroesferas, y dicha capacidad varía en función de diversos factores como la edad o la cepa de los animales.

Las neuroesferas primarias obtenidas fueron recogidas en tubos de 15 ml y centrifugadas a 200 xg durante 5 minutos. El sobrenadante fue eliminado utilizando una bomba de vacío y las neuroesferas se incubaron con 0,2 ml de Acutasa® (Sigma, nº cat. A6964) durante 10 minutos a temperatura ambiente. A continuación, se añadieron 0,8 ml de medio NSC control (**Tabla 3**) y las neuroesferas fueron mecánicamente disgregadas pipeteando con una p1000 unas 10-15 veces. Las células se lavaron en 5 ml de medio NSC control y se centrifugaron a 200 xg durante 5 minutos. Tras el lavado, se resuspendieron en 1 ml de medio NSC completo (**Tabla 4**) y se procedió a la estimación de células viables mediante el sistema de contaje celular automático ADAM-SSC (NanoEnTek® Digital Bio).

Para la expansión de los cultivos, se sembraron 10.000 células/cm 2 en medio NSC completo y se cultivaron a 37 °C y 5% de CO_2 atmosférico. Tras 5-7 DIV en estas condiciones, las nuevas neuroesferas formadas, llamadas neuroesferas secundarias, alcanzaron un tamaño suficiente para un nuevo subcultivo.

Tabla 3. Preparación del "medio NSC control". En la tabla se muestran los reactivos utilizados para la preparación del medio, las concentraciones de trabajo y de los *stocks*, el proveedor y el número de catálogo del producto utilizado. DMEM/F12 (*Dulbecco's Modified Eagle Medium / Ham's F12 Nutrient Mixture*). BSA: *Bovine Serum Albumin*.

Reactivo	Concentración trabajo	Concentración stock	Proveedor	Nº Cat.
DMEM/F12 (1:1)	1x	1x (4 °C)	Gibco	11320-074
D(+)-Glucosa	0,6 %	30% (-20 °C)	Panreac	141341
NaHCO₃	0,1 %	7,5% (4 °C)	Biowest	L0680-500
HEPES	5 mM	1M (4 °C)	Boiwest	L0180-100
L-Glutamina	2 mM	200mM (-20 °C)	Gibco	25030-081
Antibiótico/Antimicótico	1x	100x (-20 °C)	Gibco	15240-062
Mix hormonal	1x	10x (-20 °C)	Casero	(Tabla 5)
Sal Heparina sódica	0,7 U/ml	350 U/ml (4 °C)	Sigma	H3149
BSA	4 mg/ml	Polvo (4 °C)	Sigma	B4287

Tabla 4. Preparación del "medio NSC completo". En la tabla se muestran los reactivos utilizados para la preparación del medio, las concentraciones de trabajo y de los *stocks*, el proveedor y el número de catálogo (Nº Cat.) del producto utilizado. EGF: *Epidermal growth factor*; FGF: *Fibroblast Growth Factor*.

Reactivo	Concentración trabajo	Concentración stock	Proveedor	№ Cat.
Medio NSCs control		Descrito en Tabla	2	
EGF	20 ng/ml	4 μg/ml (-20 °C)	Gibco	530003-018
bFGF	10 ng/ml	25 μg/ml (-20 °C)	Sigma	F0291

Tabla 5. Preparación de la Mix Hormonal 10x. En la tabla se muestran los reactivos utilizados para la preparación del medio, las concentraciones de trabajo y de los *stocks*, el proveedor y el número de catálogo del producto utilizado.

Reactivo	HM 10x	Concentración stock	Proveedor	Nnº Cat.
DMEM/F12 (1:1)	1x	1x (4 °C)	Gibco	11320-074
D(+)-Glucosa	0,6 %	30% (-20 °C)	Panreac	141341
NaHCO ₃	0,1 %	7,5% (4 °C)	Biowest	L0680-500
HEPES	0,5 mM	1M (4 °C)	Biowest	L0180-100
Apo-Transferrina	1 mg/ml	Polvo	Sigma	T2252
Insulina Bovina	14,5 μΜ	145 μM en 0,01N HCl	Sigma	16634
Putrescina	0,1 mg/ml	1 mg/ml	Sigma	P7505
Progesterona	0,2 μΜ	2 mM en 95% etOH	Sigma	P6149
Selenito sódico	0,3 μΜ	3 mM	Sigma	S9133

2.3. Cultivo de líneas de GBM murinas

La línea celular murina de GBM utilizada en este trabajo fue generada y generosamente cedida por el laboratorio de la Dra. Pilar Sánchez Gómez de la Unidad de Neurooncología del Instituto de Salud Carlos III. Los investigadores establecieron cultivos de neuroesferas de ratones con deleciones en los genes supresores de tumores Cdkn2a (p16^{INK4a}) y Cdkn2b (p19^{ARF}) (Gargini R et al. 2020). Las neuroesferas obtenidas fueron infectadas con retrovirus para la sobreexpresión del gen del receptor para el factor de crecimiento epidérmico Egfr e inyectadas en ratones inmunocomprometidos. Los tumores generados fueron disociados y sembrados en medio GBM (Tabla 6) para establecer la línea GBM-EGFR. Estas células expresan GFP y luciferasa como reporteros (Gargini R et al. 2020) y son capaces de formar gliomas con una penetrancia del 100% al ser inyectadas (300.000 células) en ratones inmunocomprometidos (Gargini R et al. 2020). Las células GBM-EGFR fueron cultivadas y expandidas en nuestro laboratorio en medio GBM (Tabla 6), que contiene bFGF y EGF. Para realizar el subcultivo, las células fueron recogidas y centrifugadas a 200 xg durante 5 minutos. El sobrenadante fue aspirado y se procedió a la disgregación enzimática con 0,2 ml de Accumax[™] (Millipore, nº cat. A7089) durante 10 minutos a temperatura ambiente, tras lo cual se añadió 1 ml de medio GBM sin mitógenos a la solución enzimática, se disgregó suavemente de forma mecánica con la micropipeta p1000 y se añadieron 3 ml más de medio. A continuación, se centrifugaron a 200 xg durante 5 minutos y el sobrenadante fue eliminado. Las células fueron entonces sembradas en nuevas placas en medio GBM, con mitógenos, a una dilución 1:3, e incubadas a 37 °C y 5% de CO₂ atmosférico hasta 3-4 días después, cuando se volvió a realizar un subcultivo.

Tabla 6. Preparación del medio GBM. En la tabla se muestran los reactivos utilizados para la preparación del medio, las concentraciones de trabajo y de los *stocks*, el proveedor y el número de catálogo (Nº Cat.) del producto utilizado. La ciprofloxacina, el EGF y FGF se añadieron justo antes del uso.

Reactivo	Concentración trabajo	Concentración stock	Proveedor	Nº Cat.
Neurobasal	0.5x	1x (4 °C)	Gibco	21103049
NaHCO₃	0,1%	7,5% (4 °C)	Biowest	L0680-500
L-Glutamine	2 mM	200 mM (-20 °C)	Gibco	25030-081
Penicilina/Estreptomicina	1x	100x (-20 °C)	Biowest	L0018-100
Sal Heparina sódica	0,4%	40% (4 °C)	Sigma	H3149
B27	0,5x	50x (-20 °C)	Gibco	17504-044
Ciprofloxacina	2 μg/ml	2 mg/ml (4 °C)	Sigma	17850-5G-F
EGF	4 ng/ml	4 μg/ml (-20 °C)	Gibco	530003-018
FGF	20 ng/ml	25 μg/ml (-20 °C)	Sigma	F0291

2.4. Criopreservación y descongelación de las células

Todos los cultivos generados fueron criopreservadas para usos posteriores y así, minimizar el número de ratones utilizados durante esta tesis. Para su criopreservación y tras la disgregación de las células mediante Accutase® o AccumaxTM, las células individuales fueron centrifugadas y resuspendidas en medio según el tipo celular correspondiente suplementado con 10% de DMSO (del inglés "Dimethyl sulfoxide"; Sigma, nº cat. D4540). Una vez resuspendidas, las células fueron transferidas a criotubos (Sarstedt; nº cat. 72.379) y guardados a -80°C en un recipiente de congelación (CoolCellTM, BioCision) diseñado para permitir que la temperatura descienda 1°C/minuto sin el uso de alcoholes u otros fluidos. Pasadas 24 horas, los criotubos fueron trasladados a un tanque de nitrógeno líquido (-196°C) para su almacenaje.

En el caso de la descongelación, los criotubos se incubaron en un baño de agua a 37 °C. Las células fueron entonces transferidas a tubos de 15 ml con 5 ml del medio correspondiente a cada tipo celular, y centrifugadas a 200 xg durante 5 minutos. El sobrenadante fue eliminado y las células fueron resuspendidas y sembradas en el medio de cultivo fresco correspondiente.

3. Reprogramación in vitro mediante el tratamiento con doxiciclina

3.1. Reprogramación de MEFs

El protocolo seguido para la reprogramación de los MEFs se basó en el descrito por el grupo del Dr. Manuel Serrano (Abad et al., 2013) (**Figura 3A**). Dos días antes de la inducción de la expresión de los cuatro factores presentes en el casete, 500.000 MEFs fueron sembrados en

pocillos p6 (9,5 cm²) previamente gelatinizados (0,2%) y lavados con PBS. Tras la adhesión de las células, el medio MEF fue sustituido por medio KsR más la citoquina LIF (**Tabla 7**) y, transcurridos dos días, por medio KsR/LIF con 1 μ g/ml de doxiciclina (Sigma, nº cat. D9891). A partir de este momento, el medio fue cambiado cada dos días y los cultivos fueron monitorizados para la detección de cambios celulares. Tras 10 días en presencia del antibiótico empezaron a observarse agregados celulares que fueron incubados con el anticuerpo SSEA1 (DyLight 488) (Stemgent®, nº cat. 09-0067, 1:100).

La aparición de células positivas para SSEA1 en el cultivo fue considerada como una indicación de que las células se encontraban en un estadío temprano de la reprogramación a iPSCs, y en este momento fueron denominadas pre-iPSCs. Estas pre-iPSCs proliferaron formando clones de células SSEA1 que fueron aislados individualmente bajo la lupa y disgregados con AccumaxTM. La suspensión celular fue sembrada en placas tratadas con gelatina y en medio KsR/LIF más doxiciclina con el fin de expandir los cultivos de pre-iPSCs. Finalmente, la doxiciclina fue retirada del medio para permitir la reprogramación completa a iPSCs (iPSCs-MEF) (**Figura 3A**).

3.2. Reprogramación de NSCs adultas

Las NSCs fueron obtenidas de la SVZ de ratones i4F-B adultos de dos meses de edad. Con el fin de inducir la expresión del transgén OSKM, las células fueron cultivadas en medio NSC completo (con mitógenos) con 1 µg/ml de doxiciclina desde el cultivo primario, y mantenidas en estas mismas condiciones tras cada pase hasta la detección del marcador SSEA1 con la metodología descrita antes. La aparición de este marcador fue acompañada de la adhesión de las células a la placa, por lo que se procedió a pasarlas y sembrarlas en medio ES/LIF (Tabla 8) con 1 μg/ml de doxiciclina sobre placas previamente tratadas con 0,1% de gelatina (20 minutos a 37 °C). La presencia de suero y LIF en el medio ES/LIF promovió la formación de clones de células positivas para SEEA1, estadio celular que denominamos de pre-iPSCs. En este momento, las células fueron pasadas a medio 2i/LIF (Tabla 9) en presencia de 1 μg/ml de doxiciclina sobre nuevas placas tratadas con 0,1% de gelatina. Este medio está basado en la inhibición dual (2i) de la señalización de las enzimas MAPK y GSK3, combinado con LIF. Este medio definido permite que las pre-iPSCs alcancen un estado más avanzado de pluripotencia con alta eficiencia (Silva J et al. 2008). El medio 2i/LIF fue cambiado cada dos días hasta que aparecieron colonias de iPSCs bien definidas. Para la expansión de estas células, las colonias fueron subcultivadas utilizando Accumax[™] durante 10 minutos a temperatura ambiente. Finalmente, las células iPSCs generadas a partir de las NSCs (iPSCs-NSC) fueron disgregadas y sembradas a una dilución 1:5 en placas tratadas con 0,1% de gelatina y sin doxiciclina (Figura 3B).

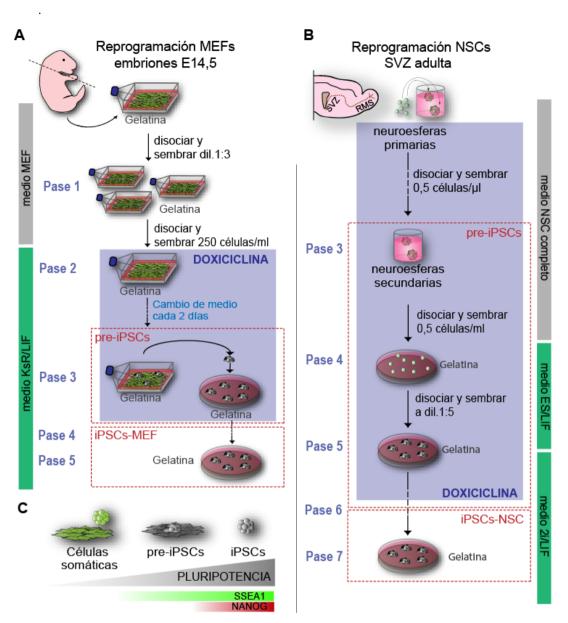


Figura 3. Reprogramación in vitro de MEFs y NSCs de ratones reprogramables i4F-B con doxiciclina. A) Protocolo de reprogramación de MEFs en iPSCs. Los MEFs se obtuvieron de la disgregación de embriones i4F-B E14,5 y se cultivaron en medio MEF sobre placas gelatinizadas. Tras 24 horas, las células fueron pasadas mediante disociación y sembradas haciendo una dilución 1:3. En el siguiente subcultivo las células fueron sembradas en medio KsR/LIF. Para la reprogramación se añadió 1µg/ml de doxiciclina al medio KsR/LIF y tras varios cambios de medio, las células formaron clones con características de pluripotencia (SSEA1 positivas). Estas células, llamadas pre-iPSCs, fueron pasadas y la doxiciclina fue retirada del medio, permitiendo la reprogramación final de los MEFs en iPSCs (iPSCs-MEF). B) Protocolo de reprogramación de NSCs en iPSCs. La SVZ de ratones adultos i4F-B fueron diseccionadas y las NSCs fueron cultivadas en medio NSC (con los mitógenos FGF y EGF) en presencia de 1µg/ml de doxiciclina. Tras 2-3 pases, cuando las células comenzaron a expresar el marcador temprano de pluripotencia SSEA1 (pre-iPSCs), fueron disgregadas y sembradas en medio ES/LIF 15% suero (FBS) en presencia de doxiciclina. Las placas fueron previamente tratadas con gelatina al 0,1%. Las células comenzaron a formar clones que fueron pasados y cultivados en presencia de los inhibidores iMEK e iGSK3β (medio 2i/LIF), condición en la cual las iPSCs empezaron a formar clones positivos también para Nanog. La adquisición final de un estado de pluripotencia completo (iPSCs-NSC) requirió de la eliminación de la doxiciclina del medio. C) Representación esquemática de la aparición de los marcadores asociados con pluripotencia SSEA1 (verde) y Nanog (rojo) durante la adquisición de la pluripotencia. Las células de origen MEFs o NSCs son negativas para ambos marcadores. Las pre-iPSCs expresan el marcador SSEA1, pero no Nanog, que las iPSCs expresan ambos marcadores.

3.3. Obtención del factor inhibidor de leucemia (LIF)

Para que la reprogramación de los MEFs y las NSCs a iPSCs tenga lugar, es necesario la presencia de LIF en el medio de cultivo. El LIF es un factor implicado en la inhibición de la diferenciación de las ESCs, manteniendo su estado pluripotente indiferenciado (N. A. Nicola & Babon, 2015; Williams et al., 1988). El LIF es requerido también para la generación y mantenimiento de las iPSCs a partir de células somáticas (Graf, Casanova, & Cinelli, 2011). Para su obtención, el sobrenadante de células COS7 transfectadas con el plásmido pCAGGs-LIF fue recogido y testado en células ESCs murinas utilizando una dilución 1:50.000 a partir del sobrenadante. El sobrenadante conteniendo el factor LIF fue congelado y mantenido a -20 °C para posteriores usos.

Tabla 7. Preparación del medio KsR/LIF. En la tabla se muestran los reactivos utilizados para la preparación del medio, las concentraciones de trabajo y de los *stocks* y el proveedor y el número de catálogo del producto utilizado. NEAA: Aminoácidos no esenciales (del inglés "*Non essential aminoacids*"). El LIF fue añadido fresco al medio.

Reactivo	Concentración trabajo	Concentración stock	Proveedor	Nº Cat.
DMEM High Glucose	1x	1x (4 °C)	Biowest	L0101
Suero KsR	15%	Puro (-20 °C)	Puro (-20 °C)	
L-Glutamina	2 mM 200 mM (-20 °C)		Gibco	25030-081
NEAA	1x	100x (4 °C)	Gibco	11140050
Piruvato Sódico	1 mM	100 mM (4 °C)	Gibco	11360070
Penicilina/Estreptomicina	1x	100x (-20 °C)	Biowest	L0018-100
β-mercaptoetanol	0,1 mM	1 M (4 °C)	Sigma	M6250
LIF	1x	1000x (-20 °C)	Casero*	

Tabla 8. Preparación del medio ES/LIF. En la tabla se muestran los reactivos utilizados para la preparación del medio, las concentraciones de trabajo y de los *stocks* y el proveedor y el número de catálogo del producto utilizado. El LIF fue añadido siempre fresco al medio.

Reactivo	Concentración trabajo	Concentración stock	Proveedor	Nº Cat.
DMEM High Glucose	1x	1x (4 °C)	Biowest	L0101
FBS HI	15%	Puro (-20 °C)	Labclinics	S181B-500
L-Glutamina	2 mM	200 mM (-20 °C)	Gibco	25030-081
NEAA	1x	100x (4 °C)	Gibco	11140050
Piruvato Sódico	1 mM	100 mM (4 °C)	Gibco	11360070
Penicilina/Estreptomicina	1x	100x (-20 °C)	Biowest	L0018-100
β-mercaptoetanol	0,1 mM	1 M (4 °C)	Sigma	M6250
LIF	1x	1000x (-20 °C)	Casero*	

Tabla 9. Preparación del medio 2i/LIF. En la tabla se muestran los reactivos utilizados para la preparación del medio, las concentraciones de trabajo y de los *stocks* y el proveedor y el número de catálogo (Nº Cat.) del producto utilizado. El LIF fue añadido siempre fresco al medio.

Reactivo	Concentración trabajo	Concentración stock	Proveedor	Nº Cat.
Neurobasal	0,5x	1x (4 °C)	Gibco	21103049
DMEM/F12 (1:1)	0,5x	1x (4 °C)	Gibco	11320-074
NaHCO ₃	0,1%	7,5% (4 °C)	Biowest	L0680-500
L-Glutamina	2 mM	200 mM (-20 °C)	Gibco	25030-081
NEAA	1x	100x (4 °C)	Gibco	11140050
Piruvato Sódico	1 mM	100 mM (4 °C)	Gibco	11360070
Penicilina/Estreptomicina	1x	100x (-20 °C)	Biowest	L0018-100
B27	0,5x	50x (-20 °C)	Gibco	17504-044
β-mercaptoetanol	0,1 mM	1 M (4 °C)	Sigma	M6250
Mix Hormonal N2	1x	10x (-20 °C)	Casero *	
LIF	1x	1000x (-20 °C)	Casero *	
iMEK	1 μΜ	10 mM (-20 °C)	Millipore	444968
iGSK3β	3 μΜ	10 mM (-80 °C)	Millipore	361571

Tabla 10. Preparación de la Mix Hormonal (HM) N2 10x. En la tabla se muestran los reactivos utilizados para la preparación de la Mix Hormonal, las concentraciones de trabajo y de los *stocks* y el proveedor y el número de catálogo (№ Cat.) del producto utilizado. BSA: Albúmina del suero bovino (del inglés "*Bovine Serum Albumin*"). Se preparó a 10x y se mantuvo a -20°C hasta su uso.

Reactivo	HM N2 10x	Concentración stock	Proveedor	Nº Cat.
DMEM/F12 (1:1)	1x	1x (4 °C)	Gibco	11320-074
D(+)-Glucosa	0,6 %	30% (-20 °C)	Panreac	141341
NaHCO₃	0,1 %	7,5% (4 °C)	Biowest	L0680-500
HEPES	5 mM	1M (4 °C)	Biowest	L0180-100
Apo-Transferrina	1 mg/ml	Polvo (-20 °C)	Sigma	T2252
Insulina Bovina	50 μg/ml	5 mg/ml en 0,01N HCl (-20 °C)	Sigma	16634
Putrescina	160 μg/ml	160 mg/ml (-20 °C)	Sigma	P7505
Progesterona	60 ng/ml	0,6 mg/ml en 95% etOH (-20 °C)	Sigma	P6149
Selenito sódico	0,3 μΜ	3 mM (-20 °C)	Sigma	S9133
BSA	0.5 mg/ml	75 mg/ml (4 °C)	Sigma	B4287

4. Caracterización de las iPSCs

4.1. Detección de la actividad fosfatasa alcalina (AP)

Las células reprogramadas fueron fijadas con metanol frío (-20 °C) durante 2 minutos y lavadas 3 veces con el tampón Tris-HCl 0,1 M pH 8,5. A continuación, las muestras se incubaron con una solución de tinción compuesta por fosfato de Naftol 0,1 mg/ml (Sigma, nº cat. N4875), Dimetilformamida 0,5% (Sigma, nº cat. D4551) y Fast Red Salt 0,6 mg/ml (Sigma, nº cat. F2256)

en el tampón Tris-HCl 0,1 M pH 8,5. Tras la incubación, las células pluripotentes adquirieron una tonalidad roja, momento en el que fueron lavadas de nuevo con el tampón Tris-HCl y posteriormente, con agua destilada. Se obtuvieron imágenes de las células positivas para la AP utilizando el microscopio invertido.

4.2. Formación de cuerpos embrioides (EBs)

La capacidad de las iPSCs de formar tipos celulares pertenecientes a las tres capas embrionarias fue testada mediante el ensayo de formación de EBs por los métodos de la gota colgante y de flotación, tras la disgregación de las iPSCs utilizando AccumaxTM y posterior lavado con medio EB (**Tabla 11**).

En el ensayo de diferenciación en EBs por gota colgante, las células fueron centrifugadas a 300 xg durante 5 minutos y resuspendidas en 1 ml de medio EB. Se cuantificó el número de células y se preparó una solución de 30.000 células/ml. Esta suspensión celular fue sembrada en forma de gotas de 20 μl (600 células por cada gota) en placas Petri, por su menor adhesión celular, usando una pipeta multicanal. Las placas fueron incubadas boca abajo durante 3 días en un incubador humidificado a 37 °C y 5% de CO₂. Pasados 3 días, las placas fueron invertidas y las células se recogieron utilizando un volumen de 10 ml de medio EB y fueron sembradas en nuevas placas tratadas previamente con una solución de 0,4% de poly (2-HEMA) (Sigma, nº cat. P3932) preparada en etanol:acetona (1:1) para evitar la adhesión celular (VWR, nº cat. 83813.360; Panreac, nº cat. 131007.1611). Los EBs en formación, creciendo ahora en flotación, fueron incubados 4 días más en un incubador humidificado a 37 °C y 5% de CO₂. Transcurridos 4 días, los EBs fueron recogidos en tubos de 15 ml y se dejaron decantar al fondo del tubo para la eliminación del medio. En este momento, los EBs se sembraron en placas tratadas con 0,1% de gelatina durante 3 días más en medio EB y a 37 °C y 5% de CO₂ para posterior análisis (**Figura 4A**).

En el ensayo de diferenciación en EBs por flotación, se generó igualmente una solución de 30.000 células/ml que se sembró en placas Petri tratadas previamente con 0,4% de poly (2-HEMA) preparada en etanol:acetona (1:1) en un volumen de 10 ml de medio EB. Las células permanecieron en estas condiciones durante 4 días en un incubador humidificado a 37 °C y 5% de CO₂, tras lo cuales, los EBs en formación se recogieron en tubos de 15 ml por decantación. El medio fue eliminado y los EBs se sembraron de nuevo en placas tratadas con gelatina al 0,1% durante 3 días más en un incubador humidificado a 37 °C y 5% de CO₂ para su posterior análisis (Figura 4B).

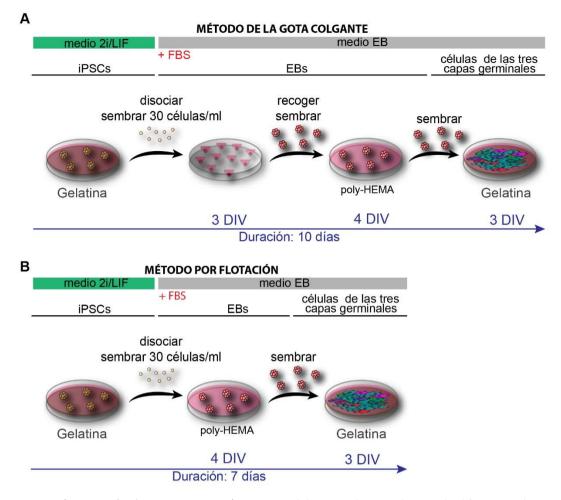


Figura 4. Diferenciación de iPSCs en EBs. A) Esquema del protocolo seguido para la diferenciación a EBs siguiendo el método de la gota colgante. Las iPSCs que crecen sobre gelatina son disociadas y sembradas en medio EB con una concentración de 30 células/μl, en forma de gotas con 20 μl de la suspensión celular cada una. Las placas son invertidas e incubadas durante 3 días (3 DIV) tras los cuales los agregados celulares se recogen y siembran en placas tratadas con poly-HEMA para evitar que se adhieran. Transcurridos 4 días, las esferas se siembran sobre placas tratadas con gelatina durante 3 días más, permitiendo la aparición de células pertenecientes a las tres capas germinales. B) Esquema del protocolo de diferenciación de las iPSCs a EBs mediante la estrategia de flotación. Las iPSCs son disgregadas y sembradas con una densidad de 30 células/μl en medio EB sobre placas tratadas con poly-HEMA. Pasados 4 días, los EBs son sembrados sobre placas tratadas con gelatina durante 3 días más permitiendo la aparición de células de las tres capas germinales.

Tabla 11. Preparación del medio EB. En la tabla se muestran los reactivos utilizados para la preparación del medio, las concentraciones de trabajo y de los *stocks* y el proveedor y el número de catálogo (№ Cat.) del producto utilizado. FBS HI: *Fetal Bovine Serum Heat Inactivated*. La inactivación del suero por calor se hizo mediante incubación del suero a 55°C durante 30 minutos.

Reactivo	Concentración trabajo	Concentración stock	Proveedor	Nº Cat.
GMEM	1x	1x (4 °C)	Biowest	G5154
FBS HI	15%	Puro (-20 °C)	Labclinics	S181B-500
L-Glutamina	2 mM	200 mM (-20 °C)	Gibco	25030-081
NEAA	1x	100x (4 °C)	Gibco	11140050
Piruvato Sódico	1 mM	100 mM (4 °C)	Gibco	11360070
Penicilina/Estreptomicina	1x	100x (-20 °C)	Biowest	L0018-100
B-mercaptoetanol	0,1 mM	1 M (4 °C)	Sigma	M6250

4.3. Cariotipado de iPSCs

Para detectar posibles aberraciones cromosómicas durante la reprogramación se realizó un estudio del cariotipo de las iPSCs. Para ello, se realizó un subcultivo de iPSCs adheridas a gelatina y, trascurridas 24 horas (semiconfluentes), la división celular fue inhibida mediante 0,6 μg/ml de Colcemida KarioMAX® (Gibco, nº cat. 15210-0.40) a 37 °C durante 2 horas. Pasado este tiempo, se añadió citrato sódico al 0,85% (Panreac, nº cat. 131655.1211), previamente atemperado a 37 °C para generar un choque hipotónico. A continuación, las células se levantaron utilizando un telilla de nylon (Scraper celular, Biofil®) y se recogieron en tubos de 15 ml para posteriormente ser incubadas a 37 °C durante 15 minutos, tras lo cual se añadieron 10 gotas del fijador metanol:ácido acético (3:1) (Sigma, nº cat. 32213-2; LabKem, nº cat. ACAC-GOP) frío mediante pipeta Pasteur y se mezcló suavemente usando una pipeta de plástico. Las células fueron centrifugadas a 300 xg durante 10 minutos y lavadas tres veces con 5 ml del mismo fijador, esperando 10 minutos entre cada centrifugación con el fijador frío. Finalmente, tras la última centrifugación se eliminó bien el sobrenadante y se añadieron 2-4 gotas de fijador frío. Finalmente, se realizaron las extensiones de cromosomas dejando caer una gota de la muestra sobre portaobjetos inclinados 90° al mismo tiempo que se fijaron por calor. El contraste de los cromosomas se realizó utilizando la tinción Giemsa (Panreac, nº cat. 251338.1611) durante 5 minutos y posterior lavado con agua destilada. El número de cromosomas fue contado utilizando un microscopio vertical (Nikon Eclipse Ni).

4.4. Reactivación del cromosoma X

Para detectar la reactivación del cromosoma X en las iPSCs, se realizó el análisis de expresión del gen asociado al silenciamiento *Xist* (Pasque & Plath, 2015) (**Tabla Suplementaria 4**), así como del gen asociado a su represión *Tsix* (Ohhata & Wutz, 2013; Pasque & Plath, 2015) (**Tabla Suplementaria 4**), mediante PCR cuantitativa (qPCR) (apartado 11 Material y Métodos). También se analizó la expresión del gen *Fosfoglicerato quinasa* o *Pgk1* (**Tabla Suplementaria 4**), localizado en el cromosoma X. Se utilizaron iPSCs-NSC procedentes de ratones macho para comparar con respecto a las iPSCs hembras.

4.5. Diferenciación de las iPSCs a NPs

La diferenciación a neuroprogenitores (NPs) de las iPSCs se realizó siguiendo el protocolo previamente descrito en (Bibel et al., 2007). Se sembraron 4 x 10⁶ iPSCs-NSC en placas Petri p100 tratadas previamente con una solución de 0,4% de poly (2-HEMA) en un volumen de 15 ml de medio NPs (**Tabla 12**). El medio fue cambiado a los dos días mediante la transferencia cuidadosa de los agregados formados en suspensión a tubos de 50 ml. Se esperó durante 3-5 minutos para

que estos agregados sedimentaran al fondo y poder así eliminar el medio. Las células fueron resuspendidas cuidadosamente en 15 ml de medio NPs y sembradas de nuevo en las mismas condiciones. Dos días después, el medio fue cambiado nuevamente por medio NPs fresco pero añadiendo 5 μ M de ácido retinoico (RA) (Sigma, nº cat. R2625) y se refrescó tras dos días. Dos días después, se recogieron los NPs para la obtención del DNA y RNA.

Tabla 12. Preparación del medio NPs. En la tabla se muestran los reactivos utilizados para la preparación del medio, las concentraciones de trabajo y de los *stocks* y el proveedor y el número de catálogo (№ Cat.) del producto utilizado.FBS HI: *Fetal Bovine Serum Heat Inactivated*. La inactivación del suero por calor se hizo mediante incubación del suero a 55°C durante 30 minutos.

Reactivo	Concentración trabajo	Concentración stock	Proveedor	Nº Cat.
DMEM/F12 (1:1)	1x	1x (4 °C)	Gibco	11320-074
FBS HI	10%	Puro (-20 °C)	Labclinics	S181B-500
L-Glutamina	2 mM	200 mM (-20 °C)	Gibco	25030-081
NEAA	1x	100x (4 °C)	Gibco	11140050
Penicilina/Estreptomicina	1x	100x (-20 °C)	Biowest	L0018-100
β-mercaptoetanol	0,1 mM	1 M (4 °C)	Sigma	M6250

5. Reprogramación in vivo mediante el tratamiento con doxiciclina

5.1. Reprogramación in vivo de la cepa i4F-B

Los animales i4F-B fueron tratados con 0,2 mg/ml de doxiciclina (Sigma, nº cat. D9891) en el agua (Bezoya) de beber edulcorada con 7,5% de sacarosa (LabKem, nº cat. SUCR-00A) durante 2,5 semanas. Un estudio previo realizado en nuestro laboratorio por la Dra. Raquel Montalbán Loro, permitió comprobar que la dosis idónea para el estudio era 0,2 mg/ml ya que dosis mayores (0,5 mg/ml y 1 mg/ml) eran letales para estos animales. También se realizó un análisis en el que se observó que los efectos del tratamiento con doxiciclina no eran dependientes del sexo del animal. Para este estudio de género se utilizaron animales i4F-B hembras y machos por separado para analizar la inducción de la expresión del transgén OSKM, no observándose diferencias entre ambos sexos ni en la expresión del casete ni en la mortalidad del tratamiento. El biberón con el cual se les suministraba el agua fue tapado con papel de aluminio con el fin de evitar que la luz degradase la doxiciclina y el agua fue cambiada cada dos días. La sacarosa fue utilizada para disimular el sabor de la doxiciclina y, de este modo, favorecer la ingesta del antibiótico. Se midió el volumen de agua ingerida por los animales, así como el peso de éstos, para controlar el consumo de agua y evitar una deshidratación a la vez que controlar la ingesta del antibiótico. Este mismo seguimiento fue realizado en ratones que no eran portadores del casete OSKM y que

sirvieron como controles experimentales. Animales portadores del casete policistrónico y del activador transcripcional pero sin tratamiento con doxiciclina también se utilizaron como control. Después de 2,5 semanas, el tratamiento fue interrumpido. La expresión del casete OSKM y de marcadores indicadores de que la reprogramación había tenido lugar fueron analizados en diversos tejidos, incluyendo cerebro, tras la aparición de síntomas de posibles neoplasias.

5.2. Reprogramación in vivo de la cepa GFAP-rtTA;i4F

Para conseguir la reprogramación de esta cepa, los animales i4F portadores del casete policistrónico OSKM fueron cruzados con animales GFAP-rtTA con el fin de reprogramar de manera específica las células que expresan el gen *Gfap*. Los ratones GFAP-rtTA;i4F fueron tratados con 1 mg/ml de doxiciclina y 7,5% de sacarosa en el agua de beber. Para este estudio se utilizaron como controles animales i4F, portadores del transgén OSKM pero sin el activador GFAP-rtTA. Como en el caso de estos experimentos no se esperaba la formación de tumores fuera del SNC, el tratamiento con doxiciclina fue de 1 mg/ml y duró 4 semanas. A pesar de no esperar efectos en el peso de los animales, se controló cada dos días el consumo de agua y la variación en el peso de los ratones.

Tras las 4 semanas de tratamiento, la doxiciclina y la sacarosa fueron retiradas del agua y se esperó un mes para el sacrificio y obtención de muestras de los ratones tratados. Por un lado, los cerebros fueron embebidos en agar al 0,4% para ser cortados con vibratomo (Leica VT1200) a 200 μm de grosor para la detección de tumores y el análisis de la expresión génica. También se hizo análisis a partir de material fijado; para ello, los ratones fueron sacrificados por perfusión intracardiaca con solución salina al 0,9% para eliminar las células sanguíneas durante 5 minutos, seguido de paraformaldehído (PFA) al 4% en 0,1 M de PBS pH 7,4 con un flujo de 5,5 ml/min durante 10 minutos. Tras la perfusión, el cerebro de los animales fue extraído y post-fijado durante 1 hora en PFA al 4% en agitación a 4 °C, tras lo cual, se eliminó el PFA y se lavaron los cerebros con PBS 0,1 M pH 7,4. Los cerebros fijados se cortaron coronalmente mediante vibratomo a 100 μm de grosor para su posterior procesado.

5.3. Cultivo de células de cerebros de animales GFAP-rtTA;i4F reprogramados

La obtención de células tumorales de animales GFAP-rtTA;i4F tratados con doxiciclina se realizó mediante la disgregación del cerebro de estos animales y posterior cultivo en medio GBM (**Tabla 6**). Para ello, los cerebros fueron fragmentados y disgregados utilizando Neural Tissue Dissociation kit (T) (Miltenyi, nº cat. 130-093-231) mediante gentleMACS Octo Dissociator (Miltenyi), siguiendo las instrucciones del fabricante. Para inhibir la acción de la enzima tripsina se utilizaron 3 ml de 100 μg/ml de inhibidor de tripsina (Sigma, nº cat. T6522) diluido en medio

GBM (**Tabla 6**) y los fragmentos digeridos fueron mecánicamente disociados. La suspensión celular fue posteriormente filtrada utilizando filtros nylon de 40 μ m (Labclinics, nº cat. plc93040) y los filtros fueron lavados con 5 ml más de medio GBM. Las células fueron posteriormente centrifugadas a 200 xg durante 10 minutos y resuspendidas en medio GBM con mitógenos para ser sembradas a 37 °C al 5% de CO_2 . Se realizó un subcultivo de estas células cada cuatro días.

6. Caracterización de las líneas celulares de GBM

6.1. Nucleofeción de líneas celulares de GBM

Para inducir la sobre-expresión del gen *Tet3* en la línea celular de GBM murina GBM-EGFR utilizamos el sistema piggyBAC transposasa que permitió la sobre-expresión constitutiva de dicho gen usando el plásmido pIG-TET3 FL (GMB^{Tet3}) o pIG-TET3 FL con el dominio catalítico mutado (GBM^{Tet3} CDmut) (**Figura 5**). El vector utilizado para la sobre-expresión de *Tet3* con el dominio catalítico mutado se basó en la mutación de 3 bases en la secuencia del exón 9 del gen, dando lugar a la modificación de dos aminoácidos de la enzima TET3 que impiden la actividad de desmetilación de esta proteína (**Figura 5**). Estos plásmidos permitieron la selección de las células nucleofectadas con el antibiótico blasticidina (5 μg/ml). Como control, las células GBM-EGFR fueron nucleofectadas con el vector vacío pIG-EV-GFP (GMB^{control}) (**Figura 5**), las cuales fueron igualmente seleccionadas con el antibiótico blasticidina. Estos plásmidos fueron generosamente cedidos por el Dr. Wolf Reik (Brabaham Institute, Cambridge, UK).

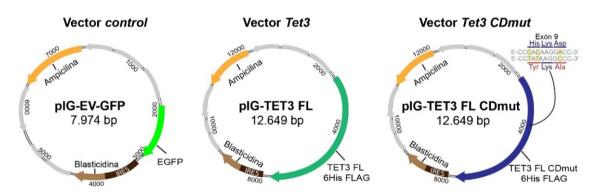


Figura 5. Vectores para la sobre-expresión de *Tet3* en el GBM. Con el fin de sobre-expresar el gen *Tet3* en la línea de glioblastoma GBM-EGFR, se utilizó el vector pIG-EV-GFP (parte superior) como control generando la línea GBM^{control}, mientras que el vector pIG-TET3 FL (parte inferior) conteniendo el gen *Tet3*, fue utilizado para sobre-expresar el gen (GBM^{Tet3}). También se utilizó la sobre-expresión de Tet3 con el dominio catalítico mutado mediante el vector pIG-TET3 FL CDmut (GBM^{Tet3} CDmut). Los tres vectores presentan resistencia a blasticidina y ampicilina; y fueron cedidos por el Dr. Wolf Reik (Universidad de Cambridge).

Para la nucleofección de las líneas de GBM, el medio GBM (**Tabla 6**) fue sustituido por medio GBM sin penicilina/estreptomicina (P/S). Se disgregaron y centrifugaron 2x10⁶ células a las cuales se les añadió directamente 5 µl de mezcla de DNA conteniendo 5,8 µg del plásmido pIG-Tet3 FL

(GBM^{Tet3}), pIG-Tet3 FL CDmut (GBM^{Tet3 CDmut}) o del vector vacío pIG-EV-GFP (GBM^{control}) y 1,2 μg de la transposasa (situada bajo el promotor CAG, generosamente cedida por la Dra. Cristina Gil de la Universidad de Valencia). A continuación, se añadieron 95 μl de la Solución de Nucleofección del kit Mouse Neural Stem Cell NucleofectorTM (Lonza, nº cat. VPG-1004) y la mezcla fue resuspendida y puesta en una cubeta NucleofactorTM (Amaxa). Las células fueron electroporadas utilizando el programa A-31 del NucleofectorTM 2b (Amaxa). Rápidamente las células fueron recogidas y sembradas en frascos de T25 con medio completo previamente atemperado, e incubadas a 37 °C y 5% de CO₂. La selección de las células electroporadas se realizó mediante el tratamiento con 5 μg/ml de blasticidina 48 horas tras la nucleofección, que fue retirado 48 horas después.

6.2. Estudio del ciclo celular

Las células de GBM nucleofectadas GMB^{control}, GMB^{Tet3} y GMB^{Tet3} CDmut fueron sembradas en medio GBM a una densidad de 10.000 células/cm² e incubadas a 37 °C y 5% de CO² durante dos días, tras los cuales fueron recogidas y centrifugadas a 300 xg durante 5 minutos. Las células se disgregaron mediante AccumaxTM durante 10 minutos a temperatura ambiente para obtener una suspensión de células individuales que fueron teñidas utilizando BD CycletestTM Plus DNA Kit (BD FACs, nº cat. 340242), siguiendo el protocolo indicado por el fabricante. Este kit permitió el análisis de las fases del ciclo celular en estos cultivos mediante la tinción con yoduro de propidio. Como control negativo de la tinción se realizaron todos los pasos del protocolo excepto la incubación con el yoduro de propidio. Los porcentajes de células en cada fase del ciclo celular fueron determinados mediante citometría de flujo con FACSVerse (BD) y analizados posteriormente con el software FlowJo® descartando los dobletes de células y fragmentos celulares.

6.3. Ensayo de tumoresferas

Las células de GBM nucleofectadas GMB^{Tet3}, GMB^{Tet3} cDmut o GMB^{control} fueron disgregadas mediante AccumaxTM como en apartados anteriores. Una vez obtenido el precipitado celular tras la centrifugación y eliminación del sobrenadante, éste fue resuspendido en el medio GBM con mitógenos y el número de células viables fue determinado usando el contador automático ADAM-SSC. Las células fueron sembradas a baja densidad, 2.500 células en pocillos p96, en medio GBM con mitógenos y tras 4 días a 37°C a 5% de CO₂, el número de tumoresferas formadas fue contado manualmente utilizando un microscopio invertido de contraste de fases.

6.4. Ensayo de proliferación mediante marcaje con EdU

La detección de células en fase S del ciclo celular se realizó mediante incorporación del análogo de timidina EdU (5-etinil-2'-deoxiuridina) y posterior revelado. Para ello, las células fueron sembradas sobre Matrigel® (Corning®, nº cat. 354230) para su adhesión, tras lo cual fueron incubadas durante 1 hora en presencia de EdU 10 µM (Click-It® EdU Imaging Kits, nº cat. C10338) siguiendo las indicaciones del fabricante. Transcurrida una hora de incubación, el medio fue retirado y se procedió al lavado con PBS 1x y posterior fijación con PFA al 4% durante 15 minutos a temperatura ambiente. Tras la fijación, las células fueron lavadas dos veces con BSA al 3% preparada en PBS 1x, y a continuación se realizó la permeabilización de las membranas mediante 0,5% de Triton® X-100 (Sigma, nº cat. P1379) durante 20 minutos a temperatura ambiente. Finalmente, se llevó a cabo el revelado de la EdU, mediante solución de reacción Click-iT®, siguiendo las indicaciones del fabricante. El porcentaje de células EdU positivas fue estimado a partir del número de células totales obtenidas mediante la tinción nuclear con DAPI.

6.5. Ensayo de adhesión

La capacidad de adhesión de las líneas de GBM fue medida mediante un ensayo in vitro en presencia de fibroblastos modificados para la sobre-expresión de la molécula de adhesión N-Cadherina (NC-929), debido a la relación entre la capacidad de invasión/migración de los gliomas y la expresión de la molécula de adhesión N-cadherina (Noh et al., 2017; Peglion & Etienne-Manneville, 2012). Para ello, 24 horas antes del ensayo, fueron sembradas 40.000 células/pocillo (en placa de 96) de los fibroblastos NC-929 en medio Snl (Tabla 13). Después de 24 horas los fibroblastos alcanzaron la confluencia, tras lo cual, las células GBM fueron recogidas en tubos de 15 ml y centrifugadas a 200 xg durante 10 minutos. A continuación, las células GBM fueron resuspendidas y disgregadas mecánicamente en medio GBM con una micropipeta p200 unas 20 veces. Un total de 1x106 células, estimado utilizando un ADAM-SSC, fueron centrifugadas a 200 xq 10 minutos y resuspendidas en 500 µl de HBSS-Hepes (1:100) sin Ca²⁺ ni Mg²⁺ (VWR, nº cat. X0509). Para marcar las células de GBM se les añadió 1 μl del fluoróforo CellTraceTM Oregon Green[™] 488 Carboxylic Acid Diacetate, Succinimidyl Ester (Carboxy-DFFDA, SE; Invitrogen[™], nº cat. C34555) y se incubaron durante 8 minutos en el baño a 37 °C, protegidas de la luz. Transcurrido dicho tiempo, se lavaron las células con medio GBM y se centrifugaron a 200 xg durante 10 minutos, tras lo cual, se resuspendieron en 1 ml de medio GBM. Nuevamente se procedió a estimar la densidad celular y se sembraron un total de 6.500 células/pocillo en medio GBM con mitógenos. Previamente, los fibroblastos NC-929 fueron lavados con medio GBM dos veces para eliminar los restos de suero. Los co-cultivos de células fueron entonces incubados a

37 °C durante 40 minutos para permitir la adhesión de las células de GBM, tras lo cual, se realizaron cuatro lavados para retirar las células no adheridas. Finalmente, las células fueron fijadas con PFA al 2% durante 15 minutos a temperatura ambiente, seguido de un lavado con PBS 0,1 M pH 7,4 e incubación con 1 µg/ml de DAPI durante 2 minutos.

El número de células de GBM adheridas a la monocapa de fibroblastos fue estimado a partir de fotografías obtenidas en un IN Cell Analyzer 2000 (General Electric Healthcare) y analizadas con la ayuda de Pau Carillo, del laboratorio de la Dra. Isabel Fariñas, mediante el *script* "Cell Adhesion" (https://github.com/paucabar/cell_adhesion_assay), implementado como una macroinstrucción de ImageJ disponible a través del lugar de actualización de Fiji "NeuroMol Lab". De este modo se obtiene el número de células de GBM adheridas por mm² a la monocapa de fibroblastos NC-929.

Tabla 13. Preparación del medio Snl. En la tabla se muestran los reactivos utilizados para la preparación del medio, las concentraciones de trabajo y de los *stocks* y el proveedor y el número de catálogo (№ Cat.) del producto utilizado. FBS HI: *Fetal Bovine Serum Heat Inactivated*. La inactivación del suero por calor se hizo mediante incubación del suero a 55°C durante 30 minutos.

Reactivo	Concentración trabajo	Concentración stock	Proveedor	Nº Cat.
DMEM High Glucose	1x	1x (4 °C)	Biowest	L0101
FBS HI	10%	Puro (-20 °C)	Labclinics	S181B-500
L-Glutamina	2 mM	200 mM (-20 °C)	Gibco	25030-081
Penicilina/Estreptomicina	1x	100x (-20 °C)	Biowest	L0018-100

6.6. Ensayo de angiogénesis

El estudio del papel de *Tet3* en la capacidad de angiogénesis del GBM se realizó mediante el análisis de la proliferación de células endoteliales humanas de carácter venoso de cordón umbilical (HUVEC) (Bishop et al., 1999) tras el co-cultivo con células GBM^{control}, GBM^{Tet3} o GMB^{Tet3} comut. Para ello, se cultivaron células HUVEC sobre gelatina 0,1% en medio de células endoteliales (Tabla 14) en pocillos p48, y transcurridas 24 horas, el medio de células endoteliales fue sustituido por medio GBM (Tabla 6) y se sembraron 10.000 células GBM^{control}, GMB^{Tet3} y GBM^{Tet3} CDmut sobre transwells semipermeables (Sarstedt, nº cat. 833.932.041). Tras 24 horas de condicionamiento del medio, se realizó un pulso de EdU durante 1 hora (apartado 6.4).

Posteriormente, las células de GBM fueron retiradas, y las HUVEC fueron lavadas con PBS 1x y fijadas con PFA 2% durante 15 minutos a temperatura ambiente.

Tabla 14. Preparación del medio de células endoteliales. En la tabla se muestran los reactivos utilizados para la preparación del medio, las concentraciones de trabajo y de los *stocks* y el proveedor y el número de catálogo (№ Cat.) del producto utilizado. FBS HI: *Fetal Bovine Serum Heat Inactivated*. La inactivación del suero por calor se hizo mediante incubación del suero a 55°C durante 30 minutos.

Reactivo	Concentración trabajo	Concentración stock	Proveedor	Nº Cat.
Medio EndoGRO basal	1x	1x (4 °C)	Sigma	SCME-BM
FBS HI	2%	Puro (-20 °C)	Labclinics	S181B-500
L-Glutamina	2 mM	200 mM (-20 °C)	Gibco	25030-081
Suplemento Endogro LS	0,2%	100% (-20 °C)	Sigma	SCME-001-S
Ácido ascórbico	50 μg/ml	50 mg/ml	Sigma	SCME-001-S
Heparina	0,75U/ml	750 U/ml	Sigma	SCME-001-S
Hidrocortisona hemisuccinato	1 μg/ml	1 mg/ml	Sigma	SCME-001-S
Antibiótico/Antimicótico	1x	100x (-20 °C)	Gibco	15240-062
rhEGF	5 ng/ml	5 μg/ml	Sigma	SCME-001-S

7. Estudio de la capacidad de formación de tumores

Para estudiar la capacidad de las células de formar tumores, se realizó una inyección de las células en ratones inmunocomprometidos (*Nude*). Tanto para la inyección de las iPSCs, como para las células tumorales, éstas fueron previamente disgregadas con AccumaxTM y lavadas con PBS. Dado que la matriz adhesiva Matrigel® mejora la eficiencia de la formación del tumor (Prokhorova et al., 2009), las células fueron resuspendidas en PBS suplementado con 30% de Matrigel®. Se inyectaron subcutáneamente en el área dorso-lateral de la región caudal a cada lado del animal 1,5x10⁶ células/200 μl de iPSCs, y 2x10⁶ células/200 μl de GBM y células GFAP-rtTA;i4F, utilizando jeringuillas de 1 ml. Los tumores alcanzaron un tamaño de entre 1,5-2 cm, momento en el cual fueron extraídos para su análisis.

Para el estudio de los tumores, éstos fueron divididos en dos partes, una de ellas fue utilizada para la extracción de RNA y análisis de expresión génica por qPCR. La otra parte del tumor se fijó con mezcla fijadora metanol:ácido acético (3:1) por inmersión durante toda la noche en agitación a 4 °C para su posterior análisis histológico. La muestra fijada fue posteriormente deshidratada con lavados de 2 horas en alcoholes de gradación creciente (etanol al 70%, 96% y 100%) cada uno, y posterior aclarado con tolueno (Panreac, nº cat. 141746.1611) durante 3 horas. Posteriormente se realizó una inclusión con 1:1 parafina:tolueno durante toda la noche a 60°C, seguida de una inclusión en parafina (Panreac, nº cat. 256993) durante 3 horas a 60°C. Finalmente se confeccionó el bloque y se realizaron cortes de 10 μm de grosor utilizando el micrótomo de

parafina (Leica, nº cat. RM2125). Los cortes fueron tratados con tolueno durante 15 minutos y rehidratados con lavados de alcoholes de concentración decreciente (etanol al 100%, 96% y 70%) durante 5 minutos cada uno y tras un lavado final de 5 minutos con agua destilada, los cortes fueron teñidos con hematoxilina-eosina. Para ello, se realizó una tinción de 10 minutos con hematoxilina férrica (1 gr hematoxilina en 100 ml de etanol 96° + 1,16 gr de Cl₃Fe y 1 ml de ClH en 98 ml de agua destilada; relación 1:1). Tras la tinción, los cortes fueron lavados con agua destilada y teñidos con eosina durante 7 minutos y nuevamente lavados con agua destilada. Finalmente, las muestras fueron sometidas a montaje permanente para su observación al microscopio óptico. Para la detección de tumores cerebrales en animales GFAP-rtTA;i4F reprogramados se utilizó la tinción de hematoxilina de Gill (Sigma; nº cat. 1.05175.0500) durante 9 minutos en cortes coronales de 40 μm de grosor, tras lo cual, se lavaron con agua destilada, tras lo cual se montaron y observaron por microscopía óptica. También se utilizó la técnica inmunohistoquímica para la detección de marcadores de interés.

En el caso de las células GBM, las tres líneas GMB^{control}, GMB^{Tet3} y GMB^{Tet3} cDmut fueron utilizadas para este estudio, inyectándose las células GMB^{control} en el lado izquierdo del animal inmunocomprometido, y las células GMB^{Tet3} o las GMB^{Tet3} cDmut en el lado derecho para minimizar la variabilidad que pueda ser debida a la resistencia del animal para formar el cáncer. Esta práctica también se llevó a cabo en las inyecciones de NSCs control y GFAP-rtTA/i4F.

8. Detección in situ de proteínas

8.1. Inmunohisto/citoquímica

Para la detección de proteínas en las células cultivadas, estas fueron sembradas en pocillos de p48 sobre cristales tratados con ácido nítrico (Panreac, nº cat. 141037.1611). Debido a que las NSCs y los NPs, así como las líneas celulares de GBM, crecen en flotación, los pocillos fueron tratados con Matrigel® durante 2 horas a 37 °C previamente a la siembra de estas células. En el caso de las iPSCs, las células se sembraron en pocillo tratados con 0,1% de gelatina durante 20 minutos a 37 °C. Las células fueron fijadas con PFA al 2% durante 15 minutos a 37 °C, tras los cuales, fueron lavadas con PBS 0,1M. A partir de este paso, tanto las células como los cortes de tejido, fueron procesados de la misma forma. Se procedió a la incubación con una solución de bloqueo compuesta por 0,2% de Triton-100, 1% de glicina (Fisher, nº cat. 10754724), y 10% suero (Labclinics; nº cat. S181B) en PBS 0,1M durante una hora en agitación a temperatura ambiente. A continuación, las muestras fueron incubadas con los anticuerpos primarios (**Tabla**

Suplementaria 1) durante toda la noche a 4 °C y en agitación. Al día siguiente, el anticuerpo primario fue eliminado y se lavó tres veces con PBS 0,1M durante 5-10 minutos cada lavado. Finalmente, las muestras fueron incubadas con anticuerpos secundarios (**Tabla Suplementaria 2**) durante 1 hora en agitación a temperatura ambiente. Después de varios lavados, se añadió DAPI a una concentración de 1 μ g/ml durante 2 minutos para contrateñir los núcleos. Los cristales y los cortes se montaron sobre portaobjetos utilizando el medio de montaje FluorSaveTM.

8.2. Citometría de flujo

Para la detección de marcadores de membrana (SSEA1 y CD44) por citometría de flujo, las células fueron centrifugadas y disgregadas, y se lavaron con medio GBM sin mitógenos y fueron centrifugadas nuevamente a 300 xg durante 10 minutos. El medio fue eliminado y las células resuspendidas en 100 μ l del tampón de bloqueo de citometría de flujo (**Tabla 15**) que contenía los anticuerpos primarios conjugados con fluoróforos de interés (**Tabla Suplementaria 1**). La incubación con dichos anticuerpos se realizó a 4 °C durante 30 minutos, tras lo cual, las células se lavaron con tampón de bloqueo de citometría de flujo, se centrifugaron y resuspendieron en 500 μ l del tampón, al cual se le añadió 0,1 μ g/ml de DAPI para la exclusión de las células muertas en el análisis. Dicho análisis se realizó utilizando un citómetro LSR-Fortessa (Becton Dickinson).

Tabla 15. Solución de bloqueo para citometría de flujo. En la tabla se muestran los reactivos utilizados para la preparación de la solución de bloqueo, las concentraciones de trabajo y de los *stocks* y el proveedor y el número de catálogo (Nº Cat.) del producto utilizado.

Reactivo	Concentración trabajo	Concentración stock	Proveedor	Nº Cat.
HBSS	1x	10x	Gibco	14185052
Glucosa	0,1%	30% (-20 °C)	Panreac	141341
HEPES	1M	10 mM (4 °C)	Biowest	L0180-100
BSA	0,5%	Puro (4 °C)	Sigma	B4287
EDTA	2mM	20mM (4 °C)	Sigma	E6511

9. Extracción de RNA y análisis de la expresión génica

La extracción de RNA en tejidos y en cultivos celulares fue realizado mediante el Kit RNeasy Mini (Qiagen, n^{o} cat. 74104) siguiendo el protocolo indicado por el fabricante, incluyendo una digestión de DNA mediante RNAse-free DNAse set (Qiagen, n^{o} cat. 79254). En los tejidos, un volumen de 600 μ l del componente RLT o , mezclado con β -mercaptotenol en una proporción 1:100, se añadió a la muestra para posteriormente ser disgregada con una matriz de lisado (MP BiomedicalsTM BioPulverizer System I, n^{o} cat. 6750-200) en un BioRotor FastPrep-24TM Classic

bead beating grinder and lysis system (MPTM, n^{o} cat. 116004500). El RNA fue cuantificado mediante un espectofotómetro NanoDropTM 2000 (Thermo Scientific) y guardado a -80°C hasta su uso. Se realizó la retrotranscripción de 1 µg de RNA en cDNA usando RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo Fisher, n^{o} cat. K1632) según el protocolo indicado por el fabricante.

El análisis de expresión génica fue llevado a cabo mediante qPCR en un aparato Step One Plus real-time PCR (Applied Biosystem), usando 4 ng del cDNA y sondas TaqManTM específicas para cada gen (Applied Biosystems) (**Tabla Suplementaria 3**) o sondas SYBR-green (**Tabla Suplementaria 4**). En el caso de las sondas TaqManTM, se utilizó TaqManTM Fast Advanced Master Mix (Applied Biosystems, nº cat. 4444557) en un volumen final de 10 μl. Los niveles de expresión de cada gen fueron obtenidos mediante cuantificación relativa (ΔCt) usando la expresión de los genes *Gapdh* y *18S* como controles endógenos. En el caso de las sondas SYBR-green, se utilizó SYBR® Premix Ex TaqTM (Takara, nº cat. RR420) con temperaturas de alineamiento específicos de cada par de sondas. Una curva estándar fue realizada con diluciones seriadas a partir de una mezcla de cDNA generada con 1 μl de cada muestra analizada. En este caso, la expresión de cada gen fue calculada relativa al gen *Gapdh* como control endógeno.

10. Estudio del estado de impronta genómica

Para análisis de la expresión alelo-específica de los genes improntados mediante la identificación de polimorfismos de nucleótido simples (SNPs) se utilizaron animales híbridos de primera generación (F1) de dos meses de edad obtenidos a partir de cruces recíprocos entre las cepas *Mus musculus domesticus* i4F-B, de fondo genético C57/BL6 (B6), y la cepa *Mus musculus castaneus*, de fondo genético CAST/EiJ (CAST).

10.1. Identificación de polimorfismos de nucleótido simples

Las secuencias de DNA genómico (gDNA) y DNA complementario (cDNA) de los genes improntados de interés fueron obtenidas de la base de datos NCBI Web Site. Para la identificación de los SNPs entre las subespecies se diseñaron cebadores para la amplificación de la región de cDNA de interés en ratones C57/BL6 y ratones CAST/EiJ de dos meses de edad. Los productos de las PCRs realizadas en muestras de las dos subespecies fueron secuenciados y dichas secuencias obtenidas fueron alineadas entre ellas para la confirmación de la presencia de SNPs entre las dos subespecies. En la **Tabla Suplementaria 5** se listan los SNPs identificados y analizados junto con los cebadores utilizados para la amplificación de la secuencia que contiene el SNPs. La

amplificación por PCR del segmento de interés se testó mediante electroforesis en gel de agarosa al 2%.

10.2. Determinación de la expresión alelo-específica

Para determinar la expresión alelo-específica de los genes improntados candidatos en las NSCs, iPSCs y NPs, se amplificaron las regiones que contenían el SNP para el gen estudiado mediante PCR utilizando cebadores específicos (Tabla Suplementaria 5) para cada gen a partir de cDNA. Posteriormente se procedió a la secuenciación de los productos de PCR para lo cual se llevó a cabo a la purificación directa de este producto utilizando el kit de purificación MiniElute® PCR (Qiagen, nº cat. 28004) siguiendo el protocolo indicado por el fabricante. En el caso de genes con diferentes isoformas, la purificación se hizo a partir del corte y extracción del DNA a partir del gel de agarosa tras la electroforesis utilizando QIAquick® Gel Extraction Kit (Qiagen, nº cat. 28704) siguiendo el protocolo indicado por el fabricante. En ambos tipos de purificación, el DNA resultante fue eluido en 11 μl de agua destilada y se procedió a su cuantificación con NanoDropTM. Un total de entre 20 y 80 ng/μl de muestra fue enviada a la compañía GATC Biotech para su secuenciación junto con 5pmol/μl del cebador correspondiente (Tabla Suplementaria 5) en un volumen final de 10 μl.

11. Estudio de metilación del DNA en las ICRs

11.1. Extracción del DNA genómico

La obtención de DNA para el posterior estudio de los niveles de metilación fue realizada mediante la recogida y centrifugación de las células a 300 xg durante 5 minutos y posterior homogeneización con 0,5 ml de la solución de extracción (NaCl a 35 mM, EDTA a 20 mM, SDS al 0.5%, de Proteinasa K a 0,1 mg/ml en de Tris-HCl a 5 mM y pH 8) a 55 °C durante toda la noche. A continuación, se añadió 1 ml de fenol a pH 8 (Sigma, nº cat. P9346). Las muestras fueron agitadas durante 15-30 minutos y posteriormente centrifugadas a 13.000 rpm durante 30 minutos. La fase acuosa fue entonces transferida a nuevos tubos de 2 ml a los que se les añadió 1 ml de solución fenol:cloroformo (1:1) equilibrado. Las muestras se agitaron de nuevo durante 15-30 minutos y se centrifugaron a 13.000 rpm durante 30 minutos. La fase acuosa se transfirió a nuevos tubos y se añadió 1 ml de cloroformo (Sigma, nº cat. C2432). Finalmente, las muestras se agitaron durante 15-30 minutos y se centrifugaron a 13.000 rpm otros 30 minutos. A continuación, la fase acuosa fue transferida a tubos de 15 ml a los que se añadió 200 μl de NH₄CH₃CO₂ a 10 M. Las muestras fueron agitadas suavemente y se les añadió 2 ml de etanol

absoluto, tras lo cual, se dejaron en agitación durante toda la noche a 4 °C para favorecer la precipitación del DNA.

Finalmente, las muestras fueron centrifugadas a 3.000 rpm durante 5 minutos y el sobrenadante fue eliminado. Los *pellets* de DNA se incubaron con etanol al 70%, invirtiendo el tubo varias veces y se centrifugaron a 3.000 rpm durante 5 minutos. El sobrenadante fue eliminado y se añadieron 200 μ l de agua inmediatamente después y se incubó a 55 °C durante 1 hora para facilitar la resuspensión del DNA. Los DNAs fueron cuantificados usando el fluorómetro QubitTM 3.0 (Thermo Fisher) y posteriormente guardados a -20 °C.

11.2. Análisis de metilación por pirosecuenciación

El análisis de los niveles de metilación en las DMRs de regiones de control de impronta en las células se hizo mediante pirosecuenciación en el laboratorio de la Dra. Anne Ferguson-Smith del Departamento de Genética de la Universidad de Cambridge durante mi estancia pre-doctoral en dicho laboratorio. Para ello, se llevó a cabo la conversión bisulfítica del DNA utilizando EZ DNA Methylation-Direct™ Kit (Zymo, nº cat. D5020) y siguiendo el protocolo indicado por el fabricante (Figura 6). Esta técnica se basa en la conversión de las citosinas del DNA que no se encuentran metiladas en uracilos, mientras que aquellas citosinas que presentan un grupo metilo no cambian durante el tratamiento. Para ello, 1 µg de DNA de cada muestra fue incubado con 130 µl de la solución CT Convertion Reagent® durante 8 minutos a 98°C, seguida de una incubación de 64°C durante 3,5 horas. Posteriormente, las columnas Zymo-SpinTM fueron tratadas con 600 μl de M-Binding Buffer®, a las cuales se les añadió las muestras convertidas. Las columnas fueron centrifugadas a >10.000 g durante 30 segundos, y el sobrenadante fue descartado. Se añadieron 100 μl de M-Wash Buffer® y se volvió a centrifugar a máxima velocidad durante 30 segundos. A continuación, se añadieron 200 μl de M-Desulphonation Buffer® y se dejaron incubando entre 15-20 minutos. Transcurrido ese tiempo, las columnas fueron centrifugadas a máxima velocidad durante 30 segundos. Finalmente, se añadió el tampón de lavado a las columnas y se volvió a realizar la centrifugación como anteriormente. Este último paso fue repetido dos veces antes de eluir el DNA con 10 μl de M-Elution Buffer® (**Figura 6**).

Una vez convertido el DNA, se realizó la amplificación por PCR de las DMRs de interés con sondas específicas biotiniladas (**Tabla Suplementaria 6**) seguido de su pirosecuenciación. La verificación de una correcta amplificación en la PCR fue realizada por electroforesis en gel de agarosa al 1,5% para cada producto de PCR. Para la pirosecuenciación, los productos de PCR fueron purificados utilizando bolas magnéticas conjugadas con estreptavidina, Streptavidin Sepharose® High Performance Beads (GE Healthcare, nº cat. 17-5113-01) y tampón de unión

(Tris-HCl pH 7,6 a 10mM, NaCl a 2M, EDTA a 0,1mM y Tween®-20 al 0,1%). Los productos de PCR fueron incubados con esta solución durante 5 minutos en agitación. Al mismo tiempo, una solución de la sonda específica para la secuenciación de las regiones de interés (**Tabla Suplementaria 6**) y tampón de anillamiento (C₄H₁₁NO₃ · C₂H₄O₂ a 20 mM y pH 7,6 y Mg(C₂H₃O₂)₂ a 2 mM) fue añadida a las placas de pirosecuenciación de 96 pocillos. La desnaturalización y purificación de las muestras se realizó utilizando PyroMark® Q96 Vacuum Workstation (Qiagen) haciendo un lavado con etanol al 70%, seguido de un lavado con NaOH a 0,2 N y otro con Trisacetato a 10 mM y pH 7,6. A continuación, las muestras fueron añadidas a la placa preparada con la sonda específica y la pirosecuenciación fue realizada utilizando el sistema PiroMark® MD (Qiagen) mediante PyroMark® Gold Q96 Reagents (Qiagen, nº cat. 972804) (**Figura 6**). La determinación del porcentaje de metilación en locus específicos fue calculado como 2-ΔΔCL x 100%, donde ΔΔCt = (CT_{Target} – CT_{Reference}) muestra – (CT_{Target} – CT_{Reference}) DNA completamente metilado.

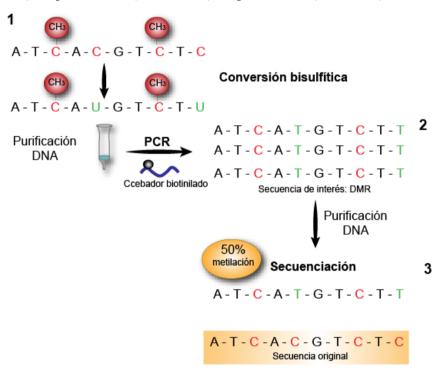


Figura 6. Estudio de metilación de DMRs en regiones de control de impronta. Esquema del protocolo seguido para el análisis de los niveles de metilación de las DMRs de interés en las NSCs, iPSCs, NPs y GBM-EGFR, mediante pirosecuenciación. Para ello, se llevó a cabo la conversión bisulfítica del gDNA de las células que transforma las citosinas (C, rojo) no metiladas en uracilos (U, verde), mientras las citosinas metiladas (CH₃) no pueden ser convertidas (1). El DNA resultante es purificado y amplificado por PCR utilizando cebadores específicos de la región de interés marcados con biotina (2). El producto de PCR contendrá timidina (T, verde) en aquellas posiciones que habían sido converitdas en U en el paso anterior. Finalmente, el DNA se purifica y se secuencia utilizando cebadores específicos (3). La comparación entre la secuencia obtenida y la secuencia de origen permite obtener el porcentaje de citosinas inicialmente metiladas.

12. Análisis estadístico de los datos

Todos los tests estadísticos han sido llevados a cabo mediante el software GraphPad Prism (versión 5.00). La significatividad entre diferencias de medias de grupos experimentales fue realizada usando Student t-test de dos colas pareado o no pareado o one-way ANOVA (ANalysis Of VAriance) seguido por el test Tukey post-hoc. Los valores relativos (valores normalizados y porcentajes) fueron transformados usando arcsen previamente al análisis estadístico. Los p-valores por debajo de 0,05 fueron considerados significativos. Los datos han sido representados como la media \pm error estándar de la media (s.e.m.), y el número de cultivos o animales independientes utilizados en cada experimento se ha indicado en las figuras.

Tablas suplementarias

Tabla Suplementaria 1. Listado de anticuerpos primarios utilizados. ICC: inmunocitoquímica, IHC: inmunohistoquímica, FACS: citometría de flujo.

Anticuerpo primario	Compañía	Huésped	Dilución	Nº Cat.	Aplicación
5 hmC	Active Motif	Conejo	1:1000	36769	ICC
5 mC	Diagenode	Ratón	1:1000	C15200006	ICC
βIII-TUBULINA	Covance	Ratón	1:300	PRB-435P	ICC/IHC
β-CATENINA	Cell Signaling	Conejo	1:300	9587	ICC
BrdU	Abcam	Rata	1:300	Ab6326	ICC
CD31	BD Biosciences	Rata	1:100	550274	IHC
CD44	Cell Signaling	Ratón	1:1000	5640S	ICC/IHC
CD44 – PeCP-Cy5	BD Biosciences	Rata	1:100	560570	FACS
CD133	eBioscience	Ratón	1:400	13A4	ICC/IHC
EGFR	Cell Signaling	Conejo	1:200	4267	ICC
GATA4	Santa Cruz	Cabra	1:100	sc-1237	ICC/IHC
GFAP	Millipore	Pollo	1:600	AB5541	ICC/IHC
INTEGRINA α6	Millipore	Rata	1:300	MAB1378	IHC
Ki67	Abcam	Conejo	1:100	ab15580	ICC/IHC
MAP2	Sigma	Ratón	1:200	MAB3418	ICC
NANOG	Reprocell	Conejo	1:100	RCAB002PF	ICC/IHC
NESTINA	Hybridoma Bank	Ratón	1:4	Rat-401	ICC/IHC
OCT4	Santa Cruz	Ratón	1:200	sc-5279	ICC
OLIG2	Millipore	Conejo	1:200	AB9610	ICC/IHC
α-SMA	Abcam	Ratón	1:100	ab18147	ICC/IHC
SOX2	R&D Systems	Cabra	1:200	AF2018	ICC/IHC
SSEA1	Santa Cruz	Ratón	1:50	SC-21702	ICC/IHC
SSEA1 - AF647	BD Biosciences	Ratón	1:100	562277	FACS
TET3	Millipore	Conejo	1:100	ABE290	ICC
VIMENTINA	Fitzgerald	Cobaya	1:200	20R-VP004	IHC

68

Tabla Suplementaria 2. Listado de anticuerpos secundarios utilizados. ICC: inmunocitoquímica, IHC: inmunohistoquímica.

Anticuerpo secundario	Compañía	Dilució n	Nº Cat.	Aplicación
Alexa Fluor® 488 Donkey Anti-conejo	Jackson ImmunoResearch	1:600	711-545-152	ICC/IHC
Alexa Fluor® 488 Donkey Anti-pollo	Jackson ImmunoResearch	1:600	703-545-155	IHC
Alexa Fluor® 488 Donkey Anti-ratón	Jackson ImmunoResearch	1:600	715-545-150	ICC/IHC
Alexa Fluor® 647 Donkey Anti-cabra	Jackson ImmunoResearch	1:600	705-605-003	IHC
Alexa Fluor® 647 Donkey Anti-conejo	Jackson ImmunoResearch	1:600	711-605-152	ICC
Alexa Fluor® 647 Donkey Anti-pollo	Jackson ImmunoResearch	1:600	703-605-155	IHC
Alexa Fluor® 647 Donkey Anti-ratón	Jackson ImmunoResearch	1:600	715- 605-151	ICC/IHC
Cy3-Donkey Anti- conejo	Jackson ImmunoResearch	1:800	711-165-152	ICC/IHC
Cy3-Donkey Anti-rata	Jackson ImmunoResearch	1:800	712-165-153	IHC
Cy3-Donkey Anti- ratón	Jackson ImmunoResearch	1:800	715-165-151	ICC/IHC

Tabla Suplementaria 3. Listado de sondas Taqman murinas utilizadas.

GEN	Código sonda Taqman (Applied Biosystems)	GEN	Código sonda Taqman (Applied Biosystems)
185	Hs99999901_s1	Ndn	Mm02524479_s1
Afp	Mm00431715_m1	Nestina, Nes	Mm00450205_m1
Cd44	Mm01277161_m1	Oct4	Mm00658129_gH
Cd133	Mm01211402_m1	Olig2	Mm01210556_m1
Cdkn1c	Mm01272135_g1	p53, Tfp53	Mm01731287_m1
Cer1	Mm00515474_m1	Peg3	Mm00443081_m1
Cntn3	Mm00500947_m1	Peg10	Mm01337379_m1
Cobl	Mm01187905_m1	Peg12	Mm01167724_m1
Dio3	Mm00548953_s1	Phlda2	Mm00844053_s1
Dlk1	Mm00494477_m1	Plagl1	Mm00493899_g1
Egfr	Mm01187857_m1	Pten	Mm00477208_m1
Foxa2	Mm01976556_s1	Rasgrf1	Mm00441097_m1
Gapdh	Mm99999915_g1	Rian	Mm01325842_g1
Gfap	Mm01253033_m1	Slc38a4	Mm00459056_m1
Grb10	Mm01180443_m1	Snrpn	Mm04204818_m1
H19	Mm01156721_g1	Sox2	Mm03053810_s1
lgf2	Mm00439564_m1	Tet1	Mm01169087_m1
lgf2r	Mm00439576_m1	Tet2	Mm00524395_m1
Ins2	Mm00731595_gh	Tet3	Mm00805756_m1
Kdr1	Mm01222421-m1	Th	Mm00447557_m1
Magel2	Mm00844026_s1	Tubb3	Mm00727586_s1
Mcts2	Mm00481540_s1	Vim	Mm01333430_m1
Meg3	Mm03456293_m1	Zdbf2	Mm01254509_m1
Meox1	Mm00440285_m1	Zfp42	Mm01194089_g1
Nanog	Mm02384862_g1	Zic1	Mm00656094_m1

Tabla Suplementaria 4. Listado de sondas SYBR utilizadas.

Cebador	Secuencia 5'-3'
Casete OSKM	Fw – ACTGCCCCTGTCGCACAT
	Rv - CATGTCAGACTCGCCAGGTG
Gapdh	Fw - GAACATCATCCCTGCATCCA
	Rv - CCAGTGAGCTTCCCGTTCA
Gnas	Fw – AGAAGGACAAGCAGGTCTACCG
	Rv – GTTAAACCCATTAACATGCAGGA
Pgk1	Fw – GTAAAGGCCATTCCACCACAA
	Rv – AGCTGAGCCGGCCAAAATTGAT
Tsix	Fw – TGTCAGGTTTCGGGGACACT
	Rv – CTCTCCAGCCCAGGAACTGA
Xist	Fw – CTCATAGTAGTGGCCGACTA
	Rv - TAAGCCCGTTAAGTAGTCCTT

Gen	Cebador	Secuencia del cebador (5'-3')	Producto (bp)	SNP (B6/CAST)	Secuencia gen	PCR	Exón	Posición cebadores	Posición SNP	Secuencia SNP
Cobl	Cobl-Fw (SEQ) Cobl-Rv	CCGTGACTCTGGGAGGATAC ATCTTTTGGGAGTGGCCTTT	232	B/9	NM_0012829 93.1	62	12	3477 3690	3598	AAAAGCCCAG
DIKI	<i>DIK1-Fw</i> <i>DIK1-Rv</i> <i>DLKDBA2 125F (SEQ)</i>	ACCCCTGCGCCAACAATGG GGGGTGAAGGGCCTGGGAGT AGAAGAAGAACCTCCTGTTGCA	914	T/C	NM_010052	09	5	488 1245 1401	1270	ACCACTITCA
Gnas	Gnas-Fw (SEQ) Gnas-Rv	CGGGAGGACAACCAGACTAA TGGGTGACCAACTGCTTGTA	496	2/9	NM_010309.4	60	3	80 556	292	GAGCCGGGA
Meg3	Meg3-Fw (SEQ) Meg3-Rv	TTGCAACCCTCCTGGATTAG GAGTCTTGGGTCCAGCATGT	165	G/A	Y13832	62	6	1461	1570	CCCTCTACA
Peg3	Peg3-Fw Peg3-Rv (SEQ)	AAGGCTCTGGTTGACAGTCGTG TTCTCCTTGGTCTCACGGGC	238	A/G	NM_008817	60	6	3708 3926	3800	ACTATATGA
Phlda2	PhIda2-Fw (SEQ) PhIda2-Rv	AGAGCGAGCGCATTTGGTG GGCTGGTTTTCCCGGAGA	197	A/C	NM_009434	99	1	4 200	136	CCAGGTATGG
Snrpn	Snrpn-Fw Snrpn-Rv Snrpn (SEQ)	CATTATGGCTCCTCCACCTG AGAGGGGTCAAAAAGCTTGC GCCCACCAAGACCCTAAGATAC	246	C/T	NM_013670	62	9 y 10	1070 1297 1216	1270	CCTACAATGC

Tabla Suplementaria 5. Listado de cebadores utilizados para la detección de SNPs en los genes improntados.

Tabla Suplementaria 6. Listado de cebadores utilizados para el estudio de metilación de los genes improntados. Fw: cebador situado a 5' de la secuencia amplificada, Rv: cebador situado a 3' de la secuencia amplificada, Seq: cebador utilizado para secuenciar.

DMR	Alelo metilado	Cebadores	Tm	Tamaño
		Fw - GGAGTTGTGATTAGGGAATGAT		
Zdbf2	paterno	Rv - ACTAAACCCTCCTAATTCCTATATTTCT	60 °C	187 bp
	•	Seq - AGGTAGGTATGTTGG		·
		Fw - TGAAGAAGAATTAGTGGGGTAA		
Mcts2	materno	Rv - ACAATTAAACACACTTTCCTTCTC	50 °C	279 bp
		Seq - GGTGTTATTTTTTTGTAGA		
		Fw - AATTTTGTTAAGTTTTTAGTGGTTAGAT		
Peg10	materno	Rv - CACTTAAAAATACAAAACCAATCACTT	55 °C	226 bp
		Seq - CACAATTCCATCAATAACT		
		Fw - TTGGATTGGTTAGAGAGGAAGT		
Peg3	materno	Rv - ACAATCTAATACACCCACACTAA	60 °C	191 bp
		Seq - GGAGAGATGTTTATTTTG		
		Fw - TTGGTAGTTGTTTTTTGGTAGGAT		
Snrpn	materno	Rv - TCCACAAACCCAACTAACCTTC	54 °C	240 bp
		Seq - GTGTAGTTATTGTTTGGGA		
		Fw - AGAAGGGTGTTGAAGAAAAATT		
KvDMR	materno	Rv - ATCCTAAACCTAAACCTCCATAA	55 °C	217 bp
		Seq - GTTGAGAAGTTAAGTGGA		
		Fw - TGTTAGGAGAGTGAGGTTGGAGAA		
Plagl1	materno	Rv - CATACAACCATCCCCTTAACT	60 °C	139 bp
		Seq - GTTTTAGTTTAATTGAGTGATAAAT		
		Fw - GGGGTAAGAGAAGATATGTTGAAG		
Grb10	materno	Rv - TACCCACCACTTAAACCATTACAAATT	55 °C	86 bp
		Seq - AGAGAAGATATGTTGAAGTTA		
		Fw - GGGTGAAGATTTTTGGGTTATAAG		
lgf2r DMR2	materno	Rv - CCCCCCCAATACAACAA	54 °C	187 bp
		Seq - TTTATTGTTTATTAGTGTTTTGAAT		
		Fw - GGGGGGTAGGATATATGTATTTTT		
H19	paterno	Rv - ACCTCATAAAACCCATAACTATAAAATCAT	54 °C	226 bp
		Seq - GTGTGTAAAGATTAGGG		
		Fw - GGGAAGATTATTAGTTGGGGAGGTG		
Rasgrf1	paterno	Rv - CAACAAAAACCAAAATATCAATCCTAAC	54 °C	117 bp
		Seq - ATTAGAGTTAAATATAAAGAATGG		
		Fw - GTGGTTTGTTATGGGTAAGTTT		
IG-DMR	paterno	Rv - CCCTTCCCTCACTCCAAAAATTAA	54 °C	318 bp
		Seq - TGGTTTATTGTATATAATGT		
		DMRs somáticos		
		Fw - AGGATTTAGTTGGTAGTAGG		
Cdkn1c	materno	Rv - AACCATAAAACTAAACACAACCCC	54 °C	132 bp
		Seq - GGTGTAGTTTTAGGGTTAG		
		Fw - AGGTTTTGTTTAAGGGATTTTAAAGT		
H19prom	paterno	Rv - CCCTACTCTATCAACCAATCAATACA	54 °C	173 bp
		Seq - TGTGGTGAGGTTGTT		
		Fw - TGTTTTGTGGAATTTTTAGGTAGGT		
	_	Rv - CCCCAAATCAAAAAAATAAATAATCTC	CO °C	220 hn
lgf2	paterno	IV - CCCCAAATCAAAAAATAAATAATCTC	60 °C 238	238 bp

Resultados

OBJETIVO 1. Estudio del proceso de impronta genómica y su regulación epigenética en células madre neurales adultas (NSCs).

1. La reprogramación de NSCs a iPSCs *in vitro* se asocia con cambios en la expresión y el estado epigenético de genes improntados

1.1 Las NSCs aisladas de ratones reprogramables i4F-B adquieren un estado pluripotente in vitro

El modelo de reprogramación utilizado en este trabajo ha sido la cepa de ratones reprogramables i4F, generada en el laboratorio del Dr. Manuel Serrano (Abad et al., 2013), que contiene un transgén policistrónico Oct4-Sox2-Klf4-cMyc (OSKM), cuya expresión permite la adquisición de un estado pluripotente in vivo (Abad et al., 2013). El transgén está controlado por un sistema Tet-On que permite la expresión de los factores de pluripotencia de forma inducible por doxiciclina en células que expresen el activador transcripcional (rtTA). En este primer apartado de la tesis se utilizaron ratones de la línea i4F-B portadores del activador rtTA en el locus Rosa26 y del casete tetracistrónico OSKM en el mismo cromosoma (Abad et al., 2013). Con objeto de determinar la eficiencia de reprogramación de los ratones i4F-B en nuestras manos, se aplicó el mismo protocolo de tratamiento llevado a cabo previamente en MEFs (Abad et al., 2013) consistente en exponer MEFs de embriones de 14,5 días (E14,5) a 1 µg/ml de doxiciclina y LIF (Figura 1A, B). En todos los experimentos se usaron ratones no modificados genéticamente de la cepa C57Bl6, tratados de la misma manera, como controles negativos (WT, de inglés wild-type). Transcurrida una semana desde el inicio del tratamiento, los MEFs comenzaron a formar agregados celulares que resultaron ser positivos para el marcador temprano de pluripotencia SSEA1 (Figura 1B-D), indicando que las células estaban adquiriendo características de pre-iPSCs. La doxiciclina fue retirada del medio 10-20 días después de la aparición de los clones de pre-iPSCs para favorecer la adquisición de un estado de pluripotencia total de las células en iPSCs (iPSCs-MEF), estado que fue confirmado mediante la detección de la actividad enzimática fosfatasa alcalina (AP) y la proteína Nanog (Figura 1D).

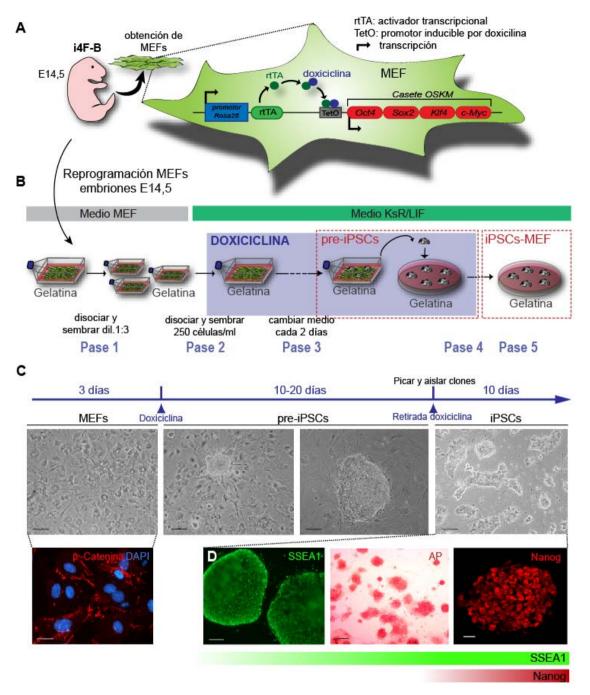


Figura 1. MEFs de ratones i4F-B portadores del transgén OSKM se reprograman *in vitro* mediante el tratamiento con doxiciclina. A) Esquema del modelo murino de reprogramación i4F-B inducible por doxiciclina en MEFs. B) Esquema del protocolo seguido para la reprogramación mediante doxiciclina de MEFs de ratones i4F-B a iPSCs-MEF. C) Imágenes de contraste de fases de los MEFs obtenidos de animales reprogramables i4F-B previamente al tratamiento con $1\mu g/ml$ de doxiciclina, tras adquirir el estado de pre-iPSCs, y tras el aislamiento de clones de iPSCs. La doxiciclina fue retirada tras la aparición de las pre-iPSCs. La duración de cada estado celular, así como los medios de cultivo utilizados han sido indicados. C) Inmunocitoquímica para β -Catenina (rojo) en cultivos de MEFs de ratones i4F-B. DAPI ha sido utilizado para contrateñir el núcleo. D) El tratamiento con $1\mu g/ml$ de doxiciclina en el medio de KsR/LIF condujo a la aparición de agregados clonales de iPSCs positivas para el marcador temprano de pluripotencia SSEA1 (verde), y también para la actividad AP (rojo). Los clones aislados mostraron ser positivos para el marcador de pluripotencia Nanog (rojo). Escalas en B y D: 100 μ m; en D (Nanog): 20 μ m.

A continuación, NSCs aisladas de ratones adultos i4F-B y WT fueron sembradas en medio NSC completo con 1 μg/ml de doxiciclina y sin LIF, y el medio fue cambiado cada dos días con el fin de mantener la concentración del antibiótico de manera constante durante la reprogramación (**Figura 2A**). A partir del pase 3, las células i4F-B se agregaron de forma irregular, a diferencia de la morfología esférica regular de las neuroesferas WT, y comenzaron a adherirse a la placa (**Figura 2A**, **B**). A pesar de la ausencia de LIF en el medio de cultivo, las células con morfología y adherencia alteradas expresaban el marcador de pluripotencia SSEA1 (**Figura 2B**).

Tras la adquisición de la expresión del marcador de SSEA1, el medio de cultivo fue cambiado a medio ES con LIF manteniendo la misma concentración de doxiciclina. En estas condiciones, y transcurrida una semana, las células comenzaron a formar agregados positivos para SSEA1 y morfológicamente similares a los observados durante la reprogramación de los MEFs (Figura 2B). El análisis de los agregados celulares mediante qPCR mostró niveles bajos de *Nanog* y *Rex1*, a pesar de la expresión de *Oct4* (Figura 2C), por lo que las células fueron consideradas pre-iPSCs (Figura A, B). Para promover un estado completo de pluripotencia, se utilizó un medio con LIF y con el inhibidor de la ruta MAPK y el inhibidor de la ruta GSK3 (medio 2i), tal y como se había descrito en la bibliografía (Silva et al., 2008) y tras dos pases se retiró el antibiótico (Figura 2A, B). El medio 2i/LIF se ha visto que induce una regulación al alza estable de los genes *Oct4* y *Nanog* (Silva et al., 2008), junto con la reactivación del cromosoma X (Cantone & Fisher, 2017; Ohhata & Wutz, 2013), y el silenciamiento de la expresión del transgén OSKM (Silva et al., 2008).

A continuación, se realizó el análisis de expresión génica de los cultivos en las distintas fases de reprogramación (Figura 2C-E). El estudio mostró un aumento significativo de la expresión de Nanog y Rex1 durante el proceso de reprogramación, siendo las iPSCs las que alcanzaron los mayores niveles tanto de mRNA como de proteína (Figura 2C). En concordancia con la adquisición de un estado de pluripotencia, los genes neurales Nestina y Olig2 disminuyeron su expresión durante dicho proceso (Figura 2D). También se midió la expresión del casete policistrónico, observándose un nivel máximo de expresión en pre-iPSCs, y un silenciamiento del transgén tras el cultivo de las células pre-iPSCs en medio 2i/LIF en ausencia de doxiciclina (Figura 2E), coincidente con la adquisición de un estado pluripotente en las iPSCs generadas.

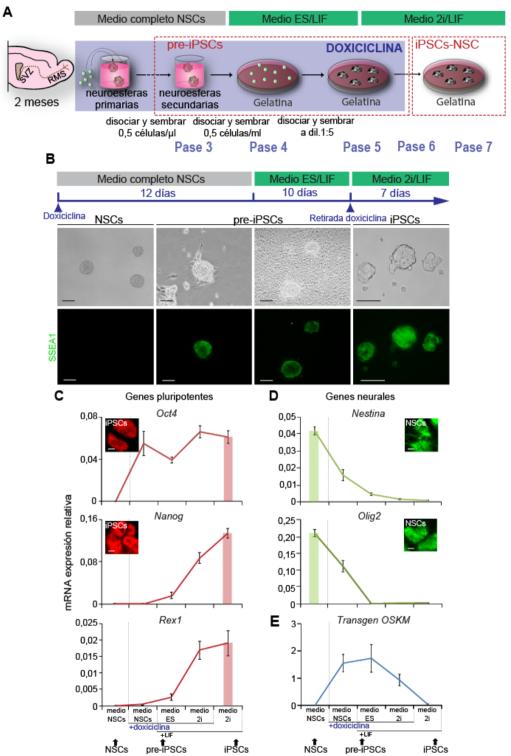


Figura 2. Las NSCs adultas i4F-B pueden ser reprogramadas a iPSCs *in vitro*. A) Esquema del protocolo utilizado para la reprogramación de NSCs adultas de ratones i4F-B en iPSCs-NSC mediante doxiciclina. B) Esquema del protocolo de reprogramación donde se indican los medios utilizados y la duración aproximada cada medio (panel superior). Imágenes de contraste de fases de NSCs, pre-iPSCs y iPSCs durante del proceso de reprogramación. La adquisición de SSEA1 (verde) durante el proceso de reprogramación se muestra en el panel inferior. C) Análisis por qPCR de los niveles de expresión de *Oct4*, *Nanog* y *Rex1* durante el proceso de reprogramación. D) Análisis por qPCR de los niveles de expresión de los genes neurales *Nestina* y *Olig2* durante el proceso de reprogramación. E) Análisis por qPCR de los niveles de expresión del casete *OSKM* durante el proceso de reprogramación. El gen *Gapdh* se ha utilizado para normalizar. Las barras de error muestran el s.e.m. de al menos cuatro animales por condición. Escala en B (NSCs): 100 μm; en B (pre-iPSCs e iPSCs): 50 μm. En C y D: 5 μm.

Además de los cambios de expresión génica, la reprogramación celular a un estado pluripotente puede dar lugar a alteraciones en la dotación cromosómica de las iPSCs generadas, tales como aneuploidías o poliploidías (Liang & Zhang, 2013). Sin embargo, las distintas líneas de iPSCs generadas mostraron un cariotipo normal, con una media de 40 cromosomas por célula en metafase (Figura 3A), indicando que la estabilidad genómica durante el proceso de reprogramación de las NSCs adultas a iPSCs se había mantenido. Otra de las características de la adquisición de la pluripotencia es la reactivación del cromosoma X inactivo, silenciado en las células adultas (Bar et al., 2019; Heard & Disteche, 2006), de manera que las células pasan a presentar los dos cromosomas X activos (Cantone & Fisher, 2017; Ohhata & Wutz, 2013). Uno de los genes responsables de la inactivación del cromosoma X es el RNA no-codificante Xist (Navarro et al., 2008; Ohhata & Wutz, 2013). Este gen se encuentra regulado a su vez por el RNA nocodificante antisentido *Tsix*, que actúa como represor de la expresión de *Xist* (J. T. Lee & Lu, 1999) (Esquema en **Figura 3B**). Cuando el cromosoma X se encuentra inactivo, expresa el RNA *Xist*, que interacciona con el propio cromosoma reclutando la maquinaria de represión de la expresión génica (Cantone & Fisher, 2017; Ohhata & Wutz, 2013). Por tanto, la reactivación del cromosoma X que ocurre durante la reprogramación de NSCs a iPSCs puede ser determinada por la cuantificación de la expresión de ambos genes Xist y Tsix (J. Kim et al., 2015). El análisis de la expresión del RNA antisentido *Tsix* en las iPSCs generadas, reveló un aumento en su expresión durante el proceso de reprogramación en las células hembras (**Figura 3B**). En cuanto al gen *Xist,* de acuerdo con el aumento de su represor Tsix, el análisis de expresión mostró una disminución en las iPSCs respecto a las NSCs (Figura 3B). Como controles se utilizaron iPSCs de ratones macho, que mostraron niveles de expresión de Tsix significativamente menores y niveles similares de Xist a los encontrados en iPSCs de animales hembra (Figura 3B). También se estudió la expresión de un gen situado en el cromosoma X, Pgk1 que ha sido ampliamente utilizada para demostrar la reactivación del cromosoma X y la consiguiente re-expresión de los genes localizados en él (Maherali et al., 2007; Sripathy et al., 2017). El análisis por qPCR mostró una mayor expresión del gen Pgk1 en las iPSCs de ratones hembra con respecto a las de ratones macho (Figura 3C), concordante con los cambios a nivel de expresión que ocurren durante la reactivación del cromosoma X en las iPSCs generadas.

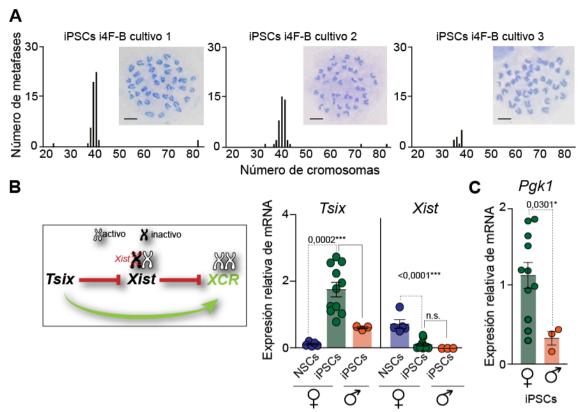


Figura 3. Las iPSCs generadas a partir de NSCs mantienen la dotación cromosómica y reactivan el cromosoma X silenciado. A) Cuantificación del número de cromosomas por metafase en distintas líneas de iPSCs i4F-B, mostrando una dotación cromosómica media normal de 40 cromosomas. Se muestran también imágenes por microscopía óptica obtenidas tras la tinción con Giemsa de metafases. B) Esquema del efecto de *Xist* y *Tsix* en la reactivación del cromosoma X (XRC). *Tsix* reprime la expresión de *Xist*, que está inactivando uno de los cromosomas X, permitiendo de esta forma su reactivación (XCR). qPCR para la expresión de los genes *Tsix* y *Xist* en NSCs, pre-iPSCs e iPSCs procedentes de animales hembras, y pre-iPSCs e iPSCs de machos. C) qPCR para el gen *Pgk1* en iPSCs de animales i4F-B hembras y machos. El gen *Gapdh* ha sido utilizado para normalizar. Las barras de error muestran el s.e.m. de al menos 3 animales por condición. Los p-valores aparecen indicados en la figura. Barras de escala en A: 10 μm.

Dado que la pluripotencia implica la capacidad de generar células pertenecientes a las tres capas germinales, las iPSCs generadas fueron sometidas a un ensayo de diferenciación *in vitro* usando dos métodos de obtención de EBs: el método de la gota colgante (protocolo A) y el método de flotación (protocolo B). En ambos casos, se generaron EBs en los que se observó una disminución significativa en la expresión del gen *Nanog* y de su proteína con respecto al estado iPSC (**Figura 4A**).

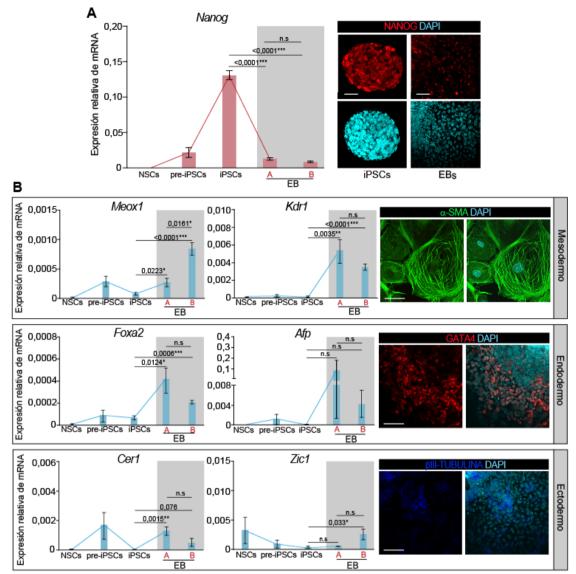


Figura 4. Las iPSCs generadas a partir de NSCs adultas de ratonesi4F-B generan células pertenecientes a las tres capas embrionarias. A) qPCR para *Nanog* durante el proceso de reprogramación de las NSCs reprogramables y en EBs generados mediante el ensayo de gota colgante (A) o por flotación (B). La ICC para Nanog en iPSCs y en EBs también se muestra a la derecha de la imagen. B) qPCR para genes asociados a mesodermo (*Meox1* y *Kdr1*), endodermo (*Foxa2* y *Afp*) y ectodermo (*Cer1* y *Zic1*) durante el proceso de reprogramación y en EBs por el método de la gota colgante (A) o por el método de flotación (B). A la derecha de la imagen se muestran imágenes de fluorescencia de las ICC para el marcador de mesodermo α-SMA (verde), de endodermo GATA4 (rojo) y de ectodermo βIII-tubulina (azul), en EBs generados a partir de la diferenciación de las iPSCs. DAPI ha sido utilizado para contrateñir. El gen *Gapdh* se ha utilizado para normalizar. Los p-valores están indicados en las imágenes. Las barras de error muestran los s.e.m. de al menos 4 cultivos por condición. Barras de escala en A y B: 20 μm.

La presencia de células pertenecientes a las diferentes capas germinales se determinó mediante estudios de expresión génica de marcadores de tejidos diferenciados y mediante ICC para estos mismos marcadores. Tras este análisis, se observó un aumento en la expresión de genes asociados a mesodermo, como *Meox1* (*Mesenchyme Homeobox 1*) y *Kdr1* (*Kinase insert Domain Receptor 1*) y a endodermo, *como Foxa2* (*Hepatocyte nuclear factor 36*) y *Afp* (α-*Fetoprotein*) (**Figura 4B**). Los niveles de expresión de genes asociados a ectodermo, tales como

Zic1 y Cer1 también aumentaron en los EBs con respecto a las iPSCs, aunque la expresión de Zic1 ya era relativamente alta en las NSCs de partida debido a su origen ectodérmico (Figura 4B). Los estudios por ICC en EBs también mostraron la presencia de marcadores de las tres capas germinales, tales como α-SMA (del inglés Alpha-smooth muscle actin) para el mesodermo, GATA4 para el endodermo y βIII-tubulina para el ectodermo (Figura 4B). Estos cambios de expresión fueron similares en los EBs generados tanto con la técnica de gota colgante como con la técnica de flotación (Figura 4B), demostrándose así la capacidad de las iPSCs generadas de formar células de las tres capas germinales.

La capacidad pluripotente de las iPSCs fue testada también mediante un ensayo de formación de teratomas *in vivo* en ratones inmunocomprometidos (**Figura 5**). La inyección de 1,5x10⁶ iPSCs en la zona dorso-lateral de la parte trasera de animales *Nude*, dio lugar a la formación de teratomas en estas regiones (**Figura 5A**, **B**). Una semana después de la inyección de las iPSCs, se podían observar crecimientos pero, no fue hasta pasados 18 días, cuando estos alcanzaron un tamaño de entre 1,4-1,8 cm (**Figura 5B**). Una tinción de hematoxilina-eosina en cortes de parafina de los tumores extraídos reveló la presencia de tejido mesodérmico con células musculares esqueléticas, de tejido endodérmico con células epiteliales columnares y de tejido ectodérmico con la presencia de melanocitos (**Figura 5C**). Los estudios con microscopía confocal de cortes inmunoteñidos mostraron células positivas para α-SMA, GATA4 y βIII-tubulina (**Figura 5D**) confirmando la capacidad pluripotente de las iPSCs generadas a partir de NSCs adultas.

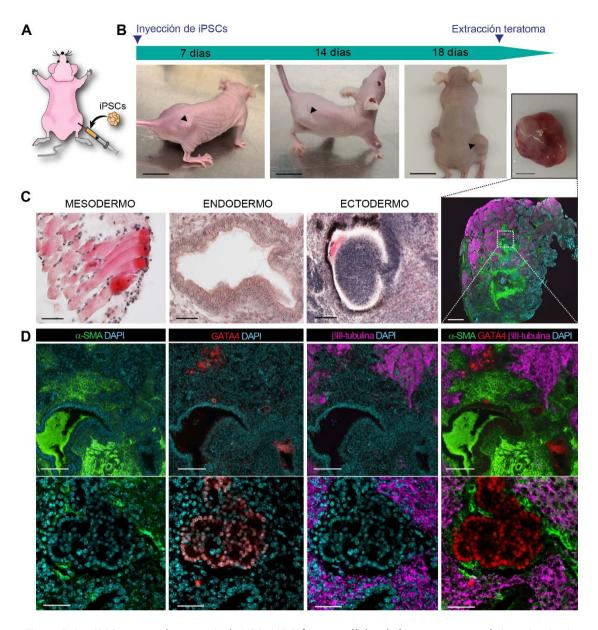


Figura 5. Las iPSCs generadas a partir de NSCs i4F-B forman células de las tres capas embrionarias *in vivo*. A) Esquema del protocolo de formación de teratomas *in vivo* a partir de la inyección de iPSCs en los flancos dorso-laterales de ratones inmunocomprometidos *Nude*. B) Seguimiento del crecimiento de los teratomas (cabeza de flecha) tras 7, 14 y 18 días de la inyección de las iPSCs en ratones *Nude*. La última imagen corresponde a uno de los teratomas 18 días tras la inyección. C) Análisis histológico de los teratomas mediante tinción con hematoxilina-eosina. Se muestran imágenes de células pertenecientes a las tres capas embrionarias, mesodermo (fibras musculares estriadas), endodermo (células del epitelio columnar) y ectodermo (melanocitos). D) Imágenes de fluorescencia para marcadores específicos de mesodermo (α -SMA), endodermo (GATA4) y ectodermo (β III-tubulina) también se obtuvieron por ICC. DAPI fue utilizado para contrateñir los núcleos. Las barras de escala son, en B: 500 mm (teratoma ampliado: 100 mm); en C: 50 µm; en D: 50 µm (teratoma completo), 10 µm (paneles superiores), 20 µm (paneles inferiores).

1.2 Las iPSCs generadas a partir de NSCs adultas pueden ser diferenciadas a precursores neurales

Con el fin de determinar si los cambios producidos durante la generación de las iPSCs a partir de NSCs eran reversibles y no alteraciones estocásticas, se indujo la re-diferenciación de las iPSCs generadas, a un fenotipo neural utilizando un protocolo basado en la diferenciación mediante FBS y ácido retinoico (RA) (Bibel et al., 2007), de tal manera que tras varios días en cultivo se obtuvieron progenitores neurales (NPs) (Figura 6A). La adquisición del fenotipo neural, así como la pérdida de marcadores de pluripotencia en estos NPs, fue comprobada mediante análisis por qPCR. El análisis mostró una disminución de casi 15 veces en la expresión de Nanog durante la diferenciación en medio de NPs con FBS (**Figura 6B**). La adición posterior de RA en el medio indujo un descenso aún mayor en la expresión del gen conforme se diferenciaban los NPs (Figura 6B). Simultáneamente, la expresión del gen neural Nestina aumentó significativamente en los NPs, aunque no llegaron a alcanzar los niveles de las NSCs adultas (Figura 6B). En este caso, fue la presencia del RA en el medio la que indujo un aumento de alrededor de 20 veces en los NPs con respecto a las iPSCs. También se observó el cambio de expresión del gen neural Pax6 en presencia de RA el cual aumentó 100 veces su expresión en los NPs con respecto a las iPSCs, a niveles comparables a las NSCs de origen (Figura 6B). La expresión de genes asociados a los tres linajes neurales: oligodendrocitos (Olig2), astrocitos (Gfap), y neuronas (BIII-tubulina), también fue analizada (Figura 6C). Tanto la expresión de Olig2, como de Gfap, se mantuvo durante la diferenciación a NPs, sin embargo, la expresión de 6/11-tubulina mostró un aumento significativo sugiriendo una diferenciación más dirigida hacia el linaje neuronal aparentemente promovida por la presencia de RA (Figura 6C).

El estudio inmunocitoquímico durante la diferenciación de iPSCs a NPs confirmó la disminución Nanog y Oct4 y la reaparición de Nestina en los NPs (Figura 6D). También se observó la aparición de células positivas para el marcador Olig2 en NPs, aunque la frecuencia de células positivas para este marcador fue mucho menor que el observado en las NSCs adultas de origen. En cambio, el marcador GFAP no mostró cambios significativos en la expresión de proteína entre NSCs, iPSCs y NPs (Figura 6D). Para confirmar que los NPs generados presentaban tendencia hacia un linaje neuronal, se llevó a cabo una ICC para MAP2 (del inglés *Microtubule-associated protein 2*), marcador específico de neurona madura (Dehmelt & Halpain, 2005). Este estudio reveló la presencia de células positivas para dicho marcador en NPs, ausente en iPSCs e, incluso, en NSCs (Figura 6D). Todos estos resultados indican que las iPSCs generadas a partir de la reprogramación de las NSCs adultas portadoras del transgén OSKM pueden ser eficientemente diferenciadas de nuevo a un fenotipo neural.

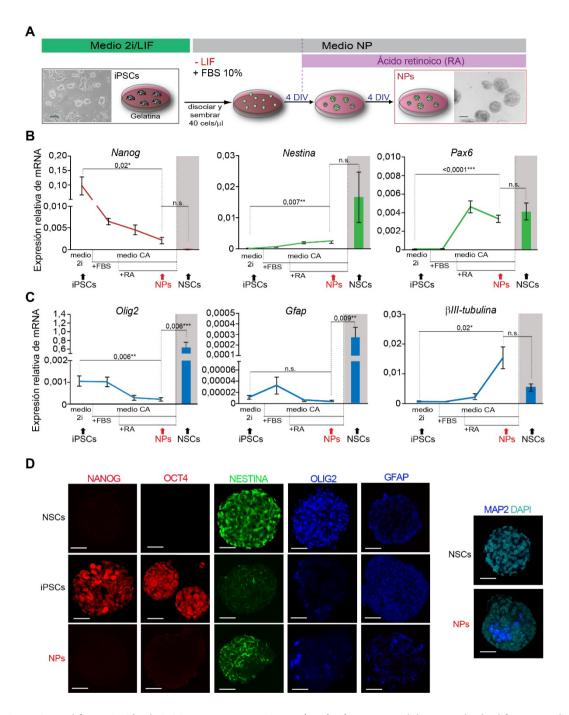


Figura 6. Re-diferenciación de iPSCs a neuroprogenitores (NPs). A) Esquema del protocolo de diferenciación de las iPSCs a NPs. Este protocolo se basa en los resultados publicados en Bibel M *et al.* 2007 en los cuales se utiliza medio NP con suero al 10% (FBS) y 5 μM de ácido retinoico (RA) para promover la diferenciación neural de las iPSCs. Se muestran imágenes de contraste de fases de las iPSCs y tras su diferenciación a NPs. B) qPCR para *Nanog* y los marcadores neurales *Nestina* y *Pax6* en NSCs, iPSCs y NPs. C) qPCR para marcadores de los distintos linajes neurales *Olig2*, *Gfap* y β*III-tubulina*, durante el proceso de diferenciación de las iPSCs a NPs. Los niveles de expresión de estos genes en las NSCs i4F-B también se han indicado, así como los p-valores. El gen *Gapdh* se ha utilizado para normalizar los datos. D) Imágenes de ICC para los marcadores de pluripotencia Nanog y Oct4 (rojo), para el marcador neural Nestina (verde), y para los marcadores Olig2 y GFAP (azul) en NSCs, iPSCs y NPs. Se muestran imágenes de fluorescencia también de la ICC para el marcador neuronal MAP2 (azul) en NSCs y NPs. DAPI ha sido utilizado para contrateñir los núcleos. Las barras de error muestran el s.e.m. de entre 3 y 6 cultivos por condición. Las barras de escala son, en A: 100 μm; en D: 25 μm.

1.3. La reprogramación de las NSCs adultas de ratones i4F-B a iPSCs produce alteraciones en la expresión de genes improntados

El estudio de los mecanismos epigenéticos es clave para entender el proceso de reprogramación celular y cómo estos definen a la célula de origen. Con el fin de estudiar la posible implicación del proceso epigenético de impronta genómica en la transformación de las NSCs adultas a un estado pluripotente, la expresión de diversos genes improntados fue analizada mediante qPCR en NSCs, iPSCs y NPs utilizando sondas específicas (Tablas Suplementarias 1 y 2 MM). Este análisis mostró que, de un total de 26 genes analizados, un elevado porcentaje (84,62%) veían alterados sus niveles de expresión durante el proceso de reprogramación de NSCs a iPSCs (Figura 7A, B). En el conjunto de los 22 genes cambiados, el 54,55% aumentó su nivel de expresión en las iPSCs, mientras que el resto lo disminuyó (Figura 7A). Curiosamente, los genes cuya expresión se vio disminuida se localizaban principalmente en cromosomas entre el 2 y el 7, mientras que los genes improntados cuya expresión aumentó en las iPSCs se localizaban en los cromosomas del 7 al 15 (Figura 7B).

Del total de genes improntados cuya expresión cambiaba durante la reprogramación de las NSCs, alrededor del 40% revirtieron sus niveles de expresión al re-diferenciar las iPSCs en NPs (Figura 7B y 8A). En concreto, un total de 9 genes, de los 22 que se encontraban alterados en iPSCs, acercaron sus niveles de expresión a los de las NSCs de origen (Figura 7B, C y 8A). Estos resultados indican que la regulación de la expresión de genes improntados es modulable durante los procesos de des-diferenciación de las NSCs y re-diferenciación de las iPSCs a una nueva identidad neural.

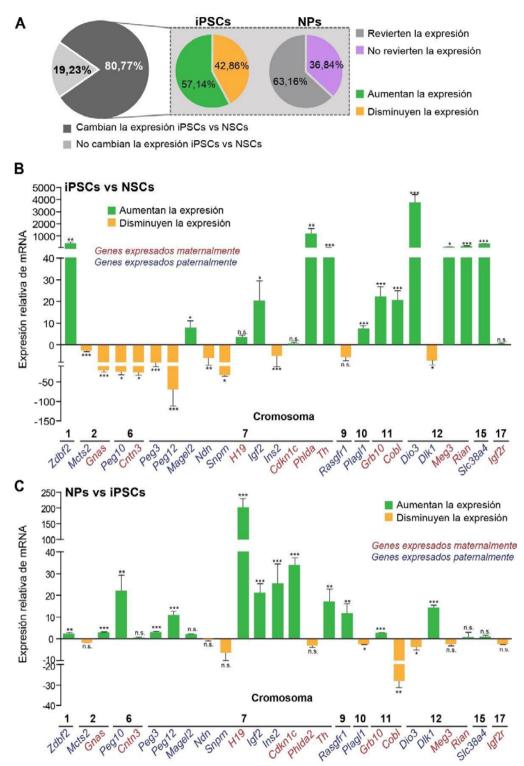


Figura 7. La reprogramación de NSCs a iPSCs conlleva cambios reversibles en la expresión de genes improntados. A) Porcentaje de genes cuya expresión cambia en las iPSCs con respecto a las NSCs de origen (panel de la izquierda). Porcentaje de genes que aumentan (verde) y disminuyen (naranja) su expresión en las iPSCs respecto a las NSCs, y de aquellos que revierten la expresión al ser diferenciados nuevamente al fenotipo de neuroprogenitores (NPs; morado). B) Cambios de expresión de los genes improntados en las iPSCs con respecto a las NSCs. Los genes cuya expresión se vio aumentada en las iPSCs han sido indicados en verde, mientras que aquellos que disminuyeron, se encuentran en naranja. C) Cambios de expresión de los genes improntados en NPs con respecto a las iPSCs de origen. Los genes han sido organizados por su localización en los cromosomas, indicando el cromosoma concreto en el que se encuentra el gen. Los genes de expresión materna se indican en rojo mientras que aquellos cuya expresión proviene del alelo paterno, en azul. El gen *Gapdh* ha sido utilizado para normalizar.

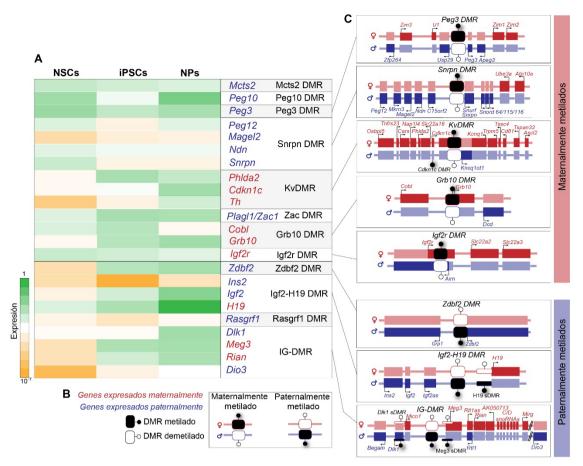


Figura 8. Los procesos de desdiferenciación y rediferenciación alteran la expresión de los genes improntados. A) HeatMap de la expresión de los genes improntados en NSCs, iPSCs y NPs. Los genes han sido organizados por *clusters* indicando la región DMR reguladora de cada uno de ellos. Niveles altos de expresión se indican en verde y aquellos que menor expresión presentan se muestran en naranja. B) Los genes de expresión materna se indican en rojo mientras que aquellos de expresión paterna se muestran en azul. Los DMRs implicados que en la regulación de los genes improntados pueden estar metilados en el alelo materno (rojo) o en el alelo paterno (azul), mientras que el otro alelo se mantiene desmetilado. C) Representación de la distribución de los genes improntados en el alelo materno (rojo) y paterno (azul), y la metilación de la DMR que regula cada *cluster* de genes improntados.

1.4. La reprogramación de NSCs a iPSCs se asocia con cambios en el estado epigenético de genes improntados

La metilación supone una barrera para la reprogramación completa a iPSCs (De Carvalho et al., 2010). De hecho, la adquisición del estado pluripotente se caracteriza por una hipometilación del genoma (Leitch et al., 2013; Liu et al., 2017; Pastor et al., 2016; Perrera & Martello, 2019; Y. Wang et al., 2018). Esto incluye la pérdida de metilación en las regiones de control de impronta genómica o ICRs (Liu et al., 2017) causando, en algunos casos, la reactivación o represión de los genes improntados regulados por una misma DMR (Bar et al., 2017; Giulitti et al., 2019; Pastor et al., 2016).

1.4.1 La reprogramación de NSCs adultas a iPSCs causa hipometilación en las ICRs

Clásicamente la metilación del DNA ha sido asociada a la represión génica (Razin & Cedar, 1991), y aunque este no es siempre el caso de los clusters improntados, la hipometilación de las regiones DMR promueve generalmente la expresión de los genes (Zou et al., 2020). Las regiones de control de impronta o DMRs identificadas hasta la fecha se clasifican en gDMR, que adquieren su estado de metilación en la línea germinal y sDMR que se metilan diferencialmente tras la fertilización y son específicas de tejido (Ferguson-Smith, 2011). La deleción o alteraciones de la metilación de estas DMRs pueden causar una pérdida de impronta genómica en múltiples genes dentro del cluster (Figura 8B, C) (SanMiguel & Bartolomei, 2018). Por ello, y con el fin de determinar si los cambios observados en la expresión de los genes improntados durante el proceso de reprogramación estaban asociados a cambios en los niveles de metilación en las DMRs reguladoras de estos genes, se llevó a cabo el análisis por conversión bisulfítica y posterior pirosecuenciación del porcentaje de metilación asociado a las islas CpG de las DMRs que regulan los clusters improntados (Figura 8B, C). El porcentaje de metilación en una ICR es de básicamente el 100% en el alelo metilado y de 0% en el alelo no metilado, resultando en una medida conjunta del 50% por la técnica de pirosecuenciación. Un aumento o descenso de ese porcentaje puede representar un cambio en el estado de la impronta dentro del cluster (Ferguson-Smith, 2011).

Para determinar los cambios en los niveles de metilación durante la reprogramación celular, un total de 15 ICR/DMRs fueron analizadas en iPSCs, NPs y en las NSCs de origen (Figura 9). De ellas, 6 eran paternalmente metiladas (**Figura 9A**) y 9 maternalmente metiladas (**Figura 9B**). Cabe destacar que la localización de estos dos tipos de DMRs difieren, situándose en regiones intergénicas en el caso de las DMRs paternalmente metiladas, mientras que las DMRs maternalmente metiladas se encuentran en regiones promotoras (Bar et al., 2017; Edwards & Ferguson-Smith, 2007). De todas las DMRs analizadas, 13 mostraron una disminución de la metilación significativa en las iPSCs en comparación con las NSCs y ninguna de ellas mostró un aumento de la metilación, independientemente de si eran gDMRs o sDMRs (Figura 9A B). Además, 5 de las 6 (83%) DMRs paternalmente metiladas (H19 DMR, H19 promotor DMR, IG-DMR, Zdbf2 DMR, Rasgfr1 DMR), revirtieron los niveles de metilación tras la diferenciación de las iPSCs a NPs (Figura 9A). Es interesante destacar que ninguno de las gDMRs maternalmente metiladas mostraron una reversión en los niveles de metilación tras la re-diferenciación de las iPSCs a un fenotipo neural (Figura 9B). Curiosamente, la única DMR que mostró dicha reversión tras la diferenciación a NPs fue la Cdkn1c sDMR, que es de tipo somático (Figura 9B). Estos datos sugieren que, tras la reprogramación celular, las DMRs paternalmente metiladas parecen estar

más afectadas por la pérdida de impronta genómica que las maternalmente metiladas, lo cual coincide con estudios anteriores en otros sistemas (Bar et al., 2017; Rugg-Gunn et al., 2007).

Los efectos de la hipometilación en la expresión de los genes improntados a los que controlan las DMRs afectadas dependerán de qué alelo, el materno o el paterno, se encuentre metilado originalmente (Figura 8B, C). De esta manera, si la hipometilación ocurre en las DMRs maternalmente metiladas, se producirá la "paternalización" del alelo materno, es decir, la expresión de los genes maternos disminuirá mientras que la de los paternos aumentará. Sin embargo, el estudio cruzado de los datos de expresión por qPCR y de metilación de las DMRs en clusters improntados, reveló que únicamente en algunos casos estas premisas se cumplían. Por ejemplo, el gen *Plagl1*, de expresión paterna y localizado en el cromosoma 10, aumentó su expresión en las iPSCs con respecto a las NSCs acorde con la hipometilación del DMR materno (Figura 7B, 8A y 9B). Lo mismo ocurría con el gen Magel2, también de expresión paterna, situado en la Snrpn DMR, el cual mostró un aumento de su expresión en iPSCs como consecuencia de la hipometilación de dicha DMR (Figura 7B, 8A y 9B). Sin embargo, el resto de genes improntados en esta región, también de expresión paterna, disminuyeron sus niveles en iPSCs respecto a NSCs (Figura 7B y 8A). Otros ejemplos en los que la hipometilación de la DMR no explica los cambios de expresión génica, son los genes de expresión materna Cobl, Grb10, Phdla2 y Th también localizados en clusters con ICR/DMRs maternalmente metiladas y cuyos niveles de expresión aumentaron tras la reprogramación (**Figura 7B** y **8A**). Estos datos sugirieren que los cambios en la expresión génica de los genes improntados durante la adquisición de un estado pluripotente en NSCs no son totalmente dependientes de la hipometilación observada en sus DMRs.

Figura 9. La reprogramación de NSCs a iPSCs conlleva la hipometilación de las regiones de control de impronta. A) Porcentaje de metilación en las islas CpG de las DMRs, germinales y somáticos, paternalmente metilados en NSCs, iPSCs y NPs en las regiones de control de impronta. B) Porcentaje de metilación en las islas CpG de las DMRs, germinales y somáticas, maternalmente metiladas. El número de CpGs analizadas se indica. Las barras de error muestran el s.e.m. de al menos 3 cultivos por tipo celular. Los p-valores han sido indicados.

En el caso de las DMRs paternalmente metiladas, la pérdida de metilación producirá la "maternalización" del alelo paterno (Ferguson-Smith, 2011). Por ejemplo, en las 4 gDMRs paternalmente metiladas, la hipometilación debería conllevar al aumento de expresión de los genes maternos y la disminución de los paternos. En concordancia, el gen Ins2 de expresión paterna localizado en el *cluster* de la H19 DMR, disminuyó en iPSCs y el gen *H19* de expresión materna localizado en el mismo cluster aumentó en iPSCs respecto a las NSCs coincidente con una hipometilación del H19 DMR (Figura 7B, 8A y 9A). Sin embargo, el gen Iqf2, de expresión paterna y localizado en el mismo cluster, aumentó sus niveles de expresión en las iPSCs, contrariamente a lo esperado (Figura 7B y 8A), si bien el gen Igf2 se encuentra regulado a su vez por una sDMR, cuyos niveles de metilación no se ven afectados en las iPSCs y que podría estar regulando coordinadamente la expresión de este gen (**Figura 7B, 8A** y **9A**). En el caso del gen *H19*, su expresión también es regulada por una DMR somática o secundaria (H19prom sDMR), cuyos niveles de metilación disminuyeron en las iPSCs y se revirtieron en los NPs, como ocurría con su DMR germinal; sin embargo, el aumento de expresión de H19 no fue significativo en las iPSCs, mientras que hubo un aumento de expresión en los NPs, contrariamente a lo esperado con el aumento de metilación (Figura 7B y 9A). Cabe destacar, que la expresión del gen Ins2 sí coincidió con los cambios de metilación observados en la DMR tras la reprogramación de las NSCs, y estos revertían, tanto en los niveles de expresión como de metilación, en los NPs (Figura 8 y 9).

Finalmente, cuatro genes localizados en el cromosoma 12 bajo la regulación de la ICR denominada IG-DMR paternalmente metilada fueron también analizados. Dos de ellos, *Meg3* y *Rian*, de expresión materna aumentaron su expresión en las iPSCs con respecto a las NSCs tras la hipometilación de la IG-DMR. A la vez, el gen *Dlk1*, de expresión paterna y localizado en el mismo *cluster*, disminuyó sus niveles de expresión en iPSCs, concordante con la disminución de la metilación de la DMR (**Figura 7B** y **8A**). Además, la reversión en la metilación de la IG-DMR observada tras la diferenciación de las iPSCs a NPs correlacionó con la readquisición de niveles altos del gen *Dlk1*, sugiriendo una posible relación de los niveles de metilación de la IG-DMR y los niveles de expresión del gen durante la reprogramación celular y posterior re-diferenciación a un fenotipo neural (**Figura 8** y **9**). Esta condición no se cumplió para los otros genes del *cluster Meg3* y *Rian*, que aumentaron aún más sus niveles de expresión tras la diferenciación a NPs (**Figura 8** y **9**).

Por tanto, los cambios en el porcentaje de metilación en el proceso de adquisición del estado pluripotente y de diferenciación neural no siempre coincidieron con los cambios de expresión génica observados durante ambos procesos, indicando que esos casos pudieran no estar causados por los cambios de metilación en sus regiones reguladoras DMRs. Este fenómeno ya ha sido observado en otros estudios de reprogramación celular (M. J. Kim et al., 2013). Sin embargo, estos resultados sí señalaron a la IG-DMR y al gen *Dlk1* regulado por ella como potenciales reguladores del estado de NSC durante la adquisición de un estado pluripotente, sugiriendo que la impronta genómica es un proceso parcialmente modulable durante el desarrollo y adquisición de la identidad celular.

1.4.2 La reprogramación de NSCs adultas a iPSCs conlleva cambios en el estado de impronta del gen Dlk1

La pérdida de impronta genómica o LOI ha sido sugerida como uno de los procesos que favorecen la adquisición de un estado pluripotente (Bar et al., 2017; Perrera & Martello, 2019; Takikawa et al., 2013), causando la expresión bialélica de algunos genes improntados tales como H19, Igf2, Meg3, Peg3, Peg10 o Mest (Leick et al., 2012; Perrera & Martello, 2019). Clásicamente se ha utilizado el estudio de los niveles de metilación de las regiones ICRs para detectar la LOI (Jelinic & Shaw, 2007). Por ello, y con el fin de estudiar si los cambios observados en los niveles de metilación (Figura 9) causaban LOI y eran responsables de los cambios de expresión de los genes improntados durante la reprogramación celular, se llevó a cabo el análisis de SNPs en los genes de interés. Las variaciones de un único nucleótido en la secuencia de DNA en la generación F1 del cruce híbrido entre las cepas murinas Mus musculus castaneus (CAST) y Mus musculus domesticus (B6) permite detectar si la expresión de los genes improntados procede del alelo materno, del paterno, o de ambos alelos tras la pérdida de impronta genómica. Las NSCs adultas de ratones híbridos procedentes de cruces de hembras i4F-B con machos CAST (cruce i4F-BxCAST) y de cruces recíprocos de hembras CAST con machos i4F-B (cruce CASTxi4F-B) fueron extraídas y reprogramadas a iPSCs y posteriormente diferenciadas a NPs. Con el fin de determinar la expresión alélico-específica de los genes improntados, se secuenció el cDNA de las regiones de estos genes que contenían el SNP. Se realizó el análisis de SNPs de 7 genes improntados con perfiles de expresión diferentes durante el proceso de reprogramación y diferenciación: Gnas (cromosoma 2), Peg3 (cromosoma 7), Snrpn (cromosoma 7), Phlda2 (cromosoma 7), Cobl (cromosoma 11), Dlk1 (cromosoma 12) y Meg3 (cromosoma 12) (Figura 10). La detección y análisis de los SNPs para los genes Snrpn, Dlk1 y Meg3 se basaron en estudios previos (Ferron et al., 2011), mientras que el resto de SNPs fueron diagnosticados de nuevo.

Los estudios de metilación de las DMRs en regiones de impronta genómica identificaron al gen Dlk1, perteneciente al cluster improntado Dlk1- Dio3 y regulado por la IG-DMR, como crucial durante la reprogramación de las NSCs, por lo que procedimos a estudiar el estado de impronta genómica de dicho gen en NSCs, iPSCs y NPs procedentes de animales híbridos i4F-BxCAST y CASTxi4F-B. Dlk1 es un gen improntado de expresión paterna en el organismo, pero que pierde dicho estado de impronta en las NSCs adultas de forma fisiológica (Ferron et al., 2011). Durante la reprogramación de las NSCs al estado pluripotente se observó una disminución de la expresión de dicho gen en las iPSCs generadas, niveles que se vieron revertidos en los NPs tras la diferenciación neural de las iPSCs (Figura 7B y 8A). Dichos cambios de expresión del gen pudieran ser causados por alteraciones del estado de impronta genómica de Dlk1. El estudio por secuenciación de un SNP en el exón 5 del mRNA de Dlk1 indicó que, tras la reprogramación de las NSCs, se produce el silenciamiento de uno de los alelos, dando lugar a una expresión monoalélica del gen, consistente con la hipometilación observada en la IG-DMR en las iPSCs (Figura 10A). En contra de lo esperado, el alelo re-expresado fue el materno, mientras que el paterno permaneció silenciado (Figura 10A). Notablemente, el estado de impronta genómica en el gen Dlk1, se perdió nuevamente durante el proceso de diferenciación a NPs de las iPSCs, coincidente con el aumento del porcentaje de metilación de la IG-DMR en los NPs (Figuras 9A y 10A).

La metilación paterna de la IG-DMR también es requerida para mediar la represión del gen *Meg3* en el cromosoma paterno, siendo por lo tanto un gen de expresión materna dentro del mismo *cluster* (Figura 8C). Por lo tanto, para determinar si los cambios en el porcentaje de metilación observados en la IG-DMR pudieran también alterar la expresión de *Meg3* durante la reprogramación de las NSCs, se determinó su estado de impronta mediante la secuenciación de un SNP en el exón 9 del gen *Meg3* (Figura 10A). Los resultados mostraron que este gen, vecino a *Dlk1*, mantuvo únicamente la expresión materna en iPSCs y tras la diferenciación a NPs (Figura 10A). Genes localizados en otros *clusters* clásicamente improntados tales como *Cobl* y *Gnas*, pero de expresión bialélica en cerebro, o *Peg3*, de expresión paterna, no vieron alterado su estado de impronta tras la reprogramación celular (Figura 10B).

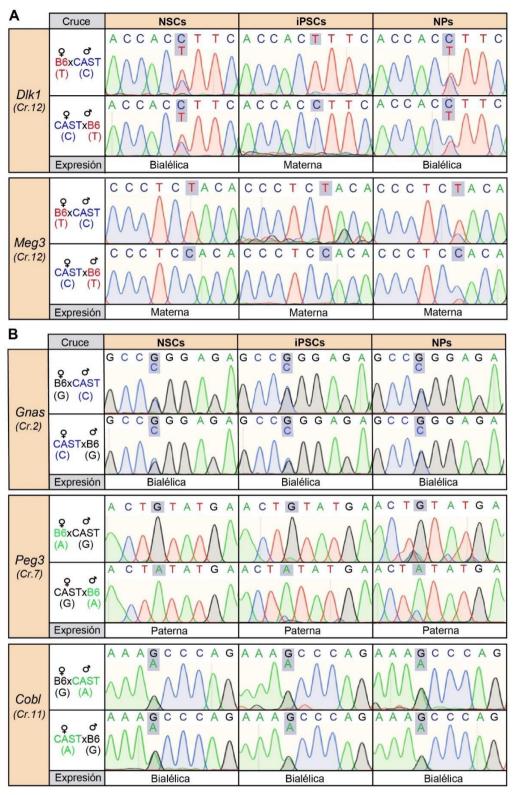


Figura 10. El estado de impronta genómica de *Dlk1* se ve alterado durante el proceso de reprogramación y diferenciación neural. A) Perfiles de secuenciación del producto de PCR del mRNA de los genes improntados *Dlk1* y *Meg3* en NSCs, iPSCs y NPs procedentes de animales híbridos generados por cruces entre hembras i4F-B (B6) con machos *Mus musculus castaneus* (CAST), animales i4F-BxCAST, o cruces entre hembras *Mus musculus castaneus* con machos i4F-B, animales CASTxi4F-B. La región analizada contiene un SNP entre las dos cepas que permite determinar la expresión alelo-específica de dichos genes. B) Perfiles de secuenciación del producto de PCR de los genes improntados *Gnas, Peg3* y *Cobl* que contiene el SNP para determinar la expresión alelo-específica de los genes improntados a partir de NSCs, iPSCs y NPs en estos animales híbridos.

Estos resultados muestran que el estado de impronta del gen *Dlk1* durante la reprogramación celular correlaciona con el estado de metilación de la IG-DMR, lo cual es concordante además con los resultados de expresión del gen en NSCs e iPSCs. Así, la región IG-DMR se encuentra hipermetilada en las NSCs adultas, dando lugar a la expresión bialélica del gen *Dlk1* pero la reprogramación de estas células en iPSCs conlleva a una disminución de la metilación de IG-DMR y, como consecuencia, la expresión monoalélica del gen (**Figura 11**).

Reprogramación celular inducida

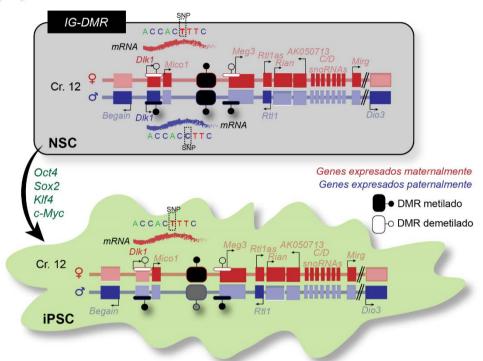


Figura 11. La reprogramación de NSCs adultas en iPSCs altera la expresión del gen improntado Dlk1 y su estado de impronta. Esquema del efecto del proceso de reprogramación de NSCs adultas en la metilación de la región IG-DMR y la expresión alelo-específica del gen improntado Dlk1 situado bajo el control de IG-DMR. Las NSCs adultas pierden de forma específica el estado de impronta de Dlk1 de tal manera que presentan expresión bialélica; sin embargo, la reprogramación conduce a la represión de la expresión del alelo paterno del gen, manteniéndose la expresión del alelo materno, lo cual conduce a una disminución de la expresión de Dlk1 en iPSCs con respecto a las NSCs de origen.

OBJETIVO 2. Estudio del proceso de impronta genómica y su regulación epigenética en el glioblastoma

2. El proceso de impronta genómica sufre alteraciones durante la reprogramación y formación de tumores cerebrales *in vivo*

La regulación a través de las marcas de metilación en el DNA también juega un papel clave en el desarrollo del cáncer (Kulis & Esteller, 2010; Luczak & Jagodzinski, 2006; Plass & Soloway, 2002). La desmetilación global del DNA observada en distintos cánceres va también acompañada de la disminución de la metilación en las DMRs en las regiones de control de impronta genómica (Caren, Pollard, & Beck, 2013; Uribe-Lewis et al., 2011), aunque también se han descrito procesos de hipermetilación en estas DMRs (De Smet & Loriot, 2010; Uribe-Lewis et al., 2011). Además, alteraciones del estado de impronta genómica, como la LOI son uno de los procesos más comunes y que más tempranamente ocurren en el desarrollo de los tumores (Holm et al., 2005; Jelinic & Shaw, 2007; J. Kim et al., 2015; Peters, 2014). Por ello, el estudio del papel de la impronta genómica en el origen y desarrollo del principal y más agresivo tumor cerebral, el GBM (Cirillo et al., 2014; Miyai et al., 2017), es clave para el desarrollo de nuevas estrategias para su diagnóstico y tratamiento.

2.1. La expresión de genes improntados se encuentra alterada en GBM humano y murino

Gracias a los estudios realizados en diferentes laboratorios de neurooncología, actualmente se cuenta con mucha información sobre los distintos tipos de tumores a nivel de expresión por secuenciación del RNA (RNAseq) o microarrays, de metilación del DNA, de proteína y de distintos parámetros clínicos (Bowman, Wang, Carro, Verhaak, & Squatrito, 2017). La aplicación GlioVis (http://gliovis.bioinfo.cnio.es/), que sirve para la visualización de bases de datos de expresión en tumores cerebrales humanos, contiene aproximadamente 6.500 muestras de tumores cerebrales y 50 bases de datos de expresión generadas por distintos laboratorios (Bowman et al., 2017). Con el fin de determinar la potencial relevancia de los genes improntados en la formación y/o desarrollo del GBM en humanos, se obtuvo de la base de datos Geneimprint (www.geneimprint.com) la lista de genes improntados descritos en humanos hasta la fecha (Figura Suplementaria 1). A continuación, se analizó la expresión de todos estos genes improntados en muestras de tumores humanos, utilizando la base de datos de Gill de GlioVis que engloba datos de RNAseq de 17 muestras no tumorales y 75 tumorales (con tres réplicas por muestra) de GBM. Un total de 81 genes improntados se expresaban en las muestras analizadas, de los cuales, 57 mostraron cambios de expresión (70,37%) entre las muestras tumorales y las no tumorales (**Figura 12A, B**). Dentro del grupo de genes improntados cuya expresión se encontraba alterada, 23 presentaron una expresión mayor en las muestras tumorales con respecto a las muestras no tumorales (40,35%), y 34 presentaron una expresión menor (59,65%) (Figura 12A).

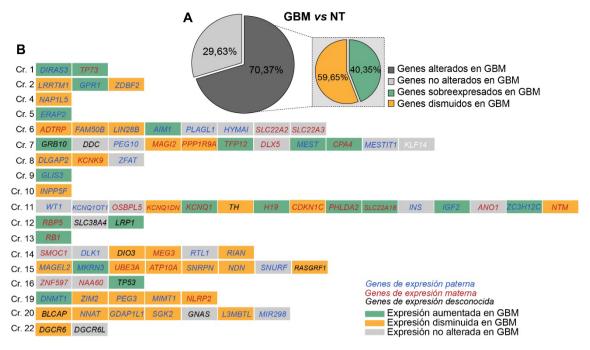


Figura 12. Las muestras de pacientes de GBM muestran alteraciones significativas en los niveles de expresión de genes improntados. A) Gráficos en círculo donde se muestran los porcentajes de genes improntados alterados en muestras de GBM respecto a muestras no tumorales (NT). Se utilizaron para el análisis los datos de RNAseq de la base de datos de Gill en la plataforma de GLIOVIS que incluye 75 pacientes de GBM. Un gran porcentaje de genes improntados están alterados en las muestras de GBM respecto a las no tumorales (70%). Los gráficos muestran, además, que casi el 60% de los genes presentan una expresión disminuida (naranja) en las muestras tumorales con respecto a tejido no tumoral, mientras que alrededor de un 40% de los genes presentan una expresión aumentada (verde) en GBM. B) Distribución de los genes improntados expresados en muestras de GBM a lo largo del genoma humano. Se representan los cromosomas con los genes de expresión materna (rojo) y paterna (azul). En verde aparecen los genes cuya expresión está aumentada en los pacientes de GBM, mientras que en naranja aparecen aquellos genes con una expresión disminuida. Los genes improntados que no alteran la expresión con respecto a tejido no tumoral aparecen en gris.

Dadas las alteraciones observadas en la expresión de genes improntados en GBM, se analizó a continuación si el perfil de expresión de estos genes permitía distinguir entre poblaciones tumorales y no tumorales. Con este fin, se examinaron los datos de RNAseq de célula única obtenidos por un estudio previo en el que se analizaba el transcriptoma de poblaciones celulares no tumorales (linfocitos T, macrófagos y oligodendrocitos) y de células de GBM en 28 tumores humanos (Neftel et al., 2019). Estos datos revelaron la enorme heterogeneidad dentro del GBM, describiendo la presencia de hasta cuatro estados celulares dentro del propio tumor: tipo progenitor oligondendrocitario (OPC), tipo astrocitario (AC), tipo mesenquimal (MES) y tipo progenitor neural (NPC) (Neftel et al., 2019). En nuestro estudio también se incluyeron en la comparativa datos de expresión de genes improntados en NSCs adultas humanas descritos previamente (Donega et al., 2019).

Del total de genes improntados analizados, 92 mostraron una expresión significativa en oligodendrocitos, mientras que 68 de ellos se expresaban en las NSCs. La mayoría de estos genes improntados (70,65%) se encontraban alterados en GBM al ser comparados con oligodendrocitos; sin embargo, únicamente el 16% de estos genes difería en su expresión con respecto a las NSCs humanas (Figura 13A), sugiriendo que las NSCs comparten perfiles de expresión de genes improntados con las células malignas. Basándonos en estos mismos datos (Neftel et al., 2019), se llevó a cabo un análisis de reducción dimensional tSNE teniendo en cuenta únicamente la expresión de los genes improntados presentes en la matriz de expresión, para así determinar si la expresión diferencial de estos genes era capaz de distinguir entre poblaciones celulares tumorales y no tumorales (Figura 13B).

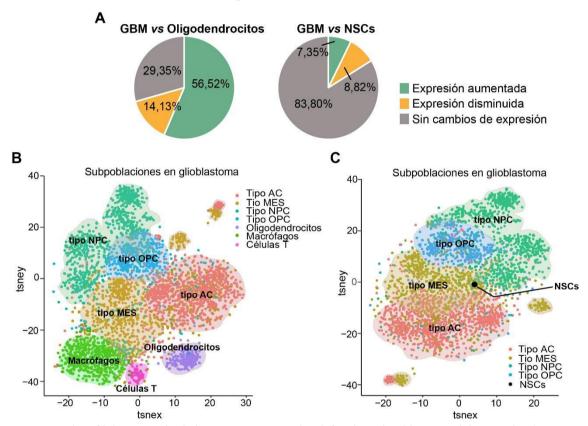


Figura 13. El perfil de expresión de los genes improntados define las subpoblaciones del GBM y las distingue de poblaciones no tumorales. A) Porcentaje de genes improntados alterados en GBM con respecto a oligodendrocitos (panel izquierdo) o respecto a NSCs adultas humanas (panel derecho). El porcentaje de genes que aumentan se ha indicado en verde, y el porcentaje de genes que disminuyen en naranja. El porcentaje de genes que no se ven alterados entre los tipos celulares se muestra en gris. Los datos de expresión se han obtenido de los análisis de RNAseq de Neftel C *et al.* 2019 y Donega *et al.* 2019. B) Análisis de los datos de RNAseq de célula única (Neftel et al., 2019) donde se muestran los subtipos celulares dentro de los GBM: AC (tipo astrocitario), MES (tipo mesenquimal), NPC (tipo pro-neural) y OPC (tipo oligodendrocitario), y células no tumorales: oligodendrocitos, macrófagos y linfocitos T en función de la expresión de genes improntados a partir de un análisis de reducción dimensional tSNE. C) Análisis de los datos de RNAseq de muestras de GBM (Neftel et al., 2019) que incluyen las NSCs adultas humanas (Donega et al., 2019), donde se muestran los subtipos celulares del GBM y las NSCs en función de la expresión de los genes improntados basándose en un análisis de reducción dimensional tSNE. Un total de 222 genes improntados han sido analizados. Imagen obtenida de: *Aberrations of genomic imprinting in glioblastoma formation – Frontiers in Oncology* (Lozano-Ureña A *et al.* En prensa).

Curiosamente, las células no malignas analizadas, linfocitos T, macrófagos y oligodendrocitos, formaron tres *clusters* separados claramente de las células de GBM, que expresaban de forma significativa marcadores, previamente descritos en el estudio, específicos de cada tipo celular (Figura 13B) (Neftel et al., 2019). Este análisis no solo mostró que la expresión combinada de genes improntandos era capaz de diferenciar tipos celulares no tumorales frente a tumorales, sino que, además, identificó varias subpoblaciones dentro del propio GBM (Figura 13B). De hecho, se obtuvieron *clusters* separados de células que coincidían con cada estado celular, es decir tipo NPC, OPC, MES o AC (Figura 13B). Cuando se repitió este análisis de reducción dimensional incluyendo los datos de RNAseq de NSCs adultas humanas (Donega et al., 2019), las células GBM fueron nuevamente separadas en *clusters* de acuerdo con los cuatro estados celulares previamente descritos, y en este caso, las NSCs quedaron incluidas dentro de las células malignas (Figura 13C). Por tanto, este estudio junto con la alta frecuencia de alteraciones en la impronta genómica y el aumento en la propensión a desarrollar cáncer en los pacientes con síndromes de impronta, enfatiza la importancia de este mecanismo epigenético en el origen y desarrollo del cáncer.

Para determinar si estas alteraciones en la expresión de genes improntados era relevante también en GBM murino, se utilizó un modelo celular generado en el laboratorio de la Dra. Pilar Sánchez Gómez a partir de la inducción de la expresión del gen *Egfr* en NSCs adultas de la SVZ de ratones p16/p19 deficientes (Gargini et al., 2020), denominadas en este trabajo como GBM-EGFR. En esta línea de GBM se estudió la expresión de varios genes improntados utilizando NSCs de ratones WT como control (**Figura 14**). De un total de 26 genes improntados analizados, 13 (50%) presentaron una expresión alterada con respecto a NSCs adultas (**Figura 14**). Del total de genes improntados, el 38,46% mostraron una disminución en su expresión en la línea GBM-EGFR, mientras que únicamente el 11,54% de los genes improntados analizados aumentaron su expresión con respecto a las NSCs (**Figura 14**). Estos resultados confirman que la adquisición de un fenotipo tumoral conlleva cambios significativos en la expresión de los genes improntados también en NSCs murinas.

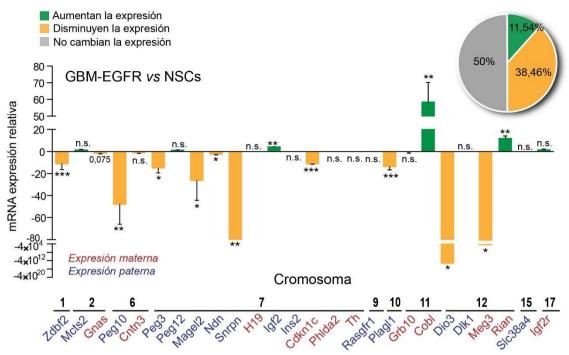


Figura 14. La expresión de genes improntados se ve alterada en el GBM. Comparativa de la expresión de genes improntados en GBM-EGFR con respecto a las NSCs control. En verde se han marcado los genes improntados que aumentan su expresión en la línea tumoral, mientras que en naranja aparecen aquellos que disminuyen su expresión respecto a las NSCs. Los genes improntados analizados aparecen en orden según su localización cromosómica, que también ha sido indicada. Las barras de error muestran el s.e.m. de tres cultivos. Los p-valores ***<0,001, **<0,01, *<0,05. El porcentaje de genes improntados cuya expresión cambia en la línea GBM-EGFR con respecto a las NSCs control también ha sido indicado.

2.2. El proceso de impronta genómica se ve alterado durante la formación de tumores cerebrales

Muchos son los estudios llevados a cabo para desvelar las claves que conducen a la formación del cáncer más agresivo del cerebro, el GBM. Por ello, se han desarrollado múltiples modelos murinos que recapitulan los efectos que produce esta patología en humanos (Sampetrean & Saya, 2018). Estos modelos animales se basan en la mutación de diversos genes que se encuentran alterados comúnmente en este tipo de cáncer y, aun así, su formación resulta infrecuente (Miyai et al., 2017; Neftel et al., 2019; Sampetrean & Saya, 2018). Por ello, una estrategia usualmente utilizada es el trasplante de células de GBM, ya sean humanas o murinas, en el cerebro de animales inmunocomprometidos (Miyai et al., 2017; Sampetrean & Saya, 2018); sin embargo, esta estrategia impide estudiar los eventos tempranos que conducen a la transformación maligna *in vivo*.

2.2.1 La reprogramación in vivo de animales GFAP-rtTA;i4F induce la formación de tumores cerebrales

En este estudio hemos utilizado dos modelos de formación de tumores *in vivo* basados en la reprogramación inducida en el cerebro. El primer modelo utilizado fue el ratón reprogramable

i4F-B que, como se ha comentado, expresa de forma inducible por doxiciclina el transgén OSKM en todas las células del organismo debido a la localización del cDNA de rtTA en el locus de expresión ubicua *Rosa26* (Figura 15A; Figura 1 MM). Para la inducción de la formación de tumores se llevó a cabo la activación del casete OSKM mediante el tratamiento con 0,2 mg/ml de doxiciclina en el agua de beber durante 2,5 semanas, tal como había sido descrito (Abad et al., 2013) (Figura 15A). Para controlar la cantidad de antibiótico consumido, se comprobó la ingesta de agua y el peso de los animales tratados cada dos días durante la duración del tratamiento (Figura 15B). Este seguimiento mostró un menor consumo de agua en los animales i4F-B tratados (Figura 15B) lo cual dio lugar a la consiguiente pérdida continua de peso en los animales reprogramables respecto a ratones control con o sin tratamiento, o respecto a animales i4F-B sin tratar (Figura 15B).

Con el fin de comprobar el efecto de la reprogramación inducida tras el tratamiento, se estudió el aspecto de órganos como el estómago, el bazo, el ciego del intestino y el cerebro de los animales tratados (Figura 15C). Mientras que el cerebro no mostró cambios en el tamaño ni aspecto entre los ratones i4F-B y WT, tanto el estómago como el bazo y el ciego presentaron una displasia hipertrófica en los ratones i4F-B con respecto a los controles a los 11-14 días después de la retirada de la doxiciclina (Figura 15C), como ya se había descrito previamente (Abad et al., 2013). Un análisis de la expresión del transgén OSKM en diferentes tejidos, incluyendo la SVZ, justo después de la retirada de tratamiento, mostró la expresión del transgén en los diferentes tejidos estudiados en los ratones i4F-B, sin expresión significativa en los ratones control (Figura 15D), indicando que la doxiciclina era capaz de alcanzar los distintos órganos, incluido el cerebro (Das, Tenenbaum, & Berkhout, 2016; Mansuy et al., 1998), e inducir la expresión de los factores de reprogramación. No obstante, cabe destacar que los niveles de expresión en la SVZ fueron inferiores con respecto al resto de tejidos analizados (Figura 15D). La expresión del gen *Oct4* (Figura 15E), también se vio aumentada en distintos órganos de los animales i4F-B, si bien este aumento también fue menor en la SVZ (Figura 15E). Aunque los resultados indican que la doxiciclina es capaz de atravesar la barrera hematoencefálica, como ya se había reportado previamente en otros estudios (Abad et al., 2013; Das et al., 2016; Mansuy et al., 1998; Rodriguez-Matellan et al., 2020), los menores niveles de expresión del transgén en el cerebro, y especialmente en la SVZ, sugería que este modelo de inducción pudiera ser menos eficiente en el cerebro que en otros órganos.

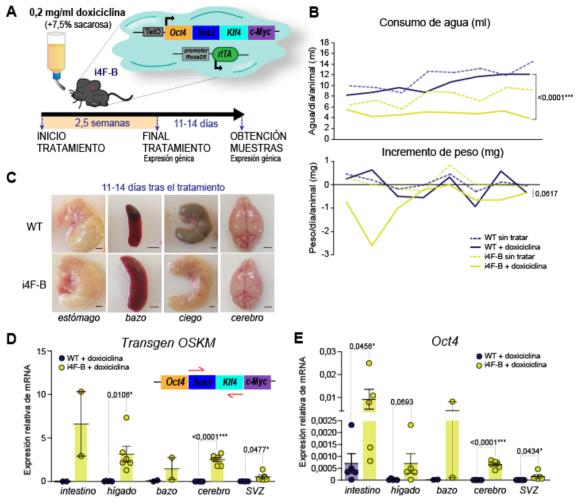


Figura 15. Los ratones i4F-B portadores del transgén OSKM activan su expresión tras el tratamiento con doxiciclina. A) Esquema del protocolo seguido para la reprogramación *in vivo* de ratones i4F-B mediante el tratamiento con 0,2 mg/ml de doxiciclina en el agua durante 2,5 semanas. B) Registro del volumen de agua (en ml) bebido por los animales controles WT (azul) tratados y sin tratar con doxiciclina, y de los animales i4F-B (amarillo) tratados y sin tratar con la doxiciclina medido por día y ratón (gráfica superior). Registro del incremento de peso (en mg) de los animales controles e i4F-B tratados y sin tratar, medido por día y ratón (gráfica inferior). C) Imágenes de distintos órganos (estómago, bazo, ciego y cerebro) de animales reprogramables i4F-B y animales control tras 11-14 días después de la finalización del tratamiento con doxiciclina. D) Expresión del transgen *OSKM* mediante qPCR en diferentes tejidos de animales control (azul) e i4F-B (amarillo) tras las 2,5 semanas de tratamiento. La región amplificada en la PCR se encuentra indicada así como la localización de la unión de las sondas utilizadas para dicha amplificación (flechas rojas). E) Expresión de *Oct4* mediante qPCR en diferentes tejidos de animales control (azul) e i4F-B (amarillo) tras 2,5 semanas de tratamiento. El gen *Gapdh* se ha utilizado para normalizar los datos de expresión. El número de muestras y los p-valores aparecen indicados en la figura. Las barras de error muestran el s.e.m. Barras de escala en C: 200 mm.

Para comprobar si la reprogramación había tenido lugar, se analizó la expresión de genes asociados a pluripotencia como *Nanog* y *Rex1* unos días después de la retirada del tratamiento en dos ratones iF-4B y sus controles (**Figura 16A**). Se observó la expresión de ambos genes en el bazo e intestino donde se encontraron además, varios tumores (**Figura 16A**), tal y como ya demostraron Abad M *et al.* 2013. Por el contrario, no se detectó expresión de estos genes en el cerebro (**Figura 16A**, **B**). Un estudio reciente ha mostrado que ratones i4F-B tratados con 2 mg/ml

de doxiciclina durante 12 días, eran capaces de reprogramar el nicho neurogénico del hipocampo, detectado mediante un aumento de *Nanog*, aunque esta alteración no se observó en la corteza cerebral (Rodriguez-Matellan et al., 2020), sugiriendo que las NSCs podrían ser más susceptibles a la reprogramación. Por ello, analizamos la expresión de *Nanog* en la SVZ de nuestros animales i4F-B justo después del tratamiento con 0,2 mg/ml durante 2,5 semanas, pero no se detectaron cambios en este nicho neurogénico (**Figura 16B**). Aunque este resultado pudiera ser debido a la diferencia de dosis en el tratamiento con doxiciclina, el tratamiento con 1 mg/ml de nuestros animales durante únicamente 1 semana producía una mortalidad del 100%.

El activador rtTA que permite la expresión del transgén en el modelo i4F-B está situado en el locus *Rosa26*, de expresión ubicua (Abad et al., 2013), aunque está en debate si el promotor endógeno del locus *Rosa26* puede dirigir la activación transgénica condicional en todos los tejidos de ratones adultos de forma eficiente (Wortge et al., 2010). Por ello, se llevó a cabo el análisis de expresión endógena del gen *Rosa26* en diferentes regiones del cerebro utilizando el hígado como órgano control (**Figura 16C**). Tanto el cerebro como las distintas regiones cerebrales ensayadas, incluyendo la SVZ, mostraron niveles de expresión similares a los del hígado (**Figura 16C**). Estos resultados indican que el rtTA puede estar expresándose a los mismos niveles que en otros tejidos pero que dicha expresión no parece ser suficiente para inducir la expresión de genes de pluripotencia y por tanto promover la reprogramación de células cerebrales como lo hace en otros órganos. Por ello, el modelo i4F-B no resultó ser eficiente para el estudio de la formación de tumores en cerebro.

Aunque la aparente resistencia del tejido cerebral a la reprogramación en los ratones i4F-B sugería que igual serían necesarios tiempos más largos tras la inducción, el descenso en supervivencia de los animales inducidos no nos permitía alargar dichos tiempos y, por ello, decidimos utilizar un modelo genético que se basase en la expresión del activador rtTA solo en astrocitos y NSCs, utilizando una cepa en la que dicha expresión está controlada por el promotor del gen humano *GFAP* (Ransohoff R, 2010). A fin de obtener el modelo reprogramable específico, se cruzaron los ratones Tg(GFAP-rtTA) con otra línea de ratones reprogramables, los i4F-A, que portan el casete tetracistrónico insertado en el gen *Neto2*, en un cromosoma diferente al del gen *Rosa26*. Mediante los cruces correspondientes generamos ratones GFAP-rtTA;i4F y ratones control, sin el transactivador (i4F), para su inducción con doxiciclina y análisis.

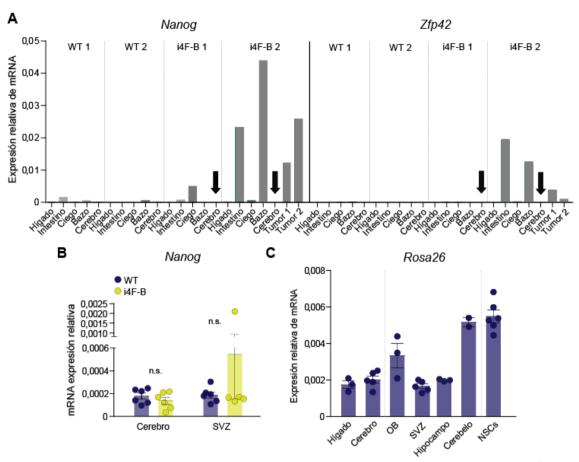


Figura 16. Los ratones i4F-B portadores del transgén no reprograman eficientemente el cerebro. A) qPCR para los genes de pluripotencia *Nanog* y *Zfp42* en diferentes tejidos de dos ratones controles y dos ratones i4F-B tratados con 0,2 mg/ml de doxiciclina durante 2,5 semanas a los 11 (animal "1") y 14 días (animal "2") tras la finalización del tratamiento. B) qPCR para *Nanog* en cerebro completo y SVZ de animales control e i4F-B tras 2,5 semanas con doxiciclina. C) qPCR para *Rosa26* en hígado y diferentes regiones del cerebro en animales control, incluyendo cerebro completo, SVZ y NSCs. Las barras de error muestran el s.e.m. El gen *Gapdh* se ha utilizado para normalizar los datos de expresión. Los p-valores y el número de muestras han sido indicados.

Debido a la especificidad de la reprogramación en el cerebro, el tratamiento con doxiciclina en el agua de beber pudo realizarse con una concentración y duración mayor a la utilizada en el modelo i4F-B. En este caso, los animales fueron tratados con 1 mg/ml de doxiciclina durante 4 semanas. Transcurrido dicho tiempo, la doxiciclina fue retirada y se esperó un mes para la observación y análisis de los cerebros (Figura 17A). En este caso, ni el consumo de agua ni el incremento de peso se vieron afectados en los animales GFAP-rtTA;i4F con respecto a los animales control i4F (Figura 17B). Cuando se extrajeron los cerebros para su análisis, se detectaron múltiples zonas con hemorragias visibles en fresco (Figura 17C). La eficiencia de la reprogramación y formación de tumores mediante el tratamiento con doxiciclina en animales GFAP-rtTA;i4F fue del 100%, es decir que los cerebros de todos los animales tratados mostraron la presencia de masas tumorales. La detección por qPCR del casete mostró expresión específica en el cerebro de los animales GFAP-rtTA;i4F, no obteniéndose expresión en el hígado de estos

animales ni en los animales controles (**Figura 17D**). Además, se observó un aumento en la expresión de los genes de pluripotencia *Oct4* y *Nanog* (**Figura 17E**), confirmando la presencia de procesos de reprogramación en el cerebro de estos animales.

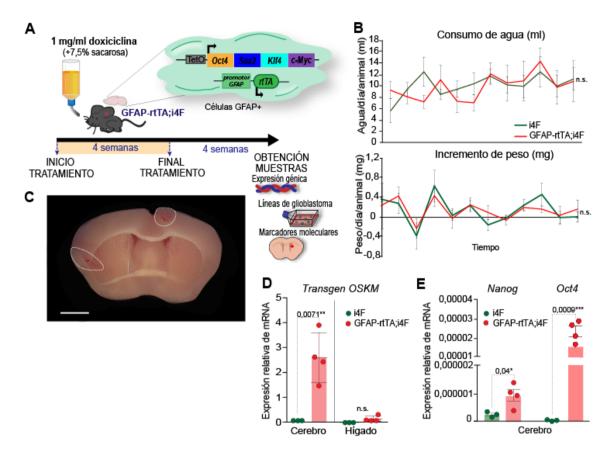


Figura 17. El cerebro de ratones GFAP-rtTA; i4F se reprograma tras el tratamiento con doxiciclina. A) Esquema del protocolo seguido para la reprogramación específica de cerebro de los animales GFAP-rtTA;i4F que contienen el transgén OSKM en el locus Neto2 y el activador transcripcional rtTA bajo el promotor del gen GFAP. El tratamiento con 1 mg/ml de doxiciclina en el agua de beber duró 4 semanas y se esperaron 4 semanas más para el análisis de los animales tratados. B) Registro del volumen de agua (en ml) bebido por los animales control i4F (verde) y de los animales GFAP-rtTA;i4F (rojo), tratados con doxiciclina y medido por día y ratón (imagen superior). Registro del incremento de peso (mg) de ratones control i4F (verde) y ratones GFAP-rtTA;i4F (rojo) tratados, medido por día y ratón (imagen inferior). C) Imagen coronal del cerebro de un animal GFAP-rtTA;i4F en el que se observan dos regiones (rodeadas) con hemorragia visible. D) qPCR para el transgen OSKM, tras las 4 semanas de tratamiento con doxiciclina y 4 semanas más de espera para la obtención de las muestras, en cerebro e hígado de ratones control i4F-A (verde) y ratones GFAP-rtTA;i4F (rojo). El gen Gapdh se utilizó para normalizar los datos. El qPCR para Oct4 y Nanog en cerebro de ratones control i4F (verde) y ratones GFAP-rtTA;i4F (rojo) tratados con doxiciclina. El gen 18S se utilizó para normalizar los datos. Las barras de error muestran el s.e.m. de al menos 3 animales por genotipo. El número de muestras y los p-valores aparecen indicados en la figura. Barra de escala en C: 1 mm.

Con el fin de determinar si la reprogramación observada en los animales GFAP-rtTA;i4F daba lugar a la formación de tumores en el cerebro y analizar las características de éstos, los animales fueron perfundidos y los cerebros cortados coronalmente para su estudio. Durante la obtención de estos cortes se detectaron masas celulares anormales bajo la lupa, que mostraron características tumorales tras tinción con hematoxilina-eosina (Figura 18A, B). Estas masas

tumorales presentaron una tinción más densa para el colorante y fueron encontradas a lo largo del eje antero-posterior de los cerebros de los animales GFAP-rtTA;i4F, desde el OB hasta el cerebelo, pero nunca en los ratones i4F que no portaban el transactivador (**Figura 18A-C, Figura Suplementaria 3** y **4**).

Con el fin de caracterizar los tumores sólidos extraídos de ratones GFAP-rtTA,i4F, se estudió el perfil de expresión génica de distintos marcadores por qPCR utilizando como control un fragmento de tejido de la misma región diseccionada de animales i4F (Figura 19). La expresión de *Oct4* en 22 muestras tumorales obtenidas de cerebros de animales reprogramados mostró un aumento de 2.500 veces con respecto a los animales control (Figura 19A-C). Curiosamente, las muestras correspondientes a las regiones más rostrales (OB, RMS y corteza rostral) presentaron un mayor aumento de la expresión de *Oct4* (Figura 19C). Con el fin de determinar el estado completo de reprogramación celular, la expresión de *Nanog* también fue analizada en estas muestras (Figura 19C). Los resultados de este análisis, mostraron mucha variabilidad entre muestras (Figura 19C y 20). También, se analizó la expresión de genes asociados a la diferenciación en las tres capas embrionarias, tales como el gen *Kdr* asociado a mesodermo y el gen *Afp* asociado a endodermo. La expresión del gen *Kdr* presentó un aumento en 7 de los tumores (muestras 1, 9, 10, 11, 14, 17 y 22) en comparación a sus regiones control (Figura 19C y 20). Por otro lado, la expresión de *Afp* apareció aumentada en las muestras 4, 5, 11, 13, 17 y 20 (Figura 19C y 20).

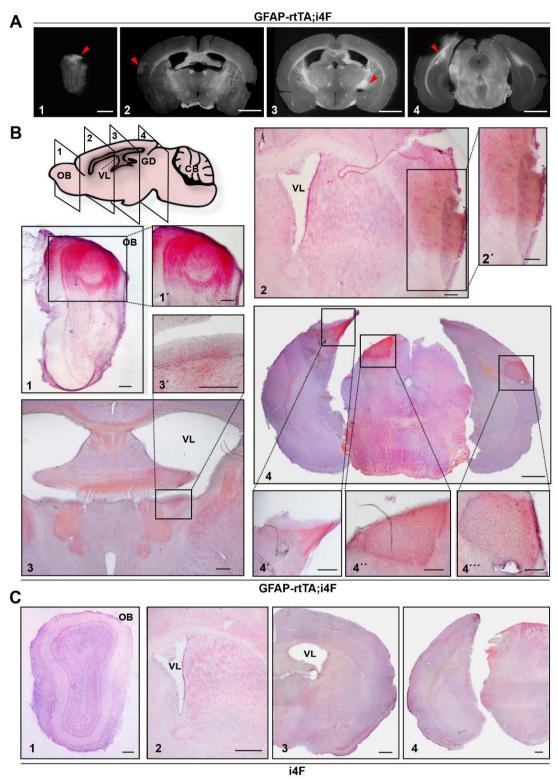


Figura 18. Tumores en ratones GFAP-rtTA;i4F reprogramados con doxiciclina *in vivo*. A) Imágenes de cortes histológicos en lupa a lo largo del eje antero-posterior de animales GFAP-rtTA;i4F tratados con doxiciclina. Las masas tumorales aparecen indicadas con cabezas de flecha rojas. B) Imágenes de cortes coronales teñidos con hematoxilina-eosina de ratones GFAP-rtTA;i4F tratados. La ubicación de los cortes a lo largo del eje antero-posterior del cerebro aparece representada. Las regiones tumorales teñidas aparecen amplificadas (1', 2', 3', 4', 4'', 4'''). C) Imágenes de cortes coronales a lo largo del eje antero-posterior del cerebro de ratones control teñidos con hematoxilina-eosina. VL: ventrículo lateral. Barras de escala en A: 1 mm; en B: $200 \mu m$ en 1 y 4'-4''', $100 \mu m$ en 2 y 3, $500 \mu m$ en 4; en C: $200 \mu m$.

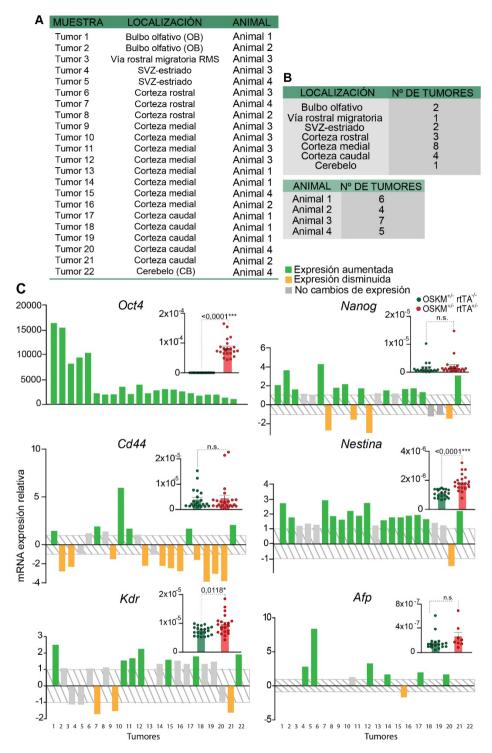


Figura 19. Los tumores sólidos en animales reprogramables GFAP-rtTA;i4F expresan marcadores tumorales y de reprogramación. A) Localización y animales donde se han encontrado los tumores sólidos para el análisis de expresión génica. B) Número de tumores encontrados por animales y por región cerebral. C) Expresión relativa mediante qPCR de los genes de pluripotencia *Oct4* y *Nanog*, de los genes de GBM *Cd44* y *Nestina* en las 22 muestras tumorales extraídas de animales GFAP-rtTA;i4F. Los marcadores de mesodermo *Kdr* y de endodermo *Afp* también se incluyen. El estudio se realizó respecto a las mismas regiones cerebrales de animales control i4F. El aumento de expresión se muestra en verde, mientras que la disminución aparece en naranja. Aquellas muestras cuyos niveles de expresión fueron similares a las muestras control se han indicado en gris. Las gráficas con la expresión relativa media de mRNA de las muestras control i4F (verde) y GFAP-rtTA;i4F (rojo) también se incluyen. El gen *18S* se ha utilizado para relativizar. Las barras de error muestran el número de muestras analizadas y el s.e.m. Los p-valores han sido indicados.

A continuación, se estudió la expresión de los genes *Cd44* y *Nestina* ambos asociados a tumores tipo GBM (**Figura 19C**). Niveles altos de CD44 se han correlacionado con un mayor potencial de desarrollar tumores *in vivo* (Anido et al., 2010) y ha sido asociado al subtipo de GBM más agresivo, al subtipo denominado mesenquimal (Brown et al., 2017; Mooney et al., 2016; F. Wang et al., 2018). Varios de los tumores encontrados mostraron una expresión de este gen que fue mayor que en las muestras control, concretamente los tumores 1, 6, 9, 10, 17 y 22 (**Figura 19C** y **20**). Además, 15 de las 22 muestras analizadas mostraron una mayor expresión de *Nestina* con respecto a la expresión en las mismas regiones control (**Figura 19C** y **20**).

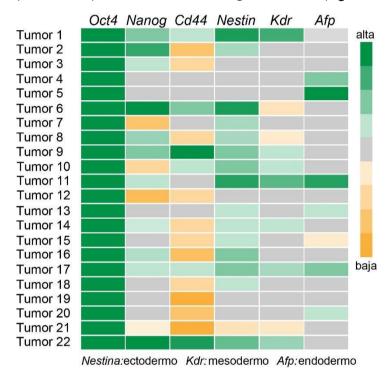


Figura 20. Resumen de la expresión génica en tumores de animales reprogramables GFAP-rtTA;i4F. Tabla resumen con el análisis de expresión de las 22 muestras tumorales obtenidas de ratones GFAP-rtTA;i4F-A reprogramados con doxiciclina para los genes *Oct4*, *Nanog*, *Cd44*, *Nestina*, *Kdr* y *Afp* en relación a animales control i4F. El aumento de expresión ha sido indicado en verde, mientras que la disminución aparece en naranja. La expresión de los genes que no se encuentra alterada en las muestras aparece en gris. El orden se basa en la localización de la muestra en el eje antero-posterior del cerebro.

Con el fin de analizar en más detalle la naturaleza de los tumores formados tras la reprogramación de los animales GFAP-rtTA;i4F, se realizaron estudios mediante IHC de una variedad de los marcadores tumorales descritos anteriormente. Este análisis permitió distinguir al menos dos tipos de tumores formados en los ratones GFAP-rtTA;i4F: tumores con un fenotipo de *glioblastoma* (Figura 21) y los de fenotipo *teratoma* (Figuras 23) en función de la presencia o no de marcadores de GBM. En primer lugar, la adquisición de un estado de pluripotencia en células de los cerebros reprogramables fue observada mediante el marcador SSEA1, que también ha sido descrito como marcador de GSCs (M. J. Son et al., 2009). La IHC para este marcador

mostró la presencia de células SSEA1+ en las masas tumorales de los animales GFAP-rtTA;i4F, pero no en los animales control i4F, tratados con doxiciclina (Figuras 21, 22 y 23, Figura Suplementaria 5), confirmando así, la efectividad del protocolo de reprogramación *in vivo*. A continuación, se realizó el estudio de expresión de Integrina α6, molécula implicada en la capacidad de auto-renovación y formación de tumores de las GSCs (Corsini & Martin-Villalba, 2010; Delamarre et al., 2009; Lathia et al., 2010). La detección de este marcador reveló que se restringía a zonas altamente vascularizadas, donde se encontraban las células SSEA1 positivas (Figura 21A, Figura Suplementaria 5).

También se analizó la presencia del marcador tumoral CD44. Los estudios de expresión de esta proteína revelaron su presencia en los cerebros de animales reprogramables (Figura 21A. Figura Suplementaria 6) sugiriendo la formación de tumores de tipo GBM de fenotipo mesenquimal. Algunas de estas células CD44 positivas mostraron ser también positivas para el marcador de proliferación Ki67 (Figura 21A), pudiendo ser responsables, por tanto, del crecimiento del tumor. Debido a que el modelo se basa en la reprogramación de células GFAP, y que precisamente este marcador también se ha asociado a algunos GBM (Goyal et al., 2015; Ludwig & Kornblum, 2017) se llevó a cabo la detección de la proteína GFAP en el tejido (Figura 20). Curiosamente, las células positivas para el marcador tumoral CD44 no co-localizaron con células GFAP positivas (Figura 21A). La presencia de la proteína Vimentina también fue estudiada. Esta molécula está asociada a filamentos intermedios, se expresa de forma ubicua en células mesenquimales y ha sido descrita en la migración de diferentes tipos de cáncer incluyendo el GBM (Nowicki et al., 2019; Satelli & Li, 2011; S. Zhao et al., 2016). En el estudio, se encontraron células doblemente marcadas para CD44 y Vimentina (**Figura 21A**). Para finalmente confirmar la presencia de tumores de tipo GBM en los cerebros reprogramables, se estudió la expresión de Nestina (Figura 21A), marcador de NSC que también ha sido descrito en GBM y asociado a mal pronóstico en los pacientes (Ludwig & Kornblum, 2017; F. Wang et al., 2018). Curiosamente, en los animales GFAP-rtTA;i4F se observaron células positivas para Nestina agrupadas en regiones muy concretas del cerebro, como la SVZ, el parénquima estriatal o la corteza (Figura 21A, Figura Suplementaria 5). La morfología de las células positivas para el marcador Nestina y Vimentina en tumores de la SVZ fue completamente distinta a las NSCs y progenitores que se encuentran normalmente en la SVZ de ratones control (Figura 21A y 22A). Mientras que en la SVZ se encuentran prolongaciones marcadas para Nestina y Vimentina alrededor de los ventrículos (Figura 22A), en los tumores de los animales reprogramables, estos marcadores aparecieron en células aisladas y con una morfología fusiforme o redonda sin prolongaciones (**Figura 21A, Figura**

Suplementaria 5). Además, en los tumores donde se encontraron células positivas para Nestina y Vimentina, también se observaron células que fueron positivas para CD44.

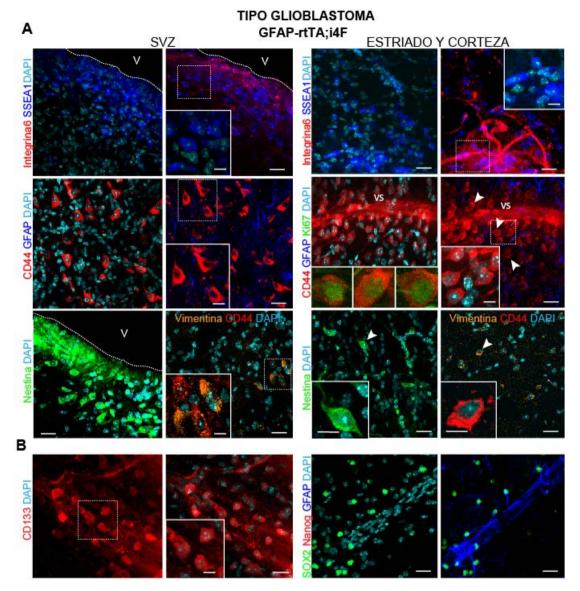


Figura 21. La reprogramación del cerebro de los animales GFAP-rtTA;i4F da lugar a la formación de tumores de tipo glioblastoma. A) IHC para SSEA1 (azul) e Integrina 6α (rojo), CD44 (rojo), GFAP (azul) y Ki67 (verde), Nestina (verde), y Vimentina (naranja) y CD44 (rojo) en zonas tumorales de la región SVZ-estriado (panel izquierdo) o de corteza (panel derecho) de ratones GFAP-rtTA;i4F reprogramados, mostrando característica de tumores tipo glioblastoma. Las cabezas de flecha indican células ampliadas B) IHC para CD133 (rojo) en corteza de ratones GFAP-rtTA;i4F tratados con doxiciclina (panel izquierdo) o de Sox2 (verde), Nanog (rojo) y GFAP (azul) en estos ratones. V: ventrículo. DAPI se ha utilizado para contrateñir el núcleo. Barras de escala en A y B: 20 μ m; en ampliaciones: 10 μ m.

CD133 es una glicoproteína que al igual que Nestina, es encontrada tanto en células normales como cancerosas, y en condiciones patológicas está asociada al crecimiento de las células tumorales (Ahmed et al., 2018; Brown et al., 2017). La detección de CD133 en cerebros de animales GFAP-rtTA;i4F mostró células positivas para dicho marcador en tumores de corteza (Figura 21B), mientras que apenas un pequeño número de células fue detectado en los animales control (Figura 22A). Estos marcadores de GBM también fueron encontrados en otras regiones

además de la SVZ-estriado (**Figura 21A**), como corteza u OB, mientras que no se observaron células positivas para SSEA1, Integrina 6α, CD44, Nestina o Vimentina en cerebros de ratones i4F tratados con doxiciclina (**Figura 22A**). En estos tumores no se observaron células Nanog (**Figura 21A** y **23C**). Finalmente se llevó a cabo la IHC para Olig2 (**Figura 22B**), asociado a un fenotipo más pro-neural del GBM, y también a oligodendrogliomas (Okada et al., 2011; Yokoo et al., 2004). Esta detección no mostró cambios en la expresión de Olig2 en el tejido de animales reprogramables respecto a sus controles (**Figura 22B**).

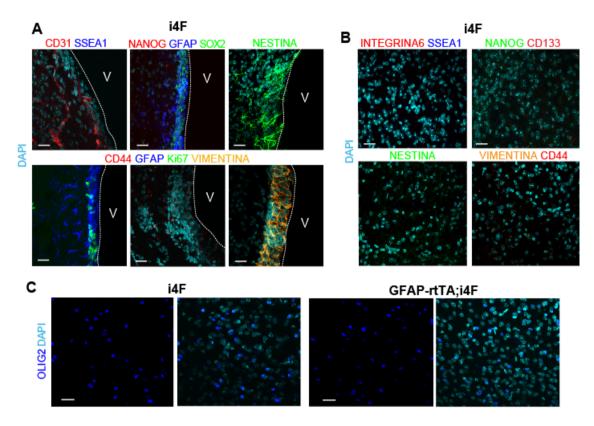
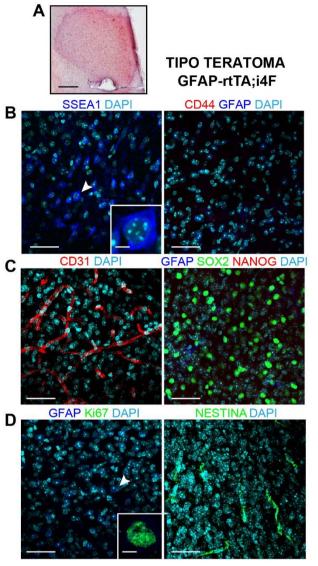



Figura 22. Los animales control no expresan marcadores asociados a GBM. A) IHC para marcadores de pluripotencia y de GSCs glioblastoma en SVZ (panel izquierdo) y corteza (panel derecho) en cortes coronales de animales i4F. B) IHC para OLIG2 en cortes coronales de animales i4F y GFAP-rtTA;i4F. V: ventrículo. DAPI ha sido utilizado para contrateñir el núcleo. Las barras de escala: 25 μm.

Junto con los tumores que expresaban marcadores asociados al GBM, también se detectaron masas tumorales que no presentaron ninguno de los marcadores estudiados excepto SSEA1 (Figura 23A-D). Estos tumores se encontraron en distintas regiones del cerebro (Figura 18A), presentaban un tamaño mayor y una alta densidad de vasos sanguíneos CD31 positivos (Figura 23C), y tampoco expresaban el marcador astrocitario GFAP (Figura 23C, D). Aunque tampoco se detectaron células positivas para Nanog en estas masas tumorales (Figura 23C), estos tumores se clasificaron como de fenotipo tipo teratoma.

23. Los animales GFAP-rtTA;i4F Figura presentan tumores tipo teratoma. A) Teratoma detectado mediante tinción con hematoxilina v eosina en un corte coronal de un cerebro GFAP-rtTA;i4F tras la reprogramación con doxiciclina durante 4 semanas. B) IHC para el marcador de pluripotencia temprano SSEA1 (panel izquierdo), y CD44 (rojo) y GFAP (azul) (panel derecho) en masas tumorales de animales GFAP-rtTA;i4F. Los tumores de tipo teratoma presentan el marcador SSEA1, pero no CD44 ni GFAP. C) IHC para el marcador de vasos sanguíneos CD31 (panel izquierdo); y GFAP (azul), Sox2 (verde) y Nanog (rojo) en ratones GFAP-rtTA;i4F. D) IHC para GFAP y Ki67 (panel izquierdo), y Nestina (panel derecho) en estos mismos ratones. Se detectan células en proliferación en las masas tumorales tipo teratoma. DAPI ha sido utilizado para contrateñir el núcleo. Barras de error en A: 200 μm; en B-D: 50 μm (ampliaciones: 5 μm).

Como se ha mostrado anteriormente, los tumores fueron encontrados en distintas regiones del cerebro, incluyendo la SVZ. Precisamente, uno de estos tumores mostró células tumorales positivas para CD44 localizadas a lo largo de toda la SVZ y que descendían hasta el estriado donde se observaba la masa celular tumoral (Figura 24). Este tumor situado cerca de la SVZ mostró células positivas también para Nestina y SSEA1 que se desplazaban ventralmente al estriado (Figura 24), sugiriendo una posible migración de las células tumorales procedentes del nicho neurogénico hacia esas zonas, como ya fue observado en Lee et al. 2019.

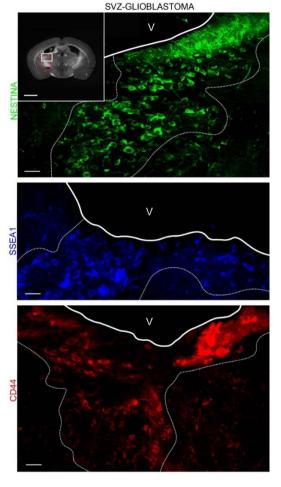


Figura 24. Los tumores formados a partir de la reprogramación de animales GFAP-rtTA;i4F podrían tener origen en las SVZ y migrar para formar el tumor. El tumor detectado en el estriado (rodeado en rojo) de uno de los animales reprogramados con doxiciclina mostró células Nestina (verde), SSEA1 (azul) y CD44 (rojo) positivas que parecían migrar desde la SVZ hasta la masa tumoral detectada en la región cerebral del estriado, sugiriendo una posible migración desde la zona neurogénica. Barras de escala: 20 µm (corte coronal completo: 1mm).

Para investigar en más detalle la naturaleza de los tumores formados y el papel de los genes improntados en la reprogramación de los animales GFAP-rtTA;i4F, a la vez que se obtiene una herramienta de manipulación génica de células tumorales *in vitro*, se llevó a cabo el aislamiento y cultivo de células a partir de los cerebros inducidos de animales reprogramables. Para ello, se disgregaron los cerebros completos de dichos animales y se sembraron las células en medio GBM para permitir el crecimiento de las células malignas (Figura 25A). Tanto NSCs cultivadas como control como los cultivos de cerebros GFAP-rtTA;i4F crecieron en forma de esferas aunque mostraron diferencias morfológicas y de comportamiento tales como la adhesión a la placa (Figura 25B). Además, las células GFAP-rtTA;i4F mostraron una mayor propensión a la formación de esferas (Figura 25B) y a proliferar más, reflejada en la proporción de células positivas para Ki67 y para la incorporación de EdU, aunque éstas no resultaron estadísticamente significativas (Figura 25C).

Para comprobar la presencia de células tumorales en los cultivos GFAP-rtTA;i4F, se analizaron los marcadores SSEA1 y CD44 por citometría de flujo, estrategia utilizada previamente

para el aislamiento y caracterización de las GSCs (Ghuwalewala et al., 2016; Pollard et al., 2009; L. Wang et al., 2018). Como control positivo de células malignas se utilizaron las células GBM-EGFR. Como control negativo se utilizaron NSCs de animales WT. En primer lugar, las células GBM-EGFR pudieron ser diferenciadas por citometría de las NSCs y de los cultivos tumorales por la presencia de la proteína GFP en las células de GBM (Figura 25D). Además, los parámetros de complejidad y tamaño también permitieron diferenciar los distintos tipos celulares (Figura 25E). El análisis mostró que tanto las NSCs control como las células de ratones GFAPrtTA;i4F, expresaban el marcador de membrana CD44 casi en la totalidad de las células y con una intensidad similar (Figura 25E, F). A pesar de que el porcentaje de células positivas para este marcador en las células GBM-EGFR no fue significativamente diferente a las NSCs control y cultivos de cerebros de animales GFAP-rtTA;i4F (Figura 25E), la intensidad del marcaje de CD44 mostró ser mayor en las GBM-EGFR (Figura 25F). Tampoco el marcador SSEA1 mostró diferencias en el porcentaje de células positivas entre las NSCs control y los cultivos GFAP-rtTA;i4F, siendo en ambos casos menor que el porcentaje en las GBM-EGFR (Figura 25E). Además, la intensidad del marcaje de SSEA1 fue mayor en las GBM-EGFR con respecto a las NSCs control y las células GFAPrtTA;i4F(Figura 25F). Estos resultados muestran que las líneas generadas a partir de animales reprogramados, aunque muestran características de crecimiento distintas a las NSCs control, no difieren en la expresión de los marcadores tumorales CD44 y SSEA1.

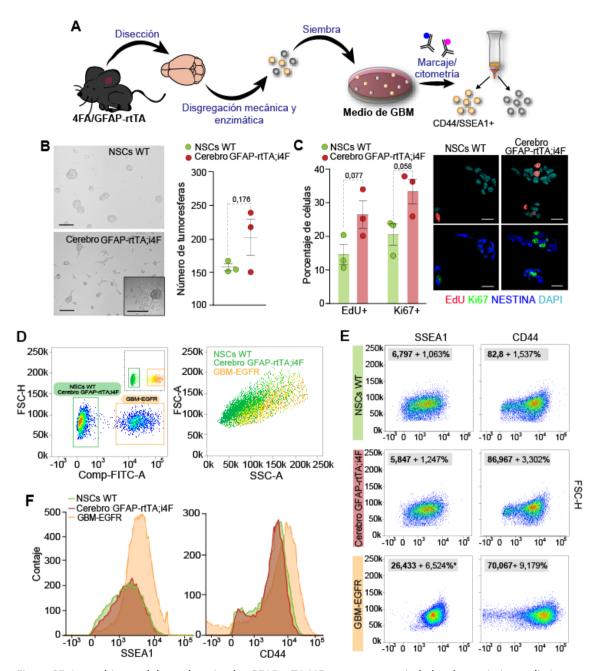


Figura 25. Los cultivos celulares de animales GFAP-rtTA;i4F muestran propiedades de crecimiento distintas a las NSCs. A) Esquema del proceso de aislamiento, cultivo y caracterización de las células GFAP-rtTA;i4F para la obtención de GSCs tras el tratamiento con doxiciclina. Los cerebros de los animales fueron disgregados enzimática y manualmente hasta obtener una suspensión celular, que fue cultivada en medio de GBM. Los cultivos crecieron en forma de esferas que fueron disgregadas mecánicamente y marcadas con anticuerpos frente a CD44 y SSEA1, para posteriormente ser analizados por citometría de flujo. B) Imágenes en contraste de fases de NSCs adultas de la SVZ y de cultivos GFAP-rtTA;i4F. El número de esferas formadas tras la siembra de 50 células/µl fue determinado tanto en NSCs control como en cultivos de cerebro GFAPrtTA;i4F. C) Recuento del porcentaje de células EdU y Ki67 positivas en los cultivos de ambos genotipos. A la derecha de la imagen se muestra la ICC para los marcadores EdU (rojo), Ki67 (verde) y Nestina (azul) en los cultivos de NSCs y de cerebros GFAP-rtTA;i4F. El DAPI se ha utilizado para contrateñir y realizar el recuento de células totales. D) Caracterización por citometría de flujo de NSCs, células de cerebro completo GFAP-rtTA;i4F y células GBM-EGFR utilizando la detección del fluoróforo FITC para distinguir las GBM-EGFR. E) Caracterización por citometría de flujo de las células según su tamaño y complejidad (SSC-A y FSC-A). F) Caracterización por citometría de flujo de las células mediante la detección de SSEA1 y CD44. G) Histograma por citometría de flujo del marcaje de SSEA1 en NSCs (verde), GFAP-rtTA;i4F (rojo) y GBM-EGFR (naranja). Se muestra también el porcentaje de células positivas para SSEA1 y CD44 en estos

tres tipos celulares. Las células fueron seleccionadas basándose en el tamaño (FSC-A) y la complejidad (SSC-A) celular, para eliminar restos celulares y agregados. Las células únicas fueron a su vez aisladas para distinguir la población de células vivas y muertas por DAPI. El análisis de células CD44 positivas se basó en la detección de PerCP-Cy5.5, mientras que para la detección de SSEA1 se utilizó APC-Cy7. El número de muestras, así como los p-valores han sido indicados. El s.e.m. muestra la desviación típica de tres cultivos. Barra de escala en B: $50 \, \mu m$ y C: $15 \, \mu m$.

Debido a la ausencia de diferencias claras a nivel de marcadores por citometría entre los cultivos obtenidos de la disgregación de cerebros de animales GFAP-rtTA;i4F y NSCs control, se realizó una caracterización a nivel de mRNA de diferentes marcadores en cultivos de NSCs control sin tratar, en NSCs de animales i4F y en cultivos de NSCs y cerebro de animales GFAP-rtTA;i4F tratados *in vivo* con doxiciclina (**Figura 26A**). El aumento de expresión del transgén *OSKM* fue comprobada en los animales GFAP-rtTA;i4F tratados con doxiciclina; sin embargo, las NSCs procedentes de la SVZ de animales i4F también mostraron cierta expresión basal del transgén en dos de los tres cultivos analizados (**Figura 26B**), indicando que estas NSCs no eran el control más adecuado para detectar los cambios en los cultivos GFAP-rtTA;i4F puesto que podrían haber adquirido ciertas alteraciones, a pesar de no haber generado tumores *in vivo*.

A continuación, se estudió la expresión del gen *Oct4* y se observó que las células de los ratones GFAP-rtTA;i4F sembradas y cultivadas en medio GBM también presentaron un aumento en la expresión de *Oct4* de casi 1.000 veces con respecto a NSCs control (**Figura 26C**). Las NSCs i4F no mostraron aumento de *Oct4*, indicando que la expresión basal del transgén *OSKM* no era suficiente para inducir el aumento de expresión de este gen (dato no mostrado). Los cerebros GFAP-rtTA;i4F mostraron un aumento de *Oct4*, incluso mayor que los cultivos de NSCs, sugiriendo que esos cultivos no se componían únicamente de NSCs. De acuerdo con estos resultados, la proteína Oct4 fue detectada en las células de cultivos de cerebros GFAP-rtTA;i4F pero no en las NSCs control (**Figura 26D**). Sin embargo, la detección de la proteína Nanog fue negativa tanto para las NSCs control como en los cultivos GFAP-rtTA;i4F (**Figura 26D**).

Para corroborar la adquisición de características malignas en los cultivos tratados, se analizó la expresión de los marcadores CD44 y CD133. Ni la expresión del mRNA ni de la proteína CD44 mostraron diferencias con respecto a NSCs control (Figura 26C, D), tal y como se había observado en el análisis por citometría de flujo (Figura 25G). Respecto a CD133, los estudios por qPCR mostraron un perfil variable de expresión del gen con un incremento en las NSCs GFAP-rtTA;i4F pero un descenso significativo en los cultivos de cerebro completo GFAP-rtTA;i4F con respecto a NSCs control (Figura 26C), mientras que la ICC realizada frente a esta molécula no mostró cambios en los cultivos GFAP-rtTA;i4F (Figura 26D).

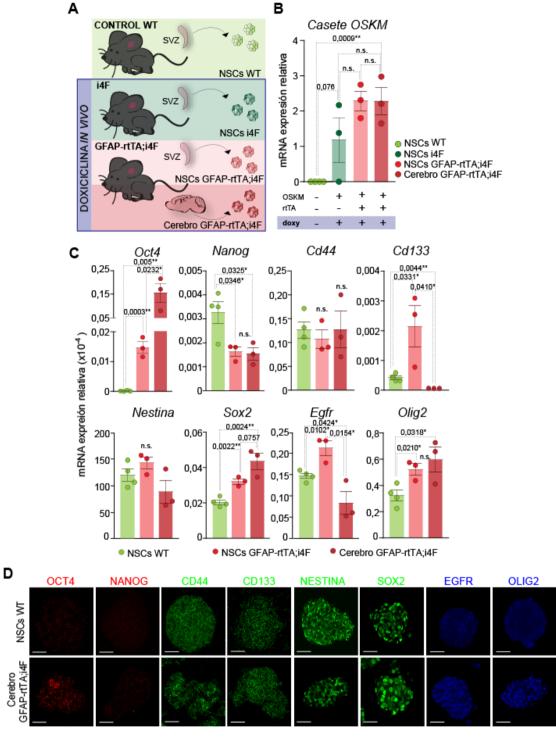


Figura 26. Los cultivos de ratones GFAP-rtTA;i4F comparten alteraciones asociadas a las GSCs. A) Esquema de las NSCs de animales control, NSCs de animales 4FA, y NSCs y células de cerebro completo de animales GFAP-rtTA;i4F. B) Expresión del transgén *OSKM* en NSCs de animales control B6, i4F y GFAP-rtTA;i4F y en las células obtenidas de la disgregación del cerebro completo de animales GFAP-rtTA;i4F tratados con doxiciclina (doxy). C) Expresión de los genes de pluripotencia *Oct4* y *Nanog*, los marcadores de célula madre *Cd44* y *Cd133*, los genes neurales *Nestina* y *Sox2*, y los genes *Egfr* (asociado al subtipo clásico del GBM) y *Olig2* (asociado al subtipo pro-neural del GBM) en NSCs control, y NSCs y células GFAP-rtTA;i4F obtenidas de cerebro de ratones GFAP-rtTA;i4F reprogramados. Las barras de error muestran el s.e.m. de al menos tres animales por genotipo. Los p-valores han sido indicados. El gen *18S* se ha utilizado para normalizar. D) ICC para Oct4 (rojo), Nanog (rojo), CD44 (verde), CD133 (verde), Nestina (verde), Sox2 (verde), EGFR (azul) y Olig2 (azul) en NSCs control y cultivos GFAP-rtTA;i4F. Las barras de escala: 25 μm.

Otro de los marcadores analizados fue Nestina. En este caso, las células de los cultivos GFAPrtTA;i4F no mostraron cambios con respecto a los cultivos control ni en la expresión relativa de mRNA ni en los niveles de proteína (Figura 26C, D). Finalmente, la expresión del gen Egfr aumentó significativamente tanto en las NSCs GFAP-rtTA;i4F (Figura 26C) como en los cultivos de cerebro completo (Figura 26D). Además, el análisis de expresión del factor de transcripción Sox2 en las células GFAP-rtTA;i4F también mostró un aumento tanto en las NSCs como en los cultivos de cerebros completos, especialmente en estas últimas, tanto en los niveles de mRNA como de proteína respecto a las células control (Figura 26C, D). Otro factor de transcripción cuyo aumento en su expresión ha sido asociado al GBM es Olig2 (Kosty, Lu, Kupp, Mehta, & Lu, 2017; Trepant et al., 2015). La expresión de este factor también aumentó tanto a nivel de mRNA como de proteína en los cultivos GFAP-rtTA;i4F con respecto a NSCs control (Figura 26C, D). Por lo tanto, el incremento de Oct4, Sox2 y Olig2 respecto a las NSCs en los cultivos GFAP-rtTA;i4F, así como la detección elevada de los marcadores SSEA1 y EGFR, sugieren la adquisición de ciertas propiedades tumorales en los cultivos, apoyando la idea de que la reprogramación inducida en células GFAP positivas sería capaz de generar tumores con propiedades de GBM. Además, el aumento en la expresión de Oct4, Cd133, Sox2, Egfr y Olig2 en las NSCs GFAP-rtTA;i4F tratadas con doxiciclina in vivo, sugieren que estas células podrían encontrarse en un estado de predisposición a la transformación maligna.

2.2.2 Los tumores cerebrales formados muestran cambios de expresión en genes improntados

Una vez obtenido un modelo de formación de tumores cerebrales eficiente, se procedió al estudio del papel de la impronta genómica en la formación y desarrollo de estos tumores. Para ello, se procedió a analizar la expresión de diversos genes improntados (Figura 27). Un total de 12 genes improntados localizados a lo largo del genoma, y cuya expresión alterada se identificó en muestras de tumores humanos y murinos, fueron analizados: *Zdbf2, Cntn3, Peg12, Magel2, Ndn, Snrpn, Cdkn1c, Grb10, Dio3, Dlk1, Meg3* y *Rian* (Figura 12). Para ello se escogieron 13 de las 22 muestras tumorales encontradas (Figura 19). Entre 4 y 10 genes improntados mostraron una expresión alterada en los tumores respecto a la misma región cerebral en animales control (Figura 27A, B). La mayoría de los genes estudiados aumentaron su expresión; aunque, algunos tumores, como por ejemplo el 2, 5 y 16, mostraron una disminución de la expresión de la mayoría de los genes. Por lo tanto, este análisis de expresión permitió observar nuevamente dos perfiles de expresión diferentes entre los tumores analizados, lo cual podría coincidir con la existencia de tumores tipo teratoma y GBM previamente detectados por IHC (Figura 21 y 23).

Cabe destacar que la mayoría de los tumores mostraron alteraciones en al menos 3 de los 4 genes improntados situados en el *cluster* improntado regulado por el IG-DMR: *Dio3, Meg3*

y *Dlk1* (**Figura 27A, B**). Nuevamente, este locus podría tener implicaciones en la alteración de las NSCs hacia el fenotipo maligno, como también se había observado en la transformación de las NSCs en iPSCs durante el proceso de reprogramación inducida *in vitro*. Por tanto, nuestros resultados sugieren que la región IG-DMR podría ser clave en la regulación del estado de las NSCs y que su alteración promovería su desdiferenciación completa hasta las iPSCs o hacia la transformación en CSCs.

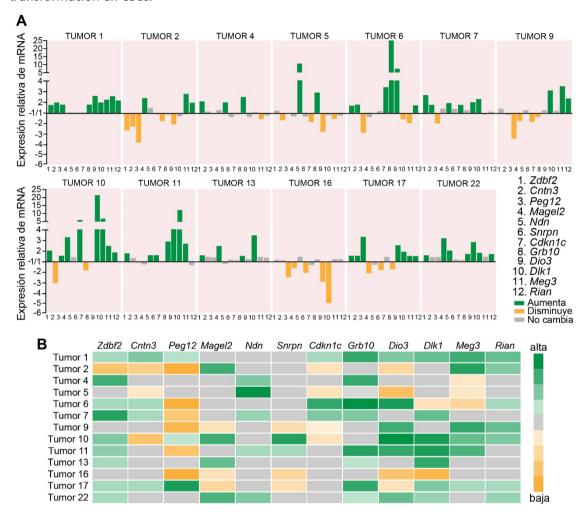


Figura 27. La reprogramación de ratones GFAP-rtTA;i4F conlleva alteraciones en la expresión de genes improntados. A) qPCR para 12 genes improntados en 13 muestras tumorales de ratones reprogramados GFAP-rtTA;i4F respecto a la expresión en tejido control i4F en las regiones cerebrales en las que se ha detectado el tumor. La expresión del gen 18S ha sido utilizada para relativizar. B) HeatMap de los genes improntados en las muestras tumorales de ratones GFAP-rtTA;i4F reprogramados. El aumento de expresión se muestra en verde mientras que la disminución en la expresión se ha indicado en naranja. Aquellos genes cuya expresión no se ve alterada se muestran en gris.

En conclusión, los resultados del análisis de expresión de los genes improntados en muestras tumorales mostraron dos perfiles de expresión claramente diferenciados, lo cual coincide con los análisis previos de marcadores moleculares a nivel de proteína, pero también van en concordancia con los datos del RNAseq del apartado 2.1 en el cual se observó que la

expresión de los genes improntados es suficiente para distinguir el tejido tumoral del no tumoral en pacientes de GBM, e incluso los subtipos celulares dentro del GBM.

Las células aisladas de cerebros de animales GFAP-rtTA;i4F reprogramados *in vivo*, y crecidas en medio GBM, fueron también analizadas para determinar las alteraciones en la expresión de genes improntados con respecto a NSCs control (Figura 28). De un total de 25 genes improntados analizados, se observó la alteración de un 20% de ellos (Figura 28A), de los cuales, a su vez, el 20% disminuyó la expresión en los cultivos GFAP-rtTA;i4F tratados con respecto a las NSCs control, mientras que el 80% lo aumentó (Figura 28A). Únicamente 5 de estos genes mostraron cambios significativos: *Mcts2*, *Peg12*, *H19*, *Meg3* e *Igf2r* (Figura 28B) aunque otros 10 mostraron tendencias claras a aumentar en los cultivos tumorales: *Zdbf2*, *Peg10*, *Cntn3*, *Magel2*, *Ndn*, *Igf2*, *Ins2*, *Dlk1* y *Rian* (Figura 28B). Muchos de estos genes muestran alteraciones en muestras humanas de GBM en la base de datos de GlioVis (Figura 12) y en los tumores sólidos del modelo GFAP-rtTA;i4F (Figura 27), apoyando nuevamente la idea de que los cultivos aislados de tumores inducidos en ratones reprogramables pudieran corresponderse a células de GBM.

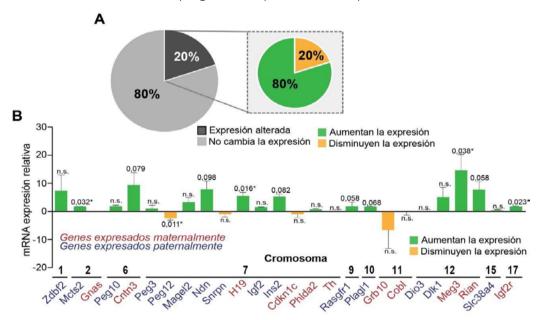


Figura 28. Los cultivos celulares obtenidos de cerebros de ratones GFAP-rtTA;i4F reprogramados *in vivo* presentan alteraciones en la expresión de genes improntados. A) Porcentaje de genes improntados cuya expresión se encuentra alterada en los animales GFAP-rtTA;i4F con respecto a NSCs. El porcentaje de genes que aumentan la expresión (verde) o la disminuyen (naranja) también ha sido indicado. B) Expresión relativa de 26 genes improntados en cultivos GFAP-rtTA;i4F en comparación con NSCs adultas de la SVZ. Los genes cuya expresión aumenta han sido indicados en verde, mientras que aquellos que disminuyen se muestran en naranja. Las barras de error muestran el s.e.m. de tres cultivos. Los p-valores han sido indicados.

OBJETIVO 3. Estudio del papel de la enzima TET3 en la regulación a impronta genómica durante la transformación maligna.	de

3. La enzima TET3 previene la formación del GBM a través de la regulación epigenética de genes improntados

La enzima TET3 está implicada en la oxidación de la metilación del DNA dando lugar a la forma 5-hidroximetilcitosina (5hmC) a partir de la 5-metilcitosina (5mC), por lo que lleva a cabo la desmetilación activa del DNA (X. Wu & Zhang, 2017). Precisamente el cerebro presenta niveles altos de hidroximetilación (Montalban-Loro et al., 2019), siendo la expresión de *Tet3* la que permanece más elevada en el cerebro y en las NSCs adultas ((Montalban-Loro et al., 2019; Szwagierczak, Bultmann, Schmidt, Spada, & Leonhardt, 2010). Si bien un efecto anti-tumoral de TET3 ha sido demostrado previamente (Misawa et al., 2018; Rasmussen & Helin, 2016), la acción de esta enzima también ha sido descrita como oncogénica a través de la desmetilación del DNA (Herrmann et al., 2020). Dadas estas discrepancias entre estudios previos, entender el papel que juega TET3 en el desarrollo del GBM y su posible implicación en la alteración de los genes improntados en este cáncer resulta clave.

3.1. TET3 disminuye en GBM humano

Con el fin de elucidar el papel que juega TET3 en el desarrollo del GBM se llevó a cabo un análisis de la expresión de *TET3* en muestras de GBM humano recurriendo a la base de datos de Rembrant en la aplicación GlioVis. Los datos aportados por Rembrant muestran una menor expresión del gen *TET3* en muestras de GBM con respecto a tejido no tumoral, observándose la menor expresión en el subtipo más agresivo, el GBM de tipo mesenquimal (**Figura 29A**). Consistentemente, los pacientes con una mayor expresión del gen *TET3* correlacionan con una mayor tasa de supervivencia (**Figura 29B**), mostrando a TET3 como un factor importante en la regulación de la malignidad en GBM.

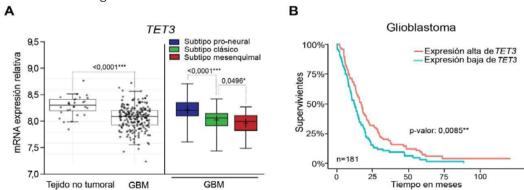


Figura 29. La expresión de *TET3* disminuye en GBM humano. A) Expresión de *TET3* en muestras de GBM humano y muestras no tumorales a partir de la base de datos de Rembrant (obtenida de la aplicación GlioVis; panel izquierdo). La expresión de *TET3* en los tres subtipos: pro-neural (azul), clásico (verde) y mesenquimal (rojo) de GBM también se muestra (panel derecho). B) Supervivencia en meses en pacientes de GBM según la expresión alta (rojo) o baja (azul) del gen *TET3*. Datos obtenidos de la base de datos de Rembrant. Los p-valores han sido indicados.

3.2. TET3 controla el comportamiento tumoral de células de GBM murino in vitro

En primer lugar, se analizaron los niveles de expresión del gen *Tet3* en la línea murina GBM-EGFR (**Figura 30A**). Como control se utilizaron NSCs salvajes de la SVZ adulta. En la línea celular tumoral se observó una menor expresión de *Tet3* con respecto a las NSCs (**Figura 30A**), mientras que ninguno de los otros dos genes de la misma familia, *Tet1* y *Tet2*, mostró cambios en la expresión en GBM (**Figura 30A**). Esta disminución de la enzima también fue detectada a nivel de proteína mediante ICC en las NSCs y las células GBM-EGFR (**Figura 30B**). Estos resultados sugieren que la disminución en la expresión de *Tet3* podría ser importante en la transformación maligna de las NSCs, como se ha sugerido en otros estudios (Carella et al., 2020; Cui et al., 2016).

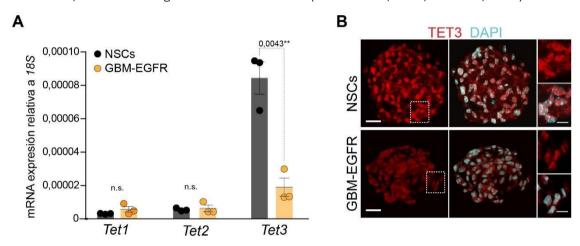


Figura 30. La expresión de *Tet3* está disminuida en el GBM murino. A) qPCR para los genes *Tet1*, *Tet2* y *Tet3* en NSCs adultas (negro) de la SVZ y en la línea GBM-EGFR. El gen *18S* ha sido utilizado para normalizar los datos. El p-valor ha sido indicado en la figura. Las barras de error muestran el s.e.m. de tres cultivos. B) ICC para TET3 (rojo) en NSCs adultas y células GBM-EGFR. Se ha utilizado DAPI para contrateñir los núcleos. Las barras de escala en B: 20 μm (ampliaciones: 7 μm).

Para comprender si la disminución en la expresión de *Tet3* está implicada en el desarrollo del cáncer, se sobre-expresó el gen *Tet3* en la línea GBM-EGFR. Si bien TET3 ha sido descrita como una enzima implicada en el proceso de desmetilación activa del DNA (X. Wu & Zhang, 2017), también es capaz de regular a nivel de la transcripción (Montalban-Loro et al., 2019). Por ello, también se sobre-expresó esta enzima con el dominio catalítico mutado, de tal manera que esta variante de TET3 no puede transformar el grupo 5-metilcitosina en 5-hidroximetilcitosina a través de su función dioxigenasa. El aumento de expresión de *Tet3* tras la nucleofección fue confirmado mediante qPCR y a nivel de proteína mediante ICC en células GBM-EGFR nucleofectadas con un vector vacío (GBM^{control}) y en las células de GBM nucleofectadas con el vector de Tet3 (GBM^{Tet3}) o de Tet3 con el dominio catalítico mutado (GBM^{Tet3} CDmut) (Figura 31A, B). En concordancia con el aumento de TET3, un aumento en la señal 5hmC fue detectada en las células que sobre-expresaban *Tet3* (GBM^{Tet3}) en comparación con las células control (GBM^{control}) y las células GBM^{Tet} (Figura 31B).

Con el fin de estudiar la implicación de *Tet3* sobre el comportamiento las células de GBM, se llevaron a cabo ensayos para testar algunas de las características asociadas al tumor. En primer lugar, se analizó la expresión de moléculas asociadas a la malignidad mediante qPCR (**Figura 31C**). Tanto *Cd44* como *Egfr* mostraron una disminución en su expresión en las células nucleofectadas para la sobre-expresión de *Tet3* en comparación con las células GBM^{control}, mientras que la expresión de *Olig2* aumentó (**Figura 31C**); sin embargo, estos cambios no fueron observados en las células nucleofectadas con *Tet3* con el dominio catalítico mutado (GBM^{Tet3} CDmut), indicando que el efecto de *Tet3* sobre estos marcadores pudiera ser dependiente de su acción dioxigenasa. No obstante, tampoco se observó una diferencia estadísticamente significativa entre GBM^{Tet3} y GBM^{Tet3} CDmut, por lo que el efecto de *Tet3* en estos marcadores podría ser sólo en parte dependiente de la desmetilación del DNA. Estos cambios en marcadores tumorales también fueron testados a nivel de proteína, observándose nuevamente el aumento de Olig2 y la disminución de las proteínas EGFR y CD44, únicamente en las células GBM^{Tet3} (**Figura 31D**).

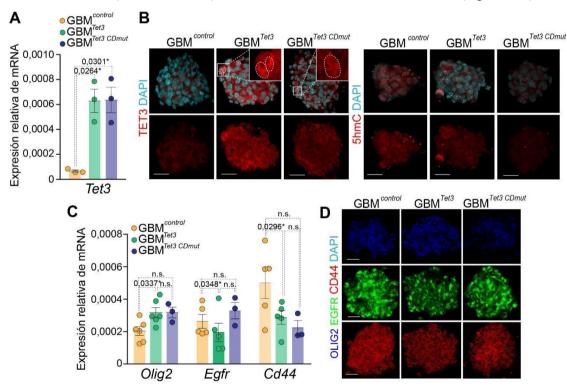


Figura 31. La sobre-expresión de *Tet3* promueve la transición pro-neural del GBM. A) qPCR para *Tet3* en células GBM-EGFR nucleofectadas con un vector vacío (GBM^{control}) o con el vector para la sobre-expresión de *Tet3* (GBM^{Tet3}) y Tet3 con el dominio catalítico mutado (GBM^{Tet3} CDmut). B) ICC para TET3 y 5hmC en células GBM^{control}, GBM^{Tet3} y GBM^{Tet3} y GBM^{Tet3} CDmut. DAPI ha sido utilizado para contrateñir el núcleo. C) qPCR para *Olig2*, *Egfr* y *Cd44* en los cultivos control y nucleofectados con *Tet3* o *Tet3* CDmut. D) ICC para Olig2 (azul), EGFR (verde) y CD44 (rojo) en células GBM^{control}, GBM^{Tet3} y GBM^{Tet3} CDmut. El gen *18S* ha sido utilizado para normalizar. Las barras de error muestran el s.e.m. El número de muestras y los p-valores han sido indicados en las gráficas. Escala en B y D: 20 μm (ampliaciones en B: 7 μm).

Las moléculas CD44 y EGFR han sido asociadas a la proliferación celular, especialmente en el GBM (Mooney et al., 2016), por lo que el efecto de la sobre-expresión de *Tet3* en el proceso de proliferación fue estudiado. Para ello, se llevó a cabo un ensayo de tumoresferas, en el cual se sembraron las células GBM^{control}, GBM^{Tet3} y GBM^{Tet3} cDmut disgregadas a baja densidad y se estimó el número de esferas formadas en cada condición. Los cultivos de células GBM^{Tet3} presentaron un menor número de tumoresferas con respecto a las células control, pero también con respecto a las células GBM^{Tet3} CDmut (Figura 32A y B), indicando que TET3 está implicada en la regulación de la proliferación en el GBM y que dicha regulación es ejercida a través de procesos de metilación del DNA. Sin embargo, el diámetro de las tumoresferas formadas en la línea GBM^{Tet3} fue mayor en comparación con las tumoresferas GBM^{control} (Figura 32C), pudiendo indicar efectos en la capacidad de adhesión de estas células que causa su agregación en los cultivos.

Para realizar un estudio más exhaustivo de la implicación de TET3 en la proliferación, se analizó las fases del ciclo celular en las líneas GBM^{control}, GBM^{Tet3} y GBM^{Tet3 CDmut}. Este ensayo mostró cambios significativos en la fase G₀/G₁ del ciclo entre los cultivos GBM^{control} y los GBM^{Tet3} con un aumento en el porcentaje de células en esta fase en los cultivos con Tet3 sobre-expresado (Figura 32B). También se detectó en las células GBM Tet3 una ligera disminución en la fase S y G_2/M ; aunque esta disminución no llegó a ser significativa (Figura 32B). Para confirmar si los cambios observados en la fase $\mathsf{G}_0/\mathsf{G}_1$ del ciclo celular se correspondían a una posible parada de las células en esa fase, se llevó a cabo un marcaje de células en proliferación mediante la detección de Ki67 y de forma específica en fase S mediante un pulso de 1 hora con el análogo de timidina EdU. Este análisis mostró un menor porcentaje de células en replicación tras la sobre-expresión de Tet3, pero no cuando la sobre-expresión se realizó con la forma mutada de la enzima (Figura 32C), implicando de nuevo a TET3 en la proliferación de las células de GBM a través de la desmetilación del DNA. El porcentaje de células Ki67 no cambió de forma significativa, aunque sí presentó una tendencia siguiendo el mismo patrón que el marcaje con EdU (Figura 32C). A continuación, se realizó una tinción para la Histona 3 fosforilada (pH3) que permite detectar y distinguir las fases G₂ y M del ciclo celular (Filby et al., 2011). Esta ICC no mostró alteraciones en la fase M en las células GBM^{Tet3} ni GBM^{Tet3 CDmut}, cuantificado como porcentaje de células con marcaje pH3 positivo tiñendo de forma homogénea todo el núcleo, pero sí se observó una disminución en el porcentaje de células en fase G_2 , cuantificado como el porcentaje de células pH3 positivas con marcaje de cromosomas condensados observados como un marcaje punteado (Figura 32D).

Por tanto, el menor número de tumoresferas formadas, así como el aumento en el porcentaje de células en fase G_0/G_1 y la disminución en las fases S y G_2 del ciclo celular, indicaron

que la sobre-expresión de *Tet3* era capaz de reducir la capacidad proliferativa del GBM *in vitro* a través de su actividad catalítica de desmetilación activa del DNA.

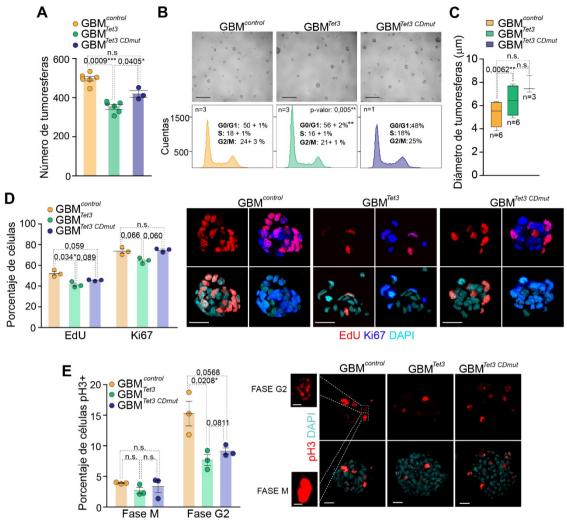


Figura 32. *Tet3* disminuye la capacidad de proliferación en células de GBM. A) Número de tumoresferas formadas a partir de 2500 células en las que se ha sobre-expresado *Tet3* (GBM^{Tet3}) o *Tet3* con el dominio catalítico mutado (GBM^{Tet3} CDmut) y en células control (GBM^{control}). B) Imágenes de contraste de fases de tumoresferas formadas en cultivos GBM^{control}, GBM^{Tet3} y GBM^{Tet3} CDmut (panel superior). Porcentajes de células en cada fase del ciclo celular en GBM^{control}, GBM^{Tet3} y GBM^{Tet3} CDmut. Los perfiles del ciclo también se muestran (panel inferior). C) Diámetro medio de las esferas formadas por los cultivos de los distintos genotipos. D) Porcentaje de células EdU+ y Ki67+ en células GBM^{control}, GBM^{Tet3} y GBM^{Tet3} CDmut. Los porcentajes se estimaron respecto a DAPI (panel izquierdo). Imágenes de ICC para la detección de EdU (rojo) y Ki67 (azul) (panel derecho). E) Porcentaje de células positivas para pH3 en cultivos GBM^{control}, GBM^{Tet3} y GBM^{Tet3} CDmut (panel izquierdo). Imágenes de ICC para pH3 (rojo) en las mismas células mostrando el marcaje característico de la fase G2 (punteado) y la fase M (denso) (panel derecho). El DAPI ha sido utilizado para contrateñir el núcleo. Las barras de error muestran el s.e.m. de al menos 3 cultivos por condición. Barra de escala en B: 200 μm; D y E: 20 μm (ampliaciones en E: 5 μm).

Otra de las características clave en el comportamiento del cáncer además de la proliferación es la adhesión/migración e invasividad de las células malignas (Paw, Carpenter, Watabe, Debinski, & Lo, 2015). El mayor diámetro de las tumoresferas en la línea GBM^{Tet3} durante el ensayo de formación de tumoresferas, sugieren un posible efecto de *Tet3* sobre la capacidad de adhesión o agregación de estas células. Dicha capacidad fue testada tras la sobre-expresión

de *Tet3* mediante un análisis de expresión del gen *N-cadherina*, el cual está presente en los gliomas de alto grado y ha sido implicado en la invasividad del tumor (Noh et al., 2017; Peglion & Etienne-Manneville, 2012). El resultado de la qPCR para *N-cadherina* sin embargo, no mostró cambios cuando *Tet3* fue sobre-expresado (**Figura 33A**). Para estudiar más detenidamente el posible papel de TET3 en la adhesión del GBM a través de la molécula N-Cadherina, se cultivaron las células de GBM sobre fibroblastos modificados NL-292 que sobre-expresaban esta molécula de adhesión. Las células de GBM fueron previamente marcadas con el marcador fluorescente DFFDA y sembradas sobre los fibroblastos durante 30 minutos. Transcurrido este tiempo, se procedió a lavar y fijar las células y analizar el porcentaje de células de GBM adheridas por mm² de fibroblastos. Este análisis tampoco mostró diferencias en adhesión entre las células GBM^{control} y las células GBM^{Tet3} (**Figura 33B**). Tomados todos estos datos en conjunto, TET3 parece reprimir la proliferación del tumor sin afectar a su capacidad de migración e invasividad mediada por N-Cadherina.

La formación del tumor requiere también de la generación de nuevos vasos sanguíneos para asegurar el aporte de factores tróficos necesarios para la supervivencia celular (Das S y Marsden PA, 2013; Guarnaccia L *et al.* 2018). El posible papel de *Tet3* en la angiogénesis también fue analizada *in vitro* mediante la cuantificación de la expresión del gen asociado a este proceso *Vegfa*; sin embargo, la expresión de esta molécula en los cultivos tumorales que sobre-expresaban *Tet3* no se vio alterada con respecto a los cultivos control (**Figura 33C**). No obstante, en un ensayo realizado para detectar la capacidad de TET3 en promover la proliferación de células endoteliales, se realizó un co-cultivo de las células de GBM con células endoteliales humanas HUVEC (Bishop et al., 1999), el cual mostró una menor proliferación de las células HUVEC cuando éstas fueron co-cultivadas con las células GBM^{Tet3} con respecto a las que fueron co-cultivadas con la línea GBM^{control}, de tal manera que las células HUVEC co-cultivadas con GBM^{Tet3} mostraron un menor porcentaje de células Ki67 y EdU/Ki67 positivas con respecto a las células HUVEC co-cultivadas con células de GBM control (**Figura 33D, E**); sin embargo, esta disminución no llegó a ser significativa.

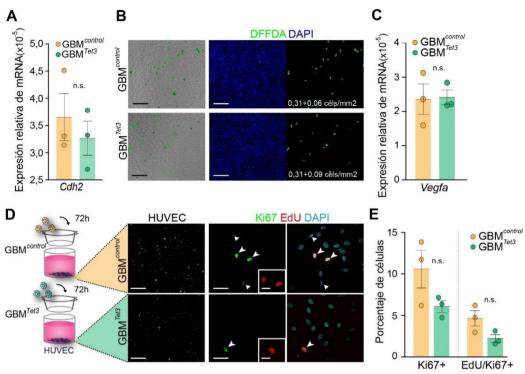
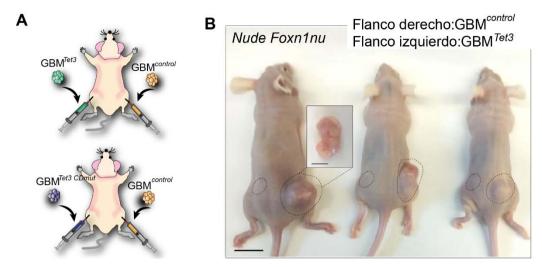



Figura 33. La capacidad de adhesión y angiogénesis del GBM no se ve alterada con la sobre-expresión de *Tet3*. A) qPCR para *Cdh2* en células GBM^{control} y GBM^{Tet3}. B) Ensayo de adhesión basado en el número de células de GBM, control y que sobre-expresan *Tet3*, marcadas con DFFDA (verde) adheridas a células de fibroblastos que sobre-expresan *N-Cadherina* (NL-929) tras 30 minutos en co-cultivo. El número de células DFFDA positivas (verde) por mm² se muestra. C) qPCR para *Vegfa* en las células GBM^{control} y GBM^{Tet3}. D) ICC para EdU (rojo) y Ki67 (verde) en células HUVEC tras ser co-cultivadas con células GBM^{control} o GBM^{Tet3}. E) Porcentaje de células HUVEC Ki67 y EdU/Ki67 positivas. El DAPI ha sido utilizado para contrateñir el DNA. El gen *18S* ha sido utilizado para normalizar. Las barras de error muestran el s.e.m. de tres muestras por condición. Los p-valores han sido indicados. Barras de escala en B: 100 μm y en D: 20 μm.

3.3 La sobre-expresión de Tet3 previene la formación de tumores in vivo

Con el fin de confirmar la implicación de la enzima TET3 en la proliferación del GBM en un contexto adecuado de tumor sólido, se procedió a la inyección de las células tumorales en ratones inmunocomprometidos. Un total de 2x10⁶ de células GBM^{control} o GBM^{Tet3} fueron inyectadas en el flanco dorsal de estos animales (Figura 34A). Tras dos meses desde la inyección, se formaron tumores que alcanzaron el tamaño de entre 1,5 y 2 cm de diámetro, tras lo cual fueron extraídos y analizados (Figura 34B). Únicamente el lado derecho, correspondiente a la inyección de células GBM^{control} formó tumores en estos ratones, mientras que, en el lado donde se inyectaron las células GBM^{Tet3}, no fue observada ninguna masa tumoral (Figura 34B), indicando que la sobre-expresión de *Tet3* era capaz de evitar la formación de tumores *in vivo*. Precisamente, estos resultados coinciden con el estudio de Carella A *et al.* 2019 donde observaron que la sobre-expresión de *Tet3* en el GBM inhibía el crecimiento exponencial de los tumores (Carella et al., 2020). Actualmente, se ha repetido el experimento incluyendo la inyección de células que sobre-expresan *Tet3* con el dominio catalítico mutado (GBM^{Tet3} CDMut) (Figura 34A) con el fin de

determinar si el efecto de la enzima TET3 en la formación de tumores *in vivo* es dependiente de metilación.

Figura 34. TET3 previene la formación del GBM *in vivo.* **A)** Esquema del protocolo de formación de GBM *in vivo* a partir de la inyección de células GBM^{control}, GBM^{Tet3} y GBM^{Tet3} comut en los flancos dorso-laterales de ratones inmunocomprometidos *Nude*. **B)** Imagen de ratones inmunocomprometidos tras dos meses desde la inyección de células GBM^{control} (lado derecho) y GBM^{Tet3} (lado izquierdo). Uno de los GBM formados ha sido mostrado. Barra de escala: 500 mm (tumor ampliado: 100 mm).

Para estudiar con mayor profundidad el papel que ejerce la enzima TET3 en la formación y desarrollo del GBM en el cerebro, 300.000 células GBM^{control}, células GBM^{Tet3} y GBM^{Tet3} CDmut han sido inyectadas esterotáxicamente en el estriado de ratones inmunocomprometidos *Nude* (Gargini et al., 2020). Este procedimiento está siendo realizado actualmente por el grupo de Neurooncología del Insituto Carlos III dirigido por la Dra. Pilar Sánchez Gómez.

3.4 TET3 regula la expresión de los genes improntados en el GBM

La impronta genómica es un proceso regulado principalmente por las marcas de metilación situadas en las regiones de control de impronta o ICRs que controlan la expresión de los genes improntados (Plass & Soloway, 2002). Por ello, se estudió el posible papel de la enzima TET3 en la metilación de estas regiones y por tanto en la regulación de los genes improntados en GBM. Por lo cual, se realizó un análisis de expresión de los genes improntados tras la sobre-expresión de *Tet3*, así como un estudio de los cambios asociados en los niveles de metilación.

Con el fin de comprobar el efecto de *Tet3* en la expresión de genes improntados en el GBM, se analizó un total de 15 genes en células GBM^{control}, GBM^{Tet3} y GBM^{Tet3} CDmut. De estos 15 genes improntados, *Zdbf2*, *Peg10*, *Peg3*, *Cntn3*, *Snrpn*, *Igf2*, *Meg3* y *Rian* cambiaron su expresión en las células GBM^{Tet3} con respecto a las células GBM^{control} (**Figura 35A**); de los cuales, tres genes, *Zdbf2*, *Igf2* y *Meg3*, no vieron alterada su expresión en GBM^{Tet3} CDmut, sugiriendo que los cambios tras la

sobre-expresión de *Tet3* eran dependientes de la desmetilación del DNA. Sin embargo, algunos genes más como *Cdkn1c*, *Plaql1* y *Dlk1* mostraron una tendencia (**Figura 35A**).

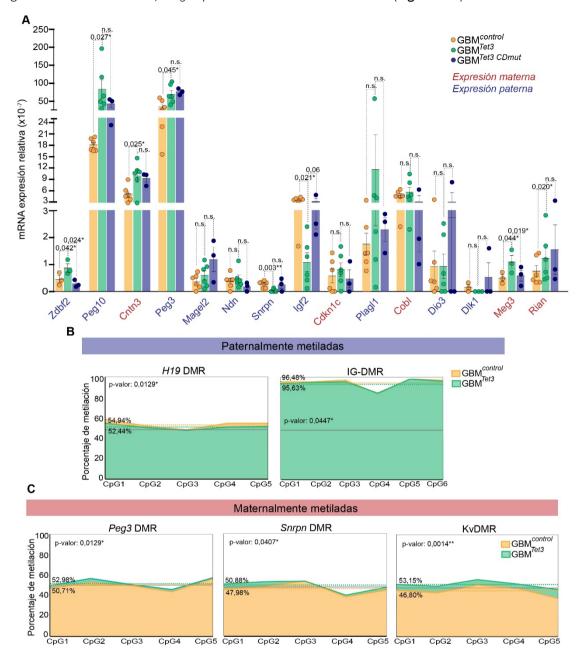


Figura 35. *Tet3* regula la expresión de genes improntados *a través de la des-metilación de las ICRs*. A) qPCR de los genes improntados cuya expresión está alterada en la línea GBM-EGFR con respecto a las NSCs adultas. Los niveles de expresión se han analizado en NSCs adultas, en la línea GBM^{control} y en las células tumorales en las que se ha sobre-expresado *Tet3*, GBM^{Tet3} y GBM^{Tet3} CD^{mut}. El gen *18S* se ha utilizado para relativizar los datos. B) La sobre-expresión de *Tet3* en el GBM murino muestra una hipometilación de las islas CpG de las DMRs paternalmente metiladas *H19* y IG-DMR. C) La sobre-expresión de *Tet3* en el GBM murino dio lugar a la hipermetilación de las islas CpG de las DMRs maternalmente metiladas *Peg3*, *Snrpn* y KvDRM. El porcentaje de metilación medio de tres cultivos en la región DMR ha sido indicado. Los p-valores han sido indicados. Las barras de error muestran el s.e.m. de tres muestras por condición.

Estos resultados sugieren que TET3 regula la expresión de múltiples genes improntados en GBM, siendo en algunos casos de forma dependiente de los procesos de metilación y desmetilación. De hecho, Igf2 es un factor crítico en el desarrollo de diferentes tumores,

incluyendo los GBM (Livingstone, 2013) debido a su implicación en el proceso de proliferación y supervivencia celular (Oliva et al., 2018). Por tanto, el efecto de TET3 sobre la expresión de *Igf2* podría ser clave en su papel en la proliferación del GBM.

Para analizar el mecanismo por el cual TET3 regula la expresión de estos genes improntados, y teniendo en cuenta la actividad catalítica característica de las enzimas TET, se analizó el porcentaje de metilación de DMRs de genes improntados incluyendo *H19* DMR, que controla la expresión de *Igf2* (Figura 35). El análisis de metilación mediante pirosecuenciación mostró alteraciones en el porcentaje de metilación de las 5 DMRs analizadas (Figura 35). Estas alteraciones implicaron una disminución de la metilación o hipometilación en las islas CpG de las dos DMRs paternalmente metiladas de genes improntados (H19-DMR e IG-DMR) (Figura 35A), pero una hipermetilación en las tres DMRs maternalmente metiladas analizadas (*Peg3* DMR, *Snrpn* DMR y KvDMR) (Figura 35B), sugiriendo una regulación diferencial en función del alelo metilado.

Debido al papel de TET3 en la desmetilación del DNA, la hipometilación podría ser asociada al efecto directo de la enzima dioxigenasa, mientras que los efectos de hipermetilación podrían explicarse por un efecto indirecto de TET3 sobre estas DMRs. Si bien se observan cambios en el porcentaje de metilación en las 5 DMRs de los genes improntados analizadas, no todos los genes improntados situados bajo la regulación de estas DMRs se vieron afectados tras la sobreexpresión de Tet3 (Figura 35). Por tanto, los cambios en metilación no explican todos los cambios en la expresión de los genes improntados observados. La expresión de Snprn disminuyó en las células nucleofectadas con la construcción de TET3. Este gen de expresión paterna, se encuentra metilado en el alelo materno, de manera que la hipermetilación observada conllevaría a la "maternalización" parcial del alelo paterno, y con ello a la disminución de la expresión de Snrpn (Figura 36A), que es precisamente lo que se observa en las células GBM^{Tet3} (Figura 35). La disminución de la expresión de lgf2 en las células GBM Tet3 también se explica por la hipometilación de H19 DMR ya que Igf2 es un gen de expresión paterna, pero en este caso, la metilación también se encuentra en el alelo paterno, por lo que el efecto de TET3 produce nuevamente la "maternalización" parcial del alelo paterno, y con ello, la disminución de la expresión de *lgf2* (Figura 36B).

En conclusión, de las 3 DMRs inicialmente analizadas en el GBM-EGFR (**Figura 29**) que sufren una hipermetilación respecto a NSCs (*Peg3, Snrpn* e IG-DMR) que podría ser explicada por la disminución de la enzima TET3, únicamente IG-DMR disminuye los niveles de metilación cuando *Tet3* es sobre-expresado (**Figura 36A**). Si bien *H19* DMR también presenta una

hipometilación cuando se aumentan los niveles de *Tet3* (**Figura 36A**), indicando una posible acción reguladora directa de la enzima, las células GBM-EGFR no presentaban inicialmente cambios en el porcentaje de metilación en esta región diferencialmente metilada. Por otro lado, los cambios en los niveles de metilación de *Snrpn* DMR coinciden con los cambios de expresión de *Snrpn* en la transformación maligna, y tras la sobre-expresión de *Tet3*. Sin embargo, tanto la disminución de *Tet3* durante la transformación cancerosa como el aumento de *Tet3* tras la sobre-expresión del gen en las células de GBM, conllevó a una hipermetilación de la *Snrpn* DMR.

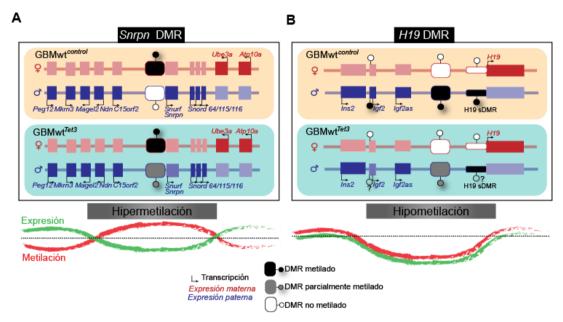


Figura 36. TET3 regula la metilación de *Snrpn* DMR y *H19* DMR disminuyendo la expresión de los genes improntados *Snrpne Igf2*. A) Esquema de la localización de los genes improntados regulados por *Snrpn* DMR en el alelo materno (rojo) y paterno (azul). La sobre-expresión de *Tet3* en la línea de GBM dio lugar a una hipermetilación de la región *Snrpn* DMR, con la consiguiente disminución de la expresión del gen improntado *Snprn*. La expresión del resto de genes improntados del locus no aparece alterada al sobre-expresarse *Tet3*. B) Esquema de la localización de los genes improntados regulados por *H19* DMR en el alelo materno (rojo) y paterno (azul). La sobre-expresión de *Tet3* en el GBM (GBM^{Tet3}) dio lugar a una hipometilación de la región *H19* DMR, con la consiguiente disminución de la expresión del gen improntado de expresión paterna *Igf2*. El locus *H19* DMR contiene dos regiones más diferencialmente metiladas, somáticas, una de las cuales precisamente regula a *Igf2*.

Por tanto, como ocurría con la reprogramación inducida a iPSCs, IG-DMR se presenta nuevamente como candidata en la regulación del GBM a través de la enzima TET3. No obstante, a pesar de los cambios en los niveles de metilación, la expresión de los genes *Dio3* y *Dlk1* situados bajo el control de IG-DMR no presentaban cambios al sobre-expresarse el gen *Tet3* (**Figura 35**). Aunque, se ha de tener en cuenta que los cambios en el porcentaje de metilación de las DMRs tras la sobre-expresión de *Tet3* son muy ligeros. Por otro lado, los cambios observados en la expresión y metilación de *Igf2* a través de TET3 resultan muy prometedores en el entendimiento de los mecanismos implicados en la formación y desarrollo del GBM. Por ello, resulta clave el estudio de *Igf2* sDMR y su posible implicación en la regulación de *Igf2* a través de TET3.

Figuras suplementarias

Gen	Localización	Alelo expresado	Gen	Localización	Alelo expresado	Gen	Localización	Alelo expresado	Gen	Localización	Alelo expresado
NDUFA4P1	1p13.3	Paternal	HOXA2	7p15-p14AS	Maternal	IFITM1	11p15.5	Maternal	ZNF597	16p13.3AS	Maternal
GFI1	1p22AS	Paternal	EVX1	7p15-p14	Paternal	RAB1B	11q12	Maternal	NAA60	16p13.3	Maternal
DIRAS3	1p31AS	Paternal	HOXA5	7p15-p14AS	Maternal	ANO1	11q13.3	Maternal	SALL1	16q12.1AS	Maternal
FUCA1	1p34AS	Paternal	TMEM60	7q11.23AS	Paternal	ZC3H12C	11q22.3	Paternal	C16orf57	16q21	Maternal
RNU5D-1	1p34.1AS	Paternal	PEG10	7q21	Paternal	KBTBD3	11q22.3AS	Paternal	ACD	16q22.1AS	Maternal
BMP8B	1p35-p32AS	Paternal	MAGI2	7q21AS	Maternal	NTM	11q25	Maternal	FOXF1	16q24	Maternal
DVL1	1p36AS	Maternal	SGCE	7q21-q22AS	Paternal	ABCC9	12p12.1AS	Maternal	TP53	17p13.1AS	Unknown
TP73	1p36.3	Maternal	PPP1R9A	7q21.3	Maternal	RBP5	12p13.31AS	Maternal	TMEM88	17p13.1	Maternal
WDR8	1p36.3AS	Maternal	TFPI2	7q22AS	Maternal	SLC38A4	12q13AS	Unknown	PYY2	17q11	Paternal
RPL22	1p36.3-p36.2AS	Paternal	DLX5	7q22AS	Maternal	SLC26A10	12q13	Maternal	HOXB2	17q21-q22AS	Maternal
PRDM16	1p36.23-p33	Paternal	MEST	7q32	Paternal	LRP1	12q13.3	Unknown	HOXB3	17q21.3AS	Maternal
PEX10	1p36.32AS	Maternal	CPA4	7q32	Maternal	HOXC9	12q13.3	Maternal	LOC100131170		Paternal
TMEM52	1p36.33AS	Paternal	COPG2IT1	7q32	Paternal	HOXC4	12q13.3	Maternal	BRUNOL4	18q12AS	Maternal
HSPA6	1q23	Maternal	MESTIT1	7q32.2AS	Paternal	CDK4	12q14AS	Maternal	FAM59A	18q12.1AS	Paternal
PTPN14	1q32.2AS	Maternal	KLF14	7q32.3AS	Maternal	E2F7	12q21.2AS	Maternal	TCEB3C	18q21.1AS	Maternal
HIST3H2BB	1q42.13	Maternal	FASTK	7q35AS	Maternal	DCN	12q21.33 AS	Unknown	PPAP2C	19p13AS	Maternal
OBSCN	1q42.13	Paternal	SLC4A2	7q35-q36	Maternal	KIAA1545	12q24.33	Maternal	DNMT1	19p13.2AS	Paternal
OR11L1	1q44AS	Paternal	PURG	8p11AS	Paternal	FBRSL1	12q24.33	Maternal	CHMP2A	19qAS	Maternal
LRRTM1	2p12AS	Paternal	DLGAP2	8p23	Paternal	ATP5F1EP2	13q12.2	Maternal	TSHZ3	19q12AS	Paternal
VAX2	2p13	Maternal	NKAIN3	8q12.3	Paternal	HTR2A	13q14-q21AS	Maternal	CHST8	19q13.1	Maternal
OTX1	2p13	Maternal	LY6D	8q24-qterAS	Paternal	RB1	13q14.2	Maternal	ZNF225	19q13.2	Paternal
CCDC85A	2p16.1	Paternal	GPT	8q24.3	Maternal	FLJ40296	13q21.1	Maternal	LILRB4	19q13.4	Maternal
ABCG8	2p21	Maternal	KCNK9	8q24.3AS	Maternal	FAM70B	13q34	Maternal	ZIM2	19q13.4AS	Paternal
CYP1B1	2p21AS	Paternal	ZFAT-AS1	8q24.22	Paternal	FOXG1	14q13	Paternal	ZNF264	19q13.4	Unknown
ZFP36L2	2p22.3-p21AS	Maternal	PEG13	8q24.22	Paternal	FERMT2	14q22.1AS	Paternal	MZF1	19q13.4AS	Maternal
GPR1	2q33.3AS	Paternal	ZFAT	8q24.22AS	Paternal	SMOC1	14q24.2	Maternal	PEG3	19q13.4AS	Paternal
ZDBF2	2q33.3	Paternal	GLIS3	9p24.2AS	Paternal	DLK1	14q32	Paternal	MIMT1	19q13.4	Paternal
TIGD1	2q37.1AS	Paternal	APBA1	9q13-q21.1AS		DIO3	14q32	Unknown	ZNF229	19q13.31AS	Maternal
MYEOV2	2q37.3AS	Paternal	C9orf85	9q21.13	Paternal	MEG3	14q32	Maternal	NLRP2	19q13.42	Maternal
ALDH1L1	3q21.3AS	Maternal	FLJ46321	9q21.32	Maternal	RTL1	14q32.31AS	Paternal	MIR371A	19q13.42	Paternal
ZIC1	3q24	Maternal	LMX1B	9q34	Maternal	SNORD114-1	14q32.31	Maternal	C20orf82	20p12.1	Paternal
HES1	3q28-q29	Paternal	PHPT1	9q34.3	Maternal	MEG8	14q32.31	Maternal	ISM1	20p12.1	Paternal
FGFRL1	4p16	Maternal	EGFL7	9q34.3	Paternal	SNORD113-1	14q32.31	Maternal	PSIMCT-1	20q11.2	Paternal
KIAA1530	4p16.3	Maternal	C9orf116	9q34.3AS	Paternal	MAGEL2	15q11-q12AS	Paternal	BLCAP	20q11.2-q12AS	Isoform Dependent
SPON2	4p16.3AS	Paternal	GATA3	10p15	Paternal	MKRN3	15q11-q13	Paternal	NNAT	20q11.2-q12	Paternal
NAP1L5	4q22.1AS	Paternal Maternal	LDB1	10q24-q25AS	Maternal Maternal	UBE3A	15q11-q13AS	Maternal Unknown	MCTS2	20q11.21	Paternal Paternal
ADAMTS16		Paternal	NKX6-2	10q26AS 10q26.3AS	Maternal	NPAP1	15q11-q13	Unknown	GDAP1L1	20q12	Paternal
CDH18	5p15.2-p15.1AS	Paternal	C10orf93	10q26.3	Maternal	ZNF127AS SNORD109A	15q11-q13 15q11.2	Paternal	SGK2	20q13.2 20q13.3	Maternal
ERAP2	5q15		VENTX						COL9A3		
VTRNA2-1	5q31.1AS	Paternal Maternal	PAOX	10q26.3 10q26.3	Maternal Maternal	SNORD108	15q11.2 15q11.2	Paternal Paternal	GNAS	20q13.3 20q13.12	Isoform Dependent Paternal
CSF2 BTNL2	5q31.1	Maternal	C10orf91		Paternal	SNORD107	15q11.2	Paternal	L3MBTL	20q13.12 20q13.32	Paternal
	6p21.3AS	Maternal	INPP5F V2	11p13	Paternal	SNORD109B	15q11.2AS	Maternal	SANG	20q13.32AS	Paternal
ADTRP	6p24.1AS	Paternal	WT1-AS	11p13AS	Paternal	ATP10A	15q11.2A0	Paternal	GNASAS	20q13.32AS	Paternal
FAM50B	6p25.2	Paternal	WT1	11p15	Maternal	SNRPN	15q11.2	Paternal	MIR298	20q13.32AS	Paternal
MRAP2 C6orf117	6q14.2 6q14.3	Paternal	PKP3 KCNQ10T1		Paternal	SNORD116@ SNORD115-48		Paternal	MIR296 C20orf20	20q13.32A3	Maternal
LIN28B	•	Paternal	OSBPL5	11p15.4AS	Maternal	SNORD115-46	15q11.2	Paternal	SIM2	21q22.2	Paternal
	6q21	Paternal	KCNQ1DN	11p15.4	Maternal	PWCR1	15q11.2	Paternal	DGCR6	22q11.21	Random
AIM1 PLAGL1	6q21 6q24-q25AS	Paternal	KCNQ1	11p15.5	Maternal	GABRA5	15q11.2-q12	Paternal	DGCR6L	22q11.21AS	Random
HYMAI	6q24.2AS	Paternal	B4GALNT4		Maternal	GABRB3	15q11.2-q12AS		FLJ20464	22q11.21A0	Paternal
SLC22A2*	6q26AS	Maternal	TH	11p15.5AS	Unknown	NDN	15q11.2-q12AS		. 2020-04		
SLC22A2*	6q26-q27	Maternal	H19	11p15.5AS	Maternal	GABRG3	15q12	Paternal			
BRP44L	6q27AS	Paternal	NAP1L4	11p15.5AS	Unknown	SNURF	15q12	Paternal			
GRB10	7p12-p11.2AS	Isoform Dependent	CDKN1C	11p15.5AS	Maternal	SNORD64	15q12	Paternal			
DDC	7p12.2AS	Isoform Dependent	PHLDA2	11p15.5AS	Maternal	GATM	15q21.1AS	Unknown			
GLI3	7p13.AS	Maternal	IGF2AS	11p15.5	Paternal	RASGRF1	15q24.2AS	Unknown			
HOXA3	7p1545 7p15-p144S	Maternal	SLC22A18	11p15.5	Maternal	MIR184	15q25.1	Unknown			
HOXA11	7p15-p14AS	Maternal	INS	11p15.5AS	Paternal	IRAIN	15q26.3AS	Paternal			
HOXA4	7p15-p14AS	Maternal	IGF2	11p15.5AS	Paternal	SOX8	16p13.3	Paternal			
	/pro-press		1.0.2		. atomai				L		

Figura Suplementaria 1. Lista de genes improntados descritos en humanos y obtenidos de la base de datos GeneImprint (www.geneimprint.com). Se indica el nombre del gen, la localización en los distintos cromosomas y el alelo expresado. En azul se muestran los genes de expresión paterna y en rojo, los de expresión materna. En negro se muestran genes cuya expresión alélica no está clara.

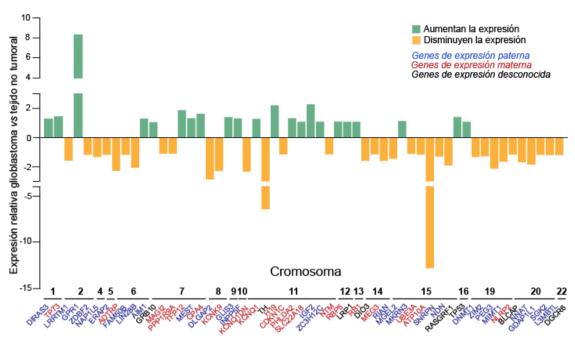


Figura Suplementaria 2. La expresión de genes improntados aparece altamente alterada en GBM humano. Expresión de genes improntados (obtenidos de Genelmprint) en muestras de pacientes de GBM frente a tejido no tumoral a partir de la base de datos de Gill de la plataforma GlioVis. En verde se muestran los genes que aumentan su expresión en el GBM, mientras que la disminución se ha indicado en naranja. Los genes maternalmente expresados han sido indicados en rojo y los genes paternalmente expresados aparecen en azul. Aquellos genes cuya expresión alélica no está clara se muestran en negro. Los genes han sido ordenados por cromosoma.

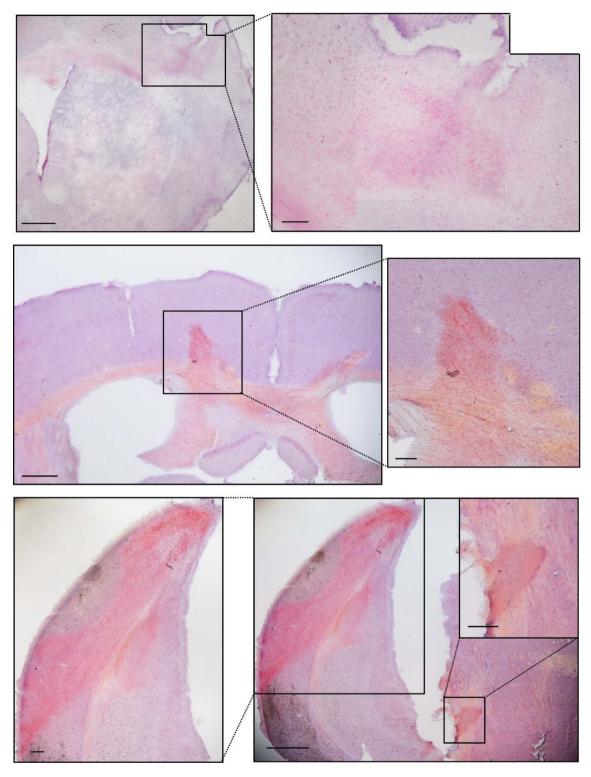


Figura Suplementaria 3. Los ratones reprogramables GFAP-rtTA;i4F forman tumores en cerebro. Tinción con hematoxilina y eosina en cortes coronales de 40 μ m de grosor de cerebros de animales GFAP-rtTA;i4F tras 4 semanas desde su tratamiento con 1 mg/ml de doxiciclina durante 4 semanas. Las regiones en las que se encontraron masas tumorales aparecen amplificadas. Barras de escala: 200 μ m (ampliaciones: 50 μ m).

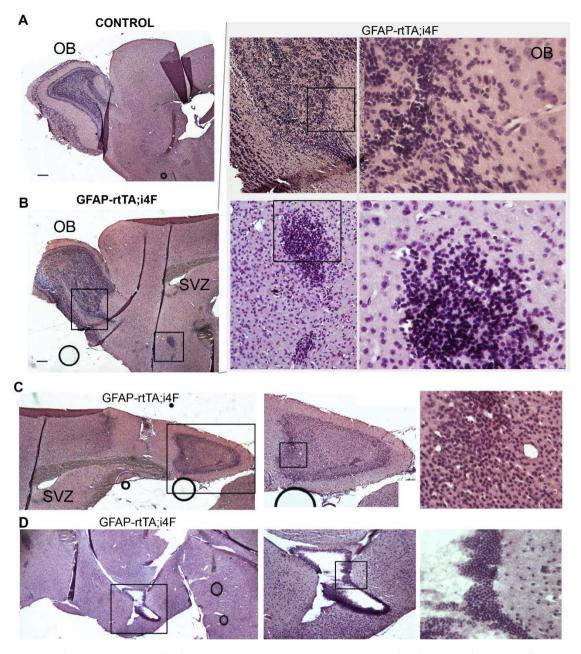


Figura Suplementaria 4. Tinción de tumores GFAP-rtTA;i4F en cortes sagitales de 10 μm de grosor. A) Tinción de un corte sagital de animal control i4F. B) Tinción de un corte sagital de la parte rostral de una animal reprogramable con tumores. Las regiones en las que se encontraron masas tumorales aparecen amplificadas. C) Tinción de un corte sagital de la parte dorsal de una animal reprogramable con tumores. Las regiones en las que se encontraron masas tumorales aparecen amplificadas. D) Tinción de un corte sagital de la parte ventral de una animal reprogramable con tumores. Las regiones en las que se encontraron masas tumorales aparecen amplificadas. Barras de escala: 200 μm (ampliaciones: 50 μm).

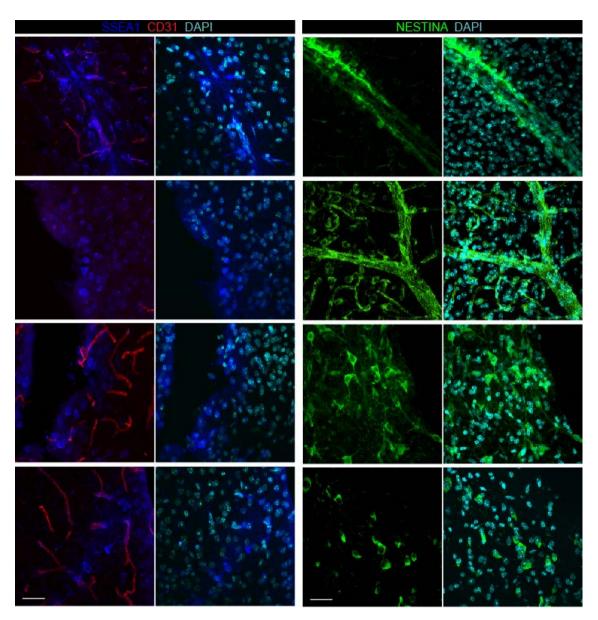


Figura Suplementaria 5. Los ratones reprogramables GFAP-rtTA;i4F forman tumores SSEA1 y Nestina positivos. IHC para SSEA1 (azul) y CD31 (rojo) en cerebros de animales GFAP-rtTA;i4F reprogramables tras el tratamiento con doxiciclina *in vivo* (panel izquierdo). Las células positivas para el marcador de pluripotencia temprano y de GSCs SSEA1 frecuentemente son observadas cerca de vasos sanguíneos y en regiones dañadas durante el corte del cerebro con vibratomo debido a la diferencia de consistencia de los tumores respecto al cerebro normal. IHC para Nestina (verde) en cerebros de estos mismos animales (panel derecho). DAPI ha sido utilizado para contrateñir el núcleo. Barras de escala: 20 μm.

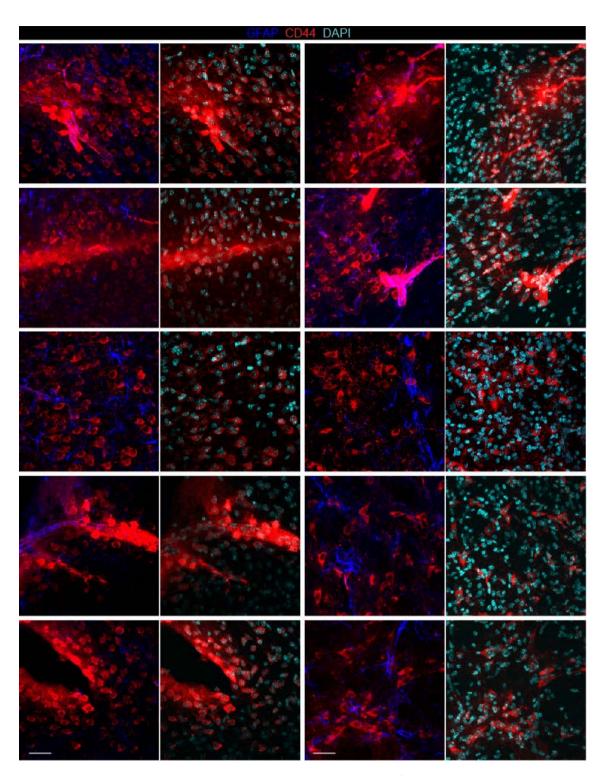


Figura Suplementaria 6. Los ratones reprogramables GFAP-rtTA;i4F forman tumores positivos para el marcador de GSC CD44. IHC para CD44 (rojo) y GFAP (azul) en cerebros de animales GFAP-rtTA;i4F reprogramables tras el tratamiento con doxiciclina *in vivo*. Las células positivas para el marcador asociado al GBM mesenquimal frecuentemente son observadas cerca de vasos sanguíneos y en regiones dañadas durante el corte del cerebro con vibratomo debido a la diferencia de consistencia de los tumores respecto al cerebro normal. DAPI ha sido utilizado para contrateñir el núcleo. Barras de escala: 20 μm.

Discusión

La impronta genómica ha sido implicada en múltiples procesos fisiológicos entre los que encontramos principalmente el desarrollo embrionario y extraembrionario, pero también el funcionamiento normal del SNC (Bartolomei MS y Ferguson-Smith AC, 2011; Hoffmann A et al. 2014; Ho-Shing O y Dulac C, 2019). Además, alteraciones en la impronta genómica han sido implicadas en diversas patologías, que van desde ciertos trastornos neurológicos al cáncer (Bartolomei MS y Ferguson-Smith AC, 2011; Lozano-Ureña A et al. 2017; Ho-Shing O y Dulac C, 2019). Sin embargo, se sabe poco acerca del posible papel de los genes improntados en el establecimiento y mantenimiento de las NSCs adultas. Curiosamente, la impronta de algunos de estos genes se relaja, o "apaga", de manera específica en el nicho de la SVZ como mecanismo normal de modulación de la expresión génica para la regulación del comportamiento de las NSCs (Ferrón SR et al. 2011; Ferrón SR et al. 2015). Por tanto, las NSCs de la SVZ adulta disponen de mecanismos para regular la impronta. Por otro lado, las alteraciones en la impronta genómica y en la expresión de los genes improntados es uno de los mecanismos más comunes y tempranos en la formación del cáncer (Jelinic P y Shaw P, 2007; Feinberg AP et al. 2007; Uribe-Lewis S et al. 2011; Kim J et al. 2015) y muchas evidencias parecen indicar que las NSCs de la SVZ son las células de origen del GBM (Jacques TS et al. 2010; Chesler DA et al. 2013; Eun K et al. 2017; Alcantara Llaguno et al., 2009; Lee et al., 2018; Alcantara S et al. 2019). Por todo ello, nos parecía especialmente relevante estudiar el patrón de impronta genómica en las NSCs durante procesos de reprogramación celular y formación de tumores. Nuestros resultados muestran que la alteración de la identidad de las NSCs, tanto en la des-diferenciación como en su transformación maligna, conlleva múltiples cambios en la expresión de los genes improntados y en su estado epigenético. Los principales resultados derivados de esta tesis son: 1) La reprogramación de las NSCs a un estado pluripotente induce cambios en la expresión de genes improntados y en los niveles de metilación en las regiones de control de impronta o ICRs; 2) La reprogramación in vivo de células GFAP positivas produce tumores con diferentes perfiles celulares y cambios de expresión en genes improntados distintos; 3) La enzima TET3 regula la proliferación y la expresión de genes improntados en células de GBM.

El complejo proceso de formación de un nuevo ser vivo requiere un orden temporal muy preciso en la expresión de los genes durante el desarrollo para garantizar la correcta especificación de los distintos linajes celulares y la determinación del destino celular. Los mecanismos epigenéticos, entre los que se encuentra la impronta genómica, son fundamentales para regular dicha expresión génica. Nuestra aproximación global al estudio del posible papel de la impronta genómica en la identidad y potencial de las NSCs, y la identificación de genes improntados con un papel potencial en dichos mecanismos, ha sido identificar cambios de

impronta en este tipo de genes durante el proceso de reprogramación de las NSCs. Para ello, se han reprogramado NSCs adultas aisladas del nicho neurogénico de la SVZ a un estado de pluripotencia, caracterizándose las fases del proceso y la posterior readquisición de la identidad neural. El modelo utilizado para la reprogramación celular (Abad M *et al.* 2013) ha permitido estudiar también la reprogramación *in vivo*. Una observación no esperada ha sido que la expresión del poli-transgén OSKM en células del cerebro del linaje astrocitario conduce a la aparición de tumores de tipo teratoma, como los que pueden generarse en otros tejidos, pero también a la aparición de tumores de tipo GBM. En todas las condiciones, tanto *in vitro* como *in vivo*, se detectaron alteraciones en la expresión de un elevado porcentaje de genes improntados, sugiriendo un papel importante de este mecanismo epigenético en el proceso de reprogramación inducida y carcinogénesis en el cerebro.

La reprogramación celular inducida de NSCs adultas in vitro revela alteraciones del estado epigenético del proceso de impronta genómica

La utilización del modelo murino reprogramable i4F en este trabajo de tesis ha demostrado la adquisición de un estado de pluripotencia de células neurales del linaje astrocitario, que incluye a las NSCs. Los fibroblastos y otros tipos celulares han sido previamente reprogramados exitosamente a iPSCs con este modelo (Abad et al., 2013). Sin embargo, la frecuencia de generación de clones pluripotentes a partir de fibroblastos en nuestras manos ha sido más baja y ha requerido tiempos más largos (al menos 4-5 semanas) para emerger que cuando las iPSCs son generadas a partir de las NSCs. Además, en las primeras fases de la reprogramación celular las NSCs son tratadas con doxiciclina en ausencia de LIF, y en esas condiciones los cultivos muestran rápidamente características de estar parcialmente reprogramadas como indica la presencia del marcador de pluripotencia temprano SSEA1. Estas pre-iPSCs muestran una morfología similar a las ESCs y reducen la expresión de marcadores somáticos neurales como Nestina u Oliq2, pero también se caracterizan por la expresión incompleta de genes de pluripotencia y por el mantenimiento de la expresión del transgén. Sin embargo, en respuesta al medio de cultivo definido 2i (Huang et al., 2018; Silva et al., 2008) y la adición de LIF, las pre-iPSCs sufren un reseteado transcripcional y epigenético que, en tan solo dos semanas, culmina con la adquisición de un estado de pluripotencia completo indistinguible fenotípica y funcionalmente del de las ESCs. Nuestro estudio no excluye la posibilidad de que células reprogramadas a partir de las NSCs pudieran generarse también sin necesidad del medio definido 2i/LIF, pero tales células no estarían siendo seleccionadas con nuestro protocolo, ya que éstas se generarían tras tiempos más largos de inducción y con menor frecuencia. Esta elevada eficiencia en la respuesta de las NSCs a la inducción de la reprogramación pudiera ser favorecida

por la expresión endógena en estas células de tres de los factores necesarios para la reprogramación como son *Sox2*, que mantiene su estado de SC y su multipotencia, *c-myc* que incrementa la actividad telomerasa en NSCs favoreciendo su proliferación (Miura et al., 2001) y *Klf4* que juega un papel importante en la estimulación de su división (Rowland, Bernards, & Peeper, 2005). De hecho, la reprogramación inducida de NSCs adultas únicamente con la expresión de los genes *Oct4* y *Klf4* (J. B. Kim et al., 2008) o incluso con sólo el factor *Oct4* (J. B. Kim et al., 2009), ha sido demostrada tanto en NSCs humanas como murinas (Sterneckert, Hoing, & Scholer, 2012).

Por lo tanto, la adquisición del estado de pluripotencia en las iPSCs inducidas a partir de NSCs del modelo i4F, se ha conseguido eficientemente tras el aumento de la expresión endógena de *Oct4*, *Rex1* y *Nanog*, la disminución de la expresión simultánea de genes neurales y el silenciamiento de los genes exógenos, así como la reactivación el cromosoma X silenciado, procesos todos característicos en las iPSCs. Además, la inyección de las iPSCs generadas en animales inmunocomprometidos ha dado lugar a la formación de teratomas que contenían derivados de las tres capas germinales quedando así confirmada su capacidad de diferenciación. Destacar que nunca se han podido generar este tipo de teratomas a partir de NSCs adultas. Estas iPSCs-NSCs además, han mostrado poder ser rediferenciadas en neuroprogenitores, al recuperar la expresión de genes neurales como *Nestina*, *Olig2* y ##ubulina y perder la expresión de los genes de pluripotencia. Este modelo *in vitro* supone una herramienta valiosa para el estudio de los procesos genéticos y epigenéticos que regulan la desdiferenciación de células somáticas.

El proceso epigenético de impronta genómica es considerado un mecanismo de control de la dosis génica que se establece previamente al nacimiento y que es mantenido de forma inmutable a lo largo de la vida del organismo (Hoffmann, Daniel, Schmidt-Edelkraut, & Spengler, 2014), por eso las funciones de los genes improntados se han centrado históricamente en su influencia en el desarrollo embrionario y la placenta (Lozano-Urena et al., 2017; Millership, Van de Pette, & Withers, 2019). Sin embargo, recientemente se han descrito procesos de "apagado" selectivo de la impronta genómica en tipos celulares específicos y en momentos del desarrollo concretos para así activar el alelo que está habitualmente reprimido por el proceso de impronta genómica (Lozano-Urena et al., 2017). Por ejemplo, el gen *Igf2* canónicamente expresado por el alelo paterno, se expresa bialélicamente por el plexo coroideo siendo secretado al líquido cefalorraquídeo para regular paracrinamente la función de las NSCs (Ferron et al., 2015; Lehtinen et al., 2011). Otro ejemplo de pérdida de impronta genómica es el que ocurre con gen *Dlk1* imprintado en cerebro pero que se expresa bialélicamente en las NSCs y astrocitos de la SVZ tras el día postnatal 7, regulación necesaria para el mantenimiento de las NSCs y la neurogénesis

adulta (Ferron et al., 2011).

Consistentemente, los resultados de esta tesis apuntan a que el proceso de impronta genómica es modulable dependiendo del estado de diferenciación de las células (Hoffmann et al., 2014). De hecho, más del 80% de los genes improntados analizados han mostrado cambios de expresión durante el proceso de reprogramación celular. Por ejemplo, la expresión de los genes *Peg3*, *Peg10* y *Peg12* disminuye claramente en las iPSCs-NSCs tras la reprogramación de las NSCs adultas. Estos genes son factores de transcripción de unión al DNA que controlan la proliferación, diferenciación y apoptosis en distintos tipos celulares (Lux, Flammann, Hafner, & Lux, 2010; Relaix et al., 2000), por lo que pudieran tener un papel importante en el estado de diferenciación de las NSCs. Esto coincide con resultados previos donde se muestra una elevada expresión de, por ejemplo, *Peg3* en NSCs (Hoffmann et al., 2014) consistente con que su deficiencia promueva la reprogramación celular (Jang et al., 2016; Theka et al., 2017).

Curiosamente, el cromosoma 7 ha mostrado alteraciones en gran parte de los genes improntados allí localizados, como lgf2, que aumenta en las iPSCs, o Ins2, que disminuye, ambos situados en el mismo cluster de impronta y que juegan un papel clave en la regulación de la función cerebral (Lehtinen et al., 2011; Ziegler et al., 2019). Otros genes localizados en el cromosoma 7 como Magel2, Ndn, Snrpn, Phlda o Th y que están implicados en desórdenes genéticos también mostraron cambios de expresión en iPSCs respecto de las NSCs de origen. Estos datos son consistentes con estudios previos que muestran pérdida de impronta genómica de Snrpn y Ndn durante la reprogramación de células somáticas (M. J. Kim et al., 2013). Curiosamente la mayoría de genes improntados en este cromosoma son de expresión paterna, lo que podría sugerir efectos dominantes de la aportación genética paterna en el proceso de reprogramación. El estudio identifica además a algunos de los genes improntados de otro cluster improntado, el Dlk1-Dio3, localizado en el cromosoma 12, con cambios significativos de su expresión en iPSCs. Concretamente se ha observado un aumento de los genes Dio3 y Meg3, y una disminución del gen Dlk1 previamente implicado en la función de las NSCs (Ferron et al., 2011). Esto es consistente con trabajos previos que describen las frecuentes alteraciones en genes de este *cluster* en las iPSCs como posible marcador del estado de pluripotencia (X. Li et al., 2019; Y. Li & Sasaki, 2011).

Además, un 40% del total de genes improntados con cambios de expresión durante el proceso de reprogramación, revirtieron su expresión tras las rediferenciación de las iPSCs-NSCs a NPs, lo cual apoya la idea de que el proceso de impronta genómica es más modulable de lo que se pensaba originariamente. Entre los genes rescatados destacan otra vez *Peg3*, *Peg10* y *Peg12* cuya expresión disminuída en iPSCs vuelve a incrementarse tras la dfiferenciación neural,

sugiriendo nuevamente un papel crucial de estos genes en la función neural. Otros genes que revirtieron sus niveles de expresión en NPs son *Plagl1, Cobl, Ins2, Rasgrf1* y *Dlk1,* este último reconocido también por su papel en el comportamiento de las NSCs (Ferron et al., 2011).

El elevado número de alteraciones en la expresión de genes improntados, también detectadas en otros estudios (M. J. Kim et al., 2013; X. Li et al., 2019; Takikawa et al., 2013), sugieren que la regulación epigenética por metilación en las regiones de control de impronta pueda estar alterada durante la desdiferenciación de NSCs siendo la causante de los cambios de expresión observados. La adquisición de la metilación en las ICRs ocurre en la línea germinal durante la formación de los gametos. Estos DMRs germinales pueden estar metilados tanto en el cromosoma materno como en el paterno (Ferguson-Smith, 2011). Es interesante destacar que en las ICRs maternas, que representan la mayoría de las ICRs, la DMR se localiza cerca de promotores, mientras que las ICRs paternas se suelen encontrar en regiones intergénicas alejadas de los promotores (Adalsteinsson & Ferguson-Smith, 2014; Messerschmidt, Knowles, & Solter, 2014; Tucci et al., 2019). En los clusters de impronta genómica también se encuentran DMRs somáticas que adquieren la metilación tras la fertilización y que son dependientes de las DMRs germinales para su establecimiento (Adalsteinsson & Ferguson-Smith, 2014). Estas sDMRs también pueden estar metiladas paternal o maternalmente, pero este caso se encuentran únicamente junto a promotores. La metilación diferencial tanto en las gDMRs como en las sDMRs es la responsable de la expresión de los génes improntados dentro del cluster que regulan (Tucci et al., 2019).

Nuestros estudios de metilación por pirosecuenciación han mostrado una hipometilación global en las ICRs, tanto germinales como somáticas, en las iPSCs generadas a partir de NSCs adultas, alteración previamente descrita en el proceso de reprogramación celular (Perrera & Martello, 2019). Es relevante destacar que los cambios a nivel de metilación observados fueron revertidos en algunos de los DMRs estudiados tras la rediferenciación de las iPSCs en NPs. Concretamente, las cuatro gDMRs metiladas paternalmente volvieron a los niveles de metilación de las NSCs tras la rediferenciación, mientras que dicha reversión no se observó en las gDMRs metiladas maternalmente, lo cual consistente con trabajos anteriores que ya sugieren una posible regulación diferente entre ambos tipos de DMRs durante el proceso de reprogramación (Bar et al., 2017; Perrera & Martello, 2019). De hecho, el fenómeno de pérdida de impronta genómica ocurre más frecuentemente en los genes situados bajo la regulación de DMRs paternalmente metiladas (Bar et al., 2017; Perrera & Martello, 2019; Rugg-Gunn et al., 2007).

Cambios de los niveles de metilación en las ICRs pueden conllevar a la pérdida del estado de impronta genómica en algunos o la totalidad de los genes que se regulan por esa ICR dentro del cluster. Es decir, que genes que se expresan de forma monoalélica, pueden activar el alelo

silenciado tras los cambios en metilación de la DMR. Sin embargo, el análisis cruzado de los datos de metilación y de expresión génica durante el proceso de reprogramación y re-diferenciación neural, ha mostrado una correlación significativa únicamente el gen Dlk1, situado en el cluster Dlk1-Dio3 que se regula por el IG-DMR. Dlk1, como se ha mencionado anteriormente, es un caso excepcional, dado que, a pesar de expresarse únicamente por el alelo paterno en el cerebro, muestra una pérdida de impronta genómica específicamente en la población de NSCs localizadas en la SVZ, expresándose de forma bialélica (alelos materno y paterno) a partir del día postnatal 7 (Ferron et al., 2011). Esta pérdida de impronta genómica en NSCs va asociada a la hipermetilación de la IG-DMR en el alelo materno sin metilar (Ferron et al., 2011). Durante la reprogramación de las NSCs, Dlk1 disminuye sus niveles de expresión significativamente, lo cual podría deberse a una readquisición del estado de impronta en las iPSCs generadas. Esto implicaría el silenciamiento de nuevo de uno de los alelos y debería estar mediado por la pérdida de metilación en el IG-DMR. En concordacia, la bajada de expresión de Dlk1 observada en iPSCs coincide con la pérdida de metilación en la IG-DMR, aunque nuestros estudios de pirosecuenciación no nos permiten identificar el alelo que ha perdido la metilación. Sin embargo, el estudio de impronta genómica del gen mediante la secuenciación de SNPs en NSCs, iPSCs y NPS híbridos, confirma en primer lugar la readquisición del estado monoalélico del gen en iPSCs, estado que vuelve a perderse tras la rediferenciación a NPs. Curiosamente, en el caso de las iPSCs el alelo expresado es el materno y el silenciamiento se produce en el paterno, situación no observada previamente en el cerebro. Es muy interesante destacar que el gen vecino Meg3, no altera su estado de impronta, a pesar de haber cambios de metilación en el IG-DMR que regula a todo el cluster, situación ya observada previamente en NSCs adultas (Ferron et al., 2011). Tampoco, se encuentra este tipo de regulación en otros dos genes improntados en placenta pero de expresión bialélica en las NSCs como Gnas o Cobl. Por lo que los resultados de este primer objetivo sugieren que el estado epigenético que regula la impronta genómica en los distintos clústeres no es un proceso tan dinámico como postulábamos en un principio, y que pudiera haber una regulación gen a gen que revela una especificidad celular y génica de los efectos de la impronta genómica. Además, nuestros resultados identifican al gen Dlk1 como un jugador crucial en los procesos de mantenimiento y desdiferenciación de la NSC adulta.

La reprogramación inducida in vivo como un modelo eficiente de formación de tumores cerebrales

La generación experimental de tumores cerebrales *in vivo* en ratones, mediante modificaciones genéticas puntuales, resulta difícil y requiere de la combinación de diversas mutaciones o del trasplante de células tumorales ya establecidas (Miyai et al., 2017; Sampetrean & Saya, 2018). Sin embargo, se han desarrollado modelos de reprogramación epigenética *in vivo*

que resultan en la formación de tumores en los distintos órganos del ratón (Abad et al., 2013; Ohnishi et al., 2014). De la misma manera, el modelo utilizado en este trabajo ha permitido detectar la formación de tumores cerebrales con una eficiencia del 100% mediante la inducción transitoria del transgén OSKM en células específicas. El modelo i4F-B, con el activador R26-rtTA y el transgén OSKM situados en el mismo cromosoma (Abad et al., 2013), ha demostrado recientemente que la reprogramación ocurre también en el hipocampo adulto (Rodriguez-Matellan et al., 2020). Los autores de este estudio observaron que el tratamiento con 2 mg/ml de doxiciclina durante 12 días, daba lugar a un aumento de expresión del gen pluripotente *Nanog* y cambios en ciertas marcas epigenéticas en el hipocampo, mientras que no se observó en la corteza cerebral de estos animales; sin embargo, no se reportó la presencia de tumores (Rodriguez-Matellan et al., 2020). Aunque la SVZ no fue analizada en este estudio, este resultado podría sugerir que las NSCs son más susceptibles a la reprogramación. No obstante, el tratamiento con 0,2 mg/ml de doxiciclina durante 2,5 semanas, basado en el protocolo de Abad M et al. 2013, no nos ha permitido detectar procesos de reprogramación en el cerebro o la SVZ o la aparición de tumores en los cerebros de estos animales. El uso de una mayor concentración de antibiótico no ha sido posible debido a la alta mortalidad producida por el tratamiento. Sin embargo, sí se desarrollaron displasias hipertróficas en otros órganos, como ya había sido reportado previamente (Abad et al., 2013). Por tanto, este modelo de reprogramación no resultó ser eficiente para la formación de tumores en cerebro. Por ello, se generó un modelo específico de formación de tumores en cerebro, GFAP-rtTA;i4F, basado en el cruce del modelo de reprogramación i4F-A sin el activador transcripcional (Abad et al., 2013) con animales portadores del rtTA bajo el promotor de Gfap. El modelo GFAP-rtTA;i4F ha permitido generar tumores cerebrales en todos los animales tratados utilizando una mayor dosis de doxiciclina (1 mg/ml) que en el modelo anterior, debido a la ausencia de reprogramación en otros órganos. Además, la duración del tratamiento en este modelo también se extendió a 4 semanas, ya que en el trabajo de Abad et al. demostraron que un tratamiento con una menor dosis pero más prolongado era más eficiente en la formación de tumores que dosis altas durante un tiempo menor (Abad et al., 2013), y los animales se analizaron 4 semanas después del tratamiento.

Además, la reprogramación *in vivo* de los animales GFAP-rtTA;i4F ha mostrado ser capaz de formar tumores cerebrales con dos tipos de perfiles, los de fenotipo tipo teratomas que expresan el marcador SSEA1, de gran masa celular y muy vascularizados, y los del tipo GBM que contienen células que también expresan la proteína SSEA1 pero que además son Nestina y CD44 positivas. Sin embargo, no se han encontrado células *Nanog* positivas en ninguno de estos tumores ni en el parénquima cerebral. Desconocemos si la generación de tumores de tipo neural

en el cerebro de los animales GFAP-rtTA;i4F es debida al contexto celular en el que se expresan el transgén, al nivel de expresión o a las especificidades del diseño experimental para el tratamiento. La activación de un casete tetracistrónico similar en células que expresan Lgr5 conduce, inmediatamente tras la aplicación de doxiciclina en estos ratones, a la aparición de células desdiferenciadas y displásicas en distintos órganos con importantes cambios epigenéticos. Pero, si se analizan los riñones de estos animales tiempo después de la retirada del antibiótico se observa la formación de tumores de tipo Wilms, un cáncer renal pediátrico (Ohnishi et al., 2014). Además, las células reprogramadas, obtenidas tiempo después del tratamiento y trasplantadas en ratones inmunocomprometidos, se diferencian a células renales normales (Ohnishi et al., 2014). De la misma manera, el ensayo de formación de tumores a partir de la inyección de células reprogramadas en ratones GFAP-rtTA;i4F en el flanco de ratones inmunocomprometidos no ha mostrado capacidad tumorigénica por ahora, en contraposición a las GBM-EGFR inyectadas en paralelo como control positivo en el flanco contralateral. Esto podría proporcionar una herramienta valiosa para realizar análisis y manipulaciones para el estudio de las propiedades tumorales, como el papel de la impronta genómica en el cáncer y otros cambios epigenéticos, en ausencia y/o presencia de mutaciones iniciadoras.

El GBM es un glioma incurable y devastador por lo que múltiples estudios tienen como objetivo la identificación de la célula de origen que sufre las mutaciones o alteraciones moleculares que conducen a la formación de este tipo de tumor. Varios estudios han sugerido que las NSCs en la SVZ adulta, tanto en ratón como en humano, pueden ser las células a partir de las cuales se originan estos tumores (Alcantara Llaguno et al., 2009; Alcantara Llaguno et al., 2019; J. H. Lee et al., 2018). Cabe destacar, además, que tal y como demostraron Alcantara Llaguno S et al. 2019, el potencial de formación de un GBM disminuye a medida que disminuye el potencial de diferenciación, siendo las NSCs las más susceptibles a la transformación maligna (Alcantara Llaguno et al., 2019). Precisamente, el análisis de células aisladas a partir de animales reprogramados in vivo en cultivo podría indicar que sus NSCs se encontrasen en un estado intermedio de la transformación maligna al presentar niveles elevados de Oct4, Cd133, Sox2, Egfr y Olig2, apoyando la idea de la NSC como la célula de origen del GBM (Alcantara Llaguno et al., 2019; Chesler et al., 2012; Jacques et al., 2010). Más concretamente, algunos autores han sugerido a la NSC en su estado quiescente como la célula responsable del origen y el mantenimiento del GBM (Tejero et al., 2019). De hecho, se ha descrito la presencia de una población de división rápida y una población relativamente quiescente también dentro del GBM, siendo esta última la responsable de la recurrencia del tumor tras el tratamiento con radioterapia y quimioterapia (Chen et al., 2012; Deleyrolle et al., 2011; Tejero et al., 2019).

La estrategia genética elegida para la reprogramación cerebral podría potencialmente iniciar dicho proceso en astrocitos maduros y en NSCs. A pesar de que todos los animales inducidos generaron tumores, el número de estos no superó en ningún caso los siete tumores por animal, lo cual podría indicar que la población celular capaz de formar estos tumores está representada en una menor proporción en el cerebro, como es el caso de las NSCs adultas. Sin embargo, hay que tener en cuenta también que el uso del promotor GFAP humano utilizado para generar la cepa transactivadora se expresa a mayor nivel en NSCs adultas que en astrocitos (K. Wang, Bekar, Furber, & Walz, 2004). En cualquier, algunos de los tumores tipo GBM encontrados en los cerebros de los ratones GFAP-rtTA;i4F mostraron células cercanas a la SVZ que se desplazaban agrupadas hacia el parénquima estriatal, donde se encontraba la masa tumoral principal. Esto sugiere una posible migración de las células desde el nicho neurogénico, como observaron en el estudio de Lee HJ et al. 2018. Por ello, nos hemos planteado, como continuación de este trabajo, realizar estudios de trazado de destino celular para determinar el origen de los tumores y su relación con la diversidad encontrada, como se explica a continuación.

Recientemente se han caracterizado las poblaciones de NSCs quiescentes, en sus estados durmientes y *primed* (quiescentes pero preparadas para la activación), y activadas en la SVZ mediante secuenciación de RNA a nivel de célula única y por aislamiento prospectivo mediante citometría de flujo (Belenguer et al., 2020; Llorens-Bobadilla et al., 2015). La células quiescentes son especificadas durante la etapa fetal, momento en el cual entran un estado de quiescencia que puede ser muy prolongado (Fuentealba et al., 2015; Furutachi et al., 2015). La ausencia de divisiones en estas células puede ser utilizada experimentalmente para estudios de linaje con plásmidos episomales introducidos mediante electroporación en útero que serán diluidos por la mayoría de células, pero no por las NSCs quiescentes ((Ortiz-Alvarez et al., 2019); resultados no publicados). Por ello, y con el fin de investigar la posible implicación de las NSCs quiescentes en la formación de tumores cerebrales, estamos llevando a cabo una estrategia de trazado de linaje mediante la electroporación, en animales postnatales 2 (P2) de la cepa GFAP-rtTA;i4F, de un vector PiggyBac con la proteína reportera GFP junto con la transposasa bajo el promotor de Glast, que también se activa en NSCs. Este vector contiene una secuencia STOP flanqueada por secuencias loxP, de tal manera que en presencia de una recominasa CRE, la célula pasa a expresar GFP de manera permanente. Por ello, junto con el vector PiggyBac y la transposasa, se electropora un vector episomal que contiene la recombinasa bajo el promotor de NSCs Nestina, pero inducible por tamoxifeno (Figura 1). Al tratarse de un vector episomal, la recombinasa únicamente estará presente en las NSCs quiescentes, mientras que las células activas que se van produciendo diluirán el vector en cada proceso de división. A los dos meses de edad, estos animales serán inyectados con tamoxifeno para inducir la expresión de la CRE, y 24 horas después se iniciará el tratamiento con 1 mg/ml de doxiciclina durante 4 semanas tras las cuales se retirará la doxiciclina. Si los tumores que se forman en estos animales proceden de NSCs quiescentes que han iniciado el proceso de desdiferenciación hacia pre-iPSCs y transformación maligna en CSCs hasta conformar el tumor, las masas celulares neoplásicas presentarán células positivas para GFP (Figura 1). Estos experimentos se han iniciado ya en colaboración con la Dra. Cristina Gil, del Departamento de Biología Celular, Biología Funcional y Antropología Física de la Universidad de Valencia, experta en electroporación en útero y postnatal. Se ha iniciado ya el tratamiento con doxiciclina y estamos a la espera de la formación de tumores cerebrales para su análisis junto con inmunohistoquímica para la detección de la posible co-localización de células positivas para GFP junto con los marcadores de GBM descritos.

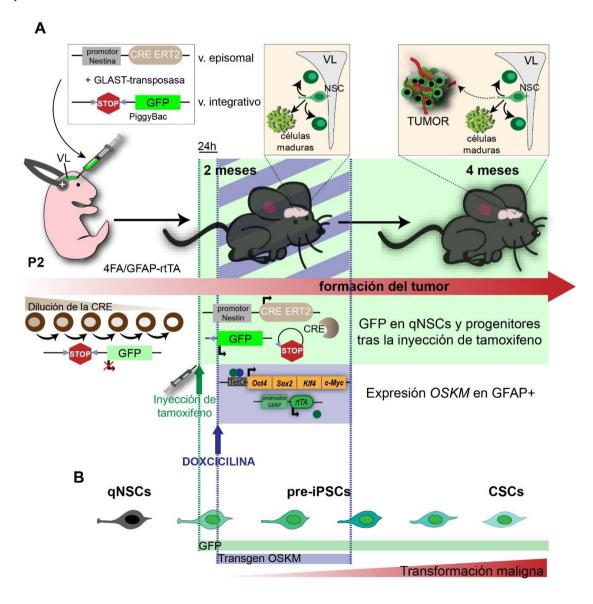


Figura 1. Estrategia de identificación de la célula de origen del tumor cerebral. A) Los animales Gfap-rtTA;i4F son electroporados a P2 en los ventrículos laterales con un vector episomal para la expresión inducible por tamoxifeno de la recombinasa CRE bajo el control del promotor *Nestina* y con un vector integrativo conteniendo la proteína GFP a expresar como resultado de la recombinación. Junto con estos dos vectores se electropora una transposasa bajo el control del promotor *Glast*. Los animales son inyectados con tamoxifeno al cumplir 2 meses de edad. Un día después a la inyección de tamoxifeno se inicia el tratamiento con 1 mg/ml de doxiciclina para la inducción de la reprogramación durante 4 semanas. Si las células responsables de la formación del tumor eran las NSCs quiescentes (qNSCs), el tumor formado estará compuesto de células verdes. B) Mediante esta estrategia, únicamente las qNSCs retienen el vector episomal y por tanto serán GFP+, así como las células que se formen a partir de las qNSCs tras la inyección del tamoxifeno. Si la qNSC es la célula de origen del tumor, durante el proceso de reprogramación, la qNSC comenzará el proceso de desdiferenciación hasta formar la CSC, que será verde, así como las células que conformen el tumor producidas por estas CSCs.

Papel de la impronta genómica en la transformación maligna de las NSCs adultas

Las alteraciones en la impronta genómica y de la expresión de los genes improntados es uno de los mecanismos más comunes y tempranos en la formación del cáncer (Feinberg, 2007; Jelinic & Shaw, 2007; J. Kim et al., 2015; Uribe-Lewis et al., 2011). Además alteraciones de los niveles de *Dlk1*, *Snrpn* o *Igf2* y de las ICRs que controlan su expresión han sido previamente descritas en cáncer (Benetatos et al., 2010; Buccarelli et al., 2020; Xu et al., 2012). De hecho, los pacientes afectados por síndromes de impronta genómica presentan una mayor propensión a padecer tumores (Perrera & Martello, 2019; Uribe-Lewis et al., 2011), sugiriendo la implicación de este mecanismo en el desarrollo de la patología. Por lo tanto, el estudio del papel de la impronta genómica en la transformación maligna también en el SNC es una pieza clave en el diagnóstico y tratamiento de los tumores cerebrales.

El estudio de los datos de expresión de genes improntados obtenidos de distintas bases de datos en GBM humano, ha mostrado alteraciones de hasta el 70% de los genes improntados descritos hasta la fecha. Esto es consistente, con los estudios por qPCR que se han realizado en esta tesis en muestras de GBM murino, en las que el 50% de los genes analizados mostraron alteraciones de sus niveles de expresión. Este mismo estudio llevado a cabo en los tumores sólidos de animales GFAP-rtTA;i4F también ha permitido detectar alteraciones en la expresión de entre el 40 y 80% de los genes improntados dependiendo del tumor. Es interesante destacar que este estudio también identifica dos grupos diferentes de tumores en función de su perfil de expresión. Un grupo de tumores que muestran un aumento generalizado de la expresión de los genes improntados analizados, y el otro grupo que sufren una disminución masiva de dichos genes. Esto coincide con la presencia de los dos fenotipos de tumores GBM y teratoma. Estos resultados sugieren una vez más un papel importante del proceso epigenético de impronta genómica en la formación y el comportamiento del cáncer cerebral. Además, se sabe que la metilación del DNA es un mecanismo de regulación clave en el proceso del cáncer en el cerebro (Capper et al., 2018), por lo que alteraciones en los patrones de metilación de las regiones de

control de impronta son también esperables. De hecho, la hipermetilación de las ICRs ha sido observada en células cancerosas (Sharma, Kelly, & Jones, 2010). Por lo tanto queda pendiente, la realización de un estudio exhaustivo del perfil de metilación en los dos tipos de tumores generados en el modelo reprogramable GFAP-rtTA;i4F.

La enzima TET3 participa en la regulación de la expresión de genes improntados de manera dependiente de la metilación.

Los estudios de las bases de datos de tumores humanos de Rembrant en GLIOVIS, muestran una menor expresión de *TET3* en los gliomas en general, y en el GBM en particular, siendo los niveles altos de *TET3* coincidentes con una mayor supervivencia de los pacientes (Rembrant, 2006). Además, diversos estudios han mostrado una disminución de *TET3* en otros tipos de cáncer como los hematológicos o los carcinomas de células escamosas de cabeza y cuello (Misawa et al., 2018; Rasmussen & Helin, 2016), por lo que la represión de *TET3* podría ser un mecanismo general del cáncer. Estudios por qPCR han confirmado la disminución de la expresión de *TET3* también en GBM murino. Esta dioxigenasa es la enzima implicada en el proceso de desmetilación activa del DNA y resulta esencial en el mantenimiento del estado indiferenciado de la NSCs adultas (Carella et al., 2020; Montalban-Loro et al., 2019), lo cual ha sugerido un posible mecanismo implicado en la transformación maligna también en el SNC.

La sobre-expresión de *Tet3* en la línea murina GBM-EGFR causa un efecto negativo en el crecimiento de las células tumorales, disminuyendo tanto la capacidad de formar clones como su tasa de proliferación, coincidente con estudios recientes que proponen a TET3 como una proteína inhibidora de la proliferación del GBM (Carella et al., 2020; Cui et al., 2016). Estos efectos parecen ser dependientes de hidroximetilación ya que la sobre-expresión de células GBM-EGFR con la variante de TET3 que tiene el dominio catalítico mutado, no muestra estos efectos celulares en los cultivos. En contraposición, otro estudio actual describe la hidroximetilación mediada por TET3 como crítica para el mantenimiento de las GSCs (Herrmann et al., 2020), y no como una molécula anti-tumoral como indican nuestros datos. Además los ensayos de transplantes de células que sobre-expresan TET3 en ratones inmunodeprimidos, confirman los efectos de represión del tumor que tiene TET3 también in vivo.

El estudio de expresión de genes improntados en células GBM-EGR ha mostrado que aproximadamente el 50% de los genes improntados cambian su expresión respecto a las NSCs de origen. Además la sobre-expresión de *Tet3* en estas células revierte parcialmente los cambios de expresión en GBM, lo cual sugiere un papel de TET3 en la transformación maligna de las NSCs. Por ejemplo, la expresión de *Igf2* está aumentada en el GBM respecto a las NSCs, lo cual es coincidente con el papel de IGF2 en la proliferación del tumor y la supervivencia de los pacientes

con glioma (Gallagher & LeRoith, 2010; Livingstone, 2013; Plass & Soloway, 2002). Además, un aumento en los niveles de *Tet3* en células GBM-EGFR causa una disminución de los niveles de expresión de *Igf2*, efecto que ha mostrado ser dependiente de la actividad catalítica de la enzima TET3. También la enzima parece regular de manera dependiente de la metilación del DNA, la expresión de genes como *Dlk1 y Snrpn*. Otros genes como *Peg3 y Peg10* ven aumentados sus niveles tras la sobreexpresión del Tet3, pero en estos casos la acción de la enzima no depende de su acción catalítica.

Además de la acción catalítica bien descrita de TET3, la unión preferencial de las proteínas TET a promotores libres de metilación y moléculas reclutadoras de la maquinaria de transcripción como es el complejo represivo PRC2, sugieren una función potencial adicional e independiente de su acción catalítica. Esta posibilidad se ve apoyada por la demostración de que formas no catalíticas de TET son capaces de rescatar el fenotipo proliferativo en células deficientes para Tet2 (Montagner et al., 2017). Además la sobre-expresión de un mutante de Tet1 inactivo catalíticamente en el hipocampo de ratón resulta en el aumento de la expresión de genes asociados a memoria y aprendizaje (Kaas et al., 2013). Es importante mencionar también que ya se han descrito acciones transcripcionales de TET3 sobre genes improntados en NSCS (Montalban-Loro et al., 2019). Por lo tanto, estos resultados, plantean una interesante acción dual de TET3 sobre la expresión de genes improntados, mediante la cual se podría combinar la regulación dependiente del estado metilado de las regiones de control de impronta, con un control independiente de esa metilación y que pudiera ser transcripcional.

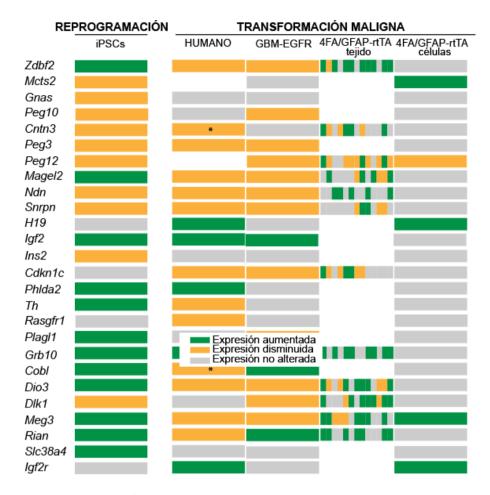


Tabla 1. Comparativa de expresión de genes improntados. Comparativa entre iPSCs, GBM humano, la línea murina GBM-EGFR, 13 tumores de ratones reprogramados GFAP-rtTA;i4F, y las líneas celulares obtenidas de los cerebros de estos animales, en relación a la expresión de genes improntados. El aumento de expresión se ha indicado en verde, mientras que la disminución se muestra en naranja. Aquellos genes cuya expresión no varía se han indicado en gris. Las iPSCs, las células GMB-EGFR y GFAP-rtTA;i4F se han comparado con respecto a NSCs adultas de la SVZ. Los datos de GBM humano y de tumores GFAP-rtTA;i4F se han comparado con respecto a tejido no tumoral. Los datos de GBM humano se han obtenido de la base de datos de Gill de la plataforma GlioVis. La marca * hace referencia a resultados de la base de datos de Rembrant.

Observaciones finales

Dado que la impronta genómica parece ser clave tanto en el proceso de reprogramación inducida como en la formación de tumores cerebrales, este proceso epigenético podría ser la pieza inicial que permitiese la transformación de las NSCs a un estado más indiferenciado que las llevara a formar iPSCs o GSCs. De hecho, algunos de los genes improntados analizados, tales como *Peg3, Peg10, Peg12, Igf2, Snrpn* o *Dlk1*, han mostrado la misma tendencia tanto en el proceso de reprogramación inducida como en el cáncer, por lo que estos podrían participar en el inicio de la desdiferenciación de las NSCs (**Tabla 1**), y por tanto ser útiles, como posibles herramientas en el diagnóstico precoz de los tumores cerebrales. Curiosamente, los niveles de metilación fueron contrarios entre el proceso de reprogramación inducida y el cáncer. Las iPSCs presentaron una hipometilación generalizada en las regiones reguladoras de impronta, mientras que en las células

de GBM, mostraron una hipermetilación global, por lo que los cambios en las marcas de metilación podrían determinar el tipo de tumor que se forma. Por tanto, la metilación en DMRs de las regiones de control de impronta, y la alteración en la expresión de genes improntados que se comportan de forma contraria en iPSCs y GBM, podrían ser los implicados en determinar el tipo de tumor a generarse.

Conclusions

- 1. The expression of imprinted genes is significantly altered during pluripotency acquisition by cultured adult NSCs, suggesting a relevant role of genomic imprinting in the regulation of their cellular reprogramming.
- 2. Reprogramming of adult NSCs into iPSCs produces hypomethylation at the imprinting control regions, which is reverted during iPSCs differentiation into NPs only in the paternally methylated gDMRs, showing divergent mechanisms of regulation in maternally and paternally methylated DMRs.
- 3. The imprinting state of *Dlk1*, lost in NSCs, is restored in iPSCs and lost again after their differentiation into NPs, suggesting a plastic mechanism of genomic imprinting regulation.
- 4. *In vivo* cellular reprogramming by OSKM induced expression in brain cells of the astrocytic lineage, leads to the generation of heterogeneous cerebral tumors, with molecular features of either teratomas or GBM.
- 5. Human and murine GBM cells have alterations in the expression of imprinted genes and hypermethylation at the DMRs of imprinting control regions, suggesting an important role of this epigenetic mechanism in the cancer phenotype.
- 6. *TET3* expression is significantly downregulated in human and murine GBM, and high levels of this gene are associated with survival of the patients suggesting a role of TET3 enzyme in the pathology.
- 7. Overexpression of *Tet3 reduces* GBM proliferation in a demethylation-dependent manner, repressing tumor formation *in vivo*.
- 8. TET3 regulates the expression of imprinted genes in GBM. This regulation is exerted through the dioxygenase activity in the case of Zdbf2, Igf2 and Meg3.

Bibliografía

- Abad, M., Mosteiro, L., Pantoja, C., Canamero, M., Rayon, T., Ors, I., . . . Serrano, M. (2013). Reprogramming in vivo produces teratomas and iPS cells with totipotency features. *Nature*, *502*(7471), 340-345. doi:10.1038/nature12586
- Abramowitz, L. K., & Bartolomei, M. S. (2012). Genomic imprinting: recognition and marking of imprinted loci. *Curr Opin Genet Dev, 22*(2), 72-78. doi:10.1016/j.gde.2011.12.001
- Adalsteinsson, B. T., & Ferguson-Smith, A. C. (2014). Epigenetic control of the genome-lessons from genomic imprinting. *Genes (Basel)*, *5*(3), 635-655. doi:10.3390/genes5030635
- Ahmed, S. I., Javed, G., Laghari, A. A., Bareeqa, S. B., Farrukh, S., Zahid, S., . . . Aziz, K. (2018). CD133 Expression in Glioblastoma Multiforme: A Literature Review. *Cureus*, 10(10), e3439. doi:10.7759/cureus.3439
- Alcantara Llaguno, S., Chen, J., Kwon, C. H., Jackson, E. L., Li, Y., Burns, D. K., . . . Parada, L. F. (2009). Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. *Cancer Cell, 15*(1), 45-56. doi:10.1016/j.ccr.2008.12.006
- Alcantara Llaguno, S., Sun, D., Pedraza, A. M., Vera, E., Wang, Z., Burns, D. K., & Parada, L. F. (2019). Cell-of-origin susceptibility to glioblastoma formation declines with neural lineage restriction. *Nat Neurosci*, *22*(4), 545-555. doi:10.1038/s41593-018-0333-8
- Allouba, M. H., ElGuindy, A. M., Krishnamoorthy, N., Yacoub, M. H., & Aguib, Y. E. (2015).

 NaNog: A pluripotency homeobox (master) molecule. *Glob Cardiol Sci Pract, 2015*(3), 36. doi:10.5339/gcsp.2015.36
- Altman, J. (1962). Are new neurons formed in the brains of adult mammals? *Science*, *135*(3509), 1127-1128. doi:10.1126/science.135.3509.1127
- Altmann, C., Keller, S., & Schmidt, M. H. H. (2019). The Role of SVZ Stem Cells in Glioblastoma. *Cancers (Basel)*, 11(4). doi:10.3390/cancers11040448
- Anido, J., Saez-Borderias, A., Gonzalez-Junca, A., Rodon, L., Folch, G., Carmona, M. A., . . . Seoane, J. (2010). TGF-beta Receptor Inhibitors Target the CD44(high)/ld1(high) Glioma-Initiating Cell Population in Human Glioblastoma. *Cancer Cell, 18*(6), 655-668. doi:10.1016/j.ccr.2010.10.023
- Apostolou, E., & Hochedlinger, K. (2013). Chromatin dynamics during cellular reprogramming. *Nature*, *502*(7472), 462-471. doi:10.1038/nature12749
- Auffinger, B., Spencer, D., Pytel, P., Ahmed, A. U., & Lesniak, M. S. (2015). The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. *Expert Rev Neurother*, *15*(7), 741-752. doi:10.1586/14737175.2015.1051968
- Ayob, A. Z., & Ramasamy, T. S. (2018). Cancer stem cells as key drivers of tumour progression. *J Biomed Sci*, 25(1), 20. doi:10.1186/s12929-018-0426-4
- Bachoo, R. M., Maher, E. A., Ligon, K. L., Sharpless, N. E., Chan, S. S., You, M. J., . . . DePinho, R. A. (2002). Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. *Cancer Cell*, 1(3), 269-277. doi:10.1016/s1535-6108(02)00046-6
- Banelli, B., Casciano, I., & Romani, M. (2000). Methylation-independent silencing of the p73 gene in neuroblastoma. *Oncogene*, 19(39), 4553-4556. doi:10.1038/sj.onc.1203807
- Bar, S., Schachter, M., Eldar-Geva, T., & Benvenisty, N. (2017). Large-Scale Analysis of Loss of Imprinting in Human Pluripotent Stem Cells. *Cell Rep, 19*(5), 957-968. doi:10.1016/j.celrep.2017.04.020
- Bar, S., Seaton, L. R., Weissbein, U., Eldar-Geva, T., & Benvenisty, N. (2019). Global Characterization of X Chromosome Inactivation in Human Pluripotent Stem Cells. *Cell Rep*, 27(1), 20-29 e23. doi:10.1016/j.celrep.2019.03.019
- Barlow, D. P., & Bartolomei, M. S. (2014). Genomic imprinting in mammals. *Cold Spring Harb Perspect Biol, 6*(2). doi:10.1101/cshperspect.a018382
- Basak, O., Krieger, T. G., Muraro, M. J., Wiebrands, K., Stange, D. E., Frias-Aldeguer, J., . . . Clevers, H. (2018). Troy+ brain stem cells cycle through quiescence and regulate their

- number by sensing niche occupancy. *Proc Natl Acad Sci U S A, 115*(4), E610-E619. doi:10.1073/pnas.1715911114
- Basakran, N. S. (2015). CD44 as a potential diagnostic tumor marker. *Saudi Med J, 36*(3), 273-279. doi:10.15537/smj.2015.3.9622
- Becker, A. J., Mc, C. E., & Till, J. E. (1963). Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. *Nature*, 197, 452-454. doi:10.1038/197452a0
- Belenguer, G., Domingo-Muelas, A., Ferron, S. R., Morante-Redolat, J. M., & Farinas, I. (2016). Isolation, culture and analysis of adult subependymal neural stem cells. *Differentiation*, 91(4-5), 28-41. doi:10.1016/j.diff.2016.01.005
- Belenguer, G., Duart-Abadia, P., Jordan-Pla, A., Domingo-Muelas, A., Blasco-Chamarro, L., Ferron, S. R., . . . Farinas, I. (2020). Adult Neural Stem Cells Are Alerted by Systemic Inflammation through TNF-alpha Receptor Signaling. *Cell Stem Cell*. doi:10.1016/j.stem.2020.10.016
- Benetatos, L., Hatzimichael, E., Dasoula, A., Dranitsaris, G., Tsiara, S., Syrrou, M., . . . Bourantas, K. L. (2010). CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. *Leuk Res, 34*(2), 148-153. doi:10.1016/j.leukres.2009.06.019
- Berezovsky, A. D., Poisson, L. M., Cherba, D., Webb, C. P., Transou, A. D., Lemke, N. W., . . . deCarvalho, A. C. (2014). Sox2 promotes malignancy in glioblastoma by regulating plasticity and astrocytic differentiation. *Neoplasia*, *16*(3), 193-206, 206 e119-125. doi:10.1016/j.neo.2014.03.006
- Berg, D. A., Su, Y., Jimenez-Cyrus, D., Patel, A., Huang, N., Morizet, D., . . . Bond, A. M. (2019). A Common Embryonic Origin of Stem Cells Drives Developmental and Adult Neurogenesis. *Cell*, *177*(3), 654-668 e615. doi:10.1016/j.cell.2019.02.010
- Bibel, M., Richter, J., Lacroix, E., & Barde, Y. A. (2007). Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. *Nat Protoc*, 2(5), 1034-1043. doi:10.1038/nprot.2007.147
- Bien-Moller, S., Balz, E., Herzog, S., Plantera, L., Vogelgesang, S., Weitmann, K., . . . Schroeder, H. W. S. (2018). Association of Glioblastoma Multiforme Stem Cell Characteristics, Differentiation, and Microglia Marker Genes with Patient Survival. *Stem Cells Int, 2018*, 9628289. doi:10.1155/2018/9628289
- Bird, A. (2007). Perceptions of epigenetics. *Nature*, *447*(7143), 396-398. doi:10.1038/nature05913
- Bishop, E. T., Bell, G. T., Bloor, S., Broom, I. J., Hendry, N. F., & Wheatley, D. N. (1999). An in vitro model of angiogenesis: basic features. *Angiogenesis*, 3(4), 335-344. doi:10.1023/a:1026546219962
- Blelloch, R., Venere, M., Yen, J., & Ramalho-Santos, M. (2007). Generation of induced pluripotent stem cells in the absence of drug selection. *Cell Stem Cell*, 1(3), 245-247. doi:10.1016/j.stem.2007.08.008
- Bomken, S., Fiser, K., Heidenreich, O., & Vormoor, J. (2010). Understanding the cancer stem cell. *Br J Cancer*, 103(4), 439-445. doi:10.1038/sj.bjc.6605821
- Bond, A. M., Ming, G. L., & Song, H. (2015). Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later. *Cell Stem Cell*, *17*(4), 385-395. doi:10.1016/j.stem.2015.09.003
- Bonfanti, L. (2013). The (real) neurogenic/gliogenic potential of the postnatal and adult brain parenchyma. *ISRN Neurosci*, 2013, 354136. doi:10.1155/2013/354136
- Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B., & Bestor, T. H. (2001). Dnmt3L and the establishment of maternal genomic imprints. *Science*, *294*(5551), 2536-2539. doi:10.1126/science.1065848

- Bowman, R. L., Wang, Q., Carro, A., Verhaak, R. G., & Squatrito, M. (2017). GlioVis data portal for visualization and analysis of brain tumor expression datasets. *Neuro Oncol*, 19(1), 139-141. doi:10.1093/neuonc/now247
- Bradshaw, A., Wickremsekera, A., Tan, S. T., Peng, L., Davis, P. F., & Itinteang, T. (2016). Cancer Stem Cell Hierarchy in Glioblastoma Multiforme. *Front Surg, 3*, 21. doi:10.3389/fsurg.2016.00021
- Brambrink, T., Foreman, R., Welstead, G. G., Lengner, C. J., Wernig, M., Suh, H., & Jaenisch, R. (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. *Cell Stem Cell*, 2(2), 151-159. doi:10.1016/j.stem.2008.01.004
- Brouwer-Visser, J., & Huang, G. S. (2015). IGF2 signaling and regulation in cancer. *Cytokine Growth Factor Rev, 26*(3), 371-377. doi:10.1016/j.cytogfr.2015.01.002
- Brown, D. V., Daniel, P. M., D'Abaco, G. M., Gogos, A., Ng, W., Morokoff, A. P., & Mantamadiotis, T. (2015). Coexpression analysis of CD133 and CD44 identifies proneural and mesenchymal subtypes of glioblastoma multiforme. *Oncotarget*, 6(8), 6267-6280. doi:10.18632/oncotarget.3365
- Brown, D. V., Filiz, G., Daniel, P. M., Hollande, F., Dworkin, S., Amiridis, S., . . . Mantamadiotis, T. (2017). Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity. *PLoS One*, *12*(2), e0172791. doi:10.1371/journal.pone.0172791
- Buccarelli, M., Lulli, V., Giuliani, A., Signore, M., Martini, M., D'Alessandris, Q. G., . . . Ricci-Vitiani, L. (2020). Deregulated expression of the imprinted DLK1-DIO3 region in glioblastoma stemlike cells: tumor suppressor role of lncRNA MEG3. *Neuro Oncol, 22*(12), 1771-1784. doi:10.1093/neuonc/noaa127
- Bull, N. D., & Bartlett, P. F. (2005). The adult mouse hippocampal progenitor is neurogenic but not a stem cell. *J Neurosci*, 25(47), 10815-10821. doi:10.1523/JNEUROSCI.3249-05.2005
- Bulstrode, H., Johnstone, E., Marques-Torrejon, M. A., Ferguson, K. M., Bressan, R. B., Blin, C., . . . Pollard, S. M. (2017). Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators. *Genes Dev*, 31(8), 757-773. doi:10.1101/gad.293027.116
- Calabrese, C., Poppleton, H., Kocak, M., Hogg, T. L., Fuller, C., Hamner, B., . . . Gilbertson, R. J. (2007). A perivascular niche for brain tumor stem cells. *Cancer Cell*, 11(1), 69-82. doi:10.1016/j.ccr.2006.11.020
- Cantone, I., & Fisher, A. G. (2017). Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease. *Philos Trans R Soc Lond B Biol Sci,* 372(1733). doi:10.1098/rstb.2016.0358
- Capp, J. P. (2019). Cancer Stem Cells: From Historical Roots to a New Perspective. *J Oncol,* 2019, 5189232. doi:10.1155/2019/5189232
- Capper, D., Jones, D. T. W., Sill, M., Hovestadt, V., Schrimpf, D., Sturm, D., . . . Pfister, S. M. (2018). DNA methylation-based classification of central nervous system tumours. *Nature*, *555*(7697), 469-474. doi:10.1038/nature26000
- Carella, A., Tejedor, J. R., Garcia, M. G., Urdinguio, R. G., Bayon, G. F., Sierra, M., . . . Fraga, M. F. (2020). Epigenetic downregulation of TET3 reduces genome-wide 5hmC levels and promotes glioblastoma tumorigenesis. *Int J Cancer*, *146*(2), 373-387. doi:10.1002/ijc.32520
- Caren, H., Pollard, S. M., & Beck, S. (2013). The good, the bad and the ugly: epigenetic mechanisms in glioblastoma. *Mol Aspects Med, 34*(4), 849-862. doi:10.1016/j.mam.2012.06.007
- Carey, B. W., Markoulaki, S., Hanna, J., Saha, K., Gao, Q., Mitalipova, M., & Jaenisch, R. (2009). Reprogramming of murine and human somatic cells using a single polycistronic vector. *Proc Natl Acad Sci U S A, 106*(1), 157-162. doi:10.1073/pnas.0811426106

- Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., & Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. *Cell*, *113*(5), 643-655. doi:10.1016/s0092-8674(03)00392-1
- Chambers, I., & Smith, A. (2004). Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene, 23(43), 7150-7160. doi:10.1038/sj.onc.1207930
- Chen, J., Li, Y., Yu, T. S., McKay, R. M., Burns, D. K., Kernie, S. G., & Parada, L. F. (2012). A restricted cell population propagates glioblastoma growth after chemotherapy. *Nature*, 488(7412), 522-526. doi:10.1038/nature11287
- Chesler, D. A., Berger, M. S., & Quinones-Hinojosa, A. (2012). The potential origin of glioblastoma initiating cells. *Front Biosci (Schol Ed)*, 4, 190-205.
- Cheung, T. H., & Rando, T. A. (2013). Molecular regulation of stem cell quiescence. *Nat Rev Mol Cell Biol*, 14(6), 329-340. doi:10.1038/nrm3591
- Choi, J. D., Underkoffler, L. A., Wood, A. J., Collins, J. N., Williams, P. T., Golden, J. A., . . . Oakey, R. J. (2005). A novel variant of Inpp5f is imprinted in brain, and its expression is correlated with differential methylation of an internal CpG island. *Mol Cell Biol*, 25(13), 5514-5522. doi:10.1128/MCB.25.13.5514-5522.2005
- Cirillo, A., Di Salle, A., Petillo, O., Melone, M. A., Grimaldi, G., Bellotti, A., . . . Peluso, G. (2014). High grade glioblastoma is associated with aberrant expression of ZFP57, a protein involved in gene imprinting, and of CPT1A and CPT1C that regulate fatty acid metabolism. *Cancer Biol Ther*, 15(6), 735-741. doi:10.4161/cbt.28408
- Claus, E. B., Horlacher, A., Hsu, L., Schwartz, R. B., Dello-Iacono, D., Talos, F., . . . Black, P. M. (2005). Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. *Cancer*, 103(6), 1227-1233. doi:10.1002/cncr.20867
- Cleaton, M. A., Edwards, C. A., & Ferguson-Smith, A. C. (2014). Phenotypic outcomes of imprinted gene models in mice: elucidation of pre- and postnatal functions of imprinted genes. *Annu Rev Genomics Hum Genet*, 15, 93-126. doi:10.1146/annurevgenom-091212-153441
- Coan, P. M., Burton, G. J., & Ferguson-Smith, A. C. (2005). Imprinted genes in the placenta--a review. *Placenta, 26 Suppl A*, S10-20. doi:10.1016/j.placenta.2004.12.009
- Codega, P., Silva-Vargas, V., Paul, A., Maldonado-Soto, A. R., Deleo, A. M., Pastrana, E., & Doetsch, F. (2014). Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. *Neuron*, 82(3), 545-559. doi:10.1016/j.neuron.2014.02.039
- Corsini, N. S., & Martin-Villalba, A. (2010). Integrin alpha 6: anchors away for glioma stem cells. *Cell Stem Cell*, *6*(5), 403-404. doi:10.1016/j.stem.2010.04.003
- Cortazar, D., Kunz, C., Saito, Y., Steinacher, R., & Schar, P. (2007). The enigmatic thymine DNA glycosylase. *DNA Repair (Amst)*, 6(4), 489-504. doi:10.1016/j.dnarep.2006.10.013
- Cortellino, S., Xu, J., Sannai, M., Moore, R., Caretti, E., Cigliano, A., . . . Bellacosa, A. (2011).

 Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. *Cell*, 146(1), 67-79. doi:10.1016/j.cell.2011.06.020
- Cui, Q., Yang, S., Ye, P., Tian, E., Sun, G., Zhou, J., . . . Shi, Y. (2016). Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis. *Nat Commun*, 7, 10637. doi:10.1038/ncomms10637
- Das, A. T., Tenenbaum, L., & Berkhout, B. (2016). Tet-On Systems For Doxycycline-inducible Gene Expression. *Curr Gene Ther*, *16*(3), 156-167. doi:10.2174/1566523216666160524144041
- De Carvalho, D. D., You, J. S., & Jones, P. A. (2010). DNA methylation and cellular reprogramming. *Trends Cell Biol, 20*(10), 609-617. doi:10.1016/j.tcb.2010.08.003
- De Smet, C., & Loriot, A. (2010). DNA hypomethylation in cancer: epigenetic scars of a neoplastic journey. *Epigenetics*, *5*(3), 206-213. doi:10.4161/epi.5.3.11447
- Dehmelt, L., & Halpain, S. (2005). The MAP2/Tau family of microtubule-associated proteins. Genome Biol, 6(1), 204. doi:10.1186/gb-2004-6-1-204

- Delamarre, E., Taboubi, S., Mathieu, S., Berenguer, C., Rigot, V., Lissitzky, J. C., . . . Luis, J. (2009). Expression of integrin alpha6beta1 enhances tumorigenesis in glioma cells. *Am J Pathol*, *175*(2), 844-855. doi:10.2353/ajpath.2009.080920
- Deleyrolle, L. P., Ericksson, G., Morrison, B. J., Lopez, J. A., Burrage, K., Burrage, P., . . . Reynolds, B. A. (2011). Determination of somatic and cancer stem cell self-renewing symmetric division rate using sphere assays. *PLoS One, 6*(1), e15844. doi:10.1371/journal.pone.0015844
- Dindot, S. V., Person, R., Strivens, M., Garcia, R., & Beaudet, A. L. (2009). Epigenetic profiling at mouse imprinted gene clusters reveals novel epigenetic and genetic features at differentially methylated regions. *Genome Res, 19*(8), 1374-1383. doi:10.1101/gr.089185.108
- Ding, H., Shannon, P., Lau, N., Wu, X., Roncari, L., Baldwin, R. L., . . . Guha, A. (2003).

 Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. *Cancer Res*, 63(5), 1106-1113.
- Do, J. T., Joo, J. Y., Han, D. W., Arauzo-Bravo, M. J., Kim, M. J., Greber, B., . . . Scholer, H. R. (2009). Generation of parthenogenetic induced pluripotent stem cells from parthenogenetic neural stem cells. *Stem Cells*, *27*(12), 2962-2968. doi:10.1002/stem.233
- Donega, V., Burm, S. M., van Strien, M. E., van Bodegraven, E. J., Paliukhovich, I., Geut, H., . . . Hol, E. M. (2019). Transcriptome and proteome profiling of neural stem cells from the human subventricular zone in Parkinson's disease. *Acta Neuropathol Commun, 7*(1), 84. doi:10.1186/s40478-019-0736-0
- Dulken, B. W., Leeman, D. S., Boutet, S. C., Hebestreit, K., & Brunet, A. (2017). Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage. *Cell Rep, 18*(3), 777-790. doi:10.1016/j.celrep.2016.12.060
- Edwards, C. A., & Ferguson-Smith, A. C. (2007). Mechanisms regulating imprinted genes in clusters. *Curr Opin Cell Biol*, 19(3), 281-289. doi:10.1016/j.ceb.2007.04.013
- Eggermann, T., Perez de Nanclares, G., Maher, E. R., Temple, I. K., Tumer, Z., Monk, D., . . . Netchine, I. (2015). Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. *Clin Epigenetics*, 7, 123. doi:10.1186/s13148-015-0143-8
- Elsir, T., Edqvist, P. H., Carlson, J., Ribom, D., Bergqvist, M., Ekman, S., . . . Smits, A. (2014). A study of embryonic stem cell-related proteins in human astrocytomas: identification of Nanog as a predictor of survival. *Int J Cancer*, *134*(5), 1123-1131. doi:10.1002/ijc.28441
- Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. *Nature*, 292(5819), 154-156. doi:10.1038/292154a0
- Fabian, A., Vereb, G., & Szollosi, J. (2013). The hitchhikers guide to cancer stem cell theory: markers, pathways and therapy. *Cytometry A, 83*(1), 62-71. doi:10.1002/cyto.a.22206
- Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. *Nature,* 447(7143), 433-440. doi:10.1038/nature05919
- Feinberg, A. P., Ohlsson, R., & Henikoff, S. (2006). The epigenetic progenitor origin of human cancer. *Nat Rev Genet*, 7(1), 21-33. doi:10.1038/nrg1748
- Feng, J., Zhou, Y., Campbell, S. L., Le, T., Li, E., Sweatt, J. D., . . . Fan, G. (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. *Nat Neurosci*, 13(4), 423-430. doi:10.1038/nn.2514
- Ferguson-Smith, A. C. (2011). Genomic imprinting: the emergence of an epigenetic paradigm. *Nat Rev Genet, 12*(8), 565-575. doi:10.1038/nrg3032
- Ferri, A. L., Cavallaro, M., Braida, D., Di Cristofano, A., Canta, A., Vezzani, A., . . . Nicolis, S. K. (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. *Development*, 131(15), 3805-3819. doi:10.1242/dev.01204

- Ferron, S. R., Andreu-Agullo, C., Mira, H., Sanchez, P., Marques-Torrejon, M. A., & Farinas, I. (2007). A combined ex/in vivo assay to detect effects of exogenously added factors in neural stem cells. *Nat Protoc*, *2*(4), 849-859. doi:10.1038/nprot.2007.104
- Ferron, S. R., Charalambous, M., Radford, E., McEwen, K., Wildner, H., Hind, E., . . . Ferguson-Smith, A. C. (2011). Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. *Nature*, *475*(7356), 381-385. doi:10.1038/nature10229
- Ferron, S. R., Radford, E. J., Domingo-Muelas, A., Kleine, I., Ramme, A., Gray, D., . . . Ferguson-Smith, A. C. (2015). Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis. *Nat Commun, 6*, 8265. doi:10.1038/ncomms9265
- Filby, A., Perucha, E., Summers, H., Rees, P., Chana, P., Heck, S., . . . Davies, D. (2011). An imaging flow cytometric method for measuring cell division history and molecular symmetry during mitosis. *Cytometry A*, 79(7), 496-506. doi:10.1002/cyto.a.21091
- Fitzsimons, C. P., van Bodegraven, E., Schouten, M., Lardenoije, R., Kompotis, K., Kenis, G., . . . Rutten, B. P. (2014). Epigenetic regulation of adult neural stem cells: implications for Alzheimer's disease. *Mol Neurodegener*, *9*, 25. doi:10.1186/1750-1326-9-25
- Fortunel, N. O., Otu, H. H., Ng, H. H., Chen, J., Mu, X., Chevassut, T., . . . Lim, B. (2003).

 Comment on " 'Stemness': transcriptional profiling of embryonic and adult stem cells" and "a stem cell molecular signature". *Science*, 302(5644), 393; author reply 393. doi:10.1126/science.1086384
- Fuentealba, L. C., Rompani, S. B., Parraguez, J. I., Obernier, K., Romero, R., Cepko, C. L., & Alvarez-Buylla, A. (2015). Embryonic Origin of Postnatal Neural Stem Cells. *Cell*, *161*(7), 1644-1655. doi:10.1016/j.cell.2015.05.041
- Furutachi, S., Matsumoto, A., Nakayama, K. I., & Gotoh, Y. (2013). p57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. *EMBO J*, 32(7), 970-981. doi:10.1038/emboj.2013.50
- Furutachi, S., Miya, H., Watanabe, T., Kawai, H., Yamasaki, N., Harada, Y., . . . Gotoh, Y. (2015). Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nat Neurosci, 18(5), 657-665. doi:10.1038/nn.3989
- Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., & Hasegawa, M. (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. *Proc Jpn Acad Ser B Phys Biol Sci*, 85(8), 348-362. doi:10.2183/pjab.85.348
- Gage, F. H. (2000). Mammalian neural stem cells. *Science*, *287*(5457), 1433-1438. doi:10.1126/science.287.5457.1433
- Gallagher, E. J., & LeRoith, D. (2010). The proliferating role of insulin and insulin-like growth factors in cancer. *Trends Endocrinol Metab, 21*(10), 610-618. doi:10.1016/j.tem.2010.06.007
- Gangemi, R., Paleari, L., Orengo, A. M., Cesario, A., Chessa, L., Ferrini, S., & Russo, P. (2009). Cancer stem cells: a new paradigm for understanding tumor growth and progression and drug resistance. *Curr Med Chem, 16*(14), 1688-1703. doi:10.2174/092986709788186147
- Gargini, R., Segura-Collar, B., Herranz, B., Garcia-Escudero, V., Romero-Bravo, A., Nunez, F. J., . . . Sanchez-Gomez, P. (2020). The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas. *Sci Transl Med, 12*(527). doi:10.1126/scitranslmed.aax1501
- Ghosh, H. S. (2019). Adult Neurogenesis and the Promise of Adult Neural Stem Cells. *J Exp Neurosci*, *13*, 1179069519856876. doi:10.1177/1179069519856876
- Ghuwalewala, S., Ghatak, D., Das, P., Dey, S., Sarkar, S., Alam, N., . . . Roychoudhury, S. (2016). CD44(high)CD24(low) molecular signature determines the Cancer Stem Cell and EMT phenotype in Oral Squamous Cell Carcinoma. *Stem Cell Res*, *16*(2), 405-417. doi:10.1016/j.scr.2016.02.028

- Giachino, C., Basak, O., Lugert, S., Knuckles, P., Obernier, K., Fiorelli, R., . . . Taylor, V. (2014). Molecular diversity subdivides the adult forebrain neural stem cell population. *Stem Cells*, *32*(1), 70-84. doi:10.1002/stem.1520
- Gilbert, C. A., & Ross, A. H. (2009). Cancer stem cells: cell culture, markers, and targets for new therapies. *J Cell Biochem*, 108(5), 1031-1038. doi:10.1002/jcb.22350
- Giulitti, S., Pellegrini, M., Zorzan, I., Martini, P., Gagliano, O., Mutarelli, M., . . . Martello, G. (2019). Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics. *Nat Cell Biol*, *21*(2), 275-286. doi:10.1038/s41556-018-0254-5
- Goll, M. G., & Bestor, T. H. (2005). Eukaryotic cytosine methyltransferases. *Annu Rev Biochem,* 74, 481-514. doi:10.1146/annurev.biochem.74.010904.153721
- Gong, X., & Huang, M. (2017). Long non-coding RNA MEG3 promotes the proliferation of glioma cells through targeting Wnt/beta-catenin signal pathway. *Cancer Gene Ther*, 24(9), 381-385. doi:10.1038/cgt.2017.32
- Goyal, R., Mathur, S. K., Gupta, S., Goyal, R., Kumar, S., Batra, A., . . . Sen, R. (2015). Immunohistochemical expression of glial fibrillary acidic protein and CAM5.2 in glial tumors and their role in differentiating glial tumors from metastatic tumors of central nervous system. *J Neurosci Rural Pract*, 6(4), 499-503. doi:10.4103/0976-3147.168426
- Graf, U., Casanova, E. A., & Cinelli, P. (2011). The Role of the Leukemia Inhibitory Factor (LIF) Pathway in Derivation and Maintenance of Murine Pluripotent Stem Cells. *Genes* (Basel), 2(1), 280-297. doi:10.3390/genes2010280
- Gu, T. P., Guo, F., Yang, H., Wu, H. P., Xu, G. F., Liu, W., . . . Xu, G. L. (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. *Nature*, *477*(7366), 606-610. doi:10.1038/nature10443
- Gurdon, J. B. (1962). The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. *J Embryol Exp Morphol*, *10*, 622-640.
- Hahn, M. A., Qiu, R., Wu, X., Li, A. X., Zhang, H., Wang, J., . . . Lu, Q. (2013). Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. *Cell Rep,* 3(2), 291-300. doi:10.1016/j.celrep.2013.01.011
- Hajkova, P., Erhardt, S., Lane, N., Haaf, T., El-Maarri, O., Reik, W., . . . Surani, M. A. (2002). Epigenetic reprogramming in mouse primordial germ cells. *Mech Dev, 117*(1-2), 15-23. doi:10.1016/s0925-4773(02)00181-8
- Hammachi, F., Morrison, G. M., Sharov, A. A., Livigni, A., Narayan, S., Papapetrou, E. P., . . . Brickman, J. M. (2012). Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency. *Cell Rep, 1*(2), 99-109. doi:10.1016/j.celrep.2011.12.002
- Hata, K., Okano, M., Lei, H., & Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. *Development*, 129(8), 1983-1993.
- Hattermann, K., Fluh, C., Engel, D., Mehdorn, H. M., Synowitz, M., Mentlein, R., & Held-Feindt, J. (2016). Stem cell markers in glioma progression and recurrence. *Int J Oncol, 49*(5), 1899-1910. doi:10.3892/ijo.2016.3682
- He, Y., Luo, Y., Liang, B., Ye, L., Lu, G., & He, W. (2017). Potential applications of MEG3 in cancer diagnosis and prognosis. *Oncotarget*, 8(42), 73282-73295. doi:10.18632/oncotarget.19931
- Heard, E., & Disteche, C. M. (2006). Dosage compensation in mammals: fine-tuning the expression of the X chromosome. *Genes Dev, 20*(14), 1848-1867. doi:10.1101/gad.1422906
- Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., Bronner-Fraser, M., & Kornblum, H. I. (2003). Cancerous stem cells can arise from pediatric brain tumors. *Proc Natl Acad Sci U S A, 100*(25), 15178-15183. doi:10.1073/pnas.2036535100

- Herrmann, A., Lahtz, C., Song, J., Aftabizadeh, M., Cherryholmes, G. A., Xin, H., . . . Yu, H. (2020). Integrin alpha6 signaling induces STAT3-TET3-mediated hydroxymethylation of genes critical for maintenance of glioma stem cells. *Oncogene*, *39*(10), 2156-2169. doi:10.1038/s41388-019-1134-6
- Hester, M. E., Murtha, M. J., Song, S., Rao, M., Miranda, C. J., Meyer, K., . . . Kaspar, B. K. (2011). Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes. *Mol Ther,* 19(10), 1905-1912. doi:10.1038/mt.2011.135
- Hirai, H., Karian, P., & Kikyo, N. (2011). Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. *Biochem J, 438*(1), 11-23. doi:10.1042/BJ20102152
- Hirasawa, R., & Feil, R. (2010). Genomic imprinting and human disease. *Essays Biochem, 48*(1), 187-200. doi:10.1042/bse0480187
- Hoffmann, A., Daniel, G., Schmidt-Edelkraut, U., & Spengler, D. (2014). Roles of imprinted genes in neural stem cells. *Epigenomics*, 6(5), 515-532. doi:10.2217/epi.14.42
- Holm, T. M., Jackson-Grusby, L., Brambrink, T., Yamada, Y., Rideout, W. M., 3rd, & Jaenisch, R. (2005). Global loss of imprinting leads to widespread tumorigenesis in adult mice. *Cancer Cell*, 8(4), 275-285. doi:10.1016/j.ccr.2005.09.007
- Holmberg, J., He, X., Peredo, I., Orrego, A., Hesselager, G., Ericsson, C., . . . Muhr, J. (2011). Activation of neural and pluripotent stem cell signatures correlates with increased malignancy in human glioma. *PLoS One*, *6*(3), e18454. doi:10.1371/journal.pone.0018454
- Huang, D., Wang, L., Duan, J., Huang, C., Tian, X. C., Zhang, M., & Tang, Y. (2018). LIF-activated Jak signaling determines Esrrb expression during late-stage reprogramming. *Biol Open,* 7(1). doi:10.1242/bio.029264
- Ignatova, T. N., Kukekov, V. G., Laywell, E. D., Suslov, O. N., Vrionis, F. D., & Steindler, D. A. (2002). Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. *Glia*, *39*(3), 193-206. doi:10.1002/glia.10094
- Ishida, M., & Moore, G. E. (2013). The role of imprinted genes in humans. *Mol Aspects Med,* 34(4), 826-840. doi:10.1016/j.mam.2012.06.009
- Ishimoto, T., Nagano, O., Yae, T., Tamada, M., Motohara, T., Oshima, H., . . . Saya, H. (2011). CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. *Cancer Cell*, 19(3), 387-400. doi:10.1016/j.ccr.2011.01.038
- Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., . . . Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. *Science*, *333*(6047), 1300-1303. doi:10.1126/science.1210597
- Ito, Y., Koessler, T., Ibrahim, A. E., Rai, S., Vowler, S. L., Abu-Amero, S., . . . Murrell, A. (2008). Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer. *Hum Mol Genet*, *17*(17), 2633-2643. doi:10.1093/hmg/ddn163
- Ivanchuk, S. M., Mondal, S., Dirks, P. B., & Rutka, J. T. (2001). The INK4A/ARF locus: role in cell cycle control and apoptosis and implications for glioma growth. *J Neurooncol*, *51*(3), 219-229. doi:10.1023/a:1010632309113
- Jacques, T. S., Swales, A., Brzozowski, M. J., Henriquez, N. V., Linehan, J. M., Mirzadeh, Z., . . . Brandner, S. (2010). Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. *EMBO J.*, 29(1), 222-235. doi:10.1038/emboi.2009.327
- Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. *Nat Genet, 33 Suppl,* 245-254. doi:10.1038/ng1089

- Jang, H. S., Hong, Y. J., Choi, H. W., Song, H., Byun, S. J., Uhm, S. J., . . . Do, J. T. (2016). Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion. *PLoS One*, *11*(5), e0156491. doi:10.1371/journal.pone.0156491
- Janiszewski, A., Talon, I., Chappell, J., Collombet, S., Song, J., De Geest, N., . . . Pasque, V. (2019). Dynamic reversal of random X-Chromosome inactivation during iPSC reprogramming. *Genome Res*, 29(10), 1659-1672. doi:10.1101/gr.249706.119
- Jelinic, P., & Shaw, P. (2007). Loss of imprinting and cancer. *J Pathol, 211*(3), 261-268. doi:10.1002/path.2116
- Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., . . . Verfaillie, C. M. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. *Nature*, *418*(6893), 41-49. doi:10.1038/nature00870
- Jin, B., Li, Y., & Robertson, K. D. (2011). DNA methylation: superior or subordinate in the epigenetic hierarchy? *Genes Cancer*, 2(6), 607-617. doi:10.1177/1947601910393957
- Joseph, J. V., van Roosmalen, I. A., Busschers, E., Tomar, T., Conroy, S., Eggens-Meijer, E., . . . Kruyt, F. A. (2015). Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9. *PLoS One, 10*(12), e0145393. doi:10.1371/journal.pone.0145393
- Kaas, G. A., Zhong, C., Eason, D. E., Ross, D. L., Vachhani, R. V., Ming, G. L., . . . Sweatt, J. D. (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. *Neuron*, 79(6), 1086-1093. doi:10.1016/j.neuron.2013.08.032
- Kagitani, F., Kuroiwa, Y., Wakana, S., Shiroishi, T., Miyoshi, N., Kobayashi, S., . . . Ishino, F. (1997). Peg5/Neuronatin is an imprinted gene located on sub-distal chromosome 2 in the mouse. *Nucleic Acids Res*, 25(17), 3428-3432. doi:10.1093/nar/25.17.3428
- Kaikkonen, M. U., Lam, M. T., & Glass, C. K. (2011). Non-coding RNAs as regulators of gene expression and epigenetics. *Cardiovasc Res*, *90*(3), 430-440. doi:10.1093/cvr/cvr097
- Kaneda, M., Okano, M., Hata, K., Sado, T., Tsujimoto, N., Li, E., & Sasaki, H. (2004). Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. *Nature*, *429*(6994), 900-903. doi:10.1038/nature02633
- Kashyap, V., Rezende, N. C., Scotland, K. B., Shaffer, S. M., Persson, J. L., Gudas, L. J., & Mongan, N. P. (2009). Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. *Stem Cells Dev*, 18(7), 1093-1108. doi:10.1089/scd.2009.0113
- Kawamura, Y., Takouda, J., Yoshimoto, K., & Nakashima, K. (2018). New aspects of glioblastoma multiforme revealed by similarities between neural and glioblastoma stem cells. *Cell Biol Toxicol*, *34*(6), 425-440. doi:10.1007/s10565-017-9420-y
- Kempermann, G., Song, H., & Gage, F. H. (2015). Neurogenesis in the Adult Hippocampus. *Cold Spring Harb Perspect Biol*, 7(9), a018812. doi:10.1101/cshperspect.a018812
- Kim, J., Bergmann, A., Choo, J. H., & Stubbs, L. (2007). Genomic organization and imprinting of the Peg3 domain in bovine. *Genomics*, 90(1), 85-92. doi:10.1016/j.ygeno.2007.03.012
- Kim, J., Bretz, C. L., & Lee, S. (2015). Epigenetic instability of imprinted genes in human cancers. Nucleic Acids Res, 43(22), 10689-10699. doi:10.1093/nar/gkv867
- Kim, J. B., Greber, B., Arauzo-Bravo, M. J., Meyer, J., Park, K. I., Zaehres, H., & Scholer, H. R. (2009). Direct reprogramming of human neural stem cells by OCT4. *Nature*, 461(7264), 649-643. doi:10.1038/nature08436
- Kim, J. B., Zaehres, H., Wu, G., Gentile, L., Ko, K., Sebastiano, V., . . . Scholer, H. R. (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. *Nature*, 454(7204), 646-650. doi:10.1038/nature07061
- Kim, M. J., Choi, H. W., Jang, H. J., Chung, H. M., Arauzo-Bravo, M. J., Scholer, H. R., & Do, J. T. (2013). Conversion of genomic imprinting by reprogramming and redifferentiation. *J Cell Sci*, 126(Pt 11), 2516-2524. doi:10.1242/jcs.122754

- Koh, K. P., Yabuuchi, A., Rao, S., Huang, Y., Cunniff, K., Nardone, J., . . . Rao, A. (2011). Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. *Cell Stem Cell*, 8(2), 200-213. doi:10.1016/j.stem.2011.01.008
- Kohda, T., Asai, A., Kuroiwa, Y., Kobayashi, S., Aisaka, K., Nagashima, G., . . . Ishino, F. (2001). Tumour suppressor activity of human imprinted gene PEG3 in a glioma cell line. *Genes Cells*, 6(3), 237-247. doi:10.1046/j.1365-2443.2001.00412.x
- Kohli, R. M., & Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. *Nature*, 502(7472), 472-479. doi:10.1038/nature12750
- Kosty, J., Lu, F., Kupp, R., Mehta, S., & Lu, Q. R. (2017). Harnessing OLIG2 function in tumorigenicity and plasticity to target malignant gliomas. *Cell Cycle, 16*(18), 1654-1660. doi:10.1080/15384101.2017.1361062
- Kremer, D., Heinen, A., Jadasz, J., Gottle, P., Zimmermann, K., Zickler, P., . . . Kury, P. (2009). p57kip2 is dynamically regulated in experimental autoimmune encephalomyelitis and interferes with oligodendroglial maturation. *Proc Natl Acad Sci U S A, 106*(22), 9087-9092. doi:10.1073/pnas.0900204106
- Kuciak, M., Mas, C., Borges, I., Sanchez-Gomez, P., & Ruiz, I. A. A. (2019). Chimeric NANOG repressors inhibit glioblastoma growth in vivo in a context-dependent manner. *Sci Rep,* 9(1), 3891. doi:10.1038/s41598-019-39473-y
- Kulis, M., & Esteller, M. (2010). DNA methylation and cancer. *Adv Genet, 70*, 27-56. doi:10.1016/B978-0-12-380866-0.60002-2
- Lagace, D. C., Whitman, M. C., Noonan, M. A., Ables, J. L., DeCarolis, N. A., Arguello, A. A., . . . Eisch, A. J. (2007). Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. *J Neurosci*, 27(46), 12623-12629. doi:10.1523/JNEUROSCI.3812-07.2007
- Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., . . . Dick, J. E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. *Nature*, *367*(6464), 645-648. doi:10.1038/367645a0
- Lathia, J. D., Gallagher, J., Heddleston, J. M., Wang, J., Eyler, C. E., Macswords, J., . . . Rich, J. N. (2010). Integrin alpha 6 regulates glioblastoma stem cells. *Cell Stem Cell*, 6(5), 421-432. doi:10.1016/j.stem.2010.02.018
- Lathia, J. D., Mack, S. C., Mulkearns-Hubert, E. E., Valentim, C. L., & Rich, J. N. (2015). Cancer stem cells in glioblastoma. *Genes Dev, 29*(12), 1203-1217. doi:10.1101/gad.261982.115
- Ledur, P. F., Onzi, G. R., Zong, H., & Lenz, G. (2017). Culture conditions defining glioblastoma cells behavior: what is the impact for novel discoveries? *Oncotarget*, 8(40), 69185-69197. doi:10.18632/oncotarget.20193
- Lee, J. H., Lee, J. E., Kahng, J. Y., Kim, S. H., Park, J. S., Yoon, S. J., . . . Lee, J. H. (2018). Human glioblastoma arises from subventricular zone cells with low-level driver mutations. *Nature*, *560*(7717), 243-247. doi:10.1038/s41586-018-0389-3
- Lee, J. T., & Lu, N. (1999). Targeted mutagenesis of Tsix leads to nonrandom X inactivation. *Cell*, *99*(1), 47-57. doi:10.1016/s0092-8674(00)80061-6
- Lehtinen, M. K., Zappaterra, M. W., Chen, X., Yang, Y. J., Hill, A. D., Lun, M., . . . Walsh, C. A. (2011). The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. *Neuron*, *69*(5), 893-905. doi:10.1016/j.neuron.2011.01.023
- Leick, M. B., Shoff, C. J., Wang, E. C., Congress, J. L., & Gallicano, G. I. (2012). Loss of imprinting of IGF2 and the epigenetic progenitor model of cancer. *Am J Stem Cells*, 1(1), 59-74.
- Leitch, H. G., McEwen, K. R., Turp, A., Encheva, V., Carroll, T., Grabole, N., . . . Hajkova, P. (2013). Naive pluripotency is associated with global DNA hypomethylation. *Nat Struct Mol Biol*, *20*(3), 311-316. doi:10.1038/nsmb.2510
- Lendahl, U., Zimmerman, L. B., & McKay, R. D. (1990). CNS stem cells express a new class of intermediate filament protein. *Cell*, 60(4), 585-595. doi:10.1016/0092-8674(90)90662-

- Li, G., Fang, L., Fernandez, G., & Pleasure, S. J. (2013). The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. *Neuron, 78*(4), 658-672. doi:10.1016/j.neuron.2013.03.019
- Li, J., Bian, E. B., He, X. J., Ma, C. C., Zong, G., Wang, H. L., & Zhao, B. (2016). Epigenetic repression of long non-coding RNA MEG3 mediated by DNMT1 represses the p53 pathway in gliomas. *Int J Oncol*, 48(2), 723-733. doi:10.3892/ijo.2015.3285
- Li, X., Li, M. J., Yang, Y., & Bai, Y. (2019). Effects of reprogramming on genomic imprinting and the application of pluripotent stem cells. *Stem Cell Res, 41*, 101655. doi:10.1016/j.scr.2019.101655
- Li, Y., & Sasaki, H. (2011). Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. *Cell Res, 21*(3), 466-473. doi:10.1038/cr.2011.15
- Li, Y., Zhang, Q., Yin, X., Yang, W., Du, Y., Hou, P., . . . Deng, H. (2011). Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. *Cell Res, 21*(1), 196-204. doi:10.1038/cr.2010.142
- Liang, G., & Zhang, Y. (2013). Genetic and epigenetic variations in iPSCs: potential causes and implications for application. *Cell Stem Cell*, *13*(2), 149-159. doi:10.1016/j.stem.2013.07.001
- Lim, D. A., & Alvarez-Buylla, A. (2014). Adult neural stem cells stake their ground. *Trends Neurosci*, *37*(10), 563-571. doi:10.1016/j.tins.2014.08.006
- Lim, D. A., & Alvarez-Buylla, A. (2016). The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. *Cold Spring Harb Perspect Biol, 8*(5). doi:10.1101/cshperspect.a018820
- Lin, L., Wang, G., Ming, J., Meng, X., Han, B., Sun, B., . . . Jiang, C. (2016). Analysis of expression and prognostic significance of vimentin and the response to temozolomide in glioma patients. *Tumour Biol, 37*(11), 15333-15339. doi:10.1007/s13277-016-5462-7
- Liu, X., Nefzger, C. M., Rossello, F. J., Chen, J., Knaupp, A. S., Firas, J., . . . Polo, J. M. (2017). Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. *Nat Methods, 14*(11), 1055-1062. doi:10.1038/nmeth.4436
- Livingstone, C. (2013). IGF2 and cancer. *Endocr Relat Cancer*, 20(6), R321-339. doi:10.1530/ERC-13-0231
- Llorens-Bobadilla, E., Zhao, S., Baser, A., Saiz-Castro, G., Zwadlo, K., & Martin-Villalba, A. (2015). Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury. *Cell Stem Cell, 17*(3), 329-340. doi:10.1016/j.stem.2015.07.002
- Lozano-Urena, A., Montalban-Loro, R., Ferguson-Smith, A. C., & Ferron, S. R. (2017). Genomic Imprinting and the Regulation of Postnatal Neurogenesis. *Brain Plast*, *3*(1), 89-98. doi:10.3233/BPL-160041
- Luczak, M. W., & Jagodzinski, P. P. (2006). The role of DNA methylation in cancer development. *Folia Histochem Cytobiol*, 44(3), 143-154.
- Ludwig, K., & Kornblum, H. I. (2017). Molecular markers in glioma. *J Neurooncol*, 134(3), 505-512. doi:10.1007/s11060-017-2379-y
- Lux, H., Flammann, H., Hafner, M., & Lux, A. (2010). Genetic and molecular analyses of PEG10 reveal new aspects of genomic organization, transcription and translation. *PLoS One*, 5(1), e8686. doi:10.1371/journal.pone.0008686
- Ma, H., Morey, R., O'Neil, R. C., He, Y., Daughtry, B., Schultz, M. D., . . . Mitalipov, S. (2014). Abnormalities in human pluripotent cells due to reprogramming mechanisms. *Nature*, 511(7508), 177-183. doi:10.1038/nature13551
- Maher, E. A., Furnari, F. B., Bachoo, R. M., Rowitch, D. H., Louis, D. N., Cavenee, W. K., & DePinho, R. A. (2001). Malignant glioma: genetics and biology of a grave matter. *Genes Dev, 15*(11), 1311-1333. doi:10.1101/gad.891601

- Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., . . . Hochedlinger, K. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. *Cell Stem Cell*, 1(1), 55-70. doi:10.1016/j.stem.2007.05.014
- Mansuy, I. M., Winder, D. G., Moallem, T. M., Osman, M., Mayford, M., Hawkins, R. D., & Kandel, E. R. (1998). Inducible and reversible gene expression with the rtTA system for the study of memory. *Neuron*, *21*(2), 257-265. doi:10.1016/s0896-6273(00)80533-4
- Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. *Proc Natl Acad Sci U S A, 78*(12), 7634-7638. doi:10.1073/pnas.78.12.7634
- Meek, S., Wei, J., Oh, T., Watson, T., Olavarrieta, J., Sutherland, L., . . . Burdon, T. (2020). A Stem Cell Reporter for Investigating Pluripotency and Self-Renewal in the Rat. *Stem Cell Reports*, *14*(1), 154-166. doi:10.1016/j.stemcr.2019.12.001
- Meissner, A. (2010). Epigenetic modifications in pluripotent and differentiated cells. *Nat Biotechnol*, 28(10), 1079-1088. doi:10.1038/nbt.1684
- Menn, B., Garcia-Verdugo, J. M., Yaschine, C., Gonzalez-Perez, O., Rowitch, D., & Alvarez-Buylla, A. (2006). Origin of oligodendrocytes in the subventricular zone of the adult brain. *J Neurosci*, 26(30), 7907-7918. doi:10.1523/JNEUROSCI.1299-06.2006
- Merkle, F. T., Tramontin, A. D., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (2004). Radial glia give rise to adult neural stem cells in the subventricular zone. *Proc Natl Acad Sci U S A*, 101(50), 17528-17532. doi:10.1073/pnas.0407893101
- Messerschmidt, D. M., Knowles, B. B., & Solter, D. (2014). DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. *Genes Dev,* 28(8), 812-828. doi:10.1101/gad.234294.113
- Mich, J. K., Signer, R. A., Nakada, D., Pineda, A., Burgess, R. J., Vue, T. Y., . . . Morrison, S. J. (2014). Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. *Elife*, *3*, e02669. doi:10.7554/eLife.02669
- Millership, S. J., Van de Pette, M., & Withers, D. J. (2019). Genomic imprinting and its effects on postnatal growth and adult metabolism. *Cell Mol Life Sci, 76*(20), 4009-4021. doi:10.1007/s00018-019-03197-z
- Ming, G. L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. *Neuron*, 70(4), 687-702. doi:10.1016/j.neuron.2011.05.001
- Mirzadeh, Z., Merkle, F. T., Soriano-Navarro, M., Garcia-Verdugo, J. M., & Alvarez-Buylla, A. (2008). Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. *Cell Stem Cell*, 3(3), 265-278. doi:10.1016/j.stem.2008.07.004
- Misawa, K., Imai, A., Mochizuki, D., Mima, M., Endo, S., Misawa, Y., . . . Mineta, H. (2018). Association of TET3 epigenetic inactivation with head and neck cancer. *Oncotarget, 9*(36), 24480-24493. doi:10.18632/oncotarget.25333
- Miura, T., Katakura, Y., Yamamoto, K., Uehara, N., Tsuchiya, T., Kim, E. H., & Shirahata, S. (2001). Neural stem cells lose telomerase activity upon differentiating into astrocytes. *Cytotechnology*, *36*(1-3), 137-144. doi:10.1023/A:1014016315003
- Miyai, M., Tomita, H., Soeda, A., Yano, H., Iwama, T., & Hara, A. (2017). Current trends in mouse models of glioblastoma. *J Neurooncol*, 135(3), 423-432. doi:10.1007/s11060-017-2626-2
- Montagner, S., Leoni, C., Emming, S., Della Chiara, G., Balestrieri, C., Barozzi, I., . . . Monticelli, S. (2017). TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities. *Cell Rep, 20*(7), 1744. doi:10.1016/j.celrep.2017.08.011
- Montalban-Loro, R., Domingo-Muelas, A., Bizy, A., & Ferron, S. R. (2015). Epigenetic regulation of stemness maintenance in the neurogenic niches. *World J Stem Cells, 7*(4), 700-710. doi:10.4252/wjsc.v7.i4.700

- Montalban-Loro, R., Lozano-Urena, A., Ito, M., Krueger, C., Reik, W., Ferguson-Smith, A. C., & Ferron, S. R. (2019). TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action at Snrpn. *Nat Commun*, *10*(1), 1726. doi:10.1038/s41467-019-09665-1
- Montini, E., Cesana, D., Schmidt, M., Sanvito, F., Bartholomae, C. C., Ranzani, M., . . . Naldini, L. (2009). The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. *J Clin Invest*, 119(4), 964-975. doi:10.1172/JCI37630
- Mooney, K. L., Choy, W., Sidhu, S., Pelargos, P., Bui, T. T., Voth, B., . . . Yang, I. (2016). The role of CD44 in glioblastoma multiforme. *J Clin Neurosci*, *34*, 1-5. doi:10.1016/j.jocn.2016.05.012
- Morison, I. M., Ramsay, J. P., & Spencer, H. G. (2005). A census of mammalian imprinting. *Trends Genet, 21*(8), 457-465. doi:10.1016/j.tig.2005.06.008
- Morizur, L., Chicheportiche, A., Gauthier, L. R., Daynac, M., Boussin, F. D., & Mouthon, M. A. (2018). Distinct Molecular Signatures of Quiescent and Activated Adult Neural Stem Cells Reveal Specific Interactions with Their Microenvironment. *Stem Cell Reports*, 11(2), 565-577. doi:10.1016/j.stemcr.2018.06.005
- Morrow, C. S., Porter, T. J., Xu, N., Arndt, Z. P., Ako-Asare, K., Heo, H. J., . . . Moore, D. L. (2020). Vimentin Coordinates Protein Turnover at the Aggresome during Neural Stem Cell Quiescence Exit. *Cell Stem Cell*, 26(4), 558-568 e559. doi:10.1016/j.stem.2020.01.018
- Navarro, P., Chambers, I., Karwacki-Neisius, V., Chureau, C., Morey, C., Rougeulle, C., & Avner, P. (2008). Molecular coupling of Xist regulation and pluripotency. *Science*, *321*(5896), 1693-1695. doi:10.1126/science.1160952
- Neftel, C., Laffy, J., Filbin, M. G., Hara, T., Shore, M. E., Rahme, G. J., . . . Suva, M. L. (2019). An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. *Cell*, 178(4), 835-849 e821. doi:10.1016/j.cell.2019.06.024
- Nemajerova, A., Kim, S. Y., Petrenko, O., & Moll, U. M. (2012). Two-factor reprogramming of somatic cells to pluripotent stem cells reveals partial functional redundancy of Sox2 and Klf4. Cell Death Differ, 19(8), 1268-1276. doi:10.1038/cdd.2012.45
- Newcomb, E. W., Madonia, W. J., Pisharody, S., Lang, F. F., Koslow, M., & Miller, D. C. (1993). A correlative study of p53 protein alteration and p53 gene mutation in glioblastoma multiforme. *Brain Pathol*, *3*(3), 229-235. doi:10.1111/j.1750-3639.1993.tb00749.x
- Nguyen, L. V., Vanner, R., Dirks, P., & Eaves, C. J. (2012). Cancer stem cells: an evolving concept. *Nat Rev Cancer*, 12(2), 133-143. doi:10.1038/nrc3184
- Nicola, N. A., & Babon, J. J. (2015). Leukemia inhibitory factor (LIF). *Cytokine Growth Factor Rev, 26*(5), 533-544. doi:10.1016/j.cytogfr.2015.07.001
- Nicola, Z., Fabel, K., & Kempermann, G. (2015). Development of the adult neurogenic niche in the hippocampus of mice. *Front Neuroanat*, *9*, 53. doi:10.3389/fnana.2015.00053
- Noh, M. G., Oh, S. J., Ahn, E. J., Kim, Y. J., Jung, T. Y., Jung, S., . . . Moon, K. S. (2017). Prognostic significance of E-cadherin and N-cadherin expression in Gliomas. *BMC Cancer*, *17*(1), 583. doi:10.1186/s12885-017-3591-z
- Nowicki, M. O., Hayes, J. L., Chiocca, E. A., & Lawler, S. E. (2019). Proteomic Analysis Implicates Vimentin in Glioblastoma Cell Migration. *Cancers (Basel), 11*(4). doi:10.3390/cancers11040466
- Obernier, K., & Alvarez-Buylla, A. (2019). Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. *Development*, 146(4). doi:10.1242/dev.156059
- Ofenbauer, A., & Tursun, B. (2019). Strategies for in vivo reprogramming. *Curr Opin Cell Biol,* 61, 9-15. doi:10.1016/j.ceb.2019.06.002
- Ohhata, T., & Wutz, A. (2013). Reactivation of the inactive X chromosome in development and reprogramming. *Cell Mol Life Sci, 70*(14), 2443-2461. doi:10.1007/s00018-012-1174-3
- Ohnishi, K., Semi, K., Yamamoto, T., Shimizu, M., Tanaka, A., Mitsunaga, K., . . . Yamada, Y. (2014). Premature termination of reprogramming in vivo leads to cancer development

- through altered epigenetic regulation. *Cell, 156*(4), 663-677. doi:10.1016/j.cell.2014.01.005
- Okada, M., Yano, H., Hirose, Y., Nakayama, N., Ohe, N., Shinoda, J., & Iwama, T. (2011). Olig2 is useful in the differential diagnosis of oligodendrogliomas and extraventricular neurocytomas. *Brain Tumor Pathol, 28*(2), 157-161. doi:10.1007/s10014-011-0017-5
- Okano, M., Bell, D. W., Haber, D. A., & Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. *Cell*, 99(3), 247-257. doi:10.1016/s0092-8674(00)81656-6
- Oliva, C. R., Halloran, B., Hjelmeland, A. B., Vazquez, A., Bailey, S. M., Sarkaria, J. N., & Griguer, C. E. (2018). IGFBP6 controls the expansion of chemoresistant glioblastoma through paracrine IGF2/IGF-1R signaling. *Cell Commun Signal*, 16(1), 61. doi:10.1186/s12964-018-0273-7
- Omole, A. E., & Fakoya, A. O. J. (2018). Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. *PeerJ*, 6, e4370. doi:10.7717/peerj.4370
- Ordog, T., Syed, S. A., Hayashi, Y., & Asuzu, D. T. (2012). Epigenetics and chromatin dynamics: a review and a paradigm for functional disorders. *Neurogastroenterol Motil, 24*(12), 1054-1068. doi:10.1111/nmo.12031
- Ortiz-Alvarez, G., Daclin, M., Shihavuddin, A., Lansade, P., Fortoul, A., Faucourt, M., . . .

 Spassky, N. (2019). Adult Neural Stem Cells and Multiciliated Ependymal Cells Share a
 Common Lineage Regulated by the Geminin Family Members. *Neuron*, 102(1), 159-172
 e157. doi:10.1016/j.neuron.2019.01.051
- Otsuka, S., Maegawa, S., Takamura, A., Kamitani, H., Watanabe, T., Oshimura, M., & Nanba, E. (2009). Aberrant promoter methylation and expression of the imprinted PEG3 gene in glioma. *Proc Jpn Acad Ser B Phys Biol Sci, 85*(4), 157-165. doi:10.2183/pjab.85.157
- Papp, B., & Plath, K. (2013). Epigenetics of reprogramming to induced pluripotency. *Cell,* 152(6), 1324-1343. doi:10.1016/j.cell.2013.02.043
- Park, D., Xiang, A. P., Mao, F. F., Zhang, L., Di, C. G., Liu, X. M., . . . Lahn, B. T. (2010). Nestin is required for the proper self-renewal of neural stem cells. *Stem Cells*, *28*(12), 2162-2171. doi:10.1002/stem.541
- Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P., . . . Kinzler, K. W. (2008). An integrated genomic analysis of human glioblastoma multiforme. *Science*, 321(5897), 1807-1812. doi:10.1126/science.1164382
- Pasque, V., & Plath, K. (2015). X chromosome reactivation in reprogramming and in development. *Curr Opin Cell Biol*, *37*, 75-83. doi:10.1016/j.ceb.2015.10.006
- Pastor, W. A., Chen, D., Liu, W., Kim, R., Sahakyan, A., Lukianchikov, A., . . . Clark, A. T. (2016). Naive Human Pluripotent Cells Feature a Methylation Landscape Devoid of Blastocyst or Germline Memory. *Cell Stem Cell*, 18(3), 323-329. doi:10.1016/j.stem.2016.01.019
- Pastrana, E., Cheng, L. C., & Doetsch, F. (2009). Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. *Proc Natl Acad Sci U S A*, 106(15), 6387-6392. doi:10.1073/pnas.0810407106
- Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H., . . .

 Bernstein, B. E. (2014). Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. *Science*, *344*(6190), 1396-1401. doi:10.1126/science.1254257
- Paw, I., Carpenter, R. C., Watabe, K., Debinski, W., & Lo, H. W. (2015). Mechanisms regulating glioma invasion. *Cancer Lett, 362*(1), 1-7. doi:10.1016/j.canlet.2015.03.015
- Peglion, F., & Etienne-Manneville, S. (2012). N-cadherin expression level as a critical indicator of invasion in non-epithelial tumors. *Cell Adh Migr*, 6(4), 327-332. doi:10.4161/cam.20855
- Perez, J. D., Rubinstein, N. D., Fernandez, D. E., Santoro, S. W., Needleman, L. A., Ho-Shing, O., . . . Dulac, C. (2015). Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain. *Elife, 4*, e07860. doi:10.7554/eLife.07860

- Perrera, V., & Martello, G. (2019). How Does Reprogramming to Pluripotency Affect Genomic Imprinting? *Front Cell Dev Biol, 7,* 76. doi:10.3389/fcell.2019.00076
- Peters, J. (2014). The role of genomic imprinting in biology and disease: an expanding view. *Nat Rev Genet*, *15*(8), 517-530. doi:10.1038/nrg3766
- Pick, M., Stelzer, Y., Bar-Nur, O., Mayshar, Y., Eden, A., & Benvenisty, N. (2009). Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. *Stem Cells*, *27*(11), 2686-2690. doi:10.1002/stem.205
- Plass, C., & Soloway, P. D. (2002). DNA methylation, imprinting and cancer. *Eur J Hum Genet,* 10(1), 6-16. doi:10.1038/sj.ejhg.5200768
- Pollard, S. M., Yoshikawa, K., Clarke, I. D., Danovi, D., Stricker, S., Russell, R., . . . Dirks, P. (2009). Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. *Cell Stem Cell*, 4(6), 568-580. doi:10.1016/j.stem.2009.03.014
- Ponta, H., Sherman, L., & Herrlich, P. A. (2003). CD44: from adhesion molecules to signalling regulators. *Nat Rev Mol Cell Biol*, 4(1), 33-45. doi:10.1038/nrm1004
- Prokhorova, T. A., Harkness, L. M., Frandsen, U., Ditzel, N., Schroder, H. D., Burns, J. S., & Kassem, M. (2009). Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. *Stem Cells Dev, 18*(1), 47-54. doi:10.1089/scd.2007.0266
- Qu-Petersen, Z., Deasy, B., Jankowski, R., Ikezawa, M., Cummins, J., Pruchnic, R., . . . Huard, J. (2002). Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. *J Cell Biol*, *157*(5), 851-864. doi:10.1083/jcb.200108150
- Rasmussen, K. D., & Helin, K. (2016). Role of TET enzymes in DNA methylation, development, and cancer. *Genes Dev*, 30(7), 733-750. doi:10.1101/gad.276568.115
- Raveh, E., Matouk, I. J., Gilon, M., & Hochberg, A. (2015). The H19 Long non-coding RNA in cancer initiation, progression and metastasis a proposed unifying theory. *Mol Cancer*, 14, 184. doi:10.1186/s12943-015-0458-2
- Razin, A., & Cedar, H. (1991). DNA methylation and gene expression. *Microbiol Rev, 55*(3), 451-458.
- Reik, W., & Walter, J. (2001). Genomic imprinting: parental influence on the genome. *Nat Rev Genet*, 2(1), 21-32. doi:10.1038/35047554
- Relaix, F., Wei, X., Li, W., Pan, J., Lin, Y., Bowtell, D. D., . . . Wu, X. (2000). Pw1/Peg3 is a potential cell death mediator and cooperates with Siah1a in p53-mediated apoptosis. *Proc Natl Acad Sci U S A*, *97*(5), 2105-2110. doi:10.1073/pnas.040378897
- Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. *Nature*, *414*(6859), 105-111. doi:10.1038/35102167
- Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. *Science*, *255*(5052), 1707-1710. doi:10.1126/science.1553558
- Rodriguez-Matellan, A., Alcazar, N., Hernandez, F., Serrano, M., & Avila, J. (2020). In Vivo Reprogramming Ameliorates Aging Features in Dentate Gyrus Cells and Improves Memory in Mice. *Stem Cell Reports*, *15*(5), 1056-1066. doi:10.1016/j.stemcr.2020.09.010
- Rosenthal, N., & Brown, S. (2007). The mouse ascending: perspectives for human-disease models. *Nat Cell Biol*, *9*(9), 993-999. doi:10.1038/ncb437
- Rowland, B. D., Bernards, R., & Peeper, D. S. (2005). The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. *Nat Cell Biol*, 7(11), 1074-1082. doi:10.1038/ncb1314
- Rugg-Gunn, P. J., Ferguson-Smith, A. C., & Pedersen, R. A. (2005). Epigenetic status of human embryonic stem cells. *Nat Genet, 37*(6), 585-587. doi:10.1038/ng1556
- Rugg-Gunn, P. J., Ferguson-Smith, A. C., & Pedersen, R. A. (2007). Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived

- and maintained lines. *Hum Mol Genet, 16 Spec No. 2,* R243-251. doi:10.1093/hmg/ddm245
- Sakatani, T., Kaneda, A., Iacobuzio-Donahue, C. A., Carter, M. G., de Boom Witzel, S., Okano, H., . . . Feinberg, A. P. (2005). Loss of imprinting of lgf2 alters intestinal maturation and tumorigenesis in mice. *Science*, *307*(5717), 1976-1978. doi:10.1126/science.1108080
- Sampetrean, O., & Saya, H. (2018). Modeling phenotypes of malignant gliomas. *Cancer Sci,* 109(1), 6-14. doi:10.1111/cas.13351
- Sanai, N., Alvarez-Buylla, A., & Berger, M. S. (2005). Neural stem cells and the origin of gliomas. *N Engl J Med, 353*(8), 811-822. doi:10.1056/NEJMra043666
- Sanges, D., Romo, N., Simonte, G., Di Vicino, U., Tahoces, A. D., Fernandez, E., & Cosma, M. P. (2013). Wnt/beta-catenin signaling triggers neuron reprogramming and regeneration in the mouse retina. *Cell Rep*, 4(2), 271-286. doi:10.1016/j.celrep.2013.06.015
- SanMiguel, J. M., & Bartolomei, M. S. (2018). DNA methylation dynamics of genomic imprinting in mouse development. *Biol Reprod*, *99*(1), 252-262. doi:10.1093/biolre/ioy036
- Satelli, A., & Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. *Cell Mol Life Sci, 68*(18), 3033-3046. doi:10.1007/s00018-011-0735-1
- Schwartz, S., & Rhiner, C. (2018). Reservoirs for repair? Damage-responsive stem cells and adult tissue regeneration in Drosophila. *Int J Dev Biol, 62*(6-7-8), 465-471. doi:10.1387/ijdb.180056cr
- Sharma, S., Kelly, T. K., & Jones, P. A. (2010). Epigenetics in cancer. *Carcinogenesis*, 31(1), 27-36. doi:10.1093/carcin/bgp220
- Sheridan, S. D., Surampudi, V., & Rao, R. R. (2012). Analysis of embryoid bodies derived from human induced pluripotent stem cells as a means to assess pluripotency. *Stem Cells Int*, *2012*, 738910. doi:10.1155/2012/738910
- Shi, W., Wang, H., Pan, G., Geng, Y., Guo, Y., & Pei, D. (2006). Regulation of the pluripotency marker Rex-1 by Nanog and Sox2. *J Biol Chem, 281*(33), 23319-23325. doi:10.1074/jbc.M601811200
- Shimozaki, K. (2014). Sox2 transcription network acts as a molecular switch to regulate properties of neural stem cells. *World J Stem Cells*, *6*(4), 485-490. doi:10.4252/wjsc.v6.i4.485
- Silva, J., Barrandon, O., Nichols, J., Kawaguchi, J., Theunissen, T. W., & Smith, A. (2008).

 Promotion of reprogramming to ground state pluripotency by signal inhibition. *PLoS Biol*, *6*(10), e253. doi:10.1371/journal.pbio.0060253
- Sim, Y. J., Kim, M. S., Nayfeh, A., Yun, Y. J., Kim, S. J., Park, K. T., . . . Kim, K. S. (2017). 2i Maintains a Naive Ground State in ESCs through Two Distinct Epigenetic Mechanisms. Stem Cell Reports, 8(5), 1312-1328. doi:10.1016/j.stemcr.2017.04.001
- Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., . . . Dirks, P. B. (2004). Identification of human brain tumour initiating cells. *Nature*, *432*(7015), 396-401. doi:10.1038/nature03128
- Smallwood, S. A., & Kelsey, G. (2012). De novo DNA methylation: a germ cell perspective. *Trends Genet, 28*(1), 33-42. doi:10.1016/j.tig.2011.09.004
- Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J., Stahl, M., & Rogers, D. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. *Nature*, *336*(6200), 688-690. doi:10.1038/336688a0
- Sobhani, A., Khanlarkhani, N., Baazm, M., Mohammadzadeh, F., Najafi, A., Mehdinejadiani, S., & Sargolzaei Aval, F. (2017). Multipotent Stem Cell and Current Application. *Acta Med Iran*, 55(1), 6-23.
- Sohn, J., Orosco, L., Guo, F., Chung, S. H., Bannerman, P., Mills Ko, E., . . . Pleasure, D. (2015). The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice. *J Neurosci*, *35*(9), 3756-3763. doi:10.1523/JNEUROSCI.3454-14.2015

- Son, M. J., Woolard, K., Nam, D. H., Lee, J., & Fine, H. A. (2009). SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. *Cell Stem Cell*, *4*(5), 440-452. doi:10.1016/j.stem.2009.03.003
- Son, M. Y., Choi, H., Han, Y. M., & Cho, Y. S. (2013). Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency. *Stem Cells*, *31*(11), 2374-2387. doi:10.1002/stem.1509
- Sottoriva, A., Spiteri, I., Piccirillo, S. G., Touloumis, A., Collins, V. P., Marioni, J. C., . . . Tavare, S. (2013). Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. *Proc Natl Acad Sci U S A, 110*(10), 4009-4014. doi:10.1073/pnas.1219747110
- Sripathy, S., Leko, V., Adrianse, R. L., Loe, T., Foss, E. J., Dalrymple, E., . . . Bedalov, A. (2017). Screen for reactivation of MeCP2 on the inactive X chromosome identifies the BMP/TGF-beta superfamily as a regulator of XIST expression. *Proc Natl Acad Sci U S A*, 114(7), 1619-1624. doi:10.1073/pnas.1621356114
- Srivastava, D., & DeWitt, N. (2016). In Vivo Cellular Reprogramming: The Next Generation. *Cell,* 166(6), 1386-1396. doi:10.1016/j.cell.2016.08.055
- Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. *Science*, *322*(5903), 945-949. doi:10.1126/science.1162494
- Sterneckert, J., Hoing, S., & Scholer, H. R. (2012). Concise review: Oct4 and more: the reprogramming expressway. *Stem Cells*, *30*(1), 15-21. doi:10.1002/stem.765
- Su, W., Foster, S. C., Xing, R., Feistel, K., Olsen, R. H., Acevedo, S. F., . . . Sherman, L. S. (2017). CD44 Transmembrane Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem Cell Quiescence and Differentiation. *J Biol Chem, 292*(11), 4434-4445. doi:10.1074/jbc.M116.774109
- Sugawa, N., Ekstrand, A. J., James, C. D., & Collins, V. P. (1990). Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. *Proc Natl Acad Sci U S A, 87*(21), 8602-8606. doi:10.1073/pnas.87.21.8602
- Surani, M. A., Hayashi, K., & Hajkova, P. (2007). Genetic and epigenetic regulators of pluripotency. *Cell*, *128*(4), 747-762. doi:10.1016/j.cell.2007.02.010
- Sutcliffe, J. S., Nakao, M., Christian, S., Orstavik, K. H., Tommerup, N., Ledbetter, D. H., & Beaudet, A. L. (1994). Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. *Nat Genet*, 8(1), 52-58. doi:10.1038/ng0994-52
- Szwagierczak, A., Bultmann, S., Schmidt, C. S., Spada, F., & Leonhardt, H. (2010). Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. *Nucleic Acids Res, 38*(19), e181. doi:10.1093/nar/gkq684
- Tada, M., Takahama, Y., Abe, K., Nakatsuji, N., & Tada, T. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. *Curr Biol, 11*(19), 1553-1558. doi:10.1016/s0960-9822(01)00459-6
- Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. *Cell*, *131*(5), 861-872. doi:10.1016/j.cell.2007.11.019
- Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell*, *126*(4), 663-676. doi:10.1016/j.cell.2006.07.024
- Takahashi, K., & Yamanaka, S. (2016). A decade of transcription factor-mediated reprogramming to pluripotency. *Nat Rev Mol Cell Biol, 17*(3), 183-193. doi:10.1038/nrm.2016.8
- Takahashi, N., Tarumi, W., Itoh, M. T., & Ishizuka, B. (2015). The Stage- and Cell Type-Specific Localization of Fragile X Mental Retardation Protein in Rat Ovaries. *Reprod Sci, 22*(12), 1524-1529. doi:10.1177/1933719115589416

- Takikawa, S., Ray, C., Wang, X., Shamis, Y., Wu, T. Y., & Li, X. (2013). Genomic imprinting is variably lost during reprogramming of mouse iPS cells. *Stem Cell Res, 11*(2), 861-873. doi:10.1016/j.scr.2013.05.011
- Tavazoie, M., Van der Veken, L., Silva-Vargas, V., Louissaint, M., Colonna, L., Zaidi, B., . . . Doetsch, F. (2008). A specialized vascular niche for adult neural stem cells. *Cell Stem Cell*, 3(3), 279-288. doi:10.1016/j.stem.2008.07.025
- Tejero, R., Huang, Y., Katsyv, I., Kluge, M., Lin, J. Y., Tome-Garcia, J., . . . Friedel, R. H. (2019). Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment. *EBioMedicine*, *42*, 252-269. doi:10.1016/j.ebiom.2019.03.064
- Teshigawara, R., Cho, J., Kameda, M., & Tada, T. (2017). Mechanism of human somatic reprogramming to iPS cell. *Lab Invest*, *97*(10), 1152-1157. doi:10.1038/labinvest.2017.56
- Theka, I., Sottile, F., Aulicino, F., Garcia, A. C., & Cosma, M. P. (2017). Reduced expression of Paternally Expressed Gene-3 enhances somatic cell reprogramming through mitochondrial activity perturbation. *Sci Rep, 7*(1), 9705. doi:10.1038/s41598-017-10016-7
- Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. *Science*, 282(5391), 1145-1147. doi:10.1126/science.282.5391.1145
- Thorvaldsen, J. L., Duran, K. L., & Bartolomei, M. S. (1998). Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. *Genes Dev,* 12(23), 3693-3702. doi:10.1101/gad.12.23.3693
- Toma, J. G., Akhavan, M., Fernandes, K. J., Barnabe-Heider, F., Sadikot, A., Kaplan, D. R., & Miller, F. D. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. *Nat Cell Biol*, *3*(9), 778-784. doi:10.1038/ncb0901-778
- Tomasetti, C., & Vogelstein, B. (2015). Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. *Science*, *347*(6217), 78-81. doi:10.1126/science.1260825
- Trepant, A. L., Bouchart, C., Rorive, S., Sauvage, S., Decaestecker, C., Demetter, P., & Salmon, I. (2015). Identification of OLIG2 as the most specific glioblastoma stem cell marker starting from comparative analysis of data from similar DNA chip microarray platforms. *Tumour Biol*, *36*(3), 1943-1953. doi:10.1007/s13277-014-2800-5
- Tucci, V., Isles, A. R., Kelsey, G., Ferguson-Smith, A. C., & Erice Imprinting, G. (2019). Genomic Imprinting and Physiological Processes in Mammals. *Cell*, *176*(5), 952-965. doi:10.1016/j.cell.2019.01.043
- Umar, S. (2010). Intestinal stem cells. *Curr Gastroenterol Rep, 12*(5), 340-348. doi:10.1007/s11894-010-0130-3
- Uribe-Lewis, S., Woodfine, K., Stojic, L., & Murrell, A. (2011). Molecular mechanisms of genomic imprinting and clinical implications for cancer. *Expert Rev Mol Med, 13*, e2. doi:10.1017/S1462399410001717
- Uyeno, S., Aoki, Y., Nata, M., Sagisaka, K., Kayama, T., Yoshimoto, T., & Ono, T. (1996). IGF2 but not H19 shows loss of imprinting in human glioma. *Cancer Res*, *56*(23), 5356-5359.
- van den Hove, D. L., Chouliaras, L., & Rutten, B. P. (2012). The role of 5-hydroxymethylcytosine in aging and Alzheimer's disease: current status and prospects for future studies. *Curr Alzheimer Res*, *9*(5), 545-549. doi:10.2174/156720512800618008
- van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. *Nature, 415*(6875), 1030-1034. doi:10.1038/4151030a
- Varela-Nallar, L., & Inestrosa, N. C. (2013). Wnt signaling in the regulation of adult hippocampal neurogenesis. *Front Cell Neurosci*, 7, 100. doi:10.3389/fncel.2013.00100

- Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., . . . Cancer Genome Atlas Research, N. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. *Cancer Cell*, 17(1), 98-110. doi:10.1016/j.ccr.2009.12.020
- Wagers, A. J., & Weissman, I. L. (2004). Plasticity of adult stem cells. *Cell, 116*(5), 639-648. doi:10.1016/s0092-8674(04)00208-9
- Wang, F., Zheng, Z., Guan, J., Qi, D., Zhou, S., Shen, X., . . . Wu, E. (2018). Identification of a panel of genes as a prognostic biomarker for glioblastoma. *EBioMedicine*, *37*, 68-77. doi:10.1016/j.ebiom.2018.10.024
- Wang, J., Sakariassen, P. O., Tsinkalovsky, O., Immervoll, H., Boe, S. O., Svendsen, A., . . . Enger, P. O. (2008). CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. *Int J Cancer*, *122*(4), 761-768. doi:10.1002/ijc.23130
- Wang, K., Bekar, L. K., Furber, K., & Walz, W. (2004). Vimentin-expressing proximal reactive astrocytes correlate with migration rather than proliferation following focal brain injury. *Brain Res, 1024*(1-2), 193-202. doi:10.1016/j.brainres.2004.07.086
- Wang, L., Zuo, X., Xie, K., & Wei, D. (2018). The Role of CD44 and Cancer Stem Cells. *Methods Mol Biol*, 1692, 31-42. doi:10.1007/978-1-4939-7401-6_3
- Wang, Q., Hu, B., Hu, X., Kim, H., Squatrito, M., Scarpace, L., . . . Verhaak, R. G. W. (2017). Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. *Cancer Cell*, 32(1), 42-56 e46. doi:10.1016/j.ccell.2017.06.003
- Wang, S., Zhang, Q., Tiwari, S. K., Lichinchi, G., Yau, E. H., Hui, H., . . . Rana, T. M. (2020). Integrin alphavbeta5 Internalizes Zika Virus during Neural Stem Cells Infection and Provides a Promising Target for Antiviral Therapy. *Cell Rep.*, 30(4), 969-983 e964. doi:10.1016/j.celrep.2019.11.020
- Wang, Y., Zhao, C., Hou, Z., Yang, Y., Bi, Y., Wang, H., . . . Gao, S. (2018). Unique molecular events during reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) at naive state. *Elife, 7*. doi:10.7554/eLife.29518
- Wilkinson, L. S., Davies, W., & Isles, A. R. (2007). Genomic imprinting effects on brain development and function. *Nat Rev Neurosci*, 8(11), 832-843. doi:10.1038/nrn2235
- Williams, R. L., Hilton, D. J., Pease, S., Willson, T. A., Stewart, C. L., Gearing, D. P., . . . Gough, N. M. (1988). Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. *Nature*, *336*(6200), 684-687. doi:10.1038/336684a0
- Williamson, C. M., Turner, M. D., Ball, S. T., Nottingham, W. T., Glenister, P., Fray, M., . . . Peters, J. (2006). Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. *Nat Genet*, *38*(3), 350-355. doi:10.1038/ng1731
- Wortge, S., Eshkind, L., Cabezas-Wallscheid, N., Lakaye, B., Kim, J., Heck, R., . . . Bockamp, E. (2010). Tetracycline-controlled transgene activation using the ROSA26-iM2-GFP knockin mouse strain permits GFP monitoring of DOX-regulated transgene-expression. *BMC Dev Biol*, 10, 95. doi:10.1186/1471-213X-10-95
- Wu, H., Coskun, V., Tao, J., Xie, W., Ge, W., Yoshikawa, K., . . . Sun, Y. E. (2010). Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. *Science*, *329*(5990), 444-448. doi:10.1126/science.1190485
- Wu, X., & Zhang, Y. (2017). TET-mediated active DNA demethylation: mechanism, function and beyond. *Nat Rev Genet, 18*(9), 517-534. doi:10.1038/nrg.2017.33
- Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., . . . Wang, J. (2012). Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. *Cell*, 148(5), 886-895. doi:10.1016/j.cell.2012.02.025
- Yamada, T., Kawamata, T., Walker, D. G., & McGeer, P. L. (1992). Vimentin immunoreactivity in normal and pathological human brain tissue. *Acta Neuropathol, 84*(2), 157-162. doi:10.1007/BF00311389

- Yao, B., Christian, K. M., He, C., Jin, P., Ming, G. L., & Song, H. (2016). Epigenetic mechanisms in neurogenesis. *Nat Rev Neurosci*, *17*(9), 537-549. doi:10.1038/nrn.2016.70
- Yin, D., Xie, D., Sakajiri, S., Miller, C. W., Zhu, H., Popoviciu, M. L., . . . Koeffler, H. P. (2006). DLK1: increased expression in gliomas and associated with oncogenic activities. *Oncogene*, 25(13), 1852-1861. doi:10.1038/sj.onc.1209219
- Ying, Q. L., Stavridis, M., Griffiths, D., Li, M., & Smith, A. (2003). Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. *Nat Biotechnol*, *21*(2), 183-186. doi:10.1038/nbt780
- Yokoo, H., Nobusawa, S., Takebayashi, H., Ikenaka, K., Isoda, K., Kamiya, M., . . . Nakazato, Y. (2004). Anti-human Olig2 antibody as a useful immunohistochemical marker of normal oligodendrocytes and gliomas. *Am J Pathol, 164*(5), 1717-1725. doi:10.1016/S0002-9440(10)63730-3
- Yoo, M. H., & Hatfield, D. L. (2008). The cancer stem cell theory: is it correct? *Mol Cells*, 26(5), 514-516.
- Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., . . .

 Thomson, J. A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. *Science*, *318*(5858), 1917-1920. doi:10.1126/science.1151526
- Yuan, X., Wan, H., Zhao, X., Zhu, S., Zhou, Q., & Ding, S. (2011). Brief report: combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts. *Stem Cells*, *29*(3), 549-553. doi:10.1002/stem.594
- Zahonero, C., Sepulveda, J. M., & Sanchez-Gomez, P. (2015). [Epidermic growth factor receptor (EGFR) in glioblastomas: the mechanism of tumorigenesis and its role as a therapeutic target]. *Rev Neurol*, 61(2), 85-93.
- Zbinden, M., Duquet, A., Lorente-Trigos, A., Ngwabyt, S. N., Borges, I., & Ruiz i Altaba, A. (2010). NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. *EMBO J.*, 29(15), 2659-2674. doi:10.1038/emboj.2010.137
- Zhao, C., Deng, W., & Gage, F. H. (2008). Mechanisms and functional implications of adult neurogenesis. *Cell*, 132(4), 645-660. doi:10.1016/j.cell.2008.01.033
- Zhao, C., Teng, E. M., Summers, R. G., Jr., Ming, G. L., & Gage, F. H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. *J Neurosci*, *26*(1), 3-11. doi:10.1523/JNEUROSCI.3648-05.2006
- Zhao, S., Chen, C., Chang, K., Karnad, A., Jagirdar, J., Kumar, A. P., & Freeman, J. W. (2016). CD44 Expression Level and Isoform Contributes to Pancreatic Cancer Cell Plasticity, Invasiveness, and Response to Therapy. *Clin Cancer Res, 22*(22), 5592-5604. doi:10.1158/1078-0432.CCR-15-3115
- Zhou, T., Lin, W., Zhu, Q., Renaud, H., Liu, X., Li, R., . . . Guo, Y. (2019). The role of PEG3 in the occurrence and prognosis of colon cancer. *Onco Targets Ther*, *12*, 6001-6012. doi:10.2147/OTT.S208060
- Zhu, H., Mitsuhashi, N., Klein, A., Barsky, L. W., Weinberg, K., Barr, M. L., . . . Wu, G. D. (2006). The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. *Stem Cells*, *24*(4), 928-935. doi:10.1634/stemcells.2005-0186
- Zhu, S., Li, W., Zhou, H., Wei, W., Ambasudhan, R., Lin, T., . . . Ding, S. (2010). Reprogramming of human primary somatic cells by OCT4 and chemical compounds. *Cell Stem Cell, 7*(6), 651-655. doi:10.1016/j.stem.2010.11.015
- Ziegler, A. N., Feng, Q., Chidambaram, S., Testai, J. M., Kumari, E., Rothbard, D. E., . . . Levison, S. W. (2019). Insulin-like Growth Factor II: An Essential Adult Stem Cell Niche Constituent in Brain and Intestine. Stem Cell Reports, 12(4), 816-830. doi:10.1016/j.stemcr.2019.02.011
- Zou, L., Liu, W., Zhang, Z., Edwards, E. J., Gathunga, E. K., Fan, P., . . . Liang, Z. (2020). Gene body demethylation increases expression and is associated with self-pruning during grape genome duplication. *Hortic Res, 7*, 84. doi:10.1038/s41438-020-0303-7

Summary

INTRODUCTION

From zygote to adult stem cell

The formation of an organism begins with the zygote, a totipotent cell capable of generating the rest of embryonic and extra-embryonic structures. This differentiation potential is lost during development. In the blastocyst stage, the cells of the inner mass (ICM) are able to form cells of the three germ layers, but not of the extra-embryonic ones, becoming pluripotent cells. In the adult organism, this pluripotent capacity disappears. However, there are discrete populations of cells located in different tissues with the capacity for self-renewal and differentiation towards a certain restricted lineages (multipotent), called adult stem cells. These cells are essential to maintain tissue homeostasis through cell supply or repair in case of damage.

Neural stem cells and adult neurogenesis

The adult stem cells located in the brain are known as neural stem cells (NSCs) and represent a reservoir of multipotent cells. Adult NSCs are responsible for the generation of new neurons throughout the life of the organism, process known as neurogenesis. This complex and tightly regulated process is restricted to two brain regions in adult mammals, the subventricular zone (SVZ) in the lateral wall of the ventricles, and the subgranular zone (SGZ) in the dentate gyrus of the hippocampus. The SVZ corresponds to the most active neurogenic niche in rodents, and contains stem cells called B1 cells, which when activated, generate rapidly amplifying progenitor cells or type C cells, which in turn, produce type A cells or neuroblasts. These neuroblasts migrate through the rostral migratory stream (RMS) until they reach the olfactory bulbs (OBs) where they integrate and differentiate into interneurons. In the SGZ, stem cells known as radial or type I cells form type II progenitors, which in turn generate neuroblasts or type III cells. These neuroblasts migrate to the granular layer of the dentate gyrus and differentiate into granule cells, which are integrated into neuronal circuits.

Due to the lack of defining markers of NSCs, the main knowledge about these cells has been possible thanks to their *in vitro* culture. However, in recent years, detection and isolation strategies have been developed using a combination of several markers present in the different cell subpopulations by flow cytometry.

Epigenetic regulation of adult neurogenesis

Adult neurogenesis is a dynamic process involving intrinsic and extrinsic factors. The epigenetic mechanisms regulating NSCs activity include modifications that affect gene expression without altering the nucleotide sequence. DNA methylation is one of the most common

epigenetic mechanisms for regulating gene expression and involves the activity of enzymes that incorporate the methyl group, DNA methyltransferases (DNMTs), and enzymes responsible for the active demethylation of DNA, deoxygenases TET. Precisely, TET3 enzyme is the only member of the family that maintains its levels of expression in the adult, and its function has been shown to be essential in the regulation of adult NSCs. DNA methylation plays an important role in many physiological and pathological processes.

Genomic imprinting and the regulation of gene dose

Genomic imprinting is an epigenetic mechanism responsible for the mono-allelic expression of a discrete number of genes, called imprinted genes. This process is regulated by methylation in specific regions of DNA called the imprinting control region (ICR) containing the differentially methylated regions (DMRs) of the maternal and paternal allele. Imprinted genes are usually found in clusters which are regulated by a common DMR. ICRs can be methylated on the maternally inherited chromosome or methylated on the paternal chromosome, defining the expression pattern of imprinted alleles. Deletion of ICRs leads to the loss of imprinting (LOI) in the genes located within the cluster and is associated with imprinting syndromes such as Prader-Willi or Angelman syndrome, but also the cancer; most of them involving neurological disorders due to the role of these genes in the brain.

Genomic imprinting is established in the gametes and must be maintained during the development of the organism to ensure the epigenetic marks that determine the parental origin of each allele. However, this process can be selectively "switch off" in a non-pathological way in certain cell types or specific moments of development to allow the expression of the silenced allele. Precisely, this fine and striking gene dose regulation mechanism has been observed in adult NSCs. The imprinted gene *Dlk1* presents biallelic expression in postnatal NSCs, being necessary for the correct function of the adult neurogenesis. The niche factor IGF2 is also expressed in a biallelic-manner in the choroid plexuses, vasculature and meninges, being crucial for the homeostasis of the adult NSCs of the SVZ. However, the NSCs from SGZ maintain the paternal expression of *Igf2*. These examples show the importance of the regulation of genomic imprinting in the adult NSCs.

Cellular reprogramming and acquisition of a pluripotent state

The specialized adult cells can be reprogrammed to a previous undifferentiated state equivalent to the cells of ICM, becoming into induced pluripotent stem cells (iPSCs), acquiring the capacities of self-renewal and differentiation potential, characteristics of stem cells. Reprogramming involves changes in gene expression, increasing pluripotent genes and

decreasing the specific genes of the somatic cell lineage. Other epigenetic alterations during reprogramming include the reactivation of the inactive X chromosome in female cells, hypomethylation of DNA or silencing of exogenous genes. Moreover, variable events of loss of imprinting (LOI) have been described during iPSCs generation, being considered by some authors as a marker of pluripotency. Specifically, the paternally methylated locus *Dlk1-Dio3*, regulated by levels of methylation in IG-DMR, is frequently altered in iPSCs. Interestingly, paternally methylated DMRs appear to be more affected by LOI than maternally methylated ones.

The induction of cell reprogramming has been carried out by different mechanisms, both viral and non-viral, capable of integrating into the genome or temporarily maintained. The transgenic organisms that carry the OSKM cassette coding the four transcriptional factors Oct4, Sox2, Klf4 and c-Myc, is one of the most used strategies to the study of the reprogramming process *in vitro* and *in vivo*.

Brain cancer: cancer stem cell theory

Undertanding the origin of cancer continues to be a priority aspect in the investigation of this pathology. Cancer stem cells (CSCs), responsible for the formation and maintenance of cancer, as well as resistance to treatments, have been described in many types of cancer. Due to the multitude of characteristics shared between adult stem cells and these pathological cells, various studies have support the cancer stem cell theory. According to this theory, adult stem cells would be responsible for the malignant transformation.

In the human brain there are different types of tumors. Glioblastoma (GBM) is the most common and aggressive primary brain tumor, and it has been associated with several genetic and epigenetic alterations. One of the most common alterations found in human GBM is the amplification of the EGFR molecule, an activator of various signalling pathways including proliferation, survival, migration, and tumorigenesis. For this reason, this alteration has been associated with classic GBM. However, this tumor shows a high heterogeneity. Indeed, different subtypes within the GBM are present. While the classic subtype is characterized by an increase in EGFR, an increase in the OLIG2 is associated with a pro-neural and less aggressive phenotype. The most aggressive subtype is the mesenchymal type, which is characterized by high levels of CD44. However, these molecules, along with other GBM-associated markers, are not unique to these pathological cells but are also present in NSCs, supporting the cancer stem cell theory. In fact, the ability of adult NSCs from SVZ to form GBMs in different regions of the brain has been demonstrated in various studies. Furthermore, this capacity decreases as the potential for differentiation decreases, suggesting that NSCs transform more easily than their progenitors.

Multiple genes have been related to GBM, however, alterations in promoter methylation levels is the main epigenetic mark that occurs during malignant transformation. Human GBM shows a decrease in the epigenetic mark 5hmC levels, coinciding with a decrease in the TET3 enzyme, which is involved in the conversion of the 5mC group into 5hmC. Increasing this enzyme has shown to inhibit the proliferation of GBM cells. Different strategies have been used to understand this cancer. However, it is difficult to generate models that form these tumors efficiently, therefore, various mutations are usually required. One of the most used model are the xenotransplants or allografts. Nevertheless, this methodology does not allow to address one of the most interesting aspects of GBM, the origin.

The imprinted genes are susceptible to mutations that can lead to tumor formation due to their mono-allelic expression and their involvement in the regulation of growth and metabolism. Patients affected by genomic imprinting syndromes are more susceptible to developing tumors, revealing a possible role of this epigenetic mechanism in cancer formation. Precisely, the LOI is one of the most common and early events in this pathology. LOI at the IGF2-H19 locus in Wilms tumor have been the best characterized association between imprinting and cancer, although alterations in various imprinted genes have been described.

OBJETIVES

The discovery of CSCs in tumors with similarities to adult stem cells promoted the cancer stem cell theory, which argues that malignant transformation occurs in these tissue stem cells through genetic and epigenetic alterations. In the brain, understanding the mechanisms involved in the maintenance of NSCs and the relationship with malignant transformation is essential to develop useful tools for the diagnosis and treatment of brain tumors. Precisely, the alteration of the epigenetic mechanism of genomic imprinting is one of the most common and earliest events in cancer. Therefore, the main objective of this thesis is to identify the role of genomic imprinting and its epigenetic regulation in the activity of adult NSCs, and its implication in the development of brain tumors.

The specific goals proposed in this thesis are:

- 1. To study genomic imprinting and its epigenetic regulation in adult NSCs from SVZ.
- 2. To study genomic imprinting and its epigenetic regulation in glioblastoma.
- 3. To study the role of TET3 enzyme in the regulation of genomic imprinting during malignant transformation.

MATERIAL AND METHODS

1. Experimental animals

The animals used in this thesis as well as the experimental procedures have been approved by the ethics committee of the Universitat of València. In this work, different murine strains have been used: i4F (OSKM transgene), GFAP-rtTA (transcriptional activator under the *Gfap* promoter), C57BL6 (wild strain), CAST/EiJ (wild strain used for the generation of hybrid animals) and the Nude strain (immunosuppressed). The experiments were carried out in animals between 2-4 months of age, with the exception of MEFs, obtained from E14.5 embryos, and the electroporation in postnatal animals (P2).

2. Cell cultures

The reprogramming studies have been performed in i4F-B animals, carrying the rtTA and the inducible by doxycycline transgene OSKM. The i4F-B MEFs, obtained from the disintegration with trypsin/EDTA of E14.5 embryos, and adult NSCs have been used to reprogram. Adult NSCs were obtained from dissection and culture by isolating the SVZ and subsequent disintegration with papain. The cells were seeded to allow growth in the form of neurospheres and disaggregated again with Acutase® to expand them in well stablished conditions.

The GBM line, GBM-EGFR, were obtained from Dra. Pilar Sánchez Gómez. This line was generated by overexpression of Egfr in p16 and p19 deficient adult NSCs and subsequent injection into immuncompromised mice. For the expansion, the cells were disaggregated with AccumaxTM and cultured again in their corresponding medium.

3. Reprogramming with doxycycline treatment in vitro

Reprogramming of i4F-B MEFs was based on the treatment with 1 μ g/ml of doxycycline in the KsR medium with LIF. The appearance of cells with pluripotent characteristics, detected by the presence of the SSEA1 marker, was indicative of the reprogramming process. The SSEA1+ cells were isolated and cultured in the absence of doxycycline for complete reprogramming in iPSCs. Regarding the reprogramming of adult NSCs, the primary cultures of adult NSCs from reprogrammable adult mice were treated with 1 μ g / ml of doxycycline in the medium of NSCs. After the appearance of SSES1 + clonal aggregates, the cells were cultured in ES medium with LIF, in the presence of doxycycline. Finally, cells were cultured in 2i selective medium with LIF, initially in the presence of doxycycline which was finally removed to allow complete reprogramming to iPSCs.

4. Characterization of iPSCs

The characterization of the iPSCs was performed by detecting markers associated with pluripotency as well as testing the capacity of generate multiple embryonic linages. The alkaline phosphatase activity was performed after fixing the cells with cold methanol and subsequent staining with Naphthol phosphate, Dimethylformamide and Fast Red Salt in the Tris-HCl buffer. The ability to form embryonic bodies was made by the hanging drop and floating method. Both strategies were based on culturing the iPSCs at low density in the presence of serum. The reactivation of the X chromosome was carried out by analyzing the expression of *Xist* and *Tsix* genes, involved in this process. The expression of *Pgk1*, located on the X chromosome, was also analyzed. In order to verify whether the reprogramming had led to chromosomal aberrations, a karyotype study of the iPSCs was carried out by means of inhibition of cell division, subsequent hypotonic shock and fixation with Cold carnoy. The chromosomes were contrasted with Giemsa staining and the number of chromosomes per metaphase was quantified. The differentiation of iPSCs to neuroprogenitors (NPs) was based on the formation of embryo bodies and subsequent treatment with retinoic acid (RA) for 4 days.

5. Reprogramming with doxycycline treatment in vivo

In vivo reprogramming was performed using two models based on the expression of the OSKM transgene; a first model, i4F-B, of systemic reprogramming due to the presence of the transcriptional activator rtTA at the Rosa26 locus. The second model, GFAP-rtTA;i4F, is based in brain-specific reprogramming due to the presence of rtTA under the Gfap promoter. For the induction of OSKM expression, both models were treated with doxycycline in water sweetened with 7.5% sucrose. However, the treatment in the i4F-B model was 2.5 weeks with 0.2 mg/ml doxycycline, while the GFAP-rtTA;i4F animals were treated for 4 weeks with 1 mg/ml.

Obtaining tumor cells from GFAP-rtTA;i4F animals treated with doxycycline to induce reprogramming *in vivo* was carried out by disintegrating the brain of these animals with trypsin and subsequent culturing in GBM medium.

6. Characterization of GBM line

GBM-EGFR line was nucleofected with the piggyBAC transposase system of the control vector, the Tet3 FL vector and the Tet3 FL CDmut vector with the Mouse Neural Stem Cell NucleofectorTM kit, following the manufacturer's instructions. Subsequent selection of nucleofected cells was performed with blasticidin treatment after 48h of nucleofection. For cell cycle analysis, the nucleofected GBM cells GMB^{control}, GMB^{Tet3} and GMB^{Tet3} CDmut were

disaggregated to obtain a suspension of single cells that were stained using BD CycletestTM Plus DNA Kit, allowing the analysis of the cell cycle phases by propidium iodide staining. The percentages of cells in each phase of the cell cycle were determined by flow cytometry with FACSVerse. For the tumorespheres assay, the GBM cells were disrupted and seeded at low density, 2500 cells in p96 wells with GBM medium.

The number of tumorspheres formed was counted manually using an inverted phase contrast microscope. The detection of cells in S phase of the cell cycle was made by incorporation of the thymidine analog EdU (5-ethynyl-2'-deoxyuridine) and subsequent revealed. For that, adhered cells were incubated for 1 hour in the presence of 10 μ M EdU and subsequently fixed with 4% paraforlmadehyde (PFA) for 15 minutes at room temperature. After fixation, permeabilization was performed with 0.5% Triton® X-100 for 20 minutes at room temperature. Finally, the EdU was revealed. The percentage of EdU+ cells was estimated from the number of total cells.

The adhesion capacity of GBM lines was measured by an in vitro assay in the presence of fibroblasts that overexpress the adhesion molecule N-Cadherin (NC-929). A total of 1x10⁶ GBM cells, manually disaggregated, were labeled with CellTraceTM Oregon GreenTM 488 Carboxylic Acid Diacetate, Succinimidyl Ester fluorophore for 8 minutes at 37°C, and protected from light. Later, a total of 6500 cells were seeded on NC-929 fibroblasts. The cell co-cultures were incubated for 40 minutes to allow adhesion of the GBM cells. Finally, the cells were fixed with 2% PFA for 15 minutes at room temperature and staining with DAPI. The number of GBM cells adhered to the fibroblast monolayer was estimated using the script "Cell Adhesion" (https://github.com/paucabar/cell_adhesion_assay), implemented as an ImageJ macro available through the Fiji update site "NeuroMol Lab", obtaining the number of GBM cells adhered per mm² to the NC-929 fibroblast monolayer.

The study of the role of Tet3 in the angiogenesis capacity was performed by analysing the proliferation of human endothelial cells HUVEC after being co-cultured with GBM cells. For this, 10,000 GBM^{control}, GMB^{Tet3} and GBM^{Tet3} cells were seeded on semipermeable transwells. After 48 hours of medium conditioning, an EdU pulse was performed for 1 hour on the HUVEC cells. Subsequently, the GBM cells were removed and the HUVECs were fixed with 2% PFA for 15 minutes at room temperature. The Ki67 molecule was also detected.

7. Study of the ability to form tumors

To study the tumor capacity of the cells, 1.5×10^6 cells/200 μ l of iPSCs or 2×10^6 cells/200 μ l of GBM and GFAP-rtTA;i4F cells were injected in Nude mice. The cells were resuspended in PBS supplemented with 30% Matrigel and injected subcutaneously in the dorso-lateral area of the

caudal region on each side of the animal. When the tumors reached 1.5-2 cm in diameter, the animals were sacrificed and the tumors were removed for analysis. The staining and detection of molecular markers in 10 μ m thick sections of tumors was done by inclusion in paraffin and paraffin microtome after having been fixed with Carnoy. For staining, samples were incubated with Hematoxylin for 9-10 minutes and eosin for another 9-10 minutes.

8. *In situ* detection of proteins

Protein detection by immunohistochemistry (IHC) and immunocytochemistry (ICC) was based on incubation with a blocking solution composed of 0.2% Triton-100, 1% glycine, and 10% serum in PBS of fixed samples during 1 hour at room temperature. The samples were then incubated with the primary antibodies overnight at 4 °C and shaking. The next day, the samples were washed and incubated with the secondary antibody for 1 hour with shaking and at room temperature. Finally, DAPI was added to stain the nuclei.

For the detection of membrane markers by flow cytometry, cells were resuspended in $100\,\mu$ l of the flow cytometry blocking buffer containing the fluorophore-conjugated primary antibodies. The incubation with these antibodies was carried out at 4 °C for 30 minutes. Cells were washed and DAPI was added to exclude dead cells in the analysis. The analysis was performed using an LSR-Fortessa cytometer.

9. RNA extraction and gene expression analysis

RNA extraction in tissues and in cell cultures was performed by using the RNeasy Mini Kit including a DNA digestion using the enzyme DNAse. RNA was quantified using a spectrophotometer and 1 μ g of RNA was retrotranscribed into complementary DNA (cDNA) using RevertAid H Minus First Strand cDNA Synthesis Kit. Gene expression analysis was carried out by real-time PCR, using 4 ng of cDNA and specific TaqManTM probes for each gene or SYBR-green primers. The expression levels of each gene were obtained by relative quantification (Δ Ct) using the expression of the *Gapdh* and *18S* genes as endogenous controls. In the case of SYBR-green probes, a standard curve was made with serial dilutions from a mixture of cDNA generated from each sample.

10. Study of genomic imprinting state

The DNA sequences of the imprinted genes of interest were obtained from the NCBI Web Site database. For the identification of SNPs between the subspecies, primers were designed for the amplification of the region of cDNA of interest in the brain of C57/BL6 mice and CAST/EiJ mice of two months of age. To determine the allele-specific expression of the imprinted genes, the

regions containing the SNP for the gene studied were amplified by PCR using specific primers from cDNA of hybrid animals. Subsequently, the purified PCR products were sequenced.

11. Study of DNA methylation in imprinting control regions

DNA was obtained by extraction solution at 55 °C overnight. Next, 1 ml of phenol was added at pH 8 and the samples were shaken for 15-30 minutes and subsequently centrifuged at 13,000 rpm for 30 minutes. Then, 1 ml of phenol:chloroform (1:1) equilibrated was added to the aqueous phase. Samples were shaken and centrifuged again, and the aqueous phase was transferred to new tubes and 1 ml of chloroform was added. Finally, 200 μ l of 10M NH₄CH₃CO₂ was added. The samples were gently shaken and 2 ml of absolute ethanol was added. They were left shaking overnight at 4°C. The DNA pellets were incubated with 70% ethanol, inverting the tube several times, and centrifuged. Finally, 200 μ l of water was added immediately thereafter and incubated at 55°C for 1 hour.

The analysis of the methylation levels at the DMRs of the ICRs was done by pyrosequencing. To do this, bisulfite conversion of DNA was previously made, after which the region of interest was amplified by PCR. The determination of the percentage of methylation at specific loci was calculated as $2^{-\Delta\Delta Ct}$ x 100%, where $\Delta\Delta Ct$ = (CT_{Target} - CT_{Reference}) shows - (CT_{Target} - CT_{Reference}) completely methylated DNA.

RESULTS

1. Reprogramming of NSCs to iPSCs *in vitro* is associated with changes in the expression and epigenetic state of imprinted genes

Reprogramming of adult NSCs carrying the doxycycline-inducible OSKM transgene began in the absence of LIF, appearing SSEA1+ cells, called pre-iPSCs, which finished reprogramming efficiently in the 2i/LIF selective medium in the absence of doxycycline after 20-30 days from the start of treatment. The acquisition of the pluripotent state was verified with an increase in the expression of the *Oct4*, *Nanog* and *Rex1* genes, a decrease in neural genes, and the silencing of the transgene. The reprogrammed cells also showed the capacity of forming cell from the three germ layers *in vitro* and *in vivo*. In addition, iPSCs, which did not suffer chromosomal aberrations, did reactivate the silenced X chromosome in cells from female animals. These iPSCs were also capable of differentiating again to the neural phenotype in presence of serum and retinoic acid.

Cellular reprogramming to an undifferentiated pluripotent state also showed alterations of genomic imprinting. The expression analysis of the imprinted genes in the iPSCs showed a high percentage (84.62%) of genes altered compared to the NSCs of origin. Around 40% of these genes

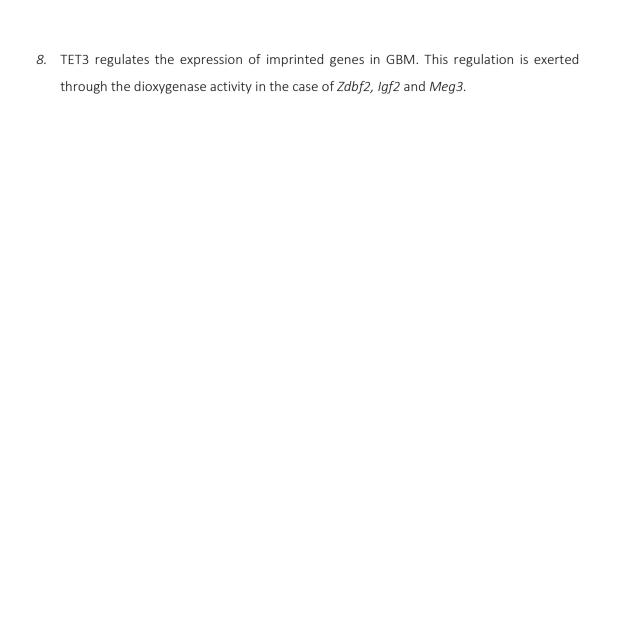
reverted when they were differentiated again to neuroprogenitors (NPs). In the analysis of methylation levels at the DMRs/ICRs, a generalized hypomethylation was observed in the iPSCs that only reverted in paternally methylated gDMRs when iPSCs were differentiated into NPs. However, most of the alterations in the expression of the imprinted genes were not explicable with the changes in the methylation levels at DMRs in the ICRs. Only *Dlk1* showed coincident expression and methylation changes in both iPSCs and NPs. *Dlk1* is an imprinted gene that loses this imprinting state in postnatal NSCs, physiologically. Precisely, the reprogramming of the NSCs led to the acquisition of the imprinting state that was lost again when iPSCs were differentiated again into NPs.

2. Genomic imprinting is altered during reprogramming and tumor formation in vivo

The expression of the imprinted genes was analysed in human GBMs and non-tumor samples. This analysis showed more than 70% of genes affected, most of them, with a decrease in their expression. Furthermore, the expression profile of the imprinted genes showed to be sufficient to identify GBM cells from non-tumor cell types such as oligodendrocytes. Moreover, this study also allowed to distinguish between cell subtypes within GBM. However, it was not able to segregate the adult NSCs y GBM cells, indicating a common gene profile between both populations.

To study the role of genomic imprinting during the acquisition of the cancer phenotype in the brain, a model of tumor formation based on cell reprogramming was used. First, the reprogramming was performed in the previously used i4F-B model; however, it was not efficient for the formation of tumors in the brain. Therefore, the model used in this study was based on the reprogramming of GFAP+ cells (NSCs and astrocytes). This protocol allowed the generation of brain tumors in the 100% of the animals, expressing GBM markers such as CD44, SSEA1 or Nestin, among others. These tumors showed alterations in several imprinted genes.

In order to compare the alterations in the expression of imprinted genes in the tumors of reprogrammed animals with those that occur in GBM, the murine cell model GBM-EGFR was used. This cell line also presented alterations in the expression of the 50% of the imprinted genes, of which only *Peg3* and *Snrpn* coincided with the changes in methylation in their regulatory DMRs.


3. Study of the role of TET3 in the regulation of genomic imprinting during malignant transformation

TET family enzymes are involved in the active demethylation of DNA through the oxidation of the 5-methylcytosine (5mC) group in 5-hydroxymethylcytosine (5hmC). Precisely, the expression

of *TET3* was decreased both in GBM patients and in the murine GMB-EGFR line. Therefore, the role of this enzyme in the regulation of methylation levels in ICRs and the expression of imprinted genes in GBM was analyzed. Overexpression of this enzyme reduced the proliferation of GBM-EGFR cells, inhibiting their ability to form tumors *in vivo*, in a dioxygenase-dependent manner. Furthermore, this increased expression of *Tet3* led to the alteration of more than 50% of the imprinted genes. This effect of TET3 showed to be dependent on methylation processes in *Zdbf2*, *Igf2* and *Meg3* genes. However, only *Igf2* expression changes coincided with the regulatory DMR methylation changes.

CONCLUSIONS

- 1. The expression of imprinted genes is significantly altered during pluripotency acquisition by cultured adult NSCs, suggesting a relevant role of genomic imprinting in the regulation of their cellular reprogramming.
- 2. Reprogramming of adult NSCs into iPSCs produces hypomethylation at the imprinting control regions, which is reverted during iPSCs differentiation into NPs only in the paternally methylated gDMRs, showing divergent mechanisms of regulation in maternally and paternally methylated DMRs.
- 3. The imprinting state of *Dlk1*, lost in NSCs, is restored in iPSCs and lost again after their differentiation into NPs, suggesting a plastic mechanism of genomic imprinting regulation.
- 4. *In vivo* cellular reprogramming by OSKM induced expression in brain cells of the astrocytic lineage, leads to the generation of heterogeneous cerebral tumors, with molecular features of either teratomas or GBM.
- 5. Human and murine GBM cells have alterations in the expression of imprinted genes and hypermethylation at the DMRs of imprinting control regions, suggesting an important role of this epigenetic mechanism in the cancer phenotype.
- 6. *TET3* expression is significantly downregulated in human and murine GBM, and high levels of this gene are associated with survival of the patients suggesting a role of TET3 enzyme in the pathology.
- 7. Overexpression of *Tet3 reduces* GBM proliferation in a demethylation-dependent manner, repressing tumor formation *in vivo*.

Resumen

INTRODUCCIÓN

Del zigoto a la célula madre adulta

La formación de un organismo se inicia con la aparición del zigoto, una célula totipotente capaz de formar el resto de estructuras embrionarias y extraembrionarias. Este potencial de diferenciación se va perdiendo durante el desarrollo, de manera que en el estadío de blastocisto, las células de la masa interna (ICM) son capaces de formar células de las tres capas germinales, pero no de las extraembrionarias, pasando a ser células pluripotentes. En el organismo adulto, esta capacidad pluripotente desaparece; sin embargo, existen poblaciones discretas de células situadas en los diferentes tejidos con capacidad de auto-renovación y diferenciación hacia un determinado linaje o multipotentes, llamadas células madre adultas. Estas células son esenciales para mantener la homeostasis del tejido mediante el aporte celular o la reparación en caso de daño.

Células madre neurales y neurogénesis adulta

Las células madre adultas situadas en el cerebro son conocidas como células madre neurales (NSCs) y suponen un reservorio de células multipotentes responsables de la formación de nuevas neuronas a lo largo de la vida del organismo, proceso conocido como neurogénesis. Este complejo y estrechamente regulado proceso queda restringido a dos regiones cerebrales en los mamíferos adultos, la zona subventricular (SVZ) en la pared lateral de los ventrículos, y la zona subgranular (SGZ) en el giro dentado del hipocampo. La SVZ se corresponde con el nicho neurogénico más activo en los roedores, y contiene célula madre llamadas células B1, que al activarse, generan células progenitoras de amplificación rápida o células tipo C, que a su vez, producen células tipo A o neuroblastos, que migran a través de la vía rostral migratoria (RMS) hasta alcanzar los bulbos olfativos (OBs) donde se integran y diferencian en interneuronas. En la SGZ, las células madre conocidas como células radiales o tipo I, forman progenitores de tipo II, que a su vez, generan neuroblastos o células tipo III. Estos neuroblastos migran a la capa granular del giro dentado y se diferencian en células granulares, que se integran en los circuitos neuronales. Debido a la falta de marcadores definitorios de las células madre neurales, los principales conocimientos sobre estas células han sido posibles gracias a su cultivo in vitro. Sin embargo, en los últimos años, se han desarrollado estrategias de detección y aislamiento de estas células gracias a la identificación de combinaciones de marcadores presentes en las diferentes subpoblaciones celulares mediante citometría de flujo.

Regulación epigenética de la neurogénesis adulta

La neurogénesis adulta en ambos nichos es un proceso dinámico que se encuentra altamente regulado por factores intrínsecos y extrínsecos. Los mecanismos epigenéticos que regulan la actividad de las NSCs implican modificaciones que afectan a la expresión génica sin alterar la secuencia de nucleótidos. La metilación del DNA se trata de uno de los mecanismos más comunes de regulación de la expresión génica e implica la actividad de enzimas que incorporan el grupo metilo, las DNA metiltransferasas (DNMTs), y enzimas encargadas de la desmetilación activa del DNA, las deoxigenasas TET. Precisamente la enzima TET3 es el único miembro de la familia que mantiene sus niveles de expresión en el organismo adulto, y su función ha demostrado ser clave en la regulación de las NSCs adultas.

La metilación del DNA participa de forma esencial en multitud de procesos tanto fisiológicos como patológicos.

Impronta genómica y regulación de la dosis génica

La impronta genómica es el mecanismo epigenético responsable de la expresión monoalélica de algunos genes, los genes improntados. Este proceso es regulado por metilación en regiones concretas del DNA llamadas región de control de impronta (ICR) donde se sitúan las regiones diferencialmente metiladas (DMRs) del alelo materno y paterno, y que permite regular de forma conjunta diversos genes improntados debido a que éstos se encuentran generalmente agrupados en "clusters". Las ICRs pueden estar metiladas en el cromosoma heredado maternalmente o metiladas en el cromosoma paterno, definiendo el patrón de expresión de los alelos improntados. La deleción de estas regiones reguladoras conlleva la pérdida de impronta genómica (LOI) en los genes situados en el "cluster", y está asociada a diversos síndromes de impronta como el síndrome de Prader-Willis o de Angelman, o también al cáncer; la mayor parte de ellos afectando al desarrollo y al sistema nervioso central debido a la implicación de estos genes en el desarrollo del embrión y en el cerebro adulto.

La impronta genómica es establecida en los gametos y debe ser mantenida durante el desarrollo del organismo para asegurar las marcas epigenéticas que determinan el origen parental de cada alelo. Sin embargo, este proceso puede ser selectivamente "apagado" de forma no patológica en ciertos tipos celulares y/o momentos concretos del desarrolla para permitir la expresión del alelo silenciado. Este fino y llamativo mecanismo de regulación de la dosis génica ha sido observado precisamente en las NSCs adultas, en las que la expresión del gen improntado de expresión paterna *Dlk1*, presenta expresión bialélica en las NSCs postnatales de la SVZ, siendo clave para el correcto funcionamiento del proceso de neurogénesis. También el factor de nicho

IGF2 se expresa de forma bialélica en los plexos coroideos, vasculatura y meninges, siendo necesario para la homeostasis de las NSCs de la SVZ; mientras que las NSCs procedentes de la SGZ mantienen de forma improntada el gen de expresión paterna *Igf2*. Estos ejemplos, muestran como la expresión de los genes improntados es específica y clave en el mantenimiento de las NSCs adultas.

Reprogramación celular y adquisición de un estado pluripotente

Las células adultas especializadas pueden ser reprogramadas a un estado previo indiferenciado equivalente a las células de la masa interna del blastocito, las célula madre pluripotentes inducidas (iPSCs), adquiriendo las capacidades de auto-renovación y potencial de diferenciación, características de las células madre. La adquisición del estado pluripotente implica cambios de expresión génica, aumentando aquellos genes relacionados con el proceso de indiferenciación, y disminuyendo los genes específicos del linaje de la célula somática; así como alteraciones epigenéticas incluyendo la reactivación del cromosoma X inactivo en las células procedentes de hembras, hipometilación del DNA o silenciamiento de los genes exógenos. Además, el proceso de reprogramación inducida a iPSCs se caracteriza por eventos variables de pérdida de impronta (LOI), considerándose por algunos autores como un marcador de pluripotencia. En concreto, el locus paternalmente metilado *Dlk1-Dio3*, regulado por los niveles de metilación en IG-DMR, se encuentra frecuentemente alterado en las iPSCs. Curiosamente, las DMRs metiladas paternalmente parecen estar más afectadas por la pérdida de impronta que las metiladas maternalmente.

La inducción de la reprogramación celular se ha llevado a cabo mediante diferentes mecanismos, tanto virales como no virales capaces de integrarse en el genoma o mantenidos de forma transitoria. Los organismos transgénicos portadores del casete OSKM que codifica para los cuatro factores transcripcionales *Oct4, Sox2, Klf4* y *c-Myc*, es una de la estrategias más utilizadas y que ha permitido el estudio del proceso de reprogramación en el animal vivo.

Cáncer cerebral: teoría de la célula madre cancerosa

El estudio sobre el origen del cáncer continúa siendo un aspecto prioritario en la investigación de esta patología. Se han descrito en numerosos tipos de cáncer la presencia de células con características de célula madre llamadas células madre cancerosas (CSCs), responsables de la formación y el mantenimiento del cáncer, así como la resistencia a tratamientos. Debido a la multitud de características compartidas entre las células madre de tejido y estas células patológicas, diversos estudios han situado el origen de las CSCs en la transformación maligna de las células madre de tejido.

Cáncer en cerebro

En el cerebro humano existen diferentes tipos de tumores que difieren en el origen celular y la parte del cerebro afectada, siendo el glioblastoma (GBM) el tumor primario cerebral más común y agresivo. Se han descrito numerosas alteraciones genéticas y epigenéticas implicadas en el GBM. Una de las alteraciones más comúnmente encontradas en los pacientes de glioblastoma es la amplificación de la molécula EGFR, un activador de diversas vías de señalización que incluyen proliferación, supervivencia, migración y tumorigénesis. Por ello, está alteración ha sido asociada al glioblastoma de tipo clásico.

Los glioblastomas presentan una alta heterogeneidad, ejemplo de ello es la presencia de diferentes subtipos dentro del GBM. Mientras que el subtipo clásico se caracteriza por el aumento de EGFR, un aumento de la molécula OLIG2 se asocia a un fenotipo pro-neural y menos agresivo. El subtipo más agresivo es el de tipo mesenquimal, el cual contiene elevados niveles de CD44. Sin embargo, estas moléculas, junto con otros marcadores asociados al GBM, no son exclusivas de estas células patológicas sino que también están presentes en las NSCs. Hecho que refuerza la idea de la NSC como célula de origen del GBM. Si bien, diversos genes han sido relacionados con esta patología, las alteraciones en los niveles de metilación de los promotores es la principal marca epigenética que sucede durante la transformación maligna. Precisamente, las muestras de pacientes de glioblastoma muestran una disminución en los niveles de la marca epigenética 5hmC, coincidente con una disminución de la enzima TET3, implicada en la conversión del grupo 5mC en 5hmC. El aumento de esta enzima ha demostrado inhibir la proliferación de las células de glioblastoma.

Con el fin de estudiar los distintos factores implicados en el origen y mantenimiento del GBM, se han desarrollado diferentes estrategias. Sin embargo, resulta complicado generar modelo que formen estos tumores de forma eficiente, por ello, diversas mutaciones suelen ser requeridas. Una de las estrategias más utilizadas es el uso de xenotransplantes o alotransplantes. Sin embargo, esta metodología no permite abordar uno de los aspectos más interesantes del glioblastoma, su origen. Las células madre del glioma o GSCs comparten muchas características con las NSCs adultas, hecho que apoya la teoría de las NSCs como las células de origen en este tumor. De hecho, la capacidad de las NSCs adultas de la SVZ de formar glioblastomas en diferentes regiones del cerebro ha sido demostrada en diversos estudios. Además, dicha capacidad disminuye a medida que disminuye el potencial de diferenciación, sugiriendo que las NSCs se transforman más fácilmente que sus progenitores.

Los genes improntados son susceptibles a las mutaciones que pueden ocasionar la formación de tumores debido a su expresión monoalélica y a su implicación en la regulación del crecimiento y el metabolismo. Los pacientes afectados por síndromes de impronta genómica presentan una mayor susceptibilidad a desarrollar tumores, revelando la implicación de este mecanismo epigenético en el cáncer. Precisamente, la pérdida de impronta genómica es uno de los eventos más comunes y tempranos en esta patología, siendo la LOI en el locus *IGF2-H19* en el tumor de Wilms la asociación entre impronta y cáncer mejor caracterizada; si bien, alteraciones en diversos genes improntados han sido descritas.

OBJETIVOS

El descubrimiento de células madre cancerosas (CSCs) en los tumores con semejanzas a las células madre de tejido promovieron la teoría de la célula madre cancerosa, que defiende que la transformación maligna ocurriría en estas célula madre de tejido a través de alteraciones genéticas y/o epigenéticas. En el cerebro, entender los mecanismos implicados en el mantenimiento de las NSCs y la relación con la transformación maligna es clave para el desarrollo de herramientas de diagnóstico y tratamiento de los tumores cerebrales. Precisamente, la alteración del mecanismo epigenético de impronta genómica es uno de los eventos más comunes y tempranos en el cáncer. Por ello, el principal objetivo de esta tesis es identificar el papel de la impronta genómica y su regulación epigenética en la actividad de las NSCs adultas, y su implicación en el desarrollo de tumores cerebrales.

Los objetivos específicos propuestos en esta Tesis son:

- 4. Estudio del proceso de impronta genómica y su regulación epigenética en células madre neurales adultas (NSCs).
- 5. Estudio del proceso de impronta genómica y su regulación epigenética en el glioblastoma.
- 6. Estudio del papel de la enzima TET3 en la regulación de la impronta genómica durante la transformación maligna.

MATERIAL Y MÉTODOS

1. Animales experimentales

Los animales utilizados en esta tesis así como los procedimientos experimentales han sido aprobados por el comité de ética de la Universitat de València. En este trabajo se han utilizado diferentes cepas murinas: i4F (portador del transgen OSKM), GFAP-rtTA (portador del activador transcripcional bajo el promotor de *Gfap*), C57BL6 (cepa salvaje), CAST/EiJ (cepa salvaje utilizada

para la generación de animales híbridos) y la cepa *Nude* (cepa inmunodeprimida). Los experimentos se llevaron a cabo en animales de entre 2-4 meses de edad generalmente, a excepción de los MEFs obtenidos de embriones E14,5 y la electroporación en animales postnatales (P2).

2. Cultivos celulares

Los estudios de reprogramación llevados a cabo en este trabajo se han realizado con animales portadores el activador transcripcional rtTA y del transgén OSKM inducible por doxiciclina. De estos animales se han utilizado MEFs, obtenidos a partir de la disgregación con tripsina/EDTA de embriones de E14,5. En el caso de la obtención de NSCs adultas reprogramables procedentes de la SVZ, la disección y el cultivo se hicieron mediante aislamiento de la SVZ y posterior disgregación con papaína. Las células fueron sembradas para permitir el crecimiento en forma de neuroesferas y disgregadas nuevamente con Acutasa® para expandirlas.

Las líneas de glioblastoma (GBM) murino, GBM-EGFR, fueron obtenidas del laboratorio de la Dra. Pilar Sánchez Gómez. Estas líneas fueron generadas a partir de la sobre-expresión de *Egfr* en NSCs adultas deficientes en p16 y p19 y posterior inyección en ratones inmuncomprometidos. Para su expansión, las células fueron disgregadas con AccumaxTM y cultivadas de nuevo en su medio correspondiente.

3. Reprogramación in vitro mediante el tratamiento con doxiciclina

La reprogramación de los MEFs de ratones portadores del transgen OSKM se basó en el tratamiento con 1 µg/ml de doxiciclina en el medio KsR con LIF. La aparición de células con características pluripotentes, detectadas por la presencia del marcador SSEA1, fue indicativo del proceso de reprogramación. Estas células SSEA1+ fueron aisladas y cultivadas en ausencia de doxiciclina para la reprogramación completa en iPSCs. En cuanto a la reprogramación de las NSCs adultas, los cultivos primarios de NSCs de la SVZ procedente de ratones adultos reprogramables fueron tratados con 1 µg/ml de doxiciclina en el medio de NSCs. Tras la aparición de agregados clonales SSES1+, las células fueron cultivas en medio ES con LIF, en presencia de doxiciclina. Finalmente, las células fueron cultivadas en medio selectivo 2i con LIF, inicialmente en presencia de doxiciclina que finalmente fue retirada para permitir la reprogramación completa a iPSCs.

4. Caracterización de las iPSCs

La caracterización de las iPSCs se realizó mediante la detección de marcadores asociados a pluripotencia así como el testado de dicha capacidad. La actividad fosfatasa alcalina se realizó tras la fijación de las células con metanol frío y posterior tinción con fosfato de Naftol,

Dimetilformamida y Fast Red Salt en el tampón Tris-HCl. La capacidad de formar cuerpos embriodies se hizo por el método de la gota colgante y de flotación. Ambas estrategias se basaron en el cultivo de las iPSCs a baja densidad en presencia de suero. La reactivación del cromosoma X se realizó mediante el análisis de expresión de los genes Xist y Tsix, implicados en este proceso. También se analizó la expresión de Pgk1, situado en el cromosoma X. Con el fin de comprobar si la reprogramación había dado lugar a aberraciones cromosómicas se realizó un estudio del cariotipo de las iPSCs mediante inhibición de la división celular, posterior choque hipotónico y fijación con Carnoy frío. Los cromosomas se contrastaron con la tinción Giemsa y el número de cromosomas por metafase fue cuantificado.

La diferenciación de las iPSCs a neuroprogenitores (NPs) se basó en la formación de cuerpos embriodes y posterior tratamiento con ácido retinoico (AR) durante 4 días, tras los cuales se analizaron las características neurales de las células.

5. Reprogramación in vivo mediante el tratamiento con doxiciclina

La reprogramación *in vivo* se llevó a cabo utilizando dos modelos basados en la expresión del transgén OSKM; un primer modelo, i4F-B, de reprogramación sistémica debido a la presencia del activador transcripcional rtTA en locus *Rosa26*, y un segundo modelo, GFAP-rtTA;i4F, de reprogramación específico de cerebro debido a la presencia del rtTA bajo el promotor de *Gfap*. Para la inducción de la expresión de OSKM, ambos modelos fueron tratados con doxiciclina en agua edulcorada con 7,5% de sacarosa. Sin embargo, el tratamiento en el modelo i4F-B se basó en 2,5 semanas con 0,2 mg/ml de doxiciclina, mientras que los animales GFAP-rtTA;i4F fueron tratados durante 4 semanas con 1 mg/ml.

La obtención de células tumorales de animales GFAP-rtTA;i4F tratados con doxiciclina para inducir la reprogramación *in vivo*, se realizó mediante la disgregación con tripsina del cerebro de estos animales y posterior cultivo en medio de GBM.

6. Caracterización de las líneas de GBM

La sobre-expresión de *Tet3* en la línea GBM-EGFR se realizó mediante nucleofección con el sistema piggyBAC transposasa del vector control, el vector Tet3 y el vector Tet3 CDmut con el kit Mouse Neural Stem Cell NucleofectorTM. La posterior selección de las células nucleofectadas se realizó con el tratamiento con blasticidina. Para el análisis de ciclo celular, estas células fueron disgregadas para obtener una suspensión de células individuales que fueron teñidas utilizando BD CycletestTM Plus DNA Kit, permitiendo el análisis de las fases del ciclo celular mediante tinción con yoduro de propidio. Los porcentajes de células en cada fase del ciclo celular fueron

determinados mediante citometría de flujo con FACSVerse. La detección de células en fase S del ciclo celular también se realizó mediante incorporación del análogo de timidina EdU (5-etinil-2'-deoxiuridina) y posterior revelado. Para ello, las células adheridas fueron incubadas durante 1 hora en presencia de EdU 10 µM y posteriormente fijadas con paraforlmadehído (PFA) al 4% durante 15 minutos a temperatura ambiente. Tras la fijación, se realizó la permeabilización con 0,5% de Triton® X-100 durante 20 minutos a temperatura ambiente. Finalmente, se llevó a cabo el revelado de la EdU. El porcentaje de células EdU positivas fue estimado a partir del número de células totales.

En el ensayo de formación de tumoresferas, las células fueron disgregadas y sembradas a baja densidad, 2500 células en pocillos p96. El número de tumoresferas formadas fue contado manualmente utilizando un microscopio invertido de contraste de fases.

La capacidad de adhesión de las líneas GBM que sobre-expresan el gen Tet3 fue medida mediante un ensayo in vitro en presencia de fibroblastos modificados para la sobre-expresión de la molécula de adhesión N-Cadherina (NC-929). Un total de 1x10⁶ células de células de GBM, disgregadas manualmente, fueron marcadas con el fluoróforo CellTrace™ Oregon Green™ 488 Carboxylic Acid Diacetate, Succinimidyl Ester durante 8 minutos en el baño a 37 °C y protegidas de la luz. Tras lo cual, se sembraron un total de 6500 células sobre fibroblastos NC-929. Los cocultivos de células fueron incubados durante 40 minutos para permitir la adhesión de las células de GBM. Finalmente, se realizó la fijación de las células con PFA al 2% durante 15 minutos a temperatura ambiente y tinción con DAPI. El número de células de GBM adheridas a la monocapa de fibroblastos fue estimado mediante el script "Cell Adhesion" (https://github.com/paucabar/cell_adhesion_assay), implementado como una macroinstrucción de ImageJ disponible a través del lugar de actualización de Fiji "NeuroMol Lab", obteniéndose el número de células de GBM adheridas por mm² a la monocapa de fibroblastos NC-929.

El estudio del papel de *Tet3* en la capacidad de angiogénesis se realizó mediante el análisis de la proliferación de células endoteliales humanas HUVEC tras el co-cultivo con células de GBM. Para ello, se sembraron 10.000 células GBM^{control}, GMB^{Tet3} y GBM^{Tet3} comut sobre *transwells* semipermeables. Tras 48 horas de condicionamiento del medio, se realizó un pulso de EdU durante 1 hora sobre las HUVEC. Posteriormente, las células de GBM fueron retiradas y las HUVEC fueron fijadas con PFA 2% durante 15 minutos a temperatura ambiente. También se detectó la molécula Ki67.

7. Estudio de la capacidad de formación de tumores

El estudio de la capacidad tumoral de las células, se realizó una inyección de $1,5x10^6$ células/200 μ l de iPSCs o $2x10^6$ células/200 μ l de GBM y células GFAP-rtTA;i4F en ratones *Nude*. Las células fueron resuspendidas en PBS suplementado con 30% de Matrigel y se inyectaron subcutáneamente en el área dorso-lateral de la región caudal a cada lado del animal. Cuando los tumores alcanzaron un tamaño de entre 1,5-2 cm, los animales fueron sacrificados y los tumores fueron extraídos para su análisis. La tinción y detección de marcadores moleculares en cortes de $10~\mu m$ de grosor de tumores se hizo mediante la inclusión en parafina y micrótomo de parafina tras haber sido fijados con Carnoy. Para la tinción, se realizó la coloración con Hematoxilina férrica o de Gill durante 9-10 minutos y eosina durante otros 9-10 minutos.

8. Detección in situ de proteínas

La detección de proteínas mediante inmunohistoquímica (IHC) e inmunocitoquímica (ICC) se basó en la incubación con una solución de bloqueo compuesta por 0,2% de Triton-100, 1% de glicina, y 10% suero en PBS de muestras fijadas durante una hora en agitación y a temperatura ambiente. A continuación, las muestras fueron incubadas con los anticuerpos primarios durante toda la noche a 4 °C y en agitación. Al día siguiente, las muestras fueron lavadas e incubadas con el anticuerpo secundario durante 1 hora en agitación y a temperatura ambiente. Finalmente, se añadió DAPI para contrateñir los núcleos.

Para la detección de marcadores de membrana por citometría de flujo, las células fueron resuspendidas en 100 μl del tampón de bloqueo de citometría de flujo que contenía los anticuerpos primarios conjugados con fluoróforos. La incubación con dichos anticuerpos se realizó a 4 °C durante 30 minutos, tras lo cual, las células se lavaron y se le añadió DAPI para la exclusión de las células muertas en el análisis. Dicho análisis se realizó utilizando un citómetro LSR-Fortessa.

9. Extracción de RNA y análisis de expresión génica

La extracción de RNA en tejidos y en cultivos celulares fue realizada mediante el Kit RNeasy Mini incluyendo una digestión de DNA mediante la enzima DNAsa. El RNA fue cuantificado mediante un espectofotómetro y se realizó la retrotranscripción de 1 μg de RNA en DNA complementario (cDNA) usando RevertAid H Minus First Strand cDNA Synthesis Kit. El análisis de expresión génica fue llevado a cabo mediante PCR a tiempo real, usando 4 ng del cDNA y sondas TaqManTM específicas para cada gen o sondas SYBR-green. Los niveles de expresión de cada gen fueron obtenidos mediante cuantificación relativa (ΔCt) usando la expresión de los genes *Gapdh*

y *18S* como controles endógenos. En el caso de las sondas SYBR-green se realizó curva estándar con diluciones seriadas a partir de una mezcla de cDNA generada a partir de cada muestra.

10. Estudio del estado de impronta genómico

Las secuencias de DNA de los genes improntados de interés fueron obtenidas de la base de datos NCBI Web Site. Para la identificación de los SNPs entre las subespecies se diseñaron cebadores para la amplificación de la región de cDNA de interés en cerebro de ratones C57/BL6 y ratones CAST/EiJ de dos meses de edad. Para determinar la expresión alelo-específica de los genes improntados se amplificaron las regiones que contenían el SNP para el gen estudiado mediante PCR utilizando sondas específicas a partir de cDNA de animales híbridos. Posteriormente se procedió a la secuenciación de los productos de PCR purificados.

11. Estudio de la metilación del DNA en regiones de control de impronta

La obtención de DNA fue realizada mediante solución de extracción a 55°C durante toda la noche. A continuación, se añadió 1 ml de fenol a pH 8 y las muestras fueron agitadas durante 15-30 minutos y posteriormente centrifugadas a 13.000 rpm durante 30 minutos. Se añadió 1 ml de fenol:cloroformo (1:1) equilibrado a la fase acuosa. Se agitaron y centrifugaron de nuevo, y la fase acuosa se transfirió a nuevos tubos y se añadió 1 ml de cloroformo. Finalmente, se añadió 200 μ l de NH₄CH₃CO₂ a 10M. Las muestras fueron agitadas suavemente y se les añadió 2 ml de etanol absoluto. Se dejaron en agitación durante toda la noche a 4 °C. Los pellets de DNA se incubaron con etanol al 70%, invirtiendo el tubo varias veces y se centrifugaron. Se añadieron 200 μ l de agua inmediatamente después y se incubó a 55°C durante 1 hora.

El análisis de los niveles de metilación en las DMR de las ICRs se hizo mediante pirosecuenciación. Para ello, previamente se llevó a cabo la conversión bisulfítica del DNA, tras lo cual, se amplificó por PCR la región de interés. La determinación del porcentaje de metilación en locus específicos fue calculado como $2^{-\Delta Ct}x$ 100%, donde $\Delta \Delta Ct = (CT_{Target} - CT_{Reference})$ muestra – $(CT_{Target} - CT_{Reference})$ DNA completamente metilado.

RESULTADOS

La reprogramación de NSCs a iPSCs in vitro se asocia con cambios en la expresión y el estado epigenético de genes improntados

La reprogramación de NSCs adultas portadoras del transgén OSKM inducible por doxiciclina se inició en ausencia de LIF, apareciendo células SSEA1 positivas, pre-iPSCs, que terminaron de reprogramarse eficientemente en el medio selectivo 2i/LIF en ausencia de doxiciclina tras 20-30 días desde el inicio del tratamiento. La adquisición del estado pluripotente fue comprobada con

el aumento de la expresión de los genes *Oct4*, *Nanog* y *Rex1*, una disminución de genes neurales, y el silenciamiento del transgén. También mediante la capacidad de formación de células de las tres capas germinales *in vitro* e *in vivo*. Además, las iPSCs, que no sufrieron aberraciones cromosómicas, sí reactivaron el cromosoma X silenciado en las células procedentes de animales hembra. Estas iPSCs además, eran capaces de diferenciarse nuevamente al fenotipo neural al ser cultivadas en medio con suero y ácido retinoico.

La reprogramación celular a un estado indiferenciado pluripotente también mostró cambios en la impronta genómica. El análisis de expresión de los genes improntados en las iPSCs mostró un elevado porcentaje (84,62%) de genes alterados con respecto a las NSCs de origen, de los cuales alrededor del 40% revirtieron al ser diferenciadas nuevamente a neuroprogenitores (NPs). Al analizar la relación de los niveles de metilación en las DMRs en ICRs, se observó una hipometilación generalizada en las iPSCs que únicamente revertía en los NPs de las gDMRs paternalmente metiladas. Sin embargo, la mayor parte de alteraciones en la expresión de los genes improntados no era explicable con los cambios en los niveles de metilación. Únicamente los genes Ins2 y Dlk1, mostraron cambios en la expresión y metilación coincidentes tanto en iPSCs como en NPs. Dlk1 es un gen improntado de expresión paterna que pierde dicho estado de impronta en las NSCs postnatales de forma fisiológica. Precisamente, la reprogramación de las NSCs dio lugar a la adquisición del estado de impronta que volvió a perderse al diferenciar las iPSCs en NPs.

2. El proceso de impronta genómica sufre alteraciones durante la reprogramación y formación de tumores *in vivo*

El análisis de la expresión de muestras de GBM de pacientes con respecto a tejido no tumoral, mostró más del 70% de genes improntados afectados, la mayor parte de ellos, con una disminución en su expresión. Además, el perfil de expresión de los genes improntados mostró ser suficiente para identificar las células de GBM con respecto a tipos celulares no tumorales como los oligodendrocitos e incluso, entre subtipos celulares dentro del propi GBM. Sin embargo, no era capaz de agrupar de forma diferente estas poblaciones tumorales con respecto a las NSCs adultas, indicando un perfil génico común entre ambas poblaciones.

Para estudiar el papel de la impronta genómica durante la adquisición del fenotipo canceroso en cerebro, se utilizó un modelo de formación de tumores basado en la reprogramación de las células. En primer lugar, se llevó a cabo dicha reprogramación con el modelo anteriormente utilizado i4F-B; sin embargo, no resultó ser eficiente para la formación de tumores en cerebro. Por ello, el modelo utilizado en este estudio se basó en la reprogramación de las células GFAP

positivas (NSCs y astrocitos). Esto permitió generar tumores cerebrales en el 100% de los animales con marcadores asociados al GBM como CD44, SSEA1 o Nestina, entre otros. Estos tumores mostraron alteraciones en gran parte de los genes improntados analizados.

Con el fin de comparar las alteraciones en la expresión de genes improntados detectadas en los tumores de animales reprogramados con aquellas que ocurren en el GBM, se utilizó un modelo celular murino de GBM basado en la sobre-expresión de *Egfr* en NSCs adultas de la SVZ deficientes en p16 y p19 (GBM-EGFR). Esta línea celular también presentó alteraciones en la expresión del 50% de los genes improntados, de los cuales, únicamente *Peg3* y *Snrpn*, coincidieron con los cambios en metilación en sus DMRs reguladoras.

3. Estudio del papel de la enzima TET3 en la regulación de la impronta genómica durante la transformación maligna

Las enzimas de la familia TET están implicadas en la desmetilación activa del DNA a través de la oxidación del grupo 5-metilcitosina (5mC) en 5-hidroximetilcitosina (5hmC), por lo que podrían estar implicadas en las alteraciones en la impronta genómica observadas en el GBM. Precisamente, la expresión de *TET3* disminuye tanto en pacientes de GBM como en la línea murina GMB-EGFR. Por ello, el papel de esta enzima en la regulación de los niveles de metilación en ICRs y la expresión de los genes improntados en GBM fue analizada. La sobre-expresión de esta enzima redujo la proliferación de las células GBM-EGFR, inhibiendo su capacidad de formar tumores *in vivo*, de manera dependiente de la actividad dioxigenasa. Además, este aumento de expresión de *Tet3* conllevó a la alteración de más del 50% de los genes improntados, de los cuales *Zdbf2*, *Igf2* y *Meg3* mostraron ser dependientes de procesos de metilación. Sin embargo, únicamente los cambios de expresión de *Igf2* coincidieron con los cambios en metilación de la DMR reguladora.

CONCLUSIONES

- La expresión de los genes improntados se encuentra alterada en el proceso de adquisición del estado pluripotente a partir de NSCs adultas, indicando que la impronta genómica presenta un papel importante en la regulación del proceso de reprogramación celular.
- La reprogramación de las NSCs a iPSCs produce hipometilación de las DMRs en las regiones de control de impronta, que se revierte en las gDMRs paternalmente metiladas cuando las iPSCs son diferenciadas a NPs, indicando mecanismos

- divergentes entre la regulación de las DMRs metiladas maternalmente y paternalmente.
- 3. El estado de impronta de *Dlk1* se recupera en las iPSCs y vuelve a perderse tras la diferenciación a NPs, mostrando ser un mecanismo plástico y dosis-dependiente en la regulación de las NSCs adultas.
- 4. El modelo de reprogramación celular *in vivo* mediante inducción del transgén OSKM por doxiciclina de forma específica en cerebro es capaz de generar tumores cerebrales heterogéneos con marcadores asociados al GBM.
- 5. El GBM humano y murino presenta alteraciones en la expresión de genes improntados e hipermetilación en las DMRs de las regiones de control de impronta, sugiriendo un papel importante de este mecanismo epigenético en el fenotipo canceroso.
- 6. La expresión de *TET3* disminuye de forma significativa en el GBM humano, asociándose los niveles más bajos con una menor supervivencia de los pacientes. La expresión de este gen en el GBM murino también se encuentra disminuida. La disminución de la enzima TET3 sugiere un papel relevante de esta enzima en el GBM.
- 7. TET3 disminuye la proliferación del GBM de forma dependiente a la metilación, reprimiendo la formación de tumores *in vivo*.
- 8. TET3 regula la expresión de genes improntados en el GBM. Esta regulación la ejerce a través de su actividad dioxigenasa en el caso de *Zdbf2, Igf2* y *Meg3*.